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Abstract 

A novel technique for blind deconvolution of ultrasound is introduced. Existing 

deconvolution techniques for ultrasound such as cepstrum-based methods and the work 

of Adam and Michailovich – based on Discrete Wavelet Transform (DWT) shrinkage of 

the log-spectrum – exploit the smoothness of the pulse log-spectrum relative to the 

reflectivity function to estimate the pulse. To reduce the effects of non-stationarity in the 

ultrasound signal on both the pulse estimation and deconvolution, the log-spectrum is 

time-localized and represented as the Continuous Wavelet Transform (CWT) log-

scalogram in the proposed technique. The pulse CWT coefficients are estimated via 

DWT shrinkage of the log-scalogram and are then deconvolved by wavelet-domain 

Wiener filtering. Parameters of the technique are found by heuristic optimization on a 

training set with various quality metrics: entropy, autocorrelation 6-dB width and fractal 

dimension. The technique is further enhanced by using different CWT wavelets for 

estimation and deconvolution, similar to the WienerChop method. 
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1. Introduction 

Ultrasonic imaging provides a means of internal inspection of structures for 

applications in which imaging technologies such as MRI, X-ray, et cetera prove too 

expensive or lack portability. For industrial applications, ultrasonic imaging may serve 

as a method of quality control, fault detection and analysis, or process control. However, 

the effective visualization of faults in ultrasonic imaging suffers from noise as well as 

blurring due to the finite time-duration of the pulse [1]. A new method of blind 

deconvolution and denoising of ultrasound is presented in this work to reduce the 

blurring effect caused by the pulse width and to remove noise from the image. Several 

modifications to the method are also discussed and their effects on the performance of 

the method are shown experimentally. 

Noise in ultrasound images can be present as multiplicative speckle noise – 

attributed to random interference of coherent waves scattering within a medium – or 

system noise, which is typically modeled as additive white Gaussian noise (AWGN) [2]. 

Several wavelet-based techniques have been developed to denoise signals and are 

considered herein as the foundation for the methods introduced. In [3] Donoho and 

Johnstone introduced the concepts of wavelet shrinkage – calculating the wavelet 

transform of a noisy signal, setting to zero all wavelet transform coefficients below a 

certain threshold and reconstructing the noise-free estimate by the inverse wavelet 

transform – as a means of removing AWGN from signals. More specific to ultrasound 

denoising, [4] and [5] apply wavelet shrinkage to the log-transformed ultrasound image, 

effectively treating the multiplicative speckle noise as additive noise. A whitening filter 
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is used in [4] to decorrelate the speckle noise prior to log-transformed wavelet shrinkage, 

i.e. to make the log-transformed speckle noise more similar to AWGN. Alternatively, in 

[5] cycle-spinning is included in the Discrete Wavelet Transform (DWT) for shift-

invariance to ensure weak details in the image are detected in the presence of noise. The 

performance of different threshold selection techniques is also discussed in [5]. 

The foundation for wavelet shrinkage denoising techniques is a sparse 

representation of the signal in the wavelet domain while comparatively the noise spreads 

over a wider range of wavelet coefficients. Implementing this for the case of ultrasound 

denoising the mother wavelet can be selected to resemble the ultrasound pulse. Thus, 

with proper wavelet selection, wavelet coefficient shrinkage will enhance the desired 

pulse back-scattering information relative to noise upon reconstruction [6].  

In ultrasound imaging a high-frequency acoustic pulse is emitted by a transducer 

in to the imaged structure and its backscattering is recorded as a time-domain signal. The 

received signal in an ultrasonic pulse-echo imaging system is commonly considered as 

the convolution of the acoustic reflectivity function of the imaged structure with the 

point-spread function of the imaging system [7], [1]. Such a signal model resembles that 

considered for image blur modeling and thus, the point-spread function can be 

considered as a blurring kernel acting upon the desired material reflectivity function. In a 

one-dimensional sense, each received ultrasound signal can be considered as an 

integration of the material reflectivity function over the beam-width of the transducer 

convolved with the ultrasound pulse. Note that in this case the ultrasound pulse refers not 

to the pulse emitted in to the imaged medium but rather the emitted pulse convolved with 

the electromechanical reception transfer function of the transducer. Thus, the longer the 
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pulse time-duration, the greater the temporal blurring effect. The time-duration of the 

pulse in ultrasound imaging systems is particularly important in non-destructive test 

(NDT) applications where multilayer materials are imaged, as the change in acoustic 

impedance at layer-to-layer interfaces causes reflections that can obscure faults near the 

interface. This blurring effect is typically reduced by deconvolution of the pulse from the 

acquired data, as in [1] and [8], which is also the approach taken in this work to enhance 

the ultrasound scans. 

The task of deconvolving the pulse from the received ultrasound echo data 

necessitates first estimating the pulse. In [9], Jensen and Leeman proposed a non-

parametric technique for ultrasound pulse estimation based on the general premise that 

the pulse magnitude-spectrum was smooth relative to the jaggedness of the material 

reflectivity function magnitude-spectrum. By taking the aforementioned pulse-

reflectivity convolution model to the real cepstrum domain – i.e. the Fourier transform of 

the log-transformed magnitude of the Fourier spectrum – they surmised that the two 

functions mostly occupied separate bands in the cepstrum domain and thus were 

separable. Furthermore, Jensen and Leeman proved experimentally that the pulse 

spectrum exhibited minimum-phase characteristics for most piezoelectric transducers, 

which allowed for recovery of the pulse phase-spectrum via the Hilbert transform of the 

log-magnitude-spectrum.  

However, as Adam and Michailovich discussed in [1], the pulse and reflectivity 

function are not easily separable in the cepstrum domain as there often exists overlap of 

their components. Working again with the premise that the pulse spectrum was smooth 

relative to the reflectivity function spectrum, Adam and Michailovich proposed DWT 
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shrinkage of the received signals log-spectrum to estimate the pulse log-spectrum and 

again utilized the minimum-phase assumption to recover the complex pulse spectrum via 

the Hilbert transform. The basis for applying DWT shrinkage to the signal log-spectrum 

is an interesting property of the wavelet transform: as shown by Daubechies, as cited in 

[1], the wavelet decomposition of a polynomial results in detail coefficients of zero when 

the number of vanishing moments of the mother wavelet is greater than the degree of the 

polynomial. Thus, the smoothness of the pulse log-spectrum was estimated, at least 

locally, as a polynomial of limited degree and could be reconstructed from the DWT 

approximation coefficients alone, effectively setting all detail coefficients to zero as a 

simplified means of wavelet shrinkage. Fourier-domain Wiener deconvolution was then 

used to deconvolve the estimated pulse from the ultrasound scan data. 

The shortcomings of the method proposed by Adam and Michailovich are a result 

of representing the ultrasound signal spectra in the Fourier domain. More specifically, 

the Fourier-domain spectral representations are not localized with respect to time due to 

the Fourier basis not being compact. In the work of Adam and Michailovich, the Fourier-

domain analysis implies an assumption of stationarity to the received ultrasound echo, 

pulse and material reflectivity spectra. However, the pulse in particular may not be 

stationary due to frequency-dependent attenuation and diffraction effects, which may 

lead to an inaccurate estimation of the pulse [1]. Fourier-domain Wiener deconvolution 

also leads to the widely documented issue of Gibbs-phenomena-like ringing effects 

around sharp edges or transitions in an image or signal [10].  

This work proposes a novel technique for deconvolution and denoising of 

ultrasound for NDT applications. The localization of the signal spectra with respect to 
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time is addressed in the proposed method. The method by Adam and Michailovich is 

modified such that the time-localized signal spectra are represented as the multiscale 

Continuous Wavelet Transform (CWT) coefficients, also referred to as the scalogram 

herein. The method can be summarized as follows: The CWT scalogram is calculated on 

the received ultrasound scans; DWT shrinkage is applied to the signals log-transformed 

CWT scalogram to estimate the pulse log-scalogram; the complex pulse scalogram – i.e. 

the phase information – is recovered via the Hilbert transform; finally, the Wiener 

deconvolution occurs in the CWT-domain and the inverse CWT recovers the 

approximated reflectivity function. 

Based on the compaction property of wavelet denoising, as discussed above, the 

CWT mother wavelet is selected intuitively to resemble the ultrasound pulse by visual 

inspection. Thus, the scalogram provides a sparse representation of the ultrasound 

backscattering information relative to the noise. The CWT scales to be considered in the 

method can be found by analyzing the dominant back-scattering components in the 

received data or found by optimizing the parameters of the algorithm with respect to a 

particular quality metric on a training set of the data. The setting of the algorithm 

parameters, including the CWT scales or pseudo-frequency range, is considered later 

both by empirical setting and by heuristic optimization.  

The resulting algorithm, simply summarized as the method of Adam and 

Michailovich performed in the CWT-domain, also has the interesting implication that 

Fourier-domain Wiener filtering is replaced by CWT-domain Wiener filtering as 

previously mentioned. The concept of wavelet-domain Wiener filtering was first 

explored by Ghael et al in [11] and was further analyzed in [12]. The method was 
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dubbed “WienerChop” by analogy to Donoho and Johnstone’s “WaveChop” method 

[12].  

In addition to implementing the Wiener filter in the wavelet domain, the 

WienerChop method proposes using different basis wavelets for the estimation and 

deconvolution stages of the algorithm. The motivation for using a second wavelet 

domain for deconvolution is to reduce the effects of estimation error. By once again 

taking advantage of the sparse representation of the signal provided by the wavelet 

transform, the second wavelet basis will spread the estimation error over a large number 

of coefficients relative to the desired signal information. Incorporating a second CWT 

basis to the proposed technique based on the principles presented in the WienerChop 

method is discussed further in this work and its effect on the performance of the 

proposed methods is determined experimentally. 

Although the methods presented in this work apply generally to preprocessing 

ultrasound NDT, the examples and discussion herein are confined to imaging the cross-

linked polyethylene (XLPE) insulation layer of underground power cables. A photograph 

of a cross-section of an underground power cable is shown in Figure 1-1 with the XLPE 

layer labeled. 
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One of the major causes of interruption of underground power distribution is 

dielectric breakdown of the XLPE insulation due to water-trees [13]. Researched here in 

co-operation with Manitoba Hydro, ultrasonic inspection of XLPE insulation holds real 

potential for the power distribution industry. Currently XLPE insulation is assessed using 

a destructive dissection as detailed in [13]. The deconvolution and deblurring methods 

proposed in this work can be considered as a preprocessing step in the detection and 

imaging of water-treeing in underground power cables. In the results, Section 6, two-

dimensional cross-sectional ultrasound images of a cable are shown before and after 

processing with the methods discussed. 

 

Figure 1-1: Cross-sectional photo of a power cable with 

the XLPE labeled 

XLPE 
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The effectiveness of the proposed methods with respect to the task of 

preprocessing ultrasound scans of the power cables by denoising and deblurring is 

quantified with a variety of performance metrics. An established quality metric such as 

image entropy is used in conjunction with less common blur metrics discussed in this 

work: fractal dimension and autocorrelation 6-dB width divided by peak signal-to-noise 

ratio (PSNR). The proposed technique improved on its predecessors in both visual 

subjective quality and with respect to the various metrics. 

The layout of this work is as follows: 

 Section 2 provides general background information including some 

fundamentals of ultrasound imaging, wavelet denoising (including 

defining the continuous and discrete wavelet transforms) and existing 

techniques for deconvolution;  

 Section 3 details the proposed deconvolution technique;  

 Section 4 discusses parameter optimization for the proposed technique 

including the various cost functions considered;  

 Section 5 reviews the experiment; 

 Section 6 contains the results and discussion; 

 Section 7 is the conclusion. 
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2. Background 

2.1 Ultrasound Imaging 

2.1.1 Ultrasound Fundamentals 

Ultrasound imaging is the emission of high-frequency acoustic waves in to a 

medium and reconstruction of the received echoes over an aperture to form an image. A 

piezoelectric ultrasound transducer is a piston-like device with a thin membrane driven 

by an oscillating piezoelectric crystal. The method of ultrasonic imaging considered in 

this work is with a single piezoelectric transducer in a pulse-echo setup. In the case of 

imaging underground power cables, the transducer is rotated around the cable 

circumference for two-dimensional cross-sectional images and along its length for 

subsequent images. Of course, this imaging methodology requires uncovering a section 

of the cable from the ground but does not require its removal from service and 

destruction, as with current methods for XLPE inspection [13]. 

