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Abstract

A two—dimensional microwave imaging algorithm based on inverse scattering is
investigated. The algorithm uses the information contained in the scattered field to
reconstruct the dielectric properties of an inhomogenious dielectric cylinder. The algorithm
uses the method of moments to convert the integral equation, resulting from the solution of
the Helmholtz equation, into a set of linear equations. Because of the nature of the problem,
the resulting matrix equation is ill-conditioned. The matrix equation is solved to give aleast
square solution using a conjugate gradient method. The performance of the algorithm was
evaluated by using a computer program to generate the dielectric cross section for a number
of lossless and lossy target cylinders. Some of the results are shown as examples. A modified
formulation is presented with the intention of improving performance of the algorithm when

imaging cylinders are nearly symmetric.
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Chapter 1 Introduction

Although microwave imaging is not as prominent as other imaging methods, it has its
own unique advantages which makes it a promising investigative technique. In this thesis
the characteristics of microwave imaging are further discussed, specifically the imaging of
dielectric cylinders using aninverse scattering technique. Emphasis is placed on the imaging
of lossy cylinders. Although this subject has the potential to have useful applications in

many fields, most of the discussions are presented with medical applications in mind.

The advantages of microwave imaging give it a great potential in the areas of
geological, industrial, and medical remote sensing. For geological studies, microwave
imaging has been found to be useful in the detection of mineral deposits. In the industrial
area, microwave imaging can be used for non—destructive testing of finished products. In
the medical field, microwave imaging has taken a back seat to the more popular techniques
such as X-ray computer aided tomography [CAT] and nuclear magnetic resonance [NMR]
imaging. However, microwave imaging does have the potential to be a useful tool in the
areas of microwave thermography and in some forms of diagnostic imaging. A through look

at the medical applications of microwave imaging can be found in [1].

Microwave radiation has many inherent properties which can be used to detect objects.
Materials are mathematically modeled with two parameters which describe the propagation
of electromagnetic radiation within it. These are the dielectric constant €; and conductivity
G. Both of these properties are related to other physical properties such as temperature,

electrolyte concentration, water content, and metal content to name a few. Changes in these




properties can produce a large enough contrast to show a detectable difference in the
scattered field around an object. Using a microwave imaging technique, the changes in the
dielectric constant and conductivity could be calculated, and this information can be used
to calculate some of the corresponding properties previously listed. Another desirable
characteristic, which could be beneficial to the medical field, is the ability of microwaves
to penetrate air and bone. Ultrasound has a very highloss factor in air which makes it difficult
to image some regions such as the lungs. X-rays on the other hand are only lossy in bone
and show very little contrast in soft body tissue since the physical property that is used to
generate an image is density. Although the effects of microwave radiation on biological
beings are not totally understood, it is known that the ionization energy levels involved in
performing a microwave image scan are far lower than the radiation levels involved with

X-rays.

The major drawbacks to microwave imaging are the relatively long wavelength and
nonlinear propagation of microwaves through inhomogenious dielectric mediums.
However, when imaging objects with high dielectric constants, such as biological tissues,
the wavelength is compressed by the dielectric, thereby, eliminating the problems associated
withalong wavelength. In the case of X~rays, which travel in straight paths through objects,
the imaging algorithms are easier to develop. Microwaves travel along nonlinear paths
inside objects and create many internal reflections and refractions before exiting the target.
These nonlinear propagation characteristics of microwave radiation give rise to extremely

complicated imaging algorithmns.




There are many types of microwave imaging systems and algorithms. Most early
attempts at microwave imaging systems bore some resemblance to X-ray CAT scanners.
Microwave imaging has since evolved into its own area of study, and now many different
systems and algorithms have been developed. New algorithms have been developed which
reconstruct the target object using the many different properties which exist in the scattered
field, namely, (a) absorption, (b) reflection, (c) polarization, and (d) diffraction. The
methods used to generate the dielectric composition also vary widely. Some methods are
extensions of linear reconstruction algorithms taken from existing CAT scanning
techniques, others borrow their theory from ultrasound reconstruction methods. The most
prémising and most difficult techniques are developed from electromagnetic theory. Most
of these techniques utilize the method of moments [MOM] to change the integral equation
which arises into a matrix equation. The solution of this matrix equation givesrise to another

group of methods.

The case for using microwave imaging is a strong one. However, the techniques of
today are still far from being developed to a point where they can be implemented effectively.

As work in the area continues more accurate methods will be developed.




Chapter 2 Background Information

2. 1. Material Properties

The effects and properties of microwaves on materials are mathematically modeled
using a number of parameters. These parameters and their symbols are dielectric
permittivity €, conductivity 6, and magnetic permeability [1. For the cases discussed in this
thesis, the two properties which are of interest are the dielectric permittivity and
conductivity. The magnetic properties are assumed to be known and constant. In the case
of microwave imaging it is the spatial variation of the dielectric properties, both permittivity
and conductivity, that are reconstructed using the scattered field produced from some type
of interrogating field. A thoroughlook atthe propagation of microwaves in biological tissue

1s covered in [2] and [3].

2. 2. Benefits and Applications

Microwave imaging possesses a number of benefits which makes it well suited for
many applications. In addition, microwave imaging has some properties which makes it
more suitable over existing imaging techniques for some applications. In the medical field,
microwave scans can be accomplished by using relatively low ionization levels. Lin and
Clarke [4] determined that the levels of energy required to penetrate biological targets to be
less than 10 uW/cm?. For imaging lungs, microwave imaging has an advantage over
ultrasound imaging in its ability to penetrate bone and air. The most attractive property of
microwave imaging is the large dielectric contrast among different biological tissues. In

human soft tissue there is only a 2% diversity in X—ray absorption; whereas the dielectric

L g



diversity of human soft tissue is very large. For example, the dielectric constant at
microwave frequencies for fat is about 4 at the low end and is approximately 80 for cerebral
spinal fluid at the high end [1]. Microwave imaging has the ability to extract sdme
information which can be attributed to the dielectric constant of the target. Things such as
the concentration of electrolytes in a solution have a great effect on the dielectric constant
of fluids but have little or no effect on the X—ray absorption. In the case of NMR imaging,
again, different information from the material under test is acquired since most NMR

machines to date detect the concentration of hydrogen atoms in tissues.

For the purpose of diagnostic imaging, the dielectric constant of biological tissues can
contain important information. As discussed earlier, the concentration of chemical ions in
fluids has a great effect on the complex dielectric constant. This fact led researchers Jacobi
and Larson to undertake extensive research in the area of imaging kidneys with microwave
imaging [5] and [6]. In a kidney there are large ion concentration gradients between the
different functioning areas. Knowing these concentration gradients and what effect certain
treatments have on them would be of great benefit in the treatment of renal disorders. Figure
2.1 shows an example of a X-ray plate from a canine kidney, and figure 2.2 shows the

corresponding microwave reconstruction of a kidney taken from [5].




Fig. 2.1 - X-ray image of a canine kidney [5].

Fig. 2.2 - Microwave image of a canine kidney [5].




Itis evident that the two images contain very different information. Inthe X-ray plate,
the areas of higher density are more prominent. The most noticeable features are the renal
arteries, interlobar arteries, and lobulations which are made up of a more dense tissue.v In
the case of the microwave reconstruction, the different layers of the kidney are more evident.
This is primarily caused by the concentration gradients generated within the kidney as it
filters blood. Blood to be filtered first enters the glomerulus which is located in the cortex
(outer layer) of the kidney. As filtrate travels though the Loop of Henle, which transverses
the kidney from the outer regions to the inner regions, the concentration of electrolyte in the

filtrate is increased which leads to the large dielectric contrast between the regions.

Because the complex dielectric constant is largely proportional to water content, some
researchers have used microwave imaging to detect forms of edema such as the study done
by Iskander, Maini, Durney, and Bragg to measure pulmonary edema [7], and the work done
by Lin and Clarke [4]in an attempte to image cerebral edema. Microwave imaging has some
potential for observing pulmonary edema because microwaves can penetrate air easily. In
the case of cerebral edema, the image quality may not be good enough for diagnostic
purposes, but there is some potential use for monitoring the effects of treatments on a patient
on a continuous basis where running a NMR image for a long period of time would not be

practical and using X-rays would be dangerous.

