
Integrating Legacy Systems 

with 

Enterprise Data Store 

BY 

Sonia Narang 

A thesis 
presented to the University of Manitoba 

in partial fulfillment of the 
requirements for the degree of 

Master of Science 

Department of Computer Science 

Winnipeg, Manitoba, Canada, 2000 

OSonia Narang 2000 



National Library BibKio(h$ue nationale 
du Cana a 

Acquisitions and Acquisitions et 
Bibliogiaphic Services senrices bibliographiques 

3QS WeMnglon Street 395, rue Wellington 
OtiriwaON K I A W  OniwaON K1AON4 
Canibe canda 

The author has granted a non- 
exclusive Licence allowuig the 
National Library of Canada to 
reproduce, loan, distribute or sel1 
copies of this thesis in microfonn, 
paper or electronic formats. 

The author retains ownership of the 
copyright in ths thesis. Neither the 
thesis nor substantial extracts 60m it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thése. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits saas son 
autorisation. 



THE UNIVERSITY OF MANITOBA 

FACULTY OF GRADUATE STUDIES 
***** 

COPYRIGHT PERMISSION PAGE 

Integrating Legacy Systems with Enterprise Data Store 

A ThaWPracticum submitted to the Faculty of Graduate Snidies of The Univenity 

of Manitoba in partial fiWhnent of the requirements of the degree 

of 

Master of Science 

SONIA NARANG O 2000 

Permission has ôeen mnt td  to the Libirry of The University of Manitoba to lend or rU 
copies of this thcric/pnctîcrm, to the National Libmry of Canada to microfilm this 
thesidpricticum and to Iend or aell copies of the illm and to D~ssemtions Abrtncts 
International to pubiish i n  abstmct of thia thtddpraetleum. 

The author r « m c  other publication dghti, and neithtr tbh thesidprrdicom wr extensive 
extracts from it mry k p w t d  or othemise repruduced without the author's wrîtten 
permission. 



Integrating data fiom multiple, heterogeneous databases and other information sources 
lias bsrii oiie OC tiir leadhg issues in database research and industry. There are two 
approaches towards solving the data integration problem - Multidatabase Systems and 
Data Warehousing. This thesis contributes towards solving the problem of data 
integration using the data warehousing approac h. This thesis argues that the operational 
data store (ODS) fails to provide tnie operational integration and introduces a new data 
integration architecture by defining an architectural construct - the Enterprise Data Store 
(EDS). An Enterprise Data Store is a repository of data that represents an inteyrated virw 
of enterprise operations and is built for corporate-wide operational informational 
processing and transactional processing of cornmon business operations. This thesis 
presents an architecture and a comprehensive set of algorithms for synchronizing the EDS 
with the operational systems. The phi losophy behind the EDS synchronization 
architecture is to exploit the metadata component of the data warehouse systrm. .4 very 
important component of the data warehouse metadata siore is the mapping between the 
operational systems and the data warehouse. This research, based on this component of 
the data warehouse metadata store, identifies four kinds of mappings - entity to rntity. 
attribute to attribute, key to key, and record to record rnappings that can be used to 
synchronize the EDS with the operational systems. These mappings are modeled in ü 

metadata mode1 which is implemented as the metadata mapper. The mapping data and 
algorithms stored in the metadata mapper are then used by the synchronization algorithms 
to synchronize the EDS with the operational systems. The proposed synchronization 
architecture offers many advantages and is different From early synchronization 
architectures (e.g., WHIPS) that are based on a materialized view approach. 



Acknowledgments 

1 owe a debt of gratitude to a large number of people for supporting me in the production 
of this thesis. First, my sincere thanks to my supervisor Dr. Ken Barker for his immense 
support and encouragement during this research. He gave me the freedom to explore my 
own ideas and helped me frame them by scrutinizing, and criticizing them from evrry 
angle. His encouragement, patience. and undentanding have helped me accomplish this 
scholarly piece of work. 

Many thanks to my cornmittee members Dr. Peter Graham and Dr. Bob McLeod for all 
thrir insights and comments, and for taking time to read the thesis. 

A special thanks to my best friend Deepti Mathur without her love, help, understanding 
and care this success was impossible. You gave me the confidence and strength through 
out this struggle. You were always there as a true friend whenever 1 needed your help and 
support. 1 am indeed fortunate to have a friend like you. 

A loving thanks to my Fiancde Jason Paul for always brightening my days with his 
beautiful smiles, cute little notes and beautiful roses. You kept the romance in my logiçal 
world. Without your love, understanding, patience, and encouragement the road to 
success would not have been so easy. 

This acknowledgment will be incomplete without paying homage to rny family - my 
parents and my two loving sisten. Their immovable confidence, constant encouragement 
and selfless love have helped me climb the ladder of success. You were always there for 
me even though you were miles apart. 



INTRODUCTION ........................................................................................................................................ 8 

.................................................................................. I . I ESISTING API'ROACI4ES TO DATA INTEGRAIION '1 

................................................................................................. I . 2 COMI>ARING THE TWO APPROACHES 13 

................................................. 1.3 THE DATA INTEGRATIoN APPROACH ' ~ A K E N  FOR THIS RESEARCH 14 

.................................................................................... 1.3.1 The Problem with the ODS Architecture 15 

............................................ 1.3.2 Proposed Architectrcral Construct - Enterprise Datu Store (EDS) 1' 

1.4 0 ~ 1 . r i . 1 ~ ~  OF THE T t w s  .................................................................................................................... 18 

RELATED WORK ................ L. ................................................................................................................ 20 

2 . I DATA W ~ ~ i : i i o u s i ~ ~  ......................................................................................................................... 21 

............................................................... ........... 7.1.1 l n h t r i u l  Perspective on Data Warchuusing ., I I  

................................................................................................................................. 2.1 . I . 1 Daia Warchousc 21 

........................................................................................................................ 2.1 . 1.2 Optmtional Düti Store 21 

.......................................................................................................... 2.1. 1.3 Dcftninp the Systcm of Record 23 

............................................................................................................................................. 2.1 . I . J Metüdata 24 

............................................................................................................... 2.1 . 1.5 Corporrii r. Data Architecture 24 

............................................................................ 2.1.2 . 4cudemic Perspective on Datu Wurehousing 3 

................................................................................................................ 2.2 M u ~ T t u ~ ' r n o ~ s E  SYSTEMS 39 

.................................................... 2 2 . 1  Dura Translation and Integrarion in Multidutabasr Systems 30 

....................................................................... 2.2.2 Overview of Reseurch in ~Miltidutabase Systenis 31 

2.2.3 Dutu Transiation and Integrution in Mulridutabure Systems and Data Warehousing .............. 36 

............................................................. 2.2.3.1 Data Translaiion and Lnicgntion in the WHIPS Architecture 36 

2.2.3.7 Daia Translaiion and Inicgration in the EDS Architectur r.. ............................................................. 3h 

ENTERPRISE DATA STORE .................................................................................................................. 38 

............................................................ 3.1 C HARACTERISTICS OF THE ENTERPRISE DATA STORE (EDS) 38 

........................................................................................................................ 3.1. 1 Subject Oriented. 39 

..................................................................................................... 3.1.2 Disrributed System of Record JO 



3 . / . 5 Dira1 Currency of Data .............................................................................................................. 42 

3.1.6 Current. Detuileci. N o  History and No Summury ....................................................................... 42 

3.1. lnfirntationul und Transucrional Processing ......................... ... ........................................ 43 

....................................................................... 3.1. Y ïomparing the Rrengineered ODS and the EDS 43 

3.2 CORIJO~UTE DATA ARCHITECRJRE ....................................... ., ......... 44 

3.2.1 Curpurate Dutu Architecture w~th Applicutiun Systems, ODS. und Dorcl Warehowe ............... 45 

3.2.2 Proposed Curporure Duru .4 rchitecttrrr wirh r lpphi ion Svstems. EDS. und Dutu Wurcho1rsc.4' 

3.3 ADVANTAWS OF TIIE EDS ARCtl1TEC"rURE ....................................................................................... 48 

3.4 L i ~ u i ~ r r i ~ s  OF '~'IIE EDS ARC~~ITECI'URE ......................................................................................... 50 

SYNCHRONlZlNC THE EDS WlTH THE OPERATIONAL SYSTEMS .......................................... 51 

............................................................................... 4 . 1 E S l ~ ' l ' f ~ ( i  APIbKOACHES FOR SYNCHRONI%A'~ION 51 

4.2 COMPLESITY ~NVOLVED WITH THE EXISTING APPROAC~IES ............................................................... 52 

4 3 S~I'I~A~ILIIY 01: THE EXISTING APPROACHES . ru  ~ I E  EDS ARCIII'~EC'TURE ..................................... 5 3  

4.4 Cl-ASSIFICA'I'ION OF TYPES OF DATA IN THE TWO TIER DATA ARC! {ITECTURE .........................,..m..... 5 5  

4.5 A ~ t c i i l ' r ~ c r u ~ ~  FOR SYNCCIRONIZING 'THE EDS WI'rtl 'ît1E OPERATIONAL SYSTEMS ......................... 59 

4.6 MERITS OF THE PROPOSED SYNC~IRONIZATION ARCHITECTURE ........................................................ 65 

4.7 LIADIL~~IES or: 'rw PROWSED SYNC~IRONIZATION AKCIIITEC~JKE .................................................. 67 

SY NCHRONlZATION ALCORITHMS ..ooo*ee*e**o*ooo*ooeoe*oo..~.. ....................................................... 69 

....................................................................................... 5 . 1 Wt IA'T IS NEEDED FOR SVNCHRONIZATION? 69 

5.2 SYNC'IIRONIZATION LOGIC COMIWNENTS .......................................................................................... 73 

................................................................................................................. 5.1.1. The Metudutu Model -3 

................................................................................................................ j . 7.2 7'he Metudutu Mupper -6 

5 2 . 3  The Dutu Tmnsformarion lnregrarion Manager ........................................................................ 77 

............................................................................................................... 5.2.3.1 Synthronizntion Algoriihms 70 

....................................................................................................... 5.3. ENAMPLES ........................... ,. IO3 

.............................................................................................................................. 5.3. ! Example 1 103 

53.2  Exumple 2 ................................................................................................................................. / I I  

.................................................................................................................. 5.4. WAREHOUSE ANOMALY 116 

................................................................................................................. 5.4. I The Delete unonruly I / N  

5.5 CORRECTNESS OF THE SYNCHRONIZATION ALGORITHMS ................................................................ 121 

............................................................................................................... Corrcctness oî'the meladata mode1 123 

The Correctness of the Mapping Data Stored in the Mciaâata Mappcr .................... .. ............................. 123 

CONCLUSIONS ................~.............................m..m...........................m......................................................... 124 



......................................................................................................................... 6.2 FUTURE RESEARC~I 127 

BIBLIOGRAPHY ..................................................................................................................................... 130 

APPENDIX 1 ................... .... ....... ..., ....................................................................................................... 135 

METADATA MAPPER FOR EXAMPLE 1 .................................................................................................... 135 

APPENDIX 2 ............................... ., ............................................................................................................ 141 

M I ~ D A T A  MAI'PER FOR EXAMPLE 2 .................................................................................................... I j  I 



List of Figures 

............................................... Figure 1 Problem with the ODS Architecture 16 

Figure 2 Common Business and Application Specific Operations ....................... 39 

.......................................... Figure 3 Primary and Secondary Data in the EDS 40 

.......................................... Figure 4 Primary and Secondary Data in the ODS 40 

Figure 5 Corporate Data Architecture with Application systems. ODS 
and Data Warehouse ........................................................................... -45 

Figure 6 Corporate Data Architecture with Application systems . EDS 
and Data Warehouse ........................................................................... A7 

........................................................ Figure 7 Two Tier Data Architecture 56 

Figure 8 Types of Data ........................................................................ -57 

Figure 9 Architecture for Synchronization EDS with Operational Systems ............. 60 

............................................. Figure 10 What is needed for synchronization? 71 

Figure I I Metadata Model ..................................................................... 74 

........................................................... Figure 17 Perform Synchronization 81 

..................................................... Figure 13 Perform EDS Entity Mapping 83 

.................................................. Figure 14 Perform Legacy Entity Mapping 84 

................................................. Figure 15 Perfom EDS Attribute Mapping 86 

.............................................. Figure 16 Perform Legacy Attribute Mapping 88 

............................... Figure 17 Perform EDS Primary Key and Record Mapping 92 

Figure 18 Perfom Legacy Primary Key and Record Mapping ............................ 94 

Figure 19 Maintain EDS Cross Referencing ................................................. 98 

............................................. Figure 20 Maintain Legacy Cross Referencing 100 



Chapter 1. 

Introduction. 

Not long apo. managing an enterprise was similar to steering an ocean liner across the 

pacific - slow reaction time. leisurely pace, two deprees of freedom, and an empty ocean. 

Today. managiny an enterprise is more like flying an airlincr over New York City - quick 

reaction time. jet speeds, many degrees of freedom, and a crowded airspace. In the 

cockpit. the pilots depend on their instrument panel to tell them just wliat's happening at 

ariy one moment. 

: Dr. Richard Hackathorn 

Survival has become more and more difficult due to the increased competition and 

complexity in the marketplace. To survive. you have to be "Big". Indeed. it is - the 

survival of the fittest. Corporations today are facing more and more deregulations. 

mcqers and acquisitions [ l ,  31. Ten years ago. businesses were simple, competition was 

less. Each business focused on a specific domain. For example. banks focused on their 

core banking operations, insurance companies sold insurance, mortgage brokers 

transacted mortgages, financial institutes dealt with investments. Over the last ten years. 

many of these organizations have changed their business mode1 and now offer a wider 

product shelE For example, today banks not only dcal with cash management but also 

offer mortgages, insurance and investments. Similarly, financial institutions are not only 

selling investments but also insurance and mortgages. To support the new business mode1 

new application systems were built over tirne. These systems support the functionality 

they were designed for and capture massive amounts of data across divisions and 

departments. As a result most large organizations have between 15 and 40 legacy systems 

8 



that currently store and disseminate massive amounts of data. Instead of building and 

reinforcing business operations. this data. which is dispersed and often duplicated across 

the organization, is eroding the very infrastructure for which it was collected [2]. How 

this huge. redundant, dirty data can be integrated, purged and transformed into 

information. has been an open research problem for years and will persist into the 

hrcseeable future. 

This lack of data integration is recognized by nearly al1 corporations today. Idcally. 

organizations can reengineer to better support the current busincss model. I t  is a daunting 

task to architeci and engineer systems that not only match the company's new busincss 

processes but are also flexible enough to deal with change [3]. 

1.1 Existing Approaches to Data lntegration 

Providing integrated access to muitiple, distributed. heterogeneous databases and other 

information sources has become one of the leading issues in database research and 

industry [JI. The research perfomed in this area can be broadly classifird into two 

categories - 1CliiitiJutubu.w Sysrerns and DUIU Wurchozcsing. 

A multidatabase system (MDBS) is defined as an intrrconnected collection of 

autonomous databases. A multidatabûse system typically intcgrates information from 

preexisting. heterogeneous, autonomous, local databases in a distributed environment and 

presents global users with transparent inethods to use the total information in the system. 

The integration is achieved by building a loyer of software called a multidatabase 

management system (MDBMS) that runs on top of independent database management 

systems (DBMSs) and provides users with the facilities to access various databases. 

Substantial research has been done in query processing and transaction management for 

mu1 t idatabase systems [ 5 ] .  

The database industry recently approached this problem differently. Inmon, introduced a 



new approach to informational processing. He introduced two important architectural 

construc ts - the data wureltouse and the oprrational data store (6.71. To effectively do 

informational processing he proposed that there needs to be a foundation of data. known 

as the data warehouse (or the "information warehouse"). Inmon defines a data warehouse 

as "subject-oriente4 integrated. lime-variant. non-voiutife. contains both summury und 

dercriid dura ro support munagement S decision ". The data warehouse is a collection of 

integrated. historical data. The data warehouse is built from data fomerly residiny in the 

applications of the corporation. Data from each source that may be of interest is rxtracted 

in advance. translated and filtered, merged with other relevant information from other 

sources. and stored in a centralized repository [9]. 

The operational data store (ODS) is the place where collective. corporate onlinr 

operational integration occurs. An ODS is built for satisfying the collective. integrated. 

operational needs of the corporation. Inmon deiines an ODS as "u subjccr-orirnfed. 

inîegruted. volatile. current or neur currrnt collection of dutu in support OJ'cluy 1 0  d ï y  

dcruiled operuthnul clecisions ". An ODS looks very much like a data warehouse when ii 

cornes to its first two characteristics, subject orientation and integration. However. the 

reniaining characteristics of an ODS are quite different from a data warehouse [61. 

The tirst difference between an ODS and a data warehouse is perceived in terms of 

volatility of data. An ODS is volatile whereas a data warehouse is non-volatile. This 

means that an ODS can be updated as a normal part of processing. A data warehouse 

contains snapshots (a database durnp as of some past moment of time); a new snapshot is 

created whenever a change needs to be reflected in the data warehouse. The second 

difierence is the timeliness of the data found in the two environments. An ODS contains 

only current data. A data warehouse contains historical as well as current data. The third 

dit'ference between an ODS and a data warehouse is that an ODS contains detailed data 

only, while a data warehouse contains both detailed and summary data. The fourth 

difference i s  the type of processing performed in the two environments. An ODS is 

mainly built for operational processing whereas the data warehouse is built for 

10 



informational/DSS (Decision Support System) processing. Operational processing refers 

to short running queries that access limited amounts of data. It is used for detailed and up- 

to-the-second decisions. Whereas. infonnational processing refers to complicated long 

running queries that access large amounts of data. It is used for long terni analysis and 

trend detection. 

In spite of the differences between the two environments. similar steps are taken to build 

either a data warehouse or an ODS. The steps are - 

Design a data model - the data model provides the structure and content detinition of 

the informational needs of the corporation. This data model is then implemented into 

a data warehouse or an ODS. 

Locate the best data the corporation has to furnish the structure and content of the 

data mode1 - the best data is determined by evaluating accuracy, completeness. and 

timeliness of source data. This step is referred to as identificurion of the syxtem O#' 

record [&/. The system of record once detined, becomes the source of data For 

populating a data warehouse or an ODS. 

Extract. transfom. integrate and load data - data is transformed as it passes from 

application or operational sources into a data warehouse or an ODS. Transformation 

is needed to map the system of record to a data warehouse or an ODS. The 

transformation includes such activities as converting data, decodinglencoding data, 

altering key structures, altering physical structures, reformatting data, internally 

representing data, recalculating data, and so forth. After the data has undergone 

transformation, loaders are used to load the data. Transformation and integration of 

the operational data is achieved by building a layer of software usually referred to as 

transformation and integration layer. 

Retiesh the data warehouse or the ODS - once the ODS or the data warehouse is 



populated, it must be kept synchronized with the operational systems'. This is 

achieved by capturing the changes in the operational systems and propagating them to 

the data warehouse or the ODS. These changes are reflected in the ODS as updattts 

but a new snapshot is created whenever a new change needs to be reflected in the data 

warehouse. 

1.2 Comparing the Two Approaches 

The fundamental difference betwecn multidatabase systems and data warehousing is that 

the multidatabase system is a logical integration of multiple, heterogeneous. autonomous 

databases while a data warehouse or an ODS is a physical integration. A data warehouse 

or an ODS is a repository of data built by cleaning and integrating data from multiple 

systerns. On the other hand. an MDBMS is a layer of software built to providr an 

intcgnted view of data residing in multiple. heterogeneous. autonomous database 

systems. 

Query processing in a multidatabase system requires determining the appropriate set of 

data sources and generating the appropriate subqueries or commands for each data source. 

Results obtained after the execution of these subqueries are translated, filtered and 

merged. and sent to the user of the multidatabase system. On the other hand. query 

processing in a data warehousing environment is much simpler since the user poses a 

query on a centralized database system. This difference makes query processing in data 

warehousing more efficient as data has already been cleaned and integrated from 

heterogeneous data sources by using a common mode1 after resolving the semantic and 

syntactic differences arnong various data sources. Furthemore, warehouse data can be 

accessed without tying up the original data sources (e.g., holding locks, slowing down 

processing), and is available even when the original data sources are inaccessible. The 

' The tcrms operationai systcms, lcgacy systcms and application systcms will be uscd intcrchangcably throughout the ihcsis. 



warehousing approach may be considered an "active" or "eager" approach to information 

integration. as compared to the multidatabase system approach that is considered 

"passive" or "lazy". where processing and integration starts when a query arrives [9]. 

Anotlier difference between the two approaches is that the data warehouse and the ODS 

are built for querying and analysis while multidatabase systems are built for querying and 

iipdates. In other words. a user can issue an update transaction to the MDBMS layer that 

will translate the global update to the respective local updates. These updates will thçn be 

scnt to the respective local databases for execution. The MDBMS layer is responsible for 

ensuring the consistency and managing the concurrency of global transactions. 

Transaction management in multidaiabase systems is a complicated and interesting 

research area that is not applicable to the data warehousing approach. 

One potential drawback of the data warehousing approach is that queries are limited to 

the data contained in the data warehouse. The needs of users are determined in advance 

and the data relevant to their needs is extracted and maintained in the data warehouse. 

i-lence. the data warehousing approach is only suitabie for users with predictable needs. 

Another drawback is that since the data i s  physically copied from original data sources to 

the data warehouse and is typically refreshed every 1 to 24 hours. it rnay not be as current 

as the data contained in the original data sources [9]. Thus. systems that require querying 

and analysis to be perfonned on the current data will not find the data warehousing 

approach suitable. 

Both approaches are viable solutions to the data integration problem and are appropriate 

for specific domains. We beiieve that in spite of cenain drawbacks with the data 

warehousing approach. it is a much simpler and more attainable solution to the data 

integration problem. Its strengths lie in -: 

I ) Taking away the load of informational processing fiom application data sources. This 

means data can be accessed without tying up the original data sources. User queries 



are no longer dependent on availability of the original data sources. Also. delays in 

query processing caused by busy and slow data sources are also eliminated. 

2 )  It makes query processing more efficient by eliminating the significant processing 

required b r  translation. filtering, and merging of data from multiple, heterogeneous 

and autonomous data sources. 

3) l t  provides the flexibility to modify and store information that is not maintained in the 

original data sources. The data is extracted from original data sources and storcd in a 

data warehouse. This gives users flexibility in analyzing and storing historical and 

summarized information which is inappropriate to store in the original data sources. 

As mentioned above, the first drawback of the warehousing approach - the currency of 

the data is due to the cost incurred in refreshing data in the warehouse synchronously 

with the application data sources. Most data warehouses are refreshed asynchronously 

bctween every 1 to 24 hours depending on the need of the oqanization. I feel that as 

technology advances and more research is done in this area, this drawback may become 

insignificant. The second drawback is that data warehousing is not suitable for users witli 

unpredictable needs. I classi& this as more of an analysis and design problem than a data 

warehousing problem. If analysis and design is done thoroughly to predict the nerds of 

the users there should not be any queries outside the domain of the data warehouse. Also. 

a data warehouse is built in an iterative manner which gives the opportunity to better 

understand md predict users' requirements. 

1.3 The Data Integration Approach Taken for this Research 

This thesis contributes towards the problem of data integration using the data 

warehousing approach. The research to date on the ODS and the data warehouse will be 

used as a framework. This research focuses on operational integration and hence more 

closely nsembles the architectural constnict - the ODS. This thesis argues that the ODS 



architecture does not truly integrate the operations of the enterprise and therefore 

introduces a new architectural construct - the Enterprise Data Store (EDS). The next 

section illustrates this problem with the ODS architecture and explains how the EDS 

resolves the problem. 

1.3.1 The Problem with the ODS Anrhitectum 

Many corporations have established a plethon of older operational applications which 

hlis created what is commonly called the "Legacy System" environment or the "Spider 

Web" environment [6] .  Not only is the customer information scattered over disparate 

operational systems. there are also similar business operations being performed by each 

application system. For instance, a bank may have a loan system, a mortgage system. an 

insurance system, an investment system and a cash management system to manage 

products and services it offers to its clients. Al1 these systems perfonn some cornmon 

hirsinrss operutions such as collecting client information (Name. age. gender, occupation. 

dependents. spouse, address. e-mail. phone. fax), client financial information (assets. 

liabilities. insurance. mortgage), service instructions (electronic fund transfer - EFT. 

statement preferences). product rates (insurance or mortgage or interest rates). payment 

collection. etc. There is operutional rrditnduncy in these application systems. Not only do 

these operations duplicate customer information across different operational systems. 

thrre is also an excessive cost incurred to maintain these operations. Since the customcr 

information was collected over different times it is entirely possible that this information 

is also different across the operational systems. This possibility brings into question the 

validity of information provided by these systems. In other words, which is the most 

accurate and current customer information? 

When building an ODS, such questions are answered during the identification of the 

system of record [8]. Identification of the system of record is a dificult task if multiple 

candidate sources exist. If there is a single source, selecting the "best" source is trivial but 

this occurs rarely in an environment where integration is a prime motivator. If multiple 



sources exist, the selection process wiil ultimately be a complex task requiring 

complicated logic to detemine the best source of data. Even though the ODS is populated 

with the best source of data the other application systems continue to see the incorrect 

data. Consider an example where the client information is scattered over three application 

systems (see Figure 1 ). The client record in the ODS is fomed by getting first narne, last 

name and address fiom Application A. date of birth and gender code from Application B 

and marital status code and spouse name from Application C. Any changes to these fields 

in the operational systems must be captured and synchronized with the ODS. In such 

cases when we have multiple sources foming a systern of record. a very complicated 

synchronization logic is needed as we have more complicated rnappings between the 

ODS data and application sources' data. Furthcr. although we have defined that the best 

source for getting the address for a client is Application A, Application B continues to seti 

- - - - - - - - - 

Client No : 4567 
Last Name : Edward 
First Narne : John 
Age : 42 
Gender : M 
Marital Status : Married 
Address : 1234 St Marys 

Application A 

Clientno : 1123 
Name : J .  Edward 
A S  : 40 
Marital Status : 1 
Spouse Narne :A. Edward 

- 

Client no : 6789 
Lname : Edward 
Fname : J  
Date of Birth : OYl3/lW6 
Gender : 1 
Marital Status : Divorced 
Address : 1833 Broadway 

Application B 

- .  

Client No : 23457 
Last Narne : Edward 
First Name : John 
DateofBirth :05/13/1946 
Gender : 1 
Marital code : 1 
Spouse Name : A. Edward 
Address : 1234 St Marys 

Application C 
Figure 1 

ODS 



different address information as opposed to Application A and the ODS. Moreover a 

client can cal1 his insurance agent for an update on his insurance premium, and ai the 

same time report a change of address. If Application B is the insurance system, then it 

subsequently contains the most current address information that is neither in Application 

A nor in the ODS. Truc operational integration cannot be achieved until we eliininate the 

operu~iond redt~nduncy caused by these common business operations that wi l l in tum 

el iminate duplication of data across legacy systems. 

1.3.2 Pmposed AmhifectumI Construct - Enterprise Data Store ( E N )  

To achieve true operational integration this research proposes a new integration 

architecture def ning a new architectural construct - the E ~ r p r i s e  Dufo Store (EDS). An 

Enterprise Data Store is a repusitory of dutu fhuf reprcsenis un integruted virw of' 

enterprise ope rut ions und is built for corpurute w ide operutiunul infor mu fiund 

processing and trunsuct ionui processing of common business operurions The E D S 

inirgrates and cleans data from disparate operational systcms. It also eliminates redundant 

processing of common business operations by reengineering and rnoving these opcrations 

ont0 the EDS. The EDS truly integrates an enterprise's data by providing a consistent 

view of data across the enterprise. In the above example, al1 the applications and the EDS 

would then see the same view of the data. The EDS is the system of record for the 

common business operations. This means any processes to maintain common business 

operations only exist in the EDS. 

