CRITERIA FOR MODELING ONE-DIMENSIONAL UNSTEADY DRAINAGE OF LAYERED SOILS

A Thesis
Presented to

The Faculty of Graduate Studies and Research University of Manitoba

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Civil Engineering

by
M. Shariatmadar-Taleghani April 1972

ABSTRACT

A review of some of the existing theories for physical modeling of unsteady drainage from unsaturated porous media indicated the choice of Brooks and Corey's theory and it was applied for one-dimensional unsteady drainage from layered soils. Another necessary criterion was developed, in addition to those offered by Brooks and Corey, for layered soils. Some experiments were done and the results showed that the developed criterion must be satisfied to enable prediction of the prototype behavior from that of the model.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and thanks to Dr. K.M. Adam for his help and guidance in this study.

Thanks are also extended to Dr. G.E. Laliberte for his comments and helpful discussion.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES (Text) v
LIST OF TABLES (Appendices) vi
LIST OF FIGURES viii
LIST OF SYMBOLS xi
CHAPTER
I INTRODUCTION 1
II BACKGROUND AND THEORY. 3
III EXPERIMENTAL PROCEDURE 24
Media and Liquid. 24
Determining Media Properties 25
Testing the Theory - Details of Tests. 26
IV DETAILS OF TESTS AND RESULTS 32
Prototype No. 1 32
Model No. 1A 33
Model. No. IB 37
Model No. IC 41
Prototype No. 2 45
Model No. 2A 46
Model No. 2B 50
Model No. 2C 54
V DISCUSSION OF THE RESULTS 58
VI CONCLUSION 64
VII BIBLIOGRAPHY 66
APPENDIX
A CAPILLARY PRESSURE-DESATURATION MEASUREMENT,CAPILLARY PRESSURE-PELATIVE PERMEABILITYMEASUREMENT AND DATA................................... 68
B SIEVE ANALYSIS OF SELKIRK SILICA SAND AND THE PROPERTIES OF SOLTROL "C"...................... 86
C UNSTEADY DRAINAGE DATA. 88

```
LIST OF TABLES (Text)
```

Table
1 Pore-size distribution index and bubbling pressure for different fractions of Selkirk silica sand.. 27

2 Ratio of bubbling pressures of different fraction of Selkirk silica sand................... 28

LIST OF TABLES (Appendices)

Table Page
1A Capillary pressure-desaturation data for Selkirk silica sand (28-35 Fraction) 75
2A Capillary pressure-desaturation data for Selkirk silica sand (35-48 Fraction) 75
3A Capillary pressure-desaturation data for Selkirk silica sand (48-65 Fraction) 76
4A Capillary pressure-desaturation data for Selkirk silica sand (65-100 Fraction) 76
5A Capillary pressure-desaturation data for Selkirk silica sand (l00-150 Fraction) 77
6A Capillary pressure-desaturation data for Selkirk silica sand (150-200 Fraction) 77
7A Capillary pressure-permeability data for Selkirk silica sand (28-35 Fraction) 80
8A Capillary pressure-permeability data for Selkirk silica sand (35-48 Fraction) 81
9A Capillary pressure-permeability data for Selkirk silica sand (48-65 Fraction) 82
10A Capillary pressure-permeability data for Selkirk silica sand (65-100 Fraction) 83
11A Capillary pressure-permeability data for Selkirk silica sand (100-150 Fraction) 84
12A Capillary pressure-permeability data for Selkirk silica sand (150-200 Fraction) 85
1B Sieve analysis of Selkirk silica sand 86
2B Dynamic viscosity and density of soltrol "C" oil used in experiments 87
1C Unsteady drainage data from prototype No. I 88
2C Unsteady drainage data from model No. 1A 91
3C Unsteady drainage data from model No. 1B 92
4C Unsteady drainage data from model No. IC 94
5C Unsteady drainage data from prototype No. 2. 96

Table
Page
6C Unsteady drainage data from model No. 2A......... 99
7C Unsteady drainage data from model No. 2B......... 100
8C Unsteady drainage data from model No. 2C......... 102

LIST OF FIGURES

Figure
Page
1 Discharge-time relationship of unsteady drainage from prototype No. 1 and model No. 1A.34

2 Scaled discharge-time relationship of unsteady drainage from prototype No. 1 and model No. IA (using P_{b} of finer layer)35

3 Scaled discharge-time relationship of unsteady drainage from prototype No. I and model No. IA (using P_{b} of coarser layer)36
4. Discharge-time relationship of unsteady drainage from prototype No. 1 and model No. 1B.38

5 Scaled discharge-time relationship of unsteady drainage from prototype No. I and model No. IB (using P_{b} of finer layer)39

6 Scaled discharge-time relationship of unsteady drainage from prototype No. I and model No. lB (using B_{b} of coarser layer)40

7 Discharge-time relationship of unsteady drainage from prototype No. 1 and Model No. IC

8 Scaled discharge-time relationship of unsteady drainage from prototype No. I and model No. IC (using P_{b} of finer layer)43
9 Scaled discharge-time relationship of unsteady drainage from prototype No. 1 and model No. IC (using P_{b} of coarser layer) 44

10 Discharge-time relationship of unsteady
drainage from prototype No. 2 and model
No. 2A 47
11 Scaled discharge-time relationship ofunsteady drainage from prototype No. 2and Model No. 2A (using P_{b} of finerlayer)48
12 Scaled discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2A (using P_{b} of coarser layer) 49
13 Discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2B 51
14 Scaled discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2 B (using P_{b} of finer layer) 52
15 Scaled discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2B (using P_{b} of coarser layer) 53
16 Discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2 C 55
17 Scaled discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2 C (using P_{b} of finer layer) 56
18 Scaled discharge-time relationship of unsteady drainage from prototype No. 2 and model No. 2 C (using P_{b} of coarser layer) 57
IA Sketch of apparatus used to determine capillary pressure-desaturation relation- ships 70
2A Sketch of apparatus used to determine capillary pressure-permeability relationships72
3A Capillary pressure-desaturationships for different fractions of Selkirk silica sand...... 73
4A Capillary pressure-desaturation relationships for different fractions of Selkirk silica sand74

5A Capillary pressure-relative permeability
relationships for different fractions of
Selkirk silica sand. 78
6A Capillary pressure-relative permeability relationships for different fractions of Selkirk silica sand. 79

LIST OF SYMBOLS

Symbol Definition Dimension
C Hydraulic conductivity LT^{-1}
${ }^{\circ} \mathrm{C}$ Degrees centigrade none
d Differential operator. none
d Microscopic characteristic length L
e Subscript meaning "effective" none
£ Body force per unit volume FL^{-3}
g Acceleration due to gravity LT^{-2}
H Hydraulic head L
K Maximum permeability to a particular fluidphase when only one phase occupies themediumL^{2}
Ke Effective permeability, the permeability when the medium is occupied by more than one fluid phase L^{2}
$\mathrm{K}_{\mathrm{r}} \quad$ Relative permeability, $\mathrm{K}_{\mathrm{e}} / \mathrm{K}$. none
L Length L
m General subscript none
n General subscript none
nw Subscript meaning "nonwetting phase" none
P Pressure FL^{-2}
P_{b} Bubbling pressure, approximately the maximumcapillary pressure on the drainage cycle atwhich a continuous nonwetting phase exists ina porous medium.FL^{-2}
P_{C} Capillary pressure, the pressure difference ($\mathrm{P}_{\mathrm{nw}}-\mathrm{P}_{\mathrm{W}}$) FL^{-2}
Q Volume discharged per unit area. L
q Liquid volume flux LT^{-1}
r Position vector L

S Saturation, the ratio of the volume of the wetting fluid to the volume of the voids
none
S_{e} Effective saturation $\left(S-S_{r}\right) /\left(1-S_{r}\right) \ldots . . .$. none
S_{r} Residual saturation, the saturation at which $\mathrm{K}_{\text {ew }}$ approaches zero..................... none
t Time.. T
w Subscript meaning "wetting phase".......... none
z Vertical coordinate direction................. L
$\alpha \quad$ Contact angle of wetting-nonwetting fluid interface with
$f(\alpha)$ Dimensionless representation for contact angle.
none
γ Specific weight of fluid, weight per unit volume of fluid...
FL^{-3}
$\varepsilon \quad$ The exponent in the equation $K_{r w}=S_{e}^{\varepsilon} \ldots \ldots$ none
$\eta \quad$ The exponent in the equation $K_{r w}=\left(P_{b} / P_{C}\right) \eta$ called the pore-size distribution index....
none
$\lambda \quad$ The exponent in the equation $S_{e}=\left(P_{b} / P_{C}\right)^{\lambda}$ called the pore-size distribution index.... none
$\mu \quad$ Dynamic viscosity.. $\mathrm{FL}^{-2} T$
$\mu^{2} \quad$ Square microns - a unit of permeability.... L^{2}
p Fluid density.. $\mathrm{FL}^{-4} \mathrm{~T}^{2}$
ρ_{b} Bulk density of the porous medium........... $\mathrm{FL}^{-4} \mathrm{~T}^{2}$
$\rho_{S} \quad$ Particle density of the medium............... $\mathrm{FL}^{-4} \mathrm{~T}^{2}$
a Interfacial tension.................................... FL^{-1}
$\phi \quad$ Porosity, the volume of pore space expressed as a fraction of bulk volume of the medium.

Δ Denotes a difference.

A dotted subscript denotes the scaled variable. A primed quantity refers to the model.

CHAPTER I

INTRODUCTION

The relevant laws of nature and the geometrical relations of the physical situation sometimes cannot be formulated mathematically because of the complexity of the problem. There are many cases which can be represented as functional equations, usually as differential equations. However, it is not always possible to solve these equations for different conditions because the mathematical difficulties are too great.

This need not discourage investigators from finding solutions for such problems. In both cases these problems can be understood well by means of direct experimentation. Many phenomena cannot be investigated directly because of the great amount of time and money involved. Through proper model design, systems of comparatively large size can be reproduced in the laboratory in a smaller scale. The laboratory results can faithfully duplicate the behavior in the prototype, but on a miniature dimensional scale and in a comparatively short span of time.

There are two methods of defining scaling criteria. One is the well-known dimensional analysis which is based on Buckingham's π theorem. The other called "inspectional
analysis" by Rurak (17) consists of transforming the equations of a problem differential or otherwise, so that all the variables are dimensionless. Simple inspection then shows how these dimensionless variables are related.

