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Abstract

In this thesis, the problem of overvoltage calculation on multiconductor transmission

lines due to nonuniform external electromagnetic field excitations, such as lightning, is

investigated by introducing a field-voltage macromodel. The main purpose of this thesis

is to find a fast and efficient algorithm to model the effect of the radiated electromagnetic

fields on transmission lines. This is done by replacing distributed voltage and current

sources along the transmission line which are as a result of external electromagnetic field

radiation, by voltage and current sources at the terminals of the transmission line. For this

purpose, the knowledge of electromagnetic field at every point on the transmission line is

required. A transfer function based pole-residue tracing technique will be introduced in

this thesis. By using the proposed algorithm, a closed form solution for the lumped sources

at the terminals of transmission line in the frequency domain is obtainable. This approach

will enable us to bridge the software working in frequency domain with those working in

the time domain. The effect of different parameters on calculated overvoltage such as finite

conductivity of the ground and lightning return stroke channel (RSC) specifications are

studied. The theoretical background and extent of validity of the proposed algorithm are

reviewed in this thesis.
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Chapter 1

Introduction

1.1 Motivation

The emerge of sensitive electronic equipment and devices which require highly-reliable

electric power and, at the same time, are more susceptible to electromagnetic interference

(EMI), gives a significant importance to the transmission line analysis research area [7].

Transmission lines are critical components of a power system from an electromagnetic

point of view due to their large dimensions. One of the important external sources of

interference with the transmission lines is lightning. A typical lightning channel consists

of large amount of transient current in the range of tens of kilo Amperes and can induce

voltage up to thousands Volts [8]. This induced voltage can travel on the line and harm

the equipment connected to the network. Accurate knowledge of electromagnetic fields

of external excitation is required to calculate the induced voltage on the line by using

field-to-line coupling equations. Current methods of calculating the field-to-line effects are

based on rigorous and time-consuming techniques which cannot be easily employed for

the simulation of large power systems. In this thesis, the main objective is to find an

1



Chapter 1. Introduction

efficient way to calculate these radiated fields by using macromodel-base algorithms. Need

for integration of the frequency domain software result within the time domain simulators

is another motivation of this research. As an example, at the end, we will be able to

use the result of NEC1 software (in frequency-domain) to obtain time-domain transient

response of an excited line in PSCAD/EMTDC2, a commonly-used time domain power

system simulator.

1.2 Problem Definition

This thesis deals with the problem of lightning return stroke channel radiation electro-

magnetic fields, transmission line modeling, and coupling of radiated fields to transmission

lines. Although there is a massive investigation on the effect of uniform plane-wave cou-

pling to transmission line, the nature of the most of the electromagnetic radiations are

nonuniform, especially at close distances of the radiation source. The goal of this thesis is

to generalize the excitation type to nonuniform wave. Lightning, as an important source

of high power nonuniform wave radiation, is used in this work as a source of excitation.

To be able to investigate the lightning effects on transmission lines, the lightning chan-

nel should be properly modeled. There have been several models proposed for lightning

channel such as Engineering Models in the time-domain and Electromagnetic Models in

the frequency-domain which will be used in this research.

Figure 1.1 illustrates the schematic of a lightning return stroke channel (RSC), the trans-

mission lines, and the coupling problem. Assume a finite length transmission line over a

lossy ground. During the return-stroke phase of a lightning flash, a very fast transient cur-

1Numerical Electromagnetic Code
2Power Systems Computer Aided Design/Electromagnetic Transients including DC
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Figure 1.1: Problem definition.

rent pulse starts propagating along the already-established lightning return-stroke channel.

As a result, the channel, whose length is in the order of a few kilometers, behaves like a

monopole antenna and radiates electromagnetic energy in the surrounding space. Power

transmission line systems, due to their expansive length, are very vulnerable to this ex-

ternal source of electromagnetic radiation. The coupled electromagnetic energy generates

very strong transients in power distribution systems, which are capable of propagating over

long distances. The ideal way of obtaining the induced voltage on a transmission line is

to have the EM field information at every point on the line. If the radiated EM fields are

uniform plane-wave, the only effect of propagation is delay and can be expressed analyt-

ically. However, this is not true for the case of nonuniform waves such as those radiated

by lightning RSC.

In this work, the proposed approach is to obtain the transfer function of the RSC-propagation

media system and then estimate the EM field values by tracing the poles and the residues

of the transfer function in the frequency domain. Using this idea, the calculation of the

3
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EM fields will depends on the knowledge of very few points of the propagation space.

Additional calculation speed is obtainable using recursive calculations such as recursive

convolution.

The validity of the proposed algorithm is verified by comparing the outcomes with mea-

surement data. Finite Difference Time Domain (FDTD) code [4] is also used for validation

of the result of plane-wave excitation of the transmission line. Further the numerical soft-

ware package NEC [9,10], is used to model the lightning return stroke channel (RSC) and

compare the obtained electromagnetic fields.

1.3 Thesis Outline

In chapter 2, we are doing the literature review for the problem of transmission lines re-

sponce to external electromagnetic field radiation of the lightning RSC. In the first part

of this chapter, we will review the lightning phenomenon [1], along with different models

proposed for the modeling of RSC [11]. In the second part of chapter 2, we will talk about

different methods of analysis of transmission lines in the presence of the external excita-

tion.

In chapter 3, the concept of macromodeling will be discussed and an efficient EM field

macromodel which can be used for efficient calculation of radiated EM field of lightning,

will be introduced in details. The Vector Fitting algorithm along with different effective

parameters on the output of this algorithm will be explained. At the end of this chap-

ter, several examples will follw to verify the proposed field macromodel with measurement

data.

In chapter 4, governing equations in transmission lines issue will be derived and we will

4



Chapter 1. Introduction

see the effect of the external radiation on these equations. The second class of macro-

model, voltage macromodel, in which the whole RSC-EM field-transmission line system is

combined into one single terminal-equivalent model, will be developed. At the end of this

chapter, the implementation results of the proposed technique will be compared with those

results obtained by measurement. Different sources of radiation such as EMP generator

and lightning RSC will be used in this section.

Chapter 5 summarizes the work done in this research and discusses the future works.

5



Chapter 2

Literature Review

2.1 Lightning

Lightning has been known as an important natural phenomenon which has significant ef-

fect on induced transients on cables and transmission lines [12,13]. There have been many

research studies on the modeling and measuring of its effects. The interesting parameters

which are being studied in measurements are the channel base current, radiated electro-

magnetic fields, and induced voltages on transmission lines as well as optical measurements.

Generally, measurement is costly, cumbersome and time consuming, and hence, technically

difficult. As a result, there has been a tendency in simulation research area to model the

return stroke channel of lightning, calculate the EM radiated fields due to this channel

as well as obtaining the induced voltage on transmission lines by using field-to-line cou-

pling models and numerical methods. Before going through the lightning terminologies, a

historical overview of lightning phenomena is discussed.

6



Chapter 2. Literature Review

2.1.1 Historical Overview

Lightning is considered as a phenomenon whose origin is not exactly known. It is likely

that lightning was present on the Earth long before life evolved on our planet and played

a role in producing the organic molecules necessary for the formation of every life form.

The primitive human treated it with fear and wonder. Almost all religions have mentioned

lightning and storm in their religious believes as the endless power of gods. The origin of

the sixth day of week, Thursday, is coming from Thor’s day. Thor was believed as a god

who produces lightning by throwing magic hammer toward clouds. Some believed light-

ning is produced by their god when he throws stone from sky, some believed it is produced

when Thunderbird is diving toward Earth from clouds and opens his igneous wings [1].

The first scientific study of lightning returns to Franklin experiment in 1752 [14]. It was

late in 19th century when the photography and spectroscopy became available as diagnos-

tic tools for lightning research to identify the spectrum of lightning flash as a good source

of information about physical condition inside lightning channel. Figure 2.1 shows an

example of these pictures taken by Hendry 1993 [1].

After 1960, due to increasing use of electronic devices and their susceptibility to damage

because of overvoltages and induced lightning current, the research and measurement in

the lightning area found a huge attention and several researchers tried to record the light-

ning radiated EM field by recently-developed measurement equipments. The first multiple

station measurements of electromagnetic fields on the ground from close lightning were

performed by Workman et al. (1942) [15], and Reynold and Neill (1955) [16]. The modern

era of electric and magnetic field measurements relating to the lightning stroke is traced to

the 1970s, when the first field records on microsecond time scales were reported. Further

information on early measurement of electromagnetic fields due to lightning can be found
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Figure 2.1: A lightning flash appears as at least seven separate ground strike points:
(a) still-camera photograph, (b) moving-camera photograph. Adopted from [1].

in Uman et al. [17].

2.1.2 Lightning Terminologies

Natural lightning is a strong electrical discharge that typically lasts around 1 second in

a length of some Kilometers. Cumulonimbus clouds are the common source of lightning

phenomena. It happens whenever the electric field of a part of atmosphere due to the

density of charges, breaks down the air. Usually, the distribution of charges inside clouds

is in a form that negative charges are at the bottom and positive charges are at the top

of the clouds, and are behaving like an electrical dipole. Figure 2.2 illustrates a typical

distribution of charges in this kind of cloud. The natural lightning is categorized into two

groups, cloud to cloud lightning and cloud to ground ones. Although the former consists

most of the lightning cases, the latter is more interesting to researchers as it contributes in

most of the damages. To give a clear picture of the way lightning happens, consider a cloud
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Figure 2.2: Charge distribution inside a cumulonimbus cloud.

which is electrified. If the amount of charges inside the cloud increases, it causes an initial

breakdown because of large potential defference between the ground and cloud. Negative

charges start to move toward the ground and this creates a stepped leader at the base of

the cloud. When the stepped leader reaches close to the ground, positive charges moves

from the ground toward it and contact each other. This is called the attachment process.

After that a huge amount of current starts traveling in this established channel at a speed

of one third of the speed of light and discharges the remaining charges in the cloud [1].

This is called the return stroke phase of lightning and the established channel is called the

lightning return stroke channel (RSC). Evaluation of the radiated electromagnetic fields

in this stage, as an external excitation of transmission lines, is one of the targets of this

thesis. Figure 2.3 shows the steps mentioned in a lightning flash. There are several

proposed models for the RSC which we will review in the next subsection.
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Figure 2.3: Various processes comprising a cloud-to-ground lightning flash. Adopted
from [1].

2.1.3 Lightning Return Stroke Channel Models

The expression lightning return-stroke model is generally used to describe a specification

of the time and height-dependent current in the RSC to make possible the calculation of

resultant remote electromagnetic fields. Generally, there are four classes of lightning return

stroke models [11]. They are distinguishable by the type of governing equation.

• The first class of models is gas dynamic or physical models. In this model, the

channel is divided to short segments of cylindrical plasma column and the radius of

this segments are approximated by the input current and time.

The gas dynamic models do not consider the longitudinal evolution of the lightning

channel. They also ignore the electromagnetic skin effect and corona sheath. This

model has physical base and is not useful in engineering applications [18, 19].

• The second class is the distributed circuit model. It represents the lightning discharge
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as a transient process on a vertical transmission line characterized by per unit length

parameters such as resistance, inductance and capacitance. For this reason some

times it is called the R-L-C transmission line model.

If the channel is assumed to exhibit quasi-TEM field structure, Resistance (R), Induc-

tance (L) and Capacitance (C) are constant (e.g., Agrawal et al. [20]) but in general

these parameters are changing with time and space due to variation in electron den-

sity and the radius of channel core. Several interesting works have been done related

to this model such as Rakov [21], Baum and Baker [22,23] and Strawe in [24]. Most of

these papers propose distributed-circuit models with different R, L and C variation.

This model is also not useful in engineering applications as well as in this thesis.

• Electromagnetic models are the third class of lightning return stroke channel models

first proposed by Podgorski and Landt [25]. In this model, the lightning channel is

treated as a lossy thin monopole antenna. The current distribution along the lightning

channel and the radiated EM fields are obtained by solving Maxwell’s equations. To

reduce the propagation speed of the current along the lightning channel to a value

consistent with observations, a different permittivity of the medium needs to be

used in the channel characteristics. As we will see in this thesis, the current wave

propagation speed and attenuation is controlled by the loading of channel with a

series resistance and inductance controlling the value of the permitivity.

• Engineering models are the last popular class of RSC models. They relate the current

along the lightning channel at any height x′, with the current at the base of the

channel as, [26]

i(x′, t) = u(t− x′

v
)p(x′)i(0, t− x′

v
), (2.1)

where u(.) is Heaviside function, p(.) is the height-dependent current attenuation
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factor, v is the current-wave propagation speed and i(0, t) is called the channel base

current.

Depending on how p(x′) is defined, different sub-models have been proposed in this

class. Some of these sub-models are Transmission Line model (TL) by Uman and

McLain [27], Modified Transmission Line model with linear current decay (MTLL)

by Rakov and Dulzon [28], and Modified Transmission Line model with exponential

current decay (MTLE) by Nucci et al. [29]. Table 2.1 represents different choices for

p(.) which are used in these sub-models.

