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Abstract

Existing frequent-sequence mining algorithms perform multiple scans of a database,

or a structure that captures the database. In this M.Sc. thesis, I propose a frequent-

sequence mining algorithm that mines each database row as it reads it, so that it can

potentially complete mining in the time it takes to read the database once. I achieve

this by having my algorithm enumerate all sub-sequences from each row as it reads

it.

Since sub-sequence enumeration is a time-consuming process, I create a method

to distribute the work over multiple computers, processors, and thread units, while

balancing the load between all resources, and limiting the amount of communication

so that my algorithm scales well in regards to the number of computers used. Exper-

imental results show that my algorithm is effective, and can potentially complete the

mining process in near the time it takes to perform one scan of the input database.
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Chapter 1

Introduction

Data mining—the search for implicit, previously unknown, and potentially useful

information from large collections of data—has been an important topic in computer

science since its introduction. Researchers have created multiple methods of discov-

ering this information, and have divided data mining research into these sub-topics,

the most important of which are association rule mining, clustering, and classifica-

tion. Association rule mining, which is the focus of my research, is the search for

correlations between items in a database. For example, a grocery store manager

may be interested in how often different items are purchased together to plan sales

and price increases, or a hospital administrator may want to find the recovery rates

for a disease after a sequence of treatments to determine the best course of action.

In these examples, the grocery store manager uses frequent-itemset mining, where

the order of items in each purchase does not matter, and the hospital administrator

uses frequent-sequence mining, where a different ordering of treatments results in a

different recovery rate.

1



2 Chapter 1: Introduction

Clustering and classification are methods of organizing data. Clustering algo-

rithms require a method to measure how similar items are to each other. They use

this similarity measurement to assign each item in the database to a subset, called

a cluster, such that all items within each cluster are similar to each other, and dis-

similar to items in other clusters. Classification uses a subset of the entire dataset,

called training data, to build a classification model so that it can classify new data,

the test data, into the same groups. Clustering techniques may be used for obtaining

the training data.

I have focused my research on association rule mining, specifically frequent-sequence

mining, using multiple computers. To introduce my research, I have first shown

that data mining is an important topic in computer science, by showing some of the

projects it has made possible.

1.1 Why Data Mining is Important

Researchers have applied data mining techniques, such as frequent-sequence min-

ing, to data collected in many fields. One of the most active of these is cancer research.

Lisboa et al. [LVT+10] stated, in their overview of data mining in cancer research, that

applying data mining techniques to genetic sequences and patient histories discovers

correlations leading to the identification of disease sub-types and the likely outcome

of prognoses. Mining genetic sequences to discover correlations with different types

of cancer, such as Giarratana et al.’s research on breast cancer [GPM+09] and Wu

et al.’s research on prostate cancer [WFC09], starts by determining how similar ge-

netic sequences are to each other. Their algorithms cluster similar genes into discreet
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categories, and then use frequent-sequence mining to discover how frequently each

gene category results in cancer. They readjust the similarity measurement in their

clustering method until frequent-sequence mining gives a strong correlation.

Performing frequent-sequence mining on patient histories, including risk factors

identified by clustering, treatments, and outcomes, discovers information such as what

a sequence of risk factors leaves a patient at risk for, what prognosis a sequence of

symptoms leads to, and which sequence of treatments is most effective. Yuguang

et al. [YCM11] applied frequent-sequence mining to hospital databases to discover

which risk factors frequently lead to diseases, such as frequently diagnosing smokers

between age 40 and 50 with chronic bronchitis, so that hospitals can start pre-emptive

treatment. Shamin et al. [SSM10] described the complete process of mining useful

information from medical databases, and emphasize the fact that multiple data mining

methods are required. They point out that while many studies, such as the previously

mentioned works by Giarratana et al. and Shamin et al., identify genes correlated with

specific diseases, most diseases are caused by combinations of genes working together.

The authors use frequent-itemset and frequent-sequence mining to discover groups of

genes or proteins, and study their interactions and relationships.

Song et al. [SLC08] have applied data mining techniques to system event logs,

specifically, event logs from social networking sites. By creating a data pre-processing

system specific to social networks, and using ideas from stream mining algorithms,

the authors created a system capable of discovering frequent user behaviours. They

use these frequent behaviours to create a model that predicts the behaviour of future

users, and identify areas of social networking sites that would benefit most from
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optimization. Similarly, Xiongyan et al. [LLW09] applied data mining techniques

to model aggregate data from geological databases, physical properties databases,

seismic database, and logged data from oil and water exploration. The resulting

model predicts where oil reservoirs are located, and directs future exploration.

Thuraisingham and Khan [Thu09] used various data mining techniques in the area

of malicious code detection and security applications. They used anomaly detection

techniques to identify behaviour patterns differing from the norm, along with analysis

of frequent patterns leading up to criminal activity, to identify behaviours that are

likely leading to criminal activity. They also used these methods to detect malicious

code by discovering similarities to known malicious code, detect network intrusions

by finding common traffic patterns associated with attacks, and analyze audit logs

for signs of tampering or other undesired activity.

Paranjape-Voditel and Deshpande [PD11] used frequent-sequence mining to per-

form stock market predictions. Where most stock-prediction algorithms analyze the

history of a specific stock, using frequent-sequence mining, the authors can identify

relationships between multiple different stocks. For instance, if the stock of a com-

pany increases due to the popularity of their new product, the stocks of companies

that produce components of the product may also increase.

Young et al. [YFP+10] studied how data mining techniques can improve the oper-

ational availability of aircraft launch and recovery equipment by influencing mainte-

nance schedules. The authors discovered which actions are most likely to resolve spe-

cific problems by mining previous maintenance logs to see which problems, changes,

and resolutions occur together frequently. This reduces the amount of time spent
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Table 1.1: Grocery store example

Transaction ID Items Purchased
t1 { bread, bacon, milk, eggs, apples }
t2 { broccoli, carrots, chicken, zucchini }
t3 { eggs, bacon, oranges, buns }
t4 { tomatoes, lettuce, bacon, buns }
t5 { cereal, milk, bacon, eggs }

testing and replacing components. Their research also discovers patterns leading to

component failure, which allows them to predict these failures, and perform mainte-

nance before the failure occurs. Further, it identifies checks that mechanics perform

too frequently or unnecessarily, reducing the amount of unneeded maintenance, and

increasing the overall operational ability.

1.2 Frequent-Itemset Mining

Agrawal et al. [AIS93] first drew attention to data mining in 1993 when they

presented the Apriori algorithm for frequent-itemset mining. A frequent-itemset is a

collection of items that occur together as or more often than a user-defined threshold,

called the minimum support threshold, in a database or dataset. The user sets the

minimum support threshold such that those itemsets occurring less frequently than

the threshold dictates are not of interest. The Apriori algorithm prunes uninteresting

itemsets as it searches for frequent-itemsets so that it does not need to spend time

processing them.

An example of the Apriori algorithm clarifies the related definitions, as well as

the goal of data mining in general. Table 1.1 represents the items purchased from a
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Table 1.2: Grocery store example: Frequent 2-itemsets and candidate 3-itemsets

Candidate 2-Itemsets Count Candidate 3-Itemsets
{ bacon, buns } 2 { bacon, eggs, milk }
{ bacon, eggs } 3
{ bacon, milk } 2
{ buns, eggs } 1
{ buns, milk } 0
{ eggs, milk } 2

Table 1.3: Grocery store example: All frequent-itemsets

Itemset Count
bacon 4
buns 2
eggs 3
milk 2

{ bacon, buns } 2
{ bacon, eggs } 3
{ bacon, milk } 2
{ eggs, milk } 2

{ bacon, eggs, milk } 2

grocery store. Each row in the table is a sales transaction, which is composed of a

unique transaction id, and all of the items purchased in that transaction. For this

example, the minimum support threshold, shortened to minSup, is 40%. This means

that an itemset must occur in two or more transactions to be frequent, since 40% of

the 5 total transactions is 2.

Since frequent-itemsets are mathematical sets, as opposed to sequences, the Apri-

ori frequent-itemset mining algorithm is not concerned with the order in which items

appear in the row. In the case of the grocery store example, it is not concerned with

the order items are wrung up in, only that they are all purchased together. The Apri-

ori algorithm takes advantage of this by sorting the items within each transaction into
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lexicographical order. This sorting means that there are not multiple permutations

of each set for the algorithm to handle. The algorithm performs multiple scans of

the database, with the first scan sorting the items. In the kth database scan, the

algorithm counts all itemsets of length k and uses the frequent itemsets to create a

list of itemsets of length k+1 that are potentially frequent, called candidate itemsets,

to count on the next database scan. The algorithm creates candidate itemsets by first

overlapping the last k − 1 items from one frequent itemset with the first k − 1 items

from another, and then ensuring that all subsets of length k of the resulting set are

also frequent.

Table 1.2 shows the candidate 2-itemsets computed on the first scan, their actual

counts from the second scan and the resulting frequent 2-itemsets, and the candidate

3-itemsets that the algorithm will count on the third scan. Table 1.3 shows all of the

frequent itemsets in the example database. Data miners use these frequent itemsets

to discover correlations between items. This is new knowledge discovered from the

database, and is ultimately the goal of data mining. They show the strength of cor-

relations by dividing the number of times a frequent-itemset occurs by the number of

times a subset of it occurs. In this example, customers purchased bacon 4 times, eggs

3 times, and bacon and eggs together 3 times. This gives the correlations that 75%

of customers who bought bacon also bought eggs ({bacon, eggs} : 3/bacon : 4), and

100% of customers who bought eggs also bought bacon ({bacon, eggs} : 3/eggs : 3).
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Table 1.4: Frequent-sequence mining example

User ID Items
1 〈 a b c 〉
2 〈 a c b 〉

1.3 Frequent-Sequence Mining

While frequent-itemset mining reveals correlations between frequently occurring

items, there are situations in which finding temporal correlations between these fre-

quently occurring items is important. Agrawal and Srikant [AS95] recognised the need

to find frequent-sequences and presented their AprioriAll and AprioriSome frequent-

sequence mining algorithms in 1995. A frequent-sequence is a series of items that

occur in a database, in the same order, as or more often than the minimum support

threshold. The difference between the AprioriAll and AprioriSome algorithms is that

AprioriSome only returns maximal frequent-sequences, that is, sequences that have

no frequent superset.

The difference between the frequent itemset-mining Apriori algorithm and the

frequent-sequence mining algorithms, AprioriAll and AprioriSome, is that the frequent-

sequence mining algorithms cannot sort the items within each transaction into lexico-

graphical order. This changes the number of candidate sequences that the algorithms

must test in the candidate generation stage. Where the Apriori algorithm has a maxi-

mum of (n− 1)n/2 candidates from n frequent-itemsets, AprioriAll and AprioriSome

have twice as many maximum candidates from n frequent-sequences, (n− 1)n, since

each frequent-sequence can appear before or after each other frequent-sequence.