No focussing techniques are considered in this work. However, it is worth noting 

that the methods discussed for pre-processing of the ultrasound scans preserve phase 

information. Thus, the proposed deconvolution method does not preclude the application 

of techniques such as synthetic aperture focusing based on wave-front reconstruction, as 

applied in [13] to XLPE imaging. As such, in this case the cross-range resolution,   , is 

dependent on the acoustic beam-width of the transducer, the spread of acoustic energy 

inside the cable due to refraction and beam-spread, as well as the cross-range sampling 

rate [13]. The resolution in the range direction,   , is given as 
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             (1) 

where   is the velocity of sound propagation in the medium and   is the frequency 

bandwidth of the pulse [14]. To maintain attention in this work on the tasks of 

deconvolution and denoising, both the time and angular domains will be oversampled – 

their resolutions and minimum sampling rates will not be considered further. 

Another important consideration in ultrasonic imaging is whether the imaging 

takes place in the near-field or far-field of the transducer. The near-field, as its name 

implies, refers to the emitted acoustic field closer to the transducer. Since the transducer 

is not a perfect point-source but rather the acoustic pressure field is generated by 

movement of the entire surface of the transducer face, it can be considered a collection of 

point-sources. Furthermore, pressure is not evenly distributed across the transducer face 

nor is the transducer face entirely free of deflection under its movement so the amplitude 

and phase of the acoustic field varies along the transducer face. As such, the emitted 

field immediately in front of the transducer exhibits large fluctuations in amplitude and 

temporal distortion due to the constructive and destructive interference of the multiple 

waves. Hereafter, these effects will be referred to simply as the near-field diffraction 

effects.  

Near-field imaging presents challenges in the sense that the temporal distortion of 

the pulse may make faults show up repeatedly due to temporal distortion, or not at all if 

the waves interfere destructively at that location. In general, the point-spread function of 

an ultrasound imaging system – i.e. the appearance of a point-source imaged by the 

system – is highly non-stationary in the near-field. As an example, Fig. 2.1.1-1 displays a 

near-field point-spread function created using the Field II ultrasound simulation software 
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[15], [16]. The plot is shown such that the transducer is at the left of the image facing 

right – the discrete-time index increases along the horizontal axis to the right and the 

vertical axis represents the cross-range. The simulation is for a 20mm-diameter 15MHz 

transducer scanning a point 20mm away in the range direction with a sampling rate of 

150MHz. Note that the far-field point-spread function is roughly a hyperbola. In 

comparison, the near-field point-spread function, as highlighted by Fig. 2.1.1-1, exhibits 

a much more hectic pattern: when the transducer is axially aligned with the point 

scatterer, i.e. the point-scatterer is centered on the transducer line-of-sight, three 

prominent reflections occur.  

  

Conversely, the far-field occurs further away from the transducer where the 

acoustic field can be approximated as spherical plane waves emanating from a point-

 

Figure 2.1.1-1: Simulated near-field point-spread function 
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source and which exhibit none of the diffraction effects found in the near-field. The 

distance from the transducer face to the end of the near-field or the start of the far-field is 

given as: 

    
    

 
 (2) 

where   is the radius of the transducer,    is the resonant frequency of the piezoelectric 

transducer and   is the velocity of sound propagation in the medium.  

Noise in ultrasound images is generally classified as the following two types: 

multiplicative speckle noise and AWGN system noise. Multiplicative speckle noise is 

due to the random constructive and destructive interference of coherent waves scattering 

within the imaged medium and is responsible for giving ultrasound images their 

characteristic grainy appearance [2]. System noise, considered as AWGN – modelled as 

having constant power spectrum density and a Gaussian amplitude distribution – is that 

induced in the cables by background electromagnetic radiation.  

2.1.2 Signal Model 

The signal obtained for each scan in a pulse-echo ultrasound imaging system is a 

time-domain recording of the back-scattering of the emitted pulse convolved with the 

electromechanical reception response of the transducer. Each scan contains information 

of scatterers within “view” of the transducer, considering both the beam-spread of the 

emitted acoustic field and the dimensions of the transducer face. The received pulse-echo 

ultrasound signal in this work is modeled as a convolution of the point-spread function of 

the imaging system with the material reflectivity function. The point-spread function of 

an imaging system represents the appearance of a point-source in the imaged medium 
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and generally varies with range-distance from the transducer. Ideally, the point-spread 

function resembles an impulse and the acquired image is simply the desired reflectivity 

function. A simplified view of this work is that deconvolving the ultrasound pulse 

reduces the point-spread function support in the range-domain. Similarly, focussing 

techniques, which are outside the scope considered here as previously mentioned, are 

generally responsible for reducing the point-spread function cross-range support.  

Ignoring acoustic beam-spread in the out-of-plane direction for a two-

dimensional image, as well as noise and multiple reflections, the received signal, 

       , for the transducer at cross-range position index n, is given as:  

                           (3) 

where   is the point-spread function at distance   from the transducer and   is the 

material reflectivity function. Equation (2) resembles a model of image blur and thus the 

point-spread function can be considered as a blurring kernel acting on the material 

reflectivity function.  

Examining a single scan-line in the image, without loss of generality, the 

discrete-time signal can equivalently be modelled as: 

                (4) 

where      is the ultrasound pulse and      is the one-dimensional result of surface 

integration over the three-dimensional material reflectivity function at each time instance 

accounting for beam-spread, refraction and multiple reflections inside the imaged 

structure. The pulse in (3) can be considered as blurring the reflectivity function or, 

considering that the ultrasound pulse typically resembles an amplitude modulated 

sinusoid with multiple peaks, (3) can be interpreted as a repetition of the image edges. 
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Note that in the case of the signal models presented in (2) and (3), noise has not been 

considered for sake of introducing the deconvolution problem.  

Representing the signal model (3) in the frequency domain, the convolution 

function becomes multiplication: 

               . (5)  

The model in (4) can also be represented in its homomorphic form, which serves as the 

basis for the work in [1], given as: 

                                (6) 

2.2 Wavelet Theory 

2.2.1 Wavelet Transforms 

The wavelet transform, generally speaking, is the decomposition or projection of 

any arbitrary finite-energy signal by a wavelet basis function and can be considered as a 

time-frequency representation of the signal. Just as with the well-known Fourier 

transform (and many other transforms), the wavelet transform represents a signal by its 

projection on to a basis function – i.e. the projection can be considered a measure of 

similarity between the signal and the transform basis as performed by the inner product. 

While the Fourier transform projects a signal on to an orthonormal basis of sine waves 

over a range of frequencies, the wavelet transform projects the signal on to a set of basis 

functions generated by a mother wavelet. The mother wavelet, typically with finite time-

domain support, is shifted and scaled with respect to time in order to represent time-

localized and frequency-localized information, respectively. 
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In contrast to Fourier-domain analysis of signals, wavelets can be localized with 

respect to time and are thus better suited to representing signals with piecewise smooth 

behaviour, large discontinuities, and/or transients – in other words, non-stationary 

behaviour. Further advantage is provided over even the fixed window length of the 

Short-Time Fourier transform and Gabor transform due to the scaling of the wavelet 

support, essentially allowing the wavelet transform to capture broad low-frequency 

characteristics of the signal while zooming in on high-frequency localized features. As 

Graps puts it in [17], “The result in wavelet analysis is to see both the forest and the 

trees, so to speak.” Of course, the uncertainty principle – that a signal cannot be 

localized in both time and frequency to an arbitrarily small measure – still applies. 

However, applying the wavelet transform over multiple scales allows for a multi-

resolution analysis as the time and frequency resolutions vary with the wavelet scale. For 

the sake of thorough introduction to this topic both the CWT and DWT are defined here 

as follows.  

The CWT refers to the use of continuously variable scales and translations of the 

mother wavelet in the wavelet transform in contrast with the DWT for which these 

variables can take only a discrete set of values. Although the processing of ultrasound 

signals considered in this work is strictly confined to discrete-time analysis, for 

simplicity the CWT will be introduced as applying to continuous-time signals as follows. 

For an arbitrary continuous-time signal      the CWT coefficients at scale     with 

the mother wavelet      are given as: 

         
 

  
        

   

 
    (7)  

where   denotes the complex conjugate. Alternatively, the translated, normalized and 
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scaled version of the mother wavelet, 
 

  
  

   

 
 , can be referred to as         and it 

becomes readily apparent that (7) is a calculation of the inner product between the given 

signal and the wavelet transform basis functions: 

                          (8) 

where     denotes the inner product. Also note that for any fixed  ,      forms an 

orthonormal set. The wavelet scaling coefficient   is analogous to the frequency (though 

inversely proportional) and a time-frequency representation of a signal can be given as 

the CWT coefficients calculated over a range of scales. 

The DWT represents a signal in terms of its approximation and detail 

coefficients, as found by the inner product of the signal with the scaling wavelet      

and analysis wavelet     , respectively. As their names suggest, the approximation and 

detail coefficients contain information on the signals broad shape-defining features and 

small localized details, respectively. In the dyadic DWT, the algorithm used in this work, 

the approximation and detail coefficients are down-sampled or decimated by a factor of 

two at each decomposition level. For example, the first decomposition of a signal with N 

samples contains roughly N/2 approximation coefficients and N/2 detail coefficients. 

Each subsequent decomposition of the signal to a larger scale applies then to the 

decimated approximation coefficients of the previous level rather than the original 

signal. The signal is still completely described by its down-sampled approximation and 

detail coefficients provided   and   span orthogonal complements of each other. Note 

however, that the decimation causes the DWT to not be shift invariant. To attain shift 

invariance of the DWT, cycle-spinning can be employed as in [18]: the shift variance is 
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cancelled by applying the DWT to shifted copies of the original signal then un-shifting 

and averaging. 

2.2.2 Wavelet Shrinkage 

Wavelet shrinkage for denoising entails applying a wavelet transform, CWT, 

DWT or other, to a noisy signal, shrinking to zero all coefficients below a certain 

threshold, and then reconstructing an estimate of the noise-free signal via the inverse 

wavelet transform. Wavelet shrinkage was first introduced by Donoho and Johnstone in 

[3]. Ever since, wavelet denoising has grown increasingly popular, with a variety of 

techniques proposed on threshold selection methods and a wide range of applications 

studied. 

As mentioned earlier, the wavelet transform is suited to represent both broad 

shape-defining characteristics and localized high-frequency details of a signal due to the 

scaling of the wavelet support, which allows for multi-resolution analysis. Furthermore, 

when the mother wavelet resembles either desired or prominent features of the signal, 

such as edges in image analysis or the pulse in ultrasound processing, multi-resolution 

analysis of the wavelet transform results in a sparse representation of the signal in an 

over-complete dictionary of basis functions. That is, the prominent or desired 

information of the signal is represented compactly in a few coefficients relative to the 

total number of coefficients available. Considering the wavelet transform defined by the 

inner product in (8), which provides a measure of similarity between the scaled wavelet 

and the signal, it becomes clear how a wavelet resembling certain characteristics of the 

signal would provide a compact representation of those characteristics. Conversely, the 

noise content of the signal will be spread out over a wider range of scales comparatively. 
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Thus, when all wavelet coefficients below a certain threshold are shrunk to zero and the 

signal is reconstructed via the inverse wavelet transform it is possible to reduce noise 

without affecting some characteristics of the signal, for example the edges.  

