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ABSTRACT

The inyestigation in this thesis concerns”the thermal
buckling of cylinders heated uniformly around the circumference and
svmmetrically with respect to the axial half<length,

Aluminum cylinders, machined to a thin wall, were threaded
into a rigid frame and heated by means of a radiation type internal
heater until buckling occurred. The temperature profile of the tube
was recorded by thermocoup]es and this profile was used to simulate
the test by using a successive approximation technique on an IBM 370/168
digital computer.

Axial Toad versus the centerline temperature plots were
obtained for all specimens. The centerline radial displacement was
also plotted as a function of the centerline temperature for several
specimens. These results were compared to the successive approximation .
solutions and to the results of other investigators. Agreement with
other works is noted, and any discrepancies are explained. Suggestions
are also made as to areas with a need for further stqdy to clarify the

problem.
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CHAPTER I
INTRODUCTION

1.1 Statement of the Problem

Recent advances in the aerospace industry have imposed a
great need for structures which have a very high strength to weight
ratio. Lighter structures are also in demand for some of the key
core components in nuclear reactors for lTow neutron absorption and
better heat transfer capability. Shell type structures continue to
be a main structural component in these industries;

In addition to an accurate stress analysis, the stability
of shells as a function of the radius to thickness ratio is also an
important design consideration. This stability problem may arise
from a mechanical loading, or from a thermal loading from the harsh
environment many of these shells must endure.

The use of long thin-walled tubes or pipes is common in

engineering practise. Many of these tubes (or pipes) have to be held

rigidly at the ends. These tubes are vulnerable to buckling due to
the excess compressive longitudinal and circumferential stresses

caused by the rising environmental temperature.

1.2 Scope of Thesis

This thesis deals with the analysis and subsequent experi-
mental verification of the thermal buckling of thin-walled tubes
rigidly held at both ends to a bulky attachment which acts as a heat
- sink, which in turn causes a non-uniform temperature profile along

the tube length with the peak at the half-length.



The primary objectives of this thesis can be outlined as
follows:

(1) To investigate the stability of thin-walled tubes that
have higher length-to-radius and lTower radius-to-thickness ratios than
those tested by previous researchers.

(2) To compare the results derived from previous works to
determine if the conclusions reached by other authors can be extended to
the present work.

(3) To investigate if any conclusions drawn from the present
work can be used to establish certain design criteria for thermally
loaded shells.

(4) To recommend further studies necessary for a more complete
understanding of the problem.

Chapter II reviews the related Titerature published on the
thermal buckling of shells. Chapter III of this thesis reviews the
basic equations of cylindrical shell stability problems and discusses
some of the techiques available to solve these equations. Chapter IV
describes the testing setup used in this work, and Chapter V discusses
the results of that testing. The results are compared to other
researcher's data and to a numerical solution of the problem. Chapter VI

ends the thesis with the conclusions drawn from this work.



CHAPTER II

Literature Review

The equations for the stability of cylindrical shells have
been made available for many years. An infinite series solution
involving trigonometric functions was assumed by Lorenz in 1911
[1]* for solving the problem of a cylinder under uniform axial
compression. Similar methods of solution were used by Southwell in
1913 [2] and von Mises in 1914 [3] for cylinders under uniform
lateral pressure, and by fall gge in 1932 [4] for combined loading and
bending.

In 1933 Donnell [5] proposed the use of a simpler form of
stability equations in his solution for the buckling of cylinders
subject to torsion. For simply supported cylinders,a solution was
obtained by the use of an infinite trigonometric series.However,the
problem of a cylinder with clamped ends could not be solved in this
manner - because of the divergence of the series solution. Singer [6]
later showed that this result was due to the fact that Donnell's
equation was anequilibrium equation and could not be used with the
Galerkin method. Batdorf [7] proposed a modified equilibrium equation
which could be used with the' Galerkin method and proceeded to solve |
the problem of clamped shells under axial [8], shear [9], and combined
axial and shear [10] loadings.

The first treatment of the thermal stability problem of

*Number in brackets denote the reference number cited in
this thesis. '
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shells was undertaken by Hoff [11] in his analysis of cylindrical "

shells subjected to hoop stresses varying in the axial direction.
The three main types of thermal conditions that could cause a shell
to buckle are: 1) a temperature gradient through the shell thickness,
2) a circumferential temperature gradient, and 3) an axial temperature
gradient. The first condition was shown to be very unlikely to cause
buckling [12]. The second condition has been investigated by several
authors. Hoff, Chao & Madsen [13] and Hill [14] investigated the
problem of buckling due to héating along a thin axial strip, while
Ross, Mayers & Jaworski [15] extended their methods to include wide’
axial bonds, and Frum and Baruch [16] examined the buckling effect
of heating along two opposite axial generators. It was found that
buckling can easily be induced as a result of circumferential tempera-
ture gradients, even if the latter are fairly small.

The third temperature condition was first examined by Hoff
[11] who concluded that simply supported cylinders were not Tikely
to fail under uniform heating conditions. This work was extended by
Anderson [17] to include both simply supported and clamped cylinders
under combinations of axial pressure and uniform heating, using the
Galerkin method along with Batdorf's modified equilibrium equation.
Zuk [18] also presented a solution for the uniformly heated clamped
shell using Donnell's equation with the Galerkin method; however,this
method was found to be in error,as discussed previous1y. An experi-
mental investigation of the clamped cylinder subject to uniform
heating was presented by Ross, Hoff & Horton [19]. This problem has
also been extended to investigate the non-linear aspects of the

stability suggested by Hoff [20] and Ross [21] using‘a column-spring



analogy. These papers were an extension of the work done by Tsein
[22], who used this analogy to obtain a better understanding of some
of the parameters involved in shell buckling.

In recent years much of the work in instability problems has
been concerned with numerical techniques in order that solutions may
be obtained for more complicated structures and loadings. The two
principal methods that have been used widely are the finite difference
method and the finite element method;

The finite element method was first introduced to analyse
shell buckling by assuming the shell to be made of a series of
truncated cones [23]. This method was later abandoned due to compu-
tational difficulties, and the principal approach recently has been
to use curved shell elements and to approximate the displacement com-
ponents by polynomials. This method is used in references [24], [25].

The finite difference technique has been used by many
investigators to approximate shell buckling problems. The principal
effort in recent years has been the development of computer programs
based on the finite difference approximation to the variational
problem. Some examples are given in references [26] [27]. An
excellent comparison of the finite element and finite difference

method is given by Bushnell [28].



.CHAPTER III
THEORETICAL BACKGROUND

3.1 The Differential Equations of Buckling

The differential equations of a continuous system may be
obtained either by considering the equilibrium of a deformed element,
or by utilizing the principle of stationary potential energy and the
calculus of variations.

For fairly simple systems the former method is usually the
easiest and the most direct. For more complicated systems the latter
method may be a more direct procedure for obtaining the solutions.

The consideration of equilibrium of a deformed element is
explained in detail in the next section, for both small and large
deflection theories. The stationary potential energy method is then

- explained as presented in detail in Appendix A.

3.1.1 Equilibrium Method

The differential equation which is most widely used in
cylindrical buckiing problems is the Donnell equation for small
deflections. This can be derived as follows:

Using the notation given in figure 1; the equilibrium

equations of in-plane forces in the x, and y directions are:

3N oN
X s X
x tay 7O (1)
~.oN aN
y

R ARFRN /. S
ay ¥ 3X 0 ‘ (2)



where Nx’ Ny = the in-plane forces in the x and y directions

Nyx’ ny = the in-plane shear forces

For thé z direction, taking the equilibrium:
aN
o b W , 9 faw\d \d ow dx
TR (Qx * x  dx )(ax * ax( ) %) Y- Ny oy
._)i 3 faw dy’ _ d
+u, + )( 2y -S;(gy)d_y + SRdx - 0, B ay

oN -
X a [owW _
+(ny + d)( 5y ax(_ay dx}dy Nyx Y dy

X AR AP
A"(Nyx+ d)(ax ay( dy|ax

the radius of the cylinder

where R

the rad151 displacement

=
]

After simplifying, neglecting terms of higher order, and using

equations (1) and (2) the z components of the in-plane forces are:

(3)

32“ 32W + S ¥ dx dy
Ny ;—;2; :_ny %3y Ny( 7 R)



The shear forces must be added to this for the equilibrium of the z

direction. These forces are:

o, o0
(s)‘(—' + Y )dx dy

where Qx and Qy = the normal shear forces

taking moments about the x axis yields

M M 2Q 3Q
v XY _ 1 X4 g - X =
(?y o > 53X - dx Qy 5y dy)dxdy 0
. where F&, My, Mxy = the shell bending moments

After simplifying one gets

M M
.?_.!._B_‘&_Q :O
- 3y 9X y

(4)

(5)



Similarily for the x direction

aMX oM y
sr"'y—ay -Qq, =0 (6)

Inéerting QX and Qy from equations (5) and (6) into equation (4) the

total equilibrium in the z direction becomes:

2y 2 2
32x_2§Mxy+82y+N 32‘;+2N aZW
93X axay 3y X ax Xy 9Xay
2
1, 8w
+ N (- + ——~)= 0 (7)
Y\R ayZ