Moving and reengineering common business operatiuns ont0 the EDS complicates 

synchronization of the operational systems with the EDS. In the ODS environment, any 

changes to the operational systems are captured and propagated to the ODS. The direction 

of movement of data is from the operational systems to the ODS. In the EDS architecture. 

dong with the direction of movement of data from the operational systems to the EDS 

data also moves fiom the EDS to the operational systems. This additional direction of 

rnovement of data is due to reengineering and moving of the common business operations 



ont0 the EDS. By moving these operations to the EDS. the EDS becomes the p n m q  

(owns and maintains) source of data for these common business operations and 

operational systems become the secondary (read only). In other words, the application 

processes that maintain this data exist in the EDS. Any changes to this data in the EDS 

rnust be propagated to the operational systems. Hence to keep the EDS synchronized with 

the operational systems, we will need a dual propagation mechanism. This thesis 

proposes an architecture for synchronizing the EDS with the operational systems. It also 

provides algorithms to keep the EDS and operational systems synchronized. Thesr 

ülgorithms use metadata for the synchronization. Though rnetadata is an essential 

component of the data warehouse architecture. the developrnent of this component is 

usually ignored. This thesis also makes a contribution in this area by designing a 

metiidata model to store the mapping between the operational systems and the EDS. This 

model is then used by the synchronization algorithms io synchronize the EDS with the 

operational systems. 

To summarize. this thesis makes the following contributions - 

i. It defines a new data integration architecture by defining an architectural construct. 

the Enterprise Data Store (EDS). 

2 .  l t  provides an architecture and algorithms for synchronizing the EDS with the 

operational systems. 

3. It provides a metadata model to store the mapping between the operational systems 

and the EDS. It also illustrates the use of metadata for synchronizing the operational 

systems with the EDS. 

1.4 Outline Of the Thesis 

A review of literature on data warehousing and an overview of research in multidatabase 

18 



systems are discussed in Chapter 2. Chapter 3 describes the characteristics of the 

Enterprise Data Store and compares them with the Operational Data Store. It also 

discusses the menu and liabilities of the EDS. Chapter 4 presents the architecture b r  

synchronizing the EDS with the operational systems. Chapter 5 describes algorithms for 

synchronizing the EDS with the operational systems. This chapter also presents a 

metadata mode1 and illustrates how metadata can be used for synchronization. Finally. 

Chapter 6 makes some concluding comments and suggests directions for future research. 



Chapter 2. 

Related Work 

This chapter reviews other work related to this thesis by broadly categorizing research on 

the problem of data integration into multidatabase systems and data warehousing. Data 

warehousing has becn a prominent buzzword in the database industry. but attention from 

the database research community has been limited. A noteworthy exception is the 

researchers at Stanford University who have contributed significantly towards the data 

warehousing approach. Due to the difference in industrial and academic perspective. ihc 

related work in data warehousing has been further categorized in this chapter into 

industrial and academic perspective. 

Inmon 16.71 introduced two very important architectural constructs - the data warehouse 

and the operational data store (ODS). There are substantial differences between the two 

constructs and each is built to satisfy specific needs of an organization. The proposed 

rcsearch in this thesis more closely resemblcs the operational data store. This research 

identities the problems associated with the ODS and proposes a new architectural 

construct called the Enterprise Data Store (EDS). Although the ODS is a well-known 

architectural construct in industry, it has not been explored within the database research 

community. This thesis focuses on the architectural construct called ODSlEDS and 

describes a new area of research in data warehousing. 

The rest of the chapter is organized as follows. Section 2.1 presents a review of previous 

work on data warehousing from an industrial perspective and an academic perspective. 

Section 2.2 presents a review of work on multidatabase systems. 



2.1 Data Warehousing 

2. f . 1 Industri8I Perspective on Data Warehousing 

industrial contributions to data warehousing have been made by identifying and defining 

the two architectural constnicts, narnely. the data warehouse and the operational data 

store. This section reviews existing litenture on these constructs. Along with these 

constructs it also reviews previous work related to metadata and defining the "systeni of 

record". Further. it reviews literature on corporate data architecture which is also known 

as the corporatr: information factory (CIF). The purpose of this section is to give a holistic 

view of data warehousing that will act as a framework for the thesis. 

2.1 .1. 1 Data Warehouse 

lnmon [7. 34) defines a data warehouse as a subject-oriented. integrated. time-variant and 

non-volatile collection of data in support of management's decisions. As data enters the 

data warehouse from the operational environment. it is transformed and integrated. Upon 

entering the data warehouse. data goes into the current detail data. It residrs there and is 

used until one of the following three events occur: it is purged. it is summarized. and/or it 

is archived. The kinds of data found in the data warehouse are classified as current detail 

data, older detail data. lightl y summarized data. highl y summarized data and metadata. 

The different levels of data within the data warehouse receive different levels of usage. 

lnmon [34] discusses the two most important issues of the data warehouse design - 
granularity and partitioning. lnmon also reviews the technology features required for 

satis factory data warehouse processing. 

2.1 A.2 Operational Data Store 

Inmon [6] defines an architectural construct called the operational data store (ODS). The 

ODS is built for operational integration. There are fundamental and important differences 

between the ODS and the data warehouse. These differences are also noted by Inmon, 



Inihoff and Battas [3]. lnmon [6] defines the ODS as a subject-oriented. integrated, 

volatile. current or near current collection of data in support of day to day detailed 

operational decisions. An essential part of the ODS environment is the definition of the 

system of record. The system of record is the application data that feeds the ODS (as 

detined by Inmon, Imhoff, Battas [3] and lnmon [8]). Inmon [6] also discusses the pros 

and cons of moving the system of record to the ODS. The informational processing found 

in the ODS is for the clerical community making detailed. up-to-the-second decisions. 

This kind of informational processing is very different from that found in the data 

wrirehouse. Inmon also briefly discusses the management of di fferent processing 

windows to section off parts of the day for various activities like loading and 

inSomaiional processing of the ODS. Creation of these windows hclps in managing the 

processing load on the ODS. 

Inmon. lmhofl and Battas [3] give an in depth description of the operational data store. 

They discuss what an ODS will and will not do for a Company. Their work serves as a 

guide for building and maintaining the ODS. The evolving needs of the organization and 

the technological advancements have led to the creation of this architectural model. There 

are three classes of ODSs. These classes are defined based on the frequency with which 

the data is refreshed in the ODS. In Class I ODS. updates in application systems are 

propagated to the ODS in a synchronous (irnmediate) manner. In a Class II ODS. updates 

in the application systems are stored and fonvarded to the ODS on an hourly or even half- 

hourly basis. In a Class 111 ODS, the updates in application systems are propagated to the 

ODS in an asynchronous manner on a twenty-four-hour-or-more basis. The foundation of 

the design of the operational data store is the corporate data model, where major subjects 

(entities) are identified. The authon also introduce the term corporate information factory 

(CIF) and discuss several components constituting the CIF. In depth description of the 

CIF is  also given in Inmon, lrnhoff and Sousa [ I l .  

Inmon, Imhof'f and Battas [3] mention that many companies are finding that they must 

reengineer their systems to better support their current business processes. They suggest 

22 



tiom a technology standpoint that building an ODS and a data warehouse can be helpful 

to the reengineering effort in a number of ways. An exploration of the relationship 

between an ODS and a reengineered environment show that there are a number of 

similarities. The similarities lead to the idea of using an operational data store as a basis 

for reengineering. In this scenario, where the ODS is built for reengineering. applications 

are migrated tiom legacy enviroments to the ODS. Thair research proposes migrating 

the cunrnt system of record over time to the operational data store. This will require 

changes to the transformation and intepration iayer to deal with synchronization of the 

old and new system of record as well as changes to deal with exceptions such as 

collisions. Collisions occur when users simultaneously update the sarne data elements in 

ihe ODS as well as legacy systems. The ODS built for reengineering may have sorne or 

dl of the system of record built inside the ODS. Moving the system of record to the ODS 

requires dual propagation to synchronize the ODS with the operational systems. 

2.1.1.3 Oefining the System of Record 

lnmon [8] notes that the definition of the system of record is one of the most important 

steps in the development of the data warehouse. The system of record entails the 

identification of the "best" source data in the operational environment. The content and 

structure of the system of record are detemined by the data warehouse data rnodel. The 

selection of the "best" source data is determined by the followiny criteria: the most 

accurate source data, the most complete source data, the most timely source data. the 

most structurally compatible data, and the data nearest to the operational source. The 

systrm of record has many different facets. Some of these facets are: the attributes that 

make up the system of record, the mapping between the system of record and the data 

warehouse, summari7ations. frequency of transformations, etc. Each facet must be 

detined by the database designer. The system of record, once defined, then becomes the 

source of data for populating the data warehouse. 



2.1.1.4 Metadata 

lnmon [IO] discusses the importance of metadata in the data warehouse environment and 

describes each component of the metadata in detail. Metadata plays an important and 

active role in the data warehouse environment as compared to the operational 

environment. This is because the data warehouse and the operational systerns serve 

different user communities. IT (Information Technology) professionals are users of the 

operational systems whereas. DSS (Decision Support Systein) anal y sts are iisers o f  the 

data warehouse. A DSS analyst must know what data is available and where it is in the 

data warehouse. This information is provided to the DSS analyst by metadata. The data in 

the warehouse environment spans over a broad spectmm of timr. As a result. the same 

data structure will have multiple forms. To track these changes over a period of timr. 

lnmon sugpests versioning the metadata. 

One of the most important contents of the data warehouse metadata store is the rnapping 

between operational systems and the data warehouse. The typical contents of the mapping 

that are stored in the data warehouse metadata store are: identification of source tields, 

simple attribute to attribute mappings, attribute conversions. physical characteristics 

conversions. name changes, key changes, defaults, logic to choose from multiple sources. 

summarization algorithms, etc. 

It is shown in the following chapters that metadata is also an important component of the 

proposed EDS architecture. This research proposes the use of metadata for 

synchronization of the EDS with the operational systems. 

2.1 41.5 Corponte Data Architecture 

Inmon, lmhoff and Sousa [ l ]  describe the challenges and problems facing organizations 

today and suggest the need for an information ecosystem to overcome these challenges 

and problems. An information ecosystem as a system with different components. each 

serving a community directly while working in concert with other components to produce 

24 



a cohesive. balanced information environment. 

Three fundamental business pressures that are fueling the evolution of the information 

rcosystem are: growing consumer demand, increased competition and complexity. and 

continued demands for improvements in operatiny efficiencies. In response to these vrry 

real business challenges, companies must be able to support more than just classical 

business operations. Cornpetitive corporations need capabilities to suppon business 

intelligence and business management that cm leverage their legacy environment. To 

achieve these capabilities the authors suggest creating an information ecosystem ihüt will 

orchestrate the use of various information technologies and constructs like data 

warehousing, data marts, OLAP, data mining, etc. A corporate information factory (CIF) 

is the physical embodiment of the notion of an information ecosystem. The corponte 

information factory is made up of the following components: applications (legacy 

systems). an integration and transformation layer, data warehouse. data mart. operational 

data store. metadata. the intemet and the intranet. The different componrnts of the CIF 

create a foundation for information delivery and decision-making activities that can occur 

anywhere in the C F .  The steps required in building and manaying the corporate 

information factory are detailed. lnmon [35] discusses how legacy systems. the 

operational data store and the data warehouse rogeiher form an information architecture. 

2.1.2 Academic Perspective on Data Wamhousing 

Despite rapid advances in commercial data warehousing tools and products. most of the 

available systems are relatively inflexible and limited in their features. Most commercial 

data warehousing systems assume that the sources and the warehouse subscribe to a 

single data mode1 (normally relational), that propagation of information from the sources 

to the warehouse is performed as a batch process (perhaps off-line), and that queries from 

the warehouse to the information sources are never needed. Research at Stanford 

University addresses these limitations by proposing a new data warehousing architecture 

called the WHIPS (Warehouse Information Prototype at Stanford) architecture. The 



philosophy behind the WHIPS architecture is to consider data in the warehouse as a 

materialized view (or set of vicws). wherc the base data resides at the information 

sources. The propagation of changes from the base data sources to the warehouse is then 

rssentially a matter of performing materialized view maintenance. This section 

summarizes data warehousing research at Stanford and provides an overview of research 

problems in data warehousing, the WHIPS architecture, the warehouse nnomaly. 

materialized views and materialized view maintenance. 

Widom [9j motivates the concept of data warehousing in the database research 

community. The paper outlines a general data warehousing architecture and proposes a 

numbcr of technical issues arising from the architecture that are suitable topics for 

exploratory research. Widom compares the data warehousing approach to the cxisting 

data integration approaches. She classifies existing data integration approaches as lazy or 

on-demand and data warehousing as eager or in-advance approach. The differences 

betwern the two approaches are also discussed in Hamrner, et ul. [ I l ] .  Widom [91 

proposes the basic architecture of a data warehousing system in this paper. The 

philosophy behind the proposed architecture is to consider the data in the warehouse as a 

materialized view (or set of views). where base data resides at the information sources. 

The author discusses various reasons why conventional view maintenance techniques are 

not suitable for the data warehousing approach and new techniques and algorithms must 

be defined. View maintenance in a warehousing environment is discussed in Zhuge. et ul. 

[17]. Widom [9] also outlines various research problems that arise from the warehousing 

approach like change detection. translation. data scrubbing and warehouse management. 

Hammer, ri al. [ I  1) describe the goal of the data warehousing project at Stanford (the 

WHIPS project). They give a brief overview of the WHIPS project and describe some of 

the research problems k ing  addressed in the initial phase of the project. They consider 

data warehousing as a complement to, not a replacement of, passive query processing 

schemes. They also illustrate the basic architecture of the WHIPS project and describe its 

compomnts (the monitor and integrator) in detail. Monitors detect changes to an 

26 



information source that are of interest to the warehouse and propagate them in a generic 

format to the integrator. Depending on the kind of information source changes can be 

detected by using triggers, examining log files, comparing snapshots and/or modifying 

application sources to emit and notify relevant changes to the monitors. The WHIPS 

project is currently focusing on using snapshot differential algorithms for change 

detection. They have implemented simple differential moniton. 

The integrator described by Hammer, et cri is implemented as a rule-based engine. Each 

rule is responsible for handling one kind of change notification. and is implemented as an 

object-oriented method. A nile is triggered whenever a monitor generates a change 

notification of the appropriate type. The detailed architecture of the WHIPS system is 

present in Wiener. ei al. [12]. As with their earlier work. the architecture is based on a 

data warehouse formed as a materialized view (or views) over the information sources. 

Tliey show that the drcoupling between the base data on the one hand (at the sources). 

and the view definition and view maintenance machinery on the other (at the integrator) 

can iead to incorrect views at the warehouse. They refer to this problem as the ivurelioose 

irpditre unomaly. There are a number of mechanisms for avoiding warehouse updatc 

anomalies such as recomputing the view, storing copies of al1 data involved in views at 

thc warehouse. eager compensating algorithm (Zhuge, rr cil. [17]). 

Wiener, et ul. [ I  21 present a system prototype for warehouse view maintenance. This 

research extends the basic architecture proposed in Harnmer. et al. [ I l ] .  The authors 

discuss important goals that must be fulfilled by the WHIPS architecture Iike plug-and- 

play modularity, scalability, 24 by 7 operation, data consistency, and support for different 

source types. Different modules of the WHIPS architecture are: the view specifier. the 

meta-data store, the integrator. view manager(s), query processor(s), wrappers. sources 

and monitors. the warehouse and the warehouse wrapper. nie prototype is implemented 

using distributed object technology. Each module is implemented as a CORBA (Common 

Object Request Broker Architecture) object, using the ILU (Inter-Language Unification) 

implementation of CORBA. The communication between objects is then perfotmed 

27 



within the CORBA distributed object framework. where each object O has a unique 

identifier used by other objects to identify and communicate with 0. Wiener, er ul. also 

provide preliminary performance results for the WHLPS prototype. 

The materialized view approach is a suitable solution for a data warehouse system. It will 

be shown in the following chapters that this approach is however, not suitable for the 

EDS architecture. This is due to the fundamental differences between the EDS and the 

data warehouse. In this thesis, a new approach and architecture for synchronizing the 

EDS with the operational systems is proposed. The new approach uses the metadata 

çomponent of the data warehousing systrm for synchronization. 

Roussopoulos [ 1 81 describes the versatility and potential of relational views. He discusses 

a relational view and summarizes the most important uses. techniques, and benefits 

pcrtaining to views and then presents several forms of relational views. Roussopoulos 

also rxplains why reusability of views is of great importance in data warehousinp. 

Commercial RDBMSs discard views immediately after they are delivered to the user or 

to a subsequent execution phase. The cost of generating the views is for one-time use 

only instead of being arnortized over multiple and/or shared access. In a data warehouse 

where query execution and I/O are magnified in volume. the mandate for reuse cannot be 

ignored. 

Zhuge. cr (il. [17] introduce a new algorithm known as ECA (Eagrr Compensating 

Algorithm) for avoiding warehouse anomalies. In a warehousing environment. the 

sources can inform the warehouse when an update occurs. This information alone. 

however may not be sufticient to incorporate the update into the warehouse views. Thus. 

the warehouse may have to issue queries to some of the sources to detemine the 

additional data needed to update the views. Since these queries are evaiuated at the 

sources later than the correspondhg update, the sources' States rnay have changed due to 

concurrent updates at the sources. As a result, the execution of the queries at the sources 

rnay retum incorrect data that will lead the warehouse to compute incorrect views. The 



ECA takes steps to avoid these warehouse anomalies. The basic idea is to add to the 

queries sent to the source. compensating queries to offset the efrect of concurrent updates. 

The authors also discuss two improvements to the basic ECA algorithm. First, the ECA- 

Key Algorithm ( E C A ~  that includes a key from every base relation involved in the view 

so dcletions c m  be handled at the warehouse without issuing a query to the source. 

Second. the ECA-Local algorithm (ECA~)  that combines the cornpensating queries of 

ECA with the local updates of E C A ~  to produce a streamlined algorithm that applies to 

general views. An initial performance study in [17] shows ihat ECA is more efficient than 

periodically recomputing the warehouse views from scratch. 

The ECA is based on a restrictive warehouse environment that assumes a single source 

and a single view over several base relations residing on a single source. Zhuge, et td .  

1241 extend this work to the warehouse environment that assumes multiple sources and a 

view over multiple relations residing on multiple sources. In their research. they propose 

a new family of algorithms, the strobe family, for multi-source warehouse consistency. 

Multidatabase systems are another approach to the data integration problem. There has 

been substantial research in this field and some of the research is also applicable to data 

warchousing. The next section reviews the multidatabase system approach to the data 

integration pro blem. 

2.2 Multidatabase Systems 

Database systems serve critical functions and represent significant capital investment. 

Many organizations have several different computers and database systems. In many 

cases, this environment must be preserved while also addressing the need to sharr: 

information on a more global basis. lntegrated access is required to semantically sirnilar 

information at different nodes and with different data representations. Multidatabases 

typically integrate information from pmexisting, heterogeneous local databases in a 

distributed environment and present global users with transparent methods to use the total 



information in the system. A key feature is the autonomy that individual databases retain 

to serve their existing custorner set. 

Providing integrated access to multiple, distributed. heterogeneous databases and other 

information sources has been one of the leading issues in the database research 

cornmunity for over a decade. The research challenges in this area can be broadly 

classifkd into: data translation and integration. query processing. and transaction 

management. Research issues in data translation and integration deal with defininy a 

robust common model. translating and integrating each underiying database (or local 

database) to obtain a unified schema (schema translation and integration) and defining a 

niapping methodology between the uni fied schema and the underl ying databases. Ram 

[Ml discusses some of these challenges in detail. 

2.2.1 Data Translation and lntegmtion in Multidatabaso Systetns 

Data translation is achieved in multidatabase systems by defininy a common model and 

translating the schemas of various database systems into the common model. Iritegration 

is achieved by integrating the translated schemas into a global conceptual schema. 

lntegration is optional in some of the multidatabase architectures and the absence of 

global conceptual schema is considered to be of significant advantage. Oszu and 

Valduriez [ 5 ]  discuss multidatabase system architectures with and without a global 

conceptual schema and present schema translation and integration techniques using the E- 

R (Entity Relational) model as the common model. 

The cornmon model must be powerful enough to express various relationships and 

xmantic information captured by dityerent database systems. Several "semantic" models 

have been developed to serve as the comrnon modrl. For example, the Dataplex [JO] 

multidatrbase system is based on a relational model, the Amoco Distributed Database 

system [41] uses an extended relational model, Multibase [42,43] uses a functional model 

and Pegasus [38] takes advantage of the object oriented model. Once researchers 



construct a common model, they still have the problem of resolving schema and data 

contlicts arnong various database systems to obtain a unified schema. Scmantic 

differences such as synonyms. homonyms, naming contlicts. and differences in attributci 

formats and tield length need to be resolved. Kim and Seo [37] provide a comprehensive 

framawork for understanding schematic and data heterogeneity arnong independently 

created and administered relational databases. An interest ing challenge here is to develop 

automated tools to help identify and resolve these semantic ditTerences. 

ZW2*2 Ovewiew of Researcl, in MuHidatabase Systems 

Ram [36] highlights some of the problems and their solutions associatrd with 

heterogeneous distributed database systems (HDDS). HDDS is another name for 

multidatabase systems. A major challenge of integrating diverse databases is hiding the 

heterogeneity of the constituent databases from usen without sacrificine the autonomy of 

the constituent databases. This implies that HDDS should neither impose changes on 

existing databases nor require any reprogramming of the local database management 

systems (DBMSs). HDDS should appear as a single integrated database. This includes 

hiding the heterogeneity of file systems, data models, database languages. and data 

scmantics. as well as the hardware and operating systems on which the constituent 

databases run. Ram [36] also discusses two approaches for developing HDDSs. She 

classifies the two approac hes as "uni fied schema" and "multidatabase". The first 

approach advocates establishing an integrating model to define a unified schema of the 

constituent databases also known as the global schema. The second appmach argues that 

complete integration is not necessary to preserve the autonomy of the constituent 

databases. Each database continues to operate in an independent manner and also forrns a 

part of a federation of users who cm share information. Multidatabase system 

architectures with and without global conceptual schema are also discussed in 0zsu and 

Valduriez [ 5 ] .  Ram [36] also classifies challenges in a heterogeneous database 

environment into 1) definition of an integrating model, 2) schema integration, 3) mapping 

methodology, and 4) data administration fùnctions like transaction management and 

3 1 



recovery. 

0zsu and Valduriez [SI discuss MDBS architecture with and without a global conceptual 

schema. They define database integration as a process by which information from 

participating databases can be conceptually integrated to fom a single cohesive de h i  tion 

of a multidatabase; in other words. it is the process of designing the global conceptual 

schemas. Their focus is on architectures with global conccptual schemas. They mention 

that data integntion can occur in two steps: schema translation and schema integration. In 

the tïrst step. the participating local database schemas are translated to a common 

intermediate canonical representation using translators [19,23]. In the second step. each 

intermediate schema is integratrd into a global conceptual scherna. Their discussion on 

sçhcma integration is based on the work done by Batini. et al. [34]. Batini. el d. classi ties 

integration methodologies as binary and n-ary. According to Batini. c f  al.. schrrna 

integration occurs in a sequence of four steps: preintegration, comparison. conformation. 

and merging & restnictuting. During the cornparison phase both the naming and 

structural conflicts are identified. Structural conflicts occur in four possible ways: as type 

conflicts. dependency conflicts, key conflicts. or behavioral conflicts. Classification of 

schema and data conflicts among component relational databases organized into a 

multidatabase systern is presented by Kim and Seo [37]. Conformation is the resolution 

of the contlicts that are determined at the comparison phase. In the merging and 

restructuring step al1 intermediate schemas must be merged into a single database schema 

and then restructured to create the "best" integrated schema. Batini, et ul. define the three 

dimensions of merging and restructuring as completeness, minimality. and 

undentandability . 

Kim and Seo [37] provide a fmework for comprehensive enurneration and classification 

of schema and data conflicts among component databases organized into a multidatabase 

system. They define a MDBS as a federation of independently developed component 

database systems (CDBSs). The MDBS provides a homogenizing layer on top of the 

CDBSs giving users the illusion of a homogeneous systern. Since CDBSs operate 



independently they may include structural and representationel discrepancies, or 

contlicts. called schematic and data heterogeneity. These conflicts must be resolved so 

ihat MDBS users can access the underlying CDBSs with a single unifonn database 

language rather than a different database language for each CDB. This resrarch presents a 

comprehensive framework for classifj ing these conflicts. Kim & Seo believe that such a 

tiamework is required to develop an MDBS schema detinition, query language and the 

tools ntxded by multidatabase designers. 

Thry assume the MDBS common data model is relational; that is each CDB schema is 

lirst converted to a semantically equivalent relational schema, and the multidatabase 

schema is constructed as a view of these relational CDB schemas. They classify contlicts 

at the highest level as either schema or data contlicts. There are two basic causes of 

schrma contlicts. First is the use of different structures (tables and attnbutes) for the same 

information. Second is the use of di fferent specifications for the sarne structure; these 

include different names, data types and constraints for semantically equivalent tables 

and/or attributes. Schema conflicts are broadly classified as 1)  table-versus-table 

conflicts, 3) attribute-versus-attribute contlicts, and 3) table-versus-attribute contlicts. 

Broadly. there are two types of data contlicts 1)  wrong data conflicts that are based on 

violating integrity constraints. and 2) conflicts based on different representations for the 

sarne data. 

Ahmed. et al. (381 describe in their research Pegasus, a heterogeneous multidatabase 

systern developed by the Database Technology Department at Hewlett-Packard 

Labontories. To support the various database systems with different data models. 

languages, and services, a powerful data model that will resolve mapping and integration 

problems between diverse data systems is needed. Pegasus takes advantage of object- 

oriented data modeling and programming capabilities. It uses both type and functional 

abstractions to deal with the mapping and integration problems. Data abstraction and 

encapsulation features of Pegasus object model provide an extensible framework for 

dealing with various kinds of heterogeneities in traditional and non-traditional data 

33 



sources. The Pegasus model therefore overcomes many limiting capabilities of mapping 

and inteyration inherit in other multidatabase systems. The model is based on the Iris 

object model. 

The unifying data definition and data manipulation language of Pegasus is the 

heterogenrous object structured query language (HOSQL). Multiple data sources can 

interoperate via Pegasus without having an integrated global schema. A local data source 

is represented in Pegasus by an imported schema that looks like a Pegasus schema. but 

the underlying data i s  in the local data source. A complete or partial mapping of a local 

schema can be visible through Pegasus. HOSQL statements may refer directly to the 

individual imported schemas. Integration in Pegasus is optional and deals with semantic 

and schematic heterogeneity among different databases, al1 of which have imported 

schemes in Pegasus. The authors describe three kinds of semantic and schematic 

heterogeneity; domain mismatch. schema mismatch and object identification. 

Chawaihe. cf ui. [19] describe the architecture of TSIMMIS (The Sianford-IBM Manager 

of Multiple Information Sources) that provides integrated access to diverse and dynamic 

information residing in heterogeneous information sources. TSIMMIS goal is not to 

perform fuliy automated information integration that hides al1 diversity from the user. but 

rather to provide a framework and tools to assist tiumans in their information processiny 

and integration activities. The TSIMMIS project uses a simple, self-describing (tagged) 

object model called the Object Exchange Model (OEM) as its common model. 

The two main components of the TSIMMIS architecture are translators (or wrappers) and 

mediators. Translaton convert queries over information in the comrnon model into 

requests that the source can execute, and convert the data retumed by the source into the 

common modrl. A mediator is a system that refines in some way information from one or 

more sources. A mediator embeds the knowledge that is necessary for processing a 

specific type of information. To build a mediator it is not required that a mediator 

understand all of the data it handles, and no person or software component needs to have 

34 



a global view of al1 the information handled by the system. It is important to note that 

ilirre is no global database schema. and mediators can work independently. The 

TSIMMIS architecture focuses on generating wrappers and mediators autornatically or 

srmi-automatically using a high level description language. 