In table 2.1, H is the channel height and λ is current decay constant (used by Nucci

et al. [29]).

Beside the attenuation factor mentioned in 2.1, channel base current is also a deter-

mining factor for the current at any height of the lightning channel. So it directly

affects the radiated electromagnetic fields. A typical lightning channel-base current,

based on direct measurements performed at the top of high towers [30] or using rocket

triggered lightning [2,31], is shown in Figure 2.4. Various analytical formulations have

been proposed to model the measured channel base current, such as double exponen-

tial [32], modified double exponential [33, 34], Heidler [35] and a new channel-base

Table 2.1: Current attenuation factor for three simple engineering models

Model p(x′)

TL 1

MTLL 1− x′
H

MTLE exp(x
′
λ
)
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Figure 2.4: Typical measured lightning channel base current. Adopted from [2].

current function (NCBC) [36]. Improved channel-base current formulations allow

controlling the rise time, the fall time, and the peak value of the waveform almost

independently. Further, the formulation proposed in [36] provides analytical forms

for the derivative and the integral of the waveform which are needed for calculation

of the radiated EM field.

2.1.4 Radiated Electromagnetic Fields of RSC

Calculation of radiated electromagnetic fields of lightning channel is essential for obtaining

induced voltage on transmission lines and cables. The electromagnetic field information is

directly involved in the field-to-line coupling equations. Although the current propagating

along the lightning return stroke channel attenuates due to channel characteristics, the high

amplitude current in the range of Kilo-Ampere is able to create strong EM field around the

channel especially at the close distance of the RSC [37]. In many studies, lightning chan-

nel has been considered as a vertical uni-dimensional antenna over perfectly-conducting
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Figure 2.5: Measured vertical electric field intensity in Barker experiment at the
close distance of rocket trigered lightning. a) at 110m b) at 50m from the lightning
channel. Adopted from [2].

ground [38]. However the ground conductivity plays an important role in the evaluation

of the radiated fields. The study of effect of ground finite conductivity was first published

by Sommerfeld in 1909 [39]. Sommerfeld integrals yield the exact solution of radiated EM

fields, but they are very complicated and time-consuming. Several approximations have

been proposed for these integrals such as perfect ground approximation [40, 41], wavetilt

formula [42], Cooray approach [43], and Rubinstein approach [44]. Barker et al. mea-

sured the vertical electric field radiated by a rocket-triggered lightning experiment at 50m

and 110m from the RSC [2]. In this experiment, indeed the overvoltage induced on a

multiconductor transmission line was measured. The measured voltages obtained in this

experiment are used in this thesis for comparison purposes in chapter 4. An example of

this rocket-triggered measurement is illustrated in Figure 2.5 to have an estimation about

the amplitude of the electromagnetic field in a typical lightning. Furthermore several re-

searchers have recorded lightning radiated EM field recently. These data are the most

appropriate test of model validity predicted by the engineering models as well as other
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Figure 2.6: Typical vertical electric field intensity (left column) and horizontal mag-
netic flux density (right column) for lightning RSC at distance of 1, 2, and 5 km.
Adopted from [3].

models. Measured EM fields due to natural lightning at the range of 1-200 km is presented

by Lin et al. in [3]. Also the EM fields related to the trigered lightning is published by

Uman et al. [45, 46] and by Rokov et al. [47].

One important point about lightning EM field is that it is nonuniform. It means that

the shape of the radiated EM field dramatically changes with distance from the RSC.

Figure 2.6 and Figure 2.7 show the variation of electric and magnetic fields at different

distances.

Obviously, the shape of electric field is very different from magnetic field in close distances

but they are similar at far distances. The reason is that in far distances the spherical waves

radiated from the channel is nearly plane-wave and only difference is in their amplitude.

From this figures, effect of propagation on EM fields can be parameterized as: rise time

to initial peak, initial peak value, ramp starting time, ramp slope, and zero crossing time
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Figure 2.7: Typical vertical electric field intensity (left column) and horizontal mag-
netic flux density (right column) for lightning RSC at distance of 10, 15, 50, and 200
km. Adopted from [3].

for 50 and 200 km wave forms. Compare this with uniform plane wave where the shape

doesn’t change in different distances and the only effect of propagation is delay. So In

nonuniform EM waves, the effect of propagation on these fields is remarkable and can not

be neglected.

2.2 Transmission Lines

Lightning-induced voltages on overhead transmission lines have been the subject of many

theoretical and experimental investigations since the first decade of the 20th century. Mul-

ticonductor transmission lines arise in application ranging from very long over-head trans-

mission lines and cables in power transmission to tiny interconnects in VLSI1 technology

1Very Large Scale Integration
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and electronic chip packaging. Accurate and efficient simulation is important for all these

applications. A fundamental difficulty arises in integrating transmission line simulation

into transient circuit simulator because network nonlinearities and time-dependant com-

ponents require a time-domain analysis whereas transmission line characteristics such as

conductor loss and dispersion are best described in the frequency domain. The issue of

mixed time-frequency domain modeling of lossy coupled multiconductor transmission lines

has been studied in both power systems and electronics communities for many years. Gen-

erally the transmission line models can be divided into two groups. Terminal-based models

and Distributed models.

Terminal-based models for the transmission line analysis have been considered by many

researchers in simulating dispersive transmission lines in the time domain. One of the first

models, referred to as the method of characteristics, can only deal with lossless transmission

lines. This simple delay model was considered by Branin [48]. The issue of modelling trans-

mission lines with frequency-dependant parameters, which has emerged as an important

topic in power system area, was studied by Budner [49]. He considered a modal analysis and

included the frequency-dependence of the line parameters using a convolution of the past

history of the modal voltages and weighting functions where the weighting functions are

the inverse transform of the two-port admittance parameters. Only symmetric transmis-

sion lines were studied, which, however, result in a frequency-independent transformation

matrix. Because of the high computational cost of evaluating the convolution integrals in

Budner’s model, a more efficient model was proposed by Snelson [50] which is formulated

using forward and backward traveling waves. Improving Budner’s weighting functions,

and modifying the method proposed by Snelson, J. Marti developed an equivalent circuit

impedance model which is an approximation to the frequency-dependent characteristic
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impedance of the line [51]. His model employs modal analysis with a frequency-independent

transformation matrix, and is the progenitor of common models employed in power system

simulators (such as PSCAD [52] and EMTP [53]). To avoid the inaccuracy or instability

problems observed in the mode-domain models, a variety of methods in which the matrix

elements of the propagation function and the characteristic admittance are directly studied

and fitted in the phase domain, have been proposed (see for example [54,55]). A review of

phase domain models can be found in the work of Gustavsen et al. [56].

Simulation software based on terminal-characteristic models, such as PSCAD and EMTP,

are not capable of calculating external-field coupling, whereas one of the inherent features

of distributed models is the capability of determining the response of the line to external

exciting fields. For handling this problem, distributed models were developed such as those

models based on FDTD method.

FDTD methods are a common way of approximating the time-domain response of trans-

mission lines [20, 57]. The MTL equations are discretized both in time and space and

the resulting difference equations are usually solved using the leap-frog scheme [4]. Basic

FDTD approaches have been applied to problems with frequency-independent per-unit-

length parameters. The inclusions of terminal constraints [58], lossy conductors [59], and

nonlinear junctions [60] have been addressed. In [58], a first-order finite-difference ap-

proximation for one of the MTL equations was proposed to relate terminal voltages and

currents, and a state-variable formulation was used to solve the whole MTL network. The

skin-effect frequency dependence of the transmission-line conductors was considered in [59],

where the series transmission line impedance was approximated by a rational function. A

technique for incorporating the FDTD formulation in a lumped-element network simula-

tor using modified nodal analysis (MNA) was introduced by Mardare and LoVetri [60].
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They only considered frequency-independent lines. Recently Kordi et al. [61] developed

modified version of FDTD technique (MFDTD) which is capable of considering frequency-

dependence of p.u.l. The problem with distributed models is that they are time-consuming

and need massive memory space to be calculated and this decreases the efficiency of these

methods.

2.3 Field-to-Line EM Coupling Models

The problem of incident electromagnetic waves coupling to MTL has already been ad-

dressed in several literatures for example in [62–65]. The source of such electromagnetic

fields can be, for example, a plane wave or a nearby lightning stroke. In both cases, an

external source generates time-varying electromagnetic fields which surround the MTL

conductors and induce voltage and current on the conductors of the line. For short trans-

mission lines (compared to the smallest wavelength of the exciting fields), or alternatively,

slow-varying fields the coupling effects of these external electromagnetic fields can be con-

sidered using lumped element sources, however, for long transmission lines (compared to

the smallest wavelength of the exciting fields), or alternatively, fast-varying fields accu-

rate simulation of the external source requires distributed sources. In [64, 66], high speed

interconnection simulation algorithms based on model-reduction-based are discussed. [62]

talks about time-domain macromodel for incident field coupling to MTL based on matrix-

rational approximation for frequency dependant conductors. These models are capable

of being incorporated into general circuit simulators such as SPICE [67]. Calculation of

the time-domain equivalent source representation of incident field at transmission line’s

terminal, based on split representation at both ends of MTL structure, is given in [68].

Techniques such as method-of-characteristics (MoC) and matrix rational approximation
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(MRA) for macromodel-base analysis of MTLs are proposed in [69, 70]. In [63], a closed

form relations for equivalent sources in the time-domain accounting for EMI-induced ef-

fects based on delay extraction is provided. Furthermore the formulation of the equivalent

lumped sources at the terminals of MTL, based on spectral representation of dyadic Green’s

function of MTLs is presented in [71]. Almost all of these works have considered uniform

plane-wave excitation of line. There are few literatures discussed nonuniform cases such

as [65] where a hybrid FDTD and similarity transformation technique is used to calculate

the additional voltage sources due to excitation of lossless transmission line.

There are three main formulations for the field-to-transmission line coupling equations in

terms of electromagnetic excitation field. In the first, the forcing functions are described in

terms of electric and magnetic excitation field components [72,73] whereas, in the second,

only the vertical and horizontal electric field components are involved [20]. Finally, a third

equivalent formulation of coupling equations is derived in which the forcing functions are

expressed in terms of magnetic excitation field components [5]. This formulation makes it

possible to evaluate field-to-transmission line coupling starting from solely the magnetic

field components. The use of this formulation is particularly interesting when the exciting

field is determined experimentally, as measuring the magnetic field is generally much easier

than measuring the electric field.

Next chapter presents a new time-domain macromodel to handle the lossy frequency-

dependant transmission line excited by a non-uniform incident EM field. The proposed

technique is to overcome the problem of terminal-based models in handling non plane wave

external-field coupling, and distributed models from the aspect of efficiency and speed.
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Electromagnetic Field Macromodel

In this chapter, we will develop an efficient algorithm to calculate the electromagnetic fields

of typical radiation sources. The source of the electromagnetic radiation can be natural,

such as natural lightning, or artificial sources, such as triggered lightning. In this thesis, we

chose lightning channel as a source of radiation to study because there is measured data

available to validate the results and is of more importance in power system simulation.

The order of the sections in this chapter is as follows: we will discuss the concept of

macromodel in the next section. Different approximations in calculating EM field above a

lossy ground are discussed next. After that, we will introduce our proposed technique for

efficient calculation of the EM fields. The idea behind this algorithm and the details are

main topics of this section. In the last section of this chapter, we will show the results of

the proposed macromodel and will compare them with measurement data.
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Figure 3.1: An LTI system block diagram with its input, output, and transfer func-
tion.

3.1 Concept of Macromodelling

Every linear time invariant (LTI) system can be described by its transfer function. Transfer

function of a system is a relationship between input and output of that system so that

for a specific input, the output can be calculated using the transfer function. Consider

Figure 3.1 which shows an LTI system simple block diagram with its input and output.

The relationship between these function are defined by convolution of input and transfer

function in the time domain as,

y(t) = x(t) ∗ h(t), (3.1)

where ∗ represents the convolution operator. The advantage of using transfer function of a

system in calculating its output is that it is independent from the input. Furthermore, by

using efficient techniques such as recursive convolution, fast calculations become possible.

In general, macromodeling is reducing the complexity of the transfer function of a system

with model order reduction techniques (MOR) in a way that the input-output behaviour

is preserved. In this chapter, we will consider the lightning RSC as the system. The input

and output of this system are channel base current and radiated electromagnetic fields

around the channel, respectively. Studying the transfer function of this system is the main

topic of this chapter. Figure 3.2 shows the complete field macromodel with its input and
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Figure 3.2: The field macromodel of lightning RSC. Channel base current as input
and radiated electromagnetic fields and its output.

Figure 3.3: Equivalent block diagram representation of Figure 3.2.

output.

The equivalent block diagram representation of Figure 3.2 is shown in Figure 3.3. The idea

of the electromagnetic field macromodel is to obtain electromagnetic field in an arbitrary

point in the space around the radiation source by using the already-specified values of the

electromagnetic field of other points in the space. To develop this idea, we need to know

how to calculate the electromagnetic field over a lossy ground for those specific points.

