Integrating Legacy Systems
with

Enterprise Data Store

By

Sonia Narang

A thesis
presented to the University of Manitoba
in partial fulfiliment of the
requirements for the degree of
Master of Science

Department of Computer Science

Winnipeg, Manitoba, Canada, 2000
©Sonia Narang 2000

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your hie Votre refdrence

Our fie Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-51775-6

Canadi

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

hhwhh

COPYRIGHT PERMISSION PAGE

Integrating Legacy Systems with Enterprise Data Store

BY

Sonia Narang

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

SONIA NARANG © 2000

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

Abstract

[ntegrating data from multiple, heterogeneous databases and other information sources
has been one of the leading issues in database research and industry. There are two
approaches towards solving the data integration problem - Multidatabase Systems and
Data Warehousing. This thesis contributes towards solving the problem of data
integration using the data warehousing approach. This thesis argues that the operational
data store (ODS) fails to provide true operational integration and introduces a new data
integration architecture by defining an architectural construct — the Enterprise Data Store
(EDS). An Enterprise Data Store is a repository of data that represents an integrated view
of enterprise operations and is built for corporate-wide operational informational
processing and transactional processing of common business operations. This thesis
presents an architecture and a comprehensive set of algorithms for synchronizing the EDS
with the operational systems. The philosophy behind the EDS synchronization
architecture is to exploit the metadata component of the data warehouse system. A very
important component of the data warehouse metadata store is the mapping between the
operational systems and the data warehouse. This research, based on this component of
the data warehouse metadata store, identifies four kinds of mappings - entity to entity.
attribute to attribute, key to key, and record to record mappings that can be used to
synchronize the EDS with the operational systems. These mappings are modeled in a
metadata model which is implemented as the metadata mapper. The mapping data and
algorithms stored in the metadata mapper are then used by the synchronization algorithms
to synchronize the EDS with the operational systems. The proposed synchronization
architecture offers many advantages and is different from early synchronization
architectures (e.g., WHIPS) that are based on a materialized view approach.

[§S]

Acknowledgments

I owe a debt of gratitude to a large number of people for supporting me in the production
of this thesis. First, my sincere thanks to my supervisor Dr. Ken Barker for his immense
support and encouragement during this research. He gave me the freedom to explore my
own ideas and helped me frame them by scrutinizing, and criticizing them from every
angle. His encouragement, patience. and understanding have helped me accomplish this
scholarly piece of work.

Many thanks to my committee members Dr. Peter Graham and Dr. Bob McLeod tor all
their insights and comments, and for taking time to read the thesis.

A special thanks to my best friend Deepti Mathur without her love, help, understanding
and care this success was impossible. You gave me the confidence and strength through
out this struggle. You were always there as a true friend whenever | needed your help and
support. [am indeed fortunate to have a friend like you.

A loving thanks to my Fiancée Jason Paul for always brightening my days with his
beautiful smiles, cute little notes and beautiful roses. You kept the romance in my logical
world. Without your love, understanding, patience, and encouragement the road to
success would not have been so easy.

This acknowledgment will be incomplete without paying homage to my family - my
parents and my two loving sisters. Their immovable confidence, constant encouragement
and selfless love have helped me climb the ladder of success. You were always there tor
me even though you were miles apart.

w

Contents

INTRODUCTION. reeee 8
1.1 EXISTING APPROACHES TO DATA INTEGRATIONoeiiiiiiiiciiiiecoetisiertones e eses e e s sese s s 9
1.2 COMPARING THE TWO APPROACHESooovruierimrreiririsnirnirsirsreniesienississssssisssinsiossssssscsesessssessserssanses 12
1.3 THE: DATA INTEGRATION APPROACH TAKEN FOR THIS RESEARCH......ccoiivereeriereernrenerrannie e eenees 14

1.3.1 The Problem with the ODS Architecture......................ccccccoiiioieiieiieie it 15
1.3.2 Proposed Architectural Construct - Enterprise Data Store (EDS) ... 1"
1. QUTLINE OF THE THESIS ooovetierieteieieiiiemscee st rressserereneranessrenssnecesasssnnssssessnnsssnsnnsnsnanesesesssssauneen 18

RELATED WORK . 20

2.1 DATA WAREHOUSING....c.cotivivieritinieiisaorosetessmienesessraaesssssstsanatsssaossscsessssssmsmssssessots saessssesesssssssssonssones 21

2. 1.1 Industrial Perspective on Data WareROUSIng ... 21
2011 DA WATCHOUSE c.covoveviniriitine et ettt aaes s ce b b ea s e eaa bbb bt een 21
2.0 1.2 Operational Datit SWOrC. ..ot s et 21
2.1.1.3 Defining the System 0 RECOTA ..ottt s 23
2oL B MEIAGAL ...t sttt a e et e et et e et en 24
2.1.1.5 Corporate Data ArchiteClureooovviiiiiii s 24
2.1.2 Academic Perspective on Data Warehousingcccooooeviccinioniniineriinneccinoreenen 25
2.2 MULTIDATABASE SYSTEMS .ottt st siene s st st sa bt sesao b ensnasbensons 29
2.2.1 Data Translation and Integration in Multidatabase Systemsc.c..ccccocviiiiiicinnn, 30
2.2.2 Overview of Research in Multidatabase Systems...................c.c.cocooevceioiicccioreenerio e 31
2.2.3 Data Translation and Integration in Multidatabase Systems and Data Warehousing 36
2.2.3.1 Data Translation and Integration in the WHIPS Architecture............ooveeiieiiii v 36
2.2.3.2 Data Translation and Integration in the EDS Architecture.ccooooevieieriecne e 36

ENTERPRISE DATA STORE a8

3.1 CHARACTERISTICS OF THE ENTERPRISE DATA STORE (EDS) ...oovoveiieereiriernenene et eeeee e 38
3.0 SUBJECH OFICIUEA.......c....eonoeieete ettt ettt 39
3.01.2 Distributed System Of RECOFd..................c.covoeemeeeeeeenieiieeeeeteeeee e eeesves v eass e 40
F LI IMERIQIE.............ooeeeeieceetee ettt ettt et et enee 41
B LA VOIALH..............ooeeeeeereeee ettt s e e e st st et b e benean 41

315 Dual Currency of DAlc.cccoooeniieiiciii ettt e 42

3.1.6 Current, Detailed, No History and No Summaryc....ccocovvniiiiiiiiniiic 42
3.1.7 Informational and Transactional Processingc.ccooeviiiiimiiinienieniie e 43
3.1.8 Comparing the Reengineered ODS and the EDS....................cccoocoiiiiiiiiiiii 43
3.2 CORPORATE DATA ARCHITECTUREccocciieiuiiiiiniinereiseniserecernsssaeesernessseaesane s ssesssens sabbanssasesassnsosnares 44
3.2.1 Corporate Data Architecture with Application Systems, ODS, and Data Warehouse............. 45

3.2.2 Proposed Corporate Data Architecture with Application Systems, EDS, and Data Warchouse47

3.3 ADVANTAGES OF THE EDS ARCHITECTUREcovieiritietraeeeinieteeeesaeseeieranenereee s ssbavsbassssnnenesssannssens 48
3.4 LIABILITIES OF THE EDS ARCHITECTURE ... vtiitrvertttinreneereeseesteseeneemeeeseeeeersss st s bssasssbnosssssrasensnes 50
SYNCHRONIZING THE EDS WITH THE OPERATIONAL SYSTEMS - 51
4.1 EXISTING APPROACHES FOR SYNCHRONIZATIONoovvviimniinicriimririrrieeie et ss st e 51
4.2 COMPLEXITY INVOLVED WITH THE EXISTING APPROACHES......c..oovviriiiniiiinicnienninisene e, 52
4.3 SUITABILITY OF THE EXISTING APPROACHES TO THE EDS ARCHITECTUREcoviiiniiiiiciiiineni 53
4.4 CLASSIFICATION OF TYPES OF DATA IN THE TWO TIER DATA ARCHITECTURE ..o 55
4.5 ARCHITECTURE FOR SYNCHRONIZING THE EDS WITH THE OPERATIONAL SYSTEMS. oo 59
4.6 MERITS OF THE PROPOSED SYNCHRONIZATION ARCHITECTURE. ..ovcovvnniiiiiiiniciini e 65
4.7 LIABILITIES OF THE PROPOSED SYNCHRONIZATION ARCHITECTURE.oooviiiiiiiiiinniiniineeenneenneens 67
SYNCHRONIZATION ALGORITHMS.. 69
5.1 WHAT IS NEEDED FOR SYNCHRONIZATION?ccooiiiiiiiiiiirreeresteeees st enesensssssessensesserneossesirenssssanes 69
5.2 SYNCHRONIZATION LOGIC COMPONENTScoiiiiiiieirieeniiiniessreseniansestessssanssiecssssesssasssvnassssssesessssnssns 73
3.2.1. The Metadata Modeic.ccccooveviuiiierieeeeiieeiei ettt st "3

3.2.2 The Metadatad MAPPEE-.......................cocoovmiiiiiiiiiiee e "6

3.2.3 The Data Transformation Integration Mandagerccccooveiinnninniieieie 77
5.2.3.1 Synchronization AIBOTIRMS ..o 79

5.3 ENXAMPLES ...ooeieereeeense e tass et s ssst s eae e bbb s s b e s e bbb R bR et s R R R R e bbb 103
33T EXAMPAE ... s 103
FB2ERUMPLE 2.t 11

5.4, WAREHOUSE ANOMALYooviiriiimiiiniriisienissisesiresssestessatsssssssseressssssssesstassssisssasssssssstosassssasasssesns 116
5.4.1 The Delete anomalycoooceeeconiiimiieieincesee et ss e ibas s 18

5.5 CORRECTNESS OF THE SYNCHRONIZATION ALGORITHMS..........cccooiiiuiinniinmeniinniiniemnmmsessissees 121
Correctness of the MEtadata MOAE] ... s bbbt e 122

The Correctness of the Mapping Data Stored in the Metadata Mapper........oovovoveiveiienniie e 123
CONCLUSIONS 124
6.1 SUMMARY AND CONTRIBUTIONS.........coocinrrenineimiireressessorsssrersorsosnsossssssssssassnsessnssssassassasssasssssessasase 124

6.2 FUTURE RESEARCHuvvivvueirerirerieiteeisanesseesecsstsnssorsteessbsssassass sesssisstossansssesranessanstsnesessasanssssssns 127

BIBLIOGRAPHY 130
APPENDIX 1 rertensensasenenons 138

METADATA MAPPER FOR EXAMPLE | o.oooivivieiiiiiieiriceeereee e eite it saresrneesresseestaas sbesan e snnnesenentesesanesnnssnsens 135
APPENDIX 2.. 141

METADATA MAPPER FOR EXAMPLE 2 ..ovviiieiiete e ceeirres e eereeeresee e sebbese bbb s s svesiabsbasesssn senssvessesnessnsees 141

List of Figures

Figure | Problem with the ODS Architecture..........................l 16
Figure 2 Common Business and Application Specific Operations....................... 39
Figure 3 Primary and Secondary Datainthe EDS........................... 40
Figure 4 Primary and Secondary Datainthe ODS.................... 40

Figure 5 Corporate Data Architecture with Application systems, ODS
and Data WarehousSe.ouiuiuiriiiiit i e e e a 45

Figure 6 Corporate Data Architecture with Application systems, EDS

and Data WarehouSe........o.vveiiininiiii i 47
Figure 7 Two Tier Data Architecture ... 56
Figure 8 Typesof Data...........c.coooiiiiiiiiiiiii 57
Figure 9 Architecture for Synchronization EDS with Operational Systems............. 60
Figure 10 What is needed for synchronization?..........................coiini 71
Figure 11 MetadataModel.................oo 74
Figure 12 Perform Synchronization.................oooiiiiiiiiiiiiii, 81
Figure 13 Perform EDS Entity Mapping................coooooiiiii 83
Figure 14 Perform Legacy Entity Mapping..................oooiiiiiiiiinn 84
Figure 15 Perform EDS Attribute Mapping.....................con 86
Figure 16 Perform Legacy Attribute Mapping................coooiiiviiiiniiinn, 88
Figure 17 Perform EDS Primary Key and Record Mapping...................cc.coue 92
Figure 18 Perform Legacy Primary Key and Record Mapping............................ 94
Figure 19 Maintain EDS Cross Referencing................c.coooiiiiiiiiiiiiiinninnn, 98

Figure 20 Maintain Legacy Cross Referencing..............cccocoiiiiiiiiiinininin 100

Chapter 1.

Introduction.

Not long ago, managing an enterprise was similar to steering an ocean liner across the
pacific - slow reaction time, leisurely pace, two degrees of freedom, and an empty ocean.
Today, managing an enterprise is more like flying an airliner over New York City - quick
reaction time, jet speeds, many degrees of freedom, and a crowded airspace. In the
cockpit, the pilots depend on their instrument panel to tell them just what's happening at

any one moment.

¢ Dr. Richard Hackathorn

Survival has become more and more difficult due to the increased competition and
complexity in the marketplace. To survive, you have to be "Big”. Indeed. it is - the
survival of the fittest. Corporations today are facing more and more deregulations.
mergers and acquisitions [1, 3]. Ten years ago, businesses were simple, competition was
less. Each business focused on a specific domain. For exampie, banks focused on their
core banking operations, insurance companies sold insurance, mortgage brokers
transacted mortgages, financial institutes dealt with investments. Over the last ten years.
many of these organizations have changed their business model and now offer a wider
product shelf. For example, today banks not only deal with cash management but also
offer mortgages, insurance and investments. Similarly, financial institutions are not only
sclling investments but also insurance and mortgages. To support the new business model
new application systems were built over time. These systems support the functionality
they were designed for and capture massive amounts of data across divisions and

departments. As a result most large organizations have between 15 and 40 legacy systems

8

that currently store and disseminate massive amounts of data. Instead of building and
reinforcing business operations, this data, which is dispersed and often duplicated across
the organization, is eroding the very infrastructure for which it was collected {2]. How
this huge, redundant, dirty data can be integrated, purged and transformed into
information, has been an open research problem for years and will persist into the

tforeseeable future.

This lack of data integration is recognized by nearly all corporations today. Ideally.
organizations can reengineer to better support the current business model. It is a daunting
task to architect and engineer systems that not only match the company’s new business

processes but are also flexible enough to deal with change [3).

1.1 Existing Approaches to Data Integration

Providing integrated access to multiple, distributed, heterogeneous databases and other
information sources has become one of the leading issues in database research and
industry [4]. The research performed in this area can be broadly classified into two

categories - Multidatabase Systems and Data Warchousing.

A multidatabase system (MDBS) is defined as an interconnected collection of
autonomous databases. A muitidatabase system typically integrates information from
preexisting, heterogeneous, autonomous, local databases in a distributed environment and
presents global users with transparent methods to use the total information in the system.
The integration is achieved by building a layer of software called a multidatabase
management system (MDBMS) that runs on top of independent database management
systems (DBMSs) and provides users with the facilities to access various databases.
Substantial research has been done in query processing and transaction management for

multidatabase systems [5].

The database industry recently approached this problem differently. Inmon, introduced a

9

new approach to informational processing. He introduced two important architectural
constructs - the data warehouse and the operational data store [6,7]. To effectively do
informational processing he proposed that there needs to be a foundation of data, known
as the data warehouse (or the “information warehouse”). Inmon defines a data warehouse
as “subject-oriented, integrated, time-variant, non-volatile, contains both summury und
detailed data 1o support management's decision”. The data warehouse is a collection of
integrated. historical data. The data warehouse is built from data formerly residing in the
applications of the corporation. Data from each source that may be of interest is extracted
in advance, translated and filtered, merged with other relevant information from other

sources. and stored in a centralized repository [9].

The operational data store (ODS) is the place where collective, corporate online
operational integration occurs. An ODS is built for satisfying the collective, integrated,
operational needs of the corporation. Inmon defines an ODS as “a subject-oriented,
integrated, volatile, current or near current collection of data in support of day to day
detailed operational decisions . An ODS looks very much like a data warehouse when it
comes to its first two characteristics, subject orientation and integration. However. the

remaining characteristics of an ODS are quite different from a data warehouse [6].

The first difference between an ODS and a data warehouse is perceived in terms of
volatility of data. An ODS is volatile whereas a data warehouse is non-volatile. This
means that an ODS can be updated as a normal part of processing. A data warchouse
contains snapshots (a database dump as of some past moment of time); a new snapshot is
created whenever a change needs to be reflected in the data warehouse. The second
difference is the timeliness of the data found in the two environments. An ODS contains
only current data. A data warehouse contains historical as well as current data. The third
difference between an ODS and a data warehouse is that an ODS contains detailed data
only, while a data warehouse contains both detailed and summary data. The fourth
difference is the type of processing performed in the two environments. An ODS is
mainly built for operational processing whereas the data warehouse is built for

10

informational/DSS (Decision Support System) processing. Operational processing refers

to short running queries that access limited amounts of data. It is used for detailed and up-

to-the-second decisions. Whereas, informational processing refers to complicated long

running queries that access large amounts of data. It is used for long term analysis and

trend detection.

In spite of the differences between the two environments, similar steps are taken to build

either a data warehouse or an ODS. The steps are -

3]

3)

4)

Design a data model - the data model provides the structure and content definition of
the informational needs of the corporation. This data model is then implemented into

a data warehouse or an ODS.

Locate the best data the corporation has to furnish the structure and content of the
data model - the best data is determined by evaluating accuracy, completeness. and
timeliness of source data. This step is referred to as identification of the system of
record [8]. The system of record once defined, becomes the source of data for

populating a data warehouse or an ODS.

Extract. transform, integrate and load data - data is transformed as it passes from
application or operational sources into a data warehouse or an ODS. Transformation
is needed to map the system of record to a data warehouse or an ODS. The
transformation includes such activities as converting data, decoding/encoding data,
altering key structures, altering physical structures, reformatting data, internally
representing data, recalculating data, and so forth, After the data has undergone
transformation, loaders are used to load the data. Transformation and integration of
the operational data is achieved by building a layer of software usually referred to as

transformation and integration layer.

Refresh the data warehouse or the ODS - once the ODS or the data warehouse is

11

populated, it must be kept synchronized with the operational systems'. This is
achieved by capturing the changes in the operational systems and propagating them to
the data warehouse or the ODS. These changes are reflected in the ODS as updates
but a new snapshot is created whenever a new change needs to be reflected in the data

warehouse.

1.2 Comparing the Two Approaches

The tundamental difference between multidatabase systems and data warehousing is that
the multidatabase system is a logical integration of multiple, heterogeneous. autonomous
databases while a data warehouse or an ODS is a physical integration. A data warehouse
or an ODS is a repository of data built by cleaning and integrating data from multiple
systems. On the other hand, an MDBMS is a layer of software built to provide an
integrated view of data residing in multiple, heterogeneous, autonomous database

systems.

Query processing in a multidatabase system requires determining the appropriate set of
data sources and generating the appropriate subqueries or commands for each data source.
Results obtained after the execution of these subqueries are translated, filtered and
merged. and sent to the user of the multidatabase system. On the other hand. query
processing in a data warehousing environment is much simpler since the user poses a
query on a centralized database system. This difference makes query processing in data
warehousing more efficient as data has already been cleaned and integrated trom
heterogeneous data sources by using a common model after resolving the semantic and
svntactic differences among various data sources. Furthermore, warehouse data can be
accessed without tying up the original data sources (e.g., holding locks, slowing down

processing), and is available even when the original data sources are inaccessible. The

' The terms operational systems, legacy systems and application systems will be used interchangeably throughout the thesis.

warehousing approach may be considered an “active” or “eager’” approach to information
integration, as compared to the multidatabase system approach that is considered

“passive” or “lazy”, where processing and integration starts when a query arrives [9].

Another difference between the two approaches is that the data warehouse and the ODS
are built for querying and analysis while multidatabase systems are built for querying and
updates. In other words, a user can issue an update transaction to the MDBMS layer that
will translate the global update to the respective local updates. These updates will then be
sent to the respective local databases for execution. The MDBMS layer is responsible for
ensuring the consistency and managing the concurrency of global transactions.
Transaction management in multidatabase systems is a complicated and interesting

research area that is not applicable to the data warehousing approach.

One potential drawback of the data warehousing approach is that queries are limited to
the data contained in the data warehouse. The needs of users are determined in advance
and the data relevant to their needs is extracted and maintained in the data warehouse.
Hence, the data warehousing approach is only suitable for users with predictable needs.
Another drawback is that since the data is physically copied from original data sources to
the data warehouse and is typically refreshed every | to 24 hours, it may not be as current
as the data contained in the original data sources [9]. Thus, systems that require querying
and analysis to be performed on the current data will not find the data warehousing

approach suitable.

Both approaches are viable solutions to the data integration problem and are appropriate
for specific domains. We believe that in spite of certain drawbacks with the data
warehousing approach, it is a much simpler and more attainable solution to the data

integration problem. Its strengths lie in -:

1) Taking away the load of informational processing from application data sources. This

means data can be accessed without tying up the original data sources. User queries

13

are no longer dependent on availability of the original data sources. Also, delays in

query processing caused by busy and slow data sources are also eliminated.

2) It makes query processing more efficient by eliminating the significant processing
required for translation, filtering, and merging of data from multiple, heterogeneous

and autonomous data sources.

3) It provides the flexibility to modify and store information that is not maintained in the
original data sources. The data is extracted from original data sources and stored in a
data warehouse. This gives users flexibility in analyzing and storing historical and

summarized information which is inappropriate to store in the original data sources.

As mentioned above, the first drawback of the warehousing approach - the currency of
the data is due to the cost incurred in refreshing data in the warehouse synchronously
with the application data sources. Most data warehouses are refreshed asynchronously
between every 1 to 24 hours depending on the need of the organization. | feel that as
technology advances and more research is done in this area, this drawback may become
insignificant. The second drawback is that data warehousing is not suitable for users with
unpredictable needs. I classify this as more of an analysis and design problem than a data
warehousing problem. If analysis and design is done thoroughly to predict the needs of
the users there should not be any queries outside the domain of the data warehouse. Also,
a data warehouse is built in an iterative manner which gives the opportunity to better

understand and predict users’ requirements.

1.3 The Data Integration Approach Taken for this Research

This thesis contributes towards the problem of data integration using the data
warehousing approach. The research to date on the ODS and the data warehouse will be
used as a framework. This research focuses on operational integration and hence more

closely resembles the architectural construct - the ODS. This thesis argues that the ODS

14

architecture does not truly integrate the operations of the enterprise and therefore
introduces a new architectural construct - the Enterprise Data Store (EDS). The next
section illustrates this problem with the ODS architecture and explains how the EDS

resolves the problem.

1.3.1 The Problem with the ODS Architecture

Many corporations have established a plethora ot older operational applications which
has created what is commonly called the “Legacy System™ environment or the “Spider
Web™ environment [6]. Not only is the customer information scattered over disparate
operational systems, there are also similar business operations being performed by each
application system. For instance, a bank may have a loan system, a mortgage system, an
insurance system, an investment system and a cash management system to manage
products and services it offers to its clients. All these systems perform some common
husiness operations such as collecting client information (Name, age, gender, occupation,
dependents, spouse, address, e-mail. phone, fax), client financial information (assets.
liabilities, insurance, mortgage), service instructions (electronic fund transfer - EFT.
statement preferences), product rates (insurance or mortgage or interest rates), payment
collection, etc. There is operational redundancy in these application systems. Not only do
these operations duplicate customer information across different operational systems,
there is also an excessive cost incurred to maintain these operations. Since the customer
information was collected over different times it is entirely possible that this information
is also different across the operational systems. This possibility brings into question the
validity of information provided by these systems. In other words, which is the most

accurate and current customer information?

When building an ODS, such questions are answered during the identification of the
system of record {8]. Identification of the system of record is a difficult task if multiple
candidate sources exist. If there is a single source, selecting the “best” source is trivial but

this occurs rarely in an environment where integration is a prime motivator. If multiple

15

sources exist, the selection process will ultimately be a complex task requiring
complicated logic to determine the best source of data. Even though the ODS is populated
with the best source of data the other application systems continue to see the incorrect
data. Consider an example where the client information is scattered over three application
systems (see Figure 1). The client record in the ODS is formed by getting first name, last
name and address from Application A, date of birth and gender code from Application B
and marital status code and spouse name from Application C. Any changes to these fields
in the operational systems must be captured and synchronized with the ODS. In such
cases when we have multiple sources forming a system of record, a very complicated
syvnchronization logic is needed as we have more complicated mappings between the
ODS data and application sources’ data. Further, although we have defined that the best

source for getting the address for a client is Application A, Application B continues to see

Client No 14567 Client no : 6789

Last Name : Edward Lname : Edward
First Name : John Fname)

Age 142 Date of Birth 1 05/13/1946

Gender M Gender o1
Marital Status : Married Marital Status : Divorced
Address : 1234 St Marys Address : 1833 Broadway

Application A Application B

Client No : 23457
Clientno ;1123 Last Name : Edward
Name : J. Edward First Name : John
Age : 40 Date of Birth ~ : 05/13/1946
Marital Status : | Gender 1
Spouse Name :A. Edward Marital code : 1

Spouse Name : A. Edward

Address : 1234 St Marys

Application C oDs
Figure 1

16

different address information as opposed to Application A and the ODS. Moreover a
client can call his insurance agent for an update on his insurance premium, and at the
same time report a change of address. If Application B is the insurance system, then it
subsequently contains the most current address information that is neither in Application
A nor in the ODS. True operational integration cannot be achieved until we eliminate the
operational redundancy caused by these common business operations that will in turn

eliminate duplication of data across legacy systems.

1.3.2 Proposed Architectural Construct - Enterprise Data Store (EDS)

To achieve true operational integration this research proposes a new integration
architecture defining a new architectural construct - the Enterprise Data Store (EDS). An
Enterprise Data Store is a repository of data that represents an integrated view of
enterprise operations and is built for corporate wide operational informational
processing and transactional processing of common business operations. The EDS
integrates and cleans data from disparate operational systems. It also eliminates redundant
processing of common business operations by reengineering and moving these operations
onto the EDS. The EDS truly integrates an enterprise’s data by providing a consistent
view of data across the enterprise. In the above example, all the applications and the EDS
would then see the same view of the data. The EDS is the system of record for the
common business operations. This means any processes to maintain common business

operations only exist in the EDS.