The WH1 PS architecture. discussed previously. and the TSIMMIS architecture were both 

detined by researchers at the Stanford University. Both architectures focus on integratine 

data from heteropneous data sources but are based on two different approaches towards 

data intrgration. WHIPS is a data warehousing architecture and TSIMMIS is a 

multidatabase architecture. Data translation and integration is inherent in both approaches 

t« data integmtion. Therefore, the warehousing approach can take advantiige of data 

translation and intrgration research in multidatabase systems. The WHIPS architecture 

uses the research in TSI MMIS by using wrappers/translators in their arc hi tectiire. 

Ilammer. et d [23] describe an architecture for template-based wrappers in the 

TSIMMIS system. They introduce a wrapper implementation toolkit for quickly building 

wrappers. The goal is to minirnize the effort that goes into developing and writing 

wrappers and to quickly gain access to new information sources. The philosophy behind 

their "template based" translation methodology is as follows. The wrappet implementer 

specifies a set of templates (rules) witten in a high level declaration language that 

describe the queries accepted by the wrapper as well as the objects it returns. When an 

application query matches a template, an implementer-provided action associated with 

the template is executed to provide the native query for the underlying source. When a 

source retums the result of the query, the wrapper transfomis the answer which is 

represented in the data mode1 of the source into a representation that is used by the 

application. 



2.2.3 Data Tmslation and lntegntion in Multidatabase Systems and Data 

The data translation and integration problem is inherent in both approaches of data 

integration - multidatabase systems and data warehousing. In an MDBS. data translation 

and integration is achieved by defining a global conceptual schema. using a common 

model, that integrates and resolves data and schema conilicts between the underlying data 

soilrces. Unlike a data warehouse. there is no physical implemrntation of the global 

conceptual schema. In a data warehouse system. data translation and iniegmtion is 

achirved by I ) defining and implementing a data warehouse model. and 2) building a 

transformation and integration layer that resolves data and schema contlicts among 

various data sources before loading data into the data warehouse. In both approachrs 

there is an integrating schema (the global conceptual schema in a MDBS and the data 

warehouse schema in the data warehouse) defined using a common model and the data 

tiom the underlying data sources need to be translated and integrated to map to the 

defined schema by resolving schema and data conflicts among various data sources. 

Clence. the research done in data translation and integration in multidatabase systems is 

applicable to data warehousing as well. 

2.2.3.1 Data Tnnslation and lntegntion in the WHIPS Architecture. 

In the WHIPS architecture. data translation is achieved using wrappen or translators and 

data integration is achieved using integrators. The WHIPS architecture makes use of 

sorne of the existing data translation and integration techniques introduced by 

inultidatabase research. Chawathe, et al. [19] and Hammer. et (il. [23] discuss this 

researc h. 

2.2.3.2 Data Tnnalation and lntegrrüon in the EDS Architecture. 

Data integration will be achieved in the proposed EDS architecture by eliminating 

redundant processing of common business operations by reengineering and moving these 



operations ont0 the EDS and also by integrating data belonging to application specific 

oprrations. Data translation between the EDS and the operational systerns will be 

achieved by storing the mapping between the EDS and the operational systems in the 

metadata mapper. 

This chapter has broadly organized research on the problem of data integration into - data 

warehousing and multidatabase systems. The existing literature on architectural 

constructs the data warehouse and the ODS was reviewed. The term Corporatr 

Information Factory was defined and previous work related to mctadata and detining the 

system of record was reviewed. This chapter also presented a comprehensive revirw of 

data warehousing research at Stanford. This review provided an overview of research 

problems in data warehousing, the WHlPS architecture. the warehouse anomaly. 

n~aterialized views and materialized view maintenance. Substantial research has been 

donr in Multidatabase systems. The research challenges in multidatabase systems were 

broadly classified into - data translation and integration. query processing and transaction 

management. The chapter focused on challenges in the area of data translation and 

intrgntion as they are common to both multidatabase systems and data wruehousing. The 

data translation and integration techniques chosen by various architectures were reviewed 

brieîly. Also. a brief overview of research in multidatabase systems was presented. 

1 n this chapter existing data integration approaches and architectures were also brie fl y 

reviewed. The following chapters discuss the proposed data integration architecture using 

the new architectural construct the Enterprise Data Store. The Enterprise Data Store was 

introduced in Chapter 1 and the following chapter discusses its c haracteristics in detail. 



Chapter 3. 

Enterprise Data Store 

A new architectural construct the Enterprise Data Store (EDS) was defined in Chapter I .  

This chapter builds on the previous one by characteriziny the EDS. Since in the proposed 

architecture. the EDS replaces the ODS. the differences between their characteristics are 

disci~ssed in detail. This chapter also reviews the corporate data architecture with the 

application systems, the ODS. and the data warehouse. This is followed by the proposed 

changes to the corporate data architecture with the introduction of the EDS. Section 3.1 

presents characteristics of the Enterprise Data Store and compares them with the ODS. 

Section 3.2 reviews the corporate data architecture with the application systems. the 

ODS. and the data warehouse. This review is followed by the changes to the corporatt: 

data arcliitecture with the new architectural constnict - the EDS. Section 3.3 presents the 

üdvantages of the Enterprise Data Store. Finally. Section 3.4 discusses the liabilities of 

thc Enterprise Data Store. 

3.1 Characteristics of the Enterprise Data Store (EDS) 

This section describes the characteristics of the Enterprise Data Store and compares them 

with the characteristics of the operational data store [3.6]. The EDS has the following 

characteristics-: 

Subject Oriented 

Distributed System of Record 

lntegrated 

Volatile 



Dual Currency of Data 

Current, Detailed, No Summary, No History 

Informational and Transactional Processing 

3. f .  1 Subject Orientsd 

Like the ODS. the EDS is designed and organized around the major subjects of the 

corporation [3]. The major subjects of' the corporation are real world objects like 

CUSTOMER, PRODUCT, PAYMENT. POLICY, CLAIM. SHIPMENT, etc.. that 

col lrctivel y provide a complete and integrated operational de finition of the entcrprisc. 

The Enterprise Data Store is not organized around any specific applications or functions. 

The subject orientation is necessary to represent a collectively integrated image of data 

across the corporation. 

Corn mon Business Operatians 

Application Specific Operations 

Figure 2 : Common Business and Application S p i f i e  Operations 

Operations 



3. L2 Distributed S y s M  of Record 

This is a characteristic specific to the EDS and does not belong to the ODS. Each ellipse 

in Figure 2 represents an application system that consists of data and processes. The 

figure illustrates that there is a fair amount of intersection of data and processes among 

these application sy stems. The intersection of data and processes among these application 

systems represrnts the common business operations whose data and processing should be 

nioved to the EDS. In other words. the EDS becomes the primary data source or the - Sccondwry Data 

l'pdutc 
EDS .- e 

9 

; % 

Primwry Dwtw 

Updatc l'pdutc 

Application A Applicwtion B Application h Application B 

Figure 4 : Primary and Sccondary Figure 3 : Primnry and Sccondwry 
Data  in EDS 

system of record for the common business operations and the application systems become 

the secondary. Afier the removal of common business operations, the application systems 

only consist of application specific operations. Data used for the application specific 

operations is the primary data of the application systems. This data is only maintainable 

by the application systems. If primary data from the application systems is transformed 

40 



and loaded into the EDS, it becomes the secondary data of the EDS. Secondary data of 

the application systems belongs to the common business operations whose processing has 

been moved to the EDS. This data is the primary data of the EDS and is only 

maintainable by the EDS. To summarize. the application systeins and the EDS are made 

up of two kinds of data - primury und secondaiy duta. The primary data can only be 

modified by the system that contains it whereas the secondary data is read only. Figure 3 

and Figure 4 compare the EDS and the ODS with respect to this characteristic. In the 

ODS architecture, the system of record or the primary data only exists in the application 

systems. ln the EDS architecture, some primary data exists in the applications systems as 

well as in the EDS. A formal classification of types of data in the EDS architecture is 

presented in Chapter 4. 

3. î.3 Integrated 

There are two types of integration in the EDS - 1 )  integration of common business 

operations. and 2) integration of application specific operations. Integration of cornmon 

business operations is achieved by identifying the common business operations in the 

lsgacy systems and then rcengineering and moving these operations onto the EDS. 

Integration of application specific operations is similar to the ODS architecture [3]. This 

integration is achieved by selecting, cleaning, transfonning and integrating the best 

application specific data from the legacy systems and then loading it into the EDS. 

3.1.4 Volatile 

Updates on the EDS can also be classitied into "Direct Updates" and "Indirect Updates". 

The direct updates belong to the primary data of the EDS. The processes that maintain the 

primary data exist in the EDS and are responsible for triggering these updates. The 

indirect upàates occur on the secondary data of the EDS and are similat to updates on the 

ODS [3]. These updates are called indirect updates as these updates are generated as a 

result of changes in the legacy or application systems. Every time the data in the legacy 



systems changes, the EDS needs to be synchronized. These changes are captured in the 

legacy systems and are propagated to the EDS by an integration and transformation layer. 

Thcse updates can be performed synchronously or asynchronously. 

3.1.5 Dual Curmncy of Data 

Dual currency in the EDS is caused by the two types of data found in the EDS. Sincr the 

primary data is maintained by the EDS. it is the rnost current data avaiiable. On the other 

hand. the currency of the secondary data depends on when the data is refreshed in the 

EDS from the operational systems. This refreshment of data can be pert'omed 

synchronously or asynchronously. This characteristic is unique to the EDS and is not 

applicable to the ODS architecture. 

Like the ODS. the EDS serves the oprational community and is similar to the ODS in 

this characteristic [3]. The operational community is concerned with day to day decision- 

making. These decisions are up-to-the-second decisions and are not used for long term 

analysis and trend detection. Such decision-making is best supported by detailed data. 

Therefore, the EDS contains detailed data. Also, the EDS is built for transactional 

processing of common business operations that certainly implies the transactional or 

detailed nature of the EDS. 

The EDS should not contain summary data for the following reasons. We have two tiers 

of data in our architecture (see Figure 3). The first tier consists of the operational systems 

and the second tier consists of the EDS. The primary data in the first tier is the secondary 

data in the second tier and the primary data in the second tier is the secondary data in the 

tirst. Any changes to the primary data in either tier must be propagated to the other tier. 

In other words, the two tiers must be synchronized with each other. Undoubtedly 

synchronization will be easier, if the data in the EDS is maintained at an atomic level 



nther than at a rolled up level. Another reason for discouraging summary data in the EDS 

is that summary data is only accurate as of the instant in time it is created. In the very 

next instant summary data may become inaccurate due to the constantiy changing nature 

of the EDS 131. 

Thcre is a very clrar demarcation between the EDS and the data warehouse as  there is 

between the ODS and the data warehouse [3.6.7]. The EDS contains current valued and 

iicar current valued data whereas the data warehouse contains historical data, as well as 

nrar current valued data. There is no place for history in the EDS. If archival data is 

round. there must be strong operational reasons for its presrnce. For example. an 

organization may decide to kecp six months of transactions in the EDS for operational 

anal y sis. 

3. L 7 Infornational and Tmnsactional Plotessing 

The EDS is an architectural construct whrre informational and transactional processing 

CO-exist. The primary data of the EDS is used for operational informational processing 

and on-line transactional processing (direct updates) of the common business operations. 

The secondary data of the EDS is used for operational informational processing and off- 

line transactional proccssing (indirect updates) of the application specific operations. This 

is in contrast to the ODS which supports operational informational processing and off- 

l irae transactional processing on1 y [3]. There is no on-line transactional processing in the 

ODS. 

3.1.8 Cornpuring Che Reengineemd ODS and the €OS 

The ODS has also been perceived as king built For reengineering. In this scenario. 

applications are rnigrated fiom legacy environrnents to the ODS. The ODS (buiit for 

reengineering) is discussed in [3] and wcs also discussed in Chapter 2. The ODS (built for 

reengineering) and the EDS architecture are similar in that both architectures propose 



migrating the system of record to the ODS and the EDS respectively. However, there are 

significant differences between the two architectures: 

1. The EDS provides true operational integration by eliminating redundant processing of' 

common business operations by reengineering and moving these operations ont0 the 

EDS. It explicitly identifles what needs to be reengineered to achievc true opentional 

integration. In the ODS architecture (built for reengineerinp). the idea is to use the 

ODS as a basis of reengineering so some or al1 of the system of record is moved to the 

ODS. 

2. In the EDS architecture, data is either owned by the EDS or an application system. 

This means it is modifiable by one system (EDS or application) and read-only in the 

others. Therefore. collisions ihat are caused by usen simultaneously updating data 

elements in the EDS and an application system are eliminated. In the ODS (built for 

reengineering) architecture, data is modifiable by the ODS as well as application 

systerns and hence collision detection and resolution mechanisms are needed. 

Further. this research contrlbutes by proposing a formal architecture and set of algorithms 

for synchronizing the EDS with the operational systems. 

3.2 Corporate Data Architecture 

This section discusses how different architectural constructs and legacy systems combine 

to create a corporate data architecture. This section is divided into two subsections. The 

first discusses Inmon's corporate data architecture consisting of the application systems. 

the ODS. and the data warehouse. The second discusses the proposed corporate data 

architecture with the application systems. the EDS, and the data warehouse. 



3.2. f Corporute Data Architecture with Application Systems, ODS, and Data 

Warehouse 

The operational data store, the data warehouse. and the application systems combine to 

create a corporate data architecture that lnmon refers to as the "corporute informution 

thta Architecture with 
A~~iication Svstenrp, 006 and Data Warehouse 

/uctury " [1.3]. There are many variations to the corporate information factory (CIF) but 

the focus of this section will be those that include the ODS, the data warehouse, and the 

application systems. Figure 5 shows that raw. detailed data enters into the corporate data 

architecture (or corporate information factory) through old application systems. This data 

is  entered by the users of the applications. The users of the applications are clerks. 

sales/service personnel, and possibly the customers of the corporation themselves. Raw 

data is refined as it passes through the application systems. The data in the application 



systems is best described as detailed, immediate, and appiication-oriented. The 

application data is then fed into the integration and transformation layer (I&T layer). The 

integration and transformation layrr consists of sets of proyrams that integrate and 

trms form functional or application data into corporate data. The functional data is 

organized around specific operations of the organization and hencr has an application 

tlavor to it. Corporatr: data gives a consolidated view of the corporate operations and is 

devoid of any application flavor. As data passes out of the integration and transformation 

hyer it  is simultaneously fed into the ODS and the data warehouse. In sorne cases. data 

from the integration and transformation layer is only fed into the ODS and then the 

rctined data from the ODS is fed into the data warehouse. Note that the data in the ODS 

and the data warehouse is still at a detail b e l .  The detailed data in the data warehouse is 

thrn summarized to produce summary data in the data warehouse. 

Different kinds of processing take place at different components in the corporate 

information factory. The ODS is the architectural constnict that enables operational 

inteprated corporate informational processing to occur. It is possible. though rare. for 

DSSlinfomiaiional processing to occur in the ODS environment. The usas of the ODS 

are concerned with immediate and very direct decisions. such as: 

How much money is in an account right now? 

Where is a shipment right now? 

What coverage is there for a policy right now? 

Classical DSShfonnational processing occurs in the data warehouse. DSS users are 

concerned with decisions that are rnuch broder and long tem. such as: 

What type of customer is the most profitable for our corporation? 

Where has sales activity been highest in the spring-time for the past h c e  years? 

Over the years, how has transaction activity changed? 

To summatize. the standard flow of data throughout the CIF is fiom lefi to right (see 

Figure 5). that is, from the consumer to the application, from the application to the 1 & T 



layer. fiom the I & T layer to the ODS and the data warehouse or from the 1 & T layer to 

the ODS and then fiom the ODS to the data warehouse. Also, as discussed above there 

are fundamental differences between data and processing that occur at each architectural 

coiistruct of the corporate informational factory . 

Warehouse a 

Warchouse 
(Derail) 

Operational Proceuing I Figure 6 : Corponte Data Architecture witb LI 
~ ~ ~ l i c a t i o n  Systems. EDS and Data Warehouse 

3.2.2 Proposrd Cotpomte 081. Amhitectum with Application Systems, 

EDS, and 0.1. Wanhouse 

Figure 6 shows the proposed corporate data architecture with the application systems. the 

EDS. and the data warehouse. Two fundamental changes are made to the corporate data 

architecture when the ODS is replaced with the EDS. The changes are: 

1. Data not only flows from the application systems to the EDS but also flows back from 



the EDS to the application systems through the integration and transformation layer. 

In the EDS architecture, operational integration is achieved by cleaning and 

integrating data fiom disparate application systems and by eliminating redundant 

common business operations by moving and reengineering these operations ont0 the 

EDS. This implies that the EDS contains processes to maintain common business 

operation data and is the primary source for this data. As previously discussed in 

Sections 3.1.2 and 3.1.6 any changes made to the primary data in the EDS must bc 

propagated to the application systems. 

2)  ln the corporate data architecture with the EDS. there is no direct tlow of data from 

the integration and transformation layer into the data warehouse. The data flows from 

the integration and transformation layer into the EDS and then the refined and 

integrated data flows tiom the EDS to the data warehouse. As discussed before. 

applications are the primary source of data for application specific operations and the 

EDS is the pnmary source of data for the common business operations. Application 

specific data is refined and integrated as it passes through the integration and 

transformation layer. Unless the application data from the integration and 

transformation layer is loaded and combined with the common business operations 

data in the EDS. data integration is not achieved. Therefore. it does not make sense to 

feed the data warehouse directly from the integration and transformation layer. 

The EDS contains tnily integrated operational data. Building the EDS creates a 

toundation of data that can be used by new application systems. Since the EDS 

contains the best data that has been cleaned, integrated, and is now residing on the 

new technology, it is logical to use the EDS to feed the data warehouse or any new 

application systems of the organization. 

3.3 Advantages of the EDS Architecture 

The EDS tnily integrates operations of the enterprise. It elirninates the possibility of 

48 



inconsistent data caused by transactional processing of duplicated comrnon business 

operations across operational systems. Further, it provides an integrated view of 

enterprise operations for corporate-wide inforrnational processing. 

The EDS is an enterprise repository of data that becomes the ideal feed for the new 

application systems of the enterprise (Le.. the data warehouse). Data for any new 

application systems must be extracted from the EDS. As the name suggests. it is the 

rnterprise repository of data, any data needed to support new enterprise operations must 

be contained in the EDS. If the EDS does not have the data needed for a new application 

system, it should be modified to contain that data. In other words, existing operational 

systems should only fced the EDS and the EDS should then feed any new applications 

needed by the rnterprise. 

Most organizations have made huge investments in legacy systems. These systems were 

built with the evolving needs of the organizations in mind and are suited to the functions 

for which they were designed. The EDS "thins" legacy systems by taking the load of 

inforrnational processing and common business transactional processing away from the 

legacy systems. This opens a possibility to reengineer legacy systems as needed. The 

EDS also secures the organizations' investment in the legacy systems as they continue to 

CO-exist and even perform better due to the lower operational and informational load. 

Reengineering is the ideal solution to the challenge posed by the lack of integration of 

older applications. Unfonunately. the translation of data models and process models into 

new systems from a base of older, non-integrated operational applications in a rational. 

affordable fashion is a very dificuit transition [3]. The EDS provides an effective 

solution by reengineering only the problem areas responsible for the lack of operational 

integntion. The cost incurred by reengineering the problem areas is very nominal as 

compared to the cost incurred by reengineering the legacy systems. Additionally, 

organizations Save costs by eliminating redundant common business operations across the 

legacy applications. Further, building the EDS is not as mission critical as reengineering 

49 



the older applications. 

Moving common business operations to the EDS gives organizations an opportunity to 

reengineer thesc operations in a logical. phased-in manner. As a result. additional 

functionality can be added to these operations. 

Building the EDS will help organizations take advantage of new technology. 

3.4 Liabilities of the EDS Architecture 

The EDS is an architectural construct where informational and transactional procrssing 

CO-exist. An expensive and complicated hardware and soflware infrastructure is required 

to support the two very different kinds of processing. 

By moving and recngineering common business operations to the EDS there is added 

complexiiy in terms of synchronization of operational systems with the EDS. Recall 

Figure 3. which shows the two tiers of data in an EDS based environment. The first tier 

consists of operational systems and the second tier consists of the EDS. Since updates cm 

happn in either tier a dual propagation mechanisrn is needed to keep the two tiers 

synchronized. Chapters 4 and 5 deal with this issue and present the architecture and 

algorithms for synchronizing the EDS wiili the operational systems. 

As common business operations are moved and reengineered to the EDS. changes are 

required to existing operational systems to support the new hnctionality. These issues 

will be discussed in further detail in the next chapter. 



Chapter 4. 

Synchronizing the EDS with the Operational Systems 

This chapter proposes an architecture for synchronizing the EDS with the operational 

systerns. Before discussing the proposed architecture. a bief review of existing 

syiiçhronizûtion approaches and their suitability to the EDS architecture is presented. 

4.1 Existing Approaches for Synchronization 

The WHIPS architecture for synchronizing the data warehouse with the operational 

systems is presented in [9.11.12]. As discussed in Chapter 2, the WHIPS approach has 

bern to consider the data residing in the warehouse as a materialized view (or set of 

views) over the data in the operational systems. Viewing the problem in this way. 

synchronization of the data warehouse with the operational systems is essentially to 

perforrn materialized view maintenance. Indeed. there is a close connection between the 

view maintenance problem and synchronization in data warehousing [13]. As a result. the 

work done in traditional view maintenance [14.15.16,17] has been adapted to the problem 

of view maintenance in data warehousing. This work on data warehouse view 

maintenance is discussed in [l7.18]. A system prototype (the WHIPS prototype) for data 

warehouse view maintenance is presented in [12]. In spite of the close connection 

bctwern the data warehousing synchronization problem and the conventional view 

maintenance problem. there are a number of reasons why conventional view maintenance 

techniques cannot be directly applied to data warehousing [9]. These reasons are: 1 )  

warehouse views are a function of the history of the underlying base data rather than a 

function of the underlying base data itself, 2) warehouse views are more complicated as 

they tend to contain highly aggregated and summarized information, 3) view definition 

5 1 



and the base data are decoupled as compared to the traditional view maintenance problem 

where the base data updates are closely tied to the view maintenance machinery, 4) 

warehouse views may not need to be refreshed afler every modification or set of 

modifications in the base data, and 5 )  base data may need to be transforrned before it cm 

be integrated in the data warehouse environment. More work on data warehouse view 

maintenance is discussed in [29,30.3 1,32,33]. 

4.2 Complexity lnvolved with the Existing Approaches 

Materialized view maintenance in the data warehouse requires a complicated architecture. 

The complication is due to the decoupling of the base data (at the sources) from the view 

maintenance machinery in the warehouse 191. As mentioned before, sources can inform 

the warehouse when an update occurs, e.g.. a new employee has been hired. or a patient 

bas paid her bill. However, they cannot determine what additional data may or may not 

be necessary for incorporating the update into the warehouse views. When update 

information is received by the data warehouse. the warehousc may issue queries to the 

sources to get the additional information needed for maintaining the view. The queries are 

evaluated at the sources later than the corresponding updates. so the source States may 

have changed. This c m  lead the warehouse to compute incorrect views. This problem is 

refirrcd to as the warehouse anomaly [ I l ] .  There are a number of mechanisms to avoid a 

warehouse anomaly. For exarnple, recompute the view. store copies of al1 relations 

involved in views at the warehouse. eager compensating algorithm [ 1 71, the strobe 

dgorithm [24], efc. 

The drawback associated with the materialized view approach is querying operational or 

base data sources to get the additional information needed to maintain the view. This is 

required because al1 the information needed io maintain the view is not stored in the data 

warehouse. As a result, the architecture for synchronizing the data warehouse with the 

operational systems has to deal with issues like global qwry decomposition, global query 

optimization, distributed query processing, schema translation, merging data, etc. Not 

52 



only are these issues complicated but there is also an overhead attached to each. This 

makes the architecture complex and requires dealing with multiple wrappers. mediators. 

query processors, view managers. etc. Also, interleaving of these queries with the updates 

ürriving from the base data sources may cause inconsistent views in a data warehouse. To 

avoid warehouse view inconsistency, rigid solutions like r u ~ i n g  each update and ail 

actions needed to incrementally integrate i t  into the warehouse as a distributed transaction 

(spanning the warehouse and al1 the sources involved) must be adapted. This approach 

requires dealing with global concurrency control. Another less rigid approach would be to 

detint: new correctness and consistency algorithrns [24]. 

4.3 Suitability of the Existing Approaches to the EDS 

Architecture 

Complex query results are materialized as views to speed up applications that depend on 

ihese views. Alyorithms for materialized view maintenance must balance the cost of view 

update against the qurry response time. 

The phiiosophy that the data residing in the warehouse can be seen as a materialized view 

(or set of views) over the base data in the operational systems is not applicable to the 

EDS and the ODS architectures. A data warehouse is constructed for DSS informational 

processing and hence contains complicated. long running queries that access large 

amounts of data. Materialking queries for faster access i s  a suitable solution for data 

warehousing. On the other hand, an EDS is built for operational processing and contains 

short running queries that access limited amounts of data. Therefore. rnaterializing 

queries may not be efficient for the EDS. Further. due to the volatile nature of the EDS. i t  

may be difficult to balance the cost of view update against the query response tirne. 

There are fundamental differences between the data warehouse and the EDS or the data 

warehouse and the ODS. These differences were discussed in Chapter 1. The first 

difference that weakens the materialized view philosophy is that the EDS is volatile 

53 



whereas the data warehouse is non-volatile. This means when a change occurs in an 

operational system. the EDS is updated in place to reflect the change. This Further implies 

that ü record ro record mapping exists between the EDS and the operational systems. 

Record to record mapping is the mapping between a record in the EDS with the 

corresponding record in the operational system. This contrasts with the data warchouse 

architecture where changes in the operational systems are reflected by creating a new 

snapshot. In such systems, no record to record mapping is maintained between the data 

warehouse and the operational systems. Thus, the data in the EDS can be seen as a replica 

or a copy of the data in the legacy data sources rather than a materialized view over the 

base data. This diffen from conventional replication techniques in that the replica is not 

an exact replica but a transtonned replica. Synchronization of replicas becomes more 

çomplex as replication techniques not only have to deal with heterogeneity, autonomy. 

and distribution of data sources but also with complex data transformations. 

The materialized view philosophy is further weakened by the very nature of data and 

processing found in the EDS. The data found in the EDS is current, detailed. and supports 

operational processing as compared to the data found in the data warehousr that is 

historical. summarized, and supports informational processing. Another kind of 

processing that is specific to the EDS and is not found in the data warehouse is the on- 

l ine transactional processing of the primary data and off-line transactional processing of 

the secondary data. 

LJnlike the data warehouse, the EDS has a dual propagation architecture. Updates on the 

primary data of the EDS are propagated to the operational systems. Considering the 

secondary data in the operational systems as views over the primary data in the EDS, a 

materialized view maintenance architecture is required for the operational systems. 

Unfortunately, operational systems can be legacy or other unsophisticated systems that do 

not understand views. 

In spite of the complexities involved, the materialized view maintenance approach i s  a 

54 



viable solution for a data warehouse system. Because of the fundamental differences 

between the EDS and the data warehouse. the approach is not suitable for the EDS 

architecture. In this chapter a new approach to synchronization is proposed and compared 

to the materialized view approach. The new approach uses the metadata coniponent of the 

data warehousing system for synchronization. 

The rest of this chapter is organized as follows. Section 4.4 gives a formal classification 

of the types of data found in the EDS architecture. Section 4.5 proposes the architecture 

18r synchronizing the EDS with the operational systems. It also compares the proposrd 

architecture with the WHIPS (Warehousr Information Projcct at Stanford) system. 