Many investigators, both petroleum and drainage engineers, have proposed scaling laws. Brooks and Corey (2) in 1964 developed a theory of similitude for nonsteady drainage of unsaturated porous media by use of Richard's equation. Their theory was tested for one-dimensional and two-dimensional drainage for a single layer of soil by Corey et al. (6) and Hedstrom et. al. (10) respectively in 1965 and 1971 with good results.

The purpose of this study is to apply Brooks and Corey's theory of similitude to one-dimensional drainage for two or more layers of soil and to find out the other necessary similitude requirements if any. This study is also a basis for the study of the two-dimensional case which is being completed by I.G. Henderson, a graduate student at the University of Manitoba, as an M.Sc. thesis.

Studies of the problems of flow through porous media have been done by many investigators in the petroleum industry and water resource area. Petroleum engineers are interested in two-phase liquid flow or the displacement of oil by water or gas since most often raw petroleum occurs in the porous mantle of the earth. Water resource engineers in irrigation and drainage problems are faced with the liquid phase in a water-air system in which water is the only phase flowing.

Some of the modeling studies which have been done are merely qualitative and there has not been any effort to apply the results to the prototype. However, in many quantitative studies, in which the main purpose has been to find out the prototype behavior by use of models, failure occurred because of not considering the microscopic geometry as well as the macroscopic geometry.

Some of the investigators in the petroleum industry who have developed scaling criteria are Leverett (13), Rapoport (15), Croes and Schwarz (8), Craig et. al (7), Scheidegger (18) and Richardson (16).

Several other investigators have proposed scaling
4.
theories for flow of one liquid in unsaturated porous materials. Stallman (19), Miller and Miller (14) and Brooks and corey (2) are in this group.

Because Richardson (16) has suggested additional criteria for modeling layered soils and has done a few qualitative experiments a few pages are devoted here to explain the principles of his theory as well as the theory of Miller and Miller (14) and the similarity of it with that of Brooks and Corey (2).

The present author has taken advantage of using the converted scaling criteria to similar units which has been done by Corey et. al. (6) for ease of comparison.

Richardson (16) has scaled the differential equation describing the displacement of oil from a porous medium by water or gas. He has pointed out that the solution of this equation satisfies both model and prototype if the following are true:
(1) The model and prototype are geometrically similar
(2) The model and prototype have similar initial and boundary conditions
(3) The model and prototype have the same values for the parameters $\frac{\sigma f(\alpha)}{q \mu_{O} I} \quad \sqrt{K \phi}, \frac{K \Delta \rho g}{q \mu_{O}}, \frac{\mu_{W}}{\mu_{O}}$
with times given by $q t / \phi L$ where $f(\alpha)$ is merely a dimensionless representation for the contact angle and q is the volume flux. Other symbols are σ for interfacial tension, μ for viscosity, K for absolute permeability, ϕ for porosity and the subscripts w and o refer to water and oil respectively.
(4) The model and prototype have the same relative permeability and dimensionless capillary pressuresaturation relations.

For stratified sands he proposed one more criterion in addition to those mentioned above; model must have the same relative distribution of permeabilities as prototype. In other words

$$
\left(\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{a}}}\right)_{\text {model }}=\left(\frac{\mathrm{K}_{\mathrm{b}}}{\frac{\mathrm{~K}_{a}}{a}}\right)_{\text {prototype }}, \ldots .\left(\frac{\mathrm{K}_{\mathrm{m}}}{\mathrm{~K}_{\mathrm{a}}}\right)_{\text {model }}=\left(\frac{\mathrm{K}_{\mathrm{m}}}{\bar{K}_{\mathrm{a}}}\right)_{\text {prototype }}
$$

where subscripts $a, b, \ldots . . m$ refer to different layers.
He performed some qualitative tests using this relation between layers and in his experiments he made gravitational forces negligible by selecting a very small depth of model and by allowing only flow parallel to the layers.

Miller and Miller (14) were the first to consider the scaling laws which would be valid for any flow system whether it be drainage or imbibition. They used inspectional
analysis and gave attention to microscopic as well as macroscopic scaling. They call two media "similar" when their solid geometries differ only by a constant magnifying factor. When the interface geometries are also "similar" they describe the two media as being in "similar" states. To satisfy this, the values $\frac{P_{C d}}{\sigma}, \alpha, \frac{K_{e}}{d^{2}}$ should be the same in the two media where P_{c} is the capillary pressure, K_{e} the effective permeability and d is a characteristic length of the media.

They developed the following scaled or "reduced" variables (a dot subscript is used to denote each scaled variable).

Scaled Microscopic Interface Geometry
$\frac{I}{r_{m}} \equiv \frac{d}{r_{m}}$

$$
\frac{1}{r_{m}}=\text { mean film curvature }
$$

$P_{C} \equiv \frac{P_{C d}}{\partial}$
$\alpha . \equiv \alpha \quad \alpha=$ contact angle (radians)

Scaled Flow Properties of Medium
S. S S $\quad \mathrm{S}=$ degree of saturation
$K_{e} \equiv \frac{K_{e}}{d^{2}}$

Scaled Macroscopic Variables ($L=$ macroscopic characteristic length)
$r . \equiv \frac{r}{L} \quad r=$ position vector
f. $\equiv \frac{\mathrm{Ld}}{\sigma} \mathrm{f}=$ body force per unit volume For gravity $f=\rho g$
$q . \equiv \frac{\mu_{L}}{\sigma d} q$
t. $\equiv \frac{\sigma d}{\mu \mathrm{~L}^{2}} \mathrm{t} \quad \mathrm{t}=$ time

Klute et. al. (11), Elrick et. al. (9) and Wilkinson et. al. (20) tested the validity of Miller and Miller's theory in different ways.

Klute et. al. (Il) prepared a series of "similar" media consisting of different fractions of sand. They obtained capillary pressure-saturation curves for both drainage and imbibition cycles. They also obtained capillary pressure-permeability curves for each fraction. The "reduced" capillary pressure-saturation curves, as well as "reduced" capillary pressure-permeability curves, coalesced into one curve within the limits of experimental error. Elrick et. al. (9) ran four different tests to examine Miller and Miller's theory. They ran hysteresis loop experiments and unsaturated conductivity tests for a unique medium but using different liquids. For the hysteresis loop
experiments the agreement with theory was good for clean sand but deteriorated as the clay content increased.

They also ran infiltration and drainage tests for systems constructed from various "similar" media; only one liquid was used. The results were in excellent agreement with the theory.

Wilkinson et. al. (20) drained the initially saturated columns of different fractions of sand which were "similar". The "reduced" outflow was plotted against "reduced" time and the agreement was reasonable within experimental error except for the finest fraction. When the tests were done for infiltration into dry columns the curve for coarsest fraction showed some deviation from other curves.

Another scaling theory was proposed by Brooks and Corey (2) in 1964 and this is the theory which has been used by the author for vertical drainage from two horizontal layers of sand. Before explaining their theory of similitude it is better first to mention some of the properties of porous media from Brooks and Corey (2).

In the two-fluid system discussed herein, the fluids are assumed to be immiscible. They are referred to as nonwetting and wetting phases. Even though the discussion is confined to a gas-liquid system, the theory applies to any two-fluid system in which the fluids are immiscible.

It is assumed that Darcy's equation applies to flow of both the gas and liquid phases occupying a porous medium. For this assumption to be valid, both phases must form continuous networks within the medium and any isolated bubbles of gas must be regarded as part of the porous matrix.

When two immiscible fluids occupy the pores of a porous matrix, the permeability to one fluid phase is called "effective permeability", K_{e}. Usually the effective permeability will be smaller than K, the permeability when only one fluid occupies the medium. The ratio K_{e} / K is called "relative permeability" and varies from 0 to l.0.

The fraction of the total pore space occupied by the wetting phase is defined as saturation S. It is considered here as a quantity which can vary from point to point within the medium.

In general, the functional relationship, $K_{e}=f(S)$ is not single-valued but is affected by hysteresis. Hysteresis affects both the liquid and the gas permeabilities.

Another assumption is that the liquid and gaseous fluid phases are separated by curved interfaces, concave with respect to the liquid. This assumption is valid at relatively high liquid saturations in a medium containing at least some pores large enough that the liquid permeability is substantial. It is not always valid for saturation less
than field capacity or for porous media having only extremely small pores. The pressure differences across the interface is called capillary pressure P_{C}.

$$
\begin{equation*}
P_{C}=\sigma\left(\frac{1}{r_{1}}+\frac{I}{r_{2}}\right)=P_{\text {gas }}-P_{\text {1iquid }} \tag{1}
\end{equation*}
$$

where σ is the interfacial tension, r_{1} and r_{2} are major and minor radii of curvature at a point on the interface. The liquid is at a pressure less than the gas and P_{C} is therefore, positive. Saturation is a function of P_{C} and K_{e} is also a function of P_{C}, both being affected by hysteresis.

According to the analysis of Burdine (3), the relative permeability K_{e} / K_{w} is approximated by the relation

$$
\begin{equation*}
K_{r w} \simeq\left(\frac{S-S_{r}}{I-S_{r}}\right)^{2} \frac{\int_{0}^{S} \frac{d S}{P_{C}{ }^{2}}}{\int_{0}^{1} \frac{d S}{P_{C}{ }^{2}}} \tag{2}
\end{equation*}
$$

where S_{r} is the residual saturation. The permeability is assumed to approach zero at this finite saturation. Corey called the quantity $\left(S-S_{r}\right) /\left(1-S_{r}\right)$ the effective saturation, S_{e}. By changing s to S_{e} in the above equation it becomes

$$
\begin{equation*}
K_{r w}=\left(S_{e}\right)^{2} \frac{\int_{0}^{S_{e}} \frac{d S_{e}}{P_{C}^{2}}}{\int_{0}^{1} \frac{d S_{e}}{P_{C}^{2}}} \tag{3}
\end{equation*}
$$

and for the non-wetting phase

$$
\begin{equation*}
K_{r n w}=\left(1-S_{e}\right)^{2} \frac{\int_{S_{e}}^{1} \frac{d S_{e}}{P_{c}^{2}}}{\int_{0}^{1} \frac{d S_{e}}{P_{C}^{2}}} \tag{4}
\end{equation*}
$$

Corey (4) approximated the ratio of integrals in equations 3 and 4 by S_{e}^{2} and $\left(I-S_{e}^{2}\right)$ respectively. Then the two above equations become

$$
\begin{align*}
& K_{r w} \approx S_{e}^{4} \tag{5}\\
& K_{r n w} \approx\left(1-S_{e}\right)^{2}\left(1-S_{e}^{2}\right) \tag{6}
\end{align*}
$$

The equations given by corey imply that effective saturation, S_{e}, is a Iinear function of $\frac{1}{P_{C}{ }^{2}}$, i.e.

$$
\begin{equation*}
S_{e}=\left(\frac{c}{P_{c}}\right)^{2} \text { for } P_{c} \geq c \tag{7}
\end{equation*}
$$

where c is some constant.
If equation 7 is substituted into equation 5 the result is

$$
\begin{equation*}
K_{r w}=\left(\frac{c}{\mathrm{P}_{\mathrm{C}}}\right)^{8} \tag{8}
\end{equation*}
$$

but for media with relatively uniform pores the exponent in equation 8 is much larger than 8 and theoretically could increase without bound.

