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Abstract

In clinical tlials rvith extleme outcomes, it is ethically desilable to treat as

many patients as possible rvith the superior tleatment. Adaptive designs

accomplish this ivhile still producing statistically meaningful results. One

such design is knorvn as the landomized play the rvinner lule (RPWR). Trvo

asymptotic methods fol consttucting confidence intervals based on data from

the RPWR ale plesented and compaled by simulation. It is found that

both methods pelform ri'ell fol small sample sizes despite being approximate

methods. Some othel aspects of the RPWR are examined, sucli as the rate

of convelgence of a martingale central limit theorem and sorne appealing

ploperties of the allocation probabilities.
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Chapter 1

Introduction

1.1 Background

Whenevel a nerv medical tteatment is developed, it is ahvays necessaty

to determine its effectiveness. The most common method is to conduct clin-

ical trials. In such tlials, the nerv tÌeâtment is compar.ed rvith a standard

treâtment or a placebo. The object is to determine if the neiv tteatment is

more effective than methods cutrently in use, or if it is effective at all.

In many cases, there is a simple rvay to conduct a clinical trial. Take all

patients recruited fol the study and randomly assign half to the nerv treat-

ment rvl.rile the rest receive the control ti-eatment (or placebo). The statistical

analysis of such a design is straiglrtfornald since tliis type of landornization

allos's us to consider the tn'o groups of patients as coming fi'orn trvo different

populations rvith all the observations being independent of each other. Ana-
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lyzing data fi'om trvo independent populations is a problem ivhich has been

around fo-t- quite sonìe time.

Often in clinical trials, s'e only obselve $'h.etller oÌ not a treatment rvas

efiective ol not. Hence, our data consists of indicatol variables (either' "suc-

cess" oÌ "fâilure") i.e. rve have binomial tesponses. There are many diffelent

rvays to analyze data resulting from trvo independent binomial populations,

see section 1.3.

Assigning half the patients to each treatment does have one inpoÌtant

effect. If tliele is a difielence betrveen the tivo treatments, then half of the

patients are receiving ¿n infeliol treatment. F\'om an ethical standpoint, it is

desirable to Ìrave as many patients on the superioÌ treatment, but rve do not

know ahead of time rvhich treatment is superior. This does not pose a big

problem rvhen the situation is not potentially life thleatening. For example,

if a comparison is to be made between tr.o drugs for tleating a headache, the

fact that one group of pâtients will be receiving an infer.ior treatment, and

therefore may hâve a higher occuÌence of headaches is a very small pr.ice to

pây.

Horvever', consider an extreme situation rvhere the response to the tteât-

ments is eithel the patient survives or dies. In this case, having half the

patients on a treatÌnent I'ltich has a higher mortality rate is ethically in-

feasible. Altelnative methods of assigning patients to the treatments are

needed.

Tliis is rvhere adâptive designs enter'. An adapti r.e design is such that the
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patients are tleated sequentially, and rvhen a patient is leady to be assigned a

tleatment, this assignment is dependent on the outcomes of the previous pa-

tients. The objective is to rnaximize the rumber of patients tr.eated success-

fully rvhile still obtaining statistically meaningful results. There have been

many proposed adaptive designs, some of rvhich are deterministic, rvhile oth-

ers incolporate landomization. Obviously, from a statistical point of vier',

the deterministic methods are not leasonable because of the possibility of

selection bias.

N4any of detelministic methods can be modifled to incorpotâte r.andom-

ization in some \vâ)r Tìlis is the case with one particular adaptive design,

s,hich t'ill be the focal point of rvhat follorvs.

L.2 The Randomized Play the'Winner Rule

This type of design has its roots in the deterministic play the rvinner.

rule of Zelen [39]. It is based on the idea of having an urn containing balls

replesenting each treatment. A ball is randomly drat'n aud the treatment

rvhich it corresponds rvith is assigned to the next patient. Once â response

is obtained, additional balls are added to the urn accor.ding to the specified

lules of the design.

Tlre design of Zelen rvas such that balls ¡vere dLa¡r'n wi,thout replace-

ment, and as a consequence, Wei and Durham [37] noted that this rule as-

signed patients in approxinrately equal numbers to each treatment. \4¡ei and
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Durham rnodified Zelen's lule and created the landornized play the tvinner.

lule (RP\\rR).

For conducting a clinical trial using tlie RPWR, we llave an uln as de-

scribed above. Initially, the urn is cotllposed of a balls of each type. Balls

âre dla$¡rì ø¿¿à replacement. Suppose the ball dlarvn is of type i, (i, - A or

B). If the resulting lesponse is a success, then B balls of type i ale added to

the urn. Otherv'ise, B balls of the other type are added to the ullr.

If there rvere any pliol knorvledge about the tn'o treatments undel study,

this could be incorporated into the design by letting the urn initially contain

a¿ balls of type A and a¡ balls of tvpe B. Horvever', it is often the case that

\1'e assume clinical equipose at the onset of the trial, that is there is no reason

to initially prefer one tÌeatment over the other, and t ake aa: ¿" : ¡1.

Another aspect of the RPWR is its ability to handle delayed responses as

rvell. If a patient is ready to be assigned a treatment but previous patients

responses have not yet been obselved, then a ball can still be dlarvn from the

urn witli its culrent composition. Incorporating delayed responses increases

the cornplexity of the analysis, so it rvill be assumed from hele on that tlte

previous patients responses a¡e all available before the culrent patient is to

be treated.

The RPWR has ethically desirable ploperties compared rvitl.r tr.aditional

randomization. Tlie RPWR assigns more patients to the better treatment

a¡d the RPWR has a highel total success rate. These help contribute to the

RP\4¡R being a lecommended design ivhete outcomes are life threatening.
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The RP\\¡R has been used in practice. Bartlett et al. [8] describes its use

in the EC\,IO trial. A new tteatment knorvn as extracoÌporeâl membrane

oxygenation (ECN,IO) rvas compared ri'ith tlte conventional tleatment for

infants rvith severe r-espiratoly failure. This palticulal trial had 12 subjects,

but only 10 of l{rich rvere assigned treatments via the RP\4¡R ivith o : É :
1. Nine patients rvere assigned ECN4O and survived, while the one patient

tdrich leceived conventionâl therapy died.

Statistical analysis of the ECI\,ÍO trial can be found in Wei [36], Begg

[10] and Wei et al. [38]. There rvas controversy ovel lÌow to properly analyze

such data, paÌticulârly in the discussion follou'ing the article by Begg. It is

also alguable as to ho$'successful the ECN4O trial s'as, in large part due to

only one patient being assigned to the conventional tÌeatment. It appears

as though the ECMO tlial ivas a case where the ts'o treatments rvere too

unbalanced, so a meaningful compalison could not be made. In tettospect,

this trial should have been run rvith a lalger value of o so enough pâtients

could have been assigned to the conventional treatment, and a rneaningful

compâr'ison could be made.

The RPWR was used on one otlìer clinical trial as rvell. Tamura et al.

[33] describes its use in compaling fluoxetine t'ith a placebo for. tr.eating

deplessive disolder. Tliis rvas a much more complex design. There wete trr¡o

stl..ata, and in each stratum the first six patients nær'e assigned tleatments by

permuted block landomization, r'hile the follorving patients s'er.e tândomized

by tlie RP\\/R lvith a : É : 1. The end result $'as that fluoxetine had no
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significant effect. This fact l'as also noticeable in the alloca.tion ploportions.

In one stlatum, 23 patients s'ere assigned to fluoxetine and 22 rere given

the placebo, $4rile in the othel stlatum, 23 patients rvele assigned fluoxetine

and 21 weÌe given the placebo. When the tr-eatnìents have no difference, the

allocation proportions ar-'e similar-, as seen in this case.

1.3 The Case of Two Independent Samples

Before proceeding to horv to analyze data arising from the RPWR, infer-

ence for trvo independent binomial samples rvill be reviewed, specifically deal-

ing ivith consttucting confidence intelvals. There are tn'o main appr.oaches

to this problem. The first is to use "exact" techniques, r4rich means the ex-

act distribution of a particular test statistic. The second approach is to use

asyrnptotic appr-oximations. Both methods are for constructing confidence

intervals fol A : Z¡ - pB, where p¡ and pp are the success plobabilities of

the tu'o populations.

1.3,1'úExacttt Confidence Intervals

Let ? be a disclete statistic for rvhich lalge values suppolt larger.values

of Â, and smaller values support smaller values of A. For each As, Iet á(46)

be the acceptance region for testing Ho : A - Ao âgâinst H" : L I Lo at

level .y. For eacli possible value of ll,let C(t): {As : ú e á(A¡)}. It then

follorvs that C(f) is a 1 - 7 confidence set for Â. There ¿re several rvays to
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choose A(46).

One metl.rod is knorvn as the tail method. Essentially, it collesponds to

inverting tq'o one-sided tests, each of size 1f2. The confldence limits, Â¿

and 
^u 

are found by solving

P (7. < ¿o;Au) : ] and F (? > ro; Ar; =
2

1_

2
(1 1)

rvhele ú6 is the obselved value of ?. This method can be quite conservative.

An altelnative is to invert one tl'o-sided test. For.this method, we enteÌ

values into á(46) nr ordel of theil probability under. 116, beginning rvith the

highest, and stopping rvhen the total probability is at least 1 - 7, and then

finding C(f6). Anothel rvay of creating A(46) is to order them according

to a statistic such as the likelihood latio, Wald, ot scote statistics. These

methods âre not as consen'ative, but do not guarantee inter.vals and can be

computationally dificult.

There is also the probleln of nuisance parameters. Trvo approaches ar.e

to use a procedure conditional on the sufficient statistic of the nuisance pa-

rameter, or to ledefine the p-value as the maximum ¡r.value over. the lange

of the nuisance paÌâmeter.

Possible choices for' ? ale,

T:p¡-þn (r.2)
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(p.q-ûB)- Lo
(1 3)T r:--':--- 

-'-'-I PAlt PA) , PBlr-PB)
V ".r 

-r 
"t

rvlrere þ¡ and ia âre the MLÐ's of pa and pp, fi¡ and øa are the l4LE's of

pA ànd pB subject to pA - pB : Ao and nA and nB are the samples sizes

fi'om each population, See Agresti [1] for more details.

L.3.2 Asymptotic fntervals

Tlie asymptotic intervals plesented in this subsection are all described in

detail in Beal [9]. These intervals are all based on the asymptotic nolmality

of the MLE's of p¡ and ps. The simplest is to use the method rvhich rvould

be seen in many intloductory statistics courses, i.e.

lpo_pr)tz1¡z (1.4)

7/2 quantile of thervhere q¡ : 1 * P* QB : 1, - pB and z1/2 is the upper

standald normal distlibution.