Consider the two rows in Table 1.4, representing the web pages a user requests
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Table 1.5: Frequent-sequence mining example: Frequent 2-sequences and potentially
frequent 3-sequences

Candidate 2-sequences Count Candidate 3-sequences
〈 a b 〉 2
〈 a c 〉 2
〈 b a 〉 0
〈 b c 〉 1
〈 c a 〉 0
〈 c b 〉 1

from a website, with a minimum support threshold of 2. Each of the pages, a, b,

and c, are frequently requested since all three are viewed by both users. Users can

potentially visit each page before or after each other page, resulting in the candidate

2-sequences shown in Table 1.5. Using the same candidate generation criteria as the

Apriori algorithm for frequent-itemset mining, the algorithm finds that there are no

candidate 3-sequences.

1.4 Frequent-Itemset and Frequent-Sequence Min-

ing

Researchers have created many algorithms for both frequent-itemset and frequent-

sequence mining. The majority of these algorithms are serial algorithms, that is,

they only use one processor on one computer. In an effort to achieve lower runtimes,

these algorithms perform multiple scans of the database, allowing them to reduce the

number of itemsets or sequences the algorithm counts by skipping those itemsets or

sequences that cannot possibly be frequent. Researchers achieve this reduction in

the number of itemsets to count using the pruning idea from the Apriori algorithms,
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which states that if an itemset is infrequent, no superset can possibly be frequent. If

no pruning is applied, each set of n items from the input database contains 2n − 1

sets that the algorithm needs to count, since every item can either be included in

or excluded from each counted set, and the empty set is ignored. The same rule

holds for sequences and super-sequences. The Apriori algorithm was much faster

than counting every possible set, since it reduced the number of sets to count, and

frequent set mining research has followed this principle since.

Some situations exist where performing multiple scans of the input database to

avoid having to generate all possible sub-sets or sub-sequences is not an option. One

such situation is when a user needs to mine from a data stream. Algorithms cannot

rewind and perform multiple passes of streaming data. To perform pruning under

these circumstances, where some algorithms perform multiple scans of the original

database, others capture the contents of the input database or stream into a structure

suitable for mining. These algorithms then perform multiple scans of this structure,

rather than the original database.

For example, Leung et al.’s CanTree algorithm [LKLH07] reads the contents of a

data stream, captures it to a tree-based structure called a CanTree, and then per-

forms multiple scans of the CanTree to find frequent itemsets. Hualei et al. [HSJ+08]

performed the same process with their NC-Tree structure. Kholghi et al. [KHK10]

recently performed a survey of stream mining techniques, and found that researchers

used a structure to capture the data stream in every algorithm they came across. Sim-

ilarly, researchers sought to reduce the cost of reading from disk when mining from

databases rather than streams. Tanbeer et al. [TAJL09] proposed a frequent-itemset
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mining algorithm that reads a database once, converts it to a tree-based structure

called a CP-tree, and then performs repeated scans of the CP-tree to find frequent

itemsets. Zhang et al. [ZLLW09] performed recursive scans of their Index Array struc-

ture to find frequent itemsets, and Liu and Yang [LY09] performed recursive scans of

their canonical unordered tree structure to achieve the same goal.

Another topic in computer science that is currently important, thanks to techno-

logical advances and the ever-increasing number of computers worldwide, is the study

of parallel computing. Businesses and research institutions typically have more than

one computer available. Since processor manufacturers Intel R© and AMDTM each

released their first multi-core desktop processors in April 2005, effectively combining

multiple processors into one chip, desktop computers having more than one available

processor has become the norm. Modern data mining algorithms should consider the

availability of multiple computers and processors, and determine if making use of

these additional resources can improve their performance. Existing serial data min-

ing algorithms, both those that mine from databases and from data streams, mine

the data using one computer. Where the database or data stream supplies data at a

higher rate than the computer can mine it, parallel algorithms could distribute the

data between multiple computers, increasing the number of input rows handled per

second. This requires a basic understanding of parallel computing.

1.5 Parallel and Distributed Computing

Ghosh [Gho06] defined Distributed memory computing as multiple computing pro-

cesses running in disjoint address spaces and communicating with each other to
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achieve a collective goal. Researchers and software developers commonly use the

Message Passing Interface (MPI) [Mes] to handle communication in applications run-

ning on distributed memory systems. Since communicating between computers in a

distributed memory system is slower than accessing local memory, MPI applications

must strike a balance between the amount of communication required and the amount

of work done on each computer. For example, if multiple computers were running

the Apriori algorithm, no communication would be required if they all ran the entire

algorithm independently. In this case, all computers would perform all of the work,

and there would be no performance benefit.

Another performance constraint to consider in MPI applications is barriers, points

in the code that all computers must reach before any of them can continue. Computers

that reach a barrier first sit idle while they wait for all of the other computers to reach

the barrier as well. This leads to the idea of load balancing, which is an attempt by

a distributed computing application to divide the work between all of the computers

in such a way that all computers reach barriers, including the implied barrier at the

end of the programme, at the same time. A perfectly balanced load would leave no

computer idle, waiting for another computer, at any point.

Since multiple processors in a single computer are becoming increasingly common,

as I mentioned in Section 1.1, shared memory computing is an important concept to

consider. Chapman et al. [CJv07] define a shared memory computer as a system with

multiple processors sharing the same random access memory (RAM) between them.

Processors in a shared memory computer do not require messages to pass data from

one processor to another, since each processor has access to all of the data. The
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authors use OpenMP [Opeb], a multi-platform API for developing shared memory

applications, to take advantage of these computers.

A challenge arises when multiple processors want to update the same piece of data

at the same time. In situations where this is possible, programmers use locks, which

are mechanisms that ensure only one processor can modify data protected by a lock

at a time, and critical sections, which are sections of code that only one processor

can enter at a time. Similar to barriers in distributed memory computing, waiting

for a lock or a critical section can leave a processor idle and become a performance

constraint. Another challenge and possible performance constraint results from each

processor in a shared memory computer having its own cache and register sets. When

a processor makes changes to data from shared memory, it may only change the copy

in its cache, rather than in RAM. Using the flush instruction, which ensures that each

processor writes a specific variable, or all of its cached data to RAM, before reading

any shared memory solves this. This can reduce expected performance benefits when

compared to a serial algorithm where processors would use cached data frequently

before writing back to memory.

1.6 My Research

I have explored using multiple computers with different hardware specifications

to perform frequent-sequence mining. Consider the example distributed memory

computer in Figure 1.1, consisting of a database, which contains the data that my

algorithm will mine, and a number of computers that my algorithm will run on. The

computers have a mix of parallel hardware, such as multiple processors, multi-core
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Figure 1.1: Example of a distributed memory system

processors, processors with multiple thread units, and computers combining any of

the aforementioned features. Since the data starts in one location, the database, and

my algorithm must first retrieve the data onto the computers that it is running on,

the database is a potential performance bottleneck. With this in mind, some key

questions I will answer are:

1. “Can I mine frequent-sequences on a distributed memory computer using only

one scan of the original database?”

2. “Can I avoid transforming the database and scanning said transformed database

multiple times?”

3. “Can I limit the amount of communication between computers so that my

algorithm scales well?”
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4. “Can I make use of multiple processors, cores, and thread units to reduce the

runtime of my algorithm?”

My M.Sc. thesis statement is as follows:

I aim to develop an algorithm that mines frequent-sequences in one scan

of a central database. The algorithm will avoid transforming the original

database and scanning the transformation multiple times. It will use

distributed and shared memory computers to generate all 2n−1 sequences

from each database row to find all frequent sequences. My goal is to

complete as much of the mining process as possible in the time spent

reading the input data from the central database, which is a required

step, and force this to be the performance bottleneck.

To achieve my research goal, in Chapter 2, I review the existing work related

to my topic, starting with parallel computing research. I look at methods of using

shared- and distributed-memory computers simultaneously, the effectiveness of multi-

ple thread units, and methods of balancing load between computers. I also review and

categorize existing frequent-itemset and frequent-sequence mining algorithms that use

these technologies, and present their strengths and weaknesses. Finally, I use the com-

bination of existing algorithms and parallel computing research to create the ideal

framework for an algorithm meeting my research goals.

Using the criteria for this ideal framework, in Chapter 3, I design my frequent-

sequence mining algorithm, which uses multiple shared-memory computers with dif-

ferent specifications. I create two methods of mining each row as my algorithm reads
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it from the database, without requiring any intermediate structures, and show how

these methods make use of multiple processors on shared-memory computers. I also

show how my algorithm uses multiple computers, and design two methods of collect-

ing the results. Finally, I present my load-balancing method, which divides the work

between computers.

In Chapter 4, I report the results of a series of experiments that I performed on

my algorithm. I measure the amount of time and memory my two mining and two

collection methods require as factors change. I vary the number of processors and

thread units used on a single computer, the number of rows in the input database, the

row length of the input database, and the number of computers used. I also measure

the effectiveness of my load-balancing algorithm, and compare my result collection

algorithms.

Finally, I present my conclusions in Chapter 5. I summarize the goal of my

research, and answer each of the key questions I asked in Section 1.6. I then review

the opportunities that my research provides for future work.



Chapter 2

Related Work

I am focusing my research on data mining, but it also draws from other areas

in computer science. Since I am designing a frequent-sequence mining algorithm

using heterogeneous distributed computers, I start by exploring existing parallel and

distributed computing research. The specific parallel and distributed computing areas

I focus on are the effects of mixing shared- and distributed-memory parallelization,

the benefits of current processor technology, and methods of balancing the load in a

heterogeneous distributed-memory system.

In this chapter, I also review several distributed frequent-sequence and frequent-

itemset mining algorithms, their strengths that I seek to preserve, and their drawbacks

that I seek to avoid. Using these strengths and weaknesses, I identify the structure

of the ideal data mining algorithm to meet my goals, as well as its requirements and

benefits.

17
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2.1 Shared- and Distributed-Memory Computing

Technologies

Along with the basics of parallel and distributed computing, as I introduced in

Section 1.5, my algorithm makes use of some additional research. Rather than using

either shared- or distributed-memory computers, I make use of a combined environ-

ment, where each of the distributed computers has multiple processors. I start this

chapter by researching models to combine these two parallelization strategies.

As well as multi-core and multi-processor computers, some processors, such as

Intel R©’s processors with Hyper-Threading technology, provide multiple thread units

on each core. I research the effectiveness of this technology to use it in my algorithm

in Section 2.1.2.

