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Abstract

The central result presented in this thesis is van der Waerden’s theorem on arith-

metic progressions. Van der Waerden’s theorem guarantees that for any integers k

and r, there is an n so that however the set {1, 2, . . . , n} is split into r disjoint parti-

tion classes, at least one partition class will contain a k-term arithmetic progression.

Presented here are a number of variations and generalizations of van der Waerden’s

theorem that utilize a wide range of techniques from areas of mathematics including

combinatorics, number theory, algebra, and topology.
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4.1 Erdős-Turán function . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Roth’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

Preface

1.1 Introduction

A notion central to this thesis is that of an arithmetic progression. An arithmetic

progression is a sequence of at least three numbers of the form a, a + d, a + 2d, . . ..

For example, 2, 5, 8, 11, 14 is a 5-term arithmetic progression where a = 2 and the

difference between consecutive terms is d = 3. A recurring theme throughout this

thesis is the question of whether it is possible to split a particular set of integers

into two groups, neither containing an arithmetic progression. Van der Waerden’s

theorem states that no matter how the set of positive integers is split into finitely

many disjoint groups, for any integer k, at least one group will contain a k-term

arithmetic progression. Moreover, something similar holds for some finite sets of

1
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integers. Consider the possible divisions of the numbers 1, 2, . . . , 9 into two groups,

say a red group and a blue group. Is it possible to prevent arithmetic progressions

in either group? While attempting to avoid arithmetic progressions that are all red

or all blue, examine the possible groupings of the middle three numbers: 4, 5, and

6. These three numbers form an arithmetic progression (with difference d = 1) and

if the numbers 4, 5 and 6 are not all in the same group, there must be one in one

group and two in the other. Assuming for the moment that 4 is contained in the

red group, the possibilities are:

4
R

5
B

6
R
, 4

R
5
B

6
B
, and 4

R
5
R

6
B
.

In the case where 4, 5, 6 are grouped RBR, in order to avoid the progression 2, 4, 6

the number 2 must be in the blue group. Then if 8 is in the red group, so is the

progression 4, 6, 8 but if 8 is in the blue group so is 2, 5, 8.

In the case where 4, 5, 6 are grouped RBB, in order to avoid the progression

5, 6, 7 the number 7 ought to be in the red group but then in order to avoid 1, 4, 7,

the number 1 should be in the blue group. Because of the progression 1, 3, 5 the

number 3 must be in the red group but then to avoid 2, 3, 4, the number 2 is in the

blue group. Finally, since 2, 5, 8 is an arithmetic progression, 8 is in the red group.

The grouping is then as follows:

1
B

2
B

3
R

4
R

5
B

6
B

7
R

8
R

9.



CHAPTER 1. PREFACE 3

Now, if 9 is in the red group, then so is the arithmetic progression 7, 8, 9 and if 9 is

in the blue group, so is 1, 5, 9.

Finally, in the case where 4, 5, 6 are grouped RRB, by symmetry with the case

where 4, 5, 6 are grouped RBB, in order to avoid progressions in either group, the

numbers must be divided as follows:

1 2
B

3
B

4
R

5
R

6
B

7
B

8
R

9
R
.

Then, if 1 is in the red group, so is the progression 1, 5, 9 and if 1 is in the blue

group, so is 1, 2, 3. Repeating this argument while assuming that the number 4

is in the blue group shows that no matter how the numbers from 1 to 9 are split

into two groups, one cannot avoid an arithmetic progression with at least three

terms in one of the groups. What if we would like to guarantee a 4-term arithmetic

progression? Though more difficult to verify, it turns out that no matter how the

integers from 1 to 35 are split into two groups, one group will contain a 4-term

arithmetic progression. This can be generalized to arithmetic progressions with any

finite number of terms. Van der Waerden’s theorem states that for any k ≥ 3 and

r ≥ 2, there is an n so that if the integers 1, 2, . . . , n are split into r disjoint groups,

at least one of the groups will contain an arithmetic progression with k terms.

Van der Waerden’s theorem is one of what are called “Ramsey-type” results. A

grouping of the elements of a set defines a “partition” of the set, where each group

is called a partition class. Ramsey theory is the study of structures preserved under
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partition. Frank Plumpton Ramsey proved a theorem known as Ramsey’s theorem,

which is the central result in Ramsey theory. Ramsey’s theorem can be illustrated

with the following, often referred to as the “Party Problem”: How many people

must one invite to a party to be assured that among the guests there are 3 mutual

acquaintances or 3 mutual strangers (or both). The answer is that 6 guests suffice.

A simple form of Ramsey’s theorem states that for any k ≥ 3, there is an n so

that among any collection of n people, there are either k mutual acquaintances or

k mutual strangers.

A number of quantitative questions raised by van der Waerden’s theorem are

studied in Chapter 5. What is the smallest n so that whenever the numbers

1, 2, . . . , n are partitioned into two classes, one contains a k-term arithmetic pro-

gression? As k increases, these numbers become difficult to calculate and known

proofs of van der Waerden’s theorem produce large upper bounds for n that grow

incredibly quickly. For example, the argument from the original proof is only able to

guarantee that when the integers from 1 to 325 are partitioned into two classes, one

will contain a 3-term arithmetic progression — a far cry from the first example where

the numbers from 1 to 9 suffice. There are a number of results giving both lower

bounds and more reasonable upper bounds for these numbers. In general, however,

the known upper and lower bounds remain of different orders of magnitude.

Returning to the numbers from 1 to 9, instead of dividing them into two groups,
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suppose that one were to select a single group that contained no arithmetic progres-

sions. How large could that group be? For example, the 5-element group 1, 2, 6, 8, 9

contains no arithmetic progressions and it can be shown that any sequence of 6 num-

bers, such as 1, 2, 5, 6, 8, 9, will contain an arithmetic progression (in this case 1, 5, 9).

This idea can be generalized to determining the maximum number of integers that

can be chosen from among 1, 2, . . . , n while avoiding arithmetic progressions with k

terms. Szemerédi’s theorem states that for any k ≥ 3 and ε with 0 < ε < 1, there

is an n so that any collection of more than εn numbers from 1, 2, . . . , n will contain

a k-term arithmetic progression. Such a result is called a “density result” as op-

posed to a Ramsey result. In Chapter 4, some density results related to arithmetic

progressions are examined.

It is also possible to examine arithmetic progressions in the context of some

larger structure that either contains the integers or provides a generalization of

arithmetic progressions. One such generalization, given in Chapter 7, involves games

of multi-dimensional Tic-Tac-Toe. In the usual game of Tic-Tac-Toe on a 3×3 grid,

there are possible stalemates. The Hales-Jewett theorem guarantees that, for each

k ≥ 3, there is an n so that no matter how X’s and O’s are distributed in an

(k × k × · · · × k) grid of dimension n, there will be either k X’s or k O’s in a line

(in fact in a particular kind of line called a “combinatorial line”). Coordinatizing

the grid with the numbers 1, 2, . . . , k, each box in the grid can be associated with
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an integer either by adding all of its coordinates or regarding the coordinates as a

base expansion. In this way, the “combinatorial lines” in the grid can be made to

correspond to arithmetic progressions. For example, on the usual 3 × 3 grid, the

line in Figure 1.1 could correspond to the arithmetic progression 11, 22, 33 (base 10

Figure 1.1: Tic-Tac-Toe

expansion) or to the arithmetic progression 2, 4, 6 (adding the coordinates). The

Hales-Jewett theorem is a purely combinatorial generalization of van der Waerden’s

theorem and provides another combinatorial proof of van der Waerden’s theorem.

Another way to prove van der Waerden’s theorem is use structures from set

theory and topology called ultrafilters . Ultrafilters are a type of “large” set system.

In Chapter 8, it is seen how the ultrafilters on the integers can be endowed with

a semigroup operation and a topology that are used to prove some Ramsey-type

results including van der Waerden’s theorem.

A number of other variations of van der Waerden’s theorem are presented in

Chapter 9. Among these is a polynomial version of van der Waerden’s theorem

that guarantees that for any partition of the positive integers into two partition
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classes, at least one partition class will contain an arithmetic progression whose

difference is a perfect square, a perfect cube, or in the range of any polynomial with

integer coefficients and no constant term. Another variation of van der Waerden’s

theorem is a “Rainbow Ramsey-type” problem where, if the integers are divided into

a certain number of groups, the desired sets are not arithmetic progressions with all

terms in one group, but rather those where each term is in a different group from

all others. There are a number of other results closely related to van der Waerden’s

theorem, but beyond the scope of this thesis. Among them is Szemerédi’s Regularity

Lemma (see for example [77]). The Regularity Lemma (or Uniformity Lemma) is a

result in graph theory used by Szemerédi to prove his density theorem for arithmetic

progressions and has found a number of applications beyond its original usage.

The results and proofs that are included in this thesis exhibit some of the wide-

ranging techniques that have been used to attack some of the variations of van

der Waerden’s theorem. While some proofs are purely combinatorial or number

theoretic, others apply results from areas such as algebra, field theory and topology.

Ramsey theory is an appealing subject area for its ability to predict order within

chaos and the results related to van der Waerden’s theorem illustrate, what I found

to be, surprising connections between exceedingly different areas of mathematics.
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1.2 Notation

The following standard notation and definitions are used throughout. The integers

{0,±1,±2, . . .} are denoted by Z and the positive integers {1, 2, 3, . . .} are denoted

by Z+.

For any a, b ∈ Z, set [a, b] = {m ∈ Z : a ≤ m ≤ b}. In particular, for any

n ∈ Z+, [1, n] = {1, 2, . . . , n}. The notation [n] = [1, n] is also common but avoided

here whenever possible. For any sets S, T ⊆ Z and x ∈ Z, define

S + x = {s + x : s ∈ S} and S + T = {s + t : s ∈ S and t ∈ T}.

For any k ∈ Z+, define [S]k = {X ⊆ S : |X| = k}, the collection of k-subsets of S,

and for any n ∈ Z+, define [n]k = [[1, n]]k.

For functions f, g : Z+ → R, if limn→∞
f(n)
g(n)

= 0, then write f = o(g) and if there

is a constant c > 0 and n0 ∈ Z+ such that for every n ≥ n0, f(n) ≤ cg(n), then

write f = O(g).

For any set A and a finite set B, any function ∆ : A → B is called a finite

colouring of A. In particular, if |B| = r, then any function ∆ : A → B is called

an r-colouring of A. Any colouring ∆ : A → B corresponds to a partition of A

into sets {∆−1(b) : b ∈ B} called colour classes and so the terms “colourings” and

“partitions” are used interchangeably. The pigeonhole principle says that if r + 1

pigeons are placed in r holes, some hole will contain at least two pigeons and more
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generally, if nr + 1 pigeons are placed into r holes, some hole will contain at least

n + 1 pigeons. The pigeonhole principle can be stated in terms of colourings.

Pigeonhole Principle Let n, r ∈ Z+. For every r-colouring

∆ : [1, nr + 1] → [1, r], there exists an i ∈ [1, r] so that |∆−1(i)| ≥ n + 1.

Definition 1.2.1. A set P of integers is an arithmetic progression of length k

(denoted by APk) iff there are integers a and d > 0 so that

P = {a + id : 0 ≤ i ≤ k − 1}.

For any k ≥ 3, a set of integers A is called APk-free if A contains no APk’s. The

following type of set is a generalization of an arithmetic progression.

Definition 1.2.2. A set P ⊆ Z+ is called an m-fold arithmetic progression of length

k if there are integers a, d1, . . . , dm such that

P = {a +
m∑

i=1

xidi : x1, x2, . . . xm ∈ [0, k − 1]}.

Note that a 1-fold arithmetic progression of length k is just an APk.

Many proofs throughout require bounds on the number of APk’s in an interval.

The following basic calculation is referred to in numerous proofs to come.

Lemma 1.2.3. For any n ∈ Z+ and k > 1, the number of APk’s in [1, n] is less

than n2

2(k−1)
.
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Proof. For any integer d with 1 ≤ d ≤ n−1
k−1

, the arithmetic progressions in [1, n] with

difference d are {1, 1+d, . . . , 1+(k−1)d}, {2, 2+d, . . . , 2+(k−1)d}, . . . , {n− (k−

1)d, n−(k−2)d, . . . , n} and so the number of APk’s with difference d is n−(k−1)d.

Therefore, the total number of APk’s contained in [1, n] is

bn−1
k−1

c∑

d=1

(n− (k − 1)d) =

⌊
n− 1

k − 1

⌋
n− (k − 1)

(bn−1
k−1

c+ 1

2

)

=

⌊
n− 1

k − 1

⌋
1

2

(
2n− (k − 1)

(⌊
n− 1

k − 1

⌋
+ 1

))

≤ n− 1

2(k − 1)
(2n− (n− 1))

=
(n− 1)(n + 1)

2(k − 1)

<
n2

2(k − 1)
.



Chapter 2

Classic Ramsey theorems

2.1 Ramsey’s theorem

Van der Waerden’s theorem on arithmetic progressions has come to be classified as

a “Ramsey-type” theorem. Ramsey proved what has become known as Ramsey’s

theorem [91] in 1930 as a tool to prove a result in formal logic on propositional

sentences.

Theorem 2.1.1 (Ramsey’s theorem, Ramsey [91]). For every k, m, r ∈ Z+ there

is an integer n so that for any set S with |S| = n and any r-colouring ∆ : [S]k → [1, r]

there is a set T ∈ [S]m such that [T ]k is monochromatic.

A simple case of Ramsey’s theorem is often stated as a result in graph theory. A

detailed exposition of Ramsey theory and graph theory can be found, for example,

11
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in Bollobás’s Modern graph theory [16, Chapter 6].

Definition 2.1.2. Given a non-empty set V and E ⊆ [V ]2, the pair G = (V, E)

is called a graph. The elements of the set V = V (G) are called the vertices of G

and the elements of E = E(G) are called the edges of G. For each v ∈ V , the set

N(v) = {x ∈ V : {x, v} ∈ E} is called the neighbourhood of v.

Any graph G = (V,E) with E = [V ]2 is called a complete graph. For each

n ∈ Z+, the complete graph on n vertices is denoted by Kn.

Definition 2.1.3. Given graphs G = (V, E) and G′ = (V ′, E ′), the graph G′ is

called a subgraph (or sometimes a weak subgraph) of G iff V ′ ⊆ V and E ′ ⊆ E∩[V ′]2.

A slightly simpler form of Ramsey’s theorem (the case m = 2) can be stated in

terms of graph theory. A proof of Theorem 2.1.4 is given in this section.

Theorem 2.1.4 (Ramsey [91]). For every k, r ∈ Z+ there is a least integer R(k; r)

such that for all n ≥ R(k; r) and for any r-colouring of the edges of Kn, there is a

complete subgraph G on k vertices such that the set of edges E(G) is monochro-

matic.

Definition 2.1.5. Let r, k1, k2, . . . , kr ∈ Z+. Denote by R(k1, k2, . . . , kr; r) the least

integer N , if it exists, such that for every n ≥ N and any r-colouring of the edges

of Kn, there is an i ∈ [1, r] such that Kn contains a subgraph Kki
whose edges are

monochromatic in colour i.
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Often, the notation R(k1, . . . , kr; r) is abbreviated by R(k1, . . . , kr) when the

number of colours is implicit. If for all r, k1, . . . , kr ∈ Z+, R(k1, . . . , kr; r) exists,

then since R(k; r) = R(k, . . . , k; r), so does the Ramsey number, R(k; r). Before

proceeding to the proof that the number R(k1, . . . , kr; r) will always exist, a few

preliminary results will be useful.

Lemma 2.1.6. Let k1, . . . , kr ∈ Z+ be such that R(k1, . . . , kr) exists. For any

permutation σ of [1, r], R(kσ(1), . . . , kσ(r)) = R(k1, . . . , kr).

Proof. Set N = R(k1, . . . , kr), let σ be a permutation of [1, r] and let ∆ be any

r-colouring of E(KN). Define a new r-colouring ∆′ of the edges of KN as follows.

For {x, y} ∈ E(KN), set ∆′({x, y}) = σ(∆({x, y})). By the choice of N , for some

i ∈ [1, r], there is a Kki
which is monochromatic, under ∆′, in the colour i. That

is, for all x, y ∈ V (Kki
), σ(∆({x, y})) = i. Let j = σ−1(i). Then Kki

= Kkσ(j)
is a

complete graph, monochromatic, under ∆, of colour j.

In 1935, Erdős and Szekeres [40] gave a new proof of Ramsey’s theorem which

they used to prove that for every integer k ≥ 4, there is an N ∈ Z+ so that for

any collection of N points in the plane with no three collinear, some k points form

the vertices of a convex k-gon. Their inductive proof employed a recursion that

has come to be known as the “Erdős-Szekeres recursion“. The recursive equation

is often given in its simplest form which states that if k, ` ≥ 3, then R(k, `) ≤
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R(k− 1, `) + R(k, `− 1). The following theorem (see for example [51, p.5]) extends

the recursion to Ramsey numbers with any number of colours.

Theorem 2.1.7 (Erdős-Szekeres Recursion [40]). For all integers r ≥ 2 and

k1, k2, . . . , kr ≥ 3,

R(k1, k2, . . . , kr) ≤ R(k1 − 1, k2, . . . , kr) + R(k1, k2 − 1, . . . , kr)

+ . . . + R(k1, k2, . . . , kr − 1)− r + 2.

Proof. For each i ∈ [1, r] define Ni = R(k1, . . . , ki−1, . . . kr) and let N = N1 + . . .+

Nr − r + 2. Let ∆ be any r-colouring of the edges of KN .

Fix an x ∈ V (KN) and for each i ∈ [1, r], define

Vi = {y ∈ V (KN) : ∆({x, y}) = i}.

Then, Vi is the set all vertices in the neighbourhood of x whose edges to x are

coloured i by ∆. Then for some i ∈ [1, r], |Vi| ≥ Ni, for if not, then,

r∑
i=1

Ni − r + 2 = 1 +
r∑

i=1

|Vi| ≤ 1 +
r∑

i=1

(Ni − 1) =

(
r∑

i=1

Ni

)
− r + 1

which is impossible.

Fix ` ∈ [1, r] such that |V`| ≥ N`. The colouring ∆ induces an r-colouring

of the complete graph on the vertices of V` and so by the choice of the number

N` = R(k1, . . . , k`− 1, . . . , kr), either for some j ∈ [1, r]\{`}, V` contains a Kkj
with

edges all colour j, or else V` contains a Kk`−1 with edges all colour `. In the latter
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case, the vertices of the complete graph Kk`−1 together with the vertex x form the

vertices of a complete graph on k` vertices all of whose edges are colour ` since all

the edges between x and V` are colour `.

The Erdős-Szekeres recursion provides a step of a proof by double induction on r

and k1 + · · ·+ kr that for all r, k1, . . . , kr ∈ Z+, the Ramsey number R(k1, . . . , kr; r)

exists. The necessary base cases are as follows.

For r = 2 and k ∈ Z+, R(k, 2; 2) = k since for any 2-colouring of the edges of

the complete graph Kk, there is either be one edge, a K2, of the second colour or

else all edges of the graph Kk are of the first colour. Similarly, if k1, . . . , kr−1 ∈ Z+,

then R(k1, . . . , kr−1, 2; r) = R(k1, . . . , kr−1; r − 1).

Together, Lemma 2.1.6 and Theorem 2.1.7 show that for any r, k1, . . . , kr ∈ Z+,

the Ramsey number R(k1, . . . , kr; r) exists.

The Erdős-Szekeres recursion can be used to prove that for every k, ` ≥ 2,

R(k, `; 2) ≤ (
k+`−2
k−1

)
.

2.2 Hilbert’s cube lemma

Definition 2.2.1. For any m ∈ Z+, H ⊆ Z+ is an affine m-cube iff there are

a0, a1, . . . am ∈ Z+ such that,

H =

{
a0 +

∑
i∈I

ai : I ⊆ [1,m]

}
.
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Denote such an affine m-cube by H = H(a0, a1, . . . , am).

For example, the set H(1, 2, 3) = {1, 3, 4, 6} is an affine 2-cube and the set

H(2, 3, 5, 8) = {2, 5, 7, 10, 13, 15, 18} is an affine 3-cube. For any a0, a1, . . . , am ∈ Z+,

the affine m-cube H(a0, a1, . . . , am) can be decomposed as {a0} + {0, a1} + . . . +

{0, am}. Affine m-cubes are related to arithmetic progressions since any arithmetic

progression of length m + 1 is an affine m-cube. In fact, for any a, d, m ∈ Z+,

{a, a + d, . . . , a + md} = H(a, d, . . . , d︸ ︷︷ ︸
m−times

).

Also, any m-fold arithmetic progression of length 2 (recall Definition 1.2.2) is an

affine m-cube. Even though not all affine cubes are arithmetic progressions, affine

cubes are a key component of the proof of Szemerédi’s theorem (in Chapter 4 to

come) regarding arithmetic progressions. Long arithmetic progressions in a partic-

ular set are found by examining shorter arithmetic progressions contained within

particular affine cubes. The following colouring theorem about affine m-cubes was

published by David Hilbert in 1892. After the pigeonhole principle, Hilbert’s result

on affine cubes is the earliest non-trivial “Ramsey”-type result.

Theorem 2.2.2 (Hilbert [63]). For every r,m ∈ Z+ there exists a positive integer

n = H(m, r) such that for every r-colouring of [1, n], there is a monochromatic

affine m-cube.
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Proof. The proof given here appears in Lovaśz [81, p. 561]. Note that the translation

of an affine m-cube remains an affine m-cube. That is, for any a0, a1, . . . , am, t ∈ Z+,

H(a0, a1, . . . am) + t = H(a0 + t, a1, . . . , am).

Thus, if for some m, r ∈ Z+, n is such that for any r-colouring of [1, n], there is a

monochromatic affine m-cube, then the same is true for any interval of length n.

Fix r ∈ Z+. The proof that for all m ∈ Z+, H(m; r) exists proceeds by induction

on m.

Base Case: If m = 1, then by the pigeonhole principle, H(1, r) = r + 1 since

an affine 1-cube is just a pair of integers.

Inductive Step: Assume that for some m ≥ 1, the number H(m, r) exists. Set

n = H(m, r), N = rn + n, and let ∆ : [1, N ] → [1, r] be any r-colouring. For each

i ∈ [1, rn + 1] define the interval Ii = [i, i− 1 + n].

In each interval Ii, there are n elements that receive one of r colours and so

each of these intervals could be coloured in rn different ways. Since there are rn +1

intervals, by the pigeonhole principle, there must be two, say Ij and Ij+k, that are

coloured in the same way. That is, for any ` ∈ Ij, ∆(`) = ∆(` + k).

By the choice of n = H(m, r), since Ij is an interval of length n, there is a

monochromatic affine m-cube H(a0, a1, . . . , am) in Ij.

By the choice of k, for any h ∈ H(a0, a1, . . . , am), ∆(h) = ∆(h + k). Therefore,
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the set

H(a0, a1, . . . , am) ∪ (H(a0, a1, . . . , am) + k) = H(a0, a1, . . . , am, k)

is an affine (m + 1)-cube in [1, N ] which is monochromatic under ∆.

Therefore, for any m, r ∈ Z+, the number H(m, r) exists.

The following extension of Theorem 2.2.2 was given by Szemerédi [107, p. 93]

who used it to prove a density result about arithmetic progressions.

Theorem 2.2.3 (Szemerédi [107]). For every ε > 0, m ∈ Z+ and n ≥ 1
4

(
4
ε

)2m

, if

A ⊆ [1, n] is such that |A| ≥ εn, then A contains an affine m-cube.

Proof. The proof presented here is different from the original and is due to Lovaśz

[81, pp. 561–562]. Throughout this proof, for any set A ⊆ Z+ and d ∈ Z+, let

Ad = A∩ (A+ d) = {x ∈ A : x+ d ∈ A}. It will be useful to have some information

on the size of the set Ad. If A ⊆ [1, n] and |A| ≥ 2, then

n−1∑

d=1

|Ad| =
n−1∑

d=1

|{x ∈ A : x + d ∈ A}|

=
∑

{x,y}∈[A]2

|{d ∈ [1, n− 1] : |x− y| = d}| (double counting)

=

(|A|
2

)

=
|A|2
2

(
1− 1

|A|
)

≥ |A|2
4

(since |A| ≥ 2).



CHAPTER 2. CLASSIC RAMSEY THEOREMS 19

Therefore,

max
d∈[1,n−1]

|Ad| ≥ avg
d∈[1,n−1]

|Ad| ≥ 1

(n− 1)

|A|2
4

>
|A|2
4n

and so there is at least one d ∈ [1, n−1] with |Ad| ≥ |A|2
4n

. For integers d1, d2, denote

(Ad1)d2 = Ad1,d2 .

Fix ε with 0 ≤ ε ≤ 1 and m ∈ Z+. Let n ≥ 1
4

(
4
ε

)2m

and A ⊆ [1, n] be such that

|A| ≥ εn. A sequence of integers a1, a2, . . . am will be recursively chosen so that if

k ∈ [1,m], then |Aa1,...,ak
| ≥ 4n

(
ε
4

)2k

.

Since

|A| ≥ εn ≥ ε

4

(
4

ε

)2m

=
4

ε

2m−1

≥ 4

ε
> 2,

there is an a1 ∈ [1, n− 1] such that

|Aa1| ≥
|A|2
4n

≥ (εn)2

4n
= 4n

(ε

4

)2

.

In general for k ∈ [1,m−1], having found a1, . . . , ak so that |Aa1,...,ak
| ≥ 4n

(
ε
4

)2k

,

since

|Aa1,...,ak
| ≥

(
4

ε

)2m (ε

4

)2k

=

(
4

ε

)2m−k

>
4

ε
> 2,

there is an ak+1 ∈ [1, n− 1] such that

|Aa1,...,ak,ak+1
| ≥ |Aa1,...,ak

|2
4n
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≥ 4n
(ε

4

)2k+1

.

Therefore, by induction, there are a1, . . . , am ∈ [1, n− 1] such that

|Aa1,...,am| ≥ 4n
(ε

4

)2m

≥ 4 · 1

4

(
4

ε

)2m (ε

4

)2m

= 1.

Thus, Aa1,...,am 6= ∅ and so there is at least one element a0 ∈ Aa1,...,am .

Now, Aa1 = {a ∈ A : a + a1 ∈ A} = {a ∈ A : H(a, a1) ⊆ A} and Aa1,a2 =

{a ∈ Aa1 : a + a2 ∈ Aa1} = {a ∈ A : H(a, a1, a2) ⊆ A}. Continuing in this manner,

Aa1,...,am = {a ∈ A : H(a, a1, a2, . . . , am) ⊆ A}. Therefore, since a0 ∈ Aa1,...,am ,

H(a0, a1, . . . , am) ⊆ A.

Corollary 2.2.4. For every ε > 0 there is a constant c such that for all n ∈ Z+, if

m ≤ log2 log2 n+c, and A ⊆ [1, n] with |A| ≥ εn, then A contains an affine m-cube.

Proof. Fix ε > 0 and set c = − log2 log2 (4
ε
). For any n,m ∈ Z+, if

m ≤ log2 log2 n + c = log2 log2 n− log2 log2

(
4

ε

)
= log2

(
log2 n

log2 (4
ε
)

)
,

then,

2m ≤ log2 n

log2 (4
ε
)
⇒ 2m log2

(
4

ε

)
≤ log2 n ⇒

(
4

ε

)2m

≤ n.

Since n ≥ (
4
ε

)2m

> 1
4

(
4
ε

)2m

, by Theorem 2.2.3, for any A ⊆ [1, n] with |A| ≥ εn, A

must contain an affine m-cube.

The following lemma gives a further connection between affine cubes and arith-

metic progressions.
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Definition 2.2.5. An affine m-cube is replete iff |H| = 2m.

Lemma 2.2.6 (Gunderson and Rödl [56]). For any m ∈ Z+, if A ⊆ Z+ contains

no replete affine m-cubes and no AP3’s, then A contains no affine m-cubes.

Proof. Let A ⊆ Z+ contain no replete affine m-cubes. Suppose that A contains an

affine m-cube, H = H(a, d1, . . . , dm) ⊆ A. Since H is not replete, there are sets

I, J ⊆ [1,m] with I 6= J and a +
∑

i∈I di = a +
∑

j∈J dj. By cancelling common

terms, it can be assumed that I ∩ J = ∅. Since
∑

i∈I di =
∑

j∈J dj, the set
{

a, a +
∑
i∈I

di, a +
∑

i∈I∪J

di

}
⊆ A

is an AP3.

2.3 Schur’s theorem

According to Prömel and Voigt [85], Issai Schur had made a conjecture about ar-

bitrarily long sequences of consecutive quadratic residues and saw that he could

achieve the necessary proof given a particular partition result about arithmetic

progressions. Although Schur was not successful on this front, he did prove the

following arithmetic Ramsey-type theorem in 1916.

Theorem 2.3.1 (Schur [101]). For every r ∈ Z+ there is a least positive integer

S(r) such that for any r-colouring, ∆ : [1, S(r)] → [1, r], there exist x, y ∈ [1, S(r)],

possibly with x = y, such that ∆(x) = ∆(y) = ∆(x + y).
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Here x and y need not be distinct, though it is possible to prove the theorem

while insisting that x 6= y.

Proof. The proof given here uses Ramsey’s theorem (Theorem 2.1.4) and shows that

S(r) ≤ R(3; r)− 1 (see [51, p.69]).

Let r ∈ Z+ and set n = R(3; r)− 1. To see that S(r) ≤ n, let ∆ : [1, n] → [1, r]

be any r-colouring and consider the graph Kn+1 on vertices {0, 1, . . . , n} with an

edge colouring defined as follows. For 0 ≤ i < j ≤ n,

∆∗({i, j}) = ∆(j − i).

If 0 ≤ i < j ≤ n, then j − i ∈ [1, n] and thus ∆∗ is well-defined. By the choice of

n, there is a triangle in Kn+1 which is monochromatic under ∆∗. Thus, in terms of

∆, there are 0 ≤ a < b < c ≤ n such that,

∆(b− a) = ∆(c− b) = ∆(c− a)

= ∆((b− a) + (c− b)).

Set x = b − a, y = c − b and z = c − a. Then ∆(x) = ∆(y) = ∆(z) and

x + y = (b− a) + (c− b) = c− a = z.

This proof is shorter than Schur’s original proof which did not use Ramsey’s

theorem and gave the slightly better bound: S(r) ≤ er!, where is e is the natural

logarithm base.
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2.4 Dickson’s theorem

It seems that one of Schur’s motivations for Theorem 2.3.1 was to present a new

proof of a theorem by L. E. Dickson [30] on congruence equations, Theorem 2.4.5

below. Though unrelated to problems on arithmetic progressions, Dickson’s theo-

rem provides an interesting application of Ramsey Theory to a number theoretic

problem. At the time, one of the attempts to prove Fermat’s Last Theorem focussed

on showing that when an integer m has some “nice” properties, there would be only

finitely many primes p for which there were non-trivial solutions to the equation

xm + ym ≡ zm (mod p). Given such a result and x0, y0 and z0 with xm
0 + ym

0 = zm
0 ,

there would be infinitely many primes p for which xm
0 + ym

0 = zm
0 (mod p) was a

trivial solution. In that case, one of x0, y0 or z0 would be divisible by infinitely many

primes and hence 0. This would show that there are no non-trivial solutions to the

equation xm + ym = zm. Unfortunately, this approach was shown to be futile by

Dickson. (More information about the problem can be found for example in [31].)

The proof of Dickson’s theorem (Theorem 2.4.5 below) utilizes group theory and

a few definitions and results are necessary (see for example Hungerford [68]).

Definition 2.4.1. Let G be a finite group with identity e. The order of G, denoted

by |G|, is the number of elements in G. For each g ∈ G, the order of g, denoted by

|g|, is the least positive integer n such that gn = e.
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Lemma 2.4.2. Let G be a finite group and g ∈ G. For any m ∈ Z+,

|gm| = |g|
gcd (m, |g|) .