Microwave hyperthermia is an experimental cancer treatment which uses microwave
energy to kill malignant cancer cells. A review of microwave hyperthermia can be found

in [8]. The treatment uses focused microwaves to heat the cancer cells to temperatures above




459 C where the cells die. However, itis important to limit the heating to the cancerous cell
and to keep the heating of the surrounding healthy cells to a minimum. Many techniques
are being studied which allow the microwave radiation to be focused inside biological
bodies, but in order for the treatment to be fully effective, a thermographic map of the treated
area should be known. Since there is a relation between temperature and dielectric constant
of biological tissue, microwave imaging has the potential to generate a temperature profile

of a treated area without affecting the treatment procedure [9][10].

2. 3. Liabilities and Remedies

Microwave imaging possesses some liabilities along with its benefits which have
made the imaging technique unpopular for most applications. The most serious drawbacks
in microwave imaging are the relatively long wavelength which reduces the resolution,

external noise, and nonlinear propagation of the waves in the medium.

According to the Rayleigh criterion [11], and by the work done by Bolomey et al. [12]
in the area of microwave diffraction imaging, objects must be in the order of 1/4A to 1/2A
to be resolved. Since the wavelength of microwaves can be in the order of meters, this long
wavelength can limit the resolution to a point where microwave imaging is no longer
feasible. However, when imaging objects with a high dielectric constant, the problems

associated with the wavelength are reduced since the wavelength in the object is proportional
to 1//e, . For medical applications it was determined by Lin [13] that the ideal frequencies
for imaging of biological tissues ranged from 2.0 Ghz to 8.0 Ghz. This frequency range gives

arange in wavelength of 15 cmto 3.75 cm in free space. In the case of human brain tissue,




which has a dielectric constant of around & = 30 at microwave frequencies, a 15 cm
wavelength would be reduced to 2.74 cm and a 3.75 cm wavelength would be reduced to
0.685 cm. This means that, theoretically, objects as small as 0.343 cm (half wavelength)
could be resolved. If this resolution could be achieved in practice, then microwave imaging

could become an effective investigative tool.

There is a trade off for using higher frequencies to get better resolution in some
circumstances. Again, using the interrogation of biological tissue as an example, the loss
in biological tissue is inversely proportional to the frequency. This consequently limits the
depth to which the microwave energy can penetrate into the internal regions of a target and
berecovered at a point outside of the object. This limits the ability to reconstruct areas which

are situated deep inside an object.

Sampling the scattered field around a target is very susceptible to noise sources in the
area. Some of the ways of getting around this problem are to increase the power of the
interrogating field, average time sampling, and placing the system in an anechoic and
noiseless environment. Increasing the interrogating power is a working option for
non-living targets; however, since the full effect of electromagnetic radiation on humans is
not totally known, this alternative is not considered acceptable. Average time sampling is
a simple technique which assumes that the time average of noise is zero. Therefore, if the
scattered field is sampled a number of times and then averaged, the average value of the noise
should average out to zero leaving the true value for the field. The most common technique

is to immerse the system into a water tank which serves three purposes. First, is to shield




the system from noise by attenuating the noise from exterior sources before they reach the
receivers. Secondly, is to keep reflected signals of the incident field from corrupting the
measurement data. Thirdly, the water provides a better impedance match between the
antennas and the target. Jacobi, Larsen and Hast provide a look at the special considerations

involved in designing antennas for under water use in microwave imaging in [14].

The most detrimental property which makes microwave imaging unpopular in almost
all cases is the fact that microwaves do not travel in a straight line inside an inhomogenious
dielectric object. Instead, they take numerous paths and refract and reflect off of dielectric
boundaries. This makes imaging techniques significantly more complicated than techniques
based on linear propagation such as X-rays. Some imaging techniques contained
modifications to current X-ray linear reconstruction algorithms; whereas others utilized

electromagnetic theory in order to reconstruct objects.

2. 4. Imaging Systems and Algorithms

In the last decade, many different types of imaging algorithms and systems have been
developed. Although the algorithms used vary greatly, the systems used for measurements
all fall into a relatively small number of categories. The most predominant of these
categories are: transmission tomography, reflection tomography, and inverse scattering
reconstruction. Transmission tomography is the same type of system used by early X-ray

CAT scans [15]. The setup of the system is shown in figure 2.3 [16].




rotatable
__—— configuration

transmitting
aperture

object
Fig. 2.3 - Transmission tomography system.
As shown, the setup consists of an array of transmitters and an opposing array of receivers.
This type of setup is well suited for imaging throughout the entire target since the
interrogating signal completely penetrates the object from one side to the other. However,
for lossy targets the interrogating signal may be attenuated to such a degree that it may not
be detectable at the receiving array. Reflection tomography has the transmitter and receiver
at the same location and measures the reflected signals from discontinuities below the
surface of the transmitter. This type of system is used in the geological field simply because
it is impractical to place transmitters and receivers on the opposite side of the object. This
technique is also favored when locating objects close to the surface of the target region since
the scattered signal does not have to travel very far before it is detected. Finally, inverse
scattering samples the scattered field around the object and then tries to reconstruct the
dielectric profile using electromagnetic equations. In this thesis the imaging algorithm is

based upon an inverse scattering technique.




In the field of microwave imaging, there are many parameters that can be used to
reconstruct the original object. Some of these parameters are: absorption, phase,
polarization, and reflection time. Typically some types of systems are better suited for
recovering different parameters. In most cases the absorption is best measured using a
transmission tomography type of system; whereas the reflected signals are best measured

using a reflection tomography system,

Some attempts at microwave imaging have used linear reconstruction techniques
borrowed from X-ray imaging algorithms. One method which was used was the arithmetic
reconstructing technique [ART]. A study conducted [17] showed that ART was inadequate
for use in microwave imaging and only simple objects could be reconstructed reliably. This
approach and other linear reconstruction algorithms assumed that the microwave radiation
propagates along a straight line. However, such assumptions were found to be too
inaccurate. This led to various types of modifications on the existing linear reconstruction
algorithms in an attempt to accommodate the nonlinear propagation of microwaves [18].
However, the resulting algorithms became too complicated to be of any practical use. One
of the more successful attempts at using linear reconstruction techniques was done by Jacobi
and Larsen using a technique based on linear FM pulse compression radar [19]. This
technique used a pulse of FM microwave radiation and a receiver which only measured the
signal during a certain time interval. The idea was that the signals which arrived at the

receiver first had taken the shortest path which was assumed to be an almost linear path.




Other attempts at microwave imaging are based on inverse scattering. These methods
used the scattered field produced by some interrogating field to reconstruct the dielectric
properties of the target. These techniques are based upon solving the wave equation inside
the target region. A large majority of these algorithms utilize the MOM to solve the wave
equation numerically. The MOM transfers the integral equation solution of the wave
equation into a set of linear equations [20]. The resulting matrix is ill-conditioned and the
solution of it is the area of much research. In a paper by Ney, Smith, and Stuchly [21] the
matrix is solved by using the pseudoinverse. Some other methods take an iterative approach.
One method for solving the wave equation presented recently was based upon simulated
annealing [22]. This method required a large number of iterations (25 000 as shown in one
example) to converge to a result and in some cases may not converge at all. Another
technique recently published applied the Newton Kantorovich procedure to reduce the
number of iterations [23]. This method also is an iterative method but involves solving a

matrix equation with each iteration which in the end will lead to large execution times.

In a recent paper by Caorse, Gragnani and Pastonino [24] a technique for calculating
the cross section of a lossless dielectric cylinder was presented. This method was based on
the MOM, and the ill-conditioned matrix resulting from the technique was solved by the
pseudoinverse described in Ney [25]. The purpose of this work is to present the results of
this technique using a conjugate gradient method to solve the ill-conditioned matrix and to

present the results from a lossy cylinder.



Chapter 3 Computer Simulation

3.1 Measurement Region Setup

The setup used to generate the scattered field measurements is shown below in figure

3.1.

Measurement
Region

Einc
TM Plane Wave

Fig. 3.1 - Setup of target within measurement region.

The target in the region is an infinite cylinder parallel with the z axis. The dielectric constant
€; and conductivity ¢ are functions of x and y over the cross section of the cylinder. The
magnetic permeability L is constant over both the target and measurement regions and is
equal to the free space permeability iy. The cylinder is illuminated with a transverse
magnetic [TM] plane wave with the electric field parallel to the z axis and is incident from
the negative x direction. The scattered field produced from the incident plane wave is

sampled at evenly spaced points on a circle of radius po. In the measurement region outside




the cylinder, the dielectric permittivity is taken to be &, = &,, and the conductivity 6=0. The
scattered field is calculated at the sampling points using the well known Richmond technique
[26].