Finally, I need a method to balance the amount of work each computer performs.

To develop this, I first research other author’s methods of load balancing, and the

effectiveness of these methods, in Section 2.2.

2.1.1 Hybrid MPI and OpenMP

Since I perform data mining on multiple computers, each potentially with multi-

ple processors or threads, I need to explore methods of making use of this hardware.

Rabenseifner et al. [RHJ09] researched methods of making use of multiple comput-

ers, each with multiple cores, and came up with four possible implementation models.

Their first model, which uses purely MPI, creates a discreet memory space for each

processor on every machine, and communicates between processors by sending mes-
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Figure 2.1: Pure MPI model on a single computer

sages. This model works for situations where processors do not require data from

others, but is not ideal for a problem such as data mining, where all processors need

access to the data mining structures. Since the Pure MPI approach does not share

memory between processors, each processor would need to create and maintain its

own data structures, increasing both memory usage and the amount of processes that

must communicate. Figure 2.1 shows a single computer in the Pure MPI model, with

a separate MPI process on each processor core, a separate block of memory in use

by each process, and communication between processes and other computers using

message passing.

To allow computers to share the memory between their processors, the authors

presented two hybrid approaches using MPI and OpenMP, which they called Hybrid

Master and Hybrid Overlap. Algorithms based on the Hybrid Master model alternate

between two separate stages, one to communicate between nodes with MPI, and one
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Figure 2.2: The Hybrid Master model during the communication stage

to perform local computation with OpenMP. In the communication stage, algorithms

use one processor core to perform communication between computers, solving the

communication overhead problem of the Pure MPI model by limiting the number of

communication streams per computer to one. I show this in Figure 2.2. Unfortunately,

this means that all other processor cores are idle during communication.

When communication is complete and computation is required, algorithms create

an OpenMP thread on each processor core, as shown in Figure 2.3. These threads

run in parallel and all have access to the same block of memory, resolving the issue of

the Pure MPI model where each core has its own block of memory, but introducing

a new problem where all OpenMP threads must complete before communication can

take place. If one OpenMP thread takes longer than the others do, the Hybrid Master

model leaves the other cores idle until the longest thread completes. This approach

is ideal when the only communication between computers is during the initializa-
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Figure 2.3: The Hybrid Master model during the computation stage

tion and finalization of an algorithm, but not when communication interleaved with

the computation is required, since this causes the algorithm to flip between stages

frequently.

Figure 2.4: The Hybrid Overlap model
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The Hybrid Overlap model pushes MPI communication into the OpenMP threads,

and rather than using two stages, it uses two thread types – communicating threads

and computation threads. If there is little communicating to be done, algorithms us-

ing the Hybrid Overlap model have the option to reduce the number of communicating

threads to one, which is the minimum so that it is ready to receive communication.

This leaves the rest of the cores free to run computation threads. If the amount of

communication increases and saturates the available communication threads, Hybrid

Overlap algorithms have the option to switch an additional core from a computa-

tion thread to a communication thread, increasing the communication capacity. This

method eliminates the problems from the Hybrid Master model, where cores are idle

during the communication stage or while waiting for other cores to finish the process-

ing stage, and is ideal where the ability to communicate and process simultaneously

are required. The drawback to this model is that cores assigned to communication

are unavailable to perform computation. Figure 2.4 shows the Hybrid Overlap model

with one core running a communication thread, and three cores running computation

threads.

The final approach Rabenseifner et al. presented is the Pure OpenMP model,

which uses a set of compiler add-ons to allow computers to treat distributed memory

like shared memory. This model essentially extends the OpenMP flush operation.

Whenever an algorithm accesses data from shared memory, it must not only flush

that data from the local processor caches to memory, but also flush that data between

all computers. In algorithms that require shared variables, or especially shared data

structures that require a flush of all shared memory rather than a specific variable, the
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amount of communication overhead this model adds quickly becomes much greater

than the hybrid approaches. This simplifies programming algorithms for distributed-

memory environments, but is very specialized in the areas it is applicable to due to

its drawbacks.

Of the four presented models, the Hybrid models are the best fit for data mining

applications, which require large data structures to either mine from or store results

to. Using OpenMP in the hybrid models shares these structures between all local

processors to reduce memory usage and communication. Attempting to share these

structures between all computers with the Pure OpenMP model would require flushing

the entire structure between all computers any time a processor read from it, which

would cause far too much communication to be beneficial to overall performance.

2.1.2 Effectiveness of Multiple Thread Units

Along with multiple processors and processors with multiple cores, modern Intel R©

processors support multiple thread units per core, in the form of their Hyper-Threading

technology [Int]. Liao et al. [LLHC08] and Curtis-Maury et al. [CMDAN08] indepen-

dently tested the effectiveness of this technology, and compared it to multi-core com-

puters, with Liao et al.’s computers running Linux R© kernel 2.6.3, and Curtis-Maury

et al.’s running Linux R© kernel 2.4.25.

In both papers, the researchers found that where increasing the number of pro-

cessor cores increased performance in all of their parallel benchmarks, increasing the

number of thread units had varied results. Some tests had an increase in performance

as expected, mainly those where the data required could be stored in the processor’s
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cache or memory access was limited, but memory-intensive tests lead to performance

degradation due to competition for memory access. Both sets of researchers also

found that, when using a multi-core processor with Hyper-Threading on each core

and setting the number of threads to match the number of cores, the Linux R© ker-

nel was likely to execute the threads on as few cores as possible. This consistently

led to poorer performance than forcing the threads to spread over each core. They

both conclude that the Hyper-Threading aware schedulers in their respective Linux R©

kernels are suboptimal.

From these results, it seems that if my goal of forcing the performance bottleneck

of a data mining algorithm to be reading from the database, rather than the memory

bottleneck typically seen in existing algorithms, is successful, Hyper-Threading will

be quite beneficial. I will perform my experimentation using Hyper-Threading on a

Microsoft R© Windows R© based cluster, rather than Linux R©, so it will be interesting

to see if Hyper-Threading is beneficial to an algorithm with high memory access rates

on this operating system.

2.2 Load Balancing

Since the goal of my algorithm is to run on all available computers, it needs to be

able to run on a distributed system made up of a range of hardware specifications.

This means that assigning work to each computer is not a simple matter of splitting

it evenly over a number of identical computers, but requires a method to balance the

amount of work assigned to each computer. The goal of a balanced load is to have

each computer complete its processing at the same time.
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Utrera et al. [UCL08] researched balancing load when there are more processes to

run than the number of available processors in a distributed memory system where all

computers have identical specifications. This research is not directly applicable to my

target system, but the authors raise an important point. A load balancing mechanism

not only needs to consider the ideal division of work, but also must factor in the

amount of communication and synchronization required to perform load balancing

itself. The load balancing algorithm the authors present samples each process to

predict its total required runtime, and uses this required runtime to balance the load.

In cases where the processes to run only have mild imbalance when run in the order

they arrive in, the overhead of their predictive algorithm results in it having longer

runtimes, even though it has a highly balanced load.

Galindo et al. [GABC08] presented a similar idea to Utrera et al. to balance load

on a distributed system, but one made up of computers with different specifications,

and where the amount of data to be processed determines the balance of load. Their

algorithm starts with the data divided uniformly between computers and measures

the amount of time to run a set number of iterations on each computer. The algorithm

then uses these runtimes to compare the computers to each other, and modifies the

portion of data and the number of iterations to measure for each computer accord-

ingly. The algorithm repeats itself, changing the portions after each set of iterations

unless the difference between the minimum and maximum runtimes is below a balance

threshold. Their results show that this method gives a balanced load.

The drawback is that it requires a barrier after each set of iterations to collect

time measurements. In tests where the data to be processed is fairly uniform, the load
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(a) Runtimes with equal portion sizes

(b) Runtimes with dynamic balancing and uniform data

(c) Runtimes with dynamic balancing and non-uniform data

Figure 2.5: Theoretical runtime graphs

is balanced after a few iterations, meaning each computer reaches the barrier after

each set of iterations at the same time, and there are gains of over 50% compared

to assigning each computer an equal portion of the data. In the case where the data

to be processed is not of uniform computational requirements, there is a rebalancing

after every set of iterations, meaning that there is idle time waiting for all computers

to complete after each set that is introduced by the load balancing algorithm itself.

While the runtime of each computer still ends up more balanced than partitioning the

data equally amongst processors in this case, the total runtime was over 15% worse

than the longest unbalanced time, because of the overhead added by the balancing

algorithm.
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Consider the theoretical runtime graphs in Figure 2.5, representing the runtimes

of a distributed memory algorithm running on four computers. The first graph rep-

resents the runtime with the data partitioned equally amongst the computers. If the

data is uniform, it shows that the first computer is the fastest, if the data is not uni-

form, it may be that the first computer is the fastest, or that it happened to receive

data requiring less computation than the other computers received.

The second graph shows the expected runtimes if the data distribution was uniform

and the first computer is the fastest. On the second iteration, the load balancing

algorithm gives the most data to the first computer, since it had the lowest previous

runtime, the second most to the third computer, and so on. It proceeds in the manner

until iteration four, where the loads are balanced. The time the load balancing

algorithm spends waiting for other computers after iterations is inconsequential once

the load is balanced. The balanced load greatly reduces the overall runtime compared

to the equal portion size runtime since the faster computers are not sitting idle for a

large portion of the time.

The third graph shows what could happen if the data distribution was so non-

uniform in terms of complexity that the resulting runtimes from one iteration are

not a predictor of the runtimes for the next. All iterations are unbalanced, the

balance does not improve over time, and the overall runtime increases compared to

the equal portion size runtimes since the balancing algorithm leaves computers idle

after all iterations. The only reason the third graph will end with all computers

completing execution closer to the same time than the equal portion size runtimes is

that all computers wait for one iteration to end before beginning the next. The only
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differences in the final runtimes come from the final iteration.

I expect this method of load balancing, using the runtime of the algorithm to

measure each computers performance, would have the same results when applied to

data mining. It would create a well-balanced load at low overhead cost in all but the

extreme cases where one row in the input dataset has no correlation with the next.

2.2.1 Shared- and Distributed-Memory Computing Technolo-

gies Summary

I found that the Hybrid models of combining MPI with OpenMP can take full

advantage of shared- and distributed-memory computers, gaining the benefits of

both libraries. Shared-memory applications generally benefit from the use of Hyper-

Threading, but less so in comparison to using more cores or processors.

