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ABSTRACT

Accurate estimates of terrestrial net primary productivity (NPP) are critical for
monitoring the effects of climate change, managing wildlife, and for sustainable
resource management in Canada’s northern National Parks. The remoteness,
inaccessibility, and large spatial extent of the Canadian arctic makes remote sensing a
necessary tool for estimating NPP at the landscape scale. Parks Canada currently
receives GEOCOMP-n AVHRR cloud-free composite images for all of Canada every
10-days and is currently developing methods to utilize this imagery for ecosystem
monitoring in Canada’s National Parks. The primary objectives of this thesis are:

1. To develop methodology for estimating arctic NPP using the 1x1 km
resolution AVHRR satellite imagery produced by the GEOCOMP-n image
processing system.

2. To assess the influence of variable topography and sub-pixel water bodies on
AVHRR reflectance measurements.

3. To evaluate the correspondence between the GECOMP-n AVHRR image
products and ground data.

A method is presented for computing terrestrial NPP of arctic vegetation using the
satellite image products produced by the GEOCOMP-n image processing system. The
NPP model is parameterized using a combination of ground data collected in TNNP
during the summer of 2000, as well as data available from previous research. The
model results are evaluated with an expected productivity map produced using a
vegetation classification and expected annual NPP values compiled from the
literature. Proportion of water cover and vegetation cover and topographic complexity
within each pixel are measured and the influence of these variables on the difference
between modelled and expected values are evaluated. Finally, ground spectral
reflectance measurements are scaled-up to AVHRR resolution to evaluate the
correspondence between the GEOCOMP-n image products and actual ground
measurements.

Annual NPP computed using the modified soil adjusted vegetation index (MSAVI),

showed the best correspondence with the expected annual NPP map, with 84.43% of
the pixels within 30% of the difference. Within Tuktut Nogait National Park, the

average annual NPP for 2000 was 149.4 (+68.4) g/m’yr. Highest productivity

occurred along the east side of the Hornaday River Valley. Lowest productivity
occurred in the central region of the Park along the Melville Hills, and in the

northeast region of the Park near the coast. Onset of the growing season occurred

between June 1 and June 11. NPP was highest between July 1 and July 11, with mean

NPP at 22.61(+11.1) g/m**10-days. The growing season ended between September

11 and September 21.

Topography and water cover had significant effects on the regression between
modelled NPP and expected NPP. With increasing water cover within the AVHRR



pixels, modeled NPP values tended to be greater than expected. In areas with
complex topography (i.e., high slope variance within the AVHRR pixels), the model
may underestimate NPP. In areas with steep terrain (high mean slope within the
AVHRR pixels), the model NPP estimates are higher than expected. Although
significant, the effect of these variables on the overall regression were relatively
small.

Rescaled ground reflectance measurements trended well with AVHRR
measurements. Although, ground measurements of NDVI were consistently higher
than atmospherically corrected AVHRR NDVI. This difference is likely attributable
to directional reflectance effects as a result of large sun angles. Applying a bi-
directional reflectance correction (BRDF) should improve correspondence between
AVHRR NDVI and NDVI computed from field measurements of surface reflectance.
However, current BRDF corrected imagery should not be used until improvements
have been made to the GEOCOMP-n bi-directional reflectance correction procedures.

Model estimates of NPP provide an excellent relative measure of NPP in Tuktut
Nogait National Park. The model is easily implemented and uses the GEOCOMP-n
AHVRR data exclusively. The AVHRR NPP maps will be useful for ecosystem
monitoring, providing the ability to identify temporal and spatial trends and
fluctuations in NPP at a regional scale. These data will be particularly useful for
identifying areas of interest that warrant further examination, either with high
resolution imagery, or ground surveys.
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1. INTRODUCTION

Maintaining the ecological integrity of Canada’s National Parks is a fundamental
objective of park managers (Dearden and Rollins 1993). The key to this objective is a
consistent and reliable source of understandable information about ecosystem processes.
This information base should provide extensive coverage of the park and surrounding

region, and be available at a number of time scales.

In Canada’s northern parks, an understanding of arctic vegetation structure,
composition and productivity is critical to maintaining ecological processes and ensuring
ecosystem biodiversity and sustainability. Estimates of net primary productivity (NPP) in
the arctic are important, since whole-biome estimates of CO, flux are required to
accurately model global circulation and carbon budgets. Furthermore, precise
measurements of NPP are crucial for monitoring the effects of climafe change on arctic
ecosystems. Global warming will increase permafrost thawing, potentially transforming
the arctic into a CO; source as previously inaccessible carbon is released as a result of
increased microbial activity (Piochl and Cramer 1995). The monitoring of arctic
vegetation productivity also has great cultural and ecological significance: many
indigenous peoples rely on sustenance hunting, and reliable NPP estimation will improve
our ability to monitor and sustainably managbe the wildlife habitat of caribou, migratory
birds, and musk oxen (e.g. Hansen 1991; Colpaert et al. 1995). A quantitative arctic NPP
model that utilizes remotely sensed data can provide the empirical data necessary to meet

these important objectives.



The information available from such a model will providé a powerful tool for
wildlife managers, since the timing of green-up and duration of the growing season has
large implications on caribou fecundity. Over time, the satellite monitoring program will
make possible a continuous data set spanning many years. This will allow for the
detection of long term changes in vegetation structure, providing the necessary empirical

data to monitor and verify the potential effects of climate change on arctic ecosystems.

The following chapter provides a description of the study area located in Tuktut
Nogait National Park. This section provides information about the floristic structure of
the vegetation communities within the Park, a summary of vegetation data collected in
the field, as well as details on the climate, physical geography, and fauna existent in the

Park.

The third chapter describes a method for modelling terrestrial net primary
productivity in Tuktut Nogait National Park using the GEOCOMP-n AHVRR satellite
data. The model is parameterized using a combination of field measurements obtained
within the study area and published data sets from similar areas. The model estimates are
validated using a map of expected annual NPP derived from a Landsat vegetation
classiﬁcation and expected annual net primary productivity (ANPP) values obtained from

literature sources.

The fourth chapter discusses validation of the atmospherically corrected AVHRR
NDVI using scaled-up field measurements of surface reflectance. The effects of
landscape complexity on scaling fine resolution measurements of NDVI to AVHRR

resolution are examined by comparing Landsat NDVI pixels aggregated to 1x1 km, with



spatially corresponding AVHRR NDVI pixels in both homogeneous and heterogeneous

areas.

The final chapter discusses the factors influencing NPP in Tuktut Nogait National
Park, and suggestions for improvements to the satellite monitoring of northern

ecosystems.



2. DESCRIPTION OF STUDY AREA

2.1. INTRODUCTION

Tuktut Nogait National Park is located within the southern arctic ecozone and is
representative of the Tundra Hills Natural Region. The Park covers 16,340 km? and the
vegetation is characteristic of the low arctic ecoregion. The Park was established in 1996
after Canadian Parks Service recognized the exceptional biological and physical
attributes of the area. The current boundary encompasses the calving grounds of the
Bluenose caribou herd, a large nesting area for birds of prey, as well as an area of diverse
vegetation in the lower Homaday and Brock rivers (F igure 2.1). There are plans to extend
the current boundary south and east into Nunavut, with the intention of encompassing

Bluenose Lake.

Climate

The climate of Tuktut Nogait National Park is summarized in Zoltai et al (1992).
The Park lies within the Low Arctic Ecoclimatic region and has a mean annual
temperature of —11.4°C. Summers are short and cool with a mean daily temperature for
July of 7.4°C. Winters are long and cold with a mean daily temperature for January of —
27.6 °C. Annual precipitation is low: mean annual precipitation is 181.5mm, with
96.6mm falling as rain and 85.0cm as snow. Snow cover persists for up to 250 days per

year.
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Figure 2.1. Map of study area within Tuktut Nogait National Park, NWT. Most sample
sites were located within hiking distance (~10km) of three base camps: (1) Cache Lake,
68° 53'N, 122° 49'W; (2) Roscoe River, 69° 22'N, 121° 24'W; (3) Seven Islands Lake, 69°
16'N, 122° 58'W.
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Geology

The geology of the area is documented in Zoltai et al. (1992). Most of the Park is
underlain by Upper Proterozoic sedimentary rocks, composed entirely of marine strata.
The oldest strata are composed of shales, argillite and siltstone which outcrop along the
coast of Darnley Bay. These strata are overlain by Precambrian layers of dolomite,
sandstone, and quartzite which outcrop along the Admundsen Gulf Shoreline and in the
Melville Hills as far south as the Little Hornaday River. Palaeozoic sedimentary rocks
overlie these strata and consist of sandstone, shale, siltstone, mudstone and dolomite.
These rocks outcrop along the mid portion of the Hornaday River. Upper Cambrian and
Lower Ordovician layers are next and consist mostly of dolomite. Lower Cretaceous
bedrock is exposed near the mouth of the Hornaday, and consists of soft shale, mudstone
and beds of sandstone. The most recent strata consist of Quaternary glacial deposits.
Glacial moraines are common on the north slopes of the Melville hills with thick deposits
of glaciofluvial sand and gravel in glacial meltwater channels. Moraines are absent from

the central part of the Melville Hills.

Soils within the Park are cryosolic with permafrost occurring within one meter.
Most soils are turbic cryosols, which are characterized by frost heaves and polygon
formations. Static cryosols are found mainly on glaciofluvial parent materials.

Accumulations of peat occur in wetter areas.

Hydrology

The 350 km long Hornaday River and its tributaries is the main river system in the

Park. The Hornaday River originates to the southwest at Bluenose Lake and drains north

12



into Darnley Bay near Paulatuk (Figure 2.1). Lesser river systems include: the Brock
river, which originates in the Melville Hills and flows into Darnley Bay; and the Roscoe
River, which flows north into the Admundsen Gulf (Figure 2.1). Lakes are scarce in the

central hills, but there are numerous small lakes elsewhere in the Park.

Fauna

A large variety of habitats in Tuktut Nogait National Park support a high faunal
biodiversity: 22 species of mammals, 81 species of birds and 21 species of fishes are
known to occur in or near the Park (Zoltai et al. 1992). Common mammals include:
Arctic ground squirrel, collared lemming, tundra vole and arctic fox. Less common
mammals include: arctic hare, brown lemming wolf, red fox, barren ground grizzly bear,
ermine, wolverine and muskox (Zoltai et al. 1992). Polar bears also occur in coastal areas

(Zoltai et al. 1992).

The Melville Hills and other areas to the west are the traditional calving grounds
for the Bluenose caribou herd. The windswept hills make ideal calving habitat as they are
dry and relatively free of insects. One survey estimated the size of the herd to be 95,000,
with a range extending 29 000 km® between the Mackenzie and Coppermine rivers, and

north of Great Bear Lake to the Arctic Ocean (Hawley et al. 1979).

The major rivers in the Park carve steep canyons with cliffs as high as 100m.
These cliffs, in addition to large rock outcrops, provide ideal nesting habitat for birds of
prey. There is a large Peregrine Falcon population in the canyons of the Homaday River;
Gyrfalcons are also present, but are less common (Zoltai et al. 1992). Golden Eagles and

Rough Legged Hawks are also common in this area (Zoltai et al. 1992).

13



Flora

The exceptionally high floristic diversity in Tuktut Nogait National Park is
thought to be the result of extensive glacial refugia in the central regions during the
Wisconsinan and Pleistocene periods (Zoltai et al. 1992). Regional flora include 103
species of bryophytes, 158 species of lichens, 236 species of vascular plants (Zoltai et al.

1992).

Most of the vegetation within the park is characteristic of the Low-Arctic
Ecoclimatic region, with some areas more characteristic of the Mid-Arctic Ecoclimatic
region, and five main vegetation communities exist within the Park (Zoltai et al. 1992). A
barren Herb-nudum community exists on excessively drained sandy and gravely soils.
In scattered patches Potentilla spp., Astragalus alpinus, Hedysarum alpinum, and Dryas
integrifolia are found. Dwarf Shrub-Herb-Sedge is found on calcareous soils and is
dominated by Dryas integrifolia and Kobresia myosuroides with Salix arctica in wetter
areas. Hedysarum alpinum, Oxytropis maydelliana and Astragalus alpina are often
present. Cottongrass-Willow is present on quartzite bedrock. In wetter areas the non-
tussock-forming cottongrass Eriophorum scheuchzeri occurs with Sphagnum spp.. In
better drained areas tussock forming Eriophorum vaginatum and Salix arctica are
dominant. High Shrub is found in closed stands on south facing slopes and alluvial sites.
Salix spp, with herbs and grasses form the ground vegetation. Equisetum pratense is also
present on alluvial sites. Sedge Meadow is common in wet sites. Dominant species
include: Carex aquatilus, C. saxatilis, C. membranaceae. Other common species include:

Saxifraga hirculus, Polygonum viviparum, and Pedicularis sudetica.

14



2.2, METHODS

A total of 18 1x1 km sample sites were located in areas with homogeneous
vegetation, few lakes, and relatively simple topography (Figure 2.1). Most sites were
located within hiking distance (~10 km) of 3 base camps located at Cache Lake (68°
53N, 122° 49°W), Roscoe River (69° 22°N, 121° 24°W), and Seven Islands Lake (69°
16°N, 122°58°W) (Figure 2.1). Several sites were accessed by helicopter (n=3). Within
each 1x1 km sample site, 9 30x30 m plots were located in a 3x3 grid. Within each 30x30
m plot, 5 1x1 m quadrats were located in a cross pattern. Within each quadrat, percent
ground cover of water, rock, bare ground, moss, lichen, dwarf shrub, and graminoid/
herbaceous vegetation was visually determined. A detailed description of the sampling

design is provided in the following section.

Vegetation classes defined for the present study emphasized the structural
properties of the vegetation, rather than species composition. These classes were intended
to characterize and categorize the range in vegetation productivity within the Park, while
enabling the classes to be separated spectrally in a Landsat vegetation classification.
Furthermore, it was necessary to define classes that could be matched to those defined
elsewhere in the literature. This was necessary in order to assign an expected annual
productivity value to each of the classes. The dominant vegetation class within each site
was determined from the mode of the vegetation class assigned to each 30x30 m plot

within each site.
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2.3. RESULTS AND DISCUSSION

Table 2.1 provides a floristic and physiographic description for each of the
vegetation classes identified in Tuktut Nogait National Park. Figure 2.2 summarizes the
vegetation and ground cover typical of these classes. This summary is based on mean
cover data determined within each of the 30x30 m plots. The dominant vegetation class
within each 1x1 km site is determined from the mode of the vegetation classes assigned

to each 30x30 m plot within each site (Table 2.2). Mean percent cover of each ground

cover type, as well as mean dry green biomass and mean NDVI were determined from

the field measurements (Table 2.2). The photographs in Figure 2.3 provide a visual

description for each of the defined vegetation types.

Table 2.1. Physiographic and floristic descrip

tions of the vegetation classes identified in Tuktut Nogait

National Park, NWT.
Vegetation Dominant . .
Class & Substrate  Wetness . Dominant Species
Cover Vegetation Type
Mineral; Small tufts of . s .
GB:;:;'; <10% clay/ sand/ Dry. prostrate herbs; Dryas mt;f; ;j;o:at; fetrana PP~
gravel/ rock crustose lichens raga spp.,
Sandy clay
loam/
Sparsel pebbles/ Variable: Small patches of Dryas integrifolia, Kobresia
v 5 etatzd 10 - 50% rocks/ xeric to dwarf shrubs; small mysuroides, Cassiope tetragona,
€ boulders/ wet. sedges. Silene acaulis, Cetraria spp.
bedrock
outcrops.
Lupinus arcticus, Cassiopea
Dwarf tetragona, Silene acaulis, Betula
Shrub 100% Organic Dry to High dwarf shrub glandulosa, Eriophorum angustifolia,
Tundra, ? sandy loam. mesic. cover. Some sedge Carex spp., Arctostaphylus sp.,
T Rhododendron laponicum., Salix spp.,
Dryas spp., Euliginosum sp.
. . Eriophorum angustifolia, Carex sp.,
Mesic Organic . High gr ?.mmmd Equisetum arvense, Hedysarum
100% Mesic. cover with some . ; .
Meadow sandy loam. dwarf shrub mackenzii, Tofieldia pusilla, Dryas
Wart Shrubs. integrifolia, Arctostaphylos sp.
Cotfon grass tussocks Eriophorum vaginatum, Ledum
. with dwarf shrubs
Tussock 100% Organic Peat Mesic to d sph decumbens Sphagnum teres, S.
Tundra ° ganic e Wet. anc sp ;g;: m russowii, Salix arctica, Vaccinium
growing between vitis-idea, Arctostaphylus sp.
tussocks
Wet. Carex aquatilus, Eriophorum
Wet Sedge o Organic clay Some . . angustifolia, Salix spp., Carex
Meadow 100% loam. standing Graminoid dominant. membranacea, Saxifraga hirculus,
water. Polygonum viviparum.
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Barren Ground , Sparsely Vegetated
(n=34) (n=70)

H20
1%  GRAMINOID

D.SHRUB
23%
LICHEN
2%
ROCK 24% 29
66%
Mesic Meadow Dwarf Shrub Tundra
(n=34) (@=4)
H20
<1% BARE GRAMINOID

D.SHRUB 48%
25%
Wet Sedge Meadow Tussock Tundra
®=17) @©=12)

H20
7%

Figure 2.2. Average percent ground cover for each vegetation class. Mean values
determined for cover within each 30x30 m field plot. D.Shrub = Dwarf Shrub.
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Figure 2.3. Photographs of the vegetation classes defined for Tuktut Nogait National Park.
1) Barren Ground: Small isolated plants, <10% cover; 2) Sparsely Vegetated Ground: Dwarf
shrubs and prostrate herbs, 10-50% cover; 3) Mesic Meadow: Hummocky sedge/moss
tundra, 100% cover; 4) Dwarf Shrub Tundra: Ericaceous shrubs, dwarf willows, lupins and
moss; 5) Tussock Tundra: Cottongrass tussocks, dwarf shrubs, sphagnum moss; 6) Wet
Sedge Meadow: Sedges, moss, water at the surface.
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Table 2.2. Summary of field data for each 1x1 km sample site . The dominant vegetation class is
determined from the mode of the vegetation classes assigned to each 1x1m quadrat. Values for ground
cover, biomass and NDVI are computed from the mean value of the 45 1x1 m quadrats within each 1x1 km
sample site.

Percent Cover

. Dry
I1x1 km Dominant Total . . Dwarf . Rock and Bare
Sample  Vegetation  Vegetation Gm(r;x;lond Shrub ngl; n Nic/)ss Gravel  Soil “(,;t; T B('i)‘:;l; NDVI
Site Class Cover (%) ° (%) ° D ey @) K (‘g/mz )5

1 Sparsely 4378 16.89 21.89 333 167 2278 3327 000 1835 030
Vegetated

2 Sparsely 45.76 17.93 24.67 222 093 1422 3887 133 2076 0.4l
Vegetated

3 Wet Sedge 82.56 73.78 822 000 056 044 756 922 2850 049
Meadow

4 Sparsely 59.04 29.62 28.91 036 016 800 3044 244 1300 037
Vegetated

5  Tussock Tundra  98.44 59.22 18.11 0.00 2111 000 156 000 5590 0.0

6  MesicMeadow 6333 47.89 13.78 0.00 167 769 2487 322 2023 042

7 Sparsely 31.38 10.87 19.11 040 100 2522 4413 000 985 024
Vegetated

11 Mesic Meadow  62.33 2122 3633 0.00 478 1022 27.89 0.00 6830  0.55

12 Mesic Meadow 8333 40.78 25.00 0.44 1711 189 1478 0.00 6333  0.58

13 Mesic Meadow  53.56 23.00 25.33 1.89 333 1844 2856 0.00 wa 043

14  BarrenGround  15.91 3.11 9.93 276 011 7689 724 000 1213  0.13

15  BamenGround  19.36 4.44 10.91 378 022 5942 2L18 0.00 3049  0.15

16  BamenGround 2153 7.04 11.73 209 067 6058 17.84 0.1 2300 0.18

17 BamenGround  27.76 9.80 15.69 204 022 5458 1456 322 1597 020

19 Sparsely 35.27 14.40 15.04 162 420 5160 1293 033 6215 025
Vegetated

20 Sparsely 38.13 12.29 21.00 1.16  3.69 1878 43.09 0.00 3570  0.35
Vegetated

21 Sparsely 52.09 15.78 30.38 067 527 822 3851 0.00 5150 0.42
Vegetated

22 Tussock Tundra  77.84 36.67 28.22 1.82 1113 767 1484 0.11 wa 059
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The Tussock Tundra class can be considered equivalent to the Cottongrass-Willow
community described by Zoltai et al. (1992). Tussock tundra is commonly described in
the literature as being dominated by Eriophorum vaginatum, which co-occurs with Befula
nana, Vaccinium spp., Ledum decumbens and Sphagnum spp. (Bliss et al. 1973; Shaver
and Chapin 1986; Shaver and Chapin 1991; Chapin et al. 1996; Shaver et al. 1997).
Cover in the tussock tundra plots was predominantly graminoid (i.e. Cottongrass), with

high dwarf shrub and moss cover, with low bare ground and water cover (Figure 2.2).

The Wet Sedge Meadow class can be considered equivalent to the Sedge Meadow
community defined by Zoltai et al. (1992). Wet Sedge Meadow is also commonly
described in the literature, with Carex aquatilus consistently identified as the dominant
species (Muc 1973; Haag 1974, Miller et al. 1980; Shaver and Chapin 1991; Gilmanov
and Oechel 1995; Shaver and Chapin 1991). In the wet sedge meadow plots, graminoid
cover dominated, with some dwarf shrub cover, some moss cover, and relatively high

bareground and water cover (Figure 2.2).

The Dwarf Shrub Tundra vegetation class covers a range of shrub communities
with similar structural properties, and overlaps with the Dwarf Shrub-Herb-Sedge and
High Shrub classes defined by Zoltai et al. (1992). Various Low Arctic shrub
communities are defined in the literature including: heath tundra and hillslope shrub-
lupin (Shaver and Chapin 1991; Shaver et al. 1997); birch-willow-heath (Miller et al.
1980); and low shrub (Bliss and Matveyeva 1992). Common to all these communities is
the presence of short statured deciduous and evergreen shrubs, lupins, herbs and mosses.

This vegetation type occurs in small patches, and was dominant in only a small number
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of field plots (n=4). These plots were dominated by dwarf shrub cover, with high

graminoid/ herb and moss cover and some rock and bareground cover (Figure 2.2).

The Mesic Meadow vegetation class represents a transition between the wetter
Sedge Meadow and the Herb-Nudum communities described by Zoltai et al. (1992). This
class corresponds to a variety of low arctic vegetation communities identified in the
literature, including: hummocky sedge-moss meadow (Bliss et al. 1973); frost boil sedge
moss meadow (Muc 1973); and mesic, moist and herb-moss meadows (Gilmanov and
Oechel 1995). Plant species in the Mesic Meadow field plots coincided with the
community descriptions described in the literature, and consisted of a mix of graminoids
and dwarf shrubs with some mosses, with higher bareground and rock cover than the

Dwarf Shrub Tundra and Wet Sedge Meadow classes (Figure 2.2).

The Sparsely Vegetated and Barren classes are similar to the Herb-Nudum and
Dwarf-Shrub-Herb-Sedge communities described by Zoltai et al. (1992). However, the
Sparsely Vegetated and Barren classes represent the low end of the productivity spectrum
covered by these communities. Communities described in the literature that are similar to
the Sparsely Vegetated class, include: cushion plant (Bliss et al. 1984); and cryptogamic
crust and polar desert (Bliss and Gold 1999). The Barren class is similar to the polar
deseﬁ and polar barrens described by Bliss et al. (1973), Bliss et al. (1984), and Bliss and
Matveyeva (1992). In plots designated Sparsely Vegetated, bareground and rock cover
was high with considerable graminoid and dwarf shrub cover and little lichen and moss
cover (Figure 2.2). Comparatively, the Barren plots had higher rock cover, and very little

graminoid and dwarf shrub cover and lichen cover was relatively high (Figure 2.2).
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3.

MEASURING TERRESTRIAL NET PRIMARY

PRODUCTIVITY IN ARCTIC ECOSYSTEMS USING AVHRR
SATELLITE IMAGERY

3.1.

ABSTRACT

A method is presented for computing terrestrial net primary productivity (NPP) for
low-arctic vegetation using the AVHRR satellite image products produced by the
GEOCOMP-n image processing system. The NPP model is parameterized using a
combination of field data collected in Tuktut Nogait National Park, NWT during the
summer of 2000, as well as data available from previous research. The model results
are evaluated using a map of expected annual net productivity produced from a
Landsat TM vegetation classification and expected annual NPP values compiled from
the literature. Proportion of water cover and vegetation cover and topographic
complexity within each pixel are measured, and the influence of these variables on
the difference between modelled and expected values are evaluated.

Annual NPP computed using the modified soil adjusted vegetation index (MSAVI)
showed the best correspondence with the expected annual NPP map, with 84 % of the
modelled annual NPP values within 30% of the expected annual NPP values. Within
Tuktut Nogait National Park, the average annual NPP for 2000 was 149.4 (+68.4)
g/mPyr. Highest productivity occurred along the east side of the Hornaday River
Valley. Lowest productivity occurred in the central region of the Park along the
Melville Hills, and in the northeast region of the Park near the coast. Onset of the
growing season occurred between June 1 and June 11. NPP was highest between July
1 and July 11, with mean NPP at 22.61(+11.1) g/m**10-days. The growing season
ended between September 11 and September 21.

Topography and water cover had significant effects on the regression between
modelled NPP and expected NPP. With increasing water cover within the AVHRR
pixels, modeled NPP values tended to be greater than expected. In areas with
complex topography (i.e., high slope variance within the AVHRR pixels), the model
may underestimate NPP. In areas with steep terrain (high mean slope within the
AVHRR pixels), the model NPP estimates are higher than expected. Although
significant, the effect of these variables on the overall regression was relatively small.
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3.2. INTRODUCTION

The remoteness, inaccessibility, and large spatial extent of the Canadian arctic
makes remote sensing a necessary tool for monitoring arctic ecosystems at the landscape
scale. High resolution satellite imagery (e.g. Landsat TM and SPOT HRYV) has been used
to study arctic vegetation phenology (Shippert et al. 1995; Walker et al. 1995), but such
data sources are expensive and not regularly available. An altemative source of data is
from the advanced very high resolution radiometer (AVHRR) carried aboard National
Oceanic and Atmospheric Administration (NOAA) satellites. Although' AVHRR data are
of lower spatial resolution (1x1 km), images are inexpensive and cloud-free composites
are available over 10-day intervals. With a 10-day measurement frequency it is possible
to detect both annual and inter-annual trends in arctic vegetation phenology (Hansen
1991; Markon et al. 1995; Walker 1999). As part of the Northern National Parks
Ecological Monitoring Program (McCanny 1998), Parks Canada is currently receiving
GEOCOMP-n AVHRR satellite image coverage for 11 northern national parks in
Canada. The main challenge of this research is to develop the methodology to utilize

these data in order to effectively measure arctic vegetation productivity.

Background

Coarse-scale estimates of annual terrestrial NPP are available by interpolating
average annual NPP values across the total area defined for each vegetation class in a
tessellated vegetation map (Gilmanov and Oechel 1995). However, this method assumes
homogeneity within each vegetation class polygon, and it is impossible to infer any

spatial or temporal variation within the defined landscape class.
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Climate or statistical NPP models link vegetation préductivity to meteorological
parameters and/or evapotranspiration using regression analysis (Leith 1975; Melillo et al.
1993). This approach assumes that climate regulates nutrient availability and other factors
influencing NPP. Because these models are based solely on climate simulation, they are
useful for producing NPP estimates over very long time periods; however, climate
models assume that natural ecosystems tend toward fixed combinations of species with
functional properties that vary consistently with climate and resources (Field et al. 1995).

Thus, they provide no insight into non-equilibrium phenomena.

Process or mechanistic NPP models utilize knowledge and measurements of the
biophysical properties directly influencing vegetation productivity (i.e. decomposition
rates, nutrient availability, photosynthesis, respiration, and transpiration) (Miller et al.
1976, Field et al. 1995; Liu et al. 1997; Vourlitis et al. 2000). Estimates of NPP using a
process model should be more reliable than other methods because they are based on a
detailed understanding of the ecosystem. For example, the boreal ecosystem productivity
simulator (BEPS), developed at the Canadian Centre for Remote Sensing (CCRS),
operates at large scales (10° to 10”km?) at a 1 km resolution (Liu et al. 1997). BEPS
models the soil-plant-atmosphere processes influencing vegetation productivity, utilizing
remote sensing, GIS, and meteorological techniques to derive the input variables. It
requires daily meteorological inputs, and calculates NPP on a daily and annual basis.
However, this approach is limited by the availability and quality of data required to
measure these parameters. In areas lacking ground measurements these processes must
either be simulated or interpolated from available data. Furthermore, BEPS uses

algorithms calibrated for conifer and deciduous forest stands, which, for lack of
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validation data, are unreliable in arctic tundra (Liu et al. 1997). Thus, in arctic regions
generalized constants and interpolated data must be used to derive NPP estimates,

resulting in a dramatic loss of spatial detail and accuracy.

Attempts have been made to estimate NPP directly from spectral vegetation
indices computed from remotely sensed satellite imagery at both local (Stow et al. 1998)
and global scales (Goward et al. 1985; Box et al. 1989). Because vegetation is absorptive
of visible light (380-710nm), and reflective of NIR light (710-1000nm), a ratio of NIR to

Red light reflectance is directly related to photosynthetic biomass:
SR =NIR / Red [1]

where SR is the simple ratio (Jordan 1969; Cameggie et al. 1975). However, direct

relationships between the simple ratio and vegetation biomass are highly variable across
space and time (Colwell 1971; Rouse et al. 1973; Smith and Oliver 1974). To correct for
the angular effects of bi-directional spectral reflectance under varying sun-sensor angles,

the ratio is normalized by dividing the difference of NIR and Red reflectance by the sum:
NDVI = (NIR-Red) / (NIR+Red) [2]

where ND VI is the normalized difference vegetation index (Rouse et al. 1973). The
NDVI is based on proportions of the original values, and as intended the error component
due to spatial and temporal variation is much reduced compared to using the simple ratio
(Tucker 1979). At a local scale (i.e. 1-10m), there is a strong positive correlation between
NDVI and photosynthetic biomass for temperate grasslands and crops (Rouse et al. 1973;

Tucker 1979; Holben et al 1980; Townsend and Tucker 1984), as well as subarctic
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vegetation (Hansen 1991). When integrated over the growing season, NDVI measured
from 1x1 km resolution AVHRR imagery produced relative estimates of annual NPP that
correspond well with annual NPP values reported in the literature (Goward et al. 1985;

Box et al. 1989; Los et al. 1994).

Estimating NPP at large scales using a direct relationship with NDVI is
problematic because relationships between NPP and NDVI are highly variable for
different vegetation types. In shrublands and forests, the relationship between NIR
reflectance and vegetation biomass is highly variable, producing NDVI values
considerably lower than for other community types (Peterson et al. 1987; Ranson and
Williams 1992; Chen 1996; Walker and Kenkel 2000). The influence of physiographic
features inherent to areas of complex terrain, high latitudes and extreme deserts results in
extreme NDVI values that are not representative of the underlying vegetation (Box et al.
1989; Paruelo et al. 1997). In arctic environments, unique vegetation spectral surfaces
(e.g. lichens), low vegetation cover, highly variable ground moisture, the presence of
numerous water bodies, variable topography, and low sun angle can influence NDVI
values in unpredictable ways (Hope et al. 1995; Markon et al. 1995, Shippert et al. 1995;
Rees et al. 1998). Furthermore, using NDVI measured from 1x1 km resolution AVHRR
imagery presents a challenge in separating information about the vegetation from the
background noise. Typically, landscape features in arctic ecosystems have a spatial
resolution of less than 1 km, with the dimensions no larger than 700 m* (Stow et al.
1998). The background reflectance from unvegetated surfaces, numerous water bodies,
and variable topography all contribute to the reflectance signal received by the satellite,

making it difficult to resolve the vegetated component of the pixel. Although NDVI has

26



been related to annual productivity and vegetation biomass, it is difficult to measure
inter-annual patterns of NPP using NDVI. NDVI is a cumulative measure of
aboveground vegetation biomass from the beginning of the growing season, whereas NPP
is a measure of accumulated above- and belowground biomass within a specific time

period.

NPP Model Description

A NPP model that relies exclusively on remotely sensed data is ideally suited for
measuring arctic vegetation productivity (e.g. Prince and Goward 1995 ; Goetz et al.
1999). Such a model enables estimation of primary productivity in remote areas where
detailed ground data are unavailable. Typically, landscape-scale productivity models that
utilize remotely sensed data compute NPP (i.e., the accumulation of phytomass per unit
area over time) as a linear function of the amount of photosynthetically active radiation

absorbed by vegetation:
NPP =¢ APAR.. - R, [3]

where € is the energy to dry matter conversion coefficient (g/MJ); APAR,,, is the amount
of photosynthetically active radiation (PAR) absorbed by the vegetation canopy over a
given time period (MJ/m* ); and R, is autotrophic plant respiration (Prince 1991; Law and
Waring 1994; Ruimy et al. 1994; Prince and Goward 1995, Paruelo et al. 1997; Goetz et

al. 1999).
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Photosynthetically Active Radiation Absorbed by the Canopy: APAR,,

APAR.;, is determined by measuring incident photosynthetically active radiation

(PAR), and estimating the fraction that is absorbed by the canopy (FPAR):
APAR.., = PAR! * FPAR [4]

The PAR incident to the canopy (PARY) can be determined by estimating the reduction
in the total incident solar radiation at the top of the atmosphere (a constant) by
atmospheric attenuation and cloud and aerosol scattering. However, this method requires
knowledge about cloud reflectance and atmospheric conditions, which must be estimated
from satellite measurements of UV reflectance (Eck and Dye 1991) or from arﬁﬁcial data
generated using a weather simulator (Paruelo et al. 1997). Alternately, total surface PAR
absorption (APAR,) can be computed from the difference of upwelling and
downwelling PAR measured at the top of the atmosphere, and an atmospheric correction
for ozone absorption, aerosol scattering and aerosol absorption (Li and Moreau 1996;
Figure 3.1). PARV is then computed by dividing APAR, by 1- (surface PAR albedo).
This method provides more accurate estimates of APAR ., for all sky conditions, as it
does not require knowledge of cloud reflectance, or assumptions about the fraction of the
total solar radiation reaching the surface as PAR (Li and Moreau 1996; Cihlar et al.
1997b; Gower et al 1999). GEOCOMP-n computes daily mean APARgt, using this

method. Thus, APAR.., is calculated as:
APAR an = APAR/ (1 —Apar) ¥ FPAR [5]

where Ay, is surface PAR albedo (a unitless proportion) (Moreau and Li 1996). A,y is

measured by integrating clear-sky measures of visible surface reflectance (i.e. AVHRR
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Figure 3.1. Diagram illustrating the method and parameters used by GEOCOMP-n to
compute APAR; from AVHRR band 1 reflectance. The amount of photosynthetically
active radiation absorbed by the surface (APARs,) is equal to the difference of the
downwelling PAR (PAR{) and upwelling PAR (PAR?) at the top of the atmosphere and
then further reduced by the amount of PAR absorbed by the atmosphere (APAR ;).
APARgy, is the sum of the PAR absorbed by the photosynthetic component of the surface
(APAR,,) and the PAR absorbed by the soil and non-photosynthetic components of the
surface (APARgrd). Diagram adapted from Li and Moreau (1996).
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channel 1) over the PAR spectrum, and correcting for atmospheric and bidirectional

reflectance effects (Cihlar et al. 1997a).

The inclusion of 4, in equation [5] is necessary to convert APARy:, to PARY. If
APARs is the difference between downwelling PAR (PARY) and upwelling PAR

(PART) measured above the canopy:
APAR . =PARY - PART [6]

and the canopy albedo is equivalent to the proportion of upwelling PAR to downwelling

PAR:
Apor =PART/ PAR! or PART =4, * PAR! [7]
then, substituting equation [7] for PART in equation [6] gives:

APARy. =PARY * (1- Apar) or PAR = APAR. / (1- Apa) [8]

Fraction of PAR Absorbed by the Canopy: FPAR,.,,

FPAR.., is estimated from an empirical relationship with a spectral vegetation
index, such as the normalized difference vegetation index (NDVI) (Asrar et al. 1984;
Goward and Huemmrich '1992; Begue and Myneni 1996; Braswell et al. 1996; Moreau
and Li 1996). There is experimental evidence, and theoretical substanfiation, that FPAR
is a monotonic but slightly non-linear function of NDVI (Goward and Huemmrich 1992).
However, the relationship is typically defined as linear to preserve scale invariance
(Begue and Myneni 1996). FPAR-NDVI relations have been defined from empirical

measurements of FPAR from PAR sensors positioned above and below a canopy (Asrar
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et al. 1984; Hatfield et al. 1984; Peterson and Running 1989; Peterson et al. 1990; Chen
1996). The variation in FPAR calculated with these models is large, as each relation is

specific to a particular vegetation type and sensor configuration (Table 3.1 a).

Global productivity modelers often require a relationship between NDVI and
FPAR that is applicable across many vegetation types. This relationship is often
developed from a linear interpolation between maximum and minimum NDVI values
measured directly from satellite data (Ruimy et al. 1994; Sellers et al. 1994). The
Max/Min method assumes that the FPAR-NDVI relationship is linear, that maximum
measured NDVT values correspond to a FPAR value nearly equal to 1, and that minimum
NDVI values corresponds to a FPAR value equal to 0. The range in these relations is very
large and can be attributed to variability in image processing, as well as differences in the

choice of location and time for the Max/ Min NDVI measurements (Table 3.1 b).

More commonly, models of radiative transfer are used to simulate the interaction
between incident light and a vegetated surface in order to derive the relationship between
FPAR and NDVI. Generally, radiative transfer models assume a fully vegetated,
homogenous surface and are parameterized to a specific vegetation type (Baret et al
1989; Leon 1991; Goward and Huemmrich 1992; Goward et al. 1994; Moreau and L1
1996). Considerable variation also exists between relations derived from these models.
Furthermore, such models tend to oversimplify canopy structure, making them

inapplicable to heterogeneous vegetation canopies (Table 3.1 c).

To account for canopy heterogeneity, three-dimensional radiative transfer models

have been designed that simulate an incomplete canopy as well as incorporating
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b)

Table 3.1 Summary of relationships defined for FPAR and vegetation indices compiled from the literature.
NDVI = Normalized Vegetation Index; SR = Simple Ratio; SAVI = Soil adjusted Vegetation Index; MSAVI =
Modified Soil Adjusted Vegetation Index.

Algorithm R? Method Vegetation Type Reference
FPAR = 1.25 * NDVI - 0.11 - PAR Measurements ~ Spring wheat. Growing Asrar et al. 1984
Phase
FPAR =12 *NDVI-0.18 0974 PAR Measurements ~ Spring wheat. Growing Hatfield et al. 1984
Phase
FPAR =128 * NDVI- (.14 - PAR Measurements Corn, soybeans, Daugherty 1988
Growing Pase
FPAR = 1.408 * NDVI - 0.396 0.92 PAR Measurements Alfalfa Pinter 1993.
FPAR =0.6- (2.2 * NDVI) + (2.9 * NDVD) - PAR Measurements Corn. Growing Phase  Gallo et al. 1985
FPAR =123 *NDVI - 0.06 - PAR Measurements Winter Wheat. Baret and Olioso, 1989
Growing Phase
FPAR = 1.0 * NDVI - 0.20 - PAR Measurements Conifers Peterson and Running 1989
FPAR = 1.27 * NDVI - 0.31 0.73 PAR Measurements - Halletal. 1992
FPAR =221 *NDVI - 0.681 0.665 PAR Measurements - Hall et al. 1992
FPAR = 1.25 * NDVI - 0.025 - MAX/MIN Rainforest/ Desert Ruimy et al. 1994
FPAR =0.279 * SR - 0.294 - MAX/MIN Alaska in winter/ Helman and Keeling 1989
theoretical max
FPAR = 1.468 * NDVI - 0.381 - MAX /MIN Rainforest/ Desert Loudjani 1993
FPAR =(.171 * SR - 0.186 - MAX /MIN Tall Vegetation/ Desert Sellers et al. 1994
FPAR =0.248 * SR - 0.268 - MAX/MIN Short Vegetation/ Sellers et al. 1994
Desert
FPAR =1.27 *NDVI-0.190 - MAX /MIN Niger: before/ After  OQuaidrar 1994
Rainy season
FPAR =133 *NDVI - 0.31 - 1D Radiative Transfer Model - Baret and Olioso 1989
FPAR =124 *NDVI - 0.23 - 1D Radiative Transfer Model - Baret et al. 1989
FPAR = 1.28 #* NDVI - 0.15 - 1D Radiative Transfer Model - Leon 1991
FPAR = 1.08 NDVI - 0.08 0.99 1D Radiative Transfer Model - Goward and Heummerich 1992
FPAR = 1.164 * NDVI - 0.143 0.92 1D Radiative Transfer Model - Myneni and Williams 1994
FPAR =121 * NDVI - 0.04 0.99 1D Radiative Transfer Model - Goward et al. 1994
FPAR = 1.67 * NDVI - 0.08 - 1D Radiative Transfer Model - Prince and Goward 1995
FPAR = 0.8462 * NDVI - 0.08014 0.92 3D Radiative Transfer Model Sparse vegetation Myneni et al. 1992
FPAR = 1.164 * NDVI - (.143 0.92 1D Radiative Transfer Model - Myneni and Williams 1994
FPAR = 0.105 - (0.323 * NDVI) + (1.468 * NDVF) 0.85 1D Radiative Transfer Model - Moreau and Li 1996
FPAR =3.257 * SAVI - 0.070 0.86 1D Radiative Transfer Model - Moreau and Li 1996
FPAR = 1.189 * NDVI - 0.025 0.909 3D Radiative Transfer Model Savannah Vegetation ~ Begue and Myneni 1996
FPAR = 1723 * MSAVI - 0.137 0.968 3D Radiative Transfer Model Savannah Vegetation  Begue and Myneni 1996
FPAR =2.213 * (AMSAV]) ™ 0.931 3D Radiative Transfer Model Savannah Vegetation  Begue and Myneni 1996

FPAR = 1.710 * (ANDVD) ~

0.931 3D Radiative Transfer Model Savannah Vegetation

Begue and Myneni 1996

" Aindicates the difference between pre-onset and post -onset vegetation index values.
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vegetation clumping parameters and soil background reflectance (Myneni et al. 1992).
Begue and Myneni (1996) derived relationships between FPAR and two vegetation
indices, NDVI and the modiﬁed soil adjusted vegetation index (MSAVI) (Qi et al. 1994).
Best estimates of FPAR were derived from a relation with MSAVI measured from
AVHRR data (Begue and Myneni 1996). Subtracting pre-onset of the growing season
MSAVI values from MSAVI acquired during the growing season further minimized
background effects (Begue and Myneni 1996). However, these algorithms were
calibrated for Savannah vegetation, which differs spectrally and structurally from arctic
vegetation. Applying an FPAR algorithm calibrated for temperate vegetation to arctic
vegetation could produce erroneous results. For example, in sparsely vegetated
landscapes where vegetation index values are extremely low, FPAR will be
overestimated as a result of the slight non-linearity of the relationship between vegetation
indices and FPAR. It is therefore necessary to derive an FPAR relationship specific to
arctic vegetation from empirical ground data, rather than adopting a relationship derived

for temperate vegetation.

Energy conversion coefficient: &

The energy conversion coefficient (g) is the amount of carbon fixed (¢/m?) per unit
of PAR absorbed by the canopy (MJ/m?). It is estimated from the slope of the relation
between empirically derived GPP measurements and APAR,,, (Law and Waring 1994;
Ruimy et al. 1994; Paruelo et al. 1997). When first defined, € was determined as the slope

of the relationship between NPP and APAR.., (Monteith 1972; Asrar et al. 1985). A
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number of agricultural NPP experiments that have measured ¢ in this way produced
estimates ranging between 0.2 and 4.8 g/MJ (Prince 1991). This variability has been
attributed to large differences in rates of growth and maintenance respiration among
species, and the influence of environmental stressors on photosynthetic efficiency such as
low or high temperature, high vapour pressure deficit, and drought (Prince 1991; Runyon
etal. 1994; Law and Waring 1994; Hunt 1994). Defining the energy conversion
coefficient in terms of gross primary productivity (GPP) enables variability in respiration
to be considered separately (Jarvis and Leverenz 1983; Prince 1991; Goetz et al. 1999).

NPP can then be obtained by subtracting respired carbon from the GPP.

The energy conversion coefficient has been defined as the theoretical maximum of
GPP per MJ of absorbed PAR (gmax) using the quantum yield for C3 photosynthesis under
ideal environmental conditions (Jarvis and Leverenz 1983; Goward et al. 1994; Prince
and Goward 1995). Productivity models that utilize gys must also include parameters to

quantify the reduction in emax attributable to environmental stressors. It is possible to
estimate these environmental variables from AVHRR imagery utilizing NDVI and
surface temperature data (Goward et al. 1994; Prince and Goward 1995; Prihodko and
Goward 1997); however, these methods are problematic when applied to arctic
ecosystems because of the high number of small sub-pixel water bodies inherent to these
landscapes (personal observation). The inclusion of environmental parameters can be
circumvented by deriving the energy conversion coefficient from the slope of average
measures of GPP and APAR ., acquire.d throughout the growing season. Thus, the annual

fluctuations in environmental conditions are incorporated into the averages.
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Autotrophic Respiration: R,

Autotrophic respiration (R,) is the proportion of total ecosystem respiration
attributable to plants. Estimating R, requires knowledge of both above and below-ground
biomass. R, is temperature-dependent and respiration éoefﬂcients for many arctic plants
are available from the literature (e.g. Billings et al. 1978). Utilizing these coefficients
requires data for ambient temperature. Although weather stations exist in many arctic
parks, the data represent single points in space separated by large distances. Obtaining
spatially continuous measurements of environmental conditions would require
interpolating single point values over extremely large distances. As a result, accurate and
spatially continuous measurements of most climatic variables are unavailable for most
areas of the Arctic. As with the energy conversion coefficient, a respiration parameter
derived from annually integrated measurements will incorporate variability attributable to
annual fluctuations in temperature and other factors. Respiration can then be directly

related to a vegetation index that quantifies vegetation biomass.

Objectives
The primary objective of this paper is to define and calibrate a model to estimate

terrestrial NPP in arctic ecosystems from GEOCOMP-n AVHRR data. This objective

will be accomplished by:

- defining an empirical relationship between FPAR and a spectral vegetation
index; either NDVI or MSA VI,

»  determining an Energy Conversion Coefficient (g) for Low Arctic vegetation,

»  determining an empirical relation between a spectral vegetation index (i.e.

NDVI) and Autotrophic Respiration (R,),
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= producing a map of expected annual NPP that will be used to validate the

results of AVHRR NPP model.

Other objectives include:

« evaluating the influence of sub-pixel water bodies and variable topography on

the difference between modelled and expected NPP,

»  determining what vegetation types influence discrepancies between modelled

and expected ANPP.
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3.3. METHODOLOGY

Collection of Field Data

Ground data were collected between July 8™ to August 10™ 2000 in three areas
within Tuktut Nogait National Park (See Chapter 2: Study Area). A total of 18 (1x1 km)
sites were selected to represent the range of vegetation types within the Park. Within each
site, 9 (30x30 m) plots were located in a 3x3 grid, located 250 m in from the edge of the
site boundary. Within each plot, 5 (1x1 m) sample quadrats were located in a cross
pattern (Figure 3.2). Vegetation communities sampled included: tussock tundra, wet
sedge tundra, dwarf shrub tundra, sparsely vegetated tundra, and barren ground (See

Chapter 2: Study Area).

For each quadrat (n=865), incident and reflected radiance were measured in 5
spectral regions (450-520 nm, 520-600 nm, 630-690 nm, 760-900 nm and 1550-1750 nm)
using a Cropscan MSRS radiometer (Cropscan Inc., www?2.isl.net/cropscan). The
radiometer was attached to a boom and held 2 meters above the surface, enabling a 1
meter field of view, and the mean of five scans was recorded. The up and down-looking
sensor pairs were calibrated, and all radiance measurements were corrected for sensor-
temperature effects and variable sun-angle using a post-processing program supplied by»
the maflufacturer. Percent surface reflectance of each sample was calculated from the
down- and up-looking radiance measurements. With both up and down-looking sensors it
is possible to accurately measure surface reflectance under variable cloud conditions and

various sun-angles.
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Figure 3.2. Schematic of ground sampling design. A 1x1km sample was located in the field.
Within this sample, nine, 30x30m plots were located in a grid pattern 250m meters from the
perimeter of the 'sample' area, and 250m apart. Within each 'plot!, five 1x1m sample quadrats
were located in a cross pattern, 7.5m from the perimeter of the 'plot'.
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Visual estimates of ground cover were recorded, as well as topography and soil
characteristics. An overhead digital image referenced with a GPS coordinate was also

collected to verify the vegetation cover estimates and community type assignments.

Calculation of Vegetation Indices

Two vegetation indices were used in this study: NDVI and MSAVI. The formula

for NDVT1is:
NDVI = (NIR - VIS) / NIR + VIS) [8]

Radiometer channels 3 (630-690 nm) and 4 (760-900 nm) were selected to represent to
the Visible (VIS) and Near-infrared (NIR) portions of the spectrum, respectively.
AVHRR channels 1 (VIS) and 2 (NIR) were used to compute AVHRR NDVI. The
MSAVI minimizes the influence of background reflectance by incorporating a soil

adjustment factor (L) (Qi et al. 1994). MSAVI is computed as:
MSAVI =[(NIR - VIS) / (NIR + VIS +L)] * (1+ L) [9]

The soil adjustment parameter, L, is derived from the product of the NDVI and the

Weighted Difference Vegetation Index (WDVI), such that:
WDVI =NIR —y * VIS [10]
L=1-2*y*NDVI*WDVI [11]

where v is the slope of the linear relationship for the regression between visible (VIS) and

near infrared (NIR) reflectance values of bare ground (i.e. where vegetation cover <
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10%). Bare ground pixels were determined using a threshold NDVI value of 0.03 (ie

Bare ground = 0 <NDVI < 0.03).

Calibration of NPP Model

FPAR — Vegetation Index Relationship

Physical measurements of FPAR require up- and down-looking PAR sensors
positioned both above and below the canopy (Chen 1996). For arctic vegetation, which is
essentially 2-dimensional, it is obviously impossible to obtain below canopy PAR
measurements. Therefore, an indirect approach was used to determine the relationship

between FPAR and a spectral vegetation index.

Total surface FPAR (FPARqz.) is equal to 1 — (PAR reflectance) measured above

the canopy:

FPARs = 1 — Ay [12]

where 4, is the surface PAR albedo. If the proportion of PAR absorbed by the ground
and non-photosynthetic components of the vegetation is known (i.e. FPARg.), then the
proportion of PAR absorbed by the photosynthetic components of the vegetation (i.e.

FPAR_..,) can be determined as:

FPARcan= (FPARs — FPAR,) / FPARs, [13]

Where vegetation cover is low (i.e. <30% cover), FPAR,q is constant. Sparsely vegetated
canopies consist mainly of low-growing prostrate shrubs and sedges and the ratio of non-
photosynthetic biomass to live biomass is low compared to other vegetation types (Bliss

et al. 1973). Thus, FPARq can be assumed to be constant and equal to FPARs, measured
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at 0% cover (Figure 3.3). However, FPAR4 will decrease as vegetation cover increases, -
as more PAR is absorbed by the photosynthetic components of the vegetation, and less by
the soil and structural components of the vegetation (Figure 3.3). With increasing cover,
FPARgq gradually decreases, while FPAR¢, approaches an asymptotic constant; FPAR,,,
will increase in direct relation to vegetation cover, as the photosynthetic components of
the canopy intercept more light (Figure 3.3). For vegetation cover greater than 100%,

FPAR,q approaches 0, while FPAR_,, will approach FPARy.

FPAR is directly related to leaf area (i.e. LAI) (Asrar et al. 1984, Hatfield et al.
1984), and for arctic vegetation, where there is no real third dimension and leaf overlap is
minimal, cover is approximately equivalent to leaf area. Thus, for arctic vegetation,
FPAR is also directly related to vegetation cover. Furthermore, if vegetation cover is
directly related to a spectral vegetation index (i.e NDVI or MSAVI), then it is possible to
substitute the vegetation index for vegetation cover and define a direct relation between

FPAR and the vegetation index.

A linear relationship was defined between two vegetation indices (NDVT and
MSAVI) and vegetation cover. Samples with greater than 100% vegetation cover were
excluded from the regression (n=106) because at 100% vegetation cover, a third
dimensional component exists in the vegetation (i.e. LAI> 1) and cover can no longer be

considered equivalent to FPAR.

A linear relation between FPARy. and vegetation cover indicates that FPARg is

constant (Figure 3.3); therefore, it was necessary to determine the maximum vegetation
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Figure 3.3. Diagram illustrating how the fraction of PAR absorbed by the canopy
(FPAR_,p) is determined from measurements of the fraction of PAR absorbed by the entire
surface (FPARs). At less than 30% vegetation cover, FPARgq is constant and equal to
FPARqf. at 0% vegetation cover. Thus, FPAR = (FPARgf - FPAR1q)/FPAR1).
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cover at which the relationship between FPAR., and Vegetation Cover was linear. Only
those samples below this threshold were used to determine the FPAR,.,-Vegetation
Cover relationship. The linearity of the relationship was evaluated by testing the
significance of the regression between the residuals and the predicted value for samples
below a specified vegetation cover. A significant residual regression indicated non-
linearity. A number of samples were considered outliers because they contained either
high amounts of standing water, rock cover or had a slope greater than 40%. These were

removed from the analysis.

FPARGs. was determined from 1 - (radiometer band 3 reflectance) for samples with
vegetation cover below the linearity threshold. FPAR,,, was determined using equation
[13], where FPAR,4 was set equal to the value of the y-intercept of the regression line
determined between FPAR, and vegetation cover for samples with vegetation cover less
than the linearity threshold. The equation for the linear regression between FPAR., and
vegetation cover was then determined. Vegetation cover values were then converted to
NDVI and MSAVI using an equation defined for the linear regression between vegetation
cover and each spectral vegetation index. The equation for the linear regression between
the vegetation index values and FPAR ., was then determined. The result was an

equation for the linear relationship between the vegetation indices and FPAR .

Energy Conversion Coefficient

An energy conversion coefficient specific to Low-Arctic vegetation was derived
from the results of a study measuring CO; exchange, incident PAR and NDVI in wet

meadow and dry upland ecosystems near Bethel, Alaska (61 N, 162.5°W) (Whiting et al.
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1992). Whiting et al. (1992) defined a relation between NDVI and Net Ecosystem CO,

exchange (NEE) normalized by the incident PAR flux:
NDVI=7.6 * (NEE / PAR) + 0.41; (n = 35; R* = 72%) [14]

NEE is equal to the sum of GPP and total ecosystem respiration (ER)I. In this study NEE
was determined by first measuring GPP using a closed CO, chamber embedded in the
ground then adding ER, which was measured by covering the chamber with a dark
shroud. PAR and NDVI were measured concurrently with the CO, exchange

measurements.

Because the energy conversion coefficient is defined as the slope of the
relationship between GPP and APARG., it was necessary to modify the above equation.
NDVI was converted to FPAR using the FPAR-NDVI relation defined p‘reviously.-
Incident PAR photon flux was converted to incident PAR radiation flux (i.e. from
Einsteins (E) to Megajoules (MJ)) using a conversion factor derived from an integration
of the total energy of photon flux over the PAR region of the spectrum (400 — 725nm).
Wavelength weights were defined from radiation flux measurements for different

wavelengths within the PAR region of the spectrum (Mayo et al. 1977)

The energy, in Joules, for one photon of PAR was calculated by summing the

weighted energies calculated for a single photon of light at each wavelength:
PAR energy per photon = "Zuun K * (h * C * A1) [15]

where h is Planck’s constant (6.626 x 10°* J * S); K is the i wavelength weight; C is the

speed of light; and A is the i™ wavelength.
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APARGcaq was then determined from the product of FPAR and PAR (MJ) (see
Equation [4]). NEE (gCO;) was converted to grams of dry matter (gDM) by multiplying
NEE by 0.681. This value is based on the proportion CH,O produced from CO; in

photosynthesis:
1 CO; + H,0 +PAR =0.681 CH,0 + O, [16]

NEE was converted to GPP by adding the Ecosystem Respiration (ER), where ER was
determined from an empirical relation with NDVI (See next section). Finally, the energy
conversion coefficient for GPP was determined from the slope of the resulting linear

equation between GPP and APAR,,,.

Autotrophic Respiration

Autotrophic respiration (Ry) is the proportion of ecosystem respiration (ER)
attributable to the vegetation (ER =R, (plant respiration) + Ry, (soil respiration)). The
RaER ratio was defined in an extensive summary of International Biome Project (IBP)
data collected at Truelove Lowland, Devon Island (Bliss 1977). Of total ER, 91% was
attributable to R, (Bliss 1977). Compared to temperate ecosystems, the proportion of
heterotrophic respiration (Ry) is remarkably low. However, considering the limited

microbial activity in cold, wet, and acidic tundra soils, this value is reasonable.

A relationship between NDVI and ER was defined from data presented in
McMichael et al. (1999). These data consisted of concurrent NDVL, PAR and CO,
exchange measurements for ecosystem respiration (i.e. a CO, chamber covered with a
dark shroud). Measurements were made in tussock tundra and wet sedge tundra

ecosystems in Prudhoe Bay, Alaska (70°21°N, 148°58°W) (McMichael et al 1999).
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Computing Annual Net Primary Productivity with .GE OCOMP-n AVHRR Data

Net primary productivity was computed for each 10-day composite period during
the growing season using equations [3] and [5]. NPP was determined using the
GEOCOMP-n AVHRR image products exclusively. MSAVI was computed from
atmospherically corrected band 1 and band 2 reflectance. FPAR was computed for both
the atmospherically corrected NDVI and MSAVI. AVHRR band 1 corrected for
atmospheric and bi-directional reflectance effects, was used as a surrogate for A,,,, which
is currently unavailable from GEOCOMP-n. For comparison, NPP was computed with
FPAR derived from NDVI and with FPAR derived from MSAVI. Annual NPP was

computed from the sum of the 10-day NPP estimates.

Expected Annual Net Primary Productivity

To provide reasonable validation for the model, a 1x1 km resolution expected
annual NPP map was created using a data set and methodology entirely independent of
the model described above. Expected annual NPP (ANPP) was determined by combining
a Landsat TM vegetation classification and expected ANPP values for each vegetation

class compiled from literature sources.

Landsat TM Vegetation Classification

A preliminary vegetation map was provided by the NWT Centre for Remote
Sensing. This classification was created by combining results of an unsupervised
classification of a cloud-free Landsat 5 TM scene (acquired June 29, 1992) with ground

data collected within the Park.
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The classification and the original Landsat imagery was projected as UTM,
whereas the AVHRR imagery was projected as Lambert Conformal Conic (LCC). It was
therefore necessary to reproject the Landsat image to LCC using a third degree

polynomial with 25 ground control points using nearest neighbour resampling.

The preliminary classification contained 24 ground cover types, many of which
were deemed redundant for this analysis. There were also a high number of unclassified
pixels within the image, especially in areas of high topographic complexity. The spectral
separability of the preliminary classes was evaluated using the J effﬁes—Matusita and
Transformed Divergence separability measures and the original Landsat image bands
(Richards 1994). Georeferenced overhead images for each sample quadrat were linked to
a vector point layer and used to visually assess the preliminary classes. Then, using a
combination of the class separability results and visual verification with the overhead
images, each of the preliminary classes was combined into one of the following 11
classés: Barren, Sparsely Vegetated, Mesic Meadow, Dwarf Shrub Tundra, Tussock

Tundra, Wet Sedge Meadow, Water, Ice/Snow, Mud, Sand, Bedrock.

Single unclassified pixels were assigned the mode of the surrounding 8 pixels
using a 9x9 pixel modal filter. A mask was then created of the remaining unclassified
pixels, and these pixels were assigned to one of the new classes using a supervised
maximum likelihood classification. Training sites were developed by creating masks of

the 11 new classes.

An error analysis was performed on the resultant vegetation classification by

comparing the classified Landsat pixels with the spatially collocated 30x30 m field plots

47



(n=172). The mode of the vegetation classes assigned to the 5 (1x1m) quadrats within
each 30x30m plot was determined and compared to the corresponding Landsat vegetation

classification pixel using a confusion matrix.

The classification was then separated into a series of mask images for each
vegetation class, with mask pixels representing only those pixels assigned to that class.
The proportion of each vegetation class within a 1x1 km area was determined by
computing the proportion of mask pixels within a 40x40 pixel window. The result was a
series of vegetation class proportion images with pixel dimensions equal and matched to

the AVHRR imagery.

Expected annual net primary productivity (ANPP) values for each of the six
vegetated classes were compiled from various literature sources (Bliss et al. 1973; Haag
1974; Muc 1977; Miller et al. 1980; Bliss et al. 1984; Shaver and Chapin 1986; Shaver
and Chapin 1991; Bliss and Matveyeva 1992; Gilmanov and Oechel 1995; Bliss and
Gold 1999). Only ANPP values were included for which both above and below-ground
annual NPP were measured. The literature ANPP values were assigned to one of the 6
vegetation classes based floristic descriptions and geographic proximity. A mean value of
ANPP for each class was then determined. The 1x1 km proportion layer was then
multiplied by the expected ANPP value for that class. The resulting weighted ANPP

layers were then summed to produce the expected ANPP map at 1x1 km resolution.

Water and Topographic Effects

A water mask was created from an unsupervised k-means classification of a

Landsat 7 ETM image acquired for the study area on July 13", 2000. The proportion of
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water cover within each 1x1 km AVHRR pixel was determined using the same technique

as described for the vegetation proportions.

A 100x100 m resolution digital elevation model (DEM) was created from the
digital 1:250 000 national topographic survey hypsography vectors using a contour line
interpolation. The result was smoothed with a 9x9 mean filter to remove the residual
effects of the interpolation. A slope map was then created from the DEM as well as a
series of variables to characterize the topographic complexity of the landscape.
Topographic complexity within each 1x1 km AVHRR pixel was characterized using
mean slope, slope variance, elevation variance. These variables were computed using a
series of algorithms designed to pass a 10x10 pixel window across the DEM at 10 pixel

intervals.

Model Evaluation

To illustrate the correspondence between modelled and expected NPP, the percent
normalized difference was computed as [(Modelled ANPP — Expected ANPP / Modelled
ANPP + Expected ANPP) * 100]. The normalized difference provides a relative
difference between modelled and expected ANPP such that the magnitude of the
differences are equal in both high and low productivity areas. Multiple regression
analysis was used to determine the influence of water cover and topography on the
difference between modelled and expected ANPP. Similarly, multiple regression analysis
was used to evaluate the effects of different ground cover types on the difference between

modelled ANPP and Expected ANPP.
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3.4. RESULTS

NPP Model Calibration

Predicting Vegetation Cover with NDVI and MSAVI _

There is a strong positive relationship between vegetation cover and both NDVI
and MSAVI, with 72.5% of the variation in NDVI explained by vegetation cover, and

70.3% of the variation in MSAVI explained by vegetation cover (F igure 3.4 a,b).

Surface PAR absorption and Vegetation Cover

A semi-logarithmic relationship exists between total surface PAR absorption
(FPAR) (i.e. 1-B3 reflectance) and vegetation cover (Figure 3.5). FPAR increases
with vegetation cover to ~50% cover, at which point FPAR approaches the asymptote
at~ 0.94. This sill is equivalent to a surface PAR albedo of approximately 6% for ground
with >100% vegetation cover. Surface PAR albedo values for well developed canopies

of 5-7% have been reported elsewhere (Moreau and Li 1996).

Derivation of the FPAR-Vegetation Index Relationship

The steps used to derive the relationship between NDVI and FPAR,,, are
summarized in Figure 3.6. At 30% vegetation cover, the regression of the residuals and
the predicted values for the relationship between surface PAR absorptance and vegetation
cover is not significant, indicating a linear relation between FPARs, and vegetation cover
(P=0.504 at 30% Cover). Thus, only samples with less than 30% vegetation cover were

used to derive the FPAR-Vegetation Index relationship.

A significant positive relationship exists between FPAR, and vegetation cover

for areas with less than 30% cover (R*=45.9%, p<0.001, Figure 3.6). For low vegetation
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Figure 3.4 Scatterplots of a) NDVI and Vegetation cover, and b) MSAVI and Vegetation
Cover measured from field sample quadrats. The linear regression is significant in both cases.
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Figure 3.5. Relationship between total surface PAR absorption (FPAR ;) measured as (1-
radiometer B3 reflectance), and percent vegetation cover measured from Ixlm quadrats.
Only samples with less than 100% cover were used (n= 720). A significant logarithmic
function best-fits the relationship (FPAR, = 0.71 + (0.05 In (%VC); p<0.0001, R2=71.3%)).
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Figure 3.6. Derivation of the relationship between FPAR(,,and NDVI. (1) A linear
relationship was defined between Total Surface PAR Absorption (FPARs.) and proportional
vegetation cover (VC) for quadrat samples with VC < 30% (2) FPAR ;. was converted to
FPAR,, assuming background PAR absorptance (FPARq) was equal to FPARs at VC =
0%. A linear relationship was then defined between FPAR ,, and VC. (3) VC was then
converted to NDVT using the relationship between NDVI and VC defined in Fi g.3.5. A linear
relationship was then defined between FPAR(,, and NDVI. The relationship between
FPAR,, and MSAVI was defined using the same method.
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cover samples, FPARq is assumed equivalent to the y-intercept which is equal t0 0.79
(Figure 3.6). This value corresponds to a surface PAR albedo for bare soil of 0.21.
FPAR_., was then determined from FPAR,, and FPARg4 using equation [13], and
vegetation cover was substituted with NDVI and MSAVI using the relationship defined
previously between vegetation cover and these vegetation indices (Figure 3.6). From the
substituted values, the following relationships were defined between FPAR_ ., and NDVI

and MSAVI:
FPAR.., = NDVI * 0.638 + 0.056 [17]
FPAR . = MSAVI * 1.34 + 0.059 [18]

Energy Conversion Coefficient

A conversion factor for PAR photon flux to PAR radiation flux of 0.21386 MJ/E

was determined (Table 3.2).

Table 3.2. PAR wavelength weights determined by integrating the total energy of photon flux over the
PAR region of the spectrum. Radiation in wavelengths spanning the PAR spectrum was measured at
noon for six dates between 21-6-71 and 12-8-71 in Barrow, Alaska.

Wavelength (nm)
Blue Red
400 500 650 725
. . 2
Mean Radiation (W/m') for 6 dates 5 40333 42.900 36.492
throughout the growing season
Mean wavelength weightings 0.165 0.281 0.300 0.254
Weighted Energy forone photon ¢ 11592 00 1 1163219 9.18252E-20  6.95638E-20
(Joules)
Total PAR energy (Joules) for one photon: 3.55131E-19 Joules
Total PAR energy (Joules) for one Einstein: 213860.0063 Joules
Total PAR energy (Mega Joules) for one Einstein: 0.21386 MJ/E

54



Substituting FPAR for NDVI, converting PAR photon flux to PAR radiation flux,
and converting NEE to GPP, in the NEE equation presented in Whiting et al. (1992), the

equation for the linear relation between GPP and APAR_., was determined to be:
GPP =2.8033 * (FPAR * PARJ) - 10.022 [17]

The slope of this relation is equal to the energy to GPP conversion coefficient (ecpp =

2.8033). The intercept was assumed equal to zero because when APAR =0, GPP =0.

Autotrophic Respiration

A second degree polynomial relationship was fit to the ecosystem respiration and

NDVI data in McMichael et al (1999) (R* = 0.968, p<0.001, Figure 3.7);
ER =6.1972 * NDVI 2+ 1.4138 * NDVI — 0.1485 [18]

Although a significant linear relation could be fit to the data, this relationship results in
negative ER values for low NDVI values. Using a polynomial relationship maintains

positive ER values at low NDVI.

A proportional value of 0.91 was used to convert total ER attributable to

autotrophic respiration (Bliss 1977).
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Figure 3.7. A second degree polynomial is fit to the relationship between ER and mean
NDVI values obtained from a data set for ecosystem respiration (ER) and NDVI measured
concurrently in tundra vegatation (from McMichael et al. 1999).
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Table 3.3 summarizes the model parameters derived from the preceding analyses.

Table 3.3. Summary of NPP model parameters

Parameter Units Relation / Value
FPAR unitless FPAR = (NDVI * 0.637) + 0.056
FPAR unitless FPAR = (MSAVI * 1.34) + 0.059
Eorp gDM / MJ 2.8033
CO, to, Dry Matter g CO,/gDM 0.681
Einsteins (E) to Megajoules (MJ) MIJ/E 0.233647
= 10* * 2y . *
ER £C/ m * 10days ER = 10* (6.1972 * NDVI? - (1.4138 NDVI) +
0.1485
R.:ER unitless 0.91

Expected annual productivity

Landsat Vegetation Classification

The Landsat vegetation classification is presented in Figure 3.8. When compared

to the field plots, the overall classification accuracy was determined to be 62.2 % (Table

3.4). Classification accuracy was considerably higher in the sparsely vegetated, dwarf

shrub tundra, tussock tundra and barren classes. Although the classification accuracy of

water was very high, this class was not included in the error assessment. Classification

accuracy was lowest in the mesic meadow class, with a classification accuracy of 38.8%

(Table 3.4). Of the 49 mesic meadow ground samples, 27 were classified as sparsely

vegetated pixels in the vegetation map, suggesting overlap between these classes in areas

with either higher productivity sparse vegetation, or lower productivity mesic meadow.
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Figure 3.8. Landcover classification of Tuktut Nogait National Park, NWT. Landcover
classes were assigned to an unsupervised classification of a Landsat 5 TM image acquired in
early summer of 1992. Unclassified pixels were assigned to existing classes with a supervised
maximum liklihood classification, using training statistics defined from the existing classes.
Overall classification accuracy was 62.2% when compared to ground truth data collected in

the summer of 2000.
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Table 3.4. Confusion matrix of Landsat TM classification validation using ground data. Ground
classifications are based on the mode of the class assignment for the 5 (1x1m) quadrats located within each
30x30m plot. Numbers on the diagonal represent counts of correctly classified pixels. Numbers off the
diagonal represent misclassified pixel counts. In total, 62.2% of the Landsat ve getation classification were
correctly classified. WSM = Wet sedge meadow; MM= Mesic Meadow, DST= Dwarf shrub tundra; TT=
Tussock tundra; SPV= Sparsely vegetated ground; BRN=Barren ground.

Vegetation Map
WSM_MM DST TT SPV BRN ROCK SNOW  Total (n=172)
WSM 15 3 0 0 8 0 0 0 26
. MM 0 19 0 2 27 1 0 0 49
& DST 0 0 4 0 0 0 0 0 4
2 1 0 2 0 10 0 o0 0 0 12
5 SPV 1 9 0 0 32 7 0 0 49
& BRN 0 1 0 0 3 26 0 0 30
ROCK 0 0 0 0 0 0 0 0 0
SNOW 1 0 0 0 0 0 0 1 2
% Correct 577 388 100 833 653 867 100 50.0 62.2

Expected Annual NPP Estimates

Table 3.5 lists the mean annual above and below-ground NPP (ANPP) values for
each vegetation class compiled from the literature. Variability in ANPP estimates is low
for the barren, sparsely vegetated and dwarf shrub tundra vegetation classes. However,
variability increases in the more productive vegetation classes, with the largest variation

apparent in the tussock tundra and wet sedge meadow classes (Table 3.5).
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Table 3.5. Total above and below ground net primary productivity estimates (g / m%r1) compiled from
literature sources.

Vegetation Class Mean NPP (£SD) Max Min N " References
Barren 0.95 (0.07) 1.01 0.87 4 5,10
Sparsely Vegetated 4.45 (£2.45) 8.00 2.13 7 5,8,9,10
Mesic Meadow 155.73 (£25.51) 185.00  138.20 3 6,8
Dwarf Shrub 137.5 (£3.54) 140.00  135.00 2 1,8
Tussock Tundra 524 (£135.76) 620.00 428.00 2 14

Wet Sedge Meadow 239.76 (£62.78) 352.00 165.10 8 1,2,6,8,11,12
References

(1) Shaver, and Chapin 1991
(2) Shaver et al. 1997

(4) Shaver and Chapin 1986
(5) Bliss and Matveyeva 1992
(6) Muc 1977

(7)Bliss et al. 1973

(8) Gilmanov and Oechel 1995
(9) Bliss and Gold 1999

(10) Bliss et al. 1984

(11) Haag 1974

(12) Miller et al. 1980

Vegetation Class Proportion Layers

The 1x1km resolution vegetation class proportion images are presented in Figure
3.9. Barren ground vegetation class occurs maiﬁly at high élevations in the central region
of the Park (i.e. the Melville Hills) and near the north east coastal region of the Park
(Figure 3.9). The sparsely vegetated class occurs mainly on a high elevation plateau west
of the Hornaday river, in the western region of the Park, as well as in the north east
region of the Park (Figure 3.9). This region is particularly dry, possibly because of a rain

shadow effect from the Melville hills. This results in low vegetation
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Figure 3.9. Vegetation class proportion images derived from the Landsat vegetation
classification. Pixel values represent the proportion of each class within a 1x1 km area.
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productivity, as arctic vegetation productivity is highly correlated with water availability

(Chapin et al. 1988; Fogg 1998).

Occurrence of the dwarf shrub tundra class is relatively low within thé Park, with
the exception of the north east region of the Park, within the Hornaday and Brock River
deltas. The dwarf shrub tundra class tends to occur in small localized patches on well
drained slopes in association with mesic meadow vegetation. Small patch size (i.e.
<25x25m) may result in under-classification of dwarf shrub tundra, as the pixel class will
be assigned to the dominant vegetation within the pixel. From this classification, mesic
meadow class is the dominant vegetation class within the Park, with high occurrence in
the southwest corner of the Park to the west of the Hornaday River, and in the west of the
Park, near Seven Islands Lake (Figure 3.9). The wet sedge meadow class occurs
throughout the Park in a reticulated pattern (Figure 3.9). Wet sedge meadow tends to be
associated with water bodies, along rivers and surrounding lakes which results in a

reticulated distribution pattern.

Expected ANPP Map

A map of the expected annual NPP is presented in Figure 3.10. Expected ANPP is
highest in the northwest region of the Park (ANPP = 200-500 g /m’yr), and along the east
side of the Hornaday river valley. In these areas there is high occurrence of the tussock
tundra and mesic meadow classes. It is likely that the high vegetation productivity in this
area is supported by run-off from the Melville Hills, which provides a continuous supply
of water throughout the growing season. Expected ANPP is low in the northeast region of

the Park where ANPP = 10-150 g /m®yr, and on the southwest side of the Hornaday
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Figure 3.10. A comparison between annual net primary productivity computed from the AVHRR model using
either NDVI or MSAVI to compute FPAR, and the expected ANPP map derived from the Landsat vegetation
classification and ANPP values taken from the literature.



Valley. These areas correspond to high occurrence of the barren and sparsely vegetated
classes. Expected ANPP is lowest at high elevations in the Melville hills where ANPP =
0-50 g m™yr, with the exception of a small pocket of high productivity in the center of
the Park which corresponds to a concave depression to the southeast of the Melville hills

with a high occurrence of the mesic meadow class.

Model Evaluation

Modelled ANPP computed with NDVI

With respect to the relative spatial patterns of ANPP, there is a strong
correspondence between modelled ANPP computed using NDVI (ANPPypy;) and
expected ANPP (ANPPg,,) (Figure 3.10). However, when comparing the absolute values
there is less correspondence; in most areas, values for ANPPypy; were consistently lower
than ANPPg,,. The normalized percent difference map illustrates the location and
magnitude of these differences, and a histogram illustrates the frequency distribution of
the differences (Figure 3.11). For ANPPypvy, only 41.76% of the pixels are within 30%
of the difference. The mean of the normalized difference of ANPPypyvi and ANPPgy;, is
33.55% (+23.96%), indicating ANPPg,, values are 30-35% higher than ANPPxpyr
(Figure 3.11). The right tail of the percent difference histogram reveals a high number of
pixels with large percent difference (Figure 3.11). These pixels correspond to the |
northeast portion of the Park along the coastline, where AVHRR NDVI values remain
very low throughout the growing season. Despite the presence of vegetation in these
areas, persistently low ND VI values throughout the growing season result in negative
FPAR values and negative annual NPP values. In a small region in the center of the park

(69°11° N, 121° 39 W), modelled ANPP values are 80-90% larger than expected ANPP.
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Figure 3.11. Map of the normalized percent difference of annual NPP computed using NDVI
to determine FPAR and the expected annual NPP: [(Modelled - Expected / Modelled +
Expected) * 100%]. Red indicates modelled ANPP values are higher than expected NPP.
Blue indicated modelled ANPP values are less than expected. Overall, 41.76% of the pixels
are less than 30% different.
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This area corresponds to a high elevation ridge which appears red in a Landsat false
colour composite. Although no ground sampling was done in this region, when observed
from the air, the ground appeared completely barren. The red appearance of the landscape
may be caused by crustose lichens covering the bare rock. High near infrared (NIR)
reflectance of stony lichen tundra (biomass < 20 g m™ yr') results in NDVI values as
high as those obtained for fructicose lichen and dwarf shrub communities, where biomass

= 1000 g m2yr' (Rees et al. 1998).

Modelled ANPP computed with MSAVI

Correspondence between modelled ANPP computed with MSAVI (ANPPysavr)
and expected ANPP (ANPPgyy), is much greater compared to ANPPypy; both in terms of
relative spatial patterns and absolute values (Figure 3.12). Overall, the percent
normalized difference values between ANPPysaviand ANPPgy, are lower ( Figure 3.12).
In the histogram, the difference distribution is centered at a mean value of -4.46%
(£22.61%), indicating that modelled values are generally 4-5% higher than expected
values ( Figure 3.12). Larger differences exist in areas where tussock tundra and mesic
meadow cover is high. In these areas modelled values are 10-25% lower than expected.
For these vegetation classes, expected ANPP may be overestimated. In areas with high
barren ground and sparsely vegetated cover, modelled ANPP values tend to be 10-40%
higher than ANPPgy,. As with ANPPxpvi, ANPPysav: values are 80-90% higher than
ANPPg,; in a small region in the center of the Park, where ground cover is likely crustose
lichen covered rock. These discrepancies may also be attributable to inherent inaccuracies

in the expected vegetation map.
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Figure 3.12. Map of the normalized percent difference of annual NPP computed using
MSAVTI to determine FPAR and the expected annual NPP: [(Modelled - Expected /
Modelled + Expected) * 100%]. Red indicates modelled ANPP values are higher than
expected NPP. Blue indicated modelled ANPP values are less than expected. Overall, 84.43%
of the pixels are less than 30% different.
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Regression analysis of modelled and expected ANPP values indicates a significant
linear relationship for both ANPPypy; and ANPPysav; (Figure 3. 13). Modelled
ANPPypyr and ANPPysav values explain 73.5% and 65.7% of the variation in ANPPg,,
values, respectively. Although in both cases a significant linear relation can be fit to the
data, the scatter plots of ANPPnpy: and ANPPg,, and ANPPysav: and ANPPx,, reveal an
non-linear trend; with increasing productivity, the increase in expected ANPP values is

greater than for modelled ANPP values (Figure 3.13).

Effects of Sub-Pixel Water Cover and Topography

The effects of water cover and topographic complexity on the relationship
between modelled ANPP and expected ANPP were evaluated in a multiple regression
(Table 3.6). Water cover had a significant negative effect in the regression with
ANPPysavy, but not with ANPPypv; (Table 3.6). With increased water cover, modelled

values tend to be greater than expected.

For both ANPPxpvr and ANPPysavy, slope variance has a significant positive
effect, whereas slope mean has a significant negative effect (Table 3.6). Elevation
variance had no significant effect (Table 3.6). With increasing slope variance modelled
values tend to be Jower than expected values. High slope variance indicates rough terrain.

Therefore, in areas with complex topography, the model may underestimate ANPP. With

68



500

375

250

Expected ANPP

125

400

500 4

375 +

250 +

Expected ANPP

125 71

100 200 300 400
ANPP computed with MSAVI

Figure 3.13. Regression of expected ANPP an modelled ANPP computed with (a) NDVI
(ANPP,,, = 1.67 ANPPyp,y, +19.853; R? = 73.5%, P<0.0001); and (b) MSAVI (ANPP, =
1.263ANPP, ¢, - 33.485; R2 = 65.7%, P<0.0001).
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increasing mean slope modelled values tend to be higher than expected values. High
mean slope indicates steep terrain. Thus, in these areas the model may overestimate

ANPP.

Table 3.6. Results for multiple regression analysis on the normalized percent difference of
modelled ANPP and expected ANPP with the proportion of water and topographic variables.

Dependent variable: NPP-Expected. N= 13975; R?= 69.8%

Variable Coefficient T-Ratio P-Value
Constant 27.28 144 <0.0001
NPP-NDVI 1.64 179 <0.0001
%H20 -33.32 -2.38 0.0175

Slope Variance 19.69 7.04 <0.0001
Mean Slope -6.31 -8.46 <0.0001
Mean Elevation 1.2 0.824 0.4097

Dependent variable: NPP-Expected. n= 13975; R*=60.9%

Variable Coefficient T-Ratio P-Value
Constant -13.93 -6.02 <0.0001
NPP-MSAVI 12 147 <0.0001
%H20 -58.61 -3.67 <0.0002
Slope Variance 17.46 5.48 <0.0001
Mean Slope -6.45 -7.59 <0.0001
Mean Elevation -2 -1.2 0.2293

Effects of Vegetation Type

The results of a multiple regression analysis with the normalized difference of
modelled and expected ANPP and the proportion of each vegetation class within each
pixel for each of the 6 vegetation classes are presented in Table 3.7. Although significant,
only a very small amount of the variation in the normalized difference values for the
NDVI model values can be attributable to proportional vegetation cover (R?= 6.8%,
p<0.0001). By contrast, with the MSAVI model 53.0% of the variation in the normalized
difference values can be attributed to the proportion of vegetation cover in each

vegetation class (Table 3.7). All of the vegetation classes had significant effects, and the
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high productivity classes (MM, WSM, and TT) had the greatest effects. This finding
supports the interpretation of the difference map ( Figure 3.12), where modelled values
tend to be lower than expected for high productivity vegetation types, and high for low

productivity vegetation types.

Table 3.7. Results for multiple regression analysis on the normalized percent difference of modelled ANPP and
expected ANPP with the proportion of vegetation cover for each class.

Dependent variable:Normalized Difference of NPP-MSAVI and Expected NPP, n= 16561; R* = 53.0%

Variable Coefficient T-Ratio P-Value
Constant -39.56 -42.7 <0.0001
MM 39.49 41 <0.0001
WSM 333.36 51.2 <0.0001
TT 218.34 66.7 0.0001
DST -31.08 -3.88 0.0008
SPV -10.72 -3.34 <0.0001
BRN 19.38 53 <0.0001
Dependent variable:Normalized Difference of NPP-NDVI and Expected NPP. n= 16561; R*= 6.81%

Variable Coefficient T-Ratio P-Value
Constant 17.66 12.8 <0.0001
MM 8 5.56 <0.0001
WSM 232.15 23.9 <0.0001
T ' 63.9 13.1 <0.0001
DST -158.37 -13.3 <0.0001
SPV 15.14 3.16 0.0016
BRN 91.64 16.8 <0.0001

In summary, when compared to the expected ANPP map, the MSA VI model
produced more accurate estimates: with 84.43% of the modelled annual NPP pixel values
within 30% of the expected annual NPP pixel values, compared to the NDVI model,
where only 41.76% of the pixel values within 30% of the expected annual NPP pixel

values.
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Inter-Annual Patterns of Mean NPP

A series of NPP images for each composite period throughout the growing season
illustrates the spatial patterns of productivity within the Park (Figure 3.14). An annual
productivity curve based on the mean of 150 randomly selected points within the Park
illustrates the timing of onset, peak and end of the growing season (Figure 3.15). Onset of
the growing season occurred directly after snow melt which occurred between June 1 and
June 11, 2000. During this period mean values increased from 0 to 18.64 (¥16.6) g m™
10-days™. NPP was highest between July 1 and July 11, 2000 with mean NPP at
22.61(%11.1) g/m**10-days. The growing season ended between September 11 and

September 21, 2000.

Following the onset of the growing season, NPP values were greatest in the central
region of the Park along the Homaday river valley (Figure 3.14). Tussock tundra and
mesic meadow cover are high in this region. During the June 21 composite period, there
is a substantial drop in productivity, with mean NPP decreasing from 18.64 (£16.6) to
8.42 (6.4) g m™ 10-days™ (Figure 3.15 a). Mean total APAR dropped from 94.21
MJ/10-days in the June 11 composite period, to 44.86 MJ/10-days in the June 21
composite period (Figure 3.15 b). In order to examine the cause of this substantial drop in
total APAR, mean total APAR values were extracted from raw daily images for the
month of June (Figure 3.16). It was evideht from this curve that snow melt occurred
between June 7 and June 10 (Figure 3.16). After this period there was a steady and large
increase in total APAR as the ground dried and vegetation began to green up (F igure

3.16). However, after June 20, daily total APAR values were considerably lower for
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Figure 3.14. Modelled NPP in Tuktut Nogait National Park for each 10-day composite period
during the 2000 growing season. FPAR derived from MSAVI. Numbers in upper right
indicate date of composite period, (eg. 0611 = June 1 - June 11).
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Figure 3.15. Mean values of (a) Net Primary Productivity, (b) Total APAR, and (C) MSAVI
from 150 random points located within Tuktut Nogait National Park.
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Figure 3.16. Daily Total APAR for the month of June. Values were determind from the
mean of 150 random points located within Tuktut Nogait National Park. Snow melt
occurred between June 7 and June 10. There was a considerable drop in APAR and
subsequently NPP during the June 21 (0621) composite period as a result of extensive
cloud cover.
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much of the June 21 composite period. Examining the daily APAR énd NDVI images,
revealed extensive cloud cover during this period which ultimately resulted in low total
APAR and NPP values for the composite period. Despite cloud cover during this period,
vegetation continued growing and MSAVI values continued to climb (F igure 3.15 ¢), and
despite only a relatively small gain in total APAR for the July 1 composite period, NPP
values peaked for the year, with mean NPP values of 22.61(+11.1) g/m*10-days (F igure
3.15 a). During this period, NPP values were relatively large in all areas of the Park, with
highest productivity occurring along the east side of the Hornaday River valley. Over the
rest of the growing season mean NPP values gradually decreased in all areas of the Park.
The growing season ends during the September 11 composite period with mean NPP
dropping from 2.4 (¥2.7)g m? to 0 g m™ in the September 21 image (Figure 3.15 a). A
map of modelled ANPP computed using MSA VI is presented for in Figure 3.17 that

covers the full extent of Tuktut Nogait National Park.
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Figure 3.17. Map of modelled annual NPP for Tuktut Nogait National Park computed
using GEOCOMP-n AVHRR data with FPAR determined using MSAVI.
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3.5. DISCUSSION

Estimates of net primary productivity derived from the AVHRR model provide an
excellent relative measure of the distribution of vegetation productivity within Tuktut
Nogait National Park. Comparatively, modelled NPP corresponds exceptionally well with
expected NPP (Figure 3.10), which is notable considering that the expected NPP map
was produced using methodology and data that was completely independent of the
model. Furthermore, the model is easily implemented and uses the GEOCOMP-n
AVHRR data exclusively. From a park management perspective, the AVHRR NPP
estimates will be particularly useful for asking questions; that is, identifying areas of
interest that warrant further examination, either with high resolution imagery, or ground

surveys.

Model Calibration

‘The reflectance and structural properties of Arctic landscapes differ fundamentally
from more temperate landscapes. As a result, empirical relationships defined between
spectral vegetation indices and NPP model parameters for temperate ecosystems will
produce inaccurate results when applied to arctic ecosystems (Markon et al. 1995; Rees et
al. 1998). The intention of this study was to develop a remote sensing NPP model
specific to low-arctic ecosystems by calibrating model parameters using empirical field
data. The importance of deriving arctic-specific model parameters is apparent when the
results of the FPAR-NDVI relationship are examined. The slope value of the linear
relationship between NDVI and FPAR (equation [17]: 0.638) is lower than for linear

FPAR-NDVI relationships reported elsewhere in the literature (Table 3.1). Many of the
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NDVI-FPAR relations defined in the literature are derived either from empirical FPAR
measurements, or from simulation models parameterized for temperate vegetation
canopies (e.g. Hatfield et al. 1984; Daugherty 1988; Sellers et al. 1994; Goward and
Heummerich 1992). In these studies large ranges of NDVI values are used to define the
FPAR relationship and a linear relation is fit, despite the fact that the relationship
between FPAR and ND VT is slightly non-linear (Goward and Huemmrich 1992).
Defining a linear relationship for an inherently non-linear relation will result in
overestimates of FPAR in landscapes with low vegetation cover. A study examining the
relationship between NDVI and FPAR for African Sahelian vegetation reported a linear
relationship between FPAR and NDVI with a slope of 0.84 (Begue and Myneni 1996);
this value is closer to the slope value derived here for Arctic vegetation. Moreover, using
a vegetation index that corrected for variable background reflectance (i.e. MSAVI)

minimized error in predicting FPAR (Begue and Myneni 1996).

Dry soils with high rock or gravel cover are ‘brighter’ and have higher reflectance
values than wetter, ‘darker’, clay-loam soils (Richardson and Wiegand 1977). The effects
of variable soil background reflectance are apparent in the regression between vegetation
cover and FPAR. for samples below 30% vegetation cover, from which the FPAR-
Vegetation Index relationship was defined (Figure 3.6). Although this regression was
significant, the coefficient of determination was low aé a result of considerable scatter
attributable to variable soil conditions (Figure 3.6). The MSAVI removes some of this
variability by including a soil adjustment factor derived from the relationship between red

and NIR reflectance for bareground (Qi et al. 1994).
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Using the MSAVT, rather than NDVI, to compute FPAR produces modelled NPP
results more in line with expected NPP. Although MSAVI is not currently produced by
GEOCOMP-n, it is relatively easy to compute with the available data. However, even
though MSAVI was demonstrated to reduce variation in the vegetation signal for sparsely
vegetated canopies, it is still necessary to use NDVI to derive both the energy conversion
coefficient and ecosystem respiration. This is because these parameters are based on
published work, from which the data sets used to determine these parameters were

defined using only NDVI (Whiting et al. 1992; McMichael et al. 1999).

To evaluate the derived energy to GPP conversion coefficient, GPP was converted
to NPP by subtracting R,, and the energy conversion coefficient for NPP (expp) was
determined from the resulting equation between NPP and APAR.., (exep=0.851). This
value is comparable to those reported for temperate ecosystems with similar vegetation
(reviewed by Gower et al. 1999). Values of expp reported for short grass prairie in Texas
range from 0.24 to 0.80 (mean = 0.52 +0.19), and values for tall grass prairie range from
0.80 to 1.33, (mean = 1.02 +0.2) (Sims et al. 1978, cited in Gower et al. 1999). A value
of 0.48 was reported for subalpine ecosystems in Oregon (Runyon et al. 1994). Although
annual productivity in the arctic is low compared to temperate regions, the photosynthetic
efficiency of arctic plant species is comparable to, if not higher, than that of temperate
species (Dennis et al. 1978). In temperate regions, the photosynthetic efficiency of
vegetation is dependent on air temperature, atmospheric humidity and soil moisture
(Runyon et al. 1994). However, Arctic vegetation is well adapted to adverse
environmental conditions, with optimum growth rates occurring at temperatures well

below those of temperate species (Fogg 1998). Low temperature optimization in arctic
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plants is related to increased concentrations of RuBP Carboxylase (Chapin and Shaver
1985; Fogg 1998). At higher temperatures, the oxygenase activity of RuBP Carboxylase
results in respiration rates that exceed carbon assimilation, prohibiting these plants from
surviving in temperate climates. At low temperatures, however, this respiration is not
significant and the increased concentrations of the enzyme acts to optimize

photosynthetic efficiency.

In the current application of this model, NPP is computed using AVHRR band 1
reflectance corrected for bidirectional and atmospheric effects in place of PAR surface
albedo (Apar). PAR albedo was not available from GEOCOMP-n as a result of problems
with the look-up tables used to define the ground-cover specific coefficients used to
convert AVHRR channel 1 to PAR albedo. Although the BRDF corrected channel 1
reflectance are close to true PAR albedo for most vegetated surfaces (Cihlar et al. 1997b),

NPP estimates may be improved using actual PAR Albedo measurements.

Model Evaluation

The expected ANPP map provides a extremely useful tool for validating the
AVHRR NPP model, providing spatially continuous estimates of annual productivity
derived from a data source entirely independent of the model input data. Despite its
dbemonstrated effectiveness, some caution should be used when interpreting the results of
the expected NPP map. Results from the error analysis indicated that the classification
accuracy of the vegetation map was relatively low, and where no ground data exists (i.e.
in the south of the Park) there was no way of evaluating the accuracy of the classification.

The mesic meadow class was the most problematic and may have been too broad a class,
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including pixels across a large range of vegetation productivity. Incérporating an
intermediate class may provide a more accurate catagorization of the range of vegetation
productivity within the Park. Error in the classification can also be attributed to the fact
that the TM image and the ground samples were acquired at different times. For example,
where wet sedge meadow was incorrectly classified as snow in the 1992 image, it is
likely that in the 2000 image the snow had melted revealing wet sedge meadow beneath.
Although the classification accuracy of this vegetation map could be improved
considerably, producing a high quality vegetation map for this Park is beyond the scope

of this study.

Error in the expected ANPP map can also be attributed to variability in the ANPP
values obtained from literature sources (Table 3.5). This variability was largest in the
high productivity vegetation classes (wet sedge meadow (WSM) and tussock tundra
(TT)) and is likely attributable to differences in below-ground NPP estimates for these
classes. It is very difficult to obtain accurate measures of below-ground biomass, and
estimates of below-ground NPP must be determined from ratio estimates of above to
below-ground biomass (Shaver and Chapin 1991). Furtherniore, in arctic vegetation, rates
of below-ground root growth vary throughout the growing season (Shaver and Billings
1977). Therefore, estimates of below-ground NPP obtained from ratios of above to
below-ground biomass will vary depending on when the biomass samples were obtained.
This has important implications when evaluating the results of the model against the

expected ANPP map.

Normalized percent difference values for the MSAVI model were highest where

tussock tundra and wet sedge meadow cover was high ( Figure 3.12). When proportional
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vegetgtion cover for each class was included in a multiple regression‘ analysis comparing
modelled ANPP and Expected ANPP, WSM and TT cover had the greatest influence on
the regression (Table 3.7). Moreover, the categorization of vegetation into discrete
classes ignores the actual range in vegetation productivity, resulting in overestimates of
expected ANPP where actual ANPP is lower than the mean for that class. Thus, in areas
of high productivity vegetation, modelled values may be lower than expected because of

inaccurate estimates of ANPP for these vegetation classes.

The opposite is true in some areas where modelled estimates of ANPP are higher
than expected and cover of the low productivity classes is high ( Figure 3.12). Estimates
of expected ANPP for the barren and sparsely vegetated classes may be too low.
Expected ANPP values for these vegetation types were obtained from data for high arctic
polar desert and semi-desert vegetation (Bliss et al. 1984; Bliss and Matveyeva 1992;
Bliss and Gold 1999). Although the floristic structure is similar in the barren and sparsely
vegetated vegetation classes, it is likely that ANPP is higher at lower latitudes where the

growing season is longer, and mean annual temperatures are higher.

Others have examined the effects of subpixel water bodies and variable
topography on AVHRR satellite imagery (Burgess et al. 1995; Cihlar et al. 1997a). In this
study correspondence between modelled ANPP and expected ANPP was significantly
affected by variable topography and sub-pixel water cover. With increasing water cover,
modelled ANPP values tended to be greater than expected ANPP (Table 3.6). This is
likely caused by the residual effect of resampling large AVHRR pixels at high view
zenith angle to 1x1 km during the processing of the imagery (Cihlar et al. 1997a). Where

adjacent pixels with high and low reflectance values occur (i.e. over water bodies), hi gher
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reflectance values in the large AVHRR pixels over land will dominate the values in the
smaller resampled pixels, effectively reducing the apparent effects of water on the
landscape (Cihlar et al 1997). Furthermore, in areas of rough terrain the model may
underestimate ANPP, whereas in areas of steep terrain the model may overestimate
ANPP. Areas with high steep terrain correspond to mountainous areas in the central
region of the Park. Overestimates of ANPP in these areas may be caused by higher than
expected vegetation index values as a result of increased NIR reflectance from lichen
covered rock (Rees et al. 1998). Although these results may provide insight into the
effects of water and topography on modelled ANPP estimates, it should be emphasized
that the effect of these variables on the overall regression relationship was relatively
small; R? increased by only 0.7% for the MSAVI model, and 0.3% for the NDVI model
(Tables 3.6 & 3.7). In a similar study, Burgess et al. (1995) found that the influence of

variable topography on AVHRR NDVI values was minimal.

Factors Influencing NPP in Tuktut Nogait National Park

The least productive areas of Tuktut Nogait National Park lack wind protection,
resulting in minimal snow accumulation during the winter. With little insulation from
snow, severely cold temperatures and wind abrasion pose severe limitations on
vegetation. With little vegetation to insulate the soil, the ground thaws quickly and the
gravelly soils retain little water as melted snow drains off quickly (Fogg 1998).
Compounded with low annual precipitation, most arctic plants cannot survive these
conditions. This is apparent in the barren Melville Hills in the central region of Tuktut
Nogait where vegetation productivity is lowest; and the coastal region to the northeast,

where a rain shadow effect results in very dry conditions (Figure 3.16).
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The presence of flowing water greatly affects nutrient availabvility by bringing
nutrients to the root surfaces (Chapin et al. 1988). Some of the most productive arctic
vegetation communities, with the highest biodiversity, are on slopes of river valleys
where water runs freely between the permafrost and the soil surface (Chapin and Shaver
1985; Chapin et al. 1988). This is apparent on the east side of the Hornaday River Valley,
where continuous run-off from the Melville Hills and southern exposure results in the
highest vegetation productivity in the Park (Figure 3.16). This area experiences a surge in
productivity early in the growing season, followed by decreased, but steady productivity
throughout the rest of the growing season (Figure 3.14). Along the east slopes of the
Homaday river valley deciduous plant species are common. For deciduous arctic plants
above-ground growth occurs most rapidly just following snow melt, when solar radiation,
water availability and air temperature are most favourable (Chapin and Shaver 1985).
Above—groﬁnd growth slows in mid to late summer with below-ground root growth
increasing (Shaver and Billings 1977). The concentration of above-ground growth in
early spring, followed by increased below-ground production in mid to late summer,

enables growth of each plant structure to occur when conditions are most favourable.

Application of the NPP Model.

The productivity model presented in this study enables regional scale patterns of
NPP within Tuktut Nogait National Park to be spatially quantified with a relatively high
degree of accuracy. The model is easy to implement and uses GEOCOMP-n AVHRR
data exclusively. An assessment of the accuracy of the absolute NPP values produced
from the model indicates good correspondence. However, this accuracy assessment is

limited by the accuracy of the expected annual NPP map and could potentially be higher.
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The NPP estimates will provide useful information for ecosystem monitoring in northern
regions, enabling the identification of high productivity areas where biodiversity is
expected to be highest. Furthermore, model results will provide the necessary empirical
data to justify management activities in areas of high biodiversity. The 1x1 km spatial
resolution of the AVHRR NPP maps enable patterns of productivity to be evaluated and
analyzed at a regional scale. The 10-day temporal resolution of these data will enable
Park managers to study interannual patterns of productivity both within and among Parks.
This will provide information about the timing of events such as onset and duration of the
growing season, when and where peak productivity occurs within the Park, and how
environmental factors such as global warming influence productivity patterns. Spatially
and temporally continuous estimates of NPP will be extremely useful td wildlife
managers. These data could be used to improve the efficiency of aerial surveys. For
example, aerial surveys could be stratified by correlating'caribou density with spatial and
temporal patterns of productivity within a Park. Considering that there is currently no
other practical way of assessing regional scale productivity patterns in Canada’s northern
national Parks, the NPP model will provide a useful tool for ecosystem monitoring and a

source of empirical data for justifying management decisions.
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4.  VALIDATING GEOCOMP-N AVHRR SATELLITE IMAGERY
USING SCALED-UP FIELD MEASUREMENTS OF REFLECTANCE

4.1. ABSTRACT

The remoteness and large spatial extent of the arctic makes remote sensing a
necessary tool for monitoring the effects of anthropogenic disturbance and the potential
effects of climate change on northern ecosystems. Accurate landscape-scale
measurements of ecosystem processes derived from satellite imagery require data that has
been corrected for atmospheric and bi-directional reflectance effects. The effectiveness of
these corrections for AVHRR imagery acquired in a region of low-arctic vegetation was
evaluated using scaled-up measﬁrements of surface reflectance obtained in the field with
a hand-held radiometer. The influence of landscape heterogeneity on scaling-up fine
resolution observations was examined by aggregating Landsat NDVI to AHVRR
resolution in both homogeneous and heterogeneous areas. Results indicate that landscape
heterogeneity has a large influence on scaling-up fine scale observations because of the
influence of numerous small water bodies and differences in sensor bandwidths. Scaled-
up field measurements of NDVI trended well with atmospherically corrected AVHRR
NDVI, although field measurements of NDVI were consistently hi gher. This difference is
likely attributable to directional reflectance effects as a result of large sun angles.
Applying a bi-directional reflectance correction (BRDF) should improve correspohdence
between AVHRR NDVI and NDVI computed from field measurements of surface
reflectance. However, current BRDF corrected imagery should not be used until
improvements have been made to the GEOCOMP-n bi-directional reflectance correction

procedures.
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4.2, INTRODUCTION

Large scale models of terrestrial net primary productivity (NPP) commonly utilize
satellite imagery from the NOAA Advanced Very High Resolution Radiometer
(AVHRR) as input data to derive biophysical model parameters (Field et al. 1995;
Ruimy et al. 1996; Liu et al. 1997; Malmsfrém et al. 1997; Goetz et al. 1999). The
AVHRR sensor produces coarse resolution multispectral images (1.1 km at nadir) with
very high temporal frequency (twice daily global coverage). Variable spectral response of
vegetation in the red and near infrared (NIR) region of the spectrum enable vegetation
indices to be computed from linear combinations of the first 2 AHVRR bands
(B1=Visible; and B2=NIR). The most common of these indices is the normalized
difference vegetation index (NDVI), which is computed from the difference of B2 and B1
divided by the sum of these bands (Rouse et al. 1973). AVHRR NDVI is frequently used
to indirectly measure biophysical properties of vegetation canopies such as vegetation
biomass (Tucker 1979; Box et al. 1989), leaf area index (Chen 1996), primary production
(Box et al. 1989), and fraction of absorbed photosynthetically active radiation (Begue and

Myneni 1996; Moreau and Li 1996).

Relationships between NDVI and these biophysical parameters are typically
derived from empirical measures of surface reflectance obtained in the field (e.g. Chen
1996). However, atmospheric attenuation of visible and near-infrared reflected radiance,
caused by atmospheric aerosols and water vapour, produces considerable variation in
normalized difference vegetation index (NDVI) (Tanré et al. 1992; Goetz 1997). NDVI is
also strongly influenced by directional surface reflectance effects (Holben et al. 1986).

Thus, when applying relationships defined from fine-scale ground measurements to
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coarse-resolution satellite imagery, it is imperative that the imagery be corrected for such
effects so that the pixel values in the image are a true representation of surface

reflectance.

The GEOCOMP-n image processing system at the Manitoba Centre for Remote
Sensing uses the simplified method of atmospheric correction (SMAC) to correct
AVHRR channels 1 and 2 for atmospheric effects (Cihlar et al. 2000). The SMAC
algorithm utilizes sun-sensor angle information, estimates for vertically integrated
gaseous constants, aerosol optical depth, atmospheric water vapour and ozone content to
compensate for atmospheric absorption and scattering (Rahman and Dedieu 1994).
Bidirectional reflectance (BRDF) effects are corrected for using landcover specific
coefficients and information on sun-sensor geometry (Cihlar et al. 2000). However, large
sun angles and long sensor path lengths present significant challenges when working with
AVHRR imagery in northern latitudes (Holben 1986; Rahman and Dedieu 1994). At high
solar zenith angles, differences between the actual state of the atmosphere and the state
assumed by the SMAC algorithm likely contribute considerable error to the imagery
(Cihlar et al. 1997b). Furthermore, georeferencing accuracy is not consistent or reliable in
spring, autumn and winter months, as many of the GCP points used to georeference
images are located on northern coastlines and cannot be used when covered by snow or
ice. The BRDF correction uses landcover-speciﬁé correction coefficients, requiring that
each AVHRR pixel be assigned to a landcover class. Thus, concerns regarding the
reliability of BRDF corrected AVHRR surface reflectance have been raised because of
the dependence of spatially collocating AVHRR pixels with a land cover classification of

limited detail (G. Fedosejevs pers. comm.).
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Rigorous validation of biophysical parameters derived from AVHRR data has
been conducted in grassland (Sellers et al. 1992), boreal forests (Sellers et al. 1995),
grassland/ savannah (Prince et al. 1995), and coastal, montane and subalpine ecoregions
(Goward et al. 1994). However, there is a paucity of empirical ground validation for
biophysical parameters derived from AVHRR imagery in terrestrial Arctic ecosystems.
Often, when NPP models are applied to arctic ecosystems, it is assumed that model
coefficients are equivalent to those defined for rangeland or pasture (eg. Cihlar et al.
1997a). Although arctic vegetation is similar in structure to rangeland of pasture, the

reflectance properties of arctic vegetation are unique (Rees et al. 1998).

Validating biophysical parameters derived from satellite imagery involves
comparison with independently obtained data sources, such as field data or other
independent satellite data sets (Cihlar et al. 1997). Alternatively, results can be compared
with output from empirical models describing physical and biophysical processes for a
specific location (Cihlar et al.1997). When interpreting results of such inter-comparisons,
it is important to consider the possibility of error in the comparison data set. Indeed, both
the comparison data and the data being evaluated may be subject to similar error or bias
(Cihlar et al.1997). Degraded high resolution satellite imagery can be ﬁsed to evaluate the
accuracy of bio-physical parameters computed from coarser resolution imagery (Cihlar et
al. 1997 b), however, only ground measurements are representative of actual surface
reflectance in the absence of atmospheric effects. The fundamental challenge in
comparing reflectance measurements obtained in the field, to reflectance values derived
from AVHRR imagery lies in characterizing a continuous surface equivalent to thev

resolution of the AVHRR pixel, using discrete fine-scale measurements.
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The main objective of this paper is to evaluate the accuracy of corrected AVHRR
NDVI for arctic landscapes, by comparing AVHRR NDVI pixel values with scaled-up
measurements of NDVI obtained in the field using a hand-held radiometer. Comparing
AVHRR NDVI pixel values with discret¢ field measurements of NDVI integrated across
a 1x1 km area is potentially subject to error attributable to a number of factors. Raw
AVHRR pixels are resampled from 1.1km (or larger) resolution to 1 km resolution,
thereby altering the original pixel values. Also, the positional accuracy of the AVHRR
image data is relatively low (£500m) and the area of ground from which the field
measurements of NDVI are obtained may not match up exactly with that covered by the
AVHRR pixel. Furthermore, bandwidth differences between the sensor of a hand-held
radiometer and the AVHRR sensor will result in different NDVI values, with the
maghitude of this difference increasing with increasing vegetation cover '(F igure 4.1). It
is hypothesized that these factors will have a larger effect on correspondence in
heterogeneous landscapes compared to homogeneous landscapes. If this hypothesis is
true, the accuracy of AHVRR NDVI validation may be improved by locating field

samples in homogeneous areas. The objectives of this study are:

1. To evaluate the correspondence between aggregated Landsat NDVI and AVHRR

NDVI in homogeneous and heterogeneous areas.

2. To evaluate the influence of the above factors on scaling-up 1x1 m field

measurements of NDVI to Landsat and AVHRR resolution.
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Figure 4.1. Differences is bandwidths between the AVHRR visible (Ch1) and near infrared
(Ch2) bands, and the Landsat 7 ETM visible bands (TM1, TM2, TM3) and near infrared

(TM4).

92



4.3. METHODOLOGY

Study Area and Ground Data.

Ground data used for this analysis were collected between July 8™ and August
10“’, 2000 within a 20 km radius of three areas within Tuktut Nogait National Park, NWT
(See Chapter 2: Study Area, Figure 2.1). The vegetation within the Park is characteristic
of low arctic tundra, consisting of a mosaic of sparse and barren vegetation cover mixed
with mesic dwarf shrub/ sedge meadow, tussock tundra, and wet sedge meadow (See
Chapter 2: Study Area). Arctic vegetation productivity is strictly governed by water
availability and exposure (Chapin and Shaver 1985; Chapin et al. 1988), and the most
productive vegetation communities within the Park exist at low elevations in valleys,

along rivers and on hill slopes (personal observation).

A total of 18 (1x1 km) sites were selected to represent the range of vegetation
communities within the Park. Sites were located in relatively homogeneous landscapes
(i-e. free of small lakes and of a consistent vegetation type within a 1x1 km area). Plot
layout was designed to facilitate scaling-up ground measurements to a 1x1km area for
comparison with spatially collocated AVHRR pixels (Figure 3.2). Within each site, nine
30x30 m plots were located in a 3x3 grid, located 250m in from the edge of the sife
boundary (Figure 3.2). The southwest corner of each plot was located on the ground
using a hand-held global positioning system with a positional accuracy of +4m. Within
each plot, five 1x1 m sample quadrats were located in a cross pattern using a compass
and a line of fixed length (Figure 3.2). For each sample quadrat (n=865), incident and

reflected radiance was measured in 5 spectral regions (450-520 nm, 520-600 nm, 630-690
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nm, 760-900 nm and 1550-1750 nm) using a Cropscan MSR 5 radidmeter (Cropscan Inc.,
www2.isl.net/cropscan). The radiometer was attached to a boom and held 2 meters above
the surface, enabling a 1 meter field of view, and the average of five scans was recorded.
Up and down-looking sensor pairs were calibrated to each other and all radiance
measurements were corrected for sensor-temperature effects and variable sun-angle,
using a post-processing program supplied by the manufacturer. Percent surface
reflectance of each sample was calculated from the down- and up-looking radiance
measurements. With both up and down-looking sensors it was possible to accurately

measure surface reflectance under variable cloud conditions and various sun-angles.

Satellite Image Data

The AVHRR imagery used in this analysis were provided by the Manitoba Centre
for Remote Sensing (MCRS). Raw AVHRR imagery were processed using the
GEOCOMP-n image processing system developed by the Canadian Centre for Remote
Sensing (CCRS). Raw daily images are georeferenced, resampled to 1x1 km resolution
and projected in Lambert Conformal Conic projection. Georeferencing accuracy was
reported to be £500m (P. Hurlbert, pers. comm.). The image is then calibrated to
reflectance and corrected for atmospheric and bidirectional reflectance effects. Cloud-free
10-day maximum value NDVI composites are then created by selecting the pixel with the
largest NDVI value from the daily images within the 10-day composite period. An
AVHRR NDVI maximum value composite image covering the study area was obtained
consisting images acquired between July 11 and July 21, 2000. This composite period
best corresponded to the peak of the growing season, a period When variation in NDVI

values are minimal. This period also best coincided with the time period during which
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ground samplés were obtained. For‘th:e following analyses three of the availéble _
GEOCOMP-n channels were useo: NDVI computed from top of atmosphere reflectance
(NDVImoa); NDVI computed from atmospherically corrected visible and NIR reflectance
(NDVIimac); and NDVI computed from AVHRR b1 and b2 corrected for bi-directional

reflectance effects (NDVIyq4r).

A precision geocorrected and radiometrically calibrated Landsat 7 ETM scene
acquired on July 13, 2000 and centered at 69° 08’ 43” N 122° 41° 57”W, was obtained
from Radarsat International (Richmond, BC). The image provided by Radarsat
International was georeferenced uéing 10 control points (RMS =+ 18.34m) and projected
in UTM zone 10 North (NAD 83). Image radiance was converted to top of atmosphere
reflectance using acquisition date, sun angle and azimuth to convert Landsat ETM

radiance to exoatmospheric reflectance. NDVI was then computed as:
NDVI = (B4-B3)/(B4+B3) [1]

where B3 and B4 is the Landsat visible (red) and NIR reflectance, respectively.

Landscape Heterogeneity

Examining the effects of landscape heterogeneity on integrated reflectance
required a number of sample sites located in both homogeneous and heterogeneous areas.
Twenty homogeneous and 20 heterogeneous areas, each 1x1 km in size, were visually
located within the Landsat NDVI image. These areas were selected to be representative
of the range of vegetation types and productivity within the Park. Homogeneous areas
were selected from areas with no or very few lakes, simple topography and overall low

variation in NDVI. Heterogeneous areas were selected in areas with variable NDVI
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values, containing numerous small water bodies, and complex topography. From the
AVHRR NDVT image, the position of the upper left corner for each AVHRR pixel was
delineated in a vector point file. Using the pixel comer points as a guide, 20 1x1 km
image “chips’ were extracted from the heterogeneous areas, and 20 from the
homogeneous areas. For each 1x1 km image chip B3, B4 and NDVI pixel values were
extracted from the Landsat image. Because the Landsat image had not been corrected for
atmospheric effects, pixel values corresponding to each of the 1x1 km Landsat image
chips were extracted from the AVHRR NDVI image computed from top of atmosphere

reflectance (AVHRR NDVI,e10,).

Scaling-up Field NDVI

To compare the integrated field measurements of NDVI with Landsat and
AVHRR image data, each 1x1 km field site was located within the Landsat and AVHRR
images using the GPS coordinates measured in the field. For each of the 18 field sites,
1x1 km image chips were extracted from the Landsat image. For each 30x30 m field plot,
the corresponding Landsat NDVI pixel value was also extracted. Pixel values
corresponding to the location of the center plot within the 1x1 km field site were
extracted from both the atmospherically corrected AVHRR image (AVHRR NDVI;y,0),

and the bidirectional reflectance corrected AHVRR NDVI image (AVHRR ND VIpras).

Spatial Degradation of Landsat NDVI

A non-linear interaction between NDVI and the visible and NIR reflectance of a
surface will result in different values of aggregated NDVI depending on how the Landsat

NDVI values are degraded to AVHRR resolution (Aman et al. 1992). Spatially degraded
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NDVI from high resolution image pixels (i.e. Landsat) can be compﬁted in two ways.
Integrated NDVI (iNDVI) is obtained by determining the mean of the NDVI pixel values
within the aggregate area: INDVI =7 NDVI/ n, where n is the number of NDVI pixels
within the aggregate area. The spatial average of NDVI (mNDVT) is obtained by
computing NDVI from the mean of visible and NIR reflectance pixels within the
aggregate area: mNDVI = (/x — /y) / (/x + /y), where /x is the mean of near infrared
reflectance (NIR) pixels and /y is the mean of visible reflectance (VIS) pixels across the
aggregate area. Differences between iNDVI and mNDVI can be as large as 7%, and the
slope and intercept of the linear correlation between iNDVI and mNDVI are dependent
on the spatially heterogeneity of the surface (Aman et al. 1992). To determine whether
the method in which Landsat NDVI was aggregated had any influence on the
correspondence with AVHRR NDVI, both iNDVI and mNDVI were computed from the

extracted Landsat image chips.

To examine the effects of different sensor bandwidths in comparing NDVI values
derived from different sensors, field measurements of NDVI were computed using the
mean of radiometer bands 2 and 3 as the visible band in the NDVI calculation. By
compu;ting the mean of radiometer bands 2 and 3, the radiometer visible reflectance
values should be closer to the AVHRR visible reflectance, as the AVHRR visible band

covers a larger portion of the visible spectrum compared to the radiometer band 3 alone.

Quantifying Landscape Heterogeneity

The influence of water cover on the correspondence between aggregated Landsat

NDVI and AVHRR NDVI was examined by determining the proportion of water cover
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within each 1x1km image chip. A water mask was created by performing an
unsupervised k-means classification of the Landsat image. The proportion of water cover
within the 1x1km image chip was then computed by determining number of water pixels,

then dividing by the total number of pixels within that area.

The coefficient of variation (CV) was used to quantify heterogeneity within the
sample areas. The CV is a standardized measure of spatial variability and was determined
by dividing the standard deviation of the 1600 Landsat NDVI pixel values within each

1x1 km area by the mean of the pixel values within that area.

Statistical Analyses

Correspondence between both iNDVI and mNDVI computed from aggregated
Landsat data and AVHRR NDVI in homogeneous and heterogeneous areas was
evaluated using linear regression analysis. The influence of water cover on the
correspondence between iNDVI and mNDVI computed from aggregated Landsat data
was evaluated by including proportional water cover in a multiple regression analysis.
Similarily, the influence of landscape heterogeneity on the correspondence between

iNDVI and mNDVI was evaluated by including CV in a multiple regression analysis.

For each 30x30m field plot, the mean of the five individual radiometer
measurements of NDVI values was determined. Radiometer data was accidentally not
recorded for plots 21 and 69 therefore reducing the number of 30x30m field plots from
n=162 to n=160. Correspondence between these values and the individual Landsat NDVI
pixel values was evaluated using linear regression analysis. For each of the 18 1x1 km

field sites, NDVI was integrated over the 1x1 km area by determining the mean of the 45
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1x1 m radiometer measurements of NDVI (or 40 1x1 m measurements, for sample 2 and
6 where data was missing). Correspondence between integrated field NDVI and the
aggregated Landsat NDVI, AVHRR NDVIy.. and AVHRR ND VI, 4 values was
evaluated using linear regression analysis. The influence of landscape heterogeneity on
the relationship between integrated field NDVI and AVHRR ND VI, was evaluated by

including CV in a multiple regression.
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4.4. RESULTS

Influence of Landscape Heterogeneity on the Correspondence Between A ggregated
Landsat NDVI and AVHRR NDVI

Mean CV was significantly lower in the homogeneous 1x1 km sample areas
compared to the heterogeneous sample areas, indicating that visual interpretation of the
Landsat NDVI image was adequate in distinguishing homogenous from heterogeneous

areas (Table 4.1).

Table 4.1. Quantifying spatial heterogeneity in 1x1 km
sections of a Landsat NDVI image. CV is the coefficient
of variation for the NDVI pixel values within each section.

Mean CV
Heterogeneous (n=20) 45.46%
Homogeneous (n=20) 14.58%
P-Value for one-tailed T-Test 0.0002

Correspondence between aggregated Landsat NDVI and AVHRR NDVI was
considerably higher in hombgeneous areas compared to heterogeneous areas (Figure 4.2).
In homogeneous areas, the linear regressions were highly significant for both iNDVI and
mNDVI (iNDVI: R? = 97.5%, p<0.0001, n=20; mNDVT: R?= 97.4%, p<0.0001, n=20)
and there was very little difference in the R? values between iNDVI and mNDVI (Figure
4.2). In heterogeneous samples, the correspondence between aggregated Landsat NDVI
pixels and AVHRR NDVI pixel values was considerably lower (Figure 4.2).
Furthermore, the proportion of variance explained by the linear regression between
AVHRR NDVI and Landsat mNDVI was slightly higher compared to the regression

between AVHRR NDVI and iNDVI, with R? increasing from 75.7 to 77.9% (Figure 4.2).
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Figure 4.2. Scatterplots of (A) Integrated Landsat NDVI (iNDVI) and AVHRR NDVI
computed from top of atmosphere reflectance; and (B) Mean Landsat NDVI (mNDVI) and
AVHRR NDVI computed from top of atmosphere reflectance. For heterogenous samples, R?
is nearly equal, indicating no increase in correspondence with mNDVI. For heterogeneous
samples, R is slightly higher for INDVI, suggesting iNDVI corresponds better with AVHRR
NDVI. Overall, correspondence is higher in homogenous samples compared to heterogenous

samples.
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For all cases, aggregated Landsat NDVI values were higher than AVHRR NDVI,,,. This
difference was largest where NDVI values were low (Figure 4.2). With increasing NDVI,
- the difference decreased and at NDVI=0.5, AVHRR NDVI exceed Landsat NDVI. For
example, at AVHRR NDVI =0.2, Landsat iNDVI =0.26, and at AVHRR NDVI =041,

Landsat iNDVI =0.4 (Figure 4.2 a).

The linear regression between iNDVI and mNDVI for homogeneous samples was
highly significant (R*= 99.9%, p<0.0001, n=20) with near 1:1 correspondence (Figure
4.3 a). Correspondence was lower for the linear regression between iNDVI and mNDVI
for heterogeneous samples as a result of increased scatter in the scatterplot (R* = 95.3%,
p<0.0001, n=20; Figure 4.3 b) In heterogeneous samples, where NDVI values were low,
mNDVI tended to be higher than iNDVI (Figure 4.3 b). Results from a multiple
regression indicate the proportion of water within the 1x1 km area had a significant effect
on the correspondence between iINDVI and mNDVI when both homogeneous and
heterogeneous samples were pooled (Table 4.2 a). The inclusion of water cover in the
regression increased the coefficient of determination from 98.5% (mNDVI vs. iNDVI) to
99.6% (mNDVI vs. INDVI + H,0)(Table 4.2 a). The slope coefficient for water cover
was equal to 0.129, indicating that with increasing water cover, iND VI decreases with
respect to mNDVI. Although significant, the CV had no effect on the correspondence

between iNDVI and mNDVI (Table 4.2 b).
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Figure 4.3. Scatterplots of Landsat NDVI aggregated over the 1x1 km pixel area
corresponding to the AHVRR NDVI pixel for (A) Homogeneous samples; (B)
Heterogeneous samples; (C) All samples; and (D) Field samples. Aggregated Landsat NDVI
was computed by either integrated NDVI over the 1x1 km area (iNDVI) or by computing

NDVI from integrated B3 and B4 (mNDVI).
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Table 4.2. Multiple regression between mNDVI and iNDVI pooled for both
homogeneous and heterogreneous areas, with the proportion of water within
each sample area, (a) H20; and with the coefficient of variation, (b) CV.

(a) H,0 Dependent Variable R% 99.60%
mNDVI N=40
Independent Variables Coefficient P-Value
Y-Intercept -0.006 0.0614
iNDVI 1.019 <0.0001
%H,0 0.129 <0.0001

(b) CV  Dependent Variable R* 98.50%
mNDVI N=40
Independent Variables Coefficient P-Value
Y-Intercept 0.0031 0.59
iNDVI 0.988 <0.0001
Cv 112.6 E-6 0.038

Evaluating Correspondence Between Scaled-Up Ground Measurements of NDVI and
AVHRR NDVI.

Field NDVI vs. Landsat NDVI

Overall, integrated field measurements of NDVI trended extremely well with the
corresponding satellite measurements (Figure 4.4 a-d). The integrated field measurements
of NDVI were consistently higher than both Landsat NDVI and AVHRR NDVI . A
highly significant linear relation between the mean of five 1x1m NDVI measurements
and the corresponding individual Landsat NDVI pixels (R*=82.95%, p<0.0001, n=160)
demonstrated not only the effectiveness of characterizing surface reflectance across a
30x30 m area with discrete 1 m field measurements, but that locational error is minimal

for both the Landsat image and the ground measurements (Figure 4.4 a). High
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Figure 4.4 Scatterplots of (A) The mean of 5 1x1 m ground measurements of NDVI vs.
spatially collocated individual Landsat NDVI pixels; (B) The mean of all 1x1 m ground
NDVI measurements within the 1x1 km sample area vs. Landsat NDVI integrated over the
sample site; (C) Landsat NDVI integrated over the sample site vs. atmospherically
corrected AVHRR NDVI; (D) The mean of all 1x1 m ground NDVI measurements within
the 1x1 km sample area vs atmospherically corrected AVHRR NDVI. Dashed lines
indicate one to one correspondence.
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correspondence between aggregated Landsat iNDVI and the mean of the field
measurements of NDVI within each 1x1 km site clearly illustrates the effectiveness of
characterizing reflectance across a large area by scaling up 1m ground measurements to 1

km (R’=95.31%, p<0.0001, n=18; Figure 4.4 b).

Low positional error in both the Landsat image (RMS = +18 m) and the field
samples (RMS = +4 m) resulted in highly accurate spatial collocation between the
Landsat image pixels and the field samples. Thus, there was also high accuracy in the
spatial correspondence between Landsat NDVI pixels aggregated over 1x1 km, and the
1x1 km integrated field measurements of NDVL Therefore, it follows that a highly
significant linear regression between aggregated Landsat NDVI and AVHRR NDVI
within the 1x1 km field sample areas (R*=91.8%, p<0.0001, n=18) indicates error
attributable to the spatial collocation of the integrated field measurements of NDVI and

the corresponding AVHRR NDVI pixels was minimal (Figure 4.4 c).

Field NDVI vs. AVHRR NDVI

The integrated field measurements of NDVI were consistently higher than both
the Landsat NDVI and AVHRR ND VI, values. Correspondence between integrated
field NDVI values to Landsat NDVI values was not 1:1, with integrated field NDVI
values increasing relative to Landsat NDVI as NDVI increases (Slope = 0.67; Figure 4.4
b). Although not a perfect 1:1 relationship, the correspondence between the integrated
field measurements of NDVI and AVHRR NDVI values was close to 1:1, and integrated

field NDVI values were consistently higher than AVHRR NDVI (Figure 4.4 d).
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Considering the potential error involved in matching field méasurements with
coarse resolution image pixels, the integrated field measurements of NDVI correspond
very well with the AVHRR ND Ve (R*=88.4%, p<0.0001, n =18; Figure 4.4 d).
Computing mNDVI for the integrated field measurement did not improve correspondence
with AVHRR NDVI,... This can be attributed to the fact that the field samples were
selected in homogeneous areas, and from the preceding analysis it is evident that mNDVI

is equal to iNDVI in homogeneous areas (Figure 4.3 a).

Correspondence between BRDF corrected AHVRR NDVI (AVHRR NDVIy,.4)
and integrated field measurements of NDVI was considerably lower than with the
AVHRR NDVImac (szrdf: 65.72%, p<0.0001) suggesting that the BRDF correction

contributed error or noise into the AVHRR NDVI values.

Correspondence between integrated field measured NDVI computed with the
average of radiometer bands 2 and 3 and the AVHRR ND VI, values was slightly lower
than with field NDVI computed with band 3 alone (R® =87.5%; p<0.0001; n=18).
However, the linear equation for the best fit produced a slope value slightly higher than
the best fit line for field NDVI computed with band 3 alone (AVHRR NDVI = 0.8789
GRD ND VI3 — 0.1532). The values for Integrated field measured NDVI computed with

the mean of bands 2 and 3 are closer in absolute terms to the AVHRR NDVI values.
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4.5. DISCUSSION

Parameters in remote sensing driven NPP models are often derived from
relationships defined from fine-resolution ground measurements (i.e 1 to 10m), that are
scaled-up and applied to coarse resolution (i.e. 1 km) satellite imagery (Field et al. 1995;
Ruimy et al. 1996; Liu et al. 1997; Malmstrom et al. 1997). The accuracy of productivity
estimates derived from these models depends on the ability of the AVHRR NDVI data to
represent the actual physical conditions at the surface. It is therefore imperative that the
AVHRR NDVI computed from surface reflectance data be validated using independent
data sets obtained from measurements in the field. However, evaluating AVHRR pixel
values with scaled-up field measurements of surface reflectance is subject to error from a
number of sources, including: error in positional accuracy of AVHRR image and the
comparison data set (Cihlar et al. 1997a); altered AVHRR pixel values, the result of
resampling larger off-nadir pixels to a specific resolution (Cihlar et al. 1997b); non-linear
scaling interactions between NDVI and surface reflectance (Aman et al. 1992);
differences in sensor bandwidths (Teillet et al. 1997); and attempting to characterize a
continuous and inherently variable surface using a sample of discrete ground

measurements.

One objective of this paper was to assess the degree to which these sources of
error influence the correspondence between integrated field measurements of NDVI and
AVHRR NDVLI. It is apparent from the preceding analyses that selecting sample sites in
homogeneous areas had the effect of minimizing spatial collocation error, non-linear
scaling interactions in NDVI, as well as improving the ability to characterize a

continuous surface with a sample of discrete measurements. The results suggest these
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data sets are indeed comparable, and therefore field measurements of NDVI can be used
to evaluate the effectiveness of the atmospheric and bi-directional reflectance corrections
on AVHRR NDVI data obtained from Arctic landscapes, provided that sample sites are

located in homogeneous regions.

Relatively low significance in the regressions between aggregated Landsat NDVI
and AVHRR NDVI pixels for heterogeneous areas suggests a large degree of error in the
spatial collocation of these data sets. Cihlar et al. (1997) noted a large degree of scatter
when comparing aggregated Landsat NDVI with AVHRR NDVIin boreal forest. This
scatter was attributed to misregistration between the data sets and high variation in NDVI
from one pixel to the next, as well as the influence of neighbouring pixels as a result of
the resampling of originally larger AVHRR pixels to 1x1 km resolution (Cihlar et al.
1997b). In heterogeneous areas, the influence of these factors on the discrepancy between
aggregated Landsat NDVI and AVHRR NDVI will increase with large spatial collocation
errors. However, despite misregistration error, the effects of these factors are less
apparent when comparing data extracted from homogeneous areas, and as a result,
correspondence was higher between aggregated Landsat NDVI and AVHRR NDVI
(Figure 4.2). In homogeneous areas, the Landsat NDVI pixels within each of the 1x1 km
image chips exhibited lower variation compared to heterogeneous areas (Table 4.1). This
suggests greater persistence in the landscape and high autocorrelation between adjacent
pixels. Within the AVHRR NDVI image, high autocorrelation inherent to homogeneous
landscapes is further compounded by autocorrelation introduced as a result of resampling
large off-nadir AVHRR pixels to 1x1 km resolution. Thus, even though AVHRR pixel

values may not correspond to the exact section of land covered by the ground sample site,
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in homogeneous areas the data are comparable. The inherently high autocorrelation in
such areas infers a high probability that the difference between adjacent AVHRR pixels

will be small.

Typical landscape features in arctic ecosystems have spatial resolutions that are
less than that of AVHRR image pixels (Stow et al. 1998). Thus, reflectance recorded by
the AVHRR pixel will be influenced by a mixture of landscape elements. Examining the
influence of this mixture is important as it has implications in extending relationships
between NDVI and model parameters defined at a small scale (i.e. 1-10m) to 1km
AVHRR data (Stow et al. 1998). The influence of water proportion on AVHRR NDVI

will be of particular importance as water does not contribute to terrestrial NPP,

The linear correlation between mNDVI and iNDVI is not affeéted by the time of
acquisition, spatial resolution and landcover type (Aman et al. 1992), and the effects of
topography have been shown to be minimal in AVHRR NDVI data (Burgess et al. 1995).
However, the effects of non-linear scaling interactions between NDVI and surface
reflectance appear to be sensitive to water cover (Table 4.2 a). This is because water is
absorptive of both visible and NIR light, whereas vegetation is absorptive of visible li ght,
and reflective of NIR light. The relative difference in visible reflectance over water and
land is smaller compared to the relative difference between NIR reﬂectancé for water and
land. Therefore, computing the mean of NDVI pixels within an area with partial water
cover will produce an aggregate NDVI value considerably lower than if NDVI were
computed from the mean of visible and NIR reflectance. However, in homogeneous areas
with little or no water cover, the difference between iNDVI and mND VI is minimal

(Figure 4.3 a).
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Differences in visible bandwidths will effect NDVI values derived from different
sensors with NDVI decreasing as visible bandwidth increases (Teillet et al. 1997).
Because the visible channel of the AVHRR sensor covers more of the visible spectrum,
with increasing vegetation cover AVHRR NDVI values decrease with respect to Landsat
TM NDVI values (Figure 4.1). Both the integrated field measurements of NDVI and
aggregated Landsat NDVI values are higher than atmospherically corrected AVHRR
NDVI (Figure 4.4 b). Cihlar et al. (1997), found that aggregated Landsat pixels over
boreal forest were 10% higher than atmospherically corrected AVHRR NDVI énd
attributed these discrepancies to differences in sensor bandwidth and differences in view
geometry and sunangles. The AVHRR visible band covers a larger portion of the visible
spectrum compared to Landsat and the radiometer visible band (Figure 4.1). With
increasing vegetation cover, green light reflectance increases, and because the AVHRR
B1 covers part of the green spectrum, AVHRR NDVI values are lower than Landsat
NDVI. For low NDVI values this is apparent, however, as NDVI increases the difference
between Landsat NDVI and AVHRR NDVI decreases, with Landsat ND VI equal to

AVHRR NDVTI at ~0.5 (Figure 4.4 b).

Scaling-up field measurements of NDVI and comparing these data to coarse
resolution satellite imagery depends on the ability to characterize total surface reflectance
using discreet fine-scale measurements of NDVI. A highly signiﬁcant linear regression
between individual Landsat NDVI pixels and field NDVI measurements integrated within
each 30x30 m plot, demonstrates the effectiveness of characterizing total surface NDVI
over a relatively large area (i.e. 30x30m) with a limited sample of fine-scale ground

measurements. Moreover, high correspondence between aggregated Landsat NDVI
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values and field measurements of NDVI integrated over each 1x1 km sample area
demonstrates that a sample of fine-scale ground measurements can effectively

characterize reflectance over an even larger surface area (i.e. 1x1 km).

Although correspondence was high, the linear relationship was not 1:1, and the
difference between field NDVI values Landsat NDVI values increased with larger NDVI
values (Figure 4.4 b). Walker et al. (1995) found field measurements of NDVI values in
arctic tundra vegetation were up to 40% greater than NDVI values measured from SPOT
images, with the greatest differences in the more productive graminoid/ dwarf shrub
tundra and shrubland communities (Walker et al. 1995). Shippert et al. (1995) also found
field NDVI values measured from arctic vegetation were higher than SPOT NDVI and
attributed the diﬁ”e;ences to low sun angles and high view angle of the satellite sensor.
The satellite sensor receives backscattered light, while the field sensor receives forward
scattered light (Shippert et al. 1995). As forward scattered light travels through more
vegetation, visible light reflectance is reduced and NDVI increases (Shippert et al. 1995).
The structure of the vegetation canopy largely influences the degree of forward and
backscatter of light (LeBlanc et al. 1997). At low vegetation cover, directional reflectance
effects are minimal. With simulated AVHRR data, at nadir viewing angles NDVI in the
forward and backscatter directions decreases with solar zenith angle, and this decrease is
greater with higher biomass (Holben 1986; Vierling et al. 1997). Furthermore, with
increasing view angle, in both forward and backscatter directions, NDVI in tussock
tundra decreased (Vierling et al. 1997). Because field reflectance measurements were
taken at nadir and were cosine corrected for bi-directional reflectance effects caused by

large solar zenith angles, bi-directional reflectance effects in the field NDVI data should
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be minimal. Therefore, the lack of a 1:1 correspondence between field NDVI and Landsat
NDVI can be attributed to directional reflectance effects in Landsat reflectance values
caused by large solar zenith angles, and large view zenith angles (Shippert et al. 1995).
Because these effects are greater with increasing biomass (Holben 1986; Vierling et al.

1997), Landsat NDVI values decrease with respect to field NDVI with increasing NDVI.

When integrated ground measurements were compared to the BRDF corrected
AVHRR NDVI, correspondence was considerably lower. It has been suggested that at
high latitudes, with large solar zenith angles the GEOCOMP-n BRDF correction may
actually increase noise in the image data (Cihlar et al. 1997b). GEOCOMP-n BRDF
correction is based on landcover specific coefficients and BRDF correction requires
spatial collocation of each AVHRR pixel with a landcover class defined in a vegetation
map. Error in the BRDF correction can be attributed to problems with spatial collocation
between AVHRR pixels and vegetation map pixels, especially at borders between
vegetation classes. Furthermore, problems with the GEOCOMP-n system implementation
when processing the 2000 data involving use of the wrong vegetation map to assign the
BRDF correction coefficients will have further contributed error to the BRDF corrected
imagery (G. Fedosejevs pers. comm.). Indeed, large difference between atmospherically
corrected AVHRR NDVI values and the integrated field measured NDVI is likely caused
by directional reflectance effects. Large sun-angles at high latitudes create strong
directional scattering effects which will have a considerable influence on NDVI (Holben
et al. 1986). Therefore, for the AVHRR NDVI to be a true representation of surface

reflectance, BRDF correction is absolutely necessary.
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Strong correspondence between the rescaled ground NDVI measurements and the
AVHRR NDVI measurements demonstrates the effectiveness of using hand-held
radiometer measurements to validate coarse resolution satellite imagery. It also illustrates
the existence of considerable differences between surface and satellite measurements of
NDVL Correcting NDVI is important because derived surface parameters are sensitive to
small changes in NDVL Chen and Cihlar (1996) found differences in NDVI of 5% can
cause leaf area index (LAI) to change by 20%. With a highly significance regression
relationship defined between integrated field measurements of NDVI and the AVHRR
NDVImac, it is possible to rescale the AHVRR NDVI data to true ground reflectance
using the linear best-fit relationship derived from the sample data. However, this
relationship can only be assumed accurate for the time and location for which the sample
data was obtained, as atmospheric conditions and reflectance properties of the vegetation

will vary throughout the growing season.

Selecting ground sample sites in homogeneous areas produces a more tractable
model than in heterogeneous areas. From the analysis comparing correspondence
between aggregated Landsat pixels with AVHRR pixels in homogeneous and
heterogeneous areas it is apparent that locating ground samples in heterogeneous areas

will reduces correspondence resulting in lower R* values. Selecting samples in
homogeneous areas has the important effect of removing noise or covariation from the
model which is analogous to a carefully designed experimental in which one attempts to
minimize and control for confounding factors. Careful selection of field sample sites in
homogeneous areas on the landscape has enabled the scaling-up of discrete fine-scale

field measurements to 1x1km resolution. This study has important implications for
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validating AVHRR image products in the arctic, as it demonstrates the effectiveness of
using a relatively inexpensive and easy to obtain source of data (i.e. hand-held radiometer

measurements) for validating coarse resolution satellite imagery in arctic vegetation.
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5. CONCLUSION

5.1. VEGETATION PRODUCTIVITY IN TUKTUT NOGAIT NATIONAL
PARK

In arctic tundra vegetation distribution of biomass and net production are most
closely influenced by variation in soil moisture, wind protection and nutrient availability
(Webber 1978; Chapin and Shaver 1985). Plant production is closely tied to gradients in
soil moisture conditions which depend on the depth of the thawed active layer of soil.
Active layer depth increases in areas that lack an insulating layer of soil and vegetation
(Courtin and Labine 1977; Chapin and Shaver 1985). Areas where snow accumulates
offer more protection for vegetation as well as providing a source of water throughout the
growing season. Thaw depth is limited where vegetation cover is high as the frozen
ground is insulated and organic soils have a high thermal inertia. In wet tundra, limited
thaw depth results in poor drainage as water pools over the permafrost, and up to 70% of
net incident radiation is absorbed by evaporating water (Barry et al. 1981). Low soil
temperature, acidic conditions and poor soil aeration prevents microbial activity, limiting
decomposition rates resulting in low nutrient availability. Ammonium and phosphate are
limiting nutrients in the arctic as is apparent by an increase in plant productivity around
decaying animal bones (Fogg 1998). Disturbance also greatly increases local productivity
by increasing nutrient availability and vegetation proliferates on frost heaves which bring
nutrient rich soil buried in the permafrost closer to the surface (Fogg 1998). Lack of
nutrients results in high below to aboveground biomass ratios, and roots in many species
grow right down to the margin of the permafrost. The downward growth of roots, despite

cold temperatures, slow rate of thaw, and poor aeration, may be in response to a depletion
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of available soil nutrients near the surface, and a gradual release during thawing of

nutrients held in still frozen portions of the active layer (Dennis et al. 1978).

5.2. POTENTIAL EFFECTS OF CLIMATE CHANGE/ GLOBAL WARMING

Arctic vegetation is well adapted to arctic environments, producing
photosynthetically efficient tissues with high levels of metabolic activity. Optimum
growth rates occur at 15°C, compared to 25°C for temperate species, with photosynthetic
rates relatively insensitive to changes in temperature down to —4°C (Billings et al. 1971;
Johnson and Tieszen 1976; Mayo et al. 1977, Tieszen et al. 1980). High photosynthetic
rates at low temperatures are related to increased concentrations of RuBP Carboxylase
(Berry and Bjorkman 1980). At higher temperatures, the oxygenase activity of RuBP
Carboxylase results in light respiration that exceeds assimilation prohibiting survival of
these plants in warmer environments. At low temperatures, however, this respiration is
not significant and the increased concentrations of the enzyme acts to optimize carbon
assimilation. Arctic plants also have high respiration rates at low temperatures (Billings
etal. 1971; Mayo et al. 1977; Tieszen 1973). This is necessary to allow rapid growth in a
short growing season. The high respiratory capacity of arctic plants leads to exhaustion of
carbohydrate reserves and increased mortality when grown at warm temperatures (Chapin

and Chapin 1981).

NPP of arctic biomes will likely decrease under global warming, although total
NPP will eventually increase due the northward shift of the boreal biome (Plochl and
Cramer 1995). Warmer temperatures will create less than optimum conditions for arctic

plants, and with increased autotrophic respiration and decreased photosynthetic
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efficiency, the net productivity of arctic ecosystems will decrease. Fﬁrtherrnore, with
increasing temperatures arctic ecosystems could switch from a CO, sink to a CO, source
as previously inaccessible carbon is released from increased soil microbial activity
(Plochl and Cramer 1995). Boreal species will move north, out competing arctic species

as they thrive in the warmer, dryer conditions and newly fertile soils.

The arctic productivity model presented in this thesis produces an excellent
representation of regional scale patterns of NPP within Tuktut Nogait National Park. The
model is relatively easy to implement and uses GEOCOMP-n AVHRR data exclusively.
An assessment of the accuracy of the absolute NPP values produced from the model
indicates relatively good correspondence. However, it is important to recognize that this
accuracy assessment is dependent on the accuracy of the expected annual NPP map.
Considering there is currently no way of assessing regional scale productivity patterns in
Canada’s northern national Parks, the NPP model will provide a useful tool for ecosystem

monitoring and a source of empirical data for justifying management decisions.
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7.  APPENDICES

7.1. APPENDIX I. PREDICTING PHOTOSYNTHETIC BIOMASS WITH
SPECTRAL VEGETATION INDICES.

Above ground photosynthetic blomass samples were collected in 2-3 of the
quadrats within each 1x1 km plot (See Chapter 3: Methods). Some of the biomass
samples were sorted, dried and weighed in the field (n=1 1), but most were flown back to
Winnipeg and frozen until they could be processed (n=29). Wet biomass was determined
for the entire sample. A subsampling method was adopted to estimate total dry green
biomass because of the extremely long time required to sort a whole sample. Three 10%
subsamples were taken with equal proportions of each vegetation type (i.e. graminoid,
dwarf shrub, moss and lichen). Each subsample was sorted into green (photosynthetic)
biomass and dead biomass. The green fraction was dried at 80°C for 24 hours, and
massed. The averaged mass for the three subsamples was multiplied by 10 to determine
an estimate of the total biomass. To evaluate the effectiveness of the subsampling
method, an entire sample was divided in half. One half the total samples was sorted
completely, dried and weighed. For the other half, mass was estimated from 3

subsamples. The two methods produced similar results.

There was a strong positive relationship between NDVI and dry green biomass
(DGB), with 62.8% of the variation in DGB explained by NDVI (R® = 62.8, p < 0.001;
Figure 7.1 a). The relationship between DGB and MSAVT is stronger compared to NDVI
(R*=70.8, p <0.001 Figure 7.1 b). The point distribution between DGB and MSAVI

appears to be more linear than with NDVI (Figure 7.1 b), MSAVI corrects for soil
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background effects and samples with low DGB result in higher MSAVI values than with
NDVI. These relationships should be viewed with caution, however, as the quality of the
biomass samples is questionable. Some samples had decayed by the time they were
processed, so that it was difficult to distinguish live, green biomass for dead biomass.
Furthermore, using sub-samples to determine total biomass increased variability in the

biomass sample estimates.
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Figure 7.1. Regression between a) NDVI and dry green biomass, and b) MSAVI and dry
green biomass, measured from ground samples for all vegetation types.
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7.2. APPENDIX II: INTER-ANNUAL PATTERNS OF NDVI AND MSAVL

Mean values for NDVI and MSAVI computed from 150 random points extracted
within the Park for each composite image over the growing season are presented in
Figure 7.2. The values of NDVI and MSAVI are unitless and therefore are incomparable
in absolute terms. However, the relative shape of the curves for both NDVI and MSAVI
reveals a similar pattern, with the exception of the onset of the growing season (Figure
7.2). During the June 11 composite period, mean MSAVI values drop below zero to —
0.008 (£0.045), whereas mean NDVI values increase considerably to 0.0994 (+0.0467)
(Figure 7.2). During the following composite period, mean MSAVI increases and mean
NDVI decreases, to relatively similar values. For the remainder of the growing season the
patterns are very similar. The discrepancy during the onset of the growing season may be
a factor of high variability in ground moisture after snow melt, resulting in highly
variable soil background reflectance . Therefore, it is likely that the MSAVI values are
more accurate, because MSAVI is designed to reduce the effects of variable soil

reflectance.

7.3. APPENDIX ITI: ANNUAL PATTERNS OF AIR TEMPERATURE.

Mean daily air temperature measured from a weather station located in the central
region of the Park corresponds with mean NPP measurements (Figure 7.3). The onset of
the growing season coincides with mean air temperature rising above 0 °C. Mean NPP
increases with mean air temperature during June, where NPP peaks during the July 1% —
July 11™ composite period. At this point, the rise in air temperature continues at a lower

rate to the beginning of August. After this period, mean air temperature begins to
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Figure 7.2. Mean values for MSAVI (boxes) and NDVI (diamonds) for each composite
period during the growing season. Mean values were determined from 150 random points
located within the Park. Error bars represent standard error.

137



TEMP (C)

20

—O— AVG_MAX_TEMP
—0—AVG_MIN_TEMP
—— AVG_AVG_TEMP

15

f /Mi/\\\
/A

1/

'1 5 T T T T T T T T T T
COMP-  COMP- COMP- COMP- COMP- COMP- COMP- COMP- COMP- COMP- COMP-
0521 0601 0611 0621 0701 0711 0721 0801 0811 0821 0901

COMPOSITE PERIOD

Figure 7.3. Average of daily mean air temperature over each composite period, measured
from a weather station located in the central region of the Park.
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decrease, until it drops below 0 °C during the Sept. 1- Sept. 11 composite period. Peak
NPP coincides with the initial rapid increase in mean air temperature. However, over the
remainder of the growing season, NPP actually decreases as mean air temperature
increases. Arctic vegetation undergoes a rapid growth spurt at the onset of the growing
season as new leaves are produced. However, during the remainder of the growing
season, net production decreases as large amounts of photosynthetic product is devoted to

developing reproductive structures.
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