Moving and reengineering common business operations onto the EDS complicates
synchronization of the operational systems with the EDS. In the ODS environment, any
changes to the operational systems are captured and propagated to the ODS. The direction
of movement of data is from the operational systems to the ODS. In the EDS architecture,
along with the direction of movement of data from the operational systems to the EDS
data also moves from the EDS to the operational systems. This additional direction of

movement of data is due to reengineering and moving of the common business operations

17

onto the EDS. By moving these operations to the EDS, the EDS becomes the primary
(owns and maintains) source of data for these common business operations and
operational systems become the secondary (read only). In other words, the application
processes that maintain this data exist in the EDS. Any changes to this data in the EDS
must be propagated to the operational systems. Hence to keep the EDS synchronized with
the operational systems, we will need a dual propagation mechanism. This thesis
proposes an architecture for synchronizing the EDS with the operational systems. It also
provides algorithms to keep the EDS and operational systems synchronized. These
algorithms use metadata for the synchronization. Though metadata is an essential
component of the data warehouse architecture, the development of this component is
usually ignored. This thesis also makes a contribution in this area by designing a
metadata model to store the mapping between the operational systems and the EDS. This
model is then used by the synchronization algorithms to synchronize the EDS with the

operational systems.

To summarize, this thesis makes the following contributions -

i. It defines a new data integration architecture by defining an architectural construct,

the Enterprise Data Store (EDS).

(1%)

It provides an architecture and algorithms for synchronizing the EDS with the

operational systems.

3. It provides a metadata model to store the mapping between the operational systems
and the EDS. It also illustrates the use of metadata for synchronizing the operational

systems with the EDS.

1.4 Outline Of the Thesis

A review of literature on data warehousing and an overview of research in multidatabase

18

systems are discussed in Chapter 2. Chapter 3 describes the characteristics of the
Enterprise Data Store and compares them with the Operational Data Store. It also
discusses the merits and liabilities of the EDS. Chapter 4 presents the architecture for
synchronizing the EDS with the operational systems. Chapter 5 describes algorithms for
synchronizing the EDS with the operational systems. This chapter also presents a
metadata model and illustrates how metadata can be used for synchronization. Finally,

Chapter 6 makes some concluding comments and suggests directions for future research.

19

Chapter 2.

Related Work

This chapter reviews other work related to this thesis by broadly categorizing research on
the problem of data integration into multidatabase systems and data warehousing. Data
warehousing has been a prominent buzzword in the database industry, but attention from
the database research community has been limited. A noteworthy exception is the
researchers at Stanford University who have contributed significantly towards the data
warehousing approach. Due to the difference in industrial and academic perspective. the
related work in data warehousing has been further categorized in this chapter into

industrial and academic perspective.

Inmon [6,7] introduced two very important architectural constructs - the data warehouse
and the operational data store (ODS). There are substantial differences between the two
constructs and each is built to satisfy specific needs of an organization. The proposed
research in this thesis more closely resembles the operational data store. This research
identifies the problems associated with the ODS and proposes a new architectural
construct called the Enterprise Data Store (EDS). Although the ODS is a well-known
architectural construct in industry, it has not been explored within the database research
community. This thesis focuses on the architectural construct called ODS/EDS and

describes a new area of research in data warehousing.

The rest of the chapter is organized as follows. Section 2.1 presents a review of previous
work on data warehousing from an industrial perspective and an academic perspective.

Section 2.2 presents a review of work on multidatabase systems.

20

2.1 Data Warehousing

2.1.1 Industrial Perspective on Data Warehousing

Industrial contributions to data warehousing have been made by identifying and defining
the two architectural constructs, namely, the data warehouse and the operational data
store. This section reviews existing literature on these constructs. Along with these
constructs it also reviews previous work related to metadata and defining the “system of
record”. Further, it reviews literature on corporate data architecture which is also known
as the corporate information factory (CIF). The purpose of this section is to give a holistic

view of data warehousing that will act as a framework for the thesis.

2.1.1.1 Data Warehouse

Inmon {7. 34] defines a data warehouse as a subject-oriented, integrated. time-variant and
non-volatile collection of data in support of management’s decisions. As data enters the
data warehouse from the operational environment, it is transformed and integrated. Upon
entering the data warehouse, data goes into the current detail data. It resides there and is
used until one of the following three events occur: it is purged. it is summarized. and/or it
is archived. The kinds of data found in the data warehouse are classified as current detail
data. older detail data, lightly summarized data, highly summarized data and metadata.
The ditferent levels of data within the data warehouse receive different levels of usage.
Inmon [34] discusses the two most important issues of the data warehouse design -
granularity and partitioning. Inmon also reviews the technology features required for

satisfactory data warehouse processing.

2.1.1.2 Operational Data Store

[nmon [6] defines an architectural construct called the opcrational data store (ODS). The
ODS is built for operational integration. There are fundamental and important differences

between the ODS and the data warehouse. These differences are also noted by Inmon,

21

Imhoft and Battas [3]. Inmon (6] defines the ODS as a subject-oriented, integrated,
volatile, current or near current collection of data in support of day to day detailed
operational decisions. An essential part of the ODS environment is the definition of the
system of record. The system of record is the application data that feeds the ODS (as
defined by Inmon, Imhoff, Battas [3] and Inmon [8]). Inmon {6] also discusses the pros
and cons of moving the system of record to the ODS. The informational processing found
in the ODS is for the clerical community making detailed, up-to-the-second decisions.
This kind of informational processing is very difterent from that found in the data
warchouse. Inmon also briefly discusses the management of different processing
windows to section off parts of the day for various activities like loading and
informational processing of the ODS. Creation of these windows helps in managing the

processing load on the ODS.

Inmon, Imhoff and Battas [3] give an in depth description of the operational data store.
They discuss what an ODS will and will not do for a company. Their work serves as a
guide for building and maintaining the ODS. The evolving needs of the organization and
the technological advancements have led to the creation of this architectural model. There
are three classes of ODSs. These classes are defined based on the frequency with which
the data is refreshed in the ODS. [In Class | ODS, updates in application systems are
propagated to the ODS in a synchronous (immediate) manner. In a Class [1 ODS, updates
in the application systems are stored and forwarded to the ODS on an hourly or even half-
hourly basis. In a Class 111 ODS, the updates in application systems are propagated to the
ODS in an asynchronous manner on a twenty-four-hour-or-more basis. The foundation of
the design of the operational data store is the corporate data model, where major subjects
(entities) are identified. The authors also introduce the term corporate information factory
(CIF) and discuss several components constituting the CIF. In depth description of the

CIF is also given in Inmon, Imhoff and Sousa [1].

Inmon, Imhoff and Battas [3] mention that many companies are finding that they must
reengineer their systems to better support their current business processes. They suggest

22

from a technology standpoint that building an ODS and a data warehouse can be helpful
to the reengineering effort in a number of ways. An exploration of the relationship
between an ODS and a reengineered environment show that there are a number of
similarities. The similarities lead to the idea of using an operational data store as a basis
for reengineering. In this scenario, where the ODS is built for reengineering. applications
are migrated from legacy environments to the ODS. Their research proposes migrating
the cunent system of record over time to the operational data store. This will require
changes to the transformation and integration layer to deal with synchronization of the
old and new system of record as well as changes to deal with exceptions such as
collisions. Collisions occur when users simultaneously update the same data elements in
the ODS as well as legacy systems. The ODS built for reengineering may have some or
all of the system of record built inside the ODS. Moving the system of record to the ODS

requires dual propagation to synchronize the ODS with the operational systems.

2.1.1.3 Defining the System of Record

Inmon [8] notes that the definition of the system of record is one of the most important
steps in the development of the data warehouse. The system of record entails the
identification of the “best™ source data in the operational environment. The content and
structure of the system of record are determined by the data warehouse data model. The
selection of the “best” source data is determined by the following criteria: the most
accurate source data, the most complete source data, the most timely source data. the
most structurally compatible data, and the data nearest to the operational source. The
system of record has many different facets. Some of these facets are: the attributes that
make up the system of record, the mapping between the system of record and the data
warchouse, summarizations, frequency of transformations, etc. Each facet must be
detined by the database designer. The system of record, once defined, then becomes the

source of data for populating the data warehouse.

2.1.1.4 Metadata

Inmon [10] discusses the importance of metadata in the data warehouse environment and
describes each component of the metadata in detail. Metadata plays an important and
active role in the data warehouse environment as compared to the operational
environment. This is because the data warehouse and the operational systems serve
different user communities. 1T (Information Technology) professionals are users of the
operational systems whereas, DSS (Decision Support System) analysts are users of the
data warehouse. A DSS analyst must know what data is available and where it is in the
data warehouse. This information is provided to the DSS analyst by metadata. The data in
the warehouse environment spans over a broad spectrum of time. As a result, the same
data structure will have multiple forms. To track these changes over a period of time,

Inmon suggests versioning the metadata.

One of the most important contents of the data warehouse metadata store is the mapping
between operational systems and the data warehouse. The typical contents of the mapping
that are stored in the data warehouse metadata store are: identification of source fields,
simple attribute to attribute mappings, attribute conversions, physical characteristics
conversions, name changes, key changes, defaults, logic to choose from multiple sources.

summarization algorithms, etc.

It is shown in the following chapters that metadata is also an important component of the
proposed EDS architecture. This research proposes the use of metadata for

synchronization of the EDS with the operational systems.

2.1.1.5 Corporate Data Architecture

Inmon, Imhoff and Sousa [1] describe the challenges and problems facing organizations
today and suggest the need for an information ecosystem to overcome these challenges
and problems. An information ecosystem as a system with different components, each

serving a community directly while working in concert with other components to produce

24

a cohesive, balanced information environment.

Three fundamental business pressures that are fueling the evolution of the information
ecosystem are: growing consumer demand, increased competition and complexity, and
continued demands for improvements in operating efficiencies. In response to these very
real business challenges, companies must be able to support more than just classical
business operations. Competitive corporations need capabilities to support business
intelligence and business management that can leverage their legacy environment. To
achieve these capabilities the authors suggest creating an information ecosystem that will
orchestrate the use of various information technologies and constructs like data
warehousing, data marts, OLAP, data mining, etc. A corporate information factory (CIF)
is the physical embodiment of the notion of an information ecosystem. The corporate
information factory is made up of the following components: applications (legacy
systems), an integration and transformation layer, data warehouse, data mart. operational
data store. metadata, the internet and the intranet. The different components of the CIF
create a foundation for information delivery and decision-making activities that can occur
anywhere in the CIF. The steps required in building and managing the corporate
information factory are detailed. Inmon [35] discusses how legacy systems, the

operational data store and the data warehouse together form an information architecture.

2.1.2 Academic Perspective on Data Warehousing

Despite rapid advances in commercial data warehousing tools and products, most of the
available systems are relatively inflexible and limited in their features. Most commercial
data warehousing systems assume that the sources and the warehouse subscribe to a
single data model (normally relational), that propagation of information from the sources
to the warehouse is performed as a batch process (perhaps off-line), and that queries from
the warehouse to the information sources are never needed. Research at Stanford
University addresses these limitations by proposing a new data warechousing architecture

called the WHIPS (Warehouse Information Prototype at Stanford) architecture. The

25

philosophy behind the WHIPS architecture is to consider data in the warehouse as a
materialized view (or set of views). where the base data resides at the information
sources. The propagation of changes from the base data sources to the warehouse is then
essentially a matter of performing materialized view maintenance. This section
summarizes data warehousing research at Stanford and provides an overview of research
problems in data warehousing, the WHIPS architecture, the warehouse anomaly,

materialized views and materialized view maintenance.

Widom [9] motivates the concept of data warchousing in the database research
community. The paper outlines a general data warehousing architecture and proposes a
number of technical issues arising from the architecture that are suitable topics for
exploratory research. Widom compares the data warehousing approach to the existing
data integration approaches. She classifies existing data integration approaches as lazy or
on-demand and data warehousing as eager or in-advance approach. The differences
between the two approaches are also discussed in Hammer, ef a/. [11]. Widom [9]
proposes the basic architecture of a data warehousing system in this paper. The
philosophy behind the proposed architecture is to consider the data in the warehouse as a
materialized view (or set of views), where base data resides at the information sources.
The author discusses various reasons why conventional view maintenance techniques are
not suitable for the data warehousing approach and new techniques and algorithms must
be defined. View maintenance in a warehousing environment is discussed in Zhuge, ¢t dl.
[17]. Widom [9] also outlines various research problems that arise from the warehousing

approach like change detection, translation, data scrubbing and warehouse management.

Hammer, er al. [11] describe the goal of the data warehousing project at Stanford (the
WHIPS project). They give a brief overview of the WHIPS project and describe some of
the research problems being addressed in the initial phase of the project. They consider
data warehousing as a complement to, not a replacement of, passive query processing
schemes. They also illustrate the basic architecture of the WHIPS project and describe its
components (the monitor and integrator) in detail. Monitors detect changes to an

26

information source that are of interest to the warehouse and propagate them in a generic
format to the integrator. Depending on the kind of information source changes can be
detected by using triggers, examining log files, comparing snapshots and/or modifying
application sources to emit and notify relevant changes to the monitors. The WHIPS
project is currently focusing on using snapshot differential algorithms for change

detection. They have implemented simple differential monitors.

The integrator described by Hammer, ef ol is implemented as a rule-based engine. Each
rule is responsible for handling one kind of change notification, and is implemented as an
object-oriented method. A rule is triggered whenever a monitor generates a change
notification of the appropriate type. The detailed architecture of the WHIPS system is
present in Wiener, ef al. [12]. As with their earlier work, the architecture is based on a
data warehouse formed as a materialized view (or views) over the information sources.
They show that the decoupling between the base data on the one hand (at the sources),
and the view definition and view maintenance machinery on the other (at the integrator)
can lead to incorrect views at the warehouse. They refer to this problem as the warchouse
update anomaly. There are a number of mechanisms for avoiding warehouse update
anomalies such as recomputing the view, storing copies of all data involved in views at

the warehouse, eager compensating algorithm (Zhuge, et al. [17]).

Wiener, ¢f al. [12] present a system prototype for warehouse view maintenance. This
research extends the basic architecture proposed in Hammer, er al. [11]. The authors
discuss important goals that must be fulfilled by the WHIPS architecture like plug-and-
play modularity, scalability, 24 by 7 operation, data consistency, and support for different
source types. Different modules of the WHIPS architecture are: the view specifier. the
meta-data store, the integrator, view manager(s), query processor(s), wrappers, sources
and monitors, the warehouse and the warehouse wrapper. The prototype is implemented
using distributed object technology. Each module is implemented as a CORBA (Common
Object Request Broker Architecture) object, using the ILU (Inter-Language Unification)
implementation of CORBA. The communication between objects is then performed

27

within the CORBA distributed object framework, where each object O has a unique
identifier used by other objects to identify and communicate with O. Wiener, ¢! al. also

provide preliminary performance results for the WHIPS prototype.

The materialized view approach is a suitable solution for a data warehouse system. It will
be shown in the following chapters that this approach is however, not suitable for the
EDS architecture. This is due to the tfundamental differences between the EDS and the
data warehouse. In this thesis, a new approach and architecture for synchronizing the
EDS with the operational systems is proposed. The new approach uses the metadata

component of the data warehousing system for synchronization.

Roussopoulos [18] describes the versatility and potential of relational views. He discusses
a relational view and summarizes the most important uses, techniques, and benefits
pertaining to views and then presents several forms of relational views. Roussopoulos
also explains why reusability of views is of great importance in data warehousing.
Commercial RDBMSs discard views immediately after they are delivered to the user or
to a subsequent execution phase. The cost of generating the views is for one-time use
only instead of being amortized over multiple and/or shared access. In a data warehouse
where query execution and 1/0 are magnified in volume, the mandate for reuse cannot be

ignored.

Zhuge, ¢t al. [17] introduce a new algorithm known as ECA (Eager Compensating
Algorithm) for avoiding warehouse anomalies. In a warehousing environment, the
sources can inform the warehouse when an update occurs. This information alone,
however may not be sufficient to incorporate the update into the warehouse views. Thus,
the warehouse may have to issue queries to some of the sources to determine the
additional data needed to update the views. Since these queries are evaluated at the
sources later than the corresponding update, the sources’ states may have changed due to
concurrent updates at the sources. As a result, the execution of the queries at the sources

may return incorrect data that will lead the warehouse to compute incorrect views. The

28

ECA takes steps to avoid these warehouse anomalies. The basic idea is to add to the
queries sent to the source, compensating queries to offset the effect of concurrent updates.
The authors also discuss two improvements to the basic ECA algorithm. First, the ECA-
Key Algorithm (ECA¥) that includes a key from every base relation involved in the view
so deletions can be handled at the warehouse without issuing a query to the source.
Second. the ECA-Local algorithm (ECA") that combines the compensating queries of
ECA with the local updates of ECA® to produce a streamlined algorithm that applies to
general views. An initial performance study in [17] shows that ECA is more efficient than

periodically recomputing the warehouse views from scratch.

The ECA is based on a restrictive warehouse environment that assumes a single source
and a single view over several base relations residing on a single source. Zhuge, ¢t al.
[24] extend this work to the warehouse environment that assumes multiple sources and a
view over multiple relations residing on multiple sources. In their research, they propose

a new family of algorithms, the strobe family, for multi-source warechouse consistency.

Multidatabase systems are another approach to the data integration problem. There has
been substantial research in this field and some of the research is also applicable to data
warchousing. The next section reviews the multidatabase system approach to the data

integration problem.

2.2 Multidatabase Systems

Database systems serve critical functions and represent significant capital investment.
Many organizations have several different computers and database systems. In many
cases, this environment must be preserved while also addressing the need to share
information on a more global basis. Integrated access is required to semantically similar
information at different nodes and with different data representations. Muitidatabases
typically integrate information from preexisting, heterogeneous local databases in a

distributed environment and present global users with transparent methods to use the total

29

information in the system. A key feature is the autonomy that individual databases retain

to serve their existing customer set.

Providing integrated access to multiple, distributed, heterogeneous databases and other
information sources has been one of the leading issues in the database research
community for over a decade. The research challenges in this area can be broadly
classified into: data translation and integration, query processing, and transaction
management. Research issues in data translation and integration deal with defining a
robust common model, translating and integrating each underlying database (or local
database) to obtain a unified schema (schema translation and integration) and defining a
mapping methodology between the unified schema and the underlying databases. Ram

[36] discusses some of these challenges in detail.

2.2.1 Data Translation and Integration in Multidatabase Systems

Data translation is achieved in multidatabase systems by defining a common model and
translating the schemas of various database systems into the common model. Integration
is achieved by integrating the translated schemas into a global conceptual schema.
Integration is optional in some of the multidatabase architectures and the absence of
global conceptual schema is considered to be of significant advantage. Oszu and
Valduriez [5] discuss multidatabase system architectures with and without a global
conceptual schema and present schema translation and integration techniques using the E-

R (Entity Relational) model as the common model.

The common mode! must be powerful enough to express various relationships and
semantic information captured by different database systems. Several “*semantic” models
have been developed to serve as the common model. For example, the Dataplex [40]
multidatabase system is based on a relational model, the Amoco Distributed Database
system [41] uses an extended relational model, Multibase [42,43] uses a functional model

and Pegasus [38] takes advantage of the object oriented model. Once researchers

30

construct a common model, they still have the problem of resolving schema and data
conflicts among various database systems to obtain a unified schema. Semantic
differences such as synonyms, homonyms, naming conflicts, and differences in attribute
tormats and field length need to be resolved. Kim and Seo [37] provide a comprehensive
framework for understanding schematic and data heterogeneity among independently
created and administered relational databases. An interesting challenge here is to develop

automated tools to help identify and resolve these semantic differences.

2.2.2 Overview of Research in Multidatabase Systems

Ram [36] highlights some of the problems and their solutions associated with
heterogeneous distributed database systems (HDDS). HDDS is another name for
multidatabase systems. A major challenge of integrating diverse databases is hiding the
heterogeneity of the constituent databases from users without sacrificing the autonomy of
the constituent databases. This implies that HDDS should neither impose changes on
existing databases nor require any reprogramming of the local database management
systems (DBMSs). HDDS should appear as a single integrated database. This includes
hiding the heterogeneity of file systems, data models, database languages, and data
scmantics, as well as the hardware and operating systems on which the constituent
databases run. Ram [36] also discusses two approaches for developing HDDSs. She
classifies the two approaches as “unified schema” and “multi-database”. The first
approach advocates establishing an integrating model to define a unified schema of the
constituent databases also known as the global schema. The second approach argues that
complete integration is not necessary to preserve the autonomy of the constituent
databases. Each database continues to operate in an independent manner and also forms a
part of a federation of users who can share information. Multidatabase system
architectures with and without global conceptual schema are also discussed in Ozsu and
Valduriez [5]. Ram [36] also classifies challenges in a heterogeneous database
environment into 1) definition of an integrating model, 2) schema integration, 3) mapping
methodology, and 4) data administration functions like transaction management and

31

recovery.

Ozsu and Valduriez [5] discuss MDBS architecture with and without a global conceptual
schema. They define database integration as a process by which information from
participating databases can be conceptually integrated to form a single cohesive definition
of a multidatabase; in other words, it is the process of designing the global conceptual
schemas. Their focus is on architectures with global conceptual schemas. They mention
that data integration can occur in two steps: schema translation and schema integration. In
the first step, the participating local database schemas are translated to a common
intermediate canonical representation using translators [19,23]. In the second step, each
intermediate schema is integrated into a global conceptual schema. Their discussion on
schema integration is based on the work done by Batini, et a/. [34]. Batini, et al. classifies
integration methodologies as binary and n-ary. According to Batini, er a/.. schema
integration occurs in a sequence of four steps: preintegration, comparison, conformation,
and merging & restructuring. During the comparison phase both the naming and
structural conflicts are identified. Structural conflicts occur in four possible ways: as type
conflicts, dependency conflicts, key conflicts, or behavioral conflicts. Classification of
schema and data conflicts among component relational databases organized into a
multidatabase system is presented by Kim and Seo [37]. Conformation is the resolution
of the conflicts that are determined at the comparison phase. In the merging and
restructuring step all intermediate schemas must be merged into a single database schema
and then restructured to create the “best” integrated schema. Batini, et al. define the three
dimensions of merging and restructuring as completeness, minimality, and

understandability.

Kim and Seo [37] provide a framework for comprehensive enumeration and classification
of schema and data conflicts among component databases organized into a multidatabase
system. They define a MDBS as a federation of independently developed component
database systems (CDBSs). The MDBS provides a homogenizing layer on top of the
CDBSs giving users the illusion of a homogeneous system. Since CDBSs operate
32

independently they may include structural and representational discrepancies, or
conflicts, called schematic and data heterogeneity. These conflicts must be resolved so
that MDBS users can access the underlying CDBSs with a single uniform database
language rather than a different database language for each CDB. This research presents a
comprehensive framework for classifying these conflicts. Kim & Seo believe that such a
framework is required to develop an MDBS schema definition, query language and the

tools needed by multidatabase designers.

They assume the MDBS common data model is relational; that is each CDB schema is
first converted to a semantically equivalent relational schema, and the multidatabase
schema is constructed as a view of these relational CDB schemas. They classify contlicts
at the highest level as either schema or data contflicts. There are two basic causes of
schema conflicts. First is the use of different structures (tables and attributes) for the same
information. Second is the use of different specifications for the same structure; these
include ditferent names, data types and constraints for semantically equivalent tables
and/or attributes. Schema conflicts are broadly classified as 1) table-versus-table
conflicts, 2) attribute-versus-attribute conflicts, and 3) table-versus-attribute contlicts.
Broadly. there are two types of data conflicts 1) wrong data conflicts that are based on
violating integrity constraints, and 2) conflicts based on different representations for the

same data.

Ahmed, ¢t al. [38] describe in their research Pegasus, a heterogeneous multidatabase
system developed by the Database Technology Department at Hewlett-Packard
Laboratories. To support the various database systems with different data models,
languages, and services, a powerful data model that will resolve mapping and integration
problems between diverse data systems is needed. Pegasus takes advantage of object-
oriented data modeling and programming capabilities. It uses both type and functional
abstractions to deal with the mapping and integration problems. Data abstraction and
encapsulation features of Pegasus object model provide an extensible framework for
dealing with various kinds of heterogeneities in traditional and non-traditional data

33

sources. The Pegasus model therefore overcomes many limiting capabilities of mapping
and integration inherit in other multidatabase systems. The model is based on the Iris

object model.

The unifying data definition and data manipulation language of Pegasus is the
heterogeneous object structured query language (HOSQL). Multiple data sources can
interoperate via Pegasus without having an integrated global schema. A local data source
is represented in Pegasus by an imported schema that looks like a Pegasus schema. but
the underlying data is in the local data source. A complete or partial mapping of a local
schema can be visible through Pegasus. HOSQL statements may refer directly to the
individual imported schemas. Integration in Pegasus is optional and deals with semantic
and schematic heterogeneity among different databases, all of which have imported
schemes in Pegasus. The authors describe three kinds of semantic and schematic

heterogeneity; domain mismatch, schema mismatch and object identification.

Chawathe. er al. [19] describe the architecture of TSIMMIS (The Stanford-IBM Manager
of Multiple Information Sources) that provides integrated access to diverse and dynamic
information residing in heterogeneous information sources. TSIMMIS goal is not to
perform fully automated information integration that hides all diversity from the user. but
rather to provide a framework and tools to assist humans in their information processing
and integration activities. The TSIMMIS project uses a simple, self-describing (tagged)
object model called the Object Exchange Model (OEM) as its common model.

The two main components of the TSIMMIS architecture are translators (or wrappers) and
mediators. Translators convert queries over information in the common model into
requests that the source can execute, and convert the data returned by the source into the
common model. A mediator is a system that refines in some way information from one or
more sources. A mediator embeds the knowledge that is necessary for processing a
specific type of information. To build a mediator it is not required that a mediator

understand all of the data it handles, and no person or software component needs to have

34

a global view of all the information handled by the system. It is important to note that
there is no global database schema. and mediators can work independently. The
TSIMMIS architecture focuses on generating wrappers and mediators automatically or

semi-automatically using a high level description language.