For load balancing, measuring the runtime of an algorithm for a portion of a

dataset is a good predictor of the runtime over the entire dataset. Load balancing

algorithms have to consider the amount of overhead they require themselves. They

must strike a balance between the amount of communication and processing they

require and the level of balance they achieve. Algorithms that require high overhead

to produce a perfectly balanced load end up taking more total runtime than algorithms

requiring little overhead to produce a near-balanced load.
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Table 2.1: Example sequential database

Id Sequence
1 〈 a, c, f, g, e 〉
2 〈 a, f, c 〉
3 〈 b, e, d, a 〉
4 〈 f, a, b, e 〉
5 〈 d, c, a, f, g 〉
6 〈 d, a, f 〉

2.3 Distributed Frequent-Pattern Mining Algorithms

Researchers have used variations of three different techniques to convert serial

frequent-sequence and frequent-itemset mining algorithms into distributed and par-

allel versions. In general, the first technique divides the input dataset into non-

overlapping partitions amongst each computer, and then performs a modified serial

frequent-pattern mining algorithm, exchanging counts after each level. I categorized

these as synchronous partitioned data algorithms. The second technique performs

the same data distribution, but only collects counts at the end of the sequential al-

gorithms, and must then re-scan the input database to find global counts. I have

categorized these as asynchronous partitioned data algorithms. The third technique

copies the entire input dataset to each computer, and then divides the work by telling

computers to use a serial algorithm to mine only for sequences starting with a specific

item, collecting the results when the serial algorithm completes. I categorize these as

asynchronous duplicated data algorithms.
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Table 2.2: Database with projection offsets

Id Sequence a b c d e f g
1 〈 a, c, f, g, e 〉 2 ∅ 3 ∅ $ 4 5
2 〈 a, f, c 〉 2 ∅ $ ∅ ∅ 3 ∅
3 〈 b, e, d, a 〉 $ 2 ∅ 4 3 ∅ ∅
4 〈 f, a, b, e 〉 3 4 ∅ ∅ $ 2 ∅
5 〈 d, c, a, f, g 〉 4 ∅ 3 2 ∅ 5 $
6 〈 d, a, f 〉 3 ∅ ∅ 2 ∅ $ ∅
Counts: 6 2 3 3 3 5 2

2.3.1 Synchronous Partitioned Data Algorithms

She et al. [STL+05] presented two distributed memory versions of the PrefixS-

pan [PHM+04] serial frequent-pattern mining algorithm, both using the synchronous

partitioned data algorithm (SPDA) technique. The serial PrefixSpan algorithm finds

frequent sequences by recursively forming databases containing only sequences start-

ing with a specific prefix in a breadth first manner. These are projected databases.

Consider mining all sequences with a minimum support of 3 from the database in

Table 2.1. The first step PrefixSpan performs is to count the singleton items. While

it is counting singletons, it also tracks projection offsets, that is, the starting point in

the sequence if it was included in a projected database for a specific singleton. The

authors call this technique pseudo-projection, and use it to avoid having to copy a

portion of each sequence to a new database when projecting. An offset of 1 represents

the first item in the sequence, an offset of 2 represents the second item, and so on.

I have shown the database with the corresponding projection offsets and counts in

Table 2.2, with the symbol $ indicating a prefix that exists but has no items following

it, the symbol ∅ indicating that the prefix does not exist in the database sequence,

and the last row representing the singleton counts.
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Table 2.3: a-projected database

Id Sequence singletons ac ad ae af
1 〈 a, c, f, g, e 〉 . . . 3 ∅ $ 4
2 〈 a, f, c 〉 . . . $ ∅ ∅ 3
3 〈 b, e, d, a 〉 . . . ∅ ∅ ∅ ∅
4 〈 f, a, b, e 〉 . . . ∅ ∅ $ ∅
5 〈 d, c, a, f, g 〉 . . . ∅ ∅ ∅ 5
6 〈 d, a, f 〉 . . . ∅ ∅ ∅ $
Counts: . . . 2 0 2 4

PrefixSpan continues in a breadth first recursive manner, moving from left to right

across the offset columns, and ignores columns with counts below the minimum sup-

port value. It adds new columns representing new projected databases. Table 2.3

shows the a-pseudo-projected database. Each sequence in the database effectively

starts at the position corresponding to the projection offset from column a in Ta-

ble 2.2. There are no ab or ag position offsets calculated, since the singletons b and g

had counts less than the minimum support (3). PrefixSpan determines which projec-

tions it needs to track offsets for using the same method as the Apriori algorithms,

that is, PrefixSpan only finds the offsets for a k-item sequence if all (k − 1)-item

sub-sequences are frequent.

She et al. designed their SPDA versions of PrefixSpan for homogeneous distributed-

memory systems, that is, systems in which all computers have the same specifica-

tions. Their first version starts by reading a non-overlapping partition of the database

on each computer, creating the singleton pseudo-projection columns as it reads the

database, as PrefixSpan does. Once it completes the singleton counts on all comput-

ers, it collects the total counts from all computers onto one computer, and then sends

the totals back to the rest of the computers to use for the next level.
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Figure 2.6: Stages of an SPDA; She et al.’s first distributed PrefixSpan

Figure 2.6 shows the stages of She et al.’s first parallel version of PrefixSpan,

which are also the stages of the basic SPDA framework. Moving from left to right,

the algorithm loads a partition of the database onto each computer, which runs the

serial version of PrefixSpan. As each computer completes the singleton counting and

pseudo-projecting stage, it sends its counts to the collecting computer. The collecting

computer receives local counts and computes global counts. There is a barrier after

the count collecting, since the counting computer must receive all other local counts

before it can send the global counts, which the algorithm performs in the third stage.

Once a computer receives the global counts, it can start performing the second level of

the PrefixSpan algorithm, without having to wait for the other computers to complete

receiving the global counts. The algorithm then repeats until it completes mining.

The first problem, and most important relative to my research, is that She et al.’s

algorithm leaves the database idle after the first stage of the algorithm. There is no

possibility of completing the mining process in the same time it takes all of the mining

computers to read the database. Another problem is that there are frequent barriers,
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which, as I mentioned in Section 1.5, hinder scalability. All computers are idle at

each barrier point until the last computer completes. The amount of communication

required also limits the scalability of the algorithm. As the number of computers

increases, the amount of data that it must transfer in each stage increases accordingly.

Fang et al. [FZZ+05], and Renjit and Shunmuganathan [RS10], have both applied

the same technique used in She et al.’s first algorithm to create distributed-memory

versions of the Apriori algorithm for frequent itemset mining. Their algorithms have

the same strengths and weaknesses as She et al.’s first algorithm.

Seeing the scalability problems introduced by the number of barriers and the

amount of communication, She et al. presented a second version of their distributed

PrefixSpan algorithm. Their second version starts the same as the first version,

reading a portion of the database on each computer, and performing the first level

of the PrefixSpan algorithm. It continues as normal until it reaches a level where it

has created at least as many projected databases to mine as there are computers. At

this point, the algorithm assigns each projected database that it has not yet mined

to a specific computer. Every computer must go through all of its locally projected

databases and send them to the computer that will mine them.

Simply mapping the first > n projected databases at the end of a level over n

computers would lead to load imbalance. Some projected databases will take much

longer to mine than others. To keep the amount of work each computer has to perform

balanced, She et al. continue to map projected databases that their algorithm still

needs to mine after each level. The balancing mechanism looks at the number of

projected databases each computer generated after each level, and re-assigns these
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Figure 2.7: She et al.’s second distributed PrefixSpan

databases evenly over each computer, moving as few databases as possible.

Figure 2.7 shows the stages She et al.’s second SPDA PrefixSpan, starting from the

point in their first algorithm where it collects the global counts and more projected

databases to mine than computers to mine on. At this point, the algorithm on one

computer, the controlling computer, assigns each of the pending projections to one

computer. After assigning the projections, each computer must send the projected

databases themselves to their assigned computers. This creates a significant amount

of communication since each computer will receive a projected database from every

other computer for each projected database assignment.

Once a computer has finished sending and receiving all of its projected databases,

it mines one level of each assigned projected database, tracking the number of new

projections it creates for the next level. As computers finish a level of mining, they

each send the number of next-level projections to the controlling computer. Once

the controlling computer has received all next-level projection counts, it balances the

load by ensuring each computer has the same number of projected databases to mine.

It sends movement requests to all other computers, which may ask the computer to
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perform no action, receive a number of projections, or send a number of projections

to certain computers. Once a computer has received all of its movement requests, it

performs the requested tasks, moving projected databases where necessary. Following

the database movement, each computer mines the next level, repeating the load

balancing steps and mining until there are no more next-level projected databases

to mine.

This second algorithm outperforms the first when it does not have to move many

databases after the initial assignment. When the load is balanced, the amount of

communication is significantly less than the first algorithm requires gathering and

broadcasting all counts, since it only has to gather the number of projections at each

level. Unfortunately, the load balancing mechanism has the potential to add signif-

icant communication overhead, and requires a barrier after each level as in the first

algorithm. As Utrera et al. pointed out, researchers must factor overhead from load

balancing into the effectiveness of an algorithm. When the load is not balanced,

She et al.’s second algorithm must send entire projected databases, including the

database row, its counts, and its projection indices, after each level. Paul and Sar-

avanan [SS08] used the same technique as She et al.’s second algorithm to create a

distributed-memory version of the frequent-itemset mining Apriori algorithm, using

a hash function to map itemsets quickly, but with no load balancing.

All of these SPDAs leave the database idle after reading the data the first time,

leaving no possibility for the algorithms to complete the mining process as they read

the data. The communication and barriers they require limits the scalability, in

regards to the number of computers used, of all of the SPDAs.
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2.3.2 Asynchronous Partitioned Data Algorithms

Asynchronous partitioned data algorithms (APDA) aim to scale more efficiently,

in regards to the number of computers they use, compared to SPDAs. The focus

of these algorithms is the removal of barriers and communication during the mining

process. The technique used to create Asynchronous Partitioned Data Algorithms

is simple, and it works with any existing serial mining algorithm, using the idea of

local minimum support. Tanbeer et al. [TAJ09] used the APDA approach to create a

distributed mining algorithm.