Section 4.6 descri bes the rnerits of the proposed sync hronization architecture. Final 1 y 

Section 4.7 gives the liabilities of the proposed synchronization architecture. 

4.4 Classification of Types of Data in the Two Tier Data 

Architecture 

In this section a classification of types of data in the two tier data architecture is 

presented. This classification helps in clearly identifying the data in the two tiers that 

needs synchronization. This classification is illustrateci in Figure 7. 

As mentioned before. the application systems and the EDS are made up of two kinds of 

data - the primary and secondary data. One of the steps required for building the EDS is 

identifying the common business operations among the application systems (of tlir 

organization) whose processing should be moved to the EDS. Identification of the 

common business operations divides the data in an application system into the application 

specific data and data for the comrnon business operations. The application specific data 

is the primary data of the application system (APD) and the common business operations 

data is the secondary data of the application system (ASD). Since, the EDS contains only 



EDS 
s 

EDS Secondary Data 
( ESD) 

Kilctusivc EDS 
Primury Data 

Sharcd EDS 
Primrry Dutr 

SAPD) Application 
Sccondrry Daia 

(ASDI 
Esclusive Applicrlion 

Primrry D i l i  
( EAPI)) 

Shrred Application 
Primary Datr 

(SAPD) 

Exclusive Application 
Primary Datr 

(EAPD) 

Applicaliun 
Sccondary Data 

(ASD) 

Application Data Store - B 
I 

Application Data Store - A 
i 

Figure 7 - Two Tier Data Architecture 



a subset of the application pnmary data, it cm be further classilied into - the exclusive 

application primary data (EAPD) and the shared application primary data (SAPD). The 

EAPD is the data that only resides in the application system and is not extracted. 

transformed, and loaded into the EDS. The SAPD is the data that is extracted. 

trrinstàrmed. and loaded into the EDS. The union of the SAPD and the ASD is the total 

data that is shared by an application system with the EDS. 

Formally. as shown in Figure 8. data in an application system data store can br  

represented as : 

Application Systern Data = APD u ASD 
= (EAPD u SAPD) u ASD 
= EAPD u (SAPD u ASD) 
= exclusive application data U shared data 

Exclusive ( E d  \ :Csive \ Application 
Da 

Application Systems EDS 

Figure 8 - Types of Data 



The EDS is the primary source (or the system of record) For the common business 

operations. These common business operaiions are reengineered to support the new 

business mode1 of the organization. The reengineering of the comrnon business 

operations may result in storing some new data in the EDS that does not reside in any of 

ilie application systems. The EDS also contains a subset of data from the application 

systems that is extracted. transfomed. integrated. and loaded into the EDS. In other 

words. data in the EDS can be divided into the reengineered common business 

operations' data and the integrated transfonned application systems' data. The 

reengineered common business operations data 1s the primary data of the EDS (EPD) and 

the intrgraied transfonned application systems data is the secondary data of the EDS 

(ESD). The EPD can be fùrther classified into - the exclusive EDS primary data (EEPD) 

and the shared EDS primary data (SEPD). The EEPD is the data that only resides in the 

EDS and is a result of reengineering common business operations. The SEPD is the data 

belonging to the common business operations that is comrnon to the EDS and the 

application systems. The union of the SEPD and the ESD is the total data that is  shared 

by the EDS with the application systems. 

As s h o w  in Figure 8. data in the EDS can be represented as: 

EDS Data = EPD u ESD 
= (EEPD u SEPD) u ESD 
= EEPD u (SEPD u ESD) 
= Exclusive EDS data u shared data 

Since updates c m  happen on the EDS primary data (EPD) and the application primary 

data (APD), the two tien must be synchronized. As shown in Figure 7, the shared EDS 

primary data (SEPD) must be synchronized with the secondary data of application 

systems (ASDs); and the shared primary data of application systems (SAPDs) rniist be 

synchronized with the EDS secondary &ta (ESD). The two tier data architecture also 



consists of the exclusive application primary data (EAPD) and exclusive EDS primary 

data (EEPD) in the two tiers respectively. The EAPD and EEPD. however. do not need to 

be synchronized. 

As formally derived above, we can visualize the two tier data architecture as containing 

three kinds of data (Figure 8). They are - the exclusive application data, the exclusive 

EDS data and the shared data amony the EDS and the application systems [3).  There is no 

sy nc hronization needed for exclusive application data aiid exclusive EDS data. On the 

other hand. the data shared among the EDS and the application systems must br 

synchronized. 

4.5 Architecture for Synchronizing the EDS with the Operational 

Systems. 

Once the EDS has been loaded with the initial set of data obtained from the operational 

sources. the ongoing task is to keep the data synchronized. 

In the previous section. the different kinds of data in the two tier data architecture were 

dcscribed. Since data modifications can happen on the prirnary data of the EDS (EPD) 

and the primary data of the application systems (APDs), a propagation mechanisrn is 

nccded to keep the two tien synchronized. Figure 9 illustrates the basic architecture t'or 

synchronizing the EDS with the opentional systems. 

There are two tiers of data in the EDS architecture. The first tier consists of data 

belonging to the operational systems and the second consists of data belonging to the 

EDS. For simplicity, in the architecture, two operational systems are considered but thrre 

can be numerous such operational systems. Traditional disk shapes are used to represent 

application data sources, in the general case these sources may include non-traditional 

data such as legacy systems, flat files, etc. There is a fair amount of heterogeneity among 



Exclusive EDS 
Prirniuy Daia 

+ EDS Secondan, 
Dain 

ShnreJ EDS 
Priniory Datn 

Change 
Extractor 

I 

Data Trmsformation 

Change Extractor I 

Metadata 
Mapper 

Sliarcd Application 
Primary Dnta 

(SAPD) 

Exclusivc Applicaiion 
Primory Daia 

(EAPD) 

< , 

Application Data Source - A 

Intqjration Manager (DTIM) 

Change Extractor r l  
4 

Application Data Source - B 

P 
r 
u 
P 
a 

Y 

t 
0 

r 

Figure 9 - Architecture for Synchronizing EDS with Operational Systems 

lz- 
Applicaiion 
Sccondary 

Data 
(ASDI 

Sharcd Applicniion 
Primary Daia 

(SAPD) 

, 

Exclusivi: Applicaiion 
Priinary Data 

(EAPD) 



the autonomous application data sources shown in the architecture [26,27]. 

Heterogeneity can occur in terms of hardware, data managers, query languages. data 

models, etc. Autonomy refers to the distribution of control. It indicates the degret: to 

which individual application systems can operate independently. Although in Figure 9 a 

single. centralized EDS is illustrated. the EDS certainly may be implemented as a 

distributed database system [SI. In fact. data parallelism or distribution may be necessary 

to provide the necessary performance. The EDS cm be implemented using state of the art 

daiabase tcchnology such as an object relational database management system 

(ORDBMS) like Oracle. Infomix, etc. 

Data moditications cm happen to the shared enterprise primary data (SEPD) of the EDS 

as well as to the shared application primary data (SAPD) of the application systems. A 

change extractor is associated with the EDS as well as each application data store. It 

detects and captures data modifications to the data source with which it is associated. A 

difkrent change extractor is needed for rach application source. since the functionality of 

the change extractor is dependent on the type of source (database management system. 

legacy systern. etc.) as well as the data provided by the source. As shown in Figure 9. the 

change extractor captures data modifications only with the shared primary data (SAPD or 

SEPD) of the associated data source. This way the change extractor c m  be optimized for 

drtccting and capturing only the relevant information that is needed for synchronization. 

Change detection is an open research problem that aises fiom the warehousing approach 

[19]. Since the EDS is a full-functionality database system. the change extractor c m  use 

active database capabilities [28] like triggen, niles etc.. to extract the changes of interest. 

In the case of the application systems, the change detection is a much more difficult task. 

The changes are detected in legacy systems by inspecting the log files, modifiing the 

application system to detect the changes of interest, or by using the utility prograrns to 

periodically dump and compare successive versions of files. In considering the change 

detection problem, the application sources have k e n  classified into - cooperative sources, 

61 



logged sources. gueryable sources. and snapshot sources [9.11]. 

. - 
1 he change extractor in the EDS architecture is analogous to the monitor component of 

the WHIPS system. The work done towards change detection in the WHIPS system can 

be applied to the EDS architecture. The WHIPS project implements trigger-based 

monitors for cooperative (relational) sources. and snapshot monitors for flat file sources 

ihat only provide periodic snapshots of the source data. The algorithms for efficient 

change detection using snapshots are discussed in [25]. 

Active research is being done on the problem of change detection. Even though this is a 

legitimate and interesting research question. it is not the one addressed in this thesis. This 

thesis assumes that algorithms for change detection exist. Further, the more pessirnistic 

scenwio is assumed where the change extractor is not sophisticated enough to detect and 

send only the relevant changes needed for synchronization to the data transformation 

intrgration manager (DTIM) layer. That is. the change extractor (as shown in Figure 9) is 

not optimized to detect and send only the changes on the shared primary data of the 

associated data source. Al1 changes (secondary. exclusive primary. or shared primary) to 

the associated data store will be detected and sent by the change extractor to the DTIM 

layer. 

Once the relevant changes from a data source in a tier are exiracted. a mechanism to 

transfom. inteprate. and propagate those changes to the other tier is needed. The data 

transformation integration manager (DTIM) accepts the changes from a data source in 

one tier and generates the corresponding changes for the other tier. The logic needed to 

convert a transaction in one tier to the corresponding transaction(s) in the other tier is 

Formulated by the DTIM using the metadata mapper component of the synchronization 

architecture (see Figure 9). 

Metadata is one of the most important aspects of the data warehouse environment [10]. 

An important component of the data warehouse metadata store is the mapping between 



the operational systems and the data warehouse. The typical contents of this mapping are 

the identification of source fields, simple attribute-to-attribute mappings, attribute 

conversions. physical characteristic conversions. naming changes. key changes. etc. [8]. 

In the EDS architecture the metadata mapper plays a major role in the synchroni7ation of 

the two tiers. The mapping between the EDS and the application data stores is modeled in 

a metadata model. This mapping is then implemented in terms of relational tables. stored 

procedures. and functions. The metadata rnapper component has the following 

advantages. 1 )  Scalability - the EDS is built in an iterative manner. As more data From the 

application data stores is brought into the EDS. the only change required is üddiny a 

suitüble mapping in the mapper. 2) Simultaneous development of the metadata siore - 
though metadata is an essential component of the data warehouse architecture. the 

development of this component is usuall y ignored. The propoxd architecture enables the 

development of a major component of the metadata store and keeps it current with the 

data in the EDS and the operational systems. 

The EDS synchronization architecture proposed in this thesis is based on two centralized 

components - the DTlM and the metadata mapper. These components contain al1 the 

knowledge needed to accept a changelupdate from one tier and conven it to the 

corresponding chrnge(s)/update(s) in the other tier. No quenes are posed on the 

operational systems so no additional information is required for the synchronization. This 

simplifies the architecture tremendously and the components like wrappers. mediators 

[19.20.21], and query processors that are tt nccessary and integral part of the WHIPS 

system ( 1  21 are not needed for the EDS architecture. 

The philosophy behind the EDS synchronization architecture is to exploit the metadata 

component of the data warehouse system to drive the synchronization process. As 

mentioned above, a very important component of the data warehouse metadata store is 

the mapping between the operational systems and the data warehouse. If designed 

properly, the metadata store can contain al1 the information required to map a change in 

one tier to the corresponding change(s) in the other tier. As a result no queries need be 

63 



posed to the operational systems. This approach is quitc different from the WHlPS 

approach that is based on materialized view maintenance. 

In the WHlPS architecture al1 the information required to maintain the view is not stored 

in the data warehousing system. Hence, interaction is required with the operational 

systems in terms of sending queries and receiving answers to those queries. The EDS 

üpproach is to make the EDS system self sufficient by storing al1 the information rcquired 

for synchronization in the metadata mapper. This minirnizes interaction with the 

operational systems. Chapter 5 discusses. in detail. how the metadata mapper and the 

DTlM are used to synchronize the EDS with the operational systems. It also shows that 

the information in the metadata mapper is suMicient to accept a change and convert it to 

the corresponding change(s) in the other tier. 

To sumrnarize. the change extractor associated with a data source in a tier captures the 

changes and passes these changes to the DTIM layer. The DTIM layer uses the 

knowledge stored in the metadata mapper to generate the corresponding changes for the 

second tier. The DTlM then passes the generated changes to the propagator(s) of the 

second t ier. 

The propagator converts the logical transaction (changes generated by the DT l M layer) 

into the physical transaction (changes speci fic to a source). It then executes the 

transaction on the data source with which it is associated. Like the change extractor, a 

different propagator is required for each application source and for the EDS. This is 

because the functionality of the propagator is dependent on the type of the source 

(database system, legacy system, etc.) as well as the type of the data manager and the 

query Iruiguap associated with the source. The functionality of the propagator can be 

compared to wrappers/translators [12,19.20.2 1 ] to a certain extent. A wrapper logically 

convens queries expressed over information in the common model into source-specific 

queries and commands. It also converts data retumed by the source into the common 

model. Similarly, the propagator convens a logical transaction received by the DTlM 

64 



layer into a source-specific transaction. That is. it takes as input a transaction expressed in 

a generic format and convens it into the language of the associated source. The difference 

betwecn a wrapper and a propagator is that a wrapper converts a query expressed in a 

common mode1 whereas, the propagator converts a transaction expressed logically or in a 

generic format. The propagator converts transactions and the wrapper converts queries 

into the language of a source and as a result in the case of propagators. unlike wrappcrs. 

no data is returned from the source and hence no conversion of the returned data is 

required. Thouyh the functionality of the propagator is  a legitimate research area. it is not 

the bcus of this research. 

4.6 Merits of the Proposed Synchronization Architecture. 

The classification of the data in our architecture clearly identifies the data that needs to bt: 

synchronized. The classification explicitly identifies the subsets of data in a data source 

with which the propagator and the change extractor should be associated. 

Collisions occur when users simultaneously update the siune data elements in bath tiers 

(31. Since in the proposed architecture a data rlement is only maintained by a single data 

source (primary data of a data source) and is read only in the other data source (secondary 

data of a data source) the possibility of collisions has been eliminated. 

The proposed architecture facilitates both synchronous and asynchronous propagation. 

Updates in application systems c m  be propagated to the EDS in synchronous or 

ûsynchronous manner. Similarly, updates in the EDS can be propagated to the application 

systems synchronously or asynchronously. Like the ODS, the EDS can be further 

classitïed into Class 1, II and III depending on the speed of refiesh [3]. 

Data modifications to any tier must be transformed before they can be propagated to the 

other tier. The proposed architecture provides a sophisiicated solution by storing the 

transformation logic in the metadata mapper. As mentioned before. the solution provides 



scalability and simultaneous development OF the metadata store. Tools can be developed 

that will automate or semiautomate the implementation of the metadata mapper. These 

tools will read the schema information from the data dictionaries of the data stores 

involved in the integration architecture. This information cm then be presented to the 

user in a mmner that allows the user to easily map entities and their respective attributes 

rrom one data store to the other. Based on the mapping, the tool will then produce the 

respective transformation loyic needed for synchronization. Also, techniques and tools 

can be developed that will automate or semi-automate the process of implementing the 

change extractors and propagators through a tool kit or a specification based approach. 

Before the data from disparate operational systems can be loaded in a data warehousing 

system (EDS or data warehouse) it must be transformed into a common model. 

Sometimes these transformations can be difficult. requiring complicated algorithmic 

conversions. The EDS architecture models these transformations and provides an easy 

and scalable solution for performing complicatrd transformations between the EDS and 

the operational systems. 

The proposed architecture minimizes the interaction required with the opcrationül 

systems required to achieve synchronization. Once the changes are extracted by the 

change extractor no queries need bc sent to the operational systems for the extraction of 

any additional information. nius. the proposed architecture is simpler than the WHlPS 

architecture as it does not have to deal with the issues of global query decomposition, 

global query optimization. distributed query processing, rnulti-source warehousr 

consistency and rnediation. 

The proposed solution also preserves the autonomy of the operational systems and the 

EDS. It does not lock data in the operational systems while the changes are propagated to 

the EDS or vice versa. 

Since the proposed architecture stores al1 the information required for synchronization in 



the metadata mapper. the warehouse anomaly that arises due to interleaving of queries 

with updates arriving from the base data sources is also elirninated in the proposed 

architecture. The next chapter discusses handling of the warehouse anomaly by the EDS 

architecture. 

Finally. when propagating changes tiom one system to the other. when both systems are 

concurrently executing local transactions, mechanisrns to ensure the serializability of 

local and external (propagated) transactions are required. In the proposed architecture 

siich rnechanisrns are not needed because local transactions will act on the prirnary data 

and the external transactions will act on the secondary. Since they are two separate 

subsets of data. serializability is not an issue. The next chapter also discusses how this 

scparation can be achieved at the attribuie level. 

4.7 Liabilities of the Proposed Sy nchronization Architecture. 

Moving the common business operations processine to the EDS requires that existing 

application systems be changed. Application systems should be modified to prevent any 

insert. update and delete operations on the common business operations data. In other 

words. the data belonging to the common business operations in application systems 

should be read only and my screens or application code modifying this data must be 

changed. The EDS is the prirnary source (or the system of record) for the common 

business operations. An application should exist on the EDS to maintain the data 

belonging to the common business operations. Therefore. insert. update and delete 

operations on common business operations data must be performed on the EDS only. 

Before the intrgration of application systems into the EDS architecture, application 

systems were autonomous. With the new architecture, thrre is a dependency in place 

between the application systems and the EDS. This dependcncy is the speed with which 

synchronization occurs between the EDS and the application systems. The dependency is 

more if the propagation fiom the EDS to the application systems is asynchronous. On the 



other hand, the dependency is less if the propagation is synchronous. For exarnple, as a 

part of common business operations processing. client processing has heen moved to the 

EDS. A new client in the EDS is created and it is required to create new accounts for that 

client. Since new accounts will be created by the application system(s). the application 

systemts) is(are) dependent on when the new client information will be propagated from 

the EDS to the application system(s). 



Chapter 5. 

Synchronization Algorithms 

In Chapter 4, an architecture for synchronizing the EDS with the operational systems was 

proposed and various components of the architecture were discussed in detail. The 

synchronization solution proposed in this chapter is based on two key components - the 

metadata mapper and the DTIM layer. This chapter explores these components in detail 

and illustrates the viability of the proposed synchronization solution that uses metadata 

for synclironization. The proposed solution uses the metadata model and the 

synchronization algorithms introduced in this chapter. The metadata model and the 

synchronization algorithms are implemented as the metadata mapper and the DTIM layer. 

respectively. This chapter also introduces a prototype for the metadata mapper and the 

DTIM layer tliat is based on simple mappings between the EDS and the operational 

systems. This prototype can be customized and expanded depending on the requirements 

of the organization. 

The rest of the chapter is organized as follows. Section 5.1 introduces various mappings 

required for synchronization. Section 5.2 explores the metadata mapper and the DTIM 

layer in detail. It presents the metadata model and the synchronization algorithms. 

Section 5 -3 demonstrates the synchronization algorithrns using examples. Section 5.4 

discusses how the proposed solution deals with the warehouse anomaly. Section 5.5 

demonstrates the correctness of the synchronization algorithms. 

5.1 What is needed for synchronization? 

This section defines the various mappings required for synchronization. Four kinds of 

69 



mappings are required for synchronization : the entity mapping, the attribute mupping, 

the key mupping und the record mupping. In addition to these mappings. conversion 

algorithms are required to conven the value of an attribute in one system to its 

corresponding value in the other system. For example, consider an attribute 'gender' in a 

legacy data store defined as a character data type. This attribute stores 'M' for Male and 

'F' for Female. The corresponding mapped attribute in the EDS called the 'gender code' 

is defined as a numeric datatype. and stores 1 for Male and O for Female. If an update 

happens on the attribute 'gender' in the legacy data store, along with the attribute to 

attribute mapping between the EDS and the Irgacy data store. a conversion algorithm that 

will change M MO 1 and F to O is also needed. 

Though the entity mapping and the attribute mapping are self explanatory. the kry and 

record mapping require some explmation. The key mapping maps the primary key (PK) 

attributes between the EDS entities and the corresponding legacy system entities. The 

record mapping maps the tuples between the EDS entities and the corresponding legacy 

system entities. To illustrate this concept further. consider the three data stores shown in  

Figure 10 : the EDS. the legacy data store "Mortgage" and the lcgacy data ston 

"lnvestment". The entity 'Client' in the EDS maps to the entity 'Customer' in the 

mortgage data store and the entity 'Investor' in the investment data store. Figure 10. 

shows the attributes and the primary key attributes (Iabeled PK) of these entities. 

Attribute 'die-nurn' i s  the primary key anribute of the entity 'Client'. bcust-nm' is the 

primary key attribute of the entity 'Customer', and 'invs-sin-num' (invesior's sin 

number) is the primary key attribute of the entity 'Investor'. Also, assume for the purpose 

of this example that the EDS entity 'Client' is the primary source of the client 

information (primary entity) and the legacy entities 'Customer' and 'Investor' are the 

secondary sources (secondary entities). That means any inserts or updates to the client 

information are first perfonned in the EDS and then propagated to the mortgage and 

investment data store. 



EDS 
Entity - Client 

die-num - number(9) - PK 
clie-last-nam - char(30) 
die-first-nam - char(30) 
die-sin-num - number( 12) 
clie~ender-cde - num ber( 1 )  
die-birth-dte - date 
die-marital-stritus-cde - numbrr( 1) 

Entity - Customer 
Legacy lnvestmen t Data Store 

Entity - lnvestor 

nvs-sin-num - number( 12) - PK 
nvs-last-nam - text(25) 
nvs_first_nam - text(25) 
nvs~ender-cde - number( 1 ) 
nvs-birth-die - date 

Figure 10 - What is needcd for synchronization? 

Consider an update on the entity 'Client' in the EDS - 

UPDA TE client SET clie - lus( - nam = 'HARDY' WHERE die-num = 1231 

To synchronize this update, besides entity and attribute mappings, a record of the entity 

'Client' in the EDS (die-num = 1234) needs to be mapped to the corresponding record of 

the entity 'Customer' in the mortgage data store (cust-nm = ?) and the corresponding 

record of the entity 'Investor' in the investment data store (invs-sin-num = ?). To achieve 

this, two kinds of information are needed. First. the primary key attributes of the 

respective systems Le., 'die-num' for 'Client', 'cust-num' for 'Customer', and 

'invs-sin-num' for 'Investor' need to be determined. This piece of information is 
7 1 



referred to as key to key mapping. Second. the corresponding tuples of the respective 

systems that is. the client 1234 in the EDS maps to customer X in the mortgage data store 

and to investor Y in the investment data store must be detemined. This piece of 

infomiation is referred to as record to record mapping or cross referencing. 

The record to record mapping is simpler for updates and deletes than inserts. From our 

example, updates and deletes are just a matter of a lookup h m  a table or a file that stores 

- the 'die - num' 1234 in the EDS which maps to 'cust-num' X in the mortgap data store 

and 'invs - sin-num' Y in the investment data store. However. insert requires that 

corresponding keys for the entities 'Customer' and 'Investor' bc generated before the 

rnapping cari be stored in the lookup table. 

l'o illustrate this tiirther, consider an insert of a new client in the EDS : 

To synchronize the insert on the entity 'Client' in the EDS with the mortgage and 

investment data stores a new customer and a new investor must be created in the two 

systems. This is achieved by the following mappings - thc entity to entity mapping 

determines that the entity 'Client' in the EDS maps to the entity 'Customer' in the 

mortgage data store and to the entity 'Investor' in the investment data store. The aitribute 

to attribute mapping maps the corresponding attributes between the EDS entity 'Client* 

and the mortgage entity 'Customer' as well as the investment entity 'Investor'. For 

example. the attribute to attribiite mapping determines that the attribute 'clie-last-nam' 

of the entity 'Client' maps to the attribute 'cust-last-nad of the entity 'Customer' as 

well as to the anfibute 'invs-last-narn' of the entity 'Investor'. Conversion algonthms are 

also used to convert the value of 'clie-last-nam' into 'cus~lasttnam' and 

'invs-la-nam', respectively. The key to key mapping maps the primary key 'die-nurn' 

of the entity 'Client' to the primary key 'cust-num' of the entity 'Customer' and to the 

72 



primary key 'invs-sin-num' of the entity 'Investor'. The record to record mapping must 

map 'die-num = 4567' to 'cust~num = ?' in the mortgage data store and to 

'invs-sin-num = ?' in the investment data store. To achieve this a key generation 

algorithm is needed to generate a unique value of 'cust-num'. On the other band. no key 

grneration algorithm is needed for 'invs-sin-num' as the value of the sin number is fixed 

and determined by the attri bute to attri bute mapping between the attn bute 'clir-sin-num ' 

in 'Client' and 'invs-sin-num' in 'Investor'. Hence, the value of sin number 

(die-sin-num = 576890234) must be passed from the EDS as the corresponding value of 

'invs-sin-num'. A generated value of 'cust-nurn' and passed value of 'invs-sin-num. arc 

thcn stored in the look up table as record to record mappinys. 

5.2 Synchronization Logic Components 

This section discusses the metadata mapper and the DTlM layer in detail. The four kinds 

of mappings introduced in the previous section are modeled in a rneiadata model. This 

model is then implemented as the metadata mapper. The following section discusses the 

metadata model in detail. 

5.2.i. The Mefadata Mode1 

Figure 1 1 shows the metadata model for mapping between the legacy data stores and the 

EDS. ln the two tier data architecture, one tier belongs to the EDS and the other tier 

belongs to the legacy data stores. The first question that needs to be addressed is - whcrt 

erre rhe legucy duta sources participaring in fhe integrnion architecture? ï h e  entity 

'Legacy System' in Figure 1 1 stores the narnes of the legacy systems participating in the 

integration architecture. The second question to address is - what are the entiftes / tables / 

files in rhe respective legacy systems? The entity 'Legacy System Entities' stores al1 the 

entities belonging to the respective legacy systems. Similarly, the entity 'EDS Entities' 

stores al! the entities belonging to the EDS. The entity - 'EDS Legacy Entity Mapping' 



EDS Entities 
EDS rnuty n 

Enlity desuiptl 4 
EUS Enlity A ~ b u l o s  
EDS enUty n u m  (FK) 
EDS enUty rttnbub nrma 

Annbute damtype 
Atmbute poillion 
Nullible 
Dsfiult 
EEPD of SEPD or ESD 
atlnbulr deflniuon 

EDÇ Enuty d Attnbulei 
EDS mlity PK num 

EDS L s g w  EnYty Mmpping L e a m  S v i m  Entities 
f DS müty nane (FK} 
L o g r y  systmn nuiw (FK) 
L a g r y  entiîy n n w  (FK) 

EDS Log icy  AmibuU Mipping 
EDS mllty nun* B K )  
EDS mUty ambuta nwne (FK) 
L q ~ y  aystm nrme (FKI 
Legacy enlity nuna (FK) 
Legacy mtiv itlrlbul name (FK) 

Anr~bute conuonion pmcsdum n m  ( 

Log- 8 U t y  AMbuUi 
Lwaq iymtem n m e  (FKI 
L q a q  entity n r m  (FK) 
Loguy entiiy alInbute nur 

AMbute dihtype 
Ambuta poution 
Nullrble 
DeifauIl 
WOorSAPOorASDco 
aitributa ds(lni(ion 

Figure I l  - Mctadata Model 

stores the mapping between the EDS entities and the legacy systems' entities for which 

the two tiers must be synchronized. Hence. the entity 'EDS Legacy Entity Mapping' 

stores the knowledge to perform entity to entity mapping between the EDS and the legacy 

systems. 