To simplify the formulation and to make the values of €; and G more manageable, the
dielectric properties of the target region are described using the complex dielectric constant

& = &%, where &* is as follows:

€* =¢'—je" (3.1)

and

€' =€, and €' = g (3.2)
we,

where o is the frequency in radians/s. Using this representation for the dielectric constant
simplifies the formulation of the propagation constant. The propagation constant in the

measurement region is

ko = Jou, ¢, (3.3)

and the propagation constant in the measurement region is as follows:

ks (x,y) = J wu, €, xy) (3.4)

3.2 Formulation

The formulation investigated here is based upon solving the Helmholtz equation

inside the target region and at selected points in the measurement region. Since the incident




field is parallel to the cylinder axis and the cylinder is infinite along the z axis, all of the
electric fields will only have components along the z axis. This simplifies the problem by

changing the vector Helmholtz equation to the following scalar one:

V2 + K] W(x,y) =0 (3.5)

where £ is the propagation constant in either the measurement region (3.3) or in the target
region (3.4) depending on what domain x and y are in. In the case of a scattered field

produced by a current distribution J, the following Helmholtz equation must hold

V2 + k] Eqcalx,y) = —jop.] (3.6)

where Eg,; is the scattered field and J is a current distribution which in this case is produced
by an incident electric field upon a dielectric cylinder. In order to solve equation (3.6) the

following similar problem is solved using the Green’s function:

[V2 + %] G(kg) = —d(ko) (3.7)

where G(k p) is the following two dimensional Greens’s function

Gio) = L E3(ko) (3.8)

and

0=vVx—x)2+@F-y)? (3.9




where x’ and y' are points in the target region, x and y are the coordinates of the points

where the scattered field is sampled, and H3 is the zero order Hankel function of the second
kind. Equation (3.8) represents the impulse response of equation (3.7). To get the entire
solution one must superimpose all of the impulse responses by integrating over the domain
of equation (3.7). However, to solve equation (3.6) the unit impulse responses are converted
to current elements and then superimposed by integration. This gives the following solution

for the scattered field:

Escal(x,y) = I ~Js(x,y) G(ng)dS (3.10)

s

To relate the current distribution to the physical parameters of the cylinder, the following

relation is used:

Js(5,y) = (o) k20, y) k2] Eroilx,y) (.11)

where J; is the polarization current and Eyy is the total electric field.

The first step in reconstructing the dielectric profile of the object is to solve equation
(3.10) for the polarization current Js. After Jy(x,y) is known it is then used along with the
incident field to calculate the total electric field. Once both the polarization current and the
total electric field are known, then equation (3.11) can be used to find the propagation
constant ky(x,y) for the region, and it is then a simple matter of extracting the dielectric
constant and conductivity from k(x,y) using the relations described by equations (3.1) to

(3.4).



The first step in solving equation (3.10) for the polarization current is to spatially
discretize the domain of the unknown function Js(x,y). This is one of the techniques used
by Richmond in [26]. This technique converts the function Js(x,y) into a summation of

patches in the region which is shown mathematically as follows:

Js6,Y) = . ISmQoms Yim) (3.12)

where m is the number of patches that J is discretized into. In this case the target region is
taken as a square, and it is broken up into square patches with the same number of patches

oneach side. Figure 3.2 shows the spatial discretization of the target space used in this paper.

A4 /ampling Radius
— ~
7 Yy N\
N\

/ L .|. m—1 m

Fig. 3.2 - Discretization of target space.

Substituting (3.12) into equation (3.10) gives the following:

s

Escal(%,y) = f —%ZJsm(x’m, Y ) H2(ko0)ds (3.13)
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Since values for x,, and y,, lie within the target region they become x,,’ and y,," . Multiplying
both sides of equation (3.13) by a weighting function, in this case a delta function, and

summing up over the domain of the left hand side gives:

S Exa,0myn) = 3 | =L Jsmx ms ' m)HE o)l (3.14)
n n s 4 m

where n turns out to be the number of points where the scattered field is sampled. If the
polarization current Js is assumed to be constant over each patch, then the summation of Js

can be brought outside of the integral operation, giving the following:

> Escat,(tmYn) ==, EJsm<x'm,y'm>§ f H3(ko0)ds (3.15)
n n m s

where p is now

0 =V Ctn—x"m)2 + Gn—y'm)? (3.16)

If the area of each patch is assumed to be a circle then the integration of the Hankel function

can be evaluated to give the following result:

J | 2 _ma 2 3.17
n szc,(koe)ds >r (k) HE(o0) (3.17)

where a is the radius of a circle with equal area of a patch in the target region, and J; is the

first order Bessel function. Substituting equation (3.17) into (3.15) gives the following:

ia
S Esear, oY) == 3 > IS s ') ’2 — Ha(kog)ds (3.18)
n n m (4




The above equation can now be rewritten in terms of a matrix equation. The matrix equation

representation is as follows:

where
iTa
My = 220 ko) Hkep) (3:20)
(4]

The resulting matrix [M] is ill-conditioned and must be solved using some special
algorithm which can deal with it. In this case equation (3.19) was solved for the polarization
current Js using a conjugate gradient method described in Ney [25]. This method is also

described in appendix A.

Jsmat = [MIzkn ESpet (3.21)

Once the polarization current is obtained, equation (3.10) can be used to calculate the
internal scattered field. Since the points x and y are now inside the target domain, there is
the possibility that during the integration the observation points x and y will equal the
integration variables x’ and y’ resulting in a value of zero for p. Care must be taken when
the observation point is the same as the integration point. When this happens, p is equal to
zero which makes the Hankel function go to infinity. The integration over this patch does
have a finite value which results in the special case for calculating the matrix for the external

scattered field.



(X)) = j —i— (%, Y)H3(ko0)ds (3.22)

Using the same steps as outlined earlier, this integral equation can be transformed into the

following matrix equation:

Escazml [N]mxm Jsmxl (323)
where
Njj = 3k0) iwj
(3.24)
Nj = —52—2-[nkoaH%(koa)—2J] i=j
(/]

where H? is the first order Hankel function of the second kind. To find the total field inside

the target region, the incident field is added to the internal scattered field.

Eiwt = Eipe + Escat (3'25)

Using equations (3.21) and (3.23) to substitute for E7%, gives

Rearranging equation (3.11) to solve for the difference in propagation constants gives

o Jsma (3.27)
E 10tmx1




Substituting equation (3.21) and equation (3.26) for Js and E respectively in equation

(3.27) gives
i j ) _ IMLL, Esu _ (3.28)
ou, (kg(x’y) kg) - Eincmx1 + [Nlnam [M];}m Espx = S

where S is known as the contrast. The contrast can now be solved for the real and imaginary

parts of complex permittivity by

€, = Re{-sk%i + 1} (3.29)
S; o

KA Bt 2 Q. 3.30

€; Im{ k,%} vy (3.30)
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Chapter 4 Results of Computer Simulation of Lossless
Cylinders

In this chapter the results of the reconstructions of the various lossless dielectric
cylinders are presented. The first sets of results presented are to confirm the results found
in this thesis with the results of the numerical inverse scattering algorithm published in [24].
More computer simulations were carried out on other lossless dielectric cylinders in order
to determine what effects selected variations in target cylinders had on the ability of the
algorithm described in this thesis to calculate the dielectric cross section of the target
cylinder. The different cases of target cylinders which were investigated were the position
of a single scatterer in the target region, the number of patches in the target region, the size
of target region, the dielectric permittivity of a single scatterer in the target region, and the

dielectric constant of the entire target region with a single subscatterer.

The position of a single scatterer in the target region was moved to all of the possible
positions in the positive y region of a selected test target region. Since the target region and
the incident plane wave are symmetric about the x axis, only target positions in half of the
region have to be investigated. The scattered field produced by the single scatterer is the
same in all of the cases. However, the effect the position has on the reconstruction comes
from the difference in where the scattered field is sampled with respect to the position of the
scatterer. More specifically, the values for the elements in the matrices M and N will be
different for each position because of the different values of kop in the equations (3.20) and

(3.24) which are used to fill the matrices.