Thresholding can be implemented in two ways: hard thresholding, in which all 

wavelet coefficients of absolute value less than the threshold are set to zero and larger 

coefficients are left unchanged; or soft thresholding, in which all wavelet coefficients of 

absolute value less than the threshold are set to zero and larger coefficients are reduced 

by the threshold value. For clarity, the two methods of thresholding a sequence of 

wavelet coefficients      are given as: 

 Hard Thresholding:        
                

                   
  (9) 

 Soft Thresholding:        

                             

                             

                                                      

  (10) 

where   is the threshold being applied, which in general is a function of the coefficients. 

Since the methods of ultrasound deconvolution and denoising discussed in this work are 

only related to wavelet shrinkage and don’t require a threshold to be selected, the many 

methods of threshold setting are not discussed here. 

2.2.3 Wavelet Properties 

The set of translated wavelets at a fixed scale must be linearly independent and 

span the signal space – i.e. the wavelets must form a basis for the signal such that the 

signal has a unique representation as its wavelet coefficients [19]. A wavelet      is also 

required to satisfy the admissibility condition, which is given as: 
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     (11)  

where      is the Fourier transform of     . The admissibility condition in (11) also 

implies that 

               . (12) 

That is, the wavelet has no DC offset. All wavelets used or discussed in this work will be 

traditional (with respect to the relatively new field of wavelets) and as such their 

definition and proof of admissibility will be omitted.  

Another property of the wavelet to consider is its number of vanishing moments 

or order. For a wavelet with   vanishing moments, the wavelet transform can provide an 

error-free representation of polynomials of order less than   – as mentioned previously, 

the pulse estimation techniques in this work rely on this property to produce null detail 

coefficients for a polynomial of order less than the wavelet vanishing moments. The 

number of vanishing moments   for a wavelet   is defined in the Fourier domain as: 

           for           (13)  

where         denotes the k
th

 derivative with respect to   at     [19]. Alternatively, 

the vanishing moments may be defined in the time domain, as in agreement with the 

typical definition of a moment, as: 

             for          . (14) 

Note that (14) for     reduces to (12), an implication of the admissibility 

condition. As such, all wavelets have at least one vanishing moment. An example of a 

wavelet with only one vanishing moment is the Haar wavelet.  
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Although wavelets within a given family – ex. Daubechies, Coiflets, Symlets, etc. 

– generally appear smoother as the number of vanishing moments increases, the number 

of vanishing moments does not directly imply smoothness as defined by the order of 

continuous derivatives with respect to time. That is, a wavelet with   vanishing 

moments does not necessarily have   continuous derivatives. This can be shown by the 

example of the Haar wavelet, which by (12) and (14) has one vanishing moment but has 

a discontinuous first derivative. The opposite does apply, however – a wavelet with   

continuous derivatives with respect to time will have at least   vanishing moments. 

Another property of wavelets considered in this work is the compactness of the 

mother wavelet. The compactness of a wavelet considered in analysis of time-domain 

signals can be described simply as having a finite time-duration. More specifically, the 

wavelet has bounded support and vanishes at infinity, i.e.        as     . An 

example of a non-compact wavelet is the Shannon wavelet. For the purposes of this work 

only compact mother wavelets will be used. 

2.2.4 WienerChop Denoising 

The WienerChop method of denoising was first introduced by Ghael, Sayeed and 

Baraniuk in [11] and was later further analyzed by Choi and Baraniuk in [12]. Once 

again, the motivation is to remove AWGN from signals. The WienerChop method 

proposes applying Wiener filtering to individual wavelet coefficients – i.e. Wiener 

filtering in the wavelet domain rather than the Fourier domain – to reduce noise. As with 

Fourier-domain Wiener filtering, the challenge is designing the Wiener filter without 

first knowing the noise-free signal.  
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In order to design the wavelet-domain Wiener filter, the WienerChop method 

proposes using wavelet shrinkage with hard thresholding to estimate the noise-free 

signal. Essentially, the WienerChop method employs traditional wavelet thresholding 

and shrinkage, itself a denoising technique, as a preliminary estimate to design the 

Wiener filter. As was shown in [11], the WienerChop method outperforms the use of 

wavelet thresholding and shrinkage alone. 

Besides implementing the well-known Wiener filter in the wavelet domain rather 

than the Fourier domain, another interesting aspect of the WienerChop method is its use 

of two wavelet domains. More specifically, the estimation of the noise-free signal to 

design the Wiener filter occurs in a separate wavelet domain from the implementation of 

the Wiener filter. The motivation for this is due to the sparse representation of the signal 

provided by the wavelet transform, just as it was for wavelet shrinkage. That is, the 

Wiener filter is implemented in an alternate wavelet domain such that the estimated 

noise-free signal information is represented by few wavelet coefficients relative to the 

estimation error. Thus, the effects of error in the estimation stage on the final result are 

reduced.  

The performance of the WienerChop method with respect to the wavelet basis 

selections is difficult to formulate, as noted in [12]. Since both the estimation and 

deconvolution wavelet domains require a compact representation of the signal both 

wavelets must be suited to the signal. However, the wavelets must also be sufficiently 

different such as to spread the estimation error from the first domain over a wide range 

of coefficients in the second. 
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For a noisy signal modeled as               , where      is the true noise-

free signal and      is AWGN, the objective is to approximate      in a minimum mean-

square error sense. The WienerChop method can be summarized as follows: 

1. The noisy signal is taken to the first wavelet domain, denoted here as W1 

for clarity;               

2. The signal is first denoised by wavelet shrinkage with hard thresholding;  

                  

3. The estimated noise-free signal is then reconstructed via inverse wavelet 

transform;                 

4. Both the original noisy signal and its noise-free estimate are transformed 

to the second wavelet domain, W2;             ,                 

5. Wiener filtering is then implemented in the second wavelet domain and 

applied to the signal coefficients as:                  
     
    

     
       

, where 

   is the variance of the noise. 

6. The final approximation of the noise-free signal is recovered via the 

inverse wavelet transform;                

2.3 Deconvolution 

2.3.1 Convolution 

Convolution is typically used to model the behaviour of linear time-invariant 

systems with respect to the systems impulse response and a given input signal. More 
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specifically, a system with impulse response      excited by an input signal      will 

produce an output given by the convolution of      with     , denoted          , 

defined in continuous-time as: 

                      
 

  
   (15) 

The equivalent representation in the frequency domain is given by the product of the two 

functions: 

                    (16) 

2.3.2 Inverse Filters and Stability 

The representation in (16) is important in considering the task of deconvolving 

     from the resulting signal. On first appearance, (16) would indicate that removing 

the effects of convolution with the system impulse function      would be as simple as 

implementing an inverse filter – i.e. dividing by      in the frequency domain. 

However, notice that if      equals zero, the inverse-filter would be unstable. To further 

assess the stability of the inverse filter, one may consider whether the system is 

minimum-phase or not. 

A minimum-phase system is defined as having a net change of zero over its phase 

spectrum [20]. In other words, speaking in terms of normalized radian frequency – 

ranging from zero to pi – the phase of the system frequency response is equal at 

frequencies of zero and pi. In terms of the complex S-plane, this implies all the zeros of 

the system are on the left half-plane. Equivalently, this means all the zeros of the system 

are inside the unit circle on the complex Z-plane. The implications on the stability of the 

inverse filter are as follows:  
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 The inverse of a minimum-phase system is stable due its poles being 

entirely on the left half S-plane. 

 A minimum-phase system that is stable – i.e. all of its zeros and poles are 

on the left half S-plane – has an inverse that is also stable and minimum-

phase. 

The stability of the inverse filter can be improved for a non-minimum-phase 

system by adding a constant to the magnitude of the system frequency response. This 

technique is referred to as regularization in this context and is discussed further in 

section 2.3.5 in the framework of the Wiener filter. 

2.3.3 Blind Deconvolution 

Blind deconvolution refers to deconvolution without an initial estimate of the 

response of the system to be deconvolved. In other words, blind deconvolution estimates 

the system response based on the data from which it is to be deconvolved. In the context 

of ultrasound deconvolution the system response to be deconvolved is the ultrasound 

pulse.  

Existing non-blind deconvolution techniques for ultrasound approximate the 

pulse prior to scanning. This can be achieved by system characterization as in [21] – 

where the transfer functions of the transducer, pulser and connecting cables are 

determined experimentally – or by recording the reflection from a single scatterer such 

as a thin wire phantom as in [22]. The limitation of these techniques is that they fail to 

account for the pulse varying over the length of the received signals. More specifically, 

these non-blind techniques neglect to consider diffraction effects if imaging takes place 
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in the near-field or frequency-dependent attenuation in the imaged structure. Since the 

imaging in this work takes place in the near-field of the transducer where the point-

spread function is highly non-stationary, blind deconvolution techniques are more 

suitable for this application and non-blind techniques are not considered further. 

2.3.4 Iterative vs. Non-Iterative Blind Deconvolution 

Blind deconvolution can be performed either iteratively or non-iteratively. 

Iterative blind deconvolution techniques aim to progressively improve the estimation of 

the system response to be deconvolved at each iteration with respect to a certain quality 

metric applied to the deconvolved image or signal. Conversely, non-iterative techniques 

make an initial estimate from the data and apply deconvolution only once. 

While iterative techniques can be more complex and generally return more 

accurate estimations of the deconvolved system response, non-iterative blind 

deconvolution is considered in this work primarily for two reasons: 

 The ultrasound pulse to be deconvolved is considered highly non-

stationary in the near-field imaging used in this application. Thus, 

iterative techniques are missing an important constraint on the estimate of 

the system response. 

 The computational requirement of non-iterative techniques is generally 

less than iterative techniques. This may eventually be a crucial 

requirement for implementing a field-ready ultrasound imaging system 

for underground power cables. That is, where processing time is ideally 
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limited to time between scans and implementation occurs on a portable 

workstation such as a tablet computer.   

2.3.5 Wiener Deconvolution 

Wiener deconvolution is commonly used in deconvolution problems in the 

presence of noise and/or an unstable inverse filter. Referring back to the ultrasound 

signal model in (4), the same variables can be used again here for simplicity and additive 

noise can also be considered. That is,                     is the available data, 

     is an unknown input signal to the system     , and      is additive noise, which 

need not be white Gaussian for the purposes of this explanation. Assume also for the 

sake of explanation that      is either known explicitly or that the effects of estimation 

error will be neglected in the design of the deconvolution filter. The Wiener 

deconvolution filter to approximate      can then be derived as follows. 

Suppose that for the system defined as                     the Wiener 

deconvolution filter in the time domain,     , approximates      as                . 

The mean-square error can then be defined as: 

                    
 
                

 
  (17)  

where      is the expectation operator. Substituting for       as: 

                          (18) 

then substituting again for     , 

                                     (19) 

                                  (20) 
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                   . (21) 

Then if the desired deconvolved signal      is independent of the noise     , the 

expectations in the second and third terms of (21) equal zero. 

                                                (22) 

                                                           (23) 

In order to find the minimum mean-square error with respect to the Wiener filter, take 

the derivative of      with respect to      and set it equal to zero: 

 
     

     
                                                  (24) 

Rearranging and conjugating to solve for     : 

       
     

                             
 = 

     

                
. (25) 

Notice that if the signal-to-noise ratio is infinite, the Wiener deconvolution filter 

reduces to the simple inverse filter. Otherwise, the second term of the denominator can 

be considered as a regularization of the ill-posed division. Often the regularization term 

is simplified as a constant due to lack of knowledge of the input signal spectrum, the 

noise spectrum, or both. It is also worth noting that, as shown in the derivation, the 

Wiener deconvolution filter is optimal in the minimum mean-square error sense with 

respect to the estimate of the system     . 
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2.3.6 Cepstrum-domain Reflectivity-Pulse Separation 

A blind deconvolution technique for ultrasound may be designed around some 

assumptions of the pulse in order to facilitate its estimation from the acquired data and 

subsequently its deconvolution. For instance, Jensen and Leeman introduced a novel 

method for non-parametric pulse estimation and blind deconvolution in [9]. The pulse 

estimation relied on the general assumption that the pulse magnitude-spectrum was 

smooth relative to the jagged reflectivity function magnitude-spectrum. Jensen and 

Leeman note:  

“The spectrum of the pulse is smooth and band limited. This is to be expected as a 

transducer is an electromechanical resonant device that can be described well by a 

relatively simple model with a few degrees of freedom. The tissue reflection sequence is 

a complex signal with numerous spikes and dips due to the complex underlying structure 

of the tissue.” 