The key idea in Lakshmanan et al.’s Segment Support Map [LLN00] , that “for an

itemset to be globally frequent, it must be locally frequent on at least one segment”,

is the basis for the idea of local minimum support. This idea applies to distributed

memory computers as “for an itemset to be globally frequent, it must be locally

frequent on at least one computer.” Although the Segment Support Map mines

frequent itemsets, the concept of local minimum support works, replacing segments

with computers, for frequent sequences as well. Equation (2.1) shows how APDAs

calculate the portion of rows assigned to computer i:

assignedRowsi
totalRows

= portioni (2.1)

Equation (2.2) shows how they use this portion to create the local minimum

support of computer i:

minSup ∗ portioni = localMinSupi (2.2)
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Figure 2.8: Stages of an APDA

Since the partitions assigned to each computer are non-overlapping, it follows that

the sum of all assigned rows equals the number of total rows, the sum of all portion

sizes equals one, and the sum of all local minimum supports equals the global mini-

mum support. Consider the case where each computer has a local minimum support,

localMinSupi, and a sequence occurs localMinSupi − 1 times on each computer,

which is the most it can occur without being locally frequent. Since the sum of all

local minimum supports equals the global minimum support, but the sequence occurs

one less often than the local minimum support on each computer, the sum over all

computers is minSup−numComp. The global count cannot be greater than or equal

to the minimum support, since the number of computers must be greater than zero,

so no sequence that isn’t locally frequent on at least one computer can be globally

frequent.

As with the SPDAs, and shown in Figure 2.8, APDAs start by reading a non-
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Table 2.4: A database partitioned evenly between two computers

Computer 1 Computer 2
〈 a b c 〉 〈 a b c 〉
〈 a b c 〉 〈 d e f 〉
〈 a b c 〉 〈 g h i 〉

overlapping partition of the database on each computer. This is as far as the similar-

ities go. Each computer in an APDA creates a local minimum support based on the

amount of data it is assigned. They then independently run a serial frequent itemset

or frequent sequence mining algorithm until they discover all locally frequent item-

sets or sequences. As each computer finishes running its serial mining algorithm, it

sends the results back to the controlling computer. The controlling computer collects

locally frequent sequences from all computers and builds a list of potentially globally

frequent sequences. From Lakshmanan et al.’s work on the Segment Support Map [],

any locally frequent set is potentially globally frequent.

Once the controlling computer receives all locally frequent sequences, it must

send the set of potentially globally frequent sequences to each other computer. The

computers must now re-scan their input databases and count all of the potentially

globally frequent sequences. The algorithm then collects the results of the second

database scan, and outputs the globally frequent sequences.

Re-scanning the database is necessary because the serial algorithms prune any

locally infrequent sequences and do not mine supersets of them. Consider the database

partitioned between two computers in Table 2.4 with a minimum support of 4. Each

computer has 3 of 6 total rows, so the portion sizes are 3/6 = 0.5 and the local

minimum supports are 4 ∗ 0.5 = 2. The first computer mines the frequent sequences
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Figure 2.9: Tanbeer et al.’s modified APDA

〈 a 〉, 〈 b 〉, 〈 c 〉, 〈 a b 〉, 〈 a c 〉, 〈 b c 〉, 〈 a b c 〉, all with a count of three. The

second computer finds that all singletons have a count of one and stops mining with

no locally frequent sequences. If an APDA collects locally frequent sequences, but

neglects to recount the globally frequent sequences, it would return the result from

the first computer as an incorrect global count. It cannot simply request all of the

counts that were locally frequent on the first computer from the second, since the

second computer only counted the singletons and stopped. A re-scan of the input

database is required to achieve the correct result.

APDAs require far fewer barriers than SPDAs during the mining process, only one

barrier is required after the locally frequent results are collected compared to a barrier

after every level, and computers do not need to communicate during the mining stage.

Tanbeer et al. [TAJL09] found that their frequent-itemset mining algorithm using

the APDA approach scaled much better when the number of computers increased

compared to SPDA algorithms. The authors designed their algorithm to run on

identical computers, so they do not worry about load balancing, but partition the

database evenly amongst the computers. They also presented one modification to the



40 Chapter 2: Related Work

APDA structure, collecting the global singleton item counts on each computer before

running the serial algorithm, to prune itemsets that are locally frequent but cannot

be globally frequent because they contain an infrequent singleton. This adds another

barrier and increases the communication of their APDA algorithm, but increases the

accuracy of the singleton item pruning, potentially reducing the size of the locally

frequent results that the algorithm aggregates and recounts. Figure 2.9 shows the

structure of Tanbeer et al.’s modified APDA.

APDAs ability to mine as they receive input data is dependent on the serial

algorithm they use. Since existing serial algorithms perform repeated scans of the

database, or repeated scans of a structure capturing the contents of the database,

they limit the abilities of the APDA technique. This technique leaves the central

database idle through the serial mining process, and the subsequent steps, meaning

it cannot complete mining in the time it takes to read the database. The main

problem with the APDA approach is that locally frequent itemsets or sequences are

not necessarily globally frequent, and locally infrequent itemsets or sequences may

not be globally infrequent. Having each computer re-scan its partition of the input

database and count every potentially frequent itemset or sequence is a time consuming

task.

2.3.3 Asynchronous Duplicated Data Algorithms

Asynchronous duplicated data algorithms (ADDAs), such as Cong et al.’s dis-

tributed version of PrefixSpan [CHHP05] , Cong et al.’s distributed version of BIDE [CHP05],

and El-Hajj and Zaiane’s distributed version of the frequent-itemset mining FP-
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Figure 2.10: General ADDA structure

tree [EZ06] , follow a methodology that is much different from either of the partitioned

data techniques. The goal is to provide a distributed framework for existing serial

frequent-itemset or frequent-sequence mining algorithms to run in where they do not

need to exchange counts during the mining process, as in SPDAs, and do not need to

re-scan the input databases, as in APDAs. The key requirement for ADDAs is that

every computer reads, and stores or captures, the entire input database. They dis-

tribute the work not by partitioning the input data, but rather, they assign different

prefixes to each computer to mine. This is similar to She et al.’s second distributed

algorithm.

Figure 2.10 shows the structure of a general ADDA. First, the algorithm receives

the database on each computer, either storing it as a copy of the input database, or

capturing it in a data structure. The controlling computer creates a list of singletons,

and their counts, that it will assign to other computers. In the most basic ADDAs, the
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controlling computer can either assign all projections at this point, or allow computers

to request another projection as they complete their current one. Each computer

mines all of its assigned projections, and when there are no more projections for it to

mine, it sends its results back to the controlling computer.

ADDAs following this technique do not require any barriers during the mining

process. Each computer can proceed to the next step as it receives its required infor-

mation. The amount of communication is low, since the serial mining algorithm used

to mine the assigned projections requires none. Unfortunately, there are two large

performance constraints in this type of algorithm. The first performance constraint

is that the input cost of reading the entire dataset on each computer is high. El-Hajj

and Zaiane found that ADDAs do not scale well in regards to the number of com-

puters when the input dataset is large and stored on a shared disk. They reduce the

input cost by reading a partition of the database on each computer, transforming it

to a tree-based structure, and exchange the trees between all computers to obtain the

total database. Cong et al. assumed that each computer starts with the entire input

database stored locally in both of their algorithms to avoid this cost.

The second performance constraint is that the amount of mining each singleton

requires may be vastly different, leading to load imbalance. El-Hajj and Zaiane

balanced load by sorting the singletons by the number of two item projections they

have into non-increasing order in regards to size, and assigning two databases, the

largest and the smallest, to computers as they require more work. This load balancing

scheme can be used on heterogeneous computers, but does not factor in performance

differences between computers when performing projection assignments. It also only
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Figure 2.11: El-Hajj and Zaiane’s FP-tree based ADDA

divides the singleton items to balance the load. In cases where a few singletons require

a large percentage of the work, especially if the algorithm assigns these singletons to

slower computers, the load will be unbalanced. The number of singletons is also

a limiting factor in scalability. Since the algorithm initially assigns two singletons

to each computer, if there are not at least twice as many singletons as there are

computers, the algorithm will leave some computers idle.

Figure 2.11 shows the stages of this algorithm. It starts by capturing a partition

of the database on each computer. Once each computer receives and transforms its

assigned data, it sends the transformed data to each other computer. When the

controlling computer has received all of the transformed databases, it assigns the

largest and smallest projected databases to the first computer, the second largest

and smallest to the second, and so on. As each other computer completes receiving

the transformed databases, they wait to have projections assigned to them, and then
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start mining using a serial mining algorithm. Any time a computer completes mining

its assigned projections, it requests the next largest and smallest projections from

the controlling computer. El-Hajj and Zaiane’s approach leaves the input database

idle after the first stage, meaning it cannot achieve my goal of completing the mining

process in near the time it takes to read the input database.

Cong et al. presented two ADDAs, one using PrefixSpan, and another following

the same framework but using BIDE as the sequential frequent-sequence mining al-

gorithm. They designed their algorithms to run on homogeneous computers. As I

mentioned in the problems with the general ADDA structure, Cong et al.’s algorithms

assume that all computers start with the entire input database stored locally, rather

than having to read it from a central location. I will present their algorithms to

adhere to my requirements, mainly, that the database is stored at a central location.

The focus of Cong et al.’s algorithms is to balance the load in such a way that

the number of singletons does not limit scalability, as it does in El-Hajj and Zaiane’s

algorithm. They achieved this by letting the projected database assignments be not

just singletons, but also multiple item prefixes as well. If they kept a global queue

of prefixes yet to be processed, assigning them on an as-needed basis, it would work

the same as She et al.’s second optimization, which requires a lot of communication

to move projected databases along with their assignments.

Cong et al.’s solution is to estimate the amount of time required to mine each

singleton by mining a sample dataset. They construct a sample dataset by discarding

the last l items from each transaction, where l = 0.75 ∗ averageRowLength. They

then run a serial frequent-pattern mining algorithm on this sample dataset, using
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the same minimum support value the user sets for the full dataset, and measure the

amount of time taken mining each projection. Any singleton requiring more than

25% of the ideal time for each computer, that is, 25% of the total time to mine all

singletons divided by the number of computers, is sub-divided. The sub-division of

a singleton is all possibly frequent sequences of length 2 starting with that singleton.

The algorithm cannot just assign those sequences that are frequent in the sample

dataset, or even just those that exist in the sample dataset, since more may exist

and be frequent globally. The only sub-divisions that the algorithm does not need to

assign are those that cannot possibly be globally frequent based on singleton counts.

The algorithm performs recursive sub-divisions until no database projection takes

more than 25% of the ideal time for each computer. Once the algorithm reaches this

stage, it assigns all of the globally frequent singletons, or their sub-divisions, amongst

the computers so that each computer receives an equal estimated workload. It assigns

any singleton or sub-division that is not frequent in the sample a mining time of zero.

Figure 2.12 shows the stages of Cong et al.’s algorithms, modified to work with a

central database. In the first stage, each computer retrieves the entire database and

stores it locally, and performs singleton counts on an equally sized non-overlapping

partition. The computers then send all of the singleton counts to the controlling

computer. Once the controlling computer has received all singleton counts, it mines a

sample of the dataset using only the controlling computer. The controlling computer

then analyzes the time to mine each projection of the sample dataset, and uses these

times to assign projections between all of the computers. Once each computer receives

all of its assigned projections, it mines from those projections using a serial mining
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Figure 2.12: Cong et al.’s ADDA framework

algorithm, PrefixSpan or BIDE in this case. Once the serial algorithms are complete,

the controlling computer collects the results and the algorithm terminates.