The theory developed by Brooks and Corey for properties of porous media is based on observations from a large number of experimental data which indicate that

$$
\begin{equation*}
S_{e}=\left(\frac{P_{b}}{P_{c}}\right)^{\lambda} \text { for } P_{c} \geq P_{b} \tag{9}
\end{equation*}
$$

where λ and P_{b} are characteristic constants of the medium.

This equation was discovered by plotting S_{e} as a function of $\log P_{C} / \gamma$ on the drainage cycle. The result is a straight line with a negative slope λ for $P_{C} / \gamma \geq$ P_{b} / γ. The parameter P_{b} / γ is defined by the intercept where the straight line meets the ordinate representing $S_{e}=1.0$ and it is called the bubbling pressure of the medium. The bubbling pressure, P_{b} is a measure of the maximum pore size forming a continuous network of flow channels within the medium.

To describe S_{e} it is necessary to have capillary pressure-desaturation data. Such curves can be seen in Appendix A which have been completed for different fractions of the sand used for the drainage test.

The negative of the slope of the curve of S_{e} as a function of P_{C} / γ is designated as λ, and it is called the pore-size distribution index of the medium.

Substituting equation 9 into equation 3 and performing the integration gives

$$
\begin{equation*}
K_{r w}=\left(S_{e}\right)^{\frac{2+3 \lambda}{\lambda}}=\left(S_{e}\right)^{\varepsilon} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
K_{r w}=\left(\frac{P_{b}}{P_{c}}\right)^{\eta} \text { for } \quad P_{c} \geq P_{b} \tag{II}
\end{equation*}
$$

where $\eta=2+3 \lambda$ and $\varepsilon=(2+3 \lambda) / \lambda$
Similarly for the non-wetting phase

$$
\begin{equation*}
K_{r n w}=\left(I-S_{e}\right)^{2}\left(1-S_{e}^{\frac{2+\lambda}{\lambda}}\right) \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
K_{r n w}=\left(1-\left(\frac{P_{b}}{P_{c}}\right)^{\lambda}\right)^{2}\left(1-\left(\frac{P_{b}}{P_{c}}\right)^{2+\lambda}\right) \tag{13}
\end{equation*}
$$

for $\quad P_{c} \geq P_{b}$.
Equations 9 to 13 present the theory of Brooks and Corey for the properties of porous media.

Theoretically, λ could have any positive value greater than zero, being small for media having a wide range of pore sizes and large for media with a relatively uniform pore size. The theoretical lower limit of η is 2. Values of η for different fractions of sand used for drainage test can be seen from the capillary pressurerelative permeability data in Appendix A.

Having become familiar with Brooks and Corey's theory for properties of porous media, it is more convenient to discuss their theory for similitude requirements.

The assumption of Miller and Miller (14), that is, isotropic porous systems containing two immiscible fluid phases (air and water) in which the air pressure is considered to be constant but both air and water are continuous phases, were accepted by Brooks and Corey (2).

Their analysis is in many respects the same as Miller and Miller's, but it is restricted to the drainage cycle in order to avoid the complication of hysteresis. In addition, the theoretical functional relationships among $P_{C}, S_{e}, K_{r w}$ and $K_{r n w}$ are used to simplify the resulting expressions for the criteria of similitude.

They begin from the Richards equation which is obtained from combining Darcy's equation and the continuity equation. Darch's equation is

$$
\begin{equation*}
q=\frac{\gamma K}{\mu} \nabla\left(\frac{p}{\gamma}+z\right) \tag{14}
\end{equation*}
$$

and the continuity equation

$$
\begin{equation*}
\operatorname{div} q=-\phi \frac{\partial S}{\partial t} \tag{15}
\end{equation*}
$$

They substitute ϕ_{e} for ϕ, the "effective porosity", which is given by

$$
\begin{equation*}
\phi_{e}=\left(1-S_{r}\right) \phi \tag{16}
\end{equation*}
$$

and S_{e} for s and it gives

$$
\begin{equation*}
\operatorname{div}\left(\frac{\gamma K_{e}}{\mu} \nabla\left(\frac{p}{\gamma}+z\right)\right)=\phi_{e} \frac{\partial S_{e}}{\partial t} \tag{17}
\end{equation*}
$$

This equation is then written in a dimensionless form by scaling the variables in the equation. They scale the variables by choosing standard units of permeability, length, pressure and time which are known to be significant. characteristics of the system. The standard units are designated as K_{O}, L_{O}, P_{O} and t_{0} respectively. the standard unit K_{O} is the fully-saturated (maximum) permeability K of the medium.

Using the standard units as scaling factors, equation 17 becomes
$\frac{t_{0} K_{O \gamma}}{L_{O} \mu \phi_{e}}$ div. $\left(K_{r} \nabla \cdot\left(\frac{P}{P_{O}}+\frac{z \gamma}{P_{O}}\right)\right)=\frac{\partial S_{e}}{\partial\left(t / t_{O}\right)}$
where the dots after the divergence and gradient operator symbols indicate that the operations are performed with respect to the scaled coordinate length.

As standard units they chose bubbling pressure, P_{b} for P_{0}. In this case, however, it is necessary to use $\mathrm{P}_{\mathrm{b}} / \gamma$ as the standard unit of length. Similarly the appropriate standard unit of time is $\phi_{e} P_{b} \mu / K \gamma^{2}$. Scaled variables are obtained by dividing the unscaled variables by their respective standard units. Then, equation 18 becomes

$$
\begin{equation*}
\operatorname{div} \cdot\left(K_{r} \nabla \cdot\left(P \cdot+z_{0}\right)\right)=\frac{\partial S_{e}}{\partial t} \tag{19}
\end{equation*}
$$

where the dots designate scaled variables or operators with respect to scaled variables.

Equation 19 will yield identical particular solutions in terms of scaled variables provided that
(1) geometric similitude exists
(2) the boundary and initial conditions in terms of scaled variables are identical
(3) the functional relationships among K_{r}, S_{e} and P_{C} / P_{b} are identical for the both systems.

Scaled variables resulting from Brooks and Corey's
theory (from Corey et. al.(6)) are:
Microscopic geometry
P. $\equiv \frac{1}{\mathrm{P}_{\mathrm{b}}} \mathrm{P} \quad$ Pressure of wetting phase
η. \ddagger Pore size distribution index

Macroscopic variables
$I . \equiv \frac{\rho g}{\mathrm{P}_{\mathrm{b}}} \mathrm{L} \quad$ Length
t. $\equiv \frac{(\rho g)^{2} K}{P_{b} \mu \phi_{e}} t \quad$ Time
$q . \equiv \frac{\mu}{\rho g K} q \quad$ Flow volume flux
$Q . \equiv q \cdot t .=\frac{\rho g}{P_{b} \phi_{e}} q t=\frac{\rho g}{P_{b} \phi_{e}} Q \quad$ Flow volume

The properties of the medium
$K_{\text {K }} \equiv K_{r} \equiv \frac{K_{e}}{K} \quad$ Permeability
S. $\equiv S_{e} \equiv \frac{S-S_{r}}{1-S_{r}} \quad$ Degree of saturation
$\phi . \equiv \phi_{e} \equiv\left(1-S_{r}\right) \phi \quad$ Porosity

In the approach of Brooks and Corey (2) the microscopic variables are taken care of implicitly by using a pore-size distribution index (λ or η) and bubbling pressure, P_{b}, while Miller and Miller (14) have explicitly scaled micorscopic variables.

Laliberte et. al. (12) who have examined some of the problems associated with the theory of Brooks and Corey indicate that the pore-size distribution index is changed only slightly over a wide range of porosities but permeability and bubbling pressure may be changed several fold over the same range.

Corey et. al. (6) tested the validity of Brooks and Corey's scaling criteria for one-dimensional unsteady flow through a single layer of sand and obtained exceptional results. They also found that the value of the parameter η does significantly affect the drainage process. Differences in 7 , however, are more pronounced with low values than with high values of η. They comment that prototype materials possessing high η-values (above 15) could undoubtedly be modeled with materials having η-values within ± 20 percent of the prototype media. However, media with low values (3-8) should be modeled with media having n-values within ± 5 percent of the true values. Corey (5) offers the following criteria for similitude for layered media:

Consider. m layers of media with the flow being perpendicular to the layers. Individual layers between
model and prototype are scaled if

$$
\begin{align*}
& \left(\frac{L \rho g}{P_{b}}\right)_{n}^{\prime}=\left(\frac{L \rho g}{P_{b}}\right)_{n} n=1,2,3 \ldots m \tag{20}\\
& \left(\frac{t K(\rho g)^{2}}{P_{b} \mu \phi_{e}}\right)_{n}^{\prime}=\left(\frac{t K(\rho g)^{2}}{P_{b} \mu \phi_{e}}\right)_{n} n=1,2,3 \ldots m \\
& n_{n}^{\prime}=n_{n} \tag{21}
\end{align*}
$$

where the primed quantities refer to the model and the unprimed to the prototype.

It is highly unlikely that layers of media in a prototype would exhibit the same length and time scales. In other words, in general

$$
\begin{align*}
& \left(\frac{\mathrm{L}}{\mathrm{P}_{\mathrm{b}}}\right)_{1} \neq\left(\frac{\mathrm{L}}{\mathrm{P}_{\mathrm{b}}}\right)_{2} \neq \ldots \neq\left(\frac{\mathrm{L}}{\mathrm{P}_{\mathrm{b}}}\right)_{\mathrm{m}} \tag{23}\\
& \left(\frac{\mathrm{tK}}{\mathrm{P}_{\mathrm{b}} \phi_{\mathrm{e}}}\right)_{1} \neq\left(\frac{t \mathrm{~K}}{\mathrm{P}_{\mathrm{b}} \phi_{\mathrm{e}}}\right)_{2} \neq \ldots \neq\left(\frac{\mathrm{tK}}{\mathrm{P}_{\mathrm{b}} \phi_{\mathrm{e}}}\right)_{\mathrm{m}} \tag{24}
\end{align*}
$$

The fluid properties have been omitted since each layer is assumed to contain the same fluid. Then, there are unique length and time scales for each prototype layer. These scales are linearly related or

$$
\begin{align*}
& L_{\cdot 1}=a_{2} L_{\cdot 2}=a_{3} L_{\cdot 3}=\ldots a_{m}^{L_{0}} \tag{25}\\
& t_{0_{1}}=b_{2} t_{\cdot 2}=b_{3} t_{\cdot 3}=\ldots b_{m} t_{\cdot m} \tag{26}
\end{align*}
$$

where the a^{\prime} s and $b^{\prime} s$ are constants dependent upon the properties of the individual layers.

In order to model such layers, the same ratio of length and time scales must exist among the model layers, or

$$
\begin{align*}
& L!_{1}=a_{2} I!_{2}=a_{3} L!_{3}=\ldots a_{m} I!_{m} \tag{27}\\
& t!_{1}=b_{2} t!_{2}=b_{3} t!_{3}=\ldots b_{m} t!_{m} \tag{28}
\end{align*}
$$

Should one be able to secure materials to effectively neet these criteria, the different length and time scales would still exist among the various model layers.

Equations 20 and 28 according to Corey (5) are the criteria necessary to model layered soils. There is the further requirement that each layer must be treated separately since each has unique length and time scales.

Further it is suggested that because of the difficulty in meeting the above criteria it is possible to use prototype materials for the model and to effect the modeling by using a different liquid in the model. The larger the scale reduction desired the lower the surface tension of liquid necessitated in the model.

In the previous pages some of the different criteria for similitude were mentioned. As could be seen there are very few discussions concerming layered media. Here, the author would like to comment on the theory for layered soils suggested by Corey (5) and to mention another criterion which has not been pointed out for this case.

It is apparent if Brooks and Corey's scaling laws are followed equations 25 and 27 proposed by Corey (5) will
be satisfied. Considering scaled times, equations 21 and 26 and 28 theoretically are correct but in practice it is almost impossible to apply different time scales to different layers. The author in doing experiments for nonsteady drainage of two layers of sand has noticed that when the top layer is still draining the second layer begins to drain even when the coarser layer is over the finer layer. In other words, at a period of time, which is not necessarily short, both layers contribute simultaneously to the flow. The reason for such behavior, probably, is that the largest pores (which drain first) in the finer layer are larger than the smallest pores in the coarser layer. It would be possible to distinguish the time in which each layer has contributed to the flow if the top layer is much coarser than the bottom layer (or layers) which is a very special case.

A very important characteristic in modeling is that the distribution of scaled pressure is identical for model and prototype. For the single-layer case Brooks and Corey's criteria fully satisfy this requirement. For layered soils another necessary condition must be satisfied to achieve this as the following discussion shows.

Consider a prototype, in a one-dimensional case, in which there are two layers of different materials with length L_{1} and L_{2} and bubbling pressures $P_{b_{1}}$ and $P_{b_{2}}$. Also consider a model with two layers of material different from those of prototype with lengths L_{1}^{\prime} and L_{2}^{\prime} and
bubbling pressures $\mathrm{P}_{\mathrm{b}_{1}}^{\prime}$ and $\mathrm{P}_{\mathrm{b}_{2}}^{\prime}$. It must be pointed out that Brooks and Corey's scaling laws have been applied to them. In other words, the following relations exist:

$$
\begin{array}{lll}
\frac{L_{1}}{P_{\mathrm{b}_{1}} / \gamma}=\frac{L_{1}^{\prime}}{P_{\mathrm{b}_{1}}^{\prime} / \gamma} & \text { or } & L_{1}^{\prime}=\frac{L_{1} \times P_{b_{1}}^{\prime} / \gamma}{P_{\mathrm{b}_{1}} / \gamma} \\
\frac{L_{2}}{P_{\mathrm{b}_{2} / \gamma}}=\frac{\mathrm{L}_{2}^{\prime}}{P_{\mathrm{b}_{2} / \gamma}^{\prime}} & \text { or } & L_{2}^{\prime}=\frac{L_{2} \times P_{\mathrm{b}_{2}}^{\prime} / \gamma}{P_{\mathrm{b}_{2}} / \gamma} \tag{30}
\end{array}
$$

where the primed quantities refer to the model and the unprimed to the prototype.

Consider a section in the top layer of the prototype and the similar section in the model. It can be any section but for the sake of specificity sections A and A^{\prime}, the top of the prototype and model, are chosen (refer to diagram below).

Prototype
Model

Scaled capillary pressure head at $A=\frac{L_{1}+L_{2}}{P_{b_{1}} / \gamma}$ as time approaches ∞
Scaled capillary pressure head at $A^{\prime}=\frac{L_{1}^{1}+L_{2}^{\prime}}{\mathrm{P}_{b_{1}^{\prime}}^{\prime} / \gamma}$ as time approaches ∞

These two quantities must be equal, or

$$
\begin{equation*}
\frac{L_{1}+L_{2}}{P_{\mathrm{b}_{1}}}=\frac{\mathrm{L}_{1}^{\prime}+\mathrm{L}_{2}^{\prime}}{\mathrm{P}_{\mathrm{b}_{1}^{\prime}}^{\prime}} \tag{33}
\end{equation*}
$$

$\gamma=\rho g$ have been omitted because for both model and prototype it is the same provided the same liquid is used in both model and prototype.

Substituting L_{1}^{\prime} and L_{2}^{\prime} in equation 33 by their respective equations 29 and 30 gives
$\frac{L_{1}+L_{2}}{P_{b_{1}}}=\frac{\frac{L_{1} x P_{b_{1}}^{\prime}}{P_{b_{1}}}+\frac{L_{2} x P_{b_{2}}^{\prime}}{P_{b_{2}}}}{P_{b_{1}}^{\prime}}$
or
$\frac{L_{1}+L_{2}}{P_{b_{1}}}=\frac{L_{1} x P_{b_{1}}^{\prime} x P_{b_{2}}+L_{2} x P_{b_{2}}^{\prime} x P_{b_{1}}}{P_{b_{1}}^{\prime} x P_{b_{1}} \times P_{b_{2}}}$
Simplifying equation 35 gives
$L_{1}+L_{2}=L_{1}+\frac{L_{2} \times P_{b_{1}} \times P_{b_{2}^{\prime}}^{\prime}}{P_{b_{2}} \times P_{b_{1}}^{\prime}}$
or
$1=\frac{P_{b_{1}} \times P_{b_{2}}^{\prime}}{P_{b_{2}} \times P_{b_{1}}^{\prime}}$

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{2}}}=\frac{\mathrm{P}_{\mathrm{b}_{1}}^{\prime}}{\mathrm{P}_{\mathrm{b}_{2}^{\prime}}^{\prime}} \quad \text { or } \quad \frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{1}}^{\prime}}=\frac{\mathrm{P}_{\mathrm{b}_{2}}}{\mathrm{P}_{\mathrm{b}_{2}}^{\prime}} \tag{38}
\end{equation*}
$$

Equation 38 is a very important condition which must be satisfied if the modeling for layered soils is done by using Brooks and Corey's theory. It will be shown later if this condition does not exist among the layers the model behavior is completely different from that of the prototype.

Using the same reasoning for any other section will give the above result. However, it should be pointed out when the analysis is done for the bottom layer there will not be any such condition derived because the analysis is the same as drainage from a single layer for which the newly derived condition is superfluous. However, for two or more layers the general condition must be satisfied, that is,

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{1}}^{\prime}}=\frac{\mathrm{P}_{\mathrm{b}_{2}}}{\mathrm{P}_{\mathrm{b}_{2}}^{\prime}}=\frac{\mathrm{P}_{\mathrm{b}_{3}}}{\mathrm{P}_{\mathrm{b}_{3}}} \cdots \cdots=\frac{\mathrm{P}_{\mathrm{b}_{n}}}{\mathrm{P}_{\mathrm{b}_{n}}^{\prime}} \tag{39}
\end{equation*}
$$

where $n=1,2,3 \ldots m$ layers.

CHAPTER III

EXPERIMENTAL PROCEDURE

The experiments were done for one-dimensional nonsteady flow through two layers of material following Brooks and Corey's (2) scaling laws.

All the tests, model and prototype, were done with columns of sand packed into plastic tubes. The crosssectional area of columns were $11.40 \mathrm{~cm}^{2}$ and underneath the sand there was constructed a coarse filter to retain the sand and leading to an outflow tube. The technique was to use a filter coarse enough to reduce the head loss and fine enough to hold the finest grains of the sand as well. These tests were different from those by Corey et. al. (6) since air was allowed to enter only from the top of the tube. Otherwise, beside the fact that layered soils were used in this study, the procedures were essentially the same.

Media and Liquid
Different fractions of Selkirk silica sand, a product of the Winnipeg Supply and Fuel Company, Winnipeg, Manitoba, were used as media. The sieve analysis of this sand is shown in Table lB, Appendix B. These data were supplied to the author by Dr. K.M.Adam.

The liquid used was a hydrocarbon oil, which is a
core test fluid referred to as soltrol "C". It has the advantage over water that the physical structure of the media remains much more stable in its presence. Also it has a low surface tension (22.9 dynes/cm) and facilitates experimental work involving a mixture of liquid and air. Moreover, the model size can be reduced appreciably if this oil is used instead of water.

The dynamic viscosity, the density and the ratio of dynamic viscosity to specific weight are tabulated in Table 2B, Appendix B as reported by Laliberte et. al. (12).

Determining Media Properties

The properties of different fractions of sand were determined before any decision for the modeling study was being made. This was due especially to the fact that η must be almost the same for corresponding layers in the model and the prototype. The required data were mostly obtained from the capillary pressure-relative permeability and capillary pressure-desaturation data. These relations for six fractions of sand used in the drainage tests as well as a brief discussion about how they were obtained are in Appendix A. The capillary pressure-relative permeability data as well as particle densities, ρ_{s}, were supplied to the author by Dr. K.M. Adam.

Having chosen the combinations for prototypes and models, the materials were packed in the tubes and were vacuum-saturated. Before running the sample for the nonsteady drainage test the saturated permeability of the sample, that is, the permeability of both layers, was measured by the falling head permeability method. This was done because, as mentioned before, assigning different time factors for each layer is not possible and for the whole sample there must be one time factor as well as one discharge factor, that is, a unique value of $\frac{(\rho g)^{2} K}{\phi_{e} P_{b} \mu}$ and $\frac{\rho g}{\mathrm{P}_{b} \phi_{e}}$, respectively. The effective porosity for each layer was calculated using the equation

$$
\phi_{e}=\left(1-S_{r}\right) \phi
$$

where $\phi=1-\frac{\rho_{\mathrm{b}}}{\rho_{\mathrm{S}}}$ and ρ_{S} is 2.65 since Selkirk silica sand is 99.9 percent pure silica.

Testing the Theory - Details of Tests
Six different fractions of Selkirk silica sand were chosen for nonsteady drainage tests. In Tables 1 and 2 their values of P_{b} / γ and η and also the ratio of their bubbling pressures has been shown.

The proper fractions for prototypes and models were chosen and the length of each layer in the prototype was selected arbitrarily. The length of the corresponding layers in the model was then calculated using the relation

Table 1
Pore-size Distribution Index and Bubbling Pressure for Different Fractions of Selkirk Silica Sand

Fraction*	η	P_{b} / γ cm
$150-200$	19.71	37.55
$100-150$	18.03	28.41
$65-100$	18.20	18.51
$48-65$	20.30	14.67
$35-48$	20.00	10.16
$28-35$	18.43	7.68

*Tyler standard.
28.

$$
\frac{L}{P_{b} / \gamma}=\frac{L^{\prime}}{P_{b}^{\prime} / \gamma}
$$

where the primed quantities refer to the model and unprimed to the prototype. The samples were vacuum-saturated and then were allowed to drain. The instant that the sample began to drain, time measurement was started and outflow measurement versus time was observed. The measurements were continued until the flow rate was very, very small. The data were then properly scaled and the scaled discharge, $Q .=\frac{\rho g}{P_{b} \phi_{e}} Q$ was plotted versus scaled time, $t .=\frac{K(\rho g)^{2}}{P_{b}{ }^{\mu} \phi_{C}} t$.

For the prototype the two fractions of Selkirk silica sand chosen were 150-200 and 100-150. The ratio of the bubbling pressure of the finer layer (150-200) to the coarser layer $(100-150)$ is $37.55 / 28.41=1.32$. Two prototypes were run, one with the 150-200 layer on the top and the 100-150 at the bottom and the other, the 100-150 layer on the top and the 150-200 layer at the bottom. With each prototype three models were run, one with the ratio of bubbling pressure of the finer layer to that of the coarser layer exactly the same as that of the prototype $(35-48,28-35)$. The second one with the ratio slightly different and the third one with the ratio appreciably different to prove the criterion that

$$
\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{2}}}=\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{2}}}
$$

The details of different arrangements and results are shown in the next section.

Here, it should be pointed out that for the second series of tests, that is, with the finer layer at the bottom, suction equal to 0.6 times the bubbling pressure head of the bottom layer was applied at the bottom of the samples, for both model and prototype, and because this suction is scaled it does not change the results. That is to say $P_{C} . \equiv \frac{P_{C}}{P_{b}}$

To calculate Q. and t. the following parameters were used in the equations $Q .=\frac{\rho g}{P_{b} \phi_{e}} Q$ and $t_{0}=\frac{(\rho g)^{2} K}{P_{b} \phi_{e}} t$.

For P_{b} the value obtained from the capillary pressurerelative permeability was used. For ϕ_{e}, the effective porosity for each layer was weighted according to the lengths of two layers and the average value was used. K was the saturated permeability for the whole sample as was measured by the falling head permeability method. Furthermore, temperatures were taken during the tests and the values of $\mu / \rho g$ were read from Table 2B, Appendix B.

Because of the different ratios of bubbling pressures when the criterion $\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{1}}^{\prime}}=\frac{\mathrm{P}_{\mathrm{b}_{2}}}{\mathrm{P}_{\mathrm{b}_{2}}^{\prime}}$ is not satisfied, for each test two scaled discharges and scaled times, that is, $Q .=\frac{\rho g}{P_{b} \phi_{e}} Q$ and $t .=\frac{(\rho g)^{2} K}{P_{b} \phi_{e} \mu} t$ were calculated, one using the bubbling pressure of the finer layer and the other the bubbling pressure of the coarser layer.

The nonsteady drainage data for the prototypes and models are shown in Appendix C.

CHAPTER IV

DETAILS OF TESTS AND RESULTS

SERIES NO. I

Prototype No. 1

Fraction	$\begin{gathered} \mathrm{L} \\ \mathrm{~cm} \end{gathered}$	η	$\begin{gathered} \mathrm{P}_{\mathrm{b}} / \rho \mathrm{cm} \\ \mathrm{~cm} \end{gathered}$	S_{r}	ϕ	ϕ_{e}
150-200	30	19.71	37.55	0.127	0.378	0.330
100-150	60	18.03	28.41	0.101	0.357	0.318
$\phi_{e \text { ave }}=\frac{30 \times .330+60 \times .318}{30+60}=0.322$				$\frac{\mathrm{P}_{\mathrm{b}} 150-200}{\mathrm{P}_{\mathrm{b}} 100-150}=1.32$		
$\mathrm{K}=5.40$	$=5$	×10 ${ }^{-8}$	Suction $=0$			

Considering P_{b} of the finer layer
$\mathrm{Q} .=0.08270 \mathrm{Q}$
$t_{0}=0.4466 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Considering Pb_{b} of the coarser layer
Q. $=0.1093 \mathrm{Q}$
$t .=0.5903 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Model No．1A

Fraction	$\begin{gathered} \mathrm{L} \\ \mathrm{~cm} \end{gathered}$	η	$\begin{gathered} \mathrm{Pb} / \rho \mathrm{g} \\ \mathrm{~cm} \end{gathered}$	S_{r}	ϕ	ϕ e
35－48	8.12	20.00	10.16	0.101	0.303	0.272
28－35	16.22	18.43	7.68	0.100	0.353	0.318
ϕ_{e} ave $=\frac{8.12 \times .272+16.22 \times .318}{8.12+16.22}=0.303 \quad \frac{\mathrm{P}_{\mathrm{b}} 35-48}{\mathrm{P}_{\mathrm{b}} 28-35}=1.32$						
$\mathrm{K}=73.09 \mu^{2}=73.09 \times 10^{-8} \mathrm{~cm}^{2}$				Suction $=0$		

Considering P_{b} of the finer layer
Q．$=0.3249 \mathrm{Q}$
$t_{\text {。 }}=11.31 \times 10^{-3} t$（temperature the same during the test）

Considering P_{b} of the coarser layer
Q。 $=0.4297$ Q
$t_{\text {。 }}=14.96 \times 10^{-3} \mathrm{t}$

Model No. 1 B

Fraction	$\begin{gathered} \mathrm{L} \\ \mathrm{~cm} \end{gathered}$	η	$\begin{gathered} \mathrm{Pb} / \rho \mathrm{g} \\ \mathrm{~cm} \end{gathered}$	S_{r}	ϕ	ϕ_{e}
65-100	14.79	18.20	18.51	0.112	0.332	0.295
48-65	30.98	20.30	14.67	0.100	0.334	0.301
ϕ_{e} ave $=\frac{14.79 \mathrm{x} .295+30.98 \mathrm{x} .301}{14.79+30.98}=0.299 \quad \frac{\mathrm{P}_{\mathrm{b}} 65-100}{\mathrm{P}_{\mathrm{b}} 48-65}=1.26$						
$\mathrm{K}=19.59 \mu^{2}=19.59 \times 10^{-8} \mathrm{~cm}^{2}$				Suction $=0$		

Considering P_{b} of the finer layer
Q. $=0.1807 \mathrm{Q}$
$\mathrm{t} .=3.540 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Considering P_{b} of the coarser layer
Q. $=0.2280 \mathrm{Q}$
$t_{0}=4.467 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Model No. 1C

Fraction	L cm	η	$\underset{\mathrm{cm}}{\mathrm{P}_{\mathrm{b}} / \mathrm{\rho g}}$	S_{r}	ϕ	ϕ_{e}
65-100	14.79	18.20	18.51	0.112	0.304	0.270
35-48	21.50	20.00	10.16	0.101	0.325	0.292
$\phi_{e} \text { ave }=\frac{14.79 \times .270+21.50 \times .292}{14.79+21.50}=0.283$					$\frac{P_{b} 65-100}{P_{b} 35-48}=1.82$	

$$
\mathrm{K}=21.06 \mu^{2}=21.06 \times 10^{-8} \mathrm{~cm}^{2} \quad \text { Suction }=0
$$

Considering P_{b} of the finer layer
Q. $=0.1909 \mathrm{Q}$
$t_{0}=4.021 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Considering P_{b} of the coarser layer
$Q .=0.3478 \mathrm{Q}$
$t_{\text {. }}=7.325 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

SERIES NO. 2

Prototype No. 2

Fraction	L cm	η	$\mathrm{P}_{\mathrm{b} / \rho \mathrm{g}}$ cm	S_{r}	ϕ	ϕ_{e}
$100-150$	30	18.03	28.41	0.110	0.369	0.328
$150-200$	45	19.71	37.55	0.127	0.389	0.340
$\phi_{\mathrm{e} \text { ave }}=\frac{30 \mathrm{x} .328+45 \times .340}{30+45}=0.335$	$\frac{\mathrm{P}_{\mathrm{b}} 150-200}{\mathrm{P}_{\mathrm{b}} 100-150}=1.32$					

$\mathrm{K}=5.72 \mu^{2}=5.72 \times 10^{-8} \mathrm{~cm}^{2}$ Suction $=.6 \mathrm{P}_{\mathrm{b}} 150-200=22.53 \mathrm{~cm}$

Considering P_{b} of the finer layer
$Q .=0.07950 \mathrm{Q}$
$t .=0.4547 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Considering P_{b} of the coarser layer
$Q .=0.1051 \mathrm{Q}$
$t_{0}=0.6010 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} \mathrm{t}$

Model No. 2A

Fraction	$\begin{gathered} \mathrm{L} \\ \mathrm{~cm} \end{gathered}$	η	$\underset{\mathrm{Cm}}{\mathrm{~Pb} / \rho \mathrm{g}}$	S_{r}	ϕ	ϕ_{e}
28-35	8.11	18.43	7.68	0.100	0.332	0.299
35-48	12.18	20.00	10.16	0.101	0.324	0.291
$\phi_{\mathrm{e}} \text { ave }=\frac{8.11 \mathrm{x} .299+12.18 \mathrm{x} .291}{8.11+12.18}=0.294 \quad \frac{\mathrm{P}_{\mathrm{b}} 35-48}{\mathrm{P}_{\mathrm{b}} 28-35}=1.32$						
$\mathrm{K}=58.89 \mu^{2}=58.89 \times 10^{-8} \mathrm{~cm}^{2} \quad$ Suction $=.6 \mathrm{P}_{\mathrm{b}} 35-48=6.10 \mathrm{~cm}$						
Considering P_{b} of the finer layer$\begin{aligned} & Q_{0}=0.3348 \mathrm{Q} \\ & t_{0}=9.287 \times 10^{-3} \mathrm{t} \text { (temperature the same during test) } \end{aligned}$						
Considering Pb_{b} of the coarser layer						
Q ${ }^{\text {a }}=0.4429 \mathrm{Q}$						
$\mathrm{t}_{\text {。 }}=12.28 \times 10^{-3} \mathrm{t}$						

Model No. 2B

Fraction	$\begin{gathered} \mathrm{L} \\ \mathrm{~cm} \end{gathered}$	η	$\begin{gathered} \mathrm{P}_{\mathrm{b}} / \rho \mathrm{g} \\ \mathrm{~cm} \\ \hline \end{gathered}$	S_{r}	ϕ	¢e
35-48	10.73	20.00	10.16	0.101	0.349	0.314
48-65	17.58	20.30	14.67	0.100	0.351	0.316
$\phi_{\mathrm{e}} \text { ave }=\frac{10.73 \mathrm{x} \cdot 314+17.58 \mathrm{x} \cdot 316}{10.73+17.58}=0.315 \quad \frac{\mathrm{P}_{\mathrm{b}} 48-65}{\mathrm{P}_{\mathrm{b}} 35-48}=1.44$						
$\mathrm{K}=30.40 \mu^{2}=30.40 \times 10^{-8} \mathrm{~cm}^{2}$ Suction $=.6 \mathrm{P}_{\mathrm{b}} 48-65=8.80 \mathrm{~cm}$						

Considering P_{b} of the finer layer
Q. $=0.2164 \mathrm{Q}$
$t_{\text {. }}=6.579 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} t$

Considering P_{b} of the coarser layer
Q. $=0.3125 \mathrm{Q}$
t. $=9.500 \times \frac{1}{\mu / \rho g \times 10^{5}} \times 10^{-3} t$

Model No. 2 C

Fraction	$\underset{\mathrm{L}}{\mathrm{~L}}$	η	$\mathrm{P}_{\mathrm{C}} / \mathrm{pg}$	S_{r}	ϕ	ϕ_{e}
28-35	8.11	18.43	7.68	0.100	0.329	0.296
48-65	17.58	20.30	14.67	0.100	0.375	0.338
ϕ_{e} ave $=\frac{8.11 \mathrm{x} .296+17.58 \mathrm{x} .338}{8.11+17.58}=0.325 \quad \frac{\mathrm{P}_{\mathrm{b}} 48-65}{\mathrm{~Pb}_{\mathrm{b}} 28-35}=1.91$						
$\begin{aligned} & \mathrm{K}=39.03 \mu^{2}=39.03 \times 10^{-8} \mathrm{~cm}^{2} \\ & + \end{aligned}$				Suction $=.6 \mathrm{P}_{\mathrm{b}} 48-65=8.80 \mathrm{~cm}$		

Considering P_{b} of the finer layer
$Q .=0.2097 Q$
t. $=4.064 \mathrm{t}$ (temperature the same during test)

Considering P_{b} of the coarser layer
$Q .=0.4006 \mathrm{Q}$
$t .=7.764 t$

CHAPTER.V

 DISCUSSION OF THE RESULTSThe specifications of each prototype and model were shown in the previous section with the results of the tests in the corresponding figures. The following is a brief discussion of the results.

In prototype No. I the 150-200 fraction was on the top and the 100-150 fraction at the bottom with the ratio of the bubbling pressure of the finer layer to the coarser layer equal to 1.32. With this prototype three models were run; model No. IA with the ratio of the bubbling pressure of the layers the same as that of the prototype, that is 1.32 ; model No. $1 B$ with the ratio of 1.26 , slightly different from the prototype and model No. 1C with the ratio of 1.82 , much different from the prototype. In all the cases the length of each layer in the model was calculated according to Brooks and Corey's theory, that is:

$$
\frac{L}{P_{b} / \gamma}=\frac{L^{\prime}}{P_{b}^{\prime} / \gamma}
$$

or

$$
L^{\prime}=\frac{L \times P_{b}^{\prime} / \gamma}{P_{b} / \gamma}
$$

where the primed quantities refer to the model and unprimed to the prototype.

From the results of the first series of the tests which are shown in Figures 1 to 9 it can be seen easily that the agreement between prototype No. 1 and model No. IA and model No. 1B is very good, at least within experimental error, while there is no agreement between prototype No. 1 and model No. lC. Remembering that the ratio of the bubbling pressures among the layers of model No. 1A and model No. lB are the same and very near to that of the prototype No. 1, and that the ratio for model No. 1C, for which there is no agreement between the model and the prototype behavior, is far different from that of the prototype No. 1 , it is evident that the criterion which was developed in this study is substantiated. That is,

$$
\frac{\mathrm{P}_{\mathrm{b}_{1}}}{\mathrm{P}_{\mathrm{b}_{1}}}=\frac{\mathrm{P}_{\mathrm{b}_{2}}}{\mathrm{~Pb}_{2}^{\prime}}=\ldots \ldots .=\frac{\mathrm{P}_{\mathrm{b}_{\mathrm{m}}}}{\mathrm{P}_{\mathrm{b}_{m}}}
$$

where subscripts $1,2, \ldots m$ refer to the layers in the prototype and model.

It should be noted that for all the models the η requirement was satisfied and the largest difference between the η 's was for the model No. IB which was less than 13% and smaller than 20% recommended by Corey et. al. (6). Therefore, this is not likely to be a major factor in the difference in the behaviors of the model No. IC and the prototype No. 1 and the reason is, in fact, that the bubbling
pressure ratio criterion was not satisfied.
Before discussing the second series of the tests it should be pointed out, here, that for model No. IA, with the ratio of bubbling pressures of the layers exactly the same as the prototype, at large scaled times there is a small diffference between the prototype and model behavior while for model No. 1B, with the ratio of the bubbling pressures of the layers very slightly different from the prototype, the larger scaled time data are in better agreement with the prototype. This can be attributed to the experimental error because there are ways in which error may occur. For instance, calculating the bubbling pressure of the medium from the data obtained in capillary pressure-relative permeability test may involve a small percentage error. Likewise error may be introduced in determining the effective porosity of the medium which is calculated by using the residual saturation.

Also, during the unsteady drainage test the adjustment of the outflow tube for the zero suction (or for any suction) may involve a small error in the sense that the outflow tube may be fixed a few millimeters too high or too low. This involves two effects, one on drainage ratio and the other on total drainage since an error in suction may cause the sample to drain a few milimeters more or less than it should. Furthermore, when the column containing two layers is under
vacuum for saturation at the junction of the two layers there is a small zone where the two layers slightly mix with each other. Although each layer is "modeled", one would not expect this mixing process to be identical nor the resulting mixed depth to be modeled. For this reason, mixing of layers would be expected to account for some deviation between the scaled data of the model and prototype. Further, where the fine material is placed on top (model No. IA) one would expect the fines to enter the voids of the coarse more Esily when aided by gravity. Also, where the fine material was on the bottom (model No. 2A) it would be less probable that for the coarse grains would enter the voids of the fine material by gravity, and mixing would be at a minimum. Comparison of the scaled data of Figure 2 and 11 shows that model No. 2A did in fact show less discrepancy than model No. IA. It is impossible, of course, to verify if in fact the above argument does account for the lesser discrepancy, however, it is nevertheless a noteworthy point. Another point which must be considered is that the prototype drains for a longer time than the model and evaporation from the outflow tube for the prototype is more than the model and this causes that the scaled discharge-time relationship for the prototype, at large values of scaled time, be lower than the model.

In the second series of the tests, for which the
results are shown in Figures 10 to 18 , the 100-150 fraction (coarser layer) was placed at the top and the 150-200 fraction at the bottom for the prototype No. 2. In these series three models were run with prototype No. 2, namely, model No. 2A with the ratio of the bubbling pressures of the layers equal to 1.32 , exactly the same as that of the prototype; model No. 2B with the ratio of 1.44 , slightly different from the prototype, and model No. 2C with the ratio of 1.91 , which is much different from that of the prototype. The materials in model No. 2 A were the same as those in model No. IA but like prototype No. 2 the coarser layer was on the top and the finer one at the bottom. The materials for model No. 2B were not the same as those for model No. IB and so the ratio of the bubbling pressures of the layers was different than for model No. IB. The ratio of the bubbling pressures for model No. 2 B was 1.44 , compared to 1.26 for model No. 1B. The difference of the prototype and model ratios was slightly greater for series 2 than for series 1 and the agreement is slightly worse, as one should expect. The behavior of model No. 2C does not agree with that of prototype No. 2 because the ratio of the bubbling pressures of the model layers, 1.92 , is much different from that of the prototype where the ratio was 1.32. It should be pointed out that in the second series of the tests the largest difference between η 's was for model

No. 2B which was less than 11 percent and it satisfies the recommendations by Corey et. al. (6). Therefore, the entire difference in the behaviors of the model No. 2C and prototype No. 2 cannot be attributed to the n-value and it would be attributed to the difference in the ratios of the bubbling pressures.

CHAPTER VI

CONCLUSION

When the ratio of the bubbling pressures among the model layers is the same as or very near to that of the prototype the scaled discharge-time relationships for the model and the prototype are within the limits of experimental error. This indicates that the prototype behavior can be predicted from the model, provided that all modeling criteria are fulfilled. The larger the difference between the ratio of the bubbling pressures of the layers, the larger will be the difference in behavior of the model and the prototype. This statement exemplifies the importance of the additional modeling criterion required, as found in this study.