This intelval can be delived by solving

(A - 
^)' 

- cVar'(Â;pa, ps) (1 5)

and leplacing p¿ and ps by their \4LÐ's. Diffelent intelvals can be obtained
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by replacing pA aÍd pB with different estimates.

Wren p¡ and p¡ are estimated by their' 4LE's under the resttiction that

pA - pB : Ä rve have the method due to {ee, g'hile a nrethod due to N¡Iietti-

nen and Nurminen is essentially the same with a minor nodification. These

inten'als require numerical methods to find the endpoints of the confidence

interval, so computâtionally, these do not pose a huge advantage over the

exact methods,

Trvo similar methods due to Beal are the Haldane and Jeffreys-Perks in-

tervals. These at'e both based on a similal idea. The Jefireys-Pelks nTethod

will be desclibed in detail in section 2.3.2. Both intervals have closed form

solutions rvhich make their computation much simpler than the other meth-

ods. Again, the full details of the five asymptotic methods named here can

be found in Beal [9].

L.4 Inference for the RPWR

Before desclibing methods of interval estimation, some tests lvill be de-

sclibed for testing if there is a difference betrveen the trvo treatments. The

filst such test is due to \Ã¡ei [36]. He constlucted a permutâtion test based on

,9¿, the total number of successes on treatment A. He described an algor.ithm

for obtaining the exact distribution of ,9¿, conditional on the lesponses of the

patients.

\4¡ei used this plocedule on the EC ,IO data, ivhere the observed value of
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,9¡ ivas 11.T It t'as found that the ¡rvalue rvas lF(S¡ > 11) - 0.051.

This apploach was cliticized by Begg 110]. A main argumetìt rvas that

Wei's pvalue included âs an extt'etì1e point the outcome ivhere all patients

are assigned to ECÀtIO, yet this outcome gives no information. The tr.ue p
value using \4/ei's rnethod should be 0.038. Begg also objected to the I'ay in

rvliich \Ã¡ei's test t'as constructed. He compared sever.al tests rvith different

sumïrìary statistics and conditioning on sufficient statistics of the nuisance

paÌameter. He found that a test using ? : p¡ - pa, rvhele p¿ ând Þa ate

the same as in the case of tu'o independent samples (see section 2.2.3), and

conditioning on ,9, the total number. of successes, pelformed best.

In the discussion folloiving Begg's paper., Royall sl.rored horv pvalues

ranging fi'om 0.003 to 1 can be obtained for the ECMO data using various

apploaches. \\¡ei also featuled in the discussion, rvhere he suppolted a test

basedonT:pt-pø.

Wei et al. [38] tulned the focus tos'alds confidence inter.vals. He shoned

lron' the exact distlibution of the sufficient statistics (see section 2.2.3) can

be obtained. Based on this distlibution, a conditional intelval can be con-

structed, howevel this interval does not perform very n,ell.

A bettel interval rvas the unconditional intelval, rvhich is essentially the

tail method for the RP\4/R. One rnajol dlarvback to this method is that the

calculations requiled ale quite intensive. This method is not ver.y simple to

twei included two more patients who rvere assigned ECMO and sur.vived, horvet er
these patients rvele not assigned by the RPWR.

10
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implement.

In the same article, asymptotic inte¡vals were discussed. The asynptotic

norrnality of the t\,ILE's rvas established, and lÌence the usual asymptotic in-

terval could be used. Horvever, as in the case of trvo independent samples, this

interval perfolmed very poolly. As an alternative, a profile likelihood based

method rvas derived. This method rvill be described in detail in section 2.3.1.

1.5 A Summary of Simulation Methods

For the difielent methods of constlucting confldence intervals for. data

alising fi'om the RPWR, s'e would like to knotv rvhich perfor.m best. AIso, for

the asymptotic methods, theil actual confidence levels are diffelent from their

nominal confidence levels. Horvever', rvith data from the RPWR, calculating

the actual confidence level is fal too complex a task. A solution to this

problem is to use simulation to compale the methods.

Simulation is a method to model and analyze stochastic systems using

computels. A main objective of simulation is to understand the beliaviol of

a system s'ithout actually observing the real system. In this particulal case,

the system to be obse'-ved is the RPWR. A particular outcone of the RP\4¡R

can be simulated, and then confidence intervals can be constructed. This can

be repeated rnany tines and the plopoltion of intervals s,hich cotìtain the trlle

parâmeteÌ v¿lne and the avelage length of the intervals can be determined.

These ale both estimates of their theoretical countelparts.

1t
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The most irnportant aspect of simulation is the generation of pseudo-

landorn lrur¡beLs. A pseudorandom number geneÌator creâtes â sequence

of numbels betrveen 0 and 1 s'hich appeal to be uniformly distlibuted. In

reality, tlley ale not truly uniform, since the next number to be generated

is actually a function of one ol mole of the previous numbers. Eventually,

a generator n'ill go through the entire sequence and r.etuÌn to the begin-

ning. The length of the entire sequence until it reaches the beginning again

is knonn as the period of the generalor. It is desir.able for a generator to

have a lalge period, be efficient and quick, as rvell as ploduce numbers ri'hich

appear randorn.

To test pseudorandom number geneÌators, many statistical tests can

be used. In palticular, classical goodness of flt tests such as the X2 ot

I{ohnogorov-Smirnov tests can be en.rployed, oÌ moÌe poweÌful methods such

as those described in Zhang [40] can be used to check for. one-dimensional

r.rnifolmity. Other tests check fol uniformity in hig}rer dimensions. For exam-

ple, if each random number is plotted against the previous random number.,

the points should be unifolmly distributed in the unit square. This con-

cept cân be extended to higher. dimensions. It is also impoltant to test a

pseudolandom number generator for independence and ensure there is no

autocouelation, This can be accomplished using the serial cor.relation test.

A simple pseudorandon numbel gener.ator is the multiplicative linear.

congluential generatot'. For this genelatot, rve have a sequence rt,r2,.. .

wheLe rn : aun-r tllod m. The landom nunbers åÌe given by x¡f m. The

l2
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rnost populal choices fol a 
^nd 

Tn are a:75 and m - 231 - 1. This genetatot

has a peliod of 231 - 1.

For the sirnulations in section 2.5, r'andom numbers rvere gener.ated using

the default generator- in R, the N4etsenne Twistel. This generator is currently

the best for simulation puÌposes. It is quick and efficient, and has an enor'-

mous period of 21ss37 -1. It has also been shorvn that the generator ploduces

randorn numbers which ale uniformly distributed in 623 dimensions. This

generator is more complex and rvill not be described here. For more details,

see Matsumoto and Nishirnula [22].

Fol the RPWR, generating a binomial landom valiable, å is crucial. Tl.ris

is simple once a uniform number, z is generated. If p is the plobability of a

success, then b: I if u ( p and å:0 otherrvise.

1-.6 Summary of the Thesis

Inference for the RPWR is examined. In particular', the constluction of

confidence intervals fol the diffelence of success probabilities is considered.

In chapter' 2, the theoretical background of the RPWR is presented. Tt'o

methods fol constlucting confidence intervals for the diffelence are explained

in detail. These ale the plofile likelihood and Jeffreys-Pelks intervals. The

profile likelihood interval has been used before, rvhile the Jefireys-Perks inter.-

val has nevel been employed in the case of the RPWR. The two methods rvill

be compared by simulatiou. The criteria of interest is the actual confidence

13
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Ievel and the average length of the intervals.

Chapter' 3 discusses a theoretical aspect of the Jeffreys-Perks inter.val.

This interval is a special case of a more genelal method, and the reasons for.

choosing this palticular interval rvill be discussed.

Some othel theoretical issues can be found in chapter 4. A rnar.tingale

central limit theolem is essential fol the asymptotic methods of infer.ence

to be applopriate. The rate of convergence of this limiting lesult will be

examined, as n'ell as othel theoretical results.

The RP\4¡R still has many aspects to be examined, and ther.e is plenty

of lesearch still to be done. Chaptel 5 rvill discuss some possible extensions

and future resealch.

T4



Chapter 2

Theoretical Background and

Computational Results

2.L Introduction

In this cliapter, some of the theoretical background for.the RPWR rvill

be discussed. After int¡oducing all the necessâly notation, some additional

lesults t'ill be determined such as the limiting behavior of the RPWR as ivell

as the likelihood function and sufficient statistics.

Ts'o methods fol constlucting confidence intervals fol data arising fi.om

the RP\\¡R rvill also be described in detail. Both are asyniptotic methods,

hol'evel both have the advantage of shos'ing signs of hal'ing good proper.ties

for small sample sizes.

As an example, the data from the ECMO trial ri'ill be considered. Con-



2,2 Theoretical Backglound

fidence intervals will be constlucted using both rnethods.

These ts'o niethods lvill also be compared by simulation. The criteria

of intelest is the actual coverage probability and the average length of the

resulting intelvals.

2.2 Theoretical Background

2.2.1 Notation

Our trvo tÌeâtnents rvill be called "4" and

total. Define the following irrdicator variables:

.r. Jr, ,, Uru irh patient ¡eceives tr.eatment A

lo, ,r r,r" lth parient receives rÌeârment B

, lr, if tlre jrh patient's response is a success

"' - 
lo, if l,he irh patient's response is a failur.e

(2 r)

(2.2)

(2.3)

(2.4)

The success probabilities ivill be denoted l:y p¡ and pB fol treatments A and

B respectively. Let qA :1 - p¡ and qB:1- pB. Note that

P¡:P(X¡ - 117':1)

pp:P(X¡: 114 :0)
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2,2 Theoretical Backglound

The parameters of interest are:

Diffelence: L: pA - pB

Odds Ratio: 0:PAqB
qAPB

N, : )- 4. /vn n - N¡.,"Zr"
i:1

nn

":I"i, so:Dr,xn, s¡:,s-s¡
t:l i,:1

p¡ :P(11: 11"1,. .,T¡-t,Xt,...,X'-t)

_ a + p (2Ðtj:rjx j + (i. - 1) - Dj..:lrj - Di-: xj)
2a+(i_r)þ

(2.5)

(2.6)

It will also be useful to define the numbel of patients on each treatment, the

total number of successes and the numbel of successes on each treatment,

Particular realizations of these valiables rvill be ivlitten in lorver case.

Initially, the uln contains o balls of each type and after each lesponse,

rve add B balls of the applopriate type. An impoltant quantity is the proba-

bility of patient i receiving treatment A, ivhich shall be denoted by 2¿. It is

stlaightforrvard to verify that this plobability is given by

(2.7)

(2.8)

(2.e)

(2.i0)

since the numerator is the number of balls of type A and the denominator is

the total numbel of balls aftel the fir'st i - 1 responses.
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2.2 Theoretical Background

2.2.2 Limiting Results

The limiting behaviol of N¡ and pr provides more insight into the prob-

lem. In older to obtain limiting lesults, it should be noted that the RPWR

is a special case ofthe generalized Pólya urn rnodel (see Rosenberger' [28]).

