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Abstract

In an infectious disease with a long infectious period (which can be the entire life for

some diseases), the infectivity of individuals may change due to different reasons. For

example, infected individuals may receive treatment and their level of infectivity can reduce

depending on the efficacy of the treatment. Or, infected individuals may change their

behaviour and reduce their activity once the disease is diagnosed, leading to a reduction

of their infectivity. Treated individuals may stop getting treatment, and return to the

infective class at a rate depending on how long they have been receiving treatment.

In this thesis, a compartmental model consisting of three compartments (susceptibles,

infectives and treated infectives) is formulated to study the effect of treatment on the

transmission dynamics of a disease. Continuous and discrete treatment-age-structured

models are derived and the asymptotic behaviour of the system is studied and the basic

reproduction number is determined.
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Chapter 1

Introduction

“Prevention is the most important application of epidemiology and epidemiology is the

principal pillar of prevention.”[10]

Epidemiologists divide preventive strategies into two groups: reducing risk factors1 and

preventive treatments. Examples of reducing risk factors include: increasing hygiene stan-

dards, for example in tuberculosis, providing unpolluted resources when there is an envi-

ronmental reservoir, for instance in cholera and controlling the infective agents (vectors),

for example mosquitoes in malaria [10]. Immunization is one of the most effective pre-

ventive treatments to control the spread of infectious diseases. This can be done through

vaccination and in this case, the efficacy of the vaccine is an important factor. The disease

transmission is affected by a reduction in the incidence of the infectious disease. Preven-

tive (drug) treatments are used when there is no vaccine available and in some cases they

have both preventive and curative effects (drug treatments in malaria [10] and antiviral

treatment in influenza [1]).

1A variable associated with an increased risk of disease or infection
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On the other hand, some curative treatments have indirect preventive effects and they

influence the transmission of infectious diseases. These effects are similar to that of vac-

cination and they reduce the incidence of the disease, so the efficacy of treatment plays

an important role. In particular, in the absence of vaccine the preventive effects of treat-

ments can be remarkable. For example, Highly Active Antiretroviral Therapy (HAART)

has become a preventive strategy to control HIV, because of its effects on reducing the

transmission of HIV, in addition to the reduction of the mortality (see [14, 18] and refer-

ences therin).

Considering the important role of treatment in transmission dynamics of infectious dis-

eases, mathematical modellers have studied the effect of treatment in various ways [1, 4,

8, 11, 14, 18, 20, 21]. In some models, treated individuals are assumed to be partially re-

covered, i.e., a fraction of treated population recover with immunity and the others return

to the infective compartment but it is assumed that treated individuals can not infect

the others [1]. Some models assume a reduced infectivity for treated individuals [4]. A

number of models are developed to study the treatment effects for specific diseases such

as HIV/AIDS [14] and HCV [11].

The aim of this thesis is to study the effect of treatment in an SI model where the infective

individuals remain infectious for the rest of their life for example HIV/AIDS. We assume

that the infectivity of treated individuals is reduced depending on how long they have

been receiving treatment, and by infectivity we mean “the probability of transmission

given a contact between a susceptible and an infective individual” [6]. The idea is similar

to the model studied by Hyman and Li in [8], where they have considered an infection-age

structured model with treatment and assuming that the activity level and the infectivity of

infected population depend on the age of infection. Here we assume that the infectiousness

of infective individuals who are not getting treatment is a constant and it varies when they
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start getting treatment. We also suppose that the treated individuals may stop getting

treatment and return to the infective class at a rate that depends on the age of treatment.

The emphasis of this model is on studying the positive effect of treatment (efficacy and

duration) and the negative effect of interrupting the treatment on reducing the incidence

of an infectious disease. The model is formulated and analysed with both continuous and

discrete age of treatment structure. For the continuous case, different approaches are used

and some results on stability of the disease free equilibrium point are given. In the discrete

case, the local and global stability of the disease free equilibrium point and the existence

of the endemic equilibrium point are discussed.

The thesis organization is as follows: Chapter 2 covers the basic theory of ordinary and

delay differential equations and some results in mathematical epidemiology; in Chapter

3, the model is formulated and justified using several approaches; Chapter 4 is dedicated

to the analysis of the model including the local stability of the disease free equilibrium

point and derivation of the threshold value, the basic reproduction number; a discrete age-

structured model is formulated in Chapter 5 and the local and global stability analysis are

given; Chapter 6 summarises previous chapters and gives concluding remarks.



Chapter 2

Preliminaries

2.1 Mathematical Preliminaries

The essential mathematical tools used in this thesis are presented in this section. Some

basic theory of ordinary (ODE) and delay differential equations (DDE) including the

fundamental theorem of existence and uniqueness, the flow defined by ODE’s and DDE’s

and the local stability of equilibrium points are given.

2.1.1 Ordinary Differential Equations

Throughout this section, E is an open subset of Rn, x0 ∈ E is given and f : E → Rn is a

vector field on E. The proof of theorems of this section can be found in [12].

5
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Autonomous ODE’s An autonomous system of ordinary differential equations is given

by

x′(t) = f(x(t)), (2.1)

where f : E → Rn does not depend explicitly on t. If the vector field f = (f1, · · · , fn) is

differentiable at x0, then the derivative of f at x0 is a linear operator defined by

Df = [
∂fi
∂xj

], (2.2)

which is called the Jacobian matrix.

Assume the initial time t0 = 0 and suppose I is an interval containing 0. The following

system is called an initial value problem (IVP):

x′(t) = f(x(t)), (2.3a)

x(0) = x0. (2.3b)

Definition 2.1. Consider System (2.1) and let f be continuous. Then x(t) is a solution

of (2.1) on I if it satisfies x′(t) = f(x(t)) for all t ∈ I. x(t) is a solution to the IVP (2.3)

if it satisfies x(0) = x0.

We need the following definition to state the fundamental theorem of existence and unique-

ness.

Definition 2.2. f : E → Rn is said to satisfy a Lipschitz condition on E if there exists

a constant K ≥ 0 such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ E. f is said to satisfy a locally Lipschitz condition if for all x0 ∈ E there
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exist δ and K0 ≥ 0 such that

|f(x)− f(y)| ≤ K0|x− y|

for all x, y ∈ N(x0, δ), a neighbourhood of x0 of size δ.

Remark 2.1. If f ∈ C1(E), then f is Lipschitz on E.

Theorem 2.2. (Fundamental Theorem of Existence and Uniqueness) Let f ∈ C1(E), then

there exists a > 0 such that the IVP (2.3) has a unique solution on I = [−a, a].

Consider the initial value problem (2.3). Let f be continuously differentiable on E and let

Φ(t, x0) be the solution of (2.3) defined on its maximal interval of existence I. The flow

of (2.3) is defined by

Φt(x0) = Φ(t, x0), for all t ≥ 0.

The flow of (2.3) satisfies the following properties:

• Φ0(x) = x, ∀x ∈ E;

• Φs(Φt(x)) = Φs+t(x) for all s, t ∈ R+;

• Φ−t(Φt(x)) = x.

A fixed point of the flow Φt defined by (2.3) is a point x∗ ∈ Rn such that Φt(x
∗) = x∗ for

all t ≥ 0.

Definition 2.3. The point x∗ ∈ Rn is called an equilibrium point of (2.1) if f(x∗) = 0,

i.e., x∗ is a fixed point of the flow of (2.1).
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In the rest of this section, we assume that x∗ = 0, since 0 6= x∗ ∈ Rn is an equilibrium

point of (2.1) if and only if y∗ = 0 is the equilibrium point of the following system:

y′(t) = f(y(t))

where y(t) = x(t)− x∗.

In the theory of ordinary differential equations, x∗ is called a stable equilibrium point if

the solutions with an initial value near the origin stay close to it, as time goes to infinity,

and it is called asymptotically stable if it is stable and the solutions approach to x∗. The

mathematical definition is given below.

Definition 2.4. Suppose x∗ = 0 is an equilibrium point of equation (2.1).

• The point x∗ = 0 is stable if for any ε > 0, there is δ = δ(ε) > 0 such that

∀x0 ∈ E, |x0| < δ =⇒ |x(t)| < ε, ∀t > 0.

• The point x∗ = 0 is asymptotically stable if it is stable and “attractive”, i.e., there

exists δ > 0 such that

|x0| < δ ⇒ |x(t)| → 0 as t→∞.

Let U ⊆ E be the set of all initial values x0 ∈ Rn such that the solution of the IVP (2.3)

exists and converges to x∗ = 0. If U 6= E, then x∗ = 0 is locally asymptotically stable

(LAS) and if U = E, it is called globally asymptotically stable (GAS) with respect to E.
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Linearization Principle One way to study the asymptotic behaviour of System (2.1),

is the local analysis of the system near the equilibrium points. Let f(0) = 0 and consider

the linear system

x′(t) = Ax(t), (2.4)

where A = Df(0) is the Jacobian matrix of f evaluated at 0, defined in (2.2).

Theorem 2.3. Consider the linear system (2.4). The equilibrium point x∗ = 0 is locally

asymptotically stable if all eigenvalues of A have negative real part, and unstable if there

is an eigenvalue with positive real part.

The following theorem shows that the behaviour of system (2.1) near x∗ = 0 is determined

by the behaviour of the linear system (2.4).

Theorem 2.4. (Hartman-Grobman) Let f be a C1 vector field on E containing the origin,

and Φt be the flow generated by System (2.1). Let x∗ = 0 be the equilibrium point of (2.1)

and assume all eigenvalues of A = Df(0) have non zero real part. Then there exist

open sets V and W containing the origin and a homeomorphism h : V → W that maps

trajectories of (2.1) close to the origin to trajectories of (2.4) near the origin, preserving

the parametrization, i.e., for all x0 ∈ V , there exists an open interval I0 containing zero

such that

h ◦ Φt(x0) = eAth(x0), ∀x0 ∈ V, t ∈ I0,

where

eAt =
∞∑
k=0

(At)k

k!
.

The system (2.4) is called the linearization of system (2.1) about the equilibrium point

x∗ = 0.
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2.1.2 Delay Differential Equations

Proofs of theorems throughout this section can be found in [7].

Delay differential equations are a type of functional differential equations where the evo-

lution of the system depends not only on the current state of the system but also on its

past history.

A delay differential equation can be written as

x′(t) = f(x(t), x(t− τ))

for a single, discrete delay τ ∈ R+,

x′(t) = f(x(t), x(t− τ1), . . . , x(t− τn))

for multiple delays τ1, . . . , τn ∈ R+, and

x′(t) = f

(
x(t),

∫ t

t−τ
x(s)ds

)

for a distributed (or continuous) delay, where τ ∈ R+.