By avoiding a parametric model of the pulse, as Jensen and Leeman mention, the pulse 

estimate is less confined to the model being used. 

Recalling the signal model presented in (4) – that is, the received signal      

represented as a convolution of the pulse      and the equivalent one-dimensional 

material reflectivity function      – the log-magnitude spectrum is given as: 

                                             . (26)  

Under the aforementioned assumption that the pulse magnitude-spectrum is smooth 

relative to the material reflectivity magnitude-spectrum, the representation in (26) can be 

considered as the superposition of a smooth slowly-varying function with a jagged 

rapidly-varying function. Applying the Fourier transform, denoted here as     , once 
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more, (26) becomes: 

                                        (27)  

which is the real cepstrum-domain representation of (4). Note that for the complex 

cepstrum-domain representation of (4) the complex-spectra are used rather than the 

magnitude-spectra. 

Thus, if the pulse magnitude-spectrum is smooth relative to the material 

reflectivity function magnitude-spectrum, Jensen and Leeman propose that the two 

functions mostly occupy distinct sub-bands in the cepstrum-domain. In order to separate 

the pulse and the material reflectivity function only a cepstrum cut-off,   , is required, 

below which all components of the real cepstrum of the acquired ultrasound scans are 

attributed to the estimated pulse,              . More precisely, the real cepstrum of the 

estimated pulse is given as: 

                         
                               
                                                         

  (28)  

where      denotes the real-valued set and       denotes the cepstrum of     . 

After estimating the log-magnitude-spectrum of the pulse the next challenge is 

estimating the phase-spectrum. To accomplish recovery of the phase spectrum from the 

estimated log-magnitude spectrum, Jensen and Leeman proved experimentally that the 

pulse exhibits minimum-phase characteristics. Thus, the pulse phase-spectrum is given 

by the Hilbert transform, denoted here as       calculated on the estimated pulse log-

magnitude-spectrum: 

                      (29) 
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The shortcomings of the cepstrum-domain pulse estimation proposed by Jensen 

and Leeman are as follows: 

 The pulse is assumed stationary, which makes the technique less suited to 

near-field imaging or applications with frequency-dependent attenuation.  

 There may exist a significant overlap of the pulse and material reflectivity 

function in the cepstrum-domain such that the pulse estimation accuracy 

is degraded. 

On the first of these limitations, Jensen and Leeman note the non-stationarity of 

the pulse in the introduction of [9]:  

“Thus, it is commonly assumed that the received pulse-echo signal may be expressed as 

a depth-dependent pulse convoluted with a tissue reflectivity function. In such models, 

both the pulse amplitude and shape are dependent on depth in tissue. This results from 

the frequency-dependent attenuation processes, which lead to the observed 

nonstationarity of the special properties of the rf line from tissue (as revealed by short-

time Fourier analysis, for example).” 

In regards to the second shortcoming, contrary to the premise of the method, 

there exists sufficient overlap of the pulse and material reflectivity function in the 

cepstrum domain as to question the validity of implementing a simple cut-off as the 

means of separation. Assessing the plotted examples in [9] visually, the general premise 

that the pulse magnitude-spectrum is smooth relative to the material reflectivity function 

magnitude-spectrum appears to be true. However, there also appears to be significant 

overlap of the two functions in the cepstrum domain. As such, it seems that the premise 
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behind the work of Jensen and Leeman is valid but that there may be a better means of 

separating the functions by this premise. Such an improvement is detailed in the 

following subsection. 

2.3.7 Wavelet Shrinkage of the Log-Spectrum 

Taking the work of Jensen and Leeman as the foundation for a new pulse 

estimation method, in [1] Adam and Michailovich proposed applying wavelet shrinkage 

to the ultrasound log-magnitude-spectrum. Based on the same premise that the pulse log-

magnitude-spectrum is smooth relative to the material reflectivity function log-

magnitude-spectrum, Adam and Michailovich surmised that the two functions can be 

considered as being composed at different scales. Thus, the pulse and material 

reflectivity function can be separable by wavelet shrinkage of the log-magnitude-

spectrum rather than considering their representation in the cepstrum domain. 

In [1] Adam and Michailovich considered that the smoothness of the pulse log-

magnitude-spectrum can be described, at least locally, as a polynomial of a limited 

degree. Considering the pulse log-magnitude-spectrum as a polynomial allowed the use 

of an interesting property of the wavelet transform proven by Daubechies, as cited in [1]: 

the wavelet decomposition of a polynomial results in detail coefficients of zero when the 

number of vanishing moments of the mother wavelet is greater than the degree of the 

polynomial. Alternatively, this can be interpreted as the DWT approximation coefficients 

providing a complete description of a polynomial when the number of vanishing 

moments of the mother wavelet exceeds the degree of the polynomial.  
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In the context of the pulse estimation this property of the wavelet transform 

implies that DWT decomposition of the received ultrasound data can be used to separate 

the pulse log-magnitude-spectrum and material reflectivity function log-magnitude-

spectrum. Thus, the pulse log-magnitude spectrum can be reconstructed from the 

approximation coefficients alone. Another interpretation is that the pulse log-magnitude-

spectrum is estimated from the acquired ultrasound log-magnitude-spectrum via a 

simplified implementation of wavelet shrinkage in which all the detail coefficients are 

set to zero – i.e. the detail coefficients threshold is set to infinity. 

Again based on the cepstrum-domain method of Jensen and Leeman, Adam and 

Michailovich utilized the Hilbert transform of the log-magnitude-spectrum to recover the 

phase-spectrum using the assumption that the pulse was minimum-phase. To simplify the 

later comparison, the pulse estimation method of Adam and Michailovich is followed by 

Wiener deconvolution in this work – the mollifier used to smooth the inverse filter is 

neglected. The method can be summarized as follows: 

1. Calculate the Fourier transform and subsequently the log-magnitude-

spectrum of the acquired ultrasound signals;  

                                   

2. Apply DWT decomposition to           using the Symlet wavelet with 

six vanishing moments to a decomposition level of seven. Note the 

vanishing moments are in agreement with the range given in [1] and the 

decomposition level is dependent on sampling rate and recording length, 

also as stated in [1] – both were found empirically. 
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3. Reconstruct the pulse log-magnitude-spectrum estimate            from 

the DWT approximation coefficients and recover its phase via the Hilbert 

transform 

4. Wiener deconvolution simplified as:        
          

          
, where   is a 

constant proportional to the noise level (as derived in Section 2.3.5); and 

inverse Fourier transform,            . 

Adam and Michailovich note that the mother wavelet should have vanishing 

moments between four and six – as satisfied by the above specified implementation. 

Furthermore, they found experimentally that minimum-phase or nearly symmetric 

mother wavelets yielded the best results. Hence, the Symlet wavelet was used in this 

work. 

The accuracy of this method of pulse estimation depends on the selection of the 

vanishing moments for the DWT mother wavelet and how it matches the smoothness of 

the unknown pulse log-magnitude-spectrum. As with the work of Jensen and Leeman, 

there may exist some overlap of components between the two functions; Hypothetically, 

even if the pulse log-magnitude-spectrum was completely represented as a polynomial of 

limited degree and the mother wavelet vanishing moments was chosen to exceed the 

degree of the polynomial by only one, the material reflectivity function log-magnitude-

spectrum may contain smoother components. However, the results in [1] do illustrate the 

effectiveness of pulse estimation by wavelet shrinkage of the log-magnitude-spectrum. 

Likewise, the performance of the technique did not vary much with respect to the 
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selection of the vanishing moments – this is in agreement with the observation of Adam 

and Michailovich. 

Other parameters to be selected for implementation are the DWT decomposition 

level – related to the frequency resolution and hence dependent on the signal length and 

sampling rate – and the Wiener deconvolution regularization coefficient  . 

In summary, the pulse estimation method proposed by Adam and Michailovich in 

[1] improves on work of Jensen and Leeman in [9] with regards to the separation of the 

pulse and material reflectivity function log-magnitude-spectra. Based again on the 

premise that the pulse log-magnitude-spectrum was smooth relative to the material 

reflectivity function log-magnitude-spectrum, the cepstrum-domain cut-off of Jensen and 

Leeman, essentially an ideal low-pass filtering of the log-magnitude-spectrum, was 

replaced by DWT shrinkage. However, this improvement did not address the issue of 

non-stationary behaviour of the pulse, which is discussed in the following subsection. 

2.3.8 Effects of Stationary Pulse Assumption 

One shortcoming common to both the work of Jensen and Leeman [9] as well as 

the work of Adam and Michailovich [1] is that the pulse is assumed to be stationary in 

each method of pulse estimation. The assumption of stationarity in both techniques 

allows for the use of the Fourier transform to represent the frequency spectra of the 

analyzed signals. As detailed in Section 2.2.1, the basis function for the Fourier 

transform is not localized with respect to time and is not well-suited for representing 

functions with non-stationary characteristics. 
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As discussed in Section 2.1.1, in near-field ultrasonic imaging the pulse is highly 

non-stationary due to diffraction effects – in fact, this can be considered the defining 

feature of the ultrasound near-field in this context. Also, as mentioned by Jensen and 

Leeman in [9] and quoted above, the pulse “amplitude and shape” are depth-dependent 

due to frequency-dependent attenuation in the imaged material(s). Thus, the pulse cannot 

be assumed stationary, particularly when imaging takes place in the near-field as it does 

in this work.  

Furthermore, Fourier-domain Wiener deconvolution leads to the well-

documented ringing effect around sharp edges or transitions in the image or signal, 

similar to Gibbs phenomena [10]. To illustrate this effect, Fig. 2.3.8-1 presents an 

example of a square pulse (top left) being convolved with a Gaussian-windowed sine 

wave of some arbitrary frequency (top right). The result of convolution with AWGN is 

shown bottom left for completeness. Wiener deconvolution, as derived in Section 2.3.5, 

was employed with complete knowledge of the original square pulse signal, the 

Gaussian-windowed sine wave and the noise. The result (bottom right) shows an 

overshoot and ringing effect around the sharp transitions of the square pulse signal, as is 

typically attributed to Gibbs phenomena. 
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2.3.9 Quasi-stationary Approach: Wavelet Shrinkage of the Log-Gabor-Spectrum 

Adam and Michailovich mention a quasi-stationary modification to their 

approach in [1] based on segmentation of the signal, processing each segment under the 

assumption that it is stationary and then concatenating the results. This quasi-stationary 

approach can be extended to offer an intermediate solution between the proposed 

solution and the initial stationary approach described by Adam and Michailovich; Rather 

than using non-overlapping rectangular-windowed segments, the segments can be 

windowed and overlapping. Hence, the Gabor transform – the Fourier transform of 

overlapping Gaussian-windowed segments – and Gabor deconvolution – segment-by-

segment Wiener deconvolution and reconstruction – can be used to localize both the 

pulse estimation and deconvolution with respect to time. 

 

Figure 2.3.8-1: Example of ringing effect in Fourier-domain Wiener deconvolution 
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It should be noted that this approach then introduces a trade-off of time-

localization – i.e. time-resolution of the quasi-stationary segment spectra – and 

frequency-resolution in the analysis [8], [23]. Thus, the window length for the Gabor 

transform is another parameter to select in addition to the wavelet vanishing moments 

and DWT decomposition level choices present in implementing the stationary method 

proposed by Adam and Michailovich. Using the quality metrics proposed in Section 4.3 

in conjunction with subjective assessment of the image quality, it was found empirically 

that a window length of 50 samples was suitable for this implementation. Of course, the 

optimal segment length depends on the sampling frequency, the length of the recorded 

signals and the non-stationarity of the signals, which is necessarily application 

dependent.  