Follou'ing Athleya and l(arlin 15], this rnodel can be embedded into a contin-

uous time \{alkov blanching process, fi'om rvliicli the desired limiting results

can be obtained.

Define the addition rnatrix, M, such that its ijth entry is the expected

nurnber of balls of type j to be added to the uln aftel a ball of type z rvas

drari'n, i,i : A,B. This matrix has an interpretation in the context of

branching processes fi'orn rvhich the limiting lesults follo¡v (see Athr.eya and

KaLlin [a]). For the RP\\¡R,

(2. 1 1)

The left eigenvectolt associated rvith the lalgest eigenvalue of M determines

tlre limits of intelest. In this case, the eigenvalues of M are þ and þ(pt +

pB - 7), hence the largest eigenvalue is B. The left eigenvector associated

lA vectol v associated wìth an eigen\alue ) satisfying vTM = vTÀ

-:'(; 
î,)
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2.2 Theoletical Background

*'ith B is

y : (u¡,uB)T

-( 
q" q, \'- \s, F ç"' s^ t s")

ln Rosenbergel and Srilam [31], it is shorvn that

,. N¡ qB
Inn 

-:uA: 
.n.-co r¿ qA + qB

(2.t2)

(2.13)

(2.r4)

(2.15)

(2.16)

B, the

(2.r7)

and

A consequence of these lesults is that the asyrnptotic proportion of suc-

cesses is given by

PAqB + PBqA

,. qB
llllì P¡: ù¿,: --------- a.Sn+æ qA + qB

qA+qB

If rve had landomly assigned half the patients to A and the lest to

success rate ivould be à(po + pu). If rve assume pA > pB, then

qBl
qA+qB'2

o^ i
qA+qB- 2

and

hence mole rveiglrt is placed on the lnore successful tleatment, and the total

success late of the RPWR is higher.
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2.2 Theoretical Background

2.2.3 Likelihood F\rnction and Sufficient Statistics

The likeliliood function also plays an important role, so it rvill be de-

rived. Let 3"(p*pB) be tlie likelihood function based on rz patients. Then,

following Rosenberger et al. [30],

9"(pt,pa): P(n,. ..,7",Xr, ,X")

: p(x"1",, . . . ,T", xt,. . , x"_r)p(r,, . . .,Tn, xr,. . . , x"_r)

: pTx" qT"O-x") pO-T")x" qO-7")(1-x")

x P(417,, ...,Tn:, Xt,..., X"_r)

" P("t,. ..,7, t,Xt,...,X,-r)
: pT x" i*0 - x 

") po -r") x 
" qo -r")(1 - x ")

x r*'0 - p")l-r"9^-t(p¡,pB)

(2.18)

and aftel unwinding the recursion,

g^(p¡,pe) : ptÌqþ-t^pt"'ol'-t'ffnT,{t - p,)t-', (2.19)
i:1

hence, the likelihood function is ploportional to the likelihood function in

the usual case of tt'o independent samples. The likelihood function can also

be explessed in terms of Â (or' 0) and pB. Hence, tve have a nain pa.r..ameteÌ

of intelest (A oL d) and a nuisance parameter (p¡).

Since the likelihood function collesponds exactly to tlie probability dis-
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2.3 Methods

tlibution of71,...,7} and Xr,...,X", the sufficient statistics can be deter-

rnined using tl.re factolization criterion. Clearly, À¡¡, Ns, ,S¡ and S¡ are

jointly sufficient. Hot'ever', Àr¿ is a function of Iú¡. Hence, Àr¡, ,9¡ and ,9s

are jointly minimal sufficient statistics.

2.3 Methods

Tu'o asymptotic methods fol analyzing data aiising from a RPWR design

rvill be cornpared by simulation. The first is the profile likelihood method

(\Aiei et al. 138]), and the second is knorvn as the Jeffreys-Perks method (Beal

[9]). Both methods ale based on maximum likeliliood estirnators and related

ideas.

2.3.1- Profile Likelihood Method

The likelihood function fol this problem is ploportional to the usual like-

Iihood function fi'om the case of trvo independent samples. The MLÐ's are

well knos'n to be

(2.20)

In the case of tivo independent samples, it is knorvn that þ¡ and fs are

asymptotically normally distlibuted, and confldence intervals can easily be

constructed. Fol the RPWR design, there is a corresponding lesult. Using

^ St SB
pA - --- ând pB - -:;-

l\A 1\A
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2.3 Methods

martingale limit theory and the Cramér'-Wold theorern, it can be shown thât

and (2.21,)

aÌe âsymptoticâlly independent and each folloiv a standard normal distribu-

tion.

We can use this lesult to corìstruct a confidence interval based on the

likelihood ratio statistic. Horvever, rve have a nuisance parameter. To o.r'er'-

come this, rve use rvhat is knorvn as the plofile likelihood, r'hich essentially

means the nuisance parametel is replaced by its restricted \{LÐ (i.e, the

IVILÐ assuming the parametel of interest is knol'n).

Suppose the parametel of inte¡est is the difference, À. We can ivrite the

log-likelihood in terms of A and ps. Lel ¿(L,pe) : IoCg"(L,pB). Then

the profile likelihood for Â is

'/ñ¡(pt - 
po)

JPAU

'^' 
::i:ï,':r,';;'

u4rele p!(A) is the restlicted N,ILE ofp¡ and

9:

^/ñB(pa - 
pa)

JeBclB

if^>0

if^<0
f to,, - ot

l,-o,,,

(2.22)

(2.23)

(2.24)

22



2.3 Methods

Obtaining pþ(A) involves solving a cubic equation. A closed folm is given

in À,Iiettinen and Nulminen [24].

Since asymptotic normality still holds, the 100(1 - 7)% confidence legion

is given by

{a,zlrtÂ,r;)-r-(^)]<x?(r)} e.25)

rvhele X!(7) is the ¡l quantile rvith uppel tail plobability equal to 7.

2.3.2 Jeffreys-Perks Method

This method is a specific case of an idea discussed in Beal [9]. For

tlris nrethod, it is useful to define a: pt+pB, u: å [*+fr] a"a

, : Il:- - ]l . Sin". the MLE's of p¡ and p3 are still asyrnptoticatly* [n¡ ns)

nolmal, r'e have that

{o , (o - Â¡'z 3 cvarlÂ;a, Ã¡} (2.26)

is a 100(1 - 1)% confidence legion for A, rvhere c: X?Ø) and à and Ã ale

expressions for a and À.

It tulns out that

Var(Â; a, A) : "lQ - a)a - L2l + 2r.,(1 - a)A (2.27)

rvlriclr is quadlatic in Â, so equality liolds at trvo points in (2.26), rvhich a.re
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the solutions to

(^ - 
^)' 

: ¿Var(Â; ã, Ã) (2.28)

These trl,o solutions folm the endpoints of the confidence intetval.

Beal suggested taking Ã : A and ã to be the Bayes estirnator of ø I'ith

a prior density proportional to (pgtpsqB)e, i.e.

nA ^ /r+l
d(n) : 

n,4 F 2(o + 1)PA+ nA12G+Ð

- 'B ;- -. A-l
' np ' 2(x+I)no ' nB l2(R-I)

Á+cu(1 -à)
1- ! cu, llcu

Ftom (2.29) rve see horv ã(rc) can be obtained by modifying the MLE's and

(2.30) shows hori. ã(rc) can be interpreted as an estimate of a rvith an add!

tional rc f 1 sLrccesses and failules on each tleatment. For the Jeffreys-Perks

interval, ive take ¡c: -å.
The solutions to (2.28) in this case are given by,

(2.2e)

(2.30)

(2.31)
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2.4 Example: The ECMO Tl'ial

2.4 Example: The ECMO TYial

The ECI\,IO trial eniployed the RPWR using a: 1 and B: 1. The fir'st

ten patients \\'eÌe landomly assigned to EC\,IO (treatment A) or conventional

treatment (tleatment B) using this rule. The first patient received ECN4O

and sulvived. The second patient leceived the conventional tleatment and

died. The ler.naining patients all received ECMO and survived. In oul no-

tation, ne have t¡ : ¿¿ : 1 for i : 1,3,.. .,10 and t2 - ¡2:0. This gives

nn:9, s¡ - 9, s¡ : 0.

The confidence intervals for the difierence are given in table 2.1. We can

easily see tliat in this case, the profile likelihood intervals ar-e sholter. In the

next section, simulations will assess whether or not this is all'ays the case,

or if this is a rare exception.

ConfidenceLevel PlofileLikelihood Jefir'eys-Pelks

(0.146, 1.000) (-0.010, 1.000)
(-0.007, 1.000) (-0.236, 1.000)

Table 2.1: Confidence intervals for A using the ECMO data.

2.6 Simulation Results

The plofile based cor.rfidence interval and the Jeffre),s-Perks intelval rvere

compat'ed by sirnulation. The ralues fol the parameteÌs p1 ând pB \r¡ere

0.1, 0.3, 0.5, 0.7 and 0.9. The sirnulations wele done for sample sizes (n) of

0.95
0.99



2.5 Simulation Results

5, 10 and 25, and nominal confidence levels (1 - 7) of 0.90, 0.95 and 0.99.

The measules of ir.rterest ale the actual confidence level (rneasur.ed by the

obselved coverage plobability) and the length of the intervals.

FoÌ each combination of p¡, pB, n and 1 - 7, 10,000 outcomes of tlte

RPWR ll'ith a : 1 and É : 1 I'ele genelated. Note that p¡ is ahvays at

least as large as p¿. Results for cases t'he¡e p¡ is largel than p¡ can be

determined by symrnetry. The actual confidence level rvas the pr.opor.tion

of intelvals t4rich captured the true value of Â. The average length of the

intervals collesponding to the simulated outcomes q'as used as a measure of

the length of the intelvals. AII simulations were done in R, version 1.8.1.

The code which n'as used can be found in the appendix.

Tlre lesults of the simulations are displayed in tables 2.2 - 2.5 and frg-

ures 2.1 - 2.10.

26



2.5 Simulation Results

pe pn n Proñlc Likclihood Jcf¡¡crs Pdls Proñlc Ljkclihood Jcff¡cys-Pc¡ls RÀtio (PLIJP)
0,t 0,r 5 0 9776 0.9960 0.9?39 0.967a

t0 0.9645

r0 0,9081
25 0.a766

0,5 0,5 5 0.8423
10 0.855r
25 0.8823

o,7 5 0,a430
10 0.8225
26 0,4Ì67

0.9 5 0,8623
10 0,a650
25 0.862õ

o,7 0,7 5 0.8538
10 0.8609
25 0,8730

o,9 5 0.8581
10 0.8282
25 0,8665

0.9 0,9 5 0,9379
ro 0.9083
25 0,8663

0,6549 o,932{
25 0,4503 0.9676 0.3050 0.3967

0.98?2 0,6t3,:

10 0.88?9
25 0,8857

0,5 5 0,3,13{
r0 0,9030
25 0,4869

10 0.92r¡
2t 0.9t42

0,9 5 0,9247
t0 0,9J2,1
25 0.9522

0,3 0,3 5 0.8910
10 0,3a06
25 0,3754

10 0.8435
25 0.8701

0.? 5 0,8it20
10 0,8?7r
25 0,3666

0,95?1
0,953.t
0,9221

0.8981
0.9r23
0.9050

0,9003
0,9054
0,9250

0,9087
0.9287
0,9,r33

0,9755
0.9128
0-885?

0.9083
0,9r98
0,4960

0,9146
0,9r96
0.8893

0.9250
o,93,1,1
0.919,¡

0,9.t90
0,8807
0,8836

0,8909
0.8927
o.8935

o.9305
0.9226
0,8?98

o,9203
0.8905
0.89,¡3

0,9362
0,9tao
0_89.r6

0.9160
0,9t45
0,9{as

1,0321
0_?331
0.4815

1.0536
o.7?03
o,502s

r,0298
0.7630
0.,1926

0,9629
o,?229
0,49.t6

r.0935
0-83r2
o.57Il
L1263
0,8685
0.5998

1,119r
0,860{
0.5956

l.06ao
0.8096
o,5371

l l?06
o,9142
0,6328

1.1490
0.9123
0,6306

1.r55t
0,a674
o,6r69

1.2161
o,9257
o,6212

t,2240
0.8869
0.59r8

1.2631
0.89?5
0.5333

1,025.1

0,5904

1,1361

1.r3{3
o-4701
0.62{6

r,1588
0,8978
0,621.1

1,1908
0.9It5
0.6259

1.1906
0.9068
0.64r9

¡,2la.l
0.9269
0.616¡

L2333
o,9172
0,6081

1 2Ì41

r,0065

0,9832
0.9882

0.95.19
0.9{96
0,s554

0.90r8
0.8964
0,8933

1,0I50
r.0r88
1.0220

0.7102 0,9972
0,480t 1,0023

l_o6.t4 0.9494
0.?434
0.5089

r.0784
0,8035
0.5156

1,0678
0,406,1
0.5536

1,0174
0,4159

1.1166 1.0086
o.a5ar

0,4?23 0.9864
0,5934 O.99.!a

1.0160

o.9350

0.9.116
0.9305
0.9399

1,0101
1.0¡83
1,0r83

o,9s35
1.0009
1.0009

0.970r
0,9566
0,9611

0.9981
0,99a7
1,00?9

0.9852
0.9669
0,973r

0.9358 0,9591

"Iable 2.2: Confidence levels and lengths (90% Nominal level)
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pB p,{ n Proñlc Litclihood JcF.cys-P.rks P¡oñle L'kclihood Jcflrcys Pc¡ls Râtiô {PLIJP)
0.I 0,I 5 0,9951 0,9978 l.¡343 1 0735 r.r033

lo 0.9343
10 0.9577

0,3 5 0.9615
10 0.9583
25 0.9350

0-5 6 0.9836
10 0.9489
25 0,9565

0.7 5 0,9692
10 0.9642
25 0.9666

0.9 5 0.97??
10 0.9824
25 0,914t

0.3 0,3 5 0,9768
r0 0,9230
25 0,92?2

l0 0,934t
25 0,9240

o.7 5 0.9740
10 0.95?6
25 0,9315

0,9 5 0,9734
10 0.9604
25 0,9562

0,5 0,5 5 0,9{?3
10 0,3934
25 0,9379

o,7 5 0.9145
l0 0.9184
25 0.9308

0.9 5 0,9?23
lo o,956t
25 0.9325

0,7 0,1 s 0,9203
10 0,9130
25 0,9284

0.749¡ 1,0?52
0.4641 r,0529

1.1446 LO7?2
o,a47t r.0571
o.562t r.m3r

0.99?6
0.s929

0.9920
o.9a33
0.9558

0.9836
0.9415
o,s546

0.9301
0,9s56
0.9579

0.92r6
0.9483
0,9669

0,9849

0,9¡190

0,9?l?

0.8058
0.¿88?

1.2330
o.a95,l
0.5813

r,2370
0,9270
o,6044

r.r984
0,9050
0,5935

1.0934
0.84r3
0,5923

r,2at9
0,9491
0,6793

1,3029
1,0243
0.7r0r

r.2761
r.0050
0,?011

|.2t2t
0,9349
0,689.t

1_3403
1.06¡5
0.7¿59

1.3426
1,0577
o,7400

1,2S64
1.0038
o,7LA2

l 97ll
L0t20
0,7312

1.3669
r,0353
0,6982

L,4074
l_0290

l Ia95
0,9064
0,5995

1,0340
L0227
1.0081

r.0668
1.0582
1.0100

1.0498
r.0420
1,0243

1,013?
1,0055
1,0021

0,9657

r.0330
1.0253
1.0208

r.21r4 0,9893
0,9310 0,972t
0,6112 0,9711

r.1896 0.9192
0.9325 0,902r
0,6569 0-9017

0,9524
0,9464

0.9740
0.9¡89
0,95i!0

0,9481
0,9584
0,9688

0,9739
0,9560
0,9444

0.9664
0.9485
0.9392

0.9723

1,2050
0.9347
0.6532

L2.111
0.9830
0,6906

!.2577
0.999s
0.6996

1.2551

1.2816
t.0222
0,1256

1,3015
1.0330
0.?286

0,9930 0.9414
0,?341 0.9391

L0461
t,0414
LO279

1,0316
¡,0240
1,0t56

1,0305 0,9741
0,7435 0.9634

0.95?7
0.9433

0,9758
0.9588
0.9,r89

o,9356
o,9640
0.9463

0,9949
o,9369

1.3273
r,0455
0,7r63

l0 0,9313
25 0.9268

0.9 0.9 5 0.9¡62
10 0,9584

1.3362 r.ô230
1.0342
o,7019

1,3603
1.0228

1,0010
0,9862

1.03.r7

Table 2.3: Confidence levels and lengths (95% Nominal level)
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2.5 Simulation Results

?4 p,,{ t Pro6lç l:i!.lihôod Jcffrcys-Pe¡ks P¡oñl¿ Likclihood Jcffrcys-Pc¡ks R¿t'o IPLlJp)
0,1 0,r 5 0,993r r_0000 ffi10 0.9995

25 0.9976

o.3 5 0.9990
¡0 0.9993

10 0,9917
25 0,9933

0.7 5 0.99ó2
10 0.99t5
25 0.9934

r0 0.9915
25 0,9966

0.3 0,3 5 0,9a{{
I0 0,997r
25 0.98¡3

0,5 5 0.9918
10 0.9933
25 0,9346

o,7 5 0.9971
ro 0.9867
26 0,9916

0.9 5 0.s923
10 0.9936
25 0,995a

0.5 0,5 5 0,9?1¿
ro 0.9907
23 0.982f

o,7 ó 0.9383
10 0,9901
25 0.98,15

25 0,9366 0.0455

1.0000
0,9993

0,0994
0.9995

0,9993
0.98¡8
0.9868

o,9745
o,97d6
o.9844

0,9714
0,9748
0.9899

t,0000
0.s949
0.99¡.t

o,0968
0.9957
0,9914

0,s891
0.9932

0,9a10
0.9840
0,9895

1,O000
o.99t7
0.9889

0.9958
0,9957
0,9913

0,9975
0.s015
0.9899

1.0000
0,997{
0,9911

0.9983
0.9981
0,9s02

t_0000
0.9999

1,1I?9
0,6833

1,543t
r,ta72
0.7813

1.5238
l 1996
0.8012

L,464?
l.¡55.t
o.?344

1.3544
LOí',l2
o,7?61

L5127
1,2669
0,3460

1_5709
1.2891
0.9r4?

r,5368
r,2550
0,9002

1,4540
1.151?
0.8599

¡,5973
1,3231
0,9541

t.5474

o,9441

t,5365
L,2244
0,9009

l 6141
t.322?
0.936S

1,5983
t,2t3't
0.8837

1,6409

0,9055
0_5431

1,31?l
1.0251
o,t r23

1_4019
1.1.r09
0.1902

r.3964
1.151ó
0.855?

t,3752
l 1259
0.4226

1.41?9
1 t835
o,4679

l.¡t438
|.20T 1

0,8a39

1.4355
r.¡960
o,9154

r.45?1
1 2280
0.9100

l_471o
1.2361
0.9r3¡

1.23,¡5
|.l6t'l
1.17t5
1.t5at
1.0969

1,0¡48
L,Or27
0.997a

0.9699
0.9r8r
o,9073

1.1436
t,1252

r.0895
r.0s39

1,0644
1,0391
r.0184

1,0r29
0.9630
0.9394

1,0962
1.08r6
r,ort84

1,079r
r_0604
1.0339

t,37r3 1,1112
Lr028 1,0377
0,7631 r.0.r99

10 0.9905
25 0,9907

o,? 0.7 5 0,9776
10 0.9872
25 0.9343

o,9 5 0.9902
10 0,9896
25 0,9a36

0,9 0,9 5 0,9946
10 0.996?

1.4632 1,0501
l,2t2L 1,0105
0,9244 0.9745

1,4904
r.2360
o.89r4

¡,20.16
0,4653

r.4885
1 1725

|,0427
l 0701
L,O1?4

r.0818
1.0574
1.02t3

t,1024
1,0916

Table 2.4: Confidence levels and lengths (99% Norninal level)

to



2.5 Simulation R.esrrlts

I -,t A n P¡o6lc Lit"l'hôôd J.lI.y"-P.'ks
ffi

r0 0.60 0.,¡0
25 1.00 0,60

t0 1,00
25 1,00

0.4 5 1,00
10 0,67
25 1,00

0,6 5 0,00
10 0,00
25 0,50

0.8 5 0,00
to 0.00
25 0,00

0.95 0.0 5 0.60
r0 0,60
25 0.a0

o.2 5 0.75
10 0,75
25 1,00

0,4 5 0.00
10 0,33
26 0,67

o,25
0.25
0.?5

0,33

0.67

0-00

0.00

0.00
0.00
0.00

o,00
o.00
0.60

0,00
o,25
0.?5

0.00
o.67
o.33

r,00
0,00
0,00

r,00
r.00
0.00

0.00
0,00
o,20

0.25

r0 0-00
25 0.00

0,6 5 0.00
10 0.00
25 0,00

0.99 0.0 5 0,60
t0 0.20
25 0.80

o.2 5 0.25
r0 0,25
25 ¡,00

0,4 5 0.00
r0 0,33
25 0,00

10 0,00
1.00
1.00
¡,00

0.8 5 0,00 r.00
10 0.00 r.00

Table 2.5: Ploportion of intervals that ale anti-conselvative

0.00
o_67
o.67



2,5 Simulation Results
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Figure 2.1: Obselved confidence level of the pr.ofile likelihood (solid) and
Jeffr'eys-Perks (dashed) nethods when A : 0
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Figure 2.2: Observed confidence level of the profile likelihood (solid) and
Jeffreys-Pelks (dashed) methods rvhen A : 0.2
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2,6 Observations

2.6 Observations

By examining flgures 2.1 - 2.10 there ale a number of things to note. One

main observation is that tllere appears to be difielences depending on the

rnagnitude of A.

\\/hen A is 0, 0.2 ol0.4, the Jeffr'eys-Perks method ahvays has a highel ac-

tual confidence level. The profile Iikelihood method is often anti-conselvative,

'rvhile the Jeffr'e¡'s-p6¡¡s nrethod is usually conservative. As the sample size

increases, the coverage probability of both metliods becomes closer to nomi

nal.

When A is 0.6 or 0.8, the situation is slightly difierent. For the most

part, the covelage plobability of both methods is similar', except rvìren the

nominal level is 0.99. In this case, the Jeffreys-Pelks rnethod tends to be

anticonservative. But again, both methods get closel to nominal as the

sample size incleases.

As for lelrgth, rvhen A is 0, 0.2 or 0.4, the Jeffreys-Perks method is almost

alrvays shorte-'-. There is quite a difierence at the 0.99 level rvhile at the 0.9

level, the difference is minimal. As the sarnple size increases, the lengths of

both methods become similar.

When A is 0.6 or 0.8, the profile likelihood method becomes shortel, and

again, a larger sample size causes botlt methods to be similal in length.

It appeals that fol small values of A (say less than 0.5 in absolute value)

the Jeffreys-Pelks method is superior since it results in shorter intervals,
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2.6 Observations

*4rile at the same time being conselvative. When A is lalge (say greater'

than 0.5 in absolute value) the profile based method is superior since it is

sholter and l.ras an actual confidence level closer to nominal.

These results seeÌr to suggest that if rve believe A is srnall, then the

Jeffreys-Perks rnethod is best. Should rve believe A is large, tlie plofile likeli-

hood method is best. Hon'ever', if rve have a large sample size, the magnitude

of À is not as impoÌtant, since both methods are similar'. In this case, the

Jeffreys-Pelks method is preferled since it is sirnplel computationally. The

Jefir'eys-Pelks interval can be calculated using explicit formulae, rvhile the

profile likelihood interval requiles numelical methods to detelmine the end-

points of the interval.

Another point of note is that sample sizes of 5, 10 or 25 can be consideled

to be "small", rvhile the performance of the intervals is still quite good. This

seems to suggest the cent¡al lir¡it theolem s'hich both results depend on has

a quick rate of convelgence.

One last point to note is that similal intelvals can be const¡ucted fol

the odds ratio. Horvever, simulation lesults suggested that the intetval con-

structed a.long the lines of the Jeffleys-Perks method perfolmed quite poolly,

g'hile a plofile likelihood based interval for d performs reasonably rvell (see

\\¡ei et al. [38]).
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2.7 Summarv

2.7 Summary

Some of the theoretical backglound of the RPWR has been preseuted.

The limiting results have shol,n hot' the RPWR can increase the total num-

ber of successes. The likelihood function is the same as in the case of tt'o

independent samples, rvhich makes calculating MLE's simple.

Tri'o rnethods of constluctirg confidence intervals for the difierence ivele

introduced. Both methods are asymptotic and can be used in the usual case

of trvo independent samples because of the limiting lesult in (2.21). As an

example, the EC\,IO data rvas used to demonstrate the tl'o rnethods.

Sinulation results suggest there are differing results depending on the

magnitude of Â. Small A favours the Jefireys-Perks method, rvhile large Â

favours the profile likelihood metliod. Wlren the sample size incleases, the

diffelence betq,een the tri'o methods becomes smaller, and in this case, the

Jeffleys-Perks method is best fol computational reasons.
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Chapter 3

F\rrther Details of the

Jeffreys-Perks Method

3.1 Introduction

Some aspects of the Jeffreys-Pelks interval will be examined. In particu-

lar, suppolt for estirnating a by ã(n) ivill be plesented, as rvell as justifying

the choice of n: -ï. This support is based on some difficulties rvhich can

arise rvhen estimating a plobability. A suitable estimâte for probabilities ivill

be discussed as q'ell as how it calries ovel to the RPWR case.



3.2 Estimatine Probabilities

3.2 Estimating Probabilities

There ale sorne difficulties in estimating the probability of an event, es-

pecially if the sample size is small. These difficulties exist fol both the trvo

sample independent case and for the RPWR, since the likelihood functions

are proportional. The RPWR is to be used t'ith small sample sizes, so this

ploblem is particularly lelevant.

First, considel estimating a single plobability, p, from a sarnple of size n.

Let ,9 be the total number of successes. The simplest estimâtor of .p is the

r"atio of successes to the number tlials, f : S/n. This also happens to be the

MLE. At fir'st glance, it l'ould seem reasonable to use this estirnate. After'

all, it is the observed proportion of successes. Horvever, tl.ris is only a useful

estimate if n is lalge. When n is small, this estimator has problems.

Consider the case r'here n is snall, and ,9 : 0. In this case r: 0. This is

a stlong statement. Ðssentially, it says that observing a success is impossible.

But if ü.e have seen no successes in a small number of trials, this is by no

nreans an indication that a success is impossible. Altelnative estimators ofp

are clearly desirable.

An entire class of estimalors can be derived by taking a Bayesian approach

to estirnating p. A crucial step in this apploach is the selection of the prior

density, /(p). An obvious fir'st choice is /(p) : 1,0 < p < 1. This approach

also coincides t'ith an approach used by Laplace, knorvn as Laplace's larv of

succession. Tìre result is that the estimate of p is given by (S + 1,) /(n + 2).
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3.2 Estimating Probabilities

This also alises fi'om the Bayes postulate, t'liich suggests assuming the plior

plobabilities should be equal if they ale unkno*'n.

A unifolm plior is actually a special case of a mole general plior'. The beta

distlibution provides more flexibility. It is of the form /(p) ú pKL(7 - p)x,,

0 < p < 1, ft, K2 )_ -1. Under squared errol loss, tve obtain as our estimate

of ¡r the postelior urean,

- ,S+Kl+1
D: 

-

' nlr"ìlx,¡*2 (3.1)

Often, it can be assurned that successes and failures convey the same amount

of infolmation. In this case, ll'e take ø1 : K2: K. Choosing rc : 0 gives the

utriform priol. If n : -1 the prior is improper. This prior leads to the À,ILE,

so this choice fol n is no good.

Jeffreys and Perks both objected to the use of a unifolm priot because of

its connection rvith the Bayes postulate. They rvished to find a priol rvhich

wâs more theoletically pleasing. Both created invaliance theolies for rvhich

the applopliate choice of x rvould assign the same probability to a legion of

the parametel spâce even if the palameter is shifted. The result of Jeffr'eys

and Perks is the same for the binomial case, leadiug to n - -j, \\,hich is

like a complomise betrveen the IVILE and the Bayes postulate. See Good [15]

for even mote on this topic. Jefir-.e¡'s ¡¡1s can also be interpreted in a rathel

interesting rvay. To use Jeffleys lule, simply take a prior proportional to the

squale root of the determinant of the information matrix (see l(ass [20]).
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3.3 Estimating ¿ in the RPWR

Remembel that this is tlue rnainly for estimating plobabilities from small

samples. When the sample size is lalge, tlie I\4LE does not suffer from the

aforementioned ploblern. Horvever', the Bayesian estimatols s'ith a beta plior'

(of ri'hich the MLE is a special case) are all asymptotically equivalent. Hence,

for lalge sample sizes it really doesn't mattel r4rich palticular estirnator of

this form is chosen.

3.3 Estimating 0 in the RPWR

To use tlre nrethod introduced by Beal, an estimate of a : pt I pa \s

needed. Since this is a surn of trvo probabilities, the problems discussed

in the previous section s'ill come into play. The invaliance lule of Jeffleys

s'ill be used to ovelcome this. To employ this lule, Fislter''s infolmation is

requiled.

In the case of trvo independent samples, it is rvell knorvn that the infor-

mation matrix is given by

':(* å)
(3.2)

It tlren follorvs tlrat the determinant of 7 is ploportional to (p¡qnpeqp)-1,

and Jefir'eys' r'ule irnplies the prior should be proportional to (2t¡qtra,q1)-à.

This justifles the choice of n: -| fol tri'o independent samples.

To find the information matrix fol the RPWR (see Rosenbelgel and Sli-
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3.3 Estimatins ¿ in the RP-WR

raìn [31]), the derivative of the log-likelihood is required. Recall flom (2.19)

that

y^(p¡,pB) : ptiql^-t^pt"'u!"-''finî,{t - pn)'-T (3.3)
i:1

hence, the log-likeliliood is,

[(p¡,pl) : S¡logpt + (l/¡ - S¿) togq¡

* SslogpB + (^¡B - ,S3) log g¡

/n \
+ t"g { flpf'1r - r')'-î | ts.a¡\î-i /

The first delivatives of the loglikelihood ale given by

ô¿ _sA _ (Nr-s¡)
ôp¡ pA Qe

_ St - Ntp¡
PAqA

:Ði:'(xn - Po)tr,

P AqA

ô[. _sB _ (Nr-sr)
ôp" pB qB

_ Se - NepB

PBqB

_ Ðl=16¿ - tte)(I - T)
PBqB

(3.5)

(3.6)

(3.7)

(3 8)

(3 e)

(3.10)



3.3 Estimating ¿ in the RP.WR

fi'om rvhich it is cleal that

a2t azL

dr"^: ffi: o (3'11)

As fol the diagonal elements of tlie inforrnation matlix, t'e have,

* I a( l' _ ç. f Dl=,(x' - po)r,l'
- I,apo) -t pAqA l

_ Di=rß,|(X¿ * p¡)'z:rì
p2¡s7

(3.12)

(3.13)

rvhele tlre cross ploducts are zero in (3.13) since (X¡-p¿)(X¡ -p¡)T[j, á + j
is nonzero only rvhen Ti: I'j :1, in yhich case successit'e colditioni¡g leads

to E f(x, - pe)(X¡ - p¡):I"r¡lT¡: 1,4 :11 : 0. Also,

tr 16o - po)"T") : E [t¿ - 2x¡pt + p|)To]

: (r - 2p¡)E [X¡T,] + prewl.r,l

: (1 _ 2pa)paE,[T,) + p2AElT,]

: p¡q¡EV¡

(3.i4)

(3.15)

(3.16)

(3.17)
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3.3 Estimating ¿ in the RPWR

rvhere IE [X¿fl] : p¡E [[] since

E[Xnr:,] :E[E[x,4|X1, ..., X¿ rTt,...,4-t]l
: EIP(X, : 1.,7¡ : 11Xr,...,X¿-t,Tt,...,4-r)l

: EfP(Xi : llXr,. ..,X¡-t,Tt,...,Ti-t,Ti : 1)
(3.18)

x P(4:1lXt, ,Xt-t,Tt, '4-t)l
: paE lE [7,1X1,. . ., X.¡_rTt,. . ., 4_,]l

: p¡E[:r,]

It norv follorvs that

" I 
ar l' _Di=,peq.qE[T¡]- l.apo) - p2¡q:A

E f¡¿,1

PAqA

Similally, it can be shorvn that

-l a{f' E[Nr]
l¿Jpa I pBqB

(3.1e)

(3.20)

(3.21)

Explessions fol E [N¡] and E l,V¿] can be derived by obtaining a recursive

relationship. The solution, as given in Rosenberger and Sriram [J1] is quite

complicated, and int'olves both p; and p¡. This makes it very difficult to

take a priol distribution accolding to Jeffreys'rule.

A simple solution is to estimate E [N¡] and E ltvsl by the observed values
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3,4 Summaly

of Iú¡ and ./Vs. In doing so, the problem reduces to the case of ts'o indepen-

dent samples, and once again, the choice of 6 - -r1 seems quite reasonable.

It slrould also be noted that this choice of rc is the saìne as iÎ p1 and

pB lvere assumed to have independent beta prior distributions, g'heÌe rc \l,as

chosen to be -| for both. This intelpletation is also âppeâling, since it results

from choosing the pliols for p4 and p¡ separately according to Jefireys' Rule,

then combining thern by âssuming independence of the pr.iors.

3.4 Summary

Tlris chapter examined the Jefireys-Pelks intelval. The choice of ,: -tr
rvas investigated. It rvas found that this was a good overall choice for tlie

p,,-oblern.

Estimating the plobability of an event is always a tr.icky problern, espe-

cially with small samples. The NÍLE is not a very sensible estimator. in such

a case. Lapalce's rule of succession led to another. estimatol, but this estima-

tol has been cliticized, rnainly for its connection rvith the Bayes postulate.

The invariance theolies of Jefireys and Perks lead to an estimator .rvhich is

a compromise betrveen the two other estimators, and this estimator. s,orks

better'. Jeffreys' ir.rvaliance rule can be easily stated.

The problem of estimating plobabilities callies over into the RPWR for

estirnating ø. Jefir'eys'r'ule requires the infor.mation matrix, and for the

RPWR it is the same as in the case of tl'o independent sarnples, except
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3.4 Summaly

^À¡¡ and N¡ are landom, ând are leplâced by their expectations. As an

apploximâtion, IE [Àt¡] and IE [Àr¡] can be leplaced by N¡ and ly's, rvhich

justifles t'hy o: -] is a good clloice for the RPWR as rvell.



Chapter 4

F\rrther Properties of the

RP\MR,

4.L Introduction

Some intelesting lesults regarding the RPWR rvill be examined. One of

the previously mentioned ideas is the quick convergence to normality s'hicll

allorvs the use of the ts'o methods for constructing confidence intervals. The

theory behind this convergence is discussed as rvell as some ideas lelating to

the late of convel-gence. Sirnulation results are also plesented r¡'hich denon-

strate ìrot'quick the convelgence is.

Some additional results legalding the allocation plobabilities of the trl'o

treatments ale also presented, including a comparison with some pleviously

established properties fol a deterministic velsion of the play the rvinner rule.
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4.2 F.ate of Convelgence

4.2 Rate of Convergence

The asymptotic normalit¡, of þ¡ and f¡ ü'as stated in section 2.3.1. In

section 2.6 it s'as noted hol there appeals to be a quick rate of convergence.

The details of this limiting lesult ivill norv be examined. It is of interest to

see rvhat afiects the rate of convergence.

4.2.I Asymptotic Normality of the MLE's

A summaly of r¡ain results in Wei et al. [38] is as follorvs. Let

- -L¡ ,"Zn¿: n-l lc1(X¿ - p¡)T¿ + cz(X¿ - pB)(1. - T,)l (4 1)

for ¿ : 1, ...,D, h ) 1 and constants c1 and c2 (to be used rvith the Cramér-

Wold theorem). Then,

s-- !,^ 1.^
LZ,,: cln i(51- N¡pt) -f c2n-à(5, - Napa) (4 2)
i:t

is a martingale and {2"¡: i,:7,.. .,n,n > 1} forms a maltingale difierence

array. Theorem 3.2 of Hall and Heyde [16] can be used to shoiv

f ,^, \ N(o,,t\ as n---+ co (4 3)
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4,2 P-ate of Convergence

, qaqsþlp¡ -l cf,pe)

qA + qB

"-*Go- N¡p¡) \W,

and n-i(5" - NBpa) \ lt¡"

Recall from section 2.2.2 that

,. N¿ qB

n+@ rL q¡l qe

,. Àrs qA
lltn---n+æ n q¡lqn

(4.6)

(4.7)

a.s. (4.8)

a.s. (4.9)

(4 4)

Hence, r,e have that every linear combination ofthe variables n-å(,9¿ -Nep¡)
arld rz-å(,9¿ * Nøpa) convelges to the corresponding lineal combination of

Wt a¡d Wz, ivhele l4lr ãnà 1ry2 àre jointly bivariate nolmal rvith,

"(;) (:) -'(ï:)

lt norv follon,s fi'om the Clamér'-\À¡old theolem that

_ ,on, (oo ,l (4.5)
oe+øe 

\o pa)

Applying Slutsky's theolem leads to the conclusion that Nj¡(pA - Z¿) and
1

N Å(p"-p") ale asymptotically independent and jointly normally distributed

rvitlr nreans of 0 and variances of p¡q¿ and psgs lespectively.



4,2 P.ate of Convergence

4.2.2 Factors Which Affect the Rate of Convergence

of the Central Limit Theorem

To examine the late of convergence in the rnartingale centlal limit theo-

rem tl.re follori'ing notation rvill be useful. In particular, the conditional and

unconditional valiances are inìportânt. Lel 9n¿ be the o-algebla genelated

hy 2"t,...,2n¡. Defrne

a|t : E lzl)s",t_tl
-ozt: E lzStl

"2 - \- ;2'n - ,1:2"ni

n_2
t12 \- uni

(4.10)

(4.11)

(4.12)

(4.13)

Bolthausen [f1] derived sevelal results on the rate of convergence based on

tlrese quantities. In palticular the rates at rvhich lV"2 - 1l and lofl, - a]rl go

to zero afiect the rate of convergence. Rinott and Rotar [26] also found tliat

these quantities and sorne othel subtle aspects of the dependency structure

ale the detelminants of an upper bound for the rate of convergence.
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4,2 F.ate of Convergence

Fol the RPWR,

z3o: r-' lcl(x1 - pf'zrl + cT(xi - pB)2(1 - T")2

+c1c2(Xi - p¡)(X¡ - pB)T¡(7 - al")l (4.14)

: n-1 lcl(xl - 2x¡pn + p'¡,)7, + cl(xo2 - zx,pB + p"ù(r - q)] (4.15)

: n-' {"?rn(x,(t - 2po) + p'o) + 
"30 - T")(xu\ - zpB) + p2òl Ø:6)

By definition, W[f,19",,-t]: 2¿ and in a mannel similar to equation (3.i8)

it can be shown tlrat E[TiX,lg"¡-t]: p¡pa andEl(1 -T,)Xtl.q",t l:
(1 - .¡r¿)ps, lience

o1i: n-t lc?(E [T,x"lg"j-l(1 - 2pò +ElT¡1A^*lp2¡)

+c;(E I(1 -'r) x"le",¡-,1 (t - 2p,) + E [(1 - r)ls",r_l eT)] Ø.17)

: n-1 lc?(pipA\ - 2pò + pop"o)

+cT(Q - r)i)pB(I - 2pB) + (t - p)p'")l (4.18)

: "-' l"?pnp¡(7 - p¡) + c30 - ùpB(I - p1)l (4.1e)

and

t?, : n-' [c?E le] pA(I - po) + 
"30 - Elpu))pB\ - p")l (4.20)



4,2 F.ate of Convergence

lt noü' follori's that,

.ln,l
tv: - lt:4 lt ":, - r u3,lsi l-i-t i1-, I

r lå., ,.1- - l) .@i,' - ai)l
";l=í I

,ln
: i lf ( ) þ?r,oo(, - po) + 

"3(t - 
p¡)pa(l - pB)l

-ll"?wlnJnott - p¡) + 40 -Elptl)p.(r- a,f J) | t+.zsl

'' l'': + lI | þ,k\po(t - p¡ - 4pe(1- p")) + czpB(l - pB)si l= n'

-Eþ¡l(clpa(l- po) - "3p"0 - pe)) - rZrp"(l- p"))l

r,^ t" , 'n''n': 
ã|"?p^(I - pA) - 4pB0 - r,ll lI tp' * E þ'l)l Ø.25)

¿.". lÐ?=,.ûru - E Þtl)l is an important factor in lvf - 11. Also,

ll." .t
loi,, - ai,l l; [C,out, - pe)(p¡ - E [pi]) + clryQ - p)(E þ,J - r,)J 

I

(4.26)

: 
Iþlo^t, - p¿) - "3p"0 

* n")llnn - Eln,)l Ø.27)

i.". lpo - n þ¿]l is an important factor in l"|n - a?,1

In order to examine the quantities in (a.25) and (a.27) expressions for p¿

(4.21.)

(4.22)
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and E þ¡] can be obtained reculsively as

(2a + Þ(i- 1))zu + þQ"& + (1 - 4X1 - &))
Pi+l =

2a+BQ-I): 

- 

Pi+z0+zp

and

EÞ,,,1: 4!4)ub,t*
2a + i.B

2a + il3
þ(T¿x¡+(1 -T¿)(I-x¡))

2a +'il3

(4.28)

(4.2s)

2a+13(i -1)-,_, , þ(ptEþ,1 ls"(1 -Eþ,1)
,"*iP *¡¡'¡1 --

(4.30)

(4.31)

(4.32)
2a',ß(p¡- qa + 0 - r))r¡^t - ßq"

2o+iþ -u'tt ' 2a -iþ

Attempts to find a bound on lp¿ - Elp¡l I using these recursive relationships

have so fal been unsuccessful. It rvould appear tliat finding useful bounds

using only elementary techniques may not be possible. Tiglrtel bounds may

be potentially obtained using mole sophisticated maltingale techniques.

It should also be noted that more tlian just the centlal lin.rit theorem is

being used to prove the asyrnptotic normality of the \4LE's. The last step in

section 4.2.1 involves the convelgence of & and f; to u¡ and r,,s respectively.