Increasing the number of patches m in the target area increases both the number of
elements in the matrix N by a factor of m?, and the number of rows in the matrix M by a factor
m. Therefore, an increase in the number of patches can have a large effect on the size of the
matrices. The most noticeable effect is in the execution times which are proportional to the
size of the matrices M and N. The other effect, which is an obvious one, is in the memory
required to run the program. The most detrimental effect coming from the number of patches
in the target region is on the numerical accuracy coming from the inversion of the matrix M
in equation (3.21). When the target region is decreased, an improvement in the accuracy is
noticed. This improvement is attributed to the fact that there are less unknown variables in

the matrix equations.

The most sensitive parameter to the reconstruction is the dielectric permittivity of the
targetregion. A large difference in the permittivity of the measurement region and the target
region will produce an impedance mismatch which reduces the amount of power being
coupled into and out of the target. However, for most lossless targets the amount of power
being received from the target is enough to be able to carry out areconstruction. Itis believed
that the dielectric constant of the target region also causes some phase error in the sampled

scattered field because of the wavelength compression properties of the dielectric.

In order to compare the reconstructions of different cases, the following formula was

used to associate each construction with a single number.




4.1)

where € fl"l is the calculated dielectric constant, and € fi”g is the original dielectric constant.

Generally, values for 0t,; less than 0.1 are considered to be good reconstructions while values

up to 0.15 are acceptable and values higher than 0.15 are considered unacceptable.

4.1 Validation of the Formulation

To validate the algorithm used in this thesis, results from a case run by Caorse,
Gragnani, and Pastonino [24] were reproduced. This test case used a target region broken
up into 25 patches. The sides of the area were 5/3\ and the length for the sides of the patches

were 1/3A. Figure 4.1 shows the test region.

Field
Sampling
Lines
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> 5Bri 11} 121 13§ 141 15
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Wave 6 7 8 91 10
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Fig. 4.1 — Test target.




In the test target a single scatterer was placed in position 17, and was given a dielectric
constant of &* = 3.0 —j 0.0. The rest of the target space was given a dielectric constant of
&* =1.0-j0.0. The incident field was a TM plane wave propagating from the negative x
direction. The scattered field was sampled along three lines along the top, bottom, and the
positive x side of the target. These sampling positions were chosen so that the receivers

would not interfere with the incident field approaching from the negative x direction.

Figure 4.2 shows the three dimensional type plot of the original test target that is used

to display the data in this thesis.

NOTE: Because the plotting program used does not have the capability to label the axis with

Greek letters, the label “‘er” will be used in place of “g.” in all of the figures.

Fig, 4.2 - Original test target.

The results from [24] and the results that were found are shown in figures 4.3 and 4.4

respectively. For the results in figure 4.4, a sampling radius of p = 2.0\ was used.




Fig. 4.3 — Test target reconstruction from [24]. Fig. 4.4 — Thesis test target reconstruction.

For all intensive purposes, the results from the two techniques are the same. The value for
O found by [24] was 0.09187; whereas the result found here for o, was 0.06314.
Furthermore, the final reconstructed value for the dielectric constant of the single scatterer
found by [24] was &; = 2.631 while the result here was €, = 2.686. These discrepancies can
be attributed to two factors. The firstis the selection of the sampling points for the scattered
field, and the second, the algorithms used to invert the matrix [M]. In the case of [24] the
field was taken along straight lines on three sides of the object; whereas in this case the field
was sampled at evenly distributed points around a circle. It was found here and in [27] that
changing the position of the sampling points had a drastic effect on the overall result.
Sampling along three sides of the target region leaves one side of the target region open so
that the receivers will not interfere with the incident field. Although this consideration is
a practical one, it was decided for the purpose of computer simulation not to use it in this
instance so that a better idea of the best case performance of the algorithm could be obtained.

The two types of inversion algorithms used, namely, the pseudoinverse and the conjugate




gradient method, produce a least squares solution. However, they are fundamentally

different algorithms and not surprisingly produce slightly different results.

4.2 Effects of Position of a Single Scatterer in a Free Space Target Region

This section shows the effects of the position of a single scatterer on the overall
reconstruction. In figure 4.1, the position of the scatterer was moved to positions numbered
11 through 25. Since the target region and the incident field are symmetric about the x axis,
only positions in the positive y region were investigated. The dielectric constant for the
single scatterer was taken to be &* =3.0—j 0.0, and the dielectric constant of the surrounding
target region was taken to be the free space dielectric constant &* = 1.0 —j 0.0. The results

of each position are shown in figures 4.5 to 4.18, and the results are summarized in table 4.1.

Fig. 4.5 — Results for position 11. Fig. 4.6 — Results for position 12.




Fig. 4.8 — Results for position 14.

Fig. 4.7 — Results for position 13.
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Fig. 4.10 — Results for position 16.

Fig. 4.9 — Results for position 15.
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Fig. 4.12 — Results for position 19.

Fig. 4.11 — Results for position 18.
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Fig. 4.14 — Results for position 21.

Fig. 4.13 — Results for position 20.
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Fig. 4.16 — Results for position 23.

Fig. 4.15 — Results for position 22.

Fig. 4.18 — Results for position 25.
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Fig. 4.17 — Results for position 24.



Position g Calculated for patch 17 €ITOr Olery
11 2.810 0.057
12 2.400 0.122
13 2.631 0.101
14 2.186 0.048
15 2.907 0.028
16 2.933 0.037
17 2.686 0.063
18 2.351 0.126
19 2.507 0.102
20 2.983 0.011
21 2.994 0.019
22 2.985 0.013
23 2.889 0.027
24 2.935 0.036
25 3.003 0.012

The results in table 4.1 show that the best results are obtained when the scatterer is
along the edge of the target region in positions 11, 15, 16, and 20, and in 21 to 25. The result
with the lowest error was obtained when the scatterer was in position 20. On the other hand,
when the scatterer was in the interior cells 12 to 14 and 17 to 19, the results were not as good.
The result with the greatest error was obtained when the scatterer was in position 18. An
explanation for these results could be the distance between the interior points and the points
where the scattered field is sampled. As previously mentioned, the radius at which the
scattered field is sampled should be as small as possible. This is done to produce the largest

possible differences in the phase and amplitude in the signals being received from each patch

Table 4.1 — Results summary for various positions.




during the summation carried out in equation (3.13). This will generate the greatest

independence between the columns in the matrix M.

4.3 Effects of Discretization

To demonstrate the effects of different discretizations on the results of the algorithm,
two types of changes were made to the discretization of the original test target in figure 4.2.
The first set of results were generated by increasing the number of patches in the target
region. This was done by reducin g the size of the patches which resulted in having four times
and nine times as many patches in the original test target. This is an important property to
investigate since the patch size directly dictates the resolution obtained in the reconstruction
of the cylinder. The other type of change in the discretization was the reduction of the free
space surrounding the single scatterer. In this case, the total number of unknowns was
reduced; whereas the number of points sampled from the scattered field was constant,

making the equation (3.19) overdetermined.

4. 3. 1 Increased Discretization
In this section the results for discretizations with an increasing number of patches are
presented. Figure 4.2 shows the discretization used to generate the first set of results. The
next set of results were generated using a discretization which had four times as many
patches; whereas the size of the target area and scatterer remained the same. In this case,
the length of the sides of the patches was one half of the length in the first discretization.
The last set of results was produced using a discretization which has nine times as many

patches as the original discretization shown in figure 4.2. For this discretization the length




of the sides of the patches was one third of the original patch side length.

discretizations are shown in figures 4.19 and 4.20.

5/3\ >
]
.
1/6\
T
5/3\
Fig. 4.19 — 100 patch discretization.
5/3A >
X
1/91 -
5/3\

Fig. 4.20 — 225 patch discretization.

These two




Figures 4.21 to 4.23 show the results for each of the three cases. In each figure, (a)

shows the original target arrangement and (b) shows its reconstruction.

(a) Original target (b) Reconstruction
Fig. 4.21 — Discretization with 25 patches.
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(a) Original target (b) Reconstruction
Fig. 4.22 — Discretization with 100 patches.




(a) Original target (b) Reconstruction

Fig. 4.23 — Discretization with 225 patches.