The quasi-stationary adaptation of Adam and Michailovich’s method as 

implemented in this work follows the steps provided above for the stationary method but 

replaces the Fourier transform with the Gabor transform. The method can be summarized 

as follows: 

 The log-magnitude-spectrum of each fifty-percent overlapped Gaussian-

windowed segment of the signal is calculated;  

 The DWT shrinkage and Wiener deconvolution are then applied to each 

windowed segment spectrum;  

 The final result is reconstructed by applying the inverse Fourier 

transform to each segment, after which the overlapping segments are 

summed accordingly. 
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For simplicity, the overlap chosen for the Gabor transform in this method is fifty-

percent. As noted in [24], the fifty-percent overlap guarantees near perfect reconstruction 

when using the Gabor transform. 
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3. Proposed Log-Scalogram Shrinkage Technique 

3.1 Introduction 

This work proposes a novel blind deconvolution and denoising method for 

ultrasound. The proposed method aims to improve on the log-spectrum shrinkage-based 

method introduced by Adam and Michailovich in [1], which itself was an improvement 

on the cepstrum-domain approach of Jensen and Leeman in [9]. Using these works as a 

foundation, the proposed method as covered herein deals with neither the rigorous 

experimental verification of the pulse spectrum estimation accuracy nor proving its 

underlying premises such as the minimum-phase assumption. Rather, the proposed 

method provides an extension of the log-spectrum shrinkage and cepstrum-domain 

approaches in which the pulse is not assumed to be stationary and some aspects of 

wavelet denoising are included. Thus, the pulse estimation and deconvolution are 

localized with respect to time in this method. 

Like the pulse estimation methods of [1] and [9], the proposed method of pulse 

estimation is based on the general premise that the pulse magnitude-spectrum is smooth 

relative to the jaggedness of the material reflectivity function magnitude-spectrum. Also, 

like the log-magnitude-spectrum shrinkage-based technique in [1], the proposed method 

estimates the pulse spectrum by working with the homomorphic signal model in (6) – i.e. 

the log-magnitude-spectrum of the acquired signal. The difference between the proposed 

method and the work in [1] is then largely attributed to the representation of the signal 

spectrum. 
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3.2 CWT Coefficients as Representation of Spectra 

Based on the aforementioned motivation for time-localization, as discussed in 

Section 2.3.8, the proposed technique employs the CWT across multiple scales to 

estimate the time-localized spectrum at each discrete-time sample in the acquired signal. 

As mentioned in Section 2.2.1, an advantage provided by the CWT over the Gabor 

transform is that there is no trade-off between time-localization and frequency-

resolution. The time-localization of the CWT spectra is frequency dependent as the time-

domain support of the wavelet varies with the scale [6]. 

Note that the convolution theorem for the Fourier transform - as used for (5) and 

(6) from the signal model - does not generally hold for the CWT or even a windowed 

Short-Time Fourier Transform (STFT) such as the Gabor transform. Therefore, the use 

of the multi-scale CWT coefficients as a representation of time-localized spectra is more 

interpretive than mathematically exact. The nature of this generalization is similar to that 

of the pulse estimation assumptions – that is, a simplified interpretation of complex 

phenomena rather than rigorous mathematical proof. 

3.3 Wavelet Selection 

For estimation of the ultrasound pulse the CWT mother wavelet should be 

selected such that it resembles the pulse in order to provide a sparse representation of the 

back-scattering information in the acquired data [6]. The Coiflet-2 wavelet was used for 

the application described in Section 5 and was selected by subjective visual comparison 

with a pulse in the experiment data. However, while this selection is subjective and is 
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also dependent on the transducer and imaging system used, it should be noted that the 

performance of the proposed technique was not sensitive to the wavelet selection – the 

Coiflet and Symlet wavelets over a range of orders performed similarly with respect to 

the metrics defined in Section 4.3. As such, the technique should generalize well to other 

transducer-pulser setups.  

The DWT mother wavelet will be selected in agreement with the work in [1]. 

That is, the Symlet wavelet will be used to decompose the CWT scalogram and separate 

the smooth pulse spectrum via wavelet shrinkage of the DWT detail coefficients. 

Likewise, the number of vanishing moments of the mother wavelet and DWT 

decomposition level will be in agreement with the ranges discussed in [1] and initially 

will be found empirically. 

3.4 Range of Scales for CWT 

More importantly however, the CWT scales should match the dominant 

frequency range of the pulse. The range of CWT scales to be considered can be found by 

calculating the CWT coefficients in part of the acquired data or by heuristic optimization 

with respect to some quality metric performed on part of the data set. For example, Fig. 

3.4-1 shows the magnitude of the CWT coefficients calculated for scales 1-100, in steps 

of one, for a single scan-line sampled at 160 MHz containing four reflections. Note that 

the peak located around discrete-time index 3550 is noise, not a reflection, and its energy 

spreads over a considerable range of scales. As such, the pulse energy in this case 

appears to be concentrated around scales 10-30. 
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For the purposes of explanation in this section this empirical selection of the 

CWT scales will suffice. As mentioned above, other parameters such as the DWT 

wavelet vanishing moments and decomposition level will be in accordance with the 

ranges suggested in [1] for the Fourier-domain method and found empirically. 

Automatically selecting the parameters of the proposed technique – CWT scales, Wiener 

regularization coefficient, DWT wavelet vanishing moments and DWT decomposition 

level – will be further explored in Section 4 using heuristic optimization with various 

quality metrics. 

 

Figure 3.4-1: Example scan (top) and the magnitude of its corresponding CWT-

coefficients from scales 1-100 (bottom) 
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3.5 Summary of Method 

The proposed log-scalogram shrinkage-based technique for blind deconvolution 

of ultrasound, as implemented for the application described in Section 5, is summarized 

as follows: 

1. Apply the CWT to the acquired data over the range of scales where pulse 

information is dominant, in this case ten to thirty in steps of one, using a 

mother wavelet resembling the pulse such as the Coiflet-2;  

    
 
        , where a denotes the scale. 

2. Calculate the log-magnitude of the CWT coefficients;  

      
 
              

3. Apply DWT across the CWT-scales, i.e. in the a-direction, using the 

Symlet wavelet with six vanishing moments to a decomposition level of 

three. Note that the number of vanishing moments matches that of the 

stationary log-spectrum shrinkage method. Similarly, the decomposition 

level selected is dependent on the range of CWT scales considered. 

4. Reconstruct the pulse CWT-coefficients estimate              from the 

DWT approximation coefficients and approximate its phase via the 

Hilbert transform. 

5. CWT-domain Wiener deconvolution for each scale: 

          
              

            
 where ɛ is a constant proportional to the noise 

level. 



44 

 

6. Inverse CWT for each scale,        
 
       , and arithmetic averaging 

of the resulting signals,        
 

 
        , where A denotes the number 

of scales considered. 

Although the proposed technique can be summarized simply as an extension of 

the method of Adam and Michailovich to the CWT scalogram rather than a Fourier 

spectrum, there are interesting consequences to this extension beyond the 

aforementioned compaction property. The resulting technique, in particular the wavelet-

domain Wiener deconvolution filter of the fifth step above, is similar to the WienerChop 

method of [11] and [12], described in Section 2.2.4. The exception is that the estimate is 

of the pulse to be deconvolved in the presence of noise rather than the noise-free signal 

and is found by DWT-shrinkage of the CWT coefficients rather than simple thresholding 

of the coefficients. The other difference between the proposed technique and the 

WienerChop method is the use of multiple wavelet bases. However, the proposed 

technique can be extended to use a second wavelet as in the WienerChop method. The 

inclusion of a second wavelet for the deconvolution stage is explored in the following 

subsection. 

3.6 WienerChop Modification 

The proposed log-scalogram modification to the log-magnitude-spectrum 

shrinkage-based method of Adam and Michailovich [1] can be further modified to 

include separate CWT wavelets for the estimation and Wiener deconvolution stages 

based on the principles of the WienerChop method of [11]. As discussed in Section 

2.2.4, the use of a separate wavelet for the deconvolution stage may reduce the effects of 
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estimation error in the first wavelet domain on the final result. The possible reduction in 

the effects of estimation error occurs due to spreading of the error over a wider range of 

wavelet scales in the wavelet deconvolution domain relative to the signal.  

This modification to the proposed technique can be implemented by performing 

steps three and four in the WienerChop summary between steps four and five of the 

preceding summary of the proposed technique. The estimated pulse CWT coefficients, 

reconstructed from the DWT approximation coefficients, are converted to time-domain 

via inverse CWT. The original data and estimated pulse are then transformed to a second 

CWT domain where the Wiener deconvolution occurs. 

For this implementation the second wavelet basis was the Daubechies-2 wavelet, 

which was selected intuitively to be both sufficiently different than the Coiflet-2 and as a 

means of enhancing the edges of the final deconvolved image. As mentioned in [12], the 

influence of the second wavelet is difficult to formulate and as such, the selection was 

done empirically. To illustrate the effects of including the second wavelet, a comparison 

will be made in the results in Section 6.3 between the proposed technique with a single 

CWT basis and that described here incorporating the WienerChop principles. 
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4. Optimized Parameter Selection 

4.1 Introduction 

The performance of the proposed log-scalogram shrinkage-based technique in 

both its one-basis and WienerChop-modified two-basis implementations is obviously 

dictated by the selection of its parameters. For this work the following parameters will be 

optimized: DWT wavelet vanishing moments, DWT decomposition level, Wiener 

regularization coefficient, as well as the CWT minimum and maximum scales. For 

simplicity the selection of the CWT wavelets will be left unchanged from those noted in 

Section 3.3. Also, the range of CWT scales will be covered in increments of one limiting 

the scales to integer values, although the CWT has no restriction on non-integer scales. 

These exclusions are considered necessary to limit the complexity of the optimization 

problem since the search space would otherwise grow exponentially. Furthermore, the 

performance of the method was found to be relatively insensitive to these excluded 

parameters. 

Since the aforementioned parameters essentially control the behaviour of the 

proposed technique with respect to separation of the pulse and reflectivity function, the 

reflectivity function would necessarily influence the optimal parameter selection. It will 

be assumed for simplicity that some overlap of the pulse and reflectivity function is 

inevitable and thus a compromise is made to either include information regarding the 

reflectivity function in the pulse estimate or exclude components of the pulse spectrum. 

Of course, the degree to which this compromise will be made in the parameter 
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optimization will be assessed by the performance of the proposed technique on a training 

set with respect to some given cost function. 

To facilitate automatic selection of the algorithm parameters, a small number of 

scans will be used as a training set. In this work only six adjacent scans were used as the 

training set from the experimental setup described in Section 5. Such a small training set 

is adequate for this application due to the relative similarity of the scans. If imaging 

structures with greater scan-to-scan variety of content, a larger training set or content-

triggered re-training may be advisable. Only the single CWT wavelet implementation of 

the proposed technique was used in the parameter selection under the assumption that 

running the optimization for the WienerChop-modified technique would yield similar 

parameters. 

4.2 Heuristic Optimization 

Automated selection of the parameters in the proposed technique may be viewed 

as an optimization problem given a certain image quality metric and is thus 

accomplished via heuristic optimization. Such a gradient-free method is required due to 

the fact that no explicitly defined relation exists to describe the behavior of the proposed 

technique with respect to each parameter and a given quality metric. Some knowledge of 

the parameter selection problem does exist to guide the optimization setup, such as a 

reasonable range of values provided in [1] and the assumption that the performance of 

the technique is stable with respect to parameter values in that range. As such, it can be 

assumed that any quality metric will be smooth with respect to each parameter. Given 

these assumptions, the heuristic optimization was implemented as a five-dimensional 
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Nelder-Mead simplex direct-search [25]. Boundaries on the simplex search were 

implemented as penalty factors included in the cost function [25]. Multiple restarts and 

random seeding points were added to the simplex search for robustness. 

4.3 Cost Functions 

For a lack of an established quality metric for ultrasound deconvolution and for 

the sake of comparison, several different cost functions were used to optimize the 

parameters of the proposed technique: entropy, autocorrelation 6-dB width divided by 

PSNR and a fractal dimension estimate. Due to the fact that the metrics will only be 

comparing the same image content processed with different parameters they need not be 

content independent – i.e. these metrics could not be used to compare the blurriness of 

several different images with different edges or textures. 