So, before going through the details of the field macromodel, in the next section we are

explaining different methods and approximations to obtain electromagnetic field over a
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lossy ground.

3.2 Electromagnetic Fields over a Lossy Ground

The main interest in this section is considering the effect of finite conductivity of the ground

on a) The vertical electric field and b) The horizontal electric field component which are

used in the calculation of induced overvoltages caused by lightning [74].

3.2.1 Effect of ground finite conductivity on the vertical

electric field component

Several authors have shown that, for the frequency range of lightning studies, the vertical

component of the electric filed, radiated from the RSC, is not significantly affected by

ground conductivity, (e.g. [40, 41]). So for simplicity, the ground is considered to be PEC

for the calculation of the vertical electric field. As shown in Figure 3.4 , using the image

theory for the calculation of vertical component of the electric fields over a PEC ground

we have [40],

Ex(r, x, t) =
1

4πε0
[

H∫
−H

2(x− x′)2 − r2

R5

t∫
0

i(x′, τ − R

c
)dτdx′

+

H∫
−H

2(x− x′)2 − r2

cR4
i(x′, t− R

c
)dx′

−
H∫

−H

r2

c2R3

∂i(x′, t− R
c )

∂t
dx′], (3.2)

where, r is the horizontal distance from channel base and c is the velocity of light. Equa-

tion 3.2 consists of three terms. The first term which is related to the integral of the
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Figure 3.4: Geometry for the calculation of RSC radiated vertical electric field with
PEC ground assumption.

current along the lightning channel is called the electrostatic term. This term is important

in close distances but its role in radiated electric field decreases by moving away from the

channel. The second term which is proportional to current itself is called the induction

term and is important at mid ranges from RSC. The third term which is important at far

distances is proportional to the derivative of the channel current and is called the radiation

term. It should be mentioned that the perfect ground approximation is more valid for close

distances [74], however, for far distances, the lightning radiation effects are less important.
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3.2.2 Effect of ground finite conductivity on the horizontal

electric field component

The horizontal component of the electric field depends on ground conductivity much more

than the vertical component does. Different approaches may be used to calculate horizontal

electric field of lightning RSC such as Perfect ground assumption, Wavetilt formula, Cooray

approach, and Rubinstein approach.

• Perfect ground assumption: The radial electric field under this assumption at a height

of x and a distance of r from the RSC is given by,

Er(r, x, t) =
1

4πε0
[

H∫
−H

3r(x− x′)
R5

t∫
0

i(x′, τ − R

c
)dτdx′

+

H∫
−H

3r(x− x′)
cR4

i(x′, t− R

c
)dx′

−
H∫

−H

r(x− x′)
c2R3

∂i(x′, t− R
c )

∂t
dx′]. (3.3)

To demonstrate the effect of ground conductivity on electromagnetic fields, we have

plotted the horizontal electric field by using MTLL model and Cooray-Rubinstein

approach (which will be described in following) for several ground conductivity. Fig-

ure 3.5 shows this for r=100m distance from the RSC and Figure 3.6 is for r=5km.

The horizontal electric field on a PEC ground is zero and it changes dramatically

with variation of the ground conductivity. These show that perfect ground assump-

tion is not accurate enough for calculation of the horizontal component of electric

field. There are other approximations used to calculate the horizontal electric field

as follow.
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Figure 3.5: Horizontal electric field at r=100m on the ground.
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Figure 3.6: Horizontal electric field at r=5km on the ground.
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• Wavetilt Formula: This formula expresses the ratio of the Fourier transform of the

horizontal electric field Er(jω), to that of the vertical field Ex(jω), and thus, al-

lows calculating the horizontal component of the electric field over a soil of finite

conductivity from the knowledge of the vertical component of the same field as,

w(jω) =
Er(jω)

Ex(jω)
=

1√
εrg +

σg

jωε0

, (3.4)

where, σg and εrg are the ground conductivity and relative permittivity, respectively.

Ex(jω) can be obtained using the perfect ground assumption. According to Thomson

et al. [42], this approach for the calculation of the radial electric field is reasonable

only for far observation points and we will not use this approximation in this thesis

for this reason. However, several authors have used this formula for the calculation of

lightning induced voltage on transmission lines located at far, and also intermediate

(about 1km) distance ranges [75–77].

• Cooray Approach: In [43], Cooray proposed to calculate the horizontal electric field

by using the azimuthal magnetic field and surface impedance expression given by,

Er(r, 0, jω) = Bφ(r, 0, jω)
c√

ε+
σg

jωε0

, (3.5)

where, Er(r, 0, jω) and Bφ(r, 0, jω) are the Fourier transforms of the horizontal elec-

tric field and the azimuthal magnetic flux density, respectively, both at the ground

level. This formula is obtained simply by writing the integral of Ampere-Maxwell

equation around an infinitely long rectangle extended from ground level to x = −∞

and assuming all the field components are zero at x = −∞. Cooray has shown that

3.5 yields very accurate result in close distance of lightning channel up to 200m [43].
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• Rubinstein Approach: In this approach, the horizontal electric field over a ground

with conductivity of σg and at the height of x is given by [44],

Er(r, x, jω) = ErP (r, x, jω)−HϕP (r, 0, jω)
1 + j

σgδg
, (3.6)

where, ErP (r, x, jω) and HϕP (r, 0, jω) are the horizontal field component over a per-

fect ground at the same height and azimuthal magnetic field over a perfect ground

and at the ground level, respectively. δg is the skin-depth of the ground. In fact,

1+j
σgδg

acts as a correction factor similar to wavetilt formula. The basic assumption in

Rubinstein formula is that σg >> ωε0εrg
2. If it is not satisfied, then the general form

of Rubinstein formula becomes [44,78],

Er(r, x, jω) = ErP (r, x, jω)−HϕP (r, 0, jω)
cμ0√

εrg +
σg

jωε0

, (3.7)

where, Erp is same as 3.3 and,

Hϕp(r, 0, t) =
1

4π
[

H∫
−H

r

R3
i(x′, t− R

c
)dx′

+

H∫
−H

r

cR2

∂i(x′, t− R
c )

∂t
dx′]. (3.8)

As the second term in 3.7 is similar to the Cooray proposed formula, 3.7 is called

Cooray-Rubinstein formula. This is the formula used in this chapter to calculate the

horizontal electric field along the transmission line.
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3.3 Pole-Residue Representation of the EM Fields

The developed formulas for electric fields in equations 3.2- 3.7 are in the time or fre-

quency domain. The alternate representation of electromagnetic fields is by using poles

and residues of the field. Assume that we have a time domain signal, e(t). Using Laplace

transform we can have it in the Laplace domain E(s), where, s is the complex frequency.

Using Vector Fitting algorithm [79–81], a well-known technique to map the frequency

domain data to corresponding poles and residues, E(s) is written in the form of,

E(s) ∼=
M∑
i=1

Ri

s− Pi
+ b+ cs, (3.9)

where Ri and Pi are residues and poles, respectively. b and c are constant numbers and

representing proportional term and time derivative term, respectively. The accuracy of

this algorithm can be increased by proper choice of the number of the poles and residues

required for fitting, and the number of iteration of the algorithm [82]. To convert the

Laplace domain data to the frequency domain, it is enough to replace s with jω to have,

E(jω) ∼=
M∑
i=1

Ri

jω − Pi
+ b+ cjω, (3.10)

where j is
√−1 and ω is angular frequency. It should be noted that increasing M (number

of poles and residues) does not necessarily increases the accuracy of fitted function and

may cause unstable results. In the next section, as an example, we will obtain the impulse

response for the vertical electric field over a PEC ground due to lightning RSC and will

investigate the accuracy of the fitted function by using vector fitting algorithm. This will

enable us to build the complete field-macromodel. Different parameters effective in Vector

Fitting algorithm will be studied as well.
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dx′
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Figure 3.7: A monopole antenna representing the lightning RSC and its correspond-
ing vertical electric field.

3.4 Vector Fitting the Electric Field Data

Assume a vertical monopole representing a lightning RSC as shown in Figure 3.7. The goal

is to obtain the vertical electric field at distance r from the channel. There is an analytic

formula available for this problem given in 3.2. Equation 3.2 is the general equation for

vertical electric field over a PEC ground. In this section, we are dealing with engineering

models. So the current function will be as given by 2.1. To obtain the impulse response

of the 3.2, we need to use impulse function for channel base current. Then, combining

2.1 and 3.2, the impulse response of the vertical component of the electric field ξx, on the
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ground level and distance r from the lightning channel will be,

ξx(r, φ, 0, t)nodelay =
1

4πε0
[

∫ H

0

2x′2 − r2

R5
P (x′)u(t− x′

v
− R

c
+

r

c
) dx′

+

∫ H

0

2x′2 − r2

cR4
P (x′)δ(t− x′

v
− R

c
+

r

c
)dx′

−
∫ H

0

r2

c2R3
P (x′)δ′(t− x′

v
− R

c
+

r

c
)dx′], (3.11)

where u(.), δ(.), and δ′(.) are the unit step, unit impulse, and derivative of the unit impulse

functions, respectively. In 3.11, the minimum propagation delay, (r/c) which is the time

required for radiation effects to reach to the observation point, is extracted. The reason is

that the field data will be fitted to poles and residues by using Vector Fitting algorithm

at the end and reproducing the delay time requires a large number of poles. To discretize

the system, it is assumed that the input is represented as samples of the desired waveform

i(0, t), sampled every Δt seconds. Our approach is to properly discretize the RSC so

that in every time step, the wave travels by one segment Δx′i on the channel. This will

remove any unreal oscillations which are created if the RSC is not discretized properly.

Mathematically, we specify this condition (see Figure 3.8) as,

(
x′i+1

v
+

Ri+1

c

)
−

(
x′i
v

+
Ri

c

)
= Δt , (3.12)

where x′i+1 = x′i +Δx′i and Ri =
√

x′i2 + r2 . Solving 3.12 for Δx′i yields,

(
1

v2
− 1

c2

)
︸ ︷︷ ︸

A

Δx′i
2 − 2Δx′i

(
Δt

v
+

x′i
c2

+

√
x′i2 + r2

vc

)
︸ ︷︷ ︸

B

+Δt

(
Δt+ 2

√
x′i2 + r2

c

)
︸ ︷︷ ︸

C

= 0 ,

(3.13)

Δx′i =
B −√

B2 −AC

A
. (3.14)
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Figure 3.8: Schematic of the discretization of RSC.
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Figure 3.9: Segment length calculated by using Δt = 0.2μs and v = 100m/μs.
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Figure 3.9 shows the segments length as a function of the number of segments for two

different values of r for a 7-km long lightning channel. The frequency response of the

system is then determined by discretizing 3.11 and applying Discrete Fourier Transform

(DFT) and using Discrete Time (DT) impulse function as the input. The discrete version

of 3.11 becomes,

ξx(r, φ, 0, n)nodelay =
1

4πε0
[

M∑
i=0

2x′i2 − r2i
R5

i

P (x′i)
n∑

	=0

δ(�−mi)ΔtΔx′i

+

M∑
i=0

2x′i2 − r2i
cR4

i

P (x′i)δ(n−mi)Δx′i

−
M∑
i=0

r2i
c2R3

i

P (x′i) (δ(n−mi)− δ(n−mi − 1))
Δx′i
Δt

], (3.15)

where mi is the closest integer to (Ri/c+x′i/v−r/c)/Δt, and M is the number of segments

of the RSC. Figure 3.10 shows the used approximations for step, impulse and derivative of

impulse function in discrete time domain where we use zero padding to avoid aliasing and

also be able to use Fourier transform properly. The N-point DFT of 3.15 is given by,

ξx(r, φ, 0,K)nodelay =
1

4πε0
[

M∑
i=0

2x′i2 − r2i
R5

i

P (x′i)
N−1∑
n=mi

e−jKΩ0n ΔtΔx′i
N

+

M∑
i=0

2x′i2 − r2i
cR4

i

P (x′i) e−jKΩ0mi
Δx′i
N

−
M∑
i=0

r2i
c2R3

i

P (x′i) e−jKΩ0mi(1− e−jKΩ0)
Δx′i
NΔt

], (3.16)

where Ω0 = 2π/N , K is an integer, and 0 ≤ K ≤ N − 1. Evaluation of ξx(r, φ, 0,K)

provides the data needed for fitting the DT impulse response of the system into a form

that is suitable for recursive convolution.
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2K N≥

Figure 3.10: Approximation used for discretizing 3.11, a) DT Unit Impulse, b) DT
Difference impulse, c) DT step function.