In all the cases, the results show the position of the single scatterer quite well.
However, with the increased discretization, the value of the dielectric constant goes from
2.686101.611t0 1.617. Meanwhile, the value for the accuracy O goes from 0.063 to 0.302
to 0.298. These results show a flattening of the accuracy, or a point of diminishing returns,
in the calculation of the dielectric constant value and the overall accuracy. The reliability
of the reconstruction in the case of increasing the discretization is limited by both the
determination of the position of the single scatterer and by the calculation of its dielectric
constant. Unfortunately, a problem with stack size prohibited the generation of any results

with more than 225 patches.




4.3. 2 Effects of Decreasing the Free Space Target Region Around a
Single Scatterer

In this section the size and total number of patches in the target region was decreased
by reducing the amount of free space in the target region. Since all patches except patch 17
shown in figure 4.1, have the dielectric constant of free space &* = 1.0 +j 0.0, they can be
systematically eliminated until only the area occupied by patches corresponding to patch 17
are being imaged. The results begin with the target region shown in figure 4.23 (a), where
the total number of patches is 225. The area surrounding patch 17 was then decreased until

only the 9 patches on the single scatterer remained.

Fig. 4.24 — Reconstruction of full target area with 225 patches.
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Fig. 4.26 — Reconstruction of the decreased target area with 81 patches.




Fig. 4.28 — Target area of the single scatterer with 9 patches.

For each result of a decreased target space there is an increase in the calculation of the
dielectric constant of the target. In figure 4.28 where only the single scatterer occupies the
target region, the reconstruction is almost perfect. The reason for this result comes from the
fact that as the total number of unknowns is reduced, equation (3.19) becomes over

determined, and the problems with the matrix M being ill-conditioned are reduced.




4. 4 Dielectric Permittivity Effects

In this section the effects of the dielectric permittivity are examined. There are two
cases presented here. First, the permittivity of a single scatterer is varied, and secondly, the

dielectric permittivity of the area surrounding a single scatterer is changed.

Varying the dielectric constant has the effect of changing the intrinsic impedance of
the target media. This creates an impedance mismatch which makes it difficult to couple

power into the target. The formula for the intrinsic impedance is

_ [E 42
ﬂ/e 4.2)

From equation (4.2) the relationship between the intrinsic impedance n and the dielectric

constant € is an inverse square root relationship.

4. 4.1 Increased Target Dielectric Constant

This section presents the results from cases where the dielectric constant of only a
single scatterer in the target region is increased. This set of results was generated using the
discretization shown in figure 4.1. As done in previous sections, the single scatterer was
located at patch 17. The dielectric constant of the patch was then increased from g,* = 1.5
—J0.0 to &* =10.0 5 0.0. These results for &* = 1.5 -3 0.0 to &* = 5.0 —j 0.0 are shown

in figures 4.29 to 4.36, and are summarized in figures 4.37 and 4.38.




=2.0.

Fig. 4.30 — Results from .17

Fig. 429 — Results from g,17 = 1.5.

3.0.

Fig. 4.32 — Results from £,17

=2.5.

Fig. 4.31 —Results from &,17
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=4.0.

Fig. 4.34 — Results from £,17

3.5.

Fig. 4.33 — Results from g,17

5.0.

Fig. 4.36 — Results from g,17

=4.5.

Fig. 4.35 — Results from g,17

The above results show a decreasing ability to calculate the dielectric constant of the

However, the position of the scatterer is calculated

scatterer as its value increases.

42

accurately. Figure 4.37 is a graph of the calculated dielectric constant of patch 17 versus the
in figure 4.38, the error O,y in the reconstruction is graphed versus the dielectric constant

actual dielectric constant of patch 17 as the dielectric constant is increased. Furthermore,

of patch 17.
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Fig. 4.37 — Graph of actual dielectric constant and calculated dielectric constant of patch 17.
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Fig. 4.38 — Graph of reconstruction error versus the dielectric constant of patch 17.
As shown in figure 4.38, the error appears to increase linearly with the increasing dielectric
on patch 17. In the case where the dielectric constant of the single scatterer is increased, the

accuracy of the reconstruction is limited by the ability to calculate the dielectric constant.



4. 4. 2 Effect of Dielectric Constant of the Total Target Region with a
Single Scatterer Present

In this section the results from deviations in the dielectric permittivity of the target
region are investigated. In previous results, the target region was mostly free space with a
single scatterer occupying a single position. This type of scenario is not applicable for most
practical applications. In most applications, there is some type of unknown dielectric cross
section which has to be obtained. For this section the entire target region becomes a scatterer
because its dielectric constant no longer equals the dielectric constant of the measurement
region, and the single scatterer at position 17 now becomes a subscatterer within the target

region.

In this case the intrinsic impedance of the target region becomes an important factor
because there are now many unknown regions that have to be probed by the incident field.
As the dielectric permittivity of the target region is increased, the amount of power being
coupled into the region decreases as a result of the impedance mismatch between the target
region and the free space where the incident field originates. Furthermore, the internal
scattered field will encounter the same dielectric mismatch when exiting the target region,

resulting in power being reflected back into the target region.

For this set of results the subscatterer is given a dielectric constant of £.* =3.0 —j 0.0
while the dielectric constant of the surrounding target space is increased form g,* = 1.25 —

j 0.0 to &* =2.25 -7 0.0. The results of these reconstructions are shown in figures 4.39 to




4.43. The incident field is still a TM plane wave incident from the negative x direction, and

the scattered field is sampled at a radius of 2.0A.

Fig. 4.40 — Target space dielectric g, = 1.50.

Fig. 4.39 — Target space dielectric &, = 1.25.

Fig. 4.42 — Target space dielectric &, = 2.00.

1.75.

Fig. 4.41 — Target space dielectric &,
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Fig. 4.43 — Target space dielectric &, = 2.25.

Figure 4.44 shows the dielectric constant of the subscatterer located at patch 17 versus
the dielectric constant of the target space. The figure shows the value of €, for the scatterer
is calculated with reasonable accuracy until the value of the dielectric constant of the target
space reaches a value of 2.75. However, from figures 4.42 and 4.43 where the dielectric
constant of the target space is 2.0 and 2.25 respectively, it can be seen that the position of
the scatterer is not calculated reliably. Therefore, the algorithm in this case is limited by the
ability to calculate the position of the single scatterer. Figure 4.45 shows the error for the
reconstructions when the dielectric constant of the target space is increased from 1.25 to 4.0.
This figure also shows the error increasing wildly for increasing values of the dielectric for

the target region.
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Fig. 4.44 — Subscatterer €, versus target space dielectric constant €;.
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Fig. 4.45 — Error versus target space dielectric constant €.

The problems associated with an impedance mismatch exist in the cases studied in
subsection 4. 4. 1 ; however, the results in figures 4.39 to 4.43 show that the effect of the
increasing dielectric permittivity of the target region appears to be much more severe in this
section. In figures 4.42 and 4.43, when the dielectric permittivity of the target space is &*
=2.0-j 0.0 and 2.25 —j 0.0 respectively, the results of the reconstruction are unacceptable.

In subsection 4. 4.1 however, the dielectric constant of the single scatterer can go as high




as &* = 5.0 — j 0.0 before the overall error ote;; becomes comparable to the error obtained
when &* of the target region equals 2.0 —j 0.0. The reasons for differences in these results
are notknown exactly. However, one can speculate that the wavelength compression caused
by the higher dielectric constant is creating some type of phase error in the scattered field.
As mentioned before, the sampling radius should be made as small as possible in order to
maximize the difference in the magnitude and phases of the fields measured at the sampling
points. Increasing the dielectric constant of the target region has the effect of increasing the
distance, in terms of wavelengths, from the center of the target region to the sampling radius
because of the wavelength compression caused by the high dielectric. Some support for this
claim comes from one case where the reconstruction improved after the sampling radius was
decreased from 2.0) to 1.2A. In this case, the same target region used to generate the results
shown in figure 4.42 was used again but with a sampling radius of 1.2\ instead of 2.0\. The
target in question had a target space dielectric constant of &, = 2.0 —j 0.0. The results of the

reconstruction using the shorter sampling radius are shown in figure 4.46.

Fig. 4.46 — Target space dielectric &; = 2.0, and sampling radius of 1.2 A.




The value for o, for the above case was 0.11456 which is a noticeable improvement over
the value of 0.014139 obtained when using the larger sampling radius. Furthermore, a
comparison of the two figures shows the elimination of the false scatterer produced at the

center of the target in figure 4.42.




