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Abstract

Radial Kernel Classifier (RKC) is a hybrid hetween the Classical Kernel Classifier
(CKC) and the Radial Basis Functions Network (RBFN). RKC inherits the ability
to converge to the Bayes Error from CKC and the compactness of the RBFN. In
this thesis, the performance of RKC using different learning methods is compared in
order to determine a proper training procedure. From the results of the expceriments
in this research, the following procedure is recommended for training the RKC. First,
select centroids from each class separately using the K-Means clustering. Fach class
should have the same number of centroids. Second, set the weight of each centroid
to the number of training data grouped within its cluster. Third, use the training
data to estimate the covariance matrix of each class for the use of the One-Class-
One-Sigma Mahalanobis metric. Finally, optimize the smoothing parameter by using
the Three-Point Search method for learning » and the Leave-One-Out method for
estimating the classification error. The Gaussian Kernel should be used through out

the procedure.
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Chapter 1

Introduction

In general, classification problems can be divided into two types. In the first type, one
has a set of objects with no knowledge about their class membership and it is desired
to impose a class structure on them. This type of problem is called cluster analysis.
In the second type of problem, a set of sample objects with known classification are
available and one wishes to use them to devise a classification rule to be used for
future objects. This second type of classification is called pattern recognition which
is the focus of this thesis.

Pattern recognition does not necessary mean the classification of images. Speech
identification, system fault diagnosis, and even diagnosis of low back disorders are
pattern recognition problems.

There are two main methodologies in pattern recognition. The first is a Statistical
approach while the second one is based on a the Neural Network approach. The
Statistical approach consists of three types of classifiers which differ in the amount
of information one knows about the data to be classified and the type of assumption
made about the data.

The first type of classifier is called the Bayes classifier. This classifier can achieve

the minimum classification error for any problem providing that the a priori proba-
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bilities and the class-conditional densities are known for all classes. This minimum
crror is called the Bayes error. Since one rarely has all the information necessary to
apply the Bayes classifier, it is used mainly in theoretical studies and simulations.
More detail about this method is provided in Chapter 2.

When a complete statistical knowledge about the the data is not available, one
can assume that the data comes from a specific form of density such as the Gaussian
distribution, and proceed to estimate the necessary parameters of this density using
training data. With this density function and the estimated parameters, the Bayes
classifier can be used for classification. This second type of classifier is called para-
metric pattern classifier. A more detailed explanation of this method can be found
in the book [1] by Duda and Hart.

In the cases where there is not enough knowledge to make assumptions about the
underlying density of the data or when making assumptions about the density of the
data is not desirable, then the third type of classifier, the non-parametric classifier is
used. An example of this type of classifier is the Classical Kernel Classifier described

in Chapter 2.

1.1 Problem

Although both the Statistical and the Neural Network approaches or classifiers are
used to solve the same types of problems, their advantages and disadvantages are
often complementary.

On one end of the spectrum are the Statistical classifiers, most of which are
capable of converging to the Bayes error when the number of training data approach
infinity and there are only a handful of parameters to learn. Most of these classifiers
are trained with non-iterative methods, thus their learning time is relatively short
compared to that of the Neural Network classifiers. However, the penalty for the

convergence property and short training time is the need of these classifiers to store
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and to use the whole set of training data during classification. Since most of these
classifiers require the use of all training data for classification, their classification
speed is usually slower than those of the Neural Network classifiers.

Neural Network classifiers have properties that arc in opposition to that of Sta-
tistical classifiers. The advantages of these classifiers are their short classification
time which is usually independent of the number of training data and their ability to
adapt to the complexity of the problem by varying the number of parameters used. ITn
order to achieve this flexibility, most Neural Network Classifiers use iterative meth-
ods such as gradient descent to optimize their parameters. These iterative methods
do not only require a lengthy learning time to converge to a solution, but there is
also no guarantee that the resulting solution is the optimal one for a given classi-
fier. In addition to their lengthy training time, there is also the doubt that Neural
Network Classifiers may not converge to the Bayes error. Although many published
results have shown that Neural Network Classifiers can achieve near Bayes error in

simulations, the theoretical proof for their convergence is still lacking.

1.2 Purpose

It would be ideal to have a classifier which has the convergence property and a short
classification time which does not depend on the number of training data. Further
it should be able to adapt to the complexity of the problem at hand and should
not require the use of all the training data for classification. These ideals are the
motivation behind the development of the Radial Kernel Classifier (RKC) introduced
in [2]. The RKC is an approach lying between the Classical Kernel Classifier (CKC)
which belongs to the Statistical approach and the Radial Basis Function Network
(RBFN) which belongs to the Neural Network approach. As shown in (2], RKC
is capable of converging to the Bayes error and it does not require the use of all

training data for its classification. Although the RKC has the potential to be an
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ideal classifier, it requires a proper procedure to realize its potential. In this thesis,
in order to determine a proper training procedure, the performance of the RKC using
different learning methods is compared. Since RKC is derived from CKC and RBFN,
most of the learning methods used in this thesis come from the literature of these two

classifiers.

1.3 Outline

The organization of this thesis is as follow. In Chapter 2, four classifiers arc reviewed:
the Bayes Classifier, the Classical Kernel Classifier, the Radial Basis Functions Net-
work and the Radial Kernel Classifier. After the review, the performance of RKC
using different learning techniques is researched. Chapter 3 discusses the problem of
sclecting the number of centroids. Different methods for selecting these centroids are
investigated in Chapter 4. Next, the performance of RKC using six different distance
metrics is studied in Chapter 5, followed by a study of 12 different radial kernel func-
tions in Chapter 6. Chapter 7 compares four different methods for estimating the
classification ervor and three different methods for learning the optimum smoothing
parameter. Finally, results and findings are summarized in Chapter 8.

Note that self-learning methods for selecting the number of centroids, N were not
looked at. The reason for this is because for most classification problems, the N which
corresponds to the minimum classification error is usually equal to n, the number of
training data. Very often, this is not the N that one looks for. Rather, in most
problems one would like to select the N which gives an acceptable balance between
classification accuracy and speed. Thus, it is more appropriate to select N from the

classification error versus N plot than by the use of any self-learning technique.
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1.4 Main Results

From the results in this thesis, the following procedure is recommended to train the

RKC given a S-class classification problem with n training data:

1. Separate the training data base on their classes to prepare the data for the One
Class One Net (OCON) method in step 2. The advantages of the OCON are

discussed in Chapter 3.

B

Select N™ centroids from the u-th class using K-Meaus clustering. Repeat this
procedure for all § classes. The number of centroids per class should be equal
for each class. Although Decision Surface Mapping (DSM) could outperform
K-Means clustering in certain problems, it does not provide consistence results.
Therefore, the use of K-Means clustering is recommended. The study between

the performance of the K-Means and the DSM technique is in Chapter 4.

3. Set the weight, ozg“), of centroid ¢;® to the number of training data from class

u which belongs to its cluster C™.

4. Calculate the sample covariance matrix for each class. These covariance matri-
ces are needed for the calculation of the One Class One Sigma (OCOS) Metric.
OCOS should always be used as the distance metric of RKC unless it is known
that the data have a uniform distribution. In this case, the Euclidean Met-
ric should be used instead. The performance study of using different distance

metrics with RKC is in Chapter 5.

5. Finally, optimize the smoothing parameter, b, by using the Three-Point Search
technique for learning h and the Leave-One-Out method for estimating the

classification error.

In addition, the Gaussian Kernel should be used through out this procedure. The

consistent performance of the Gaussian Kernel is shown in Chapter 6. The above
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procedure should be repeated for a list of N where N = Zle N,




Chapter 2

Introduction to Pattern

Classification

This section gives a brief introduction to four classifiers: the Bayes Classifier, the
Classical Kernel Classifier, the Radial Basis Functions Network and the Radial Kernel
Classifier. The Bayes Classifier is an optimal classifier which gives the minimum
classification error or Bayes error when all the probability distributions involved are
known. The Kernel Classifier and the Radial Basis Function Networks (RBFN) look
similar, yet, their learning methods and properties are quite different. The brief
review of these classifiers shall serve as a foundation for the Radial Kernel Classifier
introduced in Section 2.4.

Before going into the review, the appropriate notation used in the following sec-
tions is presented. Assume that there are n training patterns, {x;,...,x,} where
each pattern @; comes from one of the S classes. The u-th class is labeled wy. Fach
pattern @; is a d-dimensional vector-valued random variable. The state-conditional
probability density function of @ is p(z|w,) and the a priori probability of class w,

is P(wy). The posteriori probability is denoted by P(wy|2z)} which can be computed
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from p(z|w,) by the Bayes rule

P (wu)p(mlwu)
Plu,|z) = —————7—, 2.1
(wnfo) = 2 (2.1
where
g
=Y Plw,)p{x|wy). (2.2)
=1

2.1 Bayes Classifier

The Bayes Classificr is an optimal classifier, that is, it gives the minimum classification

error rate in any problem. Given an observation @, the Bayes Classifier will
assign & to wy if Plw,|z) > Plwy|®)  Vu#v. (2.3)

This is called the Bayes decision rule. By substituting the Bayes rule in (2.1) into
(2.3) and eliminating the scaling factor p(zx), the Bayes decision rule can be written

as follows:
assign @ to w, if Plw)p(z|wy) > Plwy)p(e|w,)  Vu # . (2.4)

Unless the posteriori probabilities or the a priori and the state-conditional proba-
bilities for all classes are known, the Bayes decision rule cannot be applied directly.
These probabilities are seldom available in real life problems, therefore as a result, the

Bayes Classifier is used mostly in theoretical studies and is seldom used in practice.

2.2 Classical Kernel Classifier (CKC)

To perform classification when there is no knowledge about the probability structure
of the data, one can use a non-parametric classifier which uses the Bayes decision rule
indirectly by replacing the a priori, P(w,), and the state-conditional probabilities,

p(z|wy), with estimates. The Classical Kernel Classifier (CKC) is an example of
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a non-parametric classifier. It uses ]S(wu) = n®/p as an estimate of the a priori
probability, where nt® is the number of training data from class wy, and it uses the
Kernel Density Estimator to estimate the state-conditional probability. Given a set of
n® data, { a:,g")}?_(:), from class w,,, the kernel density estimate of the state-conditional

probability of class w, is

gy (2} .
. 1 fz—a™
Plwy) = W DK (_—h_ (2.5)

i=0
where d is the dimension of @, h is the smoothing parameter and K is the kernel
function. To design a CKC, we need to select a kernel function, X, and to find the
optimal A or an estimate of it which minimizes the classification error-rate. Usually,
K is a radial symmetric, unimodal probability density function such as standard

normal density function
—df2 1 T
K(z) = (2m) " exp e (2.6)

where d is the dimension of . To find an estimate of the optimal A is relatively
straight forward if there is enough sample data. First, the sample data are separated
into training and testing data. Second, the CKC is used with the training data to
classify the testing data and to try to find an estimate of the optimal h which would
minimize the classification error. Other methods such as the Leave-One-Out, the
Jackknife and the Bootstrap techniques can also be used to estimate h. For the
details of these techniques please refer to [3] and [4].

CKC is not only easy to use, but it can also converge to the Bayes error when
the number of training data approaches infinity. This convergence is a very desirable
feature of CKC. It however has two major problems.

"The first problem is a long classification time compared to other classifiers such
as the Radial Basis Functions Network (RBFN) which is briefly reviewed in the next

section. The reason for this long classification time is because CKC requires the
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use all training data in its classification. In order to overcome this problem, papers,
such as [5], have proposed the use of the fast Fourier Transform to speed up CKC's
classification time.

The second problem of the CKC is that it requires a lot of memory to store all the
training data needed for classification. To reduce the memory storage requirement of
the CKC, papars, such as [6] by Fukunaga and Hayes, tried to sclect a subset from
the training data for classification while maintaining a classification error rate close
to the one achieved by using all training data. For more information on CKC, pleasc

refer to [7].

2.3 Radial Basis Function Network (RBFN)

2.3.1 Avrchitecture

A Radial Basis Function Network (RBFN) has three layers: one input layer, one
hidden layer and one output layer with each layer fully connected to the next one.
The number of output nodes it has is equal to the number of classes in the classification
problem. The hidden layer of the RBFN is made up of neurons. Each neuron has
two parameters: a prototype or centroid and a receptive field width or bandwidth.

To classify an observation, @, the i-th neuron in a RBFN will calculate

lz — o
¢i(z) = ¢ (*‘_h—l (2.7)
where ¢; is centroid, h is the global scaling factor which is often set to one, [...] is the
distance metric which is usually taken as the Euclidean norm and ¢ is an activation
function usually taken to be a Gaussian density function of the form

o(a) = oxp (- 255%) 2.9

i

where @;” is the transpose of @; and a; is called the bandwidth or receptive field width.

Although the global scaling factor, h, and the bandwidth, o; seem to serve the same
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purpose, they are selected independently and in different ways. The bandwidth, o;, is
usually set to the distance from the 4-th center to its nearest centroid and is usually
fixed during the optimize process of the RKC. The global scaling factor, , is selected
usually by trial and error in order to improve the performance of the RBFN. Note
that in RBFN the connections between the input layer and the hidden layer have
no weight. After finishing their caleulation, neurons pass their results to the output
nodes. The w-th ontput node then calculates
N
My () =Y Ay ¢i(2) (2.9)
i=0
where N is the number of neurons in the hidden layer, A,; is the weight between the
i-th neuron and the w-th output node and ¢; is the activation function of the i-th
neuron. Finally, the observation z is assigned to the class that corresponds to the

output node which has the highest activation.

2.3.2 Contributions

After reviewing nearly over 100 studics of RBFN, the contributions of these papers

are summarized into six categories:

ot

. core contributions;
2. selection of the location of centers, ¢;;
3. selection of the number of centers, N;

4. selection of the bandwidth, o;, and the distance metric Nl

H

[y ¢

. selection of the smoothing parameter, h; and

6. selection of the activation function, ¢;.
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Core Contributions

There are three core contributions in the history of RBFN. The first contribution
is by Broomhead and Lowe [8] who were the first to construct the RBFN in 1989.
The second contribution is by Moody and Darken [9] who have proposed the use of
K-Means clustering and P-Nearest Neighbor heuristic to learn RBFN'’s parameters.
This learning scheme has become the standard for training RBFN. The last contri-
bution is that of Girosi and Poggio [10]. They showed that a RBFN has the “Best
Approximation” property and rederived the RBFN using the regularization theory
thus demonstrating the link between the two concept.

The derivation of the RBFN by Broomhead and Lowe was based on the Radial
Basis Function Interpolation (RBIFI} which is a strict interpolation technique in multi-
dimensional space. In general, the interpolation problem can be stated as follows:
Given a set of n training data {(z;, %)}, find a function m which satisfies the

interpolation condition:
m{zx;) = v, i=1,2,...,n. (2.10)
In Radial Basis Function Interpolation, this function m has the form

() = ZA oz — ) (2.11)

where the training data @; is used as the center, ); is the weight, {¢(||lz — ;||)|i =
1,2,...,n} is a set of n functions known as radial-basis functions, and || ... || denotes
a distance function which is usually taken as Euclidean. For more detail about RBFI,
please refer to [11]. In order to create the network analogy, Broomhead and Lowe
[8] generalized some of the assumptions of the RBFI. In particular, they relaxed the
strict interpolation nature of the RBFI by selecting a random subset of Radial Basis

Function ‘centers’ from the training data instead of using the whole training set. The
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resulting RBFN has the form

m(x) = Z A ol — ), N <n (2.12)

where ¢; is the center and N is the number of centers. Once the ‘centers’ ave chosen,
the adjustable weights of the network from the hidden-to-output layers are determined

hy linear least-squares optimization. In other words, if
(Y)i=wi, (A=, (®)y= ¢z — ¢ll)
then the adjustable weight A is equal to
A=®'Y

where @1 is the Moore-Penrose pseudo-inverse of ® [12].
Moody and Darken [9] proposed a network similar to RBEN but with a different
name, the Local Receptive Fields (LRF). LRF is actually a normalized version of the
RBFN and has the form
Lo ag(le — eil/o)
St ¢z — eill /o)

where ¢ is a Gaussian function, ¢; is the centers, o; is the bandwidth, X; is the

m(x) = (2.13)

weight or amplitude and N is the number of centers. They showed that using K-
Means clustering to select RBFN centers gives a better performance than the use of
a random subset of the training data as centers. They also proposed the use of the
“P-Nearest Neighbor” heuristic for selecting the bandwidth. Under the P-Nearest
Neighbor heuristic, the bandwidth is set equal to the root mean square value {(x;}p of
the Buclidean distances from the P nearest neighbor centers. After their paper, the
K-Means clustering and the P-Nearest Neighbor heuristic have become a standard
RBFN learning scheme in the RBFN literature.

The third major contribution came from Poggio and Girosi who have shown that

RBFN corresponds to the solution of a class of ill-posed, inverse problems involving
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the reconstruction of a function from a sparse set of training data [10, 13]. In partic-
ular, they started with the concept of regularization, and derived an approximation
scheme which included RBFN as a special case. Thus, they showed the close relation
between these two techniques. In addition, they also showed that RBFN has the best
approximation ability, an ability which MLP does not have for the class of contin-
uous functions defined on a subset of RY. (An approximation scheme has the best
approximation property, if in the set F of approximation functions, there is one that
has minimum approximating error for any function to be approximated from a given

set of functions.)

Selecting the Location of Centers

When RBFN was first proposed in 1988 by Broomhead and Lowe [8], they suggested
that the location of the centers could either be selected uniformly within the region
of RY where there is data or they could be selected as a random subsct of the training
data. The latter is referred to in this thesis as random centers.

In respond to many critics who suggested that the choice of centers may affect
the final performance of the network, Lowe showed in [14] that nonlinear optimiza-
tion of the centers’ locations would not improve the generalization performance of
RBFN. Beastall in [15] also showed that using Kohonen'’s Learning Vector Quantiza-
tion (LVQ) to locate RBFN centers gave no “appreciable difference” in performance
compared to the use of random centers.

On the other hand, in [16] and (9], Moody and Darken showed that using adap-
tive K-Means clustering for locating centers gave a better performance than random
centers. Also, in [17, 18], Chen et. al showed that using Orthogonal Least Squares
Learning Algorithm or Orthogonal-forward-regression could also outperform random
centers.

Although these results seem contradictory, most researchers in the field of RBFN
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believe that using clustering techniques to locate centers does give a better perfor-
mance. As a result, K-Means clustering has become the standard method for locating
RBFN'’s centers.

In addition, in 1993, Lay and Hwang [19], and Mak, Allen and Sexton [20] showed
that RBFN has a better performance when the centers are selected by clustering data
from each class, One Class One Net (OCON), compared to selecting centers from all

the training data, Multi-Class One Net (MCON).

Selecting the Number of Centers

Up until 1991, the only guideline for selecting the number of centers N was that N
should be less than the number of training data n and the only method available to
determine N was by trial and error. Starting from 1991, the importance of selecting
N finally received the attention it deserves. Two different methods for selecting the
number of centers have been proposed since then.

The first method changes the problem of learning the number of centers N to the
problem of learning R, the radius of each cluster. The purpose is to select a radius R
which minimizes the overlapping between clusters from opposite classes. This method
was proposed by Musavi et. al {21] and Lemarie [22].

The second method defines an error measure or threshold which allows one to
determine whether there are enough centers for the problem or whether more centers
are needed. Many papers have proposed a method of this type, for example, Bye [23],
Chen ct. al [18], Kadirkamanathan and Niranjan [24], Katayama et. al [25], Lee and
Kil {26] and Reynolds and Tarassenko {27].

Selecting the Distance Metric and Bandwidth

When Broomhead and Lowe first constructed the RBFN, it had the form

m(x) = ZO Ad(llz — el (2.14)
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There was no bandwidth parameter o;, and the metric ||... || was taken as the Eu-
clidean distance. The bandwidth parameter first appeared in a paper by Moody and
Darken [16] in 1988. Their RBFN was of the form

m(z) = Z Aicp (”w c*”) (2.15)

l

Although from (2.15) it is clear that the bandwidth, o, is not part of the distance

function, ||...||, if ||z — ¢]|/0; is considered as a Mahalanobis distance of the forn
(- )" Nz - ¢;) (2.16)

with 2J; = o;1, where 7 is an Identity matrix, then equation (2.15) has the same form
as (2.14). If the Gaussian density function is used as the activation function, ¢, then
one could also consider the bandwidth as the variance of the Gaussian function. Since
the bandwidth can have more than one interpretation, in order to be consistent, in this
thesis, the bandwidth is considered as a part of the metric. With this interpretation,
the Euclidean metric can be considered as a special case of the Mahalanobis metric
with X; = I. As a result, the only metric ever used in the field of RBFN is the
Mahalanobis distance.

Although the Mahalanobis distance is the only metric used in RBFN , many meth-
ods had been proposed for selecting the bandwidth, starting with Moody and Darken
who in 1968 proposed the use of P-Nearest Neighbor heuristic as the bandwidth [16].

In 1989, Houselander and Taylor [28] used a modified delta rule to learn the
bandwidth. They also compared the performance of RBFN using ellipsoids with the

use of spheres. In other words, they compared a RBFN using
gy - 0
¥ =
0 - oy
with a RBFN using ¥; = ¢; I. Their results showed that the RBFN using ellipsoids

gave a better performance than one using spheres.
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In the same year, Lowe [14] compared a RBFN using a fixed bandwidth

o
EEZWI

where o is the maximum distance between the chosen centers and N is the number
of centers, with a RBEFN using ¥; which was learnt using a nonlinear optimization
technique. His conclusion was that using a nonlinear optimization technique to learn
the bandwidth did not improve the generalization capability of the RBFN.