Entropy has been commonly used as a quality metric for images and is 

considered as a measure of the information content [26]. Alternatively, entropy can be 

viewed as the flatness of a probability distribution. For the purposes of evaluating 

deblurring and denoising effectiveness, entropy can be calculated directly on the image 

pixel intensities rather than a histogram – i.e. a sampled probability distribution – as a 

measure of the edge thickness rather than the probability distribution flatness. Thus, for 

this application minimum entropy corresponding to sharper edges is desired. 

The autocorrelation function of a signal relates how each sample of the signal is 

correlated to prior and subsequent samples. Specifically, the main lobe of the 

autocorrelation function, if such a separable lobe exists, corresponds to how small shifts 

in the signal affect correlation with itself. Thus, if an image is blurred, there will be a 
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greater correlation along the direction of the blur. The temporal blur is of consideration 

here and as such, the autocorrelation of the ultrasound scans in the range direction is 

considered. The degree to which the image is blurred can be described by the width of 

the main lobe of the autocorrelation function. 

Autocorrelation 6-dB width was considered in [27] as a measure of ultrasound 

image blur. Since the autocorrelation 6-dB width is restricted to an integer value of 

samples, the cost function is made more sensitive to more subtle improvements by 

dividing it by its peak signal-to-noise ratio in linear terms. Otherwise it was found that 

several different parameter settings resulted in the same autocorrelation 6-dB width 

while the subjective quality of the resulting images varied significantly, particularly with 

respect to noise levels. Hereafter this cost function, the autocorrelation 6-dB width 

divided by the PSNR, will be referred to simply as AW&N (autocorrelation width and 

noise) for brevity.  

Fractal dimension used as a measure of image blur is novel to this work. The 

application of fractal dimension estimates as a measure of blur may not generalize to 

other types of images due to the fact that in traditional image blurring, such as camera or 

subject motion in photography, the blurring kernel is smooth and unimodal. In the case 

of the signal model presented in (4), in which the ultrasound pulse resembles a 

modulated sinusoid with multiple peaks, the blurring of the reflectivity function 

introduces repetitions of the image edges as noticeable in the images in Section 6. Note 

that entropy and autocorrelation main-lobe width only account for the width of the edges, 

not their repetition as described here. Since fractal dimension estimates are a measure of 

signal complexity or time-filling property, they can be used in this application to 
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measure the repetition of image edges [28]. For this work the Katz fractal dimension 

estimate is used. While many means of estimating the fractal dimension of a signal exist, 

the Katz estimate is less sensitive to noise than the Higuchi estimate, for instance. Also, 

the Katz fractal dimension estimate can be calculated directly on the waveform without 

the requirement of preprocessing [29].  

The fractal dimension of a signal can be defined as: 

    
        

        
 (30) 

“where   is the total length of the curve or sum of distances between successive points, 

and   is the diameter estimated as the distance between the first point of the sequence 

and the point of the sequence that provides the farthest distance” [29]. Of course, the 

distances here are dependent on the units of measurement – i.e. the amplitude and time 

scales. The Katz fractal dimension corrects for this dependency by normalizing both   

and   with respect to the average distance between successive samples, denoted here as 

 . The Katz fractal dimension is then given as: 

    
      

 
   

      
 
   

 (31)  

Then considering the total number of samples in the signal,  , for which      , (31) 

can be expressed equivalently as: 

    
        

      
 
            

 (32) 

The parameter selections resulting from the use of the aforementioned cost 

functions are listed in Table 4.3-1. Note that some parameters are less influential on the 
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behavior of the proposed technique than others – i.e. different CWT scale range 

selections produced visually noticeable differences in the final image while in 

comparison the DWT decomposition level produced little change. Thus, the parameter 

selections alone are not necessarily indicative of the influence of the various cost 

functions. Further discussion follows in Section 6. 

Table 4.3-1: Parameters Selected with Various Cost Functions 

 Empirical Entropy AW&N 
Fractal 

Dimension 

Vanishing 
moments 

6 9 2 9 

Decomposition  
level 

3 9 7 8 

Regularization 
coefficient 

2000 2037 3482 1510 

Minimum  
CWT scale 

10 8 15 15 

Maximum  
CWT scale 

30 18 31 40 
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5. Experiment 

A section of an underground power cable, similar to that shown in Fig. 5-1, was 

immersed in a water tank and imaged in two-dimensions by scanning around its 

circumference with the transducer approximately radially aligned with the cable – i.e. the 

line of sight of the transducer was roughly perpendicular to the cable surface both 

circumferentially and along its length. 
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Alignment of the cable and transducer was performed manually via visual 

inspection. To correct for this as well as any surface imperfections or non-circularity of 

the cable the scans were aligned prior to forming the circular images shown in the next 

section. Due to the “blurriness” and noise in the raw scan data, alignment had to first be 

performed on the scans processed by the proposed technique. Temporal alignment of the 

scans was performed by cross-correlating each scan with the first scan and subsequently 

 

Figure 5-1: Cross-sectional photo of power cable (enlarged) 
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shifting by the location of the cross-correlation maxima from center. These same shifts 

were then applied to all the images. 

The transducer used was a General Electric 15 MHz non-focused immersion 

transducer, model number 113-127-300 (as documented in Appendix A). A Lecoeur 

Electronique US-Key pulser (Appendix B) was used to drive the transducer and interface 

with a computer, from which the data acquisition and analysis were performed with 

MathWorks MATLAB software. The sampling frequency used was 160 MHz.  

In order to highlight the effectiveness of the noise removal properties in the 

proposed method and compare with that of the other methods, no averaging was done 

between multiple scans at the same position. That is, only one scan was recorded per 

angular position around the cable. While AWGN could otherwise be reduced by 

averaging multiple scans per position, this at least demonstrates the stability or 

insensitivity of the method in low SNR applications. 

All of the imaging in this work took place in the near-field of the aforementioned 

transducer.  Near-field imaging was necessary due mostly to the size of the transducer, 

which was selected due to the acoustic power required to propagate through the multiple 

layers of the cable. Furthermore, the future development of a field-ready test setup for 

industrial application limits the distance that the transducer can be placed away from the 

cable. That is, far-field imaging would theoretically be possible by moving the 

transducer further away, as given by equation (2), however, practically the test setup 

should be more compact to allow mobility of the transducer down the length of the cable 

being tested.  
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6. Results and Discussion 

The results will be organized in three subsections. The first will compare the 

initial implementation of the proposed technique with manually selected parameters to 

its preceding methods: the stationary log-magnitude-spectrum shrinkage technique 

proposed by Adam and Michailovich, and the intermediate solution, its modification 

using the Gabor transform. Second, the effects of parameter optimization will be 

examined with respect to the various cost functions presented in Section 4.3. Last, the 

use of a second CWT basis similar to the WienerChop method will be explored. 

Additional discussion follows. 

For visual clarity in the results all images are truncated in time-duration of the 

scans and some details of the inner cable, namely the XLPE layer, are omitted. This is 

due to the fact that the XLPE layer features very little detail in contrast to the first few 

layers of the cable, which better exhibit the effectiveness of the technique. Furthermore, 

since the presence of water-trees in the tested sample is unknown, the experiment as 

documented here is more aimed at a general pre-processing of ultrasound rather than the 

specific application of water-tree imaging. 

 Images are shown approximately aligned in rotation with the cable photo in Fig. 

5-1, as seen by noting the position of the overlap in the copper layer at the top of the 

image. However, due to the propagation velocity differences in each material the layer-

to-layer edges are not aligned with Fig. 5-1. The unprocessed ultrasound B-scan image is 

shown in Fig. 6-1.  
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6.1 Proposed Technique vs. Log-Spectrum Shrinkage Method 

Fig. 6.1-1 - 6.1-3 show the results of deconvolution using the stationary log-

spectrum shrinkage, quasi-stationary log-spectrum shrinkage, and the proposed 

technique with empirically selected parameters and a single CWT basis, respectively.  

  

 

Figure 6-1: Unprocessed B-scan image 
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Figure 6.1-1: Results of stationary log-spectrum shrinkage-based deconvolution 
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Figure 6.1-2: Results of quasi-stationary log-spectrum shrinkage-based deconvolution 
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Visually assessing the results, the stationary log-spectrum shrinkage offers only a 

slight improvement on the unprocessed image. The quasi-stationary log-spectrum 

shrinkage processed image, while noticeably different than the unprocessed image, is not 

necessarily improved since the larger peaks of noise are still prominent and the edges of 

the image appear even blurrier. The proposed technique visually reduced noise and 

 

Figure 6.1-3: Results of proposed log-scalogram shrinkage-based deconvolution with 

empirically selected parameters and a single CWT basis 
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sharpened the edges, which is particularly notable in the separation between the two 

outermost edges of the image. The quality metrics for the three deconvolution techniques 

considered, as applied to the above images, are summarized in Table 6.1-1. 

Table 6.1-1: Quality Metric Comparison of Methods 

 
Entropy AW&N 

Fractal 

Dimension 

Unprocessed image 10.98 28.03 1.0317 

Stationary 

log-spectrum shrinkage 
11.02 13.53 1.0330 

Quasi-stationary 

log-spectrum shrinkage 
9.79 6.59 1.0000 

Proposed technique 

- empirically selected 

  parameters 

- single CWT basis 

8.54 0.48 1.0047 

 

6.2 Parameter Optimization 

Fig. 6.2-1 - 6.2-3 show the results of parameter optimization on the proposed 

technique with a single CWT basis using the cost functions: entropy, AW&N and fractal 

dimension, respectively. 
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Figure 6.2-1: Results of proposed log-scalogram shrinkage-based deconvolution with 

entropy-optimized parameters and a single CWT basis 
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Figure 6.2-2: Results of proposed log-scalogram shrinkage-based deconvolution with 

AW&N-optimized parameters and a single CWT basis 
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The quality metrics for the single CWT basis cost-optimized processed images 

are summarized in Table 6.2-1. Visually assessing the results, the fractal dimension and 

AW&N-optimized parameters produced the clearest images – the two outermost edges 

are sharper and there is less noise than in the entropy-optimized image – and both 

represent a noticeable improvement from the manually selected parameters. The entropy-

 

Figure 6.2-3: Results of proposed log-scalogram shrinkage-based deconvolution with 

fractal dimension-optimized parameters and a single CWT basis 
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optimized image is also noticeably noisier and blurrier than that produced by the 

manually selected parameters, which is in agreement with its higher AW&N and fractal 

dimension. This indicates the entropy cost function is poorly suited for this application. 

Table 6.2-1: Quality Metrics for Cost-Optimized Single CWT-Basis Images 

 
Entropy AW&N 

Fractal 

Dimension 

Entropy-optimized 8.39 0.61 1.0050 

AW&N-optimized 8.40 0.34 1.0040 

Fractal dimension-optimized 8.61 0.41 1.0037 

 

6.3 WienerChop Modification 

The proposed technique was also implemented using two CWT wavelets, as 

specified in Section 3.6. Fig. 6.3-1 - 6.3-3 display the resulting images of the 

WienerChop modified proposed technique using the parameters optimized with respect 

to entropy, AW&N and fractal dimension, respectively. 
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Figure 6.3-1: Results of proposed log-scalogram shrinkage-based deconvolution with 

entropy-optimized parameters and dual CWT basis 
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Figure 6.3-2: Results of proposed log-scalogram shrinkage-based deconvolution with 

AW&N-optimized parameters and dual CWT basis 



67 

 

  

The quality metrics for the dual CWT basis images in Fig. 6.3-1 - 6.3-3 are 

shown in Table 6.3-1. Assessing the images visually, the fractal dimension-optimized 

parameters yielded the clearest image with the AW&N-optimized parameters producing 

similar results. Once again, the entropy-optimized parameters produced a noisier and 

blurrier image than the other two cost functions. All three images are improved over 

 

Figure 6.3-3: Results of proposed log-scalogram shrinkage-based deconvolution with 

fractal dimension-optimized parameters and dual CWT basis 
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their single CWT basis counterparts, illustrating the effectiveness of incorporating the 

WienerChop principles. Also noteworthy is that the fractal dimension-optimized 

parameters outperformed the AW&N-optimized parameters with respect to AW&N. This 

is due to the fact that the parameter optimizations occurred on the single CWT basis 

implementation and were not repeated for this implementation for which the optimal 

parameters may differ. An equally likely scenario is that the simplex search returns sub-

optimal parameters or that the optimal parameters on the training set are not perfectly 

matched to the entire image. In either case, the results of the optimization offer adequate 

enough results to illustrate the effectiveness of the technique. 

Table 6.3-1: Quality Metrics for Cost-Optimized Dual CWT-Basis Images 

 
Entropy AW&N 

Fractal 

Dimension 

Entropy-optimized 8.37 0.23 1.0082 

AW&N-optimized 8.56 0.24 1.0036 

Fractal dimension-optimized 8.64 0.23 1.0029 

 

6.4 Additional Discussion 

Referring back to the parameters in Table 4.3-1 and their resulting images from 

single and dual CWT basis implementations in Fig. 6.2-1 - 6.2-3 and Fig. 6.3-1 - 6.3-3 

respectively, the effects of each parameter or the sensitivity of its setting on the 

performance of the technique can be seen. For instance, the AW&N and fractal 

dimension cost functions yielded different DWT wavelet vanishing moments and Wiener 

regularization coefficients yet produced results of similar quality and characteristics 

throughout. Moreover, the entropy and fractal dimension-optimized parameters were 
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similar in their DWT vanishing moments, DWT decomposition level and Wiener 

regularization coefficient, yet the entropy-optimized parameters consistently produced 

notably worse results. Thus, as hypothesized in Section 3.4, the range of CWT scales is 

the most sensitive parameter to select. Recalling that CWT scale is inversely 

proportional to wavelet pseudo-frequency, the minimum scale can be considered the 

high-frequency cut-off in the pulse estimation, above which additive noise is more 

prominent than pulse components. This may explain why the minimum CWT scale in 

each parameter set was consistently related to the subjective image quality. The fact that 

the maximum CWT scale could differ so greatly between the AW&N and fractal 

dimension-optimized values while producing similar results is due to two reasons: that 

the CWT scale to pseudo-frequency relation is non-linear, resulting in a smaller 

difference in the actual low-frequency cut-off considered; and that the entire frequency 

range in which the pulse components were dominant need not be captured due to the 

over-complete description provided by the CWT scalogram. 
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7. Conclusion 

This thesis presented a novel technique for blind deconvolution and denoising of 

ultrasound for NDT purposes. Improvements offered by the proposed technique over 

existing blind deconvolution techniques for ultrasound are primarily based on dealing 

with non-stationarity of the ultrasound signal, in particular the point-spread function in 

near-field imaging.  

Jensen and Leeman proposed estimating the pulse from the received ultrasound 

data based on the premise that the pulse magnitude-spectrum was smooth relative to the 

material reflectivity function magnitude-spectrum. This same premise was used again by 

Adam and Michailovich, who improved the pulse spectrum estimation via DWT 

shrinkage of the log-magnitude-transformed Fourier-spectrum of the received ultrasound 

signal.  

Taking the method of Adam and Michailovich as its foundation, the proposed 

method in this work localized the spectra with respect to time such as to better deal with 

non-stationarity of the signals. The time-localized spectrum was represented as the 

multiscale CWT coefficients.  

The CWT coefficient magnitudes of the pulse were estimated by DWT shrinkage 

of the ultrasound signals log-magnitude-transformed CWT coefficients. The phase of the 

CWT coefficients was recovered via the Hilbert transform, utilizing the minimum-phase 

assumption that Jensen and Leeman found to be true for most piezoelectric transducers. 
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The estimated pulse was then deconvolved via Weiner filter in the CWT-domain and the 

inverse CWT was employed to recover the approximate reflectivity function.  

Further improvements were provided by the proposed technique via parameter 

optimization with respect to the presented cost functions – entropy, autocorrelation width 

divided by PSNR, and fractal dimension – as well as by utilizing different CWT 

wavelets for the tasks of estimation and deconvolution, as proposed in the WienerChop 

algorithm. For the application of power cable imaging, all implementations of the 

proposed technique offered noticeable improvements over its predecessors with respect 

to both edge sharpness and noise levels. 



72 

 

References 

 [1] D. Adam, and O. Michailovich, "Blind deconvolution of ultrasound sequences 

using nonparametric local polynomial estimates of the pulse," Biomedical 

Engineering, IEEE Transactions on, vol. 49, no. 2, pp. 118-131, Feb. 2002 

[2] Fernandez-Caballero, and J. L. Mateo, "Methodological approach to reducing 

speckle noise in ultrasound images," Biomedical Engineering and Informatics, 

International Conference on, vol. 2, pp. 147-154, 27-30 May 2008 

 [3] D. L. Donoho, and I. M. Johnstone, "Threshold selection for wavelet shrinkage of 

noisy data," Engineering in Medicine and Biology Society, 1994. Engineering 

Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th 

Annual International Conference of the IEEE, vol. 1, pp. A24-A25, 3-6 Nov 1994 

[4] R.K. Mukkavilli, J.S. Sahambi, and P.K. Bora, "Modified homomorphic wavelet 

based despeckling of medical ultrasound images," Electrical and Computer 

Engineering, 2008. CCECE 2008. Canadian Conference on, pp. 887-890, 4-7 

May 2008 

[5] J. L. San Emeterio, and M. A. Rodriguez-Hernandez, "Wavelet denoising of 

ultrasonic A-scans for detection of weak signals," Systems, Signals and Image 

Processing (IWSSIP), 2012 19th International Conference on, pp. 48-51, 11-13 

April 2012 



73 

 

[6] M. Unser, "Wavelets, statistics, and biomedical applications," Statistical Signal 

and Array Processing, Proceedings, 8th IEEE Signal Processing Workshop on, 

pp. 244-249, 24-26 Jun 1996 

[7] Q. Xu, S. Wan, W. Pei, and L. Yang, "Ultrasonic image processing using wavelet 

based deconvolution," Neural Networks and Signal Processing, Proceedings of 

the 2003 International Conference on, vol. 2, pp. 1013- 1016, 14-17 Dec. 2003 

[8] J.-D. Aussel, and J.-P. Monchalin, "Structure noise reduction and deconvolution 

of ultrasonic data using wavelet decomposition (ultrasonic flaw detection)," 

Ultrasonics Symposium, Proceedings, IEEE 1989, vol. 2, pp. 1139-1144, 3-6 Oct 

1989 

[9] J. A. Jensen, and S. Leeman, "Nonparametric estimation of ultrasound pulses," 

Biomedical Engineering, IEEE Transactions on, vol. 41, no. 10, pp. 929-936, 

Oct. 1994 

[10] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, "Iterative methods for image 

deblurring," Proceedings of the IEEE, vol. 78, no. 5, pp. 856-883, May 1990 

[11] S. P. Ghael, A. M. Sayeed, and R. Baraniuk, “Improved Wavelet Denoising via 

Empirical Wiener Filtering,” Proceedings of SPIE, vol. 3169, pp. 389-399, San 

Diego, July 1997 

[12] C. Hyeokho, and R. Baraniuk, "Analysis of wavelet-domain Wiener filters," 

Time-Frequency and Time-Scale Analysis, 1998. Proceedings of the IEEE-SP 

International Symposium on, pp. 613-616, 6-9 Oct 1998 



74 

 

[13] G. Thomas, D. Flores-Tapia, S. Pistorius, and N. Fernando, "Synthetic aperture 

ultrasound imaging of XLPE insulation of underground power cables," Electrical 

Insulation Magazine, IEEE, vol. 26, no. 3, pp. 24-34, May-June 2010 

[14] G. Thomas, D. Flores-Tapia, and S. Pistorius, "Frequency compounding of 

synthetic aperture ultrasound imagery using multiscale products," 

Instrumentation and Measurement Technology Conference, 2010 IEEE, pp. 702-

705, 3-6 May 2010 

[15] J. A. Jensen, "Simulation of advanced ultrasound systems using Field II," 

Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium on, 

vol. 1, pp. 636- 639, 15-18 April 2004 

[16] J. A. Jensen, and N. B. Svendsen,  “Calculation of pressure fields from arbitrarily 

shaped, apodized, and excited ultrasound transducers,” Ultrasonics, Ferroelectrics 

and Frequency Control, IEEE Transactions on, vol. 39, pp. 262-267, 1992 

[17] A. Graps, "An introduction to wavelets," Computational Science & Engineering, 

IEEE, vol. 2, no. 2, pp. 50-61, Summer 1995 

[18] X. Wang, Y. Shen, Z. Liu, Q. Wang, "Noise reduction for Doppler ultrasound 

signal based on cycle-spinning and thresholding methods," Instrumentation and 

Measurement Technology Conference, Proceedings of the 21st IEEE, vol. 3, pp. 

1922- 1925, 18-20 May 2004 



75 

 

[19] M. Unser, "Vanishing moments and the approximation power of wavelet 

expansions," Image Processing, Proceedings, International Conference on, vol. 1, 

pp. 629-632, 16-19 Sep 1996 

[20] J. G. Proakis and D. Manolakis, “Inverse Systems and Deconvolution” in Digital 

Signal Processing: Principles, Algorithms and Applications, 3rd ed. New Jersey, 

Prentice Hall, 1995, ch. 4, sec. 6, pp. 356-361 

[21] A. Lopez Sanchez, and L. W. Schmerr, “Characterization of an Ultrasonic 

Nondestructive Measurement System”, 27 Oct 2006 

[22] C. N. Liu, M. Fatemi, and R. C. Waag, "Digital Processing for Improvement of 

Ultrasonic Abdominal Images," Medical Imaging, IEEE Transactions on, vol. 2, 

no. 2, pp. 66-75, June 1983 

[23] E. Oruklu, S. Aslan, and J. Saniie, "Applications of time-frequency distributions 

for ultrasonic flaw detection," Ultrasonics Symposium (IUS), 2009 IEEE 

International, pp. 2000-2003, 20-23 Sept. 2009 

[24] G. Thomas, and A. E. Brito, "Noise suppression and component extraction of 

underwater acoustic signals," OCEANS '97. MTS/IEEE Conference Proceedings, 

vol. 2, pp. 1353-1358, 6-9 Oct 1997 

[25] J. W. Bandler, "Optimization Methods for Computer-Aided Design," Microwave 

Theory and Techniques, IEEE Transactions on, vol. 17, no. 8, pp. 533- 552, Aug 

1969 



76 

 

[26] G. Thomas, B. C. Flores, and D. Flores-Tapia, "ISAR motion compensation 

using entropy metrics," Radar Systems, 2007 IET International Conference on, 

pp. 1-4, 15-18 Oct. 2007 

[27] J. R. B. Taylor, J. J. M. Chan, and G. Thomas, "Frequency selection for 

compounding synthetic aperture ultrasound images," Imaging Systems and 

Techniques, 2012 IEEE International Conference on, pp. 74-77, 16-17 July 2012 

[28] S. P. Arjunan, and D. K. Kumar, "Fractal Based Modelling and Analysis of 

Electromyography (EMG) To Identify Subtle Actions," Engineering in Medicine 

and Biology Society, 2007, 29th Annual International Conference of the IEEE, 

pp. 1961-1964, 22-26 Aug. 2007 

[29] R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, "A comparison of waveform 

fractal dimension algorithms," Circuits and Systems I: Fundamental Theory and 

Applications, IEEE Transactions on, vol. 48, no. 2, pp. 177-183, Feb 2001 

 



77 

 

Appendix A: Transducer Datasheets 

Item removed due to copyright issues. To view, refer to its source:  

http://www.ge-mcs.com/download/ultrasound/transducers/GEIT-20117EN_ultrasonic-

transducer-catalog.pdf 
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Appendix B: Pulser Datasheets 

Item removed due to copyright issues. To view, refer to its source:  

http://www.lecoeur-electronique.net/cariboost_files/us-key_r4_0.pdf 
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Appendix C: MATLAB Code 

Below is the MATLAB code used for processing the ultrasound scans in this 

work. Note that text-wrapping in this document precludes copying this code in to 

MATLAB without modification.  

%% LOAD, AVERAGE, TRUNCATE AND NORMALIZE DATA 

  
clear all; close all; clc; 
path(path,'C:\Users\Jason\Documents\University\Masters_coursework\SAF\M

ATLAB'); 
dir = 

'C:\Users\Jason\Documents\University\Masters_coursework\SAF\MATLAB\Scan

s\prf_freq_spiral4'; 
ang = 0:2:360; 
freq = 5; 
for a = 1:numel(ang) 
    folder = [dir '\ang' num2str(ang(a)) '\f' num2str(freq)]; 
    load([folder '\uv1.mat']); 
    s(a,:) = v.rec(1,:); %no averaging 
    %s(a,:) = mean(v.rec,1); %average 16 scans per position 
    s(a,:) = s(a,:)-mean(s(a,:)); 
    clear u v 
end 
sig = s(:,1:4000); %truncate @ end 
sig = sig./std(std(sig)); %normalize 

  
%% ALIGN SCANS 

  
load('Alignment Shifts.mat','shifts'); 
for i = 2:size(s,1) 
    sig(i,:) = circshift(sig(i,:),[0,shifts(i)]); 
end 
sig = sig(:,201:end); %truncate @ start 

  
%% CIRCULAR DISPLAY PARAMETERS 

  
ind_dis = 1:1000; %indexes to display 
r = linspace(1,0.4,numel(ind_dis)); %[mm] 
theta = pi*ang'/180; 
x = cos(theta)*r; 
y = sin(theta)*r; 

  
% Display original circular image 
figure; pcolor(x,y,abs(sig(:,ind_dis))); shading(gca,'interp'); axis 

image 
title('Original Image','FontSize',16); 
set(gca,'XTick',[]); set(gca,'YTick',[]); 
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%% WAVELET SHRINKAGE OF LOG-SPECTRUM FOR DECONVOLUTION 
%  based on:    "Blind Deconvolution of Ultrasound Sequences Using 
%                Nonparametric Local Polynomial Estimates of the Pulse" 

  
% Setting up data 
S = fft(sig,[],2); 
SL = log(abs(S)); 

  
%(1) Apply DWT to SL with appropriate wavelet (Symlets - near linear-

phase, near symmetric) 
K = 6;% Vanishing moments - "near symmetric wavelets with vanishing 

moments between 4 and 6" 
M = 7;% Decomposition level - M = 3 in paper but with lower sampling 

rate and fewer samples 
SLW = mdwtdec('r',SL,M,['sym' num2str(2*K)]); %symN, N even, has N/2 

vanishing moments 

  
%(2) Zero-out detail coefficients and reconstruct to approximate FL 
FL = mdwtrec(SLW,'a'); %reconstruct approximation coefficients 

  
%(3) Use Hilbert transform to recover approximate F 
F = exp(FL).*exp(j.*imag(hilbert(FL')')); 

  
%(4) Apply Wiener deconvolution to approximate S/F 
eps = 10000;% Wiener regularization coefficient (can be vector for 

brute-force search) 
blur = zeros(size(eps)); 
baseblur = find6dB(xcorr(reshape(abs(sig'),[],1))); 
PSNR = zeros(size(eps)); 
basePSNR = max(max(abs(sig)))/sqrt(mean(mean(abs(sig).^2))); 
cost = zeros(size(eps)); 
for i = 1:numel(eps) 
    G = S.*F./(abs(F).^2+eps(i)); 
    g = ifft(G,[],2); 
    g = g./std(std(g)); 
    blur = find6dB(xcorr(reshape(abs(g'),[],1)));%/baseblur; 
    PSNR = max(max(abs(g)))/sqrt(mean(mean(abs(g).^2)));%/basePSNR; 
    AWN = blur/PSNR; 
    FD = Katz(reshape(g',[],1)); 
    entrop = imentrop(g,'r'); 
    cost(i) = FD; %AWN; 
end 
[temp,ind] = min(cost); clear temp; 
G = S.*F./(abs(F).^2+eps(ind)); 
g = real(ifft(G,[],2)); 
g(abs(g)>0.7*max(max(abs(g)))) = 0.7*max(max(abs(g))); %adjust for more 

effective scaling 

  
% Display circular image 
figure; pcolor(x,y,abs(g(:,ind_dis))); shading(gca,'interp'); axis 

image 
title(['Wiener Deconvolution - FFT Spectrum;   K = ' num2str(K) ', M = 

' num2str(M) ', eps = ' num2str(eps) ... 
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    10 'AW&N = ' num2str(AWN) ', FD = ' num2str(FD) ', Entropy = ' 

num2str(entrop)],'FontSize',12); 
set(gca,'XTick',[]); set(gca,'YTick',[]); 

  
%% GABOR-TRANSFORM (STFT) LOG-SPECTRUM WAVELET SHRINKAGE 

  
seglen = 50; 
ov = 0.5; 
segnum = ceil((size(sig,2)-seglen)/seglen/(1-ov)+1); 

  
K = 6;% Vanishing moments - "near symmetric wavelets with vanishing 

moments between 4 and 6" 
M = 7;% Decomposition level - M = 3 in paper but with lower sampling 

rate and fewer samples 
eps = 10000;% Wiener regularization coefficient 

  
gs = zeros(size(sig,1),size(sig,2),segnum); 
for i = 1:segnum 
    display(['progress: ' num2str(i/segnum)]) 
    startind = ceil((i-1)*seglen*(1-ov)+1); 
    seg = sig(:,startind:startind-

1+seglen).*(ones(size(sig,1),1)*gausswin(seglen,2.15)'); 
    SEG = fft(seg,[],2); 
    SL = log(abs(SEG)); 
    SLW = mdwtdec('r',SL,M,['sym' num2str(2*K)]); %symN, N even, has 

N/2 vanishing moments 
    FL = mdwtrec(SLW,'a'); %reconstruct approximation coefficients 
    F = exp(FL).*exp(j.*imag(hilbert(FL')')); 
    G = SEG.*conj(F)./(abs(F).^2+eps); 
    gs(:,:,i) = [zeros(size(sig,1),startind-

1),ifft(G,[],2),zeros(size(sig,1),size(sig,2)-(startind-1+seglen))]; 
end 
g = real(sum(gs,3)); 
blur = find6dB(xcorr(reshape(abs(g'),[],1)));%/baseblur; 
PSNR = max(max(abs(g)))/sqrt(mean(mean(abs(g).^2)));%/basePSNR; 
AWN = blur/PSNR; 
FD = Katz(reshape(g',[],1)); 
entrop = imentrop(g,'r'); 
g(abs(g)>0.7*max(max(abs(g)))) = 0.7*max(max(abs(g))); %adjust for more 

effective scaling 

  
% Display circular image 
figure; pcolor(x,y,abs(g(:,ind_dis))); shading(gca,'interp'); axis 

image 
title(['Gabor Deconvolution;   K = ' num2str(K) ', M = ' num2str(M) ', 

eps = ' num2str(eps) ... 
    ', seglen = ' num2str(seglen)  ',' 10 'AW&N = ' num2str(AWN) ... 
    ', FD = ' num2str(FD) ', Entropy = ' 

num2str(entrop)],'FontSize',12); 
set(gca,'XTick',[]); set(gca,'YTick',[]); 

  
%% DWT SHRINKAGE OF LOG-CWT COEFFICIENTS AND CWT-DOMAIN WIENER 

FILTERING 
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K = 9;% Vanishing moments - "near symmetric wavelets with vanishing 

moments between 4 and 6" 
M = 8;% Decomposition level - M = 3 in paper but with lower sampling 

rate and fewer samples 
eps = 1510;% Wiener regularization coefficient 

  
scales = 15:40;%!note: scales not linearly related to wavelet center 

frequencies! 
swv = 'coif2'; 
swv2 = 'db2'; %****note: db2 outperforms db1 (haar) and db4 
nwav = 2; 

  
clear g 
for i = 1:size(sig,1) 
    display(['progress: ' num2str(i/size(sig,1))]) 
    S = cwt(sig(i,:),scales,swv); 
    SL = log(abs(S)); 
    SLW = mdwtdec('c',SL,M,['sym' num2str(2*K)]); %symN, N even, has 

N/2 vanishing moments 
    FL = mdwtrec(SLW,'a'); %reconstruct approximation coefficients 
    F = exp(FL).*exp(j.*imag(hilbert(FL))); 
    switch nwav 
        case 2 
            F = 

cwt(icwt(F,[min(scales),max(scales)],numel(scales),swv),scales,swv2); 
            S = cwt(sig(i,:),scales,swv2); 
            G = S.*conj(F)./(abs(F).^2+eps); 
            g(i,:) = 

real(icwt(G,[min(scales),max(scales)],numel(scales),swv2)); 
        case 1 
            G = S.*conj(F)./(abs(F).^2+eps); 
            g(i,:) = 

real(icwt(G,[min(scales),max(scales)],numel(scales),swv)); 
    end 
end 
clc 
g = g./std(std(g)); 
%baseblur = find6dB(xcorr(reshape(abs(sig'),[],1))); 
%basePSNR = max(max(abs(sig)))/sqrt(mean(mean(abs(sig).^2))); 
blur = find6dB(xcorr(reshape(abs(g'),[],1)));%/baseblur; 
PSNR = max(max(abs(g)))/sqrt(mean(mean(abs(g).^2)));%/basePSNR; 
AWN = blur/PSNR; 
FD = Katz(reshape(g',[],1)); 
entrop = imentrop(g,'r'); 

  
g(abs(g)>0.7*max(max(abs(g)))) = 0.7*max(max(abs(g))); %adjust for more 

effective scaling 

  
% Display circular image 
figure; pcolor(x,y,abs(g(:,ind_dis))); shading(gca,'interp'); axis 

image 
title(['DWT shrinkage of log-CWT;   K = ' num2str(K) ', M = ' 

num2str(M) ', eps = ' num2str(eps) ... 
    ', scales: ' num2str(min(scales)) '-' num2str(max(scales)) ',' 10 

'AW&N = ' num2str(AWN) ... 
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    ', FD = ' num2str(FD) ', Entropy = ' 

num2str(entrop)],'FontSize',12); 
set(gca,'XTick',[]); set(gca,'YTick',[]); 

  
% Print out CWT pseudo-frequencies 
%display(['Pseudo-frequency range considered: ' 

num2str(scal2frq([max(scales),min(scales)],swv,1/160)) 'MHz']) 

  
return 

  
%% GENERATE THE CWT COEFFICIENT PLOT FOR USE IN THE PAPER (use averaged 

scans) 

  
swv = 'coif2'; 
r = 125; 
S = cwt(sig(r,:),1:100,swv); 

  
figure; 
subplot(2,1,1); plot(sig(r,:)); axis tight; title('Example 

Scan','FontSize',16); 
xlabel('discrete-time index','FontSize',14); ylabel('recorded 

signal','FontSize',14); set(gca,'FontSize',14); 
subplot(2,1,2); imagesc(abs(S)); title('CWT Coefficient 

Magnitude','FontSize',16); 
xlabel('discrete-time index','FontSize',14); ylabel('CWT 

scale','FontSize',14); set(gca,'FontSize',14); 

  
A = 10:30; 
display(['Proportion of CWT coefficients from scales ' num2str(min(A)) 

'-' num2str(max(A)) ' relative to scales 1-100: ' 

num2str(sum(sum(S(A,:).^2))/sum(sum(S.^2)))]) 
display(['Pseudo-frequencies in scales ' num2str(min(A)) '-' 

num2str(max(A)) ': ' num2str(scal2frq(max(A),swv,1/160)) '-' 

num2str(scal2frq(min(A),swv,1/160)) ' [MHz]']) 
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