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Abstract

In clinical trials with extreme outcomes, it is ethically desirable to treat as
many patients as possible with the superior treatment. Adaptive designs
accomplish this while still producing statistically meaningful results. One
such design is known as the randomized play the winner rule (RPWR). Two
asymptotic methods for constructing confidence intervals based on data from
the RPWR are presented and compared by simulation. It is found that
both methods perform well for small sample sizes despite being approximate
methods. Some other aspects of the RPWR are examined, such as the rate
of convergence of a martingale central limit theorem and some appealing

properties of the allocation probabilities.
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Chapter 1

Introduction

1.1 Background

Whenever a new medical treatment is developed, it is always necessary
to determine its effectiveness. The most common method is to conduct clin-
ical trials. In such trials, the new treatment is compared with a standard
treatment or a placebo. The object is to determine if the new treatment is
more effective than methods currently in use, or if it is effective at all.

In many cases, there is a simple way to conduct a clinical trial. Take all
patients recruited for the study and randomly assign half to the new treat-
ment while the rest receive the control treatment (or placebo). The statistical
analysis of such a design is straightforward since this type of randomization
allows us to consider the two groups of patients as coming from two different

populations with all the observations being independent of each other. Ana-



1.1 Background

lyzing data from two independent populations is a problem which has been
around for quite some time.

Often in clinical trials, we only observe whether or not a treatment was
effective or not. Hence, our data consists of indicator variables (either “suc-
cess” or “failure”) i.e. we have binomial responses. There are many different
ways to analyze data resulting from two independent binomial populations,
see section 1.3.

Assigning half the patients to each treatment does have one important
effect. If there is a difference between the two treaiments, then half of the
patients are receiving an inferior treatment. From an ethical standpoint, it is
desirable to have as many patients on the superior treatment, but we do not
know ahead of time which treatment is superior. This does not pose a big
problem when the situation is not potentially life threatening. For example,
if a comparison is to be made between two drugs for treating a headache, the
fact that one group of patients will be receiving an inferior treatment, and
therefore may have a higher occurence of headaches is a very small price to
pay.

However, consider an extreme situation where the response to the treat-
ments is either the patient survives or dies. In this case, having half the
patients on a treatment which has a higher mortality rate is ethically in-
feasible. Alternative methods of assigning patients to the treatments are
needed.

This is where adaptive designs enter. An adaptive design is such that the
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patients are treated sequentially, and when a patient is ready to be assigned a
treatment, this assignment is dependent on the outcomes of the previous pa-
tients. The objective is to maximize the number of patients treated success-
fully while still obtaining statistically meaningful results. There have been
many proposed adaptive designs, some of which are deterministic, while oth-
ers incorporate randomization. Obviously, from a statistical point of view,
~the deterministic methods are not reasonable because of the possibility of
selection bias.
Many of deterministic methods can be modified to incorporate random-
ization in some way. This is the case with one particular adaptive design,

which will be the focal point of what follows.

1.2 The Randomized Play the Winner Rule

This type of design has its roots in the deterministic play the winner
rule of Zelen {39]. It is based on the idea of having an urn containing balls
representing each treatment. A ball is randomly drawn and the treatment
which it corresponds with is assigned to the next patient. Once a response
is obtained, additional balls are added to the urn according to the specified
rules of the design.

The design of Zelen was such that balls were drawn without replace-
ment, and as a consequence, Wei and Durham [37] noted that this rule as-

signed patients in approximately equal numbers to each treatment. Wei and




1.2 The Randomized Play the Winner Rule

Durham modified Zelen’s rule and created the randomized play the winner
rule (RPWR).

For conducting a clinical trial using the RPWR, we have an urn as de-
scribed above. Initially, the urn is composed of « balls of each type. Balls
are drawn with replacement. Suppose the ball drawn is of type 7, (7 = A or
B). If the resulting response is a success, then 3 balls of type i are added to
the urn. Otherwise, 3 balls of the other type are added to the urn.

If there were any prior knowledge about the two treatments under study,
this could be incorporated into the design by letting the urn initially contain
o4 balls of type A and ap balls of type B. However, it is often the case that
we assume clinical equipose at the onset of the trial, that is there is no reason
to initially prefer one treatment over the other, and take oy = ap = a.

Another aspect of the RPWR is its ability to handle delayed responses as
well. If a patient is ready to be assigned a treatment but previous patients
responses have not yet been observed, then a ball can still be drawn from the
urn with its current composition. Incorporating delayed responses increases
the complexity of the analysis, so it will be assumed from here on that the
previous patients responses are all available before the current patient is to
be freated.

The RPWR has ethically desirable properties compared with traditional
randomization. The RPWR assigns more patients to the better treatment
and the RPWR has a higher total success rate. These help contribute to the

RPWR being a recommended design where outcomes are life threatening.
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The RPWR has been used in practice. Bartlett et al. [8] describes its use
in the ECMO trial. A new treatment known as extracorporeal membrane
oxygenation (ECMO) was compared with the conventional treatment for
infants with severe respiratory failure. This particular trial had 12 subjects,
but only 10 of which were assigned treatments via the RPWR with a = 3 =
1. Nine patients were assigned ECMO and survived, while the one patient
which received conventional therapy died.

Statistical analysis of the ECMO trial can be found in Wei [36], Begg
[10] and Wei et al. [38]. There was controversy over how to properly analyze
such data, particularly in the discussion following the article by Begg. It is
also arguable as to how successful the ECMO trial was, in large part due to
only one patient being assigned to the conventional treatment. It appears
as though the ECMO trial was a case where the two treatments were too
unbalanced, so a meaningful comparison could not be made. In retrospect,
this trial should have been run with a larger value of o so enough patients
could have been assigned to the conventional treatment, and a meaningful
comparison coutd be made.

The RPWR was used on one other clinical trial as well. Tamura et al.
[33] describes its use in comparing fluoxetine with a placebo for treating
depressive disorder. This was a much more complex design. There were two
strata, and in each stratum the first six patients were assigned treatments by
permuted block randomization, while the following patients were randomized

by the RPWR with @ = 3 = 1. The end result was that fluoxetine had no
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significant effect. This fact was also noticeable in the allocation proportions.
In one stratum, 23 patients were assigned to fluoxetine and 22 were given
the placebo, while in the other stratum, 23 patients were assigned fluoxetine
and 21 were given the placebo. When the treatments have no difference, the

allocation proportions are similar, as seen in this case.

1.3 The Case of Two Independent Samples

Before proceeding to how to analyze data arising from the RPWR, infer-
ence for two independent binomial samples will be reviewed, specifically deal-
ing with constructing confidence intervals. There are two main approaches
to this problem. The first is to use “exact” techniques, which means the ex-
act distribution of a particular test statistic. The second approach is to use
asymptotic approximations. Both methods are for constructing confidence
intervals for A = p4 — pg, where p4 and pp are the success probabilities of

the two populations.

1.3.1 “Exact” Confidence Intervals

Let T be a discrete statistic for which large values support larger values
of A, and smaller values support smaller values of A. For each Ay, let A(Aq)
be the acceptance region for testing Hp : A = Ap against H, : A # g at
level . For each possible value of T, let C{t) = {Ag:t € A{Ag)}. It then

follows that C'(f) is a 1 — « confidence set for A. There are several ways to
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choose A(Ap).
One method is known as the tail method. Essentially, it corresponds to
inverting two one-sided tests, each of size /2. The confidence limits, Ay

and Ay are found by solving
i _ 7 . _
P(T < to,Au) = § and P(T > tQ,AL) = E (11)

where ¢; is the observed value of T'. This method can be quite conservative.

An alternative is to invert one two-sided test. For this method, we enter
values into A(A) in order of their probability under Hy, beginning with the
highest, and stopping when the total probability is at least 1 — -, and then
finding C'(to). Another way of creating A(Ay) is to order them according
to a statistic such as the likelihood ratio, Wald, or score statistics. These
methods are not as conservative, but do not guarantee intervals and can be
computationally difficult.

There is also the problem of nuisance parameters. Two approaches are
to use a procedure conditional on the sufficient statistic of the nuisance pa-
rameter, or to redefine the p-value as the maximum p-value over the range
of the nuisance parameter.

Possible choices for T are,

T=pa—7ps (1.2)
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or

ha — Pp) — A
T — (pA pB) 0 (13)
\/ﬁ,;(l—m) . 55(—5p)
nA ng

where p4 and pg are the MLE’s of p4 and pg, p4 and pg are the MLE’s of
pa and pp subject to py — pg = Ap and ny and np are the samples sizes

from each population. See Agresti [1] for more details.

1.3.2 Asymptotic Intervals

The asymptotic intervals presented in this subsection are all described in
detail in Beal [9]. These intervals are all based on the asymptotic normality
of the MLE’s of p4 and pg. The simplest is to use the method which would

be seen in many introductory statistics courses, i.e.

Dada n Prds
gz

(Pa — PB) £ 29/0 (1.4)

where g4 = 1 —pa, gg = 1 — pp and 2/, is the upper v/2 quantile of the
standard normal distribution.

This interval can be derived by solving
(A =AY = cVar(A;pa, ps) (1.5)

and replacing p4 and pp by their MLE’s. Different intervals can be obtained
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by replacing p4 and pp with different estimates.

When p4 and pg are estimated by their MLE’s under the restriction that
pa—pp = A we have the method due to Mee, while a method due to Mietti-
nen and Nurminen is essentially the same with a minor modification. These
intervals require numerical methods to find the endpoints of the confidence
interval, so computationally, these do not pose a huge advantage over the
exact methods.

Two similar methods due to Beal are the Haldane and Jeffreys-Perks in-
tervals. These are both based on a similar idea. The Jeffreys-Perks method
will be described in detail in section 2.3.2. Both intervals have closed form
solutions which make their computation much simpler than the other meth-
ods. Again, the full details of the five asymptotic methods named here can

be found in Beal [9].