Let τ ≥ 0 be given and C := C([−τ, 0],Rn) be the Banach space of continuous func-

tions on the closed interval [−τ, 0] with the supremum norm ‖φ‖ = sup
−τ≤θ≤0

|φ(θ)|. For

α > 0 and t0 ∈ R, let x : [t0− τ, t0 +α]→ Rn be continuous. For t ∈ [t0, t0 +α), let xt ∈ C

be defined by

xt(θ) = x(t+ θ), t ∈ [t0, t0 + α). (2.5)
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Using this notation, a delay differential equation can be written as

x′(t) = f(xt).

Example 2.5. Consider the following equation

x′(t) = ax(t) + bx(t− τ)

where a, b ∈ R are constants. This equation can be written as follows

x′(t) = f(xt)

where f : C → R is a continuous function defined by

f(φ) = aφ(0) + bφ(−τ).

In the rest of this section the initial time t0 is assumed to be zero, unless otherwise stated.

Definition 2.5. An initial value problem (IVP) of a delay differential equation is given

by the following relation

x′(t) = f(xt), t ≥ 0, (2.6a)

x0 = φ ∈ C. (2.6b)

A solution on [0, α] is a continuous function x : [−τ, α]→ Rn such that x : [0, α]→ Rn is

differentiable and satisfies equation (2.6a).

The function φ ∈ C in the above IVP is called the initial data, corresponding to the initial
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value in ordinary differential equations. Since, in a system of delay differential equations,

the rate of change of the system depends on the state of the system at previous times, the

initial value x(0) does not provide enough information to study the IVP. So we need to

know the values of x on the interval [−τ, 0].

Remark 2.6. The function x : [−τ, α] → Rn is a solution of the IVP (2.6) if it satisfies

the following integral equation

x(t) = φ(0) +

∫ t

0

f(xs)ds.

Proof. Assume x : [−τ, α]→ Rn satisfies the equation (2.6); integrating both sides of the

equation from 0 to t, we have

∫ t

0

x′(s)ds =

∫ t

0

f(xs)ds⇔ x(t)− x(0) =

∫ t

0

f(xs)ds

⇔ x(t) = φ(0) +

∫ t

0

f(xs)ds.

Conversely, if x(t) satisfies the above integral equation, differentiating both sides, we will

get equation (2.6).

If τ = 0 in (2.6), then we have the ordinary differential equation x′(t) = f(x) and the

initial data φ will be the initial value for the ODE. The following example illustrates a

simple delay differential equation and connects the concepts here to the corresponding

concepts in ODE.

Example 2.7 (Delayed Negative Feedback). Consider the equation

x′(t) = −x(t− τ),

x0 = 1.

(2.7)
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With the notation in (2.5), the above equation can be written as

x′(t) = −xt(−τ),

x0(θ) = 1, −τ ≤ θ ≤ 0.

For 0 ≤ t ≤ τ , we have −τ ≤ t− τ ≤ 0 and therefore x′(t) = −x(t− τ) = −1 which is an

ODE with initial value x(0) = 1. Solving this ODE we get

x(t) = 1− t, 0 ≤ t ≤ τ.

For τ ≤ t ≤ 2τ , we solve the equation x′(t) = −x(t− τ) = −(1− (t− τ)) and we get

x(t) = x(τ) +

∫ t

τ

−(1− (s− τ))ds

= 1− t+
(t− τ)2

2
, τ ≤ t ≤ 2τ,

and for (n− 1)τ ≤ t ≤ nτ we get the following

x(t) = 1 +
n∑
k=1

(−1)k
[t− (k − 1)τ ]k

k!
.

Numerical simulations of this solution shows that for a small delay (τ = 0.25) the solution

is close to the solution of the ODE x′(t) = −x(t) with the initial value x(0) = 1. For

values greater than e−1 the behavior is very different compared to the ODE and the solution

oscillates [15].

The method used in this example is called the method of steps. It can be shown that x(t)

is C0 on (−τ,∞), C1 on (0,∞) and Cn on ((n− 1)τ,∞), thus x(t) is getting smoother on

each step.
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Existence, Uniqueness, Continuation and Continuous Dependence

The fundamental theorem of delay differential equations states that continuity of the

function f : C → Rn is enough to have existence of the solution to the IVP (2.6) and

gives a necessary condition for uniqueness of the solution. First we state the definition of

a locally Lipschitz operator on C, which is similar to the Definition 2.2.

Definition 2.6. The function f : C → Rn is locally Lipschitz if for all φ ∈ C, there exist

δ > 0 and M > 0 such that

|f(φ)− f(ψ)| ≤M‖φ− ψ ‖

for all ψ ∈ C with ‖φ− ψ‖ < δ.

Definition 2.7. Let X and Y be Banach spaces. The function f : X → Y is called

completely continuous if f is continuous and f(X) ⊆ Y is precompact, i.e., f(X) is

compact.

Theorem 2.8 (Schauder’s Fixed Point Theorem). If X is a convex and closed subset of

a Banach space B and T : X → X is completely continuous, then T has a fixed point in

X.

Theorem 2.9. Assume f : C → Rn is continuous:

(i) Existence: for any φ ∈ C the IVP

x′(t) = f(xt),

x0 = φ,

(2.8)

has a solution on [−τ, α] for α > 0;
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(ii) Uniqueness: if f : C → Rn is locally Lipschitz, then the solution is unique on [−τ, α];

(iii) Continuation: if we further assume that f maps bounded sets in C to the bounded

sets in Rn, then we either have α =∞ or lim
t→α−

|x(t)| =∞;

(iv) Continuous dependence: x
(φ)
t , the state of system with the initial data φ and at time

t, is continuous with respect to all variables (t, φ) that is: for all φ ∈ C, if [−τ, α) is

the maximal interval of existence of the solution xφ, then for all ε > 0, α∗ ∈ (0, α),

there exists δ > 0 such that for all φ∗ ∈ C with ‖φ∗− φ‖ < δ, the solution xφ
∗

exists

on [−τ, α) and for all t, t̃ ∈ [0, α∗] with |t− t̃| < δ we have ‖xφ
∗

t̃
− xφt ‖ < ε.

Solution Semiflow and Dynamical System Property

Consider the IVP (2.6). For every φ ∈ C, let xφ be the solution through φ. Assume

f : C → Rn is completely continuous and satisfies enough smoothness conditions so that

the solution xφ(t) is continuous with respect to (φ, t). As ordinary differential equations

define a dynamical system on Rn, a delay differential equation generates a dynamical

system on the function space C. The state of the system associated to the equation (2.6)

at time t ≥ 0 is the function xφt ∈ C.

Definition 2.8. Assume that the solution xφ : [−τ,∞)→ Rn of the IVP (2.6) exists for

all t ≥ 0. Define Φ : [0,∞)× C → C by the following relation

Φ(t, φ) = xφt .

Φ is called a semi-flow on C and satisfies the following properties:

(a) Φ is continuous;
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(b) Φ(0, φ) = ϕ;

(c) Φ(t,Φ(s, φ)) = Φ(t+ s, φ) for all t, s ≥ 0.

Definition 2.9. The set γ+(φ) = {Φ(t, φ), t ≥ 0} is called the positive orbit of Φ through

φ. A set D is said to be an invariant set for Φ, if Φ(t,D) = D for all t ≥ 0. The ω-limit

set of φ ∈ C is defined to be

ω(φ) =
⋂
s≥0

(γ+(Φ(s, φ))).

The ω-limit set of B ⊆ C is

ω(B) =
⋂
s≥0

(γ+(Φ(s, B))).

It can be seen that ω(φ) = {ψ ∈ C, ∃tn →∞, xφtn → ψ, t→∞}.

Theorem 2.10. The ω-limit set ω(φ) is nonempty, compact, connected and invariant and

we have

dist(xφt , ω(φ))→ 0, t→∞.

Equilibria and their Stability

Let x(t) = x∗ ∈ Rn be the solution given in Theorem 2.9 to the IVP (2.6), then for all

t ≥ 0 we have xφt = x∗, so x∗ is a fixed point of the system.

Definition 2.10. The solution x∗ is said to be an equilibrium point of the delay differential

Equation (2.6) if f(x∗) = 0 for all t ≥ 0.

Without loss of generality, we can assume that x∗ = 0, since the point x̂ ∈ Rn is an

equilibrium point of Equation (2.6) if and only if y∗ = 0 is an equilibrium point of the
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equation

y′(t) = g(t, yt), t ≥ 0

y0 = ψ ∈ C,

where y(t) = x(t)− x̂.

Definition 2.11. Suppose x∗ = 0 is an equilibrium point of

x′(t) =f(xt), t ≥ t0

xt0 =φ,

• The point x∗ = 0 is stable if for any t0 ≥ 0 and ε > 0, there is δ = δ(t0, ε) > 0 such

that

∀φ ∈ C, ‖φ‖ < δ =⇒ ‖x(t0,φ)t ‖ < ε, ∀t > t0.

• The point x∗ = 0 is asymptotically stable if it is stable and “attractive” in the sense

that for any t0, there exists δ(t0) > 0 such that

‖φ‖ < δ0 ⇒ x
(t0,φ)
t → 0 as t→∞.

• The point x∗ = 0 is uniformly stable if δ is independent of t0 and it is uniformly

asymptotically stable if it is uniformly stable and uniformly attractive, that is, there

exists a δ > 0 such that

∀ε > 0 ∃T (ε) : ‖φ‖ < δ ⇒ ‖x(t0,φ)t ‖ < ε,

for t ≥ t0 + T and for every t0.

• The point x∗ = 0 is globally exponentially stable if for any φ ∈ C there exist λ > 0
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and M ≥ 1 such that

‖x(t0,φ)t ‖ < M‖φ‖e−λ(t−t0), t ≥ t0.

In other words, the equilibrium point is stable if for an initial data close to x = 0, the

state of the system for all t ≥ t0 remains close to it, depending on the initial time t0, and

it is attractive if the state of the system approaches x = 0 as time goes to infinity and

if it is approaching exponentially fast and with any initial data, then we have globally

exponentially stability. Different types of the equilibrium points defined above are quite

similar to the corresponding types for ODE’s.

Linear Stability Linear delay differential equations are studied here and for this pur-

pose strongly continuous semi-groups are introduced. Spectral properties are investigated

for some examples and finally the stability of nonlinear systems is discussed using the

linearization principle. The results are not used directly in the thesis but they are foun-

dations of the linear stability of delay differential equations. Proof of the theorems can be

found in [3].

Consider the linear delay differential equation

x′(t) = L(xt), (2.9)

where L : C → Rn is a bounded linear operator.

Definition 2.12. Let X be a Banach space and T (t) : X → X be a bounded linear operator

for all t ≥ 0. The family (T (t))t≥0 is called a stongly continuous semi-group if it satisfies

the following properties:
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(1) T (0) = Id;

(2) T (t+ s) = T (t)T (s) for all t, s ≥ 0;

(3) the map t 7→ T (t)x is continuous for all x ∈ X.

Let (T (t))t≥0 be a strongly continuous semigroup on X. Let D(A) ⊆ X be the set of all

x ∈ X for which the following limit exists:

Ax = lim
h→0

T (h)(x)− x
h

.