This convergence has been examined by Rosenberger [28]. Also, Rosenberger

and Sriram [31] shoiv horv simulations suggest the convergence is vely quick

unless p¡ or.. pB is very large.

To lielp 'i'isualize the situatior.r, further simulations rvele conducted. For

tlre tlrr-ee sarnple sizes considered in chapter 2 (n:5,10,25) and various
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4.2 F.ate of Convelgence

values of pA à\d pB, 10,000 outcomes of the RPWR t'er'e genelated. For

each outcorne, the statistic

._(p¿-pn)-(p¡-pB)' lpÁlb - we
V ¡V, N¡

(4.33)

rvas calculated. Histoglams of this statistic fol the gi.i'en values of n, p¡ and

pB are shown in figuÌes 4.1 - 4.3 along rvith supeÌimposed standatd normal

culves.

These simulations help visualize the quick con\¡elgence t'hich was sus-

pected back in section 2.6. When n : 5, the histoglarns are not exactly

normal, but the deviation fi'om nolrnality is not too extleme. As n incr.eases,

the situation imploves dramatically, Fol¿: 10, most of the histograms are

quite close to the normal curves, and rvhen z : 25 ahnost all histograrns

appeal to be nolmal.

The statistic z uses the true values of ¡r¡ and pB, so in practice these

must somehorv be estimated. The best rvay alound this problem in the

case of tu'o independent sarnples is to use the Jeffreys-Pelks rnethod. As

previously discussed, this is also a good t'ay to proceed for tlie RPWR. The

Jeffreys-Pelks idea has proved to be useful iu a number of situations involving

binominal responses, as seen in Piegorsch [25],
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4,2 F"ate of Convelgence
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4.3 Properties of the Allocation Plobabilities

4.3 Properties of the Allocation Probabilities

The RP\\¡R lias desilable ploperties. Some have already been seen. Fol

example, in section 2.2.2 it was shorvn that the asymptotic success rate of

the RP\\¡R is

PAqB + PBqA
qt*qn

(4.34)

rvhiclr is lalger than l(na+pe), hence the success rate of the RP\4¡R is higher'

than the success Ìâte for 50-50 r'andomization. Thele are other desilable

plopelties relatir.rg to the allocation plobabilities. These ploperties are also

present fol the detelministic play the t'innel lule (DPWR).

To ernploy tlie DPWR, the first patier.rt is randornly assigned treatment

A ol B rvith equal plobability. The r.rext patient's treatment is completely

determined by the previous patient's response. If the lesponse is a success,

then the next patient leceives the sarne treatment as the previor,rs patient. lf

the response is a failule, then the next patient receives the other treâtment.

In \A¡ang and Pulhnan [35] the DPWR is used as an example of horv adaptive

designs provide desirable results. Tl.ris papel also contained many results

lelating p¿..1, the probability of the next patient receiving treatrnent A after'

the previous i lesponses are knos'n. Some of these ploperties ale,

(u) po*t > i, i,> 1, 1r p,c, > pB

n+t < |, i' > r, 1f 7''¡ < Ps

pi*r - *, i ) r, if pn: pB

D4



4.3 Plopelties of the Allocation Probabilities

(b) Ifp¡ +pB > 1, then

p¿..1 is increasing in i ü4ren pA > pB

.p¿a1 is decleasing in i ri'hen pA < pB

pr+l is constant in 'i I'hen pA : pB

(c) p- Iimi--pi+t: ffi

(a) p> å, 11 p¡>pB

n<|,tfpo<-r"
p-l,ifp¡:p6

(e) Iimo,-rp- 1

lim6-¡P: j

lirno"-r p : 0

Ploperties (a) and (b) shorv horv the plobability of being assigned the

superior tÌeatment is mole than 50% rvhen using the DPWR. Plopelties

(c), (d) and (e) shou' the limiting behavior of the DPWR. In particular',

the limiting plobability of using the superior t¡eatment is greater tlian 50%.

Also, if one treatment has a plobability of success very close to 1, then the

limiting probability of using that treatment ri'ill be close to 1, ivhile if the trvo

treatmeììts ale very similar' (2.e. A is close to 0) then the limiting plobability

fol each treatment is about 50%.

It s'ould be of interest to knorv if these propelties (or similar ones) hold for'

the RPWR. Due to the landomization involved rvith the RPWR, tlie above
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4.3 Properties of the Allocation Protrabilities

propelties do not hold for p¿-¡1. Horver.er', if the landomness is eliminated by

taking the expected value, then all the properties hold for'ìE þ¡..1].

Ploposition 1. For the RPWR, the following properties hold.

(") IÐ Þ,*'l > +, i. > r, if pa > p6

lEþ'+tl < i,¿>t,11 p¡<pB

EÞi*rl : à,i>r,iÎ pa:p"

(b) E Þr*r] is incleasing in 'i when pA > pB

ìE þ¿*1] is decreasing in i rvhen pA < pB

ìE þ¡..1] is constant in i rvl.ren pA : pB

(c) p : Iirn¡-- lÐ' þ¡+rl : IE [li-r-,-n+t] : ffi
(d) p> å, if p,>pe

n<|,irpo1r"
p: |, if pa :7t6

(e) limrr*rp: 1

lim¿-¡2 - 1

limrr_r Z : 0

ProoJ. Fot palts (a) and (b) assume p¡ > .¡r¡. The case of 2r¡ < p¡ is similar,

ri4rile tlre case of p¡ : 71" is trivial. Palt (b) rvill be proved fir'st. From (4.32),

, 2a-,ß(p¡- qs -(t-t))-, , lSsaE[p¡,']: -ffiEld+ 2Lïip (435)

: B¿+tBlp¡l Í A¡+t (4.36)
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4.3 Ploperties of the Allocation Probabilities

At+t _
r- Bt+t 

:
qA+qB

E þ,+tl : B¿+rlE þil + At+l

< B¡¡p¡ I A¡¡1

and lE [p¡..1] < u/ for all i > 0.

F\'om this,

A;+tt lP¡l <. -I _ Dí+I

E þ,1 - B,+rE Þul < A,*,,

Ai+t+Bi+JEIpil >Eþnl

Eþo+'l >EþJ
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2a+ip

QB

Êqa
2a+iß (4.37)

(4.38)

(4.3e)

(4.40)

(4.41,)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

This is equivalent to saying Bi¡p¿]_ A¡¡1: u¡. Since pA> pBl this implies

ua > l, a:rtð, since JE þ1] : å, P þt] < u¿. Induction ri'ill be used to shoi'r'

IÐ þ¡+r] < zt¡ fol all rí ) 0.

Assume IÐ þ] < uá for sorne i ) 1. Then



4.4 Summaly

for all ri > 1.

Part (a) imrnediately follou,s from (b). Part (c) follori,s from the results

of section 2.2.2 a¡d srvitching of the limit and expectation is pelmitted by

the dominated con\¡ergence theolem since lp¿a1l ( 1 a.s. fol all z. Parts (d)

and (e) ale the same as in the DPWR and are easy to velifu. !

Interpretation of these lesults is similar to before. Palts (c), (d) and (e)

ale similar to tlie DPWR, so theil interpretation is simple. They relate to

the limiting behavior of the RPWR. Palts (a) a.nd (b) again have the same

intelpletation as fo'- the DPWR, except it is after taking the expected value.

They relate to the fact that the supelior tleatrnent has a higher expected

probabilit¡, of selection, and this expected probability incleases monotoni-

calìy. It should also be noted tliat palt (b) for tlie RPIVR does not have

the restriction of pA + pB > 1, r'hile part (b) for the DPWR does have this

restriction.

4.4 Summary

In this chapter', sone intelesting propelties of tlie RPWR were investi-

gated. The convergence to nolmality was examined, as rvell as its rate of

con\¡ergence. Some key quantities rvele found rdrich have an irnpact on this

late. Sirnulations also visualized and helped suppolt the presence of quick

convelgence.

The allocatior p::obabilities l'ele also discussed. It ivas found that the
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4,4 Summary

expected value of these probabilities liold some desirable propelties. It ivas

sho*n that the bettel treatment has a higher expected plobability of selec-

tion, and this holds in the limit as n'ell. These results are quite similar to

those for the detelministic play the s'inner rule.



Chapter 5

Conclusion

5.1 What FIas Been Achieved

The randomized play the s'inner rule is a good choice for a clinical trial

where the patients responses ale extreme and dichotomous. It has a sig.

nificant advantage ovel traditional landomization since as the trial goes on,

patients have a higher chance of receiving the superiol treatment. Also, the

RPWR has a higher asymptotic success rate.

While the design has these desirable features, one major drarvback rvas

hor,r' to analyze data arising frorn this design. Plevious methods $'ere met

with contlovelsy, or' \\'er-e extremely difficult from â computâtional point of

vien'. The 'exact' method due to Wei et al. 138] certainly cannot be easily

understood by the practitioner'.

It is fol this reason tliat other methods of analysis rvere requiled. The
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5.1 What Has Been Achieved

profile likelihood method had been used before and worked quite ¡i'ell. Horv-

ever, s'hile it is computationally sirnpler than the exact method, it is still a

little complex. The Jeffreys-Perks metliod has been used in the case of trvo

independent samples, and is quite good. Using some limiting results, use of

the Jefir'eys-Pelks method for the RPWR can be justified. It turns out that

it is still quite good in tl.ris case, rvhile being much simplel computationally.

The plofile likelihood metliod and the Jefireys-Pelks metliod wel..e corn-

paled by simulation. The criter-.ia'ivas the actual covelâge probability and

the average length. It r,ças found that the Jeffreys-Perks method pelfolmed

best fol small values of the diffelence, A, rvhile the plofile likelihood method

rvas better fol large A. As the sample size increases, the tlr,o methods be-

comes veÌy similar'. Since the Jefireys-Perks method is easier to implement

and is easier fol the practitioner to comprehend it is a very vâluable tool for

anaìyzing data from a RPWR design.

The Jeffleys-Pelks method also has some issues relating to the estimation

of plobabilities. The N4LE is not very good for estimating a plobability rvhen

the sample size is small. Bayesian ideas lead to a class of possible estimators.

The estimatol used in the Jefireys-Pelks method is the best out of this class

fol the case of trvo independent samples. For the RPWR an algurnent was

presented rvhele rvith reasonable approximations this results still holds.

The rate of conr.ergence of the martingale centlal limit theoren rvas also

of interest, since the two asyrnptotic methods perfolned ri,ell even for small

sample sizes. Some key quantities relating to this convelgence rvere derived,

7I
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as rvell as simulations rvhich give a good visual of the quick conveÌgence.

Some additional properties of the RPWR rvere also derived. It rvas shorvn

that the allocation plobabilities have many propelties similar to the deter-

ministic play the rvinnel rule. These properties all shorv hoiv the RPWR

gives patients â greâter chance of receiving the superior treatment.

5.2 F\rture Research

Adaptive designs and the randomized play the t'inner lule ar-e still fairly

¡s11', so there are a number of open questions. One a¡ea of exploration relates

to the Jeffreys-Pelks method, It rvas shown horv ¡c: -] is a good choice fol

trvo independent samples, and fol the RPWR this ivas justified by replacing

E [À¡¡] by tr'¡ and JE lN3] by N3. Pelhaps there is a better rvay of choosing

the priol using the expressions for E [N¡] and E [l/¡]. Thele may be other

apploximations rvhich lead to better intelvals.

Anothel unansrveled question deals rvith the rate of convelgence. This

n'as explored, but nevel fully ansu,ered. Elementaly techniques have so fal led

to bounds tl.rat were not at all useful. It ivould appeal that mole sophisticated

techniques, most likely based on ma.rtingale theoly, are need to solve this

ploblem.

Only asymptotic methods $'eÌe considered because of their simplicity.

The existing exact rnethod is quite complicated. Thele may be other rvays

of constlucting exact methods ridrich may be better than the existing ones.
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Or, maybe modifications could be made to make an exact method computa-

tionally mole feasible, rvhile still rnaintaining good results. Tliis is another'

area open fol exploration.

Choice of the design parameters, a and B, is another alea of lesearch.

The sirnulations wele all done rvith o: É: 1, mainly since this is u'hat has

been aheady used in practice. But intuitively, it seems like a good idea to

have a largel value of c so initially there can be patients on both treatments.

For difierent values of a there may be better values of B. Horv to cl.roose tl.re

optimal values of these palametels is still undetelmined.

This u'as all done under the assumption of immediate responses. Delayed

Ìesponses can be incolporated into the RPWR. Hon' these methods carry

over to such a case is yet to be ansrlered. Steps in this dilection have been

taken by Bai et al. [6].

The landomized play the rvinnel rule and adaptive designs in genelal pro-

vide a number of interesting research possibilities. Ansrveling these questions

is clucial fol lealizing tlie full ethical and statistical benefits to clinical trials.
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Appendix

Computer Code

Here ale the R functions ard code fi'agments used fol the sirmrlations and

computing tl.re confidence intervals.

A vely important function is rpwrsinO which retulns a list rvith elements

t and x ¡vhere t is the vector of the f¡'s and x is the vector of the z¿'s for

a sample outcome fi'om the RPWR rvith sample size n, success probabilities

pa and pb and ¡vith the uln dynamics determined by alpha and beta (both

defaulting to 1).

rpwrsin(-funct ion (n, pa, pb, alpha=1,beta=1) {
a<-al"pha
b<-alpha
r<-runif (2*n)
c<-0
x<-NULL
t<-NULL
for (i in 1:n) {

c<-c+1
it (r [c] <a/ (a+b) ) {

t<-c (t , 1)
c<-c+1
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Appendix: Computer Code

if (r [c] <pa) {
a<-a+beta
x<-c(x,1)

l.

else {
b<-b+beta
x<-c (x, 0)

Ì
)
else {

t<-c(t,0)
c<-c+1
if (r lcl<pb) {

b<-b+beta
x<-c(x,1)

Ì
else {

a<-a+beta
x<-c (x , 0)

.ì.

]
Ì
1i st (treatnents=t , responses=x)

)

The function prof1l.clO computes the profile likelihood based confi-

dence intelval. It takes as alguìnents a vectoÌ of ú¡'s, a vectol of a¿'s and

optionally the significance level (ivhich defaults to 0.95).

prof11. ci<-function(t, x, sig=O.95) {
#Log-Likelihood
ll<-funct ion (pb, delta, na, sa, nb, sb) {

]og ( (delta+pb) ^sa* (1-de1ta-pb) ^ (na-sa)
xpb^sbx (1-pb) ^ (nb-sb) )

)
#Prof lle Log-Likelihood
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prof 11<-funct ion (deIta, na, sa, nb, sb) {
n<-na+nb
s<-sa+sb
L . 3<-n
L . 2<- (2xn-na) xdelta-n-s
L. 1<- (deltax (n-na) -n-2* ( s-sa) ) *delta+s
L . 0<- (s-sa) *delta* ( 1-delta)
q<- (L. 2/ (3*L .3))^3-L. r*L.2/ (6*L.3^2)+L.0/ (2*L.3)
p<-sign(q) xsq¡t ( (L.2/ (3*L .3) ) ^2-L. 1/ (3*L.3) )
if (q==s; p<-sqrt ( (L.2/ (3*L.3) ) -2-L.1/(3*L.3) )
if (q/p^3>1) q<-p^3
a<- (pi+acos (q/p^3) ) /3
pb . star<-2xp*cos (a) -L . 2/ (3*L . 3)
11 (pb . star , delta, na=na, sa=sa, nb=nb , sb=sb)

l.

#Equation to be solved for upper and lower linits of the CI
ci . eq<-function (delta, na, sa, nb , sb, sig) {

2x (11(sb/nb, salna-sb,/nb, na, sa, nb, sb)
-profll (delta, na, sa, nb, sb) ) -qchlsq(sig,1)

)
na<-sun(t)
sa<-sun(xxt)
nb<-length(t) -na
sb<-su.n (x) -sa
if (na==O ll nb==0) return(c(-1,1))
else {

rdelta<-seq(-0. 9999, 0. 9999, length=200)
testval<-sappl-y (rdelta, ci. eq, na=na, sa=sa,

nb=nb, sb=sb, s ig=sig)
if (ci. eq(-0.9999,na,sa,nb, sb,slg)<0 &&

ci. eq(0.9999, na, sa, nb, sb, sig)<0) {
low<--1
up<-1

)
if (ci. eq(-0.9999,na, sa,nb, sb, slg) <0) {

1or¡<- - 1

up<-uniroot (ci . eq,
c (nax (rdelta ltestval<O] , na . rn=T) , 0 , 9999) ,
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na=na, sa=sa,nb=nb, sb=sb, sig=sig) $root
)
if (ci. eq(0.9999,na, sa,nb, sb, sig) <0) {

up<-1
low<-uniroot ( ci . eq,

c (-0 . 9999 , min (rdelta ltestval<O] , na. rm=T) ) ,

na=na, sa=sa, nb=nb, sb=sb, sig=s ig) $root
Ì
if (ci. eq(-0.9999,na,sa,nb,sb, sig)>=0 &&

cj-. eq(0.9999, na, sa, nb, sb, sÍg) >=0) {
l-or¡<-uniroot (ci . eq,

c (-0 . 9999 , nin (rdelta ltestval<O] , na . rrn=T) ) ,
na=na, sa=sa, nb=nb, sb=sb, sig=s ig) $root

up<-uniroot (ci. eq,
c (nax (rdelta ltestval<O] , na. rn=T) , 0 . 9999) ,

na=na, sa=sa, nb=nb, sb=sb, sig=sig)$root
)
return (c (low, up) )

)
I

The function ¡p.ciO computes the Jefireys-Perks confidence inte¡va.l

Its arguments ale the sarne as tliose for profll . ci O .

j p. ci<-funct ion(t ,x,a=-!/2 , sig=0 . 95) {
n<-Iength(t)
na<- srun (t )
nb(-n-na
sa<-sum(txx)
sb<-surn (x) -sa
if (na==O ll nb==O) return(c(-1,1))
else {

pa. hat<-sa/na
pb . hat<-sb/nb
c<-qcbisq(sig,1)
a.hat<-na,/(na+2x(a+1))*pa.hat + (a+1)/(na+2*(a+1))

+ nbl(nb+2*(a+1))xpb.hat + (a+1)/(Db+2*(a+1))
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b.hat<-pa.hat-pb.hat
t<- (I/r.a+7/nb) /4
v<- (I/na-I/nb) /4
V<-u* ( (2-a. hat) xa. hat-b . hat^2) +2xv* (1-a. hat) xb. hat
est<- (b. hat+c*vx (1-a. hat) ) / (1+c*u)
noe<-sqrt (c* (V+c*u^2* (2-4. hat) *a. hat

+c*v^2* ( 1-a. hat) ^2) ) / ( l+cxu)
lou<-est-noe
up<-est+noe
return(c (rnax(-1, 1ow),min(1,up) ) )

)
I

The following code rvas used to obtain the simulation lesults. In the end,

it creates a data fi'ame named sin.results t'hich contairn the simulation

results.

r<- 10000
sin. results<-NULL
correct<-funct ion (ci , pa, pb) {

delta<-pa-pb
c<-0
if (ci[1]<delta && ci[2]>delta) c<-1
return(c)

)
for (sig in c (0 , 9,0 .95,0 . 99) ) {

for (n in c (5, 10,25) ) {
for (pb in seq(0.1,0.9,by=O.2)){

conf,prof<-NULL
conf . jp<-NULL
for (pa ln seq(pb,0.9,by=O,2) ) {

c. prof<-0
c.jp<-o
1. prof<-0
r. iP<_0
for (j in 1:r) {
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rpwrli st<-rpvrsim (n, pa, pb)
ci . prof<-prof ll . ci (rpwrl ist$treatnents ,

rpwrl ist$responses , sig)
ci . jp<-jp. ci (rpwrli st$treatnent s,

rpwrl ist$responses , -1l2, sig)
c . prof <-c . prof+correct (ci. prof,pa,pb)
c. jp<-c. jp+correct (ci. jp,pa, pb)
1 . prof <-1 . prof+ci . prof [2] -ci . prof [1]
I . j p<-1 . jp+ci . jp [2] -ci . jp [1]

)
conf.prof<-c.prof/r
conf. jp<-c . jplr
tength. prof<-1 . prof/r
length. jp<-1. jplr
sim. results<-rbind ( s in. results, c (sig,n,pa,pb,

corif . proJ, conf . jp, length. prof , length. jp) )

)
s in. results<-data. frame (s in. results)
narnes(sin.results)<-c("sig", "n" , 'rpa" , "pb" , " conf. prof ",

" conf. jp", " length. prof ", "lengtb. jp" )

To generate the results fol tlie histograms in section 4.2.2, the follot'ing

code was lun. It results in a vector nâmed stat ivhich contains all the

generated outcomes for given values of n, pa and pb.

r<- 10000
stat<-NULL
for (j in 1:r) {

rpvrfi st<-rpwrs in (n, pa, pb)
t<-rpnrli st$treatnent s

x<-rpwrli st$responses
na<-surn (t)
sa(-sr:n (xxt )

A-6



Appendix: Computer Code

s<-sun (x)
nb<-n-na
sb(-s-sa
pa. hat<-sa/na
pb. hat<-sb/nb
if (na!=O & nb!=O) {

nextstat<- ( (pa. hat-pb . hat) -(pa-pb) )
/sqrt (pax ( 1-pa) /¡¡¿+pb* ( 1-pb) /nb)

stat<-c ( stat , nextstat)