The WHIPS architecture, discussed previously, and the TSIMMIS architecture were both
defined by researchers at the Stanford University. Both architectures focus on integrating
data from heterogeneous data sources but are based on two different approaches towards
data integration. WHIPS is a data warehousing architecture and TSIMMIS is a
multidatabase architecture. Data translation and integration is inherent in both approaches
to data integration. Therefore, the warehousing approach can take advantage of data
translation and integration research in multidatabase systems. The WHIPS architecture

uses the research in TSIMMIS by using wrappers/translators in their architecture.

Hammer, et al. [23] describe an architecture for template-based wrappers in the
TSIMMIS system. They introduce a wrapper implementation toolkit for quickly building
wrappers. The goal is to minimize the effort that goes into developing and writing
wrappers and to quickly gain access to new information sources. The philosophy behind
their “template based” translation methodology is as follows. The wrapper implementer
specifies a set of templates (rules) written in a high level declaration language that
describe the queries accepted by the wrapper as well as the objects it returns. When an
application query matches a template, an implementer-provided action associated with
the template is executed to provide the native query for the underlying source. When a
source returns the result of the query, the wrapper transforms the answer which is
represented in the data model of the source into a representation that is used by the

application.

35

2.2.3 Data Translation and Integration in Multidatabase Systems and Data
Warehousing

The data translation and integration problem is inherent in both approaches of data
integration - multidatabase systems and data warehousing. In an MDBS, data translation
and integration is achieved by defining a global conceptual schema, using a common
model, that integrates and resolves data and schema conflicts between the underlying data
sources. Unlike a data warehouse. there is no physical implementation of the global
conceptual schema. In a data warchouse system, data translation and integration is
achieved by 1) defining and implementing a data warehouse model. and 2) building a
transtormation and integration layer that resolves data and schema conflicts among
various data sources before loading data into the data warehouse. In both approaches
there is an integrating schema (the global conceptual schema in a MDBS and the data
warehouse schema in the data warehouse) defined using a common model and the data
trom the underlying data sources need to be translated and integrated to map to the
detined schema by resolving schema and data conflicts among various data sources.
Hence. the research done in data translation and integration in multidatabase systems is

applicable to data warehousing as well.

2.2.3.1 Data Translation and Integration in the WHIPS Architecture.

In the WHIPS architecture, data translation is achieved using wrappers or translators and
data integration is achieved using integrators. The WHIPS architecture makes use of
some of the existing data translation and integration techniques introduced by
multidatabase research. Chawathe, er al. [19]) and Hammer, er al [23] discuss this

research.

2.2.3.2 Data Translation and Integration in the EDS Architecture.

Data integration will be achieved in the proposed EDS architecture by eliminating

redundant processing of common business operations by reengineering and moving these

36

operations onto the EDS and also by integrating data belonging to application specific
operations. Data translation between the EDS and the operational systems will be
achieved by storing the mapping between the EDS and the operational systems in the

metadata mapper.

This chapter has broadly organized research on the problem of data integration into - data
warehousing and multidatabase systems. The existing literature on architectural
constructs the data warehouse and the ODS was reviewed. The term Corporate
Information Factory was defined and previous work related to metadata and defining the
system of record was reviewed. This chapter also presented a comprehensive review of
data warehousing research at Stanford. This review provided an overview of research
problems in data warehousing., the WHIPS architecture, the warehouse anomaly,
materialized views and materialized view maintenance. Substantial research has been
done in Multidatabase systems. The research challenges in multidatabase systems were
broadly classified into - data translation and integration, query processing and transaction
management. The chapter focused on challenges in the area of data translation and
integration as they are common to both multidatabase systems and data warehousing. The
data translation and integration techniques chosen by various architectures were reviewed

briefly. Also. a brief overview of research in multidatabase systems was presented.

In this chapter existing data integration approaches and architectures were also briefly
reviewed. The following chapters discuss the proposed data integration architecture using
the new architectural construct the Enterprise Data Store. The Enterprise Data Store was

introduced in Chapter 1 and the following chapter discusses its characteristics in detail.

37

Chapter 3.

Enterprise Data Store

A new architectural construct the Enterprise Data Store (EDS) was defined in Chapter 1.
This chapter builds on the previous one by characterizing the EDS. Since in the proposed
architecture, the EDS replaces the ODS, the differences between their characteristics are
discussed in detail. This chapter also reviews the corporate data architecture with the
application systems, the ODS, and the data warehouse. This is followed by the proposed
changes to the corporate data architecture with the introduction of the EDS. Section 3.1
presents characteristics of the Enterprise Data Store and compares them with the ODS.
Section 3.2 reviews the corporate data architecture with the application systems, the
ODS, and the data warehouse. This review is followed by the changes to the corporate
data architecture with the new architectural construct - the EDS. Section 3.3 presents the
advantages of the Enterprise Data Store. Finally. Section 3.4 discusses the liabilities of

the Enterprise Data Store.

3.1 Characteristics of the Enterprise Data Store (EDS)

This section describes the characteristics of the Enterprise Data Store and compares them
with the characteristics of the operational data store [3.6]. The EDS has the following

characteristics-:

e Subject Oriented
e Distributed System of Record
e Integrated

e Volatile

38

® Dual Currency of Data
o Current, Detailed, No Summary, No History

e Informational and Transactional Processing

3.1.1 Subject Oriented

Like the ODS, the EDS is designed and organized around the major subjects of the

corporation [3]. The major subjects of the corporation are real world objects like
CUSTOMER, PRODUCT, PAYMENT, POLICY, CLAIM, SHIPMENT, etc.. that

collectively provide a complete and integrated operational definition of the enterprise.

The Enterprise Data Store is not organized around any specific applications or functions.

The subject orientation is necessary to represent a collectively integrated image of data

across the corporation.

Common Business Operations

Application A
PP Application B

Application Specific Operations

Figure 2 : Common Business and Application Specific Operations

Application Specific Operations

39

3.1.2 Distributed System of Record

This is a characteristic specific to the EDS and does not belong to the ODS. Each ellipse
in Figure 2 represents an application system that consists of data and processes. The
figure illustrates that there is a fair amount of intersection of data and processes among
these application systems. The intersection ot data and processes among these application
systems represents the common business operations whose data and processing should be

moved to the EDS. In other words. the EDS becomes the primary data source or the

Secondary Data

:

g

»

|

Update Update -

EDS £

I

a &

Transformation & Integration e

I_____J a
Update Update Update

NS

Primary Data

>

Application A Application B Application A Application B
Figure 3 : Primary and Secondary Figure 4 : Primary and Secondary
Data in EDS Data in ODS

system of record for the common business operations and the application systems become
the secondary. After the removal of common business operations, the application systems
only consist of application specific operations. Data used for the application specific
operations is the primary data of the application systems. This data is only maintainable
by the application systems. If primary data from the application systems is transformed

40

and loaded into the EDS, it becomes the secondary data of the EDS. Secondary data of
the application systems belongs to the common business operations whose processing has
been moved to the EDS. This data is the primary data of the EDS and is only
maintainable by the EDS. To summarize, the application systems and the EDS are made
up of two kinds of data - primary and secondary data. The primary data can only be
modified by the system that contains it whereas the secondary data is read only. Figure 3
and Figure 4 compare the EDS and the ODS with respect to this characteristic. In the
ODS architecture, the system of record or the primary data only exists in the application
systems. In the EDS architecture, some primary data exists in the applications systems as
well as in the EDS. A formal classification of types of data in the EDS architecture is

presented in Chapter 4.

3.1.3 Integrated

There are two types of integration in the EDS - 1) integration of common business
operations. and 2) integration of application specific operations. Integration of common
business operations is achieved by identifying the common business operations in the
legacy systems and then reengineering and moving these operations onto the EDS.
Integration of application specific operations is similar to the ODS architecture [3]. This
integration is achieved by selecting, cleaning, transforming and integrating the best

application specific data from the legacy systems and then loading it into the EDS.

3.1.4 Volatile

Updates on the EDS can also be classified into “Direct Updates™ and “Indirect Updates™.
The direct updates belong to the primary data of the EDS. The processes that maintain the
primary data exist in the EDS and are responsible for triggering these updates. The
indirect updates occur on the secondary data of the EDS and are similar to updates on the
ODS [3]. These updates are called indirect updates as these updates are generated as a

result of changes in the legacy or application systems. Every time the data in the legacy

4]

systems changes, the EDS needs to be synchronized. These changes are captured in the
legacy systems and are propagated to the EDS by an integration and transformation layer.

These updates can be performed synchronously or asynchronously.

3.1.5 Dual Currency of Data

Dual currency in the EDS is caused by the two types of data found in the EDS. Since the
primary data is maintained by the EDS, it is the most current data available. On the other
hand. the currency of the secondary data depends on when the data is refreshed in the
EDS from the operational systems. This refreshment of data can be performed
synchronously or asynchronously. This characteristic is unique to the EDS and is not

applicable to the ODS architecture.

3.1.6 Current, Detailed, No History and No Summary

Like the ODS. the EDS serves the operational community and is similar to the ODS in
this characteristic [3]. The operational community is concerned with day to day decision-
making. These decisions are up-to-the-second decisions and are not used for long term
analysis and trend detection. Such decision-making is best supported by detailed data.
Theretore, the EDS contains detailed data. Also, the EDS is built for transactional
processing of common business operations that certainly implies the transactional or

detailed nature of the EDS.

The EDS should not contain summary data for the following reasons. We have two tiers
of data in our architecture (see Figure 3). The first tier consists of the operational systems
and the second tier consists of the EDS. The primary data in the first tier is the secondary
data in the second tier and the primary data in the second tier is the secondary data in the
first. Any changes to the primary data in either tier must be propagated to the other tier.
In other words, the two tiers must be synchronized with each other. Undoubtedly

synchronization will be easier, if the data in the EDS is maintained at an atomic level

42

rather than at a rolled up level. Another reason for discouraging summary data in the EDS
is that summary data is only accurate as of the instant in time it is created. In the very
next instant summary data may become inaccurate due to the constantly changing nature

of the EDS [3].

There is a very clear demarcation between the EDS and the data warehouse as there is
between the ODS and the data warehouse [3.6,7]. The EDS contains current valued and
near current valued data whereas the data warehouse contains historical data, as well as
near current valued data. There is no place for history in the EDS. If archival data is
found. there must be strong operational reasons for its presence. For example, an
organization may decide to keep six months of transactions in the EDS for operational

analysis.

3.1.7 Informational and Transactional Processing

The EDS is an architectural construct where informational and transactional processing
co-exist. The primary data of the EDS is used for operational informational processing
and on-line transactional processing (direct updates) of the common business operations.
The secondary data of the EDS is used for operational informational processing and oft-
line transactional processing (indirect updates) of the application specific operations. This
is in contrast to the ODS which supports operational informational processing and off-
line transactional processing only [3]. There is no on-line transactional processing in the

ODs.

3.1.8 Comparing the Reengineered ODS and the EDS

The ODS has also been perceived as being built for reengineering. In this scenario,
applications are migrated from legacy environments to the ODS. The ODS (built for
reengineering) is discussed in [3] and was also discussed in Chapter 2. The ODS (built for

reengineering) and the EDS architecture are similar in that both architectures propose

43

migrating the system of record to the ODS and the EDS respectively. However, there are

significant differences between the two architectures:

1. The EDS provides true operational integration by eliminating redundant processing of
common business operations by reengineering and moving these operations onto the
EDS. It explicitly identifies what needs to be reengineered to achieve true operational
integration. In the ODS architecture (built for reengineering), the idea is to use the
ODS as a basis of reengineering so some or all of the system of record is moved to the

ODS.

i~

In the EDS architecture, data is either owned by the EDS or an application system.
This means it is modifiable by one system (EDS or application) and read-only in the
others. Therefore, collisions that are caused by users simultaneously updating data
elements in the EDS and an application system are eliminated. In the ODS (built for
reengineering) architecture, data is modifiable by the ODS as well as application

systems and hence collision detection and resolution mechanisms are needed.

Further. this research contributes by proposing a formal architecture and set of algorithms

for synchronizing the EDS with the operational systems.

3.2 Corporate Data Architecture

This section discusses how different architectural constructs and legacy systems combine
to create a corporate data architecture. This section is divided into two subsections. The
first discusses Inmon’s corporate data architecture consisting of the application systems,
the ODS. and the data warehouse. The second discusses the proposed corporate data

architecture with the application systems, the EDS, and the data warehouse.

44

3.2.1 Corporate Data Architecture with Application Systems, ODS, and Data

Warehouse

The operational data store, the data warehouse. and the application systems combine to

create a corporate data architecture that Inmon refers to as the “corporate information

Data «
Warehouse 2
(Summary) g
» = =-
g 3
» — E
E Data « <
g p— 2 Warehouse =
—Hmg) |
- ~
D i
o)
. ———— y &
5 I
-
%
g
Operational Processing é‘
Figure S : Corporate Data Architecture with
Application Systems, ODS and Data Warehouse

factory” [1.3]. There are many variations to the corporate information factory (CIF) but
the focus of this section will be those that include the ODS, the data warehouse, and the
application systems. Figure 5 shows that raw, detailed data enters into the corporate data
architecture (or corporate information factory) through old application systems. This data
is entered by the users of the applications. The users of the applications are clerks,
sales/service personnel, and possibly the customers of the corporation themselves. Raw

data is refined as it passes through the application systems. The data in the application

45

systems is best described as detailed, immediate, and application-oriented. The
application data is then fed into the integration and transformation layer (I&T layer). The
integration and transformation layer consists of sets of programs that integrate and
transform functional or application data into corporate data. The functional data is
organized around specific operations of the organization and hence has an application
flavor to it. Corporate data gives a consolidated view of the corporate operations and is
devoid of any application flavor. As data passes out of the integration and transtormation
layer it is simultaneously fed into the ODS and the data warehouse. In some cases, data
trom the integration and transformation layer is only fed into the ODS and then the
refined data from the ODS is fed into the data warehouse. Note that the data in the ODS
and the data warehouse is still at a detail level. The detailed data in the data warehouse is

then summarized to produce summary data in the data warehouse.

Different kinds of processing take place at different components in the corporate
information factory. The ODS is the architectural construct that enables operational
integrated corporate informational processing to occur. It is possible, though rare, for
DSS/informational processing to occur in the ODS environment. The users of the ODS

are concerned with immediate and very direct decisions. such as:

e How much money is in an account right now?

e Where is a shipment right now?

e What coverage is there for a policy right now?

Classical DSS/informational processing occurs in the data warehouse. DSS users are

concerned with decisions that are much broader and long term, such as:

e What type of customer is the most profitable for our corporation?
o Where has sales activity been highest in the spring-time for the past three years?

o Over the years, how has transaction activity changed?

To summarize, the standard flow of data throughout the CIF is from left to right (see

Figure 5), that is, from the consumer to the application, from the applicationto the [& T

46

layer. from the [& T layer to the ODS and the data warehouse or from the [& T layer to
the ODS and then from the ODS to the data warehouse. Also, as discussed above there
are fundamental differences between data and processing that occur at each architectural

construct of the corporate informational factory.

Data

Data
Warehouse
(Detail)

Warehouse ..gn

(Summary) ¢

g

G

9
— g
]

[

Applications

Integration and Transformation layer

Operational Processing

Operational Processing

Figure 6 : Corporate Data Architecture with
Application Systems, EDS and Data Warehouse

3.2.2 Proposed Corporate Data Architecture with Application Systems,
EDS, and Data Warehouse

Figure 6 shows the proposed corporate data architecture with the application systems, the
EDS. and the data warehouse. Two fundamental changes are made to the corporate data

architecture when the ODS is replaced with the EDS. The changes are:

[. Data not only flows from the application systems to the EDS but also flows back from

47

the EDS to the application systems through the integration and transformation layer.
In the EDS architecture, operational integration is achieved by cleaning and
integrating data from disparate application systems and by eliminating redundant
common business operations by moving and reengineering these operations onto the
EDS. This implies that the EDS contains processes to maintain common business
operation data and is the primary source for this data. As previously discussed in
Sections 3.1.2 and 3.1.6 any changes made to the primary data in the EDS must be

propagated to the application systems.

2) In the corporate data architecture with the EDS. there is no direct flow of data from
the integration and transformation layer into the data warehouse. The data flows from
the integration and transformation layer into the EDS and then the refined and
integrated data flows from the EDS to the data warehouse. As discussed before.
applications are the primary source of data for application specific operations and the
EDS is the primary source of data for the common business operations. Application
specific data is refined and integrated as it passes through the integration and
transformation layer. Unless the application data from the integration and
transformation layer is loaded and combined with the common business operations
data in the EDS, data integration is not achieved. Therefore, it does not make sense to

feed the data warehouse directly from the integration and transformation layer.

The EDS contains truly integrated operational data. Building the EDS creates a
foundation of data that can be used by new application systems. Since the EDS
contains the best data that has been cleaned, integrated, and is now residing on the
new technology, it is logical to use the EDS to feed the data warehouse or any new

application systems of the organization.

3.3 Advantages of the EDS Architecture

The EDS truly integrates operations of the enterprise. It eliminates the possibility of

48

inconsistent data caused by transactional processing of duplicated common business
operations across operational systems. Further, it provides an integrated view of

enterprise operations for corporate-wide informational processing.

The EDS is an enterprise repository of data that becomes the ideal feed for the new
application systems of the enterprise (i.e.. the data warehouse). Data for any new
application systems must be extracted from the EDS. As the name suggests, it is the
enterprise repository of data, any data needed to support new enterprise operations must
be contained in the EDS. If the EDS does not have the data needed for a new application
system, it should be modified to contain that data. [n other words, existing operational
systems should only feed the EDS and the EDS should then feed any new applications
needed by the enterprise.

Most organizations have made huge investments in legacy systems. These systems were
built with the evolving needs of the organizations in mind and are suited to the functions
for which they were designed. The EDS “thins” legacy systems by taking the load of
informational processing and common business transactional processing away from the
legacy systems. This opens a possibility to reengineer legacy systems as needed. The
EDS also secures the organizations’ investment in the legacy systems as they continue to

co-exist and even perform better due to the lower operational and informational load.

Reengineering is the ideal solution to the challenge posed by the lack of integration of
older applications. Unfortunately, the translation of data models and process models into
new systems from a base of older, non-integrated operational applications in a rational,
affordable fashion is a very difficuit transition [3]. The EDS provides an effective
solution by reengineering only the problem areas responsible for the lack of operational
integration. The cost incurred by reengineering the problem areas is very nominal as
compared to the cost incurred by reengineering the legacy systems. Additionally,
organizations save costs by eliminating redundant common business operations across the

legacy applications. Further, building the EDS is not as mission critical as reengineering

49

the older applications.

Moving common business operations to the EDS gives organizations an opportunity to
reengineer these operations in a logical, phased-in manner. As a result, additional

functionality can be added to these operations.

Building the EDS will help organizations take advantage of new technology.

3.4 Liabilities of the EDS Architecture

The EDS is an architectural construct where informational and transactional processing
co-exist. An expensive and complicated hardware and software infrastructure is required

to support the two very different kinds of processing.

By moving and reengineering common business operations to the EDS there is added
complexity in terms of synchronization of operational systems with the EDS. Recall
Figure 3. which shows the two tiers of data in an EDS based environment. The first tier
consists of operational systems and the second tier consists of the EDS. Since updates can
happen in either tier a dual propagation mechanism is needed to keep the two tiers
synchronized. Chapters 4 and 5 deal with this issue and present the architecture and

algorithms for synchronizing the EDS with the operational systems.

As common business operations are moved and reengineered to the EDS, changes are
required to existing operational systems to support the new functionality. These issues

will be discussed in further detail in the next chapter.

50

Chapter 4.

Synchronizing the EDS with the Operational Systems

This chapter proposes an architecture for synchronizing the EDS with the operational
systems. Before discussing the proposed architecture, a brief review of existing

synchronization approaches and their suitability to the EDS architecture is presented.

4.1 Existing Approaches for Synchronization

The WHIPS architecture for synchronizing the data warehouse with the operational
systems is presented in [9,11,12]. As discussed in Chapter 2, the WHIPS approach has
been to consider the data residing in the warehouse as a materialized view (or set of
views) over the data in the operational systems. Viewing the problem in this way.
synchronization of the data warehouse with the operational systems is essentially to
perform materialized view maintenance. Indeed, there is a close connection between the
view maintenance problem and synchronization in data warehousing [13]. As a resuit, the
work done in traditional view maintenance {14,15,16,17] has been adapted to the problem
of view maintenance in data warehousing. This work on data warehouse view
maintenance is discussed in [17,18]. A system prototype (the WHIPS prototype) for data
warehouse view maintenance is presented in [12]. In spite of the close connection
between the data warehousing synchronization problem and the conventional view
maintenance problem, there are a number of reasons why conventional view maintenance
techniques cannot be directly applied to data warehousing [9]. These reasons are: 1)
warehouse views are a function of the history of the underlying base data rather than a
function of the underlying base data itself, 2) warehouse views are more complicated as

they tend to contain highly aggregated and summarized information, 3) view definition

51

and the base data are decoupled as compared to the traditional view maintenance problem
where the base data updates are closely tied to the view maintenance machinery, 4)
warehouse views may not need to be refreshed after every modification or set of
modifications in the base data, and 5) base data may need to be transformed before it can
be integrated in the data warehouse environment. More work on data warchouse view

maintenance is discussed in [29,30,31,32,33].

4.2 Complexity involved with the Existing Approaches

Materialized view maintenance in the data warehouse requires a complicated architecture.
The complication is due to the decoupling of the base data (at the sources) from the view
maintenance machinery in the warehouse [9]. As mentioned before, sources can inform
the warehouse when an update occurs, e.g.. a new employee has been hired. or a patient
has paid her bill. However, they cannot determine what additional data may or may not
be necessary for incorporating the update into the warehouse views. When update
information is received by the data warehouse, the warehouse may issue queries to the
sources to get the additional information needed for maintaining the view. The queries are
evaluated at the sources later than the corresponding updates, so the source states may
have changed. This can lead the warehouse to compute incorrect views. This problem is
referred to as the warehouse anomaly [11]. There are a number of mechanisms to avoid a
warechouse anomaly. For example, recompute the view, store copies of all relations
involved in views at the warehouse. eager compensating algorithm [17], the strobe

algorithm [24], erc.

The drawback associated with the materialized view approach is querying operational or
base data sources to get the additional information needed to maintain the view. This is
required because all the information needed to maintain the view is not stored in the data
warehouse. As a result, the architecture for synchronizing the data warehouse with the
operational systems has to deal with issues like global query decomposition, global query

optimization, distributed query processing, schema translation, merging data, etc. Not

52

only are these issues complicated but there is also an overhead attached to each. This
makes the architecture complex and requires dealing with multiple wrappers, mediators,
query processors, view managers, etc. Also, interleaving of these queries with the updates
arriving from the base data sources may cause inconsistent views in a data warehouse. To
avoid warchouse view inconsistency, rigid solutions like running each update and all
actions needed to incrementally integrate it into the warehouse as a distributed transaction
(spanning the warehouse and all the sources involved) must be adapted. This approach
requires dealing with global concurrency control. Another less rigid approach would be to

define new correctness and consistency algorithms [24].

4.3 Suitability of the Existing Approaches to the EDS
Architecture

Complex query results are materialized as views to speed up applications that depend on
these views. Algorithms for materialized view maintenance must balance the cost of view

update against the query response time.

The philosophy that the data residing in the warehouse can be seen as a materialized view
(or set of views) over the base data in the operational systems is not applicable to the
EDS and the ODS architectures. A data warchouse is constructed for DSS informational
processing and hence contains complicated. long running queries that access large
amounts of data. Materializing queries for faster access is a suitable solution for data
warehousing. On the other hand, an EDS is built for operational processing and contains
short running queries that access limited amounts of data. Therefore, materializing
queries may not be efficient for the EDS. Further, due to the volatile nature of the EDS. it

may be difficult to balance the cost of view update against the query response time.

There are fundamental differences between the data warehouse and the EDS or the data
warehouse and the ODS. These differences were discussed in Chapter 1. The first

difference that weakens the materialized view philosophy is that the EDS is volatile

53

whereas the data warehouse is non-volatile. This means when a change occurs in an
operational system, the EDS is updated in place to reflect the change. This further implies
that a record to record mapping exists between the EDS and the operational systems.
Record to record mapping is the mapping between a record in the EDS with the
corresponding record in the operational system. This contrasts with the data warchouse
architecture where changes in the operational systems are reflected by creating a new
snapshot. In such systems, no record to record mapping is maintained between the data
warehouse and the operational systems. Thus, the data in the EDS can be seen as a replica
or a copy of the data in the legacy data sources rather than a materialized view over the
base data. This differs from conventional replication techniques in that the replica is not
an exact replica but a transformed replica. Synchronization of replicas becomes more
complex as replication techniques not only have to deal with heterogeneity, autonomy,

and distribution of data sources but also with complex data transformations.

The materialized view philosophy is further weakened by the very nature of data and
processing found in the EDS. The data found in the EDS is current, detailed, and supports
operational processing as compared to the data found in the data warehouse that is
historical, summarized, and supports informational processing. Another kind of
processing that is specific to the EDS and is not found in the data warehouse is the on-
line transactional processing of the primary data and off-line transactional processing of

the secondary data.

Unlike the data warehouse, the EDS has a dual propagation architecture. Updates on the
primary data of the EDS are propagated to the operational systems. Considering the
secondary data in the operational systems as views over the primary data in the EDS, a
materialized view maintenance architecture is required for the operational systems.
Unfortunately, operational systems can be legacy or other unsophisticated systems that do

not understand views.

In spite of the complexities involved, the materialized view maintenance approach is a

54

viable solution for a data warehouse system. Because of the fundamental differences
between the EDS and the data warehouse, the approach is not suitable for the EDS
architecture. In this chapter a new approach to synchronization is proposed and compared
to the materialized view approach. The new approach uses the metadata component of the

data warehousing system for synchronization.