1.4 Inference for the RPWR

Before describing methods of interval estimation, some tests will be de-
scribed for testing if there is a difference between the two treatments. The
first such test is due to Wei [36]. He constructed a permutation test based on
S, the total number of successes on treatment A. He described an algorithm
for obtaining the exact distribution of S, conditional on the responses of the
patients.

Wei used this procedure on the ECMO data, where the observed value of
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S4 was 11.7 It was found that the p-value was P(S4 > 11) = 0.051.

This approach was criticized by Begg [10]. A main argument was that
Wei’s p-value included as an extreme point the outcome where all patients
are assigned to ECMO, yet this outcome gives no information. The true p-
value using Wei’s method should be 0.038. Begg also objected to the way in
which Wei’s test was constructed. He compared several tests with different
summary statistics and conditioning on sufficient statistics of the nuisance
parameter. He found that a test using T' = ps — pg, where p4 and pp are
the same as in the case of two independent samples (see section 2.2.3), and
conditioning on S, the total number of successes, performed best.

In the discussion following Begg’s paper, Royall showed how p-values
ranging from 0.003 to I can be obtained for the ECMO data using various
approaches. Wei also featured in the discussion, where he supported a test
based on T = 4, — pp.

Wei et al. [38] turned the focus towards confidence intervals. He showed
how the exact distribution of the sufficient statistics (see section 2.2.3) can
be obtained. Based on this distribution, a conditional interval can be con-
structed, however this interval does not perform very well.

A better interval was the unconditional interval, which is essentially the
tail method for the RPWR. One major drawback to this method is that the

calculations required are quite intensive. This method is not very simple to

"Wei included two more patients who were assigned ECMO and survived, however
these patients were not assigned by the RPWR.

10
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implement.

In the same article, asymptotic intervals were discussed. The asymptotic
normality of the MLE’s was established, and hence the usual asymptotic in-
terval could be used. However, as in the case of two independent samples, this
interval performed very poorly. As an alternative, a profile likelihood based

method was derived. This method will be described in detail in section 2.3.1.

1.5 A Summary of Simulation Methods

For the different methods of constructing confidence intervals for data
arising from the RPWR, we would like to know which perform best. Also, for
the asymptotic methods, their actual confidence levels are different from their
nominal confidence levels. However, with data from the RPWR, calculating
the actual confidence level is far too complex a task. A solution to this
problem is to use simulation to compare the methods.

Simulation is a method to model and analyze stochastic systems using
computers. A main objective of simulation is to understand the behavior of
a systermn without actually observing the real system. In this particular case,
the system to be observed is the RPWR. A particular outcome of the RPWR
can be simulated, and then confidence intervals can be constructed. This can
be repeated many times and the proportion of intervals which contain the true
parameter value and the average length of the intervals can be determined.

These are both estimates of their theoretical counterparts.

11
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The most important aspect of simulation is the generation of pseudo-
random numbers. A pseudorandom number generator creates a sequence
of numbers between 0 and 1 which appear to be uniformly distributed. In
reality, they are not truly uniform, since the next number to be generated
is actually a function of one or more of the previous numbers. Eventually,
a generator will go through the entire sequence and return to the begin-
ning. The length of the entire sequence until it reaches the beginning again
is known as the period of the generator. It is desirable for a generator to
have a large period, be efficient and quick, as well as produce numbers which
appear random.

To test pseudorandom number generators, many statistical tests can
be used. In particular, classical goodness of fit tests such as the ¥? or
Kolmogorov-Smirnov tests can be employed, or more powerful methods such
as those described in Zhang [40] can be used to check for one-dimensional
uniformity. Other tests check for uniformity in higher dimensions. For exam-
ple, if each random number is plotted against the previous random number,
the points should be uniformly distributed in the unit square. This con-
cept can be extended to higher dimensions. It is also important to test a
pseudorandom number generator for independence and ensure there is no
autocorrelation. This can be accomplished using the serial correlation test.

A simple pseudorandom number generator is the multiplicative linear
congruential generator. For this generator, we have a sequence zy,2,,...

where z, = az,, mod m. The random numbers are given by z;/m. The

12
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most popular choices for a and m are a = 7° and m = 23! —1. This generator
has a period of 23! — 1.

For the simulations in section 2.5, random numbers were generated using
the default generator in R, the Mersenne Twister. This generator is currently
the best for simulation purposes. It is quick and eflicient, and has an enor-
mous period of 2!9%37 - 1. It has also been shown that the generator produces
random numbers which are uniformly distributed in 623 dimensions. This
generator is more complex and will not be described here. For more details,
see Matsumoto and Nishimura [22].

For the RPWR, generating a binomial random variable, b is crucial. This
is simple once a uniform number, u is generated. If p is the probability of a

success, then b = 1 if u < p and b = 0 otherwise.

1.6 Summary of the Thesis

Inference for the RPWR is examined. In particular, the construction of
confidence intervals for the difference of success probabilities is considered.

In chapter 2, the theoretical background of the RPWR is presented. Two
methods for constructing confidence intervals for the difference are explained
in detail. These are the profile likelihood and Jeflreys-Perks intervals. The
profile likelihood interval has been used before, while the Jeffreys-Perks inter-
val has never been employed in the case of the RPWR. The two methods will

be compared by simulation. The criteria of interest is the actual confidence

13
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level and the average length of the intervals.

Chapter 3 discusses a theoretical aspect of the Jeffreys-Perks interval.
This interval is a special case of a more general method, and the reasons for
choosing this particular interval will be discussed.

Some other theoretical issues can be found in chapter 4. A martingale
central limit theorem is essential for the asymptotic methods of inference
to be appropriate. The rate of convergence of this limiting result will be
examined, as well as other theoretical results.

The RPWR still has many aspects to be examined, and there is plenty
of research still to be done. Chapter 5 will discuss some possible extensions

and future research.

14




Chapter 2

Theoretical Background and

Computational Results

2.1 Introduction

In this chapter, some of the theoretical background for the RPWR will
be discussed. After introducing all the necessary notation, some additional
results will be determined such as the limiting behavior of the RPWR as well
as the likelihood function and sufficient statistics.

Two methods for constructing confidence intervals for data arising from
the RPWR will also be described in detail. Both are asymptotic methods,
however both have the advantage of showing signs of having good properties
for small sample sizes.

As an example, the data from the ECMO trial will be considered. Con-

15



2.2 Theoretical Background

fidence intervals will be constructed using both methods.
These two methods will also be compared by simulation. The criteria
of interest is the actual coverage probability and the average length of the

resulting intervals.

2.2 Theoretical Background

2.2.1 Notation

Our two treatments will be called “A” and “B”. We have n patients in

total. Define the following indicator variables:

1, if the ¢ patient receives treatment A

0, if the ™" patient receives treatment B

1, if the i*® patient’s response is a success
X; = ¢ (2.2)

0, if the /" patient’s response is a failure

The success probabilities will be denoted by pa and pg for treatments A and

B respectively. Let g4 =1 — p4 and gg =1 — pg. Note that

pa=PX;=1T; =1) (2.3)

ps =P(X; = 1T; = 0) ‘ (2.4)

16



2.2 Theoretical Background

The parameters of interest are:

Difference: A =p4 — pg (2.5)
Odds Ratio: 6§ = 2498 (2.6)
JAPB

It will also be useful to define the number of patients on each treatment, the

total number of successes and the number of successes on each treatment,

42
Na=> T, Np=n-—Ny, (2.7)
=1
S=>"Xi, Sa=> TX:, Sp=S5-5a (2.8)
i=1 i=1

Particular realizations of these variables will be written in lower case.
Initially, the urn contains « balls of each type and after each response,

we add [ balls of the appropriate type. An important quantity is the proba-

bility of patient ¢ receiving treatment A, which shall be denoted by p;. It is

straightforward to verify that this probability is given by

y2i :HD(T; = 1IT1:---;,I'i—l,Xl;---aXi—l) (29)
ot B (20X + G -1) - D T - S X)
- : (2.10)
2004+ (1 — 1)

since the numerator is the number of balls of type A and the denominator is

the total number of balls after the first ¢ — 1 responses.

17
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2.2.2 Limiting Results

The limiting behavior of N4 and p; provides more insight into the prob-
lem. In order to obtain limiting results, it should be noted that the RPWR
is a special case of the generalized Pélya wrn model (see Rosenberger [28]).
Following Athreya and Karlin [5], this model can be embedded into a contin-
uous time Markov branching process, from which the desired limiting results
can be obtained.

Define the addition matrix, M, such that its i7*" entry is the expected
number of balls of type j to be added to the urn after a ball of type ¢ was
drawn, i,7 = A, B. This matrix has an interpretation in the context of
branching processes from which the limiting results follow (see Athreya and

Karlin [4]). For the RPWR,

M=g | (2.11)

g PB

The left eigenvector? associated with the largest eigenvalue of M determines
the limits of interest. In this case, the eigenvalues of M are 3 and 3(ps +

ps — 1), hence the largest eigenvalue is 8. The left eigenvector associated

YA vector v associated with an eigenvalue X satisfying vIM = vTA

18
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with 3 is

v = (v4,v5)" (2.12)

T
:( 4B , q4 ) (2.13)
qat+qp 4at s

In Rosenberger and Sriram [31], it is shown that

Ny qg

lim — =wvy = a.s. 2.14
n—eo 7 44+ ap ( )
and
lim p; = vg = —22 a.5. (2.15)
R—00 gs + 4B

A consequence of these results is that the asymptotic proportion of suc-

cesses is given by
Pads +DPBqa

4a + 4B (2.16)

If we had randomly assigned half the patients to A and the rest to B, the

success rate would be %(pA + pg). If we assume py > pp, then

dB
ga +qB

1 da 1
> - and < - 2.17
2 ga+gqp 2 (217)

hence more weight is placed on the more successful treatment, and the total

success rate of the RPWR is higher.