Th map A : D(A) → X is called the infinitesimal generator of the strongly continuous

semi-group (T (t))t≥0, and we denote it by (A,D(A)).

Lemma 2.11. A generator (A,D(A)) of a strongly continuous semigroup (T (t))t≥0 has

the following properties:

(i) A : D(A)→ X is a linear operator;

(ii) T (t)x ∈ D(A) for x ∈ D(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x for all t ≥ 0;

(iii) For all t ≥ 0, x ∈ X ∫ t

0

T (s)xds ∈ D(A);
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(iv) the following identities hold for every t ≥ 0

T (t)x− x = A

∫ t

0

T (s)xds if x ∈ X

=

∫ t

0

T (s)Axds if x ∈ D(A).

Theorem 2.12. Let (A,D(A)) be the generator of a strongly continuous semigroup (T (t))t≥0

on a Banach space X. Then (A,D(A)) is a closed operator and D(A) = X. Additionally,

if (S(t))t≥0 is another semigroup with generator (A,D(A)), then S(t) = T (t) for all t ≥ 0.

Definition 2.13. Let (T (t))t≥0 be a strongly continuous semigroup on a Hilbert space H.

The operator (A,D(A)) is called dissipative if

R〈Ax, x〉 ≤ 0, for all x ∈ D(A).

Proposition 2.13. Let (T (t))t≥0 be a strongly continuous semigroup. Then there exist

constants w ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Mewt, for all t ≥ 0.

Consider the linear equation (2.9) and for t ≥ 0, define the operator T (t) : C → C by

T (t)φ = xφt ∈ C. (2.10)

Remark 2.14. The relation (2.10) defines a strongly continuous semigroup on C.

Proof. We show that the properties in definition 2.12 are satisfied:

• T (0) = Id : C → C, since T (0)φ = xφ0 = φ.
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• To show T (t+ s) = T (t)T (s), let t, s ≥ 0, then

T (t+ s)φ = xφt+s

= xx
φ
s
t

= T (t)T (s)φ.

• The map t 7→ T (t)φ is continuous for all φ ∈ C since x : [−τ, α]→ Rn is continuous:

fix φ ∈ C. For ε > 0 there exists δ1 > 0 such that for all θ1, θ2 ∈ [−τ, α] with

|θ2 − θ1| < δ1 we have

|x(θ2)− x(θ1)| < ε.

Let δ ≤ δ1 and t1, t2 ∈ [0, α] such that |t2 − t1| < δ, then

|(t2 + θ)− (t1 + θ)| < δ ≤ δ1, for all − τ ≤ θ ≤ 0

and therefore

|x(t2 + θ)− x(t1 + θ)| < ε, for all − τ ≤ θ ≤ 0.

thus

‖xφt2 − x
φ
t1‖ = sup

−τ≤θ≤0
|xφt2(θ)− x

φ
t1(θ)|

= sup
−τ≤θ≤0

|x(t2 + θ)− x(t1 + θ)| < ε.

(2.11)

So we have

|t2 − t1| < δ =⇒ ‖T (t2)φ− T (t1)φ‖ < ε.
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Remark 2.15. The generator (A,D(A)) is given by

D(A) = {φ ∈ C1([−τ, 0],Rn) : φ′(0) = Lφ}

A(φ) = φ′

Proof. The generator A(φ) is given by the following limit:

A(φ) = lim
h→0

T (h)φ− φ
h

For θ < 0, we have

Aφ(θ) = lim
h→0

xφh(θ)− φ(θ)

h

= lim
h→0

xφ(θ + h)− φ(θ)

h

= lim
h→0

φ(θ + h)− φ(θ)

h

= φ′(θ)

and for θ = 0,

Aφ(θ) = lim
h→0

xφ(h)− φ(0)

h

= lim
h→0

φ(0) +
∫ h
0
Lxsds− φ(0)

h

= Lφ.

Definition 2.14. Let A : X → X be a linear operator on a Banach space X. The

resolvant set ρ(A) is defined to be the values λ ∈ C for which λI − A is invertible and

the inverse operator is bounded and its domain is dense in X. The complement of ρ(A)

is called the spectrum of A, denoted by σ(A). The spectrum of A consists of three type of

values:
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• Residual spectrum:

Rσ(A) = {λ ∈ σ(A) : (λI − A)−1exists but its domain is not dense in X}

• Continuous spectrum:

Cσ(A) = {λ ∈ σ(A) : (λI − A)−1has a dense domain but is not bounded}

• Point spectrum:

Pσ(A) = {λ ∈ σ(A) : λI − A is not invertible}.

Let λ ∈ Pσ(A), then (λI − A)φ = 0 has a non trivial solution in D(A)

(λI − A)φ = 0⇔ λφ(0) = L(eλ.φ(0))

⇔ [λI − L(eλ·)]φ(0) = 0

⇔ det[λI − L(eλ.)] = 0.

This proves the following theorem.

Theorem 2.16. λ ∈ Pσ(A) if and only if det[λI − L(eλ.)] = 0.

The equation det[λI − L(eλ.)] = 0 is called the characteristic equation associated to the

linear system (2.9).

Example 2.17. • Discrete delay: Consider the equation given in Example 2.5. The

characteristic equation is given by

λ+ a− be−λτ = 0.
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• Distributed delay: Consider the following distributed delay equation:

x′(t) =

∫ t

0

x(t− s)ds.

The characteristic equation is given by

λ =

∫ ∞
0

e−λsds.

For both of the above examples, the distribution of roots can be very complicated.

The following theorem gives the relation between roots of the characteristic equation and

the stability of the trivial equilibrium point.

Theorem 2.18. If there exists λ ∈ Pσ(A) such that <(λ) > 0, then the trivial solution

x∗ = 0 is unstable and if <(λ) < 0 for all λ ∈ Pσ(A), then x∗ = 0 is locally asymptotically

stable.

Stability using Lyapunov Functionals Let f : C → Rn be completely continuous

and consider the delay differential equation of (2.6). Let K denote the set of continuous

and strictly increasing functions w : R+ → R+ with w(0) = 0, which are called K-class

functions.

Definition 2.15. Let V : C → Rn be a continuous functional. The derivative of V along

the solutions of equation (2.6) is given by the following relation:

V̇ (φ) = lim sup
t→0+

1

t
(V (xφt )− V (xφ0)).

V is called a Lyapunov function on a set G ⊆ C relative to (2.6), if it is continuous on

the closure Ḡ of G and V̇ ≤ 0 on G.
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Let

S = {φ ∈ Ḡ : V̇ (φ) = 0}

W = largest set in S that is invariant with respect to the system.

Theorem 2.19. Suppose f : C → Rn is continuous, maps bounded sets in C to the

bounded sets in Rn and that f(0) = 0. Assume there exists a continuous functional V :

C → Rn and continuous nondecreasing functions u, v, w : R+ → R+ such that u(0) =

v(0) = 0 and u(s), v(s) > 0 for all s > 0. Further assume that

(i) u(|φ(0)|) ≤ V (φ) ≤ V (‖φ‖);

(ii) V̇ (φ) ≤ −w(|φ(0)|),

then x = 0 is stable. Additionally, if w(s) > 0 for all s > 0, then x = 0 is asymptotically

stable.

Theorem 2.20. If V is a Lyapunov function on G ⊆ C and xφt is a bounded solution of

equation (2.6) which remains in G, then xφt → W as t→∞.

Theorem 2.21. Assume w1, w2 ∈ K and w3 : R+ → R+ is a continuous, nondecreasing

function. If there exists a continuous function V : R× Rn → R+ such that

(i) w1(|x|) ≤ V (t, x) ≤ w2(|x|),

(ii) V̇ (t, φ(0)) ≤ −w3(|φ(0)|) if V (t+ s, φ(s)) ≤ V (t, φ(0)), s ∈ [−τ, 0],

then x = 0 is uniformly stable.

Theorem 2.22. Suppose the conditions of Theorem 2.21 are satisfied and w3(s) > 0 for

s > 0. If there exists a continuous nondecreasing function p(s) > s for s > 0 such that
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condition (ii) in theorem 2.21 is replaced by

V̇ (t, φ(0)) ≤ −w3(|φ(0)|), V (t+ s, φ(s)) < p(V (t, φ(0))), s ∈ [−τ, 0],

then x = 0 is uniformly asymptotically stable. If w1(s)→∞ as t→∞, then the solution

x = 0 is a global attractor of the system.

Theorem 2.23. If V is a Lyapunov function on U` = {φ ∈ C : V (φ) < `} and there is a

constant K = K(`) such that |φ(0)| < K for all φ ∈ U` , then φ ∈ U` implies xφt → W as

t→∞.

Corollary 2.24. Let V : C → R be continuous and there exist functions a(r) and b(r)

such that a(r)→∞ as t→∞ and

a(|φ(0)|) ≤ V (φ),

V̇ (φ) ≤ −b(|φ(0)|).
(2.12)

Then the solution x = 0 is stable and all solutions are bounded. If, additionally b(r) is

positive definite, then all solutions converge to zero as t→∞.

Example 2.25. Consider the following delay equation:

x′(t) = ax3(t) + bx3(t− τ) (2.13)

where a and b are constants and a 6= 0. Let

V (φ) = −φ
4(0)

2a
+

∫ 0

−τ
φ6(θ)dθ
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then the derivative of V with respect to equation (4) is given by

V̇ (φ) = −[φ6(0) +
2b

a
φ3(0)φ3(−τ) + φ6(−τ)].

V is a Lyapunov function on C if |b| ≤ |a|.

2.2 Mathematical Epidemiology

This section contains the basic concepts and some commonly used methodologies in math-

ematical epidemiology.

2.2.1 Compartmental Models

In modelling the spread of infectious diseases, the population is divided into several com-

partments. Here we demonstrate an example: in an SIR model, there are three compart-

ments:

• Susceptibles: individuals who are not yet infected and are susceptible of being in-

fected if they are exposed;

• Infectives: individuals that are infected and can spread the disease;

• Removed: individuals who have been infected and have been removed by quarantine,

or have recovered and have immunity to the disease, or have died because of the

disease.

Other compartments may be introduced, based on the model being studied, such as Latent,

Exposed, Treated and so on. In the following S, I and R are the number of susceptibles,
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infectives and recovered individuals, respectively. We assume that the total population is

large, so that we can consider the variables as continuous functions of time. Here we assume

that N = S(t) + I(t) + R(t) is constant and we consider the fractions S∗(t) = S(t)/N ,

I∗(t) = I(t)/N and R∗(t) = R(t)/N . For simplicity of notation we denote these fractions

by the same letters S, I and R. The following system of ordinary differential equations

describes an SIR model with vital dynamics (birth and death):

S ′(t) = d− dS(t)− βS(t)I(t) (2.14a)

I ′(t) = βS(t)I(t)− dI(t)− γI(t) (2.14b)

R′(t) = γI(t)− dR(t) (2.14c)

The equation for R can be omitted, since it does not affect the system (the total population

N is constannt so R′(t) = −(S ′(t) + I ′(t))). The birth rate and death rate are assumed

to be the same and are denoted by d; β is the transmission rate and is defined as follows

[19]:

Definition 2.16. The per capita transmission rate is the rate of efficient contacts which

is given by product of infection probability p and the total number of contacts per unit time

C.