For practical purposes when the proper materials for the model are not available to satisfy the pore-size distribution index requirement and also the ratios of bubbling pressures of the prototype layers, then, materials with the ratio of the bubbling pressures a small percentage different from that of the prototype may be used.

Because of boundary effects between layers, it is recommended that some caution be exercised in choosing the materials for the model such that extremely large model, prototype scale:ratios do not result especially where relatively thin prototype layers must be modeled. The reason
65.
is that if the thickness of the model layers are too small the experimental error will be reflected to such an extent that the results may be seriously affected.

BIBLIOGRAPHY

1. Anat, A., H.R. Duke and A.T. Corey. Steady upward flow from water tables. Colorado State University, Fort Collins, Colorado. Hydrology Paper No. 7, June 1965.
2. Brooks, R.H. and A.T. Corey. Hydraulic properties of porous media. Colorado State University, Fort Collins, Colorado. Hydrology Paper No. 3, March 1964.
3. Burdine, N.T. Relative permeability calculations from pore-size distribution data. Petroleum Transactions, AIME, 198:71-77, 1953.
4. Corey, A.T. The interrelations between gas and oil relative permeabilities. Producer's Monthly, 19(1): 38-41, November 1954.
5. Corey, G.L. Similitude for non-steady drainage of partially saturated soils. Ph.D. dissertation. Colorado State University, Fort Collins, Colorado. August 1965.
6. Corey, G.I., A.T. Corey and R.H. Brooks. Similitude for non-steady drainage of partially saturated soils. Colorado State University, Fort Collins, Colorado. Hydrology Paper No. 9, August 1965.
7. Craig, F.F., T.M. Geffen and R.A. Morse. Oil recovery performance of pattern gas or water injection operations from model tests. Petroleum Transactions, AIME, 204:7-15, 1955.
8. Croes, G.A. and N. Schwarz. Dimensionally scaled experiments and the theories on the water-drive process. Petroleum Transactions, AIME, 204:35-48, 1955.
9. Elrick, D.E., J.H. Scandrett and E.E. Miller. Tests of capillary flow scaling. Soil Science Society of America Proceedings, 23(5):329-332, SeptemberOctober 1959.
10. Hedstrom, W.E., A.T. Corey and H.R. Duke. Models for subsurface drainage. Colorado State University, Fort Collins, Colorado. Hydrology Paper No. 48, April 1971.
11. Klute, A. and G.E. Wilkinson. Some tests of the similar media concept of capillary flow: I. Reduced capillary conductivity and moisture characteristics data. Soil Science Society of America Proceedings, 22:278-281, July-August 1958.
12. Laliberte, G.E., A.T. Corey and R.H. Brooks. Properties of unsaturated porous media. Colorado State University, Fort Collins, Colorado. Hydrology Paper No. 17, November 1966.
13. Leverett, M.C., W.B. Lewis and M.E. True. Dimensionalmodel studies of oil-field behavior. Petroleum Technology, T.P. 1413:175-193, January 1942.
14. Miller, E.E. and R.D. Miller. Physical theory for capillary flow phenomena. Journal of Applied Physics, 27(4):324-332, April 1956.
15. Rapoport, L.A. Scaling laws for use in design and operation of water-oil flow models. Petroleum Transactions, AIME, 204:143-150, 1955.
16. Richardson, J.G. Flow through porous media, Section 16, Handbook of fluid dyanmics, edited by V.L. Streeter, McGraw-Hill Book Company Inc., New York, 1961.

17 Rurak, R.E. Inspectional analysis: a method which supplements dimensional analysis. Journal of Elisha Mitchell Scientific Society, 51:127-133, 1935.
18. Scheidegger, A.E. The physics of flow through porous media. University of Toronto Press, Toronto, Canada, 313 pp., 1960.
19. Stallman, Robert W. Multiphase fluids in porous media A review of theories pertinent to hydrologic studies. Geological Survey Professional Paper 4ll-E, U.S. Government Printing Office, Washington, D.C. 1964.
20. Wilkinson, G.E. and A. Klute, Some tests of the similar media concept of capillary flow: II. Flow systems data. Soil Science Society of America Proceedings, $23(6): 434-437$, November-December 1959.

APPENDIX A
CAPILLARY PRESSURE-DESATURATION MEASUREMENT AND DATA AND CAPILLARY PRESSURE-RELATIVE PERMEABILITY MEASUREMENT AND DATA

CAPILLARY PRESSURE-SATURATION MEASUREMENT

This measurement was done by using the pressure controller. The pressure controller consisted of an acrylic tube, open at the top, approximately $5-\mathrm{cm}$ inside diameter and $2-\mathrm{cm}$ height with a capillary barrier fixed inside (Figure 1A). The capillary barrier was made of special kind of ceramic which could hold a few feet of negative pressure without bubbling. Sand was packed inside the pressure controller and was covered with clear plastic wrap and was vacuum-saturated. Then, it was connected to a reservoir by a flexible tube. There were some tiny holes in the wrap to allow air to pass in and out of the sample freely. The wrap remained around the controller during the measurement to minimize the occurrence of hydraulic gradients in response to evaporation. Capillary pressures were applied to the sample in increments by changing the level of the reservoir. At each capillary pressure, after equilibrium between the sand and the measurement system had been achieved the weight of the sample was determined and saturation was calculated.

To calculate the saturation and some other necessary data the following weights must be known: l) the weight of the saturated controller; 2) the weight of the saturated controller plus dry sample; 3) the weight of the saturated
controller plus dry sample plus plastic wrap, and 4) the weight of the whole controller after saturation.

From these four weights it is possible to find out the bulk density, ρ_{b}, which is used to calculate porosity, Ф, (assuming particle density, ρ_{s}, for the sample is known). Also the weight of the oil in the sample is given by item 4 minus 3 which is used to determine the saturation at each capillary pressure.
70.

Figure 1A. Sketch of apparatus used to determine capillary pressure-desaturation relationships.

CAPILLARY PRESSURE-PERMEABILITY MEASUREMENT

This measurement was done by using apparatus shown in Figure 2A. This apparatus consisted of an acrylic tube approximately $15-\mathrm{cm}$ in length and $5-\mathrm{cm}$ I.D. which was inserted between two pressure controllers. The sample was packed in the tube and pressure controllers and tensiometers were attached to the tube. The inflow pressure controller was connected to a supply bottle and the tensiometers to two manometer tubes made of glass to measure capillary pressure and hydraulic gradients.

Capillary pressures were applied to the sample in increments by changing the elevations of the supply bottle, the sample or outlet tube in order to create a unit hydraulic gradient for which the saturation is uniform. After equilibrium the rate of flow through the sample was measured at each capillary pressure and the corresponding permeability was calculated.

For further discussion about these two measurements the reader is referred to papers by Anat et. al. (1), Corey et. al. (6) and Laliberte et. al. (12).
72.

Figure 2A. Sketch of apparatus used to determine capillary pressure-permeability relationships.

75.

Table 2A
Capillary Pressure-Desaturation
Data for Selkirk Silica Sand (35-48 Fraction)

$\mathrm{p}_{\mathrm{C}} / \rho \mathrm{g}$ cm	S
10.0	1.000
11.0	0.868
12.0	0.595
13.0	0.381
15.0	0.192
20.0	0.135
30.0	0.123
40.0	0.114
50.0	0.108
60.0	0.105
70.0	0.101
80.0	0.101

Table 3A
Capillary Pressure-Desaturation
Data for Selkirk Silica Sand (48-65 Fraction)

$\mathrm{P}_{\mathrm{C}} / \rho \mathrm{cm}$ Cm	S
14.0	1.000
15.0	0.909
17.0	0.503
20.0	0.209
25.0	0.135
35.0	0.123
45.0	0.110
55.0	0.106
65.0	0.100

Table 4A
Capillary Pressure-Desaturation
Data for Selkirk Silica Sand (65-100 Fraction)

$p_{C} / \rho g$ cm	S
19.0	1.000
20.0	0.844
21.0	0.664
22.0	0.529
23.0	0.375
24.0	0.289
27.0	0.192
32.0	0.139
39.0	0.123
50.0	0.118
60.0	0.114
70.0	0.112
$\$=0.386$	

Table 5A
Capillary Pressure-Desaturation
Data for Selkirk Silica Sand (100-150 Fraction)

$p_{C} / \rho g$ cm	S
25.0	1.000
26.0	0.914
27.0	0.764
28.0	0.631
30.0	0.407
32.0	0.273
35.0	0.192
40.0	0.145
50.0	0.111
60.0	0.110
70.0	0.110

$\phi=0.379$

Table 6A
Capillary Pressure-Desaturation
Data for Selkirk Silica Sand (150-200 Fraction)

$\mathrm{p}_{\mathrm{C}} / \rho \mathrm{g}$ cm	S
36.0	1.000
37.0	0.945
38.0	0.898
41.0	0.663
45.0	0.335
50.0	0.217
60.0	0.153
75.0	0.137
85.0	0.132
95.0	0.127

Figure 5A. Capillary pressure-relative permeability relationships for different fractions of Selkirk Silica Sand.

Figure 6A. Capillary pressure-relative permeability relationships for different fractions of Selkirk Silica Sand.
Table 7A
Capillary Pressure-Permeability Data for Selkirk Silica Sand (28-35 Fraction)

$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mu / \mathrm{pgxlo}^{5} \\ \mathrm{~cm}-\mathrm{sec} \end{gathered}$	$\frac{\Delta \mathrm{H}}{\Delta \mathrm{~L}}$	$\begin{aligned} & \gamma \times 10^{-3} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mu^{2} \end{aligned}$	K_{r}	$\mathrm{P}_{\mathrm{C}} / \rho \mathrm{g}$
21.0	2.089	0.461	30.77	170.4	0.984	3.22
21.8	2.055	0.087	7.24	169.9	0.978	5.08
21.7	2.055	0.085	7.187	173.7	1.000	5.89
22.0	2.051	0.349	8.192	52.42	0.301	8.05
23.0	2.014	1.003	8.95	17.91	0.103	8.65
22.3	2.036	0.950	6.90	14.75	0.0848	8.74
21.0	2.089	0.953	3.64	7.96	0.0458	9.02
20.5	2.108	0.962	0.801	1.75	0.0101	4.96
21.0	2.089	0.938	0.318	0.705	0.00406	10.86
20.0	2.127	1.053	0.0875	0.176	0.00101	11.43
19.5	2.136	1.050	0.0161	0.0327	0.000188	12.32
19.0	2.146	1.053	0.00166	0.00338	0.0000195	13.12
7.68^{C}	$\eta=18$.					

Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mu / \operatorname{pgxlo}^{5} \\ \text { cm-sec } \end{gathered}$	$\frac{\Delta H}{\Delta I}$	$\begin{aligned} & \gamma \times 10^{-3} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	$\begin{gathered} \mathrm{K} \\ \mu^{2} \end{gathered}$	K_{r}	$\underset{\mathrm{cm}}{\mathrm{p}_{\mathrm{C}} / \rho \mathrm{g}}$
23.8	1.988	0.822	24.87	60.23	0.999	3.90
23.2	2.005	0.467	15.11	64.63	1.070	5.02
21.5	2.070	0.938	27.61	62.73	1.040	7.29
21.5	2.070	0.937	27.37	60.27	1.000	9.89
21.0	2.089	0.972	8.38	17.95	0.298	10.93
21.0	2.089	0.991	5.06	10.63	0.176	11.35
18.0	2.203	0.974	2.974	6.57	0.109	11.79
.17.0	2.279	0.968	1.25	2.93	0.0486	12.42
22.0	2.051	0.923	0.352	0.778	0.0129	13.35
23.0	2.014	1.090	0.0161	0.0296	0.000730	16.72

$\frac{p_{b}}{\rho g}=10.16^{\mathrm{cm}} \quad n=20.00$

[^0]83.
Table 10A
Capillary Pressure-Permeability Data for Selkirk Silica Sand (65-100 Fraction)

$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mu / \rho g x 10^{5} \\ \text { cm-sec } \end{gathered}$	$\frac{\Delta H}{\Delta I}$	$\begin{aligned} & \gamma x 10^{-3} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	${ }_{\mu}^{K}$	K_{r}	$\begin{gathered} \mathrm{P}_{\mathrm{C}} / \mathrm{\rho g} \\ \mathrm{~cm} \end{gathered}$
19.0	2.165	1.012	13.79	29.42	0.985	2.79
19.0	2.165	0.991	13.71	29.88	1.000	7.83
19.0	2.165	1.017	13.79	29.27	0.980	11.14
19.2	2.159	0.998	5.61	12.34	0.413	19.33
20.0	2.127	0.885	1.71	4.10	0.137	20.65
19.0	2.165	0.834	0.157	0.406	0.0136	23.72
19.0	2.165	0.780	0.00482	0.0133	0.000446	28.10

[^1]Table 11A
Capillary Pressure-Permeability Data for Selkirk Silica Sand (100-150 Fraction)

85.

Capillary Pressure-Permeability Data for Selkirk Silica Sand (150-200 Fraction)						
Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mu / \operatorname{\rho gxl}^{\text {cm-sec }} \end{gathered}$	$\frac{\Delta H}{\Delta \mathrm{I}}$	$\begin{aligned} & \gamma \times 10^{-3} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mu^{2} \end{aligned}$	K_{r}	$\mathrm{p}_{\mathrm{C}} / \mathrm{\rho g}$
19.0	2.165	0.923	2.37	5.55	1.000	7.45
19.0	2.165	0.971	2.50	5.55	1.000	12.20
20.0	2.127	1.135	3.00	5.59	1.007	25.82
20.5	2.108	1.098	2.95	5.65	1.018	32.27
20.0	2.127	0.729	1.63	4.73	0.852	39.62
19.0	2.165	1.164	0.755	1.40	0.252	40.38
19.0) 2.165	1.186	0.284	0.517	0.0932	42.34
19.0	2.165	1.179	0.0574	0.105	0.0189	45.70
19.0	2.165	0.578	0.00277	0.0103	0.00186	51.79

[^2]
APPENDIX B

SIEVE ANALYSIS OF SELKIRK SILICA SAND AND
PROPERTIES OF SOLTROL "C"

Table 1B
Sieve Analysis of Selkirk Silica Sand

Mesh*	Opening mm	Retained on $\%$
10	1.651	.6
20	0.833	1.2
28	0.589	4
35	0.417	10
48	0.295	16.6
65	0.208	27
100	0.147	29
150	0.104	9
200	0.074	1.8
PAN		.2

*Tyler standard.
87.

Table 2B
Dynamic Viscosity and Density of Soltrol "C" Oil Used in Experiments

Temp. ${ }^{\circ} \mathrm{C}$	Viscosity, μ Centipoises	Density, ρ grams/ml	$\begin{gathered} \mu / \rho g \\ \mathrm{~cm} / \mathrm{seconds} \end{gathered}$
20.0	1.589	0.7582	2.127
20.5	1.571	0.7579	2.108
21.0	1.555	0.7576	2.089
21.5	1.539	0.7573	2.070
22.0	1.524	0.7569	2.051
22.5	1.509	0.7566	2.032
23.0	1.494	0.7562	2.014
23.5	1.481	0.7559	1.996
24.0	1.468	0.7556	1.979
24.5	1.454	0.7553	1.962
25.0	1.440	0.7549	1.945
25.5	1.427	0.7546	1.927
26.0	1.414	0.7542	1.910
26.5	1.401	0.7539	1.893
27.0	1.388	0.7536	1.877
27.5	1.375	0.7533	1.861
28.0	1.362	0.7529	1.845
28.5	1.348	0.7526	1.829
29.0	1.337	0.7522	1.814
29.5	1.326	0.7519	1.799
30.0	1.315	0.7515	1.783

APPENDIX C

UNSTEADY DRAINAGE DATA
Table 1C
Unsteady Drainage Data from Prototype No. 1

$\dot{\alpha} \dot{c} \begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 4 \\ \hline \end{gathered}$	 NN ∞ 人 0 ก
	 00000000000000000000 H H H
$\alpha_{\underset{E}{E}}^{\stackrel{N}{U}}$	 ○ óo óo óo o o o óo óo oririririr
$\begin{array}{r} \text { 'O } \\ \text { Z } \\ +0 \\ 0 \\ 0 \\ \text { in } \end{array}$	
$\begin{array}{ll} n & 0 \\ 0 & 0 \\ -1 & 0 \\ x_{1} & 0 \\ 0 & 1 \\ & E \end{array}$	

 へ サーが

 $\dot{\sim} \dot{N} \dot{\sim} \dot{N} \dot{\sim} \dot{N} \dot{N}$

Table lc continued

91.
Table 2C
Unsteady Drainage Data from Model No. 1A

Table 3C
Unsteady Drainage Data from Model No. 1B

	 ○
$\alpha \underset{{\underset{U}{E}}_{E}^{E}}{N_{U}^{N}}$	N
$\begin{array}{r} \text { o } \\ \text { I } \\ +0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
$\left\lvert\, \begin{array}{ll} n & 0 \\ 0 & 0 \\ \text { - } & 0 \\ 0 & 0 \\ o & 1 \\ & E \\ \beth & 0 \end{array}\right.$	

3.570	1.168
4.200	1.248
5.817	1.368
6.661	1.408
8.534	1.468
10.581	1.508
13.288	1.548
14.095	1.558
14.945	1.568
19.472	1.618
22.168	1.640
27.930	1.678
33.434	1.706

Table 4C
Unsteady Drainage Data from Model No. IC

Table 4C continued

Table 5C
Unsteady Drainage Data from Prototype No. 2

Table 6C
Unsteady Drainage Data from Model No. 2A

	$\stackrel{n}{n}$ ^
	\circ
	今
N	
$\begin{array}{r} \text { O} \\ + \\ +0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
	mmmmmmmmmmmmmmmmmmmmmmmmmmmm
Fe	
$\begin{aligned} & 61 \\ & 20 \\ & 2 \\ & \Sigma \end{aligned}$	$\dot{\sim}$

Table 7C

N No우웅 NiNNNM．

Nのがい NTMもかも m in 0 m

1
0
0
0
0
0 ∞
Table 8C
Unsteady Drainage Data from Model No. 2C

Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \mu / \rho g \times 10^{5} \\ \text { cm-sec } \end{gathered}$	t second	$\mathrm{cm}^{3} / \mathrm{cm}^{2}$	$\frac{t .}{\left(P_{b} \circ f\right.}$	$\frac{\text { Q. }}{\text { layer) }}$	$\frac{t}{\left(\mathrm{P}_{\mathrm{b}} \circ \mathrm{Of}\right.}$	$\frac{Q .}{r \text { layer }}$
23.0	2.014	6	0.132	0.0244	0.0277	0.0466	0.0529
23.0	2.014	12	0.263	0.0488	0.0552	0.0932	0.105
23.0	2.014	25	0.526	0.102	0.110	0.194	0.211
23.0	2.014	45	0.921	0.183	0.193	0.349	0.369
23.0	2.014	52	1.053	0.211	0.221	0.404	0.422
23.0	2.014	73	1.447	0.297	0.303	0.567	0.580
23.0	2.014	95	1.886	0.386	0.395	0.738	0.755
23.0	2.014	128	2.280	0.520	0.478	0.994	0.913
23.0	2.014	161	2.544	0.654	0.533	1. 250	1.019
23.0	2.014	197	2.807	0.801	0.589	1.530	1.124
23.0	2.014	257	3.201	1.045	0.671	1.995	1.282
23.0	2.014	278	3.333	1.130	0.699	2.158	1. 335
23.0	2.014	324	3.597	1.317	0.754	2.516	1.441
23.0	2.014	440	4.123	1.789	0.865	3.416	1.652
23.0	2.014	523	4.386	2.126	0.920	4.061	1.757
23.0	2.014	732	4.781	2.975	1.003	5.683	1.915
23.0	2.014	850	4.956	3.455	1.039	6.600	1.985
23.0	2.014	1109	5.132	4.508	1.076	8.610	2.056
23.0	2.014	1443	5.263	5.866	1.104	11.204	2.108
23.0	2.014	1831	5.368	7.443	1.126	14.216	2.150
23.0	2.014	2343	5.465	9.524	1.146	18.192	2.189
23.0	2.014	2995	5.544	12.174	1.163	23.254	2.221
23.0	2.014	3758	5.605	15.276	1.175	29.178	2.245
23.0	2.014	5203	5.684	21.149	1. 192	40.397	2.277
23.0	2.014	7150	5.737	29.063	1.203	55.514	2.298

[^0]: $\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{\rho g}}=14.67^{\mathrm{cm}} \quad \eta=20.30$

[^1]: $\eta=18.20$
 $\frac{P_{0}}{p g}=18.51$

[^2]: $\eta=19.71$