19
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2.2.3 Likelihood Function and Sufficient Statistics

The likelihood function also plays an important role, so it will be de-
rived. Let .%Z,{pa, pg) be the likelihood function based on n patients. Then,

following Rosenberger et al. [30],

v%n(pAapB) = P(Tla ] )ﬂI:XI: e 1Xn)

= P(anTla ce 7Tn:-X17 R :Xn~1)]P)(T11 e ')Tn)Xla e :Xn—l)

VX, Tall=Xp) (1=Tp)Xn {1-Tn}1—Xn
g1 (1=T5) X (1T (1)

X P(Tani, . ;Tn-—I)Xla- . :Xn——l)

X P(Tl, e ,Tﬂ_l,Xi, . -aXn.—l)

W Xn Tn(1—Xn) (1-Tn)Xn (1-Tn)(1-Xn
:pg X a0 ({ )pEB ) qfc; I )

X pi(1 = pa)™ " L1 (pa, PB)

(2.18)

and after unwinding the recursion,

n
Zolpasps) = o gy o ap® [ pF (1 - pi)* " (2.19)
i=1

hence, the likelihood function is proportional to the likelihood function in
the usual case of two independent samples. The likelihood function can also
be expressed in terms of A (or §) and pg. Hence, we have a main parameter
of interest (A or ¢) and a nuisance parameter (pg).

Since the likelihood function corresponds exactly to the probability dis-
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tribution of 71, ..., T, and X, ..., X, the sufficient statistics can be deter-
mined using the factorization criterion. Clearly, N4, Np, S4 and Sp are
jointly sufficient. However, Ng is a function of N,4. Hence, N4, S4 and Sg

are jointly minimal sufficient statistics.

2.3 Methods

Two asymptotic methods for analyzing data arising from a RPWR design
will be compared by simulation. The first is the profile likelihood method
(Wei et al. [38]), and the second is known as the Jeffreys-Perks method {Beal
[9]). Both methods are based on maximum likelihood estimators and related

ideas.

2.3.1 Profile Likelihood Method

The likelihood function for this problem is proportional to the usual like-
lihood function from the case of two independent samples. The MLE’s are
well known to be

. o4 . 5B

Pa = E and P = N (2.20)

In the case of two independent samples, it is known that ps and pg are
asymptotically normally distributed, and confidence intervals can easily be

constructed. For the RPWR design, there is a corresponding result. Using
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2.3 Methods

martingale limit theory and the Cramér-Wold theorem, it can be shown that

VN4(Pa —pa) and VNg(Pr — pB)

2.21
VPAda \/PBUB ( )

are asymptotically independent and each follow a standard normal distribu-
tion.

We can use this result to construct a confidence interval based on the
likelihood ratio statistic. However, we have a nuisance parameter. To over-
come this, we use what is known as the profile likelihood, which essentially
means the nuisance parameter is replaced by its restricted MLE (i.e. the
MLE assuming the parameter of interest is known).

Suppose the parameter of interest is the difference, A. We can write the
log-likelihood in terms of A and pg. Let ¢(A,pg) = log %, (A, pg). Then
the profile likelihood for A is

C(A) = max {(A, pp) (2.22)

= (A, pp(A)) (2.23)
where pi(A) is the restricted MLE of pp and

0,1—A) ifA>0
2= (2.24)

(-A 1) A<
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2.3 Methods

Obtaining pi(A) involves solving a cubic equation. A closed form is given
in Miettinen and Nurminen [24].

Since asymptotic normality still holds, the 100(1 — +y)% confidence region
is given by

{ac2|udm) - @) <xéim) (2.25)

where x?(y) is the x? quantile with upper tail probability equal to 7.

2.3.2 Jeffreys-Perks Method

This method is a specific case of an idea discussed in Beal [9]. For

nA ng

this method, it is useful to define @ = p4 + pg, v = %{ LN i] and

U o= ;i [% — %] Since the MLE’s of ps and pg are still asymptotically

normal, we have that
{A (A - A)? < oVar(A 3, A)} (2.26)

is a 100(1 — v)% confidence region for A, where ¢ = x?(v) and & and A are
expressions for a and A.

It turns out that
Var(A;a,A) = v [(2 = a)a— A%] +20(1 — @)A (2.27)

which is quadratic in A, so equality holds at two points in (2.26), which are
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2.3 Methods

the solutions to

~

(A — A)? = cVar(A; @, A) (2.28)

These two solutions form the endpoints of the confidence interval.
Beal suggested taking A = A and @ to be the Bayes estimator of a with

a prior density proportional to (pagappgs)®, i.e.

(k) = N4 5 K+1
Taat2e+ D ma 2 1) (229
ng . K+ 1 '
np + 2(k+ 1) ng + 2(k + 1)
or,
1 ¢+ 1
(k) = sa+(k+1) sp+ (k+1) (2.30)

S na+2k+1)  ng+2r+1)

From (2.29) we see how a(x) can be obtained by modifying the MLE’s and
(2.30) shows how a(k) can be interpreted as an estimate of ¢ with an addi-
tional x + 1 successes and failures on each treatment. For the Jeffreys-Perks
interval, we take x = —%.

The solutions to (2.28) in this case are given by,

A A g, A 209 _ 2\ 201 _ 72
A+ cv(l—a) N \/C (Va.r(A, a, A} + cu?(2 — @)a + cv?(1 — a) )
1+cu 14 cu

(2.31)
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2.4 Example: The ECMQO Trial

2.4 Example: The ECMO Trial

The ECMO trial employed the RPWR using o = 1 and 8 = 1. The first
ten patients were randomly assigned to ECMO (treatment A) or conventional
treatment (treatment B) using this rule. The first patient received ECMO
and survived. The second patient received the conventional treatment and
died. The remaining patients all received ECMO and survived. In our no-
tation, we have t; = 2, = 1 for i = 1,3,...,10 and {3 = x5 = 0. This gives
na=9,84=955=0.

The confidence intervals for the difference are given in table 2.1. We can
easily see that in this case, the profile likelihood intervals are shorter. In the
next section, simulations will assess whether or not this is always the case,

or if this is a rare exception.

Confidence Level Profile Likelihood  Jeflreys-Perks

0.90 (0.258,1.000) _ (0.140, 1.000)
0.95 (0.146,1.000)  (—0.010, 1.000)
0.99 (—0.007,1.000)  (~0.236,1.000)

Table 2.1: Confidence intervals for A using the ECMO data.

2.5 Simulation Results

The profile based confidence interval and the Jeflfreys-Perks interval were
compared by simulation. The values for the parameters py and pp were

0.1, 0.3, 0.5, 0.7 and 0.9. The simulations were done for sample sizes (n) of
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2.5 Simulation Results

5, 10 and 25, and nominal confidence levels (1 — v) of 0.90, 0.95 and 0.99.
The measures of interest are the actual confidence level (measured by the
observed coverage probability) and the length of the intervals.

For each combination of p4, pg, » and 1 — v, 10,000 outcomes of the
RPWR with @ = 1 and 8 = 1 were generated. Note that p, is always at
least as large as pg. Results for cases where pg is larger than p, can be
determined by symmetry. The actual confidence level was the proportion
of intervals which captured the true value of A. The average length of the
intervals corresponding to the simulated outcomes was used as a measure of
the length of the intervals. All simulations were done in R, version 1.8.1.
The code which was used can be found in the appendix.

The results of the simulations are displayed in tables 2.2 — 2.5 and fig-

ures 2.1 — 2.10.
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2.5 Simulation Results

Confidence Level Length
rn pAa n Profile Likelihood Jeffreys—Porks Profile Likelihood Jeffreys—Perks Ratio {PL/JP)
0.1 0.1 5 0.9776 0.9960 0.9739 0.9678 1.0063
10 0.9685 0.9872 0.6434 0.6549 0.9824
25 0.8503 0.9676 0.3950 0.3967 0.9955
4.3 53 G.9506 0.8571 1.0321 1.0254 1.0065
10 G.8879 0.6534 0.7381 0.7402 0.5972
25 0.8857 0.5221 0.4815 0.4804 1.0023
0.5 5 0.8434 0.8981 1.6536 1.0844 0.9898
10 0.9030 0.9123 0.7703 0.7834 0.9832
25 0.8869 G.9050 0.5029 0.508% 0.9882
0.7 5 0.9104 ¢.9003 1.0268 1.0784 0.9549
10 0.921¢ 3.9058 0.7630 0.8035 0.9496
25 0.9142 3.9250 3.4926 3.5156 0.9554
0.9 5 0.9247 0.9087 0.9629 1.0678 0.9018
10 0.9424 0.9287 0.7229 06.8064 0.8964
25 0.9522 0.9433 0.4946 0.5536 {.8933
0.3 0.3 5 0.8940 0.9755 1.0935 1.0774 1.0150
0 0.8806 0.9128 0.8312 0.8159 1.0188
25 0.8758 0.8857 0.5711 0.5588 1.0220
0.5 5 0.8894 0.9083 1.1263 1.1166 1.0086
10 0.8435 0.9198 0.8685 0.858% 1.0121
25 0.8704 0.8960 0.5998 0.5004 1.0160
0.7 b 0.8420 0.9146 1.1191 1.1361 0.9850
10 0.8771 0.9196 0.8604 0.8723 0.9864
25 0.8666 0.8893 0.5956 0.5988 0.5948
0.9 5 0.9363 0.9250 1.0680 1.1343 0.94t6
10 0.9081 .9344 0.8096 0.8701 0.9305
25 0.8766 .9154 G.5871 0.6246 0.939%
0.5 0.5 5 0.8428 0.945%0 1.1706 1.1588 1.0101
10 0.8551 0.8807 0.9142 0.8973 1.0183
25 0.8823 0.8836 0.6328 0.6214 1.0:83
0.7 5 0.8430 0.8909 1.1890 1.1908 .9985
10 0.8225 0.8927 0.9123 0.9115 1.0009
25 0.8767 0.8935 0.6306 0.6259 1.0009
0.9 5 0.8623 0.9305 1.155% 1.1906 0.9701
10 0.8650 0.9226 0.8674 0.9068 0.9566
25 0.8625 0.8798 0.6169 0.6419 0.9611
0.7 0.7 5 0.8538 0.9203 1.2161 1.2184 0.99581
10 0.56609 0.8905 0.9257 0.9269 0.9987
25 G.8730 0.8943 0.6232 0.6164 1.0079
0.9 3 G.8581 0.9362 1.2200 1.2383 0.9852
10 0.8282 0.9180 0.8869 0.9172 0.9669
25 0.8665 0.8946 0.5918 0.6081 0.8731
0.9 0.9 5 0.9379 0.9460 1.2631 1.2781 0.5882
10 0.9083 0.9445 0.3975 0.9358 0.9591
25 0.8663 0.9489 0.5335 0.5591 0.9541