Cong et al.’s algorithm succeeds in removing the singletons as a limitation to

load balance and scalability, in comparison to El-Hajj and Zaiane’s approach. They

break the assigned projections into smaller sub-divisions. Each sub division requires

approximately the same estimated mining time. There are some problems with this

approach though. First, and foremost relative to the goal of my research, is that the

algorithm leaves the central database idle throughout the mining process. Cong et al.

also did not take any measures to reduce the input cost of reading the entire database

with multiple computers.

Another problem is the method of load estimation. As databases become larger,

the size of the sample database increases, as well as the time the algorithm requires

mining it. The algorithm only uses the controlling computer to mine the sample
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dataset, leaving not only the database, but also all other computers, idle during this

time. It has to complete the mining of the sample database before it knows the times

for the singletons, as their times include mining their sub-projections, so it cannot

start assigning work while it estimates.

A related problem, which becomes more pronounced as the database sizes increase,

is that the estimation algorithm must assign all potentially frequent projections of

length two or more when it performs sub-divisions. An approach such as She et al.’s

second SPDA only has to project from globally frequent sequences. No projections

that are infrequent in the sample dataset have estimated times. In a database with

many frequent sequences, especially if these sequences commonly occur near the tail

of database rows, the algorithm will result in a larger number of sequences with no

estimated times. Cong et al. found a trade-off between estimation accuracy and the

size of the sample dataset. An accurate estimation of a dataset with many frequent se-

quences occurring at different points within each row requires a larger sample dataset.

This compounds the problem of leaving all other computers idle while the controlling

computer mines the sample dataset.

2.3.4 Summary of Mining Approaches

Researchers have used three techniques to convert serial frequent-sequence and

frequent-itemset mining algorithms into distributed memory versions. The approaches

are synchronous partitioned data algorithms (SPDAs), asynchronous partitioned data

algorithms (APDAs), and asynchronous duplicated data algorithms (ADDAs). Each

type of algorithm has both strengths, and weaknesses, in comparison to the others.
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Synchronous partitioned data algorithms are those algorithms that read a par-

tition of the input database on each computer and exchange itemset or sequence

counts throughout the mining process. Before any computer begins projections of

length k, the SPDA framework ensures that it has the global counts for all itemsets

or sequences of length k−1. SPDAs read a non-overlapping portion of the dataset on

each computer, as opposed to having each computer read the entire dataset, which

El-Hajj and Zaiane have shown to have a high input cost that limits scalability. By

ensuring that each computer has the global counts, SPDAs never spend time mining

an itemset or sequence that is locally frequent but not globally frequent.

The drawbacks of SPDAs are the amount of communication, and the number

of barriers, that they require. Implementations such as She et al.’s first algorithm

exchange counts after each level of mining. This requires a large amount of commu-

nication, since each computer has to send the count of every sequence or itemset of

the current level to every other computer. As the number of computers increases,

so does the amount of communication, which limits scalability. This is because, as

Ghosh stated and I have presented in Section 1.5, communication between computers

has a higher cost than accessing local memory.

Because exchanging counts takes place after every level, all computers must wait

for the slowest computer to complete one level before moving to the next, which is

the performance constraint of barriers as described by Ghosh. She et al.’s second

algorithm limits the number of levels that these waits occur after, and reduces the

amount of communication synchronizing counts after each level. It does this at the

cost of moving projected datasets between computers, which again increases the com-
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munication required, and limits scalability. After the initial collection of projected

databases onto specific computers, their algorithm moves databases as required to

balance load, again with high communication cost. As Utrera et al. have shown, even

if a load balancing technique achieves a balanced load, the cost of the load balancing

itself can increase the overall runtime in comparison to the same algorithm and an

unbalanced load.

Asynchronous partitioned data algorithms read a non-overlapping partition of the

database on each computer and mine independently using local minimum support

thresholds. One computer then collects all of the locally frequent results from the

other computers. Using the idea from Lakshmanan et al.’s Segment Support Map,

any result that is locally frequent on one computer is potentially globally frequent, so

each computer must rescan its database partition and count all potentially frequent

results. These algorithms do not require any communication or barriers during the

mining on each computer. Researchers, such as Tanbeer et al., have found that the

mining portion of these algorithms scale much better than SPDAs as the number of

computers increases because of this. Similar to SPDAs, APDAs reduce the input

costs by only reading a partition of the database on each computer.

The problem with APDAs is the cost of re-scanning the database partition on each

computer and counting all potentially frequent itemsets or sequences. Re-scanning is

necessary since globally frequent itemsets or sequences may not be locally frequent,

so the mining process on some computers prunes them, and does not have a readily

available count for them. As the number of computers increases, the number of

potentially frequent itemsets or sequences may increase as well, since lower local
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minimum support thresholds may result in more locally frequent sequences. Locally

frequent sequences are not necessarily globally frequent, so as the number of locally

frequent sequences increases, the cost of re-scanning the database increases as well.

Asynchronous duplicated data algorithms read the entire database on each com-

puter and divide the load by assigning projections to different computers. The basic

ADDA structure does not require any communication during the mining process,

just the singleton assignments before mining begins, and the results collection when

mining completes. One problem with ADDAs is that, as El-Hajj and Zaiane discov-

ered, having each computer read the entire database from a central server takes much

longer than reading a non-overlapping partition of the database on each computer.

They reduce the impact of this by having each computer read a partition from the

central database, and then exchange partitions with all other computers.

Another problem with the basic ADDA structure is load balancing. El-Hajj and

Zaiane assigned singletons based on the number of length two database projections

they have. This limits the number of computers that their algorithm can use to mine

to the number of singleton items. In databases where one singleton takes much longer

to mine than others, the algorithm cannot balance the load, because it cannot break

a singleton down into sub-tasks. Cong et al. designed two algorithms that break

down singleton assignments into sub-tasks using estimation. Their algorithms mine a

sample of the database on the controlling computer to get an idea of how long it takes

to mine each singleton and each recursive projection. This leaves all other computers

idle while the controlling computer mines the sample database. When singletons are

sub-divided, Cong et al.’s algorithm can only reduce the number of projections to
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assign by the global counts, since the counts in the sample dataset do not necessarily

contain all globally frequent projections. This method of sub-division results in their

algorithm assigning many more projections than a SPDA such as She et al.’s second

algorithm.

None of the existing algorithms can mine as they read the input database. This

means that none of them has the opportunity to meet my goal of completing the

mining process in the necessary stage of reading the input database. They all perform

multiple scans of the database using modifications of serial data mining algorithms.

In addition, none of the existing algorithms implements methods to take advantage

of shared memory multi-processor, multi-core, or multi-threaded computers. To use

more than one processor on a single computer, they would have to use Rabenseifner

et al.’s Pure MPI model.

2.4 An Ideal Framework for Mining from a Central

Database

Based on the strengths and weaknesses of the presented distributed memory algo-

rithms, an ideal algorithm would start by reading a partition of the database on each

computer, to minimize the cost of reading from a central database as the SPDA and

APDA techniques do. It would mine the database on each computer without requiring

any communication between computers, as the APDA and ADDA techniques do. It

also should not require communication to perform load balancing and should support

heterogeneous computers. Load balancing should not rely on mining a sample of the
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Figure 2.13: Structure of the ideal algorithm

dataset before mining the actual dataset as in Cong et al.’s ADDAs. The only com-

munication should be when the algorithm collects the results, but unlike the ADDAs,

it should not require a re-scan of the input database. The ideal algorithm should also

provide support for shared memory multi-processor, multi-core, and multi-threaded

processors.

Figure 2.13 shows the structure of this ideal algorithm. It simply mines the entire

partition on each computer, without communicating during the mining process, and

then collects the results.

2.4.1 Requirements of the Ideal Algorithm

To perform the entire mining process in one pass, and not need a second pass to

count global frequencies as in the APDAs, the ideal mining algorithm must conform



Chapter 2: Related Work 53

to two main requirements. First off, it cannot capture or transform the database

prior to mining. It has to mine directly from the original database as it receives it.

Performing a capture or transformation, and then performing multiple mining passes

over said capture or transformation, would not achieve the goal of mining in one

pass. While algorithms that perform database transformations prior to mining have

improved performance on common experimental datasets, Aggarwal et al. [ALWW09]

have shown that the performance improvement comes from repeated identical prefixes

in the database rows, which overlap in the transformed tree. In their experiments

with real world databases, and especially those containing uncertain data, the number

of identical prefixes was far lower than found in common experimental databases.

The overhead of performing a database transformation when the number of identical

prefixes is low, such as done in my research with Leung et al. [LMB08] can outweigh

the benefits of said transformation.

Secondly, the ideal mining algorithm cannot apply constraints on a local level

that remove itemsets or sequences that could satisfy the constraint on a global level.

Minimum support is an example of this type of constraint. The algorithm must

apply constraints of this type during or following the result collection stage rather

than during the mining process itself. The mining algorithm can apply constraints

that only prune itemsets or sequences that do not depend on frequency, such as the

succinct constraints I have used along with Leung et al. in our research on uncertain

mining [LB09a, LB09b, LHB10, LB10], during the mining process.

The ideal mining algorithm can open many beneficial opportunities by applying

all constraints during or after the collection stage. Mining without applying any
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constraints results in every computer having the count for every possible subsequence

or itemset in its database partition available. From that point, if the user wants to

adjust the value of a constraint such as minimum support, they can do so without

having to mine the database again. In all existing algorithms, if the user wants to

lower the minimum support threshold, they have to mine the database again. Itemsets

or sequences a higher minimum support threshold pruned may now be frequent. In

the ideal algorithm with no constraints during the mining process, it does not prune

any itemsets or sequences, so it simply re-scans the results and prints those that

satisfy the new constraint.

Similarly, another benefit of not applying constraints during the mining process

is, users can add or remove constraints without having to mine the database again.

Existing algorithms can only add constraints where the results are a subset of the

previous results. Consider the results of mining a web click log using 10% as the

minimum support threshold. Users could further constrain this to show only those

frequent sequences ending in an error without re-mining using the existing algorithms.

With the unconstrained ideal algorithm, users could change the constraints to find

all sequences, not just the frequent ones, ending in an error, without having to mine

the database again.

