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i.
ABSTRACT

The lnvestigation in this thesis concerns the thennal

buckling or cylinders heated unifqmly around the circu-ference and

s..,rmetrical ly wfth respect to the axial half*ìength.

Aluminum cylinders, nachîned to a thin wa1l, were threaded

into a rigid frame and heated by means of a radiation type internal

heater until buckling occurred. The ternperature profìle of the tube

was recorded by thermocouples and this pt"ofile v¡as used to simulate

the test by using a successive aoproximation technique on an IBM 370/168

di g ita'l computer.

Axial ìoad versus the centerline temperature Ðlots were

obtained for all specìnens. The centerline radial displacement was

also plotted as a functìon of the center'lìne temperature for several

specimens. These results were compared to the successive approximation

solutions and to the results of other investigators. Agreement with

other works is noted, and any discrepancies are explained. Suggestions

are also made as to areas with a need for further study to ciarify the

probl em.
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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Recent advances in the aerospace industry have imposed a

great need for structures which have a very high strength to weight

ratio. Lighter structures are also in demand for some of the key

core components in nuclear reactors for low neutron absorption and

better heat transfer capabì1ity. Shel l type structures continue to

be a main structural component in these industries.

In addition to an accurate stress analysis, the stabiìity

of shells as a function of the radius to thickness ratio is also an

'important design consideration. This stabi'l ity problem may arise

from a mechanicaì ìoading, or from a thermal loading from the harsh

environment many of these shel ls must endure.

The use of iong thin-walled tubes or pipes is corrnon in

engineerìng practise. Many of these tubes (or pipes) have to be held

rigidly at the ends. These tubes are vulnerable to bucklìng due to

the excess compressive longitudinaì and circumferential stresses

caused by the rising environmental tsnperature.

1.2 Scope of Thesis

This thesis deals with the anaìysis and subsequent experi-

mental verification of the thermal buckling of thin-walled tubes

rigidly held at both ends to a bulky attachment which acts as a heat

sink, which in turn causes a non-uniform tsnperature profile along

the tube iength with the peak at the half-length.



2.

The primary obiectives of this thesis can be outlined as

fol I ows :

(f) To investigate the stability of thin-walled tubes that

have higher l ength-to- radi us and iower radi us-to-thi ckness ratios than

tfp se tested by previous researchers.

(2) To compare the vcsults derived from previous works to

detemíne if the conclusions reached by other authors can be extended to

the present work.

(3) To investigate if any conclusions drawn fvom the present

work can be used to establish certain desìgn criteria for thermaì1y

loaded shel I s.

(4) To recommend further studies necessary for a more compl ete

understanding of the prob lem.

Chapter II revìews the related Iiterature published on the

thermal buckling of shells, Chapter III of this thesis reviews the

basic equations of cylindrical sheì1 stabiiity prcbìems and discusses

some of the techiques avai lable to solve these equations. Chapter IV

describes the testing setuo used in this work, and Chapter V discusses

the results of that testing. The results are compared to other

researcher's data and to a numerjcal solution of the prnblem. Chapter VI

ends the thesis with the conclusions drawn from this work.
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CHAPTER II

Literature RevÍ ew

The equations for the stability of cyìindrical shells have

been made available for many years. An infinite series solution

involving trigonometric functions was assumed by Lorenz in l9ll

11 ]* for solving the problem of a cylinder under uniform axial

compression. Similar methods of solution were used by Southwell ìn

t9l3 [2] and von Mises in l9l4 [3] for cyl inders under uniform

lateral pressure, and by f.lü gge in 1932 [4] for combined loading and

bendi ng .

In 1933 Donnell [5] proposed the use of a simpìer form of

stability equations in his solution for the buckììng of cyìinders

subject to torsion. For simply supported cylinders,a solution was

obtained by the use of an infinite trigonometric series.However,the

problem of a cylinder with cìamped ends could not be solved in this

manner because of the divergence of the series soìution. Singer [6]

later showed that thìs result was due to the fact that Donnell's

equation was anequilibrium equation and could not be used with the

Galerkin method. Batdorf [7] proposed a modified equilibrium equation

which coujd be used with the Galerkin method and proceeded to solve

the probiem of clamped shells under axial l8l, shear [9]'and combined

axial and shear []01 loadings.

The first treatment of the thermal stability problem of

----------TÑum6:er in brackets denote the reference number cited in
this thesis.



shells was undertaken by Hoff [1 1] in his analysis of cylindrical 
4

sheìls subjected to hoop stresses varying in the axial direction.

The three main types of thermal conditions that couid cause a shell

to buckie are: l) a temperature gradient through the sheìl thickness,

2) a circumferential temperature gradient, and 3) an axial temperature

gradient. The first condition was shown to be very unlikely to cause

buckling [12]. The second condition has been ìnvestigated by several

authors. Hoff, Chao & Madsen [13] and Hill [14] investigated the

problem of buckling due to heating aìong a thin axial strip, whiie

Ross, Mayers & Jaworski [l 5] extended their methods to include wide

axial bondso and Frum and Baruch [16] examined the buckling effect

of heating along two opposite axial generators. It r^ras found that

buckling can easily be induced as a result of circumferential tempera-

ture gradients, even if the latter are fair'ly smalì.

The third temperature condition was first examined by Hoff

[1 1] who concluded that simply supported cylinders were not ìikely

to fail under uniform heating conditions. This work was extended by

Anderson [.l7] to include both s impty supported and clamped cylinders

under combinations of axial pressure and uniform heating, using ihe

Galerkin method along with Batdorf's modified equilibrium equation.

Zuk [18] also presented a solution for the uniformly heated cìamped

shell using Donnell's equatÍon with the Galerkin methodi however,this

method was found to be in error,as discussed previously. An experi-

mental investigation of the clamped cylinder subject to unifonn

heating was presented by Ross, Hoff & ttorton ['19]. This problem has

also been extended to investigate the non-linear aspects of the

stability suggested by Hoff [20] and Ross [2i] using a column-spring
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analogy. These papers were an extension of the work done by Tsein

1227, who used this anal.ogy to obtain a better understanding of some

of the parameters involved in shel l buckling.

In recent years much of the work in instability problems has

been concerned with numerjcal techniques in order that solutions may

be obtained for more complicated structures and loadings. The two

principal methods that have been used widely are the finite difference

method and the finite element method,

The finite element method was first introduced to analyse

shell buckling by assuming the sheìl to be made of a series of

truncated cones [23]. This method was later abandoned due to compu-

tational difficulties, and the principaì approach recently has been

to use curved shell elements and to approximate the. dispìacement com-

ponents by poìynomials. This method is used in references 1247, 1257.

The finite difference technique has been used by many

investigators to approximate shel l buckling problems. The princìpa1

effort in recent years has been the development of computer programs

based on the finite difference approximation to the variational

problen. Some exampl es are given in references l26J 1277. An

excellent comparison of the finite element and finite difference

method is given by Bushnell [28].
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CHAPTIR III
THEORETICAL BACKGROUND

3..l The Differential Equatìons of Br.rc k1 ing

The differential equations of a continuous system may be

obtained either by considering the equilibrium of a deformed elenent,

or by utilizing the principìe of stationary potential ener.qy and the

cal cul us of variations,

For fairly simpie systems the former method is usual ly the

easiest and the most direct. For more compl icated systens the latter

method may be a more direct procedure for obtaining the soìutions.

The consideration of equilìbrium of a deformed eiement is

explained in detail in the neit section, for both smaìl and large

deflection theories. The stationary potential energy method is then

explained as presented in detail in Appendix A.

3.1.ì Equil ibrium Method

The differential equation which is most widely used in

cylindrical buckling problems is the Donneì1 equation for small

deflections. This can be derived as follows:
' Using the notation given in figure I; the equìlibnium

equations of in-plane forces in the x, and y directions are:

âN âN

-ã+ -#= o

AN âN;1..f = o

(t )

(2)



where N*, \ = the in-p'lane forces in the x and y directions

Nyr' \v = the in-Plane shear forces

For the z directìon, taking the equil ibrium:

After simplifying, negìecting terms of higher order, and using

equations (l) and (2) the z components of the in-plane forces are:

*- ú;;r 2N,y # - U(tf . i)a* ov (3)
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The shear forces must be added to this for the equilÍbrium of the z

direction. These forces are:

¡rhere Q* and Q, = the normaì shear forces

taking moments about the x axis yieìds

(,*. l")o- * (4)

Ë - þ - å.-:! dx - Q, - p o')o*' = o

where I'L' My' H", = the shelì bending moments

After simpl ifying one gets

=&_=ux_o =o.ay âx 'y (5)



o

Similariìy for the x direction

al',l . ôi'l
___å _ vx _ n.= 0âx åy "x

Inserting Q* and Q, from equations (5) and (6) into equation (4)

total equilibrium in the z direction becomes:

& ,í'*. '\ - r Âfu - aru a2w

F - t,ay ' ;l' n* F' '**y 6

* rr(*- &r)= o

(6)

the

(7)

The moment curvature relationships for the cyìinder will be derived

from:

idl2' 14, = )0, a*zdz

(cl2
ti, = )¿¡2 "yzdz

rdl2
M*y =)¿lz ''ry'd'

The shel l displacements u, v are separated

(resulting only from the in-plane forces N)

(resuìting onìy from the moments M)

(8)

(e)

. (ro)

into middle surface straì ns

and bending stra i ns
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u=uo+ub

v=vo+vb

tx=txo*t*b

er=Êyo+êJb

v =v *vtxy txyo 'xyb

The bendÍng strains in the above expressìons can be expressed

terms of displacements as folìowing:

âub

'xb âx

.t . âub âvb,\yÞ=ay_*F

Since during bending plane sections are assumed to

have:

],,,,

l
in

I

1.'"

- aub

"vb 
- ãF

remain pl ane we

âWub=-zãt

],,,,
âwvb=-tãi

so the equations for total strain become

2â t¡,tx= - zi-7
dx I



lt.
-2tr= - t#

rxy = - ufu

Now, using the well-known stress-strain equations
this becomes

- Ez /a2w .uã2w\o"b=-ffi7.--zt

_E Jrzy*u â2w1oiu = -.'-]\;Z' ;7)

rxyb=-fr{#)

Substituting this into equations (8), (9), and (.l0) gives:

'"=-o(*-'#)

', =-'(,+- *4

m*, = orr-u)(#J

where D = Edh2(l-u2)

The niddle surface strains for the element are:

I

f,'0,
I

J

for pl ane stress

]',,

(16)

(r7)

(18)



âuo ì /aw\ 2

'xo = -ãl-ztr*J

- ='uo.t/-?u\2-n'yo ay ' z [av/ R

. - 3'o âuo â* a*
lxyo - ãF'ã;-- ãÏÐ

For smal1 deflections these can be simplified to:

- âuo
exo - -ãf

âVo 
w-yo åy R

- äuo ðuo
r4¡¡s - l[' -ãï

N] = oxod =,î{* -' + -, oJ

*J=oroo=trfu.'+-o-]

Nly ="ryod = #ï4[+. +_]

Using the stress-strain.relationships equations (15) the following

middle surface force-defl ecti on equations are obtained:

12.

(r e)

(20)

(2r )

(2?)

(23)

(24)

(25)

(26)

(27)
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These forces are due to loads present due to buckling. Setting the

pre-buckl ing forces equal to:

N =PXX

\= I
N =Sxy xy

and now introducing the secondary buckling forces,equations (25) to

(27),the total forces are:

*-= *;(-i -" + -u q*) * r*

.,+-Ë) .0,-,=trí+

(28)

(2s)

( 30)*-,=ffiì(*.*J.'-,

Inserting the appropriate moment-defl ection relationships in equations

(16) to (18) and middle surface force-defl ecti on equations (28) to

(30) into the three equilibrium equations in (l), (2) and (7) the

equations of equilibrium for a cylindrical shell using small deflec-

tion theory become:

*.t++.cPæ **=' (3t)



þ.+7.u+"+ *åi='

14.

(32)

-'G+.,,fu.#).,*l

+2(N1*r*s"rlfu=o

. '¡4 -{*} .'J(å.#

The initial curvature and primary middìe surface forces in equation

(33) are much larger than the curvatures due to bending' and the

secondary middle surface forces. This makes it possìble to re-aruange

equation (33) to the form:

( 33)

( 34)

Because all the secondary middle surface forces are not negligible in

linear shell theory the three equilibrium equations (31), (32) and (3a)

are coupled and must be solved simultaneousìy. It is often more

convenient to combine the threequations to obtain a single equation

in w. If equatìon (32) is operated on by a2laxay, and equation (31 )

by ¿2 /a*2 , und e2l ay? , one obtains three equations which may be reduced

to:

-, (* .,þV.$ä)-,*4* ,,,*r

- +iF(+-r* tJ * 
' '*,fu = o

va,=Ë* * *t

PJ
R

(3s)
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"^4-4^4where V*=oI+29-a¿-
ax' ax-ay- äy'

Simi larily if equation (31 ) is operated on by azlax ay,

and equation (32) by ¿2/ax2 and a? / ay2 one obtains three equations

which may be reduced to the fonn:

'x=#,#.å*
Equation (3a) is now operated on by v4, yielding:

r% - ro(r*.s. t, #* z s*v &,*,v)*

*,*t-r,¡f'- # *u oo 
å* - å 

*'') = o

(36)

( 37)

operating on equation (35) by â/ax, and equation (36) by a/ay' and

substitutjng the results in equation (¡7) one obtains:

Dv'" - v4f-s.'r#+ 2 sxy#).Ës=' (38)

This equation is known as the Donnell small deflection equation for

shetl buckìing. As was shown by Batdorf [7] the use of equation (38)

implies certain boundary conditions on the solution. These are' for

simply supported edges :



For ci amped edges the Donnell small deflection equation (38) should

not be used. This will be discussed in more depth in section

j.Z.g. The more realistic solution to the buckling problems and

aìl post buckiing analysìs should involve the ìarge deflection theory.

The equilíbrium equations (l)' (2) and (7) remai n vaiid since no

assumptions were made to limit these to small displacements. These

are repeated here:

. = +=, = 4 = o (x = constant)
Ax- ã-Y

, = 4=, = 4 = o (y = constanr)
ày¿ ax'

âN âNX. XY=n
ay âx

16.

(3e)

(40)

AN AN

#.#=o

tfo-
-.2 -

itx

(7). *r(å.

(1)

(2)

,#.#***4*2N"y#

*rr4 = '

Transverse deflections are not small with respect to the surface

thickness, but they are stilI smaìl compared to the shell dìrnensions

so the moment deflection equations (16), (17) and (lB) are still
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valid. Equation (7) may then be ttritten as:

- {s .,#æ. 
#*). 

*-{*,**,#

. *r(å. &r = o

The strain-displacement equations can no ìonger be simplified' so

equations (19) to (2.l ) must be used in their entìrety. Incìudìng

constant ther¡nal straìn in the middle surface strain equations:

'"o = t (N*- urur) + oT

"ro=*(Nr-uN*)+*T

r*ro = ¡å (l + u)r,lxy

(41)

(42)

( 43)

(44)

Now, to obtain the compatibìiity equation, equation (19) is

differentiated twice with respect to y, and also djfferentìal equation

(20) twice with respäct to x and,as for equation (21 ), successively

with respect to x and y to obtain:

2 2 ^2 ^2

þ.# :-ir"=(#J *# ** (45)

Introducing the stress function ç defined by:



^2, . -2. ^2. 
18'

N =dd.9 N =d$ ¡ =-dfrþ' (46)* ày' ! àr' xY

The straîn equations. (42), (43) and (44) becone:

',o=!(&-u4\**, (47)t\ryt àx¿)

".={*-r,*)+cT
(48)

(4e)v...:- = -2(l+u) â2g-'{yo ---E- axay

Using the relationships in equations (46) to (49) the equilibrium

equation (41) and compatibility equation (45) may be written as:

,4r . ^ ,4r a4" dra2,¡ a2r ^ ,2* ,2* ,2*
,]' , ;7r7' ;F 

- DL#;F - . ãñr axay ' #

(å.fr' (so)

*.fu.#='K#-i **- åff-'*" (5r)

. These two equations are the differentiai equations for

shell buckling on large deflection theory often referred to as the

Karman-Donnel I equations. They are, in generaì, very difficuìt to

solve and much effort has gone into developing their solutions for

di fferent buckl i ng problems.
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Note thAt the constant teflperature increase term is not

pr"esent in the equilibr.iunr equation dinectly. It Ìs introduced through

the equatlons 0f the stress function,

3.1 .2 VarÍational lvlethods

The differential equations derived from the energy concept

arebased on the stationary potential energy theorem which states: An

elastic structur€ is in equiìibrium if no change takes place in the

total potentiaì energy of the system when its displacement is

changed by a smalì arbitrary amount.

This can be expressed mathematically as:.

(52)6(u+V)=0
where U = the elastic strain energy

V = the potential energy of external loads

The strain energy of a thin elastic cylinder is given as [29]:

[¡U1r.," 
* .ro)2 * ztr-,)(å ,*f,o - .*o.rJ I .

'f[+.#)' = 2 (,-u)(# :fÐl (53)

A variational operation is taken on u, v, and w using equa-

tion (53), and the three equations of equilibrium can be derived.

This technique was used by Sunakawa [30] in a more general case

where the loading included axìal1y symmetri c tenperature increase

with a temperature gradient through the walI thickness, and external

pressure. The equations derived reduce identicalty to equations (50),
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and (51 ) of this paper for the case with no temperature gradìent

through the wall and no externai appiied pressure. It should be

noted thât Sunakawa's equation for equilibrium has two extra terms

due to his using an extra teYm in his s tra i n-di spl acement functions.

This technique is described in more detail in Appendix

A.

3.2 Theoretical Methods of Solution

The differential equations for stability problems are

generally in very complex fonns and exact solutions are impractical

for most important cases. For this reason there has been a great

deal of effort put into finding approximate solutions. These methods

must be reasonably simple to use, yet they must be capable of

yielding results with good accuracy.

3.2.1 The Direct Substitution Method

For a few simple buckling problems such as a simply-

supported, axial ly loaded cylinder, the Donnell equation for small

deflections can be solved by the use of an assumed displacement field

which is generalìy in a series consisting of trigonometrìc functions'

This method is effective for simple cases, but for more

complicated loads or cìamped boundary condi ti ons , these assumed

disptacement fields cannot be used. For these cases ¡here the exact

form of the solution is not known,the following methods are considered

to be better as they allow the solution to be known to a certain fixed

accuracy according to the requirement.
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3.2.2 The Rayìeigh-Ritz Method

The rigorous application of the statìonary potential energy

theorem to more complicated structures has two main dìsadvantages.

First, the variationai calculus involved is much too complex to be

used for routine problem solving, and secondly only the governing

differentia'l equations are obtained, and not their solution. To

avoid these problems an approximate technique known as the Rayleigh-

Ritz technique is used to reduce the problem from an infinite to a

finite number of degrees of freedom. This is done by assumìng an

apprcpriate shape for the deflection of the system.

The deflection can be expressed in the form:

w (x,y,zF a.' f., (x'v,z) * uz f z(x,y,z) + ... ...

an fn (x,v,z) (54)

where an = arbitrarJ constants

fn = assumed deflection shape function

The deflection functions should satisfy the geometric

boundary conditions but not necessarily the natural ones. The

theorem of Stationary Potential Energy can then be stated:

o(u + v) = ¿(-u+v)oat I {!1Ùia2 + ... ...

qalu'n - o (ss)



This is true providing the total

as a function of w(x,y,z) only.

equation (55) becomes:

22.

potential energy can be expressed

Because ôi, ô2, ... ôn are arbi trary

(s6)â(u+v) - n a(u+v) - q, ... 3tu*ul = oãul v' ðuz ' 
n

Thus, using the above method a system of n homogeneous

equations with n unknowns is set up. By settìng the determinant of all

the coefficients equal to zero a characteristic equation is set up

with the smallest resulting eigenvalue becoming the critical load of

the system.

This method, although very useful for many problems, is not

used often to solve the probiem of shel l buckling involvìng finite

deflections since the expression for strain ehergy given in equation

(A-8) is very complìcated and tedious to obtain.

3.2.3 The Galerkin Method

The Galerkin method is, again, an approximate method of

analysis which reduces the deflection function from an infinite to a

finite number of degrees of freedom. The main distinction between

the Rayleigh-Ritz method and the Galerkin method is that the former

begins with an expression for total potential energy' while the latter

begins with an equation of equilibriun.

The engineering formuìation of the Galerkin method is

derived using the principle of virtual displacements, with the

equation of equilibrium expressed as a generaìized force. The
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Galerkin integrals have the dimensions of work and the nethod is

equivalent to the Rayleigh-Ritz method. In the nathematìcal fomula-

tion of the method [31 ] the Galerkin integrals are obtaìned by

'imposing an orthogonality condition on the error function obtained by

substituting the assumed shape function into the differential equation.

This formulation is not connected to the variational problem and is not,

in general , equivalent to the Rayleigh-Ritz method.

In order for the Galerkin method to be equivalent to the

Rayìeigh-Ritz method and thus yield an upper bound solution to the

buckling problem there are two conditions which must be satisfied.

The method must be appìied to the equilibrium equation of the problem

that resulted from the variation of the total potential energy, and

this must be in the form of a generaìized force or moment.

The Galerkin method is appìied as follows:

l,lhen the variational method is used to minimize the total

potential energy of the system the foìlowing fo rm of equation is

obtai ned:

ff/Ofwl dw dxdydz + B.c. = o (s7)

where Q = the differential operator of the equilÌbrium equation

B.C. = the natural boundary conditions

w = the dependent dispìacement variabie.

An approximate displacement function is assumed which

satisfies the geometri c and natural boundary conditions, This can
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usuaìly be acconplished by assuming a power series and evaluating as

many arbitrary constants as possible from the boundary cond.itions.

n
o = E a. g. (x,y,z)

i=l I I

where o = the total approximate dispìacement function

n = the number of terms

ai= the arbitrary constant

9i (x,V'z)= the approximate displacement functions

Since these aìl satisfy the boundary conditions equation

57 becomes:

iif a(o) ôo dxdydz = o

Since ou = åå' uu., * ått ôu2 ....

n
= f 9;(x,V,z) oa,
i=l I

So equation (58) becomes:

(58)

JfJ qrtl.l- 9¡ (x,v,z) ôai dxdydz = o
i =ì |

Since the n functions gi used are assumed to be independent
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of each other each, and every term must equal zero. Finally,since

the choice of a, is arbitrary

J/f q(o) s., (x'v'z) dxdvdz = o (se)

In order to use this method to solve a differential equation

the equation must have only one independent variable and is not

coupled such as the equiììbrium equations for buckìing. For this

reason the Donnel l equation cannot be used with this method as it is

not the equilibrium equation derived from the variation of total

potential energy and jt leads to a divergent trigonometric series.

The equation for radial equil ibrium (equation 34) shouid be used

except that this equation has a term coupi ing it to the equi librium

requirement ìn the x, and y direction. Batdorf [7] has modified

this coupling term to make theequation adaptable to the Galerkin

techn ique.

By introducing a stress function r¡,equaticin (33) can be

rev',r i tten as :

-ovaw +(rx 4* r, S- rs-y #)- å(',. 
"&_r= 

0 (60)

The compatibility equation for small deflection theory is:

oau*å*=t (61)
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-2.
Solving equation (61 ) for ï and substituting it ìnto equation (60)

ax'
yieids:

-Dv4w + 
:å 

t 
*-('-* . r, #- ^-, #)

P*Rx=o G2)

This equation is stilì in a form that, if solved by means

of the Galerkìn method,is still an upper bound solution to the problem

for buckling, Indeed,this has been done for several types of buckling

probì ems .

For a cylinder Batdorf [7] has proposed the following

approximate deflection funct'ions :

w=sinSi a-sinmlx
^ m=l m L

for simply supported ends, and

]

w = sin i1i, cos{{'-ì) .f}- .o'{t'+rtri}

for clamped ends.

Anderson [17] used the above equations to solve the buckìing of a

cyìinder under combinations of axial pressure and heating. The thermal

stresses (circumferential only) were expanded into a Fourier series
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which was substituted into equation (62) and solved for a Fourier

series circumferentiai stress component.

It is not possible to solve the ìarge deflection buckl .ing

equation (50) by this method as each equation of equi librium is coupled

to the other equations and cannot be easi ly uncoupled as îs the case

with the smaij deflection equation.

3.3 Numerical Methods of Solution

3.3.1 Successive Approximati on

it is very difficult to obtain a solution for the non-

f inear large deflection buckling equations (S0) and (Sl). Sunakawa

[30] has used the method of successive approximations to obtain their
solution. In this method the equilibrium equation (S0) is integrated

satisfying the boundary conditions on radial displacements and slopes,

aiìowìng the deformation mode to be expressed through the unknown

axial stress. The compatability equation (5i) is then solved subject

to the in-plane boundary conditions, and substituting the deformation

expression obtained from the equilibrium equation..

The result from this is a trànscendental equation relating

the axial stress to the temperature rise. This cannot be solved

explicitìy and so an iterative technique such as the Wegste.in or

Nelvton-Raphson method nust be used. 0nce the axial stress is known

for a particular temperature rise the solution to the equilibrium

equation may be used to obtain the defonnation mode.

The equations used in this method are extremely long and
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cumbersome and the deriyation is given in Appendix B.

In his solution Sunakawa assumed the temperature distri-
bution to be uniform around the circumference of the cylinder and

symmetri c with respect to the,cylinder half iength in the axial

direction, in the fo rm of:

T =r., r., *r (#) (i= o, 2, 4, ...... even)

The symnetri c temperature profìle made this method a useful

way of anaiysing the case presented in this thesis. In addition, the

programming required for this technique is much simpler than what

would be required for a finite element, or finite di fference program

to solve this problem. A listing of this program and some typical

output is given in Appendix C.

3.3.2 Finite Di fference and Finite Element Methods

The finite di fference and finite element methods are techniques

for discretizing the continuous system and replacing the partial

differential equations governing the continuum by a series of

algebraic equatÍons. These equations may then be soìved by a digitat

c0mputer.

For simpìe cases the equilibrium equation can be solved by

apptying the finite di fference method directìy. A set of simultaneous,

homogenous aìgebraic equations is obtained with the characteristic

value on the diagonaì. Setting the determinant of these equations

equal to zero yields the characteristìc equation, and the eigenvalues
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for the problem. This may be done for the Donnell snalI deflection

buckìing equation (38) but the expressÌon for the VB term is very

tedious.

A more general and common technique is to use a variational

approach for employîng the finite eìement or fínite difference methods.

The second variation of total potential energy for a shell

of resolution along arc-length A-B is given as [29] ís:

(t.t T [c] {e} + À {slT [¡ro] {s} r ds (64)

0

0

B

le2u=l, ,A

where {e} = fe , e
ü

is the strain vector,

{ß} = [Ê , ß

is the rotation vector

rruot =lìro

lo
I

lo
L

T ¡K 'Kú0 úv

ßlT
z

,2c lT00 rr0

001
Nzot 

l

o (nr 
o*Nzo)_l

is the prestress matrix, and matrix [c] is a matrix of coefficients

relating stress and moment resultants to strains and changes in

curvature, with the nonzero coefficients:

"11 
= 

"22 
g_r2 

"12 
= 

"21 
= -ucì l
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- - (l-u) Ed.¡¡=ff cOO=cUU=D

cUU = 2(l-u)D cOU = cUO = uD

The assumptions implied in equation (64) are:

(l) That the prestress matrix lN I is known and linearly

dependent on the eigenvalue parameter r (i.e. the prebuckling

rotations are negl igible).

(2) That the material is linearly eiastic so that the

stress matrix is simply related to the strain matrix by the relation-

shi p

tsÌ = [c] te]

The strain vector used here is in a different fonn from

those given in section 3.1. This is due to the fact that the relation-

ships used in this section are valid for any shell of revolution while

those of section 3.1 are derived for a cylindrical shell. For this

section the reader is referred to the more generaì coordinate gystem

of Fig. (lB).

It should also be noted that the straín displacement

relationships given in equations (65) assume an axi symmetri c loading

so that the incremental dispìacements vary hannonically with the

circumferential shel l coordinate 0.
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l.'lith this identical basis the fin'ite di fference and finite

element methods can be formulated. The differences between the two

methods 1ie mainiy in the selection of the generalized displacement

components. In the finite element method these components are

selected to be located at the nodal points of the elements, whereas

in the finite djfference method the dispìacement components ui' vi'

I av
F^ âs

U

!
re
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!'r- do not necessarily occur at a given node. With the finite differ-
ence nethod the rotation ßû is not a nodai point unknown and the

displacement poìynomiaì for w is not necessarily restricted to the

domain of the el ement,

Two common interpolation functions used in sheil analys.is

are, for finite element analysis:

u=Yl+Y2s

v=T3+y4s

w-y5 ï6s+y7s2+.¡rs3

and finite difference analysi s

u=Tl+Yzs

u=T3+y4s

w=y5 V5s+yrs2

The elements used with these dispìacement functions are

shown in Fi g. 2

It shouìd be noted that for finite difference analysis the

interpolation functions are related, simply, to the usual di fference



au - ui+i -'j-r- ., av - vi*l -vi-r- -as---N- -'z ãî- u -'q

],,,,

In order to obtain the stationary value of the second

variation of total potential energy (equation (64) ) it must be

expressed in tenns of the nodal point variables {q}.

Using the interpolation functions the nodal variabies can

be expressed as:

{q} = [A] {y} (68)

'is the generalized displacement vector,

is a matrix defined by the interpolation functions

chosen (as in equation (66) ),

is the vector of the interpolation coefficients chosen.

The exact form of the vectors and matrix of equation (68)

wiil depend on the nature of the interpolation functions chosen. For

example, using the finite element model in Fig. 2, these become:

33.

fonnul i by the relationships:

* 
= 

þ '".,.,
2wt + wt_t) = 2 \l

where tC]

tAl

{Yl

â!{ äw

as i' asrai ={u¡ u.¡+.¡ , vi, vi+l , wi ' wi+ì ' i+r )
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tAl =

{r.} = {lt, 9'2, 9,3, L4, LS, 9'6' 9.7' ,.g}

Since the derivatives of the generalized displacements are

easi ly obtained in tenns of the .e, coefficients, equations (OS) can

be expressed as:

{e} = [F] tv]

tßÌ = [G] tY]

where the matrices [F] and [G] give the relationship between the

strain (and rotation) vector to the interpolation functions. These

will vary according to the interpoìation function used. Inverting

equation 68 becomes:

100000
1e0000
001000
00.ll,00
000010
0000i!,
00000t
000001

00
00
00
00
00
tz r,3

00
2t 3e.2

{y} = [A]-l {q}= [B] {ql



35.
Substituting this giyes the element strains as a function of the nodal ,

or general ized displacement vector.

{e} = lFl lBl {qi

tß] = [c] [a] tql

In the finite difference solution the above formulations,

aìthough valid, are seldom used. The finite difference formulations

of equations (67) express the displacement derivatives directìy in

terms of the nodal displacements (i.e. the generalized displacements).

Thus by substituting these reiationships into equations (65) the

element strains can be expressed as a function of the generaìized

di spl acement vector.

The variation of potentiaì energy equation has now become:

talr trlT lcl tFl [e] as +

],,,,

tr u'u = ! ,or' fr

^foutølr 
tclT tNol tcl [B] ds rq] ( 70)

(71)u2u = {q}T [r"] *r [ne] tq]
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where lK"l = f ürlT lnl lcl tFl lBl) as

o

,9.

[ne] = J- (tBlT tclT tNol lel [B]) ds
o

Thus using an appropriate intégration technique,the

element stiffness and geometric matrices may be determined. These

are then assembled into gìobaì stiffness and geometric matrices by

using:

n+l n
q =q
2i-1 2i

where the subscript indicates the component number in the element dis-

placement vectcr and the superscript indicates the element number. By

appl.ying the appropriate boundary conditions the critical value of the

eigenvaìue À is found to satisfy:

lKl {q} + rlcl tq} = 0 (72)

This is the general eigenvalue equation and there are many standard

techniques .avaìlable for soiving it.
As mentioned previousiy the expression for the element

stiffness and geometri c matrices involves an integration over the

element. In the finite di fference solution the integrand in equation

(71 ) is evaluated at only one point in the eiernent and the total

energy obtained by multiplying this vaìue by the element iength !,. The
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element centroid properties that are necessary to obtain the stiffness

and geometrlc rnatri ces could be provided as the input to the computa-

tion.

For the flnite element method the integration of equation

(71 ) is usually obtained by a Gaussian quadrature numerical integra-

tion. The relevant nodal information must be prov.ided to the program

with an appropriate interpolation subroutine used to obtain the neces-

sary values at the Gaussian integration points. The Gaussian

integration may be a very time consuming and expensive computer

operation.

For the solution to a buckling probìem the prestress

matrix [NoJ must be known. This can be deteymined analyticaiiy or

from a linear finite eiement analysis for a unit load (or temperature).

tlith specified the unit prestressing values known,the eigenvalue

problem can then be solved for the critical load (or temperature).
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CHAPTER IV

Experimenta l Work

4.i Experimental Apparatus. 
.

The test setup is shown in the photograph Fig. 3. Schematics

of the setup and its accessories are shown ln Figs.4 and 5.

The tubular specimen lvas heated by radiation from an inter-

nai stainless steel resistance heater powered by a 20 K.l,l. D-C

Sorensen power suppìy. This unit was controlled by a Paramec process

controller (Fig. 6) which compared the feedback signal from a thermo-

couple on the specimen t:o " desired têmperature ramp defined by a

Data Trak prograrnmer. All temperatures were measured continuously by

chromel-alumel thermocouples cemented to the outside surface of the

tube. The thermocouple readings were input to an Acromag millivoìt

transmitter which converted the millivolt values into current to drive

a Kyowa model RMV - 540 A twelve-pen recorder, These temperatures lvere

also checked by a hand held Atkins Technical temperature probe.

The axial load of the cylinder was transmitted through a

carefully controlling floating grip shown in detail in Fig. 7. This

allowed the load to apply on an Interface model l3l0 - AF, 10000

pound load cell, while preventing unwanted displacements. The output

from the loadcelì was monitored by a Vishay model P-3504 strain

indicator whose output was in turn,fed to a Hewlett Packard 70464,

x-y recorder as the y input. The x input for this recorder was the

mid-span tube temperature read by a Chromel-Alumel then¡.ocoup1e. In
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this way a l oad* tenpe rature graph êould be obtained for each test.

The mid-span radìaì displacement of the tube was measured

for a number of specimens. An opticai-fibre d'isplacement probe known

as the model KD-454 Fotonic Sensor manufactured by the Mechanicaì

Technology Inc. as shown in Fig.8, was used to measure this displace-

ment without contacting the buck'ling specimen. The output from this

sensor v'ras fed to a Hewlett-Packard model 7035 B x-y recorder as the

y-input channel . Again the midspan cylinder temperature was used as

the x input channel so that a plot of displacement verses temperature

was obtained for each test.

The natural convection of the heat present around the tube

specimen tended to shift the heat upward along the cylinder, so it
!'ras necessary to employ a bleed--through system of gas inside the tube

to regain a synrnetri cal temperature profile about the mid-span of the

specimen, A slow air flow down the cylinder between its inner wa'Il

and the heater was introduced by using a needle valve attached to a

compressed air suppìy. This allowed the flow to be varied as needed.

The air flow was too smal'l to cause extra internal pressure on the

tube.

4.2 Test Specimens

The test specimens used in this investigation were made of

aluminum aIloy tubing 606i-T6. This was turned on a lathe to the

dimensions given in Fig. 9. The thin wall thickness of the tubes were

obtained by using a mandreì during a deiicate machìning process. The

rônge of wall thickness thus obtained varied from .009 to .015 inch.

Tube thickness t¡ras measured at 9 points in even spaces and the average
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value was used as the nominal specïmen thickness.

No attempt was made to deternine the eccentricities present

in the cylinders, aìthough any specimens with visibie flaws were

rejected. A typical specimen is shown in Fig. 10.

The physical properties of the tub.ingr such as young's

modulus, and the coefficient of I inear thermal expansion, were obtained

from the manufacturer's material specifications. These vaiues are:

E = i0.0 x ]06 psi

c¿ = 13.50 x 10-6 inTin .F

oyield = 40.5 ksi
oul timate = 46.5 ksi

All values were assumed to be invariant with respect to temperature and

direction when used in the anaìysis of the tests. All of the buckling

occumed at ternperatures less than 392"F. The elastic analysis was not

valid in the post-buckl ing range so the use of this constant thermal

expansion coefficient was considered acceptabìe. The aluminum tubing

used v¡as assumed isotropic in the axial and circumferential directions.

Any anisotropy in the radial direction was considered to be uninportant

due to the very thin wai ls of the specimens.

4.3 Experimental Procedure

After measurements of the tube thickness, length, and radius

were completed, electrical insuìating tape uras wrapped around the inside

of the two ends of the specimen. This was to insure that the resistance

heater would not generate an arc to the specimen during the grìp assembly,

and the strain indicator lvas null ified for the newly instaìied tube specimen.

The upper cross member shown in Fig, 4 was raised from the

supporti.ng coilars by shims inserted while the main bolts were

'loosened. The upper grip assembìy shown in Fig. 4 was threaded onto



41 .

the tube and heater, and to the aiigning pIate. This a.lign.ing pìate

l,üas then tlghtened and the upper heating terminal installed, Finally

the inlet tenninal for the bleed-through of gas was fitted to the top

gri p.

With the specimen now fastened to the testing frame, the

ten themþcoupìes used for obtaining the ternperature profile aìong

the cylinder were attached. At each position where a thermocouple was

to be instaì led (ref, Fig. 9) the surface was carefully cleaned, first
with a degreaser, and then with a sglvent. The thermocouples were then

taped in position so that the tips were pressing firmly against the

surface and the thermocoupìe cement applied. This was allowed to set

overnight and then a layer of silicone was appiied over the cement to

provide extra strength. Curing took place for approx.imately 4 hours.

The tape could then be removed from the thermocouple stations.

All the electronics were allowed to warm up for at least an

hour before the actual test. The shim stock was then removed and the

two fiain bolts were tightened until approximately 70 tbs. of prestress

was applied to the specimen. The zeros for alI the temperature out-

puts were checked and the fibre-optic dispìacement probe was calibrated

and the output set to zero on the x-y recorder.

Prior to the actual test run,the power supply was turned on

and the specimen heated up to about 200oF, or st.ightly less for thinner

cylinders. The specimen was held at this temperature white the bleed-

through valve was adjusted to make the temperature d.istribution aiong

the tube synnetri c about its half length. The temperatures were also

checked with the hand-held temperature probe to insure the thermo-
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couple readings were correct, The power supply was then shut off and

the specinen allowed to cool down to nearìy room temperature.

Actual tests started folìowing the above procedure. The

controller was set to yieìd a temperature ramp slow enough to ensure a

smooth temperature rise in the tube as programmed. The temperature

rise in the tube was also checked by a hand-heìd temperature probe at

various instances during the test.

The test was continued well past the original buckìing

temperature to observe any secondary buckl ing, or load recovery, that

mìght occur.

4.4 Res ul ts

Typical rãw data output from a test areshown in Figs. ll to

l3 for test number 21 . These figures show, respecti ve ly, the load celì

output versus the controlling thermocoupie output' the Fotonic sensor

output versus the controliing thermocouple output and the recorded

output for the remaining 9 thennocouples.

From this raw data plots of other results could be made

for the proper information for all tests. Figs' 14 to 23 show plots

of axial load versus the half-length tube-temperature rise for 5

representative tests. The point of zero temperature rise for al1

specimens was determined by extrapolating the curve gìven by the load cell

output versus the controlling thermocoupl e output back to the poìnt of

zero load. The relevant information derived from the I oad-temperature

pìots for alì of the tests is given in Table I. AI1 temperatures

refer to the temperature at the half-length of the tube. TB anC PB

refer to the temperature and axial load at the first sign of U uckl i.!19-r, _.; \
r,: L;.r:i.::r,.. l'

.\.r'\-
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T, and P, refer to the rnaxinum temperature and axial load ever reached,

and To and Po refer to the iargest dÍscontinuity in the load versus

temperature output.

Figs. 24 to 27 show the radiaì displacement at the half-

length of the tube versus the temperature at the sane level for

several tests. The relevant infonnation for all tests for which these

data were available is given in Table II. Photographs of some typical

buckling deformation patterns are shown in Figs. 28 to 31 . The second-

ary buckling may be observed shown in Fig. 32'

The temperature profiles along the cylinder were plotted

for each test. Some of these profì]es åre shown in Figs. 33 to 36.

These curves illustrate the temperature variations along the tube

'length at different controlled half-length tube temperatures during the

test for each case.
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CHAPTER V

Ðiscussion of Resul ts

5.1 Buckl i.ng Phenomenon

As the tube was heated'it assumed a "barrel" type of shape

due to the high temperature at the central portion of the tube coupled

by the fact that the ends were constrained by the end fixtures, As a

result of these circunferential and axial constraints, circunferential

and axial stresses couìd accumulate in the tube unti l a critical value

was reached, when buckling took place. The clamping effect at the ends

of the cylinder would cause the highest circumferential stresses near

the ends, so it would be expected that buckling would occur near these

locations. This compares to mechanical loading where only the axial

stresses are present and buckiing usually occurs near the middle of the

cylinder.

The results fron these tests indeed showed the buckling

occurred near the ends of the cy1 inder for all but four of the tests.

In all cases the buckling occurred with a violent "snap-through",

accompanied by a large drop in load. In some tests (ref. Fìgs. 17 to

19, and 21 ) the load dropoff occurred in several distinct stages. This

was observed to be the result of an incompìete buckling pattern at the

first snap-through. The succeeding "snap-throughs" were due to the

completion of the buckling pattern around the cylinder. In some of the

tests where bucklìng occurred near'the clamped ends the deformation

took the form of a complete rìng indentation around the specimen

(ref. Fig- 28). This was usually acconpanied by the more conventional

diamond pattern deformation which fonned adjacent to the ring. It
usually occurred along with, or immediately succeeding the originaì ring

buckl ing.
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It l.vas r0entioned that not all the specimens buckled near the

clamped ends. In fact,four tests indicated that buckling occurred nearer

the center of the tube- These were test Nos' 17' 19' 21 , and 22'

These tests were not conducted any dìfferently than the others' and

nothing was observed to make these tests extraordinary in any other

manner. The deformation pattern for these specìmens exhibited a stepped-

tier amangement which was compìete in some specimens and not in others.

Previous tests presented in Ref. [2i] have indicated a

secondary buckling occurrìng after the first snap-through buckling.

Thielemann [32] described this phenomenon as the passing of the

cyìinder to succeeding equil ibrìum states and demonstrated that the

buckling pattern of a secondary buckìing deformation pattern should

have one less wave than the pattern of the preceeding buckling stage.

In this investigation there was no secondary buckl ing of this type

observed. In several cases, though, a specimen which originalìy

buckled near a ci amped end subsequently buckled near the center at a

higher temperature (approximately 700'F). The original buckling

deformation patterns as given in Table I range from 4 to 6 waves '
around the cylinder, whereas this second buckling displacement pattern

was typicaì1y an incomplete step-tier type of bucklìng with n = 6.

This is, of course,not one pattern less than the previous buckling as

predicted by Thìe1emann. This secondary buckling was sometimes tiered

over a ìarger sectjon of the cylinder.

0ther investigators [21], [32] have reported an increasing

capacity for the cylinder to support load after the initial buckling'

Although the same type of secondary buckling was not observed in these

tests, this load recovery was observed between the buckìing stages due
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to the completion of the defornation patterns in tests Nos. t4 and 16,

as can be seen in Figs. t2 and 14.

It is also interesting to note that in several cases the

buckling process did not occur instantaneousìy. In tests Nos. 10,
'13 and l9 a shallow buckling pattern was observed momentarily before

the violent "snap-through,' occurred. This is seen in the Ioad-

temperature graphs for these tests as the load levels out sìightiy
before dropping, (ref. Figs. 16, 18 and 22).

Hoff [20] showed that the "snap-through,' buckìing may be

delayed in some tests until after the maximum load is reached. He

showed the delayed buckiing to be dependent on the stiffness of the

testing machine. This delayed buckììng was observed in two tests.

Specimen numbers 6 and I did not exhibit a ,'s nap-through', buckl .ing

unti l after the maximun load had been reached. This is shown in

Figs. 14 and l5.

5.2 Load Vs Temperature Curves

As mentìoned in section 4.4,plots were made of the axial

load verses the half-length tube temperature for each test, with the

results surmarized in Table I.

In order to compare these results with the theoreticaliy

expected behavior, the successive approximation method of Sunakawa

[30], explained in section 3.3.i, was used. The equations presented

in Appendix B were solved by an iteration method performed on an IBM

3701168 digital electronic computer. The six thermocouple readings on

the upper haìf of the tube were used to represent the syrnrnetrì c

temperature distribution in the computations, By substituting these
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val ues into the equatfons

1=0,2,4,6,8, .l0

for each thennocouple position aiong the half length of the tube, a set

of six equations with six unknowns was set up. Solving these equations

the first six values of Ti were obtained. More values of Tt couid

also have been obtained by ioining the thermocoupìe readings with a

s¡nooth curve and then using more temperature values fron this curve.

This was not done, however, as it seemed that this scheme might not be

a true representation, as the temperature field thus established is

known only to the accuracy of the six thermocouple points. The tempera-

ture coefficients for all the tests were strongly dominated by the

first two or three terms anyway, and so six terms were considered

sufficiently accurate.

The temperature distributiorsshown in Figs. 33 to 36

were established by the six terms used in the successive approximation

method. It is seen that the six terms can represent the actual

temperature in the tube quite well.

An axial load versus half-length tube temperature graph

obtained using this method is given in Fig. 37. The relevant data

for all the computer results and their associated test results are

presented in Table iIL These results are also presented in Figs. 38

and 39 which show the experiméntal loads and temperatures as a percent-

age of the theoretical vaìues plotted against the radi us-to -thi ckness

rati o.

r(")=Tt',."(#)
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An inrnediate observation from these results is that in all
but three cases the experirnentai temperatures were a higher percentage

of the computed values than were the experimental loads. The average

values for the 15 tests were:

Temperatures - 37, 1 percent

Loads - 32,8 percent

In his work on very thin uniformly heated cylinders of

R/d = 300 Ross et al . (Ref. [i9] ) found that the buckling loads were

characteristically low, with an average value on l0 tests of 26 percent

of the classical critical value. The buckiing tsnperatures, however, were

found to be very high' with an average vaiue of 62 percent of the classìcai

critical value. In his discussion Ross attributed this phenomenon to the

nonl inear I oad-tempera ture effect on the pre-buckling deformations, The

axiai generators, which are initialIy straight, become curved due to

thennal expansion in the r¡iddle while being cl arnped at the two ends.

This results in a decreased stiffness in the axial direction and hence

the axial load buìlds up slower than the expected load due to thennal

expansion. Bushnell and Smith [33] discounted thìs expìanation

and attributed this effect to sl ippage of the end conditions. They

used the B0S0R 4 computer program to show that the barrelling effect
was not severe enough to cause a nonlinear 'load versus temperature

(or end shortening) reìation. The work of Hoff et al . [ì9] did .include

an evaluation of the slippage at the ends, however, and this was

shown to be negl igible. Additionally, it was shoum that the load-end



4?.

shortening curves for sone cylinders, eyen though they remained ìinear,
had a significantly lower srope than those for machine tested cyrinders.
This was again due to the barrelìing effect of thermaì ìoading.

Furtherinore, Frum and Baruch 116l pointed out that the use of a ìinear
anaìysis may lead to buckt ing temperatures that are lower than those

obtained from a non-linear anaìysis

At first glance it would seem that the present ì4esults

wouid tend to contradict the results of Ross et a]. l.l9l, as the critical
buckling loads are higher than the criticaì buckìing temperatures.

The specimens used in these tests had threaded end portions that were

much stiffer than the tube section. It was not likely to have

boundary slippage at the ends, as any deformation in the circumferential
direction wouìd have forced the bulkier threaded end to become non-

axisyrmet.ic. This was unìikely as the bending stiffness of this part

was far higher than the stiffness of the tube section. This was also

true for angular rotation at the ends of the specimen.

The lower buckìing temperatures obtained in the present

investigation appear to have verified that the resuits of Ross et aì.

were due to slippage at the clamping assembìies, allowìng the stresses

to redistribute themsel ves and thus delay buckling until a higher

temperature was reached. A croser rook at the test specimen, however

revealed that this was not necessarily the case. The tength -to -radius

ratio for these specimens was Il.l7 while the value for the specimens

of Ross et al.was 9.25. This means that the barreliing effect on these

cylinders should be expected to be less severe than for cyìinders of a

ìower length to radius ratio.
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To. gain a better insight jnto this result,a 'best fitl
linear regresslon waS used to approximate the data, The line obtained

for the temperature data was:

-El;
ix 100 = 2.773 + 4;798x (R/d)
-LlB

with a coefficient of correlation of .620. This means that the linear

fit js quite good and it is an increasing relationship. For this fjt
the data from test No. i2 was not included as it lies too far from the

other data to have any confidence in the correlation. The predìction

interval for a 90 percent confidence coeffìcient is also shown in Fig.39.

hlhi le there is scatter, as expected, the increasing relationship seems

to be proper. This result would seem to agree with the theory that the

barrelìing effect controls the buckling temperatures.

A linear regression analysis was also done for the buckìing

load data of Fig. 38. the best fit equation for thesedata is:

DE

-9 x 100 = -24.343 + .78452x (R/d)
DL
'B

with a coefficient of correlation of .848. The 90 percent prediction

interval curves are again shown with the data. This indicates that

in this range of radius to thickness ratios the data have a strong

increasing ìinearity. This behavior was not expected, as very 1ow

load levels would have been expected due to the barreliing of the

cylinder,causing the axial stiffness to decrease.
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This discrepancy can be explained..by the nature of
cylindrÍcal buckiing. It was shown by Batdorf (Ref. l7l) that the

nondimensionai parameters involved in shelt buckling include one which

represents the shel l geometry, z, and one which represents the load.ing

conditions, K*. For these tests these parameters are:

'= túT
K(i)" = 

":*ótU'"n.". 
ol = pE71z"no)

'2
ox = E"TaE

The data pertaining to the caìculation of these parameters,

and the parameters, are given in Tabìe IV. A plot of the resuits, as

suggested by Batdorf [7] is given .in Fig. 40. This figure shows

that the buckling stress coefficients for these tests lie in the same

region of the two theoretical curves which also enveloped the data

obtained by Ross et aI [ì9]. It seems, then that the results cannot be

observed strictly as a function of the radius to thickness ratio and

axial load. The entire effect of specimen geometry must be aìlowed for
when using the parameter z, and the entire loading effect must be

alìowed for using the buckling stress coefficients Kl ana fl . l.lhen

this is done the resuits show that the stress coefficient for the

temperature effect is consistently higher than the stress coefficient

for the axial load, The resuits also show that, although the buckling

loads in these experiments seemed to be quite high, in fact the

buckling stress coefficients for the loads were quite low, as was expected.
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5.3 Displacement Measurenent

The nt¡merical solution used here also gave the radial dis-
pìacements aìong the cyrinder. These are given aìong with the experi-
mentalìy obtained displacements,in Figs. 24 to 27. In order to compare

the experimental and theoretical dispiacements both values are given

in Table II. These represent the radial dispìacement for a l00oF

temperature ri se.

Fig. 4ì shows the percentage of the experimental disp.lace_

ment to the theoretical dispìacement protted against the radius to
thickness ratio' Although there is a fair amount of scatter present

it can be seen that the general trend indicates that the experimental

value increases as the radi us - to-th i ckness ratio increases.
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CHAPTER VI

Summary of Resu l ts

Thin cylindricai sheljs threaded into rigid end supports

were subjected to axially syÍrnetri c heating until buckiing occurred.

The results of these tests were:

(f) Axial load verses hal f-length tube temperature increase

curves we re obtained for all tests and the prebuckiing, buckling' and

post-buckling phases we re studied.

(2) The buckling for a'l ì cases occurred as a violent "snap-

through" type of buckling. It usuaì1y occurred near the restrained

cyìinder ends.

(3) It was shown that buckling did occur, in some cases,

after the maxinum load had been reached.

(4) ln several cases the buckling occurred in stages, as

the deformation pattern completed itself around the cylinder. A

secondary buckling was observed in several cases.

(5) The buckling temperatuy€s were |ower than those observed

by other researchers, with an average value of 37.1 percent of the

theoreti cal value. The buckling loads, however, were rather higher

than expected, about 32.8 percent of the theoretical value.

In light of the above resuìts the following conclusions may

be drawn:

The thermal buckling of thin-walled tubes was investigated.

The present resuìts derived fiom tests on thin-walled tubes di ffered

from those obtained by previous investigators for cylinders with a higher
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radius-to-thickness ratio, e..g. 300 in reference [2.l] versus 60-g0

in the present investigation. Theie discrepancies lead one to beiieve

that this parameter is an inportant one in determining the effect of
thennaì barrelling on buckl ing. The conclusion drawn by the previous

researchers on cyl inders with large radius-to-thickness ratios cannot

be used here.

In order to detennine a consistent design standard, further

tests should be conducted to fill in the gaps existing in the radius-to-

thickness ratios beyond the range used in the present investigation as

illustrated in Figs. 38 and 39.
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APPENDIT A

Variational Methods for Equîiibrrìum Equations

This appendix describes in detaii the procedure used to

derive the equilibrium equations from variational considerations. As

previously stated the strain energ5/ for a thin elastic shell with no

heating is gi ven by:

'=rl{r.f5[(.,o 
*.ro)2 + z(r-u)(]'lro -'*o 

"ro)]

- o[,#*ff)z * z{r-u){$- 4 
fsrr] a- o,

The potential energy of the aoplied loads is:

where

, = -llI u, u, au - /f, r,(u) u. a,

t{u) = ,u"tu.e tractions over the boundary S,

Bi = body force distribution

(s3)

(A-l )

However in the probìem where onìy thermal loading is considered, the

thermal effect can be included in the strain displacement relation-

ships equations (19), (20) and (21 ). The principle of stationary

potential energy equation (52) then reduces to the form:

ôU=0 (A-2)



where: 
'^'= Lllrî1[('*o * 'ro)z 

* zlr-;¡1.& - '*o "ro)]o* 
o,

ubend = +llrl,X* *Jt *,r'-urrfu #** ] o* o,

The middle surface strain energy term was derived fron the form:

urt = !lfr*..*o * Ny .y6 + Nxy e*roJ dx dv (A-4)

Introducing the therma l strains tve get:

This strain energy is due to bending, and middle surface

strain so:

U=U +u.ms Dend

."o=*(N"-uNr)+aT

"ro=*(Nr-uN")+oT

r = 2( l+u) 
^,xyo td "xy

Solving for the forces N*, N, and N^,

n =Ed=1.,*u.roJ-ffx i_u¿ 
L-xc

(A-3)

(A-5)



*r-fu['ro+r'"oJ-ff

ru", = ffi t*vo

Introducing these in equation (A-4):

'^, 
= {lf¡r["*Í * ,u.*o.ro * .jo] #fl (",.0 + .ro)

* E¿(l-#) r.2*ro dxdy
2(1-v')

Rearrangi ng ,thi s becomes:

,^, = ill 
^ 

¡(.*o+ "re)z 
* z1r-u¡fl-qe- - "*o .oo)J

-ff{"*o+.ro)dxdf

60.

(n-o¡

(A-7)

The bending strain energy will not be affected by the thermaì loading.

Applying the strain-displacement relationships equations (t9),
(20), and (21 ), the strain energy becomes:

',, = illï.- {n#. ffr - }rrffr2 * (#)2)r2 *

Ë rË - , (#. #) - rrþ2-tffr2+ff*{# #.
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år#,#,'* ry'çr?, - ¡,gr',ç,'- Ër#+ (A-s)

] rfu*r2r - å rr#. 3"J . # #rr) - îS{,# * #) *

I rtNir' * t*,rl'i - Ë ) o*,

Applying a variation to the totaì strain energy equation (A-2) becomes ,

after much al gebra

,IIF" ôu + I. **l. t, #*)* r, ôv + to #ry)

* tu #d+ 16 ôw * r, soul* re 3jd. rn #M

- t'o *P* r',*PÌ dxdy = s (A-e)

where:

IO=Ir=0

t., = fof z rr# + St + å,,*J'. rSl2l - o*l - ,r,-ut

r# - å ,*,/'- Ël I



r, = (r-p) f,, { r#. #t

ro = n-u) fo{r#* #*) * ##}

tu = 
fo{zrti*+ ffr 

+ } rrpr' . tau,¡21 - p :

-2(r-u) ç. |rffl'zl)

', = ïf{ir(#. #) . } rrgr' *,#,' ) - Ë r

t t# * ]tprzt * r.t,*u¡"r¡f - #. tU 
)

t, = ft{-, # (#+fft + } rr;u-rt. r#ttr - Ël

-20-u) ##. å#r#,' - Ëåî - l# rr# * #) * ##r)

t, = fo{r# t,# * S) * å,,#,t . ruJ'l - Ë:-

z(r-u)rff #. å #,*,¡'- å *+r# * #) * # u#r 
)

^2 ^2 ^2
ro = 2D fe4* !4 - (t-u) +l' ax' ay' ây'

^2 ^2 ^2
r,o = 2D t#- #- (r-u) {¡

.âlvðwl'a*ayl
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f.,., = +(l"r)D lfu:J

},lith the fo nn of equation (A-9) it is useful to use Green's

theorem to eliminate the derivatives of terms .involving the deita

operator. For two dimensions Green's theorem is:

,-ß+, oo= 
luwdl 

- Jlw * an (A-r 0)

ïhus, by using this formuia,the expression of the variation
of the strain energy becomes an area integraì invoiving only terms with
the delta operator, and not its derivatives, plus a series of line
integraìs over the boundaries. These line integrals specify the natural

and kinematic boundary conditions on the shell that must be satisfied.
These conditions are very important to the ful l understanding of the

problem,but as this appendix is to deal with the deveìopment of the

equilibrium equations,they shalI not be included here. So after
appìying Green's theorem equation (A-.l0) becomes:

LII|+ ôu + Az ôv + A3 owlaxdy . f oo. dr = 0 (A-n)

where:

^, 
= #{, ä,{rr3** #) * X(#,'* r#r' I - Ë:

-(r-u) t#* |tfft'- *o:)* rr-ur b r#- #- ##,l
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A, = -.f 
{r+1r,g.ry, 

-1,,;i,'* r#r' r - är

-(r-u) t#n | çt'r) + (r-u) är,#+ f{l + ##,}

^, 
= - ïF{å rr#* gr * }rrffr' * r#r2r - Ër- å r#

- ] rlilti -z(r+p¡*16¡{ . *.1*: 
- h { z i}rrff . $l

+ | rr;Xî . rryî r - g: - ,r,-"r [#gi. å# t#,)'

- Ë# _ å*î rr#+ fi) * ##,]). b {z s rrff . þ
22

. ] rriXr * (#r)- r - þ - z(r-u)[##. å#,#,'

-ååi rr#* ff) + #',/])| . ,,{*,( *. #
-c-u)p) . #(* #-,',,#)
+2(ì-,)#(#,,)l

AO = a systern of line integrals specifying the boundary

condi tions.



Providing the boundary conditjons are all satisfied;

r
fA4dr=0

Then, because each variation ôu, ôv, and ow is arbi trary ,eq uati on (A-il)
yields:

Al=0,42=0,43=0 (A-12)

The three equations of equiìibrium for the sheil then become,

after some rearrangi ng:

#Ã{, ç itff. },#,', * u(#. å,#,' - Ë, ,

+ o-u) h r# * å+. # #,Ì= '
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+ n-r) * (,#- *- ##, #). u-,, b(,#- *
. ##, #)Ì -",+ ., fu. #,* nff . |tf,r'- *ur

* u(# * å,*,Jt ,, rtt = PP t*. # - þ

These equations can be greatly simplified if several relationships are

used. For reference

.*=r#-|tffl'r

.r=t#-|tryr'-5r

',,= #-#.#tr
The stress functions are:

¡å=*'. ¡tr=u. t'c-=-!¡x
,.r' d' ,rz d' âxaY d

Using the force-strain relationships equations (A-6), the

equil ibrium equations become:

#-Y=o xdìr'n (A-14)



?Î'ly+lNxy=0dv dx
y dirrn
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(A-15)

¡ya¡¡ = ¿¡!l$ tz,t a\ . azu izwdìl.rdw1
--õ -'r' )

3, a2r ^ aZt a2* . ¿Zrt e2*

7 ,7 
- 'æx âxav' ,V;?;7

)
* 9 319 z dir'n (A-ì6)'Rr*2

Equatìon (A-ì6) is identical to the equation (50) for radial equilibrium

derived previously.
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APPENDIX B

Equations of the Successive Approxímation Method

The equations of equi iibrium and compatability as given by

Sunakawa [30] are:

iÌtu 2v d.?u u
dzt ' R2 d.¡2 ' R'

- t2(t-d-v') 
V," 

*..*i+-#r($)'(r+n"ff)1, (B-t )

These equations differ from those of equations (50) and (5ì) in the

foì lowing ways :

l. The loaCs and Cefcn¡ations are axisymmetric sc that all

terms concerning v, and a/ay vanish.

2. A temperature gradient through the wall thickness is

ajlowed, where the temperature terms are defined as:

-tdn-r,in
'=i J_^T(I,Y,zld'z'''=ÈL,zT(t, Y,z)dz'

These temperatures are expressed as a Fourier series:

(a-z ¡

( B-3)

7=Ðf,cosff, (i:0,2,4,...cven),
(B-4 )

,¿--T=IIT,cosff, (j=0,2,4,...evca).

From the s tra i n-deformati on relatíonships of equations ( 19)
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to (2.l ), and the straín equations (47) to (49) the stress

function derivatives can be expressed as*:

+ = ¡5 t - fi + "(". + -1,.' )l - -*i,i 
.

!,t=o|;[(,,*i-,..)- ,o¡f-f|- (B-s)

If the axial stress is assuned to be a constant these

equations can be expressed as:

Ig-:.---f.=-[ ( u,-r !r."\ -',{-,ÍÍ, = -c,.E (l-vr) L\-'' 2-' / - RJ (l-,)

+=l_lx_at_vcs. 
(8-6)

Inserting these into the equì librium equation (B-l) and

neglecting higher order terms of infinitesimats it becomes:

d!-t, ¡aB,p"g,Ë!¡-.4p.,*dt d.ü'

:-ap.nþr"+,r.#(*)J

-'eoþ å r, "* ff +ffi(*) å t, -r; ( *)'fr, *";H rc-, t

., E¿l 3(l -¡,,r)' 4Dß2 d¿Ir

*I-n mß apFãñAix subscripted variables refer to the partiôl differentiat
with respect to the subscripted variable.
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The general solution, after integrating equation (B-7),is:

_ç=1"r.+,c,+#(*)]

+ I e-.. f¿o i Í, 
- "o, 

iot' 't î--z (i.4. - l6z2crî.7r* 6.1i.) 2L

.õ:t(*)ã crliffi *' !;f\+ar't' (B-8)

e=nþ. o=$,

The complementary soìution A(x) can be shown as:

j) ¡he case of I -jtC, >0,

A(x) = lr¿-.tnø,r' cos 
"/i-frGÉø * 

A"e-'r=:øis' sin 1/i-f:'q6.
* Ar'erí=-c'c,s' cos rlETTrÉ¡+ Ar'e.r-c-att. sin rrÎT¡l;--qt,

=!r¿-r-î=i€st, cos,¡-l +,::qr3¿* A"e-.-t-t4s. Sin .lt -,-JCr,Sc

. *Are/Fïø'r<'-rzr .6s r./-¡ 4¡'C, p(r-ZL)
g Ar¿ri-eEts<.-tt¡,¡n *if -¡3'e,3(æ _ 22) , (B_g )

iÐ the case of I -fC, =A
A(t)=(A,lA"t) cos 

',JTFLiÉø+ 
(A"!A.z) t¡¡ ,lJJ,::e.9o

-(A,tArx)cosr;7É¡*(.4.+ A,r)sínlTþr, (B-10)

. ¡iÐ the case of I -fC, < 0,

A(r)=¿, cos [('fQ¡ t a.',Fq{),?"+á,)]
*á¡ cos i('';''{a ¡ -r/'FC'--l),3¡+'4.1 ' (B-l I )

The constants A., ., in the complementary solution are chosen

to satisfy the boundary conditions on w:

w/x=0,21=o n"/*=o,zL=o
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These constants become;

i) the casc of t -,r:6i tO,

^ _ A _ | --?-!'/î=t:c1rí lcos (?.i lFi"C,¿¿)-È sin (2.4i-¡ ¡-..-],p¿¡1 ,"t-¡Lr---T_"=-,u'-"";*1Étrt-*i,øA;7ñi+:,C"gL) " 
I fr_rrl

¿,: _ t, = _.r=ffi,*#F,í+:l_.y¿91 g*.{,, |'
ii) the case of I -i'C,-O.

A1=-!o, n,:-v).ffii!-ef", ì /a_,?,
t,-- f,!$¡trjff¡!)- e", o,= -'f,2!;*#,/r"ø o"' I' " 

' 
"'

iii) the case of I -,Ê'Cr< O

,.:-l@E-lÏ4=ìsint(/=a?='+1-J-'c'-.1IÉ¿:--l-i"'-tr;¡6-,:läã-12"',i"õ,IT¡Z)+æFtstn(t-"c=1iL)'"'

,'=-reå!Tl*#.13;*"¡"ïFFi#d,:;14#;,"'
á, = - (.f,:t6t-'. ¡ -t- JatðFi )¡r¿,
A.= - (lã,-C, + 1 -,lFeF Ð ê L,

where

A n =lo it' o 
q,c, ¡d:i (å)] * r ru. þ" å <r,,; _, u¡furr"-

-_ " /4\$ _ (a _!Ð!r __-\-l t -,) \ Æi Ë \¡"¡ - 6¡;ç-",'ç;¡+sI f '

where r=(-l--j:+)+.. \ t+i:Lr,

The deformatìon mode.is thus expressed in terms of the

eigenvalue C1 using equations (B-8) to (B-t5).

In order to determine C1 the compatibility equation (B-2)

is expressed, usïng eguations (B-4) and (B-B) as:

* = - * n - *r + r orl 
{+" 

i kv - *fi,-*-.u*.'o' !ff
+-" -/-4\ i ---_=tÐr'---- "o.-r!-al¿,d,(t -u) \.R/ î:i (i'1'-l6j'C,,:'¡l*64':') 2L t

+ft etoa,a*-"Lf å r,"o,{frar,t*.

(B-r4)

(B-l5)

(B-r6)
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õt 
-X¡n - -t,E--E_ ""

E ='l = - c'.+ t 6l 
{4., Ê 

7¿r; ---, ¡¡,Iþ r"-; æ¡ *' åî
. Eb (*) Ë ---'#,iï:3:,,?*¡..'¡ ""*''# Ì

The constants C.,

boundary condí tions:

fo" '^o*= o

This yields:

-¿,=-oro+1&e).h f ^@dx+['f 
w:d.,,

. 
-*- oi" ¡d,t- (l -v) ii?/ '

where the integrals on the right hand side of equation (B-lB) are

given by:

The axial and cifcumferential stresses become:

and C, are determined by applying the

(B-r7)

(B-rB)

(B-1e )

v =0v



73.

j, f".eç¡aær,çe¡:
i) the casc of l-f!C,>0,

F,@)=@ (A, lk¡' s-, r;rnir'[-,{i cos (2.,r JJeÉz) + sin (2,1i+ Vc,þL)]l ( B-20 )

* A, l1 - ¿-t t;w¡r'fcos (2"rfÇl7r¡¿)+ E sin (2ti I +Fe,t¿)]ll,
ii) the case of l-f!Cr=0,

r,øt:_ffi|;fffifu,e",
iii) the case of I -.:!C¡ < 0,

4ø)=,8¿{1s{ffi#]ii,ã-+É¿1,,*s!€Fi_€=)É41,,

fil'"*."a,:r"(å,¡),
i) the case of i -ç{Ç >Q.

n(|*.') = |r r *,-*c,;,:' {1 ¡ - "-"=""r{ffi/2.
. *(t -ø-'rËlæi'¿ cos [qtT+Te,Jl])

" 
2 Jl. 

::{-9:.! 
L 

tE 4B ¡ - 8,,¡ + 2 B, B 
"i__ t6(pL),

.u ¿_r ri:irðir¿ sin l4rTTFdrpLJ

xi 2JæetÊL-r 
( B 3 - B ""\ - zE B. B.i1l

L ló(¡3¿)3 '--.j

'-_. l-_"-ztt=tøttzl(Brt - Br,) cos (zrjIFjä,3.L)

. (#,iå. 2 B, -8,) s i n 1z.,ri+ 3-ø,sz)l)

l. é :õ'
* 8 J I + îCr â¡rfa" Ð ¡.7_ ¡ 6t'¿1..-_ç*r-.rì{r)

. ïåt('il Ë rrffi!'í";¡¡r¡r(i)l + ørt' l'

(B-2r )

(B-221

(B-23 )
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ii) rhe case of I -,.?C¡ -- 0,

o(Jr', .,) = l[ [ (.r,' * r.) * (, t?A, - A é.) 2 rz- p + z( A." . r A:)., I

-tA.(A,-AJTp)_ A,(Aut.A"l z þ))2JZ pL+ 
+(,q;+ 

A,)(FL),

+ fio [t"e. - (AtAn- A2A,) i' z- p - +,a,e"p"]

* L(ArA"- A,A,),|T p +ÏArr-..,4.-'l + [t:.4!+ A,A,J2J- z B)2,,i TþL
+ 4AtA,p' + A,A.( I 6i.t¿.1'_ I )l cos qi' Z' þL

+l1e,e' 
" 
1 .1, ¡,¡,2 p + - 1z A 

"A, - ¡ A- Á, - A,.4.f 2 \, T p) 2 \ T p L

+2(A,' - a,')þ. -.lØ", - t,){ttLe¿l'- I)] sin +J"rz}]

+a+aa[a"i ,---o, ¡:¡.=-:r*¡n{;)
. ¡:r (* ) å ¡¡,,, -çSflff]{6,u-_,7 *r¡ i ti
+s(r'i),

iii) the case of I -itC, < Q

,,(à* :) : * r, [tte,a * Gq-¡á,! a (,:,Ç, - "f ÇJ¡4r3
A,A,f I- 1ÅîiiLffi sin (2'lFA+i .;¿l - ; ;d= sin (zf=:-ì's¿;l

- #t Lái:?;1lt'ffi_a; sin r2(r/sQ{i a t :'e;i) þ 11

.áb1?Ë;=:_æ_4ñsinr2G/.'¿',+r-r.-".cFi)p¿r]]

-e,.'z[r"Ë--,i#æønø
. n:t(*),å u--,F#Ïi?rÏt s^o f )+ ø ø' i>'

Br=EAr-Ar, I
Br=A^+icÅr, I

,6 (t)-(¡-e-r¿¡=¡È;ocos[2.'1Ti,E,¡q¡lG!:l4J^iE,t-.!)B*r]::#v*-e,t \ v u' u J t l----CñF+ q¡¿l+ q:rr- i?,.qÉ¿-
¡ -!f!&--3]t:'-c-',1¿)-nr:?rtl:i19,,?!¿.-l- 

-1*¡ ¡ ¡ 
;-rt - l--*¿.t i +r-"-c"gi --l

_o-rrË?-i,ir¿sin[2.TTFõ,,3¿][¿iEiqr¿{'4^]1{.'!t¡11|¿s,c.¿pa' -" -'L (;È)'*8(ÉZ)'+añÈJi+i-'c;É¿

(B-24)

( B-25 )

(s-ze)

(B-27)
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¡6)=-lA.\".2,t.^,t¿!ll=t{8"!ry_l

+l{s, + z t, r,¡, z þ + A,ff}#fLIf cos z t a Ê r.

*lln,*ro"rl.z¡*r.#Ë##f inztz'sr., (B-28)

*i..,orffi=.F- ,#ry sin t('FQa t -'r¡-Q= ¡¡p¿¡ ' (a-zg)

g 1;, ¡¡ = t ø:" ¡la " å ç,r, _ *r!þ¡ * *n
+ " í4-\ + iT-i,f)i, 1,' (l-v)\Rl ír (j'r'-t6j'CÊ'f+64ç')J ' (B-30)

By using êquations (B-20) to (B-30) and assuming a tempera-

ture distribution equation (B-ì8) becomes a transcendental equat.ion for

C¡, This can tre solved by a standard iterative techn.ique. Equations

(B-l7) can then be solved for the corresponding stresses for that

temperature distribution and equation (a-8) can be solved for the

displ acements.
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Figure 1. Coordinate Systems,



97.

U¡

vi
W¡

F¡

ffi¡,,,
ln wi.,

--L 

F'''

U= f,. l¡'S
V= Ir. I+'S

W= 15. I".5, lr.S¿.fr'1?

A) FINITE ELEMENT MOÐEL

x'
wi-'

B' FINITE DIFFERENCE MODEL

g. l. l¿ -S

V= ï¡. tr*.S

!V: 15. t6.S. f7.S¿

Figure 2. Finite Element - Finite Di fference Model s.



oa

Figure 3. Overalì Test Set_up.



'L 2. 3. 4. 5. 6.

Lo
w

er
 C

ro
ss

m
em

be
r

S
up

po
rt

 C
oì

 u
m

n.

U
pp

er
 C

ro
sS

-
m

em
be

r.

M
ai

n 
G

om
pr

es
si

on
B

ol
t.

U
pp

er
 ll

ea
te

r
G

ri 
p.

 .

B
l e

ed
-T

hr
ou

gh

7. B
.

9. 10
.

V
al

 v
e-

H
ea

te
r 

A
ss

em
bl

y.
F

i b
re

-0
pt

i 
c 

P
ro

be
.

T
es

 t 
S

pe
ci

nr
en

.
Lo

w
er

 G
ri 

p
A

ss
em

bl
y.

Lo
w

er
 H

ea
te

r 
G

ri 
p.

Lo
ad

 C
el

 l.
A

l i
 g

ni
 n

g 
P

l a
te

.
U

pp
er

 G
ri 

p
A

ss
em

bl
y.

!4
ic

ro
m

et
er

A
dj

us
tm

en
t.

il. 12
"

.l3
.

14
.

15
.

fig
ur

e 
+

. 
T

es
t 

S
et

-u
p 

D
et

ai
ls

.

S
E

C
Ï¡

O
N

 A
-A

(o (o



f ibe r optic
probe

Kyowa
12 pen
recorde r

Figure 5. Test Set-up Schematic.
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Figure 6. Temperature Control Unit.
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Figure 7, Details of Load lleasurenent Apparatus,
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Figure 8. Fotonic Sensor.
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Figure i0. Photograph of Test Specìmen.
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Fi$ure 12. Typical Thermocouple Output.
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Figure 28. Buckìing Pattern. Test No. 8.
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Figure 30. Buckiing Pattern. Test No. 18.

Figure 3l. Bucki ing Pattern. Test No. 2j.
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Figure 32. Secondary Buckling. Test No. 18.
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Figure 40. Dimensionless Test Resuìts.
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