Chapter 5 Computer Simulation Results From a Lossy
Cylinder

In this section, lossy dielectric cylinders (conducting dielectric cylinders) are studied.
In most of the applications of microwave imaging, the targets involved will have a dielectric
permittivity and conductivity. In this section, the problems created by a high dielectric
permittivity will still exist. In addition to these problems there will be others created by the

loss of the cylinder or the conductivity.

The relationship between the conductivity of a material and the effect it has on an
electromagnetic wave is an exponential one. The following equation is used to describe a

time—varying electromagnetic plane wave.

E(x,t) = Re{E, ¢&*/eh) (5.1
Equation (5.1) can be rearranged in terms of an attenuation constant o and propagation

constant f.

E(x,t) = e ®Re{E, ¢Pfrtjo0) (5.2)

where o and 3 can be written in terms of the material parameters €, ©, and [ [28].
a=wo e 1422 (53)
2 w2 ?
PR 71 A (5.4)
2 w2




Using the complex dielectric notation &* described in section 3. 1, equations (5.3) and (5.4)

become

9 2
€ €
a=w 4“2 1+€,2—1 (5.5)
' 2
B=0, 5= 1+5£ 7 4 (5.6)
E’

From equation (5.2) it can be seen that . is an attenuation constant for the exponential term
and that attenuation o is also zero when the conductivity ¢ is zero. When © is not zero, not
only does it contribute to the attenuation, it also brings the dielectric constant € into the

calculation of the attenuation.

The loss in dielectric cylinders poses a number of problems to microwave imaging
techniques. One is the fact that the loss in targets is proportional to the frequency; therefore,
the higher the frequency of the incident field, the higher the loss is in the cylinder. High loss
factors in targets prevent the incident signal from penetrating the interior of the targéts.
Consequently, no representation of the interior of the target will be present in the scattered
field. Furthermore, discontinuities in the loss profile of the target cylinder will create

impedance mismatch losses between the target region and the measurement region.

In the case of the algorithm presented in this thesis, the high loss poses another
complication. In equation (3.27) in Chapter 3, the polarization current J; is divided by the

total electric field Eq¢ which gives the difference in propagation constants or the contrast S.




If the total field E is zero or if it becomes numerically close to zero, the division will result
in an erroneous answer. If the attenuation in a cylinder is very high, then the total electric
field on the patches in the center could become zero which would result in the previously

described phenomena.

5.1 Results for a Single Lossy Target

The results posted here are from a single lossy cylinder within the target region. The
single scatterer was located at position 17 as was done in subsections 4. 4.1 and 4.4.2.
In this case, the results are not affected too dramatically by the increasing loss. The results
found this time, as the results found in subsection 4. 4. 1, did not affect either the ability of
the algorithm to determine the position of the single scatterer, or the calculation of the
dielectric properties of the target space. There was however, an effect in the ability to

calculate the dielectric constant of the single scatterer.

The results were generated by using the same target shown in figure 4.1. The complex
part of the dielectric constant for patch 17 was increased frome; =3.0—j 1.5to e, =3.0 —
J 10.0 while the dielectric constant of the rest of the target region was held constant at €, =

1.0 —j 0.0. Examples of the results are shown in figures 5.1 to 5.5.




(b) Loss factor reconstruction

(a) Dielectric reconstruction

~ Reconstruction of a single subscatterer with a dielectric constant of &= 3.0 —j 1.0.

Fig. 5.1

(b) Loss factor reconsiruction

(a) Dielectric reconstruction

j2.0.

Fig. 5.2 — Reconstruction of a single subscatterer with a dielectric constant of e, = 3.0 —
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(b) Loss factor reconstruction

(a) Dielectric reconstruction

0.

i3

Reconstruction of a single subscatterer with a dielectric constant of &, = 3.0 —

3

Fig.5

(b) Loss factor reconstruction

(a) Dielectric reconstruction

— Reconstruction of a single subscatterer with a dielectric constant of &, = 3.0 ~ j 4.0.

4

Fig.5
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(a) Dielectric reconstruction (b) Loss factor reconstruction

Fig. 5.5 — Reconstruction of a single subscatterer with a dielectric constant of ;= 3.0 —j 5.0.

As shown in the figures, the algorithm calculates the position of the single scatterer
accurately; however, the value of the dielectric constant is not calculated accurately. For the
real parts of the dielectric, the position of the single scatterer was satisfactorily calculated.
The values for the real part of the dielectric constant for the single scatterer as plotted as a

function of the loss factor of patch 17 is shown in figure 5.6.
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Fig. 5.6 — Real dielectric constant of patch 17 versus loss factor € ' of patch 17.




The graph, figure 5.6, shows the calculated values for the real dielectric constant increasing
almost exponentially with the value of the complex part. Using an error constraint of +/—
10% of the original value, acceptable results could be obtained in the range of complex
dielectric constant of —j 0.0 to —j 5.5 where the corresponding calculated values for the real
dielectric constant were 2.686 and 3.356 respectively. The error constant Ote; was plotted

as a function of the loss factor of patch 17. The results are shown in figure 5.7.
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Fig. 5.7 — Real reconstruction error versus loss factor € '* of patch 17.

The graph, figure 5.7, shows a dip in the minimum at a value of —j 4.0 and then grows
exponentially. Since the target space is reconstructed with reasonable accuracy, most of the
error comes from the calculation of the dielectric constant of the single scatterer. From figure
5.6 it can be seen that the real dielectric constant is calculated correctly for a value of £” =

—j 4.0 which in turn leads to the minimum value for 0te;; when the complex dielectric constant

equals —j 4.0.




The results of the reconstruction for the complex part of the dielectric constant again
determined the position of the scatterer, but the complex part of the dielectric constant could

not be calculated accurately for the larger values. Figure 5.8 shows a plot of the calculated

imaginary dielectric constant € "* as a function of the original imaginary dielectric constant.
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Fig. 5.8 — Calculated loss factor of patch 17 versus original loss factor € '’ of patch 17.

The graph, figure 5.8, shows the difference in the calculated values and the original values
of the loss factor € " of patch 17 increasing as the original value increases. Characteristic
of the algorithm’s ability to calculate the dielectric constant in other circumstances, there is

a leveling off of the results. Figure 5.9 shows a graph of the error ¢, as a function of the

loss factor of patch 17.
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Fig. 5.9 — Loss factor reconstruction error versus loss factor of patch 17.

Figure 5.9 shows a high initial value for 0 but then drops to a minimum around €' = —j
1.5 before increasing linearly as € '* increases. The high value of oi;; can be associated with
the difficulty involved in calculating the values for €'’ which are close to zero. As the
original values fore' increase, the calculated values fore’ in the target region are
reasonably accurate, leaving most of the value of o, coming from the calculation of € "’ for
the single scatterer at position 17. As seen in figure 5.8, the calculated values for € "' for the
scatterer fall short of the original values as the original values increase. This in turn explains
the increasing values of O, as the original €'’ increases.
5.2 Results From a Lossy Dielectric Target Region with a Single
Scatterer

For most practical applications of microwave imaging, the target to be reconstructed

will have to have both the dielectric properties and the conductive properties taken into

account. The loss of the dielectric target poses two problems in the reconstruction. First,




the loss will affect the intrinsic impedance of the cylinder which in turn will affect the amount
of microwave energy being coupled into the medium. Secondly, the total electric field in
one of the patches could approach numerical zero which would result in a discontinuity of

the solution coming from the division carried out in equation (3.27).

A single scatterer at position 17, as done in previous examples, was used to generate
the results in this section. The complex dielectric constant of the single scatterer was held
constantat&*=2.0—-j0.5. Thereal component of the dielectric constant of the targetregion
was held constant a €, = 1.2 while the imaginary component was varied from—j 0.1 to —j 0.5.

These results are shown in figures 5.10 to 5.14.

(a) Dielectric reconstruction (b) Loss factor reconstruction

Fig. 5.10 — Reconstruction of cylinder with a target space dielectric constant of ;= 1.2 —j 0.1.




{(b) Loss factor reconstruction

(a) Dielectric reconstruction

Reconstruction of cylinder with a target space dielectric constant of g, = 1.2 —j 0.2.

Fig. 5.11 -

(b) Loss factor reconstruction

(a) Dielectric reconstruction

12-j03.