Another benefit of not applying constraints during the mining process is that users

can add new data and update the results without having to mine the entire database

again. In existing algorithms, new data can cause a previously infrequent sequence to

become frequent, but since existing algorithms prune infrequent sequences, they have

to mine the entire database again. Even in stream mining algorithms, such as my work
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with Leung et al. [LBY08, LB08] where we used the sliding window approach, the

algorithms mine the old data along with the newly received data. The sliding window

approach uses a specified number of windows, each holding a set number of database

rows, and the algorithm mines the dataset consisting of all windows each time the

window containing the oldest data is emptied and refilled. The ideal approach that

does not apply constraints during the mining process simply mines the newly added

data and adds new sequences to, or increments existing sequence counts in, the old

results. It does not have to re-mine previously mined data.

2.5 Summary

In this chapter, I found that it is possible to use both shared- and distributed-

memory computers together, and take advantage of the strengths of both, by using

MPI and OpenMP. The Hybrid Overlap model is best suited for my frequent-sequence

mining algorithm since processors can switch between mining and communicating

without waiting for all other processors to complete the current stage. I found that

multiple thread units vary in effectiveness depending on the application, specifically,

they are less effective in memory bound applications such as data mining, but have a

positive effect in most cases. For load balancing, I found that using the runtime of the

algorithm is a good prediction of the performance of each computer for future runs

of the algorithm, and load balancing algorithms can use this performance measure to

assign data.

Next, I discovered that existing distributed-memory frequent-itemset and frequent-

sequence mining algorithms follow three different frameworks, namely, synchronous
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partitioned data algorithms (SPDAs), asynchronous partitioned data algorithms (AP-

DAs), and asynchronous duplicate data algorithms (ADDAs). I found that the al-

gorithms that partition the input data have much lower input cost than those that

read the entire dataset on each computer, and the asynchronous algorithms are much

more scalable in regards to the number of computers. Existing APDAs have both

of these attributes, but require each computer to re-scan its assigned partition once

all computers have completed mining and sent their locally frequent sequences to the

collecting computer. During the re-scan, each computer counts the number of occur-

rences of every potentially frequent sequence, since it may have pruned the sequence

as locally infrequent during the first scan. Existing research that encounters a per-

formance bottleneck at the central database does not increase the amount of work

performed while reading from the database, but rather assumes the database exists

locally on each computer before execution.

The goal of my research is to create a frequent-sequence mining algorithm that

uses multiple distributed- and shared-memory computers to mine as they read the

input database, without using an intermediate structure, and limiting communication

so that it is scalable. I created the ideal framework for an algorithm by combining the

best attributes of the three existing mining frameworks. The ideal algorithm should

be asynchronous and partitioned, but not require a final scan of the database to count

potentially frequent sequences. I then created requirements for this ideal algorithm

so that it meets my research goals, namely, that it cannot perform multiple scans of

the database or use an intermediate structure, and that it cannot apply constraints

on a local level that prune sequences that are potentially frequent on the global level.
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Finally, I analyzed the benefits of an ideal algorithm meeting my requirements.

I found three major benefits, the first being that the user can modify the value of

any constraint without having to re-mine the database. Second, the user can add or

remove constraints, again without having to re-mine the database. Third, the user

can add new data to the database, and add the new results to the old results without

having to re-mine any data it has previously mined.



Chapter 3

Single-Scan Sequential Mining

Algorithm

In this chapter, I design a single-scan sequential mining algorithm to use hetero-

geneous distributed memory computers, where each computer may have one or more

shared memory processors and thread units, to mine from a central database. The

example distributed memory system in Figure 1.1 of my introduction represents this

target architecture. I implement my algorithm in C, using MPI to communicate be-

tween distributed-memory computers, and OpenMP to provide shared-memory par-

allelism.

To perform data mining on this type of system, the first step is to have the comput-

ers that will perform the mining read the input database. Since this step is necessary,

and is a performance bottleneck because all computers share the database, I design

my algorithm to perform as much work as possible while reading the database. I limit

the amount of communication, and do not require any barriers or synchronizations

58
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Table 3.1: The sub-sequence enumeration of the sequence 〈 a b c d 〉
a b c d

〈 a b 〉 〈 a c 〉 〈 a d 〉 〈 b c 〉
〈 b d 〉 〈 c d 〉 〈 a b c 〉 〈 a b d 〉
〈 a c d 〉 〈 b c d 〉 〈 a b c d 〉

Figure 3.1: The sub-sequence enumeration of the sequence 〈 a b c d 〉 as a tree

between all computers, during this process. I also avoid capturing or transforming

the initial database so that when my algorithm finishes reading the input database,

all that remains for it to perform is the results collection.

My algorithm consists of three components. The first two are the stages from

the ideal algorithm diagram in Figure 2.13 of the related work. The first stage, and

first component of my algorithm, is using distributed computers to mine the input

database. Each of these computers may have multiple processors, cores, or thread

units, and as such, should make use of shared memory parallel computing. The

second stage, and second component of my algorithm, is collecting the results onto

the controlling computer so that the user can view them. The final component of my

algorithm is the method I use to balance the load between all computers.
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3.1 Mining: Enumeration of Sub-Sequences

For the mining process itself, I enumerate all of the sub-sequences from each row in

the database, and store the resulting counts in a tree-based structure. This tree-based

structure is not a database capture, but is the results of the mining process. Consider

the sequence 〈 a b c d 〉 and its sub-sequences, as listed in Table 3.1. All of these

sequences are stored in the tree in Figure 3.1. Each node of the tree represents the

sequence from the root to that node, followed by the number of times that sequence

occurs. For example, the highlighted path in the tree represents the sequence 〈 a b

d 〉 occurring once. Storing results in this structure is compact since sequences share

prefixes. It also allows the algorithm to quickly find sequences and increment their

count by tracing the sequence’s path through the tree, rather than looking it up in a

table.

Each computer performs the enumeration process independently on a non-overlapping

partition of the input database, since as I found in defining the ideal mining algo-

rithm for my target system architecture, reading non-overlapping partitions has the

lowest input cost. Enumeration does not require any communication between com-

puters, which, as the related work has shown, results in the most scalable algorithms

in regards to the number of computers used.

Enumerating all sub-sequences satisfies both requirements of the ideal algorithm

I presented in Section 2.4.1. Since enumeration does not require any knowledge of

previous or future database rows, my algorithm can completely mine database rows

as it reads them, and it does not need to perform additional scans of the database or

captured portions of it. Enumeration includes every possible sequence in the results,
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so my algorithm does not prune any sequences during the mining stage, meaning that

it will not have to re-scan the database as Asynchronous Partitioned Data Algorithms

do.

The challenge of sub-sequence enumeration is, as I have shown in Section 1.4, there

are 2n−2 sub-sequences of each input sequence of length n. In the following section, I

design two methods of counting these sub-sequences. The first uses a structure I call

an insertion list to keep track of the tree nodes that my algorithm needs to update

as it enumerates sub sequences. The second takes a depth-first approach to updating

the tree nodes.

3.1.1 Enumeration of Sub-Sequences with an Insertion List

The goal of my insertion list is to enumerate all sub-sequences while minimizing

the number of operations requiring memory access. The insertion list is an array of

length 2n−1 where n is the length of the sequence my algorithm is inserting. It works

based on the observation that in the enumeration tree, each item in the sequence is a

child of every item prior to it in the sequence. For instance, in Figure 3.1, item d is a

child of the root node (∅), a, b, and c, which all occur before it in the input sequence.

The insertion list contains pointers to every tree node that the current enumeration

has created or incremented, excluding those created or incremented to insert the last

item of a sequence, so that my enumeration algorithm can quickly insert an item as

a child of every node already in the list.

Algorithm 1 shows the pseudo code for my enumeration algorithm using an inser-

tion list. I pass the insertion list to the enumeration algorithm so that it does not
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Algorithm 1 Pseudo-code for enumerating sub-sequences using an insertion list

// insList[0] = Tree.rootNode for all calls to this function

EnumerateSubSequence( insList[], sequence[])

//variables

updatedNodePtr //pointer to the newly added or updated tree node

insListLength = 1 //the current length of the insertion list

curr //the current position list index a child is being added to

inputIndex = 0 //the index of the next in the input sequence

insListIndex //the position of the insertion list to insert to

//enumeration

//while there are still items to insert

while inputIndex < sequence.length

curr = insListLength 1 //insert from the end of the list

insListLength *= 2 //double the length of the insertion list

insListIndex = insListLength 1 //insert from the new list end

//loop until curr reaches the start of the list

for ; curr >= 0; curr--, insListIndex--

//insert the item as a child of the current node

updatedNodePtr = insertChild(positionList[curr],

sequence[inputIndex])

//if not done, put the new node in the list

if inputIndex < sequence.length

insList[insListIndex] = updatedNodePtr

endFor

inputIndex++ //move to the next item from the input sequence

endWhile

have to allocate and deallocate memory for the insertion list during each sequence

insertion. The insertion list initially contains a pointer to the root of the tree, and the

initial length of the insertion list is 1, since the root node is the only item it contains.

The initial index into the input sequence is 0, the first item in the input sequence

array.

While there are still items in the input sequence that my algorithm has not in-

serted, meaning the input index is still less than the length of the input sequence, it
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inserts the current item as a child of all existing items in the insertion list. It does

this in reverse order so that it inserts the child of the longest sequence, which is at

the bottom left most node of the tree in Figure 3.1, first, and then moves to the right

across the tree. If the item it is adding is not the last item in the sequence, it adds

pointers to all inserted tree nodes to the insertion list, starting from the new end of

the insertion list. Since the number of inserted nodes doubles each time my algorithm

inserts a new item, the length of the insertion list also doubles. This makes the list

index to start inserting from one less than double the old insertion list length.

Figure 3.2 shows how my enumeration algorithm creates the tree in Figure 3.1

using an insertion list. The example tree is initially empty, consisting of only a

root node. The insertion list contains a pointer to the root node. My enumeration

algorithm then reads the first item, a, from the input sequence. It inserts a as a child

of the root node, and adds a pointer to a at the end of the insertion list. It then reads

the next item, b, from the input sequence, adds it as a child of both nodes pointed to

by the insertion list, and adds the newly created nodes to the insertion list. Next, it

reads c from the input sequence, and follows the same procedure, inserting c to the

tree and pointers to the new nodes to the insertion list. Finally, it reads d from the

input sequence and adds it as a child of all nodes in the insertion list. As d is the

last item in the input sequence, my algorithm does not add the newly created nodes

to the list, since it has completed enumerating the sequence.
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Figure 3.2: Enumerating sub-sequences with an insertion list
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Using this method, my algorithm reads each item in the input sequence exactly

once. It inserts items as children of every element in the insertion list, which requires

reading the parent node and writing the child node. Because the insertion list contains

pointers to every node that will be a parent of the item it is inserting, my algorithm

never needs to read multiple nodes to find the parent of a new node. This means the

algorithm needs 2n− 1 node reads and writes to insert all 2n− 1 sub-sequences. The

insertion list stores pointers to all nodes, except those created by the last item in the

input sequence, so my algorithm requires a total of 2n−1 − 1 insertion list writes.