The moment curvature relationships for the cylinder will be derived

from:
rd/ 2 ‘
M, = a2 0, 2dz (8)
rd/2 :
My = Jas2 cyzdz ‘ (9)
Jv/z | :
Mxy = a/2 rxyzdz ) (10)

The shell displacements u, v are separated into middle surface strains
(resulting only from the in-plane forces N) and bending strains

(resulting only from the moments M)
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u = uy touy 7
V=V R Yy
€ = fxo T Exb f(]1)
Ey = eyo + Eyb
Ty = Yxyo T Yxyb _
The bending strains in the above expressions can be expressed in
terms of displacements as following:
_ 2 )
€xb ~ Tax
™  (12)
yb 3y
du v
Yorh = —2 + —2
Xb =5y * ax -

Since during bending plane sections are assumed to remain plane we

have:
W B
Uy = - 2 %x
\ (13)
)
Vb T T Ty -

so the equations for total strain become



‘2
9 W
€ = - Z e——
y ayZ
2
= _ 9, AW
Yxy 2z 3X3Y

- 11,

g (14)

Now, using the well-known stress-strain equations for plane stress

this becomes

2 2
Ez f/o°w ,udw
Oxb + )

1-u2\3x2 3y2

o]
5. = - —EZ /82w +u s‘w)
o T T LA

- _Ez 3w
xyb T+u | 3xdy

Substituting this into equations (8), (9), and (10) gives:

A 2

- 9 W ,u oW
M, = - D[ 4n Y
X (8x2 Byz)
2 2
M = - D(g—%-+u §_%%
M 3y X

32w
Mxy - D(]—“)(axax)
where D = Ed 712(1-12)

The middle surface strains for the element are:

ﬁ

> (15)

(16)

(17)

(18)
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Ju 2
o, 1 [aw
“x0 ° _53<'+?(ax) (19)
2
oV
e =0, 1 faw) _w (20)
yo 3y 2 \3y R
u_ v
¥ =_0,_ 0, 3W3W (21)

For small deflections these can be simplified to:

€x0 "5?( (22)
3V
=90 _ V¥ »
0 © 5y " R (23)
Ju oV
=_0,_0
Yyyo ~ 3y | ax (24)

Using the stress-strain-relationships equations (15) the following

middle surface force-deflection equations are obtained:

1 _ _ Ed auo u avo w
Ny = 9%, —]-” 3x T Ty MR (25)
-u
1 Ed PYy . Y% w] (26)
N, = ay,d = +u -5
y -uq_ay ax - R |
Su 3V
1 _ - Ed(]-u)[ 0 0]
N =1xyd= + — (27)
Xy 0 2(]"11 ) oy oX



13.

These forces are due to loads present due to buckling. Setting the

pre-buckling forces equal to:

N =P

X X
Ny = Py
ny = SXy

and now introducing the secondary buckling forces,equations (25) to

(27),the total forces are:

ou vV
_ Ed 0 ) W
Nx"1 2( 5x TH Ty M R) * Py (28)
-u
v au
Ed (——9- =2 ﬂ) +P (29)
N, = —5\ 3y ox R
¥ 1-u2 y
- Ed“'“)(auo + aV")+ S (30)
Xy 2(1-u2) oy X Xy

Inserting the appropriate moment-deflection relationships in equations
(16) to (18) and middle surface force-deflection equations (28) to
(30) into the three equilibrium equations in (1), (2) and (7) the
equations of equilibrium for a cylindrical shell using small deflec-

tion theory become:

2. \
d-u 3~u
0 (1-u) ° "o, (O+u) ° "o _ p 3w _
+ + 5=—=20 (31)
5 x 2 3y 2 axoy R 3x




5V 3%y 5%u
0o, l~u 0 (1+u) o 1 3w _
+ + -5=—=0 (32)
ay2 2 8x2 2 ox3y R 3
4 4 4 74 2
5w 3w oW 1 5w 1 1,3W
- D[+ 2 + WL N+ ) #(N +P]( + )
(ax4 3x28y2 ay4) X x! %2 R ayz
s+ S.) 2u__ g (33)
Xy XY’ 3Xay

The initial curvature and primary middle surface forces in equatien
(33) are much larger than the curvatures due to bending, and the
secondary middle surface forces. This makes it possible to re-arrange

equation (33) to the form:

w4 .4 4 2 W2 P
_D(_B_g_+23"é’2+3"1)+p _'(3_"2"+p 3w,y
3x axcayc 3y X 3x Yoy R
v u; 2
1 Ed o_w, _o} AW
TR 1.2\ % R i ax) 23S,y X3y 0 (34)

Because all the secondary middle surface forces are not negligible in
linear shell theory the three equilibrium equations (31), (32) and (34)
are coupled and must be solved simultaneously. It is often more
convenient to combine the threeequations to obtain a single equation

in w. If equation (32) is operated on by 32/3x3y, and equation (31)

by azlaxz,andazlayz, one obtains three equations which may be reduced

to:

(35)
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where v’ o= + 2 +
ox" ax2ay? 3y4

Similarily if equation (31) is operated on by 32/3x 3y,
and equation (32) by azlax2 and az/ay2 one obtains three equations

which may be reduced to the form:

3 3

4 _ ut2 3w 13w
VV = SHS—t gy (36)
R ax 3y R9y3

4

Equation (34) is now operated on by V', yielding:

) . 2
: 8 4 37w ow 3 W
- Dviw + ¥[P,. + P +2S,, T\t
( x'axz y ayz Xy axay)
4 4 4
1 Ed v v ., ¥ osu _1wvw)._
R “_uz)( oy % xR ) 0 -GN

Operating on equation (35) by 3/3x, and equation (36) by 3/3y, and

substituting the results in equation (37) one obtains:

N 2 2 4
8 4 3 W 3w 3 W Ed yw=20
DV°w - ¥ QD +P —5+2S ————)+ = ar (38)
X ax2 y 3yZ Xy 9xay R ax4

This equation is known as the Donnell small deflection equation for
shell buckling. As was shown by Batdorf [7] the use of equation (38)
implies certain boundary conditions on the solution. These are, for

simply supported edgesﬁ
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2 2
w=2%_y=23%-9 (x=constant) (39)
2 2
ax 3y
32 P
w=23%=-y=23%-9 (y= constant) (40)
2 2
5y 3

For clamped edges the Donnell small deflection equation (38) should
not be used. This will be discussed in more depth in section

3.2.3. The more realistic solution to the buckling problems and
all post buckling analysis should involve the large deflection theory.
The equilibrium equations (1), (2) and (7) remain valid since no
assumptions were made to limit these to small displacements. These

are repeated here:

aNx aNX
X oy 0 | (1)
oN oN
_X . XY
3y ax 0 (2)
2 2
2
3 % 2 My, 2 ;& £ N 22w oy M
5% X3y 3y X ax2 Xy X3y
<2
+N l+_8_"i = (0 (7)
Y\R 5y

Transverse deflections are not small with respect to the surface
thickness, but they are still small compared to the shell dimensions

so the moment deflection equations (16), (17) and (18) are still
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valid. Equation (7) may then be written as:

dw 3w 3w 5 W
- pfa¥ 42 + + NS oy 2
(ax4 ox2ay? 3y4) X o 2 xy 3xay
2
1 AW
+N(~+_§=o (41)
y\R ayZ

The strain-displacement equations can no longer be simplified, so
equations (19) to (21) must be used in their entirety. Including

constant thermal strain in the middle surface strain equations:

exo = E5 (Nx = uy) + aT : (42)
_ 1
cyo = B (M, = L) + aT @)
Y = ___2_ (] + u)N | | (44)
xyo. Ed - A Xy

Now, to obtain the compatibility equation, equation (19) is
differentiated twice with respect to y, and also differential equation
(20) twice with respect to x and,as for equation (21), successively

with respect to x and y to obtain:

2 2 2 2
deyg % By ] Yxyo =(32w'\ ) 22w 32w 1 gfg. (45)
axay/ aXZ ay2 R ax2

+ -
ayz 3x2 IX3Y

Introducing the stress function ¢ defined by:
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2 20 2
s gy P TR T
Nx d ay2 Ny d—;;§ ny d 5X5y (46)

The strain equations (42), (43) and (44) become:
1 2 a2

Exo=-E- L‘Zli-u-a-—g—)+uT (47)
dy X
2 2
eyo = %.(L‘g_ —#—a——déj—) + q T : (48)
dX oy
2
vy = =2(1+u) 37y
Xyo E  oxay (49)

Using the relationships in equations (46) to (49) the equilibrium

equation (41) and compatibility equation (45) may be written as:

2™ + 2 5w + 3% __g[?fg_gfy__ 2 azw 5w + azw
4 2.2 4 Dpl.2 . .2 X3y 3xay 2
W ax“ay© oy ay© ax ax
2
1, 32w
(ﬁ 25l= 0 (50)
3y

2

4 2 2

90 L 20 a4w = plfav ). 32w azw _ 1;32w _ EaVZT (51)
4 2.2 4 axay 2 .2 R _ 2
ax ax-ay 3y X~ 3y 3x

These two equations are the differential equations for
shell buckling on large deflection theory often referred to as the
Karman-Donnell equations. They are, in general, very difficult to
solve and much effort has gone into developing their solutions for

different buckling problems.
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Note that the constant temperature increase term is not

present in the equilibrium equation directly. It is introduced through

the equations of the stress function,

3.1.2 Variational Methods

The differential equations derived from the energy concept
arebased on the stationary potential energy theorem which states: An
elastic structure is in equilibrium if no change takes place in the
total potential energy of the system when its displacement is
changed by a small arbitrary amount.

This can be expressed mathematically ass

s(U+V) =0 » (52)

where U
v

the elastic strain energy

]

the potential energy of external loads

The strain energy of a thin elastic cylinder is given as [29]:

2
_ 1 Ed ) 2 1
- ?Z];]_uZ)s(axo * €yo) * 2(]'“)(5'nyo " ®x0 Ey;) % *

2 2
o, W\ S, oy (2w w
D{(ax * ay) 2 (1-u) (axay % ay)$ (53)

A variational operation is tgken on u, v, and w using equa-
tion (53), and the three equations of equilibrium can be derived.
This technique was usad by Sunakawa [30] in a more general case
where the loading included axia]iy symmetric temperature increase
with a temperature gradient through the wall thickness, and external

pressure. The equations derived reduce identically to equations (50),
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and (51) of this paper for the case with no temperature gradient
through the wall and no external applied pressure. It should be
noted that Sunakawa's equation for equilibrium has two extra terms
due to his using an extra term in his strain-displacement functions.

This technique is described in more detail in Appendix

3.2 Theoretical Methods of Solution

The differential equations for stability problems are
generally in very complex forms and exact solutions are impractical
for most important cases. For this reason there has been a great
deal of effort put into finding approximate solutions. These methods
must be reasonably simple to use, yet they must be capable of

yielding results with good accuracy.

3.2.1 The Direct Substitution Method

For a few simple buckling problems such as a simply-
supported, axially loaded cylinder, the Donnell equation for small
deflections can be solved by the use of an assumed displacement field
which is generally in a series'cohsisting of trigonometric functions.

This method is effective for simple cases, but for more
complicated loads or clamped boundary conditions,these assumed
displacement fields cannot be used. For these cases ,where the exact
form of the solution is not known,the following methods are considered
to be better as they allow the solution to be known to a certain fixed

accuracy according to the requirement.
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3.2.2 The Rayleigh-Ritz Method

The rigorous application of the stationary potential energy
theorem to more complicated structures has two main disadvantages.
First, the variational calculus involved is much too complex to be
used for routine problem solving, and secondly only the governing
differential equations are obtained, and not their solution. To
avoid these problems an approximate technique known as the Rayleigh-
Ritz technique is used to reduce the problem from an infinite to a
finite number of degrees of freedom. This is done by assuming an
appropriate shape for the deflection of the system.

The deflection can be expressed in the form:
W (x,y,2) ap f,(xy,2) + a, fz(x,y,Z) . SV

a, f, (XsY52) (54)

where a arbitrary constants

-+
i

assumed deflection shape function

The deflection functions should satisfy the geometric
~ boundary conditions but not necessarily the natural ones. The

theorem of Stationary Potential Energy can then be stated:

s(u + v) = Autv)say , alutv)sa,
3a] 332

3(utvisa . g (55)

Ban
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This is true providing the total potential energy can be eXpressed
as a function of w(x,y,z) only. Because 61, 62, . sn are arbitrary

equation (55) becomes:

Autv) _ Autv) _ a(utv) _
CLP 0, %2, 0, ... fa 0 (56)

Thus, using the above method a system of n homogeneous
equations with n unknowns is set up. By setting the determinant of all
the coefficients equal to zero a characteristic equation is set up
with the smallest resulting eigenvalue becoming the critical load of
the system.

This method, although very useful for many problems, is not
used often to solve the problem of shell buckling involving finite
deflections since the expression for strain energy given in equation

(A-8) is very complicated and tedious to obtain.

3.2.3 The Galerkin Method

The Galerkin method is, again, an approximate method of
analysis which reduces the deflection function from an infinite to a
finite number of degrees of freedom. The main distinction between
the Rayleigh-Ritz method and the Galerkin method is that the former
begins with an expression for total potential energy, while the latter
begins with an equation of equilibrium.

The engineering formulation of the Galerkin method is
derived using the principle of virtual displacements, with the

equation of equilibrium expressed as a generalized force. The
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Galerkin integrals have the dimensions of work and the method s
equivalent to the Rayleigh-Ritz method. In the mathematical formula-
tion of the method [31] the Galerkin integrals are obtained by

imposing an orthogonality condition on the error function obtained by
substituting the assumed shape fdnction into the differential equation.
This formulation is not connected to the variational problem and is not,
in general, equivalent to the Rayleigh-Ritz method.

In order for the Galerkin method to be equivalent to the
Rayleigh-Ritz method and thus yield an upper bound solution to the
buckling problem there are two conditions which must be satisfied.

The method must be applied to the equilibrium equation of the problem
that resulted from the variation of the total potential energy, and
this must be in the form of a generalized force or moment.

The Galerkin method is applied as follows:

When the variational method is used to minimize the total

potential energy of the system the following form of equation is

obtained:
fffaw) dw dxdydz + B.C. = 0 (57)
where Q = the differential operator of the equilibrium equation
B.C. = the natural boundary conditions

the dependent displacement variable.

=
i

An approximate displacement function is assumed which

satisfies the geometric and natural boundary conditions. This can
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usually be accomplished by assuming a power series and evaluating as

many arbitrary constants as possible from the boundary conditions.

n
0o=1=: a, g,(x,y,z)
i=1 177
where @ = the total approximate displacement function
n = the number of terms
a.= the arbitrary constant

i
gi(X,y,ﬁ; the approximate displacement functions

Since these all satisfy the boundary conditions equation

57 becomes:
1y ale) seo dxdydz = 0 (58)
; _ 28 38
Since de = aa] Sa] + aa2 6a2 .

So equation (58) becomes:

)z

g. (xs¥>2) sa, dxdydz = 0

Since the n functions 95 used are assumed to be independent
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of each other each, and every term must equal zero. Finally,since

the choice of a; is arbitrary

JIJ (e) g, (x.y,2) dxdydz = 0 | (59)

In order to use this method to solve a differential equation
the equation must have only one independent variable and is not
coupled such as the equilibrium equations for buckling. For this
reason the Donnell equation cannot be used with this method as it is
not the equilibrium equation derived from the variation of total
potential energy and it leads to a divergent trigonometric series.
The equation for radial equilibrium (equation 34) should be used
except that this equation has a term coupling it to the equilibrium
requirement in the x, and y direction. Batdorf [7] has modified
this coupling term to make theequation adaptable to the Galerkin
technique.

By introducing a stress function y,equation (33) can be

rewritten as:

2 2 2 2

4 2w 3w o w 1 3 _

D7 +fpx 2M 4 py AW 4 5 gy & )+—(Py+—“i)—o (60)
| ( ax2 ay2 X3y R axz

The compatibility equation for small deflection theory is:

2
-
v¢+-§9—!2“-=0 (61)

ax



26.

2
Solving equation (61) for 9—% and substituting it into equation (60)
3x
yields:
-4 2 2 2 2
_Dv4w+g%v §—-W2-+(P "W+ 2o gw)
R X X 3x Y ay Xy oxay
P
+=0 (62)

This equation is still in a form that, if solved by means
of the Galerkin method,is still an upper bound solution to the problem
for buckling. Indeed,this has been done for several types of buck]ihg
problems.

For a cylinder Batdorf [7] has proposed the following

approximate deflection functions:

w=sin ¥ a sin X B
A .om L
m=1
for simply supported ends, and ?(63)

w = sin %X-f cos{(m-l) E%}- cos{(m+1)£%}
m=1

for clamped ends.

Anderson [17] used the above equations to solve the buckling of a
cylinder under combinations of axial pressure and heating. The thermal

stresses (circumferential only) were expanded into a Fourier series
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which was substituted into equation (62) and solved for a Fourier
series circumferential stress component.

It is not possible to solve the large deflection buckling
equation (50) by this method as each equation of equilibrium is coupled
to the other equations and cannot be easily uncoupled as is the case

with the small deflection equation.
3.3 Numerical Methods of Solution

3.3.17 Successive Approximation

It is very difficult to obtain a solution for the non-
linear large deflection buckling equations (50) and (51). Sunakawa
[30] has used the method of successive approximations to obtain their
solution. In this method the equilibrium equation (50) is integrated
satisfying the boundary conditions on radial displacements and slopes,
allowing the deformation made to be expressed through the unknown

-axial stress. The compatability equation (51) is then solved subject
to the in-plane boundary conditions, and substituting the deformation
expression obtained from the equilibrium equation.

The result from this is a trénscendenta]equation relating
the axial stress to the temperature rise. This cannot be solved
explicitly and so an iterative technique such as the Wegstein or
Newton-Raphson method must be used. Once the axial stress is known
for a particular temperature rise the solution to the equilibrium
equation may be used to obtain the deformation mode.

The equations used in this method are extremely long and
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cumbersome and the. deriyation js given in Appendix B.