The rest of this chapter is organized as follows. Section 4.4 gives a formal classification
of the types of data found in the EDS architecture. Section 4.5 proposes the architecture
tor synchronizing the EDS with the operational systems. It also compares the proposed
architecture with the WHIPS (Warehouse Information Project at Stanford) system.
Section 4.6 describes the merits of the proposed synchronization architecture. Finally

Section 4.7 gives the liabilities of the proposed synchronization architecture.

4.4 Classification of Types of Data in the Two Tier Data
Architecture

In this section a classification of types of data in the two tier data architecture is
presented. This classification helps in clearly identifying the data in the two tiers that

needs synchronization. This classification is illustrated in Figure 7.

As mentioned before, the application systems and the EDS are made up of two kinds of
data - the primary and secondary data. One of the steps required for building the EDS is
identifying the common business operations among the application systems (of the
organization) whose processing should be moved to the EDS. Identification of the
common business operations divides the data in an application system into the application
specific data and data for the common business operations. The application specific data
is the primary data of the application system (APD) and the common business operations

data is the secondary data of the application system (ASD). Since, the EDS contains only

55

EDS

&-

EDS Secondary Data
(ESD)

Exciusive EDS
Primary Data

Shared EDS
Primary Data
(SEPD)

Dual Propagation

Shared Application
Primary Data
(SAPD)

Exclusive Application
Primary Data
(EAPD)

\

Application
Secondary Data
(ASD)

Application Data Store - A

Shared Application
Primary Data
(SAPD)

Exclusive Application
Primary Data
(EAPD)

\

Application
Secondary Data
(ASD}

Application Data Store - B

Figure 7 - Two Tier Data Architecture

56

a subset of the application primary data, it can be further classified into - the exclusive
application primary data (EAPD) and the shared application primary data (SAPD). The
EAPD is the data that only resides in the application system and is not extracted.
transformed, and loaded into the EDS. The SAPD is the data that is extracted.
transformed, and loaded into the EDS. The union of the SAPD and the ASD is the total

data that is shared by an application system with the EDS.

Formally. as shown in Figure 8, data in an application system data store can be

represented as :

Application System Data = APD U ASD
=(EAPD U SAPD)uU ASD
=EAPD U (SAPD U ASD)
= exclusive application data U shared data

Exclusive Shared Exclusive
Application Data EDS
Data Data

Application Systems EDS

Figure 8 - Types of Data

57

The EDS is the primary source (or the system of record) for the common business
operations. These common business operations are reengineered to support the new
business model of the organization. The reengineering of the common business
operations may result in storing some new data in the EDS that does not reside in any of
the application systems. The EDS also contains a subset of data from the application
systems that is extracted, transformed, integrated. and loaded into the EDS. In other
words, data in the EDS can be divided into the reengineered common business
operations’ data and the integrated transformed application systems’ data. The
reengineered common business operations data is the primary data of the EDS (EPD) and
the integrated transformed application systems data is the secondary data of the EDS
(ESD). The EPD can be further classified into - the exclusive EDS primary data (EEPD)
and the shared EDS primary data (SEPD). The EEPD is the data that only resides in the
EDS and is a result of reengineering common business operations. The SEPD is the data
belonging to the common business operations that is common to the EDS and the
application systems. The union of the SEPD and the ESD is the total data that is shared

by the EDS with the application systems.

As shown in Figure 8, data in the EDS can be represented as:

EDS Data = EPD U ESD
= (EEPD u SEPD) U ESD
= EEPD v (SEPD U ESD)
= Exclusive EDS data U shared data

Since updates can happen on the EDS primary data (EPD) and the application primary
data (APD), the two tiers must be synchronized. As shown in Figure 7, the shared EDS
primary data (SEPD) must be synchronized with the secondary data of application
systems (ASDs); and the shared primary data of application systems (SAPDs) must be
synchronized with the EDS secondary data (ESD). The two tier data architecture also

58

consists of the exclusive application primary data (EAPD) and exclusive EDS primary
data (EEPD) in the two tiers respectively. The EAPD and EEPD, however, do not need to

be synchronized.

As formally derived above, we can visualize the two tier data architecture as containing
three kinds of data (Figure 8). They are - the exclusive application data, the exclusive
EDS data and the shared data among the EDS and the application systems [3]. There is no
synchronization needed for exclusive application data and exclusive EDS data. On the
other hand. the data shared among the EDS and the application systems must be

synchronized.

4.5 Architecture for Synchronizing the EDS with the Operational
Systems.

Once the EDS has been loaded with the initial set of data obtained from the operational

sources, the ongoing task is to keep the data synchronized.

In the previous section, the different kinds of data in the two tier data architecture were
described. Since data modifications can happen on the primary data of the EDS (EPD)
and the primary data of the application systems (APDs), a propagation mechanism is
needed to keep the two tiers synchronized. Figure 9 illustrates the basic architecture tor

synchronizing the EDS with the operational systems.

There are two tiers of data in the EDS architecture. The first tier consists of data
belonging to the operational systems and the second consists of data belonging to the
EDS. For simplicity, in the architecture, two operational systems are considered but there
can be numerous such operational systems. Traditional disk shapes are used to represent
application data sources, in the general case these sources may include non-traditional

data such as legacy systems, flat files, etc. There is a fair amount of heterogeneity among

59

EDS Secondary

- S ~ MU B D LS MW

Data

O

Exclusive EDS
Primary Data
(EEPD)

Shared EDS
Primary Data
(SEPD)

— [y

Change
Extractor

!

Metadata
Mapper

Change Extractor

Data Transformation
Integration Manager (DTIM)

Y
S

Shared Application
Primary Data
(SAPD)

Exclusive Application
Primary Data
(EAPD)

¥_—A

P

r

0

Applicatio l:
Secondary £
Data .
(ASD) 1

-

Change Extractor

_

Application Data Source - A

/

[

v &_-’/

o Shared Application

': pplication P"::.‘:;!gm

g [Secondary -

Q Data

¢ (ASD) . .

o Exclusive Application

r Primary Data
(EAPD)

S~

-

Application Data Source - B

Figure 9 - Architecture for Synchronizing EDS with Operational Systems

60

the autonomous application data sources shown in the architecture [26,27].

Heterogeneity can occur in terms of hardware, data managers, query languages, data
models. etc. Autonomy refers to the distribution of control. It indicates the degree to
which individual application systems can operate independently. Although in Figure 9 a
single. centralized EDS is illustrated. the EDS certainly may be implemented as a
distributed database system [5]. In fact. data parallelism or distribution may be necessary
to provide the necessary performance. The EDS can be implemented using state of the art
database technology such as an object relational database management system

(ORDBMS) like Oracle, Informix, etc.

Data modifications can happen to the shared enterprise primary data (SEPD) of the EDS
as well as to the shared application primary data (SAPD) of the application systems. A
change extractor is associated with the EDS as well as each application data store. It
detects and captures data modifications to the data source with which it is associated. A
difterent change extractor is needed for each application source, since the functionality of
the change extractor is dependent on the type of source (database management system,
legacy system, etc.) as well as the data provided by the source. As shown in Figure 9, the
change extractor captures data modifications only with the shared primary data (SAPD or
SEPD) of the associated data source. This way the change extractor can be optimized for

detecting and capturing only the relevant information that is needed for synchronization.

Change detection is an open research problem that arises from the warehousing approach
[19]. Since the EDS is a full-functionality database system, the change extractor can use
active database capabilities [28] like triggers, rules etc., to extract the changes of interest.
In the case of the application systems, the change detection is a much more difficult task.
The changes are detected in legacy systems by inspecting the log files, moditying the
application system to detect the changes of interest, or by using the utility programs to
periodically dump and compare successive versions of files. In considering the change

detection problem, the application sources have been classified into - cooperative sources,

61

logged sources, queryable sources, and snapshot sources [9.11].

The change extractor in the EDS architecture is analogous to the monitor component of
the WHIPS system. The work done towards change detection in the WHIPS system can
be applied to the EDS architecture. The WHIPS project implements trigger-based
monitors for cooperative (relational) sources, and snapshot monitors for flat file sources
that only provide periodic snapshots of the source data. The algorithms for efticient

change detection using snapshots are discussed in [25].

Active research is being done on the problem of change detection. Even though this is a
legitimate and interesting research question, it is not the one addressed in this thesis. This
thesis assumes that algorithms for change detection exist. Further, the more pessimistic
scenario is assumed where the change extractor is not sophisticated enough to detect and
send only the relevant changes needed for synchronization to the data transformation
integration manager (DTIM) layer. That is. the change extractor (as shown in Figure 9) is
not optimized to detect and send only the changes on the shared primary data of the
associated data source. All changes (secondary, exclusive primary, or shared primary) to
the associated data store will be detected and sent by the change extractor to the DTIM

layer.

Once the relevant changes from a data source in a tier are extracted. a mechanism to
transform, integrate, and propagate those changes to the other tier is needed. The data
transformation integration manager (DTIM) accepts the changes from a data source in
one tier and generates the corresponding changes for the other tier. The logic needed to
convert a transaction in one tier to the corresponding transaction(s) in the other tier is
formulated by the DTIM using the metadata mapper component of the synchronization

architecture (see Figure 9).

Metadata is one of the most important aspects of the data warehouse environment [10].

An important component of the data warehouse metadata store is the mapping between

62

the operational systems and the data warehouse. The typical contents of this mapping are
the identification of source fields, simple attribute-to-attribute mappings, attribute
conversions, physical characteristic conversions, naming changes, key changes, etc, [8].
In the EDS architecture the metadata mapper plays a major role in the synchronization of
the two tiers. The mapping between the EDS and the application data stores is modeled in
a metadata model. This mapping is then implemented in terms of relational tables, stored
procedures. and functions. The metadata mapper component has the following
advantages. 1) Scalability - the EDS is built in an iterative manner. As more data from the
application data stores is brought into the EDS, the only change required is adding a
suttable mapping in the mapper. 2) Simultaneous development of the metadata store -
though metadata is an essential component of the data warehouse architecture. the
development of this component is usually ignored. The proposed architecture enables the
development of a major component of the metadata store and keeps it current with the

data in the EDS and the operational systems.

The EDS synchronization architecture proposed in this thesis is based on two centralized
components - the DTIM and the metadata mapper. These components contain all the
knowledge needed to accept a change/update from one tier and convert it to the
corresponding change(s)/update(s) in the other tier. No queries are posed on the
operational systems so no additional information is required for the synchronization. This
simplifies the architecture tremendously and the components like wrappers. mediators
[19.20.21], and query processors that are a necessary and integral part of the WHIPS

system [12] are not needed for the EDS architecture.

The philosophy behind the EDS synchronization architecture is to exploit the metadata
component of the data warehouse system to drive the synchronization process. As
mentioned above, a very important component of the data warehouse metadata store is
the mapping between the operational systems and the data warehouse. If designed
properly, the metadata store can contain all the information required to map a change in
one tier to the corresponding change(s) in the other tier. As a result no queries need be

63

posed to the operational systems. This approach is quite different from the WHIPS

approach that is based on materialized view maintenance.

In the WHIPS architecture all the information required to maintain the view is not stored
in the data warehousing system. Hence, interaction is required with the operational
systems in terms of sending queries and receiving answers to those queries. The EDS
approach is to make the EDS system self sufficient by storing all the information required
for synchronization in the metadata mapper. This minimizes interaction with the
operational systems. Chapter 5 discusses, in detail, how the metadata mapper and the
DTIM are used to synchronize the EDS with the operational systems. It also shows that
the information in the metadata mapper is sutficient to accept a change and convert it to

the corresponding change(s) in the other tier.

To summarize, the change extractor associated with a data source in a tier captures the
changes and passes these changes to the DTIM layer. The DTIM layer uses the
knowledge stored in the metadata mapper to generate the corresponding changes for the
second tier. The DTIM then passes the generated changes to the propagator(s) of the

second tier.

The propagator converts the logical transaction (changes generated by the DTIM layer)
into the physical transaction (changes specific to a source). It then executes the
transaction on the data source with which it is associated. Like the change extractor, a
different propagator is required for each application source and for the EDS. This is
because the functionality of the propagator is dependent on the type of the source
(database system, legacy system, etc.) as well as the type of the data manager and the
query language associated with the source. The functionality of the propagator can be
compared to wrappers/translators [12,19.20.21] to a certain extent. A wrapper logically
converts queries expressed over information in the common model into source-specific
queries and commands. It also converts data returned by the source into the common

model. Similarly, the propagator converts a logical transaction received by the DTIM

64

layer into a source-specific transaction. That is, it takes as input a transaction expressed in
a generic format and converts it into the language of the associated source. The difference
between a wrapper and a propagator is that a wrapper converts a query expressed in a
common model whereas, the propagator converts a transaction expressed logically or in a
generic format. The propagator converts transactions and the wrapper converts queries
into the language of a source and as a result in the case of propagators, unlike wrappers.
no data is returned from the source and hence no conversion of the returned data is
required. Though the functionality of the propagator is a legitimate research area, it is not

the tocus of this research.

4.6 Merits of the Proposed Synchronization Architecture.

The classification of the data in our architecture clearly identifies the data that needs to be
synchronized. The classification explicitly identifies the subsets of data in a data source

with which the propagator and the change extractor should be associated.

Collisions occur when users simultaneously update the same data elements in both tiers
[3]. Since in the proposed architecture a data element is only maintained by a single data
source (primary data of a data source) and is read only in the other data source (secondary

data of a data source) the possibility of collisions has been eliminated.

The proposed architecture facilitates both synchronous and asynchronous propagation.
Updates in application systems can be propagated to the EDS in synchronous or
asynchronous manner. Similarly, updates in the EDS can be propagated to the application
systems synchronously or asynchronously. Like the ODS, the EDS can be further

classified into Class I, II and III depending on the speed of refresh [3].

Data modifications to any tier must be transformed before they can be propagated to the
other tier. The proposed architecture provides a sophisticated solution by storing the

transformation logic in the metadata mapper. As mentioned before, the solution provides

65

scalability and simultaneous development of the metadata store. Tools can be developed
that will automate or semi-automate the implementation of the metadata mapper. These
tools will read the schema information from the data dictionaries of the data stores
involved in the integration architecture. This information can then be presented to the
user in a manner that allows the user to easily map entities and their respective attributes
from one data store to the other. Based on the mapping, the tool will then produce the
respective transformation logic needed for synchronization. Also, techniques and tools
can be developed that will automate or semi-automate the process of implementing the

change extractors and propagators through a tool kit or a specification based approach.

Before the data from disparate operational systems can be loaded in a data warehousing
system (EDS or data warehouse) it must be transformed into a common model.
Sometimes these transformations can be difficult, requiring complicated algorithmic
conversions. The EDS architecture models these transformations and provides an easy
and scalable solution for performing complicated transformations between the EDS and

the operational systems.

The proposed architecture minimizes the interaction required with the operational
systems required to achieve synchronization. Once the changes are extracted by the
change extractor no queries need be sent to the operational systems for the extraction of
any additional information. Thus, the proposed architecture is simpler than the WHIPS
architecture as it does not have to deal with the issues of global query decomposition,
global query optimization, distributed query processing, multi-source warehouse

consistency and mediation.

The proposed solution also preserves the autonomy of the operational systems and the
EDS. It does not lock data in the operational systems while the changes are propagated to

the EDS or vice versa.

Since the proposed architecture stores all the information required for synchronization in

66

the metadata mapper, the warehouse anomaly that arises due to interleaving of queries
with updates arriving from the base data sources is also eliminated in the proposed
architecture. The next chapter discusses handling of the warehouse anomaly by the EDS

architecture.

Finally, when propagating changes from one system to the other, when both systems are
concurrently executing local transactions, mechanisms to ensure the serializability of
local and external (propagated) transactions are required. In the proposed architecture
such mechanisms are not needed because local transactions will act on the primary data
and the external transactions will act on the secondary. Since they are two separate
subsets of data, serializability is not an issue. The next chapter also discusses how this

separation can be achieved at the attribute level.

4.7 Liabilities of the Proposed Synchronization Architecture.

Moving the common business operations processing to the EDS requires that existing
application systems be changed. Application systems should be modified to prevent any
insert, update and delete operations on the common business operations data. In other
words, the data belonging to the common business operations in application systems
should be read only and any screens or application code modifying this data must be
changed. The EDS is the primary source (or the system of record) for the common
business operations. An application should exist on the EDS to maintain the data
belonging to the common business operations. Therefore, insert, update and delete

operations on common business operations data must be performed on the EDS only.

Before the integration of application systems into the EDS architecture, application
systems were autonomous. With the new architecture, there is a dependency in place
between the application systems and the EDS. This dependency is the speed with which
synchronization occurs between the EDS and the application systems. The dependency is

more if the propagation from the EDS to the application systems is asynchronous. On the

67

other hand, the dependency is less if the propagation is synchronous. For example, as a
part of common business operations processing, client processing has been moved to the
EDS. A new client in the EDS is created and it is required to create new accounts for that
client. Since new accounts will be created by the application system(s), the application
system(s) is(are) dependent on when the new client information will be propagated trom

the EDS to the application system(s).

68

Chapter 5.

Synchronization Algorithms

[n Chapter 4, an architecture for synchronizing the EDS with the operational systems was
proposed and various components of the architecture were discussed in detail. The
synchronization solution proposed in this chapter is based on two key components - the
metadata mapper and the DTIM layer. This chapter explores these components in detail
and illustrates the viability of the proposed synchronization solution that uses metadata
for synchronization. The proposed solution uses the metadata model and the
synchronization algorithms introduced in this chapter. The metadata model and the
synchronization algorithms are implemented as the metadata mapper and the DTIM layer.
respectively. This chapter also introduces a prototype for the metadata mapper and the
DTIM layer that is based on simple mappings between the EDS and the operational
systems. This prototype can be customized and expanded depending on the requirements

of the organization.

The rest of the chapter is organized as follows. Section 5.1 introduces various mappings
required for synchronization. Section 5.2 explores the metadata mapper and the DTIM
layer in detail. It presents the metadata model and the synchronization algorithms.
Section 5.3 demonstrates the synchronization algorithms using examples. Section 5.4
discusses how the proposed solution deals with the warehouse anomaly. Section 5.5

demonstrates the correctness of the synchronization algorithms.

5.1 What is needed for synchronization?

This section defines the various mappings required for synchronization. Four kinds of

69

mappings are required for synchronization : the entity mapping, the attribute mapping,
the key mapping and the record mapping. In addition to these mappings. conversion
algorithms are required to convert the value of an attribute in one system to its
corresponding value in the other system. For example, consider an attribute ‘gender’ in a
legacy data store defined as a character data type. This attribute stores ‘M’ for Male and
‘F* for Female. The corresponding mapped attribute in the EDS called the ‘gender code’
is defined as a numeric datatype, and stores 1 for Male and 0 for Female. If an update
happens on the attribute ‘gender’ in the legacy data store, along with the attribute to
attribute mapping between the EDS and the legacy data store, a conversion algorithm that

will change M to | and F to 0 is also needed.

Though the entity mapping and the attribute mapping are self explanatory, the key and
record mapping require some explanation. The key mapping maps the primary key (PK)
attributes between the EDS entities and the corresponding legacy system entities. The
record mapping maps the tuples between the EDS entities and the corresponding legacy
system entities. To illustrate this concept further. consider the three data stores shown in
Figure 10 : the EDS, the legacy data store “Mortgage” and the legacy data store
“Investment”. The entity *Client’ in the EDS maps to the entity 'Customer’ in the
mortgage data store and the entity ‘Investor’ in the investment data store. Figure 10,
shows the attributes and the primary key attributes (labeled PK) of these entities.
Attribute “clie_num’ is the primary key attribute of the entity ‘Client’, ‘cust_num’ is the
primary key attribute of the entity 'Customer’, and ‘invs_sin_num’ (investor’s sin
number) is the primary key attribute of the entity “Investor’. Also, assume for the purpose
of this example that the EDS entity "Client’ is the primary source of the client
information (primary entity) and the legacy entities ‘Customer’ and ‘Investor’ are the
secondary sources (secondary entities). That means any inserts or updates to the client
information are first performed in the EDS and then propagated to the mortgage and

investment data store.

70

EDS
Entity - Client

clie_num - number(9) - PK
clie_last_nam - char(30)
clie_first_nam - char(30)
iclie_sin_num - number(12)
clie_gender_cde - number(1)
clie_birth_dte - date

clie_marital _status_cde - number(1)

Legacy Mortgage Data Store Legacy Investment Data Store
Entity - Customer Entity - Investor
cust_num - number(9) - PK invs_sin_num - number(12) - PK
cust_last_nam - text(30) invs_last_nam - text(25)
cust_first_nam - text(30) invs_first_nam - text(25)
cust_gender_txt - text(1) invs_gender_cde - number(1)
cust_marital_status_txt - text(10) invs_birth_dte - date

Figure 10 - What is needed for synchronization?

Consider an update on the entity ‘Client’ in the EDS -

UPDATE client SET clie_last_nam = 'HARDY' WHERE clie_num = [234.

To synchronize this update, besides entity and attribute mappings, a record of the entity
*Client’ in the EDS (clie_num = 1234) needs to be mapped to the corresponding record of
the entity *Customer’ in the mortgage data store (cust_num = ?) and the corresponding
record of the entity ‘Investor’ in the investment data store (invs_sin_num = ?). To achieve
this, two kinds of information are needed. First, the primary key attributes of the
respective systems i.e., ‘clie_num’ for ‘Client’, ‘cust_num’ for ‘Customer’, and

‘invs_sin_num’ for ‘Investor’ need to be determined. This piece of information is
71

referred to as key to key mapping. Second. the corresponding tuples of the respective
systems that is, the client 1234 in the EDS maps to customer X in the mortgage data store
and to investor Y in the investment data store must be determined. This piece of

information is referred to as record to record mapping or cross referencing.

The record to record mapping is simpler for updates and deletes than inserts. From our
example, updates and deletes are just a matter of a lookup from a table or a file that stores
- the "clie_num’ 1234 in the EDS which maps to "cust_num’ X in the mortgage data store
and “invs_sin_num’ Y in the investment data store. However, insert requires that
corresponding keys for the entities "Customer’ and ‘Investor’ be generated before the

mapping can be stored in the lookup table.

To illustrate this further, consider an insert of a new client in the EDS :

INSERT into client (clie_num, clie_last_nam, clie_first_nam. clie_sin_num,
clie_gender _cde, clie_birth_dte, clie_marital_status_cde)

VALUES (4567, ‘Brown’, ‘Tom', 576890234,1, 21/07/55, 1).

To synchronize the insert on the entity ‘Client’ in the EDS with the mortgage and
investment data stores a new customer and a new investor must be created in the two
systems. This is achieved by the following mappings - thc entity to entity mapping
determines that the entity ‘Client’ in the EDS maps to the entity ‘Customer’ in the
mortgage data store and to the entity "Investor’ in the investment data store. The attribute
to attribute mapping maps the corresponding attributes between the EDS entity "Client’
and the mortgage entity "Customer’ as well as the investment entity “Investor’. For
example, the attribute to attribute mapping determines that the attribute ‘clie_last_nam’
of the entity *Client’ maps to the attribute ‘cust_last_nam’ of the entity ‘Customer’ as
well as to the attribute ‘invs_last_nam’ of the entity ‘Investor’. Conversion algorithms are
also used to convert the value of ‘clie_last_ nam’ into ‘cust_last nam’ and
"invs_last_nam’, respectively. The key to key mapping maps the primary key ‘clie_num’
of the entity “Client’ to the primary key ‘cust_num’ of the entity ‘Customer’ and to the
72

primary key 'invs_sin_num’ of the entity ‘Investor’. The record to record mapping must
map “clie_num = 4567" to ‘cust_num = ?° in the mortgage data store and to
‘invs_sin_num = 7’ in the investment data store. To achieve this a key generation
algorithm is needed to generate a unique value of ‘cust_num’. On the other hand. no key
generation algorithm is needed for “invs_sin_num’ as the value of the sin number is fixed
and determined by the attribute to attribute mapping between the attribute “clie_sin_num’
in "Client” and ‘invs sin_num’ in ‘Investor’. Hence, the value of sin number
(clie_sin_num = 576890234) must be passed from the EDS as the corresponding value of
‘invs_sin_num’. A generated value of "cust_num’ and passed value of “invs_sin_num’ are

then stored in the look up table as record to record mappings.

5.2 Synchronization Logic Components

This section discusses the metadata mapper and the DTIM layer in detail. The four kinds
of mappings introduced in the previous section are modeled in a metadata model. This
model is then implemented as the metadata mapper. The following section discusses the

metadata model in detail.

5.2.1. The Metadata Mode!

Figure 11 shows the metadata model for mapping between the legacy data stores and the
EDS. In the two tier data architecture, one tier belongs to the EDS and the other tier
belongs to the legacy data stores. The first question that needs to be addressed is - what
are the legacy data sources participating in the integration architecture? The entity
"Legacy System’ in Figure 11 stores the names of the legacy systems participating in the
integration architecture. The second question to address is - what are the entities / tables /
files in the respective legacy systems? The entity ‘Legacy System Entities’ stores all the
entities belonging to the respective legacy systems. Similarly, the entity ‘EDS Entities’

stores all the entities belonging to the EDS. The entity - ‘EDS Legacy Entity Mapping’

73

EDS Legacy Entity Mapping

EDS Entities EDS onti K Legacy System Entities
£DS entity n ty neme (FK) Legacy system name (F Legacy System
@ Legacy system name (FK) Legacy entity name - Legacy system na
Entity descnptior) Legacy entity name (FK) : .
———— Entity description Legacy descnption
EDS Entity Atinbutes
EODS entity name (FK) EDS Legacy Atinbuta Mapping Legacy g\my Attributes
@ EDS enlity attnbute name EDS entity name (FK) Legacy system name (FK)
Atiribute datatype [] EDS entity sitnbute name (FK) Legacy .nu:'y name (FK)
Attnbute position Legacy system name (FK) Legacy entity attnbute n
Nullable Lagacy entlly aama (FK) . Attribute datatype
Default _ Legacy entity attribule name (FK) Attribute postion
EEPD or SEPD or ESD Alinbute conversion procedure name (FIK) Nullable
attnbute definition Default
’ EAPD or SAPD or ASD
Conversion Procedures attribute definition
Conversion procedure n
Procedure text '1
EDS Entty pK Attnbutes .
EDS entty PK num EDS Legacy P?Mmpmq Legacy %ﬂv PK Attnbutes
EDS entity name (FK) Legacy enuty PK num (FK) L entty PK num
EDS entity PK attribute name (F§) EDS entity PK num (FK) L"'cy :y X
PK Atinbute position ' Legacy system name
po @ Secondary entity PK generation algonthm (K} Legacy entity name (FK)

Legacy entity PK attnbute name (FK)
P PK Attnbute position
Cross Referencing

Cross referencing num

Legacy entity PK num (F
EDS entity PK num (FK}

Legacy value
EDS vaiue

Figure 11 - Metadata Model

stores the mapping between the EDS entities and the legacy systems’ entities for which
the two tiers must be synchronized. Hence, the entity "EDS Legacy Entity Mapping’
stores the knowledge to perform entity to entity mapping between the EDS and the legacy

systems.