Table 2.2: Confidence levels and lengths (90% Nominal level)
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2.5 Simulation Results

Confidence Level! Length
PE Pa n Proefile Likelihood Jeffreys—Perks Profile Likelihood Jefireys—Perks Ratio (PL/JP)
0.1 0.1 5 0.9851 0.9978 1.1843 1.6735 1.1633
10 0.9888 0.9976 0.8058 0.7494 1.0752
0 0.9577 0.9929 0.4887 0.4641 1.0529
0.3 5 0.9615 0.9920 1.2330 1.1446 1.0772
0 0.9583 0.9833 0.8954 0.8471 1.0571
25 0.9350 0.9558 0.5813 0.5627 1.0331
0.5 5 0.9836 0.9836 £.2370 1.18%5 1.0340
e 0.9489 0.9415 0.9270 0.9064 1.0227
25 0.9565 0.9546 0.6044 0.5985 1.0081
0.7 5 0.9592 0.9301 1.1984 1.2114 0.9393
10 0.9642 0.9556 0.8050 ¢.9310 0.9721
25 0.9566 0.9579 0.5935 0.6112 0.97:1
0.9 5 0.9777 0.9216 1.0934 1.1896 0.9192
10 0.9824 0.9483 0.8413 .9325 0.9021
25 0.9741 0.9669 0.5923 G.6569 0.9017
6.3 0.3 5 0.9768 0.9849 1.28:% 1.2050 1.0668
10 0.5230 0.9770 0.9891 (.9347 1.3582
25 0.5272 0.9490 0.6793 0.6532 1.0400
0.5 5 0.9260 0.9717 1.3029 1.2411 1.0498
10 0.9381 0.5528 1.9243 0.9830 1.0420
25 0.9280 0.5464 0.7101 0.6806 1.0283
0.7 5 0.9740 0.9740 1.2761 1.2577 1.0:47
10 0.9576 0.948¢ 1.0050 0.9995 1.0055
25 ¢.9315 0.9540 0.7011 0.6996 1.0021
0.9 5 0.9738 (.9481 1.2121 1.2551 3.9657
10 0.9604 0.9584 0.9349 0.8930 0.9414
25 0.9562 0.9688 0.6894 0.7341 0.9391
0.5 0.5 5 0.9473 0.9739 1.3408 1.2816 1.0461
10 0.8938 0.9560 1.0645 1.0222 1.0414
25 0.9379 0.9444 0.7459 0.7256 1.0279
0.7 5 0.9185 0.9664 1.3426 1.3015 1.0316
10 0.9184 0.9485 1.0577 1.0330 1.0240
25 0.9308 0.9392 0.7400 0.7286 1.0156
0.9 5 0.9723 0.9723 1.2964 1.2980 0.9988
16 0.9561 0.9577 1.0038 1.0305 0.9741
25 0.9325 0.9433 0.7182 G.7455 0.9634
0.7 0.7 5 0.9203 0.9758 1.3711 1.3273 1.0330
10 0.9130 0.9588 1.0720 1.0455 1.0253
25 0.9288 0.9489 0.7312 0.7163 1.0208
0.9 5 0.6490 0.9856 1.3669 1.3362 1.0230
10 0.9312 0.9680 1.0353 1.0342 1.0010
25 0.9268 0.9463 0.6982 0.7079 0.9862
0.9 0.9 5 0.9462 0.9949 1.4074 1.3603 1.0847
10 0.8584 0.9869 1.0280 1.0228 1.0061
25 0.9275 0.9822 0.6329 0.6388 0.9908

Table 2.3: Confidence levels and lengths (95% Nominal level}
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Confidence Level Length
PR PA n Profile Likelihood Jefireys—Perks Profile Likelihood Jeffreys-Perks Ratio {PL/JP)
0.1 0.1 5 0.5981 1.00C0 1.5258 1.2344 1.2361
10 0.9995 1.0000 1.1179 0.5055 £.2345
25 0.9976 0.9%98 0.6833 0.5851 1.1677
0.3 & 0.9950 0.9994 1.5431 1.3171 1.1715
10 0.99%3 0.9995 1.1872 1.0251 1.1581
25 .9866 0.9855 $.7813 0.7123 1.0969
0.5 5 0.5998 0.9998 1.5238 1.3713 1.1:12
10 0.9917 0.9818 1.1996 1.1028 1.0877
25 0.9938 0.9868 0.8012 0.7631 1.0489
0.7 5 0.9952 0.9745 1.4647 1.4019 1.0448
10 0.9915 £4.9746 1.1554 1.1409 1.0127
25 0.9934 $.9844 0.7884 0.7502 0.9578
0.9 5 0.9928 0.9718 1.3544 1.3654 0.9699
10 0.9945 0.9748 1.0572 1.1515 0.9181
25 0.9966 0.9899 0.7764 0.8557 0.9G73
0.3 0.3 5 0.9844 1.0000 1.5727 1.3752 1.1436
1G 0.9971 0.9939 1.2669 1.1259 1.1252
25 0.9843 0.9944 0.8860 0.8226 1.0771
0.5 b 0.9948 0.9988 1.5709 1.4179 1.1079
10 0.9933 0.9957 1.2894 1.1835 1.0895
25 $.9846 0.5914 0.9147 ¢.8679 1.053%
.7 5 3.9974 0.5974 1.53G8 1.4438 1.0644
10 0.9867 0.95891 1.2550 1.2077 1.03591
25 0.9916 0.9932 0.90G2 0.8839 1.0184
0.9 5 0.9923 £.9810 1.4540 1.4355 1.0129
10 0.9936 0.9840 1.1517 1.1960 0.9630
25 0.9958 0.9895 0.8599 0.9154 0.9394
0.5 0.5 5 0.9714 1.0000 1.5973 1.4571 1.0962
10 0.5907 0.9977 1.3281 1.2280 1.0816
25 0.9827 0.9839 0.9541 0.9100 1.0484
0.7 5 0.9883 0.9958 1.5874 1.4710 1.0791
10 0.9904 0.9957 1.3112 1.2361 1.0608
25 (.9845 0.8913 ¢.9441 3.9131 1.0338
G.9 5 0.9975 0.5975 1.5365 1.4632 1.0501
10 0.9905 0.9915 1.2248 12121 1.0105
25 0.9%07 0.9899 0.9009 0.0244 ¢.9745
0.7 0.7 0.9776 1.0000 1.6141 1.4908 1.0827
10 0.9872 0.9974 1.3227 1.2360 1.0701
25 0.9843 0.9911 0.9369 0.8944 1.0474
0.9 5 0.9002 0.9983 1.5983 1.47715 1.0818
10 0.9596 £.9981 1.2737 1.2046 1.0574
25 0.9838 £4.9902 0.8837 0.8653 1.0213
0.9 0.9 5 0.9946 1.00C0 1.6409 1.4885 1.1024
10 0.9967 0.9%99 1.2799 1.1725 1.0916
25 0.9581 0.9574 0.8314 0.7828 1.0622

Table 2.4: Confidence levels and lengths (99% Nominal level)

29




2.5 Simulation Results

P — Py n Profile Likelihood Jeffreys-Perks
G.90 0.0 ] 0.50 0.00
10 0.60 .40
25 1.00 0.60
0.2 5 0.75 G.25
10 1.00 0.25
25 1.00 0.75
0.4 & 1.00 0.32
10 .67 0.00
25 1.00 0.67
0.6 3 0.00 0.00
10 0.00 0.00
25 0.50 0.00
0.8 5 0.00 0.00
10 0.00 0.00
25 0.00 0.00
0.95 0.0 5 0.60 0.0
10 0.60 0.00
25 0.80 0.60
0.2 5 0.75 0.00
10 0.75 0.25
25 1.00 0.75
0.4 5 0.06 0.00
10 0.33 0.67
25 0.7 0.33
0.6 5 0.00 1.00
10 0.00 0.00
25 .00 0.00
0.6 5 .00 1.00
10 .00 1.00
25 0.00 0.00
0.99 0.6 5 0.60 0.00
10 0.20 0.00
25 0.80 0.20
.2 5 0.25 0.00
io 0.25 0.00
25 1.00 0.25
0.4 5 0.00 0.00
10 0.33 0.67
25 0.0 0.67
0.6 5 0.00 1.00
1G 0.00 1.00
25 0.00 1.00
0.8 5 0.00 1.00
10 0.00 1.00
25 .00 1.00

