
A MUITITHREADED AlcoRrrHM FoR rnp M¡xttr¿ulr,r
Flow PRoer-,px4

Md. Mostafizur Rahman

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Faculty of Graduate Studies
University of Manitoba

bv

Copyright @ 2004 by Md. Mostafizur Rahman

THE T]NT!'ERSITY OF MANITOBA

FACIILTY OF G-RAD. TJATE STUDIES

COP\'RIGHT PERMISSION

A MULTITHREADED ALGORITIIM FOR THE MAXIMUM
FLOW PROBLEM

BY

Md, Mostafizur Rahman

A Thesis/Practicum submitted to the Fâculty of Graduate Studies ofThe University of

Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF SCIENCE

Md, Mostafizur Rahman @ 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publisb an abstract of this thesis/practicum,

This reproduction or copy of this thesis has been made available by authority ofthe copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written ¡uthorization from the copyright owner.

Abstract

Finding a maximum flow through a transport network is a central problem in operations

research, computer science and engineering. This research has been triggered by the di-

verse a,reas of applications of maximum flow problem as well as the algorithmic challenges

it has ollered to computel scientists and engineers alike. The focus of this work is on

designing and developing a multithreaded algorithm for the maximum flow problem and

implementing the algorithm on OpenMP.

Maximum flow problems that arise in applications are usually large, and hence com-

putationally intensive. Solving these problems often stretches the capabilities of conven-

tional uniprocessor architectures. Therefore, parallel computing becomes vitally impor-

tant.

There are many parallel maximum flow algorithms for shared and distributed memory

model on a traditional von Neumann computer architecture. These parallel algorithms

have communication and synchronization latency problems inherent in this architecture.

Multithreading overlaps computation with communication and thereby improves perfor-

mance. Among many sequential algorithms, Goldberg and Tarjan's maximum flow algo-

rithm has been extensively studied for parallelization. However, the only multithreaded

implementation of this algorithm by Lie does not give good performance.

The irregularity and asynchronicity posed by the algorithm of Malhotra, Paramodh

Kumar and Maheswari (MPM) makes it a very good candidate for multithreading. More-

over, the sequential version of the MPM algorithm has the same complexity as Goldberg

and Tarj an's algorithm. We have designed and implemented a multithreaded algorithm

for MPM approach. We have achieved a maximum speedup of 6.33 on 8 processors

for our implementation which is better, to our knowledge, than the maximum speedup

achieved in any shared memory implementation of Goldberg and Tarjan's maximum flow

algorithm.

1u

Acknowledgements

First, I would like to express my deepest gratitude to my thesis supervisors Dr. Parimala

Thuìasiraman and Dr. Ruppa K. Thulasiram for their guidance, encouragement, patience

and inspiration. Dr. Parimala Thulasiraman introduced me to the area of research in

maximum flow problem.

I would like to thank Faculty of Science for supporting me with Faculty of Science

Scholarship, Faculty of Gradüate Studies for supporting me with University of Manitoba

Graduate Fellowship, Dr. Michel Toulouse and the department of Computer Science for

supporting me with TA.

I am also thankful to the thesis committee member, Dr. Ekram Hossain, for being in

my thesis committee.

Finally I express my heartfelt gratitude to my parents, my friends Mohammad Rashe-

dur Rahman, Sajib Barua, Mohammad Mamunur Rashid and Rajesh Palit who encour-

aged me to come he¡e and gave me support during my ¡esearch.

IV

Contents

Introdrrction

1.1 Maximum Flow Problem and Its Applications

I.2 Parallel Computing Bottlenecks

1.3 Thesis Organization .

Related Work

2.I Sequential Maximum Flow Algorithms

2.2 Parallel Maximum Flow Algorithms .

Multithreading
3.1 Pthreads

3.2 Tera

3.3 Java

1

1

4

6

8

9

t2

16

17

18

3.4 EARTH

3.5 Charm**

3.6 Cilk...
3.7 OpenMP .

18

19

19

20

22

24

24

38

39

4A
4.1

4.2

Multithreaded Maximum Flow

Sequential MPM Algorithm

Algorithm

A Multithreaded Muximum Florv Algorithm

4.2.1 Multithreading in Labeling Vertices

4.2.2 Multithreading in Determining the Minimum Potential Vertex

4.2.3 Multithreading in Push-Pull

5 Theoretical Analysis 41.

5.i .Analysis of Labeling of Vertices 41

5.2 Analysis of Determining Minimum Potential Vertex . 44

5.3 Analysis of Push-Pull 45

6 Performance Results 47

6.1 Experimental Methodology 47

6.2 Performance Results and Analysis 48

7 Conclusion and Future Work 55

7.1 Concìusion 55

7 .2 Fu t u¡e Work 56

References

List of Tables

2.1 Notable sequential maximum flow algorithms I

6.1 Execution time for static scheduìing -. 49

6.2 Execution time for dynamic scheduling 50

6.3 Speedup for static scheduling 51

6.4 Speedup for dynamic scheduling 52

vll

List of Figures

1.1 A transport network.

4.1 An example of a transport network with 0 flow

4-2 Flow in transport network and auxiliary layered network with two layers

4.3 Flow in transport network and auxiÌiary layered network with three layers

4.4 Flow in transport network and auxiliary layered network with four layers

4.5 The partitioning of labeling array d and the adjacency matrix Net among

T threarìs

2

28

29

30

34

Jt)

JO

38

39

40

4.6

4.7

4.8

4-9

4.70

4-11

4.12

lnitialize algorithm

MinVert algorithm

Label algorithm

LabelALL algorithm

Distribution of layers in an auxiliary layered network for computation of

the minímum potential vertex

Push algorithm

Push and pull operations from Layer z

6.1 Execution time with different number of threads in static scheduling . 49

6.2 Ðxecution time with different number of threads in dynamic scheduling 50

6.3 Speedup in static scheduling 51

6.4 Speedup in dynamic scheduling 52

vttl

Chapter 1

Introduction

In this chapter, we introduce the maximum (max) flow problem, its applications and

computing issues that arise in parallelizing the maximum flow algorithms,

1.1 Maximum Flow Problem and lts Applications

A transport network can be represented as a connectcd dirccted graph G : (V,E),

where tr/ is the set of vertices and E is the set of edges. As an example) we can represent

a road map as a transport network where cities are vertices and roads between pairs of

cities are edges. The transport network can be used to model the transportation of a

mate¡ial such as current through electrical circuits or a commodity from a production

center to the market through transportation routes. Each edge (2, a) of a transport

network is associated with two weights called fiow J @, u) and capacity c(2, o). The

capaci,ty c(u., u) of an edge (2, u) represents the maximum rate at which a commodity

can be transported along that edge and the flow J @, u) in an edge is the rate at which

Cuaprpn 1. IN:rRooucrroN

Figure 1.1: A transport network.

the commodity moves along that edge. Vertices are junctions of a transport network and

for each vertex, except the source, s and the destination, f the rate at which a material

enters a vertex must equal the rate at which it leaves the vertex. In other words, the

incoming flow is equal to the outgoing flow for each vertex, except the source, s and

the destination, ú. This property is called flow conservation constraint. A flow / in a

transport network G : (V, ð) is an assignment of a nonnegative real number f(u,u) to

each edge (u, a) in such a way that the following two conditions are satisfied:

Capacity Constraint: f @,r) < c(u,u) for every edge (u,u) e E

Flow Conservation Constraint: lr,l(u,u):Dr,Í(r, z) for all u € E - {s,t}

The source produces the material at some steady rate, and the destination consumes

the material at the same rate. The value of a flow / is defined as

I :Ðr"f G,u):Dv"l@,t)

Cn¡,ptpR 1. INTRODUcrroN

In Figure 1.1 we have shown a ttånsport netv¡ork with four vertices s(source), o, å

and f(sink). There are five edges in this network edge (s, o) with capacity 10 and flow

7, edge (s, ú) with capacity 6 and flow 4, edge (a, ö) with capacity 2 and flow 2, edge

(a, ú) with capacity 5 and flow 5, edge (ó, l) with capacity 6 and flow 6, For vertex ¿

incoming flow is 7 and outgoing flow is 5 -1 2 : 7. Similarly for vertex ó incoming flow

is 2+4:6 and outgoing flow is 6. For source s the outgoing flow is 7*4:11 and for

sink f the incoming flow is 5 * 6 : 11. The flow in the transport network of Figure 1.1

is 11.

The maximum flow problem (see for example, [42]) determines the greatest rate at

which the material can be pushed from the source) s) to the sink (destination), ¿, without

violating the capacity constraints of the edges in the network. In other words, a flow

/* in a transport network is said to be maximum flow if there is no such flow / in the

network such that l/ l>l/- I

In 12, 42,49] the maximum flow problem and its applications are discussed exten-

sively. The maximum flow problem arises in a wide variety of situations and in several

forms. In some casesr the maximum flow problem occurs as a subproblem in the so-

lution of more difficult network optimization problems, such as the minimum cost florÃ'

problem l2], transhipment problem [12] or the generalized flow problem 155] applied in

telecommunications 12]. The problem also arises in a number of combinatorial optimiza-

tion problems 142], such as network connectivity, matchings and covers, which on the

surface might not appear to involve maximum flow. Other applications that apply the

Cuepr¡R 1. INTRoDUcrroN

maximum flow directly are in task scheduling 137], load assignment problems [48] and

tanker schcduling [fe]. One of the recent applications of maximum flow problem is in

identification of web communities [17, 18, 30]. A web community is a set of web pages

having a common topic. The web is constructed from some seed nodes having informa-

tion on the topic. Those nodes are added in the graph as successors of seed nodes which

have links from the seed nodes. Again some nodes are added to the successors of seed

nodes. A virtual source, s, is added to the seed nodes with capacity oo and a virtual

sink, ú, is added to the nodes that a¡e at distance 2 from the seed nodes and the capacity

of the incoming edges for the sink is set as 1. Then the maximum flow algorithm is

applied to this graph. After application of the maximum flow on the graph those nodes

that are reachable from sou¡ce are added as seed nodes. A new graph is constructed and

maximum flow algorithm is repeatedly applied up to some number of iterations. After

the iterative application of maximum flow algorithm those nodes that are reachable from

the source comprise the web community. Another application of maximum flow algo-

rithm is in the improved depth estimation in stereo correspondence problem of stereo

images 144, 48]. In l 4, 48], the authors use maximum flow approach instead of dynamic

programming approach to solve the stereo correspondence probìem.