Each entity may have many attributes but only some may require synchronization. The
entity *EDS Entity Attributes’ stores all the attributes belonging to the respective entities
in the EDS. With each attribute it stores its characteristics such as datatype and length,

attribute definition, nullable, default, and position. Another important characteristic that

74

is stored with each attribute is the classification of the attribute to EEPD (Exclusive EDS
Primary Data), SEPD (Shared EDS Primary Data) or ESD (EDS Secondary Data). In
other words, if this attribute belongs to the exclusive EDS primary data, the shared EDS
primary data or the EDS secondary data. Similarly, the entity “Legacy Entity Attributes’
stores all the attributes belonging to the respective entities in the legacy systems. Along
with the characteristics of these attributes it also stores the classification of the attribute to
EAPD (Exclusive Application Primary Data). SAPD (Shared Application Primary Data)
or ASD (Application Secondary Data). This classification shows how a clear separation
between the primary and the secondary data in the EDS and the legacy data stores is

achieved.

The entity "EDS Legacy Attribute Mapping' stores the mapping between the EDS entity
attributes and the legacy entity attributes that need synchronization. With each mapping it
also stores the name of the stored procedure required to convert the value of the primary
attribute in one tier to its corresponding secondary attribute value(s) in the other tier. SQL
or Advanced SQL scripts (e.g., Oracle’s PL SQL) for these stored procedures are stored

in the entity - *Conversion Procedures’.

The Venn diagram shown in Figure 8, broadly characterizes the two tier data architecture
as containing three kinds of data. The exclusive application data, the exclusive EDS data,
and the data shared between the EDS and the legacy systems. The entity "EDS Legacy
Attribute Mapping’ represents the shared data between the EDS and the legacy systems
that must be synchronized. All the EDS attributes mapped with the legacy attributes in
the entity "EDS Legacy Attribute Mapping’ must have SEPD or ESD code. Similarly, all
the legacy attributes mapped with the EDS attributes in the entity ‘EDS Legacy Attribute
Mapping’ must have SAPD or ASD code. Note that the SEPD attributes in the EDS must
map to the ASD attributes in the legacy store and the ESD attributes in the EDS must
map to the SAPD in the legacy store. 'EDS Entity Attributes’ minus ‘EDS Legacy
Mapping Attributes’ gives all the attributes belonging to the exclusive EDS data where no
synchronization is needed. All these attributes must be characterized by EEPD code in the

75

entity "EDS Entity Attributes’. Similarly ‘Legacy Entity Attributes’ minus "EDS Legacy
Mapping Attributes’ gives all the attributes belonging to the exclusive legacy data where
no synchronization is needed. All these attributes must be characterized by EAPD code in

the entity ‘Legacy Entity Attributes’.

Another important mapping needed for synchronization is the key mapping. The entity
"EDS Entity PK Attributes’ stores the attributes forming the primary key for each entity
in the EDS. Similarly, the entity ‘Legacy Entity PK Attributes’ stores the attributes

forming the primary key for each entity in the legacy systems.

The entities *EDS Legacy PK Mapping’ and 'Cross Referencing’ are responsible for
storing the record to record mapping between the EDS and the legacy systems. The entity
"EDS Legacy PK Mapping’ stores the mapping between the primary key attributes of the
primary entities in one tier with the corresponding primary key attributes of the secondary
entities in the other tier. With each mapping it also stores the name of the stored
procedure required to generate the primary key value for the secondary entity. SQL or
advanced SQL scripts (¢.g., Oracle’s PL SQL) for the stored procedures that are needed
to generate the primary key values for the secondary entities are stored in the entity
‘Conversion Procedures’. The entity 'Cross Referencing’ stores, for each primary-
secondary PK mapping, the corresponding tuple mapping. In other words, it stores the
mapping between each tuple of the primary entity in one tier to the corresponding tuple(s)

of the secondary entity(s) in the other tier.

5.2.2 The Metadata Mapper

The metadata model just described above is implemented in terms of relational tables
using state of art database technology such as an object relational database management
system (ORDBMS) like Oracle, Informix, etc. Each entity in the model corresponds to a
table in the database. These tables are then populated with the data pertaining to the four
kinds of mappings between the EDS and the operational systems including the SQL

76

scripts required for attribute to attribute and primary key to primary key conversions. The
SQL or Advanced SQL (e.g., Oracle’s PL SQL) scripts stored in the entity *Conversion
Procedures’ are then implemented as stored procedures in the database. The tables and
stored procedures together constitute the metadata mapper. Determination and population
of mapping data and conversion functions in these tables is a subject of ongoing research
but is not the focus of this thesis. As mentioned in Chapter 4, tools can also be developed

that will automate or semi automate the implementation of the metadata mapper.

5.2.3 The Data Transformation Integration Manager

This section introduces the synchronization algorithms that constitute the DTIM layer.
The synchronization algorithms proposed in this section are based on simple mappings
between the EDS and the operational systems. These algorithms are based on one to one
mappings between a primary entity in one tier and the secondary entity in the other tier or
one to many mappings between a primary entity in one tier and secondary entities in the
other tier. To support many to one or many to many mappings between primary entities
in one tier with the secondary entity(s) in the other tier, changes are required to the
proposed algorithms. Though the characteristics of the EDS discourage such mappings.
the algorithms can be easily extended to support them if required. Similarly, complicated
cases of attribute to attribute and, PK to PK mappings may aiso require changes to the
proposed algorithms. The purpose of this research is only to build a core framework for
synchronization of the EDS with the operational systems. The resulting framework can be

casily expanded and modified to support more complicated requirements at a later date.

As mentioned in Chapter 4, this research assumes a pessimistic scenario in that the
change extractor is not sophisticated enough to detect only the changes that are needed
for synchronization (i.e., changes on only the shared primary data). The change extractor
detects and captures all changes to the secondary data, the exclusive primary data, and the

shared primary data of the data source with which it is associated. After detection, the

77

change extractor sends the following parameters to the DTIM layer :

P_System_name - Name of the system EDS or application data store with which

the change extractor is associated.

P_Entity_name - Name of the table or entity on which data modification

occurred.
P_Operation_type - Type of operation — insert (1), update (U) or delete (D)
P_Key list - Set of the key attribute(s) and their value(s).

P_Antribute_list- Set of other modified attribute(s) and their value(s). For insert
operations, P_attribute_list will also include the key attribute(s) and their value(s).
This is needed for cases where PK attributes of one data store map to PK or non
PK attributes of the other data store. The values of such attributes are determined
through attribute to attribute mapping between the two data stores. Therefore, key
attribute(s) and their value(s) are included in the P_Attribute_list.
These parameters collectively represent data modification on the primary data of a system
and are referred to as the input list. The output of the synchronization algorithms are
list(s) with list_name = System_name |* Entity_name created for each system name and
entity name that need synchronization as a result of data modification on the primary data
of a system. Each list is populated with the corresponding system name, entity name,

operation type, Attribute list, and Key _list. These lists are also referred to as outpur lists.

The structure of an output list is as follows :

* The symbol |j signifies concatenation of two variables or constants.
78

Output_list : System_name || Entity_name ¢ System_name, Entity_name,

P_Operation_type, Attribute_list, Key_list

Where Attribute_list stores the attributes and their values for the system name and entity
name that need synchronization. Similarly, Key _list stores the primary key attributes and

their values for the system name and entity name that need synchronization.

For easier manipulation of these lists, two functions may be defined that will be used by

the synchronization algorithms described next.

Function GET_VALUE_INLIST (attribute) — This function takes as input an attribute
name or a PK attribute name and returns the corresponding value for that attribute in the
P_Attribute_list or P_Key_list. For example, consider P_Attribute_list « clie_first_nam

‘David’, clie_last nam : ‘Brown’. The function call GET_VALUE_INLIST
(clie_last_nam) will return ‘Brown’. Similarly, consider P_Key_list - clie_num : 3456.

The function call GET_VALUE_INLIST (clie_num) will return 3456.

Function GET_VALUE_OUTLIST (system name, entity name, PK attribute name)
— This function searches the Key_list in the output list with the output list name =
System_name | Entity_name to determine the corresponding PK value for the PK

attribute name.

5.2.3.1 Synchronization Algorithms

Algorithm 1 : Perform_synchronization

This algorithm synchronizes the EDS with the operational systems. [t takes as input data
modifications detected and passed by the change extractor on the primary data of one tier
and produces the corresponding data modifications on the secondary data of the other tier.
To achieve synchronization, the algorithm performs four kinds of mappings between the

EDS and the operational systems. They are - entity to entity, attribute to attribute, key to

79

key. and record to record mappings as described earlier.

The algorithm Perform_synchronization is formally presented in Figure 12. Input to the
algorithm consists of ~ the primary system name, the primary entity name, the operation
type (insert/update/delete), a set of key attributes and their values, and a set of modified
attributes and their values. These parameters collectively represent modification on the
primary data of a system and are referred to as an input list. The algorithm checks the
input parameter “primary system name’ (P_System_name) on which data modification
occurred. If data modification occurred on the EDS (line 1, Figure 12) three algorithms -
Perform_EDS_entity_mapping (Algorithm 2), Perform_EDS_attribute_mapping
(Algorithm 3), and Perform_EDS_PK_and_record_mapping (Algorithm 4) are called
respectively to perform entity to entity, attribute to attribute, key to key. and record to
record mapping between the EDS and the legacy systems (lines 2-4, Figure 12). Also, if
the data moditication on the EDS is an insert or a delete operation the algorithm
Maintain_EDS_cross_referencing (Algorithm 5) is executed to determine and store (or
determine and delete) the appropriate record to record mappings between the EDS and the

legacy systems (lines 5-6, Figure 12).

If the data modification occurred on the legacy system
instead of the EDS the corresponding set of algorithms
Perform_legacy_entity_mapping (Algorithm 6). Perform_legacy_attribute_mapping
(Algorithm 7), Perform_legacy PK_and record_mapping (Algorithm 8) and
Maintain_legacy cross_referencing (Algorithm 9) are called by the algorithm

Perform_synchronization (lines 7-11, Figure 12).

As just described there are two sets of algorithms called by Perform_synchronization. If
the data modification occurs on an EDS entity the Algorithms 2 to § are executed. If the
data modification occurs on a legacy entity Algorithms 6 to 9 are executed. Since, the

functionality of both these sets of algorithms is quite similar, only Algorithms 2 to § are

80

Figure 12 - Perform Synchronization

Algorithm 1 : Perform_synchronization

input : A data modification (Insert/Update/Delete) on the primary data of a system (EDS or
Application Data Store). The change extractor will capture the operation and pass the following
parameters to the DTIM layer.

P_System_name - Primary system name;

P_Entity_name - Primary entity name;

P_Operation_type - Type of operation (Insert, Update, Delete);
P_Key_list - Set of key attribute(s) and its{their) vaiue(s);

P_Attribute_list - Set of modified attribute(s) and its(their) value(s).

For inserts, this list will also include the key attribute(s) and
its(their) value(s);

These parameters collectively represent a modification on the primary data of a system and are
collectively referred to as input list.

output . Corresponding data modification(s) (Inser/Update/Delete) on the secondary data of the
system(s).

begin

if P_System_name = 'EDS' then
Perform_EDS_entity_mapping
(P_Entity_name, P_Operation_type);
Perform_EDS_attribute_mapping
(P_Entity_name, P_Attribute_list);
Perform_EDS_PK_and_record_mapping
(P_Entity_name, P_Operation_type, P_Key_list);
if P_Operation_type = 'I' or ‘D' then
Maintain_EDS_cross_referencing
(P_Entity_name, P_Key_list, output_list(s));
end If; {if P_Operation_type}
eise
Perform_legacy_entity_mapping

(P_System_name, P_Entity_name, P_operation_type);

Perform_legacy_attribute_mapping
(P_System_name, P_Entity_name, P_Attribute_list);
Perform_legacy_PK_and_record_mapping
(P_System_name, P_Entity_name,
P_Operation_type, P_Key_list);
if P_Operation_type = ‘I' or ‘D’ then
Maintain_legacy_cross_referencing
(P_System_name, P_Entity_name,
P_Key_list, output_list(s));
end if; {if P_Operation_type)
end if; {if P_System_name}

end; {End Perform_synchronization}

(1)
(2)

(3)
(4)

(5)
(6)

(7
(8)
(9)

(10)
(11)

81

described. Thus, assume the EDS is the system on which data modification occurred i.e..
P_System name = 'EDS’. Thus Perform_synchronization calls the
algorithms: Perform_EDS_entity_mapping, Perform_EDS_attribute_mapping,
Perform_EDS_PK_and_record_mapping, and Maintain_EDS_cross_referencing for
synchronizing the EDS with the operational systems. Discussion on these algorithms
follows. The first algorithm that is called or executed by Perform_synchronization is

Perform_EDS_entity_mapping (Figure 13).

Algorithm 2 : Perform_EDS_entity_mapping

This algorithm performs entity to entity mapping between the EDS and the Legacy
systems. The algorithm Perform_EDS_entity_mapping is formally presented in Figure
13. [t takes as input the EDS entity on which data modification occurred and finds the
corresponding legacy system names and their entities that need synchronization. To
perform this mapping, selection is performed on the entity - 'EDS Legacy Entity
Mapping’ of the metadata mapper where the attribute “EDS entity name’ equals the input
parameter primary entity name (P_Entity_name) (lines 1-2, Figure 13). The parameter

P_Entity_name stores the name of the EDS entity on which data modification occurred.

[For each Legacy system name and Legacy entity name returned by the selection a list is
initialized with the list name = Legacy system name || Legacy entity name (lines 6-7.
Figure 13). [n other words, a list is initialized for each Legacy system name and Legacy
entity name that need synchronization as a result of data moditfication on the EDS entity.
These lists are also referred to as outpur lists. Each list is then populated with the
corresponding Legacy system name, Legacy entity name, operation type
(P_Operation_type), an empty Attribute_list, and an empty Key_list (line 8, Figure 13).
Attribute_list in a <Legacy system name | Legacy entity name list> will be used to store
the legacy entity attributes and their values that need to be synchronized as a result of the

data modification on the EDS entity. Similarly, Key_list in a <Legacy system name ||

82

Figure 13 - Perform EDS Entity Mapping

Algorithm 2 : Perform_EDS_entity_mapping

input : P_Entity_name; // EDS entity on which data modification occurred //
P_Operation_type;

output : A list containing the system name, entity name, and operation type for each legacy
system name and entity name that needs to be synchronized.

var Attribute_list « ¢; // empty list to store the corresponding mapped legacy
entity attributes //
Key_list « ¢; // empty list to store the corresponding mapped legacy
entity key attributes //

begin
T « {t | t € EDS Legacy Entity Mapping A A(t), (1)
A (predicate) = (EDS entity name = P_Entity _name)},
T[Legacy system name, Legacy entity name] (2)

« {Legacy system name, | Legacy entity name,
| t{Legacy system name] || t{Legacy entity name] A t, € T},

if T = ¢ then (3)
display 'No synchronization is needed. (4)
The change belongs to EEPD’;
exit; (5)
end if; {if T}
for each tuple(t) in T[Legacy system name, Legacy entity name} (6)
initialized a list with list name = (7N
Legacy system name, || Legacy entity name, ;
add Legacy system name, Legacy entity name, (8)

P_Operation_type, Attribute_list, Key_list
to list with list name = Legacy system name, | Legacy entity name,;
end for, {for t}
end; (End Perform_EDS_entity_mapping}

83

Figure 14 - Perform Legacy Entity Mapping

Algorithm 6 : Perform_legacy_entity_mapping

input : P_System_name, // Legacy system name on which data modification occurred //
P_Entity_name; // Legacy system entity name on which data modification
occurreg //
P_Operation_type:;

output : A list containing the EDS system name, entity name, and operation type for each EDS
entity that needs to be synchronized.

var Attribute_list :« ¢; // empty list to store the corresponding mapped EDS
entity attributes //
Key_list « ¢; // empty list to store the corresponding mapped EDS
entity key attributes //
begin

T « {t | t ¢ EDS Legacy Entity Mapping » A(t}, (1
A (predicate) = (Legacy enlity name = P_Entity_name
» Legacy system name = P_System_name)};

T[EDS entity name]) (2)
« {EDS entity name, | t[EDS entity name] A t, e T},

it T =¢then (3)

display ‘No synchronization is needed. (4)
The change beiongs to EAPD',

exit; (5)

end if; {if T}

for each tuple(t) in TIEDS entity name] (6)
initialized a list with list name = 'EDS' || EDS entity name, ; (7)
add 'EDS', EDS entity name, P_Operation_type, 8)

Attribute_list, Key_list
to list with list name = ‘EDS’ | EDS entity name, ;
end for; {for t)
end; {End Perform_legacy_entity_mapping}

84

Legacy entity name list> will be used to store the legacy entity key attributes and their
values that need to be synchronized as a result of the data modification on the EDS entity
The contents of Attribute_list and Key_list are
determined by Perform_EDS_attribute_mapping (Figure 15) and

Perform_EDS_PK_and_record_mapping (Figure 17) respectively.

Note that if the data modification occurs on the legacy system instead of the EDS, the
algorithm Perform_legacy_entity_mapping (Figure 14) is instead called by
Pertorm_synchronization. As mentioned before, the functionality of this algorithm is
similar to Perform_EDS_entity_mapping. However, this algorithm finds the EDS entity
names that need to be synchronized as a result of data modification on the legacy entity

instead of the opposite.

The algorithm Perform_EDS entity_mapping returns control to line 3 of
Perform_synchronization after performing entity to entity mapping between the EDS and
the operational systems. Perform_synchronization then calls the algorithm

Perform_EDS _attribute_mapping (Figure 15).

Algorithm 3 : Perform_EDS_attribute_mapping

The algorithm Perform_EDS_attribute_mapping performs attribute to attribute mapping
between the EDS entity and the mapped legacy system entities. The algorithm
Perform_EDS _attribute_mapping is formally presented in Figure 15. It takes as input the
modified EDS entity attributes and their values (P_Attribute_list) and finds the mapped
legacy entity attributes and their values that need synchronization. The algorithm
determines the content of the empty Attribute_list that is part of each <Legacy system
name | Legacy entity name list> determined by the algorithm
Perform_EDS_entity_mapping. To determine the content of the empty Attribute_list the
algorithm first determines the attributes in P_Attribute_list that belong to the shared EDS

85

Figure 15 - Perform EDS Attribute mapping

Algorithm 3 : Perform_EDS_attribute_mapping

input : P_Entity_name; // EDS entity name on which data modification occurred //

P_Attribute_list - {A:V, | A is a set of modified attributes,

V is a set of their corresponding values},
I/ Modified EDS entity attributes and their values //

output A list containing system name, entity name, operation type, attribute name(s), and
attribute vaiue(s) for each legacy system name and entity name that needs to be synchronized.

Var Legacy_entity_attribute_vaiue « ¢,
EDS_entity_attribute_value « ¢,

Q « {q,| 9 € EDS Entity Attributes ~ C(q), 1)
C (predicate) = (EDS entity name = P_Entity_name
~ EDS entity attribute name < A))}.
Q([EDS entity name, EDS entity attribute name, code) (2)
« (EDS entity name, || EDS entity attribute name, || code,
| q[EDS entity name] | q[EDS entity attribute name] || q[code]

~q e Q)
for each tuple(g,) in Q[EDS entity name, EDS entity attribute name, code] (3)
if code, = 'ESD’ then (4)
display 'Error data modification cannot happen on (5)
EDS secondary data’;
else if code, = 'EEPD’ then
display ‘No synchronization needed. Change belongs to EEPD'; {(6)
eise if code, = 'SEPD' then
R « {r,| r ¢ EDS Legacy Attribute Mapping A D(r), 7)
D (predicate) = (EDS entity name = EDS entity name,
A EDS entity attribute name =
EDS entity attribute name,)};
R[EDS entity attribute name, Legacy system name, (8)

Legacy entity name, Legacy entity attribute name,
Attribute conversion procedure name]
« {EDS entity attribute name, ||
Legacy system name, || Legacy entity name, ||
Legacy entity attribute name, ||
Attribute conversion procedure name,
Ir[EDS entity attribute name) ||
r(Legacy system name] | r[Legacy entity name] |
r{Legacy entity attribute name] ||
r[Attribute conversion procedure namej
At €R},
for each tuple (r) in (9)
R[EDS entity attribute name, Legacy system name,
Legacy entity name, Legacy entity attribute name,
Attribute conversion procedure name]
Legacy_entity_attribute_value « ¢ (10
EDS_entity_attribute_vaiue « ¢, (11)

86

EDS_entity_attribute_value « GET_VALUE
(EDS entity attribute name,);
if Attribute coriversion procedure name, = ¢ then
Legacy_entity_attribute_value «
EDS_entity_attribute_value;
else
Legacy_entity_attribute_value «
Attribute conversion procedure name(
EDS_entity_attribute_value);
end if; {Attribute conversion procedure name}
S « {s,| s € Legacy Entity PK Attributes ~ E(s),
E (predicate) = (Legacy system name =
Legacy system name,
A Legacy entity name =
Legacy entity name,
A Legacy entity PK attribute name
= Legacy entity attribute name))};
it S = ¢ then
add Legacy entity attribute name,,
Legacy_entity_attribute_value
to Attribute_list in list with list name =
Legacy system name, | Legacy entity name,
else
add Legacy entity attribute name,
Legacy entity attribute vaiue
to Key_list in list with list name = Legacy system name,
| Legacy entity name;
end if; {if S}
end for; {for r}
end if; {if code}
end for, {for q)
end; (End Perform_EDS_attribute_mapping}

(12)

(13)

(14)

(15)

(16)

(17)
(18)

(19)

87

Figure 16 - Perform Legacy Attribute Mapping

Algorithm 7 : Perform_legacy_attribute_mapping

input . P_System_name; // Legacy system name on which data modification occurred //
P_Entity_name; // Legacy entity name on which data modification occurred /
P_Attribute_list - {AV, | A is a set of modified attributes,
V is a set of their corresponding values};
// Modified legacy entity attributes and values //

output . A list containing system name, entity name, operation type, attribute name(s), and
attribute value(s) for each EDS entity that needs to be synchronized.

var Legacy_entity _attribute_value « ¢;
EDS_entity_attribute_value « ¢;
begin
Q « {q,1q = Legacy Entity Attributes A C(q), (&)
C (predicate) = (Legacy system name = P_System_name
~ Legacy entity name = P_Entity_name
~ Legacy entity attribute name € A)},
Q[Legacy system name, Legacy entity name, (2)
Legacy entity attribute name, code]
« {Legacy system name, | Legacy entity name, |
Legacy entity attribute name, || code,
| g[Legacy system name] || q{Legacy entity name] |
g[Legacy entity attribute name] || q[code] ~ q, & Q};

for each tuple(q,) in Q[Legacy system name, Legacy entity name, 3)
Legacy entity attribute name, code]

if code, = 'ASD’ then (4)

display 'Error data modification cannot happen on (5)

application secondary data’;
else if code, = 'EAPD’ then

display ‘No synchronization needed. Change belongs to EAPD', (6)
else if code, = 'SAPD’ then
R « {r,| r € EDS Legacy Attribute Mapping A D(r), (M

D (predicate) = (L.egacy system name =
Legacy system name,
~ Legacy entity name =
Legacy entity name,
A Legacy entity attribute name =
Legacy entity attribute name))};
R[EDS entity name, EDS entity attribute name, (8)
Legacy entity attribute name,
Attribute conversion procedure name]
« {EDS entity name, || EDS entity attribute name, |
Legacy entity attribute name, ||
Attribute conversion procedure name,
| r[EDS entity name] |
r(EDS entity attribute name] |
r{Legacy entity attribute name} |
r[Attribute conversion procedure name] A r, € R},

88

for each tuple (r) in
R[EDS entity name, EDS entity attribute name,

Legacy entity attribute name,

Aftribute conversion procedure name)
EDS_entity_attribute_value « ¢;
Legacy_entity_attribute_value « ¢,
Legacy_entity_attribute_value «

GET_VALUE(Legacy entity attribute name,);
if Attribute conversion procedure name, = ¢ then
EDS_entity_attribute_value =
Legacy_entity_attribute_value,
else
EDS_entity_attribute_value «
Attribute conversion procedure name,
{Legacy_entity_attribute_vaiue),
end if; {Attribute conversion procedure name}
S « {s.| s € EDS Entity PK Attributes A E(s),
E (predicate) = { EDS entity name =
EDS entity name,
A EDS entity PK attribute name
= EDS entity attribute name,)};
if S = ¢ then
add EDS entity attribute name,,
EDS_entity_attribute_vaiue
to Attribute_list in list with list name =
'EDS’ | EDS entity name,
olse
add EDS entity attribute name, EDS_entity_attribute_value
to Key_list in list with list name =
'EDS' || EDS entity name,
end if; {if S}
end for, {forr}
end if; {if code}
end for, {for q}
end; {End Perform_legacy_attribute_mapping}

9

(10)
(11)
(12)

(13)
(14)

(15)

(16)

(17)
(18)

(19)

89

primary data (SEPD) and therefore need to be synchronized with the legacy systems. To
achieve this, a selection is performed on the entity "EDS Entity Attributes’ of the
metadata mapper where the attribute "EDS entity name’ equals the input parameter
P_Entity_name and the attribute '‘EDS entity attribute name’ belongs to the input
parameter P_Attribute_list (lines 1-2, Figure 15). The parameter P_Entity_name stores
the name of the EDS entity on which data moditication occurred. The parameter

P Attribute list stores the modified EDS entity attributes and their values.