Finally, Cios et. al [29], 1991, proposed that the bandwidth be learned by first
initializing it using the P-Nearest Neighbor heuristic. Then the bandwidth is adjusted
to reduce the inter-class interference between the outputs of the first layer nodes. This
inter-class interference occurs when a training vector belonging to class u causes any
node belonging to class v (v # w) to give an output larger than a certain threshold.

This process of adjusting the bandwidth continues until no interference is present.

Selecting the Smoothing Parameter

Though the bandwidth and the smoothing parameter appear similar, the bandwidth,
0i, is usually unique for each hidden node and it controls the spread of the radial
basis function. The smoothing parameter, h, on the other hand, is a global constant
or scaling factor which is used to tune the performance of the RBFN by scaling the
bandwidth.

Lee was the first one to use the smoothing parameter, %, in RBFN in 1991 [30].
The proper h value was determined experimentally.

In 1991, Reynolds and Trassenko [27] proposed the use of the Locality Index
method to speed up the process of estimating the smoothing parameter. Using this
method, the smoothing parameter & is estimated by the value 2¢ where £ is an integer.
The parameter ¢ is called the “locality index”. This index method may not give
the optimal smoothing parameter, nevertheless, Reynolds and Trassendko claimed

that the index method is an efficient method to find an estimate of the smoothing
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parameter. Although they did not develop a new method for learning the smoothing
parameter, they did demonstrate the importance of the smoothing parameter by
showing that there is a dependence between the RBFN's error rate and the smoothing

parameter.

Selecting the Activation Function

The Gaussian function is the most used activation function in RBFN literature. It
was first used in Broomhead and Lowe’s paper [8] who used the Gaussian function
merely as an example rather than a recommendation. At the end of their paper, they
clearly stated that they had not studied which form of activation function, ¢, should
be used. Since then, no paper has studied the effect of using different activation
functions such as the thin-plate spline, the multi-quadric equation and the inverse
multi-quadric equation on the classification performance of RBFN. Thus far the only
paper that compares the performance of seven different radial basis functions on non-
linear data modeling was that by Carlin [31] in 1992. In Carlin’s paper, he shows

that the logarithmic function
¢(z) = log(z® + %) where ¢ is a positive constant

which is a global activation function is actually better than the Gaussian function
which is a local function. More experiments are necessary in order to determine

whether the same result holds for classification problems.

2.4 Radial Kernel Classifier (RKC)

To conclude this chapter, the Radial Kernel Classifier (RKC) is described. It is a hy-
brid between the Radial Basis Functions Network and the Classical Kernel Classifiers.

The classification rule of the RKC is as follows:
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Given a set of S-class training data, {(z;,1:)}%,, where x; is the i-th
g 3 J i=1
pattern or feature vector, y; is its class label and n is the number of

training data, the RKC will classify an observation & to class w if
Plwy) ¢®(x) > P(w,) ¢ (=), utviu,v=1,...8, (2.17)

where
N oo g (lr=e1y
g (x) = Z o ¢ - (2.18)

and where P(w,) is the a priori probability of class u, N® is the number

™ is the i-th centroid from class w, af is its

of centroids of class u, ¢
weight, ¢ is the radial kernel function, ||---|| is the metric and A is the
smoothing parameter. The remaining of this section gives a step by step

derivation of the RKC.

The derivation starts by first recalling the classification rule of the Classical Kernel

Classifier (CKC):

Given a set of S-class training data, {(=x;,1:)}%,, the CKC classifics an

observation € R% to class u € S if

P(w,)f®(z) > P(w,) f®)(z), u# v, (2.19)

where f®(z) is an estimate of the class-conditional probability density

function, p(z|w,) with the form

3 1 |z — ™) I
Fo) () = Klp= 1t .

where n® < n is the number of training data from class «, K is the kernel

()

function which is usually a distribution function, ;" is the i-th data from

class u, ||--- || is the metric and A is the smoothing parameter.
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In CKC, all training data are used to classify an observation. As the number of
training data increases, so will the classification time of the CKC. A large number of
training data is necessary because if the number is small, the CKC can not converge
to the Bayes Error. In order to speed up the classification time of the CKC, equation
(2.20) can be replaced with an estimate. By grouping the training data into N clusters
and replacing cach training data with a prototype from the cluster that it belongs to,

equation (2.20) can be approximated by

) N(U) )
fO@ ~ Y o K (———”“’ hm ”) (2.21)
=1 ’

where N is the number of clusters from class w, 5;5“) is the i-th prototype of class
w and ai{"’) is the number of training data grouped into cluster 4. Since N < n, using
equation (2.21) to classify data should speed up the classification time. If equation

(2.21) is compared with the output of the k-th output node of the RBFN

my(z Z,\ ) (um Cz“) (2.22)

the similarity in these equations can be noticed. If a class label is assigned to each
RBFN centroids and Ay is set to the number of training data from class & which
are grouped into the cluster 4, then equation (2.21) is the same as equation (2.12).
Equation (2.21) forms the basis for the Radial Kernel Classifier.

A formal definition of the Radial Kernel Classifier (RKC) is as follows:

Given a set of S-class training data, {(z;,:)},, where &; € R¢ is the
i-th pattern or feature vector, y; is its class label and n is the number of

training data, the RKC will classify an observation ¢ to class u if

P(wy) ¢¥(z) > P(w,) ¢Nz), utw, (2.23)
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where P(w,) is the a priori probability and ¢® () is the estimated class-

conditional probability density of class = which has the form

V(“) (2}
) {’H.') 5 ”{B — G ” 92 24
(" (w) = nhd Z ( h (224)

where n is the number of training data, N is the number of centroids

(u) (u)

from class w, ¢;” is i-th centroid, ;" is its weight, ¢ is the radial kernel

function, ||.. .| is the metric, / is the smoothing parameter, and d is the

dimension of the vector z.

The function ¢®)(x) is called the Radial Kernel Density Estimate (RKDE). The

following is an outline of the procedure for training the RKC:
1. Select N centroids from the set of n training data.
2. Assign each training data to the closest centroid to form N clusters.
3. Set N® to the munber of clusters which contain data from class .

4. Set a,?"') to the number of training data in cluster C; which belongs to class .

oy

Optimize the smoothing parameter i with respect to classification error of the

RKC.

The procedure described above is just an outline of how to train the RKC. In order
to implement RKC, one needs to know more detail about how to learn its parameters
such as how to select the location of the centroids and how many centroids should
be used for a given problem. In the remaining chapters, the performance of RKC
using different learning methods to train its parameters is compared. Since RKC is a
hybrid between Classical Kernel Classifier (CKC) and Radial Basis Function Network
(RBFN), most of the learning methods used in this study come from the CKC and
RBFN literature.
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To start this study, different methods used to select the number of centroids are

looked at in the next chapter.



Chapter 3

Number of Centroids

In this chapter the problem of how the number of centroids should be selected for
a given problem is studied. The number of centroids, N, and the location of the
centroids, ¢;, are the two important parameters in RKC. For example, if the number
of centroids used to represent the problem are sufficient, but instead of finding good
locations for these centroids, they scattered randomly around in the input domain,
a large classification error rate shall result even if other parameters are optimized.
On the other hand, if the centroids are located optimally, but there are not enough
centroids to represent our problem, the performance of the RKC will suffer. Although
these two vital parameters go hand in hand, in order to have a clear understanding
as to how each of these parameters affects the classification performance of the RKC,

they are studied independently.

3.1 Relations with Class Memberships

The first study considers whether the class labels of the training data should be
ignored when centroids are selected or whether centroids should be selected inde-

pendently from each class. The former method is called the Multi-Class One Net

23
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(MCON) and the latter method is called the One Class One Net (QCON). Since
MCON uses less information in its classification, its classification error should be
higher than those obtained by using OCON. The simulation results in this section
show that this is in fact the case. These methods are described in detail in the next

two sections.

3.1.1 Multi-Class One Net (MCON)

In MCON, the class label of the training data is ignored when the centroids, {e: 1Y
are selected. As a result, the centroid, ¢;, does not have a class label. Each centroid

(u ), corresponds to the number of training

has S weights, {cyg")} . Each weight, of
w=1
data from class u grouped into the cluster C;. Thus, using MCON the RKC will

classify an obscrvation @ to the class w if

)ia(“)gﬁ (Ilw Czll) Za(v)(/ ( ctll) (3.1)

where P(w,) is the a priori probability of class u, N is the total number of centroids,
¢ is the radial kernel function, |- - || is a metric, and A is the smoothing parameter.

MOCON was used by Broomhead and Lowe [8] when they first proposed the RBFN
in 1988. Since then almost all the RBFN papers used this method for selecting the

number of centroids.

3.1.2  Ome Class One Net (OCON)

Unlike MCON, in OCON each centroid has a class label. Using OCON, training data
are first grouped into classes, then centroids are selected from each class indepen-
dently. In other words, the data in each cluster C; can only come from one of the S
classes. As a result, each centroid, ¢{, has only one weight, o, which corresponds
to the number of data from class u grouped into cluster cg“’. Under this method,

each class will have its own sub-network within the RKC and hence the name One
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Class One Net. Using OCON, RKC classifies an observation @ to the class w if

N {1} N ()
1, T —C v T —cC
P(w) 3 al¢ (”—h——'-') > Plw,) 3 o4 (“——;——”) (3.2)
i=1

i=1

where P(w,) is the a priori probability of class ©, N is the number of centroids that
contain data from class u, ¢ is the radial kernel function, ||---| is a metric, and # is
the smoothing parameter.

The first paper which used OCON with RBFN was by Oglesby and Mason in
1991 [32]. In this paper, they showed that using OCON with RBFN can outperform
MCON. From the RBFN papers such as [20] and [32] which advocated the use of
OCON, it was not clear whether the number of centroids used for each class should
always be equal, or the number of centroids should be proportional to the a priori
probability of each class. In this section, equal number of centroids for each class
is used. The question about the relationship between a priori probabilities and the
number of centroids is studied in the next section.

To study the effect that these two methods have on the classification performance
of RKC, they are compared using two experiments. The first experiment is a three
classes, two dimensional classification problem. The second experiment is the vowel
classification experiment described in {33] by Peterson and Barney in 1952. In both
experiments, a set of training data is first generated. Secondly, these data are clus-
tered into N groups using K-Means clustering [34]. (For more detail on K-Means
clustering, please refer to Section 4.1.2.) Third, the weight, agu), is set to the number
of training data from class u grouped into cluster C;. Finally, the smoothing parame-
ter 7 is optimized with respect to the classification error of the RKC. Details of these

experiments are in the next section.
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Figure 3.1: Three Waveforms, w(¢), wa(t), ws(t)

3.2 Experiments

3.2.1 Waveform Classification

This experiment is a three-class, 21 dimensional waveform classification problem.

This example was used in 1984 by Breiman [35].

Procedures

The waveforms used in this experiment were based on three waveforms wy (1), welt),
ws(t) plotted in Figure 3.1. Each class consisted of a random convex combination of
two of these waveforms sampled at the integer values with noise added. To generate
a 21-dimensional vector, X = (Xj,..., Xy), for Class 1, a uniform random num-

ber U and 21 random numbers, €y, ..., €q;, with Gaussian distribution A/ (0,1) were
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generated with

Xon =Uwi(m) + (1 =U)we(m) + 6, m=1,...,21. (3.3)
To generate a vector for Class 2, the above procedurc was repeated where

X =Uwi(m) + (1 =) wz(m) + e, m=1,...,21. (3.4)
A vector for Class 3 was generated by the same procedure with

Xy =Uwo(m) + (1 =D ws(m) + €, m=1,...,21. (3.5)

For each set of training data, three hundred data were generated using a prior prob-
abilities of (é % %) Thus there were about 100 training data per class. Ten training
data sets were generated using the above procedure together with ten test sets of size
3000.

For each sct of data and a fixed number of centroids N, first the centroids are
located using K-Means clustering. When OCON was used, the training data were
clustered separately based on their classes, that is, it was necessary to cluster three
times, once for each class, in order to locate all the centroids. When MCON was used,
all the training data were clustered together, that is, only one clustering is necessary.
Next, the weight, a?‘), was set to the number of training data grouped into cluster C;.
Finally, the smoothing parameter  is optimized using a test set. In this experiment,
a Gaussian distribution was used as ¢ and Euclidean metric was used as the distance
metric. A list of classification errors in percentage and the corresponding h were
recorded. Due to the fact that the location of the centroids which were selected using
K-Means clustering depended on the location of the initial centroids, these initial
centroids were selected randomly from the training data. In addition, the procedures
of training the RKC were repeated ten times for each training and testing set in order
to minimize this dependency. As a result, the classification errors recorded here are
an average over these ten repeated training and over the ten sets of training and

testing data. These results are reported in the next section.
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Figure 3.2: Classification results of the Waveform Experiment using Radial Kernel

Classifier with Multi-Class One Net (MCON) and One Class One Net (OCON)

Results

After averaging the classification errors over ten sets of training and testing data, the
crror rate versus the number of centroids N curves for the MCON and the OCON
is plotted in Figure 3.2. Clearly OCON outperforms MCON for every N < n. Also,
OCON achieved a classification error smaller than the one obtained by the Classical
Kernel Classifier (CKC) except for N = n when the errors are equal. In this exper-
iment, the OCON is noticed to have a faster learning time than MCON especially

when N is small.

Discussion

These results show that OCON outperformed MCON for every N (except when N =

n). Its learning time is also shorter than those of the MCON. The reason for the
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shorter learning time is because MCON had to cluster all 300 data at once but
OCON was allowed to cluster a small set (about 100 data) of data at a time. These
results also show that OCON outperforms CKC with only three centroids even though
problem is a high dimensional one. It seems that RKC did not simply reduce the
number of data used in classification, it had also learned and refined the information

within the training data.

3.2.2 Vowel Classification

This experiment is a ten-class, four dimensional vowel classification problem. The
vowel data originated from the paper [33] by Peterson et. al. in 1952. The original
data contained 76 speakers. Each speaker recorded two lists of 10 words, making a
total of 1520 recorded words. The recorded words were then used to generate the
four frequency variables by means of the sound spectrograph. The data set used in
this paper was provided by Lippmann [36]. It contained only 75 speakers with the
token [AO] of three speakers missing. As a result, the total number of data used
in this experiment was 1494. A list of the vowel data used in this experiment is in

Appendix A.

Procedures

About fifty training data were selected randomly without replacement from each class
to make up a training set with a total of 500 data. The remaining data were then
used as a test set. Each class had the same a priori probability. Ten sets of training
and testing data were generated.

For each set of data and a fixed number of centroids N, first the centroids were
located using K-Means clustering. When OCON was used, the training data were
clustered independently based on their classes. When MCON was used, all the train-

ing data were clustered together. Next, the weight, az(u), was set to the number of
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training data from class u grouped into cluster C;. Lastly, the smoothing parameter A
was optimized using the test set. In this experiment, a Gaussian distribution was used
as ¢ and the Euclidean was used. A list of classification errors in percentage and the
corresponding A were recorded. Due to the fact that the location of centroids which
wore sclected using K-Means clustering depended on the location of initial centroids
used in K-Means, these initial centroids were selected randomly from the training
data. This process of training the RKC was repeated ten times for each training and
testing set. As a result, the classification errors recorded here are an average over ten
training processes and over the ten scts of training and testing data. These results

arc reported in the next section.

Results

The classification crrors averaged over ten sets of training and testing data versus N
curves for the MCON and the OCON are plotted in Figure 3.3. Although both MCON
and OCON converged to the same minimum classification error rate when N = n,
OCON converged faster than MCON. Note that the same minimum classification

error rate could be obtained if the CKC is used in this experiment.

Discussion

From the results of this vowel experiment, OQCON had outperformed MCON. Al-
though OCON and MCON are not able to reach a smaller classification error than
the one obtained by Classical Kernel Classifier, OGON had a faster convergent rate.
The advantage of a having a fast convergent rate is that if one wants to reduce the
classification time by using less centroids at the price of a slight increase in classifi-
cation error rate then OCON as compared to MCON allows the use of a smaller N

to achieve the same classification error.
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Figure 3.3: Classification results of the Vowel Experiment using the Radial Kernel

Classifier with Multi-Class One Net (MCON) and One Class One Net (OCON)
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3.2.3 Summary

From these two experiments, it is showed that OCON can outperform MCON. In the
case where RKC could not achieve a classification error rate smaller than the one
obtained by the CKC, OCON has a fast convergent rate than MCON. In addition,
with OCON one can be sure that each class has at least one centroid or prototype.

As a result, OCON is used in the rest of this thesis.

3.3 Relations with a Priori Probability

Now that it has been established that centroids should be selected from each class
independently, the next step is to determine how many centroids should be selected
from each class. An obvious method is to search through all combinations of N O8
where u is one of the S classes, to find the one with the minimum classification error.
This method however is too time consuming even for a small number (= 100) of
training data. A sccond method, called the “Ratio N method” (RNM), is to let the
number of centroids from each class be proportional to their a priori probabilities. A
third method is to use an equal number of centroids for each class. This method is
called the “Equal N method” (ENM). In this section, the performance of the RKC
using RNM and ENM is studied using two examples. These two examples are basically

the same except that their a priori probabilities are different.

3.3.1 Gaussian Data Classification I

This experiment is a two-class, two dimensional classification problem. Both classes
have a Gaussian distribution. The first class has a zero mean with an identity covari-
ance matrix and the second class has a mean vector [I 2] and a diagonal covariance

matrix with the entries 0.01 and 4. The a priori probabilities for the first and the

1

second class are 3

and 2 respectively.
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Procedures

Each training data set contained a total of 400 data and each test set contained 2000
data. Ten sets of training and testing data were generated. In this experiment, the
OCON was used to select N; K-Means clustering for selecting centroids; Gaussian
Kernel as the radial kernel function; and Euclidean distance as the metric. The initial
centroids used in the K-Means clustering were selected randomly from the training
data. The RKC was trained and tested ten times for each training and testing sct. As
a result, the classification errors recorded here arc an average over these ten training
and testing per data set and over the ten sets of training and testing data. The
classification error rate versus N curves for the RNM and ENM methods are plotted

in the next subsection.

Results

The error rate versus N curves for the RNM and the ENM are plotted in Figure 3.4.
It shows that ENM has a better classification performance than RNM. These results

are discussed together with the results of the next experiment in the following section.

3.3.2 (Gaussian Data Classification 11

This experiment is basically the same as the previous one except that the a priori

probabilities are different. The a priori probabilities for the first and the second class

are % and % respectively. The training procedures of this simulation is the same as

the previous one so they are not repeated here.
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Figure 3.4: Classification results of the Gaussian Data Classification I using the Radial

Kernel Classifier with the Ratio N method and the Equal N method
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Figure 3.5: Classification results of the Gaussian Data Classification II using the

Radial Kernel Classifier with the Ratio N method and the Equal N method
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3.3.3 Results and Discussion

The results of this experiment are plotted in Figure 3.5. These together with the
results from the previous experiment suggest that the best number of centroids per
class for the RKC does not depend on the a priori probabilities. If it does, then
the RNM should always give a smaller error rate than the ENM. Since the a priori
probabilities can no longer be used as guideline to determine the number of centroids
one should use for each class, the next best choice is to use the ENM, that is, using
the same number of centroids for every class. Although ENM may not give the
optimum classification error rate, it does save time compared to searching through
all combinations of N® and it provides one with a guideline especially when the a
priori probabilities are not known. Unless it is known in advance that some classes
require more centroids than other classes, in order to have a better representation,
ENM seems to be the most logical choice. In the rest of the experiments in this thesis,

the ENM method is used for selecting the number of centroids for cach class.

3.4 Summary

This chapter showed that selecting centroids using OCON is better than MCON, thus
the use of OCON is recommended. It was established that the number of centroids for
each class does not appear to depend on the a priori probabilities. Since the a priori
probabilities cannot be used as guideline for determining the number of centroids that
should be used for each class, it is recommended that an equal number of centroids

for each class be used.



Chapter 4

Location of Centroids

It is mentioned in Chapter 3 that the number of centroids and their locations are
two important parameters in RKC. Now that how the number of centroids should be
selected is established, this chapter considers the question of what technique should
be used to select the location of centroids. The performance of five different centroid

sclection schemes:
1. Random Centers,
2. K-Means Clustering,
3. Partition Around Medoid (PAM),
4. Learning Vector Quantization (LVQ), and
5. Decision Surface Mapping (DSM)

are studied. Details of the techniques are given in the following section.

37
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4.1 Centroid Selection Schemes

4.1.1 Random Centers

Random Centers was used by Broomhead and Lowe in [8] 1988 when they first pro-
posed RBEFN. This technique selects centroids randomly from the training data with-
out replacement. Although in [14] Lowe had shown that Random Centers could give
reasonable performance for RBFN, from the experiments in this research, the RKC
did not perform well with the Random Centers.

The Random Centers technique used in the experiments here is different from the
one used in RBFN literature in two ways. Firstly, in the RBFN literature, random
centers were selected using MCON, but in the experiments OCON and ENM are
used. This ensures that each class has an equal number of centroids to represent
them. Secondly, each selected centroid is treated as a center rather than just a
prototype. That is, after the centroids are selected, each training data is assigned to
its closest centroids using the Euclidean metric, and the weight, at(“), is set to the

number of training data from class u grouped into cluster C;.

4.1.2 K-Means Clustering

K-Means clustering was first used by MacQueen in 1967 [34] with Moody and Darken
[9] 1989, were the first to use it to select centroids for RBFN. Almost all RBFN
literature use K-Means clustering or variants of K-Means for centroid selection. Mac-

Queen’s K-Means clustering consists of the following steps:

1. The first k& data units in the data set are taken as clusters of one member each.

These data are the initial centroids.

2. Each of the remaining n— & data units are then assigned to the cluster with the

nearest centroid. After each assignment, the mean of the gaining cluster (the
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one which has just received a new data) is computed and the centroid of the

gaining cluster is set to this mean value.

3. After all data units are assigned, the existing cluster centroids are taken as fixed
seed points and one more pass is made through the data set assigning each data

unit to the nearest seed point.