Individuals leave the infective compartment at rate γ, so the mean infection period is

1/γ. The term βS(t)I(t) represents the incidence, i.e., the number of new infection cases

arising per unit time [6] (mass action incidence), and depends on the size of susceptible

and infective populations, meaning that if the number of individuals in each compartment

is twice larger, then the number of new infections will be four times larger, with the same

transmission rate. The key assumption for mass action incidence is that the infective and

susceptible populations are uniformly mixed.
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Remark 2.26. The term λ(t) = βI(t) is also called the force of infection, which is defined

to be the probability per unit of time for susceptibles to become infected, and is obtained

by summing all contribution of infectives [6]. For the general case the incidence of the

disease is given by S(t)λ(t).

In the analysis of System (2.14), we are interested in determining the stability of the

disease free equilibrium point, where the disease dies out, i.e., when I = 0 and therefore

(S, I, R) = (N, 0, 0). One of the main goals, in the analysis of epidemiological models, is

to find a threshold value for the stability of the disease free equilibrium point. This value

is called the basic reproduction number, denoted by R0, which is defined as follows [6]:

Definition 2.17. (Basic Reproduction number) The basic reproduction number is

the expected number of secondary cases produced in a population of susceptible individuals

by one infected individual during his/her effective infectious period.

The disease free equilibrium point is locally asymptotically stable if R0 < 1 and unstable

if R0 > 1. This means that if an infected individual can infect less than one person during

the infection period, the disease dies out and if the number of secondary infections is more

than one, then the disease invades the population. By linearizing System (2.14) about the

disease free equilibrium point, we get R0 = β/(d+ γ).

Remark 2.27. Another expression for the basic reproduction is given by R0 = ιt̄, where

ι is the transmission rate (or infectivity) and t̄ is the mean time spent in the infective

compartment. For example in the SIR model, t̄ = 1
γ+d

and ι = β. If the infectivity of

individuals vary with time (or with the age of infection, treatment, etc.), then ι will be the

sum over the infectivity of individuals.



30 Chapter 2. Preliminaries

2.2.2 The Next Generation Operator Method

There are different methods to compute the basic reproduction number. One of the well

known methods is the method of next generation operator [5].

Suppose the population N is divided into two types of compartments: disease and non

disease compartments. Let x = (x1, · · · , xn) ∈ Rn and y = (y1, · · · , ym) ∈ Rm denote

the disease and non disease compartments, respectively (x = I and y = (S,R) in the

SIR model of previous section). Consider the following system of ordinary differential

equations describing the disease transmission:

x′i = (Fi − Vi)(x, y) 1 ≤ i ≤ n (2.15a)

y′j = gj(x, y) 1 ≤ j ≤ m (2.15b)

and let the feasible set D be given by

D = {(x, y) ∈ Rn+m : x1 + · · ·+ xn + y1 + · · ·+ ym = 1}

Assume

(A1) Fi(0, y) = 0, Vi(0, y) = 0 for all y ≥ 0 and 1 ≤ i ≤ n (this means that new infections

are only caused by a host infective and there is no immigration of infectives);

(A2) Fi(x, y) ≥ 0 for all x, y ≥ 0 (F shows the new infections and it can not be negative);

(A3) Vi(x, y) ≤ 0 for xi = 0 (there is only inflow to an empty compartment);

(A4)
n∑
i=1

Vi(x, y) ≥ 0 (this sum is the total outflow of all disease compartments)

(A5) the system g′j(0, y) = 0 has a unique solution, y0, which is asymptotically stable.
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These assumptions ensure that the disease free equilibrium point exists and the model is

well posed.

Let F and V be the following matrices

F =
∂Fi
∂xj

(0, y0), V =
∂Vi
∂xj

(0, y0).

The linear stability of System (2.15) is determined by the linear stability of the following

system

x′ = (F − V )(x). (2.16)

Definition 2.18. A real matrix M is called an M-matrix if it is a Z-matrix, i.e., mij ≤ 0

for i 6= j, and if it can be written in the form M = sI − B, for B non negative and

s > ρ(B), where ρ(B) is the spectral radius of B defined by

ρ(B) = max{|z| : z is an eigenvalue of B}.

From assumptions (A1) − (A5), we can see that F and V are non negative and V is a

M -matrix.

Lemma 2.28. If F is non negative and V is a non negative M-matrix, then eigenvalues

of F − V have negative real parts if and only if ρ(FV −1) < 1.

Theorem 2.29. Consider the system given by (2.15).The disease free equilibrium point is

locally asymptotically stable if R0 < 1, and unstable if R0 > 1, where R0 = ρ(FV −1).

Global Stability of the DFE Let f(x, y) := (F −V )(x)−F(x, y)+V(x, y). For global

stability of the DFE we have the following theorems [16].
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Theorem 2.30. If f(x, y) ≥ 0 in D and F ≥ 0, V −1 ≥ 0 and R0 ≤ 1, then L(x) =

ωTV −1x is a Lyapunov function for the model (2.15) on D.

Theorem 2.31. Let D be positively invariant under the flow of (2.15) and suppose the

disease free system has a unique equilibrium point which is GAS in Rm
+ . Assume f(x) ≥ 0

with f(0) = 0, F, V −1 ≥ 0 and V −1F is irreducible. Then the following results hold

(i) If R0 < 1, then the DFE is GSA in D;

(ii) If R0 > 1, then the DFE is unstable and the system (2.15) is persistent and there

exists at least one endemic equilibrium point.
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Table 2.1: Table of symbols

Symbol Meaning

ODE ordinary differential equation
DDE delay differential equation
DFE disease free equilibrium point
Id identity function
R real part
d birth/death rate
β transmission rate
ϕ treatment rate
1− σ(a) age-dependent treatment efficacy
θ(a) age-dependent rate of returning to infective class



Chapter 3

Treatment-Age Structured Model

In this chapter, we formulate a model to study the transmission dynamics of infectious

diseases with treatment, using different approaches. We start with a system of equations

consisting of integro-differential and partial differential equations with non zero initial

and boundary conditions (direct approach). Then we transform this system to a single

delay-integro-differential equation. We also look at the problem from a survival point

of view and formulate the model using survival functions and finally we have a discrete

age structured model where the treated infective compartment is divided into n age of

treatment classes to get a system of ordinary differential equations. Here we construct the

foundation of the model, which will remain the same throughout this chapter.

The population is divided into three compartments:

• Susceptible individuals have no immunity to the disease and are infected if they come

into an infecting contact with an infected individual. The number of such individuals

at time t is denoted S(t).

• Infectious individuals are actively spreading the disease. Their number is I(t).

34
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• Treated infectious individuals are infectious but are undergoing treatment. The

effect of treatment (in addition to its curative effects) is to reduce the infectiousness

of these individuals to susceptible individuals. Their number is denoted by IT (t).

We refer to compartments and to individuals in the compartments using just the letters

used to denote the number of individuals in the compartments. The compartments I and

IT represent the infected compartments. The total population in the system is

N = S + I + IT .

We also make the following assumptions, some of which will be discussed in more detail

later.

1. Birth occurs at the per capita rate b dependent on the total population N . There is

no vertical transmission of the disease, so that all birth takes place in the susceptible

compartment.

2. Death occurs at the per capita rate d in each compartment.

3. Birth and death occur at the same rate, which we denote d.

4. The disease cannot be cured; once infected (and infectious), individuals remain in-

fectious for the entire duration of their life.

5. Some individuals infectious with the disease undergo treatment. The rate at which

infectious individuals are treated is the per capita rate ϕ.

6. Treatment reduces the infectiousness of those treated. The efficacy of treatment

in reducing infectiousness is 1 − σ(a), where a ∈ R+ is the length of time that
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individuals have been treated for. We assume σ is a non-decreasing, piecewise C1

function of a.

7. Individuals undergoing treatment might interrupt their treatment and thus proceed

back to the regular infectious compartment. The rate at which they do so is θ(a);

see below.

Assumption 6 is related to the effect and duration of treatment and assumes that treatment

reduces infectiousness. There has been a considerable amount of debate on this subject,

both in the biological and modelling communities. The issue is complicated by the fact

that infectiousness, efficiency and the like are notions that concern individuals but that

are mostly observed at the community level.

In Assumption 7, the rate at which treated individuals return to the infective compartment

depends on how long they have been treated for. If we consider the age of treatment, the

rate is a non-decreasing and piecewise C1 function of the age of treatment, denoted by

θ(a).

We will also consider a survival function P (a) which is defined to be the fraction of treated

individuals who are still in treated class a unit time after entering. More details on survival

function P (a) and its relation with the rate θ(a) will be given in section 3.3.

3.1 Direct Approach

Here we assume that the rate at which individuals interrupt their treatment is denoted

by θ(a) and depends on the length of time a ∈ R+ they have been undergoing treatment

for. Therefore we consider the duration of time treated infectious individuals have been
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receiving treatment for, and instead of using the variable IT (t), we use the variable IT (a, t),

where a ∈ R+ is the age of treatment and t ∈ R+ is time. Following the literature, we say

that the model is structured in terms of age-of-treatment. The flow diagram of this model

is shown in Figure 3.1.

S(t) I(t)

IT (a, t)

βS(t)
[
I(t) +

∫∞
0
σ(s)IT (s, t) ds

]
/N

ϕI(t)θ(a)IT (a, t)

dN

dS

dI

dIT

Figure 3.1: Flow diagram for the model.

Let IT (a, t) be the density of treated infectious individuals at time t with age of treatment

a; thus, the number of treated individuals with age of treatment between a1 and a2 at

time t is given by ∫ a2

a1

IT (s, t)ds,

and the total population of IT at time t is

IT (t) =

∫ ∞
0

IT (a, t)da.

We have the following system of equations

dS

dt
= dN − dS(t)− S(t)

N
λ(t) (3.1a)

dI

dt
=
S(t)

N
λ(t)− dI(t)− ϕI(t) +

∫ ∞
0

θ(s)IT (s, t)ds (3.1b)(
∂

∂t
+

∂

∂a

)
IT (a, t) = −(θ(a) + d)IT (a, t) (3.1c)
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under the boundary condition

IT (0, t) = ϕI(t) (3.1d)

and the initial condition

S(0), I(0) > 0, IT (a, 0) = ψ(a), a ∈ R+, (3.1e)

where β is the transmission rate constant, and λ(t) is the force of infection given by

λ(t) = β(I(t) +

∫ ∞
0

σ(s)IT (s, t)ds).