Each entity rnay have many attributcs but only some may require synchronization. The 

eniity 'EDS Entity Attributes' stores al1 the attributes belonging to the respective entities 

in the EDS. With each attribute it stores its characteristics such as datatype and length, 

attribute definition, nullable, default, and position. Another important characteristic that 



is stored with each attribute is the classification of the attribute to EEPD (Exclusive EDS 

Primary Data), SEPD (Shared EDS Primary Data) or ESD (EDS Secoiidary Data). In 

other words. if this attnbute belongs to the exclusive EDS primary data. the shared EDS 

primary data or the EDS secondary data. Similarly, the entity 'Legacy Entity Attributes' 

stores al1 the attributes belonging to the respective entities in the legacy systems. Along 

with the characteristics of these attributes it also stores the classiIication of the attribute to 

EAPD (Exclusive Application Primary Data). SAPD (Shared Application Primary Data) 

or ASD (Application Secondary Data). This classification shows how a clear sepaniion 

between the primary and the secondary data in the EDS and the legacy data stores is 

ac hieved. 

The entity 'EDS Legacy Attnbute Mapping' stores the mapping between the EDS entity 

attributes and the legacy entity attributes that need synchronization. With each mapping it 

also stores the name of the stored procedure required to convert the value of the primary 

attribute in one tier to its corresponding secondary attribute value(s) in the other tier. SQL 

or Advançed SQL scripts (e.g., Oracle's PL SQL) for these stored procedures are stored 

in the entity - 'Conversion Procedures'. 

The Venn diagrarn shown in Figure 8, broadly characterizes the two tier data architecture 

as containing three kinds of data. The exclusive application data. the exclusive EDS data. 

and the data shared between the EDS and the legacy systems. The entity 'EDS Legacy 

Attribue Mapping' represents the shared data between the EDS and the legacy systems 

ihai must be synchronized. All the EDS anributes mapped with the legacy attributes in 

the entity 'EDS Legacy Anribute Mapping' must have SEPD or ESD code. Similarly. al1 

the legacy attributes mapped with the EDS anributes in the entity 'EDS Legacy Attnbute 

Mapping' must have SAPD or ASD code. Note that the SEPD attributes in the EDS musc 

map to the ASD attributes in the legacy store and the ESD attributes in the EDS must 

map to the SAPD in the legacy store. 'EDS Entity Attributes' minus 'EDS Legacy 

Mapping Attributes' gives al1 the anributes belonging to the exclusive EDS data where no 

synchronization is needed. Al1 these attributes must be characterized by EEPD code in the 

75 



rntity 'EDS Entity Attributes'. Similarly 'Legacy Entity Attributes' minus 'EDS Legacy 

Mapping Attributes' gives al1 the attributes belonging to the exclusive legacy data where 

no synchronization is needed. Al1 these attributes must be characterized by EAPD code in 

the entity 'Legacy Entity Attributes'. 

Another important mapping needed for synchronization is the key mapping. The entity 

EDS Entity PK Attributes' stores the attributes forming the primary key for each eiitity 

in the EDS. Simiiarly. the entity 'Legacy Entity PK Attributes' stores the attributes 

forming the primary key for each entity in the legacy systems. 

The rntities 'EDS Legacy PK Mapping' and 'Cross Referencing' are responsiblr for 

storing the record to record mapping between the EDS and the legacy systems. The entity 

'EDS Legacy PK Mapping' stores the mapping between the primary key attributes of the 

primary entities in one tier with the corresponding primary key attributes of the secondary 

rntities in the othrr tier. With each rnapping it also stores the name of the stored 

procrdure required to generate the primary key value for the secondary entity. SQL or 

advanced SQL scripts (eg., Oracle's PL SQL) for the stored procedures that are necded 

to generate the primary key values for the secondary entities are stored in the rntity 

'Conversion Procedures'. The eniity 'Cross Referencing' stores, for each primary- 

secondary PK mapping, the corresponding tuple mapping. In other words. it stores the 

mapping between each tuple of the primary entity in one tier to the corresponding tuple(s) 

of the secondary entity(s) in the other tier. 

5.2.2 The Metadata Mapper 

The metadata model just described above is implemented in ternis of relational tables 

usine state of art database technology such as an object relational database management 

system (ORDBMS) like Oracle, Infomix. etc. Each entity in the rnodel corresponds to a 

table in the database. These tables are then populated with the data pertaining to the four 

kinds of mappings between the EDS and the operational systems including the SQL 



scripts required for attribute to attribute and primary key to primary key conversions. The 

SQL or Advanced SQL (e.g.. Oracle's PL SQL) scripts stored in the entity 'Conversion 

Procedures' are then implemented as stored procedures in the database. The tables and 

stored procedures together constitute the metadata mapper. Determination and population 

of mapping data a d  conversion functions in these tables is a subject of ongoing research 

but is not the focus of this thesis. As mentioned in Chapter 4. tools can also be developed 

that will automate or semi automate the implementation of the metadata mapper. 

S. 2.3 The Data Transformation Integmtion Manager 

This section introduces the sy nchronization algorithms that constitute the DTlM layer. 

The synchronization algonthms proposed in this section are based on simple mappings 

between the EDS and the operational systems. These algorithms are based on one to one 

mappings between a primary entity in one tier and the secondary entity in the other ticr or 

one to many mappings between a primary entity in one tier and secondary entities in the 

other tier. To support many to one or many to many mappings between prirnary rntities 

in one tirr with the secondary entity(s) in the other tier. changes are required to the 

proposed algorithms. Though the characteristics of the EDS discourage such mappings. 

the algorithms can be easily extended to support them if required. Similarly. cornplicated 

cases of attribute to attribute and. PK io PK mappings may also require changes to the 

proposed algorithms. The purpose of this research is only to build a core framework for 

synchronization of the EDS with the operational systems. The resulting framework cm be 

rasily expanded and modified to support more complicated requirements at a later date. 

As mentioned in Chapter 4, this research assumes a pessimistic scenario in that the 

change exvactor is not sophisticated enough to detect only the changes that are needed 

for synchronization (Le., changes on only the shared primary data). The change extractor 

detects and captures all changes to the secondary data, the exclusive primary data, and the 

shared primary data of the data source with which it is associated. AAer detection, the 



change extractor sends the following parameters to the DTIM layer : 

P - Systent-nome - Narnc of the system EDS or application data store with which 

the change extractor is associated. 

P - E n t a  - nome - Name of the table or entity on which data modification 

accuned. 

P-Operatioo@pa - Type of operation - insert (1). update (U) or delete (D) 

P- Key-liit - Set of the key attribute(s) and their value(s). 

P-Attribute-lisr- Set of other modified attribute(s) and their vaiue(s). For insert 

operations, P-attribute-list will also include the key attributets) and their value(s). 

This is needed for cases where PK attributes of one data store map to PK or non 

PK attributes of the other data store. The values of such attributes are determined 

through attribute to attribute mapping between the two data stores. Therehre. key 

attri bute(s) and their value(s) are included in the P-Attribute-list . 

These parameters collectively represent data modification on the primary data of a system 

and are referred to as the input list. The output of the synchronization algorithms are 

list(s) with list-name = Systemnme 1)' Entity-narne created for each system narne and 

entity name that need synchronization as a result of data modification on the primary data 

of a system. Each list i s  populated with the corresponding system narne. entity name. 

operation type. Attribute-list, and Key-list. These lists are also refened to as output lists. 

The structure of an output list is as follows : 

' The symbol(I signifies concatenation of hvo variables or constants. 



Output - list : System - name (1 Entity-name t S~stem~nume.  Entity-name, 

P-Operation - type. A ttribute - list. Key - iist 

Where Attribute-list stores the attributes and their values for the system narne and cntity 

name that need synchronization. Similarly, Key-list stores the primary key attributes and 

thcir values for the system name and entity name that need synchronization. 

For easier manipulation of these lists. two functions may be defincd that will bc used by 

the sy nchronization algorithms described next. 

Function CET-VALUEJNLIST (attribute) - This function takes as input an attribute 

narne or a PK attribute name and returns the corresponding value for that attribute in the 

P-Attributr - list or P-Key-list. For example. consider P-Anribute-list t die-Arst-nam 

: ' David', die-last-nam : 'Brown'. The function cal1 GET-VALUE-INLIST 

(die-last-nam) will retum 'Brown'. Similarly. consider P-Key-list t clienum : 3456. 

The function cal1 GET-VALUE-INLIST (clie-num) will return 3456. 

Function CET - VALUEOUTLIST (system name, entity name, PK attribute name) 

- This function searches the Key-list in the output list with the output list name = 

System-narne II Entity-nme to determine thc corresponding PK value for the PK 

attribute name. 

5.2.3.1 Synchronization Algorithmr 

Algorithm 1 : Perfomi_rynchronization 

This algorithm synchronizcs the EDS with the operational systems. It takes as input data 

modifications detected and passed by the change extractor on the primary data of one tier 

and produces the corresponding data modifications on the secondary data of the other tier. 

To achieve synchronization, the algorithm performs four kinds of mappings between the 

EDS and the operational systems. They are - entity to entity, attribute to attribute, key to 



key. and record to record mappings as described earlier. 

The algorithm Performsynchronization is forrnally presented in Figure 12. Input to the 

algorithm consists of - the primary system name. the primary entity narne. the operation 

type (insert/update/delete), a set of key attributes and th& values, and a set of modified 

attributes and their values. These parameters collectively represent modification on the 

primary data of a system and are referred to as an input list. The algorithm checks the 

input parameter 'primary system name' (P-System-narnr) on which data moditication 

occurred. If data modification occurred on the EDS (line 1. Figure 12) three algorithms - 
Prrform_EDSentity-mapping (Algorithm 2). Perfom-EDS-atiribute-mapping 

(Al go ri thm 3). and Perform-EDS-PK-and-recordmapping (Algorithm 4) are cal led 

respectively to perforrn entity to entity, attribute to attribute. key to kry. and record to 

record mapping between the EDS and the legacy systems (lines 2-4, Figure 12). Also. if 

the data modification on the EDS is an insert or a deletr operation the algorithm 

Maintain-EDScross-referencing (Algorithm 5) is executed to determine and store (or 

determine and delete) the appropriate record to record mappings between the EDS and the 

legücy systems (lines 5-6, Figure 12). 

If the data modification occurred on the legacy system 

instead of the EDS the corresponding set of algorithms 

Perform-legacyentity-mapping (Algorithm 6). Perform-legacy-attribute-mapping 

(Algorithm 7). Perfo-legacy-PK-and-record-mapping (Algorithm 8) and 

Maintain-legacy-cross-referencing (Algorithm 9) are called by the algorithm 

Perforrn-synchronization (lines 7- 1 1, Figure 1 2). 

As just described there are two sets of algorithms called by Perform-synchronization. If 

the data modification occurs on an EDS entity the Algorithrns 2 to 5 are executcd. If the 

data modification occurs on a legacy entity Algorithrns 6 io 9 are executed. Since. the 

functionality of both these sets of algorithms is quite similar, only Algorithms 2 to 5 are 



Figure 12 - Perform Svnchronization 

Algorithm 1 : Perform-synchronization 

input : A data modification (InserVUpdateIDelete) on the primary data of a system (EDS or 
Application Data Store). The change extractor will capture the operation and pass the following 
parameters to the DTlM layer. 

P-System-name - Primary system name; 
P-Entity-name - Primary entity name; 
P-Operation-type - Type of operation (Insert, Update. Delete); 
P-Key-list - Set of key attribute(s) and its(their) vafue(s); 
P-Anribute-list - Set of modified attribute(s) and its(their) v ~ u ~ ( s ) .  
For inserts, this list will also include the key attribute(s) and 
its(their) value(s); 

These parameters collectively represent a modification on the primary data of a systern and are 
collectively referred to as input /kt.  

output . Corresponding data modification(s) (InserVUpdablDelete) on the secondary data of the 
system(s). 

begin 
if P-System-name = 'EDS' then 

Pertom-€OS-antity-mappm 
(P-Entity-name, P-Operation-type); 

Peflorm-EDSattiibute-mrpping 
( P-Entity-name, P-Attribute-list); 

Perfom-EDS-PK-and-mord-mapping 
( P-Entity-name, P-Operatton-ty pe, P-Key-list); 

if P-Operation-type = '1' or 'O' then 
Maintr in-EDS-crama-mfanncing 

( P-Entity-name, P-Key-list, output-list(s)); 
end if; (if Uperation-type) 

else 
Pertom-lwrcy-entity-mapping 

(P-System-name, ?-Entity-name, Poperation-type); 
Pudom-lqacyjttrlbuta-mapping 

(PSystem-name, P-Entity-name, P-Attribute-list); 
Pedorm_l~a~y~PK_rnd-~ord-mapping 

(P-System-name, P-Entity-narne, 
Poperation-type, P-Key-list); 

if P-Operation-type = '1' or 'O' than 
Malirtrin-lqrcy-cma-nfanncing 

(P-System-name, P-Entity-name, 
P-Key-list, output-list(s)); 

and if; {if P-Operation-type) 
end H; {if P-System-name) 

, end; {End Perform-synchronkation) 



described. Thus, assume the EDS is the system on which data modification occurred i.e.. 

P-System-namc = 'EDS'. Thus Perfonn-synchronization calls the 

algorithms: Perform-EDSentitymapping, Perform-EDS-attri bute-mapping, 

Perform-EDS-PK-and-record-mapping, and Maintain-EDScross-referencing for 

synchronizing the EDS with the operational systems. Discussion on these algorithms 

follows. The first algorithm that is called or executed by Perform~synchronization is 

Prrform-EDSentity - mapping (Figure 13). 

Algorithm 2 : Perfonn-EDS-entity-mapping 

This algorithm performs entity to entity mapping between the EDS and the Legacy 

systems. The algorithm Perfom-EDS-entity-mapping is formally presented in Figure 

13. It takes as input the EDS entity on which data modification occurred and finds the 

corresponding legacy system narnes and their entities that need synchronization. To 

perfom this mapping, selection is perfonned on the entity - 'EDS Legacy Entity 

Mapping' of the metadata mapper where the attribute 'EDS entity narne' equals the input 

parameter primary entity narne (P-Entity-narne) (lines 1-2. Figure 1 3). The parameter 

P-Entity-narne stores the name of the EDS entity on which data modification occurred. 

For each Legacy system name and Legacy rntity narne returned by the selection a list is 

initialized with the list narne = Legacy system name II Legacy entity narne (lines 6-7. 

Figure 13). In other words, a list is initialized for each Legacy system name and Legacy 

entity name that need synchronization as a result of data modification on the EDS entity. 

These lists are also referred to as output lisrs. Each list is then populated with the 

corrcsponding Legacy system narne, Legacy entity name, operation type 

(P-Operation-type), an empty Attribute-list, and an empty Key-list (line 8, Figure 13). 

Aitribute-list in a CLegacy system name 11 Legacy entity name list> will be used to store 

the legacy entity attributes and their values that need to be synchronized as a result of the 

data modification on the EDS entity. Similarly, Key-list in a ~ L q a c y  system name (1 



mure 13 - Perform EDS Entity Ma~ping 

Algorithm 2 : Perfom-EDS-entity-mapping 

input : P-Entity-name; Il EDS entity on which data modification occurred II 
P-Operation-type; 

output : A list containing the system name, entity name. and operation type for each legacy 
system name and entity name that needs to be synchronized. 

var Attribute-list + 4; II empty list to store the corresponding mapped legacy 
entity attributes II 

Key-list t +; Il empty list to store the corresponding mapped legacy 
entity key attributes II 

begin 
T t- (t,l t E EDS Legacy Entity Mapping A A(t), (1) 

A (predicate) = (EDS entity name = P-Entity-name)); 
T[Legacy system name, Legacy entity name] (2) 
t {Legacy system name, 1 Legacy entity name, 

1 f[Legacy system name] II t,[Legacy entity name] A t, E T}; 
if T =  t$ thon (3) 

display 'No sy nchronization is needed. (4) 
The change belongs to EEPO'; 

exit; (5) 
end if; {if T) 
for each tuple(f) in T[Legacy system name, Legacy entity name] (6) 

initialhW a list with list name = (7) 
Legacy system name, 1 Legacy entity name, ; 

add Legacy system name,, Legacy entity name,, (8) 
Poperation-type, Attribute-list, Key-list 

to Iiat with list name = Legacy system name, ) Legacy entity narne, ; 
end for; {for t$ 

and; (End Perform-EDSentity-mapping) 



Fiauie 14 - Perform Legacv Entitv Mapping 

Algorithm 6 : Peifom_legacy~ntity-mapping 

input : P-System-name; II Legacy system name on which data modification occurred II 
P-Entity-name; Il Legacy system entity name on which data modification 

occurred II 
P-Operation-type; 

output : A list containing the EDS system name, entity name, and operation type for each EDS 
entity that needs to be sy nchronized. 

var Attribute-list :t 9; II empty list to store the corresponding mapped EDS 
entity attributes II 

Key-list c $; II empty list to store the corresponding mapped EDS 
entity key attributes Il 

m i n  
T t {t, 1 t E EDS Legacy Entity Mapping A A(t), 

A (predicate) = (Legacy entity name = P-Entity-name 
A Legacy system name = P-System-name)); 

T[EDS entity name] 
t- {EDS entity name, 1 t,[EDS entity name] A t, E T); 

if T = 4 then 
display 'No synchronization is needed. 
The change belongs to EAPD'; 

exit; 
end if; {if T) 
for each tuple(f) in T[EDS entity name] 

initirlizoâ a list with list name = 'EDS' II EOS entity name, ; 
rdd 'EDS', EDS entity name,, P-Operation-type, 

Attribute-list, Key-list 
to Iht with list name = 'EDS' 1 EDS entity name, ; 

end for; (for f) 
end; {End PerfomJegacy-entity-mapping} 



Legacy rntity name  lis^ will be used to store the legacy entity key attributes and their 

values that need to be synchronized as a result of the data moditication on the EDS entity 

Tlie contents of Attribute-list and Key-list are 

determincd by Perform-EDS-attribute-mapping (Figure 15) and 

Pttrform-EDS-PK-and-recordmapping (Figure 17) respeciively. 

Note that if the data modification occurs on the legacy system instead of the EDS. the 

algorithm Perform-legacyentity-mapping (Figure 14) is instead callrd by 

Prrform~synchronization. As mentioned before. the functionality of this algorithm is 

similar to Perform-EDS-entity-mapping. However, this algorithm finds the EDS entity 

names that need to be synchronized as a result of data modification on the legacy entity 

instead of the opposite. 

The algorithm Perfonn-EDSentity-mapping returns control to line 3 of 

Prrform-synchronization after performing entity to entity mapping betwern the EDS and 

the operational systems. Performsynchronization then calls the algorithm 

Perforrn-EDSattribute-mapping (Figure 15). 

Algorithm 3 : PefomEDS_attribule_m~pping 

The algorithm Pe~form-EDS-attribute-mapping performs utiribute to uttribute mupping 

between the EDS entity and the mapped legacy system entities. The algorithm 

Perform-EDS-attribut-mapping is formally presented in Figure 15. It takes as input the 

moditied EDS entity attributes and their values (P-Attribute-list) and finds the rnapped 

lrgacy entity attributes and their values that need synchronization. The algorithm 

determines the content of the empty Attribute-list that is part of each CLegacy system 

narne (1 Legacy entity name list, determined by the algorithm 

Perform-EDSentitymapping. To determine the content of the empty Attribut-list the 

algorithm first determines the attributes in PAttribute-list that belong to the shared EDS 



m u r e  15 - Perform EDS Attribute map~ing 

Algorithm 3 : Perform-EDS-cimibute-mapping 

input : P-Entitypame; // EDS entity name on which data modification occurred II 
P-Attribute-list - {q:V, 1 A is a set of modified attributes. 

V is a set of their corresponding values); 
II Modified EDS entity attributes and their values 11 

output : A list containing System name, entity name, operation type, attribute name(s), and 
attribute vaiue(s) for each legacy system name and entity name that needs to be synchronized. 

Var Legacyentityattribute-value t- 41; 
EDS-entityattribute-value t 4; 

begin 
Q t {q, 1 q E EDS Entity Attributes A C(q), 

C (predicate) = (EDS entity narne = P-Entity-narne 
A EDS entity attribute narne E A,)); 

Q[EDS entity name, EDS entity attribute name, code] 
+ {EDS entity name, # EDS entity attribute name, II code, 

1 q,!EDS entity name] II q,[EDS entity attribute name] II q,(code] 
A q, E Q); 

for each tuple(q,) in Q[EDS entity name, EDS entity attribute name, code] 
if code, = 'ESD' thm 

display 'Error data modification cannot happen on 
EDS secondary data'; 

elra if code, = 'EEPD' then 
display 'No synchronization needed. Change belongs to EEPD'; 

d i e  if code, = 'SEPD' then 
R t. {r, 1 r E EDS Legacy Anribute Mapping A D(r), 

D (predicate) = (EDS entity name = EDS entity name, 
A EDS entity attribute name = 

EDS entity attribute name,)); 
R[EDS entity attribute name, Legacy system name, 

Legacy entity name, Legacy entity attribute name, 
Attribute conversion procedure name] 
t {EDS entity attribute name, 11 

Legacy system name, II Legacy entity name, II 
Legacy entity attribute name, # 
Attribute conversion procedure name, 
Irl[EDS entity atlribute narne] II 
r,[Legacy system name] II dlegacy entity name] 11 
r,[Legacy entity anfibute name] 11 
r,[Attribute conversion procedure name] 
A r, E R); 

for each tuple (ri) in 
R[EDS entity attribute name, Legacy system narne, 
Legacy entity name, Legacy entity attribute name, 
Attribute conversion procedure name] 
Legacyentity-ambute-value t 4; 
EDS-entit~attribute-value t +; 



EDSentityattribute-value t GEVALUE 
(EDS entity attribute name,); 

if Attribute coriversion procedure name, = 4 then 
Legacyentityattribute-value t 

EDS-entityattribute-value; 
else 

Legacy-entity-attribute-value e 
Attribute conversion procedure name,( 

EDSentity-attribute-value); 
end if; {Attribute conversion procedure name) 
S t {s, 1 s E Legacy Entity PK Attributes n E(s), 

E (predicate) = (Legacy system name = 
Legacy system narne, 
A Legacy entity name = 
Legacy entity name, 
A Legacy entity PK attribute name 
= Legacy entity attribute name,)); 

if S = 4 then 
add Legacy entity attribute name,, 

Legacyentityattribute-value 
to Attribute-lbt in list with list name = 

Legacy system name, II Legacy entity name,; 
else 
rdd Legacy entity attribute name,, 

Legacy entity attribute value 
ta Kay-list in Iist with list name = Legacy system name, 

II Legacy entity name,; 
end if; {if S) 

end for; {for r,) 
end if; {if code) 

end for; (for q,) 
end; {End Perform-EDS-attribute-mapping) 



g a c ~  Attribute Ma~ping 

input : P-System-narne; II Legacy system name on which data modification occurred // 
P-Entity-name; Il Legacy entity name on which data modification occurred II 
P-Attribu-ist - {A,:V, 1 A is a set of modified attributes. 

V is a set of their corresponding values); 
II Modified legacy entity attributes and values 11 

output . A list containing systern name, entity name, operation type, attribute narne(s), and 
attribute value@) for each EDS entity that needs to be synchronized. 

var Legacy-entityattribute-value t 4; 
EDS-entityattribute-value e $; 

begin 
Q t {q, 1 q E Legacy Entity Attributes A C(q), 

C (predicate) = (Legacy system name = P-Systern-name 
A Legacy entity narne = P-Entity-name 

A Legacy entity attribute name E 9)); 
Q[Legacy system name, Legacy entity name, 

Legacy entity attribute name, code] 
c {Legacy system name, 1 Legacy entity name, II 

Legacy entity attribute name, II code, 
1 q,[Legacy system name] 11 q,[legacy entity name] (1 

q,[Legacy entity attribute name] # q,[code] A q, Q); 
for each tuple(q,) in Q[Legacy system name, Legacy entity name, 

Legacy entity attribute name, code] 
if code, = 'ASD' thon 

display 'Error data modification cannot happen on 
application secondary data'; 

elre if code, = 'EAPD' thon 
display 'No synchronization needed. Change belongs to EAPD'; 

olre if code, = 'SAPD' then 
R t (r, 1 r E EDS Legacy Attribute Mapping A D(r), 

D (predicate) = (Legacy system name = 
Legacy system name, 

A Legacy entity name = 
Legacy entity name, 

A Legacy entity attribute name = 
Legacy entity attribute name,)); 

R[EDS entity narne, EDS entity attribute name, 
Legacy entity attribute name, 
Attribute conversion procedure name] 
t (EDS entity name, 1 EDS entity attribute name, 11 

Legacy entity attribute narne, 1 
Attribute conversion procedure name, 
1 r,[EDS entity name] 1 
r,[EDS entity attribute name] 
r,[Legacy entity attribute n a m l  11 
r,[Attribute conversion procedure name] A r, E R); 



for each tuple (r,) in 
R[EDS entity name, EDS entity attribute name, 

Legacy entity attribute name, 
Attribute conversion procedure name] 

EDS-entityattribute-value t 4; 
Legacy-entityattribute-value + 4; 
Legacyentityattribute-value + 

GET-VALUE(Legacy entity attribute narne, ); 
if Attribute conversion procedure name, = 4 then 

EDSentity-attribute-value = 
Legacyentityattribute_value; 

ebe 
EDS-entityattribute-value t 

Attribute conversion procedure name, 
(Legacyentityattri bute-value); 

end if; {Attribute conversion procedure name) 
S t {s, 1 s E EDS Entity PK Attributes A E(s), 

E (predicate) = ( EDS entity name = 
EDS entity name, 
A EDS entity PK attribute name 

= EDS entity attribute name,)); 
if S = 4 than 
add EDS entity attribute name,, 

EDSentity-attribute-value 
to Attribute-lkt in list with list name = 

'EDS' 1 EDS entity narne,: 
0180 
add EDS entity attribute name,, EDS-entityattribute-value 

to Key-lkt in liit wtth list name = 
'EDS' 1) EDS entity name,; 

end if; {if S) 
end for; {for r,) 

end if; {if code) 
end for; {for q,) 

end; {End Perform-legacy-attribute-mapping) 



primary data (SEPD) and therefore need to be synchronized with the legacy systerns. To 

achieve this. a selection is performed on the entity 'EDS Entity Attributes' of the 

metadata mapper where the anribute 'EDS entity name' equals the input parameter 

P-Entity - name and the attribute 'EDS entity attribute narne' belongs to the input 

parameter P-Attribute-list (lines 1-2, Figure 15). The parameter P-Entity-name stores 

the name of the EDS entity on which data modification occurred. The panmcter 

P -Attributelist stores the modified EDS entity attributes and their values. 

For each EDS attribute retumed by the selection and belonging &O SEPD code (lines 3-4. 

Figure l 5). the corresponding mapped legacy attributes that need sync hronizat ion are 

detrrrnincd. This is achieved by selecting from the entity 'EDS Legacy Attribute 

Mapping' that stores the mapping between the EDS entity anributes and the 

corresponding legacy entity attributes (lines 7-8, Figure 15). The entity 'EDS Legacy 

Attribute Mapping' along with the attribute to attribute mapping also stores the referencr 

to the stored procedure name required to convert the value of an EDS attribute to the 

corresponding value of the legacy attribute. For each mapped iegacy attribute (line 9. 

Figure 15) the corresponding legacy value is determined by executing the stored 

procedure associated with the attribute to attribute mapping (lines 10- 15. Figure 15). The 

mapped legacy entity attributes and their values are then assigned to the Attribute-list of 

the corresponding <Legacy system name (1 Legacy entity name list>. Before assigning 

each legacy attribute name and its value to the Attribute-list the algorithm checks 

whether the legacy attribute is a non primary key attribute of the legacy entity or not. This 

i s  determined by performing a selection on the entity 'Legacy Entity PK Anributes' for 

the legacy attribute (line 16, Figure 15). This is required because the EDS entity attribute 

may map to the primary key attribute of the legacy entity or to a non primary kcy 

attribute. If the legacy anribute maps to the primary key amibute of the legacy entity it is 

inserted in the Key-list of the corresponding CLegacy system name 1 Legacy entity narne 

list> (line 19. Figure 5 )  otherwise it is inserted, in the Attribute-list of the corresponding 

<Legacy system name 11 Legacy entity name listr (line 18. Figure 15). 