The K-Means clustering used in the experiments in this research was a convergent

variant of MacQueen’s K-Mcans technique. The steps used are as follows:

1. From the data set, k initial centroids are selected randomly without replacement

as clusters of one member each.

2. Each of the remaining n®™ — £ data units is assigned to the cluster with the
nearest centroid. After each assignment, the mean value of the gaining cluster

is computed. The centroid of the gaining cluster is set to this mean value.

3. Each data unit is then taken in sequence and its distances to all centroids are
computed. If the cluster with the nearest centroid is not the same as the parent
cluster, then this data unit is reassigned to the cluster with the nearest centroid
and the centroids of the losing and the gaining clusters are updated to the mean

value of the corresponding cluster.

4. Step 3 is repeated until convergence is achieved. In other words, the clustering
process stops when a full cycle through the data set fails to cause any changes

in the cluster membership.

Since OCON is used in the experiments, the & in the convergent K-Means algorithm
is the number of centroids per class and the n® is the number of training data from
class u.

The reason for studying IK-Means clustering in this thesis is because it is a stan-

dard technique that every RBFN paper used. Although using K-Means convergent
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clustering with RKC does not outperform other techniques that are studied in the
experiments, it gives good performance and its learning speed is faster than those of

the LVQ, DSM and PAM.

4.1.3 Partition Around Medoid (PAM)

The PAM technique used in the experiments is deseribed in the hook [37] by Kaufman
and Roussecuw. To date no RBFN paper has used this technique to locate the
centroids. This technique is very similar to the K-Means clustering. Both try to
select centroids which would minimize the sum of distances between the centroids
and the data. The difference is that using PAM, the centroids can only be selected
from the training data. In other words, the centroids selected have to be one of
training data points.

The algorithm of PAM consists of two phases, the BUILD phase and the SWAP
phase. In the BUILD phase, an initial clustering is obtained by the successive selection

of representative data until &£ data have been found. It contains the following steps:

1. Select a data which has the smallest sum of distances to all other data. This is

the first initial centroid.
2. Consider another data @; which has not yet been selected.

3. Consider a non selected data, x;. Calculate, D;, the distance between x; and

its nearest centroid, and d(, §), the distance between @; and =;.

4. If the difference between D, and d(4, §) is positive, then data x,; will contribute
Cjz’ = max(Dj - d(j, Z), O) (41)

to the decision of whether data @; should be selected.

.CJT

Calculate the total gain, > Cii.
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6. Select the data ; which has the maximum total gain as one of the initial

centroids.
7. Repeat step 2 to step 6 until k& centroids are found.

Next is the SWAP phase. In this second phase, PAM will try to further minimize
the sum of distances between the centroids and the data. This is done by considering
all pairs of data (@, z,,) for which data ®, is a centroid and data Ty, is not and to
determine what effect a swap would have on the value of the clustering. The SWAP

phase has the following steps:
1. Consider a non selected data x; and calculate its contribution Crem to the swap:

(a) If @y, is further away from both @, and z,, than from one of the other

centroids, then Cly,, is zero.

(b) If @, is the nearest centroid of x;, (d(k, ) = Dy), then two situations must

be considered:

(1) @4 is closer to &, than to the second closest centroid
d(k, m) < By, (42)

where F; is the distance between xj and the second nearest centroid.
In this case the contribution of data @, to the swap between data z,
and x,, is

Chem = d(k, m) — d(k, £). (4.3)

(i) @y is at least as distant from @,, as from the second nearest centroid
In this case the contribution of object &y to the swap is

Chem = Ey, — Dy, (4.5)
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Note that in situation (i) the contribution Cle, can be ecither positive or
negative depending on the relative position of data y, T, ,,. Only when
the data x, is closer to ®, than to =,, will the contribution be positive.
This indicates that the swap is not favorable from the point of view of data
@y On the other hand, in situation (i) the contribution is always positive
because it cannot be advantageous to replace @, by a data x,, which is

further away from @y, than from the second closest centroid.

(¢) @y is further away from data @, than from at least one of the other controid
but closer to @, than to any centroid. In this case the contribution of Ty
i

to swap is

Crem = d(k,m) — Dy, (4.6)

2. Calculate the total effect of a swap by adding the contributions Chrom:
Tom = z Crem (47)
e

3. Select the pair of (¢, @,,) which Iglin Tem.
Jn

4. If the minimum Ty, is negative, the swap is carried out and the algorithm
‘ 7 returns to step 1 of the SWAP phase. If the minimum T}, is positive or 0, then

the algorithm stops.

Note that since all potential swaps are considered, the resulting centroids generated
using PAM do not depend on the order of the data.

The reason for including PAM in this thesis is because one would like to study
whether a centroid selection technique such as PAM which selects a subset of the
training data as centroids could perform as well as other techniques such as K-Means
which are not constrained to select its centroids from the training data. From the
resulis of the experiments, it is observed that a RKC which uses PAM had a slower

convergent rate than when it is used with K-Means, LVQ or DSM.
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4.1.4 Learning Vector Quantization (LVQ)

This technique was first proposed by Kohonen in [38] 1988 and was used in [15, 39, 40]
to locate centroids for the RBFN. The LVQ technique implemented in the experiments

has the following steps:

1. Select k initial centroids from each class of the training data using the convergent

variant of the MacQueen’s K-Means technique described in Section 4.1.2.

[\

Select a data x; randomly from the training data.

3. Calculate the distance between &; and all centroids and sclect the nearest cen-

troid ¢;.

4. If ¢; and &; belong to the same class, the centroid ¢; is moved towards x; using
the equation

y = ¢;+ Btz — ¢) (4.8)

where ¢/; is the new centroid, B(t) is a monotonically decreasing linear function

which starts at 0.3 and reaches zero in 100,000 steps and ¢ is the number of

times the centroids are trained. If ¢; and z; belong to two different classes then

¢; is moved away from @; using the equation

'y = ¢; — B(t)(zi — ¢y). (4.9)
Only the nearest centroid is updated.
5. Step 2 to 4 are repeated 100,000 times.

The reason for studying LVQ is because one would like to observe whether LVQ can
improve the centroid locations generated by K-Means clustering. In the experiments,
it is observed that LVQ outperformed K-Means slightly in the first experiment and it

gives the same performance as the K-Means in the other two experiments. Although
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LVQ can select better centroids than the K-Means, its learning time was more than
double the time used by the K-Means. As a result, the use of LVQ for centroid

selection is not recommended.

4.1.5 Decision Surface Mapping (DSM)

DSM was first proposed in the paper [41] by Geva and Sitte in 1991 as a technique to
select prototypes for the Nearest Neighbor Classifier. In Geva and Sitte’s paper, they
showed that DSM is better than LVQ for the pattern classification problem. This
technique has not been used for centroid selection in any RBFN paper.

DSM is actually a variation of the LVQ method. The only difference between
DSM and LVQ is that DSM does not require the centroids to reflect the probability
distribution of each class. Instead, DSM adapts the centroids to closely map the
decision surface or boundary which separates the classes. The DSM algorithm consists

of the following steps:

1. Select k initial centroids from each class of the training data using the convergent

variant of the MacQueen’s K-Means technique described in Section 4.1.2.
2. Select a data x; randomly from the training data.

3. Calculate the distances between m; and all centroids and select the nearest

centroid ¢;.

4. If ¢; and z; belong to the same class then no modification is made. If they
belong to two different classes then ¢; is punished and the nearest centroid ¢y,
which belongs to the same class as @; is rewarded. The centroid ¢; is moved

away from @; using the following formula:

c; = ¢; — B(t)(w; — ¢)) (4.10)
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where ¢'; is the new centroid, 3(t) is a monotonically decreasing lincar function
which starts at 0.3 and reaches zero in 100,000 steps and ¢ is the number of
times that the centroids are trained. The centroid ¢y, is moved toward x; using
the following formula:

C;J = Cp — ,B(t)(wz - Cb) (4.11)
5. Steps 2 to 4 are repeated 100,000 times.

The reason for studying DSM is because one would like to observe the importance
of the probability distribution of each class towards the selection of centroids. From
the experiments, it is learned that the probability distributions arc important to
the selection of centroids only when these distributions have simple formns (such as
the uniform distribution). As the probability distributions become more and more
complex (such as those in the Vowel Experiment), their importance in the selection

of centroids decreases.

4.2 Experiments

Three experiments were used to study the performance of the five centroid selection
techniques. The first one is the Waveform experiment used in Section 3.2.1. The
second experiment is a three-class, two dimensional classification problem with uni-
formly distributed data. The third experiment is the Vowel Classification experiment
described in Section 3.2.2. In these experiments, OCON and ENM are used to select
N, the Gaussian Kernel is used as the radial kernel function, and the Euclidean metric

is used. Details of these experiments are as follows.

4.2.1 Uniform Data Classification

This first experiment is a three-class, 2 dimensional classification problem with uni-

formly distributed random data.
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Figure 4.1: Boundary of the Three-Class Uniform Data

Procedures

The three classes of data were generated using the following method:

Class 1 : Generated by randomly selecting a pair of coordinates in the square with

corner points (—1.25,-0.25) and (1.25, 2.25).

Class 2 : Generated by randomly selecting a pair of coordinates in the square with

corner points (—0.25, —2.25) and (2.25,0.25).

Class 3 : Generated by randomly selecting a pair of coordinates in the square with

corner points (—2.25, —2.25) and (0.25,0.25).

‘The boundary of these classes is shown in Figure 4.1.
Three hundred training data per set were generated using the a priori probabilities
of (%, %, %) Thus there were about 100 training data per class. Ten training data

sets were generated using the above procedure together with ten test sets of size 3000.
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For each set of data, centroids are selected independently from each class using one
of the five centroid selection schemes. Then the weight, a§“), is set to the number of
training data from class u grouped into cluster C;. Lastly, the smoothing parameter
h is optimized using the test set. A list of classification errors in percentage and the
corresponding i were recorded. Since all centroid selection schemes, except PAM,
depend on the location of the initial centroids, these initial centroids were selected
randomly from the training data and a RKC was trained ten times for each training
and testing set in order to minimize the effect of the dependency. As a result, the
classification errors recorded here are an average over ten repetitions for each data
set and over the ten sets of training and testing data. The results of this experiment

are reported in the next section.

Results

The error rate versus the number of centroids N curves of the five centroid selection
schemes are plotted in Figure 4.2. From these results, it is clear that Random Centers
cannot compete with other four techniques. Although the error rate of DSM is even-
tually the same as those of the K-Mcans, PAM and LVQ, the converging rate of the
DSM is slow compared to these three techniques. As a note, the classification error
rate that all five techniques converged to was the error rate of the Classical Kernel

Classifier.

Discussion

From the results of this uniform data experiment, there are three observations. The
first observation is that RKC does not have a good performance if one simply selects a
random subset from the training data as centroids (as is the case of Random Centers).
‘The second observation is that although using a random subset of the training data

as centroids is undesirable, if one carefully selects a subset of the training data as
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Figure 4.2: Classification results of the Uniform Data Experiment using Radial Kernel

Classifier with five centroid selection schemes

centroids using a technique such as the PAM then one could obtain results comparable
to those obtained by using K-Means. A third observation is that using centroids
which do not reflect the probability distributions of classes may slow down the error
convergent rate as in the case of DSM. This suggests that the probability distributions
are important to the selection of centroids when N is small. From these observations,
the use of K-Means clustering is recommended for centroid selection because of its

speed, convergence rate and accuracy.

4.2.2 Waveform Classification

This experiment is the three-class, 21 dimensional waveform classification problem
described in Section 3.2.1. For the procedures of this experiment, please refer to that

section.
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Results

The error rate versus N of the five centroids selection schemes are plotted in Fig-
ure 4.3. Similar to the results of the previous experiment, the Random Centers had
the worst classification performance, while LVQ and K-Means had similar perfor-
mance. Unlike the previous results however, PAM was not able to perform as good

as DSM, LVQ and K-Means in this experiment.

Discussion

From these results, there are two observations. The first observation is that PAM
does not perform as well as DSM, LVQ and K-Means. This is because PAM is
constrained to select a subset of the training data as centroids. This result suggests

that if one is limited to use a subset of the training data as centroids, then the
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error rate will not be better than the error rate of the CKC. The second observation
is that in this experiment DSM has a similar performance to that of LVQ and K-
Means. Although DSM appears to have difficulties in locating good centroids when
the data have a simple distribution (such as Uniform Distribution in the previous
experiment), the DSM performs as well as LVQ and K-Means when the data have
complicated distributions (such as those in this experiment). This suggests that as
the probability distributions of the data class become more complex, their influence

on the locations of the centroids and the error rate of the RKC become less.

4.2.3 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.
A list of the vowel data used in this experiment is in Appendix A. For the procedurcs

of this experiment, please refer to Section 3.2.2.

Results

The error rate versus the number of centroids N curves of the RKC using the five
centroid selection techniques are plotted in Figure 4.4. The most interesting result of
this experiment is that DSM outperforms LVQ, PAM and K-Means. The remaining

results are similar to those of the previous two experiments.

Discussion

‘The most surprising result in this real data experiment was that DSM had outper-
formed PAM, K-Mecans, LVQ and even Classical Kernel Classifier. It appears that
as the probability distributions of classes become complicated, techniques such as
K-Means and LVQ start to have trouble selecting centroids which model these dis-
tributions. By having the freedom to select centroids which do not necessary reflect

the distribution of the data, DSM is able to focus its attention on selecting centroids
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Figure 4.4: Classification results of the Vowel Experiment using Radial Kernel Clas-

sifier with five centroid selection schemes

which improve classification rather than on modeling the distribution. Thus, it was

able to achieve the best error rate in this experiment.

4.3 Summary

From the results presented in this chapter, there are four important observations.

1. Using Random Centers as RKC’s centroids usually results in an error rate that
is worse than those obtained by the other four techniques. Thus using the

Random Centers with the RKC is not recommended.

2. Although the results of the PAM in the first and the third experiment are
similar to those obtained by using the K-Means and the LVQ, the constraint

which limits the PAM to select centroids from only the training data slows down
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PAM’s convergence rate as in the case of the Waveform Experiment. Unless the
problem requires the use of a subset of training data as centroids, PAM is not

recommencdled.

3. Since the K-Means gives similar results to the LVQ and since it has a shorter
learning time than the LVQ in all three experiments, the use of the K-Means

clustering for centroid selection in RKC is recommended.

4. Forcing the centroids to model the probability distribution of the classes may
not necessarily provide good classification performance. A good example is the
surprisingly good results obtained by DSM - a technique which does not con-
strain its centroids to reflect the probability distribution of the classes - in the
Vowel Experiment. By outperforming the other four techniques in this last ex-
periment, DXSM shows its potential for centroid sclection in real applications.
However, the usc of the DSM for centroid selection is not recommended be-
cause its learning time is longer than those of the K-Means and it has a slow

convergence rate.

Based on the third observation, the K-Means clustering is used for centroid selec-

tion in the remaining experiments of this research.



Chapter 5

Distance Measures

This chapter studies the performance of RKC when six different metrics are used.
In order to simplify the study, the six metrics are grouped into two sets: the L,
metric and the Mahalanobis metric. The L, metric consists of the L; metric or the
Manhattan distance, the Euclidean metric and the L., metric. The Mahalanobis
metric consists of the Global Sigma metric, the One Class One Sigma (OCOS) metric
and the P-Nearest Neighbor metric. For each metric group, two experiments were
used in to study their performance. The Waveform and the Vowel experiments were
used to study the performance of RKC using an L, metric, and the Uniform Data
and the Vowel experiments were used to study the performance of an Mahalanobis

metric.

5.1 L, Metric

In this section, the performance of the RKC with three different L, metrics is com-

pared.

1. The Manhattan metric or L; norm which has the form:

d
le —yll => |z —wl, =yeR% (5.1)
i=1

53
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2. The Euclidean metric or Ls norm which has the form:

1/2

d
|z —y| = {Z(:L‘i — 'yi)Q} , x,y € R (5.2)

i=1

3. The Maximum Value metric or Ly, norm which has the form:

|z — y|l = max{|z; —wi|},, =z yeR.L 5.3
=1

Both the Manhattan metric and the Maxinnun Value metric have not been studied
in RBFN literature.

The two experiments used to study the performance of RKC are the Waveform
experiment described in Section 3.2.1 and the Vowel experiment which is described
in Section 3.2.2. In these experiments, OCON and ENM were used to select the
number of centroids, K-Means clustering was used for selecting the centroids and the

Gaussian Kernel was used as the radial kernel function.

5.1.1 Waveform Classification

This experiment is the three-class, 21 dimensional waveform classification problem
described in Section 3.2.1. For the procedures of this experiment, please refer to

Section 3.2.1.

Results

The error rate versus N curves for the three metrics are plotted in Figure 5.1. From
the results, RKC performs slightly better with the Euclidean metric than with the
Manhattan metric. The Maximum Value metric has the worst performance for any

N.

Discussion

From the results, there are two observations.
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Figure 5.1: Classification results of the Waveform Experiment using Radial Kernel

Classifier with three L, metrics
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First, although the Manhattan metric does not outperform the Euclidean metric,
the results are very close; within one percent. Since the classification speed of a RKC
using the Manhattan metric is faster than that of the Euclidean metric, if classification
speed is more important than acceuracy, then the Manhattan metric should be used
instead of the Euclidean metric.

Second, the Maximum Value metric has the largest error rate for every N. This
poor performance of the Maximuin Value metric is reasonable hecause it used only
one of the 21 dimensions for its distance measure. In other words, the information
within the remaining 20 dimensions was discarded by the Maximum value metric. No

wonder it performs poorly.

5.1.2 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.

For the procedures of this experiment, please refer to Section 3.2.2.

Results

The error rate versus N curves for the three different metrics are plotted in Figure 5.2.
The most remarkable thing about these results is that a RKC using the Manhattan

metric has actually performed better than a RKC using the Euclidean metuic.

Discussion

This experiment shows that for RKC the Manhattan metric is a viable alternative
to the use of the Euclidean metric. The Manhattan metric is both faster than the
Euclidean metric to compute and it provides a better performance than the Euclidean

metric.

S
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5.1.3 Summary
These two experiments show that

1. The Maximum Value metric or the Ly, norm with RKC gives results which are

worse than those of the Euclidean metric. Thus its use is not recommended.

2. The use of the Manhattan metric is an attractive alternative to the use of the
Euclidean metric. Not only can it provide a classification speed faster than
that of the Euclidean metric, but the Manhattan metric can also provide a

classification error similar to or even better than the Euclidean metric.

In the next section, the metrics that belong to the Mahalanobis metric group are

studied.

5.2 Mahalanobis Metric

The performance of RKC using the Manhattan metric is compared with three different

Mahalanobis metrics:
1. the P-Nearest Neighbor metric;
2. the Global Sigma metric; and
3. the One Class One Sigma (OCOS) metric.

Recall that the Radial Kernel Density Estimate (RKDE) is used by the RKC to

estimate the class-conditional probability density p(z|w,). It has the form

N ()

1 e — ™|

WPy — () I 7%
¢ (x) - ;:1 o q{)( A (5.4)

where n is the total number of training data, h is the smoothing parameter, d is the

dimension of &, N® is the number of clusters which contain data from class u, ozg”’)
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is the number of training data from class u grouped into cluster C;, ¢ is the radial
kernel function, and ¢; is the i-th centroid. When the Mahalanobis metric is used

with the RKC, the RKDE will have the form

() u U Uy — U 1/2
Oy~ LY el (@ - e™)"(=) (@ - e)) (5.5
i = ( tz(u))iﬂ h

where 25“') is the normalization matrix for the cluster C;, det Eg") is the determinant of
2, 27 is the transpose of @. For cach different Mahalanobis metric, the caleulation
of B is differcnt.

The Uniform Data experiment and the Vowel experiment were used in this section.
In these experiments, OCON and ENM were used to select N, the K-Means clustering
was used for centroid selection, and the Gaussian Kernel was used as the radial kernel

function.

5.2.1 P-Nearest Neighbor Metric

For the P-Nearest Neighbor metric, the normalization matrix EE{”) is set to the root
mean square value of the Euclidean distances from the centroid c,E”) to its P nearest

neighboring centroids of the same class, that is,
(u) 1 Z () ()2 v =
_']:

where ||... || is the Euclidean distance, I is an identity matrix, and {cE])) }J_ are the
P nearest neighboring centroids of ¢;®. The P-Nearest Neighbor metric was first
proposed by Moody and Darken in [16] 1988 to calculate the receptive field width
of the RBFN. A unique feature of the P-Nearest Neighbor is that it provides the
RKC with an additional parameter P to improve its classification performance. The
experiments show that in general P = 3 is sufficient to provide a good classification
performance. As a result, the Three Nearest Neighbor metric is used in both ex-

periments in this section. Since the Three Nearest Neighbor metric requires every
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centroid to have at least threc neighboring centroids from the same class, the number

of centroids for each class is started at four for both experiments.

5.2.2 Global Sigma Metric

For the Global Sigma metric, the normalization matrix 22(") is set to the sample
covariance matrix of all the training data, that is, Eg”) = 2. Using Global Sigma

metric, the RKDE in equation (5.5) can be written as

u U — u 1/2
(det 3)—1/2 N® ((33 — )T @~ ¢l }))

¢ (z) = i 3 o - . (5.7)

i=1

This metric system is similar to the one proposed by Poggio and Girosi in [42] 1990.

5.2.3 One Class One Sigma (OCOS) Metric

For the One Class One Sigma (OCOS) metric, the normalization matrix is set to
the sample covariance matrix of each class, that is, E,g") = ¥ Using OCOS,

equation (5.5) can be written

—1/2 pru) _ 1/2

det S N (@ — ¢, NT(T®) "z — ;™)
¢ () = ——————( nhd) 3 oMy ( : ) . (5.8)
i=1

The purpose of using OCOS is to reduce the contribution from the data dimensions
with a large range or value to the distance measure. This idea of normalizing the
contribution of each dimension of the data during classification is similar to the idea
of normalizing the training data before centroid selection proposed by Lay and Hwang

in [19] 1993.

5.2.4 Uniform Data Classification

The first cxperiment is the three-class uniform data classification experiment de-

scribed in Section 4.2.1. For the procedures of this experiment, please refer to Sec-
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Figure 5.3: Classification results of the Uniform Data Experiment using Radial Kernel

Classifier with four Mahalanobis metrics

tion 4.2.1.

Results and Discussion

The error rate versus N curves for the RKC using four metrics are plotted in Fig-
ure 5.3. From the results, there are two observations.

‘The first observation is that although the Global Sigma metric and the OCOS
metric are more flexible than the Manhattan metric since they have more parameters
to vary, they give similar results to the Manhattan metric in this experiment. The
reason for this result is because uniform random data was used. Since RKC using the
Global Sigma metric or the OCOS metric have a longer learning and classification
time than the Manhattan metric, the use of the Manhattan metric is recommended
when the data have an uniform distribution.

The second observation is that the P-Nearest Neighbor metric gives a poor per-
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Figure 5.4: Classification results of the Vowel Experiment using Radial Kernel Clas-

sifier with four Mahalanobis metrics

formance compared to the other three metrics. Since the P-Nearest Necighbor metric
used more local information than other metrics, this result suggests that RKC does

not perform well with a local metric.

5.2.5 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.
For the procedures of this experiment, please refer to Section 3.2.2.

Results and Discussion

The error rate versus NV curves of the RKC using the four different distance metrics
are plotted in Figure 5.4. This experiment illustrates the real advantage of using

OCOS and Global Sigma metrics when the data have a wide range and spread in
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different dimensions. The reason for their good performance is because the QCOS
metric and the Global Sigma metric are able to obtain an objective distance measure
by normalizing the Vowel data when the distance measure is calculated.

"The results also shows that the P-Nearest Neighbor metric does not improve the
classification performance of a RKC using the Manhattan metric. It appears that
a local metric such as the P-Nearest Neighbor cannot outperform the Manhattan

nietrie,

5.2.6 Summary

To conclude, the two experiments show that

1. When the data in the classification problem has a large range or spread as in

case of the Vowel data, the OCOS metric should be used.

2. Local metrics such as the P-Nearest Neighbor metric should not be used with
the RKC because in general they cannot achieve a classification performance

better than that of the Manhattan metric.

5.3 Discussion and Summary

If the results of the Vowel Classification experiment in Figure 5.2 are compared with
the results in Figure 5.4, it is clear that OCOS outperforms the Manhattan metric.
This suggests that OCOS is the best metric to use when the data has a complex
distribution (as in the last experiment). The only price one pays for this good perfor-
mance is a slightly longer classification time. If classification speed is more important
than the performance then the Manhattan metric is recommended. Although its per-
formance is not as good as the OCOSs, its classification error is comparable to that

of the Euclidean distance metric.
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Radial Kernel Functions

This chapter studies the performance of RKC using 12 different Radial Kernel Fune-
tions (RKFs). Since RKC is a hybrid between the Classical Kernel Classifier (CKC)
and Radial Basis Functions Network (RBFN), the RKFs considered in this chapter
come from the literature of these two classifiers. Note that in the CKC literature the
RKF is called Kernel Function and in the RBEN literature it is called Radial Basis

Functions. To simplify the study, the 12 RKFs are grouped into three sections:
1. Second Order Kernel Functions :

(a) Gaussian Kernel,

(b) Rectangular Kernel,
(c) Epanechnikov Kernel,
(d) Biweight Kernel, and
(e) Triangular Kernel.

They are used in the CKC literature for both pattern classification and function

estimation.

2. Higher-Order Kernel Functions :

64
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(a) the Fourth Order Kernel,
(b) the Sixth Order Kernel, and

(¢) the Eighth Order Kernel.
They are used mainly in the CKC literature for function estimation.
3. Radial Basis Functions :

(a) Pseudo-Cubic Spline,
(b} Thin Plate Spline,
(¢} Multi-Quadric Equation, and

(d) Logarithmic Basis Function.
They are used in the RBFN literature for function approximation.

The reason for studying the performance of these RKFs is to find out which types of
RKFs should not be used with RKC, which may be used, and which should always
be used with RKC. The results of the experiments in this chapter show that most
RBF's should not be used with RKC, all Kernel Functions may be used with RKC,
and the Gaussian Kernel should always be used with the RKC.

Two experiments were used to study the performance of the 12 RKFs. For Second
Order Kernels, the Uniform Data and the Vowel experiments were used. Higher-Order

Kernels and the Radial Basis Functions used only the Vowel experiment.

6.1 Second Order Kernel Functions

In this section, the performance of the RKC using five second order kernel functions

is compared:
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1. Gaussian Kernel : This is the most widely used kernel in both CKC and

RBFN literature and it has the form:

1 o
(,f')(’n‘..) = \/—é:_‘?;eﬁ([/z)mz. (61)

2. Rectangular Kernel : This is basically the Uniform Distribution function

which has the form

0 otherwise.

3 for |z| < 1,
p(z) = (6.2)
3. Epanechnikov Kernel : This kernel has the form:

3 1,.2 R I
o) { W (1 — £ ) for || < /5, (6.3)

0 otherwise.

4. Biweight Kernel : This kernel has the form:

S B — )2 for |z| < 1,
P(x) = i ) i (6.4)
0 otherwise.
5. Triangular Kernel : This kernel has the form:
1—jz] for |z| < 1,
¢(z) = (6.5)
0 otherwise.

A plot of these kernels is in Figure 6.1. These five kernel functions are similar in that

they are all probability density functions. That is

/ O_o_ dx)=1 and Pplz)y >0 Va

for these five kernels. Except for the Gaussian Kernel, each of these second order
kernel functions have a finite support, that is, ¢(z) > 0 for only a finite range. The
purpose of this section is to find out whether a finite support kernel could perform as

well as the Gaussian Kernel which has infinite support. Despite the wide acceptance
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Figure 6.1: Second Order Kernel Functions

of the Gaussian Kernel, its classification speed is slow when compared to the other
four Second Order Kernels. The reason for this slow classification speed is because
the exponential function in the Gaussian Kernel requires a long computational time
and because of the infinite support the Gaussian Kernel has to use this function for
every real x. If one of the finite support kernels could produce similar results to
the Gaussian Kernel, using it with the RKC classification would mean a significant
increase in classification speed.

Two experiments were used to study the performance of the RKC using the five
Second Order Kernels. They were the Uniform Data experiment described in Sec-

tion 4.2.1 and the Vowel experiment described in Section 3.2.2.

6.1.1 Uniform Data Classification

The first experiment is the three-class Uniform Data classification experiment de-
scribed in Section 4.2.1. For the procedures of this experiment, please refer to Sec-

tion 4.2.1.
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Figure 6.2: Classification results of the Uniform Data Experiment using Radial Kernel

Classifier with five Second Order Kernel Functions

Results and Discussion

The results are plotted in Figure 6.2. From the results, there are two observations.
The first observation is that RKC gives a poor performance when it is used with
the Rectangular Kernel which is a non-local kernel. A non-local kernel is a kernel
function which does not have a convex shape. It appears that the non-local kernel
has a lesser discriminating power than the local ones. This fact will become clear
if one considers the following example. Consider a two-class classification problem
where each class has the same a priori probability and each class has a triangular
distribution (Figure 6.3). Using the Bayes Decision Rule (described in Section 2.1),
one can achieve the Bayes Error if any observation less than 0 is assigned to class 1
and any observation larger than or equal 0 is assigned to class 2. Now if one tries
to estimate the distribution of each class with a Rectangular Kernel (Figure 6.4),
the observations which fall between the range [~0.5, 0.5] cannot be properly classified

because the two Rectangular Kernels give the same response in this region. This is
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Figure 6.3: Two-Class Problemt with Triangular Distribution

exactly what happens when the Rectangular Kernel is used with a RKC. The region
of unknown classification in the boundaries between classes is the reason for the poor
performance of the RKC using the Rectangular Kernel.

The second observation is that using the Triangular Kernel is an attractive alter-
native to the use of the Gaussian Kernel. Not only is the Triangular Kernel faster
and easier to calculate than the Gaussian Kernel, the Triangular Kernel also achieved
a better result than the Gaussian Kernel in this experiment (Figure 6.2). The use of
a finite support kernel such as the Triangular Kernel is recommended if the speed of

classification is important.

6.1.2 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.

For the procedures of this experiment, please refer to that section.



CHAPTER 6. RADIAL KERNEL FUNCTIONS 70

1 T T T T T T

GClass § —
Class 2 -----

0.8

086 -

04

02 |

Figure 6.4: Estimate Triangular Distributions with Rectangular Kernels

Results and Discussion

The results are plotted in Figure 6.5. The results of this experiiment prompt three
observations.

The first observation is that the Rectangular Kernel has the worst performance of
the five second order kernels that are studied. This result suggests that the Rectangu-
lar Kernel has a lesser discriminating power than the other four kernels. As mentioned
in the previous experiment, the reason for this poor performance is because it is hard
to get clear boundaries between classes when the Rectangular Kernel is used with a,
RKC.

The second observation is that the Gaussian Kernel which has an infinite support
performs better than the remaining four finite support kernels. The reason for this
is probably because RKC which uses an infinite support kernel such as the Gaussian
Kernel is able to classify any data in the sample space but when RKC uses a finite
support kernel, it cannot give any response to those data that are outside the support

of the kernel. As a result, using a finite support kernel with RKC, there may be
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Figure 6.5: Classification results of the Vowel Experiment using Radial Kernel Clas-

sifier with five Second Order Kernel Functions

regions in the data space where no radial kernel can provide any response. Data
within this region of void therefore cannot be classified. This may explain why the
Gaussian Kernel is the most widely used kernel in both the CKC and the RBFN
literature.

‘The third observation is that the three finite support local kernels: the Triangular
Kernel, the Biweight Kernel and the Epanechnikov Kernel, gives similar results (Fig-
ure 6.5) even though they have a different profile. This suggests that when one wants
to use a local kernel for its fast classification speed, one should choose the Triangular

Kernel because it has the simplest form and it is the easiest to compute.

6.1.3 Summary

These two experiments show that
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1. The Rectangular Kernel should not be used with RKC in classification because
its performance is usually worse than those of the other four second order ker-

nels.

]

. The Gaussian Kernel should be used with RKC for most classification problemns
because its results are as good as or even better than those of the other four

kernels.

3. If classification speed is important, one should consider using a finite support
local kernel at the price of losing some classification performance. Since the
three finite support local kernels gave similar results in the experiments and
Triangular Kernel has the simplest form in the four local kernels, using the

Triangular Kernel is recommended to increase the classification speed of a RKC.

6.2 Higher-Order Kernel Functions

In this section, the performance of a RKC using the Gaussian Kernel is compared

with three higher-order kernel functions:

1. Fourth Order Kernel : This kernel has the form:

151 — 22)(3 — 72%) for |z| < 1,
Py = { ® (6.6)
otherwise.
2. Sixth Order Kernel : This kernel has the form:
208(1 — a)(5 — 302 + 3321 for |z| < 1,
4 otherwise.
3. Eighth Order Kernel : This kernel has the form:
215(1 — 22)(35 — 38522 + 10012 — 71528) for || < 1,
gb(:l,) _ 4096( )( J ) I l (6.8)
0

otherwise.
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Figure 6.6: Higher-Order Kernel Functions

A plot of the three higher-order kernels is given in Figure 6.6. The main differ-
ence between these three higher-order kernels and the second order kernels is that
these higher-order kernels have negative responses, that is, #(z) could be negative.
It the higher-order kernels is used with the Kernel Density Estimate to estimate the
class-conditional probability distribution, the resulting distribution will have negative
values. This is undesirable because a probability distribution should always be posi-
tive. Due to this reason, higher-order kernels are not used in CKC literature. These
kernels however are used in Kernel Smoothing or function estimation because the
higher the kernel order the faster the convergence rate. The purpose of this section is
to find out whether higher-order kernels can outperform the second order kernel such
as the Gaussian Kernel.

The Vowel experiment described in Section 3.2.2 is used to compare the perfor-
mance of the RKC using these three Higher-Order Kernels with the Gaussian Kernel.

The results are plotted in Figure 6.7. They show that the higher the kernel order
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Figure 6.7: Classification results of the Vowel Experiment using Radial Kernel Clas-

sifier with Higher Order Kernel Functions

is the poorer is the performance. Thus the Higher-Order Kernels should not be used

with the RKC in classification problems.

6.3 Radial Basis Functions

This section studies the performance of a RKC using four radial basis functions:

1. Pseudo-Cubic Spline (PCS) : This basis function has the form:
¢(z) = laf. (6.9)

2. Thin Plate Spline (TPS) : This basis function has the form:

P(z) = 22log(z). (6.10)
3. Multi-Quadric Equation (MQE) : This basis function has the form:

¢(z) = V22 T K. (6.11)
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Figure 6.8: Radial Basis Functions
In the experiments, & =1 is used.
4. Logarithmic Basis Function (LBF) : This basis function has the form:
B(x) = log(a? + k?). (6.12)
In the experiments, k& =1 is used.

A plot of these radial basis functions is in Figure 6.8. The major difference between
these Radial Basis Functions (RBFs) and the kernel functions that were studied in
the previous sections is that these have a concave profile.

Again the Vowel experiment described in Section 3.2.2 is used here to study the
performance of the RKC using the four Radial Basis Functions.

The results are plotted in Figure 6.9. From these results, it is clear that RKC
loses all its classification power when used with the concave RBFs. The reasons for

this poor performance lie in the the shape of the RBFs and the weights of the RKC.
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Figure 6.9: Classification results of the Vowel Experiment using Radial Kernel Clas-

sifier with four Radial Basis Functions

Recall that RKC will classify an observation z if
N _ ) N _ A
Plw,) Z agu)(p (UETCZ_H) > P(w,) Z aj(-ﬂ)qﬁ (“m_hci_ﬂ) _ (6.13)
i=1 i=1

In order to classify an observation @ properly, the radial kernel function of those
centroids which are close to @ should give a high response. Since the four RBFs
studied here have a concave shape, they would provide a high response only to those
centroids which are further away from . As a result, the RKC cannot classify any

observation properly using concave RBFs.

6.4 Summary

From the results presented in this chapter, there are four observations.

1. Although finite support Second Order Kernels with the RKC have a faster

classification speed than when the Gaussian Kernel is used, they are not able
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to provide a better performance than the Gaussian Kernel.

2. The performance of the Higher-Order Kernels are generally worse than those of

the Gaussian Kernel.
3. RKC loses all its discriminating power when it is used with a concave RBF.

4. The results in this chapter suggest that RKC is similar to CKC in that it
requires its kernel function gives a positive response for any observation and
have a convex shape. This observation is reasonable because the RKC is derived

mainly from the CKC.




Chapter 7

Smoothing Parameter Selection

The smoothing parameter h is very important to the performance of the RKC. If the
h is too small, the radial kernels will not be wide enough to cover all the training
data. This will result in a large classification error. On the other, if the A is too large,
then the boundary between classes becomes blurred. This also results in a large
classification error. The selection of A can literally make or break the RKC. In this
chapter, different methods for optimizing the smoothing parameter h are studied with
respect to the classification error of the RKC. The process of optimizing h consists
of three steps. First, one needs to specify a range or a list of & where the optimum
will lie. Second, the classification error of a RKC is calculated using this list of A.
Finally, the k in the list which gives the minimum classification error is selected to
be the optimal A. Since the last step is trivial, this chapter focuses only on the first
two steps. First, three different methods for estimating the classification errors using
only the training data are studied. Next, three methods for selecting a range of h for

optimizing h are studied.
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7.1 Error Estimation

In an ideal situation, one would have a large number of training and testing data to
caleulate the classification error rate, L, for a given h. However, for most classification
problems, the sample data are seldom enough even for training the classifier, let alone
testing it. As a result, very often one has to estimate L using the same data used
in training the classifier. Three commonly used methods for estimating L are the
Resubstitution method, the Leave-One-Out method and the Bootstrap method. In
this section, the ervor estimation performance of these three methods are comparecd
with the minimum error, L.

The Vowel experiment was used in this section to assist the study. In this experi-
ment, OCON and ENM were used for selecting N, the K-Means clustering was used
to select the centroids, the Gaussian Kernel was used as the radial kernel function

and the Fuelidean metric was used.

7.1.1 Resubstitution Method

The Resubstitution method was introduced by Smith in 1947 [43). It is the simplest
and the fastest method of the three studied. The procedure of this method is as

follows:

1. Train the classifier using all the training data. The training of the RKC can be

further divided into the following steps:

(a) Select N centroids using the training data.

(b) Find the weights for each centroid by counting the training data within its

cluster.

2. Classify all the training data using the trained RKC.
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The resulting classification error rate, Ly, is the Resubstitution estimate of the true

error L.

7.1.2 Leave-One-Out Method

The Leave-One-Out method was proposed by Lachenbruch and Mickey in 1968 [44].
This method is slower and slightly more complex than the Resubstitution method.

Given n training data, the procedures for this method are as follows:
1. Select a training datum 3.

2. Train the classifier with the remaining n ~ 1 training data. For the RKC, this

includes the following steps:

(a) Select N centroids using the remaining n — 1 training data.

(b) Find the weights for each centroid by counting the number of training data

within its cluster.
3. Classify the training datum i using the trained classifier.
4. Repeat step 1 to 3 until each training data has been selected once.

The resulting classification error rate, Ly, is the Leave-One-Out estimate of the true

classification error L.

7.1.3 Bootstrap Method

The Bootstrap method was introduced by Efron in 1979 [45]. This method is the
slowest and the most complex method of the three studied. Given a training set T

with n data, the implementation of this method is as follows:

1. Set the counter NotInBootstrap to zero.
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2. Sclect n data randomly from the training data with replacement to form a
bootstrap set, Tp. Note that not every training datum is in the bootstrap set

and the same training datum may appear more than once in the set.

3. Train the classifier with the bootstrap set, Tj;. For the RKC, this includes the

following steps:

(a) Select N centroids from T'.

(b) Find the weights for cach centroid by counting the number of data in the

bootstrap set fallen within its cluster.

4. Classify the training set T using the trained classifier.

(W1

. Count the number of training data in 7" that are not in the bootstrap set, 1'g,

and add this number to the counter NotInBootstrap.
6. Steps 2 to 5 are repeated B times.

7. Compute the error rate Ly by dividing the total number of classification error

by the counter NotinBootstrap.

The resulting classification error rate, Lp, is the Bootstrap estimate of the true clas-
sification error L. In a paper by Jain and Ramaswami [46], they recommended using
B > 100 for the Bootstrap method. Following their recommendation, B = 100 is

used in the experiment.

7.1.4 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.
To calculate the minimum error, L, the RKC was trained using the training data and
the h was optimized using the test data. For the three methods studied, the training

data were used for both training the RKC and for optimizing h. After the three
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Figure 7.1: Classification results of the Vowel Experiment using three error estimation

methods

methods have found the estimated optimum £, they were tested using the test data.

For more details on the procedure of this experiment, please refer to Section 3.2.2.

Results and Discussion

The error rate versus N curves of the RKC are plotted in Figure 7.1 and A versus
N curves are plotted in Figure 7.2. The results show that the Leave-One-Out is
the best method to use in estimating the classification error of RKC. Not only did it
achieve error rates closest to the minimum error L, but for most N its estimate of the
optimum A were closer to the true optimum than the other two methods. In addition,
the speed of the Leave-One-Out method was just slightly longer than those of the
Resubstitution method. With this speed and accuracy, the Leave-One-Out method

is recommended for estimating the classification error for the RKC.
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7.2 Learning A

Once it is established what error estimation method one should use, the next step is
to find a range or a list of A where the optimum £ should lie. This section studies the
performance of three methods for generating this list of h: the Range of A method,
the Locality Index method and the Three-Point Search methodl.

The CKC literature only emphasizes how to estimate the classification error but
not how to find the list of A for the calculation. The reason for this is probably
because the optimun £ for most studied problems is small — generally less than 10
— and the range where the optimum h lay can be easily guessed by experience. In
the RBFN literature, only a handful of papers such as [30] by Lee, [27] by Reynolds
and Tarassenko, and [47] by Hwang, Lay and Lippmann mentioned the use of a global
scaling factor with the RBEN. This global scaling factor serves the same function as
the smoothing parameter in CKC literature. In these three papers, only (27] had
noticed the difficulties in finding the best & and proposed the Locality Index method
to speed up the process of locating the optimum A. The other two papers selected h
by trial and error.

There are two difficulties in finding the optimum A for RKC. The first difficulty is

that without any knowledge of the range where the optimum # lies, one either has to

a. Start with a large range of h with big steps then zoom into the correct range

step by step.

b. Use a small range of & hoping that the optimum A lies within it. If the optimum

h is somewhere else then one will have to use another range of i and start again.

Both methods are labour intensive and time consuming. The second difficulty is that
for different N the range of h is different. Thus, one will either have to guess the
range of / for every N that is used or one will have to use a large range of A which

would hopefully include all the optimum £. These difficulties are more serious in real
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life problems because in order to classify these data, usually a large range of h is
needed. For example, in the Vowel experiment described in Section 3.2.2 the range
of 1 is between [5,500]. Tt is these difficulties which motivates the author to propose
the Three-Point Search method and to study its performance together with the other

two methods.

7.2.1 Range of » (ROH)

In general, the list of / is selected based on experience or by trial and error. For most
simulated problems, the optimal h usually lies between [0.1,5]. If this range is used
with a step size of 0.1, then one would have a list of 50 h. This method is called the

Range of i method. It is commonly used both in RBFN and CKC literature.

7.2.2 Locality Index Method (LIM)

In order to increase the speed of locating the optimum A, Reynolds and Tarassenko
proposed to use the Locality Index method to generate the list of 4 in [48]. Using this
method, one will set /2 = 2¢ where £ is called the “locality index” and it is an integer.
For example, using Locality Index, the range [0.1 : 5] could be covered by using only
eight £ ranging from —4 to 3. The price one pays for the speed of this method is the

accuracy of the resulting h.

7.2.3 Three-Point Search (TPS)

The basic idea behind the Three-Point Search (TPS) is to find an estimate of the
optimum /& by comparing the error rates of three different . These three h are
labeled A, B and C. If these three points form a V shape, then the optimum A should
lie between Point A and C. If they form a line sloping downward to the right, or to

the left, then the optimum A is beyond the range of the three points and the range
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of the search have to be extended. If these three points form a horizontal line or if
the range between the three points is small enough then the TPS will stop and it will

label B as the estimated optimum k. The detailed procedure of the TPS is as follows:

L. Set point A and C to some initial values and set point B to the middle point
between A and C. In the experiment, A =1, B = 50.5 and C = 100 were used.

These points are the initial list of A.

2. Set the parameters Pr, st and Ppigr to some initial values. The search for the

optimun 2 will stop when
Lay—Lp < Prep, and  Le — Lg < Prygy (7.1)

where L4, Ly and Lg are the classification error rates in percentage for the
point A, B and C respectively. In the experiment, both Py, st and Prgp, arve set

to 1%.

3. Train the RKC and then calculate the classification error in percentage using
points A, B and C. The classification error rate can be estimated using one of
the three methods discussed in the Section 7.1. In the experiment, the testing

data are used to calculate the classification error rate.
4. Compare the error rates L4, L and Le:

(‘(l) If LA > LB, LC > LB and

1. if these errors also satisfy equation (7.1) then TPS will stop and B will

be the estimated optimum h.

i, if equation (7.1) is not satisfied then one will set

A = (A+B)+2,  and (7.2)
C = (C+B)+2. (7.3)
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(b) If Ly > Ly and Lg > L¢ then these errors form a line sloping downward

to the right. In this case, the search will move to the right by setting

C = Cx2, and (7.4)
B = (A+C)+2. (7.5)

(¢) If Ly < Lg and
i. if Ly < Le, that is, the three errors form a line sloping downward to

the left, then the search will move to the left by setting

A = A=2, and (7.6)
B = (A+C)+2. (7.7)

ii. if Le < L 4 then these errors form the A shape. The search will extend

to the right by setting

C = Cx2 and (7.8)
B = (A+C)=+2. (7.9)

iii. otherwise, the search will extend to the left by setting

A = A+2, and (7.10)
B = (A+C)=+2, (7.11)

5. If the estimated optimum £ is not found then go to step 3.

From experience, it usually takes TPS about 10 to 15 error calculations to find the
estimated optimum £. Thus, the speed of TPS is comparable to those of the Locality
Index method. The following experiment shows that the estimated optimum % ob-
tained by the TPS is closer to those obtained by the Range of h than by the Locality

Index method.



CHAPTER 7. SMOOTHING PARAMETER SELECTION 88

7.2.4 Vowel Classification

This experiment is the ten-class vowel classification problem described in Section 3.2.2.
For the Range of h method, the range [5,500] was used with a step size of 1. For the
Locality Index method, the range of ¢ from [1,9] was used with a step size 1. For the

Three-Point Search method,
A=1, B=505. C=100. and Pp.p = Prignt = 1%

were used as the initial values. The classification error, L, was calculated using the
list of 7 generated with the three methods, that is, a RKC was trained using the
training data and its classification error was calculated using the testing data. For

the procedures of this experiment, please refer to Section 3.2.2.

Results and Discussion

The error rate versus N curves of the RIKC are plotted in Figure 7.3 and h versus N
curves of the RKC are plotted in Figure 7.4. The results shows that the estimated
classification errors and the estimated optimum A obtained by using the Three-Point
Search (TPS) are closer to the results of the Range of A (ROH) than by using the
Locality Index method (LIM). In other words, the TPS results are more accurate
than the LIM results. This observation is not surprising since TPS is allowed to use
any real  while the LIM is limited to use only a few A values. The important points
about a h learning method however are not only the accuracy of this method but also
on the amount of information needed to use this method and its speed of estimation.

In order to use the ROH, one needs to know the range where the optimum £ lies
for every N. In the Vowel experiment, the range [5,500] is selected through trial
and error. This is both computationally intensive because for every N one has to
calculate the classification error using a list of 495 h, and labour intensive because

a wrong guess in the range of A would require a rerun of the experiment. Since one
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Figure 7.3: Classification Results of the Vowel Experiment using three i learning
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seldom has the knowledge about the range of & in advance, the use of ROH in a real
life problem can be very frustrating.

The LIM is better than ROH because it only requires a few £ to cover a vast range
of h. In the Vowel experiment, £ = 1,....9, that is a total of only 9 ¢ were used to
cover the range of h from [2,512]. Since LIM used a list of only 9 A, its speed is much
faster than those of the ROH. The accuracy of the estimated 2 however is the LIM’s
major problem. Since £ can only take on integer values, the optimum / estimated by
LIM is not accurate. One can relax the constraint and let ¢ take on any real number
but this would turn LIM into ROH. Although LIM gains speed by using integer £, it
losses the accuracy in estimating h.

TPS has both the speed of LIM and the accuracy of the ROH. In the experiment,
TPS required only 13 classification error caleulations on average to find the estimated
optimum h for a given N. Clearly the TPS is a lot faster than ROH which required 495
error caleulations per N. Although the TPS required twice as many error calculations
as the LIM, the speed of TPS however was just slightly slower than that of the LIM.
‘This slight loss in speed of the TPS is offset by its adaptability and also an increase in
accuracy. The adaptability of the TPS can be seen by its ability to extend its search
range automatically in order to seek out the optimum h. As a result, the TPS does
not require any knowledge about the range where the optimum & lies.

In a real life problem, the use of TPS is recommended to find the approximate
range and an estimate of the optimum A. Then if one needs a more accurate estimate,

ROH can be used to search the approximate range further.

7.3 Summary

In the first section of this chapter, it is established that the Leave-One-Out (LOO)
method should be used to estimate the classification error of the RKC for its speed

and accuracy. The second section shows that the Three-Point Search should be used



CHAPTER 7. SMOOTHING PARAMETER SELECTION

to estimate the optimum / because of its adaptability, speed and accuracy.

92



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The main goal of this thesis was to determine how the Radial Kemel Classifier (RKC)
should be trained to achieve an optimum classification result. The RKC is a hybrid
between the Classical Kernel Classifier (CKC) and the Radial Basis Function Net-
works (RBIN) which was first proposed in [2]. Since CKC and RBFN belong to two
different types of Pattern Classifiers, the former belongs to the Statistical Pattern
Classifiers and the latter belongs to the Neural Networks Classifiers, it was not clear
from {2] how RKC should be trained for a given problem. In this thesis, the ideas
in [2] are extended in order to give a recommendation as to what techniques and
procedures should be used to train RKC.

By inheriting the convergence property of the CKC and the compactness of RBFN,
RKC is better than both CKC and RBFN. Like the CKC, when the training data
approach infinity the RKC is able to converge to the minimum error, the Bayes
error. Unlike the CKC which uses all the training data for classification, however,
the number of centroids used by RKC for classification is usually a lot less than the

number of training data. Thus, RKC has a faster classification speed than CKC. The
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use of a small number of centroids instead of the whole training set is inherited from
the RBFN. Unlike the RBEFN, however, RKC does not need to perform a Pseudo-
Inverse on a matrix in order to calculate its weights. Instead, it finds the weights by
counting the number of training data grouped within a cluster. This saves learning
time and avoids the possibility of having a singular matrix when the training data
is ill conditioned. These advantages of the RKC are a strong motivation to find a
procedure. to train it.

After reviewing all the results in the thesis, the following procedure is suggested

for training RKC:

1. Based on their classes, separate the training data. This prepares for the One-

Class-One-Net method of step 2.

2. Select N® centroids from the w-th class using the K-Means clustering tech-
niques. Repeat this procedure for all S classes. The number of centroids per
class should be equal for each class. Although Decision Surface Mapping (DSM)
can outperform K-Means in certain problems, DSM does not give a consistent

performance. Thus, the use of K-Means over DSM is preferred.

3. Set the weight, az{“) , of centroid ¢;™ to the number of training data from class

u grouped into its cluster C™.

4. Calculate the sample covariance matrix for each class. These covariance matri-
ces are needed for the calculation of the One Class One Sigma (OCOS) Metric.
If one knows that the data comes from a uniform distribution then the Eu-
clidean metric should be used instead. Otherwise, the OCOS metric should be

used.

Finally, optimize h by using the Three-Point Search technique for generating

14

a list of k and the Leave-One-Out technique for estimating the classification

CIrror.
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The Gaussian Kernel should be used throughout this procedure. In addition, the
above procedure should be repeated for a list of N where N = Y25_, N,

The main reason why no methods which could learn the optimum N automatically
were studied was because for most problems the optimum N equals to n, the number
of training data. Finding this optimum N is usually not the purpose. Rather, in most
problems one would like to select an N which gives an acceptable balance between
classification accuracy and speed. As a result, it is better to select N based on the

classification ervor versus N plot than to use any automated N selection technique.

8.2 Recommendations

There are two directions for possible future work. First, using the training procedures
in this thesis, the classification performance of RKC could be compared with other
classifiers such as the Multilayer Perceptrons and Nearest Neighbor. Second, other
training techniques which could be used to further improve the performance of RKC
may be studied. There are a lot of clustering techniques, smoothing parameter se-
lection techniques and kernel functions that could be used with RKC. In this thesis,
the performance of RKC was studied using only the frequently used techniques. As

a result, further study in this direction is recommended.



Appendix A

Vowel Data

This is a copy of the original vowel data used in Peterson and Barney paper [33]. Tt
was received from Richard Lippmanmn (rpl@sst.lLmit.edu) through e-mail. Tt contains
75 of the original 76 speakers and the tokens of [AO| of three speakers are missing.

This reduces the number of data points from 1520 down to 1494.

Table A.1: Vowels Label

# | Alphabet | Example || # | Alphabet | Example
1 IY heed 6 AA hod

2 TH hid 7 AO hawed
3 EH head 8 UH hood

4 AE had 9 Uw who’d
5 AH bud 10 ER heard
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Table A.2: Vowel Data, M = Male, I' = Female, C = Child

Frequencies Frequencies

Talker Vowel Wl F Bl B R K K| F

M IY 147 | 220 | 2220 | 2910 || 148 | 210 | 2360 | 3250

M| IH 1411 410 | 1890 | 2680 || 139 | 420 | 1850 | 2500

M| EH | 136|500 | 1760 | 2590 || 135 | 510 | 1710 | 2380

M| AE | 128|690 | 1610 | 2560 J| 131 | 700 | 1690 | 2580

M | AH | 140 | 650 | 1080 | 2420 || 125 | 625 | 1060 | 2490

M| AA || 140 | 650 | 1040 | 2450 || 136 | 670 | 1100 | 2430

M| UH || 145|450 | 940 | 1910 | 141 | 410 | 830 | 2240

M| UW | 140|280 | 650 | 3300 || 137 | 260 | 660 | 3300

M| ER | 145 | 510 | 1210 | 1570 || 145 | 510 | 1130 | 1510

M| TY 105 | 250 | 2180 | 2680 || 111 | 244 | 2300 { 2780

M| IH 100 | 400 | 1930 | 2610 || 104 | 400 | 1990 | 2700

M| EH 100 | 550 | 1810 | 2500 || 95 | 540 | 1810 | 2480

M| AE 93 {630 | 1710 | 2400 || 94 | 658 | 1755 | 2305

M| AH | 100|600 | 1200 | 2320 | 105 | 612 | 1160 | 2350

M| AA 91 | 640 | 1080 | 2100 || 94 | 720 | 1090 | 2230

M| UH | 114|460 | 1150 | 2290 || 114 | 456 | 1030 | 2300

M| UW |1 112|340 | 950 | 2240 || 112 [ 326 | 900 | 2190

M| ER | 100|500 | 1370 | 1780 || 106 | 530 | 1330 | 1800

IY 150 | 300 | 2240 | 3400 || 156 | 280 | 2450 | 3200

M| IH 156 | 450 | 1960 | 2400 || 146 | 440 | 2050 | 2360

M| EH | 130|570 | 1780 | 2410 || 150 | 555 | 1890 | 2440

M| AE | 125|750 | 1610 | 2340 || 136 | 770 | 1580 | 2350

M| AH | 132|660 | 1200 | 2330 || 150 | 675 | 1140 | 2380

M| AA || 125|750 | 1100 | 2550 || 138 | 800 | 1120 | 2500

AO |1143 1 540 | 850 | 2320 || 150 | 555 | 890 | 2370

UH |l 136 | 460 | 960 | 2210 || 156 | 460 | 1000 | 2350

ER || 150 | 590 | 1400 | 1840 || 145 | 555 | 1430 | 1730

IY 140 | 310 | 2310 | 2820 || 131 | 260 | 2250 | 2850

M
M
M| UW [ 140|380 | 9502050 || 148 | 3885 | 850 | 2330
M
M
M

IH 137 | 440 | 2060 | 2640 || 134 | 430 | 1880 | 2450

M| EH | 140 | 580 | 1910 | 2500 || 137 | 550 | 1770 | 2400

M| AE |1 143|830 | 1720 | 2180 || 135 | 750 | 1690 | 2320

M| AH | 136|630 | 1300 | 1950 || 130 | 650 | 1170 | 2000

M| AA || 131 | 760 { 1220 | 2140 || 126 | 720 | 1260 | 2020

Cncncnc:vcncncn4:-mmp%%mm@.&wwwwwwwwwwwmmwwwwm
=
he

M| AO || 136|540 970 | 1980 || 124 [ 550 | 880 | 1950
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Table A.3: Vowel Data, M = Male, F = Female, C = Child

Frequencies Erequencies
Talker Vowel T T 1 7 i T 1 I 7 ]
5 M| UH 133 ] 470 | 1040 | 1990 || 132 | 490 | 980 | 1920
5 M| UW | 1411380 | 950 | 2140 Jj 133 | 330 | 800 | 2130 ||
5 M| ER }1143 | 560 | 1510 | 1800 || 136 | 510 | 1460 | 1700
6 M Y 125 1 312 | 2350 | 2800 || 119 | 330 | 2430 | 2870
6 M IH 133 | 420 | 2000 | 2660 (| 125 | 313 | 2000 { 2750
6 M| EH 120 | 600 | 1860 | 2500 || 114 | 570 | 1830 | 2570
6 M| AE 119 1 676G | 1670 | 2540 || 125 | 725 | 1687 | 2500
6 M| AH 118 [ 680 | 1150 | 2560 || 125 | 726 | 1270 | 2560 m
6 M| AA || 125|740 | 1100 | 2680 || 113 | 670 | 960 | 2650
6 M| AO 120 | 660 | 1030 | 2690 || 125 | 720 | 960 | 2700
6 M| UH 120 | 456 | 1080 | 2520 {f 120 | 450 | 1140 | 2600
6 M| UW | 120 | 313 | 8301} 2300 | 1251288 | 938 | 2450
6 M| ER | 120503 {1305 | 1775 || 120 | 505 | 1320 | 1750
w7 M IY 186 | 320 | 2320 | 3120 || 172 | 310 | 2280 | 3020
7 M| IH 167 | 470 | 2000 | 2660 || 170 | 410 | 2040 | 2715
7 M| EH 167 | 630 | 1900 | 2860 || 146 | 614 | 1840 | 2770
7 M| AE 143 | 740 | 1800 { 2450 || 162 | 775 | 1810 | 2200
7 M| AH | 167 | 620 | 1240 | 2410 || 160 | 640 | 1250 | 2400
7 M| AA | 162|650 9702580 || 163 | 650 { 980 | 2350
7 M| AO 145 1 430 | 720 2450 || 171 | 510 | 800 | 2500
7 M| UH { 170|460 | 1120] 2150 || 170 ] 493 | 1120 | 2300 m
7 M| UW |1 175 | 380 | 1040 | 2260 || 200 | 400 | 1000 | 2350
7 M| ER | 167 | 570 | 1300 | 1750 || 157 | 565 | 1370 | 1710
8 M| IY 105 | 230 | 2480 | 3200 || 109 } 218 | 2380 | 3100
m 8 M| IH 110 | 320 | 2200 | 2680 {{ 103 | 206 | 2130 | 2570
8 M| EH 107 | 430 | 2100 | 2630 {f 105 | 515 | 1760 | 2470
8 M| AE 107 | 514 | 2060 | 2600 || 106 | 552 | 1820 | 2500 m
8 M| AH 108 | 640 | 1300 | 2300 || 104 | 624 | 1350 | 2410
8 M| AA || 111|714 | 1170|2420 97 | 650 | 1150 | 2350
m 8 M| AO 107 | 590 | 965} 2500 || 109 | 578 | 970 | 2460
8 M| UH 111§ 467 | 1110 | 2400 {| 105 | 475 | 1220 | 2310
8 M| UW [|107 270 9102200l 1081260 975 | 2320
8 M| ER || 107 | 460 | 1400 | 1790 || 103 | 425 [ 1410 | 1760
9 M| IY 175 | 316 | 2200 | 2800 || 175 | 280 | 2275 | 2775
9 M| IH 167 | 450 | 1820 | 2475 || 167 | 434 | 1850 | 2425
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Table A.4: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencics

Talker Vowel W Bl B | F B B

9 M| EH | 157|582 | 1725 | 2375 || 158 | 586 | 1800 | 2425

M| AE | 150 | 600 | 1750 | 2375 || 145 | 582 | 1775 | 2375

M| AH | 145|626 | 1125 | 2200 || 160 | 641 | 1120 | 2225

M| AA | 144 | 708 | 1054 | 2420 || 150 | 705 | 1050 | 2375

M | UH | 167 | 500 | 1000 | 2325 || 167 | 500 | 1000 | 2325

M| UW | 167|334 | 1150 | 2200 || 183 | 312 | 1020 | 2300

9

9

9

9 M| AO | 146 | 614 | 848 | 2200 | 143 [ 600 | 860 | 2175
9

9

9

M| ER | 157 | 518 | 1305 | 1570 | 157 | 504 | 1210 | 1510

10 M| 1Y 129 | 260 | 2260 | 2820 || 125 | 250 | 2200 | 2825

10 M| IH 146 | 400 | 2040 | 2500 || 144 | 389 | 2000 | 2425

10 M| EH | 126|500 | 1870 | 2500 || 125 | 500 | 1775 | 2400

10 M| AE | 110 | 660 | 1650 | 2500 || 120 | 624 | 1700 | 2475

10 M| AH ] 122 | 650 | 1220 | 2550 || 120 | 672 | 1260 | 2500

10 M| AA | 114 | 750 | 1080 | 2680 {| 114 | 777 | 1026 | 2625

10 M| AO | 115|580} 800 | 2650 || 117 | 585 | 819 | 2625

10 M| UH | 140|480 | 950 {2500 || 127 | 461 | 993 | 2350

10 M| UW | 140 | 280 | 950 | 2300 || 133 | 266 | 920 | 2300

10 M| ER | 128|500 | 1340 | 1700 || 133 | 532 | 1275 | 1600

11 M| IY 146 | 248 | 2225 | 3100 || 140 | 238 | 2175 | 3075

PL 11 M IH 150 | 405 | 1925 | 2550 || 138 | 416 | 1940 | 2600

11 M| EH |l 147 | 588 | 1790 | 2500 ] 133 | 586 | 1725 | 2650

11 M| AE [ 1451725 | 1700 | 2425 || 127 | 710 | 1650 | 2220

11 M| AH || 136 | 586 | 1078 | 2300 || 136 | 627 | 1038 | 2360

11 M| AA || 145|725 | 1046 | 2325 || 131 | 746 | 1018 | 2300

11 M| AO | 140|560 | 840 | 2500 || 140 | 560 | 924 | 2350

11 M| UH | 150|495 | 1080 | 2275 || 143 | 430 | 1030 | 2275

11 M| UW |[1162 {290 760 | 2300 || 157 | 315 | 850 | 2025

11 M| ER || 150|511 | 1561 | 1876 | 138 | 530 | 1450 | 1887

12 M| IY 110 | 220 | 2410 | 3000 || 125 | 240 | 2440 | 3280

w 12 M| IH 120 | 450 | 1880 | 2450 || 118 | 380 | 1930 | 2420
12 M| EH | 115|560 | 1650 | 2300 || 123 | 560 | 1720 | 2300

12 M| AE | 110|680 | 1720 | 2330 || 133 | 630 | 1680 | 2280

12 M| AH | 110 | 560 | 1430 | 2250 || 120 | 560 | 1390 | 2240

12 M| AA || 108 | 800 | 1330 | 2260 | 110 | 740 | 1240 | 2280

i 12 M| AO ] 120600 | 920 | 2080 || 133 | 580 | 910 | 2000
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Table A.5: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencies
Talker Vowel T qu 7 AT T 1 T T
12 M| UH 130 | 400 | 1200 | 2210 || 110 | 420 | 1230 | 2230
12 M| UW | 122|300 | 9001|2130 | 123|260 | 1010 | 2240
12 M| ER 125 |1 400 | 1450 | 1650 || 128 | 360 | 1410 | 1640 m
13 M IY 1421 290 { 2290 | 2600 || 135 [ 260 1 2290 | 2700
13 M 1H 132 | 390 | 1950 | 2550 §| 135 | 400 | 1900 | 2450
13 M! EH 124 1490 | 1740 | 2500 |f 125 | 500 | 1780 | 2430
13 M| AE 125 | 660 | 1630 | 2500 || 132 | 670 | 1630 | 2380
13 M| AH 140 | 600 | 1220} 2530 || 125 | 600 | 1210 | 2430
13 M| AA 125 | 680 | 1120 | 2630 || 128 | 670 | 1100 | 2700
13 M| AO 127 | 510 | 720 | 2450 || 120 { 480 | 710 | 2540 m
13 M| UH 133 | 380 | 910 | 2350 || 140 | 440 | 1030 | 2400
13 M| UW | 127 [ 350 | 720 2750 | 140 | 380 | 740 | 2880
m 13 M| ER 128 { 430 | 1370 | 1610 || 135 | 440 | 1360 { 1600
14 M Iy 114 | 228 | 2350 | 28G0 || 118 | 220 | 2350 | 2920
14 M IH 110 | 407 | 2070 { 2500 || 112 | 420 | 1900 | 2450
14 M| EH 106 | 445 | 2020 | 2420 || 115 | 470 | 2020 | 2500
14 M| AE 103 | 721 | 1680 | 2400 || 109 { 750 | 1710 | 2440
14 M| AH 104 | 552 | 1122 | 2500 || 115 [ 580 | 1150 | 2600 H{
ﬂL i4 M| AA 98 | 686 | 1078 | 2570 )| 103 | 700 | 1050 | 2680
14 M AO 102 | 560 | 665 | 2620 || 106 | 550 | 650 | 2700
14 M| UH 112 | 448 | 980 { 2370 || 104 | 410 | 940 | 2370
14 M| UW | 116 [ 232 | 696 | 2200 || 117 | 222 | 665 | 2080
14 M| ER 120 | 432 | 1300 | 1400 || 111 | 420 | 1300 | 1570
Hi 15 M IY 121 | 230 | 2100 | 2850 || 118 | 240 { 2000 | 2980
15 M IH 130 | 365 | 1900 | 2340 || 119 300 | 2040 | 2560 m
15 M| EH 112 | 440 | 1980 | 2310 [ 120 | 410 | 2050 | 2500
15 M| AE 133 1 620 | 1710 | 2110 || 124 | 660 | 1800 { 2150
15 M| AH 120 | 660 | 1000 | 2380 || 110 | 660 | 960 | 2450
m 15 M{ AA 122 1 600 | 830 | 2250 || 119 | 620 | 820 | 2400
15 M| AO 117 | 500 | 620 | 2250 || 106 |{ 550 | 700 | 2550
15 M| UH 140 | 390 | 730 | 2180 | 130 { 360 { 740 | 2200
15 M| UW (131 ]260] 72021001 1321260 740 | 2040 m

15 M| ER | 125 (450 1230 | 1600 If 127 [ 460 | 1300 | 1650
m 16 M| IY 150 [ 300 | 2355 | 3250 || 150 | 300 | 2460 | 3280

16 |M|{ IH 160 | 385 | 2242 | 2805 || 150 | 407 | 2250 | 2780
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Table A.6: Vowel Data, M = Male, F = Female, C = Child

‘ Frequencies Frequencies
Talker Vowel R F 7 El R F T 7
16 M| EH 140 | 504 | 2090 | 2720 || 146 | 543 | 1980 | 2640
16 M| AE 133 | 680 | 1958 | 2542 || 141 | 708 | 1840 | 2535
16 M| AH 150 | 675 | 1320 | 2550 || 150 | 704 | 1393 | 2550
16 M| AA 137 | 825 | 1168 | 2750 §j 135 | 840 | 1210 | 2680
16 Mi AO 143 | 671 | 1000 | 2670 || 147 | 690 | 968 | 2660
16 M| UH 143 | 443 | 1273 | 2430 || 153 | 459 | 1286 | 2410
16 M| UW | 146 [ 395 | 1300 | 2160 || 153 | 400 | 1320 | 2150
16 M| ER 140 | 532 | 1500 | 1890 || 146 | 538 | 1460 | 1818
17 M| IY 120 | 264 | 2290 | 2700 || 128 | 256 | 2305 | 2635
17 M| IH 112 | 380 | 1880 | 2440 || 115 | 346 | 1930 | 2390
17 M| EH 100 | 510 | 1780 { 2300 || 108 | 520 | 1730 | 2275
17 M| AE 100 | 630 | 1770 | 2350 || 105 | 630 | 1642 | 2170
17 M| AH 103 { 601 | 1273 | 2130 || 105 | 590 | 1283 | 2150
17 M| AA 100 | 750 |{ 1150 | 2440 || 95| 703 | 1092 | 2320
17 M| AO 97 | 565 | 780 | 2350 || 106 | 584 | 849 [ 2460
17 M| UH 105 | 420 | 1100 | 2140 || 111 | 422 | 1200 | 2175
17 M| UW | 117 | 315 | 1080 | 2260 || 125 | 326 | 1125 | 2210
17 M| ER 111 (444 | 1300 ] 1625 || 109 | 469 | 1288 | 1600
18 M 1A' 124 | 210 | 2100 | 3090 || 130 | 220 | 2080 | 3180
18 M| IH 128 | 280 { 2000 | 2710 || 130 | 310 | 1950 | 2670
18 M| EH 121 1 470 | 1910 | 2580 || 129 | 490 { 1930 | 2650
18 M| AE 116 | 640 | 1620 | 2200 || 118 | 650 | 1580 | 2360
18 M| AH 121 | 610 | 1100 | 2230 || 126 | 620 | 1120 | 2330
18 M| AA 118 | 700 | 1100 2240 || 120 | 670 | 1100 | 2220
18 M| AO 122 | 460 | 720 | 2180 {{ 118 | 470 | 690 | 2200
18 M| UH 129 1320 | 770 1860 || 130 | 310 | 790 | 1920
18 M| UW | 140|210 | 6701|1900 || 148 | 240 | 730 | 1850
18 M| ER 128 | 390 | 1320 | 1550 || 124 | 420 | 1240 | 1510
19 M| IY 129 | 190 | 2650 | 3280 || 135§ 190 | 2700 | 3170
19 M| IH 132 | 370 | 1750 | 2700 || 130 | 370 | 1800 | 2750
19 M| EH 122 | 370 | 1680 { 2560 || 125 | 375 | 1700 | 2500
19 M| AE 121 | 650 | 1570 | 2600 || 120 | 530 | 1610 | 2650
19 M| AH 118 { 570 | 1050 | 2500 || 125 | 590 | 1100 | 2480
19 M| AA 1121640 | 970 | 2870 || 122 | 670 | 980 | 2000
19 M| AO 113 | 560 | 860 [ 2900 || 121 | 570 | 820 | 2820
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Table A.7: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencies
Talker Vowel 7 F;q I ml BT R 1 o8 7
19 M| UH 125 | 350 } 1000 | 2500 f 130 | 380 | 920 | 2370 m
19 M| UW [ 130 | 250 | 1000 | 2100 || 140 | 210 | 960 | 1940
19 M| ER | 130|360 | 1300|1920 || 133 | 370 | 1300 | 1760
20 M 1Y 127 | 250 | 2180 | 2660 || 131 | 260 | 2210 | 2780
20 M H 121 | 400 | 1900 | 2440 || 122 | 350 | 1980 | 2480
20 M| EH 116 1 560 | 16701 2310 i 124 | 530 | 1700 { 2380 I
20 M| AE 120 | G8O | 1470 | 2280 || 119 | 620 | 1580 | 2320
20 M| AH 120 | 620 | 1100 | 2390 || 125 | 640 | 1110 | 2370
20 M| AA 115 ) 630 | 980 | 2330 || 121 | 670 [ 940 | 2380
20 M| AO 112 | 560 | 790 | 2480 || 120 | 610 | 840 | 2420
20 M| UH 121 ] 360 | 860 | 2200 || 120 | 400 | 840 | 2200
20 M| UW | 140 {280 670} 2140 fl 126 | 250 | 720 1 2190 m
20 M| ER 120 | 480 | 1410 | 1760 || 121 | 470 | 1330 | 1700
21 M 1Y 155 | 280 | 2400 | 2910 || 150 | 300 | 2320 | 2960
21 M| IH 142 | 410 | 2060 | 2680 || 150 | 450 | 2050 | 2670
21 M| EH 135 | 540 | 1900 | 2530 || 135 | 540 | 1920 | 2520
21 M| AE 138 | 620 | 1800 | 2440 || 140 { 690 | 1820 | 2480
21 M| AH 150 | 630 | 1200 | 2600 || 140 | 680 | 1200 | 2600 m
i 21 M| AA 145 | 740 | 1110 | 2500 || 143 | 700 | 1060 | 2720
21 M AO 146 | 600 | 970 | 2570 || 138 | 650 | 880 | 2660
21 M| UH 142 | 430 | 1130 | 2440 |f 143 | 430 | 1150 | 2420
21 M| UW | 142|280 ] 990 | 2330 || 145 | 290 | 1000 | 2300
21 M| ER 150 | 420 | 1350 | 1600 §| 150 | 450 | 1350 | 1600
22 M Y 135 | 300 | 2300 | 2800 {f 135 | 350 | 2240 | 2760 m
22 M 1H 136 | 410 | 2200 | 2680 || 138 | 440 | 2080 | 2520
22 M| EH 133 | 580 | 1870 | 2320 || 127 | 520 | 1900 | 2400
22 M| AE 130 | 760 | 1920 | 2480 || 132 | 670 | 1850 | 2560
22 M| AH 139 | 810 { 1110 | 2100 || 131 | 770 | 1150 | 2100
22 M| AA {141 7001 1040 [ 2120 |{ 125 | 750 | 1160 | 2080
22 M AO 133 | 670 | 920 | 2240 |} 142 | 570 | 850 | 2250
22 M| UH 140 | 550 | 970 | 2200 || 141 | 490 { 870 | 2240 m
m 22 M| UW ([ 150 [ 300 | 600 | 2300 || 148 | 230 | 570 | 2100
22 M| ER 140 | 560 | 1520 | 2100 |{ 140 | 540 | 1570 | 2050
23 M ' 125 | 240 | 2100 | 2900 || 119 | 240 | 2150 | 2860
23 M IH 130 | 380 | 1870 | 2450 || 120 | 430 | 1710 | 2350
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Table A.8: Vowel Data, M = Male, ' = Female, C = Child

i Frequencies Frequencies
Talker Vowel T qu 7 19 TS o T
23 M| EH || 119|580 | 1770} 2500 || 117 | 570 | 1750 | 2400
23 M| AE | 115|760 | 1580 | 2440 || 110 | 715 | 1500 | 2300
23 M| AH | 124 | 620 | 880 | 2500 || 124 | 650 | 1000 | 2520
23 M| AA || 119|710 | 950 | 2520 i 120 | 690 | 960 | 2520
23 M| AO | 125|460 | 610 | 2500 || 120 | 470 | 710 | 2500
23 M| UH | 125|390 | 900 2100 || 125 | 460 | 920 | 2140
m 23 M| UW § 125|250 690 2080 || 130 | 270 | 650 | 2050
23 M| ER | 122|540} 1280 | 1720 || 118 | 510 | 1280 | 1650
24 M| IY 148 | 280 | 2450 | 2700 || 160 | 288 | 2500 | 2880
24 M| IH 160 | 400 | 2080 | 2530 §j 153 | 384 | 2110 | 2500
24 M| EH | 138|590 | 1900 | 2200 f 153 | 583 | 1840 [ 2250
24 M| AE | 145|680 | 1850 | 2400 || 140 | 685 | 1780 | 2160
24 M| AH | 143 | 660 | 1370 | 2110 || 145 | 680 | 1300 | 2100
HL 24 | M| AA | 140 | 760 | 1260 | 2120 || 135 | 770 | 1140 | 2020
24 M| AO | 145 | 500 [ 800 | 1850 || 132 | 600 | 1000 | 2000
24 M| UH | 157|380 | 1060 | 1850 | 150 | 470 | 1220 | 2150
24 |M| UW ||162 324 | 8002220 || 139 | 290 | 800 | 2150
24 IM| ER 150|560 | 1350 | 1780 || 150 | 600 | 1470 | 1820
25 M| IY 110 | 250 | 2190 | 3000 || 106 | 254 | 2085 | 2890
il 25 M| IH 111 | 330 | 1967 | 2670 || 108 | 430 | 1940 | 2590
25 M| EH | 116 | 464 | 2100 | 2700 || 105 | 504 | 1995 | 2780
25 M| AE 94 | 595 | 1900 | 2700 || 100 | 670 | 1860 | 2500
25 M| AH 96 | 620 | 1200 | 2420 || 105 | 630 | 1127 | 2420
25 M1 AA | 100|750 | 1160 | 2360 || 96 | 740 | 1155 | 2330
m 25 M| AO 101 {460 | 7402300 || 105 | 494 [ 789 | 2420

26 H 140 | 420 | 2300 | 2800 j| 120 | 384 | 2110 | 2620
W 26 EH || 120 | 480 | 1920 | 2540 [ 112 | 551 | 1788 | 2450
26 M| AE | 114|628 | 1837 | 2570 || 111 | 622 | 1890 | 2560
206 M| AH | 114|628 1254 | 2470 || 114 | 617 | 1255 | 2480
26 M| AA | 117 | 690 | 1072 | 2660 || 103 | 630 | 1000 | 2530
26 M| AO 117|510 700| 2650 || 120 | 504 | 756 | 2540 m

25 M | UH || 113|400 | 1020 | 2200 || 128 | 450 | 1028 | 2160
25 M| UW | 140|392 | 1000 | 2120 || 116 | 350 | 898 | 2140
25 M| ER | 117|547 | 1340 | 1688 || 128 | 512 | 1280 | 1570
26 M| Iy 123 | 246 | 2185 | 2730 || 133 | 267 | 2280 | 2800
M
M
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Table A.9: Vowel Data, M = Male, ' = Female, C = Child

_ Frequencies Frequencies

Talker Vowel nTF, L 7 AT RTF 7 T
260 [ M| UH | 122|465 990 2440 || 125 | 462 | 976 [ 2450

26 |M | UW |1120 | 324 | 708 | 2440 || 157 | 387 | 786 | 2518

26 | M| ER | 122|488 | 1468 | 1712 || 118 | 472 | 1465 | 1725

27 |M| IY 138 | 275 | 2060 | 2800 || 136 | 270 | 2020 | 2790

27 M| IH 133 | 349 | 2030 | 2760 §j 136 | 340 | 1940 | 2560

w 27 | M| EH | 120 | 444 | 1800 | 2500 || 127 | 380 | 1800 | 2440
27 |M| AE || 125|688} 1600} 2300 || 122 | 660 | 1570 | 2380

27 M| AH | 128 | 565 | 1157 | 2310 || 130 | 550 | 1150 | 2250

27 | M| AA |} 125|712 | 1024 | 2250 || 125 | 670 | 1080 | 2300

27 | M| AO | 125|550 | 9132360 || 126 | 550 | 890 | 2280

27 | M| UH | 128|360 | 1028 | 2160 || 140 | 390 | 1060 | 2150

27 | M| UW [1133 294 | 930 | 2050 || 140 | 280 | 1000 | 2160

‘M 27 |M| ER | 125|440 | 1250 | 1625 || 130 | 480 | 1160 | 1520
28 |M| IY | 125|320 | 2160 | 2900 || 133 | 267 | 2230 | 3000

28 |M| IH 115 | 440 | 1750 | 2400 || 116 | 390 | 1780 | 2450

28 | M| EH [ 117|525 | 1800 | 2480 || 110 | 520 | 1750 | 2390

28 | M| AE | 111|660 | 1600 | 2400 {{ 120 | 720 | 1680 | 2430

28 |M| AH || 117|600 | 1250|2300 || 125 | 575 | 1170 [ 2240

28 | M| AA | 111 |730) 1160 | 2340 || 117 | 860 | 1280 | 2470

28 M| AO 114|560 | 8102290 || 116 | 584 | 840 | 2280

28 | M| UH |130 455 | 970 | 2140 || 120 | 456 | 1040 | 2038

28 | M| UW | 125|350 82021301 128 [366| 7722058

28 | M| ER |[111 | 450 | 1420 | 1870 || 118 | 472 | 1430 | 1840

29 M| Iy 133 | 333 | 2305 { 3200 {| 131 | 326 | 2260 | 3030

29 M| IH 125 | 375 | 2188 | 2750 || 133 | 400 | 2150 | 2680

29 |M| EH 125500 | 1980 | 2480 || 150 | 480 | 1950 | 2340

29 |M| AE |[116 ] 640 | 1710 | 2450 || 123 | 615 | 1720 | 2220

{[r 29 |M| AH |[116 | 583 | 1110 | 2360 || 117 | 608 | 1120 | 2700
209 M| AA |\ 111|777 [ 1170 | 2600 || 114 | 750 | 1175 | 2820

29 |M| AO 1105|630 8912519 | 114 | 572 | 924 | 2660

29 |M| UH 125|438 975( 2300 || 140 | 420 | 938 | 2300

20 |M| UW [1133(333| 800 2130 || 140 | 320 | 840 | 2150

I 29 M| ER || 120|480 1320 | 1870 || 127 | 483 | 1335 | 1844
36 |M| IY 166 | 267 | 2300 | 2940 || 156 { 220 | 2300 | 2900

30 |M| IH 154 | 431 | 2040 | 2460 (| 155 | 360 | 2010 | 2400
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Table A.10: Vowel Data, M = Male, F = Female, C = Child

_ Frequencics Frequencies

Talker Vowel T qu 7 Al BT F 7 T
30 1M | EH || 150 | 565 | 1950 | 2500 || 180 | 540 [ 2000 | 2450

30 | M| AE | 143 | 600 | 2000 | 2570 || 138 | 590 | 1950 | 2460

30 | M| AH | 157 | 630 | 1140 | 2200 || 186 | 630 | 1170 | 2280

30 M| AA || 146 | 730 | 1048 | 2450 || 155 | 730 | 1130 | 2320

30 | M| AO | 150|600 | 9002400 || 178 | 640 | 890 | 2280

30 | My UH | 160 | 448 | 960 | 2200 || 196 | 450 | 1000 | 2180

30 |M| UW | 167333 ] 8352170 198|280 750 2170

30 | M| ER | 163|488 | 1300 | 1600 || 163 | 400 | 1380 | 1620

31 M| IY 120 | 312 | 2380 | 2900 || 120 | 300 | 2350 | 3000

31" |M| IH 140 | 490 | 2000 | 2620 || 140 | 490 | 1960 | 2600
il 31 M | EH | 125 | 640 | 2000 | 2620 || 111 | 555 | 1870 | 2540
31 | M| ABE | 112] 697 | 1610 | 2540 || 114 | 684 | 1634 | 2510

31 M| AH | 115|633 | 1260 | 2530 || 120 { 660 | 1213 | 2460

31 M| AA || 112 | 730 | 1203 | 2700 || 107 | 752 | 1125 | 2620

31 M| AO | 108|507 | 7552420 || 116 | 538 | 816 | 2450

31 M| UH | 114|456 | 1040 | 2300 || 120 | 480 | 1120 | 2160

31 M| UW | 123|344 | 960 | 2150 || 125 | 350 | 1000 | 2250
I 31 M| ER | 112}539|1370 | 1800 || 117 | 549 | 1353 | 1728
32 |M{| IY 146 | 292 | 2500 | 3150 || 133 | 266 | 2370 | 3100

32 (M| IH 143 | 372 | 2220 | 2640 || 131 | 350 | 2130 | 2610

32 | M| EH | 133|574 [ 1840 | 2260 | 133 | 563 | 1960 | 2450

32 |M| AE || 125|650 | 1738 | 2400 || 130 | 663 | 1820 | 2400

32 | M| AH (| 137|600 | 1370 | 2180 || 125 | 625 | 1312 | 2250

32 | M| AA |/ 133|735 | 1070|2100 || 117 | 713 | 1180 | 2200

32 | M| AO | 125|625| 875{ 2180 | 115 | 700 | 1000 | 2250

32 M| UH | 150|420 | 1100 | 2000 || 140 | 420 | 1120 | 2100

32 |M| UW 11251350} 9802200 || 1331320 918 2100

32 | M| ER | 143 | 554 | 1480 | 1800 || 128 | 484 | 1505 | 1890

I 33 M| 1Y 143 | 286 | 2415 | 2860 || 150 | 300 | 2415 | 2860
33 |M| IH 140 | 400 | 1980 | 2500 || 145 | 407 | 2095 | 2620

33 | M| EH | 1251 525 | 1988 | 2610 || 144 | 553 | 1935 | 2530

33 | M| AE | 133|640 | 1773 | 2490 || 133 | 640 | 1840 | 2560

33 | M| AH | 143|672 | 1272 | 2640 || 146 | 658 | 1241 | 2560

33 | M| AA | 130|780 ] 1170 | 2640 || 131 | 788 | 1115 | 2645

W 33 | M| AO | 138|633 | 8912500 |f 150 [ 600 | 935 | 2550
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Table A.11: Vowel Data, M = Male, F = Female, C = Child

] Frequencies Frequencies

Talker Vowel Fo 7 7 El R A i oA
33 M| UH || 175 490 | 1102 | 2420 || 154 | 492 | 1077 | 2306
33 M| UW || 160 | 320 | 960 | 2240 || 160 | 320 | 960 | 2290
33 M| ER || 143 | 543 | 1310 | 1643 || 145 | 508 | 1309 | 1600
34 F Y 230 | 370 | 2670 | 3100 || 234 | 390 | 2760 | 3060
34 F IH 234 | 468 {2330 | 2930 | 205 | 410 | 2380 | 2050
34 Fi{ EH 190 | 550 | 2200 | 2880 if 191 { 570 | 2100 | 3040
34 F| AE | 200 800 | 1980 | 2810 || 192 | 860 | 1920 | 2850
34 F | AH | 227 | 635 | 1200 | 3250 || 200 | 700 | 1200 | 3100
34 | AA [|210 | 880 | 1240 | 2870 || 188 | 830 | 1200 | 2880
34 F | AO | 207 570 | 830 {3300 200 700 | 1000 | 3130
34 F| UH [ 240 | 410{ 940} 3040 || 225 | 450 | 970 | 3190
34 F | UW [1238 | 480 | 9551|2960 || 208 | 395 | 810 | 2900
34 F1 ER |200{ 500 |1850 | 2100 {200 | 560 | 1750 | 2100
35 F Y 225 | 270 | 2760 | 3550 || 240 | 290 | 2700 | 3350
35 F [H 245 | 460 | 2500 | 3220 || 220 | 410 | 2400 | 3240
35 F |1 EH |220| 620 | 2300 ] 3200 || 210 [ 630 | 2300 | 3170
35 F | AE [ 220 | 8202180 | 2850 || 195 | 740 | 2120 | 3070
35 F 1 AH | 240 | 800 | 1300 | 2900 || 225 | 760 | 1400 | 2830
35 1 AA | 214 850 | 1120 | 2620 || 190 | 880 | 1220 [ 2850
35 F | AO [ 228 | 460 | 900 | 2830 || 222 | 440 | 880 | 2850
35 I''| UH | 250 | 500 | 1040 | 2750 || 245 | 490 | 1000 | 2720
"1 35 F | UW (1250 400 | 940 | 2720 || 245 | 410 | 860 | 2700
35 F i1 ER | 225 4401560 | 1750 || 210 | 420 | 1600 | 1750
36 F Y 210 | 290 | 2700 | 3020 || 215 | 280 | 2630 | 3240
36 F IH 2111 420 | 2300 | 2950 | 211 | 420 | 2220 | 2980
36 F | EH | 207 | 640 [ 2120 | 2900 | 221 | 700 | 2000 | 2900
IH 36 F | AE | 212 | 1000 | 1830 | 2820 || 204 | 980 | 1800 | 2820
36 F | AH |1 205 | 780 | 1410 | 2720 || 208 | 710 | 1450 [ 2750
36 Ft AA [|205] 9501280 | 2600 || 210 | 870 | 1260 | 2740
36 F| AO ||203] 610} 900 [ 2710 || 210 [ 630 | 840 | 2700
36 F| UH [ 211 440 | 1050 | 2780 || 210 | 420 | 1050 | 2740
"( 36 F| UW [[222] 380 | 860 | 2500 || 208 | 330 | 750 | 2740
36 F'{ ER | 208| 5801450 [ 1720 | 212 | 540 | 1560 | 1900
37 F 1Y 210 | 294 | 2800 | 3100 || 222 | 270 | 2880 | 3160
37 F IH 202 | 420 | 2430 | 3030 || 212 | 420 | 2370 | 2930
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Table A.12: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencies
Talker Vowel T qu I you F? 7 7 w
37 F| EH 200 | 580 | 2180 | 2770 || 217 | 540 | 2160 | 2770
37 F| AE 200 | 820 | 1970 | 2620 || 210 | 840 | 2000 | 2700
37 F| AH 208 [ 690 1 1200 | 2900 || 201 | 666 | 1206 | 2900
37 F| AA 200 | 800 | 1200 | 2920 )] 190 | 760 | 1140 | 2850
37 Fi{ AO 200 1 560 | 760 ] 2800 || 207 | 560 | 770 | 3000
37 F| UH 215 | 430 | 1075 | 2580 || 213 | 430 | 1000 | 2700 !ii
37 'l UW [ 220|330 | 840 | 2550 || 213 | 280 | 850 | 2500
37 F| ER 205 | 430 | 1800 | 1930 || 200 { 420 | 1740 | 1960
38 F IY 175 | 350 | 2800 | 3160 || 187 | 338 | 2870 | 3300
38 F IH 200 | 400 | 2540 | 3200 || 210 | 420 [ 2680 | 3000
38 F| EH 180 | 518 | 2470 | 3200 §j 200 | 600 | 2400 | 3150
38 Fi{ AE 171 1773 | 2000 | 2870 || 175 | 875 | 2100 | 2970
38 F| AH 183 | 733 | 1468 | 2700 || 200 | 740 | 1280 | 2000 m
38 F| AA 178 | 730 | 1210 | 2740 || 175 | 735 | 1220 | 2850
38 Fl AO 160 | 560 | 960 | 2850 || 192 | 536 | 850 | 2850
38 F| UH 212 | 424 1 1040 | 2780 || 200 [ 520 { 1060 | 2670
38 F| UW | 190 {380 | 770 (2900 | 187 | 340 | 7501 2780
38 F| ER 177 1490 | 2120 | 2480 || 197 | 493 | 1930 | 2300
“1 39 F 1Y 250 | 325 | 2700 | 3100 | 225 | 3101|2750 | 3225
39 F IH 214 | 350 | 2580 | 3000 || 267 | 390 | 2700 32001“
39 F| EH 233 | 560 | 2330 | 2800 || 200 | 520 | 2500 | 3000
39 F| AE 171 | 806 | 1970 | 2600 || 150 | 825 | 1860 | 2550
HF 39 F| AH 186 | 708 | 1485 | 2760 || 188 | 676 | 1500 | 2590
39 F'I AA || 200 {800 | 1200 | 2800 J 205 | 714 | 1154 | 2850
39 F| AO 267 | 530 | 800 [ 2780 || 180 | 485 | 810 | 2750
39 F| UH 214 | 450 | 1460 | 2550 || 233 | 467 | 1400 | 2450
39 ) UW || 225 | 450 | 1080 | 2350 || 200 | 400 | 1000 | 2400
39 F'| ER 193 | 524 { 1700 | 2130 || 180 | 507 | 1800 | 2380 m
m 40 F Y 200 | 300 | 3100 | 3400 || 216 | 300 | 3100 | 3500
40 F IH 214 | 428 | 2570 | 3000 || 220 | 440 { 2640 | 3080
40 F| EH 210 | 528 | 2540 | 3170 | 210 | 504 | 2520 | 3200
40 F| AE 187 | 940 | 2250 | 2760 || 200 | 820 | 2200 | 2920
40 F| AH 204 | 816 | 1450 | 2700 || 214 | 858 | 1500 | 2700
40 F| AA 200 [ 960 | 1280 | 3000 || 180 | 1040 | 1300 | 3000
| 40 Fi AO 220 | 520 | 880 | 2500 || 217 | 574 | 890 2510 1l
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Table A.13: Vowel Data, M = Male, F = Female, C = Child

_ Frequencies Frequencies
PLTalkel Vowel T i 7, i E I T T
40 P UH || 233} 466 | 1330 | 2750 || 233 | 466 | 1165 | 2800
40 Fl UW | 180 | 300 | 850 (2800 || 175 | 350 | 840 | 2750
40 F| ER |[216| 432 ] 1790|2060 || 219 | 360 | 1900 | 2320
41 FlIY 225 | 337 | 2700 | 3300 || 233} 340 | 2720 | 3200
41 F| IH 237 | 474 | 2370 | 3095 || 237 | 475 | 2400 | 3090
41 'y EH || 229 | 526 | 2360 | 3090 §| 233 | 580 | 2360 | 3150
m 41 F| AE [[230] 690 2185 | 2090 |{ 220 | 660 | 2200 | 3020 [l
41 'l AH J225| 675 | 1551|2923 || 233 | 690 | 1630 | 2900
41 Fl AA 1222 845 | 1334 | 2890 || 233 | 888 | 1290 | 2800
41 F| AO || 225| 631 92322501233 | 543 | 980 | 2300
41 F| UH |[233] 5371360 | 2920 || 240 | 480 | 1345 | 2680
41 F| UW |235| 400 | 1180 | 2760 || 233 | 396 | 1120 | 2560
41 I'1 ER || 225 | 450 | 1640 | 2250 || 233 | 489 | 1630 | 2090
42 Fi IY 225 225 2760 3900 §| 230 | 230 | 2850 | 3800
42 F| IH 238 | 429 | 2560 | 3200 |f 230 | 430 | 2575 | 3100 Lﬂ
42 ') EH | 214 | 5792570 | 3300 || 214 | 536 | 2570 | 3100
42 | AE 1205 | 823 2220|2870 | 200 | 800 | 2100 | 2900
42 F1 AH | 250 750 | 1500 | 2750 || 217 | 738 | 1300 | 2820
42 F 1 AA 1200 840 | 1300|3100 | 206 | 990 | 1340 | 3100
42 F1 AO | 214 579 | 856 (2790 || 205 | 545 | 905 | 2750
m 42 F| UH | 233 4901220 | 2610 || 250 | 513 | 1500 | 2650
42 F| UW 1250 | 400 | 1250 | 2500 || 225 | 405 { 1080 | 2500 m
42 F| ER | 233 466 | 1860 | 2260 || 225 | 540 | 1780 | 2220
43 F{ IY 240 | 290 | 3000 | 3840 || 250 | 325 | 2900 | 3500
43 Fi IH 250 | 500 | 2370 | 3120 || 238 { 476 | 2380 | 3090
{H 43 F| EH | 238 760 | 2380|3205 || 233 746 | 2290 | 3030
43 F| AE | 206 ] 1008 | 1990 | 2870 || 200 | 1040 | 2000 | 2800
43 F1 AH |1 220 | 830 | 1540 | 2860 || 237 | 900 | 1510 | 2840
43 F| AA |1206( 9701343 | 3018 || 236 | 592 | 1230 | 2600
43 F{ AO |233| 650 900|2920 [ 229 | 687 [ 1060 | 2780
m 43 F1 UH 1233 | 51212112630 || 233 | 467 | 1167 | 2595 m
43 F| UW |[1250| 450 | 875 (2750 || 233 ] 420 | 9352710
43 Fi ER 1230 622 1750|2070 || 225 652 | 1710 | 2043
44 Fi Iy 255 | 275 2800 { 3310 || 245 | 245 | 2800 | 3300
44 F| IH 2067 | 534 | 2500 | 3250 || 264 | 528 | 2640 | 3370
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Table A.14: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencics

I b Fy Bl Fy F Fy F
EH || 238 | 700} 2380 | 3250 || 250 | 750 | 2480 | 3000
AE 1237 | 1020 | 1900 | 2960 || 233 | 1005 | 2050 | 2870
AH || 263 | 750 | 1500 | 2850 || 250 | 850 | 1400 | 2750 i
AA || 258 | 978 | 1290 | 2840 || 246 | 935 | 1230 | 2730
AO 1250 | 500 | 750 | 2750 || 243 | 632 | 850 | 2850
UH |[ 250§ 350 | 1170 | 2750 || 266 | 450 | 1000 | 2800
UW || 256 | 358 1 640 ;2560 || 250 | 300 750 | 2500
ER || 260 | 520 | 1560 | 1820 || 250 | 500 [ 1500 | 1750
Iy 236 | 236 | 2790 | 3760 || 242 | 242 | 2770 | 3800
IH 222 | 444 | 2555 | 3110 || 242 | 420 | 2700 | 3120 m
EH || 226 | 634 | 2325 | 2940 §f 225 | 608 | 2475 | 3100
AE || 210 | 1010 | 2060 | 2900 {{ 200 | 980 | 2160 | 2920
AH || 217 | 818 | 1450 | 2500 || 200 | 750 | 1280 | 2650
AA |1 220 | 820 ] 1200 {2640 || 210 | 900 | 1120 | 2900
AO 1220 | 440 749 [2640 || 210 | 567 [ 752 | 2600
UH |204 | 460 | 1045 | 2504 || 240 | 480 | 1105 | 2400
UW 250 | 420 | 1000 | 2500 || 275 | 350 | 1100 | 2400
ER | 217 | 487 | 1500 | 1780 || 206 | 467 | 1420 | 1640 m
1Y 225 | 360 | 2920 | 3400 || 233 | 340 | 2840 | 3300

Talker Vowel
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46 IH 257 | 514 | 2570 | 3070 || 238 | 500 | 2680 | 3260
46 EH [ 238 | 650 | 2495 {3090 || 216 | 650 | 2380 | 3030
46 AE |/ 225 | 1020 | 2030 | 2700 || 225 | 1000 | 2200 | 2770
46 AH 1225 | 788 | 1462 | 2920 || 217 | 736 | 1500 | 2900
HT 46 AA || 214 | 987 (1330 | 2830 || 214 | 1009 | 1415 | 3080

>
(@]

AO 1226 | 672 | 1084 | 2495 || 200 | 627 | 1045 | 2504
UH 1250 | 500 | 1200 | 2450 || 230 | 460 [ 1150 | 2880 m
UW || 267 | 420 990 {2860 || 190 | 380 | 893 | 2920
ER 1246 | 610 | 1630 | 2020 || 225 | 585 | 1700 | 1850
Iy 285 | 285 | 2900 | 3500 || 286 | 310 | 2900 | 3400
IH 297 | 480 | 2670 | 3260 || 220 | 440 | 2620 | 3380
EH || 173 | 550 [ 2370 | 3140 || 260 | 520 } 2340 | 3040
AE || 167 790 | 2180 | 3020 || 280 | 840 | 2160 | 3020
AH | 280} 840 | 1400 | 2750 || 270 | 760 | 1330 | 2950
AA 1252 | 900 | 1290 | 2750 || 260 | 900 | 1240 | 3110
AO 175 700 | 1050 | 2750 || 190 | 720 | 1080 3030Jﬂ
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Table A.15: Vowel Data, M = Male, F = Female, C = Child

. Frequencies Frequencies
Talkexr Vowel B qu 7 2 7, 7 7 m
47 F | UH | 286 540 | 1200|2860 || 205 | 570 [ 1200 | 2970
47 I/ UW | 328 | 400] 9802630 | 290 | 440 | 990 | 2900
47 F1 ER || 286 | 570 | 2000|2480 || 260 | 510 | 1850 | 2350
48 Fl| 1Y 170 | 340 | 2750 | 3120 || 238 | 360 | 2760 | 3120
48 Fi IH 167 | 480 | 2390 | 2950 || 194 ! 520 | 2450 | 3000
48 F o EH | 220 | 620 | 2520 | 2920 || 222 | 620 | 2440 | 2880
48 F| AE | 222 1110 | 2160 | 2700 || 214 | 1070 | 1960 | 2750
48 1 AT || 217 | 820 1240|2600 || 216 | 860 | 1300 | 2670
48 F| AA | 150 | 840 | 11102930 170 | 850 | 1120 | 2850
48 Fl1 AO 1200 500 | 7002930 212 | 380 | 720 2700
48 F| UH | 235 400| 940 | 2820 || 214 | 380 | 860 | 2680
48 '] UW |1 196 | 330 | 760 | 2870 | 1881 350 710 2760
i 48 F|l ER | 182 | 550 | 1780 | 2080 || 201 | 600 | 1750 | 2000
49 Fl| IY 200 1 320 | 2360 | 2080 || 203 | 304 | 2380 | 3050
49 F| IH 211 | 444 12220 | 2740 || 210 | 420 | 2090 | 2780
49 I'1 EH {200 | 500 | 23502830 | 200| 600 | 2200 | 2700
49 F| AE | 192 845 | 1700 | 2300 || 187 | 860 | 1724 | 2530
49 F | AH | 200 720 1440|2380 || 191 ] 707 | 1470 | 2440
49 F| AA || 200] 700 | 1080|2420 192 767 | 1150 | 2590
Iﬂ 49 F| AO |(1200| 600 8600|2410 200 600 900 | 2400
49 Fi| UH |[210| 546 | 1090 | 2400 | 210 | 462 | 1240 | 2310
49 ' UW 1257 360 | 9302260 | 220 440 | 1100 | 2300
49 F| ER | 200]| 540 | 1400 | 1800 || 204 | 460 | 1350 | 1560
50 Fl 1Y 203 | 406 | 2600 | 2945 || 200 | 400 | 2600 | 3100
H 50 F| IH 200 { 460 | 2300 | 2800 || 210 | 420 | 2305 | 2835
50 F| EH 190 | 570 | 2100 | 2720 }] 207 | 538 | 2175 | 2880
50 Fi AE {189 850 | 1853|2685 | 193 | 8301 1800 | 2620
50 F | AH [ 200| 720 1500 { 2560 || 200 | 800 | 1400 | 2420
50 F| AA || 194 | 91512802530 206 | 7231|1196 | 2600
50 F1 AO |(1192| 575 1073|2490 | 200 600 | 1100 | 2600
LW 50 F| UH [202] 520 | 1210|2420 | 212 | 4681 1275 | 2550
50 Fi UW | 207 370 | 1000|2470 | 205 | 330 | 970 | 2460
50 Fi ER {200 56016001900} 206 514 ] 1540 [ 1955
51 Fl| IY 240 | 380 | 2880 | 3360 || 250 | 380 | 2820 | 3300
51 F| IH 233 | 514 | 2600 { 2930 || 237 | 473 | 2660 | 2970
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Table A.16: Vowel Data, M = Male, F = Female, C = Child

i Frequencies Frequencies
Talker Vowel T F ! 7 nilE F 7 7
51 F| EH | 223|567 | 2460 | 3122 || 224 | 521 | 2460 | 2920 %ﬁ
51 F | AE || 218 | 808 | 2070 | 28380 || 203 [ 678 | 2420 | 3080
51 F| AH || 200 | 800 | 1340 | 2700 || 214 | 772 | 1280 | 2660
51 F | AA | 183|843 1190 | 2860 |[ 205 | 740 ] 1160 | 2780
51 F 1 AO [ 222|623 1022|2700 | 220 | 594 { 990 [ 2640
51 F| UH | 240 | 480 | 960 | 2820 | 242 | 484 | 900 | 2640
51 F| UW 1233|370 ] 9331|2520 || 250 ] 325 | 750 | 2500
51 F| ER | 225450 {1680 | 2050 || 233 | 466 | 1630 | 1865
52 F1 IY ||200] 3202750 | 3100 || 178 | 356 | 2755 | 3200
52 F| IH 194 | 388 | 2622 | 3050 || 194 | 426 | 2460 | 3040
52 | EH | 187|592 (2242 | 2765 || 191 | 535 | 2290 | 2870
52 F | AE || 188|750 | 2060 | 2770 || 162 | 650 [ 2110 | 2618
52 F| AH | 187|618 | 1518 | 2700 || 183 | 624 | 1430 | 2660
52 F| AA | 163|766 | 1180 | 2340 || 167 | 750 | 1065 | 2640
52 F| AO | 1701595 | 918 |2600 || 176 | 630 | 985 | 2630
52 F | UH | 200|420 | 1200 | 2600 || 200 | 460 | 1260 | 2640
52 F | UW || 187 (375 | 1124 | 2685 |[ 188 | 375 | 1143 | 2700
52 F| ER | 180|504 | 1565 | 1835 || 183 | 513 | 1578 | 1830
53 F | TIY [ 280|357 | 2800|3360 || 275 | 340 | 2860 | 3350
53 F| IH 290 | 480 | 2600 | 3060 || 292 | 465 | 2598 | 3060
53 F | EH | 250700 | 2350|2980 || 240 | 737 | 2325 | 3100
53 F1 AE [200 | 960 | 2100 | 3000 || 217 | 1030 | 2200 | 3260
53 F | AH | 275|920 | 1512 [ 2950 | 260 | 910 | 1688 | 3050
53 FI AA || 2751990 | 1237 | 2360 || 267 | 987 | 1172 | 3180
53 F 1 AO | 267|587 | 1068|3270 |[ 203 560 | 990 | 3150
53 F| UH | 2755201350 | 3190 || 280 | 510 | 1415 | 3130
03 | F | UW | 300420 1045 | 3060 || 300 | 390 | 960 | 3030
53 I'| ER | 230|460 | 1860 | 2250 || 214 | 504 | 1820 | 2290
54 Fi IY 200 | 240 | 2760 | 3700 [| 220 | 220 | 2850 | 3800
o4 (F} IH 228 | 319 | 2500 | 3020 |f 216 | 324 | 2500 | 3010
94 |F| EH | 220|616 |2380 2900 [ 212 | 615 | 2300 | 2800
54 F| AE | 2127102120 {2600 | 210 | 690 | 2250 | 2680
54 F | AH | 221|800 | 1520 | 2380 |[ 210 | 780 | 1470 | 2400
od | F | AA 1199|995 | 1392 | 2290 || 200 | 1000 | 1400 | 2440
54 F|1 AO 205|656 | 944 12250 [ 200 720 | 960 | 2380
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Table A.17: Vowel Data, M = Male, I = Female, C = Child

Frequencies Frequencies
Talker Vowel 7 qu 7 T qu 7 7
54 F|{ UH 223 1 335 { 1049 | 2470 i 210 | 420 | 1009 | 2300
54 Ft UW |1219]320f 8772550 || 230 | 340 | 900 | 2530
54 F| ER | 206|400 | 1380 | 1560 || 201 | 400 | 1240 | 1480
55 F| IY 220 | 286 | 2800 | 3550 || 241 | 289 | 2800 | 3400
il 55 Fi{ IH 225 | 383 | 2420 | 3080 || 240 | 384 | 2400 | 3050 i
55 F| EH 209 | 418 | 2430 | 3110 || 230 | 460 | 2300 | 3050
55 F| AE 187 | 861 | 2100 | 2800 || 224 | 896 | 2040 | 3000
55 Fl! AH 218 1 654 { 1160 | 2800 | 230 | 690 | 1195 | 2770
55 F'l AA || 208|860 [ 1103 | 2700 || 212 | 806 | 1060 | 2850
55 F| AO 202 | 606 | 910 | 2900 || 201 | 583 1 860 | 2840
55 F| UH 225 | 340 | 900 | 2650 || 235 | 470 | 1100 { 2560
55 F | UW | 205|308 | 1025 | 2650 || 235 | 329 | 1151 [ 2560
i 55 F| ER | 213|533 1425|1830 || 214 | 535 | 1412 | 1800 m
56 Fl| IY 236 | 307 | 2670 | 3150 || 245 | 340 | 2700 | 3250
56 F| IH 231 | 417 { 2300 | 3000 | 239 | 410 | 2200 | 2910
56 Fi EH 222 1 644 | 2250 | 3000 [} 224 | 670 | 2300 | 2880
56 Fi AE || 224 | 784 | 1800 | 2750 || 234 | 820 | 1750 | 2890
56 F| AH | 225|765 1300 | 2700 || 221 | 730 | 1390 { 2790
56 Fl AA 225|834 | 1282|2800 | 212 ] 850 [ 1270 | 2760
i 56 F| AO | 229|688 | 1029 [ 2750 || 222 | 670 | 1040 | 2640
56 F | UH | 251427 1506 | 2640 || 240 | 460 | 1370 | 2610 W
56 F1 UW || 236 | 378 | 1416 | 2580 || 239 | 380 | 1430 | 2610
56 F'| ER 230|460 [ 1200 1909 [} 225 | 410 | 1580 | 1800
57 F| IY 256 | 384 | 2860 | 3210 || 250 | 375 | 3000 | 3400
m 57 F| IH 230 [ 460 | 2665 | 3140 || 233 | 467 | 2680 | 3150
57 F| EH 229 | 640 | 2400 | 2860 || 233 | 630 | 2530 | 3030
57 F| ABE 233 | 700 | 2560 | 3150 || 225 | 675 | 2510 | 3145
57 F| AH | 240|768 | 1440 | 2855 || 234 | 794 | 1447 | 2920
57 F| AA 22719781362 | 2724 {| 233 | 933 | 1350 | 2610 m
57 F| AO 240 | 700 | 1080 | 2810 || 240 | 720 | 1090 | 2840
m 57 F| UH || 243|500 | 1215 | 2870 || 239 | 500 | 1240 | 2860
57 F| UW | 263|470 1000|2820 || 272 | 378 | 950 | 2990
57 F| ER | 243|480 | 1410|1700 || 243 [ 493 | 1580 | 1775
58 F| IY 268 | 320 | 2900 | 3200 || 263 | 290 | 2750 | 3050
58 F| IH 258 | 460 | 2380 | 2940 || 251 | 480 | 2260 | 2980
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Table A.18: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencies
I 0 F 1 E 9 E 3 F 0 g I E 2 F 3

Talker Vowel

=2}
—

AH 1230 [ 710 | 1340 | 2780 || 245 | 740 | 1470 | 2940
AA 1225|830 1020 | 2650 | 219 | 830 | 1095 | 2610
AO ]/ 240 | 600 | 850 | 2760 || 253 | 455 | 810 | 2750

o8 F'| BH | 246 | 640 | 2220 | 2900 || 250 | 670 | 2250 | 2960
58 F 1 AE | 243 | 950 | 1970 | 2890 || 244 | 980 | 1950 | 2920
58 F | AH | 251|750 | 1280 | 2760 || 258 | 770 | 1340 | 2800
38 F 1 AA | 250 | 950 | 1130 | 3160 || 256 | 850 | 1150 | 2940
58 F | AO | 242|530 870 | 2680 250 | 600 | 900 | 2770
58 F | UH | 250 600 { 1225 | 2500 || 264 | 630 | 1320 | 2560
08 F | UW || 258 | 440 | 1290 | 2530 || 269 | 460 | 1080 | 2640 m
58 F | ER | 250|600 | 1500 f 2000 || 254 | 610 | 1520 | 1950
i 59 iy Iy 234 | 280 | 2690 | 3040 || 261 | 280 | 2740 | 2980
59 F| IH 260 | 470 | 2500 | 3400 || 262 | 440 | 2480 | 3240
59 F | EH | 242|730 | 2300 | 3100 || 260 | 750 | 2340 | 3120
59 F | AE | 233 | 860 | 2070 | 2880 || 240 | 890 | 1920 | 2710
39 F 1 AH || 257 | 770 | 1540 | 2840 || 257 | 800 | 1410 | 2860
59 F 1 AA 1240 | 790 | 1250 | 3080 || 241 | 820 | 1210 | 2960
59 F | AO | 234|408 | 695 | 3040 || 246 | 420 { 590 | 3100
59 F | UH | 251|500 | 1230 | 2520 || 256 | 480 | 1230 | 2750 m
m 59 F |1 UW |1263 419 | 1050 | 2850 || 278 | 390 | 1060 | 2800
59 F 1 ER | 220|420 | 1720 | 1900 || 255 | 510 | 1680 | 1890
G0 Fi1IY 208 | 270 | 2820 | 3450 | 225 | 250 | 2880 | 3350
60 Fi IH 220 | 370 | 2530 | 3060 || 250 | 400 | 2600 | 3120
60 F | EH | 214640 | 2360 | 3020 || 219 | 650 | 2430 | 3040
60 F | AE 1205|900 | 2090 | 3000 || 200 | 860 | 2160 | 2870
i 60 F 1 AH | 214 | 750 | 1540 | 2800 || 214 | 770 | 1530 | 2780
60 F i AA |[ 195920 | 1350 | 2550 || 210 | 920 | 1470 | 2690 m
60 F| AO | 194|720 | 1110 | 2420 || 200 | 700 | 1100 | 2780
60 F |1 UH | 2224701200 | 2900 || 237 | 470 | 1190 | 2800
60 F| UW 11240 ]380 980 | 3100 || 188 | 340 | 920 | 3050
Hi 60 F| ER 2225301670 {2050 || 200 | 500 | 1720 | 1900
61 Fl| 1Y 258 | 310 | 2740 | 3200 || 262 | 262 | 2680 | 3170
61 Fi IH 262 | 450 | 2310 | 3020 || 263 | 472 | 2270 | 2950
61 F | EH | 245|640 | 1980 | 2920 || 235 [ 700 | 2110 | 2940
61 F| AE | 194|810 | 1860 | 2620 || 234 | 890 | 1800 | 2700
F
I’
F

—
S D
—
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Table A.19: Vowel Data, M = Male, F = Female, G = Child

‘ Frequencies Frequencies
Talker Vowel T 2 I o F? I I
61 F1 UH | 282 | 400 | 1070 | 2530 || 250 | 450 | 1050 [ 2450
61 F1 UW [1260] 290 6701|2380 | 275 | 330 | 630 [ 2460
61 F| ER | 240 500 | 1630 [ 2040 || 243 | 490 | 1580 | 2190
62 Cl Iy 228 | 460 | 3300 | 3950 [} 200 | 400 | 3400 | 3850
w 62 C| IH 205 | 600 | 2550 | 4000 # 205 | 610 | 2500 | 4100
62 C| EH | 225]| 600 |2750 | 3600 || 210 | 760 | 2500 | 3850
62 C| AE | 200 | 1000 | 2300 | 3900 || 200 | 800 | 2500 | 4050 i
62 C| AH | 200] 1000 | 1750 | 3550 || 223 | 1110 | 1690 | 4040
62 C| AA || 205} 1220 | 1560 | 3650 || 200 | 1300 | 1800 | 3450
62 C| AO | 219| 660 | 1100 | 3850 || 217 | 690 | 1090 | 3900
62 C| UH ] 206 | 620 | 1420 | 3700 || 220 | 620 | 1410 | 3520
w 62 C| UW [1233| 440 | 900 | 3900 || 200 [ 400 | 650 | 3800
62 C| ER || 210 610 | 2300|2900 || 2001 450 | 2150 | 2550
63 Cc| IY 290 | 320 | 3500 | 4260 || 305 | 350 | 3400 | 4100 |||
63 C| IH 322 | 640 | 3200 | 3660 || 325 | 650 | 3000 | 3800
63 C| EH |[270| 8502900 | 3680 || 285 | 700 | 3120 | 3750
63 | C| AE | 256 | 1130 | 2560 | 3500 [| 285 | 1140 | 2000 | 3560
63 C| AH | 3101130 | 1740 | 3670 || 300 | 1000 | 1800 | 3450
63 C| AA 1265|1170 | 1500 | 3440 || 283 | 980 [ 1300 | 3100
w 63 C| AO | 265 | 530 (1060 | 3450 || 272 | 540 | 1080 | 3000
63 C| UH | 285 560 | 1440 | 3500 || 294 | 570 | 1450 | 3500 [i]
63 C| UW | 333] 350 1280|3650 || 200 | 340 | 1160 | 2950
63 C| ER | 275 | 560 | 1740 | 2460 || 302 | 600 | 1800 | 2200
64 C| IY 240 | 380 | 3140 | 3700 |t 258 | 310 | 3350 | 3650
“\F 64 C| IH 290 | 580 [ 2760 | 3400 || 250 | 500 | 2660 | 3500
64 C| EH | 250 780 (2450 | 3400 || 240 | 672 | 2550 | 3400
64 C| AE | 240 | 660 {2900 | 3370 [| 215 | 760 | 2850 | 3300
64 |C| AH | 250 880 | 1500 | 3200 || 243 | 850 | 1700 | 3250
64 | C| AA || 250 | 940 | 1380 ] 2400 || 276 | 1200 | 1500 | 3160
64 C| AO [250| 7501250 | 3450 || 225 | 675 | 950 | 3240
‘u 64 C| UH | 300| 610 | 1500 | 3300 || 275 | 500 | 1370 | 3500
64 C| UW | 256 | 3001280 | 3150 || 250 | 400 | 1300 | 3700
64 C| ER | 250 500 {1540 | 1700 || 242 | 580 | 1620 | 1790
65 C| IY 291 | 410 | 3200 | 3800 || 264 | 420 | 3400 | 3900
65 C| IH 291 | 580 | 2900 { 3820 || 280 | 560 | 2840 | 3900
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Table A.20: Vowel Data, M = Male, I = Female, C = Child

i Frequencies Frequencies
Talker Vowel b F? T T W
65 1 C| EH | 292| 810 | 2640 | 4200 || 270 | 780 | 2720 | 4100 H]
65 | C| AE | 270 | 1080 | 2480 | 3950 || 245 | 1050 | 2420 | 4000
65 |G| AH 1286 | 970 | 1600 | 3950 |[ 250 | 800 | 1680 | 3800
I 65 |C| AA | 2751040 | 1350 | 3850 || 250 | 1100 | 1460 | 4250
65 | C| AO ]286| 7701 1150|3950 || 273 | 710 | 1200 | 3900
65 | C| UH [ 285| 680 | 1420 | 3800 | 278 | 640 | 1350 | 3950
65 |C| UW | 300| 420 |1110 | 3640 || 280 | 505 | 1050 | 3400
65 [ C| ER |[320| 640 | 1940 | 2820 || 265 | 610 | 2100 [ 2600
66 |C| IY ]330 460 | 2800|3550 || 333 | 490 | 2730 | 3550 w
66 |C| IH | 310 560 | 2500|3450 || 310 | 580 | 2500 | 3450
66 | C| EH | 286 | 800 |2300|3750 || 310 | 835 | 2420 [ 3740
i 66 | C| AE || 282| 950 | 2150 | 3650 || 310 | 1000 | 2150 | 3700
66 |C| AH 1293 | 880 1700|3750 || 340 | 900 | 1600 | 3650
66 |C| AA [[299| 990 | 1410 | 3750 | 280 | 1050 | 1320 | 3730
66 | C| AO |[1285| 770 | 940 | 3750 | 333 | 680 | 1020 | 3700
66 |C| UH |322] 550 | 1195|3750 || 350 | 550 | 1340 | 3500
66 | C| UW | 316} 600 | 1200 | 3600 || 345 | 550 | 1100 | 3470
66 |C| ER | 310| 805| 1705|2420 || 310 | 710 | 1700 | 2400 m
m 67 | C| IY [1210] 3403400 | 4320 |[ 227 [ 590 | 3610 | 4220
67 | C| IH |1235] 680 | 3250|4380 [[220 | 440 | 3000 | 3790
67 |C| EH | 212| 660 |2900 | 3610 || 216 | 610 [ 2760 | 3650
67 |C| AE | 214 | 1240 | 2700 | 3640 | 215 | 1050 | 2550 | 3550
67 |C| AH | 216 8201470 | 3500 |[ 211 | 970 | 1410 | 3200
67 |G| AA | 2181090 | 1380 | 3050 || 212 | 860 | 1250 | 2800
m 67 | C| AO |1211] 8001220 | 3700 || 214 { 640 [ 1070 | 3000
67 |C| UH [[219| 660 | 1360 | 3700 |[ 214 | 730 | 1500 | 3600
67 |G| UW ]220| 6201100 | 3250 || 216 | 600 | 1280 | 3650 m
67 1C| ER | 222| 6702130 | 2360 || 205 | 760 | 2240 | 2460
68 | C| IY | 263( 3303250 (3720|262 | 340 [ 3100 | 3400
68 | C| IH | 250 500 2500|3640 || 278 | 530 | 2630 | 3640
68 | C| EH | 255| 7102550 | 3560 || 250 | 750 | 2480 | 3470
68 | C| AE |1233| 1140 | 2260 | 3640 || 245 | 1110 | 2230 | 3380
68 | C| AH | 256 | 770 ( 1540 | 3500 || 257 | 800 | 1490 | 3300
68 |C| AA |240| 940 1400 | 3400 || 245 | 930 | 1370 | 3120
C

o
oo

AO [ 240 | 530 | 860 | 3400 || 240 | 520 | 910 | 3420
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Table A.21: Vowel Data, M = Male, I' = Female, C = Child

11l

Frequencies Frequencies
Talker Vowel T F L T o Fli 7, T
68 C| UH 255|510 12503320 || 260 | 520 | 1140 | 3320
68 C| UW | 274|360 | 660 3050|260 | 310 7301 3500
68 C| ER | 250|550 | 1500 | 1800 || 239 | 480 | 1650 | 1960
69 C 1Y 250 | 300 | 2950 | 3600 || 270 | 320 | 3210 | 3600
69 C IH 290 | 550 | 2610 | 3560 || 286 | 540 | 2570 | 3600
69 C| EH 280 1 700 | 2500 | 3580 || 263 | 600 | 2360 | 3400
69 C| AE 260 | 970 | 2400 | 3200 || 250 | 950 | 2270 | 3200
69 C| AH 270 | 780 | 1650 | 3350 || 250 | 720 | 1500 | 3240 m
69 C| AA 278 | 950 | 1200 | 2950 || 250 | 920 | 1080 | 2770
69 C| AO 2621 790 | 1050 | 2900 || 250 | 750 | 1000 | 2500
69 C| UH 275 | 540 | 1430 | 3320 || 263 | 530 | 1580 | 3200
69 C| UW | 205|420 | 1500 | 3010 || 260 | 450 | 1330 | 2840
69 C| ER 272 | 570 | 1880 | 2400 { 255 | 510 { 1610 | 1910
70 C 1Y 2351 280 [ 2820 {1 3400 || 244 | 317 | 3125 { 3500
HF 70 C IH 230 | 460 | 2520 | 3300 || 212 | 420 | 2480 | 3140
70 C| EH 235 | 657 | 2300 | 3300 || 232 | 672 | 2275 | 3300
70 C| AE 231 | 808 | 1950 | 3300 || 225 | 870 | 2000 | 3200 m
70 C| AH | 236|706 | 1410 [ 3200 || 211 | 720 | 1480 | 2880
70 C| AA | 250|950 | 1350 | 3100 || 227 | 910 | 1360 | 2950
70 C| AO 203 | 700 | 1120 | 3070 || 2301 690 | 920 | 2760
70 C{ UH | 2501475 | 1250 | 3150 {| 212 ] 460 ] 1210 | 2750
m 70 Cl UW | 244} 403 | 1100 | 2950 || 242 | 363 | 920 [ 2900
70 C| ER || 226|452 | 1580 | 1810 || 232 | 510 [ 1550 | 1740
71 C IY 230 | 280 | 3140 | 3830 || 250 | 300 | 3400 | 3950
71 C| IH 225 | 450 | 2700 | 3650 || 250 | 400 | 2840 | 3700 m
71 C| EH 215 | 580 | 2650 | 3550 || 220 | 620 | 2660 | 3770
71 C| AE | 240|910 ] 2370 | 3160 || 233 | 930 | 2350 | 3450
m 71 C| AH | 250|770 | 1650 | 3420 || 230 | 690 | 1600 | 3350
71 Ct AA || 242|970 | 1450 | 3260 {| 225 | 1010 | 1650 | 3150
71 C| AO 232 | 670 | 1160 | 3550 §f 225 | 720 | 1260 | 3400
71 C| UH [ 216 | 500 | 1640 | 3580 || 250 | 450 [ 1440 | 3500
71 C| UW 1290350 | 1160 | 3260 || 273 | 330 | 1090 | 3350
71 C| ER | 240|430 | 1800 | 2400 || 233 | 470 | 1840 | 2400
72 C 1Y 275 | 330 | 3050 | 3800 || 286 | 340 | 2860 | 3610
m 72 C IH 280 | 500 | 2720 | 3360 || 230 | 600 | 2750 | 3550 m
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Table A.22: Vowel Data, M = Male, I' = Female, C = Child

Frequencies Frequencies

Talker Vowel T F? 7 i E Fll T 7 IH
T2 C| EH 245 | 735 | 2450 | 3300 || 258 | 780 [ 2560 | 3300 ru
72 C| AE 235 {1 940 | 2020 | 2580 || 232 | 1070 | 2320 | 2900
72 C| AH 268 | 860 | 1530 | 3100 || 256 | 970 | 1500 | 3050
72 C| AA 245 | T80 | 1250 1 3180 || 236 | 970 | 970 | 3120
72 C| AO 268 | 8251|1210 | 3100 | 300 | 930 930 | 2000
72 C| UH 260 | 490 | 1460 | 2860 || 286 | 570 | 1320 | 2840
72 C| UW || 275 470 | 1400 | 2800 || 286 | 370 | 1160 | 2800
72 C| ER 268 | 510 | 1660 | 2100 || 250 | 480 | 1700 | 1830
73 C IY 205 | 380 | 3200 | 4000 || 267 | 350 ] 3250 | 3700
73 C IH 294 | 380 | 2960 | 3800 || 300 { 520 | 2900 | 3600
73 C| EH 280 | 670 | 2790 | 3600 || 275 | 620 | 2750 | 3500
73 C| AE 262 | 1070 { 2380 | 3100 }| 275 | 1130 | 2320 | 3110 m
73 C| AH 290 | 700} 17301 2960 || 270 | 725 | 1570 | 2000
73 C| AA 278 | 1110 | 1630 | 2780 || 280 | 1130 | 1400 | 3000
73 C| AO 292 | 580 | 930 | 2950 | 270 | 540 | 1070 | 3000
73 C| UH 300 | 450 | 1350 | 3000 || 320 | 520 | 1600 | 3150
73 Cl UW || 307 | 460 | 1460 | 3070 || 300 [ 400 | 1700 | 3000
73 C| ER 300 | 540 | 1770 | 2040 || 286 | 540 | 2050 | 2300
74 C 1Y 300 | 300 | 3250 | 3850 || 275 { 275 | 3280 | 3800
74 C 1H 286 | 570 {2850 | 3400 || 267 | 485 | 2630 { 3450
74 C| EH 264 | 650 | 2880 { 3500 || 284 | 570 | 2900 | 3600
74 C{| AE 260 | 1300 | 2280 1 3130 || 260 | 1300 | 2160 | 3300 m
74 Cl| AH 275 | 850 | 1540 | 3020 || 262 | 840 | 1580 | 2880
74 C| AA 250 | 1230 | 1300 | 3200 || 286 | 1090 | 1230 | 2980
T4 C| UH 283 | 540 | 1420 | 3050 || 300 | 600 | 1440 | 2900
74 C| UW 1280 | 3901|1340 | 2830 || 284 | 340 | 1110 | 3080
74 Cl! ER 2801 530 | 1650 | 1740 || 286 | 550 | 1660 | 1770
75 C 1Y 265 | 370 | 2950 | 3400 {| 200 | 370 | 2910 | 3480
75 C IH 2711 51512740 | 3280 {| 290 | 485 | 2600 | 3200
75 C| EH 262 | 630 | 2520 | 3150 || 272 | 565 | 2440 | 3120
75 C} AE 262 | 970 [ 2030 | 2880 || 275 | 915 | 2130 { 2900
75 C| AH 270 | 810 | 1600 | 3230 || 280 | 760 | 1530 | 3180
75 Cl| AA 270 | 810 | 1350 | 2940 || 275 | 1000 | 1360 | 3000
75 C| AO 270 | 535 | 970 | 2960 || 275 | 550 | 1080 | 2850
5 C| UH 275 | 550 | 1420 | 3040 || 295 | 570 | 1500 | 3000 Hi
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Table A.23: Vowel Data, M = Male, F = Female, C = Child

Frequencies Frequencies

Talker Vowel | Fll T T Ff A
75 C| UW | 283 | 510 | 1700 | 3020 || 278 | 500 | 1640 | 3050
75 C|{ ER 261 | 522 | 1830 | 2350 [ 282 1 530 | 1800 | 2250
76 C 1Y 320 | 350 | 3240 | 3760 || 344 | 344 | 3120 | 3640
76 C IH 308 | 590 | 2760 | 3500 || 320 | 540 | 2900 { 3500
76 C| EH 307 | 830 {2750 | 3650 || 308 | 800 | 2640 | 3540
76 C| AE 294 | 1140 | 2450 | 3230 || 239 | 1130 | 2550 | 3150
76 C| AH | 310| 930 | 1540 | 3120 |[ 315 | 950 | 1670 | 3150
76 C| AA | 350 | 1190 | 1470 | 3150 || 314 | 1070 | 1460 | 2950

m 76 C| AO 300 | 910 | 1200 | 3180 {| 330 | 830 { 1250 | 3250
76 C| UH |[327] 63013103270 | 322 | 610 | 1550 | 3400
76 C| UW [1345| 5201|1250 | 3460 || 334 | 500 | 1140 | 3380
76 C| ER | 308 7401850 | 2160 || 328 | 660 | 1830 | 2200
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