Reconstruction of cylinder with a target space dielectric constant of e,

Fig. 5.12—
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(a) Dielectric reconstruction (b) Loss factor reconstruction

Fig. 5.13 — Reconstruction of cylinder with a target space dielectric constant of &, = 1.2 — j 0.4.

(a) Dielectric reconstruction

(b) Loss factor reconstruction

Fig. 5.14 — Reconstruction of cylinder with a target space dielectric constant of g, = 1.2 —j 0.5.

Figures 5.10 to 5.14 show that the dielectric loss of target space has a relatively small
effect on the reconstruction of the dielectric permittivity of the cylinders. In all cases the
position of the subscatterer is determined, and the value for the dielectric constant for the

subscatterer is also determined. The values of the dielectric constant of the subscatterer at




position 17 are graphed as a function of the complex dielectric constant € *' for the target
region in figure 5.15. This figure shows reasonably good values of &, for patch 17 with all
the values staying close to 1.9, but slowly decreasing as the loss factor of the target space
is increased. The effect of the loss factor of the target region on the overall reconstruction
of the real dielectric cross section also seems relatively low compared to the previous
examples shown in subsection 4. 4. 2. Infigures 5.10 (a) to 5.14 (a) the dielectric constant
of the target space is approximately 1.2. It is not until the loss factor of the target space is

equal to —j 0.5 in figure 5.14 that the dielectric cross section is affected.
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Fig. 5.15 — Dielectric constant of patch 17 versus € '’ of the target region.

Figure 5.16 shows the error for the real dielectric cross sections as a function of complex
dielectric constant of the target region. As shown in the previous figures, initially the real
dielectric cross sections are not affected, but as the loss factor of the target region increases,

the accuracy of the resulting reconstructions decreases.
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Fig. 5.16 — Error for the real reconstruction versus € '’ for the target region.

In the case of the loss factor cross section reconstructions, the loss factor of the original
target space has a great effect on the reconstruction. In figures 5.10 (b) to 5.14 (b)
reconstructions are steadily degraded with the increasing loss factor of the target region.
When the loss has a value of —j 0.4, the position of the subscatterer can no longer be made
out. Even for the lower values of the loss factor of the target region, the reconstructed loss
factor cross section is corrupted; likewise, when the position of the subscatterer can be made
out, itis still difficult to determine the loss factor of the target region. Figure 5.17 shows the
values for the loss factor of patch 17 as a function of the loss factor of the target region, and
figure 5.18 shows the error for the reconstruction of the loss factor as a function of the loss
of the target region. Both figures show a dramatic increase in error for larger values of the
target space loss factor. Determining the position of the scatterer seems to be the limiting
factor in the usefulness of the reconstructions. If the error criterion was quite high, 20% for
example, then according to figure 5.17 acceptable reconstructions can be obtained for values

of the target region loss factor of —j 0.375. However, it is evident from figures 5.12 (b) and




5.13 (b) that the reconstructions are limited by the ability to calculate the position of the
subscatterer, and from these it is determined that the true limit for the target space loss factor

is somewhere between —j 0.175 and —j 0.20.
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Fig. 5.17 — Loss factor of patch 17 versus loss factor of the target region.
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Fig. 5.18 — Reconstruction error versus loss factor of the target region.




Chapter 6 Discussion and Future Work

The algorithm described in Chapter 3 is a very general one which makes as few
approximations and assumptions about the target as possible. This general type of algorithm
is very flexible which is needed in order to be useful in a broad range of applications. Before
finding its way into any practical role, there are many areas that should be investigated. The

additional work suggested are two of many areas that could be investigated further.

6.1 Image Reliability

In all of the example results shown in this thesis, the error constant o, defined by
equation (4.1) was used to gauge the reliability of the reconstructed image. However, this
equation uses the known dielectric cross section in its calculation which obviously defeats
the purpose of using an imaging algorithm in the first place. In some situations there may
be other types of information available to confirm the findings of a microwave imaging
algorithm. The different types of materials in a target region and their dielectric constants
may already be known. The range of dielectric constants could be used to eliminate
reconstructions which are grossly erroneous. This does not indicate how good or how bad
an image really is. It only indicates whether or not a reconstruction is wrong, but it does not
indicate if it is right. Other types of information include knowing the structure of a target.
For example, in the case of imaging a human head, the structure is already known and the
sight of an anomaly could be known from a CAT scan or NMR image. The position of the
skull and other landmarks could then be used to confirm the microwave reconstruction.

Again, this does not guarantee that the calculation of the dielectric cross section is correct




because the results shown in subsections 4.4.1 and 4.4.2 show the position of an anomaly

calculated with reasonable accuracy; whereas the dielectric constant is not.

There are some indicators in this algorithm which may be used to give a better idea
of the reconstruction quality, especially when no previous information about the target is
known. One of these could be the condition of the matrix M. The program used didn’t have
the capability to calculate the condition of matrix M for any of the cases studied, but it is one
area that could use some investigation. The number of iterations used to invert the matrix
M was investigated with the expectation that more iterations would be required to obtain a
solution for matrix equations which had a higher condition number. No correlation was
found. Another parameter which could give an idea about the status of an image is the
normalized error vector coming from the solution of equation (3.21). This vector is defined
as the vector norm of the difference between the sampled scattered field and the calculated
scattered field and is obtained by multiplying matrix M with the calculated polarization

current obtained in equation (3.21).

led
rnorm = || Escat  — ESaguiated | 6.1)
where
Egg(llfi‘ulated = [M] J, (6.2)

For example, the vector norm for the error of each result in section 5.2 was plotted in

figure 6.1 .

- 66 —




1.00

[=]

~!

[+3)
\

0.50

0.25 \\

v

Normed error vactor (X106}

0.00
0.10 0.20 0.30 0.40 0.50
Loss factor of target space

Fig. 6.1 — Vector norm of the error vector versus dielectric loss factor of the target region.

Theresults do show a general oscillating increase in the vector norm of the error vector which
corresponds to the decrease in accuracy observed in the reconstructions shown in section
5.2, and thus do show some promise as an indication of the accuracy of the reconstruction.
Unfortunately, the plot of the error vector in the example reconstructions in subsection 4.4.2

showed no correlation between the error vector and the accuracy of the reconstructions.

6.2 Target Approximations and Algorithm Formulations for Image
Enhancement

The general algorithm presented here was written to be flexible enough to handle most
applications. There are some cases where some flexibility can be exchanged for better
reconstruction performance. The method proposed is one that takes advantage of the
symmetry of the target. In the case of asymmetric imaging, the target is assumed to be
symmetrical, and the algorithm is rewritten to reconstruct the anomalies which are

asymmetric.




6.2.1 Asymmetric Imaging Algorithm

In some applications the symmetry of the target can be taken advantage of in order
to improve upon the performance of the algorithm. There are many examples of symmetric
targets where such an approach could be used. For the most part the human body is
symmetric, except for the internal organs of the middle thorax, such as the liver and the
stomach. However, the upper chest, and the lower abdominal areas are symmetric to a fair
degree, and the head and neck are totally symmetric. In this formulation there is only a single

asymmetric scatterer, and the side it is taken to be known.

The algorithm is based upon the superposition of two target regions. One being the
symmetric component and the other being the asymmetric component as shown in figure

6.2.

Seven Sodd

Fig. 6.2 - Superpostion of target spaces.

As shown in the figure, the contrast S is made up of the addition of the contrast Seyen and
Sodd- The symmetric target space Seven is further divided into upper half, Sy, and a lower half

Sa. The setup used to measure the scattered field is shown in figure 6.3 .




TM Plane Wave

Fig. 6.3 — Measurement setup.

The cylinder is illuminated with a TM plane wave incident from the negative x direction so

that it is symmetric about the x axis.

The formulation is based upon the fact that the difference in the scattered fields

E%, and EZ.,, will be caused by the square asymmetry. On the cylinder three polarizations

currents are defined. These are J;, for the upper symmetric half cylinder, J, for the lower

symmetric cylinder, and Joqq9 for the asymmetric lower cylinder. Assuming that the
asymmetry only affects EZ, , then this scattered field can be calculated from the

polarization current J, and J,, as follows:

Eour = L Ja G(kQ)ds, + Lbfb G(ke)dsy (6.3)

where S, and Sy, are the upper and lower halves of the symmetric target space Seven. The

scattered field is then written in terms of J,, Jp, and Jqq as follows:

- 69 —



scat = f Ja G(kQ)dsa + j Jo G(kg)dsy + j Joaa G(kQ)dsa 6.4)
Sa Sb Sa
Itis assumed that the asymmetry in the lower target region does not affect the scattered field

EZ, .. for the upper target region. The higher the average loss factor of the symmetric region

is, the more valid this assumption becomes. This is because the field produced by a current

on the asymmetric patch is attenuated as it passes through the symmetric region and out to

where the scattered field Efcat is sampled. Using this assumption, allows one to use the

information in the scattered field EZ., to calculate the symmetric polarization current

distributions J, and J,. Using the steps outlined in Chapter 3, the integral equation (6.3) can

be transformed into the following matrix equation:

Eby =[G J,+1GY] J, (6.5)

Since Ja(x,y) and Jp(x,y) are the polarization currents for the symmetric target areas, it
follows that they should also be symmetric, and hence J,(x,y) = Jp(X,~y). Using this fact in
equation (6.5) gives the following which only has to be solved for half of the symmetric

polarization current.
Efear =[G Jp +[G”] J (6.6)

Efea = {IG°] + IG"]} Ty (6.7)




Equation (6.7) is then solved for J, using the conjugate gradient method described in
appendix A. Itis in this step where the benefit of the assumptions is made. The benefit is
that the size of the matrix being inverted, the summation of matrices G® and GP, is half the

size of the corresponding matrix M in the general formulation in Chapter 3.

1G] + [G?Y Ebus = T (6.8)
Equation (6.4) is used to determine the asymmetric polarization current Jog9. In

equation (6.4) the summation of the first two integrals make up the symmetric component

of the scattered field Eg.; and is equal to Eb. ., with the sign on the y component reversed.

EScal(x,y) = L Ja G(kg)dsa + I Sbe G(kg)dsy + f : Joda G(kQ)dsq

N . , 6.9)
E?C(H (x,—}’)
Edalx,y) = E.Is?cat(xa"')') + jS Joda G(ko)ds, (6.10)
a
E%u(x,y) — Ebcalx,~y) = L Jodd G(k@)ds, (6.11)
a

The integral equation (6.11) is then transformed into a matrix equation by the same methods

used in Chapter 3 to give the following:

E%u(%,y) — Ebeu(x,—¥) = [G*] Joa (6.12)

Using the conjugate gradient method as done previously, equation (6.12) is then solved for

the asymmetric polarization current J,44.




(G Eear(x, ) = Ebeai(t, =)} = Joua 6.13)
Once the polarization currents J,, Jp, and Jogq are obtained, then the total electric field is
calculated so that the contrast vector Sodqq and Seven can be calculated. . To calculate the
contrast vector Seven, the total electric field representing the even component of the scattered

field is calculated as follows:

Eft(x,y) = L Ja G(ko)ds, + f . Jp G(kg)dsp (6.14)
a
Since the internal scattered field for the even component is symmetric, the internal scattered

field EZ%,(x, y) only has to be calculated for the upper or lower half of the cylinder. Adding

the incident field to the internal scattered field gives the total field.

B = Eft + EGE" (©15)

Finally, the contrast vector Seven can be calculated from the total even electric field E&¢” and

the even polarization current Jeyen as follows:

_ Jeven (6.16)

S even T even
1ot

The total electric field for the odd component of the scattered field is calculated by
integrating all three of the polarization currents and the corresponding Green’s function over

the target regions.

Etx,y) = f Ja GkQ)dsq + Lb.fb Gko)dsp + L Jodd G(kQ)dS4 6.17)
a a




Equation (6.17) is used to calculate the internal scattered field for points in the upper region
and in the lower region. To get the total scattered field, the incident field is added to the

internal scattered field.

?ot = E?clantz + E?nc (6 18)
1 b
Eg)ot = E.sl?clantt + Einc

To calculate the odd total electric field, EZ, is reflected and is subtracted from Ef,; toyield

dd
EZ .

Ef = Efo—Elw = ESlit + Ef, — Ef — Eb, (6.19)
Since the refection of the incident field E}, is equal to the incident field Ef,., equation

(6.19) is reduced to the following:

E3 = Eg— Eby (6.20)

From the total odd electric field EZ4?, the contrast vector S,qq is found by dividing each

element in the vectors.

J
Sodd = —E‘;‘;‘fi : (6.21)

tot

Finally, from the two contrast vectors Seyen and Soqq, the dielectric properties can be

calculated as shown below.




(6.22)
€ " aoven = I Sevem = Ueven
! K wE,
€ ol = Red S0ddi |
k k% (6.23)
Yodd _ T Soddi Oodd
i k2 w €

6. 2. 2 Asymmetric Imaging Algorithm Discussion

Overall the asymmetric imaging algorithm performed poorly. The only success came
when imaging lossy cylinders which were slightly asymmetric, that being a single
asymmetric anomaly with a dielectric constant 5% higher than the symmetric target region.
Even in these cases the reconstruction of the odd target region was dismal and the
reconstruction of the even target region was not always reliable. The reasons for the poor
results are unknown. The problems may lie in the formulation itself or perhaps in the
implementation. There are areas in the algorithm which could be changed, such as the

definition of EZ4¢ . A suggested change would be to define E39 as the integration over the

odd polarization component Joqq only. Another variation would be to use a complete odd

target space instead of the half target space which was used.




The failure of this algorithm should not put to rest the investigation into asymmetric
imaging algorithms. Itis the belief of the author that the symmetry of a target could be used
to increase the performance of a microwave imaging algorithm and that such an algorithm

would have many applications.




Chapter 7 Conclusions

This thesis presented a microwave imaging algorithm based on an inverse scattering
approach. The performance of the algorithm was demonstrated using a computer program
to generate the reconstructions of both lossless and lossy inhomogenious dielectric
cylinders. Some selected characteristics of the cylinders were changed to determine what

effect they would have on the algorithm’s ability to generate a reconstruction.

The first set of results were generated from lossless cylinders. A previously published
result for a lossless cylinder was reproduced to validate the algorithm. Various parameters
of target cylinders were then changed to judge the versatility of the algorithm. These
parameters were the position of a single scatterer in a free space target region, the number
of total patches in a target region, the number of free space patches in a target region,
dielectric variations in a single scatterer, and variations of the target region dielectric
constant with a single scatterer present. In almostall of the cases the accuracy of the imaging
algorithm was limited by its ability to calculate the dielectric constant. The only exception
was in the case where the dielectric constant of the target region was varied. In this case the
reconstruction was limited by the ability of the algorithm to determine the position. The
drastic effect that the dielectric constant of the target region had on the ability to reconstruct
the dielectric cross section was thought to have been caused by the wave compression of the

high dielectric over a larger area.

The most general target studied in this work was a lossy inhomogenious dielectric

cylinder. The performance of the algorithm was investigated using two types of test targets.




One being a single lossy target cylinder in a free space target region and the other being a
lossy cylinder with a single anomaly. In the case of the single scatterer, the reliability of the
algorithm was limited by the calculation of the dielectric properties of the target. The
position of the target was determined accurately in both the dielectric and loss factor
reconstructions. For the case of the single scatterer in a lossy target region, the performance
of the dielectric constant reconstructions was limited by the ability of the algorithm to
calculate the dielectric constant of the anomaly. On the other hand, the loss factor
reconstructions were limited by the ability of the algorithm to determine the position of the

anomaly and its corresponding loss factor.

The asymmetric imaging algorithm presented had some limited success in
reconstructing the even component of a slightly asymmetric target. No consistent results
were obtained. It is the belief of the author that some more work in this area would result

in a useful algorithm.
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APPENDIX A - Formulation for the Conjugate Gradient Method

Beginning with the following matrix equation

M]x =y &1

The first step is to generate the first residual error vector 7, using an initial guess xo.

ro = Ml %o~y 42)
The next step is to generate the direction vector do.
do = ~MI" 1, (A3)

Where [M] His the transposed complex conjugate of the matrix [M], the successive iterative

steps are as follows:

Xnel = Xn + tn dn (A'4)

where

H 2
LY (AS)
I M1 da |
and

Fnsl = In + 5,[M] dy, (A.6)
dps1 = [M]H T'nt1 + Gn dn (A7)




where
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(A.8)
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