3.4.1 Recursive Convolution by Using Vector Fitting

To show that the form of the transfer function in 3.9 allows us to perform convolution

recursively, consider a transfer function h(t) with only one pole and residue given by,

H(s) =
R

s− P
. (3.17)

In time domain it is in exponential function form as,

h(t) = RePt. (3.18)

The system’s output signal is the result of convolution of the transfer function in time

domain with input signal as,

y(t) = x(t) ∗ h(t) =
∫ t

0
x(τ)h(t− τ)dτ = RePt

∫ t

0
x(τ)e−Pτdτ. (3.19)
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The output at the next time step will be,

y(t+Δt) = ReP (t+Δt)

∫ t+Δt

0
x(τ)e−Pτdτ

=RePΔtePt

∫ t

0
x(τ)e−Pτdτ +ReP (t+Δt)

∫ Δt

t
x(τ)e−Pτdτ

=RePΔt︸ ︷︷ ︸
A

y(t) +R
ePΔt − 1

P︸ ︷︷ ︸
B

x(t)

= Ay(t) + Bx(t). (3.20)

Equation 3.20 shows that the output is obtainable just by knowledge of the output at the

previous time step and the input.

3.4.2 The Effect of the Number of Poles on Vector Fitted

Data

To see how Vector Fitting algorithm works and what the effects of the number of poles and

residues on the fitted function are, consider a 3-km RSC over a PEC ground. Using 3.16

for the vertical component of the electric field, 3.14 to discretize the RSC, and a channel

base current as shown in Figure 3.11, we calculated the position of the poles and residues

of the vertical component of the electric field. For the first case, we used M=3 for the

number of poles to fit. Figure 3.12 and 3.13 show the position of the poles and residues

of the radiation component of 3.16 at r=50m. Reconstructing the original function by

using these poles and residues is shown in Figure 3.14. As expected, they do not match

each other perfectly. By increasing M to 10, we can achieve a better accuracy. Figure 3.15

and 3.16 show the poles and residues position for M=10 and Figure 3.17 and 3.18 show

a comparison of the amplitude and phase of the original function and fitted function by
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Figure 3.11: Channel base current.

using Vector Fitting, respectively. Obviously, because of increasing the number of poles

there is a good agreement between the original function and the fitted one. Using obtained

poles and residues and doing recursive convolution, we calculated the field information

for radiation, static, and induction terms of the vertical electric field. The results are

compared with direct time domain method in Figure 3.19- 3.21. Table 3.1 shows the

amount of the error between different components of the electric field obtained by using

Vector Fitting algorithm and direct time domain method for two different numbers of

poles.The outlined procedure was done just for one specific distance from the RSC. The

idea of field macromodel is repeating the above mentioned procedures for several distances,

obtaining poles and residues positions and predicting the position of poles and residues for

any desired distance. Next section is explaining the details of EM field macromodel.
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Figure 3.12: Poles location with M=3.

-10 -8 -6 -4 -2 0 2 4

x 10
6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

7

Real (residues)

Im
ag

 (
re

si
du

es
)

Figure 3.13: Residues location with M=3.
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Figure 3.14: Amplitude of the original function and fitted one by using vector fitting
algorithm with M=3.
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Figure 3.15: Poles location with M=10.
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Figure 3.16: Residues location with M=10.
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Figure 3.17: Amplitude of the original function and fitted one by using vector fitting
algorithm with M=10.
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Figure 3.18: Phase of the original function and fitted one by using vector fitting
algorithm with M=10.
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Figure 3.19: Radiation term of the electric field.
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Figure 3.20: Static term of the electric field.
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Figure 3.21: Induction term of the electric field.
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Table 3.1: Error percentage of two cases of function fitting by using Vector Fitting
algorithm. a)3-pole b)10-pole

Number of Poles Induction term error Static term error Radiation term error
M=3 10.9% 4.32% 40.98%
M=10 0.27% 0.77% 5.79%

Figure 3.22: The geometry of the field macromodel problem to be solved.

3.5 Field-Macromodel’s Details and Procedures

In this section, we are proposing a macromodel to calculate electromagnetic field at any

arbitrary point in the space by using the knowledge of the EM field information at few

other points. Figure 3.22 shows a schematic of the problem to be solved. Assume that

the desired field to be calculated is the vertical component over the ground. As shown in

this figure, we have the vertical components of the electric field at N points Z1, Z2, ..., ZN ,

and we want to calculate the vertical electric field for an arbitrary point, z0. Following the

same procedure as we had in section 3.4 to obtain poles and residues positions, we obtain

them for any of distances Z1, Z2, ..., ZN to form a M ×N poles/residues matrix as shown

in 3.21. The ith column in these matrices (1 ≤ i ≤ N), corresponds to the poles/residues
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Figure 3.23: Fitting the same order poles/residues into the functions.

of distance Zi which is obtained by Vector Fitting algorithm.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 ... p1N

p21 p22 p23 ... p2N

...

pM1 pM2 pM3 ... pMN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 ... r1N

r21 r22 r23 ... r2N

...

rM1 rM2 rM3 ... rMN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.21)

The next step is to find a relationship between the same order poles/residues as shown

in Figure 3.23. In this figure the jth row (1 ≤ j ≤ M) represents the jth poles/residues

of those N distances. For example, the first poles and residues are fitted to functions of

z, P1(.) and R1(.), respectively. This is repeated for all M poles and residues obtained

from Vector Fitting. Then for the arbitrary point z0, we can obtain poles and residues by

simply evaluating these functions.

⎧⎪⎪⎨
⎪⎪⎩

pi(z0) = Pi(z = z0)

ri(z0) = Ri(z = z0)

, i = 1, 2, ...,M (3.22)
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The frequency domain data is obtained using,

E(z = z0) =
M∑
i=1

ri(z0)

jω − pi(z0)
. (3.23)

Using Inverse Fourier Transform we convert it into the time domain,

ζ(t, z0) = f−1(E(z0)) =

M∑
i=1

rie
pit (3.24)

where ζ(t, z0) stands for the impulse response of the system in the time domain. Note that

we obtained 3.23 by using 3.16 which was impulse response of the system. The recursive

convolution is useful at this step to obtain output response by using input channel-base

current as,

e(z0, t) = ibase(t) ∗ ζ(t, z0). (3.25)

Equation 3.25 is so-called Field Macromodel Equation. The main challenge is to find

proper functions Pi(.) and Ri(.) shown in Figure 3.23. In this work, we can use two types

of interpolation. The first one is to use linear interpolation between each pole and residue

to find unknown poles and residues. The second one is to fit functions on the trace of poles

and residues and evaluate them. These functions may be polynomial, exponential, etc.

This type of interpolation will be useful in Voltage Macromodel which is discussed in the

next chapter.

In summary, the general procedure in the field macromodel is shown in Figure 3.24. The

specific details of field macromodel is shown in Figure 3.25. As shown in Figure 3.25,

the input to the macromodel is channel base current and the position of the point in the

space which we need to have the electric field information at. The output is the calculated

electric field in the time domain. Transfer function data required for Vector Fitting is
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Figure 3.24: The general procedure going on in the field macromodel.

obtained either by using engineering models or NEC software (which will be explained in

detail at the last section of this chapter). The former gives transfer function data in the

time domain and Fourier techniques is needed to convert it into the frequency domain (as

was discussed in section 3.4). NEC provides data in positive frequencies which is suitable

for being used by Vector Fitting algorithm directly. The operation denoted by A is to

omit the DC and negative frequencies which are due to use of FFT. It is necessary to use

operation B at the end to add DC and negative frequencies data to be able apply IFFT. In

the next section, we are presenting an example of lightning RSC to calculate the electric

field using developed field macromodel and compare the results with those of direct time

domain methods. Engineering models as well as frequency-domain software such as NEC

are used to provide electric field data. Effects of different parameters such as, different
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Figure 3.25: Solution flow of the details and procedures inside the field macromodel.
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gσ

zΔ

Figure 3.26: The geometry of the field macromodel example.

engineering models, different ground conductivity, different number of space segmentation,

and different number of fitting poles are studied.

3.6 Field-Macromodel’s Results

Consider a 6-km lightning flash that occurs at a distance of 50m from a 500m horizontal

transmission line which is located at 10m above the ground. The geometry of this problem

is shown in Figure 3.26. Efficient calculation of the horizontal electric fields along the

transmission line is essential to obtain the induced overvoltage in next chapter where we

will discuss the voltage macromodel. In this example, we will study the horizontal electric

field component. Figure 3.27 shows the channel base current of the RSC that is used as

the input of the macromodel. Time needs to be discretized in a way that there are enough

data points at the rising part of the current waveform and its derivative (Figure 3.28 and

3.29). We chose Δt = 20ns to discretize the waveform shown in Figure 3.27.

To obtain the horizontal electric field at any arbitrary point, we need to have electric

field data at certain points in the space. We chose 17 equally-spaced points in the space
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Figure 3.27: Channel base current for the field macromodel’s input.
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Figure 3.28: Data points on the rising part of the channel base current.
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Figure 3.29: Data points on the rising part of the channel base current derivative.

with a separation of 30m. Typical values of 0.001 S/m and 10 are chosen for the ground

conductivity and relative permittivity, respectively. For the 6-km lightning RSC, we use

MTLL model with propagation speed along the channel equal to 1.5×108m/s. Figure 3.30

shows the horizontal electric field in the time domain for 5 of 17 different segments which

are obtained by using Cooray-Rubinstein formula. The frequency domain data for Vector

Fitting algorithm is also provided directly by using 3.7. We used 10 poles and residues

in Vector Fitting algorithm. The variation of the poles and residues of the horizontal

component of the electric field for the mentioned 17 points is demonstrated as image in

Figures 3.31- 3.34. In these figures, the horizontal axis is the segment’s number and the

vertical axis is the pole/residue’s number. As expected, there is very smooth variation

in the real and imaginary parts of the poles and residues. The reason is that there is no

sudden change in the time variation of the electric field. This means we are able to find

functions to fit into the trace of the poles and residues. This should be done for all the 10
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Figure 3.30: Horizontal electric field for 80, 110, 140, 170, and 200m distance from
the RSC calculated by direct time domain method and RSC MTLL model

poles and residues. As samples, we plotted the position of different poles and residues and

the proper fitting function in Figures 3.35- 3.42.

For example, in Figure 3.35, the positions of the real of pole number 8 for all of the 17

different segments are shown and we can see how it varies with the distance. The problem

then is to find a fitting function to trace the poles. In this chapter, we are free to choose

polynomial functions, exponential functions, or any other functions. Suppose we choose to

fit with polynomial function. After selecting the order of the polynomial, a least square

problem has to be solved to obtain the unknown coefficients of the polynomial. It should be

noted that by increasing the polynomial order, the accuracy of the fitting is increased. In

Chapter 4, we will see that by using first order polynomials for the poles and second order

polynomials for the residues, we are able to simplify the voltage macromodel and obtain

a closed form solution. Considering this fact, function P8(z) in Figure 3.35, is obtained to

trace the real part of the 8th pole as, real{P8}(z) = 1.4× 103z − 2× 106.
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Figure 3.31: Variation of the real of the poles with segment number.
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Figure 3.32: Variation of the imaginary of the poles with segment number.
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Figure 3.33: Variation of the real of the residues with segment number.
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Figure 3.34: Variation of the imaginary of the residues with segment number.
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Figure 3.35: 8th pole’s real part locations in different distances.
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Figure 3.36: 4th pole’s real part locations in different distances.
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Figure 3.37: 5th pole’s imaginary part locations in different distances.
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Figure 3.38: 9th pole’s imaginary part locations in different distances.
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Figure 3.39: 6th residue’s real part locations in different distances.
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Figure 3.40: 8th residue’s real part locations in different distances.
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Figure 3.41: 5th residue’s imaginary part locations in different distances.
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Figure 3.42: 9th residue’s imaginary part locations in different distances.
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Figure 3.43: Horizontal electric field at z=70m and h=10m above the ground with
σ = 0.001S/m, using MTLL model.

Same procedure needs to be taken to obtain all fitting functions. Then for any z0, the

poles and residues is calculated by these functions simply. For this section, we chose

several results forz0 such as: z0 = 70m, 190m, 310m, 496m. The direct time domain result

and field macromodel result is compared for mentioned distances in Figures 3.43- 3.46.

It is observed that the field macromodel results are in a very good agreement with

direct time domain method results. The small difference is because of the fact that the

fitted functions do not go through the exact location of poles and residues of different

distances. To further examine the proposed field macromodel, different parameters are

studied in next subsections.

3.6.1 The Effect of Different Engineering Models

Effect of different RSC Models such as, MTLE, MTLL, and TL, for a ground conductivity

of 0.001 S/m and fixed distance of z=310m is studied and the results obtained using these
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Figure 3.44: Horizontal electric field at z=190m and h=10m above the ground with
σ = 0.001S/m, using MTLL model.
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Figure 3.45: Horizontal electric field at z=310m and h=10m above the ground with
σ = 0.001S/m, using MTLL model.
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Figure 3.46: Horizontal electric field at z=495m and h=10m above the ground with
σ = 0.001S/m, using MTLL model.

models are plotted in Figure 3.47. In this figure, the solid lines are direct time domain

results and the dashed lines are macromodel’s output calculated by using 10 poles and

residues.

3.6.2 The Effect of Ground Conductivity

In order to study the effect of the ground conductivity on the field macromodel result and

see if the EM field macromodel is able to predict the accurate results for different values

of ground conductivities, several values of ground conductivities are studied. We used

MTLL model for RSC and obtained the horizontal electric field at z=310m for different

ground conductivities such as, σ = ∞, 0.01S/m, 0.001S/m, 0.0001S/m and using 10 poles

and residues. A comparison of macromodel outputs and those of direct time domain results

is shown in Figure 3.48. Obviously, the ground conductivity has an important effect on

the horizontal electric field and in all the cases, field macromodel’s results are in a good
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Figure 3.47: Comparison of the output of the field macromodel for three engineering
models with their direct time domain solutions.

agreement with direct time domain results.

3.6.3 The Effect of the Number of Poles

This is one of the critical issues in the field macromodel and we need to choose a proper

number of poles and residues to have enough accuracy. Figure 3.49 demonstrates the effect

of the number of the poles on macromodel output. Similar to previous example, MTLL

model is used for the RSC and the horizontal electric fields are calculated at z=310m.

The results are obtained for 3, 5, 8, 10, 30, and 60 poles. As shown in Figure 3.49, small

number of poles and residues makes the results inaccurate. By increasing the number of

poles, the accuracy increases. But as it was mentioned before, very large number of poles

makes Vector Fitting algorithm unstable. The result for 60 poles is plotted separately in

Figure 3.50. Due to deficiency in performance of the Vector Fitting algorithm in large

number of poles, there is a big difference between macromodel output and direct time
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Figure 3.48: Comparison of the output of the field macromodel for different ground
conductivities with their direct time domain solutions.

domain method’s result.

3.6.4 The Effect of the Number of Segmentation

We need to have the knowledge of the electric field in some points in the space. In this

thesis, we chose Nz points in the space, linearly separated with Δz, (Nz − 1 segments). In

the above mentioned example, we had 17 points from 50m up to 550m distance from RSC

location which is equivalent to Δz = 30m. Figure 3.51 shows the field macromodel output

for different numbers of segmentation. Expectedly, by increasing the segments length, the

accuracy of the poles and residues tracing will decrease and the output will be inaccurate.

It should be noted that having very small segment length means increasing the calculation

time. For our cases, Δz = 30m was accurate enough.
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Figure 3.49: Comparison of the output of the field macromodel for different poles
number with their direct time domain solutions.
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Figure 3.50: Comparison of the output of the field macromodel for a high number
of poles for fitting with its direct time domain solution.
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Figure 3.51: Comparison of the output of the field macromodel for different segmen-
tation length with their direct time domain solution.

3.6.5 NEC

As shown in Figure 3.25, the input data for Vector Fitting algorithm can be from any

algorithm or software that calculates the electromagnetic frequency domain information.

In this work, Numerical Electromagnetic Code (NEC) is also used for this purpose besides

the engineering models. There are several considerations in working with NEC which will

be discussed in this subsection. At the end, we will show the field macromodel output for

the data provided by NEC.

NEC is a standard tool for numerical analysis of electromagnetic field around wire an-

tennas and can be applied to analysis of lightning transient voltages. This code solves

3-dimentional boundary problems by using electric field integral equation. This program

provides the EM field data in positive frequencies. It means it doesn’t give any information

about the DC frequency. In this thesis, the DC component of the electric field produced
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by NEC are considered to be zero. As mentioned in chapter 2, in electromagnetic models

of RSC, the lightning channel is modeled as a monopole antenna which is discretized in

space and frequency. For this purpose, the conductors are modeled with cylindrical wire

segments which are defined by their two end points and radiuses. Geometrically, the seg-

ments should follow the path of conductors as close as possible by using a piece-wise linear

fit on curves. The main electrical consideration is on the segment length Δx, relative to

the wavelength λ, as, [83, 84]

10−3λ < Δx < 0.1λ. (3.26)

Careful considerations should be taken in determining the time step Δt, and the duration

of analysis T (or equivalently the highest frequency fhigh, and the lowest frequency flow, in

the frequency domain analysis). The frequencies of the output must be coincided with the

frequencies analyzed by NEC software. In our example, the time step Δt, is chosen 20ns

with respect to the channel base current shape and to have enough data points on the rise

time of the current derivative and 2049 time steps is considered (T = Nt ×Δt = 40.98μs).

The sampling frequency is, fs = 1
Δt = 50MHz. So the bandwidth is, Bw = fs

2 =

25MHz. This is the upper frequency which should be considered in NEC. Because of

using Discrete Fourier Transform, the number of frequency points should be half of the

time points (Nf = 1024). The lowest frequency then is obtainable by dividing the highest

frequency over number of frequency points (flowest =
25MHz
1024 = 24.4kHz). Next, proper

RSC channel segments length must be selected. Equation 3.26 should be satisfied so that,

10−3λmax < Δx and Δx < 0.1λmin.(λmax = c
fmin

= 12.3km and λmin = c
fmax

= 12m). This

means the ideal segment length should satisfy 12.3m < Δx < 1.2m which is impossible.

In lightning case, most of the energy presents in the frequencies lower than 1MHz. So

lower frequency constrain is more important in segment length determination. We chose
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Figure 3.52: Horizontal electric field at z=100m and h=10m above the ground with
σ = 0.001S/m, by using NEC.

Δx = 15m and the 6-km lightning flash is divided into 400 segments to be analysed

by NEC. In order to control the current propagation velocity along the antenna, we add

electrical components in series along the antenna. To reach a velocity of half of the velocity

of light, we used R = 1Ω/m and L = 3μH/m for RSC channel loading. The reason of

the presence of the resistor is to decrease the oscillations due to inductor. The procedure

to obtain the horizontal electric field at any arbitrary point after using the Vector Fitting

algorithm is the same as the case we used the engineering model. Figures 3.52 and 3.53

show the field macromodel’s output by using NEC analysis. The results are obtained at

10m above a ground with σ = 0.001S/m at z=100m and z=370m, respectively. Similar

to previous cases, macromodel’s results are in good agreement with those obtained using

Inverse Fourier Transform of the frequency domain EM field data.

In summary, in this chapter, we introduced an efficient macromodel to calculate the

electromagnetic field at any arbitrary point in the space around a source of EM radiation.
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Figure 3.53: Horizontal electric field at z=370m and h=10m above the ground with
σ = 0.001S/m, by using NEC.

Because of the importance of the lightning-induced voltage in power system simulations

and the availability of measurement data, we studied lightning RSC as the radiation source.

A discretized channel-base-current-to-radiated-field transfer function was developed using

the engineering models of the lightning return-stroke channel. Applying Discrete Time

Fourier transform, the channel-base-current-to-field transfer function was evaluated in the

frequency domain and was fitted to a pole-residue form by using the Vector Fitting al-

gorithm. Time-domain fields were then determined using the actual and approximate

formulations. By repeating these procedures for some other points in the space and inter-

polating the poles and residues trace of the electric field, we were able to obtain location

of any point’s poles and residues and subsequently its electromagnetic field information.

We did several parametric studies to test our proposed macromodel. The efficiency of

the proposed macromodel can be studied by comparing the time required for direct time

domain method and our EM field macromodel. In the next chapter we will see that for ob-
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taining the induced overvoltage due to external radiation, the space needs to be discretized

into 1m segments and field information is needed in these segments. By using direct time-

domain formulations to calculate the horizontal electric field at each 1m segments for a

500m transmission line, 8370sec is required while this time reduces to 284sec by using the

EM field macromodel (nearly 30 times faster)1. As a further advantage, by using field

macromodel we just need to calculate the EM field information at certain points only once

and for any input, the output signal can be calculated, efficiently.

The Next chapter is focused to explain one of the applications of the proposed EM field

macromodel in power system simulators and introduce the voltage macromodel.

1These results are obtained by using a computer with 2GB RAM and 2.5GHz Dual Core CPU
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Voltage Macromodel

In this chapter, we will develop an efficient macromodel to calculate the induced overvolt-

ages on transmission lines due to external electromagnetic radiations. In fact, this chapter

is demonstrating an application of the proposed EM field macromodel. Besides, we will

see how this macromodel relates the frequency domain software and time domain simula-

tors. In one hand, complicated power network simulators need to work in the time domain

due to time variant and nonlinear electrical components. In the other hand, transmission

line characteristics such as conductor loss and dispersion are best described in frequency

domain. By using proposed macromodel, we will be able to get advantage of both time

and frequency domains.

The organization of this chapter is as follows. In the first section, we will present the

telegrapher’s equations and the effect of the external excitation on these equations. The

second section is dedicated to obtain a closed form solution for coupling equations in fre-

quency domain by using the EM field macromodel concept. The last sections comprises of

a number of examples to verify the performance of the developed voltage macromodel.
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i

Figure 4.1: Definition of the contour c and the associated surface s for derivation of
the first transmission line equation - longitudinal view along the z axis.

4.1 Governing Equation in Transmission Lines

4.1.1 Unexcited Transmission Line

Figure 4.1 shows a general schematic of a two-conductor transmission line. An open surface

s between the two conductors which are uniform in cross section along the longitudinal,

is shown and it is bounded by a closed contour c. In this figure, et(t, z) denotes the

transverse electric field and ei(t, z) denotes the longitudinal electric field. Without loss

of the generality of the problem, we assume a frequency independent transmission line.

By writing the Faraday’s law around the contour c, the first transmission line equation is

obtained as [4],

∂v(z, t)

∂z
= −ri(z, t)− l

∂i(z, t)

∂t
(4.1)

where, r and l are per unit length resistance and inductance, respectively. In order to

derive the second transmission line equation, consider placing closed surface s′ around

the top conductor, as shown in Figure 4.2. By simply writing the continuity equation or

equation of the conservation of charge, the second transmission line equation is derived
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Figure 4.2: Definition of surface s′ for derivation of the second transmission line
equation - longitudinal view along the z axis.

as [4],

∂i(z, t)

∂z
= −gv(z, t)− c

∂v(z, t)

∂t
, (4.2)

where, g and c are per unit length conductance and capacitance respectively. Equations 4.1

and 4.2 can be generalized for the case of multiconductor transmission lines. The general

form of the telegrapher’s equations are given by [4],

∂v(z, t)

∂z
= −ri(z, t)− l

∂i(z, t)

∂t
,

∂i(z, t)

∂z
= −gv(z, t)− c

∂v(z, t)

∂t
. (4.3)

where, v and i are the n×1 voltage and current vectors, respectively, and n is the number

of conductors. r, l, g and c are n× n per-unit length resistance, inductance, conductance

and capacitance matrices, respectively.
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4.1.2 Excited Transmission Line

In order to find the effect of external electromagnetic field excitation on Telegrapher’s

equation and obtaining the coupling-to-line equations, let’s consider Figures 4.1 and 4.2

in the presence of external electromagnetic fields. The derivation of transmission line

equations for an excited line is similar to the unexcited line but as this chapter relies on

the fundamental results of this section, the whole procedure is shown below. Writing the

Faraday’s law around the contour of the flat surface between the two conductor, as shown

in Figure 4.1, gives, [4]

b∫
a

e · dl+
c∫

b

e · dl+
d∫

c

e · dl+
a∫

d

e · dl = d

dt
ψn, (4.4)

where, e represents the incident electric field. The total magnetic flux penetrating the flat

surface is,

ψn =

∫
s

b · ds =
∫
s

b · ânds, (4.5)

where, ân is unit normal vector to the surface. The magnetic flux density b, consists of

two components. The scattered field, denoted as bscat, and the incident field component,

denoted as binc. Equation 4.5 becomes,

ψn =

∫
s

bscat · ânds+
∫
s

binc · ânds (4.6)

The line voltages are defined as,

v(z, t) = −
∫ b

a
e(x, y, z, t) · dl,

v(z +Δz, t) = −
∫ c

d
e(x, y, z +Δz, t)·dl. (4.7)
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If the per-unit-length resistance of conductors are r1 and r0Ω/m, respectively, then,

−
∫ c

b
e · dl = −

∫ c

b
ezdz = −r1Δzi(z, t),

−
∫ a

d
e · dl = −

∫ a

d
ezdz = −r0Δzi(z, t), (4.8)

where, we used ez as the longitudinal electric field. Combining 4.6, 4.7, 4.8, and 4.4 and

dividing both sides by Δz gives,

v(z +Δz, t)− v(z, t)

Δz
+ r1i(z, t) + r0i(z, t)

− 1

Δz

d

dt

∫
s
bscat · ânds = 1

Δz

d

dt

∫
s
binc · ânds. (4.9)

The per-unit-length magnetic flux penetrating the flat surface which is due to the currents

of the conductors, is related to the per-unit-length inductance of the line l, as,

ψ = − lim
Δz→0

1

Δz

∫
s

bscat · ânds = −
b∫

a

bscat · ândl = li(z, t). (4.10)

Taking the limit of 4.9 and using 4.10, gives the first transmission line equation as,

∂v(z, t)

∂z
+ ri(z, t) + l

∂i(z, t)

∂t
=

∂

∂t

∫ b

a
binc · ândl, (4.11)

where, r represents the total per-unit-length resistance of the line and r = r1 + r0. For

obtaining the second coupling equation, consider Figure 4.2 in the presence of an incident

electromagnetic field. The portion of the surface over the caps is denoted as Se whereas the
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portion over the side is denoted as Ss. According the equation of conservation of charge,

∫∫
©
S

J · ds = − ∂

∂t
Qenc, (4.12)

Where S is the total enclosed surface. Over the end caps we have,

∫∫
©
Se

J · ds = i(z +Δz, t)− i(z, t). (4.13)

Defining the per-unit-length conductance g between the two conductors as the ratio of

conduction current flowing between the two conductors in the transverse plane per unit of

line length it, to the voltage between the two conductors, we have,

it(z, t) = lim
Δz→0

1

Δz

∫∫
©
Ss

J · ds = −g

b∫
a

escat · dl

= gv(z, t) + g

b∫
a

einc · dl. (4.14)

The per-unit-length capacitance is defined as,

lim
Δz→0

Qenc

Δz
= −c

∫ b

a
escat · dl = cv(z, t) + c

∫ b

a
einc · dl. (4.15)

Substituting 4.13, 4.14, and 4.15 into 4.12, dividing by Δz and taking the limit when

Δz → 0, gives,

∂i(z, t)

∂z
+ gv(z, t) + c

∂v(z, t)

∂t
= −g

b∫
a

einc · dl− c
∂

∂t

b∫
a

einc · dl. (4.16)
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So, the transmission line equations can be written as,

∂v(z, t)

∂z
+ ri(z, t) + l

∂i(z, t)

∂t
= vF (z, t),

∂i(z, t)

∂z
+ gv(z, t) + c

∂v(z, t)

∂t
= iF (z, t), (4.17)

where,

vF (z, t) =
∂

∂t

∫ b

a
binc · ândl,

iF (z, t) = −g

b∫
a

einc · dl− c
∂

∂t

b∫
a

einc · dl. (4.18)

vF (.) and iF (.) are called time-domain distributed force functions due to external elec-

tromagnetic fields. It is shown that the voltage source in 4.18, which is in terms of the

magnetic field, can be written in terms of incident electric field by using Faraday’s law

around contour c in Figure 4.1 as, [4].

vF (z, t) = [eincz (conductor#1, z, t)− eincz (referenceconductor, z, t)]− ∂

∂z

b∫
a

einc · dl.

(4.19)

According to equations 4.18 and 4.19 we only need to know the components of incident

electric field, 1) along the surface of the conductors, and 2) transverse to the line between

two conductors.

Considering distributed current-voltage sources as the effect of external excitation, equiv-

alent circuit representation with incident field illumination is shown in Figure 4.3. vF and

iF are representing the effect of external excitation as distributed sources along the line.

An interesting work is to summarize the effects of all of these distributed sources at the

terminal of transmission line which is topic of the next section.
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Figure 4.3: The per unit length equivalent circuit for a transmission line with an
incident field illumination.

4.1.3 Equivalent of source representations

In order to find equivalent sources that can be placed at the terminal of a two-conductor

transmission line, we need to transfer equation 4.17 into the frequency domain as,

dV (z)

dz
+ (r + jωl)︸ ︷︷ ︸

z

I(z) = VF (z),

dI(z)

dz
+ (g + jωc)︸ ︷︷ ︸

y

V (z) = IF (z), (4.20)

where, the frequency domain sources are,

VF (z) = [Einc
z (conductor#1, z)− Einc

z (referenceconductor, z)]− ∂

∂z

∫ b

a
Einc · dl

IF (z) = −(g + jωc)

∫ b

a
Einc · dl, (4.21)

where, Einc represents the frequency domain incident field. The per-unit-length impedance

and admittance are z = (r + jωl) and y = (g + jωc) , respectively. Equation 4.20, which

is a set of a first-order ordinary differential equations, needs to be solved. They are similar
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to state variable equations which are in the form of,

d

dt
X(t) = AX(t) +W (t). (4.22)

The solution of 4.22 is given by,

X(t) = ϕ(t− t0)X(t0) +

∫ t

t0

ϕ(t− τ)W (τ)dτ, (4.23)

where,

ϕ(t) = eAt. (4.24)

Similarly, by defining,

X(z) =

⎡
⎢⎢⎣ V (z)

I(z)

⎤
⎥⎥⎦ ,

W (z) =

⎡
⎢⎢⎣ VF (z)

IF (z)

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣ 0 −z

−y 0

⎤
⎥⎥⎦ , (4.25)

Then the solution of the Tline equations in the frequency domain for a line of a total length

of L is given by, ⎡
⎢⎢⎣ V (L)

I(L)

⎤
⎥⎥⎦ = ϕ(L)

⎡
⎢⎢⎣ V (0)

I(0)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣ VFT (L)

IFT (L)

⎤
⎥⎥⎦ , (4.26)
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where ϕ(.) is called chain parameter matrix in transmission line studies and can be calcu-

lated by using,

ϕ(L) = eAL. (4.27)

In general, for a n-conductor transmission line, 4.27 will be a n× n matrix but for a two-

conductor transmission line it is shown that the chain parameter matrix can be written

as, [4]

ϕ(L) =

⎡
⎢⎢⎣ ϕ11(L) ϕ12(L)

ϕ21(L) ϕ22(L)

⎤
⎥⎥⎦ , (4.28)

where,

ϕ11(L) = cosh(γL),

ϕ12(L) = −ZC sinh(γL),

ϕ21(L) = − 1

ZC
sinh(γL),

ϕ22(L) = cosh(γL). (4.29)

ZC is the line characteristic impedance and γ is the propagation constant given by,

ZC =

√
z

y
=

√
r + jωl

g + jωc
,

γ =
√
zy =

√
(r + jωl)(g + jωc). (4.30)

In equation 4.26, ⎡
⎢⎢⎣ VFT (L)

IFT (L)

⎤
⎥⎥⎦ =

∫ L

0
ϕ(L− τ)

⎡
⎢⎢⎣ VF (τ)

IF (τ)

⎤
⎥⎥⎦ dτ. (4.31)
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( )ϕ L ( )V L

( )I L( )FTV L

( )FTI L
(0)V

(0)I

Figure 4.4: Illustration of the representation of a transmission line with incident
field illumination as a two-port having lumped sources that represents the effect of
the incident field, being put at z=L.

Using the chain parameter matrix properties and the definition of VF and IF as given in

4.21 and 4.31, the expanded form of VFT and IFT becomes, [4]

VFT (L) =

∫ L

0
ϕ11(L− τ)[Einc

z (conductor#1, τ)− Einc
z (referenceconductor, τ)]dτ

−[

∫ b

a
Einc · dl]|z=L + ϕ11(L)[

∫ b

a
Einc · dl]|z=0,

IFT (L) =

∫ L

0
ϕ21(L− τ)[Einc

z (conductor#1, τ)− Einc
z (referenceconductor, τ)]dτ

+ ϕ21(L)[

∫ b

a
Einc · dl]|z=0. (4.32)

Equation 4.32 represents lumped sources due to incident electromagnetic field that are

located at the end terminal of the Tline and replace the distributed sources. Figure 4.4

illustrates these lumped sources at the far end terminal. Following similar procedure, one

can derive lumped sources that are placed at the beginning of the transmission line as
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( )ϕ L

( )I L(0)I

(0)V ( )V L
' ( )FTI L

' ( )FTV L

Figure 4.5: Illustration of the representation of a transmission line with incident
field illumination as a two-port having lumped sources that represents the effect of
the incident field, being put at z=0.

given by, [4]

V ′
FT (L) =

∫ L

0
ϕ11(z)[E

inc
z (conductor#1, z)− Einc

z (referenceconductor, z)]dz

+[

∫ b

a
Einc · dl]|z=0 − ϕ11(L)[

∫ b

a
Einc · dl]|z=L,

I ′FT (L) = −
∫ L

0
ϕ21(z)[E

inc
z (conductor#1, z)− Einc

z (referenceconductor, z)]dz

+ϕ21(L)[

∫ b

a
Einc · dl]|z=L. (4.33)

Figure 4.5 shows the lumped sources which are placed at the near end terminal. The main

advantage of using these lumped voltage and current sources at the terminals instead of

having distributed sources along the Tline is that the transmission line can be treated

as an unexcited line and commonly-used time domain simulators are able to handle this

configuration in the time domain to solve the problem for the terminal voltages.

Following the similar procedure, the lumped sources for a multiconductor transmission line
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will be, [4]

V′
FT (L) =

∫ L

0
ϕ11(z)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Einc
z (ithconductor, z)− Einc

z (referenceconductor, z)

...

⎤
⎥⎥⎥⎥⎥⎥⎦ dz

+In

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ b
a Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=0 − ϕ11(L)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ b
a Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=L,

I′FT (L) = −
∫ L

0
ϕ21(z)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Einc
z (ithconductor, z)− Einc

z (referenceconductor, z)

...

⎤
⎥⎥⎥⎥⎥⎥⎦ dz

+ϕ21(L)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ b
a Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=L, (4.34)

where, In is a n×n identity matrix and the chain parameter matrix can be obtained using

4.27.

In the next section, it is shown that in the case of a plane-wave excitation of line, there is

a closed form solution for lumped sources as defined in 4.32 and 4.33.

4.1.4 Uniform Plane-Wave Excitation of the Line

The electromagnetic fields from a far radiation structure can be assumed as a local uniform

plane wave. Consider a two-conductor transmission line terminated by loads ZS and ZL,

which is being illuminated by a uniform plane wave radiation as shown in Figure 4.6. The
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incE

β a
φ
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Eθpφ

LZ

incE

pθ

SZ

Figure 4.6: Definition of the parameters characterizing the incident field as a uniform
plane wave. Adapted from [4].

general expression for electric field in the frequency domain can be written as, [4]

Einc = E0[exâx + eyây + ezâz]e
−jβxxe−jβyye−jβzz, (4.35)

where, the components of the incident field vector along x, y and z axis are,

ex = sin θE sin θp,

ey = − sin θE cos θp sinφp − cos θE sinφp,

ez = − sin θE cos θp sinφp + cos θE cosφp, (4.36)
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and,

βx = −β cos θp,

βy = −β sin θp cosφp,

βz = −β sin θp sinφp, (4.37)

where, β is the phase constant and is defined as,

β = ω
√
με. (4.38)

To show that for the uniform plane wave, as defined in 4.35, there is a closed form solution

for the lumped source functions, it is enough to consider the integrals introduced in 4.32.

The transverse electric field component in the plane of the transmission line conductors

(y=0) becomes,

Einc
T = E0exe

−jβxxe−jβzzâx. (4.39)

The contribution of this component in the integrals of 4.32 becomes,

∫ b

a
Einc · dl =

∫ d

x=0
E0exe

−jβxxe−jβzzdx = E0dexe
−jβzze−jβx

d
2
sin(βx

d
2)

βx
d
2

(4.40)

The contribution from longitudinal electric field component becomes,

∫ L

0
φ11(L− z)[Einc

z (conductor#1, z)− Einc
z (referenceconductor, z)]dz =

∫ L

0
cosh(L− z)[−jβxE0deze

−jβzze−jβx
d
2
sin(βx

d
2)

βx
d
2

]dz (4.41)
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In 4.41, by writing the cosh(.) in terms of exponential functions, the integral can be

calculated easily in a closed form solution. Equations 4.41 and 4.40 imply that for

uniform plane wave there is a closed form solution to obtain lumped sources representing

the effect of excitation. Similar procedure is applicable for the multiconductor case to find

the closed form solution for 4.34. In the case of a non-uniform electromagnetic wave,

because we cannot write it in the form of 4.35, equations 4.32 and 4.33 do not have a

closed form solution.

4.1.5 Field-to-Transmission Line Coupling Equations

In this section, we will review different, but equivalent formulations of the field-to-transmission

line coupling equations. There are three main formulations to calculate the external EM

field coupling to Tlines.

• The first model which described transmission lines excited by an external electromag-

netic source, was presented in 1965 by Taylor, Satterwhite, and Harrison [72], for the

case of a two-wire system. In this model, the forcing functions in coupling equations

are in terms of vertical-electric and transverse-magnetic excitation fields. Consider a

single wire transmission line above a lossy ground at a height of h and with a length

of L, illuminated by an external transient nonuniform electromagnetic field as shown

in Figure 4.7. The excitation field components EeandBe, are the sum of the incident

fields Einc, Binc and the ground-reflected fields Eref , Bref , both in the absence of

the wire. The total EM fields E and B, are the sum of the excitation field Ee, Be,

and of the scattered fields Es,Bs, which represent the reaction of the wire to the

excitation EM fields [5]. Applying Maxwell’s equations to the Tline shown in Figure

4.7 and using the transmission-line approximation, it is possible to derive the two
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LZSZ

Figure 4.7: Geometry of a single wire illuminated by an external nonuniform elec-
tromagnetic field. Adopted from [5].

equations describing the coupling of external electromagnetic field to transmission

line as, [85–87]

dV (z)

dz
+ Z ′I(z) = jω

∫ h

0
Be

y(x, z)dx,

dI(z)

dz
+ Y ′V (z) = −Y ′

∫ h

0
Ee

x(x, z)dx, (4.42)

which is similar to 4.20 and Z ′ and Y ′ represent the distributed per-unit-length lon-

gitudinal impedance and transverse admittance of the transmission line, respectively.

The boundary condition for this kind of formulation is given by,

V (0) = −ZSI(0),

V (L) = ZLI(L). (4.43)

The source terms in the right hand side of 4.42 are expressed in terms of the transverse
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component of the magnetic field Be
y, and the vertical component of the electric field

Ee
x. Paul in 1976, presented the extension of this model to the case of multiconductor

lines [73].

• In 1980, Agrawal, Price, and Gurbaxani [20], derived a new equaivalent formulation

of coupling equations in which the forcing functions are expressed only in terms of

electric excitation field. This was done by decomposing the total voltage V (z), into

scattered voltage V s(z) and exciting voltage V e(z). The formulation given in 4.42

then turns into,

dV s(z)

dz
+ Z ′I(z) = Ee

z(h, z),

dI(z)

dz
+ Y ′V s(z) = 0. (4.44)

The source function in 4.44 is in term of tangential exciting electric field only. The

terminal conditions in terms of the scattered voltage and the total current, are de-

scribed as, [5]

V s(0) = −ZSI(0) +

∫ h

0
Ee

x(x, 0)dx,

V s(L) = ZLI(L) +

∫ h

0
Ee

x(x, L)dx, (4.45)

where, the integral terms represents the exciting voltage.

• c) Rachidi in [5], derived a new formulation of the forcing sources which are solely in
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terms of magnetic excitation field components as,

dV (z)

dz
+ Z ′I(z) = jω

∫ h

0
Be

y(x, z)dx

+
1

μ0(σair + jωε0)
.[
∂Be

y(0, z)

∂x
− ∂Be

x(0, z)

∂y
],

dI(z)

dz
+ Y ′V (z) = − Y ′

μ0(σair + jωε0)
.

∫ h

0
[
∂Be

z(x, z)

∂y
− ∂Be

y(x, z)

∂z
]dx. (4.46)

The boundary conditions for this formulation are similar to 4.43. This formulation

is useful when the exciting field data is determined experimentally as it is generally

easier to measure the magnetic field rather than electric field. In this thesis, specifi-

cally in this chapter, we are using the extended version of the formulation presented

by Taylor and Satterwhite, and Harrison [4] which is mentioned in 4.32 and 4.33.

Next section will describe details of the proposed voltage macromodel.

4.2 The Voltage-Macromodel

In this section, the goal is to find a closed form solution in the frequency domain for the

formulation given by 4.33 for the case of nonuniform electromagnetic excitation of Tline.

In this work, we are using the proposed EM field macromodel as the core of the calcula-

tions. Figure 4.8 shows the geometry of the problem and the relationship between these

two macromodels. The input to the voltage macromodel is the channel base current and

the output is the induced voltages on the transmission line. This macromodel employs

the field macromodel that was proposed in Chapter 3. Figure 4.9 shows a simple block

diagram of the macromodel.

To calculate the induced voltage on this line within the framework of a time domain

power system/circuit simulator, we need to represent the excitation effect with electri-
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Figure 4.8: The Voltage macromodel of lightning RSC. Channel base current as
input and induced overvoltage as its output.

Figure 4.9: Equivalent block diagram representation of Figure 4.8.
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LZSZ

Figure 4.10: The equivalent representation of the Figure 4.8 with additional con-
trolled sources representing the effects of excitation.

cal components in the time domain. In this work, this is done by using controlled volt-

age/current sources at the terminals of the transmission line. In this approach, we consider

the transmission line as an unexcited transmission line. The advantage of this approach

is that there are several already-developed models to analyze unexcited transmission line

that can be employed. The main focus of this chapter is the efficient calculation of the

controlled sources. We divide our problem into two categories. The first one is consid-

ering two-conductor transmission lines and the second one is considering multiconductor

transmission lines. The former has a closed form solution for calculating forcing func-

tion integrals in the frequency domain and the later can be handled by proposed field

macromodel efficiently which will be explained at follow.

4.2.1 The Voltage Macromodel for two-conductor Transmis-

sion Lines

Figure 4.10 shows the equivalent representation of Figure 4.8 for a two-conductor trans-

mission line. In order to find a closed form solution for the controlled sources (or force
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functions), we start with the integrals mentioned in 4.33 which are repeated below.

V ′
FT (L) =

∫ L

0
ϕ11(z)[E

inc
z (conductor#1, z)− Einc

z (ref, z)]dz

+[

∫ h

0
Einc · dl]|z=0 − ϕ11(L)[

∫ h

0
Einc · dl]]|z=L

= V1 − V2 + V3 − V4 (4.47)

I ′FT (L) = −
∫ L

0
ϕ21(z)[E

inc
z (conductor#1, z)− Einc

z (ref, z)]dz

+ϕ21(L)[

∫ h

0
Einc · dl]|z=L = −I1 + I2 + I3 (4.48)

where,

ϕ11(z) = cosh(γz),

ϕ21(z) = − 1

Zc
sinh(γz),

γ = α(ω) + jβ(ω), (4.49)

and,

V1 =

∫ L

0
ϕ11(z)E

inc
z (conductor#1, z)dz,

V2 =

∫ L

0
ϕ11(z)E

inc
z (ref, z)dz,

V3= [

∫ h

0
Einc · dl]|z=0,

V4 = ϕ11(L)[

∫ h

0
Einc · dl]]|z=L, (4.50)
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VE

HE

Figure 4.11: Vertical and horizontal electric field with respect to the line position.

and,

I1 =

∫ L

0
ϕ21(z)E

inc
z (conductor#1, z)dz,

I2 =

∫ L

0
ϕ21(z)E

inc
z (ref, z)dz,

I3 = ϕ21(L)[

∫ h

0
Einc · dl]|z=L. (4.51)

Evaluation of the integrals mentioned in 4.50 is very similar to 4.51 and will suffice for

this chapter. In 4.50, V3 and V4 are related to the vertical electric field which is shown

in Figure 4.11 as EV . According to our calculations, the variation of the vertical electric

field from the ground level to the height of the wire, is negligible. Thus, we can assume

that the vertical component of the electric field is constant and equal to its value at ground

level. The above mentioned integrals can be calculated as,

V3 ≈ Ev(x = 0, z = 0)× h,

V4 ≈ Ev(x = 0, z = l)× h. (4.52)
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It is worth mentioning that these integrals in fact, for the case of a lossy ground, should be

calculated from −∞ to the height of the transmission line but according to Cooray [78],

the vertical electric field from −∞ to the ground level is negligible for the frequency range

that is of interest in lightning studies and for typical values of the ground conductivity.

Because of remarkable variation of the horizontal electric field along the Tline, the most

controversial integrals in 4.50, are V1 and V2 which are in terms of the z component (or

horizontal component) of the electric field and is shown in Figure 4.11 as EH . As V1 is

similar to V2, solving any of these integrals will provide the solution of other integral as

well. Starting with V1, we have,

V1 =

∫ L

0
ϕ11(z)E

inc
H (conductor#1, z)dz. (4.53)

We use the field macromodel results to simplify the above integral. We approximate

the horizontal electric field data by using the Vector Fitting algorithm into M poles and

residues in the form of,

EH(jω) =

M∑
k=1

Rk(z)

jω − Pk(z)
. (4.54)

As it was shown in Chapter 3, we can approximate the trace of the poles and residues

variation with distance by using 1st order and second order polynomial, respectively. We

can rewrite 4.54 at any ω = ω0 as,

EH(jω0) ∼=
M∑
k=1

Akz
2 +Bkz + Ck

jω0 − (Fkz +Gk)
, (4.55)
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where Ak, Bk, Ck, Dk, and Fk are the kth polynomials coefficients. By using 4.55 and 4.49,

V1 will be,

V1 =

∫ L

0
cosh(γ0z)[

M∑
k=1

Akz
2 +Bkz + Ck

Dkz + Ek
]dz, (4.56)

where,

Dk = −Fk

Ek = jω0 −Gk. (4.57)

By dividing the nominator and denominator of the fraction and changing the order of the

integral and summation in 4.56, we get,

V1 =

M∑
k=1

∫ L

0
cosh(γ0z){Ak

Dk
z + (

Bk

Dk
− AkEk

Dk
2 ) +

Ck − BkEk
Dk

− AkEk
2

Dk
2

Dkz + Ek
}dz. (4.58)

The first and second terms inside the integral are easy to calculate. We need to just focus

on the last term which we call it V1
′ as,

V1
′ =

M∑
k=1

∫ L

0
cosh(γ0z)

A′
k

Dkz + Ek
dz, (4.59)

where,

A′
k = Ck − BkEk

Dk
− AkEk

2

Dk
2 . (4.60)

There is a closed form solution for integral of 4.59 as,

V1
′ =

M∑
k=1

A′
k

Dk
{cosh(γ0Ek

Dk
)Chi(

γ0Ek

Dk
+ γ0z)

− sinh(
γ0Ek

Dk
)Shi(

γ0Ek

Dk
+ γ0z)}, (4.61)
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where Chi(.) and Shi(.) functions are hyperbolic cosine integral and hyperbolic sine integral

functions, respectively, and are defined as,

Chi(z) = γ + ln(z) +

∫ z

0

cosh(t)− 1

t
dt

Shi(z) =

∫ z

0

sinh(t)

t
dt, (4.62)

where, γ = 0.57721 and is called the Euler-Mascheroni constant. So, by using 4.52- 4.61,

we are able to calculate the 4.47 and 4.48 in a closed form solution for a two-conductor line.

The coefficients of the poles and residues trace functions given by EM field macromodel,

are the only information needed for this purpose.

4.2.2 The Voltage Macromodel for multiconductor Trans-

mission Lines

Figure 4.12 shows the equivalent representation of the Figure 4.8 for a multiconductor

transmission line. Each of the conductors has its own lumped sources at the terminals

connected to the loads. To calculate the forcing functions in the time domain, we start
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1'FTV
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1'FTI

'FT iI
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1LZ

Figure 4.12: The equivalent representation of the Figure 4.8 for a multiconduc-
tor transmission line with additional controlled sources representing the effects of
excitation.

with the integrals mentioned in 4.34 which are repeated below.

V′
FT (L) =

∫ L

0
ϕ11(z)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Einc
z (ithconductor, z)− Einc

z (referenceconductor, z)

...

⎤
⎥⎥⎥⎥⎥⎥⎦ dz

+In

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ hi

0 Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=0 − ϕ11(L)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ hi

0 Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=L

= V1 +V2 +V3 +V4 (4.63)
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I′FT (L) =−
∫ L

0
ϕ21(z)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Einc
z (ithconductor, z)− Einc

z (referenceconductor, z)

...

⎤
⎥⎥⎥⎥⎥⎥⎦ dz

+ϕ21(L)

⎡
⎢⎢⎢⎢⎢⎢⎣

...

∫ hi

0 Einc · dl

...

⎤
⎥⎥⎥⎥⎥⎥⎦ |z=L = I1 + I2 + I3, (4.64)

where, V1, V2, V3, and V4 have similar definition mentioned in 4.50. Unlike the two-

conductor case, chain parameter matrix for a multiconductor transmission line is not in

the form of a simple hyperbolic function and we need 4.27 to calculate it. Also, the nature

of the elements of this matrix for MTL case is oscillatory and doesn’t let us to map them

into poles and residues. So the efficient way of calculating the integrals in 4.63 and 4.64

is to calculate them piece by piece by breaking them into several integrals. The developed

EM field macromodel in chapter 3 can be employed then to calculate the EM fields in

each of those integrals. Same as the two-conductor case, we can assume constant vertical

electric field in different heights (to calculate V3 and V4) and apply the above mentioned

method just for the integral which depends on the horizontal electric field (V1 and V2).
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Using this method, V1 will be,

V1 =

∫ L

0
ϕ11(z)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

M∑
k=1

Akiz
2+Bkiz+Cki
Dkiz+Eki

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dz

=

Nseg∑
j=1

∫ zj+1

zj

ϕ
11

(z)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

M∑
k=1

Akiz
2+Bkiz+Cki
Dkiz+Eki

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dz, (4.65)

where Nseg is the number of the pieces which the original integral is broken into. Equa-

tion 4.65 can be calculated simply by knowing the coefficients of poles and residues trace

(coming from the EM field macromodel) and chain parameter matrix using 4.27.

In the last part of this chapter, we will show a comparison between several experimental

results and our proposed voltage macromodel.

4.3 Voltage Macromodel Results

In this section, we are showing the results of our voltage macromodel as presented in 4.47-

4.65 and by using the concepts explained in the previous chapter. We chose PSCAD/EMTDC

[52] to analyze the excited transmission lines as this power system simulation software has

several pre-defined models for analyzing the unexcited frequency dependent transmission

lines over lossy ground. Our job is to add the force functions to the Tline circuit as shown

in Figure 4.12, and to obtain the induced voltages at the terminals. The incorporation

of our MATLAB codes into the PSCAD is done by using the MATLAB to PSFAD inter-

face [88].
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Figure 4.13: The schematic layout of the experiment and incident electric field in an
experimental test of a short line illuminated by a NEMP simulator. Adopted from [6].

The first test case to verify the accuracy of the voltage macromodel is adopted from [6].

Figure 4.13 shows the schematic of the test and the waveform of the incident electric field.

A 5m-long transmission line is terminated at matching loads and is illuminated by a tran-

sient electromagnetic field inside a NEMP simulator. The voltage macromodel results are

compared to the measured results in Figure 4.14. This figure shows the induced current

at the left terminal which we obtained by dividing the simulated induced voltage over the

resistor’s value. Since the excitation EM wave is a plane wave in this experiment, we could

also use Paul’s FDTD code [4], besides the measurement and macromodel results for the

sake of comparison. The results are in good agreement with measurement. Figure 4.15

shows the PSCAD software environment in where the simulations were done for this ex-

ample.

We simulated the same experiment configuration using a Gaussian plane wave with a
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Figure 4.14: Induced current at the left termination of Figure 4.13.

Figure 4.15: The PSCAD environment for the first example.

99



Chapter 4. Voltage Macromodel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-6

0

5000

10000

15000

Time (sec)

E
le

ct
ric

 F
ie

ld
 (

V
/m

)

Figure 4.16: Gaussian plane wave illuminates the short line of the Figure 4.13 with
the angle of 45 degree.

radiation angle of 45 degree, (see Figure 4.16). The macromodel result is compared to

FDTD code in Figure 4.17. They are in good agreement too.

It should be noted that the field-to-line coupling equations mentioned in 4.17, are valid

only at a frequency range in which the line cross section is much smaller the shortest

wavelength of interest. If we increase the incident electric field’s frequency up to, for ex-

ample 600MHz, as shown in Figure 4.18, the obtained results for induced voltage are not

reliable anymore, (see Figure 4.19). This is because the TEM approximation is not valid

for transmission line formulas in high frequencies. In this case full-wave FDTD needs to

be used for an accurate simulation of the problem.

The second example studied to verify the accuracy of the proposed voltage macromodel

is adopted from [6]. Figure 4.20 shows the location of a transmission line and the lightning

return stroke channel. This is the same example we used in chapter 3 to calculate the
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Figure 4.17: Induced current at the left termination due to Gaussian plane wave
excitation with 45 degree angle of illumination.
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Figure 4.18: Sharp Gaussian plane wave illuminates the short line of Figure 4.13
with the angle of 45 degree.
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Figure 4.19: Induced current at the left termination due to sharp Gaussian plane
wave excitation with 45 degree angle of illumination.

Figure 4.20: Geometry of the second example.
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Figure 4.21: Induced overvoltage at the left terminal of the transmission line of
Figure 4.20.

electromagnetic fields of a 6-km RSC. A 500m transmission line, located at 10m above the

ground, is terminated at matching load at its two terminals. The ground is assumed to be

PEC. The field information is calculated by using both NEC and TL engineering models

to be used in the voltage macromodel. In Figure 4.21, we are comparing the obtained

induced voltage with the Agrawal-Taylor direct method. Although we have used 1st and

2nd order polynomial approximations for tracing the poles and residues, respectively, there

is a very good agreement between the results. We used the same channel base current in

Figure 3.27 for the macromodel’s input.

The last experimental test is chosen for multiconductor transmission line case which was

done by Barker et al. [2]. Figure 4.22 shows the configuration of this experiment. In Barker

et al.’s experiment, a rocket-triggered lightning was the source of external excitation of the

Tline at a distance of 145m from the center of a multiconductor overhead line. The line

was 682m long, and the two conductors were vertically stacked with the separation be-
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Figure 4.22: Experimental configuration. Adopted from Barker et al. [2].

tween them being 1.8m. The line was supported by 15 wooden poles spaced about 49m

apart. The upper conductor was placed above the ground at a height of 7.5m and simu-

lated the phase conductor. It was connected to the lower conductor by 455Ω resistors at

the termination poles. The lower conductor which simulated the neutral, was grounded at

both ends and at pole 9 (the grounding at pole 9 is considered in our model as a resistive

load). The grounding resistance values were between 30 and 75Ω [89]. Figure 4.23 shows

the channel base current, as measured by Barker et al.. We used the same current as

the input of the voltage macromodel to calculate the induced voltage at pole 9. There is

uncertainty about the ground conductivity. So we obtained the electromagnetic fields of

a typical 5-km RSC at 50 and 110 m using different ground conductivities. Comparison

of calculated results with measured electromagnetic fields by Barker et al., determines the

proper value for the ground conductivity. Figures 4.24 shows the vertical component of

the electric field at distance of r=110m on the ground level for different choices of ground
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Figure 4.23: Channel base current in Barker et al.’s experiment.

conductivities. Figure 4.25 and 4.26 shows the simulation result for the horizontal com-

ponent of the magnetic field on the ground level at distances of r=110m and 50m from

the RSC, respectively. σ = 3.5 × 10−2S/m seems to be a good choice to be used in our

voltage macromodel as the ground conductivity. In our simulation, we used a ground with

conductivity of σ = 3.5 × 10−2 and relative permittivity of 10 and NEC to simulate the

lightning RSC. A 5-km channel length with the current velocity of 1.5 × 108m/s is used.

The schematic of the transmission line and the added controlled sources for each of the

wires is shown in Figure 4.27. We are comparing the macromodel result with measurement

in Figure 4.28 for the induced voltage at pole 9. Again, they are in acceptable agreement.

In summary, in this chapter, starting with the field-to-line coupling equations, we intro-

duced an efficient macromodel for the calculation of the induced voltages on transmission

lines excited by external electromagnetic radiations such as lightning electromagnetic fields.

The efficiency of the proposed macromodel is much more obvious when we see the only
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Figure 4.24: Comparison of the vertical electric field for different ground conductiv-
ities on the ground level and r=110m from the RSC.
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Figure 4.25: Comparison of the horizontal magnetic field for different ground con-
ductivities on the ground level and r=110m from the RSC.
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Figure 4.26: Comparison of the horizontal magnetic field for different ground con-
ductivities on the ground level and r=50m from the RSC.

Figure 4.27: The schematic of the transmission line and the controlled sources inside
the PSCAD software.
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Figure 4.28: Induced voltage on pole 9 due to rocket triggered lightning excitation
in Barker et al.’s experiment.

required data to calculate force functions, are the coefficients of the trace of poles and

residues of the electric field. This information is in fact provided by field macromodel as

the core of the voltage macromodel. Comparison between a number of simulation and

measurement results with the macromodel results shows the accuracy of the proposed

macromodel. One of the main advantages of using the voltage macromodel to calculate

induced voltages on the transmission lines is that we can incorporate the frequency do-

main software into the time domain simulators to be able get advantage of both time and

frequency domain specifications.
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Concluding Remarks

This chapter is describing the highlights of the thesis and discusses the obtained results in

previous chapters along with possible future work.

5.1 Overview

The issue of mixed time-frequency modeling of excited lossy transmission lines was studied

in this thesis. We introduced two kinds of macromodels. The first macromodel is called

the field macromodel which is to calculate radiated electromagnetic fields at any arbitrary

point around the radiation source efficiently with the knowledge of the EM field’s informa-

tion at few points in the space. The lightning return stroke channel as an important source

of radiation to power transmission lines was studied. Different available models of RSC

were discussed. The engineering models such as TL, MTLL, and MTLE as well as electro-

magnetic model were chosen to evaluate lightning RSC. The effect of ground conductivity

on the vertical and horizontal electric field was discussed by using different approximations.

It was concluded that vertical electric field, unlike the horizontal component, is almost in-
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dependent of ground conductivity. For calculating the horizontal component of the electric

field in this thesis, Cooray-Rubinstein formula was used. The well-known Vector Fitting

algorithm is used to map frequency domain data into poles and residues. This is useful to

be able to trace the location of poles and residues of the system transfer function at few

points in the space and predict the poles and residues of any arbitrary point. This method

makes us able to use recursive convolution in the time domain to save system memory

and calculations time. Choosing a proper number of poles to be used in Vector Fitting

algorithm is critical to have enough fitting accuracy. choosing a very few number of poles

makes little accuracy and very large number leads to an unstable result.

To see the accuracy of the proposed macromodel, we obtained results for a typical light-

ning RSC in an example and compared it with direct time domain results. The criteria

in selecting the time step and the RSC channel segment’s length for engineering models

as well as time step and frequency interval in NEC were discussed. We showed that there

are very smooth variations in poles and residues positions in complex plane with respect

to distance changing. This makes us able to find the functions which fit to their traces. In

this example, we used both engineering model and NEC to obtain electric field in several

points in the space. The poles and residues were fitted into 1st and 2nd order polynomials,

respectively. The obtained electric fields for different distances were in a very good agree-

ment with direct time domain results which is using analytic formulations.

Several parametric studies were considered to test the reliability of the field macromodel.

We examined our macromodel by different engineering model, different ground conduc-

tivities, different number of space segmentations and fitting poles. In all cases, the field

macromodel was able to predict the accurate electric field information. It was concluded

that by using the field macromodel instead of direct time domain method, we are able to
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get 30 times faster calculations beside saving lots of system memory.

The second macromodel is called voltage macromodel to calculate induced overvoltages

on transmission lines due to electromagnetic radiation. Coupling equations were studied

and the effect of radiation was summarized at the terminals of the transmission line with

controlled current and voltage sources. There was closed form solution for these sources in

plane wave excitation case already. By using the proposed voltage macromodel, we were

able to calculate the force functions for nonuniform excitation in a closed form solution

for two-conductor transmission lines and efficiently for muticonductor transmission lines.

This was done by approximating the trace of poles and residues with 1st and 2nd order

polynomials, respectively. After calculating the force functions in time domain by using

Inverse Fourier Transform, we used PSCAD software to analyze the unexcited line with

added controlled sources.

We tested the proposed voltage macromodel with several models and measurement cases.

In first case the radiated electromagnetic field was plane wave. The comparison of the cal-

culated induced current at the terminals, showed very good agreement with measurement

and FDTD code results. At the second case, we compared the macromodel’s result with

Agrawal-Taylor’s model for a 500m two-conductor transmission line excited by nonuniform

fields of lightning RSC. The third test case was Barker’s experiment. A 682m multicon-

ductor transmission line excited with a 5-km lightning RSC. The obtained voltage was in

a good agreement with measurement result.

By using the concept of system’s transfer function and macromodeling, we made it pos-

sible to incorporate the frequency domain software’s result into time domain simulators.

Furthermore, the calculations were fast and efficient.
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5.2 Future Work

The EM field macromodel developed in chapter 3, was verified by available lightning mea-

surement data. Other sources of electromagnetic radiation may also be investigated by

using this macromodel. As long as the radiated EM fields have smooth time variation, will

guarantee us to be able to use the proposed algorithm and trace the poles and residues.

The functions we used in this work, were chosen polynomial functions to trace the poles

and residues of the EM field and at the same time, simplify the voltage macromodel. Other

functions such as exponential functions may be employed for this purpose to get higher

accuracy.

In this work we used 1-dimensional functions to interpolate and predict the poles and

residues of the EM fields for any arbitrary point on a ground with an specific conductivity.

An extension of this work is to use N-dimensional tracing function in which several ground

and lightning RSC parameters are considered. Parameters such as distance, ground con-

ductivity, propagation speed along the lightning RSC, channel height, etc. This can be

done by building a proper bank of data for different parameters configuration and using

multidimensional interpolation.

The closed form solution obtained for the voltage macromodel to include the force functions

at the terminals of the transmission line is proposed for any two-conductor transmission

line in which the chain parameters are in the form of hyperbolic functions. It will worth

to consider the problem for multiconductor transmission lines in which the chain parame-

ter matrix is oscillatory and it is not possible to map its poles and residues into analytic

functions to be able to simplify the force functions. For this reason, using modal analysis

seems to be useful. The problem with using modes in multiconductor transmission lines

is that the propagation constant matrix is changing in different frequencies for different
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modes. This is called mode switching in transmission line studies and one needs to trace

these modes for different conductors as well, to be able to use the force functions formula

along with the Vector Fitting algorithm.

In this work, we simplified the forcing functions to a closed form solution in the frequency

domain. Inverse Fourier Transform then was applied to have the data in time domain.

It will be a remarkable result to find a closed form solution for forcing function in the

time domain by using the definition of the IFFT. This can be done by choosing a proper

function for the trace of poles and residues of the EM field.

Finally, the whole focus of the proposed voltage macromodel was on the overhead trans-

mission system. A similar procedure followed in this thesis can be employed to find the

electromagnetic behaviour of buried power cables. This can be achieved by applying minor

changes in the EM field macromodel derived in Chapter 3.
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