For each EDS attribute returned by the selection and belonging to SEPD code (lines 3-4.
Figure 15), the corresponding mapped legacy attributes that need synchronization are
determined. This is achieved by selecting from the entity 'EDS Legacy Attribute
Mapping’ that stores the mapping between the EDS entity attributes and the
corresponding legacy entity attributes (lines 7-8, Figure 15). The entity "EDS Legacy
Attribute Mapping’ along with the attribute to attribute mapping also stores the reference
to the stored procedure name required to convert the value of an EDS attribute to the
corresponding value of the legacy attribute. For each mapped legacy attribute (line 9,
Figure 15) the corresponding legacy value is determined by executing the stored
procedure associated with the attribute to attribute mapping (lines 10-15, Figure 15). The
mapped legacy entity attributes and their values are then assigned to the Attribute_list of
the corresponding <Legacy system name || Legacy entity name list>. Before assigning
each legacy attribute name and its value to the Attribute_list the algorithm checks
whether the legacy attribute is a non primary key attribute of the legacy entity or not. This
is determined by performing a selection on the entity ‘Legacy Entity PK Attributes’ for
the legacy attribute (line 16, Figure 15). This is required because the EDS entity attribute
may map to the primary key attribute of the legacy entity or to a non primary key
attribute. If the legacy attribute maps to the primary key attribute of the legacy entity it is
inserted in the Key_list of the corresponding <Legacy system name | Legacy entity name
list> (line 19, Figure 5) otherwise it is inserted, in the Attribute_list of the corresponding

<Legacy system name | Legacy entity name list> (line 18, Figure 15).

90

Note that if the data modification occurs on the legacy system instead of the EDS the
algorithm Perform_legacy_attribute_mapping (Figure 16) is instead called by
Perform_synchronization. The functionality of this algorithm is similar to
Perform_EDS_attribute_mapping. However, the algorithm finds the EDS attributes and
their values that need to be synchronized as a result of data modification on the legacy

entity instead of the opposite.

After performing attribute to attribute mapping between the EDS and the operational
systems the algorithm Perform_EDS_attribute_mapping returns control to line 4 of
Perform_synchronization. Perform_synchronization then calls the algorithm

Perform_EDS _PK_and_record_mapping (Figure 17).

Algorithm 4 : Perform_EDS_PK_and_record_mapping

The algorithm performs key to key and record to record mapping between the EDS entity
and the mapped legacy system entities. The algorithm
Perform_EDS_PK_and_record_mapping is formally presented in Figure 17. It takes as
input the primary key attributes and values (P_Key_list) of the EDS entity and determines
the primary key attributes and values for the mapped legacy entity(s). The algorithm
determines the content of the empty Key_list that is part of each <Legacy system name ||
Legacy entity name list> determined by the algorithm Perform EDS_entity mapping. To
determine the content of the Key_list the algorithm first reads the primary key attributes
of the modified EDS entity. This is achieved by performing selection on the entity "EDS
Entity PK Attributes’ in the metadata mapper where the attribute "EDS entity name’
equals the input parameter P_Entity name and the attribute "EDS entity PK attribute
name’ belongs to the input parameter P_Key _list (lines 1-2, Figure 17). The parameter
P_Entity name stores the name of the EDS entity on which data modification occurred.

The parameter P_Key_list stores the EDS entity’s PK attributes and their values. The rest

91

Figure 17 - Perform EDS Primary Key and Record Mapping

Algorithm 4 : Perform_EDS_PK_and_record_mapping

input : P_Entity_name; // EDS entity name on which data modification occurred /
P_Operation_type.
P_Key_list - {K:V, | K is a set of PK attribute(s),
V is a set of their corresponding value(s)};
/1 Primary key attribute(s) and vaiue(s) of the EDS entity /

output . A iist containing system name, enlity name, operation type, attribute name(s), attribute
value(s) , primary key name(s), and primary key value(s) for each legacy system name and entity
name that needs to be synchronized.

var Legacy_entity_PK_value « ¢
begin
P « {p.| p € EDS Entity PK Attributes A C(q), M
C (predicate) = (EDS entity name = P_Entity_name
A EDS entity PK attribute name e K)},
P[EDS entity PK num, EDS entity PK attribute name] (2)
« {EDS entity PK num, , EDS entity PK attribute name,
| p{[EDS entity PK num] ||
p[EDS entity PK attribute name] » p, € P},
if P_operation_type = ‘I’ then (3)
for each tuple(p) in (4)
P[EDS entity PK num, EDS entity PK attribute name]
M« {m|n] | An e EDS Legacy PK Mapping (5)
A | € Legacy Entity PK Attributes A C(q).
C (predicate) =
(EDS Legacy PK Mapping.Legacy entity PK num =
Legacy Entity PK Attributes.Legacy entity PK num
~ EDS Legacy PK Mapping.EDS entity PK num =
EDS entity PK num, }};
M|[Legacy system name, Legacy entity name, (6)
Legacy entity PK attribute name,
Secondary entity PK generation algorithm])
« { Legacy system name, || Legacy entity name, ||
Legacy entity PK attribute name, |
Secondary entity PK generation algorithm,
| m{Legacy system name] | m[Legacy entity name] ||
mj[Legacy entity PK attribute name] ||
m[Secondary entity PK generation algorithm] A m, € M},
for each tuple(m)) in 7)
M[Legacy system name, Legacy entity name,
Legacy entity PK attribute name,
Secondary entity PK generation algorithm]

if Secondary entity PK generation algorithm, <> ¢ then (8)
Legacy_entity_PK_value « ¢, 9)
Legacy_entity_PK_value « (10)

Secondary entity PK generation algorithm,();
add Legacy entity PK attribute name,, (1)

92

Legacy_entity_PK_value
to Key_list in list with list name
= Legacy system name, || Legacy entity name, ;
end if; (if Secondary entity PK generation algorithm}
end for,; {for m)
end for; {for p}
else // {operation type is not insert}
for each tuple(p,) in
P[EDS entity PK num, EDS entity PK attribute name]
M« {m,|n | An e Cross Referencing
A | e Legacy Entity PK Attributes A C(q),
C (predicate) =
(Cross Referencing.Legacy entity PK num =
Legacy Entity PK Attributes.Legacy entity PK num
~ Cross Referencing.EDS entity PK num =
EDS entity PK num,
~ EDS value =
GET_VALUE_INLIST
(EDS entity PK attribute name,)};
M[Legacy system name, Legacy entity name,
Legacy entity PK attribute name, Legacy value]
« { Legacy system name, || Legacy entity name, ||
Legacy entity PK attribute name, | Legacy value,
| m[Legacy system name)] || m{Legacy entity name] |
miLegacy entity PK attribute name] ||
m[Legacy value) A m, e M};
for each tuple(m) in
M[Legacy system name, Legacy entity name,
Legacy entity PK attribute name, Legacy value)
add Legacy entity PK attribute name,,
Legacy value,
to Key_list in list with list name
= Legacy system name, | Legacy entity name, ;
end for, {for m)}
end for; {for p}
end if; {if P_Operation_type}
end; {End Perform_EDS_PK_and_record_mapping}

(14)

(15)

(16)

93

Figure 18 - Perform Legacy Primary Key and Record Mapping

Algorithm 8 : Perform_Legacy_PK_and_record_mapping

input . P_System_name // Legacy system name on which data modification occurred //
P_Entity_name; // Legacy entity name on which data modification occurred /
P_Operation_type;
P_Key_list - {K.V, | K is a set of PK attribute(s),
V is a set of their corresponding value(s)};
/! Primary key attribute(s) and value(s) of the legacy entity //

output : A list containing system name, entity name, operation type, attribute name(s), attribute
value(s), primary key name(s), and primary key values(s) for each EDS entity that needs to be
synchronized.

var EDS_entity_PK_value « ¢;
begin
P « {p, | p € Legacy Entity PK Attributes » C(q). (1)
C (predicate) = (Legacy system name = P_System_name
» Legacy entity name = P_Entity_name
~ Legacy entity PK attribute name € K)};
P{Legacy entity PK num, Legacy entity PK attribute name]) (2)
« {Legacy entity PK num, , Legacy enlity PK attribute name,
| p[Legacy entity PK num)] ||
plLegacy entity PK attribute name] A p, € P},
if P_operation_type ='I' then (3)
for each tuple(p,) in P[Legacy entity PK num, (C))]
Legacy entity PK attribute name]
M« {m,|n |l AneEDS Legacy PK Mapping (5)
A | € EDS Entity PK Attributes A C(q),
C (predicate) =
(EDS Legacy PK Mapping.EDS entity PK num =
EDS Entity PK Attributes.EDS entity PK num
A EDS Legacy PK Mapping.Legacy entity PK num =
Legacy entity PK num,)};
M[EDS entity name, EDS entity PK attribute name, (6)
Secondary entity PK generation algorithm]
« (EDS entity name, || EDS entity PK attribute name, ||
Secondary entity PK generation algorithm,
| m[EDS entity name] |
m{EDS entity PK attribute name] |
m{Secondary entity PK generation aigorithm] A m, € M};
for each tuple(m;) in (¥4)
M[EDS entity name, EDS entity PK attribute name,
Secondary entity PK generation algorithm])

if Secondary entity PK generation algorithm, <> ¢ then (8)
EDS_entity_PK_value « ¢; (9)
EDS_entity_PK_value « (10)

Secondray entity PK generation algorithm;(),
add EDS entity PK attribute name,, EDS_entity_PK_value {11)

to Key_list in list with list name = ‘EDS’ | EDS entity name,;
94

end if; {if Secondary entity PK generation algorithm}
end for; {for m}
end for; (for p}
eise {operation type is not insert}
for each tuple(p)) in
P[Legacy entity PK num, Legacy entity PK attribute name]
M « {m;| n,}| |, A n € Cross Referencing
A | € EDS Entity PK Attributes ~ C(q),
C (predicate) =
(Cross Referencing.EDS entity PK num =
EDS Entity PK Attributes.EDS entity PK num
A Cross Referencing.Legacy entity PK num =
Legacy entity PK num,
A Legacy value =
GET_VALUE_INLIST
(Legacy entity PK attribute name,}};
M[EDS entity name, EDS entity PK attribute name, EDS value}
« { EDS entity name, || EDS entity PK attribute name,
| EDS value,
| m[EDS entity name] ||
m[EDS entity PK attribute name] |
m[EDS value] A m, € M},
for each tuple(m,) in
M[EDS entity name, EDS entity PK attribute name, EDS value}
add EDS entity PK attribute name, EDS value,

to Key_list in list with list name = ‘EDS’ | EDS entity name, ;

end for; {for m}
end for; {for p}
end if; {if P_Operation_type}
end; {End Perform_Legacy_PK_and_record_mapping}

(12)

(13)

(14)

(15)

(16)

95

of the functionality of the algorithm is based on the type of data modification
(insert/update/delete) that occurred on the EDS entity. As discussed before, record to
record mapping for updates and deletes requires a lookup from a table or file that stores
the mapping between primary keys of the EDS entities and the corresponding legacy
entities. However, insert operations require the corresponding keys for the mapped entity

to first be generated before the mapping can be stored in the lookup table.

The algorithm Perform_EDS _PK_and_record_mapping (Figure 17) checks the input
parameter P_Operation_type to determine if it is an insert operation (line 3. Figure 17). If
it is an insert operation then for each EDS primary key attribute (line 4, Figure 17) the
corresponding mapped legacy PK attributes are determined. This is achieved by selecting
from two entities; ‘EDS Legacy PK Mapping’ and ‘Legacy Entity PK Attributes’ (lines
5-6, Figure 17). The entity 'EDS Legacy PK Mapping’ stores the mapping between
primary key attributes of the EDS entity and the corresponding primary key attributes of
the legacy entities. This entity along with the PK to PK mapping also stores the reference
to the stored procedure name required to generate the primary key value of the mapped
legacy PK attribute. The entity ‘Legacy Entity PK Attributes’ stores the primary key
attributes of the Legacy entities. For each mapped legacy PK attribute (line 7, Figure 17)
the corresponding legacy PK value is determined by executing the stored procedure
associated with the PK to PK mapping (lines 8-10, Figure 17). The mapped legacy entity
PK attributes and their values are then assigned to the Key_list of the corresponding

<Legacy system name || Legacy entity name list> (line 11, Figure 17).

[f the operation is not an insert then for each EDS primary key attribute (line 12, Figure
17) the corresponding mapped legacy PK attributes and their values are determined. This
is achieved by selecting from two entities; ‘Legacy Entity PK Attributes’ and 'Cross
Referencing’ (lines 13-14, Figure 17). The entity *Legacy Entity PK Attributes’ stores the
primary key attributes of the Legacy entities. The entity ‘Cross referencing’ stores the
mapping between tuples of the EDS entity with the corresponding tuples of the legacy
entities. The mapped legacy entity PK attributes and their values are then assigned to the

96

Key_list of the corresponding <Legacy system name || Legacy entity name list> (lines
15-16, Figure 17).

Note that if the data modification occurs on the legacy system instead of the EDS the
algorithm Perform_legacy PK_and_record_mapping (Figure 18) is called by
Perform_synchronization instead. The functionality of this algorithm is similar to
Perform EDS PK and record mapping but, the algorithm finds the EDS entity PK
attributes and their values that need to be synchronized as a result of data modification on

the legacy entity.

The algorithm Perform_EDS_PK_and_record_mapping returns control to line 5 of
Perform_synchronization after performing key to key and record to record mapping
between the EDS and the operational systems. If P_Operation_type is an insert or a delete
operation then Perform_synchronization calls the algorithm

Maintain_EDS _cross_referencing (Figure 19) as well.

Algorithm 5 : Maintain_EDS_cross_referencing

This algorithm maintains record to record mappings between the EDS and the legacy
systems. The algorithm Maintain_EDS_cross_referencing is formally presented in Figure
19. It reads the input list (data modifications on the the EDS entity) and output lists
(corresponding data modifications on the legacy entities determined by the
synchronization algorithms) and then determines and stores or determines and deletes
record to record mappings between the EDS PK values and the legacy PK values for
insert and delete operations. The algorithm does not support update operations on primary
keys of the EDS entities. If required, the algorithm can be modified to support such cases.

The algorithm first reads the primary key attributes of the modified EDS entity. This is
achieved by performing a selection on the entity ‘EDS Entity PK Attributes’ of the

metadata mapper where the attribute ‘EDS entity name’ equals the input parameter

97

Figure 19 - Maintain EDS Cross Referencing

Algorithm 5 : Maintain_EDS_cross_referencing

input : input_list : P_Entity_name,;
P_Key_list - {K.V, | K is a set of PK attribute(s),
V is a set of their corresponding value(s)};
output_list : Legacy system name, || Legacy entity name, «
Legacy system name, Legacy entity name,,
P_Operation_type, Attribute_list, Key _list

output : Record to record mapping between EDS PK values and the corresponding legacy PK
values.

var Legacy_value « ¢;
EDS_value « ¢;

begin

P « {p, | p € EDS Entity PK Attributes ~ C(q), 1

C (predicate) = (EDS entity name = P_Entity_name
~ EDS entity PK attribute name € K)};
P(EDS entity PK num, EDS entity PK attribute name} (2)
« {EDS entity PK num, , EDS entity PK attribute name,
| p[EDS entity PK num} |
p|EDS entity PK attribute name] A p, € P};

for each tuple(p,) in P[EDS entity PK num, EDS entity PK attribute name] (3)
M« {m|nJ} |, A n e EDS Legacy PK Mapping (4)
A | € Legacy Entity PK Attributes A C(q),
C (predicate) =

(EDS Legacy PK Mapping.Legacy entity PK num =
Legacy Entity PK Attributes.Legacy entity PK num
~ EDS Legacy PK Mapping.EDS entity PK num =
EDS entity PK num,)};
M[Legacy system name, Legacy entity name, (5)
Legacy entity PK attribute name,
Legacy entity PK num]
« { Legacy system name, || Legacy entity name, ||
Legacy entity PK attribute name, ||
Legacy entity PK num,
| m[Legacy system name] | m[Legacy entity name] |
m{Legacy entity PK attribute name) ||
m{Legacy entity PK num] A m, ¢ M},
for each tuple(m;) in (6)
M[Legacy system name, Legacy entity name,
Legacy entity PK attribute name,

Legacy entity PK num)

Legacy_value « ¢; (7)

EDS_value « ¢, (8)

EDS_value « GET_VALUE_INLIST {9)
(EDS entity PK attribute name,);

Legacy_value « (10)

GET_VALUE_OUTLIST (Legacy system name,
98

Legacy entity name,, Legacy entity PK attribute name,);
if P_Operation_type ='I’' then (11)
insert into cross_referencing (12)
values(Legacy entity PK num, EDS entity PK num,
Legacy_value, EDS_value);
olse
delete from cross_referencing (13)
where Legacy entity PK num = Legacy entity PK num,AND
EDS entity PK num = EDS entity PK num AND
Legacy value = Legacy_value AND
EDS value = EDS_value;
end if, {if P_Operation_type}
end for; {for m}
end for, {for p}
end; {End Maintain_EDS_Cross_refeencing}

99

Figure 20 - Maintain Legacy Cross Referencing

Algorithm 9 : Maintain_legacy_cross_referencing

input : input_list : P_System_name;

P_Entity_name,;
P_Key_list - {K;:V, | K is a set of PK attribute(s),

V is a set of their corresponding value(s}};

output_list : EDS || EDS entity name, «
EDS, EDS entity name, P_Operation_type,
Attribute_list, Key_list

output : Record to record mapping between legacy PK values and the corresponding EDS PK

values.

var Legacy_vailue « ¢,
EDS_value « ¢,

begin

P « {p | p € Legacy Entity PK Attributes A C(q)
C (predicate) = (Legacy system name = P_System_name
Legacy entity name = P_Entity_name
~ Legacy entity PK attribute name € K))}.
P[Legacy entity PK num, Legacy entity PK attribute name)
« {Legacy entity PK num, , Legacy entity PK attribute name,
| pLegacy entity PK num] |
p[Legacy entity PK attribute name] » p, € P},
for each tuple(p,) in P{Legacy entity PK num,
Legacy entity PK attribute name])
M« {m|n|l)AneEDS Legacy PK Mapping
A | € EDS Entity PK Attributes A C(q),
C (predicate) =
(EDS Legacy PK Mapping.EDS entity PK num =
EDS Entity PK Attributes.EDS entity PK num
A EDS Legacy PK Mapping.Legacy entity PK num
= Legacy entity PK num,)},
M[EDS entity name,
EDS entity PK attribute name,
EDS entity PK num)
« { EDS entity name, |
EDS entity PK attribute name, |
EDS entity PK num,
| m[EDS entity name] ||
m{EDS entity PK attribute name] ||
m[EDS entity PK num] A m, e M},
for each tuple(m,) in
M[EDS entity name,
EDS entity PK attribute name,
EDS entity PK num)
Legacy_value « ¢;
EDS_value « ¢;
Legacy_value «

M

@)

(3)
(4)

(5)

(6)

)

(8)

9
100

GET_VALUE_INLIST (Legacy entity PK attribute name)) ,
EDS_value «
GET_VALUE_OUTLIST (‘EDS',
EDS entity name, EDS entity PK attribute name));
if P_Operation_type = ‘' then
insert into cross_referencing
values(Legacy entity PK num, EDS entity PK num,
Legacy_value, EDS_value);
else
delete from cross_referencing
where Legacy entity PK num = Legacy entity PK num AND
EDS entity PK num = EDS entity PK num, AND
Legacy value = Legacy_value AND
EDS value = EDS_value;
end Iif; {if P_Operation_type}
end for: {form,
end for, {forp}
end; {End Maintain_legacy_cross_referencing}

(10)
(11)

(12)

(13)

101

P_Entity_name and the attribute ‘EDS entity PK attribute name’ belongs to the input
parameter P_Key_list (lines 1-2, Figure 19). The parameter P_Entity_name stores the
name of the EDS entity on which data modification occurred. The parameter P_Key _list
stores the EDS entity PK attributes and their values. For each EDS primary key attribute
(line 3, Figure 19) the corresponding mapped legacy PK attributes are determined. This is
achieved by selecting from two entities; 'EDS Legacy PK Mapping’ and “Legacy Entity
PK Attributes” (lines 4-5, Figure 19). The entity "Legacy Entity PK Attributes’ stores the
primary key attributes of the Legacy entities. The entity "EDS Legacy PK Mapping’
stores the mapping between PK attributes of the EDS entity and the corresponding
primary key attributes of the legacy entities. For each EDS entity PK attribute and the
mapped legacy PK attribute determine their corresponding PK values from the input list
and output list(s) respectively (lines 6-10, Figure 19). If the parameter P_Operation_type
is an insert operation the record to record mapping is inserted in the entity 'Cross
Referencing’ otherwise it is deleted from the entity *Cross Referencing’ (lines 11-13.

Figure 19).

Note that if the data modification occurs on the legacy system instead of the EDS the
algorithm Maintain_legacy_cross_referencing (Figure 20) is called by
Pertorm_synchronization instead. As mentioned before, the functionality of this
algorithm is similar to Maintain_EDS cross_referencing. The algorithm, however.
maintains record to record mapping between the legacy system and the EDS; the input
list contains data modification on legacy entity and the output lists contain corresponding

data modification on the EDS entities determined by the synchronization algorithms.

The algorithm Maintain EDS cross_referencing returns control to the end of
Perform_synchronization after maintaining record to record mapping between the EDS

and the operational systems.

The algorithm Perform_synchronization terminates leaving the EDS synchronized with

102

the legacy systems.

5.3. Examples

In this section the synchronization algorithms are illustrated using some examples. For
the purpose of this section consider three data stores; the EDS, the legacy data store
‘Investment’. and the legacy data store “Mortgage’ as shown in Figure 10. The entity
*Client” in the EDS maps to the entity *Customer’ in the mortgage data store and the
entity “Investor’ in the investment data store. Assume, the EDS entity "Client’ is the
primary source of the client information and the entities *Customer’ and ‘Investor™ are the
secondary sources. Any data modifications will first be performed in the EDS and then
propagated to the investment data store and the mortgage data store. Figure 10 shows the
attributes and primary key attributes of these entities. Appendix | shows the mappings
between the EDS entity “Client’ and the legacy entity ‘Customer’ and between the EDS
entity "Client’ and the legacy entity ‘Investor’ stored by the metadata mapper. The stored
procedures to convert attributes between the EDS and the legacy systems are also
included in Appendix 1. The following examples show how the mappings are used to

synchronize the EDS entity *Client’ with the legacy entities *Customer’ and "Investor’.

5.3.1 Example 1

Consider an insert on the entity “Client’ in the EDS.

INSERT INTO client(clie_num, clie_last_nam, clie_first_nam, clie_sin_num,

clic_gender _cde, clie_birth_dte, clie_marital _status_cde)

VALUES (4567, ‘Rimmer’, ‘Rodger’, 508133212, '1', ‘'25/05/60°, 1);
The change extractor associated with the EDS captures the insert operation and passes the
following parameters to the DTIM layer:

P_System_name « ‘EDS’

P_Entity name « Client

P_Operation_nype « 'I'
103

P_Key list «-clie_num, 4567

P_Anribute list «-clie_num, 4567,
clie_last_nam : ‘Rimmei’,
clie_first_nam : 'Rodger’,
clie_sin_num : 508133212,
clie_gender_cde : |,
clie_birth_dte : '25/05/60",
clie_marital _status cde : |

'he DTIM layer that is made up of synchronization algorithms, executes the algorithm

Perform_synchronization with the above parameters.

Perform_synchronization (Algorithm 1, Figure 12)

Since the condition in line | that checks if P_System_name = "EDS" is true. the algorithm
Perform _EDS entity_mapping is executed. This algorithm performs entity to entity

mapping between the EDS and the legacy systems.

Perform_EDS_entity_mapping (Algorithm 2, Figure 13)

This algorithm determines the legacy systems and their entities that need to be

synchronized as a result of the insert on the EDS entity *Client’.

Lines 1 and 2 of this algorithm determine these entities to be *Customer’ in the *Mortgage

system’ and “Investor’ in the ‘Investment system’.

Lines 6,7 and 8 of the algorithm create two lists, one for each system name and entity

name with the following contents:

<Mortgage system || Customer list> ¢ Mortgage system. Customer, |,
Attribute _list, Key list;

<Investment system || Investor list> ¢ Investment system, Investor. I
Autribute list, Key _list;

Note that Attribute_list and Key_list are initially empty. It will be shown shortly how

104

their contents are determined by the attribute and the primary key mapping algorithms.
Control then returns to line 3 of Perform_synchronization.

Line 3 calls the algorithm Perform EDS attribute_mapping. This algorithm performs
attribute to attribute mapping between the EDS and the legacy systems. The main
purpose of this algorithm is to determine the contents of the Attribute_list in the
<Mortgage system | Customer list> as well as the Attribute list in the <Investment

system || Investor list>.

Perform_EDS_attribute_mapping (Algorithm 3, Figure 15)

This algorithm determines the legacy system(s) attributes that need to be synchronized as

a result of the insert on the EDS entity *Client’.

Lines 1 and 2 of the algorithm select from the metadata mapper table ‘EDS Entity
attributes’ all attributes that belong to the EDS entity 'Client’ that are in P_Attribute_list.

The selection creates a result set Q that has the following rows:

Result Set Q

" Row num EDS cnlity name EDS entity atiribute name Code
| Client clie_num EEPD
J Client clic_last_nam SEPD
3 Client clic_first_nam SEPD
4 Client clie_sin_num SEPD
3 Client clic_gender_cde SEPD
6 Client clie_birth_dte SEPD
7 Client cli:j ma:iulj_smus_cdc SEPD

Line 3 loops through each row in the result set Q. For each row in the result set Q, lines
4.5 and 6 determine if the EDS entity attribute has the SEPD code (shared EDS primary
data). If the EDS attribute does have the SEPD code, lines 7 and 8 determine the
corresponding mapped legacy attributes (result set R). The result set R for row num 2 of
the result set Q is shown below. Note since row num 1 of the result set Q does not belong

to SEPD code therefore, no attribute mapping is performed for this attribute.