Note that if the data modification occurs on the legacy system instead of the EDS the 

algorithm Prrfonn-legacy-attributenapping (Figure 16) is instead called by 

Perforrn-synchronization. The functionality of this algorithm is similar to 

Pcrform-EDS - attribute-mapping. However. the algorithm finds the EDS attributes and 

their values that need to be synchronized as a result of data modification on the legacy 

entity instead of the opposite. 

Afier perfoming attribute to attribute mapping between the EDS and the operational 

systems the algorithm Perfom-EDSattribute-mapping retums control to line J of 

Perl'oriii-synchronization. Perform - sync hronization then calls the aigori thni 

['erform-EDS-PK-and-record-mapping (Figure 1 7). 

Algorithm 4 : Pedom-EDS-PK-and-record-mapping 

The algorithm performs key to key and record io record mupping between the EDS entity 

and the mapped legacy system enti ties. The algorithm 

Perform-EDS-PK-and-record - mapping is formally presented in Figure 17. It takes as 

input the primûry key attributes and values (P-Key-list) of the EDS entity and determines 

the primary key anributes and values for the mapped legacy entity(s). The algorithm 

determines the content of the ernpty Key-list that is part of each <Legacy system name II 
Legacy cntity name list> determined by the algonthm Perform-EDSentityrnapping. To 

determine the content of the Key-list the algorithm first reads the primary key attributes 

of the modified EDS entity. This is achieved by performing selection on the entity 'EDS 

Entity PK Attributes' in the metadata mapper where the attribute 'EDS entity name' 

cquals the input parameter P-Entity-namc and the attribute 'EDS entity PK attributr 

name' belongs to the input parameter P-Key-list (lines 1-2, Figure 17). The parameter 

P-Eiitity-name stores the narne of the EDS entity on which data modification occurred. 

The parameter P-Key-list stores the EDS entity's PK amibutes and their values. The rest 



Fiaure 17 - Perform EDS Primarv Kev and Record Ma~oing 

Algorithm 4 : Perform-EDS-PK-and-isco~d~mapping 

input : P-Entityname; Il EDS entity name on which data modification occumd II 
P-Operation-type; 
P-Key-list - {K,:V, 1 K is a set of PK attribute(s). 

V is a set of their corresponding value(s)); 
// Primary key attribute(s) and value(s) of the EDS entity JI 

output . A iist containing system name, enlity name. operation type. attribute name(s). attribute 
value(s) . primary key name@). and primav key value(s) for each legacy system name and entity 
name that needs to be synchronized. 

var Legacyentity-PK-value t 4; 
begin 

P t {p, 1 p E EDS Entity PK Attributes A C(q), 
C (predicate) = (EDS entity name = P-Entity-name 

A EDS entity PK attribute name E 5)); 
P[EDS entity PK num, EDS entity PK attribute name] 
t {EDS entity PK num, , EDS entity PK attribute name, 

1 p,[EDS entity PK num] 1) 
p,[EDS entity PK attribute mme] A pl E P); 

if Poperation-type = '1' than 
for each tuple(p,) in 

P[EDS entity PK num, EDS entity PU attribute name] 
M t. {ml 1 n, II Il A n E EDS Legacy PK Mapping 

A 1 E Legacy Entity PK Attributes A C(q), 
C (predicate) = 

(EDS Legacy PK MappingLegacy entity PK num = 
Legacy Entity PK AttributesLegacy entity PK num 
A EDS Legacy PK Mapping.EDS entity PK num = 
EDS entity PK num, )); 

M[Legacy system name, Legacy entity name, 
Legacy entity PK attribute name, 
Secondary entity PK generaüon algorithm] 
+ { Legacy system name, 1 Legacy entity name, 1) 

Legacy entity PK attribute name, II 
Secondary entity PK generation algorithm, 

1 m,[Legacy systern name] 1 m,[Legacy entity n a m  
mdLegacy entity PK attribute narne] 
m,(Secondary entity PK generation algorithm] A ml E M); 

for each tuple(rn,) in 
M[Legacy system name, Legacy entity name, 

Legacy entity PK attribute name, 
Secondary entity PK generaüon algorithm] 
if Secondary entity PK generation algorithm, c> 4 than 

Legacy-entity-PK-value + 4; 
Legacyen tity -P K-value ç- 

Secondary entity PK generation algorithm,(); 
rdd Legacy entity PK attribute name,, 



Legacy-entity-PK-value 
to Key-lirt in list with list name 

= Legacy system name, II Legacy entity name, ; 
end if; {if Secondary entity PK generation algorithm) 

and for; {for m,) 
end for; (for pl) 

elsa II {operation type is not insert) 
for each tuple(p,) in 

PIEDS entity PK num, EDS entity PK attribute name] 
M e {m, ( n, 11 Il A n E Cross Referencing 

A I E Legacy Entity PK Attributes A C(q), 
C (predicate) 

(Cross Referencing.Legacy entity PK nurn = 
Legacy Entity PK Attributes. Legacy entity PK nurn 
A Cross Referencing.EDS entity PK nurn = 
EDS entity PK nurn, 
A EDS value = 
GET-VALUE-INLlST 

(EDS entity PK attribute name,)); 
M[Legacy system name, Legacy entity name, 

tegacy entity PK attribute name, Legacy value] 
c { Legacy system name, II Legacy entity name, II 

Legacy entity PK attribute name, II Legacy value, 
( m,[Legacy system name] 1 m,(Legacy entity name] II 
m,[Legacy entity PK alribute name] II 
m,(Legacy value) A ml E M); 

for each tuple(m,) in 
M[Legacy system name, Legacy entity name, 

Legacy entity PK attribute name, Legacy value] 
rdd Legacy entity PK attribute name,, 

Legacy value, 
to Key-list in list with list name 
= Legacy system name, 1 Legacy entity name, ; 

end for; {for m,) 
end for; (for p,) 

end if; {if P-Operation-type) 
end; {End Petforrn-€OS-PK-and-record-mapping) 



mure 18 - Perform Legacy Prima- Key and Record M a ~ ~ i n g  

Algorithm 8 : Perfomi-Legacy-PK-and-record-mapping 

input : P-System-name tl Legacy system narne on which data modification occurred II 
P-Entityname; 11 Legacy entity name on which data modification occurred II 
P-Operation-type; 
P-KeyJist - {F:V,l K is a set of PK attribute(s), 

V is a set of their corresponding value(s)); 
// Primary key attribute(s) and value@) of the legacy entity // 

output : A list containing systern name, entity name, operation type, attribute name(s), attribute 
value(s), prirnary key name(s), and primary key values(s) for each EDS entity that needs to be 
synchronized. 

var EDS-entity-PK-value +- +; 
begin 

P +- {pl 1 p E Legacy Entity PU Attributes A C(q), 
C (predicate) = (Legacy systern name = P-System-name 

A Legacy entity name = P-Entity-name 
A Legacy entity PU attribute name E 5)); 

P[Legacy entity PK num, Legacy entity PK attribute name] 
t. {Legacy entity PK num, , Legacy entity PK attribute narne, 

1 p,[Legacy entity PK num] 11 
p,(Legacy entity PK attribute namej A p, E P); 

if Poperation-type = '1' then 
for each tuple(p,) in P[Legacy entity PK num, 

Legacy entity PK attribute name] 
M t {ml 1 n, II 1, A n E EDS Legacy PU Mapping 

A I E EDS Entity PK Attributes A C(q), 
C (predicate) = 

(EDS Legacy PK Mapping.EDS entity PK num = 
EDS Entity PK Attributes.EDS entity PK nurn 
A EDS Legacy PK MappingLegacy entity PK nurn = 
Legacy entity PK num, )); 

M[EDS entity name, EDS entity PK attribute name, 
Secondary entity PK generation algorithrn) 
t {EDS entity narne, II EDS entity PK attribute name, 11 

Secondary entity PK generation algorithm, 
1 m,[EDS entity name] 1 
mIIEDS entity PK attribute name] 1 
m,[Secondary entity PK generation algorithm] A ml E M); 

for each tuple(m,) in 
M[EDS entity name, EDS entity PK attribute name, 

Secondary entity PK generation algorithm] 
H Secondary entity PK generation algorithm, $ then 

EDS-entityPK-value t 4; 
EDS-entityPK-value e 

Secondray entity PK generation algorithm,(); 
rdd EDS entity PK attribute name,, EDS-entity_PK-value 
to KoyJht in Iht with list n a m  = 'EDS' 1 EDS entity name, ; 



end if; (if Secondary entity PU generation algorithm) 
end for; {for ml) 

end for; {for pl) 
el80 {operation type is not insert) 

for each tuple(p,) in 
P[Legacy entity PK num, Legacy entity PK attribute name] 
M t {ml 1 n, i( I, A n E Cross Referencing 

A I E EDS Entity PK Attributes A C(q), 
C (predicate) = 

(Cross Referencing.EDS entity PK num = 
EDS Entity PK AttributesEDS entity PK num 
A Cross Referencing. Legacy entity PK num = 
Legacy entity PK nurn, 
A Legacy value = 
GET-VALUE-INLIST 

(Legacy entity PK attribute name,)); 
M[EDS entity name, EDS entity PK attribute name, EDS value] 

+ { EDS entity name, 11 EDS entity PK attribute name, 
11 EDS value, 

1 m,[EDS entity namej II 
m,[EDS entity PK attribute name] II 
m,[EDS value] A m, E M); 

for each tuple(m,) in 
M[EDS entity name. EDS entity PK attribute name, EDS value] 

add EDS entity PK attribute name,, EDS value, 
to Key-Iist in iist with list narne = 'EDS' II EDS entity name, ; 

end for; {for ml) 
end for; {for p,) 

end if; {if P-Operation-type) 
end; {End Perform-Legacy-QK-ancrecord-mapping) 



of the functionality of the algorithm is based on the type of data modification 

(insert/update/delete) that occurred on the EDS entity. As discussed before. record to 

record mapping for updates and deletes requires a lookup from a table or file that stores 

the mapping between primary keys of the EDS entities and the corresponding legacy 

rntities. However, insert operations require the corresponding keys for the mapped cnti ty 

to tirsi be generated before the mappinp can be stored in the lookup table. 

Tlir algorithm Perform-EDS-PK-and-record-mapping (Figure 1 7) checks the input 

panmeter Poperationtype to determine if it is an insert operation (line 3. Figure 1 7). If 

it is an insert operation then for each EDS primary key attribute (line 4, Figure 17) the 

corresponding rnapped legacy PK attributes are determined. This is achieved by selecting 

from two entities; 'EDS Legacy PK Mapping' and 'Legacy Entity PK Attributes' (lines 

5-6. Figure 17). The entity 'EDS Legacy PK Mapping' stores the mapping between 

primary key attributes of the EDS entity and the corresponding primary key attributes of 

the legacy entities. This entity along with the PK to PK mapping also stores the nference 

io the stored procedure name required to generate the primary key value of the mapped 

legacy PK attribute. The entity 'Legacy Entity PK Attributes' stores the prirnary key 

attributes of the Legacy entities. For each mapped legacy PK attribute (line 7. Figure 17) 

the corresponding legacy PK value is determined by executing the stored procedure 

üssociated with the PK to PK mappinp (lines 8-10, Figure 17). The rnapped legacy entity 

PK attributes and their values are then assigned to the Key-list of the corresponding 

<L.egacy system name II Legacy entity narne lisp (line 1 1, Figure 17). 

If the operation is not an insert then for each EDS primary key attribute (line 12. Figure 

17) the corresponding mapped legacy PK anributes and k i r  values are determined. This 

is achieved by selecting from two entities; 'Legacy Entity PK Attributes' and 'Cross 

Referencing' (lines 13-14, Figure 17). The entity 'Legacy Entity PK Attributes' stores the 

primary key attributes of the Legacy entities. The entity 'Cross referencing' stores the 

mapping between tuples of the EDS entity with the corresponding tuples of the legacy 

entities. The mapped legacy entity PK attributes and their values are then assigned to the 

96 



Key-list of the corresponding <Legacy system name II Legacy entity narne  lis^ (lines 

15- 16. Figure 17). 

Note that if the data modification occurs on the legacy system instead of the EDS the 

algorithm Perform-legacy-PK-and-record-mapping (Figure 1 8) is called by 

Perform-synchronization instead. The functionality of this algorithm is similar to 

Perform-EDS-PK-and-record-mapping but, the algorithm finds the EDS entity PK 

attributes and their values that need to be synchronized as a result of data modification on 

the legacy entity. 

The algorithm Perfo-EDS-PK-and-record-mapping retums control to line 5 of 

Perform-synchronization afier performing key to key and record to record mapping 

between the EDS and the operational systems. If P-Operationtype is an insert or a delrte 

operation then Perform-sy nchronization cal l s the algori thm 

Maintain-EDScross-referencing (Figure 19) as well. 

Algorithm 5 : Maintain-EDS-cross-referencing 

This algorithm maintains record to record mappings between the EDS and the legacy 

systrms. The algorithm Maintain_EDScross-referencing is fomally presented in Figure 

19. It reads the input list (data modifications on the the EDS entity) and output lists 

(corresponding data modifications on the legacy entities detemined by the 

synchronization algorithms) and then determines and stores or determines and deletcs 

record to record mappings between the EDS PK values and the legacy PK values for 

insert and delete operations. The algorithm does not support update operations on primary 

keys of the EDS entities. If required, the algorithm can be modified to support such cases. 

The algorithm first reads the primary key attributes of the modified EDS entity. This is 

achieved by performing a selectioii on the entity 'EDS Entity PK Attributes' of the 

metadata rnapper where the attribute 'EDS entity name' equals the input parameter 



Figure 18 - Maintain EDS Cross Referencinq 

Algorithm 5 : Mainmin-€OS-crors_referencing 

input : input-list : P-Entity-name; 
P-Key-list - (K,:V, 1 K is a set of PK attribute(s), 

V is a set of their corresponding value(s)); 
outputJist : Legacy system name, II Legacy entity name, t 

Legacy system name,, Legacy entity name,, 
Poperaiion-type, Attribute-kt, Key-list 

output : Record to record rnapping between EDS PK values and the corresponding legacy PK 
values. 

var Legacy-value t 4; 
EDS-value t 4; 

bug in 
P + {p, 1 p E EDS Entity PK Attributes A C(q), 

C (predicate) = (EDS entity name = P-Entity-name 
A EDS entity PK attribute name E 4)); 

P[EDS entity PK num, EDS entity PK attribute name] 
+- (EDS entity PK num, . EDS entity PK attribute name, 

1 p,[EDS entity PK num] 11 
p,[EDS entity PK attribute name] A q E P); 

for each tuple(p,) in PIEDS entity PK num. EDS entity PK attribute name] 
M t {m, ( nt 11 1, A n E EDS Legacy PK Mapping 

A I E Legacy Entity PK Attributes A C(q), 
C (predicate) = 

(EDS Legacy PK MappingLegacy entity PK num = 
Legacy Entity PK Attributes.Legacy entity PK num 
A EDS Legacy PK Mapping.EDS entity PK num = 
EDS entity PK nurn, )); 

M[Legacy system narne, Legacy entity name, 
Legacy entity PK attribute name, 
Legacy entity PK num] 
+ { Legacy system name, 1 Legacy entity name, II 

Legacy entity PK attribute name, II 
Legacy entity PK nurn, 

1 rn,[Legacy system name] 1 m,[Legacy entity name] 11 
m,[Legacy entity PK attribute name] 11 
m,[Legacy entity PK nurn] A m, E M); 

for each tuple(m,) in 
M[Legacy system name, Legacy entity name, 

Legacy entity PK attribute narne, 
Legacy entity PK numj 
Legacy-value t- 9; 
EDS-value t 4; 
EDS-value + GWALUE-INLIST 

(EDS entity PU attnbute narne,); 
Legacy-value t 

GET-VALUE-OUTLIST (Legacy sy stem narne,, 



Legacy entity name,, Legacy entity PK attribute name,); 
if P-Operation-type = ' 1 '  thon (1 1 )  

insert into cross-referencing (12) 
vaiues(Legacy entity PK mm,, EDS entity PK nurn,, 

Legacy-value, EDS-value); 
018e 

delete from cross-referencing (13) 
where Legacy entity PK num = Legacy entity PK num, AND 

EDS entity PK num = EDS entity PK num, AND 
Legacy value = Legacy-value AND 
EDS value = EDS-value; 

end if; (if P-Operation-type) 
end for; {for m,) 

end for; (for p,} 
end; {End Maintain-EDS-Cross-refeencing) 



Figure 20 - Maintain Legacy Cross Referencing 

Algorithm 9 : Maintiin~legacy~cross~refemncing 

input : inputlist : P-System-name; 
P-Entity-name; 
P-Key-list - {&:VI 1 K is a set of PK attribute(s), 

V is a set of their corresponding value(s)); 
outputJst : EDS II EDS entity name, +- 

EDS, EDS entity name,, Poperation-type, 
Attribute-list, Key-list 

output : Record to record mapping between legacy PK values and the corresponding EDS PK 
values. 

var Legacy-value t. 4; 
EDS-value t 4; 

beg in 
P t {pl 1 p E Legacy Entity PK Attributes A C(q), 

C (predicate) = ( Legacy system name = P-System-name 
Legacy entity name = P-Entity-name 

A Legacy entity PK attribute name E 6)); 
P[Legacy entity PU num, Legacy entity PK attribute name] 
t {Legacy entity PK num, , Legacy entity PK attribute name, 

1 pl[Legacy entity PK nurn] II 
pl[Legacy entity PK attribute name] A p, E P); 

for each tuple(pJ in PILegacy entity PK num, 
Legacy entity PK attribute name] 

M t {m, 1 n, II 1, A n E EDS Legacy PK Mapping 
A I e EDS Entity PK Attributes A C(q), 

C (predicate) = 
(EDS Legacy PK Mapping.EDS entity PK num = 
EDS Entity PK Attributes.EDS entity PK nurn 
A EDS Legacy PK Mapping.Legacy entity PK nurn 
= Legacy entity PK num, )); 

M[EDS entity name, 
EDS entity PK attribute name, 
EDS entity PK num] 
t { EDS entity name, 11 

EDS entity PK attribute name, II 
EDS entity PK num, 

1 ml[EDS entity narne] 11 
mIIEDS entity PK attribute name] 11 
m,[EDS entity PK num] A ml E M); 

for each tuple(m,) in 
M[EDS entity name, 

EDS entity PK attribute name, 
EDS entity PU num) 
Legacyvalue t 0; 
EDS-value t O; 
Legacy-value t 



GET-VALUE-I NtlST (Legacy entity PK attribute name,) ; 
EDS-value t 

GEVALUE-OUTLI ST ('EDS' , 
EDS entity name,, EDS entity PK attribute name,); 

if Poperation-type = '1' then 
insert into crossjeferencing 
vaiues(Legacy entity PK num,. EDS entity PK num, 

Legacy-value, EDS-value); 
el88 

delete from cross-referencing 
where Legacy entity PK num = Legacy entity PK num,AND 

EDS entity PK num = EDS entity PK num, AND 
Legacy value = Legacy-value AND 
EDS value = EDS-value; 

end if; {if P-Operation-type) 
end for: {for ml, 

end for; {for p,) 
end; {End Maintain-legacy-cross-referencing) 



P-Entity-narne and the attribute 'EDS entity PK attribute narne' belongs to the input 

parameter P-Key-list (lines 1-2, Figure 19). The parameter P-Entity-narne stores the 

nime of the EDS entity on which data modification occurred. The parameter P-Key-list 

stores the EDS entity PK attributes and their values. For each EDS primary key attribute 

(line 3. Figure 19) the corresponding mapped legacy PK attnbutes are detemined. This is 

achirved by selecting from two entities; 'EDS Lrgacy PK Mapping' and 'Legacy Entity 

PK Aitributas' (lines 4-5. Figure 19). The entity 'Legacy Entity PK Attributes' stores the 

primary key attributes of the Legacy entities. The entity 'EDS Legacy PK Mapping' 

stores the mapping between PK attributes of the EDS entity and the corresponding 

primary key attributes of the legacy entities. For each EDS entity PK attribute and the 

rnapped legacy PK attribute determine their corresponding PK values from the input list 

and output list(s) respectively (lines 6- 10, Figure 19). If the parameter P-Operation-type 

is an insert operation the record to record mapping is inserted in the entity 'Cross 

Rcîkrencing' othenvise it is deleted from the entity 'Cross Referencing' (lines 11-13. 

Figure 19). 

Note that if the data modification occurs on the legacy system instead of the EDS the 

algorithm Maintain-legacy-cross-referencing (Figure 20) is called by 

Pcrform-synchronization instead. As mentioned before, the functionality of this 

algorithm is similar to Maintain-EDScross-referencing. The algorithm. however. 

maintains record to record mapping between the legacy system and the EDS; the input 

list contains data modification on legacy entity and the output lists contain corresponding 

data modi tication on the EDS entities determined by the synchronization algorithms. 

The algorithm Maintain-EDScross-referencing returns control to the end of 

Perfom-synchronization after maintaining record to record mapping between the EDS 

md the operational systems. 

The algorithm Perform-synchronization terminates leaving the EDS synchronized with 



the legacy systems. 

In this section the synchronization algorithms are illustrated using some exarnples. For 

the purpose of this section consider three data stores; the EDS. the legacy data store 

'Investrnent'. and the legacy data store 'Mongage' as shown in Figure 10. The entity 

'Client' in the EDS maps to the entity 'Customer* in the mortgage data store and the 

entity 'Investor' in the investment data store. Assume. the EDS entity 'Client' is the 

primary source of the client information and the entities 'Customer' and 'Investor' are the 

secondary sources. Any data modifications will first be performed in the EDS and then 

propagatcd to the investrnent data store and the mortgage data store. Figure 1 O shows the 

attributes and p n m w  key attributes of these entities. Appendix 1 shows the mappings 

between the EDS entity 'Client' and the legacy entity 'Customer' and between the EDS 

rntity 'Client' and the legacy entity 'Investor* stored by the metadata rnapper. The stored 

procedures to convert attributes between the EDS and the legacy systems are also 

included in Appendix 1. The following exarnples show how the mappings are used to 

synchronize the EDS entity 'Client' with the legacy entities 'Customer' and 'Investor'. 

Consider an insert on the entity 'Client' in the EDS. 

INSERT INTO client(c1ie - num. d i e  - last-nam. cliefirsi-nam, c k  - sin - nirrn. 

c l i c~ender -ch .  die-birthdte. clie-marital-statirs-cde) 

VALUES (4967, 'Rimmer ', 'Rodger ', 5081 332 12. ' 1 ', '29/05/60 ', 1); 

The change extractor associated with the EDS captures the insert operation and passes the 

following parameters to the DTlM layer: 

P-Sysrem-nume t 'EDS ' 
P-Entity-nome t Client 
P - Opra~iont@pe t '1' 



P-Key-list t clienum. 456 7 
P-Attribute-lis/ t clie-num. 4567, 

die-last-num : 'Rimrnei* ', 
clieJrst-nom : ' RoJgcr '. 
cliesin-num : 508 1332 12. 

I'he D'HM layer that is made up of synchronization algorithms, executes the aigorithm 

Perfotm-synchronization with the above parameters. 

Perform-aynchroniution (Algorithm 1, Figure 12) 

Since the condition in line 1 that checks if P-System-name = 'EDS* is tnie. the algorithm 

Pcrlbrrn-EDS-e~ttikmapping is executed. This algorithm performs entity to cntity 

mapping between the EDS and the legacy systerns. 

Pedorm-EDS-entity-mapping (Algorithm 2, Figure 13) 

This algorithm determines the legacy systems and their entities that nced to br: 

synchronized as a result of the insert on the EDS rntity 'Client'. 

Linrs I and 2 of this algorithm determine these entities to be 'Customer' in the 'Mortgage 

systrm* and ' Investor' in the ' Investment system'. 

Liiies 6.7 and 8 of the algorithm create two lists. one for  each system name and entity 

namr with the following contents: 

<hfortgagr system II Customer h i >  t Mortgage system. Customcr, I. 
Attributelist, Key-lisf; 

4nvestrnent system ) Investor list> t Investmenf system, Invesror, 1. 
A ttribute-list, Key-list; 

Note that Attribute-list and Key-list are initially empty. It will be shown shortly how 



their contents are determined by the attribute and the primary key mapping algorithnis. 

Control then retums to line 3 of Perfonn-synchronization. 

Line 3 calls the algorithm Perform-EDS-attribure_mapping. This algorithm performs 

attribute to attribute mapping betwren the EDS and the legacy systems. The main 

purpose of this algorithm is to determine the contents of the Attribute-list in the 

<Mortgage system 11 Customer list> as wrll as the Attribute--1ist in the 4nvestmeni 

system Investor list>. 

Perform-EDS-attribute-mapping (Algorithm 3, Figure 15) 

This algorithm determines the legacy system(s) attributes that need to be synchronized as 

a rrsult of the insert on the EDS entity 'Client'. 

Lines 1 and 2 of the algorithm select from the metadata mapper table 'EDS Entity 

attributes' al1 attributes that belong to the EDS entity 'Client' that are in P-Attribute-list. 

The selection creates a result set Q that has the following rows: 

Rcsult Set Q 

Line 3 loops ihrough each row in the result set Q.  For each row in the result set Q. lines 

Row nuni 
I 
1 - .- 
3 
1 
5 
h 
7 

4.5 and 6 determine if the EDS entity attribute has the SEPD code (shared EDS primary 

data). If the EDS attribute does have the SEPD code, lines 7 and 8 determine thc: 

EDS cniity nrmr 
Cl icni 
Clicni 
Cl icnt 
Client 
Client 

corresponding mapped legacy attributes (result set R). The result set R for row num 2 of 

the result set Q is shown below. Note since row num 1 of the result set Q does not belong 

Clicnc 1 clic-binh-die i SEPD 
Client 1 die marital status cde I SEPD 

KDS tntity nttributt nrmc 
clic-num 

1 clic-lasi-nam 
clic-fini-nam 
clic-sin-num 
clic~endcr-çdc 

to SEPD code therefore, no attribute mapping is performed for this attribute. 

Code 
EEPD 
SEPD 
SEPD 

' SEPD 
SEPD 



L ine 9 then loops through each row in R. For each row in R. lines 1 3.14 and 1 5 detemine 

thc corrcsponding :due of the legacy entitp attribute. Lines 16 m d  17 then determine 

wheiher the legacy entity attribute is a PK attribute or a non PK attribute. If it is a PK 

attribute it is added to the Key-list of the corresponding CLegacy system name II Legacy 

cntity name hst> (line 19) othewise the attribute is added to the Attnbute-list of the 

corresponding CLegacy system name ( Legacy entity narne lists (line 18). 

Hesult Set R for row num 2 of the Result Set Q 

Aftrr exrcution of steps 1 through 1 5 for each row in the result set Q, the resulting legac y 

rntity attributes with their corresponding values that need synchronization as a rrsult of 

insert on the EDS entity 'Client' are shown in the following table: 

clic-marital-smt 
us-cdc 

Attributc 
convtrsion 
proccdure nmmc 

- 
iruncatr-1st-nom 

EDS entity 
ntiributc 
value 

'Rimmer' 

'Rimmcr' 

'Rodgcr' 

'Rodgcr' 

5O8 1332 12 

c. 