Note that σ(a) is a piecewise C1 function and σ(a) = 1 means that the treated individuals

have the same level of the infectivity that the infective individuals have. The efficacy of

the treatment is defined by ε(a) = 1− σ(a), so ε(a) = 0 means that the treatment is not

efficient and therefore does not reduce the level of infectivity.

Remark 3.1. Here we assume that lim
a→∞

ψ(a) = 0. This is biologically reasonable since

initially treated individuals either move to the infected class or they die, eventually.

3.2 Transformation to a Delay Differential Equation

In this section we reformulate the model by reducing it to a delay differential equation.

We use the method of characteristics [9].

LetM(a, t) = IT (a, t) withM(0, t) = ϕI(t), M(a, 0) = ψ(a) and define M̃(s) = M(a(s), t(s)).
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Differentiating M̃ with respect to s, we get

dM̃

ds
=
∂P

∂a

da

ds
+
∂P

∂t

dt

ds
.

If the curves α(s) = (a(s), t(s)) in the at plane are given by the condition

dt

ds
=
da

ds
= 1,

then we have the following ODE for M̃(s), which is equivalent to the Equation (3.1c):

dM̃

ds
= −(d+ θ(a(s)))M̃.

So, if the value of M̃ is known for (a0, t0), then we have

M̃(s) = M(a0, t0)e
−

∫ a0+s
a0

(d+θ(v))dv
.

For a > t, let t0 = 0, a0 ≥ 0,

M(a, t) = M(a0, 0)e
−

∫ a0+s
a0

(d+θ(v))dv

= ψ(a− t)e−
∫ a
a−t(d+θ(v))dv

= ψ(a− t)e−dt−
∫ a
a−t θ(v)dv

and for a ≤ t let a0 = 0, t0 ≥ 0,

M(a, t) = M(0, t0)e
−

∫ s
0 (d+θ(v))dv

= ϕI(t− a)e−
∫ a
0 (d+θ(v))dv

= ϕI(t− a)e−da−
∫ a
0 θ(v)dv.
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Thus we have the following expression for IT (a, t):

IT (a, t) =


ϕI(t− a)e−da−

∫ a
0 θ(v)dv, 0 ≤ a ≤ t,

ψ(a− t)e−dt−
∫ a
a−t θ(v)dv, t < a.

(3.2)

Remark 3.2. From (3.2), by taking limit of IT (a, t) for t < a, we can see that lim
a→∞

IT (a, t) =

0.

Lemma 3.3. The total population N is constant.

Proof. We show that dN
dt

= 0. Since N = S(t) + I(t) +
∫∞
0
IT (s, t)ds we have

dN

dt
= 0 ⇔ S ′(t) + I ′(t) +

∫ ∞
0

∂

∂t
IT (s, t)ds = 0

⇔ dN − dS(t)− S(t)

N
λ(t) +

S(t)

N
λ(t)− dI(t)− ϕI(t)

+

∫ ∞
0

θ(s)IT (s, t)ds+

∫ ∞
0

∂

∂t
IT (s, t)ds = 0

⇔ d(N − S(t)− I(t))− ϕI(t) +

∫ ∞
0

θ(s)IT (s, t)ds− d
∫ ∞
0

IT (s, t)ds

−
∫ ∞
0

θ(s)IT (s, t)ds−
∫ ∞
0

∂

∂s
IT (s, t)ds = 0

⇔ − ϕI(t)−
∫ ∞
0

∂

∂s
IT (s, t)ds = 0

⇔ − ϕI(t)− lim
a→∞

IT (a, t) + IT (0, t) = 0

and the last equality holds since lim
a→∞

IT (a, t) = 0.

Let S∗(t) = S(t)/N , I∗(t) = I(t)/N and I∗T (a, t) = IT (a, t)/N be proportions, which we

denote with the same letters S, I and IT . Using the formula given above for IT (a, t), (3.1)



3.2. Transformation to a Delay Differential Equation 41

can be written as

dS

dt
= d− dS(t)− βS(t)

(
I(t) +

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

+

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
(3.3a)

dI

dt
= βS(t)

(
I(t) +

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

+

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
− (d+ ϕ)I(t)

+

∫ t

0

ϕθ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds+

∫ ∞
t

θ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds. (3.3b)

Since

S(t) = 1− I(t)−
∫ ∞
0

IT (s, t)ds,

we reduce the number of equations to get the following delay-integro-differential equation

dI

dt
= β

(
1− I(t)−

∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds−

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
(
I(t) +

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds+

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
− (d+ ϕ)I(t) +

∫ t

0

ϕθ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds+

∫ ∞
t

θ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds.

(3.4)

This equation is in the standard form of functional differential equations and by Theorem

2.9, there exists a unique solution defined for t ∈ [0,∞). Let

dI

dt
= F (It),

then F is C1 and therefore it is locally Lipschitz, so Theorem 2.9 applies.

If we assume ψ(a) = 0 in System (3.1), then IT (a, t) = 0 for a > t and we get the following
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delay-integro-differential equation

dI

dt
= β

(
1− I(t)−

∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

)(
I(t) +

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

)
− dI(t)− ϕI(t) +

∫ t

0

θ(s)ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds.

(3.5)

3.3 Survival Function Approach

In this section, we assume P (t) is the survival function for treated infective class, i.e,

P (t) is the fraction of treated individuals that are still in the treated class t unit times

after starting the treatment. Define the random variable X to be the time spent in the

treated infective compartment before returning to the infective compartment. The survival

function of this random variable is given by

P (t) = Pr(X > t).

Assuming that treated infective individuals leave the treated compartment at rate θ(a),

the survival in the treated compartment is given by

P (a) = e−
∫ a
0 θ(v)dv,

and has the following properties:

(i) 0 ≤ P (a) ≤ 1 for all a ≥ 0;

(ii) P (0) = 1;

(iii) P is a monotone nonincreasing function
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From (iii) one can see that lim
a→∞

P (a) exists [13]. Here we additionally assume that∫∞
0
P (a)da <∞.

The exponential and the step functions are two important survival functions:

• Exponential function

P (t) = e−ηt

• Step function

P (t) =

 1 for 0 ≤ t ≤ τ ;

0 for t > τ.

We have the following system

dS

dt
= dN − dS(t)− S(t)

N
λ(t) (3.6a)

IT (t) = IT0(t) +

∫ t

0

ϕ(1− S(u)− IT (u))P (t− u)e−d(t−u)du. (3.6b)

where the force of infection λ(t) is as follows

λ(t) = β

(
1−S(t)−IT (t)+σ(t)IT0(t)+

∫ t

0

ϕ(1−S(u)−IT (u))σ(t−u)P (t−u)e−d(t−u)du

)
,

and

IT0(t) = e−dt
∫ ∞
0

IT (0, u)
P (u+ t)

P (u)
du. (3.7)

Remark 3.4. Consider the stage-age structure for IT and assume that IT (a0, t0) is known.

Let a = a0 + s and t = t0 + s, then by integrating along the characteristics (similar to
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S(t) I(t)

IT (t)

S(t)λ(t)/N

ϕI(t)P (t)

dN

dS

dI

dIT

Figure 3.2: Flow diagram for the model formulated using a survival function

section 3.8) we get the following:

IT (a, t) = IT (a0, t0)e
−dsP (a0 + s)

P (a0)

and therefore

IT (a, t) = ϕI(t− a)e−daP (a) for 0 ≤ a ≤ t (3.8a)

IT (a, t) = IT (a− t, 0)e−dt
P (a)

P (a− t)
for t ≤ a ≤ ∞, (3.8b)

thus

IT (t) =

∫ ∞
0

IT (u, t)du =

∫ t

0

ϕ(1− S(u)− IT (u))P (t− u)e−d(t−u)du

+ e−dt
∫ ∞
0

IT (u, 0)
P (u+ t)

P (u)
du

(3.9)

and we get the following expression for IT0(t)

IT0(t) = e−dt
∫ ∞
0

IT (u, 0)
P (u+ t)

P (u)
du. (3.10)

Consider the fractions S(t)/N , I(t)/N and IT (t)/N (denoted by the same letters S, I and

IT ) to get the following system
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dS

dt
= d− dS(t)− S(t)λ(t) (3.11a)

IT (t) = IT0(t) +

∫ t

0

ϕ(1− S(u)− IT (u))P (t− u)e−d(t−u)du. (3.11b)

Before further analysis, we need to show that the model is well posed. Consider the region

D = {(S, I, IT ) : S, I, IT ≥ 0, S + I + IT = 1}.

For the model to be biologically meaningful, D must be positively invariant under the flow

of the system.

Theorem 3.5. Solutions of System (3.11) with initial values S(0) > 0, I(0) > 0 and

IT (a, 0) ≥ 0 remain in the region D.

Proof. Let S(0) > 0. Solving equation (3.11a) we get

S(t) = S(0)e−
∫ t
0 λ(s)ds−dt + e−

∫ t
0 λ(s)ds−dt

∫ t

0

de−
∫ u
0 λ(s)ds−dudu,

so S(t) is positive for all t. Since S(t) + I(t) + IT (t) = 1 we have

−dI
dt

=
dS

dt
+
dIT
dt

, (3.12)

where

dIT
dt

=
dIT0
dt

+ ϕ
(
1− S(t)− IT (t)

)
+

∫ t

0

ϕI(u)e−d(t−u)
(
P ′(t− u)− dP (t− u)

)
du
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and P ′(t − u) is the derivative of P with respect to t. Suppose I(t) > 0 on [0, t0) and

I(t0) = 0, then

−dI((t0)

dt
= d− dS(t0)− βS(t0)

(∫ t0

0

ϕI(u)σ(t0 − u)P (t0 − u)e−d(t0−u)du+ σ(t0)IT0(t0)

)
+
dIT0(t0)

dt
+

∫ t0

0

ϕI(u)e−d(t0−u)
(
P ′(t0 − u)− dP (t0 − u)du

)
= d

(
1− S(t0)− e−dt0

∫ ∞
0

IT (0, u)
P (t0 + u)

P (u)
du−

∫ t0

0

ϕI(u)e−d(t0−u)P (t0 − u)du

)
− βS(t0)

(∫ t0

0

ϕI(u)σ(t0 − u)P (t0 − u)e−d(t0−u)du+ σ(t0)IT0(t0)

)
+ e−dt0

∫ ∞
0

IT (0, u)
P ′(t0 + u)

P (u)
du+

∫ t0

0

ϕI(u)e−d(t0−u)P ′(t0 − u)du

= −βS(t0)

(∫ t0

0

ϕI(u)σ(t0 − u)P (t0 − u)e−d(t0−u)du+ σ(t0)IT0(t0)

)
+ e−dt0

∫ ∞
0

IT (0, u)
P ′(t0 + u)

P (u)
du+

∫ t0

0

ϕI(u)e−d(t0−u)P ′(t0 − u)du < 0.

Since we assumed P is non-increasing , P ′(t) ≤ 0. Therefore dI((t0)
dt

> 0 and I(t) > 0 for all

t. From equation (3.11b) we can see that IT (t) > 0 since I(u), P (t− u), and e−d(t0−u) are

all positive. Finally the condition S + I + IT = 1 ensures that the solutions are bounded

and this completes the proof.

The proof provided here is similar to the proof given for an SI model with vaccination [2].

3.4 Discrete-Age-Structured Model

Consider the following treatment-age groups for the treated individuals:

I iT (t) =

∫ ai

ai−1

I(s, t)ds, for 1 ≤ i ≤ n,
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where 0 = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = a∗. Assume the infectivity of each age group

is reduced by σi and the rate of returning to the infective class for each age group is

θi for 1 ≤ i ≤ n. Suppose the individuals of age group I iT move to I i+1
T at rate γi for

1 ≤ i ≤ n − 1. Let S, I and I iT , 1 ≤ i ≤ n be fractions, then we have the following

S(t) I(t)

I1T (t) I2T (t) InT (t). . .

S(t)λ(t)/N

ϕI(t)θ1I
1
T (t)

γ1 γ2 γn−1

dN

dS

dI

dI1T dI2T dInT

θ2I
2
T θnI

n
T

Figure 3.3: Flow diagram for the discrete age structured model.

equations:

S ′(t) = d− dS(t)− S(t)λ(t)

I ′(t) = S(t)λ(t) +
n∑
i=1

θiI
i
T (t)− (ϕ+ d)I(t)

I1
′

T (t) = ϕI(t)− (θ1 + γ1 + d)I1T (t)

I i
′

T (t) = γi−1I
i−1
T (t)− (θi + γi + d)I iT (t), for 2 ≤ i ≤ n− 1

In
′

T (t) = γn−1I
n−1
T (t)− (θn + d)InT (t)

(3.13)

where

λ(t) = β(I(t) + σ1I
1
T (t) + · · ·+ σnI

n
T (t)).

Let x = (x1, · · · , xn+1), y denote the disease and non disease compartments, respectively,
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and D be the feasible set for system (3.13)

D = {(x, y) ∈ Rn+2 : x1 + x2 + · · ·+ xn+1 + y = 1}.

Let I = I iT = 0, 1 ≤ i ≤ n, then the disease free equilibrium point is given by E0 =

(1, 0, · · · , 0).



Chapter 4

Mathematical Analysis

The models derived in Chapter 3 using different approaches are analysed in this chapter.

The stability of the disease free equilibrium and the treshold value, R0, are given for each

method.

4.1 Direct Approach

Let S, I and IT be fractions; then System (3.1) is equivalent to

dS

dt
= d− dS(t)− S(t)λ(t) (4.1a)

dI

dt
= S(t)λ(t)− dI(t)− ϕI(t) +

∫ ∞
0

θ(s)IT (s, t)ds (4.1b)(
∂

∂t
+

∂

∂a

)
IT (a, t) = −(θ(a) + d)IT (a, t). (4.1c)

49
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Let I = IT = 0 to get the disease free equilibrium point E0 = (1, 0, 0). To linearize System

(4.1) about E0, let u(t) = S(t)− 1 and I and IT be as before:

du

dt
= −du(t)− β

(∫ ∞
0

σ(s)IT (s, t)ds+ I(t)

)
(4.2a)

dI

dt
= β

(∫ ∞
0

σ(s)IT (s, t)ds+ I(t)

)
− dI(t)− ϕI(t) +

∫ ∞
0

θ(s)IT (s, t)ds

(4.2b)(
∂

∂t
+

∂

∂a

)
IT (a, t) = −(θ(a) + d)IT (a, t) (4.2c)

with the boundary condition

IT (0, t) = ϕI(t). (4.2d)

Here we omitted the initial value, since we are interested in the long term behaviour of

the system. Since u(t) does not play a role in Equations (4.2b) and (4.2c), we can omit

Equation (4.2a). Let

I(t) = Īezt, IT (a, t) = ĪT (a)ezt.

Substituting these ansatz solutions in System (4.2), we get

zĪ = (β − d− ϕ)Ī + β

∫ ∞
0

σ(s)ĪT (s)ds+

∫ ∞
0

θ(s)ĪT (s)ds

Ī ′T (a) = −(θ(a) + d+ z)ĪT (a)

ĪT (0) = ϕĪ.

In the second equation Ī ′T (a) = d
da
ĪT (a), i.e., the second equation is an ODE for ĪT . Solving

the equation, we have

ĪT (a) = ϕĪe−da−za−
∫ a
0 θ(v)dv,
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and substituting this in the first equation gives

z = (β − d− ϕ) +

∫ ∞
0

(βσ(s) + θ(s))ϕe−ds−zs−
∫ s
0 θ(v)dvds. (4.3)

Equation (4.3) is the characteristic equation for the System (3.1). In the next section the

same characteristic equation will be obtained, so we leave the analysis of this equation for

the next section.

4.2 Delay-Integro-Differential Equation

In this section, we study the equation obtained in Section 3.2 by transforming System

(3.1) to a delay differential equation. Let F (I(t)) be the right hand side of the equation

(3.5), so dI/dt = F (I(t)). Let DF (0) be the Fréchet derivative of the operator F at the

steady state I = 0, which is obtained by the formula:

DF (x)h = lim
r→0

F (x+ rh)− F (x)

r
.
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Using this formula for DF (0), we get

DF (0)I(t) = lim
r→0

F (rI(t))− F (0)

r

= lim
r→0

1

r

(
(β − d− ϕ)rI(t) +

∫ t

0

ϕ(βσ(s) + θ(s))e−ds−
∫ s
0 θ(u)durI(t− s)ds

+

∫ ∞
t

(βσ(s) + θ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds− r2I2(t)

− rI(t)
( ∫ t

0

(1 + σ(s))ϕe−ds−
∫ s
0 θ(u)durI(t− s)ds

+

∫ ∞
t

(1 + σ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)durI(t− s)ds

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)durI(t− s)ds

−
∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)durI(t− s)ds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)durI(t− s)ds

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

+

∫ ∞
t

(βσ(s) + θ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

+

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
= lim

r→0

(
(β − d− ϕ)I(t) +

∫ t

0

ϕ(βσ(s) + θ(s))e−ds−
∫ s
0 θ(u)duI(t− s)ds− rI2(t)

− I(t)
( ∫ t

0

(1 + σ(s))ϕe−ds−
∫ s
0 θ(u)durI(t− s)ds

+

∫ ∞
t

(1 + σ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)durI(t− s)ds

−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

)
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= (β − d− ϕ)I(t) +

∫ t

0

ϕ(βσ(s) + θ(s))e−ds−
∫ s
0 θ(u)duI(t− s)ds

− I(t)

∫ ∞
t

(1 + σ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds.

Therefore the associated linear equation is obtained by setting dI/dt = DF (0)I(t)

dI

dt
= (β − d− ϕ)I(t) +

∫ t

0

ϕ(βσ(s) + θ(s))e−ds−
∫ s
0 θ(u)duI(t− s)ds

− I(t)

∫ ∞
t

(1 + σ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds

−
∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds.

(4.4)

Let

b = (ϕ+ d− β),

K(s) = ϕ(βσ(s) + θ(s))e−ds−
∫ s
0 θ(u)du,

Q1(t) =

∫ ∞
t

(1 + σ(s))ψ(s− t)e−dt−
∫ s
s−t θ(u)duds,

Q2(t) =

∫ ∞
t

σ(s)ψ(s− t)e−dt−
∫ s
s−t θ(u)duds,

Q3(t) =

∫ ∞
t

ψ(s− t)e−dt−
∫ s
s−t θ(u)duds,

(4.5)

then (4.4) can be written as

dI

dt
= −(b+Q1(t))I(t) +

∫ t

0

K(s)I(t− s)ds−Q2(t)

∫ t

0

ϕe−ds−
∫ s
0 θ(u)duI(t− s)ds

−Q3(t)

∫ t

0

ϕσ(s)e−ds−
∫ s
0 θ(u)duI(t− s)ds,

(4.6)
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which is a linear non-autonomous delay-integro-differential equation. The stability analysis

of this equation is very complicated and we consider the case where the boundary condition

is trivial, i.e., IT (a, 0) = 0.

Let ψ(a) = 0 in (4.4), then we get the following linear equation associated to (3.5) in

section 3.2

dI

dt
+ bI(t) =

∫ t

0

K(s)I(t− s)ds, (4.7)

where b and K(s) are defined in (4.5).

The following theorem gives the stability of the DFE of the System (4.1) and the Equation

(4.7).

Theorem 4.1. Let

R0 =
β

d

1 +
∫∞
0
ϕσ(s)e−ds−

∫ s
0 θ(v)dvds

1 + ϕ
∫∞
0
e−ds−

∫ s
0 θ(v)dvds

.

The disease free equilibrium point is locally asymptotically stable if R0 < 1 and unstable

for R0 > 1.

Proof. Use the ansatz I(t) = ezt in Equation (4.7), then

zezt + bezt =

∫ ∞
0

K(s)ez(t−s)ds,

and after simplification we get the characteristic equation

z + b =

∫ ∞
0

K(s)e−zsds. (4.8)

Suppose R0 < 1 and let z = x + iy, we show that all roots of the characteristic equation
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have negative real parts. Assume x > 0 and take the norm of both sides of (4.8)

|z + ϕ+ d− β| ≤
∫ ∞
0

K(s)|e−zs|ds

≤
∫ ∞
0

K(s)ds,

since e−xs < 1 for x > 0,

(x+ ϕ+ d− β)2 + y2 ≤
(∫ ∞

0

K(s)ds

)2

and therefore

(x+ ϕ+ d− β)2 −
(∫ ∞

0

K(s)ds

)2

< −y2,

but

(x+ ϕ+ d− β)2 −
(∫ ∞

0

K(s)ds

)2

> 0

for x > 0. To see this we need to show that

ϕ+ d− β >
∫ ∞
0

K(s)ds,

for R0 < 1. Suppose this inequality does not hold, i.e.,

ϕ+ d− β ≤
∫ ∞
0

K(s)ds,

equivalently

ϕ+ d− β ≤
∫ ∞
0

(βσ(s) + θ(s))e−ds−
∫ s
0 θ(v)dvds,

hence

β +

∫ ∞
0

βϕσ(s)e−ds−
∫ s
0 θ(v)dvds ≥ ϕ+ d−

∫ ∞
0

ϕθ(s)e−ds−
∫ s
0 θ(v)dvds.
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On the other hand we can see that

ϕ−
∫ ∞
0

ϕθ(s)e−ds−
∫ s
0 θ(v)dvds = ϕ

(
1−

∫ ∞
0

θ(s)e−ds−
∫ s
0 θ(v)dvds

)
= ϕ

(
1− lim

r→∞

∫ r

0

θ(s)e−ds−
∫ s
0 θ(v)dvds

)

= ϕ

(
1− lim

r→∞

(
e−dr − e−dr−

∫ r
0 θ(v)dv

+

∫ r

0

(de−ds − de−ds−
∫ s
0 θ(v)dv)ds

))
= ϕd

∫ ∞
0

e−ds−
∫ s
0 θ(v)dvds,

therefore

β +

∫ ∞
0

βϕσ(s)e−ds−
∫ s
0 θ(v)dvds ≥ d+ ϕd

∫ ∞
0

e−ds−
∫ s
0 θ(v)dvds,

which in turn implies that R0 ≥ 1 and this is a contradiction. Thus all eigenvalues of the

characteristic equation have negative real parts and by Theorem 2.18, the DFE is locally

asymptotically stable.

For R0 > 1, we show that (4.8) has a positive real root. Let f1(x) = x + ϕ + d − β and

f2(x) =
∫∞
0
K(s)e−xsds. It is easy to see that f1(x) is increasing and lim

x→∞
f1(x) =∞ and

f2(x) is non-increasing, since

f ′2(x) = −
∫ ∞
0

sK(s)e−xsds ≤ 0

for all x > 0. Since R0 > 1 we have

d+ ϕ−
∫ ∞
0

ϕθ(s)e−ds−
∫ s
0 θ(v)dvds = d+ d

∫ ∞
0

ϕe−ds−
∫ s
0 θ(v)dvds

< β +

∫ ∞
0

βϕσ(s)e−ds−
∫ s
0 θ(v)dvds,
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thus

ϕ+ d− β <
∫ ∞
0

K(s)ds,

equivalently f1(0) < f2(0), therefore there exists x > 0 such that f1(x) = f2(x), which

means that the characteristic equation (4.8) has a positive real root. So the disease free

equilibrium point is unstable.

4.3 Survival Function Approach

System (3.6) has the disease free equilibrium point (S, IT ) = (1, 0). We discuss the stability

by linearizing:

dS

dt
= −dS(t) + β

(
S(t) + IT (t) +

∫ t

0

ϕ(S(u) + IT (u))σ(t− u)P (t− u)e−d(t−u)du

)
(4.9a)

IT (t) =

∫ t

0

ϕ(−S(u)− IT (u))P (t− u)e−d(t−u)du. (4.9b)

Using the ansatz S(t) = C1e
zt and IT (t) = C2e

zt

C1

[
Z − β

(
1 +

∫ ∞
0

ϕσ(u)P (u)e−Zudu
)]
−C2β

(
1 +

∫ ∞
0

ϕσ(u)P (u)e−Zudu
)

= 0

C1

∫ ∞
0

ϕP (u)e−Zudu +C2

(
1 +

∫ ∞
0

ϕP (u)e−Zudu
)

= 0.
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where Z = z + d. For this system to have a non trivial solution, the determinant of

coefficients must be zero. Therefore[
Z − β

(
1 +

∫ ∞
0

ϕσ(u)P (u)e−Zudu

)](
1 +

∫ ∞
0

ϕP (u)e−Zudu

)
+ β

(
1 +

∫ ∞
0

ϕσ(u)P (u)e−Zudu

)∫ ∞
0

ϕP (u)e−Zudu = 0.

This system leads to the following characteristic equation

Z − β
(

1 +

∫ ∞
0

ϕσ(u)P (u)e−Zudu

)
+ Z

∫ ∞
0

ϕP (u)e−Zudu = 0. (4.10)

Consider the special case where σ is constant, which means that the infectivity of the

treated infective individuals is reduced by the same value for all ages. In this case, we

have the following system:

dS

dt
= d− dS(t)− βS(t)(I(t) + σIT (t)) (4.11a)

IT (t) = IT0(t) +

∫ t

0

ϕI(u)P (t− u)e−d(t−u)du, (4.11b)

where IT0 is given in (3.7). Let t̄1 and t̄2 be the total average time in I and IT class,

respectively. Let

λ1 = β, λ2 = σβ. (4.12)

The basic reproduction number can be defined as the sum of the basic reproduction num-

bers associated to I and IT , that are defined to be the product of λi and the total average

time t̄i:

R0 = λ1t̄1 + λ2t̄2. (4.13)
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Let P̃ =
∫∞
0
P (u)e−dudu. The average time spent in I is given by the following series:

t̄1 =
1

d+ ϕ

(
1 +

ϕ

d+ ϕ
(1− dP̃ ) +

ϕ2

(d+ ϕ)2
(1− dP̃ )2 + · · ·

)
=

1

d(1 + ϕP̃ )
, (4.14)

which is the average time spent in I on the first pass multiplied by the sum of probabilities

of surviving I and IT in the ith visit. Since the average time spent in both I and IT is

1/d we have t̄1 + t̄2 = 1/d and therefore

t̄2 =
1

d
− 1

d(1 + ϕP̃ )
=

ϕP̃

d(1 + ϕP̃ )
. (4.15)

Substituting these in (4.13) the basic reproduction number is given by

R0 = λ1t̄1 + λ2t̄2 =
β

d(1 + ϕP̃ )
+

σβϕP̃

d(1 + ϕP̃ )
=
β(1 + σϕP̃ )

d(1 + ϕP̃ )
. (4.16)

Conjecture 4.2. The disease free equilibrium point is locally asymptotically stable if R0 <

1 and unstable if R0 > 1.

Proof. The characteristic equation is given by

(z + d− β) + ϕ(z + d− σβ)

∫ ∞
0

P (u)e−(z+d)udu = 0. (4.17)

We show that if R0 > 1, then there exists a positive real root. Let x be real, then

(x+ d− β) = −ϕ(x+ d− σβ) lim
r→∞

(∫ r

0

P (u)e−(d+x)udu

)
. (4.18)
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Define f1(x) = (x+ d− β) and f2(x) = −ϕ(x+ d− σβ) lim
r→∞

(∫ r
0
P (u)e−(d+x)udu

)
, then

f1(0) = (d− β),

f2(0) = −ϕ(d− σβ) lim
r→∞

(∫ r

0

P (u)e−dudu

)

and

f1(0)− f2(0) < 0⇔ β

(
1 + σϕ

∫ ∞
0

P (u)e−dudu

)
> d

(
1 + ϕ

∫ ∞
0

P (u)e−dudu

)
⇔ β(1 + σϕP̃ )

d(1 + ϕP̃ )
> 1.

We can see that lim
x→∞

f1(x) =∞ and f1 is an increasing function of x. On the other hand,

f2 is nonincreasing for x > 0,

f ′2(x) = lim
r→∞

(∫ r

0

(−ϕP (u)e−(d+x)u + ϕu(x+ d− σβ)P (u)e−(d+x)u)du

)
= − lim

r→∞

(∫ r

0

ϕP (u)e−(d+x)u(1 + u(σβ − d− x)du)

)
< 0,

since

lim
r→∞

(∫ r

0

P (u)e−(d+x)u(1 + u(σβ − d− x))du

)
= lim

r→∞

(
(1 + r(σβ − d− x))

∫ r

0

P (w)e−(d+x)wdw

+ (x+ d− σβ)

∫ r

0

∫ u

0

P (w)e−(d+x)wdwdu

)
> 0.

For the last inequality, we can see that (1 + r(σβ − d− x))
∫ r
0
P (w)e−(d+x)wdw → +∞ for

those values of x > 0 such that x + d − σβ > 0. Therefore f1(x) = f2(x) has a positive

root.

We also need to show that all roots of (4.17) have negative real parts for R0 < 1 and have

not yet been able to do so. Thus, the proof is incomplete at the moment.
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Remark 4.3. Note that for two extreme values σ = 1 and σ = 0, we get R0 = β/d and

R0 = β/d(1 + ϕP̃ ). The case σ = 1 is similar to an SI model and σ = 0 is similar to an

SIR model with relapse studied in [17].

Next, we consider two special cases for P (t): exponential and step functions.

Exponential Function The exponential function P (t) = e−θt reduces System (4.11) to

a system of ordinary differential equations.

dS

dt
= d− dS(t)− βS(t)(I(t) + σIT (t)) (4.19a)

dIT
dt

= ϕI(t)− (d+ θ)IT (t) (4.19b)

dI

dt
= − (d− dS(t)− βS(t)(I(t) + σIT (t)) + ϕI(t)− (d+ θ)IT (t)) . (4.19c)

First, we find an expression for R0 using the next generation matrix. We have

F =

βS(t)(I(t) + σIT (t))

0

 , V =

d− dS(t) + ϕI(t)− (d+ θ)IT (t)

−ϕI(t) + (d+ θ)IT (t)


and

F =

β σβ

0 0

 , V =

d+ ϕ −θ

−ϕ d+ θ


therefore

FV −1 =
1

d(d+ ϕ+ θ)

β(d+ θ) + σβϕ βθ + σβ(d+ ϕ)

0 0


Finally R0 is given by

ρ(FV −1) =
β(d+ θ) + σβϕ

d(d+ ϕ+ θ)
. (4.20)
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On the other hand the total average times in I and IT are given by

t̄1 =
d+ θ

d(d+ θ + ϕ)
, t̄2 =

ϕ

d(d+ θ + ϕ)
(4.21)

so we get

R0 = λ1t̄1 + λ2t̄2

= β
d+ θ

d(d+ θ + ϕ)
+ σβ

ϕ

d(d+ θ + ϕ)

=
β(d+ θ) + σβϕ

d(d+ ϕ+ θ)
.

(4.22)

These results show that the basic reproduction number given by (4.16) is valid for the

exponential function.

Step Function Consider the following function for P (t):

P (t) =

 1 for 0 ≤ t ≤ τ ;

0 for t > τ.

Using this, for t ≥ τ , System (4.11) can be written as

dS

dt
= d− dS(t)− βS(t)(I(t) + σIT (t)) (4.23a)

IT (t) =

∫ t

t−τ
ϕ(1− S(u)− IT (u))e−d(t−u)du (4.23b)

since IT0(t) = 0 for t ≥ τ , and λ(t) = β(I(t) + σIT (t)), (4.23a) reduces to the following
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system of discrete delay equations:

dS

dt
= d− dS(t)− βS(t)(I(t) + σIT (t)) (4.24a)

dIT
dt

= ϕ(I(t)− e−dτI(t− τ))− dIT (t). (4.24b)

For this step function, P̃ =
∫ τ
0
e−dudu = (1− e−dτ )/d and from (4.16) we have

R0 =
β(1 + σϕP̃ )

d(1 + ϕP̃ )
=
β(d+ σϕ(1− e−dτ ))
d(d+ ϕ(1− e−dτ ))

. (4.25)

The step survival function for treated infective compartment means that the individuals

stay in this class for a fixed time τ after starting the treatment and then return to the

infective class. Note that if there is no delay, i.e., τ = 0, then R0 = β/d.