105

Result Set R for row num 2 of the Result Set Q

Row Row EDS entity Legacy system | Legacy Legacy entity Altribute
num of num of attribute name name entity attribute name conversion
set Q set R name procedure name
2 1 clie_last_nam Mortgage Customer | cust_last_nam
system
2 2 clie_tast_nam Investment Investor invs_last_nam truncate_last_nam
system

Line 9 then loops through each row in R. For each row in R, lines 13,14 and 15 determine

the corresponding value of the legacy entity attribute. Lines 16 and 17 then determine

whether the legacy entity attribute is a PK attribute or a non PK attribute. If it is a PK

attribute it is added to the Key_list of the corresponding <Legacy system name | Legacy

entity name list> (line 19) otherwise the attribute is added to the Attribute_list of the

corresponding <Legacy system name || Legacy entity name list> (line 18).

After execution of steps | through 15 for each row in the result set Q, the resulting legacy

entity attributes with their corresponding values that need synchronization as a result of

insert on the EDS entity *Client’ are shown in the following table:

Row | Row | EDS entity EDS entity | Legacy Legacy Legacy entity Altribute Legacy

nuin | num | attribute name attribute system eatity attribute name conversion enlity

of of value name name procedure name attribute

set set value

Q R

2 1 clie_last_nam ‘Rimmer’ Mongage Customer cust_{ast_nam ‘Rimnter’
system

2 2 clie_last_nam ‘Rimmer’ Investment | Investor invs_last_nam truncate_last_nam | ‘Rimmer’
system

3] clie_first_nam ‘Rodger’ Mongage Customer cust_first_nam ‘Rodger’

_ system

3 2 clie_first_nam ‘Rodger’ Investment | Investor invs_first_nam truncate_{irst_nam | ‘Rodger’
system

4 1 clie_sin_num 508133212 | Investment | Investor invs_sin_num S08133212
system

5 I clic_gender_cde | 1 Mortgage Customer cust_gender_txt | convert_gender ‘Male’
system

§ 2 clie_gender_cde | Investment | Investor invs_gender_cde |
system

6 1 clie_birth_dte *25/05/60° | Investment | Imvestor invs_birth_dte *25/05/60°
system

7 1 clic_marital_stat | | Montgage Customer cusi_marital_stat | convert_marital_st | ‘Single’

us &lc system us_txt atus

On execution of steps 16, 17 and 18, for each row in the result set Q, the Attribute_list in

106

the <Mortgage system || Customer list> as well as the Attribute_list in the <Investment

system || Investor list> are as follows:

<Morigage system || Customer list> Attribute_list «

cust_last_nam : 'Rimmer ',
cust_first_na : 'Rodger’,
cust_gender txt : ‘Male "
cust_marital_status_ixt : ‘Single’

<Investment system . Investor list> Attribute_list «
invs_last_nam : ‘Rimmer’,
invs_first_nam : ‘Rodger’,
invs_gender _cde : 1,
invs_birth_dte : '25/05/60°

On execution of steps 16, 17, and 19 for each row in the result set Q the Key_list in the

<Investment system || Investor list> is as follows:

<Investment system || Investor list> Key _list « invs_sin_num : 508133212

Control then returns to line 4 of Perform_synchronization.

Line 4 of Perform_synchronization then calls the algorithm
Perform_EDS PK _and record_mapping. This algorithm performs key to key and record
to record mapping between the EDS and the legacy systems. The main purpose of this
algorithm is to determine the contents of the Key_list in the <Mortgage system ||

Customer list> as well as the Key_list in the <Investment system || Investor list>.

Perform_EDS_PK_and_record_mapping (Algorithm 4, Figure 17)

This algorithm determines the primary key attributes(s) and values(s) for the mapped
legacy entity(s).

Lines 1 and 2 of the algorithm select the PK attributes of the EDS entity “Client’ from the
metadata mapper table ‘EDS Entity PK Attributes’ that are in P_Key_list. The selection

107

creates result set P that has the following row:

Result Set P

Row num | EDS entity PK num
1 1

EDS entity PK Attributes
clie_num

Line 3 checks the parameter P_Operation_type to determine if it is an insert operation.
Since it is an insert operation, line 4 loops through the result set P. For each row in the
result set P lines 5 and 6 determine the corresponding mapped legacy PK attributes (result

set M). The result set M for the result set P is shown below:

Result Set M

Row
num of
set P

Ruw
num of
set M

Legacy system name

Legucy entity name

Legacy entity Pk
attribute name

Secondary entity PK
generation algorithm

1

Mortgage system

Customer

cust_num

generale_cust_num

1

3

Investment system

Investor

invs_sin_num
=

Line 7 loops through the result set M. For each row in the result set M. line 8 checks if
there exists a “Secondary entity PK generation algorithm’ to generate a primary key value
for the mapped legacy PK attribute. If such an algorithm exists, line 10 determines the
corresponding legacy PK value by executing *Secondary entity PK generation algorithm’.
Line 11 then adds the legacy entity PK attribute and its value to the Key _list of the

corresponding <Legacy system name | Legacy entity name list>.

Looping through the result set M, since row | has a ‘Secondary entity PK generation
algorithm’, the algorithm ‘generate_cust_num’ is executed by line 10 to determine the
legacy PK value. Let us assume the value generated for ‘cust_num’ is 6789 then after
execution of line 11, the Key_list in the <Mortgage system || Customer list> is as

tollows:

<Mortgage system || Customer list>.Key list e cust_num : 6789

Since row 2 of the set M does not have a “Secondary entity PK generation algorithm’.

nothing gets generated or added to the Key_list in <Investment system || Investor list>.

108

Note that the contents of the Key_list for <Investmeut system | Investor list> were
determined during execution of the algorithm Perform_EDS _attribute_mapping. The non
PK attribute ‘clie_sin_num’ of ‘Client’ maps to PK attribute ‘invs_sin_num’ of
‘Investor’. Therefore, the value of ‘invs_sin_num’ is determined during the attribute to
attribute mapping between the EDS and the legacy systems. The synchronization
algorithm handles both the cases. Case 1 where it performs record to record mapping for
inserts by using key generation algorithms and case 2 where key generation algorithms do

not exist and the value of the field is determined as a result of the attribute to attribute

mapping.

After performing the mapping between the EDS and the legacy systems the

corresponding data modifications as a result of the insert on the entity ‘Client’ in the EDS

are:
(1) <Morigage system | Customer list> «
Morigage system, Customer, |,
Attribute list, Key_list;
where Attribute_list is:
<Mortgage system || Customer list>. Attribute_list «
cust_last_nam : 'Rimmer’,
cust_first_nam : ‘Rodger ',
cust_gender txt : ‘Male ',
cust_marital_status_txt : ‘Single’
where Key _list is:
<Morigage system || Customer list>.Key list « cust_num : 6789
And
(2) <Investment system || Investor list> «

Investment system, Investor, I, Attribute_list, Key list;

where Attribute_list is -

<Investment system || Investor list>. Attribute_list «
invs_last_nam : 'Rimmer’,
invs_first_nam : ‘Rodger’,
invs_gender cde : |,
invs_birth_dte : '25/05/60’

109

where Key_list is
<Investment system || Investor list>.Key_list « invs_sin_num : 508133212

The algorithm then returns to line 5 of Perform_synchronization.

Line 5 of Perform_synchronization checks P_Operation_type code to determine if the
operation type is an insert. Since it is an insert operation, line 6 executes the algorithm

Muaimtain_EDS cross_referencing.

Maintain_EDS_cross_referencing (Algorithm 5, Figure 19)

This algorithm maintains record to record mapping between the EDS entity ‘Client” and
the Mortgage system entity "Customer’ as well as between the EDS entity ‘Client” and

the Investment system entity “Investor’.

Lines | and 2 of the algorithm select the primary key attributes of the EDS entity *Client’
from the metadata mapper table "EDS entity PK Attributes’ that are in P_Key_list. The

selection creates result set P that has the following row:

Result Set P

Row num EDS entity PK num
I |

EDS entity PK Attributes
clie_num

Line 3 loops through the result set P. For each row in the result set P, lines 4 and 5
determine the corresponding mapped legacy PK attributes (result set M). The result set M

for the result set P is as follows:

Result Set M

“Row num | Row num Legacy system Legacy entity | Legacy entity PK | Legacy entity
of set P of set M name name attribute name PK aum
1 I Mortgage system Customer cust_num 2
] 2 Investment system Investor invs_sin_num 3

Line 6 loops through the result set M. Lines 9 and 10 determine the primary key values
for EDS entity PK attributes (result set P) and the mapped legacy PK attributes (result set
M). This is GET_VALUE_INLIST and
GET_VALUE_OUTLIST to read from the input list and output lists. The primary key

110

achieved by using the functions

values for the EDS entity PK attribute and the mapped legacy entity PK attributes after

execution of lines 9 and 10 are:

EDS entity | EDS value Legacy entity Legacy value
PK num PK num

| 1567 2 6789

{ 4567 3 508133212

Line 11 checks if P_Operation_type is an insert operation. Since it is an insert operation,

record to record mapping is stored in the cross referencing table.
Control returns to the end of the algorithm Perform_synchronization.

The algorithm Perform_synchronization terminates leaving the EDS synchronized with

both the legacy systems.

5.3.2 Example 2

Consider an update on the entity *Client’ in the EDS.

UPDATE client
SET clie_marital_status_cde = 2 and clie _last_num = 'Ronald’
WHERE clie_num = 4567,

The change extractor associated with the EDS captures the update operation and passes

the following parameters to the DTIM layer.

P_System_name ¢« 'EDS’

P_Entity_name ¢ Client

P_Operation_type « ‘U’

P _Key list - clie_num, 4567

P_Attribute_list e clie_marital_status_cde : 2,
clie_last_nam : ‘Ronald’

The DTIM layer executes the algorithm Perform_synchronization with the above

parameters.

111

Perform_synchronization (Algorithm 1, Figure 12)

Since the condition in line 1 that checks whether P_System_name = *EDS’ is true. the
algorithm Perform_EDS entity_mapping is executed. This algorithm performs entity to

entity mapping between the EDS and the legacy systems.

Perform_EDS_entity_mapping (Algorithm 2, Figure 13)

This algorithm determines the legacy systems and their entities that need to be

synchronized as a result of the update on the EDS entity ‘Client’.

On execution lines 1 and 2 of this algorithm determine these entities to be “Customer’ in

the "Mortgage system’ and ‘Investor’ in the ‘[nvestment system’.

Lines 6.7 and 8 of the algorithm create two lists, one for each legacy system name and

legacy entity name with the following contents:

<Morigage system | Customer list> ¢ Morigage system, Customer, U
Attribute_list, Key list;

<Investment system || Investor list> < Investment system, Investor, U,
Autribute list, Key list;

Please note that Attribute_list and Key_list (contained in the respective lists) are initially
empty. It will be shown shortly how their contents are determined by the attribute and PK

mapping algorithms.
Control then returns to line 3 of Perform_synchronization;

Line 3 of Perform_synchronization calls the algorithm Perform EDS_attribute_mapping.
This algorithm performs attribute to attribute mapping between the EDS and the legacy
systems. The main purpose of this algorithm is to determine the contents of the
Attribute_list in the <Mortgage system || Customer list> as well as the Attribute_list in

the <Investment system || Investor list>.

112

Perform_EDS_attribute_mapping (Algorithm 3, Figure 15)

This algorithm determines the legacy systems’ attributes that need to be synchronized as

a result of the update on the EDS entity *Client’.

Lines | and 2 of the algorithm select all attributes that belong to the EDS entity *Client’
and that are in P_Attribute_list from the metadata mapper table "EDS Entity attributes’.

The selection creates result set Q that has the following rows:

Result Set Q
Row num EDS entity name | EDS entity attribute name | Code
[Client clie_marital_status_cde SEPD
2 Cliemt clic_last_nam SEPD

Line 3 loops through each row in the result set Q. For each row in the result set Q, lines
4,5 and 6 determine if the EDS entity attribute has the SEPD code (shared EDS primary
data). [f the EDS attribute has the code SEPD, lines 7 and 8 determine the corresponding
mapped legacy attributes (result set R). The result set R for row num 1 of the result set Q

is shown below.

Result Set R for row num 1 of the Result Set Q

Row Row EDS entity attribute Legacy Legacy Legncy entity attribute | Attribute conversion

num of | num of | name system entity name | name procedure name

set Q set R name

2 1 clie_marital_status_cde | Mongage | Customer cust_marital_status_ixt | convert_marital_status
system

Line 9 loops through each row in the set R. For each row in the set R lines 13.14 and 15
determine the corresponding value of the legacy entity attribute. Lines 16 and 17 then
determine whether the legacy entity attribute is a PK attribute or a non PK attribute. If it
is a PK attribute it is added to the Key_list of the corresponding <Legacy system name ||
Legacy entity name list> (line 19) otherwise it is added to the Attribute_list of the

corresponding <Legacy system name || Legacy entity name list> (line 18).

After the execution of steps 1 through 15 for each row in the result set Q, the resulting

legacy entity attributes, with their corresponding values that need synchronization as a

113

result of update on the EDS entity "Client’, are shown in the following table:

[Row Row ﬁf& entity EDS Legacy Legacy Legacy entity | Attribute Legacy
num of | num of | attribute entity system entity attribute conversion entity
set Q set R name attribute name name name procedure nume | attribute

value value
[] clie_marital_s | 2 Mortgage | Customer | cust_marital_s | convert_marital_ | “Married’
tatus_cde system tatus_txt status
2 1 clic_last_nam | ‘Ronald’ Mongage | Customer [cust_last_nam ‘Ronald’
system
2 2 clie_last_nam | ‘Ronaid’ Investmen | Investor invs_last_nam | tuncate_last_na ‘Ponald’
L system m

On execution of steps 16, 17 and 18 for each row in the result set Q the Attribute_list in
the <Mortgage system || Customer list> as well as the Attribute_list in the <Investment

system || Investor list> are as follows:

<Mortgage system || Customer list>. Auribute_list «
cust_marital_status_txt : "Married
cust_last_nam : ‘Ronald’

<Investment system || Investor list> Attribute_list
invs_last_nam : ‘Ronald’

Control then returns to line 4 of Perform_synchronization.

Line 4 of Perform_synchronization then calls the algorithm
Perform EDS PK _and record_mapping. This algorithm performs key to key and record
to record mapping between the EDS and the legacy systems. The main purpose of this
algorithm is to determine the contents of the Key_list in the <Mortgage system |

Customer list> as well as Key_list in the <Investment system | Investor list>.

Perform_EDS_PK_and_record_mapping (Algorithm 4, Figure 17)

This algorithm determines the primary key attributes and values for the mapped legacy

entities.

Lines 1 and 2 of the algorithm select the PK attribute(s) of the EDS entity ‘Client’ from
the metadata mapper table ‘EDS Entity PK Attributes’ that are in P_Key list. The

114

selection creates the result set P that has the following row:

Result Set P

Row num EDS entity PK num EDS entity PK Attributes
| | clie_num

Line 3 checks the parameter P_Operation_type to determine if it is an insert operation.
Since it is not an insert operation, line 12 loops through the result set P. For each row in
result set P lines 13 and 14 determine the corresponding mapped legacy PK attributes and

their values (in result set M). The result set M for the result set P is shown below:

Result Set M
Row Row num | Legacy system Legacy Legucy entity PR | Legacy value
num of ofset M name entity name | attribute name
set P
1 i Mortgage system | Customer cust_num 6789
1 2 Investment Investor invs_sin_num 508133212
system

Line 15 loops through the result set M. For each row in the result set M, line 16 adds the
legacy entity PK attribute and its value to the Key_list of the corresponding <Legacy
system name || Legacy entity name list>.
Processing row 1 of the result set M gives:

<Mortgage system || Customer list>. Key list ¢~ cust_num : 6789
Processing row 2 gives:

<Investment system || Investor list>.Key _list « invs_sin_num : 508133212

After performing the mapping between the EDS and the legacy systems the
corresponding data modifications, as a result of the update on the entity ‘Client’ in the

EDS, are:

(1) <Mortgage system || Customer list> « Mortguge system, Customer, U,

Attribute_list, Key list;

115

where Attribute list is:

<Mortgage system | Customer list> Atribute_list «
cust_marital_status_ixt : ‘Married ',
cust_last_nam : ‘Ronald’

where Key list is:

<Mortgage system || Customer list>.Key _list ¢ cust_num : 6789

And

2) <Investment system || Investor list> ¢ Investment system, Investor, U,
3
Attribute list, KEy list;

where Attribute_list is -

<Investment system || Investor list> Auribute _list ¢
invs_last_nam : 'Ronald’

where Key_list is

<Investment system | Investor list>.Key_list < invs_sin_num : 508133212

Control then returns to the end of Perform_synchronization.

The algorithm Perform_synchronization then terminates leaving the EDS synchronized

with both the legacy systems.

The above examples illustrate how data modifications on the EDS are propagated to the
legacy systems. Similarly, examples can be drawn to show propagation of data

modifications from the legacy systems to the EDS.

5.4. Warehouse Anomaly

The warehouse anomaly was introduced in Chapter 4. It is associated with the
materialized view maintenance approach to data warehousing. It arises when the queries
from the data warchouse are interleaved with the updates arising from the base data
sources. Additional mechanisms or algorithms are needed to avoid the warehouse
anomaly. The materialized view approach is applicable to the data warehouse architecture

rather than the EDS or the ODS architecture. This is due to the fundamental difference

116

between the data warehouse and the EDS architecture (or the data warehouse and the
ODS architecture). These differences were mentioned in Chapter | and then revisited in
Chapter 4. Chapter 4 concluded that the materialized view approach was not suitable to
the EDS architecture due to: 1) the volatile nature of the EDS 2) the record to record
mapping found in the EDS 3) the currency of data 4) lack of summarization and 5) the

nature of the processing.

The EDS is built for on-line transaction processing of the primary data and oft-line
transaction processing of the secondary data. The very nature of the processing found in
the EDS implies that the design of the EDS should be normalized, requiring record to
record mapping and discouraging summarization. The data warehouse on the other hand
is built for informational processing. It contains complicated, long running queries that
access large amounts of data and therefore summarization or materializing queries is

encouraged.

The proposed approach to synchronization in the EDS is based on the philosophy of
storing all the information required for synchronization in the metadata mapper. (i.e.. the
metadata mapper contains all the knowledge required to convert a data modification from
one tier to the corresponding data modification in the other tier. As a result, no additional
queries are sent from the EDS to the base data sources or vice versa. Hence. the
warehouse anomaly is not applicable to the EDS architecture. This is now illustrated with

a delete anomaly example.

Consider two data stores, the EDS and the legacy data store ‘Mortgage’ (as shown in
Appendix 2). The entity ‘Client’ in the EDS maps to the entity *Customer’ and *Address’
in the mortgage data store. Assume, the mortgage entities *Customer’ and ‘Address’ are
the primary sources of client and address information and the entity ‘Client’ in the EDS is
the secondary source. This implies any data modifications are first performed on the
*Customer’ and ‘Address’ entities in the mortgage data store and then propagated to the

EDS entity ‘Client’. In other words, the ‘Address’ and ‘Customer’ information from the

117

mortgage system has been denormalized in the EDS entity ‘Client’. If a customer has
multiple addresses, such denormalization will never be appropriate for the EDS. This
turther strengthens the argument that summarization and denormalization are not found
in the EDS architecture. For the sake of this discussion (and to keep it simple and
realistic) assume that ‘Customer’ has just one address. In terms of the analogy with
warehouse view definition, the EDS entity "Client’ can be considered as a view over two
base data sources "Customer’ and *Address’. Appendix 2 shows the mapping stored in the
metadata mapper between the legacy entities “Customer’ and *Address’ and the EDS

entity “Client’.

5.4.1 The Delete anomaly

Consider a delete on the entity ‘Customer’ in the mortgage data store.
DELETE address
WHERE addr_num = 6789;

The change extractor associated with the mortgage data store captures the delete

operation and passes the following parameters to the DTIM layer.

P_System_name « ‘Moritgage system’
P_Entity_name ¢ ‘Address’
P_Operation_type «~ ‘D’

P_Key list « addr_num, 6789
P_Auribute list « ¢

The DTIM layer executes the algorithm Perform_synchronization with the above

parameters.

Perform_synchronization (Algorithm 1, Figure 12)

Since the condition in line | that checks whether P_System_name = ‘EDS’ is false, the

algorithm Perform_legacy_entity_mapping is executed. This algorithm performs entity to

118

entity mapping between the legacy system and the EDS.

Perform_legacy_entity_mapping (Algorithm 6, Figure 14)

This algorithm determines the EDS entities that need to be synchronized as a result of the

delete on the mortgage entity ‘Address’.
On execution lines 1 and 2 determine the EDS entity to be "Client’.

Lines 6,7. and 8 of the algorithm result in creating a list with the following contents:

<EDS || Client list> « EDS, Client, D, Attribute_list. Key_list;

Please note that Attribute_list and Key_list (contained in the above list) are initially
empty. [t will be shown shortly how their contents are determined by the attribute and PK

mapping algorithms.
Control then returns to line 8 of Perform_synchronization.

Line 8 calls the algorithm Perform legacy atiribute_mapping. This algorithm performs
attribute to attribute mapping between the legacy system and the EDS. The main purpose

of this algorithm is to determine the contents of the Attribute_list in <EDS || Client list>.

Perform_legacy_attribute_mapping (Algorithm 7, Figure 16)

This algorithm determines the EDS entity attributes that need to be synchronized as a

result of the delete on the mortgage entity ‘' Address’.

Lines 1 and 2 of the algorithm select all attributes that belong to the mortgage entity
Address’ and that are in P_Attribute_list from the metadata mapper table ‘Legacy Entity

attributes’. The selection creates a result set Q that is empty since P_Attribute_list is ¢.
Control then returns to line 9 of Perform_synchronization.

Line 9 calls the algorithm Perform legacy PK and_record_mapping. This algorithm

119

performs key to key and record to record mappings between the legacy system and the
EDS. The main purpose of this algorithm is to determine the contents of the Key_list in

the <EDS || Client list>.

Perform_legacy_PK_and_record_mapping (Algorithm 8, Figure 18)

This algorithm determines the primary key attributes(s) and values(s) for thc mapped

EDS entity(s).

Lines 1 and 2 of the algorithm select the PK attributes of the legacy entity “Address’ from
the metadata mapper table "Legacy Entity PK Attributes’ that are in P_Key_list. The

selection creates a result set P that has the following row:

Result Set P
Row num | Legacy entity PK num Legacy entity PK Attributes
1 3 addr_num

Line 3 checks the parameter P_Operation_type to determine if it is an insert operation.
Since it is not an insert operation, control passes to line 12 of the algorithm. Line 12
loops through the result set P. For each row in the result set P, lines 13 and 14 determine
the corresponding mapped EDS PK attributes and their values (in result set M). The result

set M for the result set P is:

Result Set M
Row num | Rownum { EDS entity EDS entity PK EDS value
of set P of set M name attribute name

1 ! Client clie_num 4567

Line 15 loops through the result set M. Line 16 then adds the EDS entity PK attribute and
its value to the Key_list of the corresponding <EDS | EDS entity name list>. After

execution of line 16, the Key_list in the <EDS || Client list> is as follows:

<EDS || Client list>.Key _list « clie_num : 4567
After performing the mapping between the mortgage system and the EDS the

120

corresponding data modifications as a result of delete on the entity ‘Address’ in the

Mortgage system are:

<EDS || Client list> « EDS, Client, D, Attribute_list, Key list;

where Attribute_list is:

<EDS | Client list>. Auribuse_list « ¢
where Key list is:
<EDS || Client list>.Key _list « clie_num : 4567

Control then returns to the end of Perform_synchronization.

The fact that key to key and record to record mappings are stored in the metadata mapper
means the additional query required to determine the customer records associated with
the deleted address record is not needed therefore, the anomaly does not occur. In fact the
solution to the deletion anomaly discussed in [19] is based on storing primary keys in the

warehouse for every base relation invoived in the view.

The above example illustrates how the proposed synchronization solution is different
from the materialized view approach. As a result the delete or update anomalies found in

the data warehouse architecture is not applicable to the EDS architecture.

5.5 Correctness of the Synchronization Algorithms

In this section. the correctness of the synchronization algorithms is discussed. The
synchronization algorithms use the mappings stored in the metadata mapper to convert a
change in one tier to its corresponding change(s) in the other tier. Therefore, the

correctness of these algorithms will depend on:

e Correctness of the metadata model, and

¢ The mapping data stored in the metadata mapper

Correctness of the metadata model

As discussed there are four kinds of mappings that are required for synchronization. They
are - entity to entity mapping, attribute to attribute mapping, key to key mapping and
record to record mapping. The metadata model introduced earlier in this chapter models
the four kinds of mappings. Since the solution to synchronization is based on these
mappings, it is very important that the metadata model models each kind of mapping
correctly. In Section 5.2.1, the metadata model was described in detail. It was also shown

how each kind of mapping was correctly modeled in the metadata model.

In Chapter 4, a formal classification of the types of data in the two tier data architecture is
presented. The data in the EDS was classified into EEPD (exclusive EDS primary data),
SEPD (shared EDS primary data), and ESD (EDS secondary data). Similarly, data in the
application data store is classified into EAPD (Exclusive EDS primary data), SAPD
(Shared application primary data) and ASD (Application shared data). This classification
identifies that SEPD (shared EDS primary data) must be synchronized with the secondary
data of application systems (ASDs) and the shared primary data of application systems
(SAPDs) must be synchronized with the EDS secondary data (ESD). Further. no
synchronization is needed for exclusive EDS primary data (EEPD) and exclusive

application primary data (EAPD).

This classification clearly defines the types of data in the two tier data architecture and
identifies those that need synchronization. The classification also puts forth the
requirements for synchronization (i.e., in order to synchronize the EDS with the
application systems SEPD must be synchronized with ASDs and SAPDs must be
synchronized with ESD). The attribute 'EEPD or SEPD or ESD code’ of the entity 'EDS
Entity Attributes’ in the metadata model classifies the attributes of EDS entities to EEPD,
SEPD or ESD code. Similarly, the attribute ‘EAPD or SAPD or ASD code’ of the entity
"Legacy Entity Attributes’ classifies the attributes of legacy entities to EAPD, SAPD or
ASD code. With this classification the entity ‘EDS Legacy Attribute Mapping’ is able to

map the SEPD attributes to ASD attributes and SAPD attributes to ESD attributes.
122

The feasibility of this attribute to attribute mapping by the metadata model shows how
the mappings between the EDS and the operational systems can be used to synchronize
SEPD with ASDs and SAPDs with ESD. This shows the mappings modeled in the

metadata model are correct which further infers the correctness of the metadata model.

The Correctness of the Mapping Data Stored in the Metadata Mapper

The mapping data stored in the metadata mapper is based on the requirements of the
organization. For example, Appendix | shows the implementation of the metadata
mapper for the three entities. The data and algorithms stored in the metadata mapper are
specific to the needs of the organization. Population of the mapping data in the metadata
mapper is a legitimate and interesting research question, it is not the one addressed in this
research. As mentioned before, tools can be developed that will automate or semi-
automate population of mapping data in the metadata mapper. This thesis assumes that
the mapping between the EDS and the operational systems can be correctly determined
and stored in the metadata mapper either with the help of tools or by using alternate

methods.

Based on the above assumption and the cormrectness of metadata model. the

synchronization algorithms are correct.

123

Chapter 6.

Conclusions

6.1 Summary and Contributions

Integrating data from multiple, heterogeneous databases and other information sources
has been one of the leading research issues in database research and industry. In this
thesis, the research done on data integration was broadly classified into Multidatabase
Systems and Data Warehousing. The thesis provides a comprehensive comparison
between the two approaches and argues that in spite of certain drawbacks with the data
warehousing approach, it is a much simpler and more powerful solution to the data

integration problem.

This thesis contributes towards solving the problem of data integration using the data
warehousing approach and makes a number of important contributions. First, it defines a
new data integration architecture by defining an architectural construct the Enterprise
Data Store (EDS). An Enterprise Data Store is a repository of data that represents an
integrated view of enterprise operations and is built for corporate wide operational
informational processing and transactional processing of common business operations.
The research discusses in depth, the characteristics of the EDS and compares them to the
ODS. The research also presents the corporate data architecture with the EDS, the data
warehouse and the application systems. The research argues that the ODS fails to provide
true operational integration because 1) it does not eliminate the operational redundancy of
common business operations, and 2) it does not provide a consistent view of data across

the application systems and the ODS. The EDS overcomes these limitations.

The second major contribution of this thesis is that it introduces a new approach to
synchronization based on using metadata for synchronizing the EDS with the application
systems. Metadata is one of the most important aspects of the data warehousing
environment. A very important component of the data warehouse metadata store is the
mapping between the operational systems and the data warehouse. The research, based on
this component of the data warehouse metadata store. identifies four kinds of mappings -
entity to entity, attribute to attribute mapping, key to key, and record to record mappings
that can be used to synchronize the EDS with the application systems. The mappings are
modeled in a metadata model that is implemented as the metadata mapper. The mapping
data and algorithms stored in the metadata mapper are used by the synchronization
algorithms to synchronize the EDS with the operational systems. Early synchronization
architectures (e.g., the WHIPS architecture) in data warehousing are based on
materialized view approach. The proposed approach offers two main advantages over the
materialized view approach. First, it simplifies the synchronization architecture by taking
away complexities like global query decomposition, global query optimization. global
concurrency control, and distributed query processing. Second. it facilitates simultaneous
development of the metadata store. Though metadata is an essential component of the
data warehouse architecture, the development of this component is usually ignored. The
proposed architecture enables the development of a major component of the metadata
store and keeps it current with the data in the EDS and the operational systems. The thesis
also contributes by providing a metadata model to store the mappings between the

operational systems and the EDS.

The thesis also makes a significant contribution by proposing an architecture for
synchronizing the EDS with the application systems. The architecture gives a
classification of different kinds of data found in the two tier data architecture. This
classification clearly identifies the data that needs to be synchronized between the two
tiers. Also, it clearly differentiates the subsets of data in a data source with which the
propagator and the change extractor should be associated. The synchronization

architecture is based on two centralized components - the DTIM and the metadata
125

mapper. These components contain all the knowledge needed to accept a change/update
from a tier and convert it to the corresponding change(s)/updates(s) in the other tier. No
queries are posed on the application systems as no additional information is required for
the synchronization. This simplifies the architecture tremendously and the components
like wrappers, mediators, and query processors that are needed by other architectures to
deal with issues like global query decomposition and optimization, distributed query

processing, mediation, multi-source warehouse consistency are not needed.

One of the advantages offered by the proposed synchronization architecture is that no
collision or conflict detection and resolution mechanisms are needed. Since in the
proposed architecture a data element is only maintainable by a single data source
(primary data of a data source) and is read only in the other data sources (secondary data

of data sources), the possibility of collisions has been eliminated.

Another advantage of the proposed architecture is that mechanisms required for ensuring
serializability of local and external (propagated) transactions are not required. This is
because local transaction will act on primary data of a data source and propagated
transactions will act on the secondary. Since they are two separate subsets of data,

serializability is not an issue.

Finally, the thesis also contributes by providing a comprehensive set of synchronization
algorithms. These algorithms use the mappings stored in the metadata mapper to convert
a change in one tier to its corresponding changes in the other tier. These algorithms
illustrate the viability of the proposed synchronization solution that uses metadata for
synchronization and introduce a prototype of the metadata mapper and the DTIM layer
based on simple mapping between the EDS and the operational systems. This prototype
can be further customized and expanded depending on the requirements of the

organization.

6.2 Future Research

Although this research has made a number of significant contributions in the area of data
integration, some open problems still exist. The next few paragraphs present some of the

open research problems related to this research.

The proposed solution to synchronize the EDS with the operational systems is based on
using the mapping data and algorithms stored in the metadata mapper. This raises a
legitimate and interesting question about how the relevant mappings between the EDS
and the operational systems are determined and stored in the metadata mapper. Without
any tools the manual process of determining the four kinds of mappings (entity, attribute,
primary. and record) between the EDS and the operational systems will be a tedious, error
prone and time consuming process. Further, once the mappings are determined, relevant
data and conversion algorithms need to be stored in the metadata mapper. To facilitate
easy determination and storage of mapping data, tools could be developed to automate or
semi-automate implementation of the metadata mapper. These tools might read schema
information from dictionaries of the data sources involved in the integration architecture.
This information can then be presented to the user in such a manner that the user can
easily map entities and their respective attributes from one data store to the other. As a
result of mapping, the tool could then produce the transformation logic needed for
synchronization. Building of such metadata mapping tools can be an interesting future

research proposal.

Change detection is an open research problem that arises from the warehousing approach.
The solution to the change detection problem is dependent on the underlying application
sources. Earlier work towards change detection has classified the application sources into
- cooperative sources, logged sources, queryable sources, and snapshot sources. Each type
of application source capability provides interesting research problems for change
detection. In the EDS architecture, a change extractor is associated with each data source

participating in the integration architecture. This is because the functionality of the

127

change extractor is dependent on the type of source (e.g., legacy system, relational) as
well as data provided by the source. Efficient algorithms need to be developed that are
optimized for detecting and capturing only the relevant information needed for the
synchronization. For example, optimizing the change extractor to detect arid capture data

modification only on the shated primary data of the associated data source.

Another important component of the EDS architecture is the propagator. The propagator
converts the logical transaction passed by the DTIM layer into the physical transaction in
the language of the associated data source. Like the change extractor, we need a different
propagator for each application source and the EDS. This is because the functionality ot
the propagator is dependent on the type of the source (e.g., database system, legacy
system, etc.) as well as the type of data manager and the query language associated with
the source. Algorithms and techniques need to be built for the efficient implementation of

the propagators.

A different propagator/change extractor is needed for each data source. Clearly it is
undesirable to hard-code a propagator/change extractor for each data source participating
in the integration architecture. Hence, a significant research issue is to develop techniques
and tools that automate or semi-automate the process of implementing change extractors /

propagators through a tool kit or specification based approach.

The synchronization algorithms proposed in this research are based on simple mappings
between the EDS and the operational systems. The purpose of this research was to
illustrate the viability of the proposed synchronization solution that uses metadata for
synchronization; and to build a framework for the synchronization of the EDS with the
operational systems. For future research, the metadata model and the synchronization
algorithms can be modified and/or expanded to support complicated cases of mappings

between the EDS and the operational systems.

Another interesting area for future research would, of course, be the implementation of

128

the proposed data integration architecture. This will require building the EDS construct,
modifying the application sources, and implementing the proposed synchronization

architecture with change extractors, propagators, DTIM layer, and metadata mapper.

Bibliography

[1]

(2]

[4]

(6]

[7]

(8]

[9]

W.H. Inmon. C. Imhoff, R. Sousa. Creating an Information Ecosystem. In Robert
Elliott, editor, Corporate Information Factory, pp. 1-11, John Wiley & Sons, Inc.,
New York, U.S.A, 1998.

Systems Techniques, Inc. [Information Architecture : Managing Customer
Relationships.

hitp://warehouse.chimenet.org/software/datastore/datarepos/whitecia.html, 1995,

W_.H. Inmon, C. Imhoff, G. Battas. In Robert Elliott, editor, Building the Operational
Data Store, John Wiley & Sons. Inc., New York, U.S.A, 1996.

IEEE Computer. Special Issue on Heterogeneous Distributed Database Systems,
24(12), 1991.

M.T. Ozsu, P.Valduriez. Distributed Multidatabase Systems. In Christina Burghard
and Jennifer Wenzel, editors, Principles of Distributed Database Systems, pp. 425-
456. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

W.H. Inmon. The Operational Data Store. Tech Topic, 1(17), Prism Solutions Inc..
1000 Hamilton Court, Sunnyvale, CA 94089, 1993.

W.H. Inmon. What is a Data Warehouse. Tech Topic, 1(1), Prism Solutions Inc.,

1000 Hamilton Court, Sunnyvale, CA 94089, 1995.

W.H. Inmon. Defining the System of Record for the Data Warehouse. Tech Topic,
1(3). Prism Solutions Inc., 1000 Hamilton Court, Sunnyvale, CA 94089, 1993.

J. Widom. Research Problems in Data Warehousing. In Proceedings of the 4th

130

International Conference on Information and Knowledge Management - CIKM'95.

pp. 25-30, November, 1995.

[10])Inmon. Meta Data in the Data Warehouse. Prism Solutions Inc.. 1000 Hamilton

Court, Sunnyvale, CA 94089, Tech Topic, 1(6). 1996

[11]J. Hammer, H. Molina, J. Widom, W. Labio, Y. Zhuge. The Stanford Data
Warchousing Project. [EEE Data Engineering Bulletin, 18(2), pp. 41-48, 1995

[12]). Wiener, H. Gupta, W. Labio, Y Zhuge, H Molina, J. Widom. A System Prototype
for Warehouse View Maintenance. /n Proceedings of the Workshop on Materialized
Views. pp. 26-33, June 1996.

[13]D. Lomet and J. Widom, editors. Special Issue on Materialized Views and Data

Warehousing, /EEE Data Engineering Bulletin 18(2), June 1995.

[14]S. Abiteboul and A. Bonner. Objects and views. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 238-247, Denver,
Colarado, May 1991.

[15]E. Bertino. A View Mechanism for Object-Oriented Databases. /n Advances in
Database Technology-EDBT'92, Lecture Notes in Computer Science 580. pp. 136-
151, Springer-Verlag, Berlin, March 1992.

[16]S. Ceri and J. Widom. Deriving Production Rules for Incremental View
Maintenance. /n Proceedings of the Seventh International Conference on Very Large

Data Bases - VLDB'91. pp. 577-589, Barcelona, Spain, September 1991.

{171Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a

Warehousing Environment. In Proceedings of the ACM SIGMOD International

131

Conference on Management of Data, pp. 316-327, San Jose, California, May 1995.

[18]N. Roussopoulos. Materialized Views and Data warehouses. In the Proceedings of
the 4'h KRDB Workshop Athens, Greece, August 1997.

{19]S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou. J.
Ullman, J. Widom. The TSIMMIS project: Integration of Heterogeneous Information
Sources. In Proceedings of the | 0oth Anniversary Meeting of the Information

Processing Society of Japan, pp. 7-18, Tokyo. Japan, October 1994.

[20] G. Wiederhold. Mediators in the Architecture of Future Information Systems. /EEE
Compuier, 25(3), pp. 38-49,1992.

[21]V. Vassalos. Y. Papakonstantinou. Describing and Using Query Capabilities of
Heterogeneous Sources. In Proceedings of the twenty third Conference on Very

Large Databases, pp. 256-265, Athens, Greece, 1997.

[22]C. Li, R. Yereni, V.Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. Uliman, M.
Valiveti. Capability Based Mediation in TSIMMIS. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 564-566, 1998.

[23]J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V.Vassalos.
Template-Based Wrappers in the TSIMMIS System. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 532-535, 1997.

[24] Y. Zhuge, H. Garcia-Molina, J. Wiener. The Strobe Algorithms for Multi-Source
Warehouse Consistency. In Proceedings of the Fourth International Conference on

Parallel and Distributed Information Systems, pp. 146-157, 1996.

[25] W. Labio, H. Garcia-Molina. Efficient Snapshot Differential Algorithms in Data
warehousing. Technical report, Dept. of Computer Science, Stanford University,
132

1995. fip://db.stanford.edu/pub/labio/1995/window.ps.

[26)K. Barker, M.Evans, J. Anderson. Measuring Autonomy in Heterogeneous
Cooperative Systems. Technical Report, TR 92-08, University of Manitoba, Dept. of

Computer Science, 1992.

[27] K. Barker. Taxonomy of Heterogeneity in Multidatabase Systems. Technical Report,

TR 92-10, University. of Manitoba, Dept. of Computer Science, 1992.

[28]J. Widom and S.Ceri. Active Database Systems: Triggers and Rules for Advanced

Database Processing. Morgan Kaufmann, San Francisco, California, 1995.

[29] L. Baekgaard, N. Roussopoulos. Efficient Refreshment of Data Warehouse Views.
Technical Report, Institute for Advanced Computer Study and Dept. of Computer

Science, University of Maryland at College Park.

[30]Y. Zhuge, J. Wiener, H. Garcia-Molina. Multiple View Consistency for Data
Warehousing. In proceedings of the Thirteenth International Conference on Data
Engineering, pp. 289-300, 1997

[3I]N. Huyn. Efficient View Self-Maintenance. /n Proceedings of Workshop on
Marerialized views: Techniques and Applications, pp. 17-25, 1996.

[32]D. Quass, A. Gupta, I. Mumick, J. Widom. Making views Self-Maintainable for Data
Warehousing. In Proceedings of the Fourth International Conference on Parallel

and Distributed Information Systems, pp. 158-169, 1996.

[33]1D. Quass. Maintenance Expressions for Views with Aggregation. Workshop on

Materialized Views: Techniques and Applications, pp. 110-118, 1996.

[34) W.H. Inmon. Building the Data Warehouse, QED Information Sciences, Wellesley,
133

US.A, 1992.

[35] W.H. Inmon. Enterprise architecture for the 90's. Tech Topic, Prism Solutions Inc..

1000 Hamilton Court, Sunnyvale, CA 94089, 1(13), 1993.

[36]S. Ram. Heterogeneous Distributed Database Systems. /EEE Computer. Special

Issue on Heterogeneous Distributed Database Systems, 24(12), December 1991.

[37]W. Kim, J. Seo. Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. /EEE Computer. Special Issue on Heterogeneous Distributed Database
Systems, 24(12), December 1991.

[38]R. Ahmed. P. Smedt, W. Du, W. Kent, M. Ketabchi, W. Litwin, A. Rafii, M. Shan.
The Pegasus Heterogeneous Multidatabase System. /EEE Computer. Special Issue

on Heterogeneous Distributed Database Systems, 24(12), December 1991.

[39]C. Batini, M. Lenzirini, and S.B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Computer Surveys, 18(4) pp.
323-364. December 1986.

{40]C. Chung, Dataplex: An Access to Heterogeneous Distributed Databases.
Communications of the ACM, 33(1), pp. 70-80, 1990.

(41]Y. Brietbart, P. L. Olson and G.L. Thompson. Database Integration in a Distributed
Heterogeneous Database System. /n Proceedings of International Conference on

Data Engineering, IEEE CS Press, pp. 301-310, Los Alamitos, California, 1986.

[42]) T.A Landers and R.L. Rosenberg, An Overview of Multibase — A Heterogeneous
Database System. Distributed Databases, H-J. Schneider, ed., pp. 153-184, North-
Holland, Amsterdam, 1982.

134

Appendix 1

Metadata Mapper for Example 1

EDS Entities

EDS entity name | Entity Description

Client The entity stores information about all the clients of the company.
Legacy System

Legacy system name | Legacy description

Mortgage system System responsible for the processing of mortgages. .
Investment system System responsible for the processing of investments.

Legacy System Entities

Legacy system name | Legacy entity name Entity Description
l\-ri;ngage system Customer Mortgage client.

Investment system Investor Investment client.

EDS Legacy Entity Mapping

EDS entity name Legacy system name | Legacy entity name

Client M(;'ngage system Customer.

Client Investment system Investor.

»d

wh

EDS Entity Attributes

EDS entity EDS entity attribute Datatype Position | Nullable | Default | Code Definition

name name

Client clie_num number(9) 1 No EEPD | Client number.

Client clie_last_nam char(30) 2 No SEPD | Last name.

Client clie_first_nam char(30) 3 No SEPD | First name.

Client clie_sin_num number(12) 4 No SEPD | Sin number.

Client clie_gender cde number(1) 5 No SEPD | Gender code.

Client clie_birth_dte date 6 Yes SEPD | Birth date.

Client clie=marital _fstatus=cde number(}) 7 No 1 SEPD | Mantal status.

Legacy Entity Attributes

Legacy system Legacy entity Legacy entity attribute Datatype | Position | Nullable | Default { Code | Definition

name name name

Mortgage system | Customer cust_num number(9) | 1 No EAP | Customer
D number.

Mortgage system | Customer cust_last_nam text(30) 2 No ASD | Last name.

Mortgage system | Customer cust_first_nam text(30) 3 No ASD | First name.

Mortgage system | Customer cust_gender_txt text(1) 4 No ASD | Gender

code.
Mortgage system | Customer cust_marital_status_txt text(1) 5 No ASD | Marital
status.

Investment Investor invs_sin_num number(l |1 No ASD [Sin

system 2) number.

Investment Investor invs_last_nam text(25) 2 No ASD [Last name.

system

136

Investment Investor invs_first_nam text(25) 3 No ASD | First name.

system

Investment Investor invs_gender_cde number(1) | 4 No ASD | Gender

system code.

Investment Investor invs_birth_dte date 5 No ASD | Birth date.

system

EDS Legacy Attribute Mapping

EDS eﬁy EDS entity attribute Legacy system Legacy entity Legacy entity attribute Attribute conversion

name name name name name procedure name

Client clie_last nam Mortgage system | Customer cust_last nam

Client clie_last nam Investment system | Investor invs_last_nam truncate_last_nam

Client clie_first nam Mortgage system | Customer cust_first_nam

Client clie_first_nam Investment system | Investor invs_first_nam truncate_first_nam

Client clie_sin_num Investment system | Investor invs_sin_num

Client clie_gender cde Mortgage system | Customer cust_gender_txt convert_gender

Client clie_gender_cde Investment system | Investor invs_gender_cde

Client clie_birth_dte Investment system | Investor invs_birth_dte

Client clie_marital status_cde | Mortgage system | Customer cust_marital_status_txt convert_marital_statu
s

EDS Entity PK Attributes

EDS entity PK EDS entity EDS entity PK attribute PK Attribute

num name name position

1 Client clie num H

137

Legacy Entity PK Attributes

Legacy entity PK Legacy system Legacy entity Legacy eatity PK attribute PK Attribute
num name name name position
2 Mortgage system | Customer cust_num]

3 Investment system | Investor invs_sin_num 1

EDS Legacy PK Mapping

Legacy entity PK EDS entity PK Secondary entity PK generation

num num algorithm

2 1 generate_cust_num

3 |

Cross Referencing

Cross referencing | Legacy entity PK EDS entity PK Legacy EDS value

num num num value

1 3 1 508133212 | 4567

2 2 1 6789 4567

Conversion Procedures

Conversion procedure

Procedure text

truncate_last_nam

input : last_name // upto 30 character long //

/

output : trunc_last_name // truncate the input (last name) to 25 characters

var : trunc_last_name;

38

6¢1

IX3) [elURW : JeA

// P32IOAIP
10J PadIOAIp ‘pawurew 10j patuew 9j3uls 10§ 3(8uis ;71X [eirew : ndino

JPI2I0AIP 10 € ¢ palLeW 10j 7 “93uls 10j | /7 9p0d jeiuews : yndui

SNe)S [eILewW UIAUO0D

‘pud

{(1xa1 19puad)umias

31 pud

‘4 — 1X9) 19puad

udyl 7 = 2pod> 1opudd j

g1 pua

‘I — 1Xa1 19pudd

uay} | = apod 1pudd i

uidaq

1X91 19pudd : rea

// d[ewdy 10J J ‘afew 10§] // 1X 12pudd : indino

// AeW3j 10j T ‘dfew 10j | // 3pod 13puad : indui

1apuad udoAuo0d

‘pud

{(awreu 1551 ounn)wmids

{7 1*owreu 1S11J)NSQNS —> JWRU ISI JUN)

uidaq

‘ouwreu 1s11j Jumnu : Iea

"
s1a1oerRyd G 0) (sureu ise]) indui 3y edunn 7 dureu isiy suny : ndino

// 8uof 191dereyd ¢ 01dn /7 sureu suy : ndun

weu 1si1j Jjeduns)

‘pua

‘(oureu ise| SuUNNHULINI

{(¢T' *owreu Ise|)NSQNS —> WU ISB[dUNA

widaq

or!

‘pud

{(A9) paresouad)umal

‘winu 1SN 1xau 193 =: Aoy paressudd

uidaq

A9y paresauad : indino

‘indun

wnu jsnd eIdudd

‘pua

{(x3) [enrewr)umiol

g1 pud

¢ PIJIOAL(, - 1XJ) [wILleW

usy) € = 3p0d_[EILrewl JI

1 pua

‘ PALIBR, —> 1X3) [elLew

udY) 7 = 3pod”_[erLrew 1

31 pud

¢ 913uig, — 1Xa1 [RILIRW

uay) [= 2pOJ [eNIRW JI

widaq

Appendix 2

Metadata Mapper for Example 2

EDS Entities

EDS entity name | Entity Description

Client The entity stores information about all the clients of the company.
Legacy System

Legacy system name | Legacy description

Mortgage system System responsible for the processing of mortgages. .

Legacy System Entities

Legacy system name | Legacy entity name Entity Description
Mortgage system Customer Mortgage customer.
Mortgage system Address Customer’s address.
EDS Legacy Entity Mapping

EDS entity name Legacy system name | Legacy entity name
Client Mortgage system Customer.

Client Mortgage system Address.

141

EDS Entity Attributes

EDS entity name EDS entity attribute name Datatype Position | Nullabl | Default | Code | Definition
e
Client clie_ num number(9) 1 No ESD | Client number.
Client clie_last nam char(30) 2 No ESD Last name.
Client clie_first_nam char(30) 3 No ESD First name.
Client clie_addr_linel_txt char(30) 4 No ESD | Address line 1 text.
Client clie_addr_city_nam char(30) 5 No ESD | City.
Client clie_addr_country_cde number(l) |6 No ESD | Country.
Legacy Entity Attributes
Leiacy system | Legacy entity | Legacy entity Datatype Position | Nullable | Default | Code Definition
name name attribute name
Mortgage system | Customer cust_num number(9) |1 No SAPD | Customer
number.
Mortgage system | Customer cust_last_nam text(30) 2 No SAPD | Last name.
Mortgage system | Customer cust_first nam text(30) 3 No SAPD | First name.
Mortgage system | Address addr_num number(9) |1 No EAPD | Address
number.
Mortgage system | Address addr linel_txt text(30) 2 No SAPD | Address line 1
text.
Mortgage system | Address addr_city nam text(30)) 3 No SAPD | City.
Mortgage system | Address addr_country_cde number(l) |4 No SAPD | Country.
Mortgage system | Address addr_cust_num number(9) |5 No SAPD | Customer
number.

EDS Legacy Attribute Mapping

EDS entity EDS entity attribute Legacy system Legacy entity Legacy entity attribute | Attribute conversion
name name name name name procedure name
Client clie_num Mortgage system | Customer cust_num

Client clie_num Mortgage system | Address addr_cust_num

Client clie_last nam Mortgage system | Customer cust_last nam

Client clie_first nam Mortgage system | Customer cust_first nam

Client clie_addr_linel txt Mortgage system | Address addr_linel _txt

Client clie_addr_city nam Mortgage system | Address addr_city nam

Client clic_addr_country_cde | Mortgage system | Address addr_country_cde

EDS Entity PK Attributes

EDS entity PK EDS entity EDS entity PK attribute PK Attribute

num name name position

1 Client clie_num 1

Legacy Entity PK Attributes

Leglacy entity PK Legacy system Legacy entity Legacy entity PK attribute PK Attribute

num name name name position

2 Mortgage system | Customer cust_num 1

3 Mortgage system | Address addr_num 1

143

EDS Legacy PK Mapping

Legacy entity PK EDS entity PK Secondary entity PK generation

num num algorithm

2 1

3 1

Cross Referencing

Cross referencing | Legacy entity PK EDS entity PK Legacy EDS value
num num num value

100 2 1 4567 4567

200 3 1 6789 4567

Conversion Procedures

Conversion procedure | Procedure line

number

Procedure text

144