How Y 

num uf 
set Q 
2 

Z 

Lcgacy Lqacy Lcgacy cntiiy Actributc 
aystcm entity attributcnnmt cunvcrsion 
namc na mc procedure nwmt 

Legacy systcm 
namc 

Mongagc 
sysicm 
lnvestmcnt 
svsirrn 

I.CRWC!. 
rniity 
wtiribuir 
vrluc 

'Kinimrr' 

'Rinimer' 

I 

'Kiiclger' 

'Rudgrr' 

CU1(133111 

'Malt' 

Wow 
num of  
se1 R 
1 

1 

On execution of steps 16, 17 and 18, for each row in the result set Q, the Attribute-list in 

EDS cntity 
attribute namc 

clic-lari-nam ' 

die-lat-nam 

Lcgacy 
cntity 
name 
Customcr 

lnvestor 

Lcgacy cniity 
aitribute namc 

' cust-lwt-nam 

invs-litsi-nom 



the <Mortgage system 1) Customer 1ist> as well as the Attnbute-list in the ~Investment 

system 1) Investor list> are as follows: 

< Mortgage system 1 Customer fisr>. Attribute-lis t 

cust-lust_num : 'Rimrner '. 
custJrst - na : ' RoJger '. 
custxender - txt : 'Mule'. 

cust-mar if al-stut~~s-txt : 'Single ' 

<Investment system C Invator list> .Artribute - list t 
invs-Iast -num : 'Rirnmrr ', 
invsJirst-num : ' Rodger '. 
i n v s ~ e n d e r  cde : 1. 
invs - birth - Ze : '25/05/60 ' 

On rxrcution of steps 16. 17. and 19 for each row in the result set Q the Key-list in the 

<Invrstmrnt system II lnvestor list> is as follows: 

dnvestment system II Investor fisr>. Key-list t invs-sin-num : 5081 3.32 12 

Control then returns to line 4 of Perform-synchronization. 

Line 4 of Perfonn~synchronization then calls the algorithm 

Peyfirrn-EDS - - -  PK und record-mapping. This algorithm perfonns key to key and record 

to record mapping between the EDS and the legacy systems. The main purpose of this 

algorithm is to determine the contents of the Key-list in the <Mortgage system II 
Customer list> as well as the Key-list in the 4nvestment system 11 Investor  lis^. 

PerfomJDS-PK-and-record-mapping (Algorithm 4, Figure 17) 

This algorithm determines the primary key attributes(s) and values(s) for the mapped 

legacy entity(s). 

Lines 1 and 2 of the algorithm select the PK attributes of the EDS entity 'Client' fkom the 

metadata mapper table 'EDS Entity PK Attributes' that are in P-Key-kt. The selection 



creates result set P that has the following row: 

Result Set P 
L 

Wow num 1 EDS cntity PA num 1 EDS cntity PK Aitributes 
1 I i 1 clic num 

Line 3 checks the parameter P-Operation-type to determine if it is an insert operation. 

Since it is an insert operation, line 4 loops through the result set P. For rach row in the 

rrsult set P lines 5 and 6 determine the corresponding mapped legacy PK attributrs lresult 

set M). The result set M for the result set P i s  shown below: 

Result Set M 

Line 7 loops through the result set M. For each row in the result set M. line 8 checks i f .  

there exists a 'Secondary entity PK generation algorithm' to generate a primary key value 

t'or the mapped legacy PK attribute. If such an algorithm exists, line 10 determines the 

corresponding legacy PK value by executing 'Secondary entity PK generation algorithm'. 

Linr I l  then adds the legacy entity PK attribute and its value to the Key-list of the 

corresponding <Legacy system name II Legacy entity narne lisp. 

Looping through the result set M. since row 1 has a 'Secondary entity PK generation 

algorithm', the algorithm 'generate-cust-num' is executed by line 10 to determine the 

lepcy PK value. Let us assume the value generatcd for 'cust-num' is 6789 then after 

execution of line 11, the Key-list in the <Mortgage system (1 Customer l i s t ~  is as 

t'ollows: 

How 
num of  
set P 
I 
1 

< Mortgage system 1 Customer list>. Key - list t cust-num : 6 789 

L q r c y  ryitcm nimc 

Morlgagc systcm 

Row 
num or 
set 31 
1 
- 7 

Since row 2 of the set M does not have a 'Secondary entity PK generation alprithrn'. 

nothing gets generated or added to the Key-list in -4nvestment system 1) Investor list>. 

Lqmcy cntity nrmc 

Customcr 
Invesmcnt systcm 1 Investor invs sin num 

t.cgrcy cntity Pli 
ittributc nmmc 

cust-num 

Secondrry cnlity P l i  
gcncrvlion rlflorit hm 

1 

gcncraic-cust-nurn 



Note that the contents of the Key-list for 4nvestmeiit system II Investor k t >  were 

determined during execution of the algorithm Perfortn-EDS-attribute-mapping. The non 

PK attribute 'die-sin-nurn' of 'Client' maps to PK attribute 'invs-sin-num' of 

'Investor'. Therefore, the value of 'invs-sin-nurn' is determined dunng the attribute to 

attribute mapping between the EDS and the legacy systems. The synchronization 

algorithm handles both the cases. Case 1 where it performs record to record mapping for 

inserts by using key generation algorithms and case 2 where key generation algorithms do 

not exisi and the value of the field is determined as a result of the attribute to attribute 

mapping. 

Atter prrforming the mapping between the EDS and the legacy systems the 

corresponding data modifications as a result of the insert on the entity 'Client' in the EDS 

are: 

( 1 )  Mortgage system Customer lis(> t 
Mortgage system Cusiomcr, I, 
A ttribute-list, Key-list ; 

where Attribute-list is: 

<Mortgage system 11 Customer li.~t>.Altribirre-lis? t 
cust - lust-mm : 'Rimrner '. 
cust first-nam : 'Rodpr +, 
cust-qender-txt : 'Mule ', 

cust - marital-stutus - fit : 'Single ' 

where Key-list is: 

< Mortgage system II Customer list >. Kry_list t custnum : 6 789 

And 

(2) < lnvestment system (1 Investor list> t 
lnvesfmcnt system. lnvestor. i, Attribute-list. Key-list: 

where Aitribute-list is - 
<Investmcnt system II lnvestor list>. A ttribute-fisr t 

invs lus/-mm : 'Rimmer ', 
invsfirst-nam : 'Rodger ', 
invsgender-cde : 1, 
invs-birth-dte : '25/05/60 ' 



where Key-list is 

<Investmrnt system (1 Investor h l > .  Key-list t invs-sinnum : 508 I3.W 2 

The algorithm then retums to line 5 of Perfo-synchronization. 

Line 5 of Perfo-synchronization checks Poperation-type code to determine if the 

operation type is an insert. Since it is an insert operation, line 6 executes the algorithm 

Maintpin-EDS-cross-referencing (Algorithm 5, Figure 19) 

This algorithm maintains record to record mapping between the EDS entity 'C 

the Mortgage system entity 'Customer' as well as between the EDS entity 'C 

the lnvestment system entity 'Investor'. 

1 ient ' and 

lient' and 

Lines I and 2 of the algorithm select the primary key attributes of the EDS rntity 'Client' 

from the metadata mapper table 'EDS entity PK Attributes' that are in P-Key-list. The 

selection creates result set P that has the following row: 

Result Set P 

Line 3 loops through the result set P. For each row in the result set P. lines 4 and 5 

detcrmine the corresponding mapped legacy PK anributes (result set M). 'nie result set M 

t'or the result set P is as follows: 

Result Set M 

Line 6 loops through the result set M. Lines 9 and 10 determine the primary key values 

for EDS entity PK attributes (result set P) and the mapped legacy PK attributes (result set 

M). This is achieved by using the functions GET-VALUE-MLIST and 

GE-VALUEOUTLIST to read fiom the input list and output lists. The primary key 

110 

L q i c y  cntity PK 
natribute nrnc 
cusi-num 

How num 
of wt P 
I 
I 

Lqrcy cniity 
PK aum 
2 

Lcgicy systcm 
arme 
Mortgage systcm 
tnvcsunent systcm 

Row num 
ofwe hl 
1 
2 - invssin-num 1 3  

Lcgmcy cniiiy 
namc 
Customcr 
lnvestor 



values for the EDS entity PK attribute and the mapped legacy entity PK anributes after 

execution of lines 9 and 10 are: 

Line I l  checks if Poperation-type is an insert operation. Since it is an insert operation. 

record io record mapping is stored in the cross referencing table. 

Control retums to the end of the algorithm Perform-synchronization. 

L a u c y  value 

6789 
5011133212 

EDS entily 
Y i i  num 
I 
I 

The algorithm Perform-synchronization terminates leaving the EDS synchronixd with 

EDS value Lcgicy cntify 
PA num 

1567 1 2  
4567 1 3  

both the leyacy systems. 

53.2 Example 2 

Consider an update on the entity 'Client' in the EDS. 

UPDA TE clien~ 

SET die - murital-stu~t~s-cde = 2 and die Iust - num = 'Ro~iull ' 

WHERE clienum = 4567; 

The change extractor associated with the EDS captures the update operation and passes 

the following parameters to the DTIM layer. 

P - System-name t 'EDS ' 
P - Entiknume t Client 
P-Operution-ype t 'U ' 
P-Key-Iisr t die - nurn. 4567 
P - A ttrib ute-list t die-marital-status-cde : 2, 

d i e  - fast-nam : 'Ronuld' 

The DTIM layer executes the algorithm Perform-synchronization with the above 

parame ters. 



Perfoim~rynchronization (Algorithm 1, Figure 12) 

Sincr the condition in line 1 that checks whether P-System-narne = 'EDS' is true. the 

algorithm Perform-EDS-enri@-mupping is executed. This algorithrn performs entity to 

entiiy mapping between the EDS and the legacy systems. 

PerformEDSentity_mapping (Algorithm 2, Figure 13) 

This algorithm detemines the legacy systems and their entities that need to be 

synchronized as a result of the update on the EDS entity 'Client'. 

On execution lines 1 and 2 of this algorithm determine these entities to be 'Customer' in 

the ' Mortgage system' and ' Investor' in the ' Investment system' . 

Lines 6.7 and 8 of the algorithm create two lists, one for each legacy system narnt: and 

legacy entity name with the following contents: 

<Mortgage system II 
.&iribure - lisr. Kry_lisr; 

Cicstomer lis/> t hlortguge system. Cu.stomc.r, L: 

lnvesror list > t Investmenr system. Inwsror, L: 

Please note that Attribute-list and Key-list (contained in the respective lists) are initially 

empty. It will be shown shortiy how their contents are detemined by the attribute and PK 

mapping algorithrns. 

Control then returns to line 3 of Performsynchronization; 

Line 3 of Perform-synchronization calls the aigorithm Perform - EDS-attributemupping. 

This alprithm performs attribute to attribute mapping between the EDS and the legacy 

systems. The main purpose of this algorithm is to determine the contents of the 

Attribute-list in the <Mortgage system II Customer list> as well as the Attribute-list in 

the 4nvestment system 1 Investor lisp. 



Perfotm-EDS-atMbuW-mapping (Algorithm 3, Figure 15) 

This algorithm determines the legacy systems' attributes that need to be synchronized as 

a result of the update on the EDS entity 'Client'. 

Lines 1 and 2 of the algorithm select al1 attributes that belong to the EDS entity 'Client' 

and that are in P-Attribute - list from the metadata mapper table 'EDS Entity attributes'. 

The selection creates result set Q that has the following rows: 

Result Set Q 

Linc 3 loops through each row in the result set Q. For each row in the result set Q. lines 

4.5 and 6 detemine if the EDS entity attribute has the SEPD code (shared EDS primary 

data). If the EDS a h b u t e  has the code SEPD. lines 7 and 8 determinc the corresponding 

mapped legacy attributes (result set R). The result set R for row nurn 1 of the rcsuli set Q 

is s h o w  below. 

- 

Result Set R for row num 1 of the Result Set Q 

Waw num 
I 
7 - 

Line 9 loops through each row in the set R. For each row in the set R lines 13.14 and 15 

determine the corresponding value of the legacy entity attribute. Lines 16 and 17 then 

determine whether the legacy entity anribute is a PK attribue or a non PK attribute. If it 

is a PK attribute it is added to the Key-list of the corresponding <Legacy system narne 11 
Legacy entity name  lis^ (line 19) otherwise it is added to the Attributclist of the 

corresponding CLegacy system narne (1 Legacy entity name lisv (line 18). 

EDS entity name 
Cliçni 
Client 

EUS rniity attributc nrme 
clic-marital-sinius-cdc 

- 

Afier the execution of steps 1 through 15 for each row in the result set Q, the resulting 

legacy entity attributes, with their corresponding values that need synchronization as a 

Code 
SEPD 

clic las1 nam 1 SEPD 

Wow 
iium o f  
JCIQ 
? - 

L a m y  entiîy altribuic 
nrmc 

cusi-marital-siaius-1x1 

Aitributt conversion - 

praccdurc: naine 

convrn-muriiül-stüius 

Wow 
num of 
MIR 
I 

Lcgrcy 
syrkm 
namc 
Mongngc 
svstern 

EDS cntity rttributc 
namt 

clic~marital~staius~çdr 

Lcgicy 
cnlity nrmc 

C'usiomer 



result of update on the EDS entity 'Client', are s h o w  in the following table: 

Lqacy cntity 
ittributc 
namc 

cust-marital-s 
tOlUS_LXt 
cust-lut-niun 

invs-lasi-nam 

How 
num of 
sri Q 

I 

1 - 
7 - 

canvcnion rnlity 
Wow 
num of 
ICI R 

I 

I 

EDScntity 
rtiribute 
nimc 

' clic-marital-s 
toius-cdc 
clic-lasi-narn 

' EDS 
cntity 
ittribule 
value 
2 

'Rond J' 

2 

On execution of steps 16, 17 and 18 for each row in the result set Q the Attribue-list in 

the <Mortgage system II Customer k t >  as well as the Attribute-list in the 4nvestmrnt 

system (1 Investor list> are as follows: 

SlilIUS 

< Iniwsimeni system II invesior l ist >. Artribute - list t 
invs-lust-num : 'Ronuld ' 

' Ronuld' 

cl ic-lasi-nam 

Coiitrol then retums to line 4 of Perfonn-synchronization. 

'Ronald' 

Line 4 of Perfom-synchronization then calls the algorithm 

Pcrfirm - EDS - - -  PK and record-mupping. This algorithm performs key to key and record 

io record mapping between the EDS and the legacy systems. The main purpose of this 

algorithm is to detemine the contents of the Key-list in the <Mortgage system 11 
Customer list> as well as Key-list in the ~Investmeni system 1 Investor list>. 

Perfom-EDS-PK-and-mcord-mapping (Algorithm 4, Figure 17) 

This algorithm determines the primary kry attributes and values for the mapped legacy 

entities. 

Lines I and 2 of the algorithm select the PK attribute(s) of the EDS entity 'Client' from 

the metadata mapper table 'EDS Entity PK Amibutes' that are in P-Key-list. The 



seleciion creates the result set P that has the following row: 

I i ne  3 checks the parameter P-Operation-type to determine if it is an insert operation. 

Since it is not an insert operation, linr 12 loops through the result set P. For each row in 

result set P iines 13 and 14 determine the corresponding mapped lepacy P i i  attributes and 

their values (in result set M). The result set M for the result set P is shown below: 

Rcsult Set P 
fi How num - EDS cntiry PK num EDS rntity PK Attributcm 

Result Set M 

clic-num I 

Line 15 loops through the result set M. For each row in the result set M. Iine 16 adds the 

legacy entity PK attribute and its value to the Key-list of the corresponding <Legücy 

system name II Legacy entity name list>. 

I 

Processing row 1 of the result set M gives: 

ibfortgccge syslcm (1 Cicstomcr list >. KeyJist t ctcst-num : 6 789 

Wow 
nuni of 
%et P 
1 
1 

Procrssing row 2 gives: 

Lqacy 
rntity nrrnc 

Customer ' 

Invcstor 

< Investment system 11 Investor list>. Key-list t invs-sin-num : 5081 332 12 

Ruw num 
of set hl 

I 
- i 

After performing the mapping between the EDS and the legacy systems the 

corresponding data modifications. as a result of the update on the entity 'Client' in the 

EDS, are: 

Lcgrcy cntity PK 
rttributc namc 

cust-num 
invs-sin-num 

Lcgrcy systcm 
naine 

Mortgagr syslem 
Invcsuncni 
systcm 

Lrgacy value 

67119 
5011133212 



where Attribute-list is: 

c,\.lortguge systcm 1 Cicstomcr lisr> f ttribute-lis1 t 
cusr-maritalstat us-txt : ' Murr ied '. 
ciut-lusr-num : 'Ronald ' 

where Key-list is: 

< Mortguge system II Cusrorner lis[>. Key - list t crrst-num : 6 789 

And 

(2) <Investment system II Investor list> t lnwstment systrm, Investor, U, 
.4 rtribute-list, Key-iist; 

where Attribute-list is - 

where Key-list is 

< Invcsrmrnt sysrem II lnvesror list>. Key-list t inw-sh-num : jO(3lJ.V / 7 

Control then rctums to the end of Perform-synchronization. 

The algorithm Perform-synchroniwtion th tn  terminates leaving the EDS synchronizrd 

with both the legacy systems. 

The above examples illustrate how data modifications on the EDS rue propagated to the 

legacy systems. Similarly, examples can be drawn to show propagation of data 

modifications from the legacy systems to the EDS. 

5.4. Warehouse Anomaly 

The warehouse anomaly was introduced in Chapter 4. It is associated with the 

materialized view maintenance approach to data warehousing. It arises when the queries 

from the data warehouse are interleaved with the updates arising fiom the base data 

sources. Additional mechanisms or algorithms are needed to avoid the warehouse 

anomaly. The materialized view approach is applicable to the data warehouse architecture 

rather than the EDS or the ODS architecture. This is due to the fundamental difference 

116 



between the data warehouse and the EDS architecture (or the data warehouse and the 

ODS architecture). These differences were mentioned in Chapter I and then revisited in 

Chapter 4. Chapter 4 concluded that the materialized view approach was not suitable to 

the EDS architecture due to: 1)  the volatile nature of the EDS 2) the record to record 

niapping found in the EDS 3) the currency of data 4) lack of summarization and 5 )  the 

nature of the processing. 

The EDS is built for on-line transaction processing of the primary data and off-line 

transaction processing of the secondary data. The very nature of the processing found in 

the EDS implies that the design of the EDS should be normalized, requiring record to 

record mapping and discouraging summarization. The data warehouse on the other hand 

is built for informational processing. It contains complicated, long running queries that 

access large amounts of data and therefore summarization or materializing queries is 

ancouraged . 

The proposed approach to synchronization in the EDS is based on the philosophy of 

storiny al1 the information required for synchronization in the metadata mapper. (i.e.. the 

metadata mapper contains al1 the knowledge required to convert a data modification from 

one tier to the corresponding data modification in the other tier. As a result, no additional 

queries are sent from the EDS to the base data sources or vice versa tlrnce. the 

warehouse anomaly is not applicable to the EDS architecture. This is now illustrated with 

a delete anomaly exarnple. 

Consider two data stores, the EDS and the legacy data store 'Mortgage' (as show in 

Appendix 2). The entity 'Client' in the EDS maps to the entity 'Customer' and ' Address' 

in the mortgage data store. Assume, the mortgage entities 'Customer' and 'Address' are 

the primary sources of client and address information and the entity 'Client' in the EDS is 

the secondary source. This implies any data modifications are first performed on the 

'Customer' and 'Address' entities in the mortgage data store and then propagated to the 

EDS entity 'Client'. In other words, the 'Address' and 'Customer' infornation fiom the 



mortgage system has been denormalized in the EDS entity 'Client'. If a customer has 

multiple addresses, such denonnalization will never be appropriate for the EDS. This 

hrther strengthens the argument that summarization and denomalization are not found 

in the EDS architecture. For the sake of this discussion (and to keep it simple and 

rerlistic) assume that 'Customer' has just one address. In terms of the analogy with 

warehouse view definition. the EDS entity 'Client' can be considered as a view over two 

base data sources 'Customer' and 'Address'. Appendix 2 shows the mapping stored in the 

metadata mapper between the legacy entities 'Customer' and 'Address' and the EDS 

rntity 'Client'. 

5.4. f The Deleh anomaly 

Çonsider a delete on the entity 'Customer' in the mortgage data store. 

DELETE address 

WHERE uddr-mm = 6789; 

The change extractor associated with the mongag data store captures the delrte 

oprration and passes the following parameters to the DTIM layer. 

P-System-name c 'Mortgage system ' 
P - Entiknume c 'Address ' 
P-Operation-îype t 'D ' 
P - Key-list taddr-num. 6789 
P - .4itributelist t 4 

The DTIM layer executes the algorithm Perform-synchronization with the above 

parameters. 

Perfonn~ynchronization (Algorithm 1, Figure 12) 

Since the condition in line I that checks whether P-System-name = 'EDS' is false. the 

algorithm Perform-legacy-entity-mapping is executed. This algorithm performs entity to 



entity mapping between the legacy system and the EDS. 

Perform-legacy-entity-mapping (Algorithm 6, Figure 14) 

This algorithrn determines the EDS entities that need to be synchronized as a result of the 

delete on the mortgage entity 'Address'. 

On execution lines 1 and 2 determine the EDS cntity to be 'Client'. 

Lines 6.7. and 8 of the algorithrn result in creating a list with the following contents: 

<EDS II Client fisr> t EDS. Client. D, Atirihufe-lisr. Key - list; 

Please note that Attribute - list and Key-list (contained in the above list) are initially 

rmpty. It will be shown shortly how their contents are determined by the attribute and PK 

mapping algorithms. 

Control then retums to line 8 of Perforni-synchronization. 

L ine 8 cal 1s the algorithm Perj~rrn~legacy~a~tribute~mupping. This algorithm performs 

attribute to attribute mapping between the legacy system and the EDS. The main purpose 

of this algorithm is to determine the contents of the Attribute-list in <EDS II Client k t> .  

Pedormlegacy-attribute-mapping (Algorithm 7, Figure 16) 

This algorithm determines the EDS entity attnbutes that need to be synchronized as a 

result of the delete on the mortgage entity ' Address'. 

Lines 1 and 2 of the algorithrn select al1 attributes that beiong to the mortgage rntity 

'Address' and that are in P-Attribut-list from the metadata mapper table 'Legacy Entity 

attributes'. The selection creates a result set Q that is empty since PAttribute-list is 4. 

Control then retums to line 9 of Perform-synchronization. 

L ine 9 calls the algorithm Perform-legacy-PK-and-record-mupping. This dgon thm 

119 



performs key to key and record to record mappings between the legacy system and the 

EDS. The main purpose of this algorithm is to detemine the contents of the Key-list in 

the <EDS 1 Client list>. 

Pedom-legacy-PK-and-record-mapping (Algorithm 8, Figure 18) 

This algorithm determines the primary key attributes(s) and values(s) for the mapped 

EDS entity(s). 

Linrs I and 2 of the algorithm select the PK attributes of the legacy entity 'Address' t'rom 

the metadata mapper table 'Legacy Entity PK Attributes' that arc in P-Key-list. The 

selection creates a result set P that has the following row: 

Rcsult Set P 
How num 1 Legacy cnllty Pl i  num 1 Lcgacy cntity PA Attributcl 
1 1 3  I d d r  num 

Line 3 checks the parameter P-Operation-type to detemine if it is an insert operation. 

Since it is not an insert operation. control passes to line 12 of the algorithm. Line II 

loops through the result set P. For each row in the result set P. lines 13 and 14 determine 

the corresponding mapped EDS PK onributes and their values (in result set M). The result 

set M for the result set P is: 

Result Set M 

Line 1 5 loops through the result set M. Line 16 then adds the EDS entity PK attribute and 

its value to the Key-list of the corresponding <EDS II EDS entity n m e  k t> .  AHer 

execution of line 16, the Key-List in the <EDS 1 Client lisp is as follows: 

< EDS II Client Key-1st t die-num : 456 7 

How num 
of set P 
I 

After performing the mapping between the mortgage system and the EDS the 

120 

EDS entity P l i  
ittributr name 
clic num 

EDS value 

4567 

Wow num 
ufwt hl 
1 

- EDS rntiîy 
name 
Client 



corresponding data modifications as a result of delete on the entity 'Address' in the 

Mortgage system are: 

< EDS II Client Iisr> t EDS, Client. D. Amibute - list. Key-list: 

where Attribute-list is: 

<EDS II Client Iis1>..4itribute-list t # 

whert: Key-list is: 

<EDS II CIient lis!>. Key-list c die-nirrn : 1567 

Control then retums to the end of Perform-synchronization. 

The fact that key to key and record to record mappings are stored in the metadata mapper 

means the additional query required to determine the customer records associated with 

the deleted address record is not needed therefore. the anomaly does not occur. In fact the 

solution to the deletion anomaly discussed in [19] is based on storing prirnary L y s  in the 

warehousr for rvery base relation involved in the view. 

.. . 1 hc above exarnple illustrates how the proposed synchronization solution is different 

tiom the materialized view approach. As a result the delete or update anomalies found in 

the data warehouse architecture is not applicable to the EDS architecture. 

5.5 Correctnesr of the Synchronization Algorithms 

In ihis section. the correctness of the synchronization algorithms is discussed. The 

synchronization alprithms use the mappings stored in the metadata mapper to convert a 

change in one tier to its corresponding change(s) in the other tier. Therefore. the 

correctness of these algorithms will depend on: 

0 Correctness of the metadata model, and 

0 The mapping data stored in the metadata mapper 



Cortectness of the metadata model 

As discussed there are four kinds of mappings that are required for synchronization. They 

are - entity to entity mapping, anribute to attribute mapping, key to key mapping and 

record to record mapping. The metadata model introduced earlier in this chapter models 

the four kinds of mappings. Since the solution to synchronization is based on these 

mappings. it is very important that the metadata model models each kind of mapping 

correctly. In Section 5.2.1. the metadata rnodel was descri bed in detail. It was also shown 

how each kind of mapping was conectly modeled in the metadata model. 

In Chapter 4, a formal classification of the types of data in the two tier data architecture is 

presented. The data in the EDS was classified into EEPD (exclusive EDS primary data). 

SEPD (shared EDS primary data), and ESD (EDS secondary data). Similarly. data in the 

application data store is classified into EAPD (Exclusive EDS primary data), SAPD 

(Shared application primary data) and ASD (Application shared data). This classification 

identities that SEPD (shared EDS primary data) must be synchronized with the secondary 

data of application systems (ASDs) and the shared primary data of application systems 

(SAPDs) must be synchronized with the EDS secondary data (ESD). Further. no 

sy nchronization is needed for exclusive EDS prirnary data (EEPD) and exclusive 

application primary data (EAPD). 

This classification clearly defines the types of data in the two tier data architecture and 

identifies those that need synchronization. The classification also puis forth the 

requirements for synchronization (i.e.. in order to synchronize the EDS with the 

application systems SEPD must be synchronizcd with ASDs and SAPDs must be 

synchronized with ESD). The attribute 'EEPD or SEPD or ESD code' of the entity 'EDS 

Entity Attributes' in the metadata model classifies the attributes of EDS entities to EEPD. 

SEPD or ESD code. Similarly. the attribute 'EAPD or SAPD or ASD code' of the entity 

'Legacy Entity Anributes' classifies the attributes of legacy entities to EAPD, SAPD or 

ASD code. With this classification the entity 'EDS Legacy Attribute Mapping' is able to 

map the SEPD attributes to ASD attributes and SAPD attributes to ESD attributes. 

122 



The feasibility of this attribute to attribute mapping by the metadata model shows how 

the mappings between the EDS and the operational systems can be used to synchronize 

SEPD with ASDs and SAPDs with ESD. This shows the mappings modeled in the 

inctadata model are correct which further infers the correctness of the metadata model. 

The Correctnesr of the Mapping Data Stored in the Metadata Mapper 

The mapping data stored in the metadata mapper is based on the requirements of the 

organization. For example, Appendix 1 shows the implementation of the mrtadata 

mapper for the ihree entities. The data and algorithms stored in the metadata mapper are 

specific to the needs of the organization. Population of the mapping data in the metadatü 

mapper is a legitimate and interesting research question, it is not the one addressed in this 

research. As rnentioned before, (001s can be developed that will automate or semi- 

automate population of mapping data in the metadata mapper. This thesis assumes that 

the mapping between the EDS and the operational systems can be correctly dctermined 

and stored in the metadata mapper either with the hrlp of tools or by using altemate 

niethods. 

Based on the above assumption and the correctness of metadata model. the 

synchronization algorithms are correct. 



Chapter 6. 

Conclusions 

6.1 Summary and Contributions 

Integrating data from multiple. heterogeneous databases and other information sources 

has been one of the leading research issues in database research and industry. In this 

thesis. the research done on data integration was broadly classified into Multidatabüse 

Systrms and Data Warehousing. The thesis provides a comprehensive cornparison 

between the two approaches and argues that in spite of certain drawbacks with the data 

warehousing approach, it is a much simpler and more powerful solution to the data 

integration problem. 

This thesis contributes towards solving the problem of data integration using the data 

warehousing approach and makes a number of important contributions. Fint, it detïnes a 

new data integration architecture by defining an architectural constnict the Enterprise 

Data Store (EDS). An Enterprise Data Store is a repository of data that represents an 

integrated view of enterprise operations and is built for corporate wide operaiional 

informational processing and transactional processing of common business operations. 

The research discusses in depth, the characteristics of the EDS and compares them to the 

ODS. The research also presents the corporate data architecture with the EDS. the data 

warehouse and the application systems. The research argues that the ODS fails to provide 

true operational integration because 1) it does not eliminate the operational redundancy of 

common business operations, and 2) it does not provide a consistent view of data across 

the application systems and the ODS. The EDS overcomes these lin~itations. 



The second major contribution of this thesis is that it introduces a new approach to 

synchronization based on using metadata for synchronizing the EDS with the application 

systems. Metadata is one of the mosi important aspects of the data warehousing 

environment. A very important component of the data warehouse metadata store is the 

mapping between the operational systems and the data warehouse. The research. based on 

this component of the data warehouse metadata store. identifies four kinds of mappings - 
entity to entity. attribute to attribute mapping. key to key. and record to record mappings 

that c m  be used to synchronize the EDS with the application systems. The mappings are 

modcled in a metadata model that is irnplementrd as the metadata mapper. The mapping 

data and algorithms stored in the metadata mapper are used by the synchronization 

algorithms to synchroniw the EDS with the operational systems. Early synchronization 

architectures (e.g., the WHIPS architecture) in data warehousing are büsed on 

materialized view approach. The proposed approach offers two main advantages over the 

materialized view approach. First, it simplifies the synchronization architecture by taking 

ciway complexities like global query decomposition, global query optimization. global 

concurrency control. and distributed query processing. Second. it facilitates simultaneous 

development of the metadata store. Though metadata is an essential component of the 

data warehouse architecture. the development of this component is usuall y ignored. The 

proposed architecture enables the development of a major component of the metadata 

store and keeps it current with the data in the EDS and the operational systems. The ihesis 

also contributes by providing a metadata model to store the mappings between the 

operational systems and the EDS. 

The thesis also makes a significant contribution by proposing an architecture for 

synchronizing the EDS with the application systems. The architecture gives a 

classification of different kinds of data found in the two tier data architecture. This 

classification clearly identifies the data that needs to be synchronized between the two 

tiers. Also, it clearly differentiates the subsets of data in a data source with which the 

propagator and the change extractor should be associated. The synchronization 

architecture i s  based on two centralized components - the DTIM and the metadata 

125 



mapper. These components contain al1 the knowledge needed to accept a changehpdate 

from a tier and convert it to the corresponding change(s)/updates(s) in the other tier. No 

queries are posed on the application systems as no additional information is required for 

the synchronization. This simplifies the architecture tremendously and the cornponents 

like wrappers, mediators, and query processon that are needed by other architectures to 

deal with issues like global query decomposition and optirnization, distributed query 

processing. mediation, multi-source warehouse consistency are not needed. 

One of the advantages offered by the proposed synchronization architecture is that no 

collision or contlict detection and resolution mechanisms are needed. Since in the 

proposed architecture a data element is only maintainable by a single data source 

(primary data of a data source) and is read only in the other data sources (secondary dota 

of data sources), the possibility of collisions has been eliminated. 

Another advantage of the proposed architecture is that mechanisms required for ensuring 

serializability of local and extemal (propagated) transactions are not required. This is 

brcause local transaction will act on primary data of a data source and propagated 

transactions will act on the secondary. Since they are two separate subsets of data. 

serializability is not an issue. 

Finally. the thesis also contributes by providing a comprehensive set of synchronization 

algorithms. These algorithms use the mappings stored in the metadata mapper to convert 

a change in one tier to its corresponding changes in the other tier. These algorithms 

illustrate the viability of the proposed synchronization solution that uses metadata for 

synchronization and introduce a prototype of the metadata mapper and the DTlM Iüyer 

based on simple mapping between the EDS and the operational systems. This prototype 

can be further customized and expanded depending on the requirements of the 

organization. 



6.2 Future Research 

Although this research has made a number of significant contributions in the area of data 

integration, some open problems still exist. The next few paragraphs present some of the 

open research problems related to this research. 

The proposed solution to synchronize the EDS with the operational systems is based on 

usina t the mapping data and algorithms stored in the mctadata mapprr. This taises a 

leyitimatc and interesting question about how the relevant mappings between the EDS 

and the operational systerns are determined and stored in the metadata mapper. Without 

any tools the manual process of determining the four kinds of mappings (entity, attribute. 

primary. and record) between the EDS and the operational systems will bc a tedious, error 

prone and tirne consuming process. Further. once the mappings are determined, relevant 

data and conversion algorithms need to be stored in the metadata mapper. To facilitate 

rasy detemination and storage of mapping data, tools could be developed to automate or 

semi-automate implementation of the metadata mapper. These tools might read schema 

information from dictionaries of the data sources involved in the integration architecture. 

This information can thcn be presented to the user in such a manner that the user can 

easily map entities and their respective attributes from one data store to the other. As a 

result of mapping. the tool could then produce the transformation logic needcd for 

synchronization. Building of such metadata mapping tools cm be an interesting future 

research proposal. 

Change detection is an open research problem that arises from the warehousing approach. 

The solution to the change detection problem is dependent on the underlying application 

sources. Earlier work towards change detection has classified the application sources into 

- cooperative sources. logged sources. queryable sources, and snapshot sources. Each type 

of application source capability provides interesting research problems for change 

detection. 1 n the EDS architecture, a change extractor is associated with each data source 

participating in the integration architecture. This is because the Functionality of the 



change extractor is dependent on the type of source (e.g., legacy system, relational) as 

well as data provided by the source. Efficient algorithms need to be developed that are 

optimized for detecting and capturing only the relevant information needed for the 

synchronization. For example, optimizing the change extractor to detect and capture data 

modification only on the shaied primary data of the associated data source. 

Another important component of the EDS architecture is the propagator. The propagator 

çonvrrts the logical transaction passed by the DTIM layer into the physical transaction in 

the language of the associated data source. Like the change extractor. we need a different 

propagator for rach application source and the EDS. This is because the functionality of 

the propagator is dependent on the type of the source (e.g.. database system. legacy 

systrrn. etc.) as well as the type of data manager and the query language associated with 

the source. Algonthrns and techniques nced to be built for the efficient implementation of 

the propagators. 

A different propagatorkhange extractor is needed for each data source. Clearly it is 

undesirable to hard-code a propagatorkhange extractor for each data source participating 

in the integration architecture. Hence, a signi ficant research issue is to develop techniques 

and toois that automate or semi-automate the process of implernenting change extractors 1 

propagators through a tool kit or speci fication based approach. 

The synchronization algorithms proposed in this research are based on simple mappings 

between the EDS and the operational systems. The purpose of this research was to 

illustrate the viability of the proposed synchronization solution that uses metadata for 

synchronization; and to build a framework for the synchronization of tlie EDS with the 

operational systems. For future research, tlie metadata mode1 and the synchronization 

algorithms can be modi fied andor expanded to suppon complicated cases of mappings 

between the EDS and the operational systems. 

Another interesting area for fihue research would, of course, be the implementation of 



the proposed data integration architecture. This will require building the EDS constmct. 

modi fy iny the application sources, and implementing the proposed synchronization 

arc hi tecture with change extractors, propagators, DTIM layer, and metadata mapper. 



W.H. Inmon. C. Imhoff, R. Sousa. Creating an Information Ecosystem. In Robert 

Elliott, editor. Corporate Information Factory, pp. 1-1 1, John Wiley & Sons. Inc.. 

New York, U.S.A, 1998. 

S y stems Techniques. Inc. Information Architecture : Munuging Clirstonier 

Reluiionships. 

http://warehouse.chimenet.org/software/datastore/datarepos/vhitecia.htm1. 1995. 

W.H. Inmon, C. Imhoff, G. Battas. In Robert Elliott, editor. Building the Oprmtiond 

Dutcr Store. John Wiley & Sons. Inc.. New York, U.S.A. 1996. 

IEEE Cornputer. Special Issue on Heteropneous Distributed Database Systems. 

S4(12), 1991. 

M.T. Ozsu. P.Valduriez Distributed Multidatabase Systems. In Christina Burghard 

and Jenni fer Wenzel. editors, Principls of Disrribute J Datubuse Sysfcms. pp. 425- 

456. Prentice Hall. Englewood Cliffs, New Jersey. 1991. 

W.H. Inmon. The Operational Dutu Srore. Tech Topic, l(17). Prism Solutions Inc.. 

1 O00 Hamilton Court. Sunnyvale. CA 94089. 1993. 

W.H. Inmon. What is u Datu Wurehotcse. Tech Topic. 1(1), Prim Solutions Inc.. 

1 O00 Hamilton Court, Sunnyvale, CA 94089, 1995. 

W.H. Inmon. Defining the System of Record for the Data Warehouse. Tech Topic. 

l(3). Pnsm Solutions Inc., 1000 Hamilton Court. Sunnyvale, CA 94089. 1993. 

J .  Widom. Research Probiems in Data Warehousing. In Proceedings of the 4th 



international Confirence on Information and Knowledge Management - CIKM'9j.  

pp. 25-30. November. 1995. 

[ 1 O] Inmon. Meta Data in the Datu Warehousc. Prism Solutions Inc.. 1 O00 Hamilton 

Court. Sunnyvale. CA 94089. Tech Topic, l(6). 1 996 

[ I  l ] J .  Hammer. H. Molina, J. Widom. W. Labio, Y. Zhuge. The Stanford Data 

Warehousing Project. IEEE Data Engineering Bulletin, 18(2). pp. JI -48, 1995 

[ 121 J .  Wiener, H. Gupta. W. Labio. Y Zhuge. H Molina. J. Widom. A System Prototype 

for Warehouse V iew Maintenance. In Proceedings of the Workshop on Mafwiuliicd 

C.7ews. pp. 26-33. June 1996. 

[13] D. Lomet and J. Widom. editors. Special Issue on Materialized Views and Data 

Warehousing, lEEE Dutu Engineering Bitllrtin 18(2). June 1995. 

[ 1 JI S. Abiteboul and A. Bonner. Objects and views. In Proceedings of' the . - IC 'M 

SIGMOD International Cunfirence on Munugemen~ of Duru, pp. 238-247. Denver. 

Colarado. May 199 1. 

[ l  51 E. Bertino. A View Mechanism for Object-Oriented Databases. In Advunccs in 

Du~ubase Technology-EDBT 'W. Lecture Notes in Cornputer Science 5 80. pp. 1 36- 

1 5 1. Springer-Verlag, Berlin, March 1992. 

[16]S. Ceri and J. Widom. Deriving Production Rules for Incremental View 

Maintenance. In Proceedings of ~ h e  Seventh International Conjerence on Very Large 

Data Buses - VL DB '91. pp. 5 77-589, Barcelona, Spain, September 1 99 1 . 

[17] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a 

Warehousing Environment. In Proceedhgs of the ACM SIGMOD Internattoncil 



Conference on Management of Data, pp. 3 16-327, San hse ,  California, May 1995. 

[18] N. Roussopoulos. Materialized Views and Data warehouses. In the Proceedings oj' 

the 41h KRDB Workrhop Athens, Greece, August 1997. 

[ 1 9) S. Chawathe. H. Garcia-Molina. J. Clammer. K. Ireland. Y. Papakonstantinou. J. 

Ul Iman. 1. Widom. The TSIMMIS project: Integration of Heterogeneous Information 

Sources. In Proceedings of the I U U ( ~  Annivcrsury bleeting of the Inji,rmatir~n 

Processirtg Society of Japan, pp. 7- 18. Tokyo. Japan. October 1994. 

1201 G. Wiederhold. Mediators in the Architecture of Futurc Information Systems. IEEE 

C'ompu~cr, 25(3), pp. 38-49,1992. 

[2 11 V. Vassalos. Y. Papakonstantinou. Describing and Using Query Capabilities of 

Heterogeneous Sources. Ili Proceedings of rhe twrnty rhird Conference on Very 

Luge Durubuses, pp. 256-265, Athens. Greece. 1997. 

[ E l  C. Li. R. Yereni. V.Vass<rlos, H. Garcia-Molina, Y. Papakonstantinou. J. Ullman. M. 

Valivrti. Capability Based Mediation in TSIMMIS. In Procredings of the AC'M 

SIGMOD Intc.rnationa1 Confirencr on Munagement of Data. p p. 564-566, 1 998. 

[73] 5 .  Harnmer. H. Garcia-Molina. S. Nestorov, R. Yerneni. M. Breunig. V.Vassalos. 

Template-Based Wrappea in the TSIMMIS System. In Proceedings of rhe AC'M 

SIGMOD International Conference on hlanagemrnt cf Dutu, pp. 5 32-5 3 5.  1 997. 

[34] Y. Zhuge. H. Garcia-Molina, J. Wiener. The Strobe Algorithm for Multi-Source 

Warehouse Consistency. III Proceedings of the Fourth International Conference on 

Purullel und Disrributed information Systems, pp. 146- 1 57, 1996. 

[25] W. Labio, H. Garcia-Molina. Enicient Snapshot Differential Algoriihms in Data 

warehousing. Technical report, Dept. of Computer Science, Stanford University, 

132 



[26] K. Barker. M.Evans, J. Anderson. Measuring Autonomy in Heterogeneous 

Coopentive Systems. Technical Report, TR 92-08, University of Manitoba, Dept. of 

Computer Science, 1 992. 

[271 K. Barker. Taxonomy of Heierogeneity in Multidatabase Systems. Technical Report. 

TR 92- 10. University. of Manitoba, Dept. of Computer Science, 1992. 

(281 J. Widom and S.Ceri. Active Database Systems: Triggers and Rules for Advanced 

Database Processing. Morgan Kaufmann, San Francisco, California, 1995. 

1291 L. Baekgaard, N. Roussopoulos. Efficient Refieshment of Data Warehouse Views. 

Technical Report, Institute for Advanced Computer Study and Dept. of Computer 

Science. University of Maryland at College Park. 

[JO] Y. Zhuge, J. Wiener. H. Garcia-Molina. Multiple View Consistency for Data 

Warehousing. In proccedings cf the Thirteenth Inrernaiionul Conferencc on Dutrr 

Engineering, pp. 289-300, 1997 

[3 1 ] N. Huyn. Efficient View Self-Maintenance. In Proceedings of Workshop on 

Materialisrd views: Techniques and Applications. pp. 1 7-25, 1996. 

[32] D. Quass, A. Gupta, 1. Mumick. J. Widom. Making views Self-Maintainable for Data 

Ware housing . In Proceedings of the Fourth international Conference on Parullel 

und Disiributed Information Systems, pp. 158- 169, 1996. 

[33] D. Quass. Maintenance Expressions for Views with Aggregation. Workshop on 

Materialized Views: Techniques and Applications, pp. 1 10- 1 18, 1 996. 

[3 41 W. H. Inmon. Building the Data Warehouse, QED Information Sciences, Wellesley. 

133 



U.S.A., 1992. 

[35] W.H. Inmon. Enterprise architecture for the 90 S .  Tech Topic, Prism Solutions Inc.. 

1000 Hamilton Court, Sunnyvale. CA 94089. 1 ( 1 3). 1993. 

[36] S. Ram. Heterogeneous Distributed Database Systems. IEEE Cornputer. Specid 

Issue on Heterogeneous Distributed Database Systems, 24(12), December 199 1 .  

[37] W. Kim. J. Seo. Classifying Schematic and Data Heterogenrity in Multidatabase 

Systerns. lEEE Compurer. Special Issue on Heterogeneous Distributed Database 

Systems. 24( 12). December 1991. 

[38] R. Ahmed. P. Smedt, W. Du. W. Kent. M. Ketabchi. W. Litwin, A. Rafii. M. Shan. 

The Pegasus Heterogeneous Multidatabase S ystem. IEEE Cornputer. Special 1 ssue 

on Heterogeneous Distributed Database Systems. 24(12). December 199 1 .  

[39lC. Batini. M. Lenzirini, and S.B. Navathe. A Comparative Analysis of 

Methodologies for Database Schema Inteyration. ACM C'omptrter Surveys. 1 8(4) pp. 

323-364. December 1986. 

[4O]C. Chunp, Dataplex: An Access to Heterogeneous Distributed Databases. 

Communications ofthe ACM. 3 3( 1 ), pp. 70-80. 1 990. 

[J 11 Y. Brietbart. P. L. Olson and G.L. Thompson. Database Integration in a Distributed 

Heterogeneous Database System. In Proceedings of International Conference on 

Dutu Engineering, IEEE CS Press, pp. 30 1-3 10, Los Alamitos, California, 1986. 

[42]T.A Landers and R.L. Rosenberg, An Overview of Multibase - A Heterogeneous 

Database System. Distributed Databases, H-S. Schneider, ed., pp. 1 53- 1 84, North- 

Holland, Amsterdam, 1982. 



Appendix 1 

Metadata Mapper for Example 1 

EDS Entities 
1 EDS eatity aime 1 Entity Description 1 
1 Client 1 The entity stores information about al1 the clients o f  the company. 1 

L g i c y  System 

Lcgrcy System Entities 

k p c y  system name 
Mortgage system 
Investment system 

) bey system aime 1 Legacy entity arme ( Entity Description 1 

Legacy description 
System responsible for the processing of  mortgages. . 
System responsible for the processing of investments. . 

1 Mortgage -system 1 Customer 1 Mortgage client. 1 
1 lnvestment system 1 Investor 1 lnvestment client. 1 

EDS Legacy Entity Mapping 
EDS tntity aime 
Client 
Client 

Legaq system name 
Mortgage system 
lnvestrnent system 

Legacy entity name 
Customer. 
1 nvestor. 



EDS Enrity Attributes 
DS entity attribute 
Lme 

Position Nullable Default 1 Code Definition I name ni 
Client cl ie num 1 number(9) EEPD 1 Client number. 

SEPD 1 Last name. Client 1 ;; 
Client ,e first nam 1 chad30) No 

No 
No 
Yes 

1 W3; 1 First nanx. 
Sin number. 
Gender code. 
Birth date. 

Client 
Client 
Client 
Client 1 1 SEPD 1 Marital status. 

L m c y  Entity Attributes 
Lcycy  system Legay entiîy attribute 

name 
Code 

EAP 
D 

De finition 
name 
Mortgage system Customer Customer 

number. 
Mortgage system 
Moxtgage system 
Mortgage system 

Customer cust last narn ASD 
ASD 
ASD 

Last name. 
First narne. Customer cust first nam 

Customer cust - gender-tx t 

c u s t ~ m a t i t a ~ ~ s t a t u s ~ t x t  

Gender 
code. 

Customer Mortgage system ASD 

ASD 

ASD 

Mari ta1 
status. 
Sin 
number. 

Investment Investor 
system 
Investment lnvestor 
syslem 



EDS Lcgicy A 

Client 
Client 
Client 
Client 
Client 

lnvestment 
system 
lnvestment l 

system 
Investment 

Client 
Client 

system I I 1 I I I I I I 

bute Mapping 

3 

4 

5 

Investor 

lnvestor 

Investor 

D S  entity ittribute 1 Lqacy system 

No 

No 

No 

ASD 

ASD 

ASD 

ame 1 nrme 

First name. 

Gender 
code. 
Birth date. 

invs-first-nam 

invs-gender-cde 

invs-birth-dte 

- 

lie-last-narn  gage Gstem 
lie last nam lnvestmrn t svstem 

test(25) 

number(1) 

date 

lie-fi-nam Mortgage system 
ie-fi rstnam lnvestment system 
lie-sin-num l nvestment system 
ie~ender-cde  Mortgage system 

I ie~ender-cde lnvestment sy stem 
ie-bi rth-d te Investment system 
ie-marital-status-cde Mortgage sy stem 

Legacy entity 
name I Legaq entity attribu te Attribute conversion 

name 1 procedure name 
. - - - - - - - - -- - 

Customer - cust-last-narn 
Investor invs-lt-nam truncate-las-nam 
Customer cust-first-narn 
Investor invs-first-nam tmncate-first-nam 
Investor inv-innum 
Customer cust - gender-txt c o n v e ~ e n d e r  
Investor invs_gende-de 
lnvestor invs-birth-dte 
Customer cust - marital-staius-txt convert-marital-statu 

EDS Eatiîy PK Attribut- 
h 

EDS cntity PK 
num 
1 

EDS entity 
name 
Client 

EDS cnîity PK attribute 
name 
d i e  num 

PK Atîribute 
position 
1 



Legacy Entity PK Attributes 

EDS Legacy PK Mapping 
) Lcgaq cntity PK 1 EDS cstity PK 1 Secoadary entity PK generation 1 

2 
3 

macy eatity PK 
num 

1 C m s  rcCrnncing 1 Ltgacy entity PU 1 EDS eatity PK 1 Legacy ( EDS value 1 

Legacy eatity PK attribute 
name 

; 

Mortgage sysiem 
Investment system 

num 
1 

2 
3 

Legacy system 
name 

PK Attribute 
position 

Conversion Procedures 
Conversion procedure 1 Procedure tex( 

Legicy entity 
name 
Customer 
lnvestor 

num 
1 
1 

num 
1 
2 

algorithm 
generate-cust-num 

1 var : tmnc last nanie; 

cust-num 
invs-sinnum 

num 
3 
2 

truncate-1st-narn 

1 
1 

input : last-name // upto 30 character long // 
output : tninc-last-name // truncate the input (last name) to 25 characters 

num 
1 
1 

value 
508 1332 i 2 
6789 

4567 
4567 



11 ale tua^ JOJ J 'aietu JOJ 11 1xai~apua8 : indino 
/ /  aiauraj 10j 'aletu 10j 1 // apoaiapua8 : indu! i a p u a K ~ a ~ u o ~  

f pua 



f pua 
:(r(a~-pal~aua%)wn1a~ 

fuinu-lsna lxau lail =: Aaq-pmauaS 

fJ!  pua 
: ,a13u!~, + lxa1-pjyuc 



Appendix 2 

Metadata Mapper for Example 2 

EDS Entities 

Legay Systcm Entitk 
I 

EDS entity name 
Client 

Lcgacy System 

EnMy Description 
The entity stores information about al1 the clients of the company. 

Lcycy system aime 
Mortaaae svstem 

V W  - I 1 - - r 

Mortgage system 1 Address 1 Customer's address. 

Legag description 
System responsible for the processing of mortgages. . 

Lcg.cy system name 
M o r t ~ a ~ e  svstem 

1 V Y  - I Client 
1 

1 Mortgage system 1 Address. 

Lcg.cy entity name 
Customer 

EDS Legay Entity Mappiag 

Entity Description 
Mortgage customer. 

Legacy entity aime 
Customer. 

L 

EDS atiîy aime 
I 

Client 
Lcgacy system arme 
Mortgage system 



Lemm Entity Attributes 

EDS Entity Attributes 
EDS cntity name 

Client 
Client 
Client 
Client 
Client 
Client 

- - - 

Code 

ESD 
ESD 
ESD 
ESD 
ESD 
ESD 

Lcgacy system 
name 
Mortgage system 

Mortgage system 
Mortgage system 
Mortgage system 

EllS entity attribute name 

die-num 
die-last-nam 
die-first-nm 
die-addr-line l t x t  
cl ie-addr-ci ty -nam 
die-addr-country-cde 

Definition 

Client number. 
Last narne. 
Firsr name. 
Address line 1 text. 
City. 
Country. 

Legacy catity 
nmne 

I I I I I I I 1 number. 

Customer 

Customer 
Customer 
Address 

Mortgage system 

Mortgage system 
Mortgage system 
Mortgage system 

text(30) 

Dataîype 

number(9) 
char(3 0) 
c har(3 0) 
char(30) 
char(30) 
number(1) 

cust-num 

CU-1st-nam 
CU-f is -nam 
addr-nurn 

1 I 

Address 
Address 
Address 

Nullabl 
e 
No 
No 
No 
No 
No 
No 

Position 

1 
2 
3 
4 
5 
6 

Legacy entity 
attribute name 

- 7 Address 

Default 

Position Datatype 

nwnber(9) 

text(3O) 
text(30) 
number(9) 

addr - line l -txt 

addr city-nam 
add-ountrycde 
addr-cust-num 

1 

No 

1 

2 
3 
1 

text(30)) 
nwnber(1) 
number(9) 

Nullable 

SAPD 

Code Defiult 

No 

No 
No 
No 

Address line 1 
text. 

3 
4 
5 

Definition 

SAPD 

SAPD 
SAPD 
EAPD 

1 

No 
No 
No 

Customer 
number. 
Last name. 
First narne. 
Address 

SAPD 
SAPD 
SAPD 

City. 
Country. 
Customer 
number. 



EDS Legacy Attribute Mapping 
1 EDS entiîy 1 EDS entity attribute 
name 
Client 

1 Client I clie first nam 

name 
die-num 

- Client 
Client 

L - - 
Client 1 clie-addr-line l ~ x t  

die-num 
die last nam 

EDS Entity PK Attributes 

Client 
Client 

Legacy system Legacy entity 

cl ie-addr- ci ty-nain 
die addr country cde 

Mortgage system 1 Address 
-- 

Mortgage system ~ustomer 
Mortgage system Customer 
Mortgage system ~ d d r e s s  
Mortgage system Address 
~ o r t g a g e  @stem Address 

Legacy entity att ributc 1 Amibute conversion 

addr cust num 1 

name 
cust num 

-- 

tus t-lastnam 
cust first nam 

procedure name 

addr line 1 -txt 
add-ity-nam 
addr countrycde 

Lcgacy Entiîy PK Attributes 
L c y c y  cnti$ PK 1 L c y q  system 1 Legacy eatity 1 Legacy entity PK atîribute 1 PK Attribute 

PK Attribute 
position 
1 

num 1 name 1 name 1 name 1 position 

EDS entity PK attribute 
name 
die num 

L 

EDS catity PK 
aum 
1 

1 . - 

2 1 Mortgage system 1 Customer 1 cust-num 1 1  

EDS cntity 
name 
Client 

3 1 Mortgage system 1 Address 1 addr-num 1 1  



EDS Legacy PK Mapping 
1 Lcgacy entity PK 1 EDS entity PK 1 Secondaiy entity PK generition 1 
1 num 1 num 1 algorithm 1 

Cmss Reftrencing 
) Crors rcfcnncing 1 Legacy entity P K  1 EDS entiîy PK 1 Legacy 1 EDS value ( 
1 nua 1 num 1 aum 1 value 1 1 

Conversion Procedures 
1 Conversion procedure 1 Procedure line 1 Procedure tert 1 

nrme number 