Table 2.5: Proportion of intervals that are anti-conservative
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Figure 2.1: Observed confidence level of the profile likelihood (solid) and
Jeflreys-Perks {(dashed) methods when A =0
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Figure 2.2: Observed confidence level of the profile likelihood (seolid) and
Jeflreys-Perks (dashed) methods when A = 0.2
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Figure 2.3: Observed confidence level of the profile likelihood (solid) and
Jeffreys-Perks {dashed) methods when A = 0.4

33




2.5 Simulation Results

A=086, n=5 1-y=09 A=08, n=10, 1-y=0.8 A=0.6, n=25 t-y=0%
T 4 3 I
g o 3 o 3 o
5 © 5 © § ©
kel o ke]
E « e © E @
[ol o Q0 (=] O (o]
O O O
0.7 0.9 0.7 0.9 0.7 0.9
Pa Pa Pa
A=0.8, n=5, 1-y=0.95 A=0.8, n=10, 1-y=0.95 A=0.6, n=25 1-y=095
T o B o ® o
z O > S z o
5 = 4 = 5 =
[ e ] @ @
Q Qo Q
o c =
[1F] [} [}
o T° o
= [+) c [+)) [y [¢>)
8§ < 8 o 8§ o
0.7 0.9 0.7 0.9
Pa Pa Pa
A=0.8, n=5, i-y=0.99 A=0.6, n=10, 1-vy=0.99 A=0.6, n=25, 1-y=099
& 2 :
| g ] 1 g
8 o 3 8 o
= | = c
] 8 S
§ 2 5 5 2
o ©° ot o ©
0.7 0.9
Pa Pa Pa

Figure 2.4: Observed confidence level of the profile likelihood (solid) and
Jeflreys-Perks {dashed) methods when A = 0.6
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Figure 2.5: Observed confidence level of the profile likelihood (solid) and
Jeffreys-Perks (dashed) methods when A = 0.8
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Figure 2.10: Average length of the profile likelihood (solid) and Jeffreys-Perks
(dashed) confidence intervals when A = 0.8
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2.6 Observations

2.6 Observations

By examining figures 2.1 — 2.10 there are a number of things to note. One
main observation is that there appears to be differences depending on the
magnitude of A.

When A is 0, 0.2 or 0.4, the Jeffreys-Perks method always has a higher ac-
tual confidence level. The profile likelihood method is often anti-conservative,
while the Jeffreys-Perks method is usually conservative. As the sample size
increases, the coverage probability of both methods becomes closer to nomi-
nal.

When A is 0.6 or 0.8, the situation is slightly different. For the most
part, the coverage probability of both methods is similar, except when the
nominal level is 0.99. In this case, the Jeffreys-Perks method tends to be
anti-conservative. But again, both methods get closer to nominal as the
sample size increases.

As for length, when A is 0, 0.2 or 0.4, the Jeffreys-Perks method is almost
always shorter. There is quite a difference at the 0.99 level while at the 0.9
level, the difference is minimal. As the sample size increases, the lengths of
both methods become similar.

When A is 0.6 or 0.8, the profile likelihood method becomes shorter, and
again, a largef sample size causes both methods to be similar in length.

It appears that for small values of A (say less than 0.5 in absolute value)

the Jeffreys-Perks method is superior since it results in shorter intervals,
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2.6 Observations

while at the same time being conservative. When A is large (say greater
than 0.5 in absolute value) the profile based method is superior since it is
shorter and has an actual confidence level closer to nominal.

These results seem to suggest that if we believe A is small, then the
Jeffreys-Perks method is best. Should we believe A is large, the profile likeli-
hood method is best. However, if we have a large sample size, the magnitude
of A is not as important, since both methods are similar. In this case, the
Jeffreys-Perks method is preferred since it is simpler computationally. The
Jeffreys-Perks interval can be calculated using explicit formulae, while the
profile likelihood interval requires numerical methods to determine the end-
points of the interval.

Another point of note is that sample sizes of 5, 10 or 25 can be considered
to be “small”, while the performance of the intervals is still quite good. This
seems to suggest the central limit theorem which both results depend on has
a quick rate of convergence.

One last point to note is that similar intervals can be constructed for
the odds ratio. However, simulation results suggested that the interval con-
structed along the lines of the Jeffreys-Perks method performed quite poorly,
while a profile likelihood based interval for 6 performs reasonably well (see

Wei et al. [38]).
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2.7 Summary

2.7 Summary

Some of the theoretical background of the RPWR has been presented.
The limiting results have shown how the RPWR. can increase the total num-
ber of successes. The likelihood function is the same as in the case of two
independent samples, which makes calculating MLE’s simple.

Two methods of constructing confidence intervals for the difference were
introduced. Both methods are asymptotic and can be used in the usual case
of two independent samples because of the limiting result in (2.21). As an
example, the ECMO data was used to demonstrate the two methods.

Simulation results suggest there are differing results depending on the
magnitude of A. Small A favours the Jeffreys-Perks method, while large A
favours the profile likelihood method. When the sample size increases, the
difference between the two methods becomes smaller, and in this case, the

Jeffreys-Perks method is best for computational reasons.
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Chapter 3

Further Details of the
Jeffreys-Perks Method

3.1 Introduction

Some aspects of the Jeffreys-Perks interval will be examined. In particu-
lar, support for estimating @ by a(x) will be presented, as well as justifying

the choice of k = —%. This support is based on some difficulties which can
arise when estimating a probability. A suitable estimate for probabilities will

be discussed as well as how it carries over to the RPWR case.
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3.2 Estimating Probabilities

3.2 Estimating Probabilities

There are some difficulties in estimating the probability of an event, es-
pecially if the sample size is small. These difficulties exist for both the two
sample independent case and for the RPWR, since the likelihood functions
are proportional. The RPWR is to be used with small sample sizes, so this
problem is particularly relevant.

First, consider estimating a single probability, p, from a sample of size n.
Let S be the total number of successes. The simplest estimator of p is the
ratio of successes to the number trials, p = S/n. This also happens to be the
MLE. At first glance, it would seem reasonable to use this estimate. After
all, it is the observed proportion of successes. However, this is only a useful
estimate if n is large. When n is small, this estimator has problems.

Consider the case where n is small, and S = 0. In this case = 0. This is
a strong statement. Essentially, it says that observing a success is impossible.
But if we have seen no successes in a small number of trials, this is by no
means an indication that a success is impossible. Alternative estimators of p
are clearly desirable.

An entire class of estimators can be derived by taking a Bayesian approach
to estimating p. A crucial step in this approach is the selection of the prior
density, f(p). An obvious first choice is f(p) = 1,0 < p < 1. This approach
also coincides with an approach used by Laplace, known as Laplace’s law of

succession. The result is that the estimate of p is given by (S + 1)/(n + 2).

45



3.2 Estimating Probabilities

This also arises from the Bayes postulate, which suggests assuming the prior
probabilities should be equal if they are unknown.

A uniform prior is actually a special case of a more general prior. The beta
distribution provides more flexibility. It is of the form f(p) o p*(1 — p)*2,
0 <p <1, g,k 2 —1. Under squared error loss, we obtain as our estimate

of p the posterior mean,

S+R1—|’1

3.1
R+R;+I€2+2 ( )

p=

Often, it can be assumed that successes and failures convey the same amount
of information. In this case, we take k) = k3 = x. Choosing k = 0 gives the
uniform prior. If k = —1 the prior is improper. This prior leads to the MLE,
so this choice for « is no good.

Jeffreys and Perks both objected to the use of a uniform prior because of
its connection with the Bayes postulate. They wished to find a prior which
was more theoretically pleasing. Both created invariance theories for which
the appropriate choice of x would assign the same probability to a region of
the parameter space even if the parameter is shifted. The result of Jeffreys
and Perks is the same for the binomial case, leading to « = —%, which is
like a compromise between the MLE and the Bayes postulate. See Good [15]
for even more on this topic. Jeffreys rule can also be interpreted in a rather
interesting way. To use Jeffreys rule, simply take a prior proportional to the

square root of the determinant of the information matrix (see Kass [20]).
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3.3 Estimating ¢ in the RPWR

Remember that this is true mainly for estimating probabilities from small
samples. When the sample size is large, the MLE does not suffer from the
aforementioned problem. However, the Bayesian estimators with a beta prior
(of which the MLE is a special case} are all asymptotically equivalent. Hence,
for large sample sizes it really doesn’t matter which particular estimator of

this form is chosen.

3.3 Estimating a in the RPWR

To use the method introduced by Beal, an estimate of @ = py + pp is
needed. Since this is a sum of two probabilities, the problems discussed
in the previous section will come into play. The invariance rule of Jeflreys
will be used to overcome this. To employ this rule, Fisher’s information is
required.

In the case of two independent samples, it is well known that the infor-

mation matrix is given by

LY 0
T = | Pata (3.2)
7805

It then follows that the determinant of Z is proportional to (pagapsgs)™',
and Jeffreys’ rule implies the prior should be proportional to (p AquBqB)"%.
This justifies the choice of x = —% for two independent samples.

To find the information matrix for the RPWR (see Rosenberger and Sri-
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3.3 Estimating ¢ in the RPWR

ram [31]}, the derivative of the log-likelihood is required. Recall from (2.19)

that

n
Z(parpB) = Piay 5 pPaps % T pF (L — pi)t " (3.3)
1=1

hence, the log-likelihood is,

Upa,pB) = Salogpa + (Na — Sa)logga

+Sglogpp + (Np — Sp)loggs

+ log (Hpi"(i —pi_)l_T*) (3.4)

i=1

The first derivatives of the log-likelihood are given by

9 Sa  (Na—54)

i 3.5
Opa Pa da ( )
Sa— N
_ 24 APA (3.6)
paga
(X —pa) T
— ZE=1( pA) (37)
Paga
and
Ot _Ss _ (Ns—5p) (3.8)
Ops PB 4B '
Se — Np
_ PB BPB (3'9)
PBYR
r (X - 1-1T;
— Z].—l( pB)( ) (310)
PBds
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3.3 Estimating a in the RPWR

from which it is clear that

02¢ 5%

— =0 3.11
Jpgpa  Opaps (8:11)

As for the diagonal elements of the information matrix, we have,

o [ (X - e
[ 2] g [ECeaty o
— Z?:i]EKXz "pA)zT'i] (3 13)
PAs '

where the cross products are zero in (3.13) since (X;—pa)(X; —pa) 115, ¢ # j
is nonzero only when 7; = 7; = 1, in which case successive conditioning leads

to B [(X; — pa)(X; — pa) T T; = 1,T; = 1] = 0. Also,

E [(X; — pa)*T]) = E [(Xi — 2Xipa + p3)T}] (3.14)
= (1 = 2p4)E [X,T}) + p4E [T}] (3.15)
= (1 = 2pA)paE[T}] + PAE T3] (3.16)
= pagak [T}] (3.17)
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3.3 Estimating a in the RPWR

where E [X;T;] = paE [T;] since

]E[Xiir;] - E[E [Xi,I;th s 1Xi—1;T1: .. ':ﬂ—l]]
- E[P(Xt = 1)1‘; = 1|X1) fee 7-Xi—17T1} s ;ﬂr-l)]

:E[P(X‘i - 1|X1)"')Xi—laT].}"':-rFi~l;E = 1)

(3.18)
X P(E = 1IX1} s JXi——l)Tla e ):_Fi—l)}
- pA}E {E [‘IHXI) e 7Xi~11 Tl; s )ﬂ—l”
= psE [T}
It now follows that
ot 1? n BT
Opa Pady
E[N
= M (3.20)
PAGA
Similarly, it can be shown that
2
N
E[ag] _ ElNs] (3.21)
Opa PBYB

Expressions for E [N,] and E [Np] can be derived by obtaining a recursive
relationship. The solution, as given in Rosenberger and Sriram [31] is quite
complicated, and involves both p4 and pg. This makes it very difficult to
take a prior distribution according to Jeffreys’ rule.

A simple solution is to estimate E [N,4] and E [Np] by the observed values
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3.4 Summary

of N4y and Np. In doing so, the problem reduces to the case of two indepen-
dent samples, and once again, the choice of k = —% seems quite reasonable.

It should also be noted that this choice of % is the same as if p4 and
pp were assumed to have independent beta prior distributions, where & was
chosen to be ~%~ for both. This interpretation is also appealing, since it results

from choosing the priors for p4 and pg separately according to Jeffreys’ Rule,

then combining them by assuming independence of the priors.

3.4 Summary

This chapter examined the Jeflreys-Perks interval. The choice of x = ~%
was investigated. It was found that this was a good overall choice for the
problem.

Estimating the probability of an event is always a tricky problem, espe-
cially with small samples. The MLE is not a very sensible estimator in such
a case. Lapalce’s rule of succession led to another estimator, but this estima-
tor has been criticized, mainly for its connection with the Bayes postulate.
The invariance theories of Jeffreys and Perks lead to an estimator which is
a compromise between the two other estimators, and this estimator works
better. Jeffreys’ invariance rule can be easily stated.

The problem of estimating probabilities carries over into the RPWR for

-estimating a. Jeflreys’ rule requires the information matrix, and for the

RPWR it is the same as in the case of two independent samples, except
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3.4 Summary

N,y and Np are random, and are replaced by their expectations. As an

approximation, E[N,4] and E[Ng] can be replaced by N4 and Npg, which

1

justifies why « = ~1

is a good choice for the RPWR as well.

52



Chapter 4

Further Properties of the

RPWR

4.1 Introduction

Some interesting results regarding the RPWR will be examined. One of
the previously mentioned ideas is the quick convergence to normality which
allows the use of the two methods for constructing confidence intervals. The
theory behind this convergence is discussed as well as some ideas relating to
the rate of convergence. Simulation results are also presented which demon-
strate how quick the convergence is.

Some additional results regarding the allocation probabilities of the two
treatments are also presented, including a comparison with some previously

established properties for a deterministic version of the play the winner rule.
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4.2 Rate of Convergence

4.2 Rate of Convergence

The asymptotic normality of P4 and pp was stated in section 2.3.1. In
section 2.6 it was noted how there appears to be a quick rate of convergence.
The details of this limiting result will now be examined. It is of interest to

see what affects the rate of convergence.

4.2.1 Asymptotic Normality of the MLE’s

A summary of main results in Wei et al. [38] is as follows. Let
Lny = n"t [e1(Xi — pa) T + c2(X; — pp) (1 — T3)] (4.1)

fori=1,...,n, n > 1 and constants ¢; and ¢, (to be used with the Cramér-

Wold theorem). Then,

n
_1 _i
ZZm' = e 2(Sa — Napa) + can”2(Sg — Nppp) (4.2)
i=1
is a martingale and {Z,;:¢=1,...,n,n > 1} forms a martingale difference

array. Theorem 3.2 of Hall and Heyde [16] can be used to show

Z Zni S N(0,7%) asn— oo (4.3)

i=1
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4.2 Rate of Convergence

where

n? = qaqs(cipa + c5pB)
g4+ Gm

(4.4)

Hence, we have that every linear combination of the variables n=% (Sa—Napa)

and n~2(Sg — Nppg) converges to the corresponding linear combination of

Wi and W5, where W and W, are jointly bivariate normal with,

el (%) cou [ ] 2 mags
W, ol W, 4at4m

It now follows from the Cramér-Wold theorem that

n73(Sa — Napa) > Wy

and n_%(SB e NBPB) i> I’Vz

Recall from section 2.2.2 that

i Na 4B
im —— = a.s.
n—oo 11 ga+gs

. Np qa

Iim — = a.s.
o0 7y qa+ gm

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

l ~
Applying Slutsky’s theorem leads to the conclusion that N (pa — pa) and

1
NZ(pp—pg) are asymptotically independent and jointly normally distributed

with means of 0 and variances of pags and ppgp respectively.
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4.2 Rate of Convergence

4.2.2 Factors Which Affect the Rate of Convergence

of the Central Limit Theorem

To examine the rate of convergence in the martingale central limit theo-
rem the following notation will be useful. In particular, the conditional and
unconditional variances are important. Let %,; be the o-algebra generated

by an: BN :Zni~ Define

oh = E[Z2]Pni] (4.10)
gy =E [qu‘] (4.11)
2=a (412)
i=1
noo9
2 Tni
Ve=2_2 (4.13)
=1 °n

Bolthausen {11] derived several results on the rate of convergence based on
these quantities. In particular the rates at which |V,? — 1] and |02, — %, go
to zero affect the rate of convergence. Rinott and Rotar [26] also found that
these quantities and some other subtle aspects of the dependency structure

are the determinants of an upper bound for the rate of convergence.
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4,2 Rate of Convergence

For the RPWR,

Zh =07 (X — paP T + (X — pe)’(1 - T)°
tere X — pa) (X —pe)Ti(1 = T3)] (4.14)
=n"" [§(X? — 2Xipa +Pp2)Ts + (X7 — 2Xipp +pp)(1 — T3)] (4.15)

1

=" [GT{X:(1 - 2pa) +p4) + (1 — T)(X:(1 — 2pp) + ph)] (4.16)

By definition, IE[7;|.%,,-1] = p; and in a manner similar to equation (3.18)
it can be shown that E [T3X;|.%, 1] = pipa and E[(1 — T}) X;|F 1] =

(1 - pi)ps, hence

i = 10 [(E [TiX] Frima] (L = 2p4) + E [T i) )
+6(E[(1 = T) X Foima] (1 - 2p8) + E[(1 - T)|Fnial p3)]  (417)

=n"" [ (pipall - 2pa) + piDh)
+e3((1 = pi)pu(l — 2pp) + (1 — pi)py)]  (4.18)

=n"" [clpipa(l — pa) + (1 — pi)ps(1 — ps)] (4.19)
and

G =1 [E [pi] pa(l — pa) + (1 — E[p))pa(l — pg)] (4.20)
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4.2 Rate of Convergence

It now follows that,

1 n n _
R N I . (4.21)
=1 i=1
1 | _
) Z(J?u‘ —55;) (4.22)
noi=1

{3

= 2|3 (5 [Bmpat = ) + S0 - Ipat ~ o)
~% [GE [p) pa(l = pa) + c5(1 - E[p])pa(l — PB)]) ’ (4.23)
= ;15 Z -]1; (pilcipa(l — pa — Gpp(l — ps)) + &ps(1 — ps)

—E [pi] (cipa(l — pa) — c3pe(1 — pr)) — c3ps(1 — pp))

(4.24)

n

> (i—E [pfl)‘ (4.25)

i=1

1
= — |cpa(l — pa) — Spe(1 — ps)|
ns2
i.e. |3 iy (pi — Efpi])| is an important factor in |V,? — 1]. Also,

|02 — 52| = % [cipa(t = pa)(pi — Epi]) + &3pa(1 — pe)(E [pi] — pi)] ‘
(4.26)

= % |ctpa(l — pa) = Bpa(l — ps)| Ipi — E [pi]] (4.27)

i.e. |p; — E[p;]| is an important factor in |02, — 32,

In order to examine the quantities in (4.25) and (4.27) expressions for p;
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4.2 Rate of Convergence

and E [p;] can be obtained recursively as

_ e+ BGE - 1)p + X+ (1 =-T)(1 - X))

Pir1 = 20+ i3 (4.28)

and
_ _2_3;_;%%;_1)15 i 4 PPAE [Pi}ziji(; —Elpl) (4.31)
20+ ﬁ(p;a—fi; G= D g + .Zf% (4.32)

Attempts to find a bound on |p; — E [p;] | using these recursive relationships
have so far been unsuccessful. It would appear that finding useful bounds
using only elementary techniques may not be possible. Tighter bounds may
be potentially obtained using more sophisticated martingale techniques.

It should also be noted that more than just the central limit theorem is
being used to prove the asymptotic normality of the MLE’s. The last step in
section 4.2.1 involves the convergence of —‘%‘— and %ﬁ to v4 and v respectively.
This convergence has been examined by Rosenberger [28]. Also, Rosenberger
and Sriram [31] show how simulations suggest the convergence is very quick
unless p4 or pg is very large.

To help visualize the situation, further simulations were conducted. For

the three sample sizes considered in chapter 2 (n = 5,10,25) and various
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4.2 Rate of Convergence

values of p4 and pp, 10,000 outcomes of the RPWR were generated. For

each outcome, the statistic

, = Pa—pp) — (pa—ps) (4.33)
BAdA | PRAD
Na Np

was calculated. Histograms of this statistic for the given values of n, p, and
pp are shown in figures 4.1 - 4.3 along with superimposed standard normal
curves.

These simulations help visualize the quick convergence which was sus-
pected back in section 2.6. When n = 5, the histograms are not exactly
normal, but the deviation from normality is not too extreme. As n increases,
the situation improves dramatically. For n = 10, most of the histograms are
quite close to the normal curves, and when n = 25 almost all histograms
appear to be normal.

The statistic z uses the true values of p4 and pg, so in practice these
must somehow be estimated. The best way around this problem in the
case of two independent samples is to use the Jeffreys-Perks method. As
previously discussed, this is also a good way to proceed for the RPWR. The
Jeflreys-Perks idea has proved to be useful in a number of situations involving

binomniinal responses, as seen in Piegorsch [25].
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4.3 Properties of the Allocation Probabilities

4.3 Properties of the Allocation Probabilities

The RPWR has desirable properties. Some have already been seen. For
example, in section 2.2.2 it was shown that the asymptotic success rate of

the RPWR is
PAGB +PBYA (4.34)
g4 +qB

which is larger than %(PA +pg), hence the success rate of the RPWR is higher
than the success rate for 50-50 randomization. There are other desirable
properties relating to the allocation probabilities. These properties are also
present for the deterministic play the winner rule (DPWR).

To employ the DPWR, the first patient is randomly assigned treatment
A or B with equal probability. The next patient’s treatment is completely
determined by the previous patient’s response. If the response is a success,
then the next patient receives the same treatment as the previous patient. If
the response is a failure, then the next patient receives the other treatment.
In Wang and Pullman [35] the DPWR is used as an example of how adaptive
designs provide desirable results. This paper also contained many results
relating p;.1, the probability of the next patient receiving treatment A after

the previous ¢ responses are known. Some of these properties are,

(a‘) Pipr > %: ) 2 1: ipr > PB
pir1 < 3,0>1,if pa < ps

piri =3 1>1,if pa=pp
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(b) ps+pp > 1, then
Piy1 1S increasing in ¢ when ps > pp
Pix1 18 decreasing in ¢ when py < pg

Pir1 is constant in ¢ when pa = pp

1 _ _4g
(¢) p=limimcopis1 = S

(d) p>1,ifpa>ps
p<3,ifps<ps

p=13,ifpa=pz

(e) lim,,1p=1
. _ 1
lima 0p = 5

limp, ,1p=0

Properties {a) and (b} show how the probability of being assigned the
superior treatment is more than 50% when using the DPWR. Properties
(c), (d} and (e) show the limiting behavior of the DPWR. In particular,
the limiting probability of using the superior treatment is greater than 50%.
Also, if one treatment has a probability of success very close to 1, then the
limiting probability of using that treatment will be close to 1, while if the two
treatments are very similar (i.e. A is close to 0) then the limiting probability
for each treatment is about 50%.

It would be of interest to know if these properties (or similar ones) hold for

the RPWR. Due to the randomization involved with the RPWR, the above

65
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properties do not hold for p; ;. However, if the randomness is eliminated by

taking the expected value, then all the properties hold for E {p;.4].
Proposition 1. For the RPWR, the following properties hold.
(a) Elpin] > 3,821, if ps > pp
E[pi+1] < %1 ( 2 1: lpr < PB
E[pi+1] = %3 i 2 17 ipr =PB
(b) E[pis1] is increasing in ¢ when p4 > pg
E [p;+1] is decreasing in 1 when py < pp

E [p;+1] is constant in ¢ when ps = pp

() p=limioo E[pit1] = E [lim;co piy1] = q;qu

(d) p> %,ipr > py
p <3, ifpa <ps
p=73, if pa =ps
(e) lim,,1p=1
lima_gp = %
lim,, ., p=0
Proof. For parts (a) and (b) assume pg > pp. The case of py < pg is similar,

while the case of pa = pg is trivial. Part (b) will be proved first. From (4.32),

20+ 8pa—ge+{E-1)) Bas
Elpin] = 200483 Elp] + 2004+ i (4:35)
= BiniE [pi] + A (4.36)
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Also,

A .BQE
i1 Sotif

1— By ﬁ{g;;‘]ﬁB)

dr
A + 48

(4.37)

(4.38)

(4.39)

This is equivalent to saying By va + Air1 = va. Since pyg > pp, this implies

27
E pir1] < vy foralli > 0.

Assume E [p;] < vy for some ¢ > 1. Then

E [Pi+1] = B 1 [P«;} + A
< Bijiva+ A

and E [p;41] < va for all i > 0.

From this,

Aipr

Elp;] < —oL
[10}<1_Bi+1

< Elp] — BinEpi] < Aisq
& Ay + BinE[p] > E[pi

< Epiy1] > E[py)
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and since E [p;] = 1, E[p1] < va. Induction will be used to show

(4.40)
(4.41)

(4.42)

(4.43)

(4.44)
(4.45)

(4.46)



4.4 Summary

foralli> 1.

Part (a) immediately follows from (b). Part (c) follows from the results
of section 2.2.2 and switching of the limit and expectation is permitted by
the dominated convergence theorem since |p;41] < 1 a.s. for all . Parts (d)

and (e) are the same as in the DPWR and are easy to verify. O

Interpretation of these results is similar to before. Parts (c}, (d} and (e}
are similar to the DPWR, so their interpretation is simple. They relate to
the limiting behavior of the RPWR. Parts (a) and (b) again have the same
interpretation as for the DPWR, except it is after taking the expected value.
They relate to the fact that the superior treatment has a higher expected
probability of selection, and this expected probability increases monoctoni-
cally. It should also be noted that part (b) for the RPWR does not have
the restriction of pa + pg > 1, while part (b) for the DPWR does have this

restriction.

4.4 Summary

In this chapter, some interesting properties of the RPWR were investi-
gated. The convergence to normality was examined, as well as its rate of
convergence. Some key quantities were found which have an impact on this
rate. Simulations also visualized and helped support the presence of quick
convergence.

The allocation probabilities were also discussed. It was found that the
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4.4 Summary

expected value of these probabilities hold some desirable properties. It was
shown that the better treatment has a higher expected probability of selec-
tion, and this holds in the limit as well. These results are quite similar to

those for the deterministic play the winner rule.
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Chapter 5

Conclusion

5.1 What Has Been Achieved

The randomized play the winner rule is a good choice for a clinical trial
where the patients responses are extreme and dichotomous. It has a sig-
nificant advantage over traditional randomization since as the trial goes on,
patients have a higher chance of receiving the superior treatment. Also, the
RPWR has a higher asymptotic success rate.

While the design has these desirable features, one major drawback was
how to analyze data arising from this design. Previous methods were met
with controversy, or were extremely difficult from a computational point of
view. The ‘exact’ method due to Wei et al. [38] certainly cannot be easily
understood by the practitioner.

It is for this reason that other methods of analysis were required. The
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profile likelihood method had been used before and worked quite well. How-
ever, while it is computationally simpler than the exact method, it is still a
little complex. The Jeffreys-Perks method has been used in the case of two
independent samples, and is quite good. Using some limiting results, use of
the Jeffreys-Perks method for the RPWR can be justified. It turns out that
it is still quite good in this case, while being much simpler computationally.

The profile likelihood method and the Jeffreys-Perks method were com-
pared by simulation. The criteria was the actual coverage probability and
the average length. It was found that the Jeffreys-Perks method performed
best for small values of the difference, A, while the profile likelihood method
was better for large A. As the sample size increases, the two methods be-
comes very similar. Since the Jeffreys-Perks method is easier to implement
and is easier for the practitioner to comprehend it is a very valuable tool for
analyzing data from a RPWR, design.

The Jeffreys-Perks method also has some issues relating to the estimation
of probabilities. The MLE is not very good for estimating a probability when
the sample size is small. Bayesian ideas lead to a class of possible estimators.
The estimator used in the Jeffreys-Perks method is the best out of this class
for the case of two independent samples. For the RPWR an argument was
presented where with reasonable approximations this results still holds.

The rate of convergence of the martingale central limit theorem was also
of interest, since the two asymptotic methods performed well even for small

sample sizes. Some key quantities relating to this convergence were derived,
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as well as simulations which give a good visual of the quick convergence.
Some additional properties of the RPWR were also derived. It was shown

that the allocation probabilities have many properties similar to the deter-

ministic play the winner rule. These properties all show how the RPWR.

gives patients a greater chance of receiving the superior treatment.

5.2 Future Research

Adaptive designs and the randomized play the winner rule are still fairly
new, so there are a. number of open gquestions. One area of exploration relates
to the Jeffreys-Perks method. It was shown how & = —% is a good choice for
two independent samples, and for the RPWR this was justified by replacing
E [N4] by N4 and E[Ng] by Ng. Perhaps there is a better way of choosing
the prior using the expressions for E [N4] and E[Ng]. There may be other
approximations which lead to better intervals.

Another unanswered question deals with the rate of convergence. This
was explored, but never fully answered. Elementary techniques have so far led
to bounds that were not at all useful. It would appear that more sophisticated
techniques, most likely based on martingale theory, are need to solve this
problem.

Only asymptotic methods were considered because of their simplicity.
The existing exact method is quite complicated. There may be other ways

of constructing exact methods which may be better than the existing ones.

72



5.2 Future Research

Or, maybe modifications could be made to make an exact method computa-
tionally more feasible, while still maintaining good results. This is another
area open for exploration.

Choice of the design parameters, o and £, is another area of research.
The simulations were all done with &« = § = 1, mainly since this is what has
been already used in practice. But intuitively, it seems like a good idea to
have a larger value of « so initially there can be patients on both treatments.
For different values of a there may be better values of 3. How to choose the
optimal values of these parameters is still undetermined.

This was all done under the assumption of immediate responses. Delayed
responses can be incorporated into the RPWR. How these methods carry
over to such a case is yet to be answered. Steps in this direction have been
taken by Bai et al. [6].

The randomized play the winner rule and adaptive designs in general pro-
vide a number of interesting research possibilities. Answering these questions

is crucial for realizing the full ethical and statistical benefits to clinical trials.
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Appendix

Computer Code

Here are the R functions and code fragments used for the simulations and
computing the confidence intervals.

A very important function is rpwrsim() which returns a list with elements
t and x where t is the vector of the #;’s and x is the vector of the z;’s for
a sample outcome from the RPWR with sample size n, success probabilities
pa and pb and with the urn dynamics determined by alpha and beta (both

defaulting to 1).

rpwrsim<-function(n,pa,pb,alpha=1,beta=1){
a<-alpha
b<-alpha
r<-runif (2*n)
c<-0
x<~-NULL
t<-NULL
for (i in 1:n) {
c<—c+1
if (rlcl<a/(a+b)) {
t<-c{t,1)
c<—c+1
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Appendix: Computer Code

if (rlcl<pa) {
a<-atbeta
x<-c{x,1)
}
else {
b<-b+beta
x<~c{x,0)
}
}
else {
t<-c(t,0
c<—-c+1
if (rlcl<pb) {
b<-b+beta
x<-c(x,1)
}
else {
a<-atbeta
x<—c(x,0)
}
¥
+
list{treatments=t,responses=x)

}

The function profll.ci{) computes the profile likelihood based confi-
dence interval. It takes as arguments a vector of ¢;’s, a vector of 2;’s and

optionally the significance level (which defaults to 0.95).

profll.ci<-function(t,x,sig=0.95) {
#Log-Likelihood
11<-function(pb,delta,na,sa,nb,sb){
log({delta+pb) "sa*x(i-delta-pb)~ (na-sa)
*pb~sb* (1-pb) " (nb-sb))
}
#Profile Log-Likelihood
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profll<-function(delta,na,sa,nb,sb){
n<-na+tnb
s<-sat+sb
I..3<-n
L.2<-(2*n-na)*delta-n-s
L.i<-(delta*(n-na)-n-2%(s-sa))*deltats
L.0<-(s-sa)*deltax(1-delta)
q<—(L.2/(3*L.3))“3~L.1*L.2/(6*L.3“2)+L.0/(2*L.3)
p<-sign(q)*sqrt ((L.2/(3%L.3))"2-L.1/(3%L.3))
if (g==0) p<-sqrt((L.2/(3%L.3))"2-L.1/(3%L.3))
if (q/p~3>1) q<-p~3
a<-(pi+acos{(q/p~3))/3
pb.star<-2xp*cos{(a)-L.2/(3%L.3)
11 (pb.star,delta,na=na,sa=sa,nb=nb, sb=sb)
}
#Equation to be solved for upper and lower limits of the CI
ci.eq<~function(delta,na,sa,nb,sb,sig){
2*%(11{(sb/nb,sa/na-sb/nb,na,sa,nb,sb)
-profll(delta,na,sa,nb,sb))-qchisq{sig, 1)
}
na<-sum(t)
sa<—sum(x*t)
nb<-length(t)-na
sb<-sum(x)-sa
if (na==0 || nb==0) return{c(-1,1))
else {
rdelta<-seq(-0.9999,0.9999, length=200)
testva1<—sapply(rdelta,ci.eq,na=na,sa=sa,
nb=nb,sb=sb,sig=sig)
if (ci.eq(-0.9999,na,sa,nb,sb,sig)<0 &&
ci.eq(0.9999,na,sa,nb,sb,sig)<0){

low<—1
up<-1
+
- if (ci.eq(-0.9999,na,sa,nb,sb,sig)<0){
low<--1

up<-uniroot(ci.eq,
c(max(rdelta[testval<0] ,na.rm=T),0.9999),
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na=na,sa=sa,nb=nb,sb=sb,sig=sig)$root
}
if (ci.eq(0.9999,na,sa,nb,sb,sig)<0){
up<-1
low<—uniroot{ci.eq,
c(-0.9999,min(rdeltaltestval<0] ,na.rm=T)),
na=na,sa=sa,nb=nb,sb=sb,sig=sig)$root
}
if (ci.eq(-0.9999,na,sa,nb,sb,sig)>=0 &&
ci.eq(0.9999,na,sa,nb,sb,sig)>=0){
low<-uniroot{ci.eq,
c(~0.9999 ,min(xrdeltaltestval<0] ,na.rm=T)),
na=na,sa=sa,nb=nb,sb=sb,sig=sig)$rooct
up<-uniroot{ci.eq,
c(max{(rdeltaltestval<0] ,na.rm=T},0.9999),
na=na,sa=sa,nb=nb,sb=sb,sig=sig)$root
}

return(c(low,up))

The function jp.ci() computes the Jeffreys-Perks confidence interval.

Its arguments are the same as those for profll.ci().

jp.ci<-function(t,x,a=-1/2,sig=0.95) {
n<-length(t)
na<-sum{t)
nb<-n-na
sa<-sum(t*x)
sb<-sum(x)-sa
if (na==0 || nb==0) return{c{(-1,1))
else {
pa.hat<-sa/na
pb.hat<-sb/nb
c<-qchisq(sig,1)
a.hat<-na/(na+2*(a+1))*pa.hat + (a+1)/(na+2*(a+1))
+ nb/{(nb+2%(a+1))*pb.hat + (a+1)/(nb+2x(a+1))
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b.hat<-pa.hat-pb.hat
u<-(1/na+1/nb)/4
v<-(1/na-1/nb)/4
y<-u*((2~a.hat)*a.hat-b.hat"2)+2*v*(1-a.hat)*b.hat
est<-(b.hat+cxv*(1-a.hat))/(1+c*u)
moe<-sqrt (ck (V+c*u~ 2% (2-a . hat)*a.hat

+cxv™ 2% (1-a.hat) ~2))/ (1+c*u)
low<-est-moe
up<-est+moe
return(c(max{-1,low),min(1,up)))

The following code was used to obtain the simulation results. In the end,
it creates a data frame named sim.results which contains the simulation

results.

r<-16000
sim.results<-NULL
correct<-function(ci,pa,pb) {
delta<-pa-pb
c<=0
if {(cil[il<delta && cil2]>delta) c<-1i
return{c)
}
for (sig in ¢(0.9,0.95,0.99)){
for (n in ¢(5,10,25)){
for (pb in seq(0.1,0.9,by=0.2)){
conf .prof<-NULL
conf. jp<-NULL
for (pa in seq(pb,0.9,by=0.2)){
c.prof<-0
_c.jp<0
1.prof<-0
1.jp<-0
for (j in 1:1) {
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rpurlist<-rpwrsim(n,pa,pb)
ci.prof<-profll.ci(rpwrlist$treatments,
rpwrlist$responses,sig)
ci.jp<—jp.ci(rpurlist$treatments,
rpwrlist$responses,-1/2,sig)
c.prof<-c.prof+correct(ci.prof,pa,pb)
c.jp<~c.jptcorrect(ci.jp,pa,pb)
1.prof<-1.prof+ci.prof [2]-ci.prof[1]
1.jp<-1.jp+ci.jpl2]l-ci.jpl1]
}
conf .prof<-c.prof/r
conf . jp<-c.jp/r
length.prof<-1.prof/r
length.jp<-1.jp/r
sim.results<-rbind(sim.results,c(sig,n,pa,pb,
conf .prof ,conf. jp,length.prof,length.jp))
}
+
+
}
sim.results<-data.frame(sim.results)
names (sim.results)<-c("sig","n","pa","pb","conf.prof",
"conf.jp","length.prof","length.jp")

To generate the results for the histograms in section 4.2.2, the following
code was run. It results in a vector named stat which contains all the

generated outcomes for given values of n, pa and pb.

r<-10000

stat<-NULL

for (j in 1:1) {
rpurlist<-rpwrsim(n,pa,pb)
t<-rpwrlist$treatments
x<-rpurlist$responses
na<-sum(t)
sa<-sum{x*t)
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s<-sum(x)

nb<-n-na

sb<-s-sa

pa.hat<-sa/na

pb.hat<-sb/nb

if (na'=0 & nb!=0) {
nextstat<-{({(pa.hat-pb.hat)-(pa-pb))

/sqrt(pax(1-pa) /nat+pb*(1-pb)/nb)

stat<-c(stat,nextstat)

}

¥