Definition 2.4.3. Let G be a group and H a subgroup of G. For each g ∈ G, the

set gH = {gh : h ∈ H} is called a left coset of H and the set Hg = {hg : h ∈ H} is

called a right coset of H.

It is possible to show that, for any group G and subgroup H, the set of left

cosets (or the set of right cosets) of H partitions G. It can also be shown that the

number of left cosets of H is the same as the number of right cosets of H in G and

this number depends only on the orders of G and H. (see, e.g., [68, p.39]).

Theorem 2.4.4 (Lagrange). Let G be a group and H a subgroup of G. The number

of cosets of H in G is |G|
|H| .

Theorem 2.4.5 (Dickson [30]). For every integer m, and for every sufficiently large

prime p, the equation

xm + ym ≡ zm (mod p)

has a solution with none of x, y or z divisible by p.

Proof. The following is Schur’s proof [101] of Dickson’s theorem.

Fix m ∈ Z+ and let p be prime with p ≥ S(m)+ 1 and let G = {1, 2, . . . , p− 1}.

Since p is prime, G is a cyclic group under multiplication modulo p. Let a be a
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generator for G, that is G = 〈a〉, and set H = {xm : x ∈ G}. Since a is a generator

for G, H = 〈am〉 and the order of H is

|H| = |〈am〉| = |am|

=
|a|

gcd(m, |a|)

=
p− 1

gcd(m, p− 1)
.

By Theorem 2.4.4, the number of distinct cosets of H in G is

|G|/|H| = (p− 1)/
p− 1

gcd(m, p− 1)

= gcd(m, p− 1)

≤ m.

Since the distinct cosets of H partition G and there are no more than m of them,

they can be used to define an m-colouring of the elements of G.

By the choice of p, with p−1 ≥ S(m), and by Schur’s theorem (Theorem 2.3.1),

there are x0, y0 ∈ G such that x0, y0, and x0 + y0 are all contained in the same coset

of H. That is y0 ∈ x0H and x0 + y0 ∈ x0H.

In other words, x−1
0 y0 ∈ H and x−1

0 (x0 + y0) = 1 + x−1
0 y0 ∈ H. By the definition

of H, there are elements y1, z1 ∈ G such that ym
1 = x−1

0 y0 and zm
1 = 1 + x−1

0 y0 in G.

That is, 1m + ym
1 = 1 + x−1

0 y0 = zm
1 (mod p) and since 1, y1, z1 ∈ G none of 1,

y1 or z1 are divisible by p.



Chapter 3

Van der Waerden’s theorem

3.1 Preliminaries

While working at Hamburg in 1926, Bartel van der Waerden shared a conjecture on

arithmetic progressions with Artin and Schrier that he had heard from Baudet in

Göttingen. The conjecture, that was likely originally due to Schur, stated that for

every partition of Z+ into two classes, for every k ≥ 3, one of the partition classes

will contain an APk. Together with Artin and Schrier, van der Waerden found an

equivalent problem that he subsequently proved. (Further details on the history of

the problem can be found in [85, 114].)

Theorem 3.1.1 (van der Waerden [113]). For every k, r ∈ Z+, there is an integer

n such that for every r-colouring of [1, n], there is a monochromatic APk.

26
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There is no similar result for infinite arithmetic progressions. Consider the 2-

colouring of Z+ defined for each n ∈ Z+ by ∆(n) = blog2 nc (mod 2). That is,

for each i ≥ 0, all of the integers in the interval [2i, 2i+1 − 1] are colour 0 if i is

even and colour 1 if i is odd. Both colour classes contain arbitrarily long arithmetic

progressions with finitely many terms, but no infinite arithmetic progressions.

The lemmas needed to show that Theorem 3.1.1 is equivalent to the original

conjecture are given in this section together with some preliminary results in prepa-

ration for the proof of Theorem 3.1.1 in Section 3.2.

Definition 3.1.2. For every k, r ∈ Z+ let W (k; r) be the least integer (if it exists) so

that for every r-colouring of [1, W (k; r)], there are a, d ∈ Z+ so that the arithmetic

progression of length k

{a + id : 0 ≤ i ≤ k − 1} ⊆ [1,W (k; r)]

is monochromatic. The numbers W (k; r) are called van der Waerden numbers.

The following lemma, observed by Schrier (see [114]), shows that the problem

of proving the existence of the van der Waerden numbers is equivalent to a related

problem for the set of all positive integers. The next three lemmas (Lemmas 3.1.3–

3.1.5) all have standard proofs (see for example [51], [80] and [114]).

Lemma 3.1.3. Fix r, k ∈ Z+. The integer W (k; r) exists iff for every r-colouring

of Z+ there is a monochromatic APk.
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Proof. If W (k; r) exists, then for every r-colouring of Z+ there is a monochromatic

APk since [1,W (k; r)] ⊆ Z+.

For the converse, suppose that W (k; r) does not exist. Then, for every n ∈ Z+,

there is an r-colouring ∆n for which [1, n] contains no monochromatic APk’s. These

r-colourings are used to construct an r-colouring of Z+ with no monochromatic

APk’s. Recursively build a sequence of colours {cn}n∈Z+ and a sequence of infinite

sets A1 ⊇ A2 ⊇ . . . as follows.

Since there are only finitely many colours, one colour must occur infinitely many

times in the sequence {∆1(1), ∆2(1), . . .}. Let c1 ∈ [1, r] be such that A1 = {i ∈

Z+ : ∆i(1) = c1} is infinite.

In general, for t ≥ 1, having defined the infinite set At, there must be one colour,

call it ct+1, that occurs infinitely many times in the sequence {∆i(t + 1) : i ∈ At}.

Set At+1 = {i ∈ At : ∆i(t + 1) = ct+1}.

Define a new colouring ∆ : Z+ → [1, r] as follows. For each n ∈ Z+, set

∆(n) = cn. Note that for m,n ∈ Z+, if n ∈ Am, then ∆n|[1,m] = ∆|[1,m] by the

definition of ∆ and the choice of the set Am. For each n ∈ Z+, there are no APk’s

which are monochromatic under ∆n and so Z+ also does not contain any APk’s

which are monochromatic under ∆.

It is worth noting that, in the proof of Lemma 3.1.3, the only property of arith-

metic progressions used was that a k-term arithmetic progression is a finite set. A
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variation of this proof gives a more general result: Let F be any collection of finite

sets of integers and for each r ≥ 2, let F (r) be the least integer (if it exists) such

that for every r-colouring of [1, F (r)], there is a monochromatic element of F . A

proof similar to that of Theorem 3.1.3 shows that for any r ≥ 2, F (r) exists iff for

every r-colouring of Z+, there is an F ∈ F that is monochromatic. Further details

on problems known as “compactness” results can be found, for example, in [27] and

[90].

Lemma 3.1.4. Fix k, r ∈ Z+, suppose that the number n = W (k; r) exists and let

P = {a, a + d, . . . a + (n− 1)d} be any APn. Then for any r-colouring of P there is

a monochromatic APk.

Proof. Let ∆ : P → [1, r] be any r-colouring. Define an induced r-colouring ∆∗ :

[1, n] → [1, r] by ∆∗(i) = ∆(a + d(i − 1)). By the choice of n, there is an APk,

{c, c + b, . . . , c + (k − 1)b} that is monochromatic under ∆∗. In terms of ∆, for

each 0 ≤ i ≤ k − 1, ∆∗(c + ib) = ∆(a + d(c + ib − 1)). Therefore the APk,

{a + d(c− 1), (a + d(c− 1)) + db, . . . , (a + d(c− 1)) + (k − 1)db} is monochromatic

under ∆.

The same argument also shows that if k, r ∈ Z+ are such that for every r-

colouring of Z+, there is a monochromatic APk, then for any infinite arithmetic

progression P = {a+id : i ≥ 0} and any r-colouring of P , there is a monochromatic

APk contained in P .
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The next lemma, observed by Artin (see [114]), shows that the problem for

arbitrary colourings is equivalent to that for 2-colourings.

Lemma 3.1.5. If for all k ∈ Z+, W (k; 2) exists, then for all k ∈ Z+, r ≥ 2, the van

der Waerden number W (k; r) exists.

Proof. Assume that for all k ∈ Z+, the van der Waerden number W (k; 2) ex-

ists. The proof is by induction on r. The base case r = 2 is trivially true.

Fix k ∈ Z+ and suppose that r ≥ 3 is such that W (k; r − 1) exists. Set m =

W (k; r − 1) and n = W (m; 2). In order to show that W (k; r) ≤ n let ∆ :

[1, n] → {red1, . . . , red(r−1), blue} be any r-colouring. Define a new 2-colouring

∆∗ : [1, n] → {red, blue} by,

∆∗(i) =





red, if for some j, ∆(i) = redj;

blue, if ∆(i) = blue.

If [1, n] contains a blue APm under ∆∗, then since the APm will also be blue

under ∆, [1, n] contains a monochromatic APk since k ≤ m.

Otherwise, by the choice of n, there is a APm, call it P , which is red under

∆∗. Thus, ∆ restricted to P is an (r − 1)-colouring and since m = W (k; r − 1), by

Lemma 3.2.3, P contains an APk which is monochromatic under ∆.

Therefore, for every r-colouring of [1, n], there is a monochromatic APk and

hence W (k; r) exists.
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The original problem, as it came to van der Waerden, asked if it was possible to

guarantee that in any 2-colouring of Z+, one colour class contained arbitrarily long

arithmetic progressions. As it turns out, the modifications given by Lemmas 3.1.3

and 3.1.5 led to a seemingly more complicated conjecture that was easier to solve.

The following variation of van der Waerden’s theorem (Theorem 3.1.1) states

that any sequence for which the difference between consecutive terms is bounded

will contain arbitrarily long arithmetic progressions.

Theorem 3.1.6 (Brown [20] and Rabung [86]). Let M ∈ Z+ be such that for

every (M − 1)-colouring of Z+, at least one colour class contains arbitrarily long

arithmetic progressions. Let S = {si}i≥0 be a strictly increasing sequence such

that for all i ≥ 0, |si+1 − si| ≤ M . Then S contains arbitrarily long arithmetic

progressions.

Proof. Define a partition of Z+ into M disjoint sets as follows. Set A0 = S and for

each n ∈ [1,M − 1], having previously defined A0, A1, . . . , An−1, set

An = {si + n : i ≥ 0}\
(n−1⋃

j=0

Aj

)
.

Since for all i ≥ 0, |si+1 − si| ≤ M , the sets A0, . . . , AM−1 define a partition of

Z+. By assumption, there is one n ∈ [1,M − 1] so that An0 contains arbitrarily

long arithmetic progressions. That is, for each k ∈ Z+, there are a, d ∈ Z+ so that
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{a, a + d, . . . , a + (k − 1)d} ⊆ An0 ⊆ S + n0. Therefore, the k-term arithmetic

progression {a− n0, a− n0 + d, . . . , a− n0 + (k − 1)d} is contained in S.

A consequence of Theorem 3.1.6 is the following result about the existence of

arithmetic progressions and strings of consecutive integers in any partition of Z+.

Corollary 3.1.7 (Rabung [86]). If, for every finite colouring of Z+, one colour class

contains arbitrarily long arithmetic progressions, then for any partition of Z+ into

2 classes, either one class contains arbitrarily long strings of consecutive numbers

or else both classes contain arbitrarily long arithmetic progressions.

Proof. Let Z+ = A1 ∪ A2 be any partition. If for some M ∈ Z+, the longest string

of consecutive integers in A1 is of length M , then for any two consecutive entries

a < b in A2, |b − a| ≤ M + 1. Therefore, if neither A1 nor A2 contain arbitrarily

long strings of consecutive numbers, then both A1 and A2 satisfy the conditions of

Theorem 3.1.6 and hence contain arbitrarily long arithmetic progressions.

3.2 Block proof

In this section, a combinatorial proof of van der Waerden’s theorem (Theorem 3.1.1)

is given. Monochromatic arithmetic progressions are found by examining, not just

the elements coloured, but also the effect of the colourings on an interval (also called
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a block). It will be useful to define some terminology and make a few preliminary

notes.

Definition 3.2.1. Given two blocks of equal length, I1 = [i, i+k] and I2 = [j, j+k]

with I1, I2 ⊆ [1, n] and an r-colouring ∆ of [1, n], I1 and I2 are said to have the

same colour pattern under ∆ if for each 0 ≤ m ≤ k, ∆(i + m) = ∆(j + m).

Definition 3.2.2. A sequence of blocks B1, B2, . . . , Bk form an APk of blocks iff

there is an integer d > 0 so that for each i ∈ [2, k], Bi = B1 + (i− 1)d.

Note that the blocks Bi may or may not overlap.

Lemma 3.2.3. Suppose that for some k, r, n ∈ Z+, W (k; rn) = N exists. For any

r-colouring ∆ : [1, nN ] → [1, r], there exists an APk of blocks each block of length

n, all with the same colour pattern under ∆.

Proof. For each 1 ≤ i ≤ N , set Bi = [1 + (i − 1)n, in]. Let ∆ : [1, nN ] → [1, r] be

any r-colouring and define the induced rn-colouring ∆∗ : [1, N ] → ([1, r])n by

∆∗(x) = (∆(1 + (x− 1)n), ∆(2 + (x− 1)n), . . . , ∆(xn))

where each colour under ∆∗ is an n-tuple. Since N = W (k; rn), [1, N ] contains an

APk, {a, a + d, . . . , a + (k − 1)d} which is monochromatic under ∆∗. In terms of

the colouring ∆, this means that the blocks Ba, Ba+d, . . . , Ba+(k−1)d form an APk of

blocks of length n, with difference nd, for which all members have the same colour

pattern under ∆.
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The following proof of van der Waerden’s theorem is a variation of the original

proof and can be found in Khinchin [75], where it is attributed to M. A. Lukomskaya.

Theorem 3.2.4 (van der Waerden [113]). For each k, r ≥ 2, W (k; r) exists.

The proof is by induction on k, with a recursive construction in r steps. In order

to demonstrate the idea of the proof, the following is a sketch of the inductive step

for 2 colours to construct a monochromatic APk+1 from APk’s.

Let N be large and ∆ : [1, N ] → {red , blue} be any 2-colouring. Find an APk

of blocks {B(1), B(2), . . . , B(k)} with difference d1 in the first half of the interval

[1, N ], all with the same colour pattern under ∆, and set B(k +1) = B(k)+d1. Let

the blocks be large enough so that the first half of the block B(1) is guaranteed to

contain a monochromatic APk, {B(1, 1), B(1, 2), . . . , B(1, k)} with some difference

d2. Set B(1, k + 1) = B(1, k) + d2. Then B(1, k + 1) ∈ B(1) since the APk

{B(1, 1), B(1, 2), . . . , B(1, k)} is contained in the first half of B(1). For each i ∈

[2, k + 1] and j ∈ [1, k + 1], define

B(i, j) = B(1, j) + (i− 1)d1.

Then, for each i ∈ [1, k + 1], the block Bi contains an APk+1 of blocks:

{B(i, 1), B(i, 2), . . . , B(i, k + 1)}.



CHAPTER 3. VAN DER WAERDEN’S THEOREM 35

Since the blocks B(1), . . . , B(k) all have the same colour pattern, the sets {B(i, j) :

1 ≤ i, j ≤ k} and {B(i, k + 1) : 1 ≤ i ≤ k} are both monochromatic, though not

necessarily the same colour. If these two sets are the same colour, then {B(1, j) :

1 ≤ j ≤ k + 1} is a monochromatic APk+1.

Figure 3.1: Arithmetic progression of blocks

If not, say {B(i, j) : 1 ≤ i, j ≤ k} is red and {B(i, k + 1) : 1 ≤ i ≤ k} is

blue, consider the element B(k + 1, k + 1). If B(k + 1, k + 1) is red, then the set

{B(1, 1), B(2, 2), . . . , B(k + 1, k + 1)} is a red APk+1 with difference d1 + d2. If

B(k + 1, k + 1) is blue, then {B(1, k + 1), B(2, k + 1), . . . , B(k + 1, k + 1)} is a blue

APk+1 with difference d1.

The following proof shows the existence of all van der Waerden numbers. The

general idea is similar to that for the previous sketch, though each block is subdi-

vided into many smaller blocks in steps corresponding to the number of colours in

question.

Proof of Theorem 3.1.1. The proof shows that for all integers k, r ≥ 2, W (k; r)
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exists using an induction on k with a recursive construction in r steps. Fix r ≥ 2.

Base Case: By the pigeonhole principle, W (2; r) = r + 1.

Inductive step: Fix k ≥ 2 and suppose that for all t ≥ 2, the number W (k; t)

exists. The following inductive step shows that W (k + 1; r) exists. Set q0 = 1 and

for each s with 1 ≤ s ≤ r, define

ns−1 = W (k; rqs−1) and qs = 2ns−1qs−1.

The goal of the proof is to show that W (k + 1; r) ≤ qr. Fix an r-colouring ∆ :

[1, qr] → [1, r]. Using the choices of ns and qs, a sequence of arithmetic progressions

of blocks are defined recursively in r steps.

Since qr = 2nr−1qr−1, the interval [1, qr] can be divided into 2nr−1 blocks each

of length qr−1 and since nr−1 = W (k, rqr−1), by Lemma 3.2.3, among the first nr−1

blocks in [1, qr], there is an APk of blocks, {B(1), B(2), . . . , B(k)}, all with the same

colour pattern under ∆. Set B(k + 1) = B(k) + d1.

The blocks B(1), . . . , B(k) are all contained in the first half of the interval [1, qr]

and so B(k + 1) ⊆ [1, qr], but nothing is known about the colouring of B(k + 1).

Since qr−1 = 2nr−2qr−2 the block B(1) can be divided into 2nr−2 blocks of

length qr−2. Since nr−2 = W (k, rqr−2), in the first half of B(1), there is an APk

of blocks {B(1, 1), B(1, 2), . . . , B(1, k)} with difference d2 which all have the same

colour pattern under ∆. Set B(1, k + 1) = B(1, k) + d2. Since B(1, k) is contained
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in the first half of the block B(1), B(1, k + 1) ⊆ B(1) but again, nothing is known

about the colouring of B(1, k + 1).

Translate the APk+1 of blocks {B(1, 1), . . . , B(1, k), B(1, k + 1)} into the other

blocks B(2), . . . , B(k + 1) as follows: For i = 2, 3, . . . k + 1 and j = 1, 2, . . . , k + 1,

define

B(i, j) = B(1, j) + (i− 1)d1.

Since the APk of blocks {B(1, 1), . . . , B(1, k)} ⊆ B(1) all have the same colour

pattern and the blocks B(1), B(2), . . . B(k) all have the same colour pattern, for

1 ≤ i ≤ j ≤ k all the blocks B(i, j) have the same colour pattern. Also, for

1 ≤ i ≤ k all the blocks B(i, k + 1) have the same colour pattern, though not

necessarily the same as B(1, 1).

In general, for s < r at step s of the recursion, the block B(1, . . . , 1︸ ︷︷ ︸
s−1

) will be

an interval of length qr−s+1 = 2nr−sqr−s and if B(1, . . . , 1) is partitioned into 2nr−s

blocks, since qr−s = W (k, rqr−s), the first half of B(1, . . . , 1) contains an APk of

blocks

{B(1, . . . , 1︸ ︷︷ ︸
s−1

, 1), B(1, . . . , 1︸ ︷︷ ︸
s−1

, 2), . . . , B(1, . . . , 1︸ ︷︷ ︸
s−1

, k)}

with difference ds and all with the same colour pattern under ∆. Set

B(1, . . . , 1︸ ︷︷ ︸
s−1

, k + 1) = B(1, . . . , 1︸ ︷︷ ︸
s−1

, k) + ds

and translate the APk+1 of blocks, {B(1, . . . , 1, 1), . . . , B(1, . . . , 1, k+1)} into all the

blocks constructed in step s− 1 of the recursion. Note that if i1, . . . , is, j1, . . . , js ∈
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[1, k], then the blocks B(i1, i2, . . . is) and B(j1, . . . , js) have the same colour pattern

under ∆.

After step r of the recursion, the blocks are all of size q0 = 1. Since these blocks

are all singletons, they will be treated interchangeably as integers or sets.

The following properties of the blocks of integers constructed in this way are

worth noting.

If 1 ≤ s < r and if 1 ≤ is+1, is+2, . . . , ir ≤ k + 1, then B(i1, . . . is, is+1, . . . , ir)

appears in the same position in the block B(i1, . . . is) as B(j1, . . . js, is+1, . . . , ir)

does in the block B(j1, . . . js). If 1 ≤ i1, . . . is, j1, . . . , js ≤ k, then since the two

blocks have the same colour pattern, the two integers have the same colour under

∆.

For 1 ≤ s ≤ r, since B(i1, . . . , is−1, is + 1) = B(i1, i2, . . . , is−1, is) + ds and

B(i1, . . . , is−1, is, is+1, . . . , ir) and B(i1, . . . , is−1, is + 1, is+1, . . . , ir) appear in the

same position in their respective blocks,

B(i1, . . . , is−1, is + 1, is+1, . . . , ir)−B(i1, . . . , is, . . . , ir) = ds. (3.1)

Consider the following r + 1 elements. For each i ∈ [0, r], let

bi = B(1, . . . , 1︸ ︷︷ ︸
i

, k + 1, . . . , k + 1︸ ︷︷ ︸
r−i

).

Since ∆ is an r-colouring, by the pigeonhole principle, there must be u and v

with 0 ≤ u < v ≤ r so that ∆(bu) = ∆(bv).
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For each i ∈ [1, k + 1], define ai = B(1, . . . , 1︸ ︷︷ ︸
u

, i, . . . , i︸ ︷︷ ︸
v−u

, k + 1, . . . , k + 1︸ ︷︷ ︸
r−v

). Then,

a1 = bv and ak+1 = bu.

If i+1 ≤ k, then by a previous remark, ai = B(1, . . . , 1, i, . . . , i, k +1, . . . , k +1)

and ai+1 = B(1, . . . , 1, i + 1, . . . , i + 1, k + 1, . . . , k + 1) have the same colour. Since

∆(a1) = ∆(ak+1), the set {a1, . . . , ak+1} is monochromatic under ∆. To show that

{a1, . . . ak+1} is an APk+1, fix i ∈ [1, k] and for each m ∈ [0, v − u], define

ai,m = B(1, . . . , 1︸ ︷︷ ︸
u

, i + 1, . . . , i + 1︸ ︷︷ ︸
m

, i, . . . , i︸ ︷︷ ︸
v−u−m

, k + 1, . . . , k + 1︸ ︷︷ ︸
r−v

)

so that ai,0 = ai and ai,v−u = ai+1. Now,

ai,m − ai,m−1 = B(1, . . . , 1, i + 1, . . . , i + 1, i + 1︸︷︷︸
(u+m)−th

, i, . . . , i, k + 1, . . . , k + 1)

−B(1, . . . , 1, i + 1, . . . , i + 1, i︸︷︷︸
(u+m)−th

, i, . . . , i, k + 1, . . . , k + 1)

= du+m (by eq’n (3.1)).

The sequence {ai,m : 0 ≤ m ≤ v−u} can be used to write the difference ai+1−ai

as a telescoping series.

ai+1 − ai =
v−u∑
m=1

ai,m − ai,m−1

=
v−u∑
m=1

du+m

= du+1 + du+2 + · · ·+ dv.
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Therefore, the set {a1, a2, . . . , ak+1} is a monochromatic APk+1 with difference

du+1 + du+2 + · · · + dv and so W (k + 1; r) ≤ qr. Therefore, by induction, for any

k ∈ Z+, the van der Waerden number W (k; r) exists.

3.3 Graham-Rothschild proof

In 1974, Graham and Rothschild [50] gave an alternative proof of van der Waer-

den’s theorem. Their proof, presented in this section, is essentially a variant of the

argument in the previous section and is included for historical interest.

Definition 3.3.1. For each k,m, let S(k,m) be the statement that for every r ≥ 2,

there is an integer N(k,m, r) such that for any r-colouring of [1, N(k,m, r)], there

are a, d1, . . . , dm ∈ Z+ such that for each i ∈ [1,m], the i-fold arithmetic progression

of length k with starting point a + k(di+1 + · · ·+ dm),

{a + k(di+1 + · · ·+ dm) +
i∑

j=1

xjdj : x1, . . . , xi ∈ [0, k − 1]}

is monochromatic.

Note that if N(k,m, r) exists, then for every r-colouring of [1, N(k, m, r)] there

is a monochromatic m-fold arithmetic progression of length k. In particular, the

statement S(k, 1) is precisely van der Waerden’s theorem.

Theorem 3.3.2 (Graham and Rothschild [50]). For each k, m ≥ 1, S(k, m) holds.
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Proof. The proof proceeds by double induction on k and m.

Base Case: When m = 1 and k = 1, the statement S(1, 1) holds since a 1-fold

arithmetic progression of length 1 is just a singleton.

Inductive Steps: (i) For any k, m ≥ 1, S(k, m) ⇒ S(k, m + 1).

Note first that S(k,m) ⇒ S(k, 1) (simply ignore all but the 1-fold arithmetic

progression of length k).

Suppose that for some k ≥ 1, the statement S(k, m) holds. Fix an r ∈ Z+ and set

M = N(k, m, r) and M ′ = N(k, 1, rM). Let ∆ : [1,MM ′] → r be any r-colouring.

For 1 ≤ j ≤ M ′, define blocks Ij = [(j − 1)M + 1, jM ]. By the choice of M ′ and

Lemma 3.2.3, there is an arithmetic progression of blocks {Ia′ , Ia′+d′ , . . . , Ia′+(k−1)d′}

all with the same colour pattern under ∆.

By the choice of M , there are a, d2, . . . , dm+1 such that for each i ∈ [1,m + 1],

the set

{a + k(di+1 + · · ·+ dm+1) +
i∑

j=2

xjdj : each of x1, . . . , xi ∈ [0, k − 1]} ⊆ Ia′

is monochromatic under ∆.

Set d1 = d′M . For any i ∈ [1,m + 1] and x1, . . . , xi ∈ [0, k − 1] the integer

a + k(di+1 + . . . dm+1) +
∑i

j=2 xjdj occupies the same position in Ia′ as the integer

a+ k(di+1 + . . . dm+1)+
∑i

j=2 xjdj +x1d1 does in the block Ia′+x1d′ . Since these two
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blocks have the same colour pattern, the set

{a + k(di+1 + · · · dm+1) +
i∑

j=1

xjdj : x1, . . . , xi ∈ [0,−1]}

is monochromatic. Therefore, N(k, m+1, r) ≤ MM ′ and the statement S(k, m+1)

holds.

(ii) [For all m ≥ 1, S(k, m)] ⇒ S(k + 1, 1).

Fix k ≥ 1 and suppose that for all m ≥ 1, S(k, m) holds. Fix r and let

∆ : [1, N(k, r, r)] → [1, r] be given. Then, there are a, d1, . . . , dr such that for each

i ∈ [0, r], the set

{a + k(di+1 + · · ·+ dr) +
i∑

j=1

xjdj : x1, . . . , xi ∈ [0, k − 1]} (3.2)

is monochromatic.

For each s ∈ [1, r +1], consider the sum a+
∑r

i=s kdi where the empty sum is 0.

Since there are r + 1 choices for s and r colours, by the pigeonhole principle, there

are 1 ≤ u < v ≤ r + 1 such that

∆(a +
r∑

i=u

kdi) = ∆(a +
r∑

i=v

kdi).

Let b = a+
∑r

i=v kdi, c =
∑v−1

i=u di and consider the sequence {b+xc : x ∈ [0, k]}.

The set {b + xc : x ∈ [0, k − 1]} = {a +
∑r

i=v kdi +
∑v−1

i=u xdi : x ∈ [0, k − 1]}

is monochromatic by equation (3.2) and the numbers b and b + kc have the same

colour since,

∆(b + kc) =∆

((
a +

r∑
i=v

kdi

)
+ k

(
v−1∑
i=u

di

))
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= ∆

(
a +

r∑
i=u

kdi

)

= ∆

(
a +

r∑
i=v

kdi

)
(by the choice of u and v)

= ∆(b).

Therefore the sequence {b + xc : x ∈ [0, k]} is a monochromatic APk+1 and so

S(k + 1, 1) holds.



Chapter 4

Density results

4.1 Erdős-Turán function

In a 1936 paper, Erdős and Turán [41] considered the problem of determining the

maximum number of elements in an APk-free subset of [1, n]. The function they

introduced has been called the Erdős-Turán function (for example in [80, pp.41-3]).

Definition 4.1.1. For each n, k ∈ Z+, let rk(n) be the maximum size of an APk-free

subset of [1, n].

While van der Waerden’s theorem is what is known as a “partition result”,

results related to the function rk are called “density results”.

It is worth noting that, by Lemma 3.1.4, the number rk(n) is also the maximum

size of an APk-free subset of any interval of length n or of any arithmetic progression

44
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of length n.

The notation here has not yet been standardized and νk(n) is sometimes used

in place of rk(n). In a 1969 paper, Szemerédi [107] used τk for this function, but

subsequently switched to rk in a 1975 paper [108]. Often, r(n) and ν(n) are each

used to denote r3(n) and ν3(n) respectively, and this function has also been denoted

in the past as A(n) by Roth [93] or as S(n) by Graham, Rothschild and Spencer

[51].

Throughout this chapter, when colourings are discussed, the letter t will be

used for the number of colours instead of the usual r to avoid confusion with the

function rk. The number rk(n) is related to the van der Waerden numbers in the

sense that for some n, k, t ∈ Z+, if rk(n) < n
t
, then for any t-colouring of [1, n], by

the pigeonhole principle, one colour class contains at least n
t

elements and hence an

APk, showing W (k; t) ≤ n.

Definition 4.1.2. A function f : Z+ → Z+ is subadditive if for all x, y ∈ Z+,

f(x + y) ≤ f(x) + f(y).

Lemma 4.1.3 (Behrend [11]). For all k ∈ Z+, the function rk is subadditive.

Proof. Fix k ∈ Z+ and let n1, n2 ∈ Z+ be given. If A ⊆ [1, n1 +n2] is APk-free with

|A| = rk(n1 +n2), then neither A∩ [1, n1] nor A∩ [n1 +1, n1 +n2] contain any APk’s

and so rk(n1 + n2) ≤ rk(n1) + rk(n2).
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Definition 4.1.4. For each k ∈ Z+, set ck = lim supn→∞
rk(n)

n
.

Note that for all n ∈ Z+, rk(n) ≤ n and so this limit is finite and ck ≤ 1.

Lemma 4.1.5 (Behrend [11]). For all k ∈ Z+, the limit ck = limn→∞
rk(n)

n
exists

and for all n ∈ Z+, rk(n)
n

≥ ck.

Proof. Fix k, n ∈ Z+ and for each x ∈ Z+, let qx ∈ Z+ and 0 ≤ sx < n be such that

x = qxn + sx. Then rk(x) ≤ rk((qx + 1)n) ≤ (qx + 1)rk(n) by the subadditivity of

the function rk. Therefore,

rk(x)

x
=

rk(x)

qxn + sx

≤ (qx + 1)

qx

rk(n)

n

and so

ck = lim sup
x→∞

rk(x)

x

≤ lim sup
x→∞

qx + 1

qx

· rk(n)

n

=
rk(n)

n
(since qx →∞).

Therefore, ck ≤ rk(n)
n

and since n was arbitrary, ck ≤ lim infn→∞
rk(n)

n
. Triv-

ially, ck ≥ lim infn→∞
rk(n)

n
and hence lim supn→∞

rk(n)
n

= lim infn→∞
rk(n)

n
. Thus

limn→∞
rk(n)

n
exists and equals ck.

Erdős and Turán conjectured [41] that for all k ≥ 3, ck = 0 . In 1938, Behrend

[11] published a proof that either for each k ≥ 3, ck = 0 or else limk→∞ ck = 1.
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By unravelling the definition of the limit, ck = 0 iff for every ε > 0, there is an

N ∈ Z+ such that for all n ≥ N , if A ⊆ [1, n] with |A| ≥ εn, then A contains an

APk. As with van der Waerden’s theorem (see Theorem 3.1.1), this problem has an

equivalent form regarding infinite sets.

Definition 4.1.6. Given a set A ⊆ Z+ the upper density of A is defined to be

d̄(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

The set A has positive upper density iff d̄(A) > 0.

The proof of the following theorem is a standard argument, a variant of which

can be found in an article by Szemerédi [108].

Lemma 4.1.7. Let k ∈ Z+, then ck = 0 iff every set A ⊆ Z+ with positive upper

density contains an APk.

Proof. Suppose that ck = 0. Fix A ⊆ Z+ with positive upper density and set

d̄(A) = ε0 > 0. Let N1 ∈ Z+ be such that for all n ≥ N1, if |B∩[1, n]| ≥ ε0

3
n, then B

contains an APk. Let N2 be such that if n ≥ N2, then | supm≥n

{
|A∩[1,m]|

m

}
−ε0| ≤ ε0

2
.

Set M = max {N1, N2}. Then since supm≥M

{
|A∩[1,m]|

m

}
≥ ε0

2
, there is some M0 ≥ M

with |A∩[1,M0]|
M0

≥ ε0

3
and so A ∩ [1,M0] must contain an APk.

For the converse, suppose that ck > 0. Then there is an ε0 > 0 and an infinite

sequence n1 < n2 < · · · such that for each i ∈ Z+, there is an APk-free set Ai ⊆
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[1, ni] with |Ai| ≥ ε0ni. By ignoring some of the indices of the sequence, it can be

assumed that for each m ∈ Z+,

nm > 2
m−1∑
j=1

nj.

For each m ∈ Z+, set Bm = ∪m
i=1(Ai + ni + 2

∑i−1
j=1 nj). For every m ≥ 1 the set

Bm ⊆ [1, 2
∑m

j=1 nj] and since nm+1 ≥ 2
∑m

j=1 nj, there are no APk’s containing

elements from both Bm and (Am+1 + nm+1 + 2
∑m

j=1 nj).

Since each of the sets Am are APk-free, so are the sets Bm. Therefore, the set

B = ∪m∈Z+Bm is an APk-free set with upper density at least ε0

2
> 0.

4.2 Roth’s theorem

In 1952, Roth [93], proved that limn→∞
r3(n)

n
= 0 (i.e. c3 = 0). Refining his own

method, in 1953, Roth [94] subsequently proved the following result, which is pre-

sented here without proof.

Theorem 4.2.1 (Roth [94]). There is a positive constant c such that for all n

sufficiently large, if A ⊆ [1, n] with |A| ≥ cn
ln ln n

, then A contains an AP3. That is,

r3(n) <
cn

ln ln n
.

The bound given on r3(n) in the previous theorem implies that limn→∞
r3(n)

n
= 0.

In many of the theorems below regarding bounds on rk, numerous positive con-

stants are required. The symbols ck will be reserved for the limit value as previously
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defined, but other symbols such as c, c′ or c∗ will be freely reused for various positive

constants.

Rather than proving Theorem 4.2.1, the weaker result given in 1952 is proved.

Theorem 4.2.2 (Roth [93]). For every ε > 0, there is an N sufficiently large so

that for all n ≥ N , if A ⊆ N with |A| > εn, then A contains an AP3. That is,

c3 = lim
n→∞

r3(n)

n
= 0.

Proof. The following is an adaptation of the original proof that uses summations

instead of integrals and appears in [51, pp. 49–53]. Assume, in hope of a contra-

diction, that c3 > 0. Set ε = (c3)2

20
and let m be large enough so that for each

n ≥ 2m + 1,

c3 ≤ r3(n)

n
< c3 + ε.

Let N ≥ 2m+1 be large (just how large to be determined throughout the proof)

and let A ⊆ [1, 2N ] with |A| = r3(2N) ≥ c3 · 2N be AP3-free.

Let A = {u1, u2, . . . , ur} and denote the even elements of A by 2v1, . . . , 2vs. By

the choice of |A| = r3(2N) and since 2N ≥ 2m + 1,

c3 · 2N ≤ r < (c3 + ε)2N. (4.1)

The density of A on each of the sets of odd and even integers in [1, 2N ] must be less

than (c3 + ε), otherwise A would contain an AP3 (since N ≥ 2m + 1). Therefore
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s < (c + ε)N and r − s < (c3 + ε)N . Hence

s > r − (c3 + ε)N ≥ c32N − (c3 + ε)N = (c3 − ε)N,

and so,

(c3 − ε)N < s < (c3 + ε)N. (4.2)

Three complex-valued functions will be used throughout the proof. For any real

numbers x and α, let

e(x) = e2πix (where i =
√−1),

f(α) =
r∑

j=1

e(αuj) and

g(α) =
s∑

k=1

e(αvk).

If h is any function of α, let
∑∗h(α) =

∑2N−1
a=0 h( a

2N
). In particular, if u ∈ Z

with |u| < 2N , then

∑∗
e(αu) =





2N, if u = 0,

0, if u 6= 0.

(4.3)

In the first case, 1 is added 2N times and in the second, all the
(

2N
gcd (u,2N)

)
-th

roots of unity are added gcd (u, 2N) times. The first part of the proof focuses on

approximating the sum,

∑∗
f(α)g(−α)2 =

∑∗
(

r∑
j=1

e(αuj)

)(
s∑

k=1

e(−αvk)

)2
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=
r∑

j=1

s∑

k=1

s∑

`=1

∑∗
e(α(uj − vk − v`)) (expanding).

Note that uj−vk−v` = 0 iff uj = (2vk+2v`)/2 which is precisely when {2vk, uj, 2v`}

is an AP3. As A is AP3-free, this is only possible when 2vk = uj = 2v`. There are

exactly s triples (j, k, `) in the above sum with uj = 2vk = 2v`. For all other triples

(j, k, `),
∑∗e(α(uj − vk − v`)) = 0 by equation (4.3). Therefore,

∑∗
f(α)g(−α)2 = s2N

≤ (c3 + ε)N · 2N (by eq’n (4.2))

= c3N
22

(
1 +

c3

20

)
(since ε = c2

3/20)

≤ 3c3N
2 (since c3 ≤ 1). (4.4)

Now g(−α) = g(α), the complex conjugate, so that |g(−α)|2 = g(α)g(−α).

Using an argument similar to that in the calculation of inequality (4.4) above gives

∑∗|g(−α)|2 =
∑∗

g(α)g(−α)

=
s∑

j=1

s∑

k=1

∑∗
e(α(vj − vk))

= 2N · s (since vj − vk = 0 iff j = k)

≤ 3c3N
2 (as for eq’n (4.4)). (4.5)

Also,

f(0)g(0)2 =
r∑

j=1

e(0)

(
s∑

k=1

e(0)

)2
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= rs2

≥ c32N((c3 − ε)N)2 (by eq’ns (4.1) and (4.2))

= (c3)
3N3 · 2

(
1− c3

20

)2

(since ε = (c3)
2/20)

≥ (c3)
3N3 · 2

(
19

20

)2

(since c3 ≤ 1)

≥ (c3)
3N3. (4.6)

The idea of the proof is to use the previous bounds together with the inequality

|f(0)g(0)2| ≤
∣∣∣∣
∑∗

f(α)g(−α)2

∣∣∣∣ +

∣∣∣∣
∑

α 6=0

∗
f(α)g(−α)2

∣∣∣∣ (triangle inequality)

≤
∣∣∣∣
∑∗

f(α)g(−α)2

∣∣∣∣ + max
α6=0

|f(α)|
∑∗|g(−α)2| (4.7)

to derive an absurd inequality.

The remainder of the proof focuses on finding a bound for |f(α)| when α 6= 0.

However, this is not be accomplished directly, but rather by calculating bounds of a

function related to f . In Graham, Rothschild and Spencer [51, p. 51] this function

is called a smear of f .

First, note the following bound for the complex-valued function e(x). For any

real number x,

∣∣∣∣
e(x) + e(−x)

2
− 1

∣∣∣∣ = | cos (2πx)− 1| (eiθ = cos θ + i sin θ)

≤ (2πx)2

2
(Taylor series for cos x)
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= 2π2x2 (4.8)

Now, for any real γ,

∣∣∣∣
1

2m + 1

∑

|k|≤m

e(kγ)− 1

∣∣∣∣ =

∣∣∣∣
1

2m + 1

(
e(0)− 1 +

m∑

k=1

e(kγ) + e(−kγ)− 2

)∣∣∣∣

≤ 2

2m + 1

m∑

k=1

∣∣∣∣
1

2
(e(kγ) + e(−kγ))− 1

∣∣∣∣

≤ 2

2m + 1

m∑

k=1

2π2(kγ)2 (by eq’n (4.8))

=
4π2γ2

2m + 1
· m(m + 1)(2m + 1)

6

=
2π2γ2m(m + 1)

3

≤ π2(γm)2 (for m ≥ 2).

Since |e(αu)| = 1, multiplying the previous inequality through by |e(αu)| gives,

∣∣∣∣
1

2m + 1

∑

|k|≤m

e(αu + kγ)− e(αu)

∣∣∣∣ ≤ π2(mγ)2

and summing u over A gives,

∣∣∣∣f(α)− 1

2m + 1

∑
u∈A

∑

|k|≤m

e(αu + kγ)

∣∣∣∣

=

∣∣∣∣
∑
u∈A

e(αu)− 1

2m + 1

∑
u∈A

∑

|k|≤m

e(αu + kγ)

∣∣∣∣

≤ π2(mγ)2|A|

≤ π2(mγ)22N. (4.9)
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In order to choose an appropriate value for γ, recall the theorem of Dirichlet

(see, for example, [71, p.43]) that states that for any real α and integer M , there

exist integers p, q and a real number β with α = p
q

+ β, 1 ≤ q ≤ M and |β| ≤ 1
Mq

.

Fix α 6= 0, M = dN1/2e and let p, q, β, from Dirichlet’s theorem, be such that

α = p
q

+ β, q ∈ [1,M ], and |β| ≤ 1
Mq

. Then,

e(α(u + kq)) = e(αu + k(p + βq)) (since αq = p + qβ).

= e(αu + kβq)e(kp)

= e(αu + kβq) (since kp ∈ Z, e(kp) = e2πikp = 1).

Taking γ = βq in equation (4.9) gives,

∣∣∣∣f(α)− 1

2m + 1

∑
u∈A

∑

|k|≤m

e(α(u + kq))

∣∣∣∣ ≤ 2Nπ2(mqβ)2

≤ 2N
π2m2

M2
(since |β| ≤ 1

qM
)

≤ 2π2m2 (since M ≥ N1/2) (4.10)

The focus of the proof now turns to finding a bound for

1

2m + 1

∑
u∈A

∑

|k|≤m

e(α(u + kq)).

For x ∈ [0, 2N − 1], set Wx = {x + kq (mod 2N) : |k| ≤ m}. For any fixed

x ∈ [0, 2N − 1], the number of pairs (u, k), where u ∈ A and k ∈ Z with |k| ≤ m,

such that u + kq = x is exactly the number of elements of A in {x− kq : |k| ≤ m}.



CHAPTER 4. DENSITY RESULTS 55

Therefore, double counting the pairs (u, k),

1

2m + 1

∑
u∈A

∑

|k|≤m

e(α(u + kq)) =
2N−1∑
x=0

e(αx)
|Wx ∩ A|
2m + 1

. (4.11)

Again, as it is difficult to calculate a small enough bound for
∑2N−1

x=0 |Wx ∩ A|,

a bound on something close will be found. For each x ∈ [0, 2N − 1], set

Ex =
|Wx ∩ A|
2m + 1

− c3.

If mq < x < 2N −mq, then Wx is an AP2m+1 ⊆ [1, 2N ]. For these values of x, by

the choice of m and since A contains no AP3’s, |Wx ∩ A| ≤ (2m + 1)(c3 + ε) and

hence Ex ≤ ε. For the other 2mq values of x, the bound Ex ≤ 1 − c3 ≤ 1 (since

|Wx| ≤ 2m + 1) will be used.

Each u ∈ A appears in exactly 2m + 1 different sets Wx and so double counting

the elements of Wx ∩ A,

1

2m + 1

2N−1∑
x=0

|Wx ∩ A| = |A|(2m + 1)

2m + 1
= |A|.

Thus the average value of Ex is

1

2N

2N−1∑
x=0

Ex =
1

2N

2N−1∑
x=0

( |Wx ∩ A|
2m + 1

− c3

)

=
|A|
2N

− c3

≥ 0 (since |A| ≥ c3 · 2N).

For each x ∈ [0, 2N − 1], let E+
x = max {0, Ex}. Since the average value of Ex is
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positive, a bound on
∑ |Ex| can be found as follows.

2N−1∑
x=0

|Ex| ≤ 2
2N−1∑
x=0

E+
x

≤ 2

(
mq∑
x=0

E+
x +

2N−mq−1∑
x=mq+1

E+
x +

2N−1∑
x=2N−mq

E+
x

)

≤ 2(mq + 2Nε + mq)

≤ 4Nε + 4mM (since q ≤ M)

≤ 5Nε (taking N ≥ (4m/ε)2). (4.12)

When α ∈ { 1
2N

, 2
2N

, . . . , 2N−1
2N

}, since e(α) is a root of unity it follows that

∑2N−1
x=0 e(αx) = 0. Therefore, for α ∈ { 1

2N
, . . . , 2N−1

2N
},

∣∣∣∣
2N−1∑
x=0

e(αx)
|Wx ∩ A|
2m + 1

∣∣∣∣ =

∣∣∣∣
2N−1∑
x=0

e(αx)(Ex + c3)

∣∣∣∣

=

∣∣∣∣
2N−1∑
x=0

e(αx)Ex

∣∣∣∣ (since
2N−1∑
x=0

e(αx) = 0)

≤
2N−1∑
x=0

|e(αx)Ex|

=
2N−1∑
x=0

|Ex| (since |e(αx)| = 1)

≤ 5Nε (by eq’n (4.12)). (4.13)

Recall that by equations (4.10) and (4.11),

∣∣∣∣f(α)−
2N−1∑
x=0

e(αx)
|Wx ∩ A|
2m + 1

∣∣∣∣ ≤ 2π2m2.
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Therefore, by the triangle inequality, when α ∈ {1/2N, . . . , (2N − 1)/2N},

|f(α)| ≤ 2π2m2 +

∣∣∣∣
2N−1∑
x=0

e(αx)
|Wx ∩ A|
2m + 1

∣∣∣∣

≤ 2π2m2 + 5Nε (by eq’n (4.12))

≤ 6Nε (taking N ≥ 2π2m2/ε). (4.14)

Returning to the inequality (4.7) given in the idea of the proof,

(c3)
3N3 ≤ f(0)g(0)2 (by (4.6))

≤
∣∣∣∣
∑∗

f(α)g(−α)2

∣∣∣∣ +

∣∣∣∣
∑

α 6=0

∗
f(α)g(−α)2

∣∣∣∣ (triangle inequality)

≤
∣∣∣∣
∑∗

f(α)g(−α)2

∣∣∣∣ + max
α 6=0

|f(α)|
∑∗|g(−α)2|

≤ 3c3N
2 + 6Nε · 3c3N

2 (by (4.4), (4.14), and (4.5))

= 3c3N
2 + 18c3εN

3.

Now,

(c3)
3N3 ≤ 3c3N

2 + 18c3εN
3 ⇔ (c3)

2N ≤ 3 + 18εN

⇔ (c3)
2N

(
1− 18

20

)
≤ 3

⇔ N ≤ 30

(c3)2
.

Therefore, taking N large enough, the assumption that c3 > 0 leads to an absurd

inequality. Therefore, c3 = 0 and Roth’s theorem holds.
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In 1987, Heath-Brown [61] published a proof of the following improvement on

Roth’s bound for r3(n) (Theorem 4.2.1). His result is presented here without proof.

Theorem 4.2.3 (Heath-Brown [61]). There are positive constants c, c′ so that for

n sufficiently large, if A ⊆ [1, n] with A ≥ cn
(ln n)c′ , then A contains an AP3. That is,

r3(n) ≤ cn

(ln n)c′ .

Szemerédi showed that the previous theorem holds with the constant c′ = 1
20

(see [61]).

In 1999, Bourgain [17] gave what is the currently best known bound for r3(n)

using analytic techniques.

Theorem 4.2.4 (Bourgain [17]). There is a positive constant c such that for n

sufficiently large, if A ⊆ [1, n] with |A| > cn( ln ln n
ln n

)1/2, then A contains an AP3.

That is,

r3(n) < cn

(
ln ln n

ln n

)1/2

.

4.3 Szemerédi’s theorem

In 1969, Szemerédi [107] was able to extend Roth’s theorem to the case k = 4,

giving a combinatorial proof that r4(n) = o(n). Roth ([96, 97]) soon after gave an

analytic proof of the same result. Then, in 1975 , Szemerédi [108] extended his

result to arbitrary k.
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Theorem 4.3.1 (Szemerédi [108]). Let A ⊆ Z+ have positive upper density. Then

for every k ∈ Z+, A contains an APk.

By Lemma 4.1.7, Szemerédi’s theorem is equivalent to the statement that for all

k ∈ Z+, limn→∞
rk(n)

n
= 0. Later, in 1977, Furstenberg [44] gave an ergodic theory

proof of Szemerédi’s theorem. More recently, in 2001, Gowers [47] published an

analytic proof of Szemerédi’s theorem that generalized Roth’s technique. Gowers’

bound gives some of the best known upper bounds on the van der Waerden numbers

W (k; t).

Theorem 4.3.2 (Gowers [47]). For each k ∈ Z+, set c(k) = 2−2k+9
. Then for n

sufficiently large, if A ⊆ [1, n] with |A| > n
(log2 log2 n)−c(k) then A contains an APk.

That is,

rk(n) ≤ n

(log2 log2 n)−c(k)
.

In Szemerédi’s 1969 paper [107], he described how his combinatorial proof of

Theorem 4.3.1 in the case k = 4 could be adapted to give another proof of Roth’s

theorem (Theorem 4.2.2) that r3(n) = o(n).

Theorem 4.2.2 (Roth [93]). For every ε > 0, when n is sufficiently large, for any

set A ⊆ [1, n] with |A| ≥ εn, then A contains an AP3. That is c3 = limn→∞
r3(n)

n
= 0.

Szemerédi’s proof of Theorem 4.2.2. The details of the following proof appear in

full in Graham, Rothschild and Spencer [51, pp. 48–9]. The idea is to look at
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arithmetic progressions built inside an affine cube. Recall the corollary to

Szemerédi’s cube lemma, Corollary 2.2.4, which states that for every ε > 0 and

n ∈ Z+, there is a constant c such that if m ≤ log2 log2 n + c, and A ⊆ [1, n] with

|A| ≥ εn, then A contains an affine m-cube. In this proof, for simplicity, write

log2 n = log n.

Again, set c3 = limn→∞
r3(n)

n
and suppose that c3 > 0. Set ε = c2

3/200 > 0 and

let m ∈ Z+ be such that for all n ≥ m,

c3 ≤ r3(n)

n
< c3 + ε.

Let N be at least large enough so that 0.01c2
3 log log N > m (it may be necessary

to make N even larger later). Let A ⊆ [1, N ] be AP3-free with |A| = r3(N) ≥ c3N .

Since the function r3 is subadditive and A is AP3-free on the intervals [1, 0.49N ] ∪

[0.5N, N ], A contains at most r3(0.49N) + r3(0.5N) ≤ 0.99r3(N) < 0.99N(c3 + ε)

elements.

Since |A| ≥ c3N , within the interval (0.49N, 0.5N), A has at least c3N −

0.99N(c3 + ε) = 0.01Nc3 − 0.99Nε elements and so density at least c3 − 99ε =

c3(1− 99c3
200

) ≥ c3
2

since c3 < 1.

Divide (0.49N, 0.5N) into smaller intervals, each of length N1/2 + O(1). On

one of these subintervals, A has density at least c3/2 and so by Szemerédi’s cube

lemma (Lemma 2.2.3), possibly requiring N to be larger, there is a k ∈ Z+ with

k = log log N1/2 + O(1) = log log N + O(1) such that there is an affine k-cube
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H = H(a, d1, . . . , dk) ⊆ A∩(0.49N, 0.5N). If N is large enough so that N1/2 ≥ O(1),

then for i ∈ [1, k], di ≤ N1/2 + O(1) ≤ 2N1/2.

Set H0 = {a} and for i ∈ [1, k], define an affine i-cube, Hi = H(a, d1, . . . , di).

For i ∈ [0, k], set Li = {2h− x : x ∈ A, x < a, and h ∈ Hi}. In particular, Li is the

set of third terms of arithmetic progressions {x, h, y} with x ∈ A and h ∈ Hi ⊆ A.

Since A is AP3-free, A∩Li = ∅ and since A has density at least c3
2

on [1, 0.49N ],

|Li| ≥ |L0| = |A ∩ [1, a)| ≥ c3

2
(0.49N) (since a < 0.49N)

= c3(0.245N). (4.15)

For each i ∈ [0, k − 1], Hi+1 = Hi ∪ (Hi + di) and so Li+1 = Li ∪ (Li + 2di).

Therefore, L0 ⊆ L1 ⊆ · · · ⊆ Lk ⊆ [1, N ] and by averaging, there is an i ∈ [0, k − 1]

with

|Li+1\Li| < N

k
.

Partition the set Li into sets of maximal arithmetic progressions with difference

2di. For each maximal arithmetic progression {x, x + 2di, . . . , x + s(2di)} of Li,

x + (s + 1)(2di) ∈ Li+1\Li. Similarly, each element of Li+1\Li corresponds to a

maximal arithmetic progression in Li. Therefore, Li is partitioned into less than

N/k classes.

Consider one of the residue classes (mod 2di) of [1, N ]. If a particular residue

class (mod 2di) contains t partition classes of Li, then [1, N ]\Li can be partitioned
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into at most t + 1 maximal arithmetic progressions with difference 2di contained in

that residue class.

Thus, [1, N ]\Li can be partitioned into at most N
k

+ 2di maximal arithmetic

progressions (at most one more than Li for each of the 2di residue classes).

Since di < 2N1/2 and k = log log N + O(1),

N

k
+ 2di <

N

log log N + O(1)
+ 2N1/2

=
N

log log N

(
log log N

log log N + O(1)
+

2 log log N

N1/2

)

=
N

log log N
(1 + o(1)).

Define a partition class of the set [1, N ]\Li to be small if it contains less than

0.01c2
3 log log N elements and large otherwise.

All the small classes together have at most

0.01c2
3 log log N

(
N

log log N
(1 + o(1))

)
= 0.01c2

3N + o(N)

elements.

Since A is AP3-free and 0.01c2
3 log log N > m, on every large partition class, A

has density less than c3 + ε. Thus on the union of the large classes, A has density

less than c3 + ε.

Therefore, since A ∩ Li = ∅,

|A| = |A ∩ ([1, N ]\Li)|
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< (c3 + ε)(N − |Li|)︸ ︷︷ ︸
large blocks

+ 0.01c2
3N + o(N)︸ ︷︷ ︸

small blocks

≤
(

c3 +
c2
3

200

)
(N − c3(0.245N)) + 0.01c2

3N + o(N) (by (4.15) and ε =
c2
3

200
)

= c3N +
c2
3N

200
− c2

30.235N − c3
3

200
0.245N + o(N)

< c3N − 0.23c2
3N + o(N)

≤ c3N (when N is large).

As this contradicts the choice of the set A with |A| ≥ c3N , the initial assumption

that c3 > 0 is false and so c3 = 0.

4.4 Varnavides

In 1955, Varnavides [115] used Roth’s theorem to show that for any fixed ε, if

n is large enough and |A ∩ [1, n]| ≥ εn, then A contains not only one arithmetic

progression of length 3, but in fact on the order of n2 arithmetic progressions. Using

Szemerédi’s theorem, Varnavides’ technique can be used to show that the same is

true of arithmetic progressions of any fixed length k (see also [116]).

Theorem 4.4.1 (Varnavides [115]). Let k ∈ Z+ and ε > 0 be given. There is a

positive constant c = c(k, ε) such that for n sufficiently large, if A ⊆ [1, n] satisfies

|A| ≥ εn, then A contains at least cn2 APk’s.

Proof. By Szemerédi’s theorem (Theorem 4.3.1), fix ` ∈ Z+ so that if X ⊆ [1, `]
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with |X| ≥ ε`
2
, then X contains an APk. Let N > ` and let A ⊆ [1, N ] be such

that |A| > εN . Call an AP`’s in [1, N ] a good progression if it contains at least ε`
2

elements of A and a bad progression otherwise. Note that by the choice of `, every

good progression contains at least one APk in A.

For each d ∈ [1, N−1
`−1

], let Gd(N) be the number of good progressions in [1, N ]

with difference d. Define f(a, d) = |A∩{a, a+ d, . . . , a+(`− 1)d}|. The idea of the

proof is to find both upper and lower bounds for
∑
a≥1

f(a, d) in terms of the number of

good progressions in order to get a bound on Gd(N). For a fixed x ∈ A, x can occur

in at most ` different AP`’s (` possible different positions) and only the numbers x

with 1+(`−1)d ≤ x ≤ N−(`−1)d will occur in exactly ` different AP`’s. There are

at most 2(`−1)d ≤ 2`d elements of A outside the interval [1+(`−1)d,N−(`−1)d].

Therefore, at least εN − 2`d elements of A appear in exactly ` different AP`’s and

so

N−(`−1)d∑
a=1

f(a, d) > `(εN − 2`d)

> `

(
εN − 2`εN

8`

)
(restricting to d <

εN

8`
)

=
3

4
`εN.

For the upper bound,

N−(`−1)d∑
a=1

f(a, d) < N
ε`

2︸︷︷︸
bad AP’s

+ Gd(N)`︸ ︷︷ ︸
good AP’s

.
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Combining these two inequalities gives 3
4
ε`N < 1

2
ε`N +Gd(N)`, which implies that

Gd(N) > 1
4
εN .

The total number of good progressions in [1, N ] is

N−1
`−1∑

d=1

Gd(N) >

εN
8∑̀

d=1

Gd(N)

>
1

4
εN

εN

8`

=
ε2N2

32`
.

By the choice of `, each good progression contains an APk in the set A. In

order to find a lower bound for the number of APk’s in A, it suffices to determine

how many different good progressions could contain a particular APk. Fix an APk,

P = {a, a + d, . . . , a + (k − 1)d} and consider all AP`’s containing P .

Case I: AP`’s with difference d that contain P .

There are exactly `− k + 1 different positions the first term of P could occupy

in an AP` with difference d and hence ` − k + 1 different AP`’s with difference d

that contain P .

Case II: AP`’s with a difference other than d that contain P .

Suppose that d′ 6= d and P ⊆ {b, b+d′, . . . , b+(`−1)d′}. Then there are integers

i, j with 0 ≤ i < j ≤ ` − 1 so that a = b + id′ and a + d = b + jd′. Therefore,

d = (a + d)− a = (b + jd′)− (b + id′) = (j− i)d′. Since `d′ > (`− 1)d′ ≥ (k− 1)d =
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(k − 1)(j − i)d′, it follows that (j − i) < `
k−1

. Therefore, there are less than `
k−1

possible values of d′ where P is contained in an AP` with difference d′. As before,

for a fixed value of d′, there are at most `− k + 1 different AP`’s with difference d′

that contain P . Thus P is contained in at most `
k−1

(`− k + 1) different AP`’s with

a difference other than d.

Therefore, in total, P can appear in at most

(`− k + 1) +
`

k − 1
(`− k + 1) =

1

k − 1
(`− k + 1)(` + k − 1)

=
`2

k − 1
− (k − 1)

≤ `2

k − 1

different good progressions.

Therefore, there are at least ε2N2

32`
· k−1

`2
= ε2(k−1)

32`3
N2 APk’s in A. Take c = ε2(k−1)

32`3
.

Then c is a constant, depending only on ε and k, so that for all N sufficiently large

and A ⊆ [1, N ] with |A| ≥ εN , the set A contains at least cN2 different k-term

arithmetic progressions.

4.5 Systems of equations

Both partition and density theorems can be phrased in terms of solutions of matrix

equations. Note that distinct numbers x1, . . . , xk form an APk iff [x1 x2 . . . xk]
T is
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a non-trivial solution to the system




1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0 0

...

0 0 0 · · · 1 −2 1







x1

x2

...

xk




=




0

0

...

0




. (4.16)

The problem of finding solutions to such systems of equations within a particular

set can be generalized.

Definition 4.5.1. Let A be an ` × k matrix with integral coefficients. Then A

is partition regular in Z+ iff for every finite colouring of Z+ (it is important here

that 0 /∈ Z+), there is a monochromatic set {x1, . . . , xk} such that A[x1 · · · xk]
T =

[0 · · · 0]T . Similarly, A is density regular in Z+ iff for every X ⊆ Z+ with positive

upper density, there is a set {x1, . . . , xk} ⊆ X with A[x1 · · · xk]
T = [0 · · · 0]T .

Rado [88] characterised the partition regular equations with a set of linear re-

lations between the matrix entries called the columns condition. Deuber [29] later

proved another characterisation of partition regularity in terms of collections of

integers called (m, p, c)-sets.

Definition 4.5.2. Given a matrix A with integral coefficients, the system Ax = 0

is irredundant iff there is a solution x = [x1 . . . xk]
T with not all xi’s equal. A

solution x = [x1 . . . xk]
T is proper iff all xi’s are distinct.
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The following result (given without proof) extends Varnavides’ result to other

systems of equations in the integers.

Theorem 4.5.3 (Frankl, Graham and Rödl [43]). Let A be a density regular `× k

matrix with rank ` so that the system Ax = 0 is irredundant. Then for every ε > 0,

there is a constant c > 0 that depends on A and ε, so that for n sufficiently large,

if X ⊆ [1, n] with |X| ≥ εn, then X must contain at least cnk−` proper solutions to

the system Ax = 0.

Consider the k × (k − 2) matrix in equation (4.16). The corresponding homo-

geneous system is density regular by Szemerédi’s theorem (Theorem 4.3.1), which

guarantees non-constant arithmetic progressions and so the system Ax = 0 is ir-

redundant. Therefore, by Theorem 4.5.3, for every ε > 0, there is a constant c so

that for all n sufficiently large, if X ⊆ [1, n] with |X| ≥ εn, then X contains at

least cnk−(k−2) = cn2 proper solutions to Ax = 0. That is, X contains at least cn2

arithmetic progressions — precisely the statement of Theorem 4.4.1.

4.6 Lower bounds

Behrend adapted techniques from an article by Salem and Spencer [98] to find a

bound of the function r3(n) (recall Definition 4.1.1).
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Theorem 4.6.1 (Behrend [12]). There is a positive constant c so that for n suf-

ficiently large, there is an AP3-free set A ⊆ [1, n] with |A| ≥ ne−c
√

ln n. That is,

r3(n) > ne−c
√

ln n.

Proof. Fix n ∈ Z+, let b ∈ Z+ and fix m ∈ Z+ so that (2b− 1)m−1 < n ≤ (2b− 1)m.

That is,

ln n

ln (2b− 1)
≤ m <

ln n

ln (2b− 1)
+ 1. (4.17)

To each x ∈ [1, n] associate an m-tuple (x0, . . . , xm−1) ∈ [0, 2b− 2]m correspond-

ing to the base (2b− 1) representation of x so that x =
∑m−1

i=0 xi(2b− 1)i.

For each x, set M(x) = [
∑m−1

i=0 x2
i ]

1/2 and for each s ≥ 1, set

As = {x ∈ [1, n] : for each i ∈ [0,m− 1], 0 ≤ xi ≤ b− 1 and M(x)2 = s}.

Suppose that for some s ≥ 1, there were x, y, z ∈ As with x + y = 2z. Let

(x0, . . . , xm−1), (y0, . . . , ym−1) and (z0, . . . , zm−1) be the m-tuples corresponding to

x, y and z respectively. For each i ∈ [0,m−1], since xi, yi ≤ b−1, xi+yi ≤ 2b−2 and

so there is no carrying in the base (2b−1) addition. Therefore, for each i ∈ [0,m−1],

xi + yi = 2zi and so since M(x) = M(y) = M(z),

M(x + y) =

[m−1∑
i=0

(xi + yi)
2

]1/2

=

[m−1∑
i=0

(2zi)
2

]1/2

= 2M(z)

= M(x) + M(y).
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This is only possible when the m-tuples (x0, . . . , xm−1) and (y0, . . . , ym−1) are pro-

portional, but since M(x) = M(y), it must be that (x0, . . . , xm−1) = (y0, . . . , ym−1)

and hence x = y. Therefore, for all s ≥ 1, the set As is AP3-free.

Since

⋃
s≥1

As =

{
m−1∑
i=0

xi(2b− 1)i : (x0, . . . , xm−1) ∈ [0, b− 1]m\{(0, . . . , 0)}
}

,

it follows that |∪s≥1 As| = bm−1. When s > (b−1)2m, As = ∅ and so by averaging,

there is at least one choice of s ∈ [1, (b− 1)2m] with

|As| ≥ bm − 1

(b− 1)2m
.

Since As is AP3-free, r3(n) ≥ |As| and so for any n ∈ Z+ and any choice of b, with

m defined as above,

r3(n) ≥ bm − 1

(b− 1)2m

>
bm−2

m

≥ (n1/m + 1)m−2

2m−2m
(since n ≤ (2b− 1)m)

=
n

m−2
m

2m−2m
(1 + n−1/m)m−2

≥ n1−2/m

2m−2m
(since 1 + n−1/m ≥ 1)

= ne−
2
m

ln n−(m−2) ln 2−ln m. (4.18)

In particular, if b = b1
2
(e
√

ln n + 1)c, then ln (2b− 1) ≤
√

ln n and so by equa-
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tion (4.17),

m ≥ ln n

ln (2b− 1)
≥ ln n

√
ln n =

√
ln n. (4.19)

A small calculation shows that for the choice of b, if n ≥ 4, then ln (2b− 1) >

√
ln n− 1 and so

m <
ln n

ln (2b− 1)
+ 1 <

ln n√
ln n− 1

+ 1 (by eq’n (4.17))

=
√

ln n +
1√

ln n− 1
+ 2

≤
√

ln n + 3 (for
√

ln n > 1). (4.20)

Thus, by equations (4.18),(4.19) and (4.20),

r3(n) > ne−
2
m

ln n−(m−2) ln 2−ln m

≥ ne
− 2√

ln n
ln n−(

√
ln n+1) ln 2−ln (

√
ln n+3)

= ne−2
√

ln n−ln 2
√

ln n−ln 2−ln (
√

ln n+3)

= ne
−
√

ln n

(
2+ln 2+ ln 2√

ln n
+

ln (
√

ln n+3)√
ln n

)

> ne−
√

ln n(4+ln 2)

when n is large enough.

Moser [83] applied the same technique to give a lower bound for the van der

Waerden numbers. He showed that for some fixed constant c > 0,

W (k; r) > (k − 1)rc ln r.
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In 1960, Rankin [92] presented the following extension of Theorem 4.6.1 for

k ≥ 3. Behrend’s theorem (Theorem 4.6.1) is the case k = 3 in Theorem 4.6.2.

Theorem 4.6.2 (Rankin [92]). Let k ≥ 3, there is a positive constant c so that for

n sufficiently large, there is an APk-free set A ⊆ [1, n] with |A| ≥ ne−c(ln n)1/dlog2 ke
.

That is,

rk(n) ≥ ne−c(ln n)1/dlog2 ke
.

4.7 Arithmetic progressions of primes

It seems that one of the motivations behind studying the function rk(n) was the

possibility of determining whether the set of primes contains arbitrarily long arith-

metic progressions. It is also worth noting that the set of primes contains no infinite

arithmetic progression, for if p is any prime and d ∈ Z+, the (p + 1)-th term of the

arithmetic progression {p + id : i ≥ 0}, is p + pd = p(1 + d) which cannot be prime

since p ≥ 1 and d + 1 ≥ 1. Dirichlet’s theorem (see, for example, [1, Chapter 7])

states that for any relatively prime integers a and b, there are infinitely many primes

in the arithmetic progression {a + ib : i ≥ 0}. However, this does not guarantee

that any of those infinitely many primes are themselves in arithmetic progression.

In 1939, van der Corput [112] showed that there are infinitely many AP3’s of

primes. A stronger result along the same lines was that of Balog [3] who showed
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that for any k ∈ Z+, there are k primes p1, . . . , pk such that all of the averages

1
2
(pi + pj) are also prime. In other words, for any integers i, j with 1 ≤ i < j ≤ k,

the set {pi,
1
2
(pi + pj), pj} is an AP3 of primes.

One of the approaches towards solving the general conjecture about primes

in arithmetic progression has been to consider the function π(n), the number of

primes in the interval [1, n]. The prime number theorem, which was proved by

Hadamard [57] and de la Vallée Poussin [28] in 1896, states that π(n) ∼ n
ln n

(see,

for example, [1, Chapter 13]). If it could be shown that for all k, rk(n) < π(n) when

n is large enough, this would guarantee that the set of primes contains arbitrarily

long arithmetic progressions simply by virtue of their density in the integers. Al-

though a proof of this type has not yet been found, in 2005, Green [53] published

an analytic proof that all sets of primes A with lim supn→∞
|A∩[1,n]|

π(n)
> 0 contain

infinitely many AP3’s. The same year, Green and Tao [54] settled the conjec-

ture that the primes contain arbitrarily long arithmetic progressions by giving a

Szemerédi-type theorem for the primes.

Theorem 4.7.1 (Green and Tao [54]). Let A be an infinite set of primes with

lim sup
n→∞

|A ∩ [1, n]|
π(n)

> 0,

then A contains arbitrarily long arithmetic progressions.

More details about the result and the history of the problem can be found in

[78]. In 2006, Tao was awarded a Fields Medal for numerous contributions to various
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areas of mathematics, including Theorem 4.7.1 (see, for example, [69]). Green and

Tao also showed that a careful analysis of their proof of Theorem 4.7.1 gave the

following.

Theorem 4.7.2 (Green and Tao [55]). For each k ∈ Z+, there is an arithmetic

progression of primes of length k with all terms less than

2222
22

2100k

.



Chapter 5

Van der Waerden numbers

5.1 Exact values

The only five non-trivial van der Waerden numbers whose values are known precisely

are W (3; 2) = 9, W (4; 2) = 35, W (5; 2) = 178, W (3; 3) = 27 and W (3; 4) = 76.

Recently, Kouril claims to have found W (6; 2) = 1132 (see [62]), but the result

has yet to be published. More can be said if the van der Waerden numbers are

generalized in a fashion similar to that of the Ramsey numbers (Definition 2.1.5).

Definition 5.1.1. For each r, k1, k2, . . . , kr ∈ Z+, let W (k1, . . . , kr; r) be the least

integer such that for any n ≥ W (k1, . . . , kr; r) and any r-colouring ∆ : [1, n] →

[1, r], there is an i ∈ [1, r] such that ∆−1(i) contains an APki
. The numbers

W (k1, . . . , kr; r) are called the mixed van der Waerden numbers.

75
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That is, instead of looking for an arithmetic progression of a fixed length in any

colour class, look only for APki
’s in the i-th colour class. The mixed van der Waer-

den numbers will always exist because if k1, . . . , kr ∈ Z+, then W (k1, . . . , kr; r) ≤

W (max {k1, . . . , kr}; r). The mixed van der Waerden numbers enjoy the same sym-

metry properties as the Ramsey numbers. For any integers k1, . . . , kr, if σ is a

permutation of [1, r], then W (k1, . . . , kr; r) = W (kσ(1), . . . , kσ(r); r).

Of course, some values of the van der Waerden numbers are trivial. For any

r ∈ Z+, W (2; r) = r + 1 by the pigeonhole principle. It can be shown that for

any odd k ∈ Z+, W (k, 2; 2) = 2k as follows: Suppose that the two colours are red

and blue. The 2-colouring of [1, 2k − 1] where the number k is blue and all other

numbers are red has no blue pairs and no red APk’s. However, for any 2-colouring

of [1, 2k], if there is no pair of elements that are blue, then either the first k or the

last k numbers in the interval are all red. A similar argument shows that for any

even k ∈ Z+, W (k, 2; 2) = 2k − 1.

This idea was extended by Culver, Landman and Robertson [26] who found

exact values for many mixed van der Waerden numbers of the form W (k, 2, . . . , 2; r).

Their results included the following which are presented without proof.

Theorem 5.1.2 (Culver, Landman and Robertson [26]). Fix k > r ≥ 2. Set

m =
∏ {p : p ≤ r, p prime}.

(i) If gcd (k, m) = 1, then W (k, 2, . . . , 2; r) = rk.
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(ii) Otherwise, if either (a) gcd (k − 1,m) = 1 or (b) r is prime and gcd (k, m) = r,

then W (k, 2, . . . , 2; r) = rk − r + 1.

According to Landman (personal communication), the results of Theorem 5.1.2

were extended in 2007 by Khodkar and Landman [76].

k1 k2 k3 W (k1, . . . , kr; r) k1 k2 k3 k4 k5 W (k1, . . . , kr; r)

3 3 - 9 5 2 2 - - 15 [26]
4 3 - 18 [22] 5 3 2 - - 32 [19]
4 4 - 35 [22] 5 3 3 - - 80 [26]
5 3 - 22 [22] 5 4 2 - - 71 [19]
5 4 - 55 [22] 6 2 2 - - 16 [26]
5 5 - 178 [105] 6 3 2 - - 40 [19]
6 3 - 32 [22] 6 4 2 - - 83 [26]
6 4 - 73 [10] 7 2 2 - - 21 [26]
7 3 - 46 [22] 7 3 2 - - 55 [26]
7 4 - 109 [9] 8 2 2 - - 24 [26]
8 3 - 58 [10] 3 3 2 2 - 17 [19]
9 3 - 77 [10] 3 3 3 2 - 40 [19]
10 3 - 97 [10] 3 3 3 3 - 76 [10]
11 3 - 114 [26] 4 3 2 2 - 25 [19]
12 3 - 135 [26] 4 3 3 2 - 60 [26]
13 3 - 160 [26] 4 4 2 2 - 53 [19]
3 2 2 7 [26] 5 2 2 2 - 20 [26]
3 3 2 14 [19] 5 3 2 2 - 43 [19]
3 3 3 27 [22] 6 2 2 2 - 21 [26]
4 2 2 11 [26] 6 3 2 2 - 48 [26]
4 3 2 21 [19] 7 2 2 2 - 28 [26]
4 3 3 51 [19] 7 3 2 2 - 65 [26]
4 4 2 40 [19] 3 3 2 2 2 20 [26]
4 4 3 89 [26] 3 3 3 2 2 41 [26]

Figure 5.1: Exact van der Waerden numbers

The exact values in Figure 5.1 were given by Chvátal [22], Brown [19], Stevens
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and Shantaram [105], Beeler and O’Neil [10], Beeler [9], and Culver, Landman and

Roberston [26] (see also [87]). Most exact values of mixed van der Waerden numbers

were found using computers. A similar table of mixed van der Waerden numbers is

given by Culver et al. [26]. The Figure 5.1 also includes the values for the numbers

W (k, 2, . . . , 2; r) given by Theorem 5.1.2 that fit within the table.

Calculating exact values of the mixed van der Waerden numbers becomes com-

putationally difficult as the values of ki and r increase. The remainder of this

chapter will explore different techniques that have been used to find either upper

or lower bounds for the van der Waerden numbers.

5.2 Probabilistic method

One useful approach to calculating bounds is to assume that the colouring is done

at random, so that each integer has an equal chance of being any one colour. Then,

for example, if there is a positive probability that some interval [1, n] contains no

monochromatic arithmetic progression then there is at least one colouring of [1, n]

with no monochromatic arithmetic progressions.

First some definitions are given to formalize this idea. While it is possible to

define concepts of probability for infinite sets, the purposes here require only finite

probability spaces.
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Definition 5.2.1. Let Ω be a finite set and P : Ω → [0, 1] (where [0, 1] ⊆ R) be any

function such that
∑

x∈Ω P (x) = 1. The pair (Ω, P ) is called a probability space.

Most often here, the function P used will be the constant function P (x) = 1
|Ω| .

For this probability function, (Ω, P ) is called the uniform probability space.

Definition 5.2.2. A subset A ⊆ Ω is called an event and for any event A, define

P (A) =
∑

x∈A P (x).

Given two events A and B, the event A ∪ B (sometimes denoted by A ∨ B) is

the event that either A or B occurs, and A∩B (also denoted by A∧B) is the event

that both A and B occur. For any event A ⊆ Ω, define Ā = Ω\A, the complement

of A.

Definition 5.2.3 (Bayes’ formula). For two events A,B, the conditional probability

of A given B is

P (A|B) =
P (A ∩B)

P (B)
.

It is the probability that the event A occurs assuming that the event B does occur.

Definition 5.2.4. An event A is independent of an event B iff P (A|B) = P (A)

and A is mutually independent from events B1, . . . , Bm iff A is independent of any

boolean combination of the events B1, . . . , Bm.

Note that for any A,B ⊆ Ω, since P (A ∪ B) = P (A) + P (B) − P (A ∩ B), if

{Ai ⊆ Ω : i ∈ I} is any collections of events, then P (∪i∈IAi) ≤
∑

i∈I P (Ai).
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The proof of the following theorem can be easily re-phrased as a counting argu-

ment employing the pigeonhole principle, but it serves as a useful demonstration of

the probabilistic method.

Theorem 5.2.5 (Erdős-Rado [37]). For all k, r ∈ Z+, W (k; r) >
√

2(k − 1)r
k−1
2 .

Proof. Fix k, r ∈ Z+ and take n ≤
√

2(k − 1)r
k−1
2 . Define a probability space as

follows. Let Ω be the set of all r-colourings of [1, n] and let P be the uniform

probability for Ω, i.e., for all x ∈ Ω, P (x) = 1
rn . For any APk, S ⊆ [1, n], let AS

be the event that S is monochromatic. That is, AS is the set of all r-colourings of

[1, n] where S is monochromatic. Then, P (AS) = r
rk = r1−k.

By Lemma 1.2.3, the total number of APk’s contained in [1, n] is less than n2

2(k−1)
.

Therefore, since ∪AS is the event that any APk in [1, n] is monochromatic and

P (∪AS) ≤
∑

P (AS) <
n2

2(k − 1)
r1−k < 1 (since n ≤

√
2(k − 1)r

k−1
2 ),

there is at least one r-colouring of [1, n] with no monochromatic APk. Therefore,

W (k; r) > n.

In the case of arithmetic progressions, since there is so much overlap, the events

associated with two given APk’s being monochromatic are often not independent. A

probabilistic proof that does not take this into account seems likely to be imprecise.

Thus a tool is needed that can take into account the interdependencies of a collection

of events. The Lovász Local Lemma, proved by Erdős and Lovász in 1975 [36] is
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such a tool. Before proceeding to the statement of the lemma, a few definitions and

identities about dependency are given.

Definition 5.2.6. Let A1, A2, . . . , An be events in a probability space. Let V =

[1, n] and let E ⊆ [V ]2. The graph (V,E) is a dependency graph for the events

A1, . . . , An iff for each i ∈ [1, n], the event Ai is mutually independent from the

events {Aj : {i, j} /∈ E}. That is, Ai is independent from every boolean combination

of the sets {Aj : {i, j} /∈ E}.

The following two lemmas are standard applications of Bayes’ formula (Defini-

tion 5.2.3.

Lemma 5.2.7. For any events A,B, and C in a probability space (Ω, P ),

P (A|B ∩ C) =
P (A ∩B|C)

P (B|C)
.

Proof. Let A, B, C ⊆ Ω, then

P (A|B ∩ C) =
P (A ∩B ∩ C)

P (B ∩ C)

=
P (A ∩B ∩ C)/P (C)

P (B ∩ C)/P (C)

=
P (A ∩B|C)

P (B|C)
.

Note that rearranging terms also gives

P (A ∩B|C) = P (A|B ∩ C) · P (B|C).
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Lemma 5.2.8. For any events A1, . . . , An, B in a probability space (Ω, P ),

P

(
n⋂

i=1

Ai|B
)

=
n∏

i=1

P

(
Ai|

n⋂
j=i+1

Aj ∩B

)

where
n⋂

j=n+1

Aj ∩B = B.

Proof. The proof is by induction on n.

Base Case: The case n = 2 holds by Lemma 5.2.7.

Inductive Step: Suppose that the lemma holds for some integer n ≥ 2. Let

A1, . . . , An, An+1 and B be any events. Then

P (∩n+1
i=1 Ai|B) = P (A1| ∩n+1

i=2 Ai ∩B)P (∩n+1
i=2 Ai|B) (by Lemma 5.2.7)

= P (A1| ∩n+1
i=2 Ai ∩B)

n+1∏
i=2

P (Ai| ∩n+1
j=i+1 Aj ∩B) (by ind. hyp.)

=
n+1∏
i=1

P (Ai| ∩n+1
j=i+1 Ai ∩B).

Theorem 5.2.9 (Lovász Local Lemma, Erdős and Lovász [36]). Let A1, . . . , An

be events with a dependency graph G = (V,E). If there are x1, . . . , xn ∈ [0, 1) such

that for all i ∈ [1, n],

P (Ai) < xi

∏

{i,j}∈E

(1− xj)

then

P

(
n⋂

i=1

Āi

)
≥

n∏
i=1

(1− xi)

and in particular, P (∩n
i=1Āi) > 0.
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Proof. The proof relies on the following claim. For any S ( [1, n] and any i /∈ S,

P (Ai| ∩j∈S Āj) ≤ xi. The proof of the claim is by strong induction on |S|.

Base Step: When |S| = 0, S = ∅ and

P (Ai| ∩j∈∅ Āj) = P (Ai) ≤ xi

∏

{i,j}∈E

(1− xj) (by assumption)

≤ xi (1− xj) ≤ xi.

Inductive Step: Fix some S ( [1, n] and assume that the claim holds for all

smaller subsets of [1, n]. Fix some i /∈ S. Set S1 = S ∩ {j : {i, j} ∈ E} and

S2 = S\S1. Relabel the events if necessary so that S1 = {1, 2, . . . , s} (for some s).

Then,

P (Ai| ∩j∈S Āj) = P (Ai| ∩j∈S1 Āj ∩ ∩j∈S2Āj)

=
P (Ai ∩ ∩j∈S1Āj| ∩j∈S2 Āj)

P (∩j∈S1Āj| ∩j∈S2 Āj)
(by Lemma 5.2.7)

≤ P (Ai| ∩j∈S2 Āj)

P (∩j∈S1Āj| ∩j∈S2 Āj)
,

and since Ai is mutually independent of the events {Aj : j ∈ S2},

P (Ai| ∩j∈S Āj) ≤ P (Ai| ∩j∈S2 Āj)

P (∩j∈S1Āj| ∩j∈S2 Āj)
=

P (Ai)

P (∩j∈S1Āj| ∩j∈S2 Āj)
. (5.1)

Now, consider the denominator of the last term in equation (5.1):

P (∩j∈S1Āj| ∩j∈S2 Āj) = P (Ā1 ∩ · · · ∩ Ās| ∩j∈S2 Āj)

=
s∏

k=1

P

(
Āk

∣∣∣
s⋂

j=k+1

Āj ∩
⋂

j∈S2

Āj

)
(by Lemma 5.2.8)
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=
s∏

k=1

(
1− P

(
Ak

∣∣∣
s⋂

j=k+1

Āj ∩
⋂

j∈S2

Āj

))

≥
s∏

k=1

(1− xk) (by induction hyp. with {k + 1, . . . , s} ∪ S2)

≥
∏

{i,k}∈E

(1− xk). (5.2)

Therefore, since P (Ai) ≤ xi

∏
{i,k}∈E

(1− xk), combining equations (5.1) and (5.2)

gives

P (Ai| ∩{i,k}∈E Āj) ≤ P (Ai)

P (∩j∈S1Āj| ∩j∈S2 Āj)

≤ xi

∏
{i,k}∈E (1− xk)∏

{i,k}∈E (1− xk)

= xi.

The claim can now be used to prove the theorem. Using Lemma 5.2.8 with

B = Ω,

P (∩n
i=1Āi) =

n∏
i=1

P (Āi| ∩n
j=i+1 Āj)

=
n∏

i=1

(1− P (Ai| ∩n
j=i+1 Āj))

≥
n∏

i=1

(1− xi) (by claim, using S = {i + 1, . . . , n}).

The Local Lemma is often used in the symmetric case where all the values of xi

are equal.

Theorem 5.2.10 (Symmetric Lovász Local Lemma, Erdős and Lovász [36]).

Let A1, . . . , An be events in a probability space and let (V, E) be a dependency graph
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for the events A1, . . . , An. Let d ∈ Z+ and 0 ≤ p ≤ 1 be such that if i ∈ [1, n], then

|{j ∈ [1, n] : (i, j) ∈ E}| ≤ d and P (Ai) ≤ p. If ep(d + 1) ≤ 1, then P (∩n
i=1Āi) > 0.

Proof. Suppose that ep(d + 1) ≤ 1. Using the inequality, ex > 1 + x (from the

Taylor series), e ≥ (1 + 1
d
)d and so e−1 < ( d

d+1
)d = (1 − 1

d+1
)d. Therefore, for each

i ∈ [1, n],

P (Ai) ≤ p ≤ 1

d + 1
e−1 <

1

d + 1

(
1− 1

d + 1

)d

.

Setting x1 = x2 = · · · = xn = 1
(d+1)

, for each i ∈ [1, n],

P (Ai) <
1

d + 1

(
1− 1

d + 1

)d

= xi

∏

{i,j}∈E

(1− xj).

Therefore, by Theorem 5.2.9, P (∩n
i=1Āi) > 0.

The following standard application of Theorem 5.2.10 to the van der Waerden

numbers appears in Graham, Rothschild and Spencer’s Ramsey Theory [51, p. 97].

Theorem 5.2.11. For all k, r ∈ Z+, W (k; r) > rk−1

ke
(1− o(1)).

Proof. Fix k, r ∈ Z+ and let n ∈ Z+. Let Ω be the set of all r-colourings of [1, n]

and let P be the uniform probability for Ω. As before, for each APk, S ⊆ [1, n], let

AS = {∆ ∈ Ω : S is monochromatic under ∆}. Let G = (V, E) be the dependency

graph defined as follows. Let V be the set of all APk’s in [1, n] and define edges by

E = {(S1, S2) : S1 ∩ S2 6= ∅}.
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Given an APk, S = {a, a + d, . . . , a + (k − 1)d}, consider the number of other

arithmetic progressions with which S could have non-empty intersection. For each

1 ≤ d′ ≤ n−1
k−1

and 0 ≤ i ≤ k − 1, there are no more than k different APk’s with

difference d′ that contain a + id. Thus, S intersects no more than (n−1)k2

k−1
other

APk’s in [1, n]. Therefore, for each APk S, |{Sj : (S, Sj) ∈ E}| ≤ (n−1)k2

k−1
and since

P (AS) = r
rk = r1−k, by the symmetric Lovász local lemma, if er1−k(n−1

k−1
k2 + 1) ≤ 1

then P (∩ĀS) > 0. Since ∩ĀS is the event that no APk in [1, n] is monochromatic, if

P (∩ĀS) > 0 then there is at least one r-colouring of [1, n] with no monochromatic

APk and so W (k; r) > n.

Let n ∈ Z+ be such that er1−k(n−1
k−1

k2 + 1) ≤ 1, but er1−k( n
k−1

k2 + 1) > 1 (that

is, n is the greatest integer that satisfies this condition). Then, by the previous

paragraph, W (k; r) > n. Now,

er1−k

(
n

k − 1
k2 + 1

)
> 1 ⇔ n >

(
rk−1

e
− 1

)
k − 1

k2

=
rk−1

ek

(
k − 1

k
− (k − 1)e

krk−1

)

=
rk−1

ek
(1− o(1)) (for a fixed r).

Thus for any fixed r ∈ Z+, W (k; r) > rk−1

ek
(1− o(1)).

More recently, in 1990, a more careful application of the Local Lemma was used

to show the following.

Theorem 5.2.12 (Szabó [106]). For every ε > 0, there is a K = K(ε) so that for
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all k ≥ K,

W (k; 2) ≥ 2k

kε
.

5.3 Constructive lower bound

Using techniques of field theory, Berlekamp [15] showed that for any prime p, there

is a 2-colouring of a large interval that avoids arithmetic progressions of length

p + 1. The proof of Berlekamp’s result requires the following well-known facts (see

for example [68, Chapter 5] for proofs) about field extensions and finite fields.

Definition 5.3.1. Given fields F, E with F ⊆ E, E is a field extension of F if

the operations of F are those of E restricted to F . For a ∈ E\F , the set rational

functions in a over F , denoted F (a), is a field extension of F . The degree of E over

F , denoted [F : E], is the dimension of E as a vector space over F .

Lemma 5.3.2. If D ⊆ E ⊆ F are fields, such that E is a field extension of D and

F is a field extension of E, then F is a field extension of D and

[F : D] = [F : E][E : D].

Lemma 5.3.3. For every prime p and for every n ∈ Z+, there is a unique field of

order pn called the Galois field of order pn and denoted by GF (pn). Then GF (pn)∗ =

〈GF (pn)\{0}, ·〉 is a cyclic group of order pn − 1 and [GF (pn) : Zp] = n.
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Definition 5.3.4. Let f(x) be a polynomial over a commutative ring. Then f(x) is

reducible over this ring iff there are polynomials g(x), h(x) over this ring of smaller

degree with f(x) = g(x)h(x). Otherwise, f(x) is irreducible.

Recall that for a field F , F [x] is the ring of polynomials in x over F .

Fact 5.3.5. Let E, F be fields with E a field extension of F . Let α ∈ E and f ∈ F [x]

be irreducible with f(α) = 0. If g(x) ∈ F [x] with g(α) = 0, then f(x)|g(x).

Fact 5.3.6. Let E, F be fields where E is a field extension of F and [E : F ] < ∞.

Then for every α ∈ E, there is an irreducible f ∈ F [x] such that f(α) = 0.

Fact 5.3.7. Let E,F be fields where E is a field extension of F . Let α ∈ E and

f ∈ F [x] with f(α) = 0, then [F (α) : F ] ≤ deg(f).

Berlekamp proved a complicated result that gave bounds on the van der Waerden

numbers whenever the number of colours is a prime power. The proof of Theorem

5.3.8 is a simplification of Berlekamp’s proof in the case when the number of colours

is a prime. (The proof of the result for 2 colours can also be found in [51, pp. 96–7].)

Theorem 5.3.8 (Berlekamp [15]). If p, q are prime, then

W (p + 1; q) > p(qp − 1)/(q − 1).

Proof. By Lemma 5.3.3, GF (qp)∗ is a cyclic group. Let α be one of its generators.

Let {v1, v2, . . . , vp} be a basis for GF (qp) as a vector space over Zq (again by Lemma
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5.3.3) and for each j ∈ [0, p(qp− 1)/(q− 1)], let r1,j, r2,j, . . . , rp,j ∈ Zq be such that,

αj =

p∑
i=1

ri,jvi.

Define a partition of [0, p(qp − 1)/(q − 1)− 1] as follows. For each i ∈ [0, q − 1], set

Si = {j : r1,j = i}.

Suppose one of the sets Si contains an APp+1; that is, for some integers a and

d 6= 0, {a, a + d, . . . , a + pd} ⊆ Si. Note that since pd ≤ a + pd < p(qp − 1)/(q− 1),

0 < d <
qp − 1

q − 1
≤ qp − 1.

Therefore, since the order of α in GF (qp)∗ is qp − 1,

αd 6= 1 and αd(q−1) 6= 1. (5.3)

Case I: i = 0.

Define T0 = span{v2, v3, . . . , vp}. The set T0 is a subspace of GF (qp) of dimension

p−1 over Zq and for all x ∈ S0, αx ∈ T0. Therefore, since {a+d, a+2d, . . . , a+pd} ⊆

S0, if n ∈ [1, p], then αa+dn ∈ T0. Then, αa+d, . . . , αa+pd are p elements in a (p− 1)-

dimensional space and so they are linearly dependent over Zq. Let b1, b2, . . . , bp ∈ Zq

not all 0 be such that
∑p

n=1 bnα
a+dn = 0. Then αa+d

∑p
n=1 bnα

d(n−1).

Since αa+d 6= 0, αd is a root of the polynomial
∑p

n=1 bnxn−1 which has degree at

most p− 1. Therefore, the degree of the extension Zq(α
d) over Zq is at most p− 1.
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Since GF (qp) = Zq(α), by Lemma 5.3.2,

p = [GF (qp) : Zq] = [GF (qp) : Zq(α
d)][Zq(α

d) : Zq].

Thus [Zq(α
d) : Zq] ≤ p− 1 divides p, a prime. Therefore, Zq(α

d) is an extension of

degree 1 over Zq and so αd ∈ Zq. Since 〈Zq\{0}, ·〉 is a cyclic group of order q − 1,

αd(q−1) = 1 which is impossible by (5.3). Therefore, S0 cannot contain any APp+1’s

and in fact since only the elements a + d, . . . , a + pd are used in this part of the

proof, S0 can only contain APp’s with difference d ≥ (qp − 1)/(q − 1).

Case II: i ∈ [1, q − 1].

Suppose that for some i 6= 0, {a, a + d, . . . , a+ pd} ⊆ Si, then for each j ∈ [0, p],

αa+jd − αa = αa(αjd − 1) ∈ T0. As in Case I, there are b1, b2, . . . , bp ∈ Zq such that

∑p
i=1 biα

a(αdi − 1) = 0. That is

0 =

p∑
i=1

biα
a(αdi − 1) = αa(αd − 1)(b1 +

p∑
i=2

bi(α
d(i−1) + αd(i−2) + · · ·+ αd + 1))

= αa(αd − 1)

p−1∑
i=0

(αd)i

(
p∑

j=i+1

bj

)
.

Since αd 6= 1 and αa 6= 0, αd is a zero of a polynomial in Zq of degree p − 1,

contradicting αd(q−1) 6= 1 as in Case I.

In [80], it is mentioned that this proof can be adapted to show that for all p, q

prime with p ≥ 5, W (p + 1; q) > p(qp − 1), but I have been unable to confirm that

this is true.
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The following gives the details of Berlekamp’s strengthening of the bound from

Theorem 5.3.8 in the case q = 2 and yields the best known lower bounds for these

van der Waerden numbers. The idea of the proof is to show that given a careful

choice of basis elements for GF (2p), the partition given in the previous proof can

be extended without introducing any arithmetic progressions.

Corollary 5.3.9 (Berlekamp [15]). If p is prime, W (p + 1; 2) > p 2p.

Proof. The result holds for p = 2 since W (3; 2) = 9 > 2 · 22. For a prime number

p > 2, as in the proof of Theorem 5.3.8, let α be a generator for GF (2p)∗. Define

the basis elements for GF (2p) over Z2 as follows. Set

v1 = 1, v2 = 1 + α, v3 = 1 + α2, . . . , v p+1
2

= 1 + α
p−1
2 ,

v p+1
2

+1 = 1 + α−1, v p+1
2

+2 = 1 + α−2, . . . , vp = α−( p−1
2

).

Claim. The set {v1, v2, . . . , vp} is linearly independent.

Proof of Claim. Let x1, . . . , xp ∈ Z2 be such that
∑p

i=1 xivi = 0. Then,

0 = α(p−1)/2

p∑
i=1

xivi =

p∑
i=1

xi α
(p−1)/2vi

= xp + xp−1α + · · · x p+1
2

+1α
p−1
2
−1 + (x1 + x2 + · · ·+ xp)α

p−1
2

+ x2α
p−1
2

+1 + x3α
p−1
2

+2 + · · · x p+1
2 αp−1. (5.4)
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If any of the constants x1, x2, . . . , xp is non-zero, equation (5.4) gives a polynomial

of degree no more than p−1 for which α is a zero. However, since Z2(α) = GF (2p),

and [GF (2p) : Z2] = p > p− 1, it must be that x1 = x2 = · · · = xp = 0. Therefore,

the set {v1, v2, . . . , vp} is linearly independent

Define the sets S0 and S1 as in the proof of Theorem 5.3.8 in the case q = 2. Since

v1 = 1 = α0, 0 ∈ S1. Furthermore, [1, p−1
2

] ⊆ S1 since for each i ∈ [1, (p− 1)/2],

αi = 1 + (1 + αi) = v1 + vi+1.

Similarly, [p(2p−1)−(p−1)/2, p(2p−1)−1] ⊆ S1 since for each j ∈ [1, (p−1)/2],

αp(2p−1)−j = α−j = 1 + (1 + α−j) = v1 + v p+1
2

+j.

Thus,

[
0,

p− 1

2

]
⊆ S1 and

[
p(2p − 1)− p− 1

2
, p(2p − 1)− 1

]
⊆ S1. (5.5)

Set

S ′0 =

[
−p− 1

2
,−1

]
,

S ′′0 =

[
p(2p − 1), p(2p − 1) +

p− 1

2

]
, and

S+
0 = S0 ∪ S ′0 ∪ S ′′0 .

As before, S1 contains no APp+1’s, so assume that there are integers a and d

with d > 0 such that P = {a, a + d, . . . , a + pd} ⊆ S+
0 . Since S0 is also APp+1-free,

there are three possible forms the arithmetic progression could take.
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Case I: The set P includes one element from S ′0 (or S ′′0 ) and an APp in S0. By

a remark at the end of Case I of the proof of Theorem 5.3.8, this can only occur

when d ≥ 2p − 1. But this is impossible since then P spans p(2p − 1) elements and

so must contain an element of S1, by (5.5).

Case II: The set P includes one element from S ′0 and one from S ′′0 . It must be

that a ∈ S ′0 and a + pd ∈ S ′′0 . Then for some 1 ≤ i ≤ (p − 1)/2, a = −i and for

some 0 ≤ j ≤ (p− 1)/2, a + pd = p(2p − 1) + j. Now, pd = a + pd− a is divisible

by p, but p(2p − 1) + j − (−i) = p(2p − 1) + j + i is not since 1 ≤ i + j ≤ p− 1 and

p is prime.

Case III: The set P includes two elements from S ′0 (or S ′′0 ). But then d ≤

(p− 1)/2 and so it must also include an element from S1 by (5.5).

Therefore, S1 and S+
0 partition the integers [−(p− 1)/2, p (2p − 1) + (p− 1)/2]

(an interval of length p 2p) and neither contains an APp+1. Therefore, by Lemma

3.1.4, W (p + 1; 2) > p 2p.

5.4 Hypergraph techniques

Definition 5.4.1. Let S be any set and E ⊆ P(S) \ {∅}. Then H = (S, E) is called

a hypergraph. The elements of the set S are called the vertices of H and the sets in

E are called the hyperedges.

The independence number of H, α(H), is the maximal size of a subset of S that
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contains no member of E . The chromatic number of H, χ(H), is the least integer

r so that there is an r-colouring of S with no member of E monochromatic. Note

that if the E contains any singletons, the chromatic number is undefined. For the

purposes here, there are no hypergraphs with singletons for hyperedges.

A hypergraph H is called uniform iff there is an integer k so that E ⊆ [S]k.

Consider any hypergraph H = (S, E) and any r ∈ Z+, with χ(H) > r. Then for

any r-colouring of S, there is a monochromatic member of E . On the other hand, if

χ(H) ≤ r, then there is an r-colouring of S with no monochromatic member of E .

Thus, bounds on the chromatic number can be used to find bounds on the numbers

associated with Ramsey-type problems.

Definition 5.4.2. Let H = (S, E) be a hypergraph. A permutation σ of S is an

automorphism of H iff for every E ∈ E , σ(E) ∈ E . The group G = aut(H) of

automorphisms of H is transitive iff or each s1, s2 ∈ S, there is a σ ∈ G such that

σ(s1) = s2.

Definition 5.4.3. The hypergraph H is symmetric iff the group aut(H) is transi-

tive.

The Symmetric Hypergraph Theorem can be found in Graham, Rothschild and

Spencer [51, pp. 98–103], however I have been unable to determine its original

source. The Symmetric Hypergraph Theorem, gives a tool for finding upper bounds

on the chromatic number of certain types of hypergraphs. The proof is omitted.
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Theorem 5.4.4 (Symmetric Hypergraph Theorem [51]). Let H = (S, E) be a

symmetric hypergraph with |S| = m and α = α(H). Then,

χ(H) ≤ 1 +
ln m

− ln (1− α/m)
.

Whenever α < m, the Taylor series for ln (1 + x) can be used to show that

ln (1− α
m

) > − α
m

and hence

χ(H) ≤ 1 +
ln m

− ln (1− α/m)

< 1 +
m

α
ln m

=
m

α
(ln m)(1 + o(1)).

In order to apply Theorem 5.4.4 to the van der Waerden numbers W (3; r), it is

necessary to define an appropriate hypergraph. For each n ∈ Z+, let Sn = [1, n],

let En be the set of all AP3’s in [1, n] and let Hn = (Sn, En) be the corresponding

hypergraph.

Since α(Hn) = r3(n) (recall Definition 4.1.1), any lower bound on r3(n) can be

used together with Theorem 5.4.4 to find an upper bound on χ(Hn) and from that

a lower bound on the van der Waerden number W (3; r).

Since (Sn, En) is not a symmetric hypergraph, in order to apply the Symmetric

Hypergraph Theorem, it is necessary to define a new hypergraph. Set Yn = Z2n−1

and E ′n = {{a, a+d, a+2d} : a ∈ Z2n−1 and d ≤ n/2} with addition modulo 2n−1.

Define the hypergraph H′
n = (Yn, E ′n). That is, E ′n is the set of all AP3’s in Z2n−1
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(with addition modulo 2n−1) that are contained in a block of n consecutive integers.

Therefore, [Sn]3 ∩ E ′n = En and so (Sn, En) is a subhypergraph of (Yn, E ′n). Further,

since all of the permutations σi : x 7→ x+ i (mod 2n−1) are automorphisms of H′
n,

for any a, b ∈ Z+, there is a σb−a ∈ aut(H′
n) with σb−a(a) = b. Therefore, (S ′n, E ′n)

is a symmetric hypergraph.

Since any independent set in (Sn, En) will also be independent in (Yn, E ′n), it

follows that α(H′
n) ≥ α(Hn) = r3(n). For any r ∈ Z+ and any r-colouring of

Yn with no monochromatic members of E ′n will induce a r-colouring of Sn with no

monochromatic members of En. Thus, χ(Hn) ≤ χ(H′
n).

Theorem 5.4.5 (Graham, Rothschild and Spencer [51]). There is a fixed constant

c such that, for r sufficiently large,

W (3; r) > rc ln r.

Proof. The following proof is due to Spencer [104]. Let c′ be such that for n large

enough, r3(n) ≥ ne−c′
√

ln n (Theorem 4.6.1). Fix r ∈ Z+ and set n = rc ln r where c

is a constant small enough so that
√

cc′ = 0.9. Then, ln n = ln rc ln r = c(ln r)2 and

so

r3(n) ≥ ne−c′
√

ln n = ne−c′
√

c ln r = nr−0.9.

By Theorem 5.4.4,

χ(Hn) ≤ χ(H′
n) <

(2n− 1)

α(H′
n)

ln (2n− 1)(1 + o(1))
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<
2n ln n

r3(n)
(1 + o(1))

≤ 2n ln n

nr−0.9
(1 + o(1))

< 2r0.9c(ln r)2(1 + o(1))

= r

(
2c(ln r)2

r0.1

)
(1 + o(1)).

Take r large enough so that 2c(ln r)2

r0.1 (1 + o(1)) < 1. In that case, when n = rc′ ln r,

χ(Hn) < r. That is, there is an r-colouring of Sn with no monochromatic elements

of En and hence W (3; r) > n = rc′ ln r.

Repeating the proof of Theorem 5.4.5 with 3 replaced by arbitrary k (and using

the bound rk(n) > ne−c(ln n)1/dlog2 ke
given by Theorem 4.6.2 instead of Theorem

4.6.1) shows that for any k ∈ Z+, there is a constant c′ = c′(k) such that for all

r ∈ Z+ sufficiently large,

W (k; r) > ec′(ln r)dlog2 ke
. (5.6)

Although the proof of equation 5.6 is nearly identical to the proof of Theorem 5.4.5,

this result does not seem to appear in the literature.

Another approach that can be used to find bounds is to use results on the

possible number of hyperedges in uniform hypergraphs with a chromatic number

larger than two.

Lemma 5.4.6 (Schmidt [100]). Let n ∈ Z+, E ⊆ [n]k and H = ([n], E) be such

that for every 2-colouring of [1, n] there is a monochromatic member of E , that is
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χ(H) > 2. Then,

|E| ≥ 2k

1 + 2k−1
.

A probabilistic proof of Schmidt’s lemma can be found in [39]. The following

bound is achieved using Lemma 5.4.6.

Theorem 5.4.7 (Erdős and Spencer [39]). For all k ∈ Z+,

W (k; 2) ≥ 2
k+1
2

√
k − 1(1− o(1)).

Proof. Let n ≥ W (k; 2) and let E be the set of all APk’s in [1, n]. By Lemma 1.2.3,

|E| ≤ n2

2(k−1)
.

Since n ≥ W (k; 2), for every 2-colouring of [1, n] there is a monochromatic

member of E . Thus, by Schmidt’s lemma (Lemma 5.4.6),

2k

1 + 2k−1
≤ |E| ≤ n2

2(k − 1)
.

Therefore,

n ≥
√

2k+1(k − 1)

1 + 2k−1
= 2

k+1
2

√
k − 1(1− o(1)).

Another result by Schmidt [99] showed that there is a constant c > 0 so that for

any integers k and r, W (k; r) ≥ rk−c(k log k)1/2
. However, this lower bound for the

numbers W (k; r) is smaller than that given by Theorem 5.2.11.
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5.5 Upper bounds

While van der Waerden was able to prove the existence of the numbers W (k; r),

the upper bounds given by his proof grew incredibly quickly. To describe the size

of the bounds, a fast-growing function called an “Ackermann function” is needed.

Definition 5.5.1. For any function f : Z+ → Z+ and any n ∈ Z, let f (n) denote

the composition of f with itself n times. That is, for any x in the domain of f ,

f (n)(x) = f(f(. . . (f︸ ︷︷ ︸
n times

(x)) . . .)).

Define a series of functions on the integers {fi : i ∈ Z+} recursively as follows.

Let f1(k) = 2k and for each i ≥ 1, having defined the function fi, let

fi+1(k) = f
(k)
i (1).

For example, f2(k) = 2k, f3(k) = 22·
··2

︸︷︷︸
k twos

and for each k ≥ 2, f4(k) = 22·
··2

︸︷︷︸
f4(k−1) twos

.

Finally, define a function fω : Z+ → Z+ as follows. For each n ∈ Z+, set fω(n) =

fn(n). The function fω grows incredibly quickly and the original proof of van der

Waerden’s theorem was only able to guarantee that W (k; 2) ≤ fω(k). In 1988,

Shelah [102] provided a proof that showed that for some constant c, W (k; 2) ≤

f4(ck) (see [51, pp.60–6] for a detailed discussion). According to Shelah, some

mathematicians (for example Solovay, see [102]) attempted to show that in fact

W (k; r) was of the same order of magnitude as the function fω. This was supported
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by the fact that a careful analysis of Furstenberg’s ergodic proof [44] by Girard (see

Shelah [102]) yielded large bounds similar to those from the original inductive proof.

At present, the best known upper bounds come from the density proofs and

bounds on the function rk(n). The following upper bound for the van der Waerden

numbers W (3; r) uses the bound for r3(n) from Theorem 4.2.4 and comes closest

to the best known lower bound for these van der Waerden numbers. Recall that

Bourgain (Theorem 4.2.4) proved that there is a constant c so that for n sufficiently

large, r3(n) < cn( ln ln n
ln n

)1/2.

Corollary 5.5.2 (Bourgain [17]). There is a constant c′ so that for r sufficiently

large,

W (3; r) ≤ ec′r2 ln r.

Proof. Let c be the constant from Theorem 4.2.4, set c′ = 4c2, let r be large and

set n = ec′r2 ln r.

Then ln n = c′r2 ln r and when r is large enough, ln ln n = ln c′+2 ln r+ln ln r ≤

4 ln r.

Then,

r3(n) < cn

(
4 ln r

c′r2 ln r

)1/2

=
2c√
c′
· n

r
=

n

r
.

and hence W (3; r) ≤ n = ec′r2 ln r.

In fact, Green [52] showed that the constant c′ in Corollary 5.5.2 can be taken
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to be 256. Theorem 5.4.5 together with Corollary 5.5.2 show that for r sufficiently

large and constants c and c′, rc′ ln r < W (3; r) < rc′r2
.

For k > 3, Gowers’ upper bound for rk(n) (recall Theorem 4.3.2) gives the best

upper bounds in general for the van der Waerden numbers W (k; r). Recall that

Gowers showed that for every k, if c(k) = 2−2k+9
, then rk(n) < n(log2 log2 n)−c(k).

Corollary 5.5.3 (Gowers [47]). For every r, k ∈ Z+,

W (k; r) ≤ 22r22
k+9

.

Proof. Set n = 22r22
k+9

. Then log2 log2 n = r22k+9

and so (log2 log2 n)2−2k+9

=

r22k+9−2k+9

= r. Thus, for any r-colouring of [1, n], one colour class will contain at

least

n

r
=

n

(log2 log2 n)c(k)
> rk(n)

elements and hence that colour class contains an APk.

The bounds given in Corollaries 5.5.2 and 5.5.3 are based on density results.

Thus, for example, Corollary 5.5.2 guarantees that for some constant c, when n ≥

ec′r2 ln r, for any r-colouring of [1, n], the largest colour class will contain an AP3.

However, since the proofs of both lemmas are based on analytic techniques, they

are not constructive. Although weaker than the bound given in Corollary 5.5.2,

the next bound to come (Theorem 5.5.5), due to Haung and Yang [60], is the best

known constructive upper bound for W (3; r).
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The following terminology is adapted from Tao [109], but may not be optimal.

Definition 5.5.4. A set F ⊆ Z+ is called a fan of t different APk’s iff there are

a1, . . . , at, d1, . . . , dt ∈ Z+ (all di’s distinct) such that

F =
t⋃

i=1

{ai + j · di : 0 ≤ j ≤ k − 1}

and either a1 = · · · = at or else a1 + (k − 1)d1 = · · · = at + (k − 1)dt. That is, F

is a collection of t different APk’s either all sharing the same beginning point or all

sharing the same endpoint.

For each i ∈ [1, t], the APk−1 in F formed by removing the common element

from the set {ai + j · di : 0 ≤ j ≤ k − 1} is called a spoke. Given a colouring ∆ of

F , the fan F is called weakly polychromatic (with respect to ∆) if all the spokes are

monochromatic but all different colours from each other and strongly polychromatic

if in addition, the common element of all the APk’s in F is a different colour from

all the spokes.

The following proof closely follows that of Haung and Yang with some slight

alterations. It states that for r > 4, W (3; r) < ( r
4
)3r

although for some small values

of r, this does not seem to follow from their proof. When r is large, the bound given

here is smaller than that from the original paper.

Theorem 5.5.5 (Haung and Yang [60]). For each r ≥ 2,

W (3; r) ≤ 5

2

(r

2

) 3r−1
2

.
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Proof. Fix r ∈ Z+ (the number of colours). Recursively define a sequence {Rt}r
t=0

by R0 = r and for each t ∈ [1, r], having defined Rt−1, let

Rt =

(
Rt−1 + 1

2

)
Rt−1(r − t). (5.7)

For each t ∈ [0, r], define St = 1 + 2
∑t−1

i=0 Ri (where the empty sum is 0). Note

that for each t ∈ [1, r],

St = St−1 + 2Rt−1. (5.8)

The goal of the proof is to first show that W (3; r) ≤ Sr and then to find a bound

for Sr.

Consider fans of AP3’s of the following particular form. For each t ∈ [1, r] let

a1, . . . , at, d1, . . . , dt be any integers such that 1 ≤ a1 < a1 + d1 ≤ R0 + 1 and for

each i ∈ [2, t], 0 ≤ ai < ai + di ≤ Ri−1. Define

F (a1, d1; . . . ; at, dt) =
t⋃

`=1

{ `−1∑
i=1

(ai + 2di) +

(
t∑

i=`

ai

)

︸ ︷︷ ︸
starting point

+ j ·
t∑

i=`

di

︸ ︷︷ ︸
difference

: j ∈ {0, 1, 2}
}

.

For each ` ∈ [1, t], the endpoint of the ` -th AP3 in the above union is

`−1∑
i=1

(ai + 2di) +
t∑

i=`

ai + 2
t∑

i=`

di =
t∑

i=1

(ai + 2di).

Thus F (a1, d1; . . . ; at, dt) is a fan of t AP3’s where every AP3 has the same endpoint

∑t
i=1 (ai + 2di).

Claim 1. Let t ∈ [1, r] and let a1, . . . , at, d1, . . . , dt ∈ Z+ be such that
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1 ≤ a1 < a1 + d1 ≤ R0 + 1 and for each i ∈ [2, t], 0 ≤ ai < ai + di ≤ Ri−1. Then

F (a1, d1; . . . ; at, dt) ⊆ [1, St].

Proof of Claim 1. Since 1 ≤ a1 < a1 + d1 ≤ R0 + 1, a1 + 2d1 ≤ 2R0 + 1 and for

each i ∈ [2, t], since 0 ≤ ai < ai + di ≤ Ri−1 it must be that ai +2di ≤ 2Ri−1. Thus,

t∑
i=1

(ai + 2di) ≤ 2R0 + 1 +
t∑

i=2

(2Ri−1) = 1 +
t∑

i=1

2Ri−1 = St

and since
∑t

i=1 (ai + 2di) is the endpoint of all the t AP3’s in F (a1, d1; . . . ; at, dt),

F (a1, d1; . . . ; at, dt) ⊆ [1, St].

Claim 2. For each t ∈ [1, r],

(i) for any r-colouring of [1, St], either there is a monochromatic AP3 in [1, St] or

else there are a1, . . . , at, d1, . . . , dt so that F (a1, d1; . . . ; at, dt) is a strongly

polychromatic fan of t AP3’s, and

(ii) there are at most Rt pairs (F, ∆) where for some a1, . . . , at, d1, . . . , dt,

F = F (a1, d1; . . . ; at, dt) and ∆ is an r-colouring of F under which F is strongly

polychromatic.

Before proving Claim 2, observe that it implies that W (3; r) ≤ Sr since for any

r-colouring of [1, Sr], since there can be no strongly polychromatic fan of any kind

with r spokes (this would require r + 1 different colours), by the part (i) of the

claim, there must be a monochromatic AP3 and so W (3; r) ≤ r.
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Proof of Claim 2. The proof given here proceeds by induction on t, showing

that for each t ∈ [1, r], both (i) and (ii) hold.

Base Case: For t = 1, fix ∆0 : [1, S1] → [1, r]. Since S1 = 2r + 1, by the

pigeonhole principle, there are a1, d1 with 1 ≤ a1 < a1 + d1 ≤ r + 1 and ∆0(a1) =

∆0(a1 + d1). Then {a1, a1 + d1, a1 + 2d1} = F (a1, d1) is either a monochromatic

AP3 or else a strongly polychromatic fan with one spoke. There are
(

r+1
2

)
=

(
R0+1

2

)

choices for the pair {a1, a1 + d1}, r = R0 possible choices for the colour of a1 and

a1 + d1, and r − 1 choices for the colour of a1 + 2d1, so that F (a1, d1) is strongly

polychromatic. By equation (5.7) there are at most
(

R0+1
2

)
R0(r − 1) = R1 different

pairs (F (a1, d1), ∆) where ∆ is an r-colouring of the fan F (a1, d1) which makes the

fan strongly polychromatic.

Inductive step: Fix some t ∈ [1, r − 1] and suppose that both (i) and (ii)

hold for this t. Fix an r-colouring ∆0 : [1, St+1] → [1, r] and assume that there

are no monochromatic AP3’s in hopes of showing that there must be a strongly

polychromatic fan with t + 1 spokes.

By equation (5.8) St+1 = 2Rt + St, and so for each ` ∈ [0, 2Rt], ∆0|[1+`,St+`] is

an r-colouring of an interval of length St with no monochromatic AP3’s and so by

the induction hypothesis, each such colouring produces a strongly polychromatic

fan with t spokes. Since there are only Rt pairs (F, ∆) of a fan F with t spokes

and an r-colouring ∆ that makes F strongly polychromatic, there must be integers
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Figure 5.2: Fans with the same colour pattern

at+1, dt+1 with 0 ≤ at+1 < at+1 + dt+1 ≤ Rt and a fan F0 = F (a1, d1; . . . ; at, dt) so

that both fans at+1 + F0 and (at+1 + dt+1) + F0 have the same colour pattern under

∆0 and are both strongly polychromatic.

For each ` ∈ [1, t],

∆0

(
`−1∑
i=1

(ai + 2di) +
t+1∑

i=`

ai

)
= ∆0

(
`−1∑
i=1

(ai + 2di) +
t∑

i=`

(ai + di) + at+1

)

(since at+1 + F0 is polychromatic)

= ∆0

(
`−1∑
i=1

(ai + 2di) +
t∑

i=`

(ai + di) + (at+1 + dt+1)

)

(since both fans have the same colour pattern)

and

∆0

(
t∑

i=1

(ai + 2di) + at+1

)
= ∆0

(
t∑

i=1

(ai + 2di) + (at+1 + dt+1)

)

(since the two fans have the same colour pattern).

Therefore, since F0 is strongly polychromatic, F (a1, d1; . . . ; at, dt; at+1, dt+1) =

F ′ is weakly polychromatic. If the endpoint of F ′ is the same colour as any of its
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spokes, there would be a monochromatic AP3. Since it was assumed that this does

not happen, F (a1, d1; . . . ; at, dt; at+1, dt+1) must be strongly polychromatic.

As in the base case, for any strongly polychromatic fan F (a1, d1; . . . ; at, dt),

there are at most
(

Rt+1
2

)
possible choices for the pair {at+1, at+1 + dt+1} so that

0 ≤ at+1 < at+1 + dt+1 ≤ Rt and (r − t) choices for the colour of the endpoint

of F (a1, d1; . . . ; at, dt; at+1, dt+1) so that the new fan is also strongly polychromatic.

Therefore, there are at most
(

Rt+1
2

)
Rt(r − t) = Rt+1 (by equation (5.7)) different

pairs (F (a1, d1; . . . ; at+1, dt+1), ∆) where the fan is strongly polychromatic under

∆.

Thus the claim holds and by the remark immediately following the claim, for

any r ∈ Z+, W (3; r) ≤ Sr.

The following recursive bound on the sequence {Ri}r
i=1 is useful for finding a

bound on the number Sr in terms of r. For any i ∈ [1, r],

2Ri = 2

(
Ri−1 + 1

2

)
Ri−1(r − i)

= R2
i−1r

(
1 +

1

Ri−1

)(
1− i

r

)

≤ R3
i−1r

(
1 +

1

r

)(
1− 1

r

)
(since Ri−1 ≥ r and i ≤ r)

= R3
i−1r

(
r2 − 1

r2

)

≤ R3
i−1r. (5.9)
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Therefore,

Sr = 1 + 2
r−1∑
i=0

Ri

= 1 + 2r +
r−1∑
i=1

2Ri (since R0 = r)

< 1 + 2r +
r−1∑
i=1

R3
i−1r (by eq’n (5.9))

= 1 + 2r + r3 · r +
r−2∑
i=1

R3
i r

< 1 + 2r + r3+1 +
r−2∑
i=1

(
R3

i−1r

2

)3

r

= 1 + 2r + r3+1 +
r32+3+1

23
+

r−3∑
i=1

R32

i

r3+1

23

< 1 + 2r + r3+1 +
r32+3+1

23
+

r−3∑
i=1

(
R3

i−1r

2

)32

r3+1

23

= 1 + 2r + r3+1 +
r32+3+1

23
+

r33+32+3+1

232+3
+

r−4∑
i=1

R33

i−1

r32+3+1

232+3

...

< 1 + 2r + r3+1 +
r32+3+1

23
+

r33+32+3+1

232+3
+ · · ·+ r3r−1+3r−2+···+3+1

23r−2+···3

= 1 +
r(31−1)/2

2(30−3)/2
+

r(32−1)/2

2(31−3)/2
+

r(33−1)/2

2(32−3)/2
+ · · ·+ r(3r−1)/2

2(3r−1−3)/2

<
5

4

r(3r−1)/2

2(3r−1−3)/2
(for r ≥ 2)

=
5

2

(r

2

) 3r−1
2

.



Chapter 6

Discrepancy theory

6.1 Preliminaries

Van der Waerden’s theorem (Theorem 3.1.1) shows that for any k ∈ Z+, there is an

n ∈ Z+ so that every 2-colouring of [1, n] produces a monochromatic APk. However,

considering the known bounds on the van der Waerden numbers (Chapter 5), it is

possible that n might be very large compared to k. Fixing an integer n and looking

at the collection of all arithmetic progressions in [1, n], is it possible to guarantee

that for every 2-colouring of [1, n], there is at least one arithmetic progression with

many more elements of one colour than the other? Conversely, is it possible to

find a 2-colouring of [1, n] such that, for every arithmetic progression, the difference

between the number of elements of each colour is relatively small?

109
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Discrepancy theory is the study of this type of problem for arbitrary set systems.

It will be useful to develop some general theory before turning specifically to the

problem with regard to arithmetic progressions. Let S be a finite set, H ⊆ P(S)

and H = (S,H) (often simply referred to by H). Is it possible to find a partition of

S that splits each member of H as equally as possible? Discrepancy theory seeks

to measure how equally the “best” partition splits the members of H.

For the purposes of discrepancy theory, bi-partitions (2-colourings) of S will be

denoted by colouring functions ∆ : S → {−1, 1}. The choice of image {−1, 1}

has the main advantage that if A ∈ H, then |∑x∈A ∆(x)| is exactly the difference

between the number of elements of A in each partition set ∆−1(1) and ∆−1(−1).

Definition 6.1.1. Let S be a finite set and H ⊆ P(S). The discrepancy of H is

defined to be

D(H) = min
∆:S→{−1,1}

{
max
A∈H

∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣
}

.

Though it may be difficult to exactly calculate the discrepancy of a given set

system, it is often possible to find upper and lower bounds. Unraveling the definition

of discrepancy gives the following meanings to upper and lower bounds. Given a

set S and H ⊆ P(S), if U ∈ R is such that D(H) ≤ U , then there is a 2-colouring

of S where each A ∈ H is split with no more than U elements more in one colour

class than in the other. On the other hand, if L ∈ R is such that D(H) ≥ L, then

for every 2-colouring of S, there is at least one A ∈ H where there are at least L
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elements of A more in one colour class than in the other.

A different measure of discrepancy defined in a similar fashion can also be useful.

Definition 6.1.2. Let S be a finite set and H ⊆ P(S). The `2-discrepancy of H is

D2(H) = min
∆:S→{−1,1}






∑

A∈H

(∑
x∈A

∆(x)

)2



1/2




.

Other forms of discrepancy such as hereditary discrepancy, linear discrepancy

and weighted discrepancy can be found for example in [8, 21]. The following stan-

dard inequality appears in the same survey article.

Lemma 6.1.3. Let (S,H) be a finite hypergraph. Then

D2(H)√
|H| ≤ D(H) ≤ D2(H).

Proof. For the lower bound, let ∆ : S → {−1, 1} be any 2-colouring. Then

∑
A∈H

(∑
x∈A

∆(x)

)2

=
∑
A∈H

∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣

2

≤
∑
A∈H


max

A∈H

∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣

2



≤ |H|

max

A∈H

∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣

2



=
∑
A∈H

(
max
A∈H

∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣

)2

.

Therefore,
(∑

A∈H
(∑

x∈A ∆(x)
)2

)1/2

≤
√
|H|maxA∈H

∣∣∑
x∈A ∆(x)

∣∣ and taking the

minimum over all 2-colourings gives D2(H) ≤
√
|H|D(H).
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For the upper bound, again let ∆ : S → {−1, 1} be any 2-colouring. Then,

(
max
A∈H

∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣

)2

= max
A∈H

[∑
x∈A

∆(x)

]2

≤
∑
A∈H

[∑
x∈A

∆(x)

]2

.

Therefore, maxA∈H
∣∣∑

x∈A ∆(x)
∣∣ ≤

(∑
A∈H

[∑
x∈A ∆(x)

]2
)1/2

and thus, taking the

minimum over all 2-colourings, D(H) ≤ D2(H).

6.2 Lower bounds

One way to obtain bounds on the discrepancy of a hypergraph is to consider the

incidence matrix of the hypergraph and turn to matrix theory to answer questions

on discrepancy.

Recall that if S = [1, n] andH = {A1, . . . , Am} ⊆ P(S), then the m×n incidence

matrix, M = (mij)m×n, for (S,H) is defined by

mij =





1, if j ∈ Ai;

0, otherwise.

For any real-valued matrix B with real eigenvalues, let λmin(B) be the minimum

eigenvalue of B. The following theorem, stated without proof, provides a connection
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between discrepancy and eigenvalues. (The result is attributed to Lovász and Sós

in [8].)

Theorem 6.2.1 (Lovász and Sós). Let (S,H) be a hypergraph with |H| = m

and |S| = n and let M be the incidence matrix for the hypergraph (S,H). Then

D2(H) ≥ (nλmin(M
T M))1/2.

For each n ∈ Z+, set Sn = [1, n] and let Hn be the collection of all arithmetic

progressions in [1, n]. In 1964, Roth [95] proved that there is a positive constant c

so that D(Hn) > cn1/4. According to Prömel and Voigt [85], the constant c can be

taken to be 1/60. Roth’s proof used analytic techniques and later, another proof was

given that made use of matrix theory. (The following version of the proof appears

in a survey article by Beck and Sós [8] and I have been unable to ascertain its origin

though it may be due to Lovász.)

Theorem 6.2.2 (Roth [95]). For n sufficiently large, D(Hn) > 1
20

n1/4.

Proof. Fix n ∈ Z+ and set k = b
√

n/6c. Let H be the hypergraph consisting of the

collection of all k-subsets of [1, n] of the form

A(a, d) = {a + td (mod n) : a ∈ [1, n], 0 ≤ t ≤ k − 1 and d ≤ 6k}.

Then, |H| ≤ n · 6k. For any a ∈ [1, n] and d ≤ 6k, the arithmetic progression

A(a, d) spans at most 6k2 ≤ n elements. Therefore, A(a, d) is the union of at most
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2 proper arithmetic progressions (with the usual addition). If A1 and A2 are two

disjoint arithmetic progressions with A(a, d) = A1 ∪ A2, then

max

{∣∣∣∣∣
∑
x∈A1

∆(x)

∣∣∣∣∣ ,

∣∣∣∣∣
∑
x∈A2

∆(x)

∣∣∣∣∣

}
≥ 1

2

∣∣∣∣∣∣
∑

x∈A(a,d)

∆(x)

∣∣∣∣∣∣
(6.1)

and thus D(Hn) ≥ 1
2
D(H).

Let M = (mst)|H|×n be the incidence matrix for (Sn,H). Recall that any matrix

B = (bs,t)n×n is circulant iff for each s, t ∈ [1, n], bs,t = bs+1,t+1, where the addition

of indices is taken modulo n. If M = [c1 c2 · · · cn] (where the cj’s are all column

vectors), then the (s, t)-th entry of the matrix MT M is cT
s · ct. The column vector

cs+1 can be obtained from cs by permuting the rows of the matrix M , moving the

row corresponding to the arithmetic progression A(a, d) to the row corresponding

to A(a+1, d). Thus, if s, t ∈ [1, n] then cT
s ·ct = cT

s+1 ·ct+1 and so the (s, t)-th entry

of MT M is equal to its (s + 1, t + 1)-th entry. Thus MT M is circulant and there

are b1, . . . , bn such that

MT M =




b1 b2 . . . bn

bn b1 . . . bn−1

...
...

b2 b3 . . . b1




.
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When ω is any n-th root of unity,

MT M




ω

ω2

...

ωn = 1




=




b1 b2 . . . bn

bn b1 . . . bn−1

...

b2 b3 . . . b1







ω

ω2

...

ωn




=




∑n
j=1 bjω

j

∑n
j=1 bjω

j+1

...

∑n
j=1 bjω

j+n−1




=
n∑

j=1

bjω
j−1




ω

ω2

...

ωn




.

Thus λω =
∑n

j=1 bjω
j−1 is an eigenvalue for MT M and ω = [ω ω2 · · · ωn]T is

a corresponding eigenvector. Since there are exactly n such n-th roots of unity,

all eigenvalues of MT M must be of the form λω =
∑n

j=1 bjω
j−1. A lower bound for

λmin(M
T M) can be obtained by finding a lower bound for an arbitrary eigenvalue

λω. For any complex valued matrix B = (bi,j) denote by B∗ = (bi,j)
T the conjugate

transpose of B.

Since M is a real-valued matrix, MT = M∗. Thus λωω = MT Mω = M∗Mω
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and so

λω = λω
ω∗ · ω
‖ω‖2

=
1

‖ω‖2
ω∗λωω

=
1

‖ω‖2
ω∗M∗Mω

=
1

|ω|2 + |ω2|2 + · · · |ωn|2 (Mω)∗(Mω)

=
1

n

n·6k∑
s=1

∣∣∣∣∣
n∑

t=1

mstω
t

∣∣∣∣∣

2

=
1

n

∑
A∈H

∣∣∣∣∣
∑
t∈A

ωt

∣∣∣∣∣

2

(since mst = 1 iff t ∈ Aj)

=
1

n

n∑
a=1




6k∑

d=1

∣∣∣∣∣∣
∑

j∈A(a,d)

ωj

∣∣∣∣∣∣

2
. (6.2)

Let A = A(a, d) ∈ H and x ∈ [1, n]. If A′ = A(a + x, d), then

∣∣∣∣∣
∑

j∈A′
ωj

∣∣∣∣∣ =

∣∣∣∣∣
∑
j∈A

ωxωj

∣∣∣∣∣ = |ωx|
∣∣∣∣∣
∑
j∈A

ωj

∣∣∣∣∣ =

∣∣∣∣∣
∑
j∈A

ωj

∣∣∣∣∣ .

Thus, for any d, if a ∈ [1, n], then |∑j∈A(a,d) ωj| = |∑j∈A(n,d) ωj| and continuing

from equation (6.2) above,

λω =
n

n

6k∑

d=1

∣∣∣∣∣∣
∑

j∈A(n,d)

ωj

∣∣∣∣∣∣

2

=
6k∑

d=1

∣∣∣∣∣
k−1∑
j=0

ωn+jd

∣∣∣∣∣

2

=
6k∑

d=1

∣∣∣∣∣
k−1∑
j=1

ωjd

∣∣∣∣∣

2

(since ωn = 1). (6.3)
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Consider the complex numbers ω0, ω1, . . . , ω6k. For any complex number z,

Arg(z) ∈ [0, 2π), and so by the pigeonhole principle, there are d1 and d2 with

0 ≤ d1 < d2 ≤ 6k such that |Arg(ωd1) − Arg(ωd2)| ≤ 2π
6k

= π
3k

. Set d0 = d1 − d2.

Then, 1 ≤ d0 ≤ 6k and |Arg(ωd0)| = |Arg(ωd1) − Arg(ωd2)| ≤ π
3k

. Therefore, if

j ∈ [0, k − 1], then π
3k

j ≤ π
3

and hence the real part of ωd0j satisfies <(ωjd0) ≥ 1
2
.

Combining this with equation (6.3) gives,

λω ≥
∣∣∣∣∣
k−1∑
j=0

ωjd0

∣∣∣∣∣

2

≥
[
<

(
k−1∑
j=0

ωjd0

)]2

≥
[

k−1∑
j=0

1

2

]2

=
k2

4
. (6.4)

Since ω was arbitrary, λmin(M
T M) ≥ k2

4
. This bound together with Theorem

6.2.1 can be used to find a lower bound for D(H).

D(H) ≥ 1√
|H|D2(H) (by Lemma 6.1.3)

≥ 1√
|H| [nλmin(M

T M)]1/2 (by Theorem 6.2.1)

=
[ n

n · 6kλmin(M
T M)

]1/2

≥
(

1

6k
· k2

4

)1/2

(by eq’n (6.4))

=

(
k

24

)1/2

≥
(√

n
6
− 1

24

)1/2

(since k = b
√

n/6c)

= n1/4


1−

√
6
n

24
√

6




1/2

> n1/4 1

10
(for n ≥ 36).
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Finally, since D(Hn) > 1
2
D(H), by eq’n (6.1),

D(Hn) >
1

2
D(H) >

1

20
n1/4.

6.3 Upper bounds

Erdős [33] (in Hungarian) showed that D(Hn) < 10n1/2. (The proof appears in

English in [39, §8].) Using an extension of Erdős’s method, Spencer [103] improved

this bound, showing that D(Hn) < 100
√

n ln ln n
ln n

. It was conjectured (see [39, p.

39]) that if ε > 0, then for n sufficiently large, D(Hn) > n
1
2
−ε. This was shown

to be false by Sárközy and Montgomery (see [38, p. 39] and [38, Problem 10])

who showed that there is a constant c so that D(Hn) < cn1/3(ln n)2/3. The focus

of this section is to present Beck’s proof [6] that there is a constant c′ so that for n

sufficiently large, D(Hn) < c′n1/4(ln n)5/2.

Definition 6.3.1. For any hypergraph (S,H) the maximum degree of H is defined

to be maxdeg(H) = maxx∈S |{A ∈ H : x ∈ A}|.

The following theorem, stated without proof, provides a connection between

discrepancy and the maximum degree of a hypergraph H.

Theorem 6.3.2 (Beck-Fiala [7]). Let H be a finite hypergraph. Then

D(H) < maxdeg(H).
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The following theorem can be used to find an upper bound for the discrepancy of

arithmetic progressions and provides a more complicated link between discrepancy

and degree. Essentially, it says that if the hypergraph contains large hyperedges

that are relatively spread out, then the discrepancy will be small.

Theorem 6.3.3 (Beck [6]). Let (S,H) be a finite hypergraph and t ∈ R be such

that maxdeg({A ∈ H : |A| ≥ t}) ≤ t. Then there is a positive constant c so that

D(H) ≤ ct1/2(ln |H|)1/2 ln |S|.

Beck and Sós [8] provide a more general version of this result that gives bounds

on D(H) if maxdeg({A ∈ H : |A| ≥ m}) ≤ t. The proof of the next theorem, which

uses only the symmetric case, shows that Roth’s bound is nearly sharp. Throughout

(as before), for each n ∈ Z+, set Sn = [1, n] and let Hn be the collection of all

arithmetic progressions in [1, n].

Theorem 6.3.4 (Beck [6]). There is a constant c > 0 so that for each n ∈ Z+

sufficiently large, D(Hn) < cn1/4(ln n)5/2.

Proof. For a, d ∈ Z+ and i ≤ j set AP (a, d, i, j) = {a + xd : i ≤ x ≤ j}, the

arithmetic progression with difference d, beginning at a+ id and ending with a+jd.

Call an arithmetic progression A elementary if there are integers d ≥ 1, 1 ≤ b ≤

d, i ≥ 0, and s ≥ 0 with

A = AP (b, d, i2s, (i + 1)2s − 1).
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Let H∗
n be the family of all elementary arithmetic progressions in [1, n]. For any

arithmetic progression A = {a + d, . . . , a + kd} ⊆ [1, n], let p1 ≥ 0 and 1 ≤ b < d

be such that a = b + p1d and set p2 = k + p1. Set A1 = AP (b, d, 0, p1) and

A2 = AP (b, d, 0, p2). Then A = A2\A1 and for any 2-colouring ∆ : Sn → {−1, 1},
∣∣∣∣∣
∑
x∈A

∆(x)

∣∣∣∣∣ =

∣∣∣∣∣
∑
x∈A2

∆(x)−
∑
x∈A1

∆(x)

∣∣∣∣∣

≤
∣∣∣∣∣
∑
x∈A2

∆(x)

∣∣∣∣∣ +

∣∣∣∣∣
∑
x∈A1

∆(x)

∣∣∣∣∣

≤ 2 max
i∈{1,2}

∣∣∣∣∣
∑
x∈Ai

∆(x)

∣∣∣∣∣. (6.5)

For each i ∈ {1, 2}, if s(i, 1) > s(i, 2) > · · · > s(i, `i) are such that pi + 1 =

∑`i

j=1 2s(i,j), then Ai =
⋃`i

t=1 AP (b, d,
t−1∑
j=1

2s(i,j),
t∑

j=1

2s(i,j) − 1), a union of elementary

arithmetic progressions. Since pi + 1 ≥ 2`i − 1, the arithmetic progression Ai is the

disjoint union of no more than `i ≤ log2 (pi + 2) ≤ log2 n + 1 ≤ 2 log2 n elementary

arithmetic progressions. If {Bi,j}2 log2 n
j=1 ⊆ H∗

n are such that Ai =
⋃2 log2 n

j=1 Bi,j, then

for any 2-colouring ∆ : Sn → {−1, 1},
∣∣∣∣∣
∑
x∈Ai

∆(x)

∣∣∣∣∣ ≤
log2 n∑
j=1

∣∣∣∣∣∣
∑

x∈Bi,j

∆(x)

∣∣∣∣∣∣

≤ 2 log2 n max
1≤j≤log2 n

∣∣∣∣∣∣
∑

x∈Bi,j

∆(x)

∣∣∣∣∣∣
. (6.6)

Thus, combining equations (6.5) and (6.6), D(H) ≤ 4 log2 n D(H∗
n). Also, H∗

n is

contained in the family of all arithmetic progressions in [1, n] whose lengths are a

power of 2. By Lemma 1.2.3, for any n, k > 1, the number of APk’s in [1, n] is no
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more than n2

2(k−1)
. Thus, for some constant c,

|H∗
n| ≤ n +

log2 n∑

k=2

n2

2(k − 1)
≤ cn2. (6.7)

In order to use Theorem 6.3.3 to find an upper bound for D(H∗
n) it is necessary

to find a bound for the maximum degree of certain sub-collections of Hn: For any

m ∈ Z+,

maxdeg({A ∈ H∗
n : |A| ≥ m})

= max
x∈[1,n]

|{A ∈ H∗
n : |A| ≥ m and x ∈ A}|

≤ max
x∈[1,n]

∑

1≤d≤ n−1
m−1

∑

1≤b≤d
b≡x mod d

|{s : 2s ≥ m, (b + (2s − 1)d) ≤ n}|

≤ max
x∈[1,n]

∑

1≤d≤ n−1
m−1

∑

1≤b≤d
b≡x mod d

(
log2

(
n− b + d

d

)
− log2 m + 1

)

≤ max
x∈[1,n]

∑

1≤d≤ n−1
m−1

∑

1≤b≤d
b≡x mod d

c′ log2

(
n

md

)
(for some constant c′)

=
∑

1≤d≤ n−1
m−1

c′ log2

n

md

= c′ log2




∏

1≤d≤ n−1
m−1

n

md




= c′ log2

((
n

m

)( n−1
m−1

)
1

( n−1
m−1

)!

)
. (6.8)

Now, by Stirling’s formula that n! ∼ (
n
e

)√
2πn (see [25, pp.361–4]),

(
n− 1

m− 1

)
! ∼

(
(n− 1)/(m− 1)

e

)
(

n−1
m−1

)√
2π

(
n− 1

m− 1

)
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>

(
n− 1

m− 1

)( n−1
m−1

)

e−( n−1
m−1

).

Thus,

c′ log2

(( n

m

)( n−1
m−1

) 1

( n−1
m−1

)!

)
< c′ log2

((
n/m

(n− 1)/(m− 1)

)( n−1
m−1

)

e( n−1
m−1

)

)

= c′
(

n− 1

m− 1

)
log2

(
n/m

(n− 1)/(m− 1)
e

)

< c∗
n

m
(for some constant c∗). (6.9)

Taking m =
√

c∗n in the above, and combining equations (6.8) and (6.9)

maxdeg({A ∈ H∗ : |A| ≥
√

c∗n}) ≤ c∗n√
c∗n

=
√

c∗n.

Therefore, by applying Theorem 6.3.3,

D(H∗
n) ≤ c(c∗n)1/4(lnH∗

n)1/2 ln n

≤ c(c∗n)1/4(ln c′n2)1/2 ln n (by eq’n (6.7))

≤ c′′n1/4(ln n)3/2 (for some constant c′).

By the remark at the beginning of the proof,

D(Hn) ≤ 4 log2 n D(H∗
n)

≤ cn1/4(ln n)5/2 (for some constant c).

It has since been shown by Matoušek and Spencer [82] that in fact Roth’s

original bound is sharp up to the constant.
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Theorem 6.3.5 (Matoušek and Spencer [82]). There is a constant c so that for n

sufficiently large D(Hn) ≤ cn1/4.

The results of Roth and Beck on discrepancy of arithmetic progressions have

been extended by Valkó [111] to generalizations of arithmetic progressions in (Z+)d.

Definition 6.3.6. For each n, d ∈ Z+, set

Hn,d = {{a + ib : 0 ≤ i ≤ k − 1} : a, b ∈ [1, n]d and k ≥ 1}.

In the case d = 1, Hn,1 = Hn, the hypergraph given by the collection of all

arithmetic progressions in the interval [1, n].

Theorem 6.3.7 (Valkó [111]). For each d ∈ Z+, there are constants c1, c2 (depend-

ing on d) so that for sufficiently large n ∈ Z+ ,

c1n
d

2d+2 ≤ D(Hn,d) ≤ c2n
d

2d+2 (ln n)5/2.

The proof of this theorem, which is omitted here, relies on extending the tech-

niques of Roth’s proof [95] of Theorem 6.2.2 for the lower bound and the techniques

of Beck’s proof [6] of Theorem 6.3.4 for the upper bound. When d = 1, Theorem

6.3.7 gives (up to the constant) both Theorem 6.2.2 and Theorem 6.3.4.



Chapter 7

Hales-Jewett theorem

7.1 Definitions

The Hales-Jewett theorem is a purely combinatorial generalization of van der Waer-

den’s theorem. The Hales-Jewett theorem examines problems related to a general-

ized version of the game Tic-Tac-Toe and guarantees that for any integer k, there is

an n so that for every 2-colouring of the set [1, k]n, there will be a monochromatic

set of k elements all in a line. Associating n-tuples with integers either by adding

all the coordinates or by treating coordinates as a base decomposition, these lines of

k n-tuples can be associated with arithmetic progressions of length k. If arithmetic

structures are not of concern, there is no need for the underlying set to be [1, k]n

and the problem can be stated purely combinatorially for any finite set A, colouring

124
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An. Before this can be done, some notation and definitions are necessary.

Throughout, let A be a finite set, called an alphabet. It will be convenient to let

An be interchangeably both the set of n-tuples over A and the set of all functions

{f : [1, n] → A}.

Definition 7.1.1. Let m ≤ n ∈ Z+ and λ1, λ2, . . . , λm be distinct symbols not

in A called parameters. A function f : [1, n] → (A ∪ {λ1, . . . , λm}) is called an

m-parameter word of length n over A iff for each 1 ≤ i < j ≤ m, f−1(λi) 6= ∅ and

min f−1(λi) < min f−1(λj).

The second condition is to ensure that the first occurrences of each parameter

appear in increasing order, but it is for the most part unnecessary.

For any m, n ∈ Z+, the set of all m-parameter words of length n over A is

denoted by [A]
(

n
m

)
. Note that the elements of An can be considered 0-parameter

words and so An = [A]
(

n
0

)
.

Definition 7.1.2. Given f ∈ [A]
(

n
m

)
and g ∈ [A]

(
m
k

)
, the composition of f and g,

f ◦ g ∈ [A]
(

n
k

)
, is defined as follows. For each i ∈ [1, n],

f ◦ g(i)





f(i), if f(i) ∈ A;

g(j), if for some 1 ≤ j ≤ m, f(i) = λj.

Definition 7.1.3. A subset M ⊆ An is a combinatorial m-space iff there is an

f ∈ [A]
(

n
m

)
such that M = f ◦ Am = {f ◦ (a1, . . . , am) : (a1, . . . , am) ∈ Am}. A

combinatorial 1-space is called a combinatorial line.
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For example, if A = {0, 1}, consider the 2-parameter word f = (λ1, λ2, 0, λ1) ∈

[A]
(
4
2

)
. The corresponding combinatorial 2-space is

f ◦ A2 = {(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0), (1, 1, 0, 1)}.

The notion of a combinatorial space is not the same concept as an affine space.

For example, in {0, 1, 2}2, while {(0, 0), (1, 1), (2, 2)} is a combinatorial line corre-

sponding to the 1-parameter word (λ1, λ1), the set {(0, 2), (1, 1), (2, 0)} is not, even

though its elements satisfy the linear equation y = 2− x over Z2.

It is now possible to state the Hales-Jewett theorem precisely in terms of com-

binatorial m-spaces. The proof is deferred until Section 7.3.

Theorem 7.1.4 (Hales, Jewett [58]). Let A be an alphabet and let m, r be positive

integers. There exists a positive integer n = HJ(|A|,m; r) such that for every

r-colouring, ∆ : An → [1, r], there is a monochromatic combinatorial m-space in

An.

Definition 7.1.5. Given f ∈ [A]
(

n
m

)
and g ∈ [A]

(
`
k

)
, the concatenation of f and g,

f̂g ∈ [A]
(

n+`
m+k

)
is defined as follows:

f̂g(i) =





f(i), if 1 ≤ i ≤ n;

g(i− n), if i > n and g(i− n) ∈ A;

λj+m if i > n and g(i− n) = λj.
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In other words, the n-tuple associated with f and the `-tuple associated with g are

concatenated as usual, but the parameters in g are renamed to ensure that they are

different from the parameters in f .

7.2 Shelah Cube Lemma

The Shelah Cube Lemma is a tool that can be used to show that the functions

HJ(t,m; r), associated with the Hales-Jewett theorem, and W (k; r), the van der

Waerden numbers, are primitive recursive (as described in Chapter 5). Recall that

[n]2 denotes the set of all 2-element subsets of [1, n] = {1, . . . n}. (See also [84].)

Theorem 7.2.1 (Shelah [102]). For all integers m and r, there is a least integer

n = Sh(m; r) such that, for any sequence of m r-colourings (1 ≤ i ≤ m):

∆i : [n]2 × · · · × [n]2︸ ︷︷ ︸
i−1

×n× [n]2 × · · · × [n]2︸ ︷︷ ︸
m−i

→ [1, r]

there are m pairs a1 < b1, a2 < b2, . . . , am < bm where for each i ∈ [1,m], {ai, bi} ∈

[n]2 and

∆i({a1, b1}, . . . , {ai−1, bi−1}, ai, {ai+1, bi+1}, . . . , {am, bm})

= ∆i({a1, b1}, . . . , {ai−1, bi−1}, bi, {ai+1, bi+1}, . . . , {am, bm}).

Proof. The proof proceeds by induction on m.

Base Case: If m = 1, then Sh(1; r) = r + 1, for if ∆1 : [1, r + 1] → [1, r], then by

the pigeonhole principle, there is a pair a1 < b1 ≤ n such that ∆1(a1) = ∆1(b1).
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Inductive Step: Suppose that for some k ≥ 1, Sh(k; r) exists.

Set n = Sh(k; r) and N = 1 + r(
n
2)

k

, then it can be shown that Sh(k + 1; r) ≤ N .

For i ∈ [1, k + 1], let

∆i : [N ]2 × · · · × [N ]2︸ ︷︷ ︸
i−1

×N × [N ]2 × · · · × [N ]2︸ ︷︷ ︸
k+1−i

→ [1, r]

be any r-colourings.

Consider the induced colouring, ∆
′
k+1 : N → r(

n
2)

k

defined by

∆′
k+1(x) =

∏
x1<y1≤n,...,xk<yk≤n

{∆k+1({x1, y1}, . . . , {xk, yk}, x)}.

That is, each colour is an
(

n
2

)k
-tuple with entries from [1, r]. By the pigeonhole

principle, since N = 1 + r(
n
2)

k

, there are two elements ak+1 < bk+1 ≤ N such

that ∆
′
k+1(ak+1) = ∆′

k+1(bk+1). That is, for all x1 < y1 ≤ n, . . . , xk < yk ≤ n,

∆k+1({x1, y1}, . . . , {xk, yk}, ak+1) = ∆k+1({x1, y1}, . . . , {xk, yk}, bk+1).

For each i ∈ [1, k], define an induced r-colouring,

∆′
i : [n]2 × · · · × [n]2︸ ︷︷ ︸

i−1

×n× [n]2 × · · · × [n]2︸ ︷︷ ︸
k−i

→ [1, r]

as follows

∆′
i({x1, y1}, . . . , x, . . . , {xk, yk})

= ∆i({x1, y1}, . . . , x, . . . , {xk, yk}, {ak+1, bk+1}).
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By the induction hypothesis, since n = Sh(k; r), there are k pairs of integers a1 <

b1 ≤ n, . . . , ak < bk ≤ n such that for each i ∈ [1, k],

∆′
i({a1, b1}, . . . , ai, . . . {ak, bk}) = ∆′

i({a1, b1}, . . . , bi, . . . , {ak, bk})

and hence

∆i({a1, b1}, . . . ai . . . {ak+1, bk+1}) = ∆i({a1, b1}, . . . , bi, . . . , {ak+1, bk+1}).

Finally, by the choice of ak and bk,

∆k+1({a1, b1}, . . . , {ak, bk}, ak+1) = ∆k+1({a1, b1}, . . . , {ak, bk}, bk+1).

Therefore, Sh(k + 1; r) ≤ N and so by induction, for all m, r ∈ Z+, the number

Sh(m; r) exists.

7.3 Proof of the Hales-Jewett theorem

The original proof of the Hales-Jewett theorem used a double induction. In this

section, a proof of the Hales-Jewett theorem is given that uses only a single induction

and the Shelah cube lemma (see [84] for a simple write-up of the proof).

Theorem 7.1.4 (Hales, Jewett [58]). Let A be an alphabet and let m, r be positive

integers. There exists a positive integer n = HJ(|A|,m; r) such that for every

r-colouring, ∆ : An → [1, r], there is a monochromatic combinatorial m-space in

An.
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Proof. Fix r ∈ Z+. First it is shown, by induction on t, that for all t ≥ 1, the

number HJ(t, 1; r) exists.

Base Case: For any integer r, HJ(1, 1; r) = 1.

Inductive Step: Suppose that for some t ≥ 1, HJ(t, 1, r) exists. Set

m = HJ(t, 1; r) and n = Sh(m; r(t+1)m
). Then it can be shown that

HJ(t + 1, 1; r) ≤ mn.

Let A be an alphabet with |A| = t + 1 and let ∆ : Amn → [1, r] be any r-

colouring. Fix two elements c, d ∈ A, let B = A\{d}. For each i ∈ [0, n− 1], define

hi ∈ An by

hi = (c, . . . , c︸ ︷︷ ︸
i times

, d, . . . , d)︸ ︷︷ ︸
(n−i) times

,

and for each 0 ≤ i < j ≤ n− 1, define a 1-parameter word,

gi,j = (c, . . . , c︸ ︷︷ ︸
i times

, λ1, . . . λ1︸ ︷︷ ︸
j−i times

, d, . . . , d︸ ︷︷ ︸
n−j times

).

Note that gi,j ◦ c = hj and gi,j ◦d = hi. For each i ∈ [1,m], define an r-colouring

∆i : [n]2 × · · · × [n]2︸ ︷︷ ︸
i times

×n× [n]2 × · · · × [n]2︸ ︷︷ ︸
m−1−i times

→ [1, r|A|
m

]

as follows. For each sequence of pairs x1 < y1, . . . , xm < ym ≤ n, and x ≤ n, set

∆i({x1, y1}, . . . , {xi−1, yi−1}, x, {xi+1, yi+1}, . . . , {xm, ym})

=
∏

(α1,...,αm)∈Am

{∆(gx1,y1 ◦ (α1)̂ · · · ̂gxi−1,yi−1
◦ (αi−1)
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̂hx̂gxi+1,yi+1
◦ (αi+1)̂ · · · ̂gxm,ym ◦ (αm))}.

By Theorem 7.2.1 and the choice of n = Sh(m; r(t+1)m
), there are m pairs

a1 < b1, . . . , am < bm ≤ n such that for each i ∈ [1,m],

∆i({a1, b1}, . . . , ai, . . . , {am, bm}) = ∆i({a1, b1}, . . . , bi, . . . , {am, bm}).

That is, for each i ∈ [1,m] and all (α1, . . . , αm) ∈ Am,

∆(ga1,b1 ◦ (α1)̂ · · · ̂hai
̂ · · · ̂gam,bm ◦ (αm))

= ∆(ga1,b1 ◦ (α1)̂ · · · ̂hbi
̂ · · · ̂gam,bm ◦ (αm)). (7.1)

Consider the m-parameter word g = ga1,b1̂ · · · ̂gam,bm . Recall that B = A\{d}

and consider the r-colouring ∆∗ : Bm → [1, r] defined by,

∆∗(α1, . . . , αm) = ∆(g ◦ (α1, . . . , αm)).

By the choice of m = HJ(t, 1; r) and since |B| = t, there is a combinatorial line

h ∈ [B]
(

m
1

)
in Bm that is monochromatic with respect to ∆∗. That is, g ◦ h is a

combinatorial line in Amn for which g ◦h ◦ [B] is monochromatic with respect to ∆.

To see that ∆(g ◦h◦ (d)) = ∆(g ◦h◦ (c)), note that if for some i ∈ [1,m], αi = d,

then

∆(g◦(α1, . . . , d, . . . , αm))
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= ∆(ga1,b1 ◦ (α1)̂ · · · ̂gai,bi
◦ (d)̂ · · · ̂gam,bm ◦ (αm))

= ∆(ga1,b1 ◦ (α1)̂ · · · ̂hai
̂ · · · ̂gam,bm ◦ (αm))

= ∆(ga1,b1 ◦ (α1)̂ · · · ̂hbi
̂ · · · ̂gam,bm ◦ (αm)) (by eq’n (7.1))

= ∆(ga1,b1 ◦ (α1)̂ · · · ̂gai,bi
◦ (c)̂ · · · ̂gam,bm ◦ (αm))

= ∆(g ◦ (α1, . . . , c, . . . , αm))

Thus, g ◦h is monochromatic in Amn. Therefore, by induction, for all t, r ∈ Z+, the

number HJ(t, 1; r) exists.

Finally, it can be shown that for all t,m, r, HJ(t,m; r) ≤ m · HJ(tm, 1; r)

and hence HJ(t,m; r) exists. To see this, let A be a set with |A| = t and set

n = HJ(tm, 1, r). The elements of (Am)n correspond to Am·n by

(a1, . . . , amn) = ((a1, . . . , am), . . . , (am(n−1)+1, . . . , amn))

and a combinatorial line in (Am)n corresponds to a combinatorial m-space in Am·n.

The following are two generalizations of the Hales-Jewett theorem, stated with-

out proof. The first, known as the Graham-Rothschild theorem gives a result compa-

rable to the Hales-Jewett theorem where the objects coloured are the combinatorial

k-spaces of An rather than the points of the set An.

Theorem 7.3.1 (Graham and Rothschild [49]). Given positive integers m, k, r ∈ Z+

and a finite set A, there is a least integer n = GR(|A|, k,m; r) such that for every
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r-colouring ∆ : [A]
(

n
k

) → [1, r], there is an f ∈ [A]
(

n
m

)
such that the set f ◦ [A]

(
m
k

)

is monochromatic.

The next theorem brings this result from the realm of combinatorial spaces

to that of vector spaces. The following theorem shows that the statement of the

Graham-Rothschild theorem still holds if combinatorial spaces are replaced with

vector spaces and subspaces.

Theorem 7.3.2 (Graham, Leeb and Rothschild [48]). Let F be any finite field with

|F | = q. For all k, `, r ∈ Z+, there is an N such that for all n ≥ N , the following

holds. For any n-dimensional vector space V over F , if the k-dimensional subspaces

of V are r-coloured, then there exists an `-dimensional subspace of V all of whose

k-dimensional subspaces have the same colour.

7.4 Homothetic copies

By relating numbers to n-tuples, other Ramsey-type theorems can be seen as con-

sequences of the Hales-Jewett theorem. The first is van der Waerden’s theorem.

Corollary 7.4.1 (Hales and Jewett [58]). For any k, r ∈ Z+, the van der Waerden

number W (k; r) satisfies W (k; r) ≤ (k − 1)HJ(k, 1; r) + 1.

Proof. Fix k, r ∈ Z+. Set A = [0, k− 1], n = HJ(k, 1; r) and let ∆ : [0, n(k− 1)] →

[1, r] be any r-colouring.
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Define an r-colouring of An by ∆∗(a1, . . . , an) = ∆(
∑n

i=1 ai). By the choice of

n, there is a combinatorial line f ∈ [A]
(

n
1

)
so that f ◦ A is monochromatic under

∆∗. Let M = {i ∈ [1, n] : f(i) = λ1}, then for each x ∈ [0, k − 1],

∆∗(f ◦ x) = ∆

( ∑

i∈[1,n]\M
f(i) +

∑
i∈M

x

)

= ∆

( ∑

i∈[1,n]\M
f(i) + |M |x

)
.

Therefore, the APk starting at
∑

i∈[1,n]\M f(i) with difference |M | is monochromatic

under ∆.

Using the Hales-Jewett numbers HJ(k, m; r) a similar proof also shows that for

every k,m, r ∈ Z+, there is an n ∈ Z+ so that for every r-colouring of [1, n], there

is a monochromatic m-fold arithmetic progression of length k.

Van der Waerden’s theorem can be phrased in terms of what are called “ho-

mothetic copies” of a set of integers: simply a scaled and translated copy of the

set.

Definition 7.4.2. Given a set V ⊆ Rn, for any a ∈ Rn and d ∈ R\{0}, the set

a + dV = {a + dv : v ∈ V } is a homothetic copy of V .

Corollary 7.4.3. For every finite set S, r ∈ Z+ and any r-colouring of Z+, there

exist a, d ∈ Z+ so that the set a + dS is monochromatic.

Proof. Let ∆ : Z+ → [1, r] be any r-colouring and set k = max S. By van der
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Waerden’s theorem, there are a, d ∈ Z+ so that

{a, a + d, . . . , a + kd} = a + d · [1, k] ⊇ a + d · S

is monochromatic.

The following theorem due to Gallai (see Rado [89]) and Witt [119] provides an

extension of this result to any dimension. The following proof is not the original,

but uses the Hales-Jewett theorem and can be found in [58].

Theorem 7.4.4 (Gallai-Witt [89], [119]). Let V ⊆ Rm be a finite set and r ∈ Z+.

For every r-colouring of Rm there is a monochromatic homothetic copy of V .

Proof. Fix r ∈ Z+, set |V | = t and N = HJ(t, 1; r). Let ∆ : Rm → [1, r] be any

r-colouring.

Define an r-colouring of V N by ∆∗(a1, . . . , an) = ∆(
∑n

i=1 ai). By the choice

of N , there is an f ∈ [V ]
(

N
1

)
so that f ◦ V is monochromatic under ∆∗. Let

M = {i ∈ [1, n] : f(i) = λ1}, then for each v ∈ V ,

∆∗(f ◦ v) = ∆

( ∑

i∈[1,n]\M
f(i) +

∑
i∈M

v

)

= ∆

( ∑

i∈[1,n]\M
f(i) + |M |v

)
.

Therefore, the set
∑

i∈[1,n]\M f(i) + |M |V is a monochromatic homothetic copy of

V .
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Taking V = [0, k− 1] in the Gallai-Witt theorem gives exactly the statement of

van der Waerden’s theorem.



Chapter 8

Ultrafilters

8.1 Ramsey ultrafilters

The topic of ultrafilters may seem far afield from Ramsey theory, but there are

numerous connections. It is possible to show that every Ramsey-type theorem

corresponds to the existence of a particular ultrafilter (Theorem 8.1.6 to come)

and there are proofs using ultrafilters of a number of Ramsey-type theorems. In

particular, there is a proof of van der Waerden’s theorem that uses ultrafilters,

the presentation of which is the goal of this chapter. The lemmas presented in

this section are standard results on filters and ultrafilters that can be found in any

reference on the subject (for example [70]). Other references on ultrafilters and

Ramsey theory can be found for example in [5].

137
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Definition 8.1.1. Given a set X, a non-empty collection p ⊆ P(X) is called a filter

on X iff it satisfies the following three conditions:

(i) ∅ /∈ p ;

(ii) A, B ∈ p ⇒ A ∩B ∈ p (p is closed under intersection) and

(iii) A ∈ p and A ⊆ B ⊆ X ⇒ B ∈ p (p is upward closed).

A filter p on X is defined to be an ultrafilter if in addition, for every A ⊆ X,

either A ∈ p or X\A ∈ p.

Definition 8.1.2. Let X be any set and a ∈ X. The collection pa = {A ⊆ X :

a ∈ A} is an ultrafilter and is called the principal ultrafilter at a. Similarly, for any

non-empty set B ⊆ X, the collection {A ⊆ X : B ⊆ A} is a filter.

Lemma 8.1.3. A filter p is an ultrafilter iff p is a maximal filter.

Proof. Let p be an ultrafilter on X and let q ⊆ P(X) with p ( q. Let A ∈ q\p,

then since p is an ultrafilter, X\A ∈ p ⊆ q. Therefore, ∅ = A ∩ (X\A) ∈ q and so

q is not a filter. Thus, p is a maximal filter.

Let p be a filter and suppose that it is maximal. Fix A /∈ p and consider the

collection

q = p ∪ {B ⊆ X : for some P ∈ p, P ∩ (X\A) ⊆ B or (X\A) ⊆ B}.

The collection q is upward closed and closed under intersections. If ∅ ∈ q then for

some P ∈ p, P ∩ (X\A) = ∅. If so, then P ⊆ A and so A ∈ p contrary to the initial
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assumption. Therefore, ∅ /∈ q and q is a filter and since p is maximal, p = q and in

particular, X\A ∈ p and so p is an ultrafilter.

In some sources (for example [42]), the definition of an ultrafilter is given as a

maximal filter and the condition that for all A ⊆ X, either A ∈ p or (X\A) ∈ p is

given as a consequence of the definition.

For any filter p, the properties (i) and (ii) show that if A,B ⊆ X, then A∩B ∈ p

iff A ∈ p and B ∈ p. If in addition p is an ultrafilter, something comparable is also

true for A ∪B.

Lemma 8.1.4. Let u be an ultrafilter on X. Let A, B ⊆ X be such that A∪B ∈ u,

then either A ∈ u or B ∈ u.

Proof. Suppose that A /∈ u. Then since u is an ultrafilter, X\A ∈ u and hence

(A ∪ B) ∩ (X\A) ∈ u. Since u is upward closed and B ⊇ (A ∪ B) ∩ (X\A), then

also B ∈ u. Thus either A ∈ u or B ∈ u.

Applying this lemma inductively shows that if u is an ultrafilter, given any set

A1, A2, . . . , Ar ⊆ X with
r⋃

i=1

Ai ∈ u, then there is an i0 ∈ [1, r] such that Ai0 ∈ u.

In particular, since every ultrafilter contains X, for any ultrafilter u and any r-

colouring of X, u contains one of the colour classes.

Lemma 8.1.5. Assuming the Axiom of Choice, every filter is contained in an

ultrafilter.



CHAPTER 8. ULTRAFILTERS 140

Proof. The proof uses Zorn’s Lemma. Let p be a filter and consider the collection

F = {q ⊆ P(X) : q is a filter and p ⊆ q}, partially ordered by inclusion. Then,

F 6= ∅ since p ∈ F . Let C be any chain in F and let q0 = ∪C. For each q ∈ C, p ⊆ q

and so p ⊆ q0. In order to show that q0 ∈ F , it remains to show that q0 is a filter.

(i) For each q ∈ C, ∅ /∈ q and hence ∅ /∈ q0.

(ii) If A,B ∈ q0 then there are filters qA, qB ∈ C with A ∈ qA and B ∈ qB. Since C

is linearly ordered, without loss of generality qA ⊆ qB. Thus A, B ∈ qB and since

qB is a filter, A ∩B ∈ qB ⊆ q0.

(iii) If A ∈ q0 and A ⊆ B, then for some qA ∈ C, A ∈ qA and since qA is a filter,

B ∈ qA ⊆ q0.

Therefore, q0 is a filter and it is an upper bound in F for the chain C.

Thus, by Zorn’s Lemma, F has a maximal element u. The filter u is a maximal

filter containing p and hence an ultrafilter containing p.

This lemma guarantees the existence of non-principal ultrafilters on any infinite

set. Let X be an infinite set and consider the filter p = {B ⊆ X : |X\B| < ∞}.

This filter is called the Fréchet filter or the co-finite filter. By Lemma 8.1.5, there

is an ultrafilter u that contains p, but u cannot be principal because if x ∈ X, then

X\{x} ∈ u and so {x} /∈ u.

The following theorem due to Hindman shows that many Ramsey-type results

correspond to the existence of a particular ultrafilter.
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Theorem 8.1.6 (Hindman [65]). Let X be a set and F ⊆ P(X)\{∅}. The following

are equivalent:

(i) For every finite colouring of X, there is an F ∈ F that is monochromatic.

(ii) There is an ultrafilter u on X such that for every A ∈ u, there is an F ∈ F with

F ⊆ A.

Proof. [(i) ⇒ (ii)] Suppose that for every finite colouring of X, there is an F ∈ F

that is monochromatic. Set B = {A ⊆ X : for all F ∈ F , A ∩ F 6= ∅}. Fix any

A1, . . . , Ak ∈ B. If X is partitioned into 2k parts by the Venn diagram for the sets

A1, . . . , Ak, then, by assumption, there is an F ∈ F contained in one part. Since for

each i ∈ [1, k], Ai∩F 6= ∅, the only possibility is that F ⊆ A1∩ · · · ∩Ak. As F 6= ∅,

also A1 ∩ · · ·Ak 6= ∅. That is, the family B has the finite intersection property.

Thus, since B is upward closed, the set B∗ = {B1 ∩ · · · ∩ Bk : B1, . . . , Bk ∈ B} is a

filter. By Lemma 8.1.5, there is an ultrafilter u with B∗ ⊆ u.

For each A ∈ u, since u is an ultrafilter, X\A /∈ u and hence X\A /∈ B.

Therefore, there is an F ∈ F such that F ∩ (X\A) = ∅ and hence F ⊆ A.

[(ii) ⇒ (i)] Now suppose there is an ultrafilter u on X such that for every A ∈ u,

there is an F ∈ F with F ⊆ A. Fix r ∈ Z+ and let ∆ : X → [1, r] be any r-colouring

of X. By Lemma 8.1.4, there is an i ∈ [1, r] such that ∆−1(i) ∈ u. Take F ∈ F

with F ⊆ ∆−1(i); F is monochromatic.

Now, in terms of arithmetic progressions, take X = Z+ and for some k ∈ Z+ let
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F be the set of all APk’s in Z+. Theorem 8.1.6 together with van der Waerden’s

theorem shows that there is an ultrafilter u on Z+ with the property that for every

A ∈ u, there are integers a and d > 0 such that {a, a + d, . . . , a + (k − 1)d} ⊆ A.

Conversely, if it can be shown without use of van der Waerden’s theorem that such

an ultrafilter exists, this provides another proof of van der Waerden’s theorem.

In order to find such an ultrafilter guaranteed by Theorem 8.1.6, some other

properties are used. A semigroup operation that extends the addition of integers

can be defined on the ultrafilters on Z+ which can also be given a topology. Be-

fore proceeding to ultrafilters on Z+, some general results about semigroups with

topologies are given which are needed for the proof of van der Waerden’s theorem.

8.2 Semigroups

8.2.1 Topology review

This section begins with a few standard definitions and results from topology that

are given without proof but can be found in any standard reference (for example

[118]). Throughout, let X be a topological space with topology τ unless stated

otherwise.

Definition 8.2.1. A topological space X is Hausdorff iff for every x, y ∈ X with

x 6= y, there are disjoint open sets Ux and Uy with x ∈ Ux and y ∈ Uy.
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Definition 8.2.2. A topological space X is compact iff for every collection of open

sets {Ui : i ∈ I} with X =
⋃
i∈I

Ui, there is a finite set F ⊆ I so that X =
⋃

f∈F

Uf

Definition 8.2.3. Let (X, τ) be a topological space. A collection {Bi : i ∈ I} ⊆

P(X) is called an open basis for τ iff τ = {⋃
j∈J

Bj : J ⊆ I}. The basis {Bi : i ∈ I}

is said to generate τ and the sets {Bi : i ∈ I} are called basic open sets. The sets

{X\Bi : i ∈ I} are called basic closed sets.

Fact 8.2.4. Let X be a set and B ⊆ P(X). Then {∪C : C ⊆ B} forms a basis for

a topology on X iff

(i)
⋃

B∈B
B = X and

(ii) For every B1, B2 ∈ B and x ∈ B1 ∩ B2, there is a B3 ∈ B such that x ∈ B3 ⊆

B1 ∩B2.

Definition 8.2.5. A collection of sets {Ai : i ∈ I} has the finite intersection

property (abbreviated FIP) iff for every finite subset F ⊆ I, ∩i∈F Ai 6= ∅.

Fact 8.2.6. A topological space X is compact iff for every collection of closed sets

{Ci : i ∈ I} with the finite intersection property, ∩i∈ICi 6= ∅.

Fact 8.2.7. Let X be compact and Hausdorff. Then a set C ⊆ X is closed iff C is

compact.

Fact 8.2.8. Let f : X → Y be a continuous function. If K ⊆ X is compact, then

f(K) ⊆ Y is compact.
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Recall that if (X, τ) is a topological space and n ∈ Z+ the product topology on

Xn is given by the open basis {U1 × . . .× Un : for each i ∈ [1, n], Ui ∈ τ}.

Fact 8.2.9. If X is compact, then Xn with the product topology is compact.

Fact 8.2.10. If X is Hausdorff, then Xn with the product topology is Hausdorff.

Fact 8.2.11. For i ∈ [1, n], let fi : X → Y be continuous functions. Then the

function f : Xn → Y n given by f(x1, . . . , xn) = (f1(x1), . . . , fn(xn)) is continuous

in the product topologies on Xn and Y n.

8.2.2 Semigroups with topologies

In this section, some properties of semigroups with topologies are given that can

later be applied to a semigroup operation and topology on the ultrafilters on Z+.

The following approaches to proving Ramsey theorems using ultrafilters can be

found in an article by Bergelson, Furstenberg, Hindman and Katznelson [13], an

article by Furstenberg and Katznelson [46] and notes by Hart [59].

Throughout, let (X, ∗) be a semigroup with a topology τ on X.

Definition 8.2.12. For every x ∈ X, define λx : X → X by λx(y) = x ∗ y. The

semigroup operation ∗ is left-continuous iff for every x ∈ X, λx is continuous.

Definition 8.2.13. The semigroup (X, ∗) with the topology τ , is semi-topological

iff (X, τ) is compact and Hausdorff and ∗ is left-continuous.
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Definition 8.2.14. An element x ∈ X is called an idempotent iff x ∗ x = x.

The following result on the existence of idempotents in semi-topological semi-

groups has become known as the Idempotent Lemma and plays a key role in many

of the results that follow.

Lemma 8.2.15 (Idempotent Lemma, Ellis [32]). Let (X, ∗) be a semi-topological

semigroup, then X contains an idempotent.

Proof. Let A = {A ⊆ X : A 6= ∅, A is closed and A ∗ A ⊆ A} be ordered by

inclusion. Any chain in A will have the finite intersection property and hence non-

empty intersection (by Fact 8.2.6) since the sets A ∈ A are closed and X is compact.

If C is any chain in A, then C = ∩C is also closed. If c1, c2 ∈ C, then for all A ∈ C,

c1, c2 ∈ A and so c1 ∗ c2 ∈ A. Thus c1 ∗ c2 ∈ C and so C ∗ C ⊆ C and C ∈ A.

Therefore, C is a lower bound for C in A. Since X ∈ A, A 6= ∅ and thus Zorn’s

lemma can be used to find a minimal element A0 of A.

Fix x ∈ A0. Since A0 is closed and so compact, x ∗A0 = λx(A0) is compact and

hence closed. Since x ∈ A0 and A0 ∗ A0 ⊆ A0, x ∗ A0 ⊆ A0 and so,

(x ∗ A0) ∗ (x ∗ A0) ⊆ x ∗ (A0 ∗ A0)

⊆ x ∗ A0.

Therefore, x ∗A0 ∈ A and since A0 is minimal, x ∗A0 = A0. In particular, there is

at least one y ∈ A0 with x ∗ y = x.
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Consider the set Y = {y ∈ A0 : x∗y = x} = A0∩λ−1
x ({x}). By the above, Y 6= ∅

and Y is closed since A0 is closed and λx is continuous. To show that Y ∗ Y ⊆ Y ,

let y, z ∈ Y , then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

= x ∗ z (since y ∈ Y )

= x (since z ∈ Y ).

Therefore y ∗ z ∈ Y and so Y ∈ A. Again, since A0 is minimal, Y = A0 and in

particular, since x ∈ A0, x ∗ x = x.

Definition 8.2.16. A set R ⊆ X is a right ideal iff for every x ∈ X, R ∗ x ⊆ R.

Similarly, L is a left ideal iff whenever x ∈ X, then x ∗ L ⊆ L. A set I ⊆ X is a

two-sided ideal iff it is both a left and a right ideal.

Lemma 8.2.17. Every right ideal in X contains a minimal right ideal.

Proof. Let R be a right ideal. Then for every r ∈ R, λr(X) = r ∗X ⊆ R is a closed

right ideal contained in R.

Let F = {C ⊆ R : C 6= ∅ and C is a closed right ideal} be ordered by inclusion.

Then F 6= ∅. Let C be any chain in F and let C0 = ∩C. Then C0 6= ∅ since X is

compact and C has the finite intersection property. The set C0 is closed since all

sets in C are closed and C0 is a right ideal since it is an intersection of right ideals.

Thus C0 ∈ F . Therefore, by Zorn’s lemma, F contains a minimal element. This
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minimal element will be a minimal right ideal contained in R. In addition, this

shows that any minimal right ideal is closed.

It will be useful to note the following property of ideals. Let R be any closed

right ideal. The ideal R is closed under ∗ since it is an ideal, R is compact since it

is closed, R is Hausdorff since X is Hausdorff, and ∗ is left-continuous on R since ∗

is left-continuous on X. Therefore, any closed right ideal is itself a semi-topological

semigroup and hence contains an idempotent by Lemma 8.2.15. Further, since every

right ideal contains a closed right ideal, every right ideal contains an idempotent.

8.2.3 Sticky diagonal theorem

This section and the next are independent of each other and provide two different

approaches to a proof of van der Waerden’s theorem using ultrafilters. Each of

these two proofs are presented in Section 8.4. The results in this section are due to

Bergelson, Furstenberg, Hindman and Katznelson [13].

Lemma 8.2.18. Let R be a minimal right ideal in X and q ∈ R be an idempotent.

Then for every r ∈ R, q ∗ r = r.

Proof. Since q ∈ R and R is a right ideal, q ∗R ⊆ R. Since q ∗R is a right ideal and

R is minimal, q ∗ R = R. Thus, for each r ∈ R there is an ar ∈ R with q ∗ ar = r.
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Then,

q ∗ r = q ∗ (q ∗ ar)

= q ∗ ar (since q is an idempotent)

= r.

Fix k ∈ Z+ and consider the semigroup on Xk with the semigroup operation

defined component-wise by ∗ and with the product topology on Xk. The space Xk

is compact and Hausdorff since X is compact and Hausdorff and ∗ is left-continuous

on Xk since ∗ is left-continuous on X. Therefore (Xk, ∗) is also a semi-topological

semigroup. The elements of Xk are denoted by x = (x1, . . . , xk) ∈ Xk.

The following theorem is called the “Sticky Diagonal Theorem” in [120]. This re-

sult on the diagonal elements of a semigroup Xk seems to be related to the “Central

Sets Theorem” which appears in [67] where it is attributed to Furstenberg.

Theorem 8.2.19 (Sticky diagonal theorem, Bergelson et al. [13]). Fix k ∈ Z+

and let E ⊆ Xk be a semi-topological semigroup with {(x, . . . , x) ∈ Xk : x ∈ X} ⊆

E and I a two-sided ideal in E. Then there exists a p ∈ X with (p, . . . , p) ∈ I.

Proof. Let R be a minimal right ideal in X and let p ∈ R. Set p = (p, . . . , p) ∈ E.

Since I is a left ideal in E and p ∈ E, p∗I ⊆ I. Since I is a right ideal, p∗I is also a

right ideal and so p∗I contains an idempotent q = (q1, . . . , qk). Since q ∈ p∗I, there

is (x1, . . . , xk) ∈ I with q = p∗ (x1, . . . , xk). Then, for each i ∈ [1, k], qi = p∗xi ∈ R
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since p ∈ R and R is a right ideal. Since ∗ is defined component-wise, for each

i ∈ [1, k], qi is an idempotent in X. Therefore, by Lemma 8.2.18, since R is a

minimal right ideal, whenever i ∈ [1, k], then qi ∗ p = p and so q ∗p = p. Therefore,

(p, . . . , p) = q ∗ p ∈ I since q ∈ I and I is a right ideal.

8.2.4 Minimal idempotents

This section presents another set of results on semigroups that can be used to give

a proof of van der Waerden’s theorem. The focus is to show that there is a partial

order on the idempotents of X so that any two-sided ideal in X contains all of the

minimal idempotents of X. The results in this section are due to Furstenberg and

Katznelson [46] and can also be found in notes by Hart [59].

A partial ordering is defined on the idempotents of X. For idempotents x and

y, x 4 y iff x = x ∗ y = y ∗ x. For any idempotent x, since x ∗ x = x, x 4 x. If

x 4 y and y 4 x, then x = x ∗ y = y. If x 4 y and y 4 z then,

x ∗ z = x ∗ y ∗ z (since x 4 y)

= x ∗ y (since y 4 z)

= x.

Thus, the relation 4 is indeed a partial order.

The next lemma demonstrates some of the connection between the right ideals

of X and the ordering 4.
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Lemma 8.2.20. Let x be an idempotent and R ⊆ x ∗X be a minimal right ideal.

Then there is an idempotent y ∈ R with y 4 x.

Proof. As noted previously, since R is a closed right ideal, R contains an idempotent

r. Since r ∈ R ⊆ x ∗ X, there is an a ∈ X with r = x ∗ a. Set y = r ∗ x. Since

r ∈ R and R is a right ideal, y ∈ R and since r = x ∗ a, y = x ∗ a ∗ x. Now, y is an

idempotent since

y ∗ y = (r ∗ x) ∗ (x ∗ a ∗ x) (since y = r ∗ x = x ∗ a ∗ x)

= r ∗ x ∗ a ∗ x (since x ∗ x = x)

= r ∗ r ∗ x (since r = x ∗ a)

= r ∗ x (since r ∗ r = r)

= y.

To see that y 4 x, note that

y ∗ x = r ∗ x ∗ x = r ∗ x = y,

and

x ∗ y = x ∗ x ∗ a ∗ x = x ∗ a ∗ x = y.

Lemma 8.2.21 (Furstenberg and Katznelson [46]). Let x be an idempotent. Then

x is minimal iff x is contained in a minimal right ideal.
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Proof. Suppose x is minimal. Since x∗X is a right ideal, by Lemma 8.2.17, there is

a minimal right ideal R ⊆ x ∗X. By Lemma 8.2.20, there is an idempotent y ∈ R

with y 4 x. Since x is minimal, x = y and so x ∈ R, a minimal right ideal.

For the converse, suppose R is a minimal right ideal with x ∈ R. Suppose there

is an idempotent y with y 4 x. Since y = x ∗ y, y ∈ R and as R is minimal,

y ∗X = R. Then there is an a ∈ X with y ∗ a = x. Then,

x = y ∗ a = y ∗ y ∗ a = y ∗ x = y.

Therefore, x is minimal.

Until this point, it has not yet been shown that there are any minimal idempo-

tents. The previous results can be used to show that there is at least one.

Corollary 8.2.22. Let x be an idempotent. Then there exists a minimal idempo-

tent y with y 4 x.

Proof. Let R be a minimal right ideal with R ⊆ x ∗ X and by Lemma 8.2.20, let

y ∈ R be an idempotent with y 4 x. By Lemma 8.2.21, y is minimal.

The only special property of the minimal idempotents needed for what follows

is that they can always be found in 2-sided ideals.

Lemma 8.2.23. Let R be a minimal right ideal and I be a 2-sided ideal. Then

R ⊆ I.
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Proof. For any x ∈ R and y ∈ I, x∗y ∈ R∩I and so R∩I 6= ∅. Therefore R∩I ⊆ R

is a right ideal and since R is minimal, R = R ∩ I and so R ⊆ I.

Note that since every minimal idempotent belongs to a minimal right ideal, if I

is a 2-sided ideal then I contains all the minimal idempotents of X.

8.3 Ultrafilters on Z+

The ultrafilters on Z+ can be given a topology so that the space is isomorphic to

what is called the “Stone-Čech compactification” of Z+. A space X is Tychonoff iff

for every closed set C ⊆ X and x /∈ C, there is a continuous function f : X → [0, 1]

(interval of real numbers) such that f(C) = 0 and f(x) = 1. For a Tychonoff space

X, the Stone-Čech compactification of X, denoted by βX is a compact Hausdorff

space for which X ⊆ βX is a dense subspace and is characterised up to isomorphism

by the following property. For any compact Hausdorff space K and continuous

function f : X → K, there is a continuous function F : βX → K so that F|X = f .

Any space with the discrete topology (where all sets are open), is Tychonoff since

all functions are continuous.

Let βZ+ be the Stone-Čech compactification of Z+ with the discrete topology.

Though it will not be proved here, βZ+ is isomorphic to the set of all ultrafilters

on Z+ with a particular topology. All the results needed to prove van der Waer-
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den’s theorem using ultrafilters can be proved by defining the topology directly on

the space of ultrafilters on Z+ and without using the full strength of the Stone-

Čech compactification (further information on the Stone-Čech compactification of

a semigroup can be found in [67]). For each A ⊆ Z+, set UA = {u ∈ βZ+ : A ∈ u}.

Lemma 8.3.1. The sets {UA : A ⊆ Z+} form a basis for a topology on βZ+ and

for every A ⊆ Z+, the set UA is also closed under this topology.

Proof. The proof uses Fact 8.2.4. For any u ∈ βZ+, if A ∈ u then u ∈ UA. Thus

⋃
A⊆Z+

UA = βZ+.

Let A1, A2 ⊆ Z+ and u ∈ UA1 ∩UA2 , then A1 ∈ u and A2 ∈ u. Since u is a filter,

A1 ∩ A2 ∈ u and hence u ∈ UA1∩A2 . For any v ∈ UA1∩A2 , since v is upward closed

and both A1 ∩ A2 ⊆ A1 and A1 ∩ A2 ⊆ A2, both A1 ∈ v and A2 ∈ v. Therefore

v ∈ UA1 ∩ UA2 and since v was an arbitrary ultrafilter, u ∈ UA1∩A2 = UA1 ∩ UA2 .

Therefore the collection {UA : A ⊆ Z+} generates a topology on βZ+. To show

that every basic open set in this topology is also closed, let A ⊆ Z+. Then

βZ+\UA = {u ∈ βZ+ : A /∈ u}

= {u ∈ βZ+ : Z+\A ∈ u} (since u is an ultrafilter)

= UZ+\A

is an open set and so UA is a closed set and the sets {UA : A ⊆ Z+} are also basic

closed sets.
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For simplicity, for every n ∈ Z+ associate the integer n with the principal ul-

trafilter pn and in this way, assume that Z+ ⊆ βZ+. The symbols n and pn are

used interchangeably for the principal ultrafilter at n, but when n is used both as

an integer and as an ultrafilter, the difference will be noted.

Lemma 8.3.2. The space βZ+ is Hausdorff, compact and Z+ is dense in βZ+.

Proof. To prove that βZ+ is Hausdorff, fix u, v ∈ βZ+ with u 6= v. For any A ∈ u\v,

since A /∈ v, Z+\A ∈ v. Thus u ∈ UA while v ∈ UZ+\A and UA∩UZ+\A = UA∩Z+\A =

U∅ = ∅, since no ultrafilters contain the empty set. Therefore βZ+ is Hausdorff.

In order to show that βZ+ is compact, it suffices to show that every collection

of basic closed sets with the finite intersection property has non-empty intersection

by Fact 8.2.6. Suppose that {UAi
}i∈I has the finite intersection property. For any

finite subcollection, UA1 ∩ UA2 ∩ · · · ∩ UAn = UA1∩A2∩···∩An 6= ∅. Hence, since only

U∅ = ∅, A1∩· · ·∩An 6= ∅. Therefore, the collection {Ai}i∈I has the finite intersection

property and hence A = {A ⊆ Z+ : A ⊇ Ai1 ∩ · · · ∩ Ain for some i1, . . . in ∈ I} is a

filter. By Lemma 8.1.5, A is contained in an ultrafilter u. For each i ∈ I, Ai ∈ u

and so u ∈ UAi
. Thus u ∈ ∩i∈IUAi

, so ∩i∈IUAi
6= ∅ and thus βZ+ is compact.

Finally, to see that Z+ is dense in βZ+, let UA be any basic open set and fix

n ∈ A. Then A ∈ pn and so pn ∈ UA. Thus Z+ ∩ UA 6= ∅ and so Z+ is dense in

βZ+.

For each n ∈ Z+ and A ⊆ Z+, set A− n = {x ∈ Z+ : x + n ∈ A}. The addition
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of integers + is extended to βZ+ as follows. For u, v ∈ βZ+, define

u + v = {A ⊆ Z+ : {x ∈ Z+ : A− x ∈ u} ∈ v}.

Lemma 8.3.3. For each u, v ∈ βZ+, u + v ∈ βZ+.

Proof. Let u, v be ultrafilters. For any x ∈ Z+, ∅ − x = ∅, therefore

∅ ∈ u + v ⇔ {x ∈ Z+ : ∅ − x ∈ u} ∈ v

⇔ ∅ ∈ v (since ∅ /∈ u).

Since v is an ultrafilter, ∅ /∈ v and hence ∅ /∈ u + v.

To show that u + v is closed under intersections, let A,B ∈ u + v. Then

{x : A − x ∈ u} ∈ v and {x : B − x ∈ u} ∈ v and so {x : A − x ∈ u} ∈ v ∩ {x :

B − x ∈ u} ∈ v. Since

{x : A ∩B − x ∈ u} = {x : (A− x) ∩ (B − x) ∈ u}

= {x : A− x ∈ u} ∩ {x : B − x ∈ u},

{x : A ∩B − x ∈ u} ∈ v and hence A ∩B ∈ u + v.

To show that u + v is upward closed, let A ∈ u + v and B ⊇ A. Then {x :

A−x ∈ u} ∈ v and since u is upward closed, {x : B−x ∈ u} ⊇ {x : A−x ∈ u} ∈ v

and since v is upward closed, {x : B − x ∈ u} ∈ v and hence B ∈ u + v.
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Finally, fix A ⊆ Z+ with A /∈ u + v, then {x : A− x ∈ u} /∈ v and since v is an

ultrafilter, Z+\{x : A− x ∈ u} ∈ v. Consider the set Z+\A.

{x : (Z+\A)− x ∈ u} = {x : Z+\(A− x) ∈ u}

= Z+\{x : A− x ∈ u} ∈ v.

Thus Z+\A ∈ u + v and so u + v is an ultrafilter.

Lemma 8.3.4. The operation + is associative on βZ+.

Proof. Given ultrafilters u, v, w ∈ βZ+ and A ⊆ Z+:

A ∈ (u + v) + w ⇔ {x : A− x ∈ u + v} ∈ w

⇔ {x : {y : (A− x)− y ∈ u} ∈ v} ∈ w

⇔ {x : {y : A− y ∈ u} − x ∈ v} ∈ w

⇔ {y : A− y ∈ u} ∈ (v + w)

⇔ A ∈ u + (v + w).

Therefore, + is associative.

Lemma 8.3.5. The operation + is left-continuous on βZ+.

Proof. Recall (Definition 8.2.12) that + is left-continuous iff for every u ∈ βZ+, the

function λu(v) = u + v is continuous. For each u ∈ βZ+, and basic open set UA,

λ−1(UA) = {v ∈ βZ+ : u + v ∈ UA}
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= {v ∈ βZ+ : A ∈ u + v}

= {v ∈ βZ+ : {x : A− x ∈ u} ∈ v}

= U{x:A−x∈u}

is an open set. Therefore λu is continuous.

Lemma 8.3.6. For n,m ∈ Z+, the principal ultrafilters pn, pm and pn+m satisfy

pn + pm = pn+m.

Proof. For any A ⊆ Z+,

A ∈ pn + pm ⇔ {x : A− x ∈ pn} ∈ pm

⇔ A−m ∈ pn

⇔ n ∈ A−m

⇔ n + m ∈ A

⇔ A ∈ pn+m

Definition 8.3.7. For each u ∈ βZ+, let ρu : βZ+ → βZ+ be defined by ρu(v) =

v + u.

While all of the functions λu are continuous, it can be shown that the right

addition function, ρu, is only continuous when u is a principal ultrafilter.

Lemma 8.3.8. For any n ∈ Z+, ρn is a continuous function.
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Proof. Fix n ∈ Z+ and let UA be any basic open set. For any u ∈ βZ+,

A ∈ u + n ⇔ {x : A− x ∈ u} ∈ n

⇔ A− n ∈ u.

Thus,

ρ−1
n (UA) = {v ∈ βZ+ : v + n ∈ UA}

= {v ∈ βZ+ : A ∈ v + n}

= {v ∈ βZ+ : A− n ∈ v}

= UA−n

is an open set and hence ρn is continuous.

8.4 Proof of van der Waerden’s theorem

The last section showed that the space βZ+ is a semi-topological semigroup and so

the results of sections 8.2.3 and 8.2.4 for these can be applied to give another proof

of van der Waerden’s theorem.

Theorem 8.4.1 (Bergelson et al. [13], Furstenberg and Katznelson [46]). For every

k ∈ Z+, there is an ultrafilter u ∈ βZ+ such that for every A ∈ u, A contains an

APk.
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Combining Theorem 8.4.1 with Theorem 8.1.6 gives van der Waerden’s theorem.

Another version of the following proof that uses “piecewise syndetic sets” can be

found in [67]. The idea of the proof of Theorem 8.4.1 is as follows. Fix k ∈ Z+

and consider the semi-topological semigroup (βZ+)k. It will be first shown that the

proof of Theorem 8.4.1, relies on properties of the following sets:

I∗ = {(a, a + d, . . . , a + (k − 1)d) : a, d ∈ Z+}

E∗ = {(a, a + d, . . . , a + (k − 1)d) : a ∈ Z+, d ∈ Z+ ∪ {0}}

I = cl(I∗)

E = cl(E∗)

where the closure is taken in (βZ+)k. Recall that 0 /∈ Z+ so that the set I∗ contains

sequences of APk’s with non-zero difference, while E∗ is the set of all sequences of

APk’s with possibly 0 difference.

If it can be shown that there is a u ∈ βZ+ with (u, . . . , u) ∈ I, then for any A ∈ u,

(UA)k is an open set in (βZ+)k with (u, . . . , u) ∈ (UA)k. Since (u, . . . , u) ∈ cl(I∗),

(UA)k∩I∗ 6= ∅ and so there exist integers a and d > 0 with (a, a+d, . . . , a+(k−1)d) ∈

(UA)k. That is, for 0 ≤ i ≤ k − 1,

a + id ∈ UA ⇒ A ∈ a + id (a + id, the principal ultrafilter)

⇒ a + id ∈ A (a + id, the integer).

Thus, {a, a + d, . . . , a + (k − 1)d} ⊆ A.
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In order to show that such an ultrafilter u can be found more information about

E and I is needed. Recall that the elements of (βZ+)k are denoted by x, p, q.

Lemma 8.4.2. The set E is a semi-topological semigroup and I is a 2-sided ideal

in E.

Proof. Since E is closed in (βZ+)k, E is compact. Since E is also Hausdorff and +

is left-continuous on E, in order to show that E is a semi-topological semigroup, it

remains only to show that E is closed under +.

Let p, q ∈ E. It will be shown that p + q ∈ E (and so E is closed under +) and

that if either p ∈ I or q ∈ I, then p + q ∈ I (and so I is a 2-sided ideal in E).

Let U be open in (βZ+)k with p + q ∈ U and set V1 = λ−1
p (U). Then q ∈ V1

and since λp is continuous, V1 is open. Since q ∈ cl(E∗), there exists a ∈ Z+ and

d ≥ 0 with (a, a + d, . . . , a + (k − 1)d) ∈ E∗ ∩ V1. (If q ∈ I = cl(I∗) then d > 0.)

Then p+(a, . . . , a+(k− 1)d) ∈ U and since ρ(a,...,a+(k−1)d) is continuous, the set

V2 = ρ−1
(a,...,a+(k−1)d)(U) is open and p ∈ V2. As with q, since p ∈ cl(E∗), there exists

b ∈ Z+ and c ≥ 0 with (b, b + c, . . . , b + (k − 1)c) ∈ E∗ ∩ V2. (If p ∈ I then c > 0.)

Then

(b, . . . , b + (k − 1)c) + (a, . . . , a + (k − 1)d)

= (b + a, . . . b + a + (k − 1)(c + d)) ∈ U ∩ E∗.

Thus, if U is an open set with p + q ∈ U then U ∩ E∗ 6= ∅ and so p + q ∈
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cl(E∗) = E. Note that if either p ∈ I or q ∈ I, then c + d > 0 which implies that

(b + a, . . . b + a + (k − 1)(c + d)) ∈ U ∩ I∗ and therefore p + q ∈ I.

Two proofs of Theorem 8.4.1. The following are two proofs, one using minimal

idempotents and the other using Theorem 8.2.19.

(i) Minimal idempotent route:

Let u be a minimal idempotent in βZ+. Since + is performed component-wise,

(u, . . . , u) is a minimal idempotent in (βZ+)k and (u, . . . , u) ∈ E since

(u, . . . , u) ∈ cl({(n, . . . , n) : n ∈ Z+}) ⊆ E. By Lemma 8.2.23, (u, . . . , u) ∈ I since

I is a 2-sided ideal in E.

(ii) Sticky diagonal theorem route:

Since I is a two-sided ideal in E, by Theorem 8.2.19, there is a u ∈ βZ+, such that

(u, . . . , u) ∈ I.

8.5 Sum sets

There are a number of Ramsey-type theorems with ultrafilter proofs, among them

is Hindman’s theorem on finite sum sets. Using ultrafilters it has also been shown

that van der Waerden’s theorem can be extended. For any finite colouring of Z+,

one colour class contains not only arithmetic progressions, but also other sets with

a nice pattern.
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Definition 8.5.1. For a set A ⊆ Z, the finite sum set of A is defined to be

FS(A) =

{∑
x∈F

x : ∅ 6= F ⊆ A, |F | < ∞
}

.

Similarly, the finite product set is defined to be

FP (A) =

{∏
x∈F

x : ∅ 6= F ⊆ A, |F | < ∞
}

.

The following theorem was originally proved using purely combinatorial tech-

niques by Hindman [64] and subsequently by Baumgartner [4], but can also be

proved by the methods of ultrafilters. The ultrafilter proof of the following theorem

is due to Glazer (see [51, pp. 168–9]). In this proof, it is important that 0 /∈ Z+

because p0 + p0 = p0 is an idempotent and the proof requires that no principal

ultrafilter be an idempotent.

Theorem 8.5.2 (Hindman [64]). For every r ∈ Z+ and every r-colouring of Z+,

there is an infinite set A such that FS(A) is monochromatic.

Proof. Fix an idempotent p ∈ βZ+. Let ∆ : Z+ → [1, r] be any r-colouring, by

Lemma 8.1.4, there is an i ∈ [1, r] such that ∆−1(i) ∈ p. Set A0 = ∆−1(i).

The following notation will be used in this proof. Given B ⊆ Z+, let B∗ = {n ∈

Z+ : B − n ∈ p}. Note that:

B ∈ p = p + p ⇒ {n ∈ Z+ : B − n ∈ p} ∈ p
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⇒ B∗ ∈ p

Further, note that for any principal ultrafilter pi, pi + pi = p2i 6= pi. Therefore,

the idempotent ultrafilter is not principal and contains no singleton sets.

Since A0 ∈ p, A∗
0 ∈ p and hence A0 ∩ A∗

0 ∈ p. Since ∅ /∈ p, A0 ∩ A∗
0 6= ∅ so pick

a1 ∈ A0 ∩ A∗
0 and set A1 = A0 ∩ (A0 − a1)\{a1}.

Since a1 ∈ A∗
0, A0 − a1 ∈ p and since p is not principal, Z+\{a1} ∈ p. Thus

A1 ∈ p. Further, A1 ⊆ A0 and a1 + A1 ⊆ A0.

In general, having chosen An ∈ p, select an+1 ∈ An ∩ A∗
n and set An+1 =

An ∩ (An − an+1)\{an+1}. Then An+1 ⊆ An, an+1 + An+1 ⊆ An and An+1 ∈ p.

This gives a nested sequence of sets A0 ⊃ A1 ⊃ · · · and elements an ∈ An−1 such

that for all n ≥ 1, an + An ⊆ An−1. Thus given any finite subset of these elements,

ai1 , ai2 , . . . , ain , where i1 < i2 < . . . in, ai1 + ai2 + . . . + ain ∈ Ai1−1 ⊆ A0.

Let A = {an}n≥0. Then FS(A) ⊆ A0 = ∆−1(i) is monochromatic.

Hindman’s theorem can also be used to show the existence of an infinite set whose

finite product set is monochromatic. Given any r-colouring ∆ : Z+ → [1, r], define

a new r-colouring ∆∗ : Z+ → [1, r] by ∆∗(n) = ∆(2n). Applying Theorem 8.5.2 to

the colouring ∆∗ shows that there is an infinite set A and i ∈ [1, r] so that FS(A) ⊆

∆∗−1(i). Let B = {2n : n ∈ A}. Given any distinct 2n1 , 2n2 , . . . , 2nk ∈ B, since

n1, n2, . . . , nk ∈ A, i = ∆∗(n1+n2+· · ·+nk) = ∆(2n1+n2+···+nk) = ∆(2n1 ·2n2 · · · 2nk).
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Thus FP (B) ⊆ ∆−1(i). The following theorem shows a connection between these

results and arithmetic progressions.

Theorem 8.5.3 (Hindman [66]). For any r ∈ Z+ and any r-colouring ∆ : Z+ →

[1, r], there exist an i ∈ [1, r] and infinite sets A,B ⊆ Z+ so that FS(A)∪FP (B) ⊆

∆−1(i) and so that ∆−1(i) contains arbitrarily long arithmetic progressions.



Chapter 9

Generalizations and applications

9.1 Polynomial van der Waerden

Van der Waerden’s theorem guarantees that for any finite colouring of Z+, there

are arbitrarily long monochromatic arithmetic progressions, but says nothing about

the possible differences of these arithmetic progressions. Is it possible to guarantee

a monochromatic arithmetic progression whose difference is a perfect square or a

perfect cube? In 1996, this question was answered in the affirmative by Bergelson

and Leibman who used ergodic theory techniques to prove generalizations of both

van der Waerden’s theorem and Szemerédi’s theorem that involve polynomials with

integer coefficients. The theorems in this section are stated without proof.

Theorem 9.1.1 (Polynomial van der Waerden, Bergelson and Leibman [14]).

165
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Let p1, p2, . . . , pk be polynomials with integer coefficients such that for each i ∈ [1, k],

pi(0) = 0. Then, for every r ∈ Z+ and any r-colouring of Z+, there are integers

a, d ∈ Z+ such that the set

{a} ∪ {a + pi(d) : 1 ≤ i ≤ k}

is monochromatic.

Fix k ∈ Z+ and for each i ∈ [1, k− 1], let pi be the polynomial pi(x) = ix. Then

Theorem 9.1.1 is exactly van der Waerden’s theorem. Alternatively, applying the

theorem to the polynomials x2, 2x2, . . . , (k− 1)x2 shows that any finite colouring of

Z+ yields a monochromatic APk whose difference is a perfect square.

In 2000, Walters [117] gave purely combinatorial proofs for both Theorem 9.1.1

and a polynomial version of the Hales-Jewett theorem (recall Theorem 7.1.4). He

also showed how these results can be used to deduce a polynomial version of the

Gallai-Witt theorem (recall Theorem 7.4.4).

The polynomial version of Szemerédi’s theorem given by Bergelson and Leibman

uses a slightly different notion of density than the upper density used in Szemerédi’s

theorem.

Definition 9.1.2. For a set A ⊆ Z, A has positive upper Banach density iff for

some ε > 0 there are sequences {an}n≥0, {bn}n≥0 ⊆ Z with limn→∞ (bn − an) = ∞
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and such that for every n ≥ 0,

|A ∩ [an, bn]|
|[an, bn]| > ε.

Positive upper Banach density is a weaker notion than upper density (recall

Definition 4.1.6) since any set with positive upper density will also have positive

upper Banach density.

In 1978, Furstenberg and Katznelson [45] proved a multidimensional version

of Szemerédi’s theorem which was extended, in 1996, by Bergelson and Leibman

to a multidimensional “Polynomial Szemerédi theorem”. In order to simplify the

notation used, only the 1-dimensional version of the Polynomial Szemerédi Theorem

is presented here, without proof.

Theorem 9.1.3 (Polynomial Szemerédi, Bergelson and Leibman [14]). Let A ⊆

Z have positive upper Banach density. Let p1, . . . , pk be polynomials with rational

coefficients that take integer values on the integers and such that for each i ∈ [1, k],

pi(0) = 0. For any v1, . . . , vk ∈ Z, there exist a, d ∈ Z so that {a + pi(d)vi : 1 ≤ i ≤

k} ⊆ A.

In particular, using the polynomials x, 2x, . . . , (k − 1)x and taking v1 = v2 =

· · · = vk−1 = 1, this provides a version of the usual Szemerédi’s theorem using upper

Banach density.

The Polynomial Szemerédi Theorem has also been extended to the set of prime

numbers.
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Theorem 9.1.4 (Tao and Ziegler [110]). Let A be an infinite set of primes with

lim sup
n→∞

|A ∩ [1, n]|
π(n)

> 0,

and let p1, . . . , pk be polynomials with integer coefficients and such that for each

i ∈ [1, k], pi(0) = 0. Then there are a, d ∈ Z+ such that

{a + p1(d), a + p2(d), . . . , a + pk(d)} ⊆ A.

9.2 Rainbow results

Rainbow Ramsey theory is sometimes also called “Anti-Ramsey theory”. While

Ramsey theory concerns itself with finding monochromatic sets of a certain form,

rainbow Ramsey theory seeks sets that are either monochromatic or have one ele-

ment of each colour. Most results here are recorded without proof but can be found,

for example in [2, 23, 72, 73, 74].

Definition 9.2.1. Given a set X, r ∈ Z+ and an r-colouring ∆ : X → [1, r], a set

A ⊆ X is rainbow iff for every i ∈ [1, r], |A ∩∆−1(i)| ≤ 1. That is, A is rainbow if

no two elements of A are the same colour.

The following theorem is often called a “canonical” version of van der Waerden’s

theorem, shows a connection between finding monochromatic arithmetic progres-

sions and rainbow arithmetic progressions.
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Theorem 9.2.2 (Erdős and Graham [35]). For every k ≥ 3, there is an integer

n(k) such that for every n ≥ n(k) and every colouring of [1, n], there is either a

monochromatic APk or else a rainbow APk.

One of the rainbow Ramsey problems that has been investigated is that of

determining what conditions on a colouring of an interval [1, n], or Z+, will guarantee

the existence of a rainbow APk. The following example due to Jungić et al. [72]

shows that taking n sufficiently large is not enough.

For any n ∈ Z+, let ∆ : [1, n] → [1, blog3 nc + 1] be defined by ∆(i) =

max {t ≥ 0 : 3t|i}. For any x ∈ [1, n], ∆(x) = ∆(2x) and if x, y ∈ [1, n] are

such that ∆(x) 6= ∆(y), then ∆(x + y) = min {∆(x), ∆(y)}. Therefore, for any

{a, a + d, a + 2d} ⊆ [1, n], if ∆(a) 6= ∆(a + 2d), then

∆(a + d) = ∆(2(a + d)) = ∆(a + a + 2d) = min {∆(a), ∆(a + 2d)}.

Thus [1, n] cannot contain any rainbow AP3’s and so also no longer arithmetic

progressions can be rainbow.

In the above example, at least two thirds of the integers in [1, n] are in the colour

class ∆−1(0). Many of the problems related to rainbow sets consider only colourings

where the sizes of the colour classes are all approximately equal.

Definition 9.2.3. Given n, r ∈ Z+, an r-colouring ∆ : [1, n] → [1, r] is equinumer-

ous iff for each i ∈ [1, r], ∆−1(i) ∈ {bn/kc, dn/ke}. That is, the sizes of the colour

classes are as equal as possible.
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When dealing with problems related to rainbow AP3’s, the colours will be

denoted {R,B,G} (red, blue, and green) and for any 3-colouring ∆ : [1, n] →

{R, B,G}, denote by ∆−1(R) = R∆, ∆−1(B) = B∆ and ∆−1(G) = G∆. Given a

3-colouring ∆ : Z+ → {R, B, G}, denote ∆−1(R)∩ [1, n] = R∆(n), ∆−1(B)∩ [1, n] =

B∆(n) and ∆−1(G) ∩ [1, n] = G∆(n).

In 2003, Jungić et. al. [72] showed that in any 3-colouring of Z+ where each

colour class has density greater than 1
6
, there will be a rainbow AP3.

Theorem 9.2.4 (Jungić, Licht, Maholian, Nešetřil and Radoičić [72]). For any

3-colouring ∆ : Z+ → {R, B, G} with

lim sup
n→∞

{min {R∆(n),B∆(n),G∆(n)} − n

6
} = ∞,

Z+ contains a rainbow AP3.

It was conjectured that something similar held in the finite case. In their 2003

paper, Jungić et al. [72] gave the following two examples of colourings of finite

intervals that showed that if such a conjecture were true, the result would be best

possible.

For n 6= 2 (mod 6) let ∆ : [1, n] → {R, B, G} be defined by

∆(i) =





R if i ≡ 1 (mod 6),

B if i ≡ 4 (mod 6),

G otherwise.
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The smallest colour class ∆−1(B) has bn+2
6
c elements. Let {a, a+d, a+2d} ⊆ [1, n]

be any AP3. It cannot be that one of {a, a+2d} is red and the other blue since then

2d = (a + 2d) − a ≡ 3 (mod 6) is an odd number. If either the pair {a, a + d} or

{a + d, a + 2d} contains one red element and one blue element, then the difference

d must be equal to 3 (mod 6). In either case, the remaining term of the AP3 must

either be red or blue. Thus, under this colouring, [1, n] contains no rainbow AP3’s.

For n ≡ 2 (mod 6), let q ∈≥ 0 be such that n = 6q + 2. The colouring

∆ : [1, n] → {R, B, G}, defined by

∆(i) =





R if i ≤ 2q + 1 and i is odd,

B if i ≥ 4q + 2 and i is even,

G otherwise.

The smallest colour classes are ∆−1(R) and ∆−1(B) with |∆−1(R)| = |∆−1(B)| =

q + 1 = n+4
6

elements. Again, red and blue elements cannot be the first and last

terms of an AP3 since their difference would be and odd number. If red and blue

elements are consecutive terms in an arithmetic progression, the difference of the

progression must be at least 2q + 1 which is impossible.

In 2004, Axenovich and Fon-Der-Flass showed that indeed, any 3-colouring

where the smallest colour class is larger than those in the two previous examples

will contain a rainbow AP3.

Theorem 9.2.5 (Axenovich and Fon-Der-Flaas [2]). For every n ≥ 3 and every
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3-colouring ∆ : [1, n] → {R, B,G} such that

min (|R∆|, |B∆|, |G∆|) >





b(n + 2)/6c if n 6= 2 (mod 6),

(n + 4)/6 if n = 2 (mod 6)

[1, n] contains a rainbow AP3.

This theorem shows that every equinumerous 3-colouring of a finite interval

yields a rainbow AP3. However, it was later shown that no such result holds for

longer arithmetic progressions.

Theorem 9.2.6 (Conlon, Jungić and Radoičic [23]). For every n ∈ Z+ with n ≡ 0

(mod 8), there is an equinumerous 4-colouring of [1, n] with no rainbow AP4.

Theorem 9.2.7 (Axenovich and Fon-Der-Flaas [2]). For every k ≥ 5 and n ∈ Z+,

there is an equinumerous k-colouring of [1, n] with no rainbow APk.

Thus, an equinumerous k-colouring of an interval [1, n] guarantees a rainbow

APk only when k = 3.

The problem of how to guarantee rainbow APk’s has also been studied in the

context of modular arithmetic. Theorem 9.2.4 can be used to show that for any

n ∈ Z+ and any 3-colouring of Zn where the smallest colour class has density greater

than 1
6

will contain a rainbow AP3. The following theorem provides an improvement

on this result for AP3’s in Zn.
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Theorem 9.2.8 (Jungić, Licht, Maholian, Nešetřil and Radoičić [72]). Let n be

odd and q be the smallest prime factor of n. Then for every 3-colouring of Zn where

min {|∆−1(R)|, |∆−1(B)|, |∆−1(G)|} > n
q
, there is a rainbow AP3.

Another variation of the problem of finding rainbow arithmetic progressions is to

let the number of colours be larger than the length of the arithmetic progressions.

For any fixed k ∈ Z+, what is the minimal t ∈ Z+ such that for every n ∈ Z+

and every equinumerous t-colouring of [1, tn], there is a rainbow APk? Denote this

minimal t, Tk. In their 2003 paper, Jungić et al. [72] showed that for each k ≥ 3,

bk2

4
c < Tk < k(k−1)2

2
.

9.3 Applications

Historically, the first application of van der Waerden’s theorem may be due to

Brauer who proved a conjecture of Schur about quadratic residues. Brauer used a

generalization of van der Waerden’s theorem, which he attributed to Schur. The

following theorem is a further generalization of Brauer’s result. The proof is now

folklore and I have been unable to locate the original source. The details appear,

for example, in [51, p. 70].

Theorem 9.3.1 ([51]). For every k, r ∈ Z+, there is a least integer n = SB(k, s; r)
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such that for every r-colouring of [1, n], there exist a, d ∈ Z+ so that the set

{sd} ∪ {a + id : 0 ≤ i ≤ k − 1}

contained in [1, n] is monochromatic.

Proof. Fix k, s ∈ Z+. The proof is by induction on r and uses van der Waerden’s

theorem.

Base Case: For r = 1, take n = max{s, k}. Then for any 1-colouring of [1, n],

the set {s} ∪ [1, k] is monochromatic.

Inductive Step: Suppose that for some r ≥ 1, SB(k, s; r) exists. Set n =

s ·W (k ·SB(k, s; r)+1; r +1) and let ∆ : [1, n] → [1, r +1] be any (r +1)-colouring.

By the choice of n (and van der Waerden’s theorem), there are a, d ∈ Z+ such that

the arithmetic progression

{a + id : 0 ≤ i ≤ k · SB(k, s; r)} ⊆ [1, W (k · SB(k, s; r) + 1; r + 1)]

is monochromatic.

If, for some j ∈ [1, SB(k, s; r)], ∆(a) = ∆(s · jd), then the set

{s · jd} ∪ {a + i(jd) : 0 ≤ i ≤ k − 1}

is monochromatic.

Otherwise, the colouring ∆ restricted to the set {s · jd : 1 ≤ j ≤ SB(k, s; r)}

is an r-colouring and so by the definition of SB(k, s; r), there are a′, d′ ∈ Z+ such
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that the set

{sd(a′ + id′) : 0 ≤ i ≤ k − 1} ∪ {sd(sd′)}

is monochromatic. That is,

{sda′ + i(sdd′) : 0 ≤ i ≤ k − 1} ∪ {s(sdd′)}

is monochromatic and is contained in [1, n].

Definition 9.3.2. Given a, n ∈ Z+, a is a quadratic residue (mod n) iff there is a

solution to the equation x2 ≡ a (mod n). Otherwise, a is a quadratic non-residue

(mod n).

An important fact about quadratic residues is that if a, b ∈ Zn are both quadratic

residues or both quadratic non-residues (mod n) then ab is a quadratic residue

modulo n. If a is a quadratic residue and b is a quadratic non-residue, then ab is a

quadratic non-residue (mod n).

Van der Waerden’s theorem can be applied directly to show, colouring integers

according to whether they are a quadratic residue or a quadratic non-residue, that

for every k and n ≥ W (k; 2), [1, n] either contains an APk of quadratic residues

(mod n) or else an APk of quadratic non-residues (mod n). Using Theorem 9.3.1

and the properties of quadratic residues, Brauer was able to show that more is in

fact true.
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Theorem 9.3.3 (Brauer [18]). For every k ∈ Z+ there is a least integer n = B(k)

such that for every prime p ≥ n, there exist k consecutive quadratic residues

(mod p) as well as k consecutive quadratic non-residues (mod p).

Proof. Fix k ∈ Z+ and let p > SB(k, 1; 2) be prime. Define a 2-colouring of [1, p−1]

by

∆(x) =





1 if x is a quadratic residue (mod p),

−1 otherwise.

By the choice of n, there are a, d ∈ Z+ such that

{d} ∪ {a + id : 0 ≤ i ≤ k − 1}

is monochromatic under ∆. Since p is prime and d ∈ [1, p − 1], d is invertible in

Zp and so d−1 is a quadratic residue (mod p) iff d is a quadratic residue. There-

fore, since the product of two quadratic residues or two quadratic non-residues is a

quadratic residue, the set

{d−1(a + id) : 0 ≤ i ≤ k − 1} = {ad−1 + i : 0 ≤ i ≤ k − 1}

is a sequence of k consecutive quadratic residues (mod p), thus completing the first

part of the proof.

Now, set ` = k! · k + 1 and let p > SB(`; 2) be a prime. By the first part of the

proof, there is a b ∈ Z+ such that the set {b, b+1, . . . , b+(`− 1)} is a sequence of `
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consecutive quadratic residues (mod p). Let q ∈ [1, p−1] be the smallest quadratic

non-residue (mod p). Two different cases are considered.

Case I: Suppose that q ≤ k!. Then there is a c with 1 ≤ c ≤ q ≤ k! such that

q|(b + c). For each j ∈ [1, k],

c + jq ≤ k! + (k − 1)k! = k! · k = `− 1

and so b + (c + jq) is a quadratic residue and since q−1 is a quadratic non-residue,

so is q−1(b + c + jq). Thus

{q−1(b + c + jq) : 0 ≤ j ≤ k − 1} = {q−1(b + c) + j : 0 ≤ j ≤ k − 1}

is a sequence of k-consecutive quadratic non-residues modulo p.

Case II: Suppose that q > k!. Then there exists a c with 0 ≤ c ≤ k!− 1 so that

k!|(q − c). For every j ∈ [1, k], j|(c − q) and since c < k! < q, c−q
j

< 0. Therefore,

c−q
j

+ q < q and since q is the least quadratic non-residue, if j ∈ [1, k], then c−q
j

+ q

is a quadratic residue. Since k < q each j ∈ [1, k] is also a quadratic residue and

hence for each j ∈ [1, k], the integer

j

(
c− q

j
+ q

)
= (c− q) + jq

is also a quadratic residue. Finally, since q is a quadratic non-residue, q−1 is also a

quadratic non-residue and the set

{q−1(c− q + jq) : 1 ≤ j ≤ k} = {q−1c− 1 + j : 1 ≤ j ≤ k}
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is a sequence of k consecutive quadratic non-residues.

A generalization of Theorem 9.3.3 that extends the result to the Gaussian inte-

gers (Z[i]) was proved by Rabung [86] in 1975.

Another application of results related to van der Waerden’s theorem is due to

Coppersmith and Winograd [24]. They were able to use the large AP3-free sets

given by Salem and Spencer (see Theorem 4.6.1) to produce an algorithm for fast

matrix multiplication.

9.4 Open problems

There are a number of variations of van der Waerden’s theorem and related problems

that remain unsolved. A few of these are presented here.

While Szemerédi’s theorem states that all sets of integers with positive upper

density contain arbitrarily long arithmetic progressions, there are sets with zero

upper density that contain arbitrarily long arithmetic progressions. For example,

let A =
∞⋃

k=0

[2k, 2k + k]. The set A contains arbitrarily long strings of consecutive

integers (and hence arbitrarily long arithmetic progressions), but has zero density.

Erdős (see for example, [34]) conjectured that if X is any set satisfying
∑

x∈X

1
x

= ∞,

then X contains arbitrarily long arithmetic progressions. It can be shown that

∑
p prime

1
p

= ∞. Thus, a proof of Erdős’s conjecture would provide another proof of
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Green and Tao’s theorem (Theorem 4.7.1) that the primes contain arbitrarily long

arithmetic progressions. Note that for the above set A,
∑
a∈A

1
a

is finite and hence

the condition that
∑

x∈X

1
x

= ∞ is not a necessary condition for a set of integers to

contain arbitrarily long arithmetic progressions.

Only a small number of exact values of van der Waerden numbers or mixed

van der Waerden numbers are known (see Figure 5.1). In most cases, the known

upper and lower bounds for van der Waerden numbers are of vastly different orders

of magnitude (see Chapter 5). Erdős has conjectured (see for example [34]) that

limk→∞
W (k;2)

2k = ∞ and limk→∞ (W (k; 2))1/k = ∞. Landman [79] has conjectured

that the mixed van der Waerden numbers W (3, k; 2) are quadratic in k.

In a problem related to discrepancy (see Chapter 6) Erdős suggested examining

the following problem (see [34]). For any k ∈ Z+ and k
2

< ` ≤ k, define f(`, k) to be

the smallest integer such that if [1, f(`, k)] is 2-coloured, there exists an APk with

` elements monochromatic. According to Gunderson, Erdős conjectured that for

every ε > 0 there is a constant c so that for all `, f((1
2

+ ε)`, `) ≤ c2`. That is, for

every ε > 0 there is a constant c so that for all `, and n ≥ c2`, for every 2-colouring

of [1, n], there is an AP` so that (1
2

+ ε)` elements are monochromatic.

There are many other problems related to van der Waerden’s theorem that

remain unsolved. Some of these can be found, for example, in [34, 51, 80].
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premiers, Ann. Soc. Sci. Bruxelles 20 (1896), 183–256 and 281–297. 73

http://www.math.rutgers.edu/~rados/#publications�
http://www.math.rutgers.edu/~rados/#publications�


BIBLIOGRAPHY 184

[29] W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Z. 133 (1973),

109–123. 67

[30] L. E. Dickson, Lower limit for the number of sets of solutions of xe+ye+ze ≡ 0

(mod p), J. Reine Angew. Math. 135 (1909), 181–188. 23, 24

[31] L. E. Dickson, Fermat’s Last Theorem and the Origin and Nature of the

Theory of Algebraic Numbers, Ann. of Math. 18 (1917), no. 4, 161–187. 23

[32] R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969. 145
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compactification, Lecture notes (2002-2003), available at

http://dutiaw37.twi.tudelft.nl/~kp/onderwijs/wi4041/2002-2003/

chapter6.pdf. 144, 149

[60] Y. R. Haung and J. S. Yang, New upper bounds for van der Waerden numbers

W (3, n) (Chinese), Chinese Annals of Math. Series A 21 (2000), 631–634. 101,

102

[61] D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J.

London Math. Soc. (2) 35 (1987), 385–394. 58

[62] P. R. Herwig, M.J.H. Heule, P.M. van Lambalgen, and H. van Maaren, A new

method to construct lower bounds for van der Waerden numbers, Electron. J.

Combin. 14 (2007), #R6. 75
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[82] J. Matoušek and J. Spencer, Discrepancy in arithmetic progressions, J. Amer.

Math. Soc. 9 (1996), 195–204. 122, 123

[83] L. Moser, Notes on number theory II: On a theorem of van der Waerden, Can.

Math. Bull. 3 (1960), 23–25. 71

[84] A. Nilli, Shelah’s proof of the Hales-Jewett theorem, in Mathematics of Ram-

sey theory, Algorithms Combin., 5, Springer, Berlin, 1990, 150–151. 127, 129
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[112] J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten,

Math. Ann. 116 (1939), 1–50. 72

http://www.math.ucla.edu/~tao/preprints/Expository/ramsey.dvi�
http://lanl.arxiv.org/PS_cache/math/pdf/0610/0610050.pdf�
http://lanl.arxiv.org/PS_cache/math/pdf/0610/0610050.pdf�


BIBLIOGRAPHY 195

[113] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch.

Wiskd., 15 (1927), 212–216. 26, 34

[114] B. L. van der Waerden, How the proof of Baudet’s Conjecture was found, in

Studies in Pure Mathematics, ed. L. Mirsky, Academic Press, London, 1971,

251–260. 26, 27, 30

[115] P. Varnavides, Note on a theorem of Roth, J. London Math. Soc. 30 (1955),

325–326. 63

[116] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34

(1959), 358–360. 63

[117] M. Walters, Combinatorial proofs of the polynomial van der Waerden The-

orem and the polynomial Hales-Jewett Theorem, J. London Math. Soc. (2),

61 (2000), 1–12. 166

[118] S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-

London-Don Mills, Ont., 1970. 142

[119] E. Witt, Ein Kombinatorischer Satz der Elementargeometrie, Math. Nachr. 6

(1951), 261–262. 135

[120] P. Zeitz, Semigroups, dynamics and combinatorics, notes based on lectures by

H. Furstenberg, 1990. 148



Index

(m, p, c)-sets, 67

rk(n), 44

r3(n)

lower bound, 69

upper bound, 48, 58

lower bound, 72

upper bound, 59

Ackermann function, 99

affine cube, 15, 60

replete, 21

arithmetic progression, 9, 174

m-fold, 9, 16, 40, 134

elementary, 120

fan, 102

hypergraph, 95

of blocks, 33, 41

of primes, 72, 73

rainbow, 170

Axenovich, M., 171

Balog, A., 72

Baudet’s conjecture, 26

Baumgartner, J. E., 162

Beck, J., 119

Beeler, M., 78

Behrend, F. A., 46, 68

Bergelson, V., 144, 147, 148, 165, 167

Berlekamp, E. R., 87

Bourgain, J., 58, 100

Brauer, A., 173, 176

Brown, T. C., 31, 78

chromatic number, 94
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Matoušek, J., 122

Montgomery, H. L., 118

Moser, L., 71

mutual independence, 79
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Szemerédi’s theorem, 5, 59, 63, 68, 73,

165, 167

polynomial, 167
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