4.4 Discrete-Age-Structured Model

The analysis for local and global stability of the disease free equilibrium point is given

in this section. The basic reproduction number is derived and existence of the endemic

equilibrium point is discussed.

Here we use the method of next-generation-matrix to compute the basic reproduction

number. First note that we can omit the first equation in (3.13), since S(t) = 1− I(t)−
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n∑
i=1

I iT (t). So we consider the following system

I ′(t) = β(1− I(t)−
n∑
i=1

I iT (t))λ(t) +
n∑
i=1

θiI
i
T (t)− (ϕ+ d)I(t)

I1
′

T (t) = ϕI(t)− (θ1 + γ1 + d)I1T (t)

I i
′

T (t) = γi−1I
i−1
T (t)− (θi + γi + d)I iT (t), for 2 ≤ i ≤ n− 1

In
′

T (t) = γn−1I
n−1
T (t)− (θn + d)InT (t)

(4.26)

Let x′(t) = G(x(t)). The new infections and flow within and out of the infected compart-

ments are given by

F =



β(1− I(t)−
n∑
i=1

I iT (t))λ(t)

0

...

0


, V =



(ϕ+ d)I(t)−
n∑
i=1

θiI
i
T (t)

(θ1 + γ1 + d)I1T (t)− ϕI(t)

...

(θi + γi + d)I iT (t)− γi−1I i−1T (t)

...

(θn + d)InT (t)− γn−1In−1T (t)


i.e., G(x) = (F − V)(x). The derivative of F and V at x = 0 are as follows

F =



β βσ1 βσ2 . . . βσn

0 0 0 . . . 0

...
...

...
...

0 0 0 . . . 0


,
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V =



d+ ϕ −θ1 −θ2 . . . −θn

−ϕ (θ1 + γ1 + d) 0 . . . 0

0 −γ1 (θ2 + γ2 + d) . . . 0

...
...

...
. . .

...

0 0 . . . −γn−1 (θn + d)


.

Since F has only one nonzero row, we only need the first column of V −1 which is given

below

V −1 =
1

D



∏n−1
i=1 (θi + γi + d)(θn + d) .. .. .. ..

ϕ
∏n−1

i=2 (θi + γi + d)(θn + d) .. .. .. ..

ϕγ1
∏n−1

i=3 (θi + γi + d)(θn + d) .. .. .. ..

...
...

...
...

...

ϕγ1γ2 . . . γn−2(θn + d) .. .. .. ..

ϕγ1γ2 . . . γn−1 .. .. .. ..


where

D = (d+ ϕ)
n−1∏
i=1

(θi + γi + d)(θn + d)− ϕθ1
n−1∏
i=2

(θi + γi + d)(θn + d)

− ϕθ2γ1
n−1∏
i=3

(θi + γi + d)(θn + d)− · · · − ϕθn−1γ1γ2 · · · γn−2(θn + d)

− ϕθnγ1γ2 · · · γn−1.
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Theorem 4.4. Let

R0 = ρ(FV −1) =
β

D

( n−1∏
i=1

(θi + γi + d)(θn + d)

+ ϕσ1

n−1∏
i=2

(θi + γi + d)(θn + d) + ϕσ2γ1

n−1∏
i=3

(θi + γi + d)(θn + d)

+ · · ·+ ϕσn−1γ1γ2 · · · γn−1(θn + d) + ϕσnγ1γ2 · · · γn−1
)
,

(4.27)

then the DFE is locally asymptotically stable if R0 < 1 and unstable for R0 > 1.

Remark 4.5. It is easy to see that

1V = d1, and 1V −1 =
1

d
1,

where 1 = (1, . . . , 1)T . Let σmin ≤ σi ≤ σmax, for all 1 ≤ i ≤ n, then we have the following

bounds for R0

βσmin
d
≤ R0 ≤

βσmax
d

.

Theorem 4.6. The DFE is globally asymptotically stable if R0 < 1.

Proof. By Theorems 2.30 and 2.31, we need to show that F, V −1 ≥ 0, V −1F is irreducible

and f(x) ≥ 0 in D, where f(x) = (F − V − F + V)(x). Note that we do not have a non

disease compartment in System (4.26). From the results above, we can see that F and

V −1 are nonnegative and V −1 is positive so V −1F is irreducible. To see that f(x) ≥ 0 in
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D, note that we have

(F − V )(I, I1T , · · · , InT ) =



(β − d− ϕ)I(t) +
n∑
i=1

(βσi + θi)I
i
T (t)

ϕI(t)− (θ1 + γ1 + d)I1T (t)

...

γi−1I
i−1
T (t)− (θi + γi + d)I iT (t)

...

γn−1I
n−1
T (t)− (θn + d)InT (t)


and therefore

f(I, I1T , · · · , InT ) = (F − V −F + V)(I, I1T , · · · , InT ) =



(I +
n∑
i=1

I iT )(I +
n∑
i=1

σiI
i
T )

0

...

0


which is a non negative matrix. So by Theorem 2.31, the DFE is globally asymptotically

stable for R0 < 1.

Existence of The Endemic Equilibrium Point By Theorem 2.31, there exists at

least one endemic equilibrium point in the feasible set D. To find the endemic equilibrium

point we equate right hand side of (3.13) to zero:

0 = d− dS(t)− βS(t)λ(t)

0 = βS(t)λ(t) +
n∑
i=1

θiI
i
T (t)− (ϕ+ d)I(t)

0 = ϕI(t)− (θ1 + γ1 + d)I1T (t)

0 = γi−1I
i−1
T (t)− (θi + γi + d)I iT (t), for 2 ≤ i ≤ n− 1

0 = γn−1I
n−1
T (t)− (θn + d)InT (t).

(4.28)
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From the third equation we get

I1T (t) =
ϕ

(θ1 + γ1 + d)
I(t), (4.29)

and for 2 ≤ i ≤ n− 1 we have

I iT (t) =
γi−1

θi + γi + d
I i−1T (t).

Combining the two equations we get

I iT (t) =

ϕ
i−1∏
k=1

γk

i∏
k=1

(θk + γk + d)

I(t), 2 ≤ i ≤ n− 1, (4.30)

and

InT (t) =

ϕ
n−1∏
k=1

γk

(θn + d)
n−1∏
k=1

(θk + γk + d)

I(t). (4.31)

Let I iT (t) = AiI(t) for 1 ≤ i ≤ n where

A1 =
ϕ

(θ1 + γ1 + d)
,

Ai =

ϕ
i−1∏
k=1

γk

i∏
k=1

(θk + γk + d)

, 2 ≤ i ≤ n− 1,

An =

ϕ
n−1∏
k=1

γk

(θn + d)
n−1∏
k=1

(θk + γk + d)

,

(4.32)
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then using the first equation of (4.28) we have

I∗ =

β(1 +
n∑
i=1

σiAi)− d(1 +
n∑
i=1

Ai)

β(1 +
n∑
i=1

σiAi)(1 +
n∑
i=1

Ai)
. (4.33)

Let E∗ = (S∗, I∗, I1∗T , · · · , In∗T ) be the endemic equilibrium point where I∗ is given by

(4.33), I i∗T = AiI
∗ and S∗ = 1− I∗(1 +

n∑
i=1

Ai).

Lemma 4.7. If R0 > 1, then E∗ is the unique endemic equilibrium point in D.

Proof. To show that E∗ is in D, we only need to show I∗ > 0 for R0 > 1, and I∗ > 0

holds if

β(1 +
n∑
i=1

σiAi)− d(1 +
n∑
i=1

Ai) > 0

β(1 +
n∑
i=1

σiAi) > d(1 +
n∑
i=1

Ai)

β(1 +
n∑
i=1

σiAi)

d(1 +
n∑
i=1

Ai)
> 1.

A direct computation shows that R0 given by (4.27) is equal to the following

R0 =

β(1 +
n∑
i=1

σiAi)

d(1 +
n∑
i=1

Ai)
,

therefore R0 > 1 implies that I∗ > 0.
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The Jacobian matrix DG(E∗) derived from System (4.26) is given by

DG(E∗) =



−ϕ− dR0 + β
R0

B1 B2 .. Bn

ϕ −(θ1 + γ1 + d) 0 .. 0

0 −γ1 −(θ2 + γ2 + d) .. 0

...
...

...
...

...

0 .. 0 −γn−1 −(θn + d)


where B` = θ` + d − dR0 + βσ`

R0
, 1 ≤ ` ≤ n. To determine the local asymptotic stability

of the endemic equilibrium point, we need to study the eigenvalues of this matrix. This is

complicated and we have not progressed further at this moment. The result of 1, 000, 000

numerical simulations, for random parameter values in appropriate parameter ranges,

shows that all eigenvalues of the Jacobian matrix at the endemic equilibrium point have

negative real parts, when R0 > 1 (919,478 cases), and this suggests that E∗ is indeed

locally asymptotically stable when R0 > 1.



Chapter 5

Discussions and Conclusions

In infectious diseases where there is no recovery (such as HIV/AIDS), treatment can have

both curative and preventive effect and the preventive effect of treatment on reducing

the incidence of the disease can be significant, in particular if there is no efficient vaccine

available. The emphasis of the current work is on the influence of the duration and efficacy

of treatment, and the possible negative effect of interrupting the treatment, on the disease

transmission. For this purpose, a mathematical model was formulated to describe the

transmission dynamics, using different approaches. Initially a system of integro-differential

and partial differential equations was built and then it was transformed to a single delay-

integro-differential equation. A survival function approach using a general form of survival

function was developed and finally a discrete age structured model was formulated. All

models were given in Chapter 3 to provide a comparison of different methods in the

formulation of the model and to give a better understanding of the original model and the

mathematical analysis.

For the stability analysis of the disease free equilibrium point, the first two models were
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studied by linearizing and the characteristic equation obtained for both methods was the

same. The threshold value, R0, was given and it was proved that the DFE is locally

asymptotically stable for R0 < 1 and unstable for R0 > 1. The proposed (but not

verified) expression for R0 in the special case, where σ was assumed to be a constant

function, in the survival function approach was similar to R0 given in general case for the

other approaches. Both expressions of R0 agree with the value of R0 for a system of ODE

when θ and σ are constants. Finally, the local and global stability of the DFE for the

discrete age structured model were discussed. The expression for R0 was derived, using

the method of next generation matrix, which is also similar to the previous results. The

existence of a unique endemic equilibrium point was proved and numerical simulations

were used to check the local stability of the EEP for R0 > 1.

In all approaches, the basic reproduction number depends on the parameter values σ(a),

ϕ and θ(a). The direct dependence of R0 on the value of σ(a) suggests that by reducing

σ(a) (i.e., increasing the efficacy of the treatment ε(a) = 1− σ(a)) the basic reproduction

number will decrease. Further analysis is required to study the dependence of R0 on the

parameters ϕ and θ(a).
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