
MEASURNG TERRESTRIAL NIET PRIMARY
PRODIJCTIVITY N ARCTIC ECOSYSTEMS

V/ITH AVHRR SATELLITE IMAGERY

By

Daniel T. O'Brien

A Thesis Submitted to the Faculty of Graduate Studies,
University of Manitoba.

In Partial Fulfilment of the Requirements for the Degree
Master of Science

Department of Botany

@ Decemb er 2001.



l*l NationalLibrary

395 Well¡ngton Stre€t
OttawaON K1A0t,¡4
Caneda

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottau¡a ON KlA 0N4
Canada

Acquisitions and
Bibliographic Services

YM ile Vot o rétèÊnæ

Ov Ab ¡,lotre rèléru1co

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce,loaq distribute or sell
copies of this thesis in microform,
paper or electonic formats.

The ar¡tho¡ ¡stnins o\ilnership of the
copyndrt in this thesis, Neither the
thesis nor substantial extacts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fiI¡n, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des exhaits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sâns son
autorisation.

0-612-76832-5

Canad'ä



TITT', TJMVERSITY OF MAI\¡-ITOBA

FACT]LTY OF GRADUATE STI]DIES
*****

COPYRIGIIT PERMISSION PAGE

MEASIJRING TERRESTRIAL ¡IET PRIMARY PRODUCTTVITY IN ARCTIC
ECOSYSTEMS WITH AVIIRR SATELLITE IMAGERY

BY

Daniel T. O'Brien

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

lVlaster of Science

DANIEL T. O'BRIEN @ 2OO1

Permission has been granted to the Library of The University of Manitoba to lend or sell

copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and

to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this

thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive

extracts from it may be printed or othenvise reproduced without the author's written
permission.



ACKNO\ilLEDGEMENTS

I would like to express sincere gratitude to my advisor Norm Kenkel for guiding me
through this research, and for always having time for discussions and feedbãck oã my
thesis. Thanks also to my committee members, Drs. Mclachlan, Barber and McCanny
for valuable advice. Special thanks to Stephen McCanny, Micheline Manseau, Tom
Naughten, and Joanne Tuckwell at Parks Canadafor making this project possible, and for
providing technical support and advice. Thanks also to eraa Späning, Éyan Brook, and
Dr. Larry Stene for unyielding assistance in the field.
This project would not been possible without the generous financial support of parks
Canada, NSERC, The University of Manitoba Fãculty of Science anã rac¡rlty of
Graduate Studies, and the Northern Studies Training Program. Thanks to the friendly and
helpful staff at the Aurora Research Institute in Inuvik, WWt, for providing lodging and
logistical support during the freld trip. Equipment and logisticãl ruppírt were also
generously provided by The Polar continental Shelf project.



ABSTRACT

Accurate estimates of terrestrial net primary productivity (lrlpp) are critical for
monitoring the effects of climate change, managing wildlife, and for sustainable
resource management in Canada's northern National Parks. The remoteness,
inaccessibility, and large spatial extent of the Canadian arctic makes remote sensing a
necessary tool for estimating NPP at the landscape scale. Parks Canada 

"u.r"nilyreceives GEOCOMP-n AVHRR cloud-free composite images for all of Canada 
"u.ryl0-days and is currently developing methods to utilize this imagery for ecosystem

monitoring in Canada's National Parks. The primary objectives ofinis thesis are:

1. To develop methodology for estimating arctic NPP using the lxl km
resolution AVI{RR satellite imagery produced by the GEOCOMP-n image
processing system.

2. To assess the influence of variable topography and sub-pixel water bodies on
AWIRR refl ectance m easurements.

3. To evaluate the correspondence between the GECOMP-n AVHRR image
products and ground data.

A method is presented for computing terrestrial NPP of arctic vegetation using the
satellite image products produced by the GEOCOMP-n image processing system. The
NPP model is parameterized using a combination of ground data colleðted in f¡m¡p
during the summer of 2000, as well as data available from previous research. The
model results are evaluated with an expected productivity map produced using a
vegetation classifìcation and expected annual NPP values compiled from the
literature. Proportion of water cover and vegetation cover and topogruþhi" rornplexity
within each pixel are measured and the influence of these variables on the differencê
between modelled and expected values are evaluated. Finally, ground spectral
reflectance measurements are scaled-up to AVHRR resolution to evaluaie the
correspondence between the GEOCOMP-n image products and actual ground
measurements.

Annual NPP computed using the modified soil adjusted vegetation index (MSAVI),
showed the best correspondence with the expected annual NPP map, with 84.43o/o of
the pixels within 30Yo of the difference. V/ithin Tuktut Nogait National park, the
average annual NPP for 2000 was 149.4 (168,4) d^'yr.Highest productivity
occurred along the east side of the Hornaday River Valley. Lowest productivity
occurred in the central region of the Park along the Melville Hills, and in thã
northeast region of the Park near the coast. Onset of the growing season occurred
between June 1 and June I 1. NPP was highest between July 1 and July I l, with mean
NPP at 22.6I(+11.1) g/m2*1O-days. The growing season ended between September
1 I and September 21.

Topography and water cover had signifîcant effects on the regression between
modelled NPP and expected NPP. With increasing water cover *ihin the AVHRR



pixels, modeled NPP values tended to be greater than expected. In areas with
complex topography_(i.e., high slope variance within the AWiRR pixels), the model
may underestimate NPP. In areas with steep terrain (high mean slopé'within the
4VryR pixels), the model NPP estimateJ are higher-than 

"*p..t.d. 
Although

significant, the effect of these variables on the ove-rall regression were relativiy
small.

Rescaled ground reflectance measurements trended well with AVHRR
measurements. Although, ground measurements of NDVI \¡/ere consistently higher
than atmospherically corrected AVHRR NDVI. This difference is likely attåbutable
to directional reflectance effects as a result of large sun angles. Aiplying a bi-
directional reflectance correction (BRDF) should im-prove correspondãnr. b"t*..n
AVHRR NDVI and NDVI computed from field ,n.urúr"rn.nts of surface reflectance.
However, current BRDF corrected imagery should not be used until improvements
have been made to the GEOCOMP-n bi-dirôctional reflectance correction irocedures.

Model estimates of NPP provide an excellent relative measure of Npp in Tuktut
Nogait National Park. The model is easily implemented and uses the GEOCOMp-n
AIIVRR data exclusively. The AVHRR NPÈ maps will be useful for ecosystem
monitoring, providjng the ability to identify tønporal and spatial trends and
fluctuations in NPP at a regional scale. These data will be particularly useful for
identifying areas of interest that warrant further examination, eithei with high
resolution imagery, or ground surveys.
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1. INTRODUCTION

Maintaining the ecological integrity of Canada's National Parks is a fundamental

objective of park managers (Dearden and Rollins 1993). The key to this objective is a

consistent and reliable source of understandable information about ecosystem processes.

This information base should provide extensive coverage of the park and surrounding

region, and be available at a number of time scales.

In Canada's northern parks, an understanding of arctic vegetation structure,

composition and productivity is critical to maintaining ecological processes and ensuring

ecosystem biodiversity and sustainability. Estimates of net primary productivity (Npp) in

the arctic are important, since whole-biome estimates of COz flux are required to

accurately model global circulation and carbon budgets. Furthermore, precise

measurements of NPP are crucial for monitoring the effects of climate change on arctic

ecosystems. Global warming will increase permafrost thawing, potentially transforming

the arctic into a CO2 source as previously inaccessible carbon is released as a result of

increased microbial activity (Piochl and Cramer 1995). The monitoring of arctic

vegetation productivity also has great cultural and ecological signifìcance: many

indigenous peoples rely on sustenance hunting, and reliable NPP estimation will improve

our ability to monitor and sustainably manage the wildlife habitat of caribou, migratory

birds, and musk oxen (e.g. Hansen 1991; Colpaert et al. 1995). A quantitative arctic Npp

model that utilizes remotely sensed data canprovide the empirical data necessary to meet

these important obj ectives.



The information available from such a model will provide a powerful tool for

wildlife managers, since the timing of green-up and duration of the growing season has

large implications on caribou fecundity. Over time, the satellite monitoring program will

make possible a continuous data set spanning many years. This will allow for the

detection of long term changes in vegetation structure, providing the necessary empirical

data to monitor and verify the potential effects of climate change on arctic ecosystems.

The following chapter provides a description of the study area located in Tuktut

Nogait National Park. This section provides information about the floristic structure of

the vegetation communities within the Park, a summary of vegetation data collected in

the field, as well as details on the climate, physical geography, and fauna existent in the

Park.

The third chapter describes a method for modelling terrestrial net primary

productivity in Tuktut Nogait National Park using the GEOCOMp-n AHVRR satellite

data. The model is parameterized using a combination of field measurements obtained

within the study area and published data sets from similar areas. The model estimates are

validated using a map of expected annual NPP derived from a Landsat vegetation

classification and expected annual net primary productivity (ANPP) values obtained from

literature sources.

The fourth chapter discusses validation of the atmospherically corrected AVHRR

NDVI using scaled-up field measurements of surface reflectance. The effects of

landscape complexity on scaling fine resolution measurements of NDVI to AVHRR

resolution are examined by comparing Landsat NDVI pixels aggregated to lxl km, with



spatially corresponding AVHRR NDVI pixels in both homogeneous and heterogeneous

areas.

The final chapter discusses the factors influencing NPP in Tuktut Nogait National

Park, and suggestions for improvements to the satellite monitoring of northern

ecosystems.



2. DESCRIPTION OF STUDY AREA

2.1. I¡srnonucrroN

Tuktut Nogait National Park is located within the southern arcticecozone and is

representative of the Tundra Hills Natural Region. The Park covers 16,340 km2 and the

vegetation is characteristic of the low arctic ecoregion. The Park was established in 1996

after Canadian Parks Service recognized the exceptional biological and physical

attributes of the area. The current boundary encompasses the calving grounds of the

Bluenose caribou herd, a large nestin g areafor birds of prey, as well as an area of diverse

vegetation in the lower Hornaday and Brock rivers (Figure 2.1). There are plans to extend

the current boundary south and east into Nunawt, with the intention of encompassing

Bluenose Lake.

CIímøte

The climate of Tukrut Nogait National Park is summarize d in Zoltai et al (1992)

The Park lies within the Low Arctic Ecoclimatic region and has a mean annual

temperature of -l T.4"C. Summers are short and cool with a mean daily temperature for

July of 7 '4oC. Winters are long and cold with a mean daily temperature for January of -
27.6 "C. Annual precipitation is low: mean annual precipitation is l8l.5mm, with

96.6mm falling as rain and 85.0cm as snow. Snow cover persists for up to 250 days per

year.

l0





Geology

The geology of the area is documentedinzortai et ar. (1992). Most of the park is

underlain by Upper Proterozoic sedimentary rocks, composed entirely of marine strata.

The oldest strata are composed of shales, argillite and siltstone which outcrop along the

coast of Darnley Bay. These strata are overlain by Precambrian layers of dolomite,

sandstone, and quartzite which outcrop along the Admundsen Gulf Shoreline and in the

Melville Hills as far south as the Little Hornaday River. Palaeozoic sedimentary rocks

overlie these strata and consist of sandstone, shale, siltstone, mudstone and dolomite.

These rocks outcrop along the mid portion of the Hornaday River. Upper Cambrian and

Lower Ordovician layers are next and consist mostly of dolomite. Lower Cretaceous

bedrock is exposed near the mouth of the Hornaday, and consists of soft shale, mudstone

and beds of sandstone. The most recent strata consist of Quaternary glacial deposits.

Glacial moraines are common on the north slopes of the Melville hills with thick deposits

of glaciofluvial sand and gravel in glacial meltwater channels. Moraines are absent from

the central part of the Melville Hills.

Soils within the Park are cryosolic with permafrost occurring within one meter.

Most soils are turbic cryosols, which are characterized by frost heaves and polygon

formations. Static cryosols are found mainly on glaciofluvial parent materials.

Accumulations of peat occur in wetter areas.

Hydrology

The 350 km long Hornaday River and its tributaries is the main river system in the

Park' The Hornaday River originates to the southwest at Bluenose Lake and drains north

12



into Darnley Bay near Paulatuk (Figure 2.1). Lesser river systems include: the Brock

river, which originates in the Melville Hills and flows into Darnley Bay; and the Roscoe

River, which flows north into the Admundsen Gulf (Figure2.l). Lakes are scarce in the

central hills, but there are numerous small lakes elsewhere in the park.

Fauna

A large variety of habitats in Tuktut Nogait National Park support a high faunal

biodiversity: 22 species of mammals, Sl species of birds and,Zl species of fishes are

known to occur in or near the Park (Zoltai et al. 1992). Common mammals include:

Arctic ground squirrel, collared lemming, tundra vole and arctic fox. Less common

mammals include: arctic hare, brown lemming wolf, red fox, barren ground gnzzly bear,

ermine, wolverine and muskox (Zoltai et al. T992). Polar bears also occur in coastal areas

(Zoltai et al. 1992).

The Melville Hills and other areas to the west are the traditional calving grounds

for the Bluenose caribou herd. The windswept hills make ideal calving habitat as they are

dry and relatively free of insects. One survey estimated the size of the herd to be 95,000,

with a range extending 29 0OO km2 betrrseen the Mackenzie and Coppermine rivers, and

north of Great Bear Lake to the Arctic ocean (Hawrey et al. 1979).

The major rivers in the Park carve steep canyons with cliffs as high as 100m.

These cliffs, in addition to large rock outcrops, provide ideal nesting habitat for birds of

prey. There is a large Peregrine Falcon population in the canyons of the Hornaday River;

Gyrfalcons are also present, but are less comm on (Zoltai et al. 1992). Golden Eagles and

Rough Legged Hawks are also common in this area(zoltai et al. lggz).

t3



Flors

The exceptionally high floristic diversity in Tukrut Nogait National park is

thought to be the result of extensive glacial refugia in the central regions during the

Wisconsinan and Pleistocene periods Q,oltai et al. l99Z). Regional flora include 103

speciesofbryophytes, l5Sspeciesoflichens,236speciesofvascularplants (Zoltaietal.

teez).

Most of the vegetation within the park is characteristic of the Low-Arctic

Ecoclimatic region, with some areas more characteristic of the Mid-Arctic Ecoclimatic

region, and five main vegetation communities exist within the Park (Zoltai et al. 1992). A

barren Herb-nudum community exists on excessively drained sandy and gravely soils.

In scattered patches Potentilla spp., Astragalus alpinus, Hedltsantm alpirutm, and Dryas

integriþlia are found. Dwarf Shrub-Herb-Sedge is found on calcareous soils and is

dominated by Dryas integrifolia and Kobresia myontroides with Salix arctica in wetter

areas. Hedysarum alpinum, Oxytropis maydelliana and Astragalus alpina are often

present. Cottongrass-Willow is present on quartzite bedrock. In wetter areas the non-

tussock-forming cottongrassEriophorum schenchzeri occurs withsphagnum spp..In

better drained areas tussock forming Eriophontm vaginatum and Salix arctica are

dominant. High Shrub is found in closed stands on south facing slopes and alluvial sites.

Salix spp, with herbs and grasses form the ground vegetation. Eqtûsehtm pratense is also

present on alluvial sites. Sedge Meadow is common in wet sites. Dominant species

include: Carex aquatilus, C. smatilis, C. membranaceae. Other common species include:

smifraga hirculus, Polygonum vivipantm, and, pedicularis stdetica.

t4



2.2. Mnrnoos

A total of 18 lxl km sample sites were located in areas with homogeneous

vegetation, few Iakes, and relatively simple topography (Figure 2.1). Most sites were

located within hiking distance e10 km) of 3 base camps located atCachelake (6g"

53'N, T22" 49'w), Roscoe River (69" zz'N,lzl" 24,w), and seven Islands Lake (69.

16'N, 122"58'W) @igure 2.1). Several sites \¡/ere accessed by helicopter (n:3). Within

each lxl km sample site, 9 30x30 m plots were located in a 3x3 grid. Within each 30x30

m plot 5 1xl m quadrats were located in a cross pattern. Within each quadrat, percent

ground cover of water, rock, bare ground, moss, lichen, dwarf shrub, and graminoid/

herbaceous vegetation was visually determined. A detailed description of the sampling

design is provided in the following section.

Vegetation classes defined for the present study emphasized the structural

properties of the vegetation, rather than species composition. These classes were intended

to charactenze and categonze the range in vegetation productivity within the park, while

enabling the classes to be separated spectrally in a Landsat vegetation classification.

Furthermore, it was necessary to define classes that could be matched to those defined

elsewhere in the literature. This was necessary in order to assign an expected annual

productivity value to each of the classes. The dominant vegetation class within each site

was determined from the mode of the vegetation class assigned to each 30x30 m plot

within each site.

l5



2.3. Rnsur,rs eNo DrscussroN

Table 2.1 provides a floristic and physiographic description for each of the

vegetation classes identified in Tuktut Nogait National Park. Figure 2.2 summarizes the

vegetation and ground cover typical of these classes. This summary is based on mean

cover data determined within each of the 30x30 m plots. The dominant vegetation class

within each lxl km site is determined from the mode of the vegetation classes assigned

to each 30x30 m plot within each site (Table 2.2).Meanpercent cover of each ground

cover type, as well as mean dry green biomass and mean NDVI were determined from

the field measurements (Table 2.2). The photographs in Figure 2.3 provide a visual

description for each of the defined vegetation types.

Table 2 1. Physiographic and floristic descriptions of the vegetation classes identified i" rultuTlloguit
National Pa¡k, NWT.

Class
Vegetation

Cover
Subst¡ate Wetness

Dominant

Ba¡ren
Ground

Sparsely
Vegetated

Mesic
Meadow

Tussock
Tundra

< l0 o/o

l0 - 50o/o

Mineral;
clayl sand/

graveV rock

Sandy clay
loa¡n/

pebbles/
rocks/

boulders/
bedrock
outcrops.

Dry.

ion Type
Dominant Species

Small tufts of
prostrate herbs;
crustose lichens

Dryas integrifolia, Cetraria spp.,

Dwarf
Shrub

Tundra-
lO0% Organic

sanoy toam.

organic Pear "ff:i"

Wet
Organic clay Some

Ioam. standing
water.

High dwarf shrub
cover. Some sedge

High graminoid
cover with some

dwarf shn¡bs.

Cotton grass tussocks
with dwarf shrubs

and sphagnum
grorving between

tussocks

Graminoid dominant.

Dryto
mesic.

Variable: Small patches of
xeric to drvarfshrubs; small
wet. sedges.

Saxifraga spp.,

Dryas integriþli a, Kobresia
mysuroi de s, C a s s iope tetragona,

Silene acaulis, Cetraria spp.

Lupi nus arcti ans, Ca s s i opea
letragona, Silene acaulis, Betula

gl a n dul o s a, E ri op h o ru m a n gus t iþ I i a,
Carex spp., Arctosîaphylus sp.,

Rhododendron laponicam., Salix spp.,
Dryas spp., Euliginost¿m sp.

Eriophorum angustiþlia, Carex sp.,
Equi setum aryen s e, H edys arum

ntackercií, Tofieldia pusilla, Dryas
integriþli a, A rctostaphylos sp.

Eriophonm vaginatum, Ledum
deannbens Sphagnum teres, S.

rus sore Ì i, Sali x arcti ca, Vacci nium
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Figure 2.2. Average percent ground cover for each vegetation class. Mean values
determined for cover within each 30x30 m field plot. D.Shrub : Dwarf Shrub.
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Table 2.2. Summary of field data for each lxl km sample site .

determined from the mode of the vegetation classes assigned to each
cove¡ biomass and NDVI are computed from the mealvalue of the 45
sample site.

The dominant vegetation class is
lxlm quadrat. Values for ground

lxl m quadrats within each lxl km

Percent Cover

lxl lsn Dominant
Sample Vegetation

Site Class

.åä#' 
î¿ï 'lx;.*ífl;" .-",,,

Total
Vegetation
Cover (%o)

Drvarf*äi"'o rät Lichen
(%)

Moss
(%)

. Sparselyr 
Vegetated

. Sparsely¿ 
Vegetated

. Wet Sedge
- lvfeadorv

, Sparsely
' Vegetated

5 TussockTundra

6 Mesic Meadow

o Sparsely
' Vegetated

11 Mesic Meadow

12 Mesic lvfeadow

13 Mesic Meadow

14 Barren Ground

15 Barren Ground

16 Ba¡ren Ground

17 Barren Ground

19 -fRarselv.v egetated

20 ,:3ffi,'å
Sparselytt 

Vegetated

22 TtssockTundra

3.33 t.67

2.22 0.93

0.00 0.56

0.36 0.16

0.00 2 l.l I

0.00 1.67

0.40 1.00

0.00 4.78

0.44 17.11

1.89 3.33

2.76 0.l l

3.78 0.22

2.09 0.67

2.04 0.22

t.62 4.20

l.t6 3.69

0.67 5.27

1.82 ll.l3

22.78 33.27 0.00

14.22 38.87 1.33

0.44 7.56 9.22

8.00 30.44 2.44

0.00 1.56 0.00

7.69 24.87 3.22

25.22 44.13 0.00

t0.22 27.89 0.00

1.89 t4.78 0.00

t8.44 28.56 0.00

76.89 7.24 0.00

59.42 21.18 0.00

60.58 17.84 0. 1l

54.58 t4.56 3.22

51.60 12.93 0.33

18.78 43.09 0.00

8.22 38.51 0.00

7.67 14.84 0.1I

18.35 0.30

20.76 0.41

28.50 0.49

13.00 0.37

55.90 0.60

20.23 0.42

9.85 0.24

68.30 0.55

63.33 0.58

nJa 0.43

12.13 0.13

30.49 0.15

23.00 0.18

15.97 0.20

62.15 0.25

35.70 0.35

51.50 0.42

nJa 0.59

43.78

45.76

82.56

59.04

98.44

63.33

31.38

62.33

83.33

53.56

15.91

19.36

2t.53

27.76

35.27

38.13

52.09

77.84

16.89

t7.93

73.78

29.62

59.22

47.89

10.87

2r.22

4.78

23.00

3.ll

4.44

7.04

9.80

14.40

t2.29

15.78

36.67

21.89

24.67

8.22

28.91

18.1 I

13.78

19.1 I

36.33

25.00

25.33

9.93

10.91

tt.73

15.69

15.04

2t.00

30.38

28.22
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The Tussock Tundra class can be considered equivalent to the Cottongrass-Willow

community described by Zoltai et al. (1992). Tussock tundra is commonly described in

the literature as being dominated by Eriophorttm vaginatum, which co-occurs with Benla

nanc4 Vaccinium spp., Ledunt decumbens and Sphagnum spp. @liss et al. 1973; Shaver

and Chapin 1986; Shaver and Chapin l99l; Chapin et al. 1996; Shaver et al. 1997).

Cover in the tussock tundra plots was predominantly graminoid (i.e. Cottongrass), with

high dwarf shrub and moss cover, with low bare ground and water cover (Figare2.2).

The Wet Sedge Meadow class can be considered equivalent to the Sedge Meadow

community defined by Zoltai et al. (1992). Wet Sedge Meadow is also commonly

described in the literature, with Carex aquatilus consistently identified as the dominant

species (Muc 7973;Haag 1974; Miller et al. 1980; Shaver and Chapin l99l; Gilmanov

and Oechel 1995; Shaver and Chapin 1991). In the wet sedge meadow plots, graminoid

cover dominated, with some dwarf shrub cover, some moss cover, and relatively high

bareground and water cover (Figure 2.2).

The Dwarf Shrub Tundra vegetation class covers a range of shrub communities

with similar structural properties, and overlaps with the Dwarf Shrub-Herb-Sedge and

High Shrub classes defined by Zoltzi et al. (1992). Various Low Arctic shrub

communities are defined in the literature including: heath tundra and hillslope shrub-

lupin (Shaver and Chapin 1991; Shaver et al. 1997); birch-willow-heath (Miller et al.

1980); and low shrub (Bliss and Matveyeva 1992). Common to all these communities is

the presence of short statured deciduous and evergreen shrubs, lupins, herbs and mosses.

This vegetation type occurs in small patches, and was dominant in only a small number
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of field plots (n:4). These plots were dominated by dwarf shrub cover, with high

graminoid/ herb and moss cover and some rock and bareground cover @igure2.Z).

The Mesic Meadow vegetation class represents a transition between the wetter

Sedge Meadow and the Herb-Nudum communities described by Zoltai et al. (L992). This

class corresponds to a variety of low arctic vegetation communities identified in the

literature, including: hummocþ sedge-moss meadow @liss et al. 1973); frost boil sedge

moss meadow (Muc 1973); and mesic, moist and herb-moss meadows (Glmanov and

Oechel 1995). Plant species in the Mesic Meadow field plots coincided with the

community descriptions described in the literature, and consisted of a mix of graminoids

and dwarf shrubs with some mosses, with higher bareground and rock cover than the

Dwarf Shrub Tundra and Wet Sedge Meadow classes (FigureZ.2).

The Sparsely Vegetated and Barren classes are similar to the Herb-Nudum and

Dwarf-Shrub-Herb-Sedge communities described by Zoltai et al. (1992). However, the

Sparsely Vegetated and Barren classes represent the low end of the productivity spectrum

covered by these communities. Communities described in the literature that are similar to

the Sparsely Vegetated class, include: cushion plant (Bliss et al. 1984); and cryptogamic

crust and polar desert @liss and Gold 1999). The Barren class is similar to the polar

desert and polar barrens described by Bliss et al. (1973), Bliss et al. (1984), and Bliss and

Matveyeva (L992).In plots designated Sparsely Vegetated, bareground and rock cover

was high with considerable graminoid and dwarf shrub cover and little lichen and moss

cover (Figure 2.2). Comparatively, the Barren plots had higher rock cover, and very little

graminoid and dwarf shrub cover and lichen cover was relatively high @igure 2.2).
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3. MEASURII\G TERRESTRIAL NET PRIMARY
PRODUCTIVITY IN ARCTIC ECOSYSTEMS USI]\G AVHRR
SATELLITE IMAGERY

3.1. Ansrnacr

A method is presented for computing terrestrial net primary productivity (Npp) for
l_ow-arctic vegetation using the AVHRR satellite image pioåucts proAúcòa by the
GEOCOMP-n image processing system. The NPP *oã.i is paramet eized uring u
combination of field data collected in Tukrut Nogait National Þark, NWT during ihe
summer of 2000, as well as data available from previous research. The model reiults
are evaluated using a map of expected annuai net productivity produced from a
Landsat TM vegetation classifïcation and expected annual wpp vátuàs compiled from
the literature. Proportion of water cover and vegetation cover and topographic
complexity within each pixel are measured, and the influence of these variablei on
the difference between modelled and expected values are evaluated.

Annual NPP computed using the modified soil adjusted vegetation index (MSAVI)
showed the best correspondence with the expected ánnual l.trpp rnap, with ai %of the
modelled annual NPP values within 3OYo of the expected annual Npp values. Within
TiFt 

Tg.e?it 
National Park, the average annual Npp for 2000 was 149.4 (+68.4)

Úm'yr Highest productivity occuned along the east side of the Hornaday River
falle.¡' Lowest productivity occurred in the central region of the park alãng the
Melville Hills, and in the northeast region of the Park near the coast. Onset of the
growing season occurred between June 1 and June 11. NPP was highest between July
1 and July 11, with mean NPp ar ZL.6l(+lt.t) glmzxl0-days. The growing season
ended between September 1 I and September 21.

Topography and water cover had significant effects on the regression between
modelled NPP and expected NPP. With increasing water cover within the AWIRR
pixels, modeled NPP values tended to be greute. than expected. In areas with
complex topography (i.e., high slope variance within the AWÌRR pixels), the model
may underestimate NPP. In areas with steep terrain (high mean slopé within the
AVry'R pixels), the model NPP estimates are higher than .*p.rt.d. Although
significant, the effect of these variables on the overall iegression was relatively smaÍ.
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3.2. INrnonucrroN

The remoteness, inaccessibility, and large spatial extent of the Canadian arctic

makes remote sensing a necessary tool for monitoring arctic ecosystems at the landscape

scale. High resolution satellite imagery (e.g. Landsat TM and SPOT IRV) has been used

to study arctic vegetation phenology (Shippert et al. 1995; Walker et al. 1995), but such

data sources are expensive and not regularly available. An alternative source of data is

from the advanced very high resolution radiometer (AVHRR) carried aboard National

Oceanic and Atmospheric Administration (NOAA) satellites. Although AVHRR data are

of lower spatial resolution (lx1 km), images are inexpensive and cloud-free composites

are available over lO-day intervals. With a 1O-day measurement frequency it is possible

to detect both annual and inter-annual trends in arctic vegetation phenology (Hansen

1991; Markon et al. 1995; Walker lggg).As part of the Northern National parks

Ecological Monitoring Program (McCanny 1998), Parks Canadais currently receiving

GEOCOMP-n AVHRR satellite image coverage for 11 northern national parks in

Canada. The main challenge of this research is to develop the methodology to utilize

these data in order to effectively measure arctic vegetation productivity.

Background

Coarse-scale estimates of annual terrestrial NPP are available by interpolating

average annual NPP values across the total area defined for each vegetation class in a

tessellated vegetation map (Gilmanov and Oechel 1995). However, this method assumes

homogeneity within each vegetation class polygon, and it is impossible to infer any

spatial or temporal variation within the defined landscape class.
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Climate or statistical NPP models link vegetation productivity to meteorological

parameters and/or evapotranspiration using regression analysis (Leith 1975; Melillo et al.

1993). This approach assumes that climate regulates nutrient availability and other factors

influencing NPP. Because these models are based solely on climate simulation, they are

useful for producing NPP estimates over very long time periods; however, climate

models assume that natural ecosystems tend toward fixed combinations of species with

functional properties that vary consistently with climate and resources (Field et al. 1995).

Thus, they provide no insight into non-equilibrium phenomena.

Process or mechanistic NPP models utilize knowledge and measurements of the

biophysical properties directly influencing vegetation productivity (i.e. decomposition

rates, nutrient availability, photosynthesis, respiration, and transpiration) (Miller et al.

1976;Field et al. 1,995; Liu et al. 1997; Vourlitis et al. 2000). Estimares of Npp using a

process model should be more reliable than other methods because they are based on a

detailed understanding of the ecosystem. For example, the boreal ecosystem productivity

simulator (BEPS), developed at the Canadian Centre for Remote Sensing (CCRS),

operates at large scales (106 to 107km2) at a 1 km resolution (Liu et al. I997).BEPS

models the soil-plant-atmosphere processes influencing vegetation productivity, utilizing

remote sensing, GIS, and meteorological techniques to derive the input variables. It

requires daily meteorological inputs, and calculates NPP on a daily and annual basis.

However, this approach is limited by the availability and quality of data required to

measure these parameters. In areas lacking ground measurements these processes must

either be simulated or interpolated from available data. Furtherïnore, BEpS uses

algorithms calibrated for conifer and deciduous forest stands, which, for lack of
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validation data, are unreliable in arctic tundra (Liu et al. L997). Thus, in arctic regions

generalized constants and interpolated data must be used to derive Npp estimates,

resulting in a dramatic loss of spatial detail and accuracy.

Attempts have been made to estimate NPP directly from spectral vegetation

indices computed from remotely sensed satellite imagery at both local (Stow et al. 199g)

and global scales (Goward et al. 1985; Box et al. 1989). Because vegetation is absorptive

of visible light (380-710nm), and reflective ofNIR light (710-t000nm), a ratio of NIR to

Red light reflectance is directly related to photosynthetic biomass:

SR: NIR / Red

where SR is the simple ratio (Jordan 1969; Carneggie et al. 1975). However, direct

relationships between the simple ratio and vegetation biomass are highly variable across

space and time (Colwell 1971; Rouse et al. 1973; Smith and Oliver Ig74). To correct for

the angular effects of bi-directional spectral reflectance under varying sun-sensor angles,

the ratio is normalized by dividing the difference of NIR and Red reflectance by the sum:

NDVI: (NIR-Red) / (NIR+Red)

where NDVI is the normalized difference vegetation index @ouse et al. 1973). The

NDVI is based on proportions of the original values, and as intended the error component

due to spatial and temporal variation is much reduced compared to using the simple ratio

(Tucker 1,979). At a local scale (i.e. 1-10m), there is a strong positive correlation between

NDVI and photosynthetic biomass for temperate grasslands and crops (Rouse et al. 1973;

Tucker 1979; Holben et al 1980; Townsend and Tucker 1984), as well as subarctic

lll
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vegetation (Ilansen 1991). When integrated over the growing season, NDVI measured

from lxl km resolution AVHRR imagery produced relative estimates of annual Npp that

correspond well with annual NPP values reported in the literature (Goward et al. l9g5;

Box et al. 1989, Los et al. t994).

Estimating NPP at large scales using a direct relationship with NDVI is

problematic because relationships between NPP and NDVI are highly variable for

different vegetation types. In shrublands and forests, the relationship between NIR

reflectance and vegetation biomass is highly variabre, producing NDVI values

considerably lower than for other community types @eterson et al. T917;Ranson and

Williams 1992; Chen 1996; Walker and Kenkel 2000). The influence of physiographic

features inherent to areas of complex terrain, high latitudes and extreme deserts results in

extreme NDVI values that are not representative of the underlying vegetation @ox et al.

1989; Paruelo et al. 1997). In arctic environments, unique vegetation spectral surfaces

(e.g. lichens), low vegetation cover, highly variable ground moisture, the presence of

numerous water bodies, variable topography, and low sun angle can influence NDVI

values in unpredictable ways (Hope etal.l995;Markon et al. 1995; Shippert et al. 1995;

Rees et al. 1998). Furthermore, using NDVI measured from lxl km resolution AVHRR

imagery presents a challenge in separating information about the vegetation from the

background noise. Typically, landscape features in arctic ecosystems have a spatial

resolution of less than I km, with the dimensions no larger than 700 m2 (Stow et al.

1998). The background reflectance from unvegetated surfaces, numerous water bodies,

and variable topography all contribute to the reflectance signal received by the satellite,

making it difficult to resolve the vegetated component of the pixel. Atthough NDVI has
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been related to annual productivity and vegetation biomass, it is diflicult to measure

inter-annual patterns of NPP using NDVI. NDVI is a cumulative measure of

aboveground vegetation biomass from the beginning of the growing season, whereas Npp

is a measure of accumulated above- and belowground biomass within a specific time

period.

NPP Model Descríption

A NPP model that relies exclusively on remotely sensed data is ideally suited for

measuring arctic vegetation productivity (e.g. Prince and Goward 1995; Goetz et al.

1999). Such a model enables estimation of primary productivity in remote areas where

detailed ground data are unavailable. Typically, landscape-scale productivity models that

utilize remotely sensed data compute NPP (i.e., the accumulation of phytomass per unit

area over time) as a linear function of the amount of photosynthetically active radiation

absorbed by vegetation:

NPP: e APAR*- -R*

where e is the energy to dry matter conversion coeffrcient (g/MJ); APA&'., is the amount

of photosynthetically active radiation (PAR) absorbed by the vegetation canopy over a

given time period (MJ/m2 ); and Ru is autotrophic plant respiration @rince l99l; Law and

Waring 1994; Ruimy et al. 1994; Prince and Goward 1995;Paruelo et al. 1997; Goetz er

al.1999).

t3l
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Photosynthetically Active Ratliatíon Absorbetl by the canopy: ApAR"o,,

APA&- is determined by measuring incident photosynthetically active radiation

(PARJ), and estimating the fraction that is absorbed by the canopy (FpAR):

APAR*-: PARJ X FPAR

The PAR incident to the canopy (PARJ) can be determined by estimating the reduction

in the total incident solar radiation at the top of the atmosphere (a constant) by

atmospheric attenuation and cloud and aerosol scattering. However, this method requires

knowledge about cloud reflectance and atmospheric conditions, which must be estimated

from satellite measurements of uv reflectance (Eck and Dye 1991) or from artificial data

generated using a weather simulator @aruelo et al. 1997). Alternately, total surface pAR

absorption (APAR r") can be computed from the difference of upwelling and

downwelling PAR measured at the top of the atmosphere, and an atmospheric correction

for ozone absorption, aerosol scattering and aerosol absorption (Li and Moreau 1996;

Figure 3'1) PAR', is then computed by dividing APAR.¡" by 1- (surface pAR albedo).

This method provides more accurate estimates of APAR.r" for all sþ conditions, as it

does not require knowledge of cloud reflectance, or assumptions about the fraction of the

total solar radiation reaching the surface as PAR (Li and Moreau 1996; Cihlar et al.

1997b; Gower et al 1999). GEocoMp-n computes daily mean ApAR r. using this

method. Thus, APAR*- is calculated as:

APAR** : APA\¡" I (l - Ap*) x FPAR

wherelo- is surface PAR albedo (a unitless proportion) (Moreau and Li 1996).lo- is

measured by integrating clear-sþ measures of visible surface reflectance (i.e. AVHRR

l4l

tsl

28



APARSFC : PARToA+ - pARroAl - ApABnrv

NOAA/AVHRR (CH. 1)

PARTOA I PÆroo 1

TOA

Atmospheric
Reflectance

PARsFc I PÆrr" 1

ÆA\." **^* 
{

APARGRD Ground

APAR,,. : APARCAN+ APARGRD

Figure 3.1. Diagram illustrating the method and parameters used by GEOCOMP-n to
compute APAR,¡" from AVHRR band 1 reflectance. The amount of photosynthetically
active radiation absorbed by the surface (APARsfc) is equal to the difference of the
downwelling PAR (PARI) and upwelling PAR (PARî) ar the top of the atmosphere and
then further reduced by the amount of PAR absorbed by the atmosphere (APAR^1j.
APARsfc is the sum of the PAR absorbed by the photosynthetic component of the surface
(APA&aJ and the PAR absorbed by the soil and non-photosynthetic components of the
surface (APARsrd. Diagram adapted from Li and Moreau (1996).
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channel 1) over the PAR spectrum, and correcting for atmospheric and bidirectional

reflectance effects (Cihlar et al. 1997a).

The inclusi on of Ap* in equation [5] is necessary to convert ApAR,¡" to pAnJ. lf
APAR T" is the difference berween downwelling pAR (PARJ) and upwelling pAR

(PARI) measured above the canopy:

APAR ¡" : PARJ - PARI l6l

and the canopy albedo is equivalent to the proportion of upwelling PAR to downwelling

PAR:

Ap*:PARl/ PARü or pARl:Ap*x PARJ

then, substituting equation [7] for PARî in equation [6] gives:

APAR ¡": pARü * (l- Apò or pARJ = ApAR ¡" / (1- Ap*) tgl

Frøction of PAR Absorbed by the Cønopy: FpAR"on

FPA&un is estimated from an empirical relationship with a spectral vegetation

index, such as the normalized difference vegetation index (Ì.IDVI) (Asrar et al. 1984;

Goward and Huemm nch 1992;Begue and Myneni 1996;Braswell et al. I996;Moreau

and Li 1996). There is experimental evidence, and theoretical substantiation, that FPAR

is a monotonic but slightly non-linear function of NDVI (Goward and Huemmnch l99Z).

However, the relationship is typically defined as linear to preserve scale invariance

@egue and Myneni 1996). FPAR-NDVI relations have been defined from empirical

measurements of FPAR from PAR sensors positioned above and below a canopy (Asrar

17l
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et al- 1984; Hatfield et al. 1984; Peterson and Runnin g l989;Peterson et al. 1990; Chen

1996). The variation in FPAR calculated with these models is large, as each relation is

specific to a particular vegetation type and sensor configuration (Table 3.1 a)

Global productivity modelers often require a relationship between NDVI and

FPAR that is applicable across many vegetation types. This relationship is often

developed from a linear interpolation between maximum and minimum NDVI values

measured directly from satellite data @uimy et al. 1994; Sellers et al. 1994). The

Max/lVlin method assumes that the FPAR-NDVI relationship is linear, that maximum

measured NDVI values correspond to a FPAR value nearly equal to 1, and that minimum

NDVI values corresponds to a FPAR value equal to 0. The range in these relations is very

large and can be attributed to variability in image processing, as well as differences in the

choice of location and time for the Max/ Min NDVI measurements (Table 3.1 b).

More commonly, models of radiative transfer are used to simulate the interaction

between incident light and a vegetated surface in order to derive the relationship between

FPAR and NDVI. Generally, radiative transfer models assume a fully vegetated,

homogenous surface and are parameterized to a specific vegetation type (Baret et al

1989; Leon 1991; Goward and Huemmnch T992; Goward et at. 1994; Moreau and Li

1996). Considerable variation also exists between relations derived from these models.

Furthermore, such models tend to oversimplify canopy structure, making them

inapplicable to heterogeneous vegetation canopies (Table 3.1 c).

To account for canopy heterogeneity, three-dimensional radiative transfer models

have been designed that simulate an incomplete canopy as well as incorporating
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Table 3.1 summary of relationships defined for FpAR and vegetation
NDVI = Normalized vegetation Index; sR = simple Ratio; SAVI = soil
Modified Soil Adjusted Vegeration Index.

indices compiled from the literature.
adjusted Vegetation Index; MSAVI =

Algorithm R2 Method Vegeution Type Reference

a) reaR= 1.25 *NDVI-o.tl - PAR Measurements

0974 PAR Measurements

- PAR Measurements

0.92 PAR Measurements

- PAR Measurements

- PAR Measurements

- PAR Measurements

0.73 PAR Measurements

0.665 PAR Measurements
. MAX/MIN
- MAX/MIN

- MAX/MIN
- MAX/MIN
- MAX/MIN

- MAX/MIN

- lD Radiative Transfer Model
- 1D Radiative Transfer Model
- lD Radiative Transfer Model

0.99 1D Radiative Transfer Model

092 lD R¿diative Transfer Model

0.99 1D Radiative Transfer Model
- lD Radiative Transfer Model

Spring wheat. Growing Asra¡ et al. 1984

Phase

Spring wheat. Growing Hafield et al. 1984
Phase

Corn, soybeans. Daugherty 1988

Growing Pase

Alfalfa Pinrer 1993.

Corn. Growing Phase Gallo et â1. 1985

Winter Wheat. Baret and Olioso, 1989

Growing Phase

Conifers Peterson and Running 1989

- HaJletal.l992
- Hútet at.1991

Rainforest/ Desert Ruimy et al. 1994

Alaska in winter/ Helnan and Keeling 1989
theoretical max

Rainforest/Desert Loudjani1993

Tall Vegeutioni Desert Sellers er à1.1994

Short Vegeation/ Sellers et at. 1994
Desert

Niger: before/Æter Ouaidrari 1994
Rainy season

Baretand O[oso 1989

Baretetal.1989

Leon 1991

Goward and Heummeri ch 1992

Myneni and Mlliams 1994

Goward etal.1994
Prince and Goward 1995

Myneni et al,. 1992

FPAR=1.2*NDVI-0,18

FPAR=1.28*NDVI-0.14

FPAR = 1.408 * NDVI - 0.396

FPAR= 0.6-(2.2*NDVI) +(2.9* NDVI1
FPAR= 1.23 *NDVI-0.06

FPAR=1.0xNDVI-0,20
FPAR=1.27*NDVI-0.31
FPAR=2.21*NDVI-0.681

b) rpen = t.25 *NDVr - 0.025

FPAR=0.279* SR -0.294

FPAR = 1.468 * NDVI - 0.381

FPAR=0.171*SR-0.186
FPAR=0.248*SR-0.268

FPAR= 1.27 *NDVI-0.190

c) FPAR = 1.33 * NDVI - 0,31

FPAR= 1.24*NDVI-0.23
FPAR= 1.28 *NDVI-0.15

FPAR = 1.08 NDVI - 0.08

FPAR = 1.164 * NDVI - 0.143

FPAR_ 1.21 * NDVI - O.O4

FPAR=1.67*NDVI-0.08
FPAR = 0.8462 * NDVI - 0.08014

FPAR = 1.164 * NDVI - 0.143

FPAR = 0.105 - (0.323 * NDVI) + (1.468 * NDVf)
FPAR = 3.257 * SAVI - 0.070

FPAR = 1.189 x NDVI - 0.025

FPAR = 1.723 * MSAVI - 0.137

FPAR= 2.213* (^MSAVÐ'"

0.92

0.92

0.85

0.86

0.909

0.968

0.931

0.931

3D Radiative Transfer Model Sparse vegetåtion

lD Radiative Transfer Model

lD Radiative Transfer Model

1D Radiative Transfer Model

3D Radiaúve Transfer Model Savannah Vegeuúon

3D Radiative Tra¡sfer Model Savannah Vegeation

3D Radiative Transfer Model Sava¡nah Vegetation

Myneni and Williams 1994

Moreau and Li 1996

Moreau and Li 1996

Begue and Myneni 1996

Begue and Myneni 1996

Begue and Myneni 1996
FPAR= 1.710 * l^NDVI)'. 3D Radiative Transfer Model Savannah Veseaúon and Myneni 1996

^indicates 
the difference between pre-onset and post -onset vegetation index values.
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vegetation clumping parameters and soil background reflectance (Myneni et al. lgg1).

Begue and Myneni (1996) derived relationships between FPAR and two vegetation

indices, NDVI and the modified soil adjusted vegetation index (MSAVD (ei et al.1994).

Best estimates of FPAR were derived from a relation with MSAVI measured from

AWIRR data (Begue and Myneni 1996). Subtracting pre-onset of the growing season

MSAVI values from MSAVI acquired during the growing season further minimized

background effects (Begue and Myneni 1996). However, these algorithms were

calibrated for Savannah vegetation, which differs spectrally and structurally from arctic

vegetation. Applying an FPAR algorithm calibrated for temperate vegetation to arctic

vegetation could produce erroneous results. For example, in sparsely vegetated

landscapes where vegetation index values are extremely low, FpAR will be

overestimated as a result of the slight non-linearity of the relationship between vegetation

indices and FPAR. It is therefore necessary to derive an FPAR relationship specific to

arctic vegetation from empirical ground data, rather than adopting a relationship derived

for temperate vegetation.

Energy conversion cofficíent: e

The energy conversion coefficient (e) is the amount of carbon fixed (g/m2) per unit

of PAR absorbed by the canopy (MJ/m2). It is estimated from the slope of the relation

between empirically derived GPP measurements and APAR"- (Law and Waring 1994;

Ruimy et al. 7994; Paruelo et al. 1997). When first defined, e was determined as the slope

of the relationship between NPP and ApA&* (Monteith L97z; Ãsrar et al. 19g5). A
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number of agricultural NPP experiments that have measured e in this way produced

estimates ranging between 0.2 and 4.8 glMJ (Prince 1991). This variability has been

attributed to large differences in rates of growth and maintenance respiration among

species, and the influence of environmental stressors on photosynthetic efflrciency such as

low or high temperature, high vapour pressure deficit, and drought @rince 1991; Runyon

etal. 1994; Law and waring 1994; Hunt 1994). Defining the energy conversion

coefficient in terms of gross primary productivity (GPP) enables variability in respiration

to be considered separately (Jarvis and Leverenz 1983;Prince 1991; Goetz et al. lggg).

NPP can then be obtained by subtracting respired carbon from the Gpp.

The energy conversion coefficient has been defined as the theoretical maximum of

GPP per MJ of absorbed PAR (e-u*) using the quantum yield for C3 photosynthesis under

ideal environmental conditions (Jarvis and Leverenz 1983; Goward et al. T994;Prince

and Goward 1995). Productivity models that utilize r-.* must also include parameters to

quantify the reduction in t,,'u* attributable to environmental stressors. It is possible to

estimate these environmental variables from AVHRR imagery utilizing NDVI and

surface temperature data (Goward etal.1994; P¡ince and Goward 1995; Prihodko and

Goward 1997); however, these methods are problematic when applied to arctic

ecosystems because of the high number of small sub-pixel water bodies inherent to these

landscapes (personal observation). The inclusion of environmental parameters can be

circumvented by deriving the energy conversion coefficient from the slope of average

measures of GPP and APAR*- acquired throughout the growing season. Thus, the annual

fluctuations in environmental conditions are incorporated into the averages.
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A utotrophíc Respíratio n : Ro

Autotrophic respiration (R") is the proportion of total ecosystem respiration

attributable to plants. Estimating R, requires knowledge of both above and below-ground

biomass. R* is temperature-dependent and respiration coefficients for many arctic plants

are available from the literature (e.g. Billings et al. 1978). Utilizing these coeffrcients

requires data for ambient temperature. Although weather stations exist in many arctic

parks, the data represent single points in space separated by large distances. Obtaining

spatially continuous measurements of environmental conditions would require

interpolating single point values over extremely large distances. As a result, accurate and

spatially continuous measurements of most climatic variables are unavailable for most

areas of the Arctic. As with the energy conversion coefficient, a respiration parameter

derived from annually integrated measurements will incorporate variability attributable to

annual fluctuations in temperature and other factors. Respiration can then be directly

related to a vegetation index that quantifies vegetation biomass.

Objectives

The primary objective of this paper is to define and calibrate a model to estimate

terrestrial NPP in arctic ecosystems from GEOCOMP-n AVHRR data. This objective

will be accomplished by:

' defining an empirical relationship between FPAR and a spectral vegetation

index; either NDVI or MSAVI,

determining an Energy Conversion Coefficient (e) for Low Arctic vegetation,

determining an empirical relation between a spectral vegetation index (i.e.

NDVI) and Autotrophic Respiration (R"),
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' producing a map of expected annual NPP that will be used to validate the

results of AVHRRNPp model.

Other obj ectives include:

' evaluating the influence of sub-pixel water bodies and variable topography on

the difference between modelled and expected Npp,

' determining what vegetation types influence discrepancies between modelled

and expected ANPP.
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3.3. MprnonoI,ocy

Collection of Field Data

Ground data were collected befween July 8th to August 1Oth, 2000 in three areas

within Tuktut Nogait National Park (See Chapter 2: Study Area). A total of lg (lxl km)

sites were selected to represent the range of vegetation types within the park. Within each

site, 9 (30x30 m) plots were located in a 3x3 grid, located 250 min from the edge of the

site boundary. Within each plot, 5 (1x1 m) sample quadrats were located in a cross

pattern (Figure 3.2). Vegetation communities sampled included: tussock tundra, wet

sedge tundra, dwarf shrub tundra, sparsely vegetated tundra, and barren ground (See

Chapter 2: Study Area).

For each quadrat (n:865), incident and reflected radiance were measured in 5

spectral regions (450-520 nm, 520-600 nm, 630-690 nm,760-900 nm and l55O-1750 nm)

using a cropscan MSR5 radiometer (cropscan Inc., www2.isl.net/cropscan). The

radiometer was attached to a boom and held 2 meters above the surface, enabling a I

meter field of view, and the mean of five scans was recorded. The up and downJooking

sensor pairs were calibrated, and all radiance measurements were corrected for sensor-

temperature effects and variable sun-angle using a post-processing program supplied by

the manufacturer. Percent surface reflectance of each sample was calculated from the

down- and up-looking radiance measurements. With both up and downlooking sensors it

is possible to accurately measure surface reflectance under variable cloud conditions and

various sun-angles.
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Figure 3.2. Schematic of ground sampling design. A lxlkm sample was located in the field.
Within this sample, nine, 30x30m plots were located in a grid pattern Z50m meters from the
perimeter of the'sample' area, and 25Om apart. Within each 'plot', five lxlm sample quadrats
were located in a cross pattern ,7 .5m from the perimeter of the 'plot'.
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Visual estimates of ground cover were recorded, as well as topography and soil

characteristics. An overhead digital image referenced with a GPS coordinate was also

collected to verify the vegetation cover estimates and community type assignments.

CøIculatíon of Vegetatíon Indices

Two vegetation indices were used in this study: NDVI and MSAVI. The formula

forNDVI is:

NDVI : (NR - VIS) / NIR + VIS) t8l

Radiometer channels 3 (630-690 nm) and 4 (760-900 nm) were selected to represent to

the Visible (VIS) and Near-infrared (Nß.) portions of the spectrum, respectively.

AVHRR channels 1 (us) and2 (lvß.) were used to compute AVHRRNDVI. The

MSAVI minimizes the influence of background reflectance by incorporating a soil

adjustment factor (¿) (Qi et al. T994). MSAVI is compured as.

MSAVr:[(NrR-VrS)/CNß,+\rrs+¿)] * (r+L) tel

The soil adjustment parameter, Z, is derived from the product of the NDVI and the

Weighted Difference Vegetation Index (WDVI), such that:

WDVI:NIR-I*VIS

L:l-2*y*NDVI*WDVI

[10]

[11]

where y is the slope of the linear relationship for the regression between visible (VIS) and

near infrared (NIR) reflectance values of bare ground (i.e. where vegetation cover (
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l0%). Bare ground pixels were determined using a threshold NDVI value of 0.03 (i.e.

Bare ground:0 < NDVI < 0.03).

CøIíbration of NPP Model

FPAR - Vegetation Index Relationship

Physical measurements of FPAR require up- and down-looking PAR sensors

positioned both above and below the canopy (Chen 1996). For arctic vegetation, which is

essentially 2-dimensional, it is obviously impossible to obtain below canopy pAR

measurements. Therefore, an indirect approach was used to determine the relationship

between FPAR and a spectral vegetation index.

Total surface FPAR (FPAR r") is equal to 1 - (PAR reflectance) measured above

the canopy:

FPAR'¡"=l-Ap* u2l

where lo* is the surface PAR albedo. If the proportion of PAR absorbed by the ground

and non-photosynthetic components of the vegetation is known (i.e. FPAR*6), then the

proportion of PAR absorbed by the photosynthetic components of the vegetation (i.e.

FPA&*) can be determined as:

FPA&-: (FPAR r" - FPARg,Ð / FPAR ¡" u3l

Where vegetation cover is low (i.e. <30% cover), FPARg,a is constant. Sparsely vegetated

canopies consist mainly of low-growing prostrate shrubs and sedges and the ratio of non-

photosynthetic biomass to live biomass is low compared to other vegetation types @liss

et al. 1973). Thus, FPARgra can be assumed to be constant and equal to FPAR T" measured
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at}Yo cover @igure 3.3). However, FPAR'T¿ will decrease as vegetation cover increases,

as more PAR is absorbed by the photosynthetic components of the vegetation, and less by

the soil and structural components of the vegetation (Figure 3.f). With increasing cover,

FPARg,a gradually decreases, while FPAR ¡" approaches an asymptotic constant; FPAR.-

will increase in direct relation to vegetation cover, as the photosynthetic components of

the canopy intercept more light (Figure 3 3). For vegetation cover greater than l0O%o,

FPARg.a approaches 0, while FPA&,, will approach FPA\¡".

FPAR is directly related to leaf area (i.e. LAI) (Asrar et al. 1984, Hatfield et al.

1984), and for arctic vegetation, where there is no real third dimension and leaf overlap is

minimal, cover is approximately equivalent to leaf area. Thus, for arctic vegetation,

FPAR is also directly related to vegetation cover. Furthermore, if vegetation cover is

directly related to a spectral vegetation index (i.e NDVI or MSAW), then it is possible to

substitute the vegetation index for vegetation cover and define a direct relation between

FPAR and the vegetation index.

A linear relationship was defined between two vegetation indices (NDVI and

MSAVI) and vegetation cover. Samples with greater than l}O%vegetation cover were

excluded from the regression (n:106) because at l}}yovegetation cover, a third

dimensional component exists in the vegetation (i.e. LAI > 1) and cover can no longer be

considered equivalent to FPAR

A linear relation between FPAR,¡. and vegetation cover indicates that FPAR ,a is

constant @igure 3.3); therefore, it was necessary to determine the maximum vegetation
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Figure 3.3. Diagram illustrating how the fraction of PAR absorbed by the canopy
(FPAR""J is determined from measurements of the fraction of PAR absorbed by the.ntirl
surface (FPÆsrc). At less than 30Yo vegetation cover, FPARgrd is constant and equal to
FPA&fc at}Yovegetarion cover. Thus, FpA\*: (FpARr¡s - tÞo*r¿ÆpA&rc).
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cover at which the relationship between FPAR.¡" and Vegetation Cover was linear. Only

those samples below this threshold were used to determine the FPAR.*-Vegetation

Cover relationship. The linearity of the relationship was evaluated by testing the

significance of the regression between the residuals and the predicted value for samples

below a specified vegetation cover. A significant residual regression indicated non-

linearity. A number of samples were considered outliers because they contained either

high amounts of standing water, rock cover or had a slope greater than 4Oo/o. These were

removed from the analysis.

FPAR'r. was determined from 1 - (radiometer band 3 reflectance) for samples with

vegetation cover below the linearity threshold. FPA-&un was determined using equation

[13], where FPARg,a was set equal to the value of the y-intercept of the regression line

determined between FPAR"¡" and vegetation cover for samples with vegetation cover less

than the linearity threshold. The equation for the linear regression between FPAR"* and

vegetation cover was then determined. Vegetation cover values were then converted to

NDVI and MSAVI using an equation defined for the linear regression between vegetation

cover and each spectral vegetation index. The equation for the linear regression between

the vegetation index values and FPAR"a¡ lryas then determined. The result was an

equation for the linear relationship between the vegetation indices and FPAR.*.

Enerey Conversion Coeffici ent

An energy conversion coefücient specific to Low-Arctic vègetation was derived

from the results of a study measuring CO2 exchange, incident PAR and NDVI in wet

meadow and dry upland ecosystems near Bethel, Alaska (61 N, 162.5"W) (Whiting et al.
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1992). Whiting et al. (1992) defined a relarion between NDVI and Net Ecosystem CO2

exchange (ltIEE) normalized by the incident PAR flux:

NDVI :7.6 * (NEE / PAR) + 0.41; (n : 35; Ñ :72%) It4l

NEE is equal to the sum of GPP and total ecosystem respiration @R). In this study NEE

was determined by first measuring GPP using a closed COz chamber embedded in the

ground then adding ER' which \ryas measured by covering the chamber with a dark

shroud. PAR and NDVI were measured concurrently with the Co2 exchange

measurements.

Because the energy conversion coefficient is defined as the slope of the

relationship between GPP and APAR*-, it was necessary to modify the above equation.

NDVI was converted to FPAR using the FPAR-NDVI relation defined previously.

Incident PAR photon flux was converted to incident PAR radiation flux (i.e. from

Einsteins (E) to Megajoules (MJ)) using a conversion factor derived from an integration

of the total energy of photon flux over the PAR region of the spectrum (400 - 7l5nm).

ÏVavelength weights were defined from radiation flux measurements for different

wavelengths within the PAR region of the spectrum (Mayo et al. T977)

The energy, in Joules, for one photon of PAR was calculated by summing the

weighted energies calculated for a single photon of light at each wavelength.

PAR energy per photon:'=*L*,' (Ki * (h * C * Àit)) t15]

where h is Planck's constant (6.626 x 10-3a J * S); K is the ith wavelength weight; C is the

speed of light; and À is the iú wavelength.
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APA-&* \¡/as then determined from the product of FpAR and pAR (MJ) (see

Equation [4]) NEE (gcoÐ was converted to grams of dry maner (gDM) by multiplying

NEE by 0.681. This value is based on the proportion CH2O produced from COz in

photosynthesis:

I COz + H2O + PAR: 0.681 CH2O + 02 [16]

NEE was converted to GPP by adding the Ecosystem Respiration @R), where ER was

determined from an empirical relation with NDVI (See next section). Finally, the energy

conversion coefficient for GPP was determined from the slope of the resulting linear

equation between GPP and APA&*.

Autotrophic Respiration

Autotrophic respiration (R") is the proportion of ecosystem respiration @R)

attributable to the vegetation (ER: fu (plant respiration) + Rn (soil respirarion)). The

R":ER ratio was deflrned in an extensive summary of International Biome Project (BP)

data collected at Truelove Lowland, Devon Island @liss Ig77). Of total ER, 9l% was

attributable to R* @liss 1977). Compared to temperate ecosystems, the proportion of

heterotrophic respiration (Rh) is remarkably low. However, considering the limited

microbial activity in cold, wet, and acidic tundra soils, this value is reasonable.

A relationship between NDVI and ER was defîned from data presented in

McMichael et al. (1999). These data consisted of concurrent NDVI, PAR and COz

exchange measurements for ecosystem respiration (i.e. a COz chamber covered with a

dark shroud). Measurements were made in tussock tundra and wet sedge tundra

ecosystems in Prudhoe Bay, Alaska (70'21'N, 148o58'W) (McMichael et al 1999).
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Computíng Annual Net Primnry hoductivíty wíth GEOCoMp-n AVHRR Data

Net primary productivity \¡/as computed for each 10-day composite period during

the growing season using equations [3] and t5l. Npp was determined using the

GEOCOMP-n AWIRR image products exclusively. MSAVI was computed from

atmospherically corrected band I and band 2 reflectance. FPAR \¡/as computed for both

the atmospherically corrected NDVI and MSAVI. AVHRR band I corrected for

atmospheric and bi-directional reflectance effects, was used as a surrogate for 4o,., which

is currently unavailable from GEOCOMP-n. For comparison, NPP was computed with

FPAR derived from NDVI and with FPAR derived from MSAVI. Annual Npp was

computed from the sum of the 10-day Npp estimates.

Expected Annual Net Prímary Pro cluctívity

To provide reasonable validation for the model, a 1x1 km resolution expected

annual NPP map was created using a data set and methodology entirely independent of

the model described above. Expected annual NPP (ANPP) was determined by combining

a Landsat TM vegetation classification and expected ANPP values for each vegetation

class compiled from literature sources.

Landsat TM Vegetation Classification

A preliminary vegetation map was provided by the NWT Centre forRemote

Sensing. This classification was created by combining results of an unsupervised

classification of a cloud-free Landsat 5 TM scene (acquired June 29, lgg})with ground

data collected within the Park.
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The classification and the original Landsat imagery was projected as UTM,

whereas the AVHRR imagery was projected as Lambert Conformal Conic (LCC) It was

therefore necessary to reproj ect the Lands at image to LCC using a third degree

polynomial with 25 ground control points using nearest neighbour resampling.

The preliminary classification contained 24 ground cover types, many of which

were deemed redundant for this analysis. There were also a high number of unclassified

pixels within the image, especially in areas of high topographic complexity. The spectral

separability of the preliminary classes was evaluated using the Jeffries-Matusita and

Transformed Divergence separability measures and the original Landsat image bands

(Richards 1994). Georeferenced overhead images for each sample quadrat were linked to

a vector point layer and used to visually assess the preliminary classes. Then, using a

combination of the class separability results and visual verification with the overhead

images, each of the preliminary classes was combined into one of the following 11

classes: Barren, Sparsely vegetated, Mesic Meadow, Dwarf Shrub Tundra, Tussock

Tundra, Wet Sedge Meadow, TVater, IcelSnow, Mud, Sand, Bedrock.

Single unclassified pixels were assigned the mode of the surrounding 8 pixels

using a9x9 pixel modal filter. A mask was then created of the remaining unclassified

pixels, and these pixels were assigned to one of the new classes using a supervised

maximum likelihood classifîcation. Training sites were developed by creating masks of

the 11 newclasses.

An error analysis was performed on the resultant vegetation classification by

comparing the classified Landsat pixels with the spatially collocated 30x30 m field plots
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(n:172). The mode of the vegetation classes assigned to the 5 (lxlm) quadrats within

each 30x30m plot was determined and compared to the corresponding Landsat vegetation

classification pixel using a confusion matrix.

The classification was then separated into a series of mask images for each

vegetation class, with mask pixels representing only those pixels assigned to that class.

The proportion of each vegetation class within a lxl km area was determined by

computing the proportion of mask pixels within a 40x40 pixel window. The result \¡/as a

series of vegetation class proportion images with pixel dimensions equal and matched to

the AVHRR imagery.

Expected annual net primary productivity (ANPP) values for each of the six

vegetated classes were compiled from various literature sources (Bliss et al. 1973;Haag

1974;Muc 1977; Miller et al. 1980; Bliss et al. 1984; Shaver and Chapin 1986; Shaver

and Chapin 1991; Bliss and Matveyeva 1992; Glmanov and Oechel 1995; Bliss and

Gold 1999). Only ANPP values were included for which both above and below-ground

annual NPP were measured. The literature ANPP values were assigned to one of the 6

vegetation classes based floristic descriptions and geographic proximity. A mean value of

ANPP for each class was then determined. The lxl km proportion layer was then

multiplied by the expected ANPP value for that class. The resulting weighted ANPP

layers were then summed to produce the expected ANPP map at lxl km resolution.

ll/ster and Topogrøphíc Effects

A water mask was created from an unsupervised k-means classification of a

Landsat 7 ETM image acquired for the study area on July l3th, 2000. The proportion of
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\¡/ater cover within each lxl km AVI{RR pixel was determined using the same technique

as described for the vegetation proportions.

A 100x100 m resolution digital elevation model (DEM) was created from the

digital l:250 000 national topographic survey hypsography vectors using a contour line

interpolation. The result was smoothed with a9x9 mean frlter to remove the residual

effects of the interpolation. A slope map was then created from the DEM as well as a

series of variables to charactenzethe topographic complexity of the landscape.

Topographic complexity within each lxl km AVHRR pixel was charactenzed using

mean slope, slope variance, elevation variance. These variables were computed using a

series of algorithms designed to pass a 10x10 pixel window across the DEM at l0 pixel

intervals.

Model Evaluation

To illustrate the correspondence between modelled and expected Npp, the percent

normalized difference was computed as [(Nlodelled ANPP - Expected ANpp / Modelled

ANPP * Expected ANPP) * 100]. The normalized difference provides a relative

difference between modelled and expected ANPP such that the magnitude of the

differences are equal in both high and low productivity areas. Multiple regression

analysis was used to determine the influence of water cover and topography on the

difference between modelled and expected ANPP. Similarly, multiple regression analysis

was used to evaluate the effects of different ground cover types on the difference between

modelled ANPP and Expected ANpp.
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3.4. Rrsulrs

NPP Model Calibrstíon

Predicting Vegetation Cover with NDVI and MSAM

There is a strong positive relationship between vegetation cover and both NDVI

and MSAVI, with 72.5% of the variation in NDVI explained by vegetation cover, and

703% of the variation in MSAVI explained by vegetation cover (Figure 3.4 a,b).

A semi-logarithmic relationship exists between total surface PAR absorption

(FPAR'¡") (i.e. 1-83 reflectance) and vegetation cover (Figure 3.5). FPAR,¡" increases

with vegetation cover to -50Yo cover, at which point FPAR Tc approaches the asymptote

at- 0.94. This sill is equivalent to a surface PAR albedo of approximately 6Yo for ground

with >l00%ovegetation cover. Surface PAR albedo values for well developed canopies

of 5-7%o have been reported elsewhere (Moreau and Li 1996).

Derivation of the FPAR-Vegetation Index Relationship

The steps used to derive the relationship benveen NDVI and FpAR.* are

summarized in Figure 3.6. At 30o/ovegetation cover, the regression of the residuals and

the predicted values for the relationship benveen surface PAR absorptance and vegetation

cover is not significant, indicating a linear relation between FPAR*¡" and vegetation cover

(P:0.504 at3}yo Cover). Thus, only samples with less than 3}Yovegetation cover were

used to derive the FPAR-Vegetation Index relationship.

A significant positive relationship exists between FPA&¡" and vegetation cover

for areas with less than30%o cover (R2:45.9yo, p<0.001, Figure 3.6). For low vegetation
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converted to NDVI using the relationship between NDVI and vc deflrned in Fig. 3.5. A linear
relationship was then defined between FPAR.'' and NDVI. The relationship between
FPA&an and MSAVI was deflrned using the same màthod.

FPAR'¡. - FPARgra

NDVI: (VC * 0.572) + 0.0881
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cover samples, FPARg,a is assumed equivalent to the y-intercept which is equal to 0.79

(Figure 3.6). This value corresponds to a surface PAR albedo for bare soil of 0.21.

FPA&- was then determined from FPAR.¡6 ând FpARs,a using equation [13], and

vegetation cover was substituted with NDVI and MSAVI using the relationship defrned

previously between vegetation cover and these vegetation indices (Figure 3.6). From the

substituted values, the following relationships were defined between FPAR*- and NDVI

and MSAVI:

FPA&-: NDVI * 0.638 + 0.056

FPA-&,,: MSAVI * 1.34 + 0.059

ltTl

[ 18]

Energ.v C onversi on Coeffi ci ent

A conversion factor for PAR photon flux to PAR radiation flux of 0.21386 MJÆ

was determined (Table 3.2).

Table 3.2. PAR rvavelength rveights determined by integrating the totat energy of photon fltx over the
PAR region of the spectrum. Radiation in wavelengtls sparuring the PAR sp"ctrrr* rvas measured at
noon for six dates between2l-6-i L and,I2-B-71in Bar¡ow. alaita.

Wavelength (nm)

500 6s0

BIue
400

Red
725

Mean Radiation (Wm2) for 6 dates
throughout the growing season

Mea¡ wavelength weightings

23.661

0.165

40.333

0.281

1.1163E-19

42.900 36.492

0.300 0.254

9.182528-20 6.95638E-20
Weighted Energy for one phoron 

8.2llzZE_ZO(Joules)

Totâl PAR energr (Joules) for one photon:

Total PAR energ/ (Joules) for one Einstein:

Total PAR eners¡ (Mega Joules) for one Einstein:

3.55131E-l9Joules

213860.0063Joules

0.21386MJÆ
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Substituting FPAR for NDVI, converting PAR photon flux to pAR radiation flux,

and converting NEE to GPP, in the NEE equation presented in Whiting et al. (1992), the

equation for the linear relation between GPP and APAR*- was determined to be:

GPP: 2.8033 x (FPAR * PAR.L) _ 10.022 ltTl

The slope of this relation is equal to the energy to GPP conversion coefücient (eorr:

2.8033). The intercept was assumed equal to zero because when ApAR.*:O, Gpp : 0.

Autotrophic Resoiration

A second degree polynomial relationship was.fit to the ecosystem respiration and

NDVI data in McMichael et al (1999) Ct-': 0.96g, p<0.001, Figure 3.7):

ER:6.1972* NDVI2+t.4138 *NDVI_0.1485 tl8l

Although a signifÏcant linear relation could be fit to the data, this relationship results in

negative ER values for low NDVI values. Using a polynomial relationship maintains

positive ER values at lowNDVI.

A proportional value of 0.91 was used to convert total ER attributable to

autotrophic respiration @liss 197 7).
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ER: 6.T972 NDVI2-

0.3 0.4 o.s 0.6 o.7
ND\/I

FÍgure 3,7. A second degree polynomial is fit to the relationship between ER and mean
NDVI values obtained from a data set for ecosystem respiration @n) and NDVI measured
concurrently in tundra vegatation (from McMichael et al. lggg).
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Table 3.3 summarizes the model parameters derived from the preceding analyses.

Table 3.3. Summary of NPp model parameters

Pa¡ameter Units Relation / Value

FPAR

FPAR

tcpp

COz to. Dry Matter

Einsteirn (E) to Megajoules (MJ)

ER

R.: ER

unitless

unitless

gDM / MJ

gCO2/ gDM

MJ/E

gClnf * lOdays

unitless

FPAR: (NDVI * 0.637) + 0.056

FPAR = (MSA\r'I * 1.34) + 0.059

2.8033

0.681

0.233647

ER = 10* (6.1972'r NDVI1 - (1.4138*NDVI) +
0.1485

0.91

Exp ecte d an n u øI p ro ductivíty

The Landsat vegetation classification is presented in Figure 3.8. When compared

to the field plots, the overall classifìcation accuracy was determined to be 62.2 % (Table

3.4). Classification accuracy \¡/as considerably higher in the sparsely vegetated, dwarf

shrub tundra, tussock tundra and barren classes. Although the classifìcation accuracy of

water was very high, this class was not included in the error assessment. Classification

accuracy was lowest in the mesic meadow class, with a classification accuracy of 38.B%

(Table 3.4)' Of the 49 mesic meadow ground samples, 27 wereclassified as sparsely

vegetated pixels in the vegetation map, suggesting overlap between these classes in areas

with either higher productivity sparse vegetation, or lower productivity mesic meadow.
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classifications are based on the mode of the class assignment for the s (rxrnÐ quadrats located rvithin each
30x30mplot. Numbers on the diagonal represent counts of correctly classified iixets. Numbers offthe
diagonal represent misclassifred pirel counts. In total, 62.2yoof thiLandsat vegetation classification were

Table 3.4. Confusion matrix of Landsat TM classif

correctly classified. WSY = Wet sedge meadow; MM= Mesic Meadow, DST:brva¡f shrub tundra; TT=
Tussock tundra: SPV= BRN=Barren sround.

Vegetation Map

WSM MM DST TT SPV BRN ROCK SNOW Total n=I72
0

I
0

0

7

26

0

0

8

21
0

0
32
J

0

0

(ü

o

o
H()

wsM
MM
DST
TT
SPV
BRN
ROCK
SNOW

15

0

0

0

t
0

0
1

J

t9
0

2

9

1

0

0

0
0
4

0

0
0
0

0

0

2

0

10

0

0

0
0

0

0

0
0

0

0

0
0

26

49

4

t2
49

30

0

2

0

0

0

0

0

0

0

1

Yo Conect 57,7 38.8 100 83.3 6s.3 86.7 100 62.2

Expected Annual NPP Estimates

Table 3.5 lists the mean annual above and below-ground NPP (ANpp) values for

each vegetation class compiled from the literature. Variability in ANpp estimates is low

for the barren, sparsely vegetated and dwarf shrub tundra vegetation classes. However,

variability increases in the more productive vegetation classes, with the Iargest variation

apparent in the tussock tundra and wet sedge meadow classes (Table 3.5).

50.0

59



Table 3.5. Total above and below ground net primary productivity estimates (g / nfuÐ compiled from
literature sources.

Vegetation Class MeanNPP (+SD

Barren 0.95 (+0.07)

4.45 (+2.45)

r55.73 (+25.51)

137.5 (+3.s4)

s24 (+13s.76)

239.76 (+62.78)

Sparsely Vegetated

Mesic Meadow

Dwarf Sh¡ub

Tussock Tundra

Wet Sedge Meadow

1.01 0.87

8.00 2.I3

185.00 138.20

140.00 135.00

620.00 428.00

352.00 165.10

4

7

J

2

2

8

References

5,10

5,8,9,10

6,8

1,8

L,4

r,2,6,9,11,12

References

(1) Shaver, and Chapin 1991

(2) Shaver et aL. 1997

(4) Shaver and Chapin 1986

(5) Bliss and Matveyeva 1992

(6)Muc 1977

(7) Bliss ef al. 1973
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(12) Miller et al. 1980

Vegetation Class Prooortion Layers

The lxlkm resolution vegetation class proportion images are presented in Figure

3.9. Banen ground vegetation class occurs mainly at high elevations in the central region

of the Park (i.e. the Melville Hills) and near the north east coastal region of the Park

(Figure 3.9). The sparsely vegetated class occurs mainly on a high elevation plateau west

of the Hornaday river, in the western region of the Park, as well as in the north east

region of the Park (Figure 3.9). This region is particularly dry, possibly because of a rain

shadow effect from the Melville hills. This results in low vegetation
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Barren Ground

Dlvarf Shrub Tund¡a

Sparsely Vegetated Ground

Mesic Meadolv

0
FTFT:

Tussock Tundra

Proportional Vegetation Cover
within a lxl km area.

0 0.25 0.5 0.75 I

Figure 3.9. Vegetation class proportion images derived from the Landsat vegetation
classification. Pixel values represent the proportion of each class within a lxl km area.

Wet Sedge Meadow
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productivity, as arctic vegetation productivity is highly correlated with water availability

(Chapin et al. 1988; Fogg 1998).

Occurrence of the dwarf shrub tundra class is relatively low within the Park, with

the exception of the north east region of the Park, within the Horn aday andBrock River

deltas. The dwarf shrub tundra class tends to occur in small localized patches on well

drained slopes in association with mesic meadow vegetation. Small patch size (i.e.

<25x25m) may result in under-classification of dwarf shrub tundra, as the pixel class will

be assigned to the dominant vegetation within the pixel. From this classification, mesic

meadow class is the dominant vegetation class within the Park, with high occurrence in

the southwest corner of the Park to the west of the Hornaday River, and in the west of the

Park, near Seven Islands Lake (Figure 3.9). The wet sedge meadow class occurs

throughout the Park in a reticulated pattern (Figure 3.9). Wet sedge meadow tends to be

associated with water bodies, along rivers and surrounding lakes which results in a

reticulated distribution pattern.

Expected ANPP Map

A map of the expected annual NPP is presented in Figure 3.10. Expected ANPP is

highest in the northwest region of the Park (ANPP: 200-500 g lmzyr), and along the east

side of the Hornaday river valley. In these areas there is high occuûence of the tussock

tundra and mesic meadow classes. It is likely that the high vegetation productivity in this

area is supported by run-off from the Melville Hills, which provides a continuous supply

of water throughout the growing season. Expected ANPP is low in the northeast region of

the Park where ANPP: 10-150 g lmzyr, and on the southwest side of the Hornaday
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Valley. These areas colrespond to high occurrence of the barren and sparsely vegetated

classes. Expected ANPP is lowest at high elevations in the Melville hills where ANPp:

0-50 g *-'yr' , with the exception of a small pocket of high productivity in the center of

the Park which corresponds to a concave depression to the southeast of the Melville hills

with a high occurrence of the mesic meadow class.

Model Evøluation

Modelled ANPP computed with NDVI

With respect to the relative spatial patterns of ANPP, there is a strong

correspondence between modelled ANPP computed using NDVI (ANppNDv¡) and

expected ANPP (ANPPE-p) (Figure 3.10). However, when comparing the absolute values

there is less correspondence; in most areas, values for ANPP¡¡ovr w€rê consistently lower

than ANPPr*p. The normalized percent difference map illustrates the location and

magnitude of these differences, and a histogram illustrates the frequency distribution of

the differences @igure 3.1 1). For ANPPw¡y¡, only 41.76% of the pixels are within 30olo

of the difference. The mean of the normalized difference of ANPP¡¡ovr ând ANPPs*o is

33.55yo (x23.96%), indicating ANPPp*p values are 30-35Yo higher than ANpp¡q¡y¡

(Figure 3.1l). The right tail of the percent difference histogram reveals a high number of

pixels with large percent difference (Figure 3.1 1). These pixels correspond to the

northeast portion of the Park along the coastline, where AVHRR NDVI values remain

very low throughout the growing season. Despite the presence of vegetation in these

areas, persistently low NDVI values throughout the growing season result in negative

FPAR values and negative annual NPP values. In a small region in the center of the park

(69"11' N, 121o 39' W), modelled ANPP values are80-90Yo larger than expected ANPP.
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This area corresponds to a high elevation ridge which appears red in a Landsat false

colour composite. Although no ground sampling was done in this region, when observed

from the air, the ground appeared completely barren. The red appearance of the landscape

may be caused by crustose lichens covering the bare rock. High near infrared Cl\rß.)

reflectance of stony lichen tundra (biomass < 20 g*-'y.t) results in NDVI values as

high as those obtained for fructicose lichen and dwarf shrub communities, where biomass

: 1000 g m-'yr t (Rees et al. 1998).

Modelled ANPP computed with MSAVI

Correspondence between modelled ANPP computed with MSAVI (ANPPrvrsavr)

and expected ANPP (ANPPE*'), is much greater compared to ANPP¡¡vr both in terms of

relative spatial patterns and absolute values (Figure 3.12). Overall, the percent

normalized difference values between ANPP¡ursevr and ANPPExp âre lower ( Figure 3.T2).

In the histogram, the difference distribution is centered at a mean value of 4.46%o

(122.61%), indicating that modelled values are generally 4-5% higher than expected

values ( Figure 3.12). Larger differences exist in areas where tussock tundra and mesic

meadow cover is high. In these areas modelled values are l0-25Yo lower than expected.

For these vegetation classes, expected ANPP may be overestimated. In areas with high

barren ground and sparsely vegetated cover, modelled ANPP values tend to be 10-40%

higher than ANPPExp. As with ANPP¡¡y¡, ANPPMSAyT values are 80-90Yo higher than

ANPP¿*p in a small region in the center of the Park, where ground cover is likely crustose

lichen covered rock. These discrepancies may also be attributable to inherent inaccuracies

in the expected vegetation map.
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Regression analysis of modelled and expected ANPP values indicates a significant

linear relationship for both ANPP¡rovr and ANPP¡qsavr (Figure 3.13). Modelled

ANPP¡¡y¡ and ANPP¡asay¡ vâlues explain 73.5% and 65.7Yo of the variation in ANPP¿*'

values, respectively. Although in both cases a significant linear relation can be fit to the

data, the scatter plots of ANPPruovr and ANPP¡xp ând ANPP¡1say¡ and ANPPExp r€veal ân

non-linear trend; with increasing productivity, the increase in expected ANPP values is

greater than for modelled ANPP values (Figure 3.13).

Effects of Sub-Pixel Water Cover and Topography

The effects of water cover and topographic complexity on the relationship

between modelled ANPP and expected ANPP were evaluated in a multiple regression

(Table 3.6). Water cover had a significant negative effect in ihe regression with

ANPP¡v1sayr, but not with ANPPNovT (Table 3.6). With increased water cover, modelled

values tend to be greater than expected.

For both ANPPuovl and ANPPysay¡, slope variance has a significant positive

effecl whereas slope mean has a signifïcant negative effect (Table 3.6). Elevation

variance had no significant effect (Table 3.6). With increasing slope variance modelled

values tend to be lowerthan expected values. High slope variance indicates rough terrain.

Therefore, in areas with complex topography, the model may underestimate ANPP. With
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increasing mean slope modelled values tend to be higher than expected values. High

mean slope indicates steep terrain. Thus, in these areas the model may overestimate

ANPP.

Table 3.6. Results for multiple regression analysis on the normalized percent difference of
modelled ANPP and expected ANPP with the proportion of water and topographic variables.

Dependent variable: NPP-Expected. N= 13975; Ñ : eg.Ay"

Variable Coefficient T-Ratio P-Value
Constant

NPP-NDVI
o/o}{20

Slope Variance

Mean Slope

Mean Elevation

27.28

r.64
-33.32

t9.69

-6.31

r.2

14.4

r79
-2.38

7.04

-8.46

0.824

<0.0001

<0.0001

0.0175

<0.0001

<0.0001

0.4097
Dependent variable : NPP-Expecte d. rr 13 97 5 ; Ñ : øO.gN

Variable Coeff,icient T-Ratio P-Value
Constant
NPP-MSAVI
o/oE20

Slope Variance
Mean Slope
Mean Elevation

<0.0001
<0.0001

<0.0002
<0.0001
<0.0001

0.2293

-13.93
1.2

-58.61

17.46
-6.45

-2

4.02
t47

-3.67
5.48
-7.59
-1.2

Effects of Vegetation Type

The results of a multiple regression analysis with the normalized difference of

modelled and expected ANPP and the proportion of each vegetation class within each

pixel for each of the 6 vegetation classes are presented in Table 3.7. Although significant,

only a very small amount of the variation in the normalized difference values for the

NDVI model values can be attributable to proportional vegetation cover @: 6.80/o,

p<0.0001). By contrast, with the MSAVI model 53.0% of the variation in the normalized

difference values can be attributed to the proportion of vegetation cover in each

vegetation class (Tabl e 3 .7). All of the vegetation classes had significant effects, and the
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high productivity classes (MM, WSM, and TT) had the greatest effecrs. This finding

supports the inteqpretation of the difference map ( Figure 3.12), where modelled values

tend to be lower than expected for high productivity vegetation types, and high for low

productivity vegetati on types.

Table 3.7. Results for multiple regression analysis on the normalized percent difference of modelled ANpp and
e4pected ANPP with the proportion of vegetation cover for each class.

Dependent variqble :Normalized Difference of Npp-MSAM and Expected Npp. n= 16561; Ñ = sl.OW
Variable CoefÍrcient T-Ratio P-Value
Constant

MM
WSM
TT
DST
SPV

BRN

-39.56

39.49

JJJ.JO

218.34

-31.08

-r0.72
19.38

-42.7

4T

5r.2
66.7

-3.88
-3.34

5.3

<0.0001

<0.0001

<0.0001

0.0001

0.0008
<0.0001

<0.0001
Dependent variable:Normalized Differenge of NPP-NDM and Expected NPP. n= 1656L;R2 = O.gt%
Va¡iable Coefficient T-Ratio P-Value
Constant

MM
WSM
TT
DST
SPV
BRN

17.66

I
232.r5

63.9

-158.37
15.14

91.64

12.8

5.56
23.9
13.1

-r3.3
3.t6
16.8

<0.0001
<0.0001

<0.0001
<0.0001

<0.0001

0.0016
<0.0001

In summary, when compared to the expected ANpp map, the MSAVI model

produced more accurate estimates: with 84.43% of the modelled annual NPP pixel values

within 30Yo of the expected annual NPP pixel values, compared to the NDVI model,

where only 4l.76Yo of the pixel values within 30%o of the expected annual NPP pixel

values.
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Inter-Annuøl Pøtterns of Mean NPP

A series of NPP images for each composite period throughout the growing season

illustrates the spatial patterns of productivity within the Park (Figure 3.14). An annual

productivity curve based on the mean of 150 randomly selected points within the Park

illustrates the timing of onset, peak and end of the growing season (Figure 3.15). Onset of

the growing season occurred directly after snow melt which occurred between June I and

June 11, 2000. During this period mean values increased from 0 to 1g.64 (+16.6) g m-2

lO-days-r. NPP was highest between July I and July 11, 2000 with mean Npp at

22.61(+ll.t) glm2*t0-days. The growing season ended between September I I and

September 21,2000.

Following the onset of the growing season, NPP values were greatest in the central

region of the Park along the Hornaday river valley (Figure 3.14). Tussock tundra and

mesic meadow cover are high in this region. During the June 21 composite period, there

is a substantial drop in productivity, with mean NPP decreasing from 18.64 (+16.6) to

8.42 (x6.4) g m-2 1O-days-t lFigure 3. t 5 a). Mean toral ApAR dropped from 94.2r

MJ/lO-days in the June I I composite period, to 44.86 MJ/l0-days in the Iune 2l

composite period (Figure 3.15 b). In order to examine the cause of this substantial drop in

total APAR, mean total APAR values were extracted from raw daily images for the

month of June (Figure 3.16). It was evident from this curve that snow melt occurred

between June 7 and June 10 (Figure 3.16). After this period there was a steady and large

increase in total APAR as the ground dried and vegetation began to green up @igure

3.16). However, after June 20, daily total APAR values were considerably lower for
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much of the June 2l composite period. Examining the daily APAR and NDVI images,

revealed extensive cloud cover during this period which ultimately resulted in low total

APAR and NPP values for the composite period. Despite cloud cover during this period,

vegetation continued growing and MSAW values continued to climb (Figure 3.15 c), and

despite only a relatively small gain in total APAR for the July I composite period, Npp

values peaked for the year, with mean NPP value s of 22.61(tl 1. 1) glm2|}-days (Figure

3.15 a). During this period, NPP values were relatively large in all areas of the Park, with

highest productivity occurring along the east side of the Hornaday River valley. Over the

rest of the growing season mean NPP values gradually decreased in all areas of the Park.

The growing season ends during the September 11 composite period with mean NPp

dropping fromZ.4 (x2.7)gm-' to 0 g *-' in the September 2l image(Figure 3.15 a). A

map of modelled ANPP computed using MSAVI is presented for in Figure 3.17 tha,t

covers the full extent of Tuktut Nogait National Park.
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3.5. Dlscussrox

Estimates of net primary productivity derived from the AWIRR model provide an

excellent relative measure of the distribution of vegetation productivity within Tuktut

Nogait National Park. Comparatively, modelled NPP corresponds exceptionally well with

expected NPP (Figure 3.10), which is notable considering that the expected NPP map

was produced using methodology and data that was completely independent of the

model. Furthermore, the model is easily implemented and uses the GEoCoMp-n

AVHRR data exclusively. From a park management perspective, the AWIRR Npp

estimates will be particularly useful for asking questions; that is, identifying areas of

interest that warrant further examination, either with high resolution imagery, or ground

surveys.

Model Calibratíon

The reflectance and structural properties of Arctic landscapes differ fundamentally

from more temperate landscapes. As a result, empirical relationships defined between

spectral vegetation indices and NPP model parameters for temperate ecosystems will

produce inaccurate results when applied to arctic ecosystems (Markon et al. 1995; Rees et

al. 1998). The intention of this study was to develop a remote sensing NPP model

specific to low-arctic ecosystems by calibrating model parameters using empirical field

data. The importance of deriving arctic-specific model parameters is apparent when the

results of the FPAR-NDVI relationship are examined. The slope value of the linear

relationship between NDVI and FPAR (equation [17]: 0.638) is lower than for linear

FPAR-NDVI relationships reported elsewhere in the literature (Table 3.1). Many of the
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NDVI-FPAR relations defined in the literature are derived either from empirical FPAR

measurements, or from simulation models parameterized for temperate vegetation

canopies (e.g. Hatfreld et al. 7984; Daugherty 1988; Sellers et al. 1994; Goward and

Heummerich 1992).In these studies large ranges of NDVI values are used to define the

FPAR relationship and a linear relation is fit, despite the factfhatthe relationship

between FPAR and NDVI is slightly non-linear (Goward and Huemm nch l99z).

Deflrning a linear relationship for an inherently nonlinear relation will result in

overestimates of FPAR in landscapes with low vegetation cover. A study examining the

relationship between NDVI and FPAR for African Sahelian vegetation reported a linear

relationship between FPAR and NDVI with a slope of 0.84 (Begue and Myneni 1996);

this value is closer to the slope value derived here for Arctic vegetation. Moreover, using

a vegetation index that corrected for variable background reflectance (i.e. MSAVI)

minimized error in predicting FPAR (Begue and Myneni 1996).

Dry soils with high rock or gravel cover are 'brighter' and have higher reflectance

values than wetter, 'darker', clayJoam soils (Richardson and Wiegand 1977). The effects

of variable soil background reflectance are apparent in the regression between vegetation

cover and FPAR ¡" for samples below 30Yovegetation cover, from which the FPAR-

Vegetation Index relationship \¡ias deflrned (Figure 3.6). Although this regression was

signiflrcant, the coefficient of determination was low as a result of considerable scatter

attributable to variable soil conditions (Figure 3.6). The MSAVI removes some of this

variability by including a soil adjustment factor derived from the relationship between red

and NIR reflectance for bareground (Qi et al. 1994).
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Using the MSAVI, rather than NDVI, to compute FPAR produces modelled NPP

results more in line with expected NPP. Although MSAVI is not currently produced by

GEOCOMP-n, it is relatively easy to compute with the available data. However, even

though MSAVI was demonstrated to reduce variation in the vegetation signal for sparsely

vegetated canopies, it is still necessary to use NDVI to derive both the energy conversion

coefficient and ecosystem respiration. This is because these parameters are based on

published work, from which the data sets used to determine these parameters were

defined using only NDVI (whiting et al. 1992; McMichael er al. 1999).

To evaluate the derived energy to GPP conversion coefficient, GPP was converted

to NPP by subtracting R , and the energy conversion coefficient for Npp (e¡,{pp) was

determined from the resulting equation between NPP and APA_&- (e*rp:0.851). This

value is comparable to those reported for temperate ecosystems with similar vegetation

(reviewed by Gower et al. 1999). Values of eNpp reported for short grass prairie in Texas

range from 0.24 to 0.80 (mean : 0.52 +0.19), and values for tall grass prairie range from

0.80 to 1.33, ( mean :1.02X0.2) (Sims et al. 1978, cited in Gower et al. 1999). A value

of 0.48 was reported for subalpine ecosystems in Oregon (Runyon et al. 1994). Although

annual productivity in the arctic is low compared to temperate regions, the photosynthetic

effrciency of arctic plant species is comparable to, if not higher, than that of temperate

species (Dennis et al. 1978). In temperate regions, the photosynthetic efficiency of

vegetation is dependent on air temperature, atmospheric humidity and soil moisture

(Runyon et al. 1994). However, Arctic vegetation is well adapted to adverse

environmental conditions, with optimum growth rates occurring at temperatures well

below those of temperate species (Fogg 1998). Low temperature optimization in arctic
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plants is related to increased concentrations of RuBP Carboxylase (Chapin and Shaver

1985; Fogg 1998). At higher temperatures, the oxygenase activity of RuBP Carboxylase

results in respiration rates that exceed carbon assimilation, prohibiting these plants from

surviving in temperate climates. At low temperatures, however, this respiration is not

significant and the increased concentrations of the enzyme acts to optimize

photosyntheti c effi ci ency.

In the current application of this model, NPP is computed using AVHRR band 1

reflectance corrected for bidirectional and atmospheric effects in place of PAR surface

albedo (Aoà. PAR albedo was not available from GEOCOMP-n as a result of problems

with the look-up tables used to define the ground-cover specific coeffrcients used to

convert AVHRR channel 1 to PAR albedo. Atthough the BRDF corected channel I

reflectance are close to true PAR albedo for most vegetated surfaces (Cihlar et al. 1997b),

NPP estimates may be improved using actual PAR Albedo measurements.

Model Evøluation

The expected ANPP map provides a extremely useful tool for validating the

AVHRRNPP model, providing spatially continuous estimates of annual productivity

derived from a data source entirely independent of the model input data. Despite its

demonstrated effectiveness, some caution should be used when interpreting the results of

the expected NPP map. Results from the error analysis indicated that the classification

accuracy of the vegetation map was relatively low, and where no ground data exists (i.e.

in the south of the ParÐ there was no way of evaluating the accuracy of the classification.

The mesic meadow class was the most problematic and may have been too broad a class,
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including pixels across alarge range of vegetation productivity. Incorporating an

intermediate class may provide a more accurate catagonzation of the range of vegetation

productivity within the Park. Error in the classification can also be attributed to the fact

that the TM image and the ground samples were acquired at different times. For example,

where wet sedge meadow was incorrectly classified as snow in the 1992 image, it is

likely that in the 2000 image the snow had melted revealing wet sedge meadow beneath.

Although the classification accuracy of this vegetation map could be improved

considerably, producing a high quality vegetation map for this Park is beyond the scope

of this study.

Error in the expected ANPP map can also be attributed to variability in the ANPP

values obtained from literature sources (Table 3.5). This variability was largest in the

high productivity vegetation classes (wet sedge meadow (WSM) and tussock tundra

(TT) and is likely attributable to differences in below-ground NPP estimates for these

classes. It is very difficult to obtain accurate measures of below-ground biomass, and

estimates of below-ground NPP must be determined from ratio estimates of above to

below-ground biomass (Shaver and Chapin 1991). Furthermore, in arctic vegetation, rates

of below-ground root growth vary throughout the growing season (Shaver and Billings

1977). Therefore, estimates of below-ground NPP obtained from ratios of above to

below-ground biomass will vary depending on when the biomass samples were obtained.

This has important implications when evaluating the results of the model against the

expected ANPP map.

Normalized percent difference values for the MSAVI model were highest where

tussock tundra and wet sedge meadow cover was high ( Figure 3.T2). When proportional
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vegetation cover for each class was included in a multiple regression analysis comparing

modelled ANPP and Expected ANPP, WSM and TT cover had the greatest influence on

the regression (Table 3.7). Moreover, the categorization of vegetation into discrete

classes ignores the actual range in vegetation productivity, resulting in overestimates of

expected ANPP where actual ANPP is lower than the mean for that class. Thus, in areas

of high productivity vegetation, modelled values may be lower than expected because of

inaccurate estimates of ANPP for these vegetation classes.

The opposite is true in some areas where modelled estimates of ANPP are higher

than expected and cover of the low productivity classes is high ( Figure 3.lZ). Estimates

of expected ANPP for the barren and sparsely vegetated classes may be too low.

Expected ANPP values for these vegetation types were obtained from data for high arctic

polar desert and semi-desert vegetation @liss et al. 1984; Bliss and Matveyeva l99Z;

Bliss and Gold 1999). Although the floristic structure is similar in the baren and sparsely

vegetated vegetation classes, it is likely that ANPP is higher at lower latitudes where the

growing season is longer, and mean annual temperatures are higher.

Others have examined the effects of subpixel water bodies and variable

topography on AVHRR satellite imagery (Burgess et al. T995; Cihlar et al. 1997a). In this

study correspondence between modelled ANPP and expected ANPP was significantly

affected by variable topography and sub-pixel water cover. With increasing water cover,

modelled ANPP values tended to be greater than expected ANPP (Table 3.6). This is

likely caused by the residual effect of resampling large AVHRR pixels at high view

zenith angle to lxl km during the processing of the imagery (Cihlar et al. 1997a). Where

adjacent pixels with high and low reflectance values occur (i.e. over \¡/ater bodies), higher
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reflectance values in the large AVHRR pixels over land will dominate the values in the

smaller resampled pixels, effectively reducing the apparent effects of water on the

landscape (Cihlar et al 1997). Furthermore, in areas of rough terrain the model may

underestimate ANPP, whereas in areas of steep terrain the model may overestimate

ANPP. Areas with high steep terrain correspond to mountainous areas in the central

region of the Park. Overestimates of ANPP in these areas may be caused by higher than

expected vegetation index values as a result of increased NIR reflectance from lichen

covered rock (Rees et al. 1998). Although these results may provide insight into the

effects of water and topography on modelled ANPP estimates, it should be emphasized

that the effect of these variables on the overall regression relationship \¡/as relatively

small; R2 increased by only 0.7Yofor the MSAVI model, and,O.3Yofor the NDVI model

(Tables 3.6 &.3.7). In a similar study, Burgess et al. (1995) found that the influence of

variable topography on AWIRRNDVI values was minimal.

Factors Influencing NPP ín Tuktut Nogøít National Park

The least productive areas of Tukrut Nogait National Park lack wind protection,

resulting in minimal snow accumulation during the winter. With little insulation from

snow, severely cold temperatures and wind abrasion pose severe limitations on

vegetation. With little vegetation to insulate the soil, the ground thaws quickly and the

gravelly soils retain little water as melted snow drains off quickly (Fogg l99g).

Compounded with low annual precipitation, most arctic plants cannot survive these

conditions. This is apparent in the barren Melville Hills in the central region of Tukn¡t

Nogait where vegetation productivity is lowest; and the coastal region to the northeast,

where a rain shadow effect results in very dry conditions (Figure 3.16).
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The presence of flowing water greatly affects nutrient availability by bringing

nutrients to the root surfaces (Chapin et al. 1988). Some of the most productive arctic

vegetation communities, with the highest biodiversity, are on slopes of river valleys

where water runs freely between the permafrost and the soil surface (Chapin and Shaver

1985; Chapin et al. 1988). This is apparent on the east side of the Hornaday River Valley,

where continuous run-off from the Melville Hills and southern exposure results in the

highest vegetation productivity in the Park @igure 3.16). This area experiences a surge in

productivity early in the growing season, followed by decreased, but steady productivity

throughout the rest of the growing season (Figure 3.14). Along the east slopes of the

Hornaday river valley deciduous plant species are common. For deciduous arctic plants

above-ground growth occurs most rapidly just following sno\¡/ melt, when solar radiation,

water availability and air temperature are most favourable (Chapin and Shaver 1985).

Above-ground growth slows in mid to late summer with below-ground root growth

increasing (Shaver and Billings 1977). The concentration of above-ground growth in

early spring, followed by increased below-ground production in mid to late summer,

enables growth of each plant structure to occur when conditions are most favourable.

Applícation of the NPP Model.

The productivity model presented in this study enables regional scale patterns of

NPP within Tuktr¡t Nogait National Park to be spatially quantified with a relatively high

degree of accuracy. The model is easy to implement and uses GEOCOMP-n AVHRR

data exclusively. An assessment of the accuracy of the absolute NPP values produced

from the model indicates good correspondence. However, this accuracy assessment is

limited by the accuracy of the expected annual NPP map and could potentially be higher.
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The NPP estimates will provide useful information for ecosystem monitoring in northem

regions, enabling the identification of high productivity areas where biodiversity is

expected to be highest. Furthermore, model results will provide the necessary empirical

data to justify management activities in areas of high biodiversity. The lxl km spatial

resolution of the AVHRR NPP maps enable patterns of productivity to be evaluated and

analyzed at a regional scale. The 10-day temporal resolution of these data will enable

Park managers to study interannual patterns of productivity both within and among Parks.

This will provide information about the timing of events such as onset and duration of the

growing season, when and where peak productivity occurs within the Park, and how

environmental factors such as global warming influence productivity patterns. Spatially

and temporally continuous estimates of NPP will be extremely useful to wildlife

managers. These data could be used to improve the efficiency of aerial surveys. For

example, aerial surveys could be stratified by correlating caribou density with spatial and

temporal patterns of productivity within a Park. Considerin gthat there is currently no

other practical way of assessing regional scale productivity patterns in Canada's northern

national Parks, the NPP model will provide a useful tool for ecosystem monitoring and a

source of empirical data for justifying management decisions.
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4. VALIDATING GEOCOMP-N AVHRR SATELLITE IMAGERY
USING SCALED.UP FIELD MEASUREMEI\TS OF REFLECTANCE

4.1. AssrRAcr

The remoteness and large spatial extent of the arctic makes remote sensing a

necessary tool for monitoring the effects of anthropogenic disturbance and the potential

effects of climate change on northern ecosystems. Accurate landscape-scale

measurements of ecosystem processes derived from satellite imagery require data that has

been corrected for atmospheric and bi-directional reflectance effects. The effectiveness of

these corrections for AVHRR imagery acquired in a region of low-arctic vegetation was

evaluated using scaled-up measurements of surface reflectance obtained in the freld with

a hand-held radiometer. The influence of landscape heterogeneity on scaling-up fine

resolution observations \¡/as examined by aggregating Landsat NDVI to AIIVRR

resolution in both homogeneous and heterogeneous areas. Results indicate that landscape

heterogeneity has a large influence on scaling-up fine scale observations because of the

influence of numerous small water bodies and differences in sensor bandwidths. Scaled-

up freld measurements of NDVI trended well with atmospherically corrected AVHRR

NDVI, although fìeld measurements of NDVI were consistently higher. This difference is

likely attributable to directional reflectance effects as a result of large sun angles.

Applying a bi-directional reflectance correction @RDF) should improve correspondence

between AVHRR NDVI and NDVI computed from field measurements of surface

reflectance. However, current BRDF corrected imagery should not be used until

improvements have been made to the GEOCOMP-n bi-directional reflectance correction

procedures.
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4.2. IxrRooucrroN

Large scale models of terrestrial net primary productivity GVPP) commonly utilize

satellite imagery from the NOAA Advanced Very High Resolution Radiometer

(AWIRR) as input data to derive biophysical model parameters (Field et al. 1995;

Ruimy et al.1996; Liu et al. 1997;Malmström et al. 1997;Goetz et al. 1999). The

AVHRR sensor produces coarse resolution multispectral images (1.1 km at nadir) with

very high temporal frequency (twice daily global coverage). Variable spectral response of

vegetation in the red and near infrared (NIR) region of the spectrum enable vegetation

indices to be computed from linear combinations of the first2 AIIVRR bands

@l:Visible; and B2:NIR). The most common of these indices is the normalized

difference vegetation index OIDVI), which is computed from the difference of B2 and Bl

divided by the sum of these bands (Rouse et al. 1973). AVHRR NDVI is frequently used

to indirectly measure biophysical properties of vegetation canopies such as vegetation

biomass (Tucker L979;Boxet al. 1989), leaf area index (Chen lggl),primary production

@ox et al. 1989), and fraction of absorbed photosynthetically active radiation @egue and

Myneni 1996; Moreau and Li 1996).

Relationships between NDVI and these biophysical parameters are typically

derived from empirical measures of surface reflect¿nce obtained in the field (e.g. Chen

1996). However, atmospheric attenuation of visible and near-infrared reflected radiance,

caused by atmospheric aerosols and water vapour, produces considerable variation in

normalized difference vegetation index (NDVI) (Tanré et al. 1992; Goetz 1997).NDVI is

also strongly influenced by directional surface reflectance effects (Holben et al. 1986).

Thus, when applying relationships deflrned from fîne-scale ground measurements to
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coarse-resolution satellite imagery, it is imperative that the imagery be corrected for such

effects so that the pixel values in the image are a true representation of surface

reflectance.

The GEOCOMP-n image processing system at the Manitoba Centre for Remote

Sensing uses the simplified method of atmospheric correction (SMAC) to correct

AVHRR channels I and2 for atmospheric effects (Cihlar et al. 2000). The SMAC

algorithm utilizes sun-sensor angle information, estimates for vertically integrated

gaseous constants, aerosol optical depth, atmospheric water vapour and ozone content to

compensate for atmospheric absorption and scattering (Rahman and Dedieu Tgg4).

Bidirectional reflectance @RDF) effects are corrected for using landcover specific

coefficients and information on sun-sensor geometry (Cihlar et al. 2000). However, large

sun angles and long sensor path lengths present signiflrcant challenges when worþng with

AVHRR imagery in northern latitudes (Holben 1986;Rahman and Dedieu lgg4). At high

solar zenith angles, differences between the actual state of the atmosphere and the state

assumed by the SMAC algorithm likely contribute considerable error to the imagery

(Cihlar et al. 1997b). Furthermore, georeferencing accuracy is not consistent or reliable in

spring, autumn and winter months, as many of the GCP points used to georeference

images are located on northern coastlines and cannot be used when covered by snow or

ice. The BRDF correction uses landcover-specific correction coeffrcients, requiring that

each AVHRR pixel be assigned to a landcover class. Thus, concerns regarding the

reliability of BRDF corrected AVHRR surface reflectance have been raised because of

the dependence of spatially collocating AVHRR pixels with a land cover classification of

limited detail (G. Fedosejevs pers. comm.).

89



Rigorous validation of biophysical parameters derived from AVHRR data has

been conducted in grassland (Sellers etal.1992), boreal forests (Sellers et al. 1995),

grassland/ savannah @rince et al. 1995), and coastal, montane and subalpine ecoregions

(Goward et al. 1994). However, there is a paucity of empirical ground validation for

biophysical parameters derived from AVHRR imagery in terrestrial Arctic ecosystems.

Often, when NPP models are applied to arctic ecosystems, it is assumed that model

coefficients are equivalent to those defined for rangeland or pasture (eg. Cihlar et al.

1997a). Although arctic vegetation is similar in structure to rangeland of pasture, the

reflectance properties of arctic vegetation are unique @ees et al. 1998).

Validating biophysical parameters derived from satellite imagery involves

comparison with independently obtained data sources, such as field data or other

independent satellite data sets (Cihlar et aL.1997). Alternatively, results can be compared

with output from empirical models describing physical and biophysical processes for a

specific location (Cihlar etal.1997). When interpreting results of such inter-comparisons,

it is important to consider the possibility of error in the comparison data set. Indeed, both

the comparison data and the data being evaluated may be subject to similar error or bias

(Cihlar et al.L997). Degraded high resolution satellite imagery can be used to evaluate the

accuracy of bio-physical parameters computed from coarser resolution imagery (Cihlar et

al. 1997 b), however, only ground measurements are representative of actual surface

reflectance in the absence of atmospheric effects. The fundamental challenge in

comparing reflectance measurements obtained in the field, to reflectance values derived

from AVHRR imagery lies in charactenzing a continuous surface equivalent to the

resolution of the AVHRR pixel, using discrete fîne-scale measurements.

90



The main objective of this paper is to evaluate the accuracy of corrected AVHRR

NDVI for arctic landscapes, by comparing AVHRR NDVI pixel values with scaled-up

measurements of NDVI obtained in the field using a hand-held radiometer. Comparing

AVHRRNDVI pixel values with discrete field measurements of NDVI integrated across

a lxl km area is potentially subject to error attributable to a number of factors. Raw

AVHRR pixels are resampled from 1.lkm (or larger) resolution to 1 km resolution,

thereby altering the original pixel values. Also, the positional accuracy of the AVHRR

image data is relatively low (+5gg¡r) and the area of ground from which the field

measurements of NDVI are obtained may not match up exactly with that covered by the

AWIRR pixel. Furthermore, bandwidth differences between the sensor of a hand-held

radiometer and the AVHRR sensor will result in different NDVI values, with the

magnitude of this difference increasing with increasing vegetation cover (Figure 4.1). It

is hypothesizedthatthese factors will have a larger effect on correspondence in

heterogeneous landscapes compared to homogeneous landscapes. If this hypothesis is

true, the accuracy of AIIVRR NDVI validation may be improved by locating field

samples in homogeneous areas. The objectives of this study are:

1. To evaluate the correspondence between aggregated Landsat NDVI and AVHRR

NDVI in homogeneous and heterogeneous areas.

2. To evaluate the influence of the above factors on scaling-up lxl m fîeld

measurements of NDVI to Landsat and AVHRR resolution.
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4.3. Mnrnonol.ocy

Study Area and Ground Data

Ground data used for this analysis were collected between July 8'h and August

10th, 2000 within a20 knradius of three areas within Tukrr¡t Nogait National park, NWT

(See Chapter 2: Study Area, Figure 2 l). The vegetation within the Park is characteristic

of low arctic tundra, consisting of a mosaic of sparse and barren vegetation cover mixed

with mesic dwarf shrub/ sedge meadow, tussock tundra, and wet sedge meadow (See

Chapter 2: Study Area). Arctic vegetation productivity is strictly governed by water

availability and exposure (Chapin and Shaver 1985; Chapin et al. 1988), and the most

productive vegetation communities within the Park exist at low elevations in valleys,

along rivers and on hill slopes þersonal observation).

A total of 18 (lxl km) sites were selected to represent the range of vegetation

communities within the Park. Sites were located in relatively homogeneous landscapes

(i.e. free of small lakes and of a consistent vegetation type within a 1x1 km area). Plot

layout was designed to facilitate scaling-up ground measurements to a lxlkm area for

comparison with spatially collocated AVHRR pixels (Figure 3.2). Within each site, nine

30x30 m plots were located in a 3x3 grid, located 250m in from the edge of the site

boundary (Figure 3.2). The southwest corner of each plot was located on the ground

using a hand-held global positioning system with a positional accuracy of +4m. Within

each plot, five lxl m sample quadrats were located in a cross pattern using a compass

and a line of fixed length (Figure 3.2). For each sample quadrat (n:865), incident and

reflected radiance was measured in 5 spectral regions (450-520 nm,520-600 nm, 630-690
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nm,760-900 nm and 1550-1750 nm) using a Cropscan MSR 5 radiometer (Cropscan fnc.,

www2.isl.nelcropscan). The radiometer was attached to a boom and held 2 meters above

the surface, enabling a I meter field of view, and the average of five scans was recorded.

Up and downJooking sensor pairs were calibrated to each other and all radiance

measurements were corrected for sensor-temperature effects and variable sun-angle,

using a post-processing program supplied by the manufacturer. Percent surface

reflectance of each sample was calculated from the down- and upJooking radiance

measurements. With both up and downlooking sensors it was possible to accurately

measure surface reflectance under variable cloud conditions and various sun-angles.

Sstellìte Imnge Data

The AVHRR imagery used in this analysis were provided by the Manitoba Centre

for Remote sensing (MCRS). Raw AVHRR imagery \¡/ere processed using the

GEOCOMP-n image processing system developed by the Canadian Centre for Remote

Sensing (CCRS). Raw daily images are georeferenced, resampled to lxl km resolution

and projected in Lambert Conformal Conic projection. Georeferencing accuracy was

reported to be +500m @. Hurlbert, pers. comm.). The image is then calibrated to

reflectance and corrected for atmospheric and bidirectional reflectance effects. Cloud-free

10-day maximum value NDVI composites are then created by selecting the pixel with the

largest NDVI value from the daily images within the l0-day composite period. An

AVHRR NDVI maximum value composite image covering the study area was obtained

consisting images acquired between July I I and July 2l,2OOO. This composite period

best corresponded to the peak of the growing season, a period when variation in NDVI

values are minimal. This period also best coincided with the time period during which
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ground samples were obtained. For the following analyses three of the available

GEOCOMP-n channels were used:NDVI computed from top of atmosphere reflectance

OIDVI,.t.J;NDVI computed from atmospherically corrected visible and NIR reflectance

(NIDVI,,'..); and NDVI computed from AWIRR bl and b2 corrected for bi-directional

refl ectance effects (NDVI6,¿¡)

A precision geocorrected and radiometrically calibrated Landsat 7 ETM scene

acquired on July 13,2000 and centeredat69" 0B' 43- N 122" 4l' 57"w,was obtained

from Radarsat International (Richmond, BC). The image provided by Radarsat

International was georeferenced using 10 control points ßMS + 18.34m) and projected

in UTM zone 10 North (NIAD 83). Image radiance was converted to top of atmosphere

reflectance using acquisition date, sun angle and azimuth to convert Landsat ETM

radiance to exoatmospheric reflectance. NDVI was then computed as:

NDVI: (84-B3y(84+83) tll

where 83 and B4 is the Landsat visible (red) and NIR reflectance, respectively.

Lands c ap e H eterog e neíty

Examining the effects of landscape heterogeneity on integrated reflectance

required a number of sample sites located in both homogeneous and heterogeneous areas.

Twenty homogeneous and 20 heterogeneous areas, each lxl km in size, were visually

located within the Landsat NDVI image. These areas were selected to be representative

of the range of vegetation types and productivity within the Park. Homogeneous areas

were selected from areas with no or very few lakes, simple topography and overall low

variation in NDVI. Heterogeneous areas were selected in areas with variable NDVI
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values, containing numerous small water bodies, and complex topography. From the

AVI{RR NDVI image, the position of the upper left corner for each AVHRR pixel was

delineated in a vector point fîle. Using the pixel comer points as a guide, 20 lxl km

image 'chips' were extracted from the heterogeneous areas, and,z0 from the

homogeneous areas. For each lxl km image chip 83, B4 and NDVI pixel values \¡/ere

extracted from the Landsat image. Because the Landsat image had not been corrected for

atmospheric effects, pixel values corresponding to each of the lxl km Landsat image

chips were extracted from the AVHRR NDVI image computed from top of atmosphere

refl ectance (AVHRR NDVI,"1oo).

ScøIing-up Field NDVI

To compare the integrated field measurements of NDVI with Landsat and

AVHRR image data, each lxl km field site was located within the Landsat and AVHRR

images using the GPS coordinates measured in the field. For each of the 18 field sites,

lxl km image chips were extracted from the Landsat image. For each 30x30 m field plot,

the corresponding Landsat NDVI pixel value was also extracted. Pixel values

corresponding to the location of the center plot within the lx1 km field site were

extracted from both the atmospherically corrected AVHRR image (AWIRRNDVI,,nu.),

and the bidirectional reflectance corrected AHVRR NDVI image (AVHRR NDVI5.6¡).

Spøtiul Degradatíon of Landsøt NDVI

A nonJinear interaction between NDVI and the visible and NIR reflectance of a

surface will result in different values of aggregated NDVI depending on how the Landsat

NDVI values are degraded to AVHRR resolution (Aman etal. 1992). Spatially degraded
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NDVI from high resolution image pixels (i.e. Landsat) can be computed in two \¡/ays.

Integrated NDVI (iNDVÐ is obtained by determining the mean of the NDVI pixel values

within the aggregate area: iNDVI: I NDVI / n, where n is the number of NDVI pixels

within the aggregate area. The spatial average of NDVI (mNDVI) is obtained by

computing NDVI from the mean of visible and NIR reflectance pixels within the

aggregate area: mNDO'-¡ = (/x - /y) I (x + /y), where /x is the mean of near infrared

reflectance (trlß.) pixels and ly is the mean of visible reflectance (VIS) pixels across the

aggregate area. Differences between iNDVI and mNDVI can be as large as 7o/o, and the

slope and intercept of the linear correlation between iNDVI and mNDVI are dependent

on the spatially heterogeneity of the surface (Aman et al. 1992). To determine whether

the method in which Landsat NDVI \¡/as aggregated had any influence on the

conespondence with AVHRRNDVI, both iNDVI and mNDVI were computed from the

extracted Landsat image chips.

To examine the effects of different sensor bandwidths in comparing NDVI values

derived from different sensors, freld measurements of NDVI were computed using the

mean of radiometer bands 2 and 3 as the visible band in the NDVI calculation. By

computing the mean of radiometer bands 2 and 3, the radiometer visible reflectance

values should be closer to the AVHRR visible reflectance, as the AWIRR visible band

covers a larger portion of the visible spectrum compared to the radiometer band 3 alone.

Qu antífy í n g L a n d s c øp e H et e r o g e n eíty

The influence of water cover on the correspondence between aggregated Landsat

NDVI and AVHRRNDVI was examined by determining the proportion of water cover
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within each lxlkm image chip. A water mask was created by performing an

unsupervised k-means classiflrcation of the Landsat image. The proportion of water cover

within the lxlkm image chip was then computed by determining number of water pixels,

then dividing by the total number of pixels within that area.

The coefficient of variation (CV) was used to quantify heterogeneity within the

sample areas. The CV is a standardized measure of spatial variability and was determined

by dividing the standard deviation of the 1600 Landsat NDVI pixel values within each

lxl km area by the mean of the pixel values within thaf area.

Statistícal Analyses

Correspondence between both iNDVI and mNDVI computed from aggregated

Landsat data and AVHRR NDVI in homogeneous and heterogeneous areas was

evaluated using linear regression analysis. The influence of water cover on the

correspondence between iNDVI and mNDVI computed from aggregated Landsat data

was evaluated by including proportional water cover in a multiple regression analysis.

Similarily, the influence of landscape heterogeneity on the correspondence between

iNDVI and mNDVI was evaluated by including CV in a multiple regression analysis.

For each 30x30m field plot, the mean of the five individual radiometer

measurements of NDVI values was determined. Radiometer data was accidentally not

recorded for plots 2l and 69 therefore reducing the number of 3Ox30m field plots from

n:162 to n:l60. Correspondence between these values and the individual Landsat NDVI

pixel values was evaluated using linear regression analysis. For each of the l8 lxl km

field sites, NDVI was integrated over the lxl km area by determining the mean of the 45
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lxl m radiometer measurements of NDVI (or 40 lxl m measurements, for sample 2 and

6 where data was missing). Correspondence between integrated field NDVI and the

aggregated Landsat NDVI, AVHRR NDVI,.." and AVHRR NDVl6¡a'values was

evaluated using linear regression analysis. The influence of landscape heterogeneity on

the relationship between integrated field NDVI and AWIRR NDVf,',u. was evaluated by

including CV in a multiple regression.
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4.4. Rssulrs

Influence of Landscape Heterogeneíty on the Correspondence Betrveen Aggregated
Løndsat NDW and AVHRR NDW

Mean CV was significantly lower in the homogeneous lxl km sample areas

compared to the heterogeneous sample areas, indicating that visual interpretation of the

Landsat NDVI image was adequate in distinguishing homogenous from heterogeneous

areas (Table 4.l).

Table 4.1. Quanti$ing spatial heterogeneity in lxl km
sections of a Landsat NDVI image. CV is the coefFrcient
of variation for the NDVI pirel values within each sectior¡-

Mean CV

Heterogeneous (n=20) 45.46yo

Homogeneous (n=20) l4.58yo

P-Value for one-tailed T-Test 0.0002

Correspondence between aggregated Landsat NDVI and AVHRR NDVI was

considerably higher in homogeneous areas compared to heterogeneous areas (Figure 4.2).

In homogeneous areas, the linear regressions were highly significant for both iNDVI and

mNDVI (iNDVI: Ñ : gl.SYo, p<0.0001, n:Z};mNDVI: ñ:97.4y0, p<0.0001 , n:20)

and there was very little difference in the R2 values between iNDVI and mNDVI (Figure

4.2).In heterogeneous samples, the correspondence between aggregated Landsat NDVI

pixels and AVHRRNDVI pixel values was considerably lower (Figure 4.2).

Furthermore, the proportion of variance explained by the linear regression between

AVHRR NDVI and Landsat mNDVI was slightly higher compared to the regression

between AVI{RR NDVI and iNDVI, with RÍ increasing from 75.7 to 77 .g% Qigure 4.2).
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Figure 4.2. Scatterplots of (A) Integrated Landsat NDVI (iNDVI) and AWIRR NDVI
computed from top of atmosphere reflectance; and (B) Mean Landsat NDVI (mNDVI) and
AVHRR NDVI computed from top of atmosphere reflectance. For heterogenous samples, F
is nearly equal, indicating no increase in correspondence with mNDVI. For heterogeneous
samples, R2 is slightly higher for iNDVI, suggesting iNDVI corresponds better with AVHRR
NDVI. Overall, correspondence is higher in homogenous samples compared to heterogenous
samples.
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For all cases, aggregated Landsat NDVI values were higher than AVHRR NDVI,.1ou. This

difference was largest where NDVI values were low (Figure 4.2).Withincreasing NDVI,

the difference decreased and at NDVI:0.5, AVHRR NDVI exceed Landsat NDVI. For

example, at AVHRR NDVI :O.Z,Landsat iNDVI :0.26, and at AVHRR NDVI :0.41,

Landsat iNDVI:0.4 (Figure 4.2 a).

The linear regression between iNDVI and mNDVI for homogeneous samples was

highly significant @: ss.suo, p<0.0001 , n:20) with near l:l correspondence (Figure

4.3 a). Correspondence was lower for the linear regression between iNDVI and mNDVI

for heterogeneous samples as a result of increased scatter in the scatterplot CR2 
: 95.3yo,

p<0.0001, n:20; Figure 4.3 b) In heterogeneous samples, where NDVI values were low,

mNDVI tended to be higher than iNDVI (Figure 4.3 b). Results from a multiple

regression indicate the proportion of water within the lxl km area had a significant effect

on the correspondence between iNDVI and mNDVI when both homogeneous and

heterogeneous samples \ryere pooled (Table 4.2 a). The inclusion of water cover in the

regression increased the coefficient of determination from 98.5% (mNDVI vs. iNDVI) to

99.6% (mNDVI vs. iNDVI + þO)(Table 4.2 a). The slope coefficient for water cover

was equal to 0.129, indicating that with increasing water cover, iNDVI decreases with

respect to mNDVI. Although signifrcant, the CV had no effect on the correspondence

between iNDVI and mNDVI (Table 4.2b).
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Table 4.2. Multiple regression between mNDVI and iNDVI pooled for both
homogeneous and heterogreneous areas, with the proportion of water within
each sample area, (a)H20; and with the coefficient of variation. (b) cv.
(a) IUO Dependent Variable

mNDVI

*= gg.aow

N:40
Independent Variables

Y-Intercept

iNDVI
o/oHz}

Coefïicient

-0.006

1.019

0.129

P-Value

0.0674

<0.0001

<0.0001

(b) CV Dependent Variable

mNDVI

R2= gg.so%

N:40
Independent Variables

Y-Intercept

iNDVI

CV

Coeffrcient

0.0031

0.988

712.6F-6

P-Value

0.59

<0.0001

0.038

Evøluating Correspondence Befiveen Scaled-up Ground Measurements of NDVI ønd
AVHRRNDW.

Field NDVI vs. Landsat NDVI

Overall, integrated field measurements of NDVI trended extremely well with the

corresponding satellite measurements (Figure 4.4 a-d). The integrated field measurements

of NDVI were consistently higher than both LandsatNDVI and AVHRRNDVT.-.". A

highly significant linear relation between the mean of five lxlm NDVI measurements

and the corresponding individual Landsat NDVI pixels @:tz.ssuo, p<0.0001, n:I60)

demonstrated not only the effectiveness of characterizing surface reflectance across a

30x30 m area with discrete 1 m field measurements, but that locational error is minimal

for both the Landsat image and the ground measurements @igure a.a ù.Írtgh
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Figure 4.4 Scatterplots of (A) The mean of 5 lxl m ground measurements of NDVI vs.
spatially collocated individual Landsat NDVI pixels; (B) The mean of all lxl m ground
NDVI measurements within the lxl km sample area vs. Landsat NDVI integrated over the
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colrespondence between aggregated Landsat iNDVI and the mean of the freld

measurements of NDVI within each lxl km site clearly illustrates the effectiveness of

characterizing reflectance across a large area by scaling up lm ground measurements to I

km (R2:95 .3lyo,p<0.0001, n:l8, Figure 4.4b).

Low positional error in both the Landsat image (R.MS : *18 m) and the freld

samples (RMS : +4 m) resulted in highly accurate spatial collocation between the

Landsat image pixels and the field samples. Thus, there was also high accuracy in the

spatial correspondence between Landsat NDVI pixels aggregated over lxl km, and the

lxl km integrated field measurements of NDVI. Therefore, it follows that a highly

significant linear regression between aggregated Landsat NDVI and AWIRR NDVI

within the lxl km field sample areas @-2:97.8yo,p<0.0001, n:l8) indicates error

attributable to the spatial collocation of the integrated field measurements of NDVI and

the corresponding AVHRR NDVI pixels was minimal (Figure 4.4 c).

Field NDVI vs. AVHRRNDVI

The integrated field measurements of NDVI were consistently higher than both

the Landsat NDVI and AVHRR NDVf,n,u" values. Correspondence between integrated

field NDVI values to Landsat NDVI values was not 1:1, with integrated field NDVI

values increasing relative to Landsat NDVI as NDVI increases (Slope : 0.67, Figure 4.4

b). Although not a perfect 1:l relationship, the correspondence between the integrated

field measurements of NDVI and AVHRRNDVI values was close to 1:1, and integrated

field NDW values were consistently higher than AVHRR NDVI (Figure 4.4 d).
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Considering the potential error involved in matching fîeld measurements with

coarse resolution image pixels, the integrated field measurements of NDVI correspond

very well with the AVHRR ND'Vfsn,u" çn2:Sa.+%, p<0.0001, n :18; Figure 4.4 d).

Computing mNDVI for the integrated field measurement did not improve correspondence

with AWIRR NDVIs-u". This can be attributed to the fact that the field samples were

selected in homogeneous areas, and from the preceding analysis it is evident that mNDVI

is equal to iNDVI in homogeneous areas @igure 4.3 a).

correspondence between BRDF corrected AHVRR NDVI (AVHRR NDVI6,¿¡)

and integrated field measurements of NDVI was considerably lower than with the

AWIRRNDVr,.u" (R'o.or: 65.72yo, p<0.0001) suggesting that the BRDF corection

contributed error or noise into the AVHRR NDVI values.

Correspondence between integrated field measured NDVI computed with the

average of radiometer bands 2 and 3 and the AVHRR NDVI,'''" values was slightly lower

than with field NDVI computed with band 3 alone (PJ :87.5%, p<0.0001; n:18).

However, the linear equation for the best fît produced a slope value slightly higher than

the best fit line for field NDVI computed with band 3 alone (AVHRRNDVI: 0.8789

GRD NDVIuz¡ - 0.1532). The values for Integrated field measured NDVI computed with

the mean of bands 2 and3 are closer in absolute terms to the AWIRRNDVI values.
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4.5. Drscussrox

Parameters in remote sensing driven NPP models are often derived from

relationships defined from fine-resolution ground measurements (i.e I to 10m), that are

scaled-up and applied to coarse resolution (i.e. I km) satellite imagery (Field et al. 1995;

Ruimy et al. 1996; Liu et al. 1997; Malmström ef. al. T997). The accuracy of productivity

estimates derived from these models depends on the ability of the AVHRR NDVI data to

represent the actual physical conditions at the surface. It is therefore imperative that the

AVHRR NDVI computed from surface reflectance data be validated using independent

data sets obtained from measurements in the field. However, evaluating AVHRR pixel

values with scaled-up field measurements of surface reflectance is subject to error from a

number of sources, including: error in positional accuracy of AVHRR image and the

comparison data set (Cihlar et al. 1997a); altered AVHRR pixel values, the result of

resampling larger off-nadir pixels to a specific resolution (Cihlar et al. 1997b); nonJinear

scaling interactions between NDVI and surface reflectance (Aman et al. 1992);

differences in sensor bandwidths (Teillet et al. 1997); and attempting to charactenze a

continuous and inherently variable surface using a sample of discrete ground

measurements.

One objective of this paper was to assess the degree to which these sources of

error influence the correspondence between integrated field measurements of NDVI and

AVHRR NDVI. It is apparent from the preceding analyses that selecting sample sites in

homogeneous areas had the effect of minimizing spatial collocation error, non-linear

scaling interactions in NDVI, as well as improving the ability to charactenze a

continuous surface with a sample of discrete measurements. The results suggest these
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data sets are indeed comparable, and therefore field measurements of NDVI can be used

to evaluate the effectiveness of the atmospheric and bi-directional reflectance corrections

on AVHRR NDVI data obtained from A¡ctic landscapes, provided that sample sites are

located in homogeneous regions.

Relatively low significance in the regressions between aggregated Landsat NDVI

and AVHRR NDVI pixels for heterogeneous areas suggests a large degree of error in the

spatial collocation of these data sets. Cihlar et al. (1997) noted a large degree of scatter

when comparing aggregated Landsat NDVI with AVHRR NDVI in boreal forest. This

scatter was attributed to misregistration between the data sets and high variation in NDVI

from one pixel to the next, as well as the influence of neighbouring pixels as a result of

the resampling of originally larger AVHRR pixels to lxl km resolution (Cihlar et al.

1997b).In heterogeneous areas, the influence of these factors on the discrepancy between

aggregated Landsat NDVI and AVHRR NDVI will increase with large spatial collocation

elTors. However, despite misregistration error, the effects of these factors are less

apparent when comparing data extracted from homogeneous areas, and as a result,

correspondence was higher between aggregated Landsat NDVI and AVHRR NDVI

@igure 4.2).In homogeneous areas, the Landsat NDVI pixels within each of the lxl km

image chips exhibited lower variation compared to heterogeneous areas (Table 4.1). This

suggests greater persistence in the landscape and high autocorrelation between adjacent

pixels. Within the AVHRR NDVI image, high autocorrelation inherent to homogeneous

landscapes is further compounded by autocorrelation introduced as a result of resampling

large off-nadir AVHRR pixels to lxl km resolution. Thus, even though AVHRR pixel

values may not correspond to the exact section of land covered by the ground sample site,
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in homogeneous areas the data are comparable. The inherently high autocorrelation in

such areas infers a high probability that the difference between adjacent AVHRR pixels

will be small.

Typical landscape features in arctic ecosystems have spatial resolutions that are

less than that of AVHRR image pixels (Stow et al. 1998). Thus, reflectance recorded by

the AVHRR pixel will be influenced by a mixture of landscape elements. Examining the

influence of this mixture is important as it has implications in extending relationships

between NDVI and model parameters defined at a small scale (i.e. 1-l0m) to lkm

AVHRR data (Stow et al. 1998). The influence of water proportion on AVHRRNDVI

will be of particular importance as \¡/ater does not contribute to terrestrial NPP.

The linear correlation between mNDVI and iNDVI is not affected by the time of

acquisition, spatial resolution and landcover type (Aman et a|.1992), and the effects of

topography have been shown to be minimal in AVHRR NDVI data @urgess et al. 1995).

However, the effects of nonlinear scaling interactions between NDVI and surface

reflectance appear to be sensitive to water cover (Table 4.2 a). This is because water is

absorptive of both visible and NIR light, whereas vegetation is absorptive of visible light,

and reflective of NIR light. The relative difference in visible reflectance over water and

land is smaller compared to the relative difference between NIR reflectance for water and

land. Therefore, computing the mean of NDVI pixels within an area with partial water

cover will produce an aggregate NDVI value considerably lower than if NDVI were

computed from the mean of visible and NIR reflectance. However, in homogeneous areas

with little or no water cover, the difference between iNDVI and mNDVI is minimal

(Figure 4.3 a).
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Differences in visible bandwidths will effect NDVI values derived from different

sensors with NDVI decreasing as visible bandwidth increases (Teillet et al. 1997).

Because the visible channel of the AVHRR sensor covers more of the visible spectrum,

with increasing vegetation cover AVHRR NDVI values decrease with respect to Landsat

TMNDVI values (Figure 4.1). Both the integrated field measurements of NDVI and

aggregated Landsat NDVI values are higher than atmospherically corrected AVHRR

NDVI (Figure 4.4b). Cihlar et al. (1997), found that aggregated Landsat pixels over

boreal forest were Ilo/ohigher than atmospherically corrected AVHRR NDVI and

attributed these discrepancies to differences in sensor bandwidth and differences in view

geometry and sunangles. The AWIRR visible band covers a larger portion of the visible

spectrum compared to Landsat and the radiometer visible band (Figure 4.1). With

increasing vegetation cover, green light reflectance increases, and because the AVHRR

B I covers part of the green spectrum, AVHRR NDVI values are lower than Landsat

NDVI. For low NDVI values this is apparent, howeveç as NDVI increases the difference

between Landsat NDVI and AVHRR NDVI decreases, with Landsat NDVI equal to

AVHRR NDVI at -0.5 (Figure 4.4 b).

Scaling-up field measurements of NDVI and comparing these data to coarse

resolution satellite imagery depends on the ability to charactenzetotal surface reflectance

using discreet fine-scale measurements of NDVI. A highly significant linear regression

between individual Landsat NDVI pixels and field NDVI measurements integrated within

each 30x30 m plot, demonstrates the effectiveness of characterizing total surface NDVI

over a relatively large area (i.e. 30x30m) with a limited sample of fine-scale ground

measurements. Moreover, high correspondence between aggregated Landsat NDVI
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values and field measurements of NDVI integrated over each lxl km sample area

demonstrates that a sample of fine-scale ground measurements can effectively

charactenze reflectance over an even larger surface area (i.e. lx1 km).

Although correspondence was high, the linear relationship was not 1:1, and the

difference between field NDVI values Landsat NDVI values increased with largerNDVI

values (Figure 4.4b). Walker et al. (1995) found field measurements of NDVI values in

arctic tundra vegetation were up to 40%o greater than NDVI values measured from SPOT

images, with the greatest differences in the more productive graminoid/ dwarf shrub

tundra and shrubland communities (Walker et al. 1995). Shippert et al. (1995) also found

field NDVI values measured from arctic vegetation were higher than SPOT NDVI and

attributed the differences to low sun angles and high view angle of the satellite sensor.

The satellite sensor receives backscattered light, while the field sensor receives forward

scattered light (Shippert et al. 1995). As forward scattered light travels through more

vegetation, visible light reflectance is reduced and NDVI increases (Shippert et al. 1995).

The structure of the vegetation canopy largely influences the degree of forward and

backscatter of light (LeBlanc etal.1997). At low vegetation cover, directional reflectance

effects are minimal. With simulated AWIRR data, at nadir viewing angles NDVI in the

forward and backscatter directions decreases with solar zenith angle, and this decrease is

greater with higher biomass (Holben 1986; Vierling et al. 1997). Furthermore, with

increasing view angle, in both forward and backscatter directions, NDVI in tussock

tundra decreased (Vierling et al. 1997). Because field reflectance measurements were

taken at nadir and were cosine corrected for bi-directional reflectance effects caused by

large solar zenith angles, bi-directional reflectance effects in the field NDVI data should
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be minimal. Therefore, the lack of a 1:1 correspondence between field NDVI and Landsat

NDVI can be attributed to directional reflectance effects in Landsat reflectance values

caused by large solar zenith angles, and large view zenith angles (Shippert et al. 1995).

Because these effects are greater with increasing biomass (Ilolben 1986; Vierling et al.

1997), Landsat NDVI values decrease with respect to field NDVI with increasing NDVI.

When integrated ground measurements were compared to the BRDF corrected

AVI{RR NDVI, correspondence \¡/as considerably lower. It has been suggested that at

high latitudes, with large solar zenith angles the GEOCOMP-n BRDF correction may

actually increase noise in the image data (Cihlar et al. 1997b). GEOCOMP-n BRDF

correction is based on landcover specific coefficients and BRDF correction requires

spatial collocation of each AWIRR pixel with a landcover class defined in a vegetation

map. Error in the BRDF correction can be attributed to problems with spatial collocation

between AVHRR pixels and vegetation map pixels, especially at borders between

vegetation classes. Furthermore, problems with the GEOCOMP-n system implementation

when processing the 2000 data involving use of the wrong vegetation map to assign the

BRDF correction coefficients will have further contributed error to the BRDF corrected

imagery (G. Fedosejevs pers. comm.). Indeed, large difference between atrnospherically

corrected AVHRR NDVI values and the integrated field measured NDW is likely caused

by directional reflectance effects. Large sun-angles at high latitudes create strong

directional scattering effects which will have a considerable influence on NDVI (Holben

et al. 1986). Therefore, for the AVHRRNDVI to be a true representation of surface

reflectance, BRDF correction is absolutely necessary.
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Strong correspondence between the rescaled ground NDVI measurements and the

AVHRR NDVI measurements demonstrates the effectiveness of using hand-held

radiometer measurements to validate coarse resolution satellite imagery. It also illustrates

the existence of considerable differences between surface and satellite measurements of

NDVI. Correcting NDVI is important because derived surface parameters are sensitive to

small changes in NDVI. Chen and Cihlar (1996) found differences in NDVI of 5o/o can

cause leaf area index (LAI) to change by 20%. With a highly significance regression

relationship defined between integrated field measurements of NDVI and the AVHRR

NDVI..'", it is possible to rescale the AHVRR NDVI data to true ground reflectance

using the linear best-fit relationship derived from the sample data. However, this

relationship can only be assumed accurate for the time and location for which the sample

data was obtained, as atmospheric conditions and reflectance properties of the vegetation

will vary throughout the growing season.

Selecting ground sample sites in homogeneous areas produces a more tractable

model than in heterogeneous areas. From the analysis comparing corïespondence

between aggregated Landsat pixels with AVHRR pixels in homogeneous and

heterogeneous areas it is apparent that locating ground samples in heterogeneous areas

will reduces colrespondence resulting in lower R2 values. Selecting samples in

homogeneous areas has the important effect of removing noise or covariation from the

model which is analogous to a carefully designed experiment¿l in which one attempts to

minimize and control for confounding factors. Careful selection of field sample sites in

homogeneous areas on the landscape has enabled the scaling-up of discrete fine-scale

field measurements to lxlkm resolution. This study has important implications for
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validating AVHRR image products in the arctic, as it demonstrates the effectiveness of

using a relatively inexpensive and easy to obtain source of data (i.e. hand-held radiometer

measurements) for validating coarse resolution satellite imagery in arctic vegetation.
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CONCLUSION

5.1.
PARK

Vncprerrow PRonucTlwry Ir.t Tuxrur NocAIT NATToNAL

In arctic tundra vegetation distribution of biomass and net production are most

closely influenced by variation in soil moisture, wind protection and nutrient availability

(Webber 1978; Chapin unJ Shaver 1985). Plant production is closely tied to gradients in

soil moisture conditions which depend on the depth of the thawed active layer of soil.

Active layer depth increases in areas that lack an insulating layer of soil and vegetation

(Courtin and T ¿þi¡1e 1977; Chapin and Shaver 1985). Areas where snow accumulates

offer more protection for vegetation as well as providing a source of water throughout the

growing season. Thaw depth is limited where vegetation cover is high as the frozen

ground is insulated and organic soils have a high thermal inertia. In wet tundra, limited

thaw depth results in poor drainage as water pools over the permafrost, and up to 70Yo of

net incident radiation is absorbed by evaporating water (Barry et al. 1981). Low soil

temperature, acidic conditions and poor soil aeration prevents microbial activity, limiting

decomposition rates resulting in low nutrient availability. Ammonium and phosphate are

limiting nutrients in the arctic as is apparent by an increase in plant productivity around

decaying animal bones (Fogg 1998). Disturbance also greatly increases local productivity

by increasing nutrient availability and vegetation proliferates on frost heaves which bring

nutrient rich soil buried in the permafrost closer to the surface (FogS 1998). Lack of

nutrients results in high below to aboveground biomass ratios, and roots in many species

grow right down to the margin of the permafrost. The downward growth of roots, despite

cold temperatures, slow rate of thaw, and poor aeration, may be in response to a depletion
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of available soil nutrients near the surface, and a gradual release during thawing of

nutrients held in still frozen portions of the active layer (Dennis et al. l97B).

5.2. PornNuAL EFFECTS oF cr,rvrarn cnaNca/ Gr,onar, wenvrrNç

Arctic vegetation is well adapted to arctic environments, producing

photosynthetically efficient tissues with high levels of metabolic activity. Optimum

growth rates occur at 15oC, compared to 25"C for temperate species, with photosynthetic

rates relatively insensitive to changes in temperature down to -4oC (Billings et al. 197I;

Johnson and Tieszen 1976; Mayo et al. 1977; Tieszen et al. 1980). High photosynthetic

rates at low temperatures are related to increased concentrations of RuBP Carboxylase

(Berry and Bjorkman 1980). At higher temperatures, the oxygenase activity of RuBP

Carboxylase results in light respiration that exceeds assimilation prohibiting survival of

these plants in warmer environments. At low temperatures, however, this respiration is

not signifrcant and the increased concentrations of the enzyme acts to optimize carbon

assimilation. Arctic plants also have high respiration rates at low temperatures @illings

etal. l97l; Mayo et al. 1977; Tieszen 1973). This is necessary to allow rapid growth in a

short growing season. The high respiratory capacity of arctic plants leads to exhaustion of

carbohydrate reserves and increased mortality when gro\¡/n at warm temperatures (Chapin

and Chapin 1981).

NPP of arctic biomes will likely decrease under global warming, although total

NPP will eventually increase due the northward shift of the boreal biome (Plochl and

Cramer 1995). TVarmer temperatures will create less than optimum conditions for arctic

plants, and with increased autotrophic respiration and decreased photosynthetic
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efficiency, the net productivity of arctic ecosystems will decrease. Furthermore, with

increasing temperatures arctic ecosystems could switch from a COz sink to a CO2 source

as previously inaccessible carbon is released from increased soil microbial activity

(Plochl and Cramer 1995). Boreal species will move north, out competing arctic species

as they thrive in the waffner, dryer conditions and newly fertile soils.

The arctic productivity model presented in this thesis produces an excellent

representation of regional scale patterns of NPP within Tukrr:t Nogait National Park. The

model is relatively easy to implement and uses GEOCOMP-n AVHRR data exclusively.

An assessment of the accuracy of the absolute NPP values produced from the model

indicates relatively good correspondence. However, it is important to recognize that this

accuracy assessment is dependent on the accuracy of the expected annual NPP map.

Considering there is cunently no way of assessing regional scale productivity patterns in

Canada's northern national Parks, the NPP model will provide a useful tool for ecosystem

monitoring and a source of empirical datafor justifying management decisions.

118



6. REFERENCES

Aman, A. H.P. Randriamanatena,'4. Podaire, and R. Frouin. 1992. Upscale integration of

normalized difference vegetation index. The problem of spatial heterogeneity.

IEEE Transactions on Geoscience and Remote Sensing, 3oe).326-337.

Asrar, G., M. Fuchs, E.T. Kanemasu, and J.L. Hatfield. 1984. Estimating absorbed

photosynthetic radiation and leaf area index from spectral reflectance in wheat.

Agronomy Journal, 7 6:300-306.

Asrar, G.M., E.T. Kanemasu, R.D. Jackson, and P.J. Pinter. 1985. Estimation of total

above-ground phytomass production using remotely sensed data. Remote Sensing

of Environment, T7 :2ll -220.

Baret, F., G. Guyo! and D. Major. 1989. TSAVI: A vegetation index which minimizes

soil brightness effects on LAI or APAR estimation. Proceedings of the 1989

International Geoscience and Remote Sensing Symposium (IGARSS '89) and the

Twelfth Canadian Symposium on Remote Sensing, Vancouver, Canada. pp. 1355-

1358.

Barry, R. G., G. M. Courtin and C. Labine. 1981. Tundra climates.In:L.C.Bliss, J. B.

cragg, D w. Heal and J. J. Moore, Eds., Tundra Ecosystems: A comparative

Analysis. Cambridge University Press, pp. 8l-l 14.

Begue, A. and R. Myneni.1996. Operational relationships between NOAA-advanced

very high resolution radiometer vegetation indices and daily fraction of absorbed

photosynthetically active radiation, established for Sahelian vegetation canopies.

Journal of Geophysical Research, l0l : Zl,Z75-2!,289.

119



Berry, JA and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature

in higher plants. Annual Review of Plant Physiology,3l 491-543.

Bliss, LC, and NV Matveyeva. 1992. Circumpolar arcticvegetation. In Arctic ecosystems

in a changing climate: an ecophysiological perspective. San Diego, Academic

Press. Pp.59-90.

Billings, w.D., P.J. Godfrey, B.F. chabot and D.P. Bourque. 1971. Metabolic

acclimation to temperature in arctic and alpine ecotypes of Oxyria digtna. Arctic

and Alpine Research, 3:277-289.

Billings, w.D., K.M. Peterson, G.R. Shaver. 1978. Growth, turnover rates, and

respiration rates of roots and tillers in tundra graminoids . In Yegetation and

Production Ecology of an Alaskan Arctic Tundra, ed L.L. Tiezen. Springer-

Verlag, New York. Pp. 113-138.

Box, E.O., B.N. Holben, and V. Kalb. 1989. Accuracy of the AVHRR vegetation index

as a predictor of biomass, primary production, and net COz flux. Vegetatio, 80:71-

89.

Burgess, D.w., P. Lewis, J.P.A.L. Muller. 1995. Topographic effects in AVHRR NDVI

data. Remote Sensing of Environment, 54 223-232.

Braswell, B.H., D.S. Schimel, J.L. Privette, B. Moore, W.J. Emery, E.W. Sulzman and

A.T. Hudak.1996. Extracting ecological and biophysical information from

AVHRR optical data: An integrated algorithm based on inverse modelling.

Journal of Geophysical Research, 101 :23,335-23,348.

Chapin, F.S. m and M.C. Chapin. 1981. Ecotypic differentiation of growth processes in

Carex aquatilis along Iatitudinal and local gradients. Ecology, 62:1000-1009

120



chapin, s. F. and G.R. shaver. 1985. Arcric.,In physiological Ecology of North

American Plant Communities, eds B.F. Chabot and H.A. Mooney. Chapman and

Hall, New York.

chapin, F. s., N. Fletcher, K. Kielland, K.R.Everett, and A.E. Linkins. 19gg.

Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil

water. Ecology, 69 .693-7 02.

Chen, J.M. 1996. Evaluation of vegetation indices and a modiflred simple ratio for boreal

applications. Canadian Journal of Remote Sensing, 22:229-242.

Chen, J.M. and J. Cihlar. 1996. Retrieving leaf area index of boreal conifer forests using

Landsat TM images. Remote sensing of Environment, 55. T53-162.

Cihlar, J. J. Chen., andZ.Li. 1997a. On the validation of satellite-derived products for

land applications. canadian Journal of Remote Sensing, n@):3g1-3g9.

Cihlar, J., J. Chen, andZ.Li. L997b. Seasonal AWIRR multichannel data sets and

products for studies of surface-atmosphere interactions. Journal of Geophysical

Research, 102 Q24): 29,625 -29,640.

cihlar, J., J. chen, z.Li,R. Latifovic, G. Fedosejevs, M. Adair, w. park, R. Fraser, A.

Trishenko, B. Guindon, D. stanley. 2000. Geocomp-n, an advanced system for

the processing of coarse and medium resolution satellite data. Part 2: biophysical

products for northern ecosystems.In Press.

Colpaert, 4., J. Kumpula, M. Nierminen. 1995. Remote sensing, a tool for reindeer range

land management. Polar Record 3l 235-244.

t2t



Cohen, W.8., T.A. Spies, G.A. Bradshaw. 1990. Semivariograms of digital imagery for

analysis of conifer canopy structure. Remote Sensing of Environment, 34:167-

178.

Colwell, J.E.l97l. Vegetation canopy reflectance. Remote Sensing of Environment,

3:175-183.

Courtin, G.M. and C.L. Labine.7977. Microclimatology studies on Truelove Lowland,

in: L.C. Bliss Ed. Truelove Lowland, Devon Island, Canada: A High Arctic

Ecosystem. University of Alberta Press, Edmonton, pp.73-106

Cracknell, A.P. 1998. Synergy in remote sensing-what's in a pixel? International

Journal of Remote Sensing, 19(11): 2025-2047.

Dearden, P. and R. Rollins. 1993. Parks and Protected Areas in Canada: Planning and

Management. Oxford University Press, Toronto.

Dennis, J.G., L.L. Tiezen, and M.A. vetter. 1978. Seasonal dynamics of above- and

belowground production of vascular plants at Barrow, Alaska. InYegetation and

Production Ecology of an Alaskan Arctic Tundra, ed L.L. Tiezen. Springer-

Verlag, New York. Pp. 113-138.

Eastman, J.R., M. Fulk. 1993. Long sequence time series evaluation using standardized

principal components. Photogrammetric Engineering and Remote Sensing,

59.1307-t3r2.

Eck, T.F. and D.G. Dye. 1991. Satellite estimation of incident photosynthetically active

radiation using ultraviolet reflectance. Remote Sensing of Environment 38:135-

746.

122



Field, C.B., J.T. Randerson, and C.M. Malmstrom . 1995. Global net primary production:

combining ecology and remote sensing. Remote Sensing of Environment 5l:74-

88.

Fogg, G. E. 1988. The biology of polar habitats. Oxford University Press, Oxford.

Friedl, Mark A. 1997. Examining the Effects of Sensor Resolution and Sub-Pixel

Hetreogeneity on Spectral Vegetation Indices: Implications for Biophysical

Modeling. Scale in Remote Sensing and GIS. Dale A. Quattrochi and Michael F.

Goodchild, Eds. Boca Raton, FL: CRC Lewis. pp:l 13-139.

Gilmanov, T.G. and W. Oechel .1995. New estimates of organic matter reserves and net

primary productivity of the North American tundra ecosystems. Joumal of

Biogeography, 22: 7 23 -7 41 .

Goetz, S.J. 1997. Multi-sensor analysis of NDVI, surface temperature and biophysical

variables at a mixed grassland site. International Joumal of Remote Sensing,

l8(1): 7I-e4.

Goetz, s.J., s..D. Prince, S.N. Goward, M.M. Thawley, and J. small. 1999. Satellite

remote sensing of primary production: an improved production effîciency

model li ng approach. Ecol ogi cal Mod el ling, 122 : 23 9 -25 5 .

Goward, S.N, C.J. Tucker, and D.G. Dye. 1985. North American vegetation patterns

observed with NOAA-7 AVHRR. Vegetatio 64 3-14.

Goward, S.N. and Huemmrich, K.F. 1992. Vegetation canopy PAR absorptance and the

normalized vegetation index: an assessment using the sail model. Remote Sensing

of Environment, 39: ll9-I40.

123



Goward, S. N., R. H. Waring, D. G. Dye and J. Yang. 7994.Ecological remote sensing at

OTTER: Macroscale satellite observations. Ecological Applications, 4 Q):322-

343.

Gower, S.T., C.J. Kucharik, and J.M. Norman. 1999. Direct and indirect estimation of

leaf area index, fAPAR and net primary production of terrestrial ecosystems.

Remote Sensing of the Environment, 70(1): 29-5L.

Hansen, B.U. 1991. Monitoring natural vegetation in southem greenland using NOAA

AVHRR and field measurements. Arctic, 44 94-l0I

Hatfield, J.L., G. Asrar, and E.T. Kanemasu. 1984. Intercepted photosynthetically active

radiation estimated by spectral reflectance. Remote Sensing of Environment

14:65-75.

Hawley, V., A. Hawley, D. Poll, and R. Brown. LgTg.TheBluenose caribou herd,1974-

19T6.Technical Report Series - Canadian Wildlife Service, no. 113. Edmonton,

Alberüa.

Holben,8., C.J. Tucker, and C.J. Fan. 1980. Spectral assessment of soybean leaf area and

biomass. Photogrammetric Engineering and Remote Sensing 46.651-656.

Holben,8.N., D.S. Kimes, and R.S. Fraser. 1986. Directional reflectance in AWIRR red

and near-IR bands for three cover types and varying atmospheric conditions.

Remote Sensing of Environment, 46:651-656.

Hope, A. S., J. B. Fleming, G. Vourlitis, D. A. Stow, W. C. Oechel and T. Hack. 1995.

Relating COz fluxes to spectral vegetation indices in tundra landscapes:

Importance of footprint definition. Polar Record 3l:245-250.

T24



Hunl E.R. 1994. Relationship between woody biomass and PAR conversion efficiency

for estimating net primary production from NDVI. International Journal of

Remote Sensing 15:1725-1730.

Jarvis, P.G. and J.W. Leverenz.7983. Productivity of temperate, deciduous and

evergreen forests. /n Physiological Plant Ecology IV, Ecosystem Processes:

Mineral cycling, productivity and Man's influence, Eds. o.L. Lange,p.s. Nobel,

C.B. Osmond, and H. Ziegler. Springer-Verlag, New York.pp.234-272.

Johnson, D.4., and L.L. Tieszen. 1976. Aboveground biomass allocation, leaf growth,

and photosynthesis patterns in tundra plant forms in arctic Alaska. Oecologia

@erlin), 24: T59-173.

Jordan, C.F. 1969. Derivation of leaf area index from quality of light on the forest floor.

Ecology 50:663-666.

Law, B.E. and R.H. Waring. 1994. Combining remote sensing and climatic data to

estimate net primary production across Oregon. Ecological Applications 4.717-

728.

Leblanc, S.G., J.M. Chen, J. Cihlar. 1997. NDVI directionality in boreal forests: A model

inte¡pretation of measurements. Canadian Journal of Remote Sensing, n@).369-

380

Li, Z.Q.and L. Moreau. 1996. Ane\¡/ approach for remote sensing of canopy absorbed

photosynthetically active radiation. 1. Total surface absorption. Remote Sensing

of Environment 55(3) 175-191.

Lieth, H.1975. Modeling the primary productivity of the world. InPrimary Productivity

of the Biosphere, eds. H. Leith and R.H. Whittaker. Springer-Verlag,New York.

125



Liu, J., J. M. Chen, J. Chilar, and W.M Park.1997. A process-based boreal ecosystem

productivity simulator using remote sensing inputs. Remote Sensing of

Environment, 62. I 58- 1 75.

Los, s.o., c.o. Justice, and c.J. Tucker.1994. A global lo x lo NDVI data set for

climate studies derived from the GIMMS continental NDVI data. International

Journal of Remote Sensing, l5: 3493-3518.

Malmström, c.M., M.v. Thompson, G.P. Juday, s.o. Los, J.T. Randerson, and c. Field.

l99T.Interannual variations in global-scale net primary production: Testing

model estimates. Global Biogeochemical Cycles, l l(3): 367-392.

Markon, C.J., M.D. Fleming, and E.F. Binnian. Characteristics of vegetation phenology

over the Alaskan landscape using AVHRR time-series data. Polar Record, 31:

179-190.

Mayo, J. M., A.P. Hartgerink, D.G. Despain, R.G. Thompson, E.M. van den zinderen

Bakker, S.D. Nelson. 1977 . Gas exchange studies of Carex and Dryas, Truelove

Lowland, Devon Island. In Bliss, L. C. Truelove Lowland, Devon Island, Canada:

a High A¡ctic Ecosystem. Edmonton, Alberta, Canada. University of Alberta

Press; p265-280.

McCanny, S. 1998. Accounting for nature: The northern national parks ecological

monitoring program. Parks CanadaResearch Links, 6(3): 8,11.

McMichael, c.8., A.S. Hope, D.A. stow, J.B. Flemming, G. vourlitis, w. oechel.1999.

Estimating COz exchange at two sites in A¡ctic tundra ecosystems during the

growing season using a spectral vegetation index. Intemational Journal of Remote

Sensing, 20$): 683-698,

726



Mellilo, J.M., A.D McGuire, D.w. Kicklighter, B. Moore III, c.J. vorosmarty, and A.L.

Schloss. 1993. Global climate change and terrestrial net primary production.

Nature, 363:234-240.

Miller, P.C., W.A. Stoner, L.L. Tieszen. T976. A model of stand photosynthesis for the

wet meadow tundra at Barrow, Alaska. Ecology. 57.4Il-430.

Monteith, J.L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of

Applied Ecology 9: 7 47 -7 66.

Moreau, L., and Z.Q.L|.1996. A ne\¡i approach for remote sensing of canopy absorbed

photosynthetically active radiation. 2. Proportion of canopy absorption. Remote

Sensing of Environment 55(3) : 192-2e4.

Muc, M. 1977.Ecology and primary production of Sedge-moss meadow communities,

Truelove Lowland.ln Truelove Lowland, Devon Island, Canada: A high arctic

ecosystem, ed. L.C. Bliss. Edmonton, University of Alberta Press. Pp. 155-182.

Myneni, R. 8., G. Asrar, D. Tanré, & B.J. choudhury.lgg2. Remote sensing of solar

radiation absorbed and reflected by vegetated land surfaces. IEEE Transactions on

Geoscience and Remote Sensing, 30(Z): 302-3 I 4.

Paruelo, J.M., H.E. Epstein, w.K. Lauenroth, and I.C. Burke. 1997. ANpp estimates

from NDVI for the central grassland region of the United States. Ecology 78:956-

928.

Peterson, D.L., M.A. Spanner, S.W. Running, and K.B. Teuber.l9g7. Relationships of

thematic mapper simulator data to leaf area index of temperate coniferous forests.

Remote Sensing of Environment. ZZ:323-341.

T27



Peterson, D.L. and S.W. Running. 1989. Applications in forest science and management.

In. Theory and applications of optical remote sensing. Ed. G. Asrar. Wiley.New

York pp.429-473.

Plochl, M. and W. Cramer. 1995. Possible impacts of global warming on tundra and

boreal forest ecosystems: comparisons of some geochemical models. Joumal of

Biogeography, 22: 7 7 5 -7 83 .

Prihodko, L. and S.N. Goward l99l . Estimation of air temperature from remotely sensed

surface observations. Remote Sensing of Environment, 60:335-346.

Prince, S.D. 1991. A model of regional primary production for use with coarse resolution

satellite data. International Journal of Remote Sensing 12.1313-1330.

Prince, S.D. and S.N. Goward. 1995. Global primary productivity: A remote sensing

approach. Journal of Biogeography 22:81 5 -83 5 .

Prince, D.S., Y.H. Kerr, J.P. Goutorbe, T. Lebel, A. Tinga, et al. 1995. Geographic,

biological and remote sensing aspects of the hydrologic atmospheric pilot

experiment in the Sahel (FIAPEX-Sahel). Remote Sensing of Environment,

5T:275-234.

Qi, J. A. Chehbouni, A.R. Huete, Y.H. Kerr, and S. Sorooshian.1994. A modified soil

adjusted vegetation index. Remote Sensing of Environment, 48: ll9-L26.

Rahman, H. and G. Dedieu. SMAC: A simplified method for the atmospheric correction

of satellite measurements in the solar spectrum. International Journal of Remote

Sensing, 15 123-143.

Ranson, K.J. and D.L. Williams.1992. Remote sensing technology for forest ecosystem

analysis. In H.H. Shugart, R. Leemans, and G.B. Bonan (eds.), A Systems

t28



Analysis of the Global Boreal Forest. Cambridge U. Press, Cambridge .pp. 267-

290.

Rees, W.G., E.I. Golubeva, and M. Williams. 1998. Are vegetation indices useful in the

Arctic? Polar Record. 34:333 -336.

Richards, J.A. 1994. Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin.

p.340.

Richardson, A.J. and weigand, C.L. 1977. Distinguishing vegetation from soil

b ackground informati on. Photogrammetri c Engi neering and Remote Sensi ng

43:1541-1552.

Rouse, J.w., R.H. Haas, J.A. schell, and D.w. Deering. 1973. Monitoring vegetation

systems in the great plains with ERTS. 3'd ERTS Symposium, NASA sp-351

I:309-317.

Ruimy, 4., B. Saugier, and G. Dedieu. 1994. Methodology for the estimation of

terrestrial net primary productivity from remotely sensed data. Journal of

Geophysical Research, 99 :5263 -5283 .

Ruimy, A. G. Dedieu, and B. Saugier. 1996. TURC: A diagnostic model of continental

gross primary productivity and net primary productivity. Global Biogeochemical

Cycles, 10(2): 269-285.

Runyon, J., R.H. Waring, S.N. Goward, and J.M. Welles. 1994. Environmental limits on

net primary production and light-use efficiency across the Oregon transect.

Ecological Applications, 4. 226-237 .

129



Sellers, P., F.G. Hall, G. Asrar, D.E. Strebel, and R.E. Murphy.1992. An overview of the

first international satellite land surface climatology project (SLSCP) field

experiment (FIFE). Journal of Geophysical Resear ch, 97 @ 17) : I 83 45- I 83 7 I .

sellers, P.J., c.J. Tucker, G.J. collatz, S.o. Los, c.o. Justice, D.A. Dazlich, and D.A.

Randall. T994. Aglobal 1 by I NDVI data set for climate studies. Part}.The

generation of global fields of terrestrial biophysical parameters from the NDVI.

International Journal of Remote Sensing 1 5 : 3 5 I 9-3 545.

sellers, P., F. Hall, H. Margolis, B. Kelly, D. Baldocchi, G. den Hartog, J. cihlar, M.G.

Ryan, B. Goodison, P. crill, K.J. Ranson, D. Lettenmaier, and D.E. TVickland.

1995. The boreal ecosystem-atmosphere study (BOREAS): an overview and early

results from the 1994 field year. Bulletin of the American Meteorological Society,

7 6(9).Ts4e-rs77 .

Shaver, G. R., and W. D. Billings . lg77 .Effects of daylengfh and temperature on root

elongation in tundra graminoids. Oecologia, 28:57 -65.

shaver, G. R., N. Fetcher and F. s. chapin, Itr. 1986. Growth and flowering in

Eriophonrm vaginatum: Annual and latitudinal variation. Ecology,6T:1524-1525.

Shaver, G.R. and F.S. Chapin trI. 1991. Production: Biomass relationships and element

cycling in contrasting arctic vegetation types. Ecological Monographs, 61:1-31

Shaver, G.R., A.E. Gblin, K.J. Nadelhoffer and E.B. Rastetter. lggT.Plantfunctional

types and ecosystem change in arctic tundras. InPlantFunctional Types. Eds.

T.M smith, H.H. shubart, F.I. woodward. cambridge university press, pp.l57

130



Shippert, M.M., D.A. Walker, N.A. Auerbach, and B.E. Lewis. 1995. Biomass and leaf-

area index maps derived from SPOT images for Toolik Lake and Imnavait Creek

areas, Alaska. Polar Record. 31:T47-I54.

Smith, J.A. and R.E. Oliver. 1974. Effects of changing canopy directional reflectance on

feature selection. Journal of Applied Optics 13:1599-1604.

stow, D., A. Hope, w. Boynton, s. Phinn, D. walker, N. Auerbach. 199g. Satellite

derived vegetation index and cover type maps for estimating carbon dioxide flux

for arctic tundra regions. Geomorphology, 2T:313-327.

Tieszen, L.L. 1973. Photosynthesis and respiration in arctic tundra grasses: field light

intensity and temperature responses. A¡ctic and Alpine Research, 5:239-251.

Tieszen, L.L., P.C. Miller, and w.C. oechel. 1980. Photosynthesis. In, J.Brown, p.C.

Miller, L.L. Tieszen, and F. L. Bunnell Eds. An Arctic Ecosystem: The Coastal

Tundra at Barrow, Alaska. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Penn.

pp. T02-139.

Townsend, J.R.G., and C.J. Tucker. 1984. Objective assessment of Advanced Very High

Resolution Radiometer data for land cover mapping. International Journal of

Remote Sensing, 23: 491-494.

Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring

vegetation. Remote Sensing of Environment 8:127-150.

Vierling, L.4., D.W. Deering, and T.F. Eck.1997. Differences in arctic tundra vegetation

type and phenology as seen using bi-directional radiometry in the early growing

season. Remote Sensing of Environment, 60:7I-82.

131



vourlitis, G.L. , w.c. oechel, A. Hope, D. stow, B. Boynton, J. verfaillie, Jr., R.

zulueta, and S.J. Hastings. 2000. physiological models for scaling plot

measurements of COz flux across an arctic tundra landscape. Ecological

Applications, l0(1). 60-72.

Walker, D.4., N.A. Auerbach, and M.M. Shippert. 1995. NDVI, biomass and landscape

evolution of glaciated terrain in northern Alaska. Polar Record. 3T:169-178.

Walker, D.A. 1999. An integrated mapping approach for northern Alaska (1:4M Scale).

International Journal of Remote Sensing, 20(l 5): ZggS -ZgZ0.

Walker, D. and N. Kenkel. 2000. Adaptive geometery of boreal conifers. Community

Ecology, l(T): 13-23

V/ebber, P. J. 1978. Spatial and temporal variation of the vegetation and its productivity,

Barrow, Alaska. InYegetation and Production Ecology of an Alaskan Arctic

Tundra., ed. Tieszen, L. L. New york: Springer-Verlag, pp. 37 _I 12.

whiting, G.J., D.s. Bartlett, s. Fan, s. Bawkin, and S.c. wofsy. 1992. Biosphere/

Atmosphere COz exchange in tundra ecosystems: community characteristics and

relationships with multispectral reflectance. Journal of Geophysical Research,

97(Dls): t667T-16680.

zoltai, s.c., J. Sirois, and G.w. Scotter. 1992. Anatural resource inventory of the

Melville Hills region, Northwest Tenitories. Technical Report Series - Canadian

Wildlife Service, no. 135. Edmonton, Alberta.

t32



7. APPENDICES

7.1. Apppxorx I. PnnoICTING P¡rorosyNTHETIC Bloprass wITH
Sppcrner, VncerATIoN lNolcns.

Above ground photosynthetic biomass samples were collected in Z-3 of the

quadrats within each lxl km plot (See Chapter 3: Methods). Some of the biomass

samples were sorted, dried and weighed in the field (n:11), but most were flown back to

Winnipeg and frozen until they could be processe d (n:29). Wet biomass \ryas determined

for the entire sample. A subsampling method was adopted to estimate total dry green

biomass because of the extremely long time required to sort a whole sample. Three l¡yo

subsamples \¡/ere taken with equal proportions of each vegetation type (i.e. graminoid,

dwarf shrub, moss and lichen). Each subsample was sorted into green (photosynthetic)

biomass and dead biomass. The green fraction was dried at 80oC for Z4hours, and

massed. The averaged mass for the three subsamples was multiplied by l0 to determine

an estimate of the total biomass. To evaluate the effectiveness of the subsampling

method, an entire sample was divided in half. One half the total samples was sorted

completely, dried and weighed. For the other half, mass was estimated from 3

subsamples. The two methods produced similar results.

There \¡/as a strong positive relationship between NDVI and dry green biomass

(DGB), with 62.8Yo of the variation in DGB explained by NDVI (R': 62.g, p< 0.001;

Figure 7.1 a). The relationship between DGB and MSAVI is stronger compared to NDVI

Gl2 : 70.8, p < 0.001 Figure 7 .l b). The point distribution between DGB and MSAVI

appears to be more linear than with NDVI (Figure 7.1 b), MSAVI corrects for soil
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background effects and samples with low DGB result in higher MSAVI values than with

NDVI. These relationships should be viewed with caution, however, as the quality of the

biomass samples is questionable. Some samples had decayed by the time they were

processed, so that it was difficult to distinguish live, green biomass for dead biomass.

Furthermore, using sub-samples to determine total biomass increased variability in the

biomass sample estimates.
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7.2. Appnwux II: INIrn-ANNUAL PerrpnNs or NDVI eNo MSAVI.

Mean values for NDVI and MSAVI computed from 150 random points extracted

within the Park for each composite image over the growing season are presented in

Figure 7.2.The values of NDVI and MSAVI are unitless and therefore are incomparable

in absolute terms. However, the relative shape of the curves for both NDVI and MSAVI

reveals a simiiar pattern, with the exception of the onset of the growing season (Figure

7.Z).Dunng the June l1 composite period, mean MSAVI values drop below zero to -
0.008 (+0.045), whereas mean NDVI values increase considerably to 0.099 4 (l:0.0467)

(Figure 7.2).Duing the following composite period, mean MSAVI increases and mean

NDVI decreases, to relatively similar values. For the remainder of the growing season the

patterns are very similar. The discrepancy during the onset of the growing season may be

a factor of high variability in ground moisture after snow melt, resulting in highly

variable soil background reflectance . Therefore, it is likely that the MSAVI values are

more accurate, because MSAVI is designed to reduce the effects of variable soil

reflectance.

7.3. Appp¡qux III: Anxuel Perrnn¡,{s oF ArR TnvrprnaruRr.

Mean daily air temperature measured from a weather station localed in the central

region of the Park corresponds with mean NPP measurements (Figure 7.3). The onset of

the growing season coincides with mean air temperature rising above 0 oC. Mean NPP

increases with mean air temperature during June, where NPP peaks during the July l't -
July l lth composite period. At this point, the rise in air temperature continues at a lower

rate to the beginning of August. After this period, mean air temperature begins to
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Figure 7.2.Mean values for MSAVI (boxes) and NDM (diamonds) for each composite
period during the growing season. Mean values were determined from 150 random points
located within the Park. Error bars represent standard error.
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Figure 7.3. Average of daily mean air temperature over each composite period, measured
from a weather station located in the central region of the Park.

138



decrease, until it drops below 0 oC during the Sept. 1- Sept. 11 composite period. Peak

NPP coincides with the initial rapid increase in mean air temperature. However, over the

remainder of the growing season, NPP actually decreases as mean air temperature

increases. Arctic vegetation undergoes a rapid growth spurt at the onset of the growing

season as new leaves are produced. However, during the remainder of the growing

season, net production decreases as large amounts of photosynthetic product is devoted to

developing reproductive structures.
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