L.2 Parallel Computing Bottlenecks

Maximum flow problems that arise in applications are characterized by their large data

sets and solving these problems are often beyond the capabilities of conventional unipro-

CH¿.prnR 1 . IurRooucrroN

cessor architectures. The¡efore, paralìel cornputing becomes vitally important. Many

parallel algorithms lf , 3, 24., 50, 54] exist in the lite¡ature to solve the maxinum flow

problem on sha¡ed and distributed memory architectures. However, the considerabìe

asynchronicity introduced during the computation of the maximum flow problem pro-

duces very slight improvement in performance due to the latency problems of temote

memory access and synchroniza,tion inherent in conventional parallel computers [29].

Problems that exhibit high asynchronicity, variable changes in data movements and dis-

tribution, chaotic communication pattern during runtime are characterized as irregular

problems. The pattern ofdata distribution in this problem is nonuniform (irregular) and

therefore requires highlevel data structures such as graphs, trees or unstructured meshes.

The density of the data points in most cases is sparse (note that sparsity in applications

is an area of research [47] that involves challenging issues in parallel computing). An

effective parallel solution of i,rregular computations poses greater challenges because of

the need for facilities for dynamic creation of work and dynamic load balancing.

In parallel systems, two types of latencies are incurred 14,28]: communicationlaletcy

due to remote accesses and synchronization lalency due to data dependencies. Conven-

tional message passing Massively Parallel Processing systems (MPPs) l7] that follow a

von Neumann model of computing or Single Program Multiple Data (SPMD) model do

not yield high performance if such latencies ate frequent in the parallel solutions em-

ployed. Several techniques at the hardware level (such as superscalar, superpipelined,

VLIW, prefetching) lZ6] have been used to hide or tolerate both communication and

CseprpR 1. INTRoDUcrroN

synchronization latencies. From the software perspective, multithreading is the general

technique.

Multithreading hides the communication and synchronization latencies of paraìlel

computers by overlapping computation with communication and moves away from the

traditional SPMD programming model. Traditional parallel maximum flow algorithms

do not provide very efficient performance results. Multithreaded architectures have been

promoted as potential processing nodes for future parallel systems due to their ability to

overlap computation with communication.

However, very little work has been reported in the literature on the design of mul-

tithreaded algorithms for the maximum flow problem. This lack motivates our present

research and we consider multithreaded algorithm as an alternative method for this the-

sis. We have developed a multithreaded algorithm for the maximum flow problem and

implemented it in a shared memoty environment using OpenMP.

1".3 Thesis Organization

This thesis addresses the design, development and implementation of a multithreaded

algorithm for the maximum flow problem. In this chapter, we have discussed about

the maximum flow problem, its applications and the reason behind developing a multi-

threaded maximum flow algorithm. The rest of the thesis is organized as follows. We

describe the related wo¡k in the second chapter. In the third chaptel, we discuss about

multithreading and briefly describe some multithreaded platforms. We explain the se-

CH¿,prpn 1. I¡¡rRooucrroll

quential algorithm of Malhotra, Pramodh Kumar and Maheswari (MPM) [36] and our

multithreaded algorithm in the fourth chapter. In Chapter frve, we show our theoret-

ical analysis. We give our experimental results in the sixth chapter. We present our

conclusion and future work in chapter seven.

Chapter 2

Related \Mork

The maximum flow problem w¿s born from applications 113] in the 1940's and 1950's.

Since then it has developed into a strong theoretical topic with many practical appli-

cations and numerous algorithmic issues. In 1950's pseudo-polynomial time algorithms

were developed (pseudo-polynomial time algorithm means that the complexity of the al-

gorithm is a polynomial function of input stze n and some largest number 1l). The first

polynomial time algorithms for the maximum flow problem were developed in the 1970's

and since then constant progress has resulted in faster algorithms. Goldberg [22] gives

a very extensive survey on maximum flow algorithms. In Table 2.1 concise information

about some rem¿rk¿ble sequential maximum flow algorithms for a transport network

with nz edges, z vertices and [/ as the highest capacity of the edges is given. The most

notable sequential and parallel maximum flow algorithms a¡e discussed in sections 2.1

and 2.2 respectively.

CueprsR 2. RELATED WoRK

Authors Year Complexity

Ford & Fulkerson

Ðdmonds & Karp

Dinic

Malhotra ef ¿1.

Goldberg & Tarjan

Cheriyan et al.

King et al.

Goldberg & Rao

1956

1972

1970

1978

1985

1989

1994

1998

O(mnU)

O(m2n)

O(mn2)

o("')

O (mn2), O (n3), O (mntos(())

O(n3 l\ogn)

O (mn + n2+')

O(min(n213, mr/2)mlog(n2 f m) log u)

Table 2.1: Notable sequential maximum flow algorithms

2.L Sequential Maxirnurn FIow Algorithms

In 1956, Ford and Fulkerson l19l solved the maximum flow problem by developing a

labeling algorithm and established the celebrated m¿x-flow min-cut theorem. Ford and

Fulkerson offered an extensive treatment of their labeling algorithm in [201. They in-

troduced the concept of an augmenting path. An augmenting path is a path from the

source to the destination into which more flow can be pushed. The algorithm starts by

labeling the source. A labeled vertex can assign a label to any of its neighboring unla-

beled vertices if more flow can be pushed to this unlabeled vertex. In this process, if

the destination can be labeled then there exists an augmenting path from the source to

the destination. The algorithm terminates when an augmenting path cannot be found.

CnepreR 2. Rplerer Woax

In this algorithm, there may be several alternative augmenting paths and performance

depends on which of these augmenting paths is chosen. The labeling algorithm may

require pseudo-polynomial time for bad choices of augmenting paths. Moreover, Ford

and Fulkerson showed that for networks with arbitrary irrational edge capacities, the

algorithm can perform an infinite sequence of augmentations and might converge to a

flow value different from the maximum flow value. In the worst case, the complexity of

Ford and Fulkerson labeling algorithm 1s O(mnU) for a graph with zn edges, z vertices

and [/ as the highest capacity of the edges.

To avoid the slowe¡ convergence problem of the labeling algorithm, Edmonds and

Karp [16] suggested a refinement to the labeling algorithm of Ford and Fulkerson. They

showed that the flow should be augmented along a shortest path at each step where

the shortest path is a path having the smallest number of edges. They shoived that

this refinement guarantees the number of computational steps for implementing the al-

gorithm is independent of the capacities of the edges. Edmonds and Karp's algorithm

has complexity O (m2 n) .

It is interesting to note that Dinic [15] worked independently and developed his layered

network algorithm while Edmonds and Karp developed their algorithm. Dinic introduced

the concept of layered network which is a very dillerent approach from the algorithm of

Edmonds and Karp. At each step of Dinic's algorithm, a layered network with a shortest

length augmenting path from the soulce to the destination with respect to a particular

flow / is created. The layered netwo¡k is represented as a directed acyclic graph. Then

LO

Csaproe 2. Rplerso Wonx 11

the flow is augmented from the source to the destination in the layered network and the

flow is updated in the original netw<¡rk. This procedure is repeated until a flow /* is

found such that no layered network can be created rvith an augmenting path from the

source to the destination. Dinic's algorithm achieves a complexity of O(mn2).

In 1978, Malhotra, Pramodh Kumar and Maheshwa¡i (MPM) 136] developed a very

simple, elegant and ingenious algorithm called MPM algorithm based on Dinic's layered

network concept. In MPM algorithm, the flow is augmented not along a single path

but along several paths simultaneously. Therefore, the MPM algorithm can be easily

designed into a parallel and multithreaded implementation. This algorithm has O(23)

complexity. The various steps of MPM algorithn will be discussed in section 4,1.

Another algorithm called preflow push-relabel algorithm, introduced by Goldberg and

Tarjan 124], follows a different approach from the other contemporary algorithms in the

Ìiterature, since it does not use the concept of layered networks or augmenting paths.

Also, in all the previous algorithms, one important constraint that is maintained while

pushing flow is that the arnount of flow into a vertex is equal to the amount flowing

out. This constraint is relaxed in Goldberg and Tarj an's algorithm and leads easily

to a parallel implementation, though not to a multithreaded implementation . In lzal

Goldberg and Tarj an describe in detail thei¡ algorithm. The complexity oftheir algorithm

is O (mn2) but can be made O(n8) if the vertices are considered in a certain order in the

algorithm. They show that use of dynamic tree decreases the complexity ofthe algorithm

to O (mn log({)). However, use of dynamic tree does not inprove the performance of

Cn¡.prpR 2. Rrllreo WoRr

maximum flow algorirhm in practical cases 13].

Other notable sequential maximum flow algorithms are Cheriyan et al. 1771, King et

ø1. f33] and Goldberg and Rao [23]. Cheriyan et al. lll is a randomized algorithm of

O(n3 llogn) time complexity. King eú ø1. gives O (rnn * r¿2+') deterministic version of

Cheriyan et al. 171]. Goldberg and Rao introduce a new algorithm based on assigning zero

or unit arc lengths which depends on the residual arc flow value and the residual arc ca-

pacities. The algorithm has a time complexity of O(min(n213, p|/2)mlog(n2 f m)logU).

2.2 Parallel Maximum Flow Algorithrns

The parallel version of the maximum flow algorithm of the sequential preflo rv push-

relabel algorithm by Goldberg and Tarjan [24] has been widely discussed in the literature.

For parallel implementation, the computing models of Goldberg and Tarj an fit very

weÌl with exclusive-read, exclusive-write parallel random-access machine (PRAM) and

distributed random-access machine (DRAM) computing models. For both models the

total number of operations is O(n3) and the running time is O(n2 log z) with O(rz) space

for n processors.

Anderson and Setubal 13] implemented Goldberg and Tarjan's maximum flow al-

gorithm [24] on Sequent Symmetry S81, a shared-memory parallel machine. In this

implementation Anderson and Setubal made two contributions concurrent relabeling

of vertices and use of an adaptive data structu¡e for maintaining the workpile. These

contributions, however, resulted in slight performance improvernent only. Anderson and

72

Cu¿.proa 2. Rpler¡r WoRx

Setubal used sparse graph with 214 vertices and dense graph with 500 vertices. Their

relative speedup was 8.8 on sixteen processors.

Agarwal and Ng 11] implemented an ingenious version of Goldberg and Tarjan's al-

gorithm 124] on a distributed shared memory parallel machine. This implementation

radically differs from Anderson and Setubal's approach in the sense that the processors

are designed in a pipelined manner and the transport network graph is partitioned among

these pipeline of processors. Agarwal and Ng 11] used Multiprocessor Architecture for

Rapid Simulations (MARS) for the implementation of their version of algorithm. MARS

has fifteen identical plocessors. However, they used only six processors as their algorithm

requires six different tasks at a time for execution. They used sparse graphs with 1000,

5000, 10000, 20000 and 30000 vertices for their experiment and achieved a speedup of

4.8 to 5.9 on six processors.

Träff [54] implemented a maximum flow algorithm on a distributed memory paral-

lel machine using a layered network technique. The experiments were conducted on a

transputer consisting of sixteen T800 processors. Both dense graphs (100, 200 vertices)

and sparse graphs (500, 1000 and 2000 vertices) were used. The algorithm achieved a

speedup of two to three on eight processors.

Nagy and Akl [38] introduced a dynamic algorithm for the maximum flow problem

on a Reconfigurable Multiple Bus Machine (RMBM) architecture to study the dynamic

allocation of modules to two processors subject to real time constraints. Computation

and communication requirements of modules change over time in the module allocation

Cn¡.prnn 2- R.er-r'rno WoRx

problem. This dynamic allocation problem inspired the authors in coining their dynamic

maximum flow algorithm on the RMBM- In the dynamic maximum florv problem the

number of vertices, the number of edges and the capacity of edges in the transport

network change over time.

Recently, there has been a report 135] on the design and implementation of the pre-

flow push-relabel algorithm of Goldberg and Tarj an [24] in OpenMP on a shared memory

multiprocessor. This report considers various parallel programming interfaces and stud-

ies the programming and performance evaluation of these interfaces on one particular

algorithm, the maximum flow algorithm. The platform used is the SGI Origin 2000. The

parallel maximum flow algorithm implementation on this architecture gives a speedup of

1.5x on 6 processors for a sparse graph with 5000 vertices.

Note that in the literature, the preflow push-reìabel algorithm [24] has been considered

for parallel implementations. Thus far, this sequential algorithm has been regarded as

the "best" sequential maximum flow algorithm [23]. However, from the multithreading

perspective, the preflow algorithm is not an efficient algorithm as can be seen f¡om the

report by Lie 135], where the performance result is only 1.5x on 6 processors. Therefore, I

have considered the MPM algorithm which lends easily to the multithreaded environment.

In the MPM algorithm, the size of graph dynamically reduces during the execution of

the algorithm. This decrease in the size of the graph creates immense load balancing

problems in a traditionaÌ SPMD model. Hence, the MPM algorithm, has not been opted

for parallel implementation in the lite¡ature. The irregularity and the asynchronicity

t4

CnAprea 2. R¡l¡rpo WoRx

posed by this algorithm makes it a suitable candidate for the multithreaded approach.

Also, note that theoretically the MPM 136] and preflow push-relabel [2a] algorithms

have the same complexity of O(n3). Therefore, MPM algorithm can also be considered

as good as push-relabel algorithms theoretically.

15

Chapter 3

Multithreading

A thread is a small set of instructions rvhich are executed in sequence. In the traditional

sequential computing model (also known as the von Neumann computing model), there

is only one thread or florv of control. Traditional parallel computers that follow the von

Neumann computing model sulfer from communication and synchronization latencies

that are caused by remote memory access in a distributed shared memory system and

ordering among the execution of instructions in different processors- Multithreading is a

programming paradigm in which a single program is broken into multiple threads of con-

trol which interact to solve a single program. Multithreading tries to overlap computation

with communication to overcome communication and synchronization latencies.

There are several multithreaded environments such as Pthreads [34], Tera [8], Java 121],

EARIH 127], Charm++ [32], Cilk 1451, and OpenMP [9]. Some of these multithreaded

systems are software-based while others require software as well as hardrvare support for

16

C¡r¡p:reR 3. Mui,rIrueEADrNG 17

multithreading. These multithreaded environments support either coarse-grained threads

(number of instructions per thread is large and the context switching time among the

threads is also large) or fine-grained threads (number of instructions per thread is smaìl

and the context switching time among the threads is also small). Some of the multi-

threaded systems follow control flow mechanisrn (the order of execution is determined

explicitly by the code of the program) while others follow the dataflow mechanism (the

order of execution of instructions is dctermined by the order of the availability of data).

Here we will discuss these multithreaded systems briefly.

3.1 Pthreads

The POSIX threads or Pthreads 134] are operating system (OS) threads. POSIX threads

is a standard for operating system threads while there are several implementations of

POSIX threads by different vendors. OS threads exploit parallelism at a coarser grain

level and thus must execute a higher number of instructions between thread switchirrg-

They are also called library based systems since the required functions for managing

threads are implemented as library. The library is implemented as user-level library or

kernel-level library. The library provides a set of multithreading primitives to manage the

threads created by programmer on top of OS threads. ln this approach the management

of threads requires a few system calls such as creation of threads, statt a,nd end of threads

which are costly in terms of execution cycles. Therefore, we have not considered Pthreads

in this study.

Cn¡.p:reR 3. MulrtrnnEADrNc

3.2 Tera

Tera is a multithreaded architecture l8] that requires hardware as well as software support

for multithreading. In Tera, each processor can support 128 threads. Tera does not

have any data cache. Tera is a shared memory machine with nonuniform access time.

In Tera multithreaded system the latency incurred in remote memory access is hidden

by extremely fast switching of threads. Tera provides good throughput for a highly

multithreaded fine-grained program by use of thread parallelism. However, we have not

considered Tera since Tera is not available at University of Manitoba and used mainly

in national research labs such as NASA Ames 139] and the San Diego Supercomputer

Center where the machine is installed.

3.3 Java

Java 121] is a multithreaded language for single and multiprocessor computers. Java is an

interpreter-based language and interpreted Java code can be executed in any system sup-

porting a Java virtual machine. Though Java can be used for parallel programming, the

main focus of Java is on internet programming. Java supports coarse-grained threads and

context switching between Java threads require significant amount of time. Therefore,

we have not considered Java. Also, Java does not support fine-grained threading.

18

CHeprpR 3. Mur,rrrHREADrNc

3.4 EAFUIH

EfÊcient Architecture for Running THreads (EARTH) l27l is a multithreaded dataflow

architecture that does not follow the traditional von Neumann model of computing in

traditional parallel computers or the Tera multithreaded architecture. EAHIH threads

àre very versatile and EAHIH supports both fine-grained and coarse-grained threads.

In trARTH, threads are scheduled depending on control and data dependencies, which

circumvent synchronization and communication latencies quite significantly. Though

there is a simulator version of the EARTH and it is possible to access that version

remotely, remote access is always very difücult. Moreover, the language used by this

architecture is called Threaded-C 146] which is not a user-friendly language. In additiorr,

the model of programming is totally differcnt from Cilk or OpenMP and the comparison

of my algorithm on EAHIH will not be feasible, if we were to use EARTH.

3.5 Charmf f

Charm-lf [32] is an object-oriented language that supports multithreading. One of the

important differences between Charm-l-* and the other models is that Charmf * is a

message driven model. That is, in Charm*-l computations (or threads) are activated

upon receiving a message.

A Charm** program consists of chares, Charm*+ concurrent objects encapsulating

medium-grained units of work. These chares are distributed among the availabìe pro-

19

Cg¡.prea 3. Mur-rtrun p¡.nrxc

cessors. The chares have some public entry methods, private and public methods and

data. Chares can be created dynamically and they can send messages to one another to

invoke methods asynchronously. On the other hand, the entry methods of chare can be

executed in separate user-level threads provided by Charmll.

This is a good programming model. However, we have not been able to install it in

the machines of our department.

3.6 Cilk

Cilk 145] is an ANSI C-based language for multithreaded parallel programming. Cilk is

effective for exploiting dynamic, highly asynchronous parallelism, which might be difficult

to write in data-parallel or message-passing style. Cilk system can be configured to gather

various runtime statistics for a whole program and parts of a program. The Cilk runtime

was built on its theoretical foundation. Cilk gives a way to analyze and get experimental

statistics such as parallelism, total work, critical-path length, wall-clock running time for

a progråm or part of a program. The critical-path length of a program can be defined

as the maximum time required to execute the longest path threads created by the Cilk

program. Critical-path length and total rvork are tlvo parameters that can be used to

predict the performance of a program in Cilk 131]. That is, measuring the execution time

and critical-path length one can theoretically analyze the performance of the algorithm.

The totaì work of a multithreaded computation is the totaÌ time to execute all the

operations in the computation seriaÌly on one processor. In Cilk, a thread spav¡ns one

20

CgeprpR 3. MulrtruREADrNc

or more threads, thereby creating a parent-child relationship among the threads. The

idea behind Cilk is that â programmer should concentrate on structuring the program

to expose parallelism. The runtime scheduler of Cilk takes the responsibility of mapping

the dynamically unfolded computations onto available processors to execute the program

efficiently. Cilk insulates the programmer from many low-level implementation details

such as load balancing, paging and communication protocols. Unlike other multithreaded

languages Cilk is algorithmic in the sense that the runtime system guarantees efficient

and predictable performance [6].

Cilk is a very elegant language and the MPM algorithm maps not only very directly

onto the Cilk programming paradigm but also gives a very eflicient multithreaded pro-

gram design. Also, among the multithreaded environments, Cilk is easy to learn and it is

installed in the SMP machine at the Department of Computer Science. We have imple-

mented the multithreaded maximum flow algorithm in Cilk. Though our multithreaded

algorithm maps very well in Cilk paradigm we had to switch to OpenMP as we have

faced some problems ivith Cilk installed on our system. We obtained the performance of

the algorithm by using the Cilk statistics and running the algorithm on different number

of processors for transport networks with different number of vertices and edges. The

performance result ofthe algorithm is not satisfactory. We did not achieve good speedup.

However, after checking the example programs provided by the Cilk-developers we also

found some anomalous behavior for some of their programs (For running example pro-

grams provided with Cilk we have found for an example program speedup of 1.5 for 8

21

Ctl¿prnn 3. Mul:ursREADINc

processors while in the Cilk manual 145] the speedup for the same progrâm is mentioned

as 7.8 for 8 processors). Though we checked the machine configuration we could not find

the reason for this anomalous behavior of Cilk. We contacted the Cilk-developers, and

since we did not receive reply for three months rve could not progress.

3.7 OpenMP

OpenMP 19, 40] stands for Open specifications for Multi Processing. It is developed as

an Application Programming Interface (API) for multithreaded environment for shared

memoly systems through collaboration among researchers from the hardware and soft-

ware industry, government and academia. The OpenMP API supports C/C++ and

Fortran on Linux, Unix and Windows NT architecture by providing a set of compiler

directives and library routines. As most ofthe constructs of OpenMP are compiler direc-

tives, an OpenMP proglam can be compiled either on a sequential or parallel computer

without any modiflcations to any parallel code. The compiler automatically disregards

the compiler directives provided in the language while compiling on a sequential com-

puter. It is an easy language to learn.

OpenMP runs on a shared memory multiprocessor. One notable feature of OpenMP

is that it supports loopJevel data parallelism as well as SPMD (Single Program Multiple

Data) model as in MPI. In loop-level parallelism such as a /or loop, each iteration of the

loop can be forked as a thread, thereby supporting fine-grained threading. The threads

are divided among the processors âutomåtically. On the other hand, to employ the SPMD

22

Cn¡.proR 3. Mur,rr:rnREADrNc

model of programming, OpenMP allows the programmer to divide the data into chunks

where each chunk is a thread. Ðach thread is distributcd to a processor for execution.

OpenMP uses a concept called parallel regions (a region is a sequence of instructions

or thread) and these parallel regions are executed independently by different processors.

OpenMP, therefore, can support coarse-grained threading in SPMD modeÌ.

OpenMP provides several automatic load balancing techniques such as static, dynamic

and guided scheduling of work [9]. In static load balancing technique fixed amount of

work is distributed among threads in a round-robin fashion. On the other hand, in

dynamic and guided scheduling the size of work distributed among threads change with

time.

I have implemented the maximum flow algorithm in OpenMP.

Chapter 4

A Multithreaded Maximum Flow

Algorithm

We have developed our multithreaded maximum flow algorithm using the sequential

algorithm of Malhotra, Pramodh Kumar and Maheshwari (MPM) [36]. In sections 4.1

and 4.2 we have discussed MPM algorithm and our multithreaded algorithm respectively.

4.L Sequential MPM Algorithm

In 1978, Malhotra, Pramodh Kumar and Maheshwari [36] developed MPM algorithm.

This very simple, elegant and ingenious algorithm is based on Dinic's layered network

concept 115]. In this approach the original network is first labeled using Breadth First

Search (BFS). The labeling starts from the source, s, rvhich is labeled as having distance

0 from the source. An unlabeled vertex is labeled from a labeled vertex in BFS manner.

24

Cn¡prpR 4. A MUITTTHREADED Mexn'rul¿ Flow AlcoRrtrv 25

An unlabeled vertex ? ìs labeled from a labeled vertex u if (2, o) is an edge and f @, ,) <

c(u,u) or (o,z) is an edge anð. J(u, z) >0. In other words, the labeling is done from

vertex u to vertex ¿r if therc is a residual edge from vertex z to vertex u. That is, for

each edge (2, z), if the capacity exceeds flow then more flow can be pushed from z to u.

On the other hand, for each edge (u, u), if there is a positive flow then this flow can be

pushed back from z to u. For both of these cases we say that there is a residual edge

(u,u) in the original network. For the first case, the residual capacity is the arnount

by which the capacity of the edge exceeds the flow in the edge. In the second case, the

residual capacity is the amount of flow in the edge. If edge (2, a) is saturated (flow is

equal to capacity) then this edge is not considered for labeling u ftom u. On the other

hand, if there is no flow in the edge (a, z) then u is not labeled from z. After labeling,

an auxiliary layered network is created where the vertices at distance one ar¡/ay from the

source are in layer one; the vertices at distance two away from the source ate in layer two;

in general, the vertices that are at a distance i from the source are in layer i. If we let

-L to be the maximum number of layers, then the source) s, is in layer zero, all the other

vertices other than the sink, ú, is in one of the layers from 1 to L - 2 and ú is in layer

tr - 1. The resulting network is a smaller network called the auxiliary layered network.

The edges between two layers are then connected in this layered network. Note that the

algorithm connects the edges in this network in such a way that each edge is considered

as a forward edge. That is, there is no edge connecting two vertices from layer i to i - I,

only from layer z to layer z -1- 1. The auxiliary layered network thus created is a directed

CHeprpR 4. A MUIUTHREADED MAXTMUM Flow Alcontrur¡ 26

acyclic graph (DAG). In this directed acyclic graph, there is one or more paths from the

source to the sink through which flow can be augmented. That is, there is one or more

augmenting paths from the source to the sink in the auxiliary layered network.

The next step of the MPM algorithm is to select â veltex say ?rr in the layered

network. The criterion for selecting u¿ is as follows. The in-potential and out-potentiaì

of each vertex is c¿lculated. The in-potential is the maxi¡num amount of flow that can

be pushed to the vertex and the out-potential is the maximum amount of flow that

can be pushed away from the vertex. In-potential and out-potential of every vertex

is calculated from the auxiliary capacity of edges incident on the vertex. The auxiliarv

capacity of an edge in an auxiliary layered network is the difference between capacity and

flow in that edge. The in-potential of a vertex is the summation of auxiliary capacity

of the incoming edges of that vertex. Similarly, the out-potential of a vertex is the

summation of the auxiliary capacity of the outgoing edges of that vertcx. The source,

s, has no incoming cdges and the sink, f, has no outgoing edges. For the source, s,

the potential is its out-potential and for the sink, ú, the potential is its in-potential.

For any other vertex the potential is the minimum of its in-potential and out-potential.

'lhe potential : mi,n(in - potenti.al, out - potential) gives the maximum flow that a

vertex can handle. After obtaining the potential for all vertices, the vertex which has

the least potential is selected as the target vertex (z¿) from which flow can be pushed

and pulled. Vertex (u¿) is called the minimum potential vertex and its potential is called

min-potential. The selection of the vertex in such a manner guarantees that there is

Cn¡preR 4. A MulrrrnREADED MAxTMUM Fr,ow At coRIrHv

never excess flow being pushed at a vertex and therefore the flow is always positive.

The flow is then pushed from o¿ to the destination through several paths sirnultane-

ously. In the same rvay, an equal amount of flow is pulled back from u¿ to the source

through several paths simultaneously. Since the graph is a DAG, the flow can be pushed

and pulled safely without worrying about any cycles. Also, since the layers are indepen-

dent of one another, we can safely apply parallelization to this network.

After these push and pull-back operations, some edges may get saturated and are

therefore deleted. The deletion of edges may leave some vertices isolated and so, they

are deleted too. The selection of vertices, pushing and pulling of flow and deletion of

vertices and edges are repeated until the layered network becomes disconnected.

The last step is to update the flow in the original network. The next iteration starts by

constructing an auxiliary layered netrvork again and the push-pull and deletion operations

are repeated. The algorithm terminates when no layered network can be created with

augmenting paths from the source to the destination, 'i.e., the flow /- in the transport

network is maximum if there is no augmenting path from the source to the destination.

The flow in the original transport network is now the maximum flow.

MPM lagorithm is explained with examples in 15, a2]. Now we will explain how

MPM algorithm works for the transport network of Figure 4.1. For every edge (2, u) two

weights are associated capacity and flow. For example, in Figure 4.1 the capacity and

flow of edge (s, ø) is 11 and 0 respectively.

When labeling algorithm is applied on the transport network of Figure 4.1 the source,

27

Cn¡prpn 4. A MUITIIHREADED M¡xIIr¿ul¡ Fi,ow Ar,coRrrnrr¡

Figure 4.1: An example of a transport network with 0 flow

s, is labeled as 0. There is an edge from s to ø with capacity 11 and flow 0. Hence,

11- 0 - 11 units of flow can be pushed from s to ø. Similarly 4-0:4 units of flow can

be pushed from s to I and 6 - 0 : 6 units of flow can be pushed from s to b. Hence, a, b

ànd , are labeled as 1. As a result, the auxiliarv layered network shown in Figure 4.2(a)

is generated. This auxiliary layered network has two layers. The source, s, is in layer 0

and the other three vertices a, b and ú are in layer 1. There is no edge between vertices

o and å in the auxiliary layered network as they are in the same layer. Vertices a and

ó have no outgoing edges. These two vertices and the two edges incident on them are

deleted and the auxiliary layered network shown in Figure 4.2(b) is generated. In this

layered network both s and I have potential 4 and s is selected as the minimum potential

vertex. 91 : 4 units of flow is pushed from s to ¿. The edge (s, f) becomes saturated

and the edge (s, t) is deleted fom the auxiliary network and the auxiliary layered network

28

o

Cs¡prnR 4. A MUITITHREADED Mexrrrurr Fr,ow Ar,coRrrHv

(.)

Figure 4.2: Flow in transport network and auxiliary layered network with two layers

becomes disconnected. The flow in edge (s, f) in the original network is updated as shown

in Figure 4.2(c).

As the auxiliary layered network shown in Figure 4.2(b) is disconnected after push

operation labeling is again applied on the transport network shown in Figure 4.2(c). In

this labeling operation the source, s, is labeled as 0. 11 - 0 : 11 units of flow can be be

pushed from s to ¿ and 6-0 : 6 units of flow can be pushed from s to ó. Hence, vertices

¿ and ó are labeled as i. 8-0 : 8 units offlow can be pushed from ¿ to l. Therefore, f is

labeled as 2. After this labeling operation the auxiliary layered network with three layers

is generated as shown in Figure 4.3(a). In this layered network the source, s, is in layer 0,

vertices ¿ and ó are in layer 1 and the sink, l, is in layer 2. The source, s, has potential

11 * 6 : 17, vertex o has potential min(tl,8) : 8, vertex å has potential min(6,9) :6

and the sink, l, has potential 8 + 9 : 17. Vertex ó has the minimum potential and it

to

(b)(u)

(4

CueprrR 4. A MulrrruREADED M¡.xn¡ul¡ Flow Alcon.lrr¡v 30

at)
,^rX-No;

s(I ^ .6v,
äle¿¡'-Y

aô
...>È^ &s:f 9t

.4<

,-',,-\6'o'
b

a

,..9!
õ

(b)(a) (.)

dfi%Ss.. ct

(f)(d) (")

Figure 4.3: Flow in transport network and auxiliary layered network with three layers

is selected as the minimum potential vertex. Now gz : 6 units of flow is pushed from

ó to f and 9z : 6 units of flow is pulled back from s to å. As a result of push-pull

operation edge (s, ò) is saturated and is deleted from the auxiliary layered network as

shown in Figure 4.3(b). The flow in the original transport network is updated as shown

in Figure 4.3(c). Now in the auxiliary network of Figure a.3(b), as vertex ó has no

incoming edges its outgoing edge (ó, l) and vertex ö are deleted and the auxiliary layered

CH¡,prpn 4. A MUITITHREADED MAXTMUM FLow AlcoRrrnl¿ 31

network of Figure a.3(d) is generated. In the auxiliary ìayered network of Figure 4.3(d),

the source, s, has potential 11, vertex ø has potential mi,n(Il,8) : 8 and the sink, l, has

potential 8. The minimum potential vertex is ø and minimum potential is 8. Now 93 : g

units of flow is pushed from vertex ¿ to the sink, f, and 9¡ : 8 units of flow is pulled back

from the source, s, to vertex ø. As a result of push-pull operâtions edge (o, f) becomes

saturatcd and it is deleted from the auxiliary layered network (Figure 4.3(e)). The flow

in the original transport network is also updated which is shown in Figure 4.3(f). In

Figure 4.3(e) vertex ¿ has no outgoing edges. Hence, the incoming edge (s, c) ofvertex ¿

is deleted and vertex ¿ is also deleted. As a result, the auxiliary layered network becomes

disconnected.

/-\ (3,0) ¡--r (3,0) ¿--: (3,0) ¡--¡

:-g.,=i-:-%==-í-;=s*í

(u) (b)

Figure 4.4: Flow in transport network and auxiliary Ìayered network with four layers

4)(4,

The labeling operation of vertices is applied on the transport network of Figure 4.3(f).

Cq.{prgn 4. A MUITITnREADED MexIIr,turvl Flow AlcozurHrr¡ J2

The source, s, is labeled as 0. 11 - 8 : 3 units of flow can be pushed from s to a. Hence,

vettex ¿ is ìabeled as 1. 3-0:3 units offlow can be pushed from ¿ to å. Therefore,

vertex å is labeled as 2. 9-6:3 units of flow can be pushed from å to the sink, f.

Hence, ú is labeled as 3. After this labeling operation the auxiliary layered netrvork rvith

four layers is generated (Figure 4.4(a)). In this auxiliary layered network the source, s,

is in layer 0, vertex a is in layer 1, vertex ú is in layer 2 and the sink, l, is in layer 3. The

source, .ç, has potential 3, vertex rz has potential min(3,3): 3, vertex ó has potential

min(3,3): 3 and the sink, f, has potential 3. The source, s, is selected as the minimum

potential vertex and the minimum potential is 3 units. Now, 9a : 3 units o{ flow is

pushed from the source, s, to vertex ø. Vertex a pushes g¿ : 3 units of flow to vertex

å. Vertex ò then pushes 9¿ : 3 units of flov¡ to the sink, ú. As a resuÌt of these push

operations, edges (s, a), (a,b) and (å, l) become saturated and these edges are deleted.

As vertices a and b have no incoming or outgoing edges, they are also deleted and the

auxiliary layered network becomes disconnected. The flow is also updated in the original

transport network (Figure a.4(b)).

Labeling operation is again applied on the transport network of Figure . (b). The

source, s, is labeled as 0. The three outgoing edges from the source, s, are (s, a), (s, ó) and

(s, l) which are saturated and cannot be reached from the source, s. Hence, no vertices

can be labeled from the source, s. Therefore, no auxiliary network can be c¡eated. As a

result, the algorithm terminates. The summation of flow in the outgoing edges from the

soulce, s, is 11 f 6 f 4 : 21 and the summation of flow in the incoming edges to the sink,

CgeproR 4. A MULTTTHREADED Mexrrr,ruu Fr,ow Ar-coRrrnu 33

l, is 8 * I + 4 -- 21. Hence, the flow of 21 units is the maximum flow for the transport

netrvork of Figure 4.1.

4.2 A Multithreaded Maximum Flow Algorithrn

The MPM algorithm [36] proceeds in several phases and each phase consists of several

steps. Each phase is dependent on previous phases. Hence, there is some synchronicity.

However, there is asynchronicity ivithin the phases. This asynchronicity is where we will

apply multithreading. This asynchronicity is one ofthe main reasons that motivated this

research towards multithreaded paradigm.

We apply multithreading to the labeling of vertices, determining minimum poten-

tial vertices and push-pull operations. A1l other steps are same with sequential MPM

algorithm. We will discuss about the parallelization in the following sections.

4.2.L Multithreading in Labeling Vertices

In each phase of the MPM aìgorithm, a layered network with a shortest augmenting

path from the source, s, to the sink, f, is created. The creation of the layered networlç

can be parallelized since this is nothing but applying labeling of vertices in parallel.

Labeling of vertices can be done by applying a sho¡test path algorithm. For labeling

vertices of a graph the distance from vertex LL to vertex ¿r is defined as 1 if any flow can

be pushed from z to o. On the other hand, the distance from vertex z to vertex u is

defined as co if no flow can be pushed from ø to o. Then the shortest path algorithm is

Cg¡pr¿R 4. A MUITITHREADED MAXTMUM Fr,ow Ar,coRrrnu 34

applied on the graph after assigning distance to each pair of vertices in the graph. Many

sequential shortest path algorithms exist, but the one that is amenable to parallelization

is the Dijkstra's algorithm [1a]. The parallel version of Dijkstra's algorithm for disributed

memory machine is explained in [25]. The beauty of this distributed memory algorithm

is that it can be easily implemented for shared memory machine. We have used the

parallel version of Dijkstra's algorithm 114] for labeling of the vertices. lttrote that there

are several parallel shortest path algorithms and their implementations such as Chandy

and Mishra [10], Paige and Kruskal [41], Thulasiraman et al. [53] and Thulashi¡aman

and Khokhar 1521.

+r
oro,.,r fT-ff--f-F-I

Figure 4.5: The partitioning of labeling array d and the adjacency matrix Iy'eú among 7

threads

We represent the original transport network using an adjacency matrix ly'ef and the

labels of the vertices by a one dimensional array d,. The adjacency matrix Nel of the

original transport network and the labeling vector d is partitioned among threads using

CHeprpR 4. A MulrrrnREADED MAxTMUM Flow Alconrrnv 35

1-D block mapping (In 1-D block mapping matrices are partitioned either row-wise or

coÌumn-wise) as shown in Figure 4.5. Here, we are assuming that there are n vertices

from vertex 0 to vertex (n - 1) and ? threads from thread 0 to thread 7 - 1. The source

vertex, s, is vertex 0 and the sink vertex, ú, is vertex ¿ - 1. Each of the ? threads is

assigned ff consecutive columns ofthe adjacency matrix. Thread i initializes from vertex

(z x ,¿) to vertex ((i + t) + fi - 1). At frrst the labeling vector d is initialized using the

Initialize algorithm of Figure 4.6.

Pro c e dure Initi aliz e (d, n, T,'Ikre adMum be r, lle tJ
h"gtrr

ifl(ThreadMumbe r = 0)
d[0] <- û;

for(i <- 1 to xi ï - 1)

Mark verter i as nol used for lab eling;
if(ffet[0][i] contains an edge)

d[i] <- 1;

else
d[i] <- oo;

endif
enilfo r
Ma¡k vertex 0 as used for labeling;

else

for(i +- Threadllumbert'nlT to (ThreadNumber*1)+nlT - 1)

Mark verlex i as not used for labeling;
if(ItIel[0][i] contains an edge)

d[i] (- 1;

else

df;l <- co ;

endif
endfo r

endif
end

Figure 4.6: Initialize algorithm

Cu¿proR 4. A MUITTTHREADED MAXTMUM Fi,ow AlcoRrrnu 36

After applying Inttiali,ze procedure the next task is to find a candidate vertex which

can be used for labeling more vertices. In the next step each thread finds the vertex which

is not used for labeling. Each thread executes the MinVert algorithm of Figure 4.7.

Pro c e dure MinVert (d, n, T,'Ihre ad Nu mbe r, Ne t)
hegln

find the vertex ¡ ir the range (T'i¿readNumber+'rc17..('IhreadMuwber+1)+'nlT-1')
rvhich is nôt us Ed for labeLng and which is not labeled as m ;

if no such r can be found

else

endif
end

Figure 4.7: MinVert algorithm

After execution ofthe above mentioned code by each thread the master thread (whose

ThreadNumber is 0) finds the minimum from the calculated minimum of all the mini-

mums calculated by the threads. If the minimum z is in the range (1..n * 2) the Label

procedure of Figure 4.8 is called.

Procedure Label(d, n, T, Net, u)
b*grrr

for(i <- 1 to æ/7- 1)

if(¡,Þt[u][i] or ilel[r][ri] contains an edge and flow can
be pushed lrom ¡¡ to i and dfi] > d[*]+1)

d[i] <- d[ri]+l;
endif

enrlfo r
Mark rerlex u as used for labeling;

end

Figure 4.8: Label algorithm

Cs¡proR 4. A MUIUTHREADED Mexrtruu Fr,ow AlcoRrtrtr 37

After calling Label, MtnVert is called. if Mi.nVert does rot return a value in the range

11..n - 2l the whole labeling procedure ends.

The labeling of the vertices in the original transport network consists of initializing

the vertices and then repeatedly applying probable candidate generation, synchroniza-

tion and then selection of the candidate vertex for labeling, synchronization and testing

for the termination of the labeling operations. All these works are done by LabelAll

algorithm. The pseudo-code of LabelAll algorithm for labeling vertices is given below

in Figure 4.9. This algorithm uses synchtonization to synchronize work among differ-

ent threads. LabelAll algorithm terminates when calling MinVert algorithm does not

generate any candidate vertex for labeling other unlabeled vertices.

Frocedure LabelAll(d, x, T, ThreadMumber, Ì'letj
b"gn

Call Initialize (d, n, T, Threadl'Iuwbe r, IIet) by all the threads;
synchoniz e;

flag {- true;
while(flag = ¡-¡¿¡

üall MinVert(d, n, T, ThreadMumber, Net) by all the threads;
synchronire;
Use the Master Tlread to Ëombine the data returned f¡om
MinVert and store the value in ør;

synchronize;
if(* rs not in lhe range fr+m 1 to n -2)

flag (- false;
enrlif

endwhile
end

Figure 4.9: LabelALL algorithm

CneprpR 4. A MUITITHREADED Mexrrr¡uir,r Flow Ar,coerrnv

4.2.2 Multithreading in Determining the Minimum Potential

Vertex

After labeling of the vertices is done we check whether the sink, f, has been labeled or

not. If the sink, f, is not labeled the algorithm terminates. Otherwise a layered network is

created with tr layers where the sink is labeled as ,L- 1. Now this tr layers are distributed

among ? threads. Each thread contains f layers and each thread calculates probable

minirnurn potential vertex from its data. The master thread combines all the data to

get the minimum potential vertex. In Figure 4.10 we have shown how the layers of an

auxiliary layered network are distributed among the available 7 threads. In this figure it

is assumed that every thread computes the minimum of the potential of vertices of two

layers.

Threads
01

Figure 4.10: Distribution of layers in an auxiliary ìayered network for computation of the

minimum potential vertex

38

t-l

ffit
t\ll)

À4t I

N]

Cu¡pr¡R 4. A MUITTTHREADED MAXTMUM Flow AlcoRtrnrr¡ 39

4.2.3 Multithreading in Push-Pull

Push-pull operations are also done in parallel. If the minimum potential vertex is in layer

i then at first flow is pushed to layer i * 1 vertices and flow is pulled from layer z - 1

vertices. The threads take the vertices of layers z f 1 and ¿ - 1 to which flow is pushed

or pulled. The procedure for push operation is given in Figure 4.11.

Procedure Push (ri, potentral)
b"srr

RemainingPotential (- potential;
1o rk the vertes ü
while(F-emarningPotential > tJ)

v {- first verte;r in the successor list of¡J;
1o ck the vertex ìr;

auxiliary_capacity <- dillerence ol capacity and flo¡v in (a,v);

;f <- minS.emainingPotential, auxiliary_capacity) ;

RemainingPotential <-RemainingPotential -J,
increase flow o(a,v) by I and increase Ïiow in lhe corresponding
edge in the original fansport network byj
if(u,v) rs s aturated

delete the edge from the layered netvrork;
endif
if(v + l)

Enqueue {v"fl in the queue p;
endif
unlo ck the vertex Ì';

endrvhile
unlo ck the 'rertex ü;
while (Q * Ø)

Dequeue (v
"fi

patr from p and Push(v"{;
endwhile

end

Figure 4.11: Push algorithm

In the above mentioned Pzså procedure we lock vertices z and a before flow is pushed

Cn¿ptoR 4. A MULTITHREADED M¡.xrrvrul¿ Fr,ow AlcoRrrsu 40

from vettex z to vertex z so that two or more threads cannot access the same vertex at

the same time. A thread unlocks a vertex when the pushing of flow through that vertex

is completed. The vertices are locked to ensure the atomicity of push operation. We have

showed in Figure 4.12 how push and pull operations start from the layer i of auxiliary

network.

Layer l- 1 Layer I Layer i+ 1

Figure 4.12: Push and pull operations from Layer i

The pull operation is quite similar to push operation. Vertices are also locked during

pull operation. The only difference is that pull terminates when flow reaches the source,

s, while push terminates when the flow reaches the sink, L

Chapter 5

Theoretical Analysis

We have applied coarse-grained multithreading to labeling of vertices, calculation of min-

imum potential vertex and push-pull operations. We use SPMD model for our computa-

tion in OpenMP. There are no standard models to analyze computations in multithread-

ing. For example, the theoretical analysis in [51] is for a specific data-florv architecture

EARTH. However, we present some of our analytical results for application of multi-

threading to labeling of vertices and determining minimum potential vertex. We also

explain why it is diffcult to analyze push-pull of flow.

5.1 Analysis of Labeling of Vertices

In this approach, given n vertices and 7 threads, we allocate lål "r LäJ vertices to each

thread (Here, fal means the lorvest integer) o and lo.] means the greatest integer (o).

Each thread executes the same code of labeling vertices. Then there is a synchronization

4I

Cn¡.prpR 5. THponorrc¡r, AN¡.r-vsts

barrier. After this barrier each thread executes thc same code for calculation of probable

candidate for the next labeling phase. A synchronization barrier is executed again. The

master thread then calculates the next candidate for labeling using the computation of

all the threads. Another synchronization barrier is executed and the above mentioned

steps are continued until no candidate for labeling operation is found. In the worst case,

these steps will be executed z times.

Let us assume that 1 unit time is required to label a vertex from a candidate vertex

and each comparison operation for finding candidate vertex also requires 1 unit of time.

Then the time spent in one itcration for labeling by a thread is (lËl + f¿o,"¿",") unit.

In the worst case, there will be n iterations. Hence, the total time spent in labeling

vertices by a thread is T¡o6 : lfil * n+n*t6o,¿.,. Similarly for a candidate vertex

generation, time is spent in finding probablc candidate by each thread and then choosing

the candidate vertex from probable candidates by the master thread. These operations

require synchronization operations after probable candidate generation by each thread

and then determining the candidate by the master thread from the probable candidate

vertices. Therefore, one iteration for candidate vertex generation for labeling involves fral

time for candidate vertex generation by each !,hread, t6o,,¿", time for synchronization after

probable candidate vertex generation by each thread, 7 time for the master thread to

compute the candidate ve¡tex from probable 7 candidate vertices and finally f6o,¡"" time

for synchronization before starting other operations. Hence, one iterâtior of candidate

vertex generation requires (l+l + f *2 * t6o,,¡",) unit time. In the worst case, all these

42

CueprpR 5. TupoRerrcal A¡relysrs

steps are executed n times. Therefore, the time to find candidate vertex for labeling is

7""" : (l +l -t T) + n i 2 * n * t¡,o,,¡",

Therefore, if we consider the case when the number of threads 7 is equal to the

number of processors p the total coarse-grained parallelism time for labeling is

43

Totalççp : T¡,m l Tc,

.n,. _n._
-]I xn+ns Lboni", * (17 +f) + n +2+n+16o,,¡",

- t.t rD1 , -,: (2+ lTl- 1l +n*3+ n*t¡o,,,",

If the computation of labeling of vertices were done by sequential operations then no

synchronization barrier would be required. In that casc, in each iteration of labeling by a

candidate vertex involve n operations and each iteration of candidate vertex generation

involves also n operations. Therefore, in the worst case fo¡ n iterations, the total time

spent in labeling operation is Totalspq : 2 " n2. Hence, if we consider the case when

the number of threads 7 equals the number of processors p the speedup achieved by our

multithre aded labeling method is

speedup : TotalsBq

Totals6p
2+n'

(Z * lil -l T) + n t 3 * n * t6o,,,",

T

4+l - *t "^..n | 2*n*T

Now, if we consider the situation when z)) 7 and

approaches 7 or p. Hence, if the nurnber of vertices in the

the theoretical speedup is good.

n)>) t6o,,¡.,, the speedup

transport network is large,

CgeproR 5. Tu¡onorrcer, Arq¡r,vsrs 44

5.2 Analysis of Determining Minimum Potential Ver-

tex

The method to determine the minimum potential vertex is applied on the layered network

which is implemented as an adjaccncy list. If there are 7 number of th¡eads and tr number

of layers in a layered network with flow f arÅ n¡ vertices then each thread gets ffl or

lf.l number of layers. However, the number of vertices in a layer is not fixed. Hence,

the number of vertices a thread handles during the computation of a probable minimum

potential vertex is not fixed. Let us assume that one unit of time is required for each

comparison and update operations for computation of the minimum potential vertex.

Therefore, if a thread handles maxim\tm nmar number of vertices then it takes rz-o, unit

time and the time spent by all the threads will be dominated by this time. If the number

of threads is equal to the number of processors then the tÍme spent in parallel portion of

the method is z-o, unit. After parallel computation of probable min potential vertices

there is a synchronization barrier. After this barrier the master thread computes the

minimum potential vertex from ? probable minimum potential vertices in 7 operations.

If the number of threads is equal to the number of processors then the total time spent in

paralleìization of determining minimum potential vertex requires tirne TotaLMi,nP otçço :

n^o, + T + t6o,¡",. On the other hand, if the computation of minimum potential vertices

is done by sequential computation then time spent is TotalMinPoteBq: nl. Therefore,

if the number of threads 7 is equal to the number of processors p the speedup achieved

CHeprpR 5. TspoRprrcel Analvsrs

by our multithreaded method for determining minimum potentiaÌ vertex is

45

speedup =

Now if all the threads have equal

equation of parallelism changes to

TotalMi,nPotsøq

TotalMi.nPotççp
nf

^ LrF L+-tumalIt)ùbarner

number of vertices, i,.e., n^o" : fi the above

.nî
speed.up : ry , r' n

T ' ' þbafltel

T
t , T2 , t^"*"., T
'r "ir "¡

Now, if we consider the situation when n¡ >> ? and n¡)) t6o,,¡¿,, the speedup

approaches 7 or p. Hence, if the number of vertices n¡ in the layered network is large and

the vertices are divided among threads evenly the theoretical speedup for the computation

of the minimum potential vertex is good.

5.3 Analysis of Push-Pull

We use OpenMP loop level (/or loop) parallelism for push-pull operations. If the mrn-

imum potential vertex r-¿," is in layer i, then flow is pushed to vertices in layer z f 1.

Similarly flow is pulled from vertices in layer i - 1. The vertices from which flow is pulled

and to which flow is pushed are stored in an array pPushPulllnf. Let us assume that

there are zo vertices in the array pPushPullInJ. Let us also assume that there are 7

number of threads.

Cn-tpren. 5. THEoR.ETTc¡r- AN¡.r-vsrs

In loop level parallelism, OpenMP scheduler distributes the work load among the

processors trying to evenly balance the load. However, the path length frorn u*¡n fo the

source, s, might be different from the path length from u^¿n to the sink, f. Hence, the

work for push and pull operations might be different. Moreover, for trvo vertices u, and

uu of layer i * 1, to which flow is pushed from the minimum potential vertex u*¿n, the

time to complete the push flow might be different as the amount of flow pushed from u,

and u, might be different and the number of paths might be different. Similarly the time

taken by two vertices uo and u6 of layer i - 1 might take different amount of time to pull

flow from the source, s.

Another problem in analyzing push-pull operation is that vertices are locked during

push-puli operations. When a thread pushes flow from a vertex o, to another vertex oe,

the thread locks both vertices so that no other threads pushes flow from or to vertices uø

and ur. Similarly a thread locks vertices uo and u6 when it tries to pull flow to ro from

o6. When two or more threads try to lock a vertex ù, locking contention occurs and one

or more ve¡tices have to wait to gain the lock of the vertex.

If there were no locking contentions and the load were equally distributed among the

threads, the time taken by a thread would have been T*,"o¿ 2 l*Vt- where Ts.rpu"¡pu¡

is the time taken by sequential computation of push-pull operations. However, we cannot

say anything about the time taken by a thread for locking contention and uneven load

distribution for push-pull operations.

46

Chapter 6

Performance Results

6.1 Experimental Methodology

The experiments were conducted on an 8-processor i686 (Pentium III) Symmetric Multi-

processor (SMP) machine. The processor speed is 700.011 MHZ with a cache stze of 7024

KB and a total memory space of 6 GB. The program was written in C using OpenMP

library.

We tested the implementation of our algorithm on square mesh type graphs. Square

mesh graphs are square grids of vertices. Every vertex in a row has 4 edges to randomly

chosen verticcs in the next row. The source and sink are external to the grid. The source

has edges to all vertices in the top row, and all vertices in the bottom row have edges

to the sink. Edge capacities are positive integers drawn randomly and uniformly from

the range [1..i51. The experiment was conducted on graphs with 5186, 6402,7746,9218,

Cs¡.prrR 6. PERFoRMANCE RÐsuLTS 48

10818, 12546 and 14402 vertices.

The methodologies followed for the experiment are given below:

o For every instance of graphs three runs were conducted. The runtime are average

of these three runs.

r Runs on the same set of inputs were done with number of processors ranging from

1to 8.

o The experiment was conducted for both static and dynamic scheduling of OpenMP.

o Reported runtime does not include input time.

6.2 Performance Results and Analysis

In this section we describe the performance of the implementation of our multithreaded

algorithm. Tables 6.1 and 6.2 give the data about the execution time (second) for 1 to

8 processors with different number of vertices for static and dynamic scheduling respec-

tively. Figures 6.1 and 6.2 show execution time for different number of vertices with 1

to 8 processors for static and dynamic scheduling respectively. The data of Tables 6.3

and 6.4 about the speedup for dynamic and static scheduling is computed from Tables 6.1

and 6.2 respectively. Figures 6.3 and 6.4 show speedup for different number of vertices

with I to 8 processors for static and dynamic scheduling respectively.

We have achieved speedup of 3.56 to 6.33 on 8 processors. This speedup is compara-

ble to the speedup achieved by Anderson and Setubal [3] and better than the speedup

Cueprpa 6. Ppn¡'oRr¡,tNcp R¡sur-rs

Table 6.1: Execution time for static scheduling

Stat¡c - Time

1600

1400

1204

1000
ô
19 800

i: 600

{00

200

0

---.l- 9218 venices

+ 10818 venices

.. .!,- i 2546 venices

+ I4402 vertices

No. of

Threarìs

No. of Vertices

5186 6402 7746 9218 10818 72546 t4402

103.01 153.08 225.68 561.99 976.42 685.04 1473.36

2 64.02 84.54 119.81 488.95 402.77 886.60

48.09 59.54 94.01 207.46 342.99 292.01 674.74

4 38.05 48,74 66.55 172.97 241.15 231.13 520.90

5 32.58 ,4 41 2À 60.47 r39.84 190.33 184.15 439.88

6 25.76 39.79 54.49 113.45 164.27 146.22 357.74

7 28-42 37.60 51..72 i01.50 147.92 130.92 328.48

8 28.91 38.03 50.13 95.53 144.83 126.41 320.24

Figure 6.1: Execution time with different number of threads in static scheduling

No. of

Threads

No. of Vertices

5186 6402 7746 9218 10818 72546 74402

102.11 150.6i 554.74 923.01 668.86 r464.72

2 64.32 84.31 124.77 269.77 497.67 407.73 859.29

3 50.85 60.16 93.96 202.55 344.80 282.4L 664.85

4 49.04 170.04 231.09 495.40

5 33.45 43.10 60.03 r37.42 194.59 176.86 446.r9

tr 29.70 39.84 53.29 113.30 165.39 145.84

7 28.00 37.98 50.75 103.97 154.00 129.26 307.69

I 27.55 36.48 48.89 95.53 1J Z. J;) 123.18 307.45

CH¡proR 6. P¡R¡'onM,A.NcE RESULTS

Table 6.2: Execution time for dynamic scheduling

50

Dynam¡c - T¡me

1600

1400

1200

1000

l4 800

Etr 600

400

200

0

+ 10818 vefices

+ 12546 verlices

Figure 6.2: Execution time with different numbe¡ of threads in dynamic scheduling

CnaprpR 6. Ppn¡'oRuemcn R.osulrs

No. of

Threads

No. of Vertices

5186 6402 7746 9218 10818 72546 14402

2 1.61 1.81 1.88 2.04 i.87 r.70 r.66

2.1.4 ¿-J I 2.40 2.79 2.67 2.35 2.18

4 2.77 3.74 3.39 ò.zt) 3.80 2.96 2.83

5 3.16 J.
')J

,J. f .l 4.02 4.81 J.JJ

tl 3.46 3.85 4.74 4.95 5.58 4.68 4.r2

7 3.62 4.07 4.36 5.54 6.20 4.49

8 3.56 4.03 4.50 5.88 Û. J.1 5.42 4.60

Table ô.3: Speedup for static scheduling

Speed up - Stalic

5

2

l

0

---t- I 2546 ve¡1ices

1234567ø
*olThreads

--'t'..'-!-::;
-/..r;----.:

.4ffi
Æ

-¿a

Figure 6.3: Speedup in static scheduling

CH¡.prsR 6. Ppnronlr¡NcE RESULTS

No. of

Threads

No. of Vertices

5186 6402 7746 9278 10818 12546 74402

2 1.59 t_79 1.85 2.06 1.85 r.64 1.70

2.0r 2.50 2.46 2.74 2.68 2.20

4 2.7r 3.07 3.20 3.262 3.95 2.89 2.96

5 3.05 3.49 3.85 4.04 ô.tó 3.28

f) 3.44 J. I¿J 4.34 4.90 5.58 4.59 3.94

7 3.65 3.97 4.55 5.99 5.1.7 4.76

8 ó.tr 4.r3 4.73 5.81 6.05 4.76

Table 6.4: Speedup for dynamic scheduling

Dynam¡c - Speed Up

6

5

å3

2

1

0

,---'-.. Å1.. t I

-,. ¿+ffi<'
.ët{''-

. ..J -- 9218 veñices

---.|- 10318 vertrces

----+- 12546 vedices

..,^,.. 14,102verlices

45

Figure 6.4: Speedup in dynamic scheduling

Cueprpn 6. PpR¡,ontrnxcp Rpsulrs

achieved by Lie 135]. Anderson and Setub¿l obtained a specdup of 5 to 6 on 8 processors

whereas Lie obtained a speedup of 1.5 on 6 processors.

It can be found from Figures 6.3 and 6.4 that the speedup is not linear. Lack of

parallelism, synchronization, hardware effects and lock contention are the major factors

behind the nonlinear speedup. Here, we will discuss these factors concisely.

Lack of paralìelism occurs when the total number of verticcs to which flow can be

pushed fiom or pulled to the least potential vertex is less than the number of processors.

In our algorithm a layered network is created in every phase. Then push-pull and dele-

tion operations are applied on the layered netwotk. The numbe¡ of vertices and edges

decreases with increasing number of iterations within a phase which results in a lack of

parallelism.

Synchronization overhead happens during synchronization of different threads in la-

beling of the vertices and calculation of the minimum potential vertex and after every

push-pull operations.

Hardware overheads are due to bus contention, cache flushes due to false sharing,

and memory hierarchy effects common to a shared-memory machine. Bus contention

results from the attempt of gaining the access to the same bus by two or three processors

while cache flushes due to false sharing occurs for sharing a cache line by two or more

processors.

Vertices are locked during push-pull operations so that two different vertices from

layer i cannot push flow to the same vertex in layer I t I or two different vertices from

CueprsR 6. PpRpoRr¡¡NcE REsULTS

layer i cannot pull flow from the same vertex of layer z - I at the same time. Locking

contention occu¡s when two or more threads try to lock the same vertex.

It can be noticed from Tables 6.3 and 6.4 that the maximum speedup achieved for

static scheduling is 6.33 while maximum speedup achieved for dynamic scheduling is 6.05.

The reason behind this difference in speedup might be that in case of static scheduling

the scheduler schedules during compilation of the program while in case of dynamic

scheduling the scheduler schedules during runtime. The difference in the scheduling

policy results in different speedup.

It can also be noticed from Tables 6.3 and 6.4 and Figures 6.3 and 6.4 that speedup

increases with increase in number of vertices from 5186 to 10818 and and speedup de-

creases with increase in number of vertices from 10818 to 14402. The increase in speedup

for increase in data size can be inferred from the fact that the ratio of time spent in

execution to the time loss in overhead is bigger for larger data size compared to lower

data size. However, with increase in data size speedup decreases after a certain point on

data size for cache misses for larger data size.

54

Chapter 7

Conclusion and Future \Mork

7.L Conclusion

The goals of this thesis work were to 1) design and irnplement a multithreaded maximum

flow algorithm in OpenMP and 2) compare the performance of the algorithm with Lie's

implementation of Goldberg and Tarjan's maximum flow algorithm in OpenMp.

We have designed and implemented a multithreaded maximum flow algorithm us-

ing Malhotra, Pramodh Kumar and Maheswari's maximum flow aìgorithm (MpM al-

gorithm) 136]. We have done extensive experiments with the implementation of our

algorithm for square mesh graphs.

In this thesis we have developed a multithreded approach for labeling vertices. We

have devised a technique to push and pull flow along several paths simultaneously.

We have achieved speedup of 3.56 to 6.33 on 8 processors whereas Lie's implementa-

Cn¡.p:reR 7. Coucr,usroN AND FuruRE WoRK

tion has a maximum speedup of 1.5 on 6 processors, We would like to mention that Lie,s

implementation of Goldberg and Tarjan's maximum flow algorithm in OpenMP is the

only multithreaded implementation of a maximum flow algorithrn on a shared memory

machine before our work. Lie did not get a good speedup. However, our multithreaded

implementation of MPM algorithm has achieved a good speedup.

One of our major achievements in this thesis is obtaining a maximum speedup of 6.33

in OpenMP on 8 processor shared memory machine which can be considered as a good

speedup for an eight processor shared memory machine on OpenMP.

7.2 Future 'Work

One future direction of this work can be min cost flow algorithm which is a natural

extension of rnaximum flow algorithm. Min cost flow problem considers edge capacities

as well as cost of an edge. Min cost flow problem is a generalization of shortest path

and maximum flow problem. Shortest path problem considers only cost of edges and

maximum flow problem considers only edge capacities. Min cost flow problem can be

solved using primal-dual approach. In this approach min cost flow problem is solved in an

ite¡ative månner. In primal-dual approach each iterå,tion solves a shortest path problem

with nonnegative arc lengths and a maximum flow problcm. In this approach flow is

augmented along all shortest paths simultaneously. In this thesis we have developed a

multithreaded maximum flow algorithm and the calculation of shortest path is part of

our algorithm. Hence, our work can be extended to the design and implementation of a

Ðt)

C¡r¡.pr¡R 7. Corvcr,usroN lr,¡o FuruRp WoRx

multithreaded algorithm for the min cost llorv problem

[1]

l2l

13l

Bibliography

P. Agarrval and A. Ng. Computing network flow on a multiple processor pipeline.

IEEE Transactions on Parallel and Distributed Systerns, 5 (6):653 658, 1994.

R. K. Ahuja, T. L. Magnanti, and J. B. O in. Network Flows: Theory, Algorithms,

and Appli,cations. Prentice Hall, Princeton, New Jersey, 1g93.

R. J. Anderson and J. C. Setubal. On the parallel implementation of Goldberg,s

maximum flow algorithm. In Proceed,ings oJ the Fourth Annual ACM Syrnposium on

P arallel Algorithms and. Archi,tectures, pages 168 777, San Diego, CA, July 1992.

Arvind and R. A. Iannucci. Two fundamental issues in multiprocess ing. In Proceed,-

i,ngs of DFVLR Parallel Processing on Science and, Engi,neeriltg, pages 61-88, West

Gcrmany. Julv 1987.

f5] V. K. Balakrishnan. Network Opttmization. Chapman & Hall, 199b.

16] R. D. Blumofe, C. E. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y . Zho.¿,. Cilk: An efficient multithreaded runtime system . In Proceed,zngs oJ the FiJth

14l

B leLtocR¡pHv

ACM SIGPLAN Symposium on Principles and, Practice of Parallel Programming,

pages 207-216, Santa Barbara, CA, Julv 1995.

[7] U. Bruening, W. K. Giloi, and W. Schroeder-Preikschat. Latency hiding in message-

passing architectures. In Proceedings of the Eighth International Parallel Processi,ng

Sympostum, pages 704-709, Canc'ú,n, Mexico, April 1g94.

[8] S. M- Brunett, J. Thornley, and M. Ellenbecker. An initial evaluation of the Tera

multithreaded architecture and programming system using the CSI parallel bench-

mark suite. In Supercomput'ing '98, pages 1 19, Orlando, Florida, November 1g98.

[9] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. parallel

Programmtng i,n OTtenMP. Academic Press, San Diego, CA, USA, 2001.

110] K. M. Chandy and J. Misra. Distributed computation on graphs: Shortest path

algorithm. Communications of the ACM, 25 (11):833-837, 1982.

[11] J. Cheriyan, T. Hagerup, and K. Mehlhorn. An o(23)-time algorithm maximun-flow

algorithm. SIAM Journal on Computing, 25:1744 7170, 1996.

[12] V. Chvatal . Li,near Programming. Freeman Co., Maryland, USA, 1990.

[13] G. B. Dantzig and D. R. Fulkerson. Minimizing the number of tankers to meet a

fixed schedule. Naual Research Logist'ics Quarterly, 7:217 222, 1g54.

[14] Ð. Dijkstra. A note on two problems in connexion rvith graphs. Numeriche Mathe-

mo lirs, l:269 271, I959.

59

B rsLrocRapuy

115] E. A. Dinic- Algorithm for the solution of a problem of maximum flow in a network

with power estimation. Souiet Math. Dokl.,lI:I277 1280, 1970.

[1ô] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic eficiency for

network flow problems. Journal of the ACM, Ig:248 264, lg72.

[17] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web com_

munities. rn Proceed,ings of the si,rth ACM SIGKDD International conference on

Knowled,ge Discouery and, Data Mining, pages 150-160, Boston, Massachusetts, Au_

gust 2000.

[18] G. \.V. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization of t]re web

and identification of communities. IEEE Computer, 35 (3):66 77,2002.

f19] L. R. Ford and D. R. Fulkerson. Maximum flow through a network. canarlzan

Journal of Mathematics, 8:399-404, 19b6.

i20] L. R. Ford and D. R. Fulkerson. Flows rn Networks. princeton university, princetr',

New Jersey, 1962.

121] V. Getov and M. Philippsen. Java communications for large-scale parallel comput-

ing. In J. Waéniewski S. Margenov and P. Yalamov, editors, proceed,zngs of Thi.rd,

International Conference on Large-Scale Sci,entifi.c Computations, pages 33-4b, So_

zopol, Bulgaria, June 2001. Springer Verlag, Lecture Notes in Computer Science

tr7c)

60

B teLrocn.apHv 61

[22] A. V. Goldberg. Recent deveìopments in maximum flow algorithms. Technical

Repoit 98-045, NEC Research Institute, April 1998.

[23] A. v. Goldberg and s. Rao. Beyond the flow decomposition barrier. Journal of the

ACM, a5$):783-797, September 1998.

[24] A. V. Goldberg and R. E. Tarjan. A new approach to maximum flow problem.

Journal oJ the ACM,35 (4):921-940, 1988.

[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introrluction to parallel Comput-

i.ng, Second, Edi.ti.on. Addision-Wesley, Harlow, England, 2003.

[26] J. L. Hennesey and D. A. Patterson. Computer Archi,tecture: A Quantitatiue Ap-

proach, Thirtl, Ed,ition. Morgan Kaufmann, San Flancisco, CA, 2003.

l27l H.H. J. Hum, K. B. Theobald, and G. R. Gao. Building multithreaded architectures

with off-the-shelf microprocessots.In Proceedings of the Eighth Internat'ional P arallel

Process,ing Symposi,um, pages 288 294, Cancún, Mexico, April 1gg4.

i28] K. Hwang. Ad,uancetl Computer Archi.tecture: Parallelism, Scatabilitu, proqramma-

bili.ty. McGraw-Hill, New York, NY, 1993.

[29] K. Hwang and Z. Xu. Scalable Parallel Computi.ng: Technology, Architecture and,

Programmi,ng. McGraw Hill, 1998.

B rsLlocRlpuy

130] N. Imafuji and M. Kitsurcgawa- Effects of maximum flow algorithn on identifying

web community- rn Proceedtngs oJ the Fout-th Internatior¿al workshop on web In-

formation and Data Management, pages 43 48, Mclean, Virginia, November 2002.

[3r] c. Joerg and B. Kuszmaul. Massively paraìlel chess. rn Thi,rd, DIMACS parallel

Implementation Challeng e Workshop, Rutgers University, October 1g94.

[32] L. v. Kale and S. Krishnan. charmf *: parallel programming with message-driven

objects. In Parallel Programmzng us'irry Ct+, pages 175 213. MIT press, 1gg6.

[33] v. King, S. Rao, and R. E. Tarjan. A faster deterministic maximum flow algorithm.

Journal of Algorithms, 17(3):447-474, 1994.

[34] B. Lewis and D. J. Berg. Thread,s Pr'imer - A Guid.e to Multi,threaded, programmzng.

SunSoft Press, Prentice Hall, Upper Saddle River, NJ, USA, 1996.

[35] S. Lie. Parallel programming interfaces. Technical report, MIT, 2003.

[36] V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari. An O(] I/ 3) algorithm for

finding maximum flows in networks. Information processing Letters, 7 (6):277 27g,

October 1978.

[37] c. Martel. Preemptive scheduling with release times, deadlines, and due timcs.

Journal oJ the ACM,29(3):812 B2g, 1982.

[38] N. Nagy and S G. Ak]. The maximum flow probrem: A real-time approach. paraller

C omp uti,ns, 29 (6) :7 67 -7 94, 2003.

62

BTeLIocRaprTv

139] L. oliker and R. Biswas. Parallelization ofa dynamic unstructured application using

three leading paradigms. IEEE Transacti,ons on Parallel ant| Distri,buted Cornputing,

11(9):931 940, September 2000.

f40] openMP Architecture Review Board. openMP c and c++ Application progrant

Interface, March 2002. http: //www.openmp.org/specs/mp-documents/cspec20.pdf.

[41] R. C. Paige and C. P. Kruskal. Parallel aÌgorithms for shortest path problems. In

Internatior¿al conference on Parallel Processing (ICPP '85),pages 14 20, university

Park, PA, USA, August 1985.

[42) c. H. Papadimitriou and K. steiglitz . combinato,ial opttmizati.on: Algorithms anrl

Complerity. Dover Publications Inc., Mineola, New york, 1g82.

143] A. Pinar and B. Hendrickson. Exploiting flexibly assignable work to improve load

balance. rn Proceetli'ngs of the Fourteeth Annual ACM sympos,ium on p arallel Algo-

rithms and, Ach'itectures, pages 155-163, Winnipeg, MB, August 2002.

[aaj s. Roy and L J. cox. A maximum-flow formulation of the n-camera stereo corre-

spondence problem. Il Sirth International Conference on Computer V,is,ion, pages

492 502, January 1998.

[45] Supercomputing Technologies Group, MIT Laboratory for Com-

puter Science. CLlk 5.3.2 Reference Manual, November 2001. url:

http: //supertech.lcs.mit.edu/cilk/manual-5. 3.2.pdf.

OJ

B IeLrocRepuv

146] K. B. Theobald, J. N. Amaral, G. Herber, O. Maquelin, X. Tang, and G. R. Gao.

overview of the threaded-c language. Technical Memo cApsl Technical Memo 1g,

computer Architecture and Parellel systems Laboratory (cApsl), university of

Delware, Newark, Delaware, March 1g98.

[47] I<. B. Theobald, R. Kumar, G. Agarwal, G. Heber, R. Thulasiram, and G. R. Gao.

Implementation and evaluation of a communication intensive application on the

EARTH multithreaded system. concurrencll and, computatzon: practice anrl E,pe-

rience., 74:783 201, March 2002.

[48] I. Thomo, S. Malassiotis, and M. G. strintzis. optimized block based disparity

estimation in stereo systems using a maximum-flow approach. rn proceedzngs oJ

the XI SIBGRAPI'99 International Conference, pages 410 417, Rio de Janeiro, RJ,

Brazil. October 1998.

[49] K. Thulasiraman and M. N. s. swamy. Graphs: Theorg and, Argorithms. John wiley

& Sons, Inc., New York, 1992.

P. Thulasiraman. A distributed protocol for the network primal-dual method and

simulation on a shared-memory multiprocessor. Master's thesis, Department of com-

puter Engineering, Concordia University, November 19g1.

P. Thulasiraman. Irregular computations on Fine-Grained, Multi.thread,ed Archi,tec-

tures. PhD thesis, University of Delaware, August 2000.

64

150l

[51]

B teLrocRepHy

[52] P. Thulasiraman and A. A. Khokhar. An asynchronous multithreaded algorithm

for a class of linear programming problems. rn líth International conference on

Parallel and, Distri.buted, Computtng Systems (ISCA pDCS p00p), The Galt House,

Louisville, KY, USA, Septernber 2002.

[53] P. Thulasiraman, Xin-Min Tian, and G. R. Gao. Multithreading impÌementation of

a distributed shortest path algorithm on earth multiprocessor. rn srd, International

Conference on Hi.gh PerJormance Computinq, pages 336-341, Trivandrum, India,

December 1996.

154] J. L. Träff. Distributed, synchronized implementation of an algorithm for the maxi-

mum flow problem. In Proceerl,ings of the 23rd, International Conference on parallel

Processing (ICPP'94), pages 110 114, St. Charles, IL, Aug 1994.

f55] K. D. Wayne- Generali,zed, Mari.mum Flow Algorithms. PhD thesis, Cornell Univer-

sity, 1999.

65