In his solution Sunakawa assumed the temperature distri-
bution to be uniform around the circumference of the cylinder and
symmetric with respect to the‘cylinder half Tength in the axial
direction, in the form of: |

T =£; T; cos (%%ﬂ) (i= 0, 2, 4, ...... even)

The symmetric temperature profile made this method a useful
way of analysing the case presented in this thesis. In addition, the
programming required for this technique is much simpler than what
would be required for a finite element, or finite difference program

to solve this problem. A Tisting of this program and some typical

output is given in Appendix C.

3.3.2 Finite Difference and Finite Element Methods

The finite difference and finite element methods are techniques
for discretfzing the continuous syStem and replacing the pértia]
~ differential equations governing the continuum by a series of
algebraic equations. These equations may then be solved by a digital
computer.

For simple cases the equilibrium equation can be solved by
applying the finite difference method diréct]y. A set of simultaneous,
homogenous algebraic equations is obtained with the characteristic
value on the diagonal. Setting the determinant of these equations

equal to zero yields the characteristic equation, and the eigenvalues
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for the problem. This may be done for the Donnell small deflection |

buckling equation (38) but the expression for the v term is very

tedious.

A more general ' and common technique is to use a variational
approach for employing the finite element or finite difference methods.
The second variation of total potential energy for a shell

of resolution along arc-length A-B is given as [29] is:

B

2 (te} T [c] {e} + A {8} [No] {8} rds  (64)

1 1
—6U=_.
2 2 A
- T
where {e}=le e sy s sk 5 2 ]
vo86 Y8 Yy 68 Vo
is the strain vector,

= o T
{8} [Bw’ B> sz]

is the rotation vector,

[~ -
N =[Ny 0 0

0 Nyg O

0 0 (N;g*Nog)

is the prestress matrix, and matrix [c] is a matrix of coefficients
relating stress and moment resultants to strains and changes in

curvature, with the nonzero coefficients:

T E Gy T G T ey

T-u
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The assumptions implied in equation (64) are:

(1) That the prestress matrix [Nb] is known and linearly
dependent on the eigenvalue parameter A (i.e. the prebuckling
rotations are negligible).

(2) That the material is linearly elastic so that the
stress matrix is simply related to the strain matrix by the relation-

ship
{S} = [c] {e}

The strain vector’used here is in a different form from
those given in section 3.1. This is due to the fact that the relation-
ships used in this section are valid for any shell of revolution while
those of section 3.1 are derived for a cylindrical shell. For this
section the reader is referred to the more general coordinate system
of Fig. (1B).

It should also be noted that the strain displacement
relationships given in equations (65) assume an axisymmetric loading
so that the incremental displacements vary harmonically with the

circumferential shell coordinate 6.



- 31.

JBu W
ew— S+Y‘tp A
- gy UBR W
- MYR Y
8
_Y _ VR, U
Yye T3 "R TR
Y 938
=_ﬂ86+«8_¢_.§3.
a0 R R 3s ?(65)
="ﬂ3¢+§_e_§B_+l§_Y_
Kee = R R 3s Ty s
W u
B = e wn —
r
P 9S "
nw v
S S o - —
6 R re
B =ln9__§_v__l§_& """"""
z 2 R 3s R 3s

With this identical basis the finite difference and finite
element methods can be formulated. The differences between the two
methods 1ie mainly in the selection of the generalized displacement
components. In the finite element method these components are
selected to be located at the nodal points of the elements, whereas

in the finite difference method the displacement components Uss Vi
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W, do not necessarily occur at a given node. With the finite differ-
ence method the rotation Bw is not a nodal point unknown and the
displacement polynomial for w is not necessarily restricted to the
domain of the element.
‘Two common interpolation functions used in shell analysis

are, for finite element analysis:

U=, + Yy S h
vV = Y3 + Yg S
W=yt oy Sty s 4 vg 53
and finite difference analysis ' (66)
U=y +vy,s
U=yg+y,s
W=yt sty 52 3

The elements used with these displacement functions are
shown in Fig. 2
It should be noted that for finite difference analysis the

interpolation functions are related, simply, to the usual difference
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In order to obtain the stationary value of the second

variation of total potential energy (equation (64) ) it must be

expressed in terms of the nodal point variables {q}.

Using the interpolation functions the nodal variables

be expressed as:

where

{q} = [A] {M}

{q} is the generalized displacement vector,
[A] is a matrix defined by the interpolation functions
chosen (as in equation (66) ),

{v} is the vector of the interpolation coefficients ch

The exact form of the vectors and matrix of equation (

will depend on the nature of the interpolation functions chosen.

example, using the finite element model in Fig. 2, these become:

- , 5w w

.33,

> (67)

can

(68)

osen.

68)

For
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1 0o 0 0 0 o0 0 o0
1 ¢ o0 0 0 0 o0 0
o 0 1 0o 0 o0 o0
ap-l® 0 1+ 0 0 0 o
~Jo o o o 1 0 0o o0
0 0 0 0 1 2 22 23
o o o0 o 0 1 0 0
o o o0 o0 o 1 2 32
_ i

{Y'} = {R'-I: 2125 5?/33 24a 253 2'69 247: 28}

Since the derivatives of the generalized displacements are
easily obtained in terms of the 2 coefficients, equations (65) can

be expressed as:

{e} = [F] {v}

{8} = [G] {v}

where the matrices [F] and [G] give the relationship between the
strain (and rotation) vector to the interpolation functions. These
will vary according to the interpolation function used. Inverting

equation 68 becomes:

o) = [AT (q)= [B] ()
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Substituting this gives the element strains as a function of the nodal,

or generalized displacement vector.

[{]

{e} = [F] [B] {q}
(69)

[6] [B] {q}

{8}

In the finite difference solution the above formulations,
although valid, are seldom used. The finite difference formulations
of equations (67) express the displacement derivatives directly in
terms of the nodal displacements (i.e. the generalized displacements).
Thus by substituting these relationships into equations (65) the
element strains can be expressed as a function of the generalized
displacement vector.

The variation of potential energy equation has now become:

2

78U =7 {q}Tf (81" [F1" [c] [F1 [B] ds +
0
S
xf [81° [61" [N,] [6] [B] ds {q} (70)
(¢]

or,

s20 = {q1' [K®] +x [n°] {q} | (71)
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where  [k®1 = ( ([817 [F] [C] [F] [B]) ds
0

2
n®1 =/ (181" 161" [Nol [6] [B) ds
0

Thus using an appropriate integration technique,the
element stiffness and geometric matrices may be determined. These
are then assembled into global stiffness and geometric matrices by

using:

where the subscript indicates the component number in the element dis-
placement vecter and the superscript indicates the element number. By
applying the appropriate boundary conditions the critical value of the

eigenvalue A is found to satisfy:
IK] {q} + A[G] {q} =0 (72)

This is the general eigenvalue equation and there are many standard
techniques available for solving it. |

As mentioned previously the expression for the element
stiffness and geometric matrices involves an integration over the
element. In the finite difference solution the integrand in equation
(71) is evaluated at only one point in the element and the total

energy obtained by multiplying this value by the element length 2. The
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element centroid properties that are necessary to obtain the stiffness
and geometric matrices could be provided as the input to the computa~
tion.

For the finite element method the integration of equation
(71) is usually obtained by a Gaussian quadrature numerical integra-
tion. The relevant nodal information musf be provided to the program
with an appropriate interpolation subroutine used to obtain the neces-
sary values at the Gaussian integration points. The Gaussian
integration may be a very time consuming and expensive computer
operation.

For the solution to a buckling problem the prestress
matrix [No] must be known. This can be determined analytically or
from a linear finite element analysis for a unit load (or temperature).
With specified the unit prestressing values known,the eigenvalue

problem can then be solved for the critical load (or temperature).
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CHAPTER IV

Experimental Work

4.1 Experimental Apparatus.ﬁ

The test setup is shown in the photograph Fig. 3. Schematics
of the setup and its accessories are shown in Figs. 4 and 5.

The tubular specimen was heated by radiation from an inter-
nal stainless steel resistance heater powered by a 20 K.W. D-C
Sorensen power supply. This unit was controlled by a Paramec process
controller (Fig. 6) which compared the feedback signal from a thermo-
couple on the specimen to a desired temperature ramp defined by a
Data Trak programmer. All temperatures were measured continuously by
chromel-alumel thermocouples cemented to the outside surface of the
tube. The thermocouple readings were input to an Acromag millivolt
transmitter which converted the millivolt values into current to drive
a Kyowa model RMV - 540 A twelve-pen recorder. These temperatures were
also checked by a hand held Atkins Technical temperature probe.

The axial load of the cylinder was transmitted through a
carefully controlling floating grip shown in detail in Fig.v7. This
allowed the Toad to apply on an Interface model! 1310 - AF, 10000
pound load cell, while preventing unwanted displacements. The output
from the Toadcell was monitored by a Vishay model P-350A strain
indicator whose output was in turn,fed to a Hewlett Packard 7046A,
x-y recorder as the y input. The x input for this recorder was the

mid-span tube temperature read by a Chromel-Alumel thermocouple. In
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this way a load-temperature graph could be obtained for each test.

The mid-span radial displacement of the tube was measured
for a number of specimens. An optical-fibre displacement probe known
as the model KD-45A Fotonic Sensor manufactured by the Mechanical
Technology Inc. as shown in Fig. 8, was used to measure this displace-
ment without contacting the buckling specimen. The output from this
sensor was fed to a Hewlett-Packard model 7035 B x-y recorder as the
y-input channel. Again the midspan cylinder temperature was used as
the x input channel so that a plot of displacement verses temperature
was obtained for each test.

The natural convection of the heat present around the tube
specimen tended to shift the heat upward along the cylinder, so it
was necessary to employ a bleed-through system of gas inside the tube
to regain a symmetrical temperature profile about the mid-span of the
specimen. A slow air flow down the cylinder between its inner wall
and the heater was introduced by using a needle valve attached to a
compressed air supply. This allowed the flow to be varied as needed.
The air flow was too small to cause extra internal pressure on the

tube.

4.2 Test Specimens

The test specimens used in this investigation were made of
aluminum alloy tubing 6061-T6. This was turned on a lathe to the
dimensions given in Fig. 9. The thin wall thickness of the tubes were
obtained by using a mandrel during a deiicafe machining process. The
range of wall thickness thus obtained varied from .009 to .015 inch.

Tube thickness was measured at 9 points in even spaces and the average
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value was used as the nominal specimen thickness.

No attempt was made to determine the eccentricities present
in the cylinders, although any specimens with visible flaws were
rejected. A typical specimen is shown in Fig. 10.

The physical properties of the tubing, such as Young's
modulus, and the coefficient of linear thermal expansion, were obtained
from the manufacturer's material specifications; These values are:

10.0 x 108 psi Syield = 40.5 ksi
6

E

@ = 13.50 x 107° in/in °F Pultimate = 46.5 ksi

A1l values were assumed to be invariant with respect to temperature and
direction when used in the analysis of the tests. A1l of the buckling
occurred at temperatures less than 392°F. The elastic analysis was not
valid in the post-buckling range so the use of this constant thermal
expansion coefficient was considered acceptable. The aluminum tubing
used was assumed isotropic in the axial and circumferential directions.
Any anisotropy in the radial direction was considered to be unimportant

due to the very thin walls of the specimens.

4.3 Experimental Procedure
After measurements of the tube thickness, length, and radius
were completed, electrical insulating tape was wrapped around the inside
of the two ends of the specimen. This was to insure that the resistance
heater would not generate an arc to the specimen during the grip assembly,
and the strain indicator was nullified for the newly installed tube specimen.
The upper cross member shown in Fig. 4 was raised from the
supporting collars by shims inserted while the main bolts were

loosened. The upper grip assembly shown in Fig. 4 was threaded onto
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the tube and heater, and to the aligning plate. This aligning plate
was then tightened and the upper heating terminal installed. Finally
the inlet terminal for the bleed-through of gas was fitted to the top
grip.

With the specimen now fastened to the testing frame, the
ten thermocouples used for obtaining the temperature profile along
the cylinder were attached. At each position where a thermocouple was
to be installed (ref. Fig. 9) the surface was carefully cleaned, first
with a degreaser, and then with a solvent. The thermocouples were then
taped in position so that the tips were pressing firmly against the
surface and the thermocouple cement applied. This was allowed to set
overnight and then a layer of silicone was applied over the cement to
provide extra strength. Curing took place for approximately 4 hours.
The tape could then be removed from the thermocouple stations.

A1l the electronics were allowed to warm up for at least an
hour before the actual test. The shim stock was then removed and the
two main bolts were tightened until approximately 70 1bs. of prestress
was applied to the specimen. The zeros for all the temperature out-
puts were checked and the fibre-optic displacement probe was calibrated
and the output set to zero on the x-y recorder.

Prior to the actual test run,the power supp]y.was turned on
and the specimen heated up to about 200°F, or slightly less for thinner
cylinders. The specimen was held at this temperature while the bleed-
through valve was adjusted to make the temperature distribution along
the tube symmetric about its half length. The temperatures were also

checked with the hand-held temperature probe to insure the thermo-
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couple readings were correct, The power supply was then shut off and
the specimen allowed to cool down to nearly room temperature.

Actual tests started following the above procedure. The
controller was set to yield a temperature ramp slow enough to ensure a
smooth temperature rise in the tube as programmed. The temperature
rise in the tube was also checked by a hand-held temperature probe at
various instances during the test.

The test was continued well past the original buckling
temperature to observe any secondary buckling, or load recovery, that

might occur.

4.4 Results

Typical raw data output from a test areshown in Figs. 11 to
13 for test number 21. These figures show, respectively,the ]oadvce11
output versus the controlling thermocouple output, the Fotonic sensor
output versus the controlling thermocouple output and the recorded
output for the remaining 9 thermocouples.

From this raw data pTots of other results could be made
for the proper information for all tests. Figs. 14 to 23 show plots
of axial load versus the half-length tube-temperature rise for 5
representative tests. The point of zero temperature rise for all
specimens was determined by extrapolating the curve given by the load cell
output versus the controlling thermocouple output back to the point of
zero load. The relevant information derived from the load-temperature
plots for all of the tests is given in Table I. All temperatures

refer to the temperature at the half-Tength of the tube. Ty and Pp

refer to the temperature and axial load at the first sign oiibJCK ng,w
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T and-PM refer to the maximum temperature and axial load ever reached,

M
and Tv and Pv refer to the largest discontinuity in the load versus
temperature output.

Figs. 24 to 27 show the radial displacement at the half-
length of the tube versus the temperature at the same level for
several tests. The relevant information for all tests for which these
data were available is given in Table II. Photographs of some typical
buckling deformation patterns are shown in Figs. 28 to 31. The second-
ary buckling may be observed shown in Fig. 32.

The temperature profiles along the cylinder were plotted
for each test. Some of these profiles are shown in Figs. 33 to 36.
Thesé curves illustrate the temperature variations along the tube

length at different contro]]ed half-length tube temperatures during the

test for each case.
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CHAPTER V N

Discussion of Results

5.1 Buckling Phenomenon

As the tube was heated it assumed a fbarre]" type of shape
due to the high temperature at the central portion of the tube coupled
by the fact that the ends were constrained by the end fixtures. As a
result of these circumferential and axial constraints, circumferential
and axial stresses could accumulate in the tube until a critical value
was reached, when buckling took place. The clamping effect at the ends
of the cylinder would cause the highest circumferential stresses near
the ends, so it would be expected that buckling would occur near these
locations. This compares to mechanical loading where only the axial
stresses are present and buckling usually occurs near the middle of the
cylinder. |

The results from these tests indeed showed the buckling
occurred near the ends of the cylinder for all but four of the tests.
In all cases the buckling occurred with a violent "snap-throughf,
accompanied by a large drop in load. In some tests (ref. Figs. 17 to
19, and 21) the load dropoff occurred in several distinct stages. This
was observed to be the result of an incomplete buckling pattern at the
first snap-through. The succeeding "snap-throughs" were due to the
completion of the buckling pattern around the cylinder. In some of the
tests where buckling occurred near -the clamped ends the deformation
took the form of a complete ring indentation around the specimen
(ref. Fig. 28). This was usually accompanied by the more conventional
diamond pattern deformation which formed adjacent to the ring. It
usually occurred along with, or immediately succeeding the original ring

buckling.
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It was mentiaoned that not all the spetimens buckled near the

clamped ends. In fact,four tests indicated that buckling occurred nearer
the center of the tube. These were test Nos. 17, 19, 21, and 22.
These tests were not conducted any differently than the others, and
nothing was observed to make thése tests extraordinary in any other
manner. The deformation pattern for these specimens exhibited a stepped-
tier arrangement which was complete in some specimens and not in others.

Previous tests presented in Ref. [21] have indicated a
secondary buckling occurring after the first snap-through buckling.
Thielemann [32] described this phenomenon as the passing of the
cylinder to succeeding equilibrium states and demonstrated that the
buckling pattern of a secondary buckling deformation pattern should
have one less wave than the pattern of the preceeding buckling stage.
In this investigation there was no secondary buckling of this type
observed. In several cases, though, a specimen which originally
buckled near a clamped end subsequently buckled near the center at a
higher temperature (approximately 700°F). The original buckling
deformation patterns as given in Table I range from 4 to 6 waves
around the cylinder, whereas this second buckling displacement pattern
was typically an incomplete step-tier type of buckling with n = 6.
This is, of course,not one pattern less than the previous buckling as
predicted by Thielemann. This secondary buckling was sometimes tiered
over a larger section of the cylinder. |

Other investigators [21], [32] have reported an increasing
capacity for the cylinder to support load after the initial buckling.
Although the same type of secondary buckling was not observed in these

tests, this load recovery was observed between the buckling stages due



46.
to the completion of the deformation patterns in tests Nos. 14 and 16,
as can be seen in Figs; 12 and 14.

It is also interesting to note that in several cases the
buckling process did not occur instantaneously. In tests Nos. 10,

13 and 19 a shallow buckling pattern was observed momentarily before
the violent "snap-through" occurred. This is seen in the load-
temperature graphs for these tests as the load levels out slightly
before dropping, (ref. Figs. 16, 18 and 22).

Hoff [20] showed that the "snap-through" buckling may be
delayed in some tests until after the maximum load is reached. He
showed the delayed buckling to be dependent on the stiffness of the
testing machine. This delayed buckling was observed in two tests.
Specimen numbers 6 and 8 did not exhibit a "snap-through" buckling
until after the maximum load had been reached. This is shown in

Figs. 14 and 15.

5.2 Load Vs Temperature Curves

As mentioned in section 4.4,plots were made of the axial
load verses the half-length tube temperature for each test, with the
results summarized in Table I.

In order to compare these results with the theoretically
expected behavior, the successive approximation method of Sunakawa
[30], explained in section 3.3.1, was used. The equations presented
in Appendix B were solved by an iteration method performed on an IBM
370/168 digital electronic computer. The six thermocouple readings on
the upper half of the tube were used to represent the symmetric

temperature distribution in the computations. By substituting these
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values into the equations

T(x) = £ Ty cos (-‘Z-FLL’S) i=0,2,4,6,8,10
for each thermocouple position along the half length of the tube, a set
of six equations with six unknowns was set up. Solving these equations
the first six values of Ti were obtained. More values of Ti could
also have been obtained by joining the thermocouple readings with a
smooth curve and then using more temperature values from this curve.
This was not done, however, as it seemed that this scheme might not be
a true representation, as the temperature field thus established is
known only to the accuracy of the six thermocouple points. The tempera-
ture coefficients for all the tests were strongly dominated by the
first two or three terms anyway, and so six terms were considered
sufficiently accurate.

The temperature distributionsshown in Figs. 33 to 36
were established by the six terms used in the successive approximation
method. It is seen that the six terms can représent the actual
temperature in the tube quite well.

An axial load versus half-length tube temperature graph
obtained using this method is given in Fig. 37. The relevant data
for all the computer results and their associated test results are
presented in Table III. These results are also presented in Figs. 38
and 39 which show the experimental loads and temperatures as a percent-
age of the theoretica]vva1ues plotted against the radius-to-thickness

ratio.
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An immediate observation from these results is that in all
but three cases the ekperimenta] temperatures were a higher percentage
of the computed values than were the experimental loads. The average

values for the 15 tests were:

Temperatures - 37.1 percent

Loads - 32;8 percent

In his work on very thin uhiform]y heated cylinders of
R/d = 300 Ross et al. (Ref. [19] ) found that the buckling loads were
characteristically Tow, with an average value on 10 tests of 26 percent
of the classical critical value. The buckling temperatures, however, were
found to be very high, with an average value of 62 percent of the classical
critical value. In his discussion Ross attributed this phenomenon to the
nonlinear Tload-temperature effect on the pre-buckling deformations. The
axial generators, which are initially straight, become curved due to
thermal expansion in the middle while being clamped at the two ends.
This results in a decreased stiffness in the axial direction and hence
the axial Toad builds up slower than the expected load due to thermal
expansion. Bushnell and Smith [33] discounted this explanation
and attributed this effect to slippage of the end conditions. They
used the BOSOR 4 computer program to show that the barrelling effect
was not severe enough to cause a nonlinear load versus temperature
(or end shortening) relation. The work of Hoff et al. [19] did include
an evaluation of the slippage at the ends, however, énd this was

shown to be negligible. Additionally, it was shown that the load-end
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shortening curves for some cylinders, even though they remained Tinear,
had a significantly lower slope than those for machine tested cylinders.
This was again due to the barrelling effect of thermal loading.
Furthermoré, Frum and Baruch [16] pointed out that the use of a linear
analysis may Tead to buckling temperatures that are lower than those
obtained from a non-linear analysis. | |

At first glance it would seem that the present results
would tend to contradict the results of Ross et al. [19], as the critical
buckling loads are higher than the critical buckling temperatures.

The specimens used in these tests had threaded end portions that were
much stiffer than the tube section. It was not likely to have

boundary sTlippage at the ends, as any deformation in the circumferential
direction would have forced the bulkier threaded end to become non-
axisymmetric. This was unlikely as the bending stiffness of this part
was far higher than the stiffness of the tube section. This was also
true for angular rotation at the ends of the specimen.

The Tower buckling temperatures obtained in the present
investigation appear to havé verified that the results of Ross et al.
were due to slippage at the clamping assemblies, allowing the stresses
to redistribute themselves and thus delay buckTing until a higher
temperature was reached. A closer look at the test specimen, however
revealed that this was not necessarily the case. The length -to -radius
ratio for these specimens was 11.17 while the value for the specimens
of Ross et al.was 9.25. This means that the barrelling effect on these
cylinders should be expected to be less severe than for cylinders of a

Tower 1ength to radius ratio.
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To gain a better insjght'into.this result,a 'best fit'
linear regression was used to approiimate the data, The line obtained

for the temperature data was:

x 100 = 2.773 + 4.798 x (R/d)

—+|~—4
DD O M

with a coefficient of correlation of .620. This means that the linear
fit is quite good and it is ah increasing relationship. For this fit
the data from test No. 12 was not included as it lies too far from the
other data to have any confidence in the correlation. The prediction
interval for a 90 percent confidence coefficient is also shown in Fig.39.
While there is scatter, as expected, the increasing relationship seems
to be proper. This result would seem to aéree with the theory that the
barrelling effect controls the buckling temperatures.

A linear regression analysis was also done for the buckling

load data of Fig. 38. The best fit equation for thesedata is:

x 100 = -24.343 + .78452 x (R/d)

w | ©
Uorrlwm

with a coefficient of correlation of .848. The 90 percent prediction
interval curves are again shown with the data. This indicates that
in this range of radius to thickness ratios the data havea strong
increasing linearity. This behavior was not expected, as very low
load levels would have been expected due to the barrelling of the

cylinder,causing the axial stiffness to decrease.
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This discrepancy can be'ekpiained@by the nature of
cylindrical buck]ing; It was shown by Batdorf (Ref. [7]) that the
nondimensional parameters involved in shell buckling include one which
represents the shell geometry, z, and one which represents the loading

conditions, Kx' For these tests these parameters are:

2 -
]-uz

N

]
el ime
o,

‘ _ i, 2 2 1
K(i)x = 127ox (1-p7) L where ox = PE/(2wRd)
' ﬂZE d B

2
oxX = E«Tg

The data pertaining to the calculation of these parameters,
and the parameters, are given in Table IV. A plot of the results, as
suggested by Batdorf [7] is given in Fig. 40. This figure shows
that the buckling stress coefficients for these tests 1ie in the same
region of the two theoretical curves which also enveloped the data
obtained by Ross et al. [19]. It seems, then that the results cannot be
observed strictly as a function of the radius to thickness ratio and
axial Toad. The entire effect of specimen geometry must be allowed for
when using the parameter z, and the entire loading effect must be
allowed for using the buckling stress coefficients Kl and Ki . When
this is done the results show that the stress coefficient for the
temperature effect is consistently higher than the stress coefficient
for the axial load. The results also show that, although the buckling

Toads in these experiments seemed to be quite high, in fact the

buckling stress coefficients for the loads were quite low, as was expected.



52.

5.3 Displacement Measurement

The numerical solution used here also gave the radial dfs-
placements along the cylinder. These are given along with the experi-
mentally obtained displacements, in Figs. 24 to 27. In order to compare
the experimental and theoretical displacements both values are given
in Table II. These represent the radial displacement for a 100°F
temperature rise.

Fig. 41 shows the percentage of the experimental displace-
ment to the theoretical displacement plotted against the radius to
thickness ratio. Although there is a fair amount of scatter present
it can be seen that the general trend indicates that the experimental

value increases as the radius-to-thickness ratio increases.
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CHAPTER VI
Summary of Results

Thin cylindrical shells threaded into rigid end supports
were subjected to axially symmetric heating until buckling occurred.
The results of these tests were:

(1) Axial load verses half-length tube temperature increase
curves were obtained for all tests and the prebuckling, buckling, and
post-buckling phases were studied.

(2) The buckling for all cases occurred as a violent "snap-
through" type of buckling. It usually occurred near the restrained
cylinder ends.

(3) It was shown that buckling did occur, in some cases,
after the maximum load had been reached.

(4) In several cases the buckling occurred in stages, as
the deformation pattern completed itself around the cylinder. A
secondary buckling was observed in several cases.

(5) The buckling temperatures were lower than those observed
by other researchers, with an average value of 37.1 percent of the
theoretical value. The buckling loads, however, were rather higher
than expected, about 32.8 percent of the theoretical value.

In Tight of the above results the following conclusions may
be drawn:

The thermal buckling of thin-walled tubes was investigated.
The present results derived from tests on thin-walled tubes differed

from those obtained by previous investigators for cylinders with a higher
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radius-to-thickness ratio, g.g; 300 in reference [21] versus 60-80
in the present investigation. Tthe discrepancies lead one to believe
that this parameter is an important one in determining the effect of
thermal barrelling on buck]ing:Z;The conclusion drawn by the previous
researchers on cylinders with large radius-to-thickness ratios cannot
be used here.

In order to determine a consistent design standard, further
tests should be conducted to fill in the gaps eXisting in the radius-to-
thickness ratios beyond the range used in the present investigation as

illustrated in Figs. 38 and 39.
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APPENDIX A

Variational Methods for Equilibrium Equations -

This appendix describes in detail the procedure used to
derive the equilibrium equations from variational considerations. As
previously stated the strain energy for a thin elastic shell with no

heating is given by:

_ 1 Ed 2 1 2
u= ?lyzl_uZ)‘[(sxo * Eyo) * 2(]'“)(l_l'yxyo " %xo €yo)}

2
W, w2 W 3W 3w
+D [(ax * ay) * 2(]'”)(axay T 3x ay ] dx dy (53)

The potential energy of the applied loads is:

ey - S,
vV = - v Bi U, dv - - Ti u; ds (A-1)

where Tgv) = surface tractions over the boundary Si

(v o)
]

body force distribution

However in the problem where only thermal loading is considered, the
thermal effect can be included in the strain displacement relation-
ships equations (19), (20) and (21). The principle of stationary

potential energy equation (52) then reduces to the form:

sU=0 (A-2)
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This strain energy is due to bending, and middle surface

strain so:
U= Ums * Ubend
1 Ed 2
where: u_ == - [(e +e )
ms 2‘/11_112) X0 yo

=11l (@ 4 aw,y2 )
Upend Z/ﬁ[%x * ay) + 2(1-u)

(A-3)

Cy,2
+ 2(1-p) (52

4 " €x0 E:yo)]dx dy

(BZW _ oW aw

3X3y | 3X ay,‘] dx dy

The middle surface strain energy term was derived from the form:

RN . .
Uns = Z/ﬁNx €x0 © Ny €yo T ny ’3xyo:I dx dy

Introducing the thermal strains we get:

£g (Ny = ) + oT

X0
= L (N = WN) + oT

€yo " Ed 'y T M/ T @

Y = __.1»_‘__2“'*' ) N

xyo Ed Xy

Solving for the forces Nx’ Ny and ny

Ed ~ EdaT
] u2 Leyo * “Eyo] T T-p

NX=

(A-4)

(A-5)
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J EdOLT

Tor (A~6)

Ny 5 }—_:2— [Eyo + HEL

- Ed(1-v) Yyyo

N
XY 2(1-42)

Introducing these in equation (A-4):

2 2
= LB ‘ - EdocT
Uns = Zﬂ(]_MZ)[Exo * Zusxoeyo ¥ e)'o] (exo yo)

M Y Xyo0 dxdy

2(111)

Rearranging ,this becomes:

A 2
- 1(rEd 2 Y xyo
Uns 2ff]_u2 [_(sxo+ eyo)” * 201 (g - e €y0)

Ed
-__QLI.(

T ‘Exo + eyo)dxdy (A-7)

The bending strain energy will not be affected by the thermal loading.
Applying the strain-displacement relationships equations (19),

(20), and (21), the strain energy becomes:

1{/[Ed 9 9 1,09
5/]:‘5 {1+ 2+ U2+ (24212 4

Worw U, W2, 3W 2 2Ed fou  dv
R I:Rv'z(ax ) (( +( ) 1+p{ax 3y T
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2 : L
1 rou,3 88
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Applying a variation to the total strain energy equation (A-2) becomes ,

after much algebra

1 3(su) 3(su) 3(sv)
Z.ICAEO Su + IT X t t Iz v I4 £

2 3y 3

2
w1 2eV) g gy g o 208w poalew) . 237(sw)
5 dy 7 5x 8 3y 92

6
2 2 W
+ I a—(ls.v_vl + I @..(_5__1} dxdy =0 (A-g)
10 2 119X3Y
Y
where:
IO = I3 =0

2
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2
= 4010 [A

1

With the form of equation (A-9) it is useful to use Green's
theorem to eliminate the derivatives of terms involving the delta

operator. For two dimensions Green's theorem is:

w
/]-—- dA=fuwd1-[/‘wu
S X > L - dA (A-10)

Thus, by using this formula,the expression of the variation
of the strain energy becomes an area integral involving only terms with
the delta operator, and not its derivatives; plus a series of line
integrals over the boundaries. These line integrals specify the natural
and kinematic boundary conditions on the shell that must be satisfied.
These conditions are very important to the full understanding of the
problem,but as this appendix is to deal with the development of the
equilibrium equations.they shall not be included here. So after

applying Green's theorem equation (A-10) becomes:

1 ‘
Z/]‘{A] su + A, v + A36w}dxdy+j{A4-d1=0 (A-11)
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Providing the boundary conditions are all satisfied:
A, dl =0
# 4

Then, because each variation su, sv, and éw is arbitrary,equation (A-11)

yields:

A, =0,A,=0,A,=0 (A-12)

The three equations of equilibrium for the shell then become,

after some rearranging:
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These equations can be greatly simplified if several relationships are

used. For reference
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The stress functions are:

A% Nk, 2% Ny, 2% | Ny
3yZ d 8X2 d 3X3y d

Using the force-strain relationships equations (A-6), the

equilibrium equations become:

ANx , aNxy _ o -
TR 5y 0 | X dir'n (A-14)
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(A-15)

(A-16)

Equation (A-16) is identical to the equation (50) for radial equilibrium

derived previously.
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APPENDIX B

Equations of the Successive Approximation Method

The equations of equilibrium and compatability as given by

Sunakawa [30] are:

. d'zb 2v d"'w+ w

W TR A R
1201 [z 1%,  «a (_g =(7~, dez'f')] (B-1)
& LE=TEE “di-y R) Eir=yAL
4 o
L (8-2)

These equations differ from those of equations (50) and (51) in the

following ways:

1. The loads and defocrmations are axisymmetric sc that all

terms concerning v, and 3/3y vanish.

2. A temperature gradient through the wall thickness is

allowed, where the temperature terms are defined as:

Y . ~ o,
T:Q’“_/JAT(% ¥, 2)dz. T==-}_,—j nzT(x, ¥,z)dz, (B-3)
- ~3/2
These temperatures are expressed as a Fourier series:
T:Z «‘ COS—?E?-:-», (7::0, 2, 4’...even),
: 2L (8-4)
T:; ~J COs '92;}? » (j=0, 2, 4’..-eveu).

From the strain-deformation relationships of equations (19)
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to (21), and the strain equations (47) to (49) the stress

function derivatives can be expressed as*:

= I
E (-HL (B-5)
X, __ 1 Lw2)—py®]__al_
—Iyi'!—— (1—-»2) [(u,-{—-}_’ w, ) vR] (=2
If the axial stress is assumed to be a constant these
equations can be expressed as:
%y U [ 1,2\ w]__«T _ ¢
_.E'_”__ (1—1%) ’l.(u‘r F Zw: ) R (1—vy) !
ZE' ==Y _aT-uC,
Inserting these into the equilibrium equation (B-1) and
neglecting higher order terms of infinitesimals it becomes:
%1. +454R°c,ii—“i 45
= aT, (d\]
=—454R[¢IT°+DC1 (l—y)( )J
I CARSI U ) =
"4'8‘12{“2'[ My (1_,,)( >f‘[l 4<L> 4608 2L} (B-7)
o Ed__ 30—
Where ﬁ - 4DR2 ngg N

*In this appendix subscripted variables refer to the partial differential
with respect to the subscripted variable.
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The general solution, after integrating equation (B-7),is

R [aT et +f;r-:fv)(d>]

kel T 17z
o4 A t 0s
+163 {4“:4 (14— 163°C\ 342+ 645%) 3L
l(-i_) o . (4-—.7."7'2)7'] cos ja.:x } J‘A(I (B¢8)
1-;,)( Py it — 167°C,%7 + 642%) 77 I

where §=R3, ==,

The complementary solution A(x) can be shown as:

i) the case of 1-5°C,>0,

A(x)=A,e™ "7 cos T+ 2°C S+ Ao "0 sin VT 220, 5
+ A, e T 005 JT3-E7C, 5z + A/ e 0= sin VT 2°C, 5z
=A,e™ 1T cos T EC, 5z + A e~ T80 §in JTL2C, 5z
A, e TEREHEID 065 JTLZC, 5(x—2L)

+ A elimE0eE=2D gin JT+2C,5(x—2L), (B-9)

ii) the case of 1—2°C,=0,

A@)=(A,+A4,7) cos VI+3C, Bz + (A, + A, z) sin y1+2C, 5z
=(A,+ A;2) cos+' 2 fx+(A,+A4,2) sin+/ 2 5z, (B-10)

iii) the case of 1—2C,<0,

A(@)=A4, cos [(FC,+14+FC,—1)2z+ 4,)]
44,005 ((FC,H1-VFC,—1)5z+A,] . ' (B-11)

The constants Ai . in the complementary solution are chosen

to"satisfy the boundary conditions on w:

W/ _ =0 w./ =0
X"O,ZL X x=0,2L
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These constants become:

i) the case of 1—3%C;>0,

] -—e=?TmEECL [cos("s'r-i‘:i"C, 3L)— I:sin( M+: C,,JL)]A

A::As-—-—— | — e-un e:c,pt_]_ql e- Vim g SL sin. 4‘ l+, xﬁL) (8-12)
A= — A= — Je—e~?VI=ECHE [ cos (2414 52C, FL) +sin (241 +.,2C,,9L)] ’
? ¢ 1— ¢a"""“"’"""-+-ZIce“’“““l sin (2V1+5C,3L) 4o
ii) the case of 1—-£'C,=0,
1—cos 2V 2 5L
| T — s A P t ’
A=—4 : 2J2,S’L+sm 2J2 5L " (8-13)
A= «/_2‘13(1—~cos"/‘>,7L)A’ Am— Y2BsN2ZL 4
YT 22 BL+sin2/2EL " 2{28L+sin 2/ 2 5L
iii) the case of 1—£°C,<0,
A= GWFCHTI—VFC—1)sin [(V&C, + 1—=4F°C, —1)SL] 4
*TJEC, =1 sin (2VEC, F15L)+vCi+ L sin (2VFC,—15L)
A= WECFTHITC, — 1) sin [(FOHT+VZC—DAL] - 4 (B-14)
BT JEC — 1 sin (2 2C, + 18L)++5°C, +1 sin (2v#C,— 15L) -
A= —(WEC,+1++3C,—1)5L,
A,;=—(WEC,+1-v¥C,—1)3L,
where
aTly .d.)'i *«{4 S T __
Ao—[aT +‘C‘+(1—p)( R e ey
_a d>€~ (4-0%)T;___} _
+ (l-—-p)( =2 (Fit—167°C 347+ 645 (B-15)
’ - 1—20,\}
h = ( Cu e
where : 14—“L,>

The deformation mode is thus expressed in terms of the
eigenvalue C; using equations (B-8) to (B-15).
In order to determine C] the compatibility equation (B-2)

is expressed, using equations (B-4) and (B-8) as:

— Cl = {4 Tg Q'ij‘f.x‘.
=1 x’+l6 ff af: (P 16EC. I P T 6am) cos 5T

X
E

+_m__(f£)v j=2
(=) \R/ 1= G5 =165°C.2%F+642%y 2L

+ffA(:r\dxda, af[__, T, os—--—--—dxda: ' (B-16)

=2

(4=3°7) T - COS Jzz } dxdx



The axial and circumferential stresses become:

E E
- o a _
K BT —Cz+l6$‘{4a P A
E E = (' = 163°C, 3+ 642
d\ & (4—355 T,
T ) O i LB
(l——y)( )j-: (37 = 16°C\ 347+ 645%)

L A(@)—a ) T, cos E.
+ A(x) a“;_;T,cos Y3

—a'f—[»c,+c=+ (fﬁ) (—%)] ]

Gz

E

—2v=0.

w

R

Z.,
E

The constants C] and C, are determined by applying the

boundary conditions:

./rZL
. ux dX =0 v.y =0

This yields:

T S LA TR T PR
Ci=—alot72) RTZL-[L (=) x+4Lf =4

—G= (;xi) (%) ’

where the integrals on the right hand side of equation (B-18) are

given by:




] 2L _ .
B [ Az)de=F,(4):

i) the case of 1—$°C,>0,

i - _ — - . U ..
F;(A)‘_“L]_:—;;I;ql' CA; {fo+e7* =800 [ cos (V1 +3°C,2L) +sin (VT+2C,5L)])
+ A {1 —e=* =T 005 (24T F FC LY+ ksin(2VT+2°C,50)111,

.ii) the case of 1—£°C,=0,

Fy(A)=— 22 (1—cos 2{2 8L)
! 25L(2V2 3L+sin2y23L) " °*’

iii) the case of 1—2°C, <0,

e 1 {sin [(vVE&C,+14+2C,—1)3L] sin [(+Z*C; +1—+22C, —1)3L] }
F A =—-{ e .1_.._. :L—_‘.l_....._ .A T iy =T T A
() BL « J2C,+1+V2C,—1 1+ VEC,F1—VZC, =1 :

1 f uw,"dx:ﬂ@-w,’):
4L ) 2

i) the case of i-—é’C,>G,_

(Bi+85
4V1-2C,5L

(1T oos [4TEEC,3L])
2WT+5C8L pipepo ]
x2S (R B)+2B, B,

16(3L)’ HB R,
+e~ YRR gin [4TF8°C,3L ]

[2VI+5CAL rps_ poy_ 2k B,]
x!— ]6(‘3L)2 ‘_( 1 2 ) 12 1

g = = [( B~ Bg) cos (2V1++C,3L)

l g‘ 1 ) .-_-. Va3 f 4V IZIIC 3L
F‘ — 2 3. | — LR}
!('2' w, )"‘“‘2(1 AN Clh l( ¢ )

i

e

L

+( B+ B +'?BB.)sin(2~"1+’255L)]]
WIFFCAL o

+8«/131—$*C.$’{4a% T

Hi(9)

= (9 — 168°C,3' + 642%)

a 5{) S BT, ey g ),

73.

(B-20)

(B-21)

(B-22)

(B-23)




i) the case of 1—§C,=0,
Py ) =B [0+ A0+ (= 4,020 312040+ 40057
~[AA = AT D~ Al AN TN T 5L+ Beast ansLy

+ [-43A¢_(A1A3"‘A:A4) \!’-“2—13—4‘41‘42.52]

Al
4,2 8L
+[(A4,A,— A AW 2 3+([45— A4 9]-1-[‘4,4 +A4,4,12V25)2¢2:5L
+44, 4,5+ A A (160503 —1)] cos 4y 2 5L
+[(A2A +AANT 844, A~ [A,4,— 4,412/ T ) 2,2 8L

+2(45 -A’),:--—--(A —AN(6[ALT— )]smz; 7,8L}]

=T, )
8“ ¢ i :
+ 01? 4a§ (1% — 168C2 7+ 6429 (=)~ 8(3L)] f2(7)
I ARS =3{4—3*)T,
-+ (I—U) (R)j% (J";“—lsj Cl F+64“)[(“3) S(PL)"Wf-(J)
+9(%,5),

| iii) the case of 1—£°C,<0,
¢ :
Fy( 3w ) =2 [0+ FCT DA+ (20, ~FCTT A7)

- ‘?ﬁz L "Cl+ 1 sin (27 + 1"L)—;';--l = sin (243°C,— 15L)
_ £C, :

| I

(GG DAL G oy FE T+ T)AL
2pLL(\, C,+I+~’; C,—l) sin [2( 1 vi'Ci—1SL]

=Cl ’.‘Cj:-._l)é“ Sln r‘)( 2C +1_J~ —l ‘5L ]]
e C:+1-— NEToRt it L]
. 2z22T, .
a— s 4 "
83 /L (l’ (7,‘7‘4—16"201“ n+64“) .fg('b)
. ii_)\g- "‘J’(4 —3° r)T :l .

7

where
Bx*—';I_CAx“Aza }
B.=A,~k4A,,
+2J/1+2C,5L)B,—2/1 -:"c,,sLB,
(=k)* +8(,3L) ot d=key 1+ S°C 5L
+ (.-k“‘?.\’l +.:"C”7L)B,-r2y 1— S C,I?.LBo ]

FR)=(1 =0 cos (2, THEC,5L] )I' (=k

(zk)*+8(SL)Y—4=kJ1+2C,8L
2\T=#C3LB+(zk+2/1+C,53L)B,
(=) +8(SLY + 4=k 1+ ‘"C,pL
+ =2 1=3C3LB,+(zk— 2/142°C, ﬁL)B,]’
(=k)*+8(3Ly—4=ky1+&C AL

—:Jl-—(‘ch"z 5"1 [2\ 1 +:‘CII§L][
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(B-24)

(B-25)

(B-26)

(B-27)
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= 4.3 504 (5RF—=24(3L)
k)= = A 204, (:I:)'—-S(,:L) ]
o a R HGIET
+[(A +2A,L0 2 5+ (k) TR ]cosz 25L
LA GRPESGLY T o5 e
[( A+24,L) T 54 A Jsin 2y 75, (B-28)

= CEGH IO DA G (50T 4 VPO =1)AL]
fl= (=k)—8(3°Cy++ ' CF— 1)(BLY sin [(FC+1+V3C,—1)5L]

e 1___ Sal le ITw re)
e —8C€+c = "'g':l)x siy I HOFGFImEOEDAL. (8-29)
» V) > Vi
. iT,
g(i.5)=165 B"[*"_z (7 —167C2 716439
ARSI Cor iy Y VIR B-30
() E G —167Ca 7+ 64y | - (8-30

By using equations (B-20) to (B-30) and assuming a tempera-
ture distribution equation (B-18) becomes a transcendental equation for
Ci' This can be solved by a standard iterative technique. FEquations
(B-17) can then be solved for the corresponding stresses for that
temperature distribution and equation (B-8) can be solved for the

displacements.
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Figure 5. Test Set-up Schematic.
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Fotonic Sensor.

Figure 8.
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Figure 10.

Photograph of Test Specimen.
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Figure 28. Buckling Pattern. Test No. 8.

Figure 29. Buckling Pattern. Test No. 14.




Figure 30.

Figure 31.

Buckling Pattern.

Buckling Pattern.

Test No. 18.

Test No. 21.
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Figure 32. Secondary Buckling. Test No. 18.
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