3.1.2 Depth-First Sub-Sequence Enumeration

Since my insertion list structure is large, requiring an array of length 2n−1, I

now also create a depth-first sub-sequence enumeration algorithm. The depth-first

algorithm keeps a last in, first out stack containing the nodes it has inserted, excluding

those containing the last item from the input sequence, as well as the index in the

input sequence of the next item to insert as a child of that node. The stack is an

array of n items for an input sequence of length n, since at the most, it will contain

the root node and the first n− 1 items of the input sequence.

Algorithm 2 shows the pseudo code for my enumeration algorithm using a depth-

first approach. I pass the node stack and index stack to the enumeration algorithm

so that it does not have to allocate and deallocate memory for the stacks during each

sequence insertion. The node stack initially contains a pointer to the root node of

the tree. At the beginning of each enumeration, my algorithm sets the next input

sequence index of the root node to 0, and starts the stack index at 0 as well.
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My enumeration algorithm then loops until there are no more entries on the stack.

When there is an item on the node stack, my algorithm gets the item from the input

sequence at the node’s corresponding index stack entry, adds it as a child of the node,

and then increments the node’s corresponding index stack entry. If the newly inserted

item is not the last item in the sequence, my algorithm pushes the newly created node

onto the node stack, and sets the corresponding entry in the index stack to the value

of the parent nodes corresponding index stack entry. If the newly inserted item is the

last item in the input sequence, my algorithm pops nodes off the stack until it finds

a node that it still needs to insert children to.

Figure 3.3 shows how my enumeration algorithm creates the tree in Figure 3.1

using the depth-first insertion method. The example starts with an empty tree,

consisting of only the root node, and the next item to insert to the root node is the

first item in the sequence. My algorithm starts by reading the first item, a, from the

input sequence, inserting it as a child of the root node, and incrementing the root

node’s next child index. Since the newly inserted node, which contains a, is not the

last item in the input sequence, my algorithm pushes a pointer to it onto the stack,

and sets its next child index. The next child index for a newly inserted node is always

the same as the incremented next child index from the parent. My algorithm then

adds b as a child of a, and c as a child of b, in the same manner.

When my algorithm inserts the last item in the input sequence, d, it does not

push it onto the stack, since it does not have any children. After inserting item d

as a child of c, the next index for c is 5, which is not in the input sequence, so my

algorithm pops c off the stack. The item at the top of the stack is now b with a next
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Algorithm 2 Pseudo-code for enumerating sub-sequences using a depth-first ap-
proach

// nodeStack[0] = Tree.rootNode for all calls to this function

EnumerateSubSequence(nodeStack[], indexStack[], sequence[])

//variables

updatedNodePtr //a pointer to the new or updated node

stackIndex = 0; //index of the current item on the stack

indexStack[0] = 0 //initialize the next parent as the root node

//enumerate

while stackIndex >= 0 //while there are still items in the stack

//insert the item as a child of the current node

updatedNodePtr = insertChild(nodeStack[stackIndex],

sequence[indexStack[stackIndex]])

//increment the next index for the current stack node

indexStack[stackIndex]++

//if the new next index is not the last item

if indexStack[stackIndex] < sequence.length

//push the new node onto the stack

nodeStack[++stackIndex] = updatedNodePtr

//set the next index to the next input item

indexStack[stackIndex] =

indexStack[stackIndex - 1]

else

//while there are still nodes on the stack

//and all input items have been inserted

//as children of the current node

while stackIndex >= 0 and

indexStack[stackIndex] ==

sequence.length

stackIndex-- //pop the completed nodes off the stack

endWhile

index of 4 so my algorithm reads the item at position 4 of the input sequence, d, and

inserts it as a child of b, incrementing the next child index as it does so. My algorithm

continues this pattern, moving up to a in the stack, inserting c as a child of a, d as a

child of c, moving up to a in the stack again, inserting d as a child of a, and so on.
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Figure 3.3: Depth-first sub-sequence enumeration

Using this method, unlike my insertion list method, it performs 2n−1 input reads

since it has to read the item from the input sequence at each node insertion. Similar

to my insertion list method, the depth-first insertion method contains a pointer to

the parent of a new item, so it never has to perform a root to parent transversal,

and requires one parent read for each node write. It requires 2n − 1 node reads and
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writes. The depth-first insertion method pushes every parent node to the stack once,

so it requires 2n−1 − 1 stack writes.

3.1.3 Sub-Sequence Enumeration on Shared Memory Com-

puters

As I have outlined in Section 2.4, one of the requirements of the ideal framework

for mining from a central database, and one of the goals of my algorithm, is to

make use of shared memory computers. This is important since, as I mentioned

in Section 1.1, computers with multiple cores are becoming increasingly common.

Another consideration is the benefit of Hyper-Threading enabled processors. Both

Liao et al. and Curtis-Maury et al. found that Hyper-Threading increases competition

for shared memory, and may cause performance degradation in memory intensive

applications. My enumeration algorithm is memory intensive, but also requires input

from disk, which will cause threads to stop accessing memory while waiting for data

to load from disk.

I use OpenMP to implement shared-memory parallelism in my enumeration algo-

rithm. Both my insertion list and my depth-first sub-sequence enumeration work in

parallel in the same way. Each OpenMP process loops over two functions, one to read

a sequence from the central database, and one to enumerate sub sequences and store

them into the results tree. I share the results tree between all OpenMP processes.

The OpenMP processes read sequences from the database using a greedy approach,

that is, as soon as a process finishes one enumeration, it reads another one from the

input database.
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This does not provide any load balancing between OpenMP processes, but even in

the worst-case scenario, where all processors complete their current enumerations at

the same time, but only one sequence in the database still requires enumeration, the

load imbalance is low. Even if the last sequence is long, processors are only idle while

the last processor performs one sub-sequence enumeration. Assigning an equal portion

of the input sequences to each processor has greater potential for load imbalance.

Consider a database where all of the longest input sequences occur together. The

processors enumerating the longer sequences would perform much more work than

those enumerating the shorter sequences.

Multiple processors can potentially try to load an input sequence from the database

at the same time. Since the greedy approach does not partition the input sequences

between processors before they begin reading and enumerating, the sequence loading

function requires a critical section, so that one processor completes loading a sequence

before the next begins. This creates a potential performance bottleneck in the ap-

plication, as it can potentially leave processors idle waiting for other processors to

complete input. Fortunately, if this occurs, it means that reading from the central

database is the bottleneck. Forcing the database to be the bottleneck, and completing

the mining process in near the time it takes my algorithm to read the input database,

is the goal of my algorithm.

For both methods, the enumerate sub sequences function is called independently

by each process. Each process requires its own enumeration structure, that is, its

own insertion list or node and index stacks. My OpenMP implementation shares the

results tree between all processors. This means that all processors can potentially at-
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tempt to create or update the same tree node simultaneously. If a process is inserting

a new child to a parent node, it has to lock the parent node while it creates the child,

to avoid processes creating multiple copies of the child node.

Fortunately, this is the only case in which my OpenMP enumeration algorithm

needs to lock a tree node. My enumeration tree stores the children of a node as a

list ordered by the items the children contain. If an item does not exist as a child of

a node, my algorithm already has a pointer to the last child with an item occurring

before the item it is inserting. It locks the parent node at this point and searches

from this pointer, rather than repeating the entire search, to see if another processor

has created the required child before it locked the node. The processor unlocks the

parent node if the required child now exists, or creates the required child and then

unlocks the parent if it does not. Algorithm 3 shows the pseudo code to insert a

child node. The function to insert children to a locked node is nearly the same, but

it does not have to lock or unlock the parent, does not need to check if pointers have

changed since it tested and set them since the calling function locked the node, and

starts searching from where the insert child function left off.

When my algorithm updates the count of a node, it does not need to lock it,

but rather uses an atomic operation to increment the count. Atomic operations are

similar to critical sections, but are much lighter weight, ensuring only that no other

processes load from or store to the memory referred to by an atomic instruction, until

that instruction completes.
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Algorithm 3 Pseudo-code of the algorithm to insert child nodes

//insert the passed item as a child of the parent node

InsertChild(parentNode, childItem)

//variables

updatedNode //the node created or updated by the insertion

inserted //a flag set when the node has been inserted

//if the parent has no children,

//or the new node comes before the first child

if parentNode.firstChild == NULL or

parentNode.firstChild.item > childItem

parentNode.lock() //lock the parent node

//insert the child to the locked parent node

//NULL means the insertion search starts from the first child

updatedNode = InsertChildLocked(parentNode,

NULL, firstChild)

parentNode.unlock() //unlock the parent node

//else if the first child is the node to update

else if parentNode.firstChild.item == childItem

//set the updated node to the first child

updatedNode = parentNode.firstChild

//since the parent is not locked, the first child could have

//changed between the check and the set, so make sure

//the updatedNode is the correct node

while updatedNode.item != childItem

//move to the next node

updatedNode = updatedNode.sibling

//else the item to insert or update is not the first child

else

//use updatedNode to search the list

updatedNode = parent.firstChild

inserted = false //the item has not been inserted yet

while not inserted //loop until the inserted flag is true

//if all siblings have been checked or the item in the

//next sibling comes after the item being inserted

if updatedNode.sibling == NULL or

updatedNode.sibling.item > childItem
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//InsertChild continued

parentNode.lock() //lock the parent node

//insert the node after the last node with an item

//that comes before the item being inserted

updatedNode = insertChildLocked(parentNode,

updatedNode, childItem)

parentNode.unlock() //unlock the parent node

inserted = true //set the flag to end the loop

//else if the first sibling is the node to update

else if updatedNode.sibling.item == item

//set it as the updated node

updatedNode = updatedNode.sibling

//since the parent node is not locked, the next

//sibling could have changed between the check

//and set, so ensure it is correct

while updatedNode.item != childItem

//move to the next node

updatedNode = updatedNode.sibling

inserted = true //set the flag to end the loop

//else the next sibling’s item occurs before the

//childItem, so move across the siblings list

else

//move to the next sibling

updatedNode = updatedNode.sibling

endWhile

endElse

//atomic update of the nodes count

updatedNode.count++

3.1.4 Summary on Mining or Enumeration of Sub-Sequences

My depth-first and Insertion list approaches to sub-sