
 
 

Page 1 

This is the peer reviewed version of the following article:  
Lix, L. M. and Leslie, W. D. (2014), Untangling the Causality Knot: Another Tool for Clinical 
Researchers. J Bone Miner Res, 29: 2323–2326., which has been published in final form at: 
http://dx.doi.org/ 10.1002/jbmr.2369 
This article may be used for non-commercial purposes in accordance with Wiley Terms 
and Conditions for Self-Archiving. 

 
 
 

Untangling the Causality Knot: Another Tool for Clinical Researchers 
 
 

Commentary on:  
Chan MY, Frost SA, Center JR, Eisman JA, Nguyen TV. Relationship Between Body Mass 
Index and Fracture Risk Is Mediated By Bone Mineral Density. J Bone Miner Res 2014 in 

press. 
 

Lisa M. Lix, William D. Leslie 

University of Manitoba, Winnipeg, Canada 

. 
 

Author for Correspondence and Reprints: 
 

Dr. William D. Leslie 
Department of Medicine (C5121) 

409 Tache Avenue 
Winnipeg, Manitoba, Canada R2H 2A6 

Phone: 204-237-2311 
Fax: 204-237-2007 

Email: bleslie@sbgh.mb.ca 
 

Word count: 2271 

DISCLOSURES: 
 
Lisa Lix: None. 
 
William Leslie: Speaker bureau: Amgen, Eli Lilly, Novartis. Research grants: Amgen, Genzyme.   
 

SOURCES OF SUPPORT: 

Lisa Lix is supported by a Manitoba Research Chair. 

mailto:bleslie@sbgh.mb.ca


 
 

Page 2 

-- “Happy the man who has been able to learn the causes of things” (Virgil) 

 

Clinical experience and a sound knowledge of pathophysiology are the traditional pillars of 

medicine.  In recent years, new statistical methods have strengthened the ability of investigators 

to extract patterns from complex datasets that would otherwise remain hidden.  Research to 

predict clinical events and the methods needed to support these analyses have evolved in tandem 

over the last few decades in a classical pas de deux.  Indeed, the landscape of modern medicine 

would hardly be recognizable without such techniques.  The recent development of fracture 

prediction tools is a prime example of one clinical application of powerful statistical methods 

(1).   

When predicting an event is the sole objective, the existence of an association – whether 

causal or not – may be sufficient.  However, to understand how that association arises, and to 

intervene appropriately, requires a deeper understanding of the cause and effect relationships.  

Obesity, defined from elevated body mass index (BMI), has generated much controversy in the 

osteoporosis literature, variably reported to be protective, neutral or a risk factor for osteoporosis 

and related fractures (2-4).  Weight and BMI are both strongly correlated with bone mineral 

density (BMD) as measured form dual energy x-ray absorptiometry (DXA) in almost all studies, 

and it is no accident that weight or BMI are a component of virtually all fracture prediction tools 

(1).  However, when weight is partitioned into its components of lean mass and fat mass, the 

associations become more complicated.  Most studies find that lean mass is positively associated 

with higher BMD (5;6), whereas fat mass shows neutral or negative effects though there are 

exceptions to this generalization and a biphasic effect has even been reported (5;7-12).  A recent 

meta-analysis found that among premenopausal women lean mass exerted a greater effect on 
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femoral neck BMD than fat mass (r = 0.45 vs r = 0.30), whereas in postmenopausal women the 

effects of lean mass and fat mass were similar (r = 0.33 vs r = 0.31) (13). The presence of large 

correlations amongst weight, BMI, lean mass and fat mass create collinearities that can pose a 

nightmare for data analysts and has fueled some of this controversy (4).  For example, if one 

assumes that lean mass is solely responsible for BMD and that fat mass has no effect, then a 

model that includes weight and fat mass would actually show the latter as having an adverse 

(negative) effect on BMD simply because fat is interpreted as “not lean” in the model.  Body 

composition is a major factor impacting on accuracy errors in DXA, effects that are amplified in 

longitudinal studies where weight, body composition and BMD (not to mention a myriad of 

other factors) are changing simultaneously (14-16).  

A recent meta-analysis examined the association between BMI and fracture risk in 

prospective cohorts from 25 countries (398,610 women average age 63 years, 2.2 million person-

years follow up) with a reported 22% prevalence of obesity (17).  Risk for major osteoporotic 

fractures and hip fractures decreased monotonically with increasing BMI when the modifying 

effect of BMD was excluded.  When BMD was considered, the effect of BMI was greatly 

reduced and, at least for major osteoporotic fractures, showed a biphasic response such that 

fracture risk decreased as BMI increased to the normal range and then slightly increased for 

overweight and obese individuals.  Obese women were at lower risk for major osteoporotic 

fractures when BMD was not considered (hazard ratio 0.87 for BMI 35 kg/m2 versus 25 kg/m2) 

but at higher risk when BMD was considered (HR 1.16).  In this analysis, low BMI was a risk 

factor for hip and all osteoporotic fractures, and was associated with lower risk for lower leg 

fractures; conversely, high BMI was a risk factor for upper arm fractures. Even after adjustment 

for BMD, low BMI was a risk factor for hip fracture and high BMI remained a risk factor for 
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upper arm fracture and also all osteoporotic fractures.  Data from 52,939 women in the Global 

Longitudinal Study of Osteoporosis in Women (GLOW) found that relationships between 

fracture and weight, BMI, and height were site-specific (18;19).   Despite this, there is evidence 

from the Study of Osteoporotic Fractures (SOF) that tools such as FRAX are still of value in 

predicting hip and major osteoporotic fractures in obese postmenopausal women, particularly 

when BMD contributes to the risk calculation (20).  These observations clearly challenge our 

understanding of weight as a risk factor for osteoporosis and fractures, and have given rise to a 

plethora of basic, translational and clinical investigations into bone-fat-muscle interactions.  If 

obesity is truly a risk factor for osteoporotic fractures, and not a protective factor as historically 

assumed, then this has major clinical implications given the epidemic crisis in obesity that is seen 

globally.  It also begs the question of why something that is associated with preserved BMD 

would be a risk factor for fracture.  Potential contributors include greater falls risk, adverse 

changes on skeletal biomechanics, alterations in energy metabolism, metabolic syndrome, overt 

type 2 diabetes mellitus or its associated treatments and comorbidities (21-25).  Of course, this 

assumes that the association between obesity and fractures is causal.  But what if the association 

is not causal at all?  It is of scientific and public health importance to clarify the nature of the 

BMI-BMD correlation in order to more fully understand the “obesity paradox”. 

It is against this backdrop that Chan et al. (26) shed new light on the topic using causal 

mediation analysis. Mediation occurs when part or all of the effect of an exposure on an outcome 

operates through an intermediate causal pathway.  In the current issue of JBMR, Chan et al. 

explore the role of BMD in mediating the relationship between BMI and risk of fracture for hip, 

vertebrae, upper limb, and lower limb sites, as well as for all fracture sites. The authors examined 
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the mediating effect of BMD in the longitudinal, observational Dubbo Osteoporosis 

Epidemiology Study (DOES) that has followed more than 3,500 men and women since 1989.  

In order for a variable to be identified as a mediator, it is assumed to have an association 

with both exposure and outcome variables. Furthermore, adjustment for the mediator attenuates 

the relationship between these variables. While the same assumptions apply to a confounding 

variable, the key difference between mediator and confounding variables is that the mediator 

model is adopted when a causal mechanism is assumed to exist in the data. The directional 

arrows in Figure 2 of Chan et al. (26) imply that BMI has a causal relationship with BMD and 

also that BMD has a causal relationship with fracture risk.  

Timing of variable relationships and the existence of a known or suspected mechanism 

for causality are key issues to be addressed when identifying a plausible mediator variable. 

Mediation models are widely used in experimental studies, because the temporal relationships 

amongst the exposure, mediator, and outcome are typically easy to establish. For example, Ten 

Have and Joffe (27) describe a clinical study in which prescription medication use was 

investigated as a mediator of the causal relationship between a suicide prevention program 

(collaborative care versus usual care) and scores on the Hamilton depression scale.  

Mediation models are increasingly being used in observational studies as researchers seek 

to test causal hypotheses that advance theory (28). However, mediation models are challenging 

to defend in observational studies, particularly cross-sectional studies. When the exposure and 

mediator variables are inherent attributes of the individual, as is the case with both BMI and 

BMD, it is more difficult to unequivocally argue for the presence of mediation than when the 

variables are external characteristics of the individuals, such as medication use or program 

participation. The Figure 2 model in Chan et al.(26) implies that change in BMI “precedes” 
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change in BMD.  This is plausible given the absence of a biological model whereby change in 

BMD would affect BMI, but does not exclude the possibility of true confounding (e.g., frailty, 

malnutrition) or technical factors related to DXA alluded to earlier.  The role of BMD as a major 

determinant of fracture risk is consistent with a wealth of clinical and experimental data.  Thus, 

there are a sound clinical and biological arguments to defend BMD’s role as a as a mediator 

variable.  The assumption of a linear association between BMI and BMD is more tenuous, 

however, and recent evidence suggests that this relationship plateaus at higher levels of BMI 

(29). 

Baron and Kenny’s (30) mediation model testing strategy for linear models has been 

widely adopted in psychological and other social science research. Extensions of this testing 

strategy for non-linear models, including the logistic model adopted by Chan et al. (26), are more 

recent (31;32). Three models are fit to the data. The first model tests the association between 

BMI and fracture risk, to provide an estimate of the direct BMI effect. The second model tests 

the association between BMI and BMD, while the third model tests the association of both BMD 

and BMI with fracture risk in a multiple logistic regression model. The first two models are used 

to establish the presence of univariate linear relationships amongst the variables; if one or more 

of these relationships are not statistically significant, one can conclude that a mediation effect is 

unlikely to occur. With respect to the third model, if the association between BMI and fracture 

risk is not statistically significant after controlling for BMD, one can conclude that full mediation 

has occurred. If BMI remains statistically significant after including the mediator variable in the 

model, one can conclude that partial mediation has occurred.  

For both men and women, Chan et al. (26) found increased BMI was associated with 

reduced overall fracture risk, and this association was stronger for men (hazard ratio [HR] per 
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standard deviation [SD] = 0.77; 95% confidence interval [CI]: 0.67 – 0.88) than for women (HR 

per SD = 0.92; 95% CI: 0.85 – 0.99). The association for site-specific fractures was statistically 

significant amongst women for hip and amongst men for hip and vertebral sites. An association 

between BMD and BMI of moderate size was also observed for both sexes. Thus, the univariate 

relationships amongst the variables were established. For any fracture, the inverse relationship 

between BMI and fracture risk disappeared amongst women after adjusting for BMD, but 

remained statistically significant for men. As Table 4 reveals, the effect of BMI on fracture risk 

that adjusted for the causal effect of BMD was statistically significant for all fracture sites. These 

results lend support to the role of BMD as a mediator variable. For all analyses, the authors used 

Sobel’s (33) test of statistical significance for the indirect effect, as well as adopting a robust 

bootstrap procedure to produce 95% confidence intervals. The former is sensitive to small 

sample sizes, while MacKinnon et al. (34) observed, via simulation, that the bootstrap maintains 

good Type I error and power, and thus is frequently recommended to measure precision of 

estimates.   

 It is important to note that throughout the three-step modeling strategy a number of 

confounding covariates were included in the mediation models, including age, history of falls, 

prior fracture, history of smoking, physical activity level, and use of pharmacologic therapies. 

There is the potential for spurious tests of the association amongst the exposure, outcome, and 

mediator variables if confounders are not taken into account. In developing a mediation model 

for observational data, selection and inclusion of covariates is therefore critically important. 

Covariates can be included directly in the multiple regression model or, if appropriate, via a 

propensity-score or matching methodology. It is important to note that it is possible for a variable 

to serve as a mediator in one model and a confounder in another model, depending on the 
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exposure and outcome of interest. Thus, it is important that investigators not to apply a “one size 

fits all” modeling strategy to causal mediation models.  

 Another requirement for identifying a mediator variable is the lack of an interaction 

between exposure and mediator variables. This can be assessed by a multiple (linear or non-

linear) regression model containing main effect and two-way interaction effect terms. Chan et al. 

tested the two-way interaction effect between BMI and BMD and found that it was not 

statistically significant. Also important in the model is establishing a linear relationship between 

BMI and BMD.  

 Fitting a series of linear or non-linear multiple regression models to one’s data is a 

common approach to test for a mediation effect, but a structural equation modeling (SEM) 

approach might also be considered. SEM is used to simultaneously solve for estimates of direct 

and indirect effects (35); an advantage is that measures of overall model goodness-of-fit are 

produced, offering the opportunity to compare the fit of different mediation models. SEM was 

initially developed for linear models, models that accommodate continuous and discrete 

variables have been proposed (32;36); but may require specialized software. Mediation models 

that accommodate multiple potential mediation variables and repeated measurements of 

exposure, outcome, and mediation variables over time (37)can be applied to complex 

observational data.        

 Does Chan et al. (26) prove that obesity is not a risk factor for fracture and that the 

effects of BMI are largely (if not completely) mediated through BMD?  No single study would 

be able to establish this and, inevitably, it is the totality of the evidence that will lead us in the 

correct direction.  Causal mediation analysis provides another analytical tool to attach to the 

researcher’s tool belt to test complex relationships in a variety of contexts, including fracture risk 
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prediction models, that is new to this field of inquiry (38). However, the use of this tool must be 

tempered with careful thought for the theoretical implications of the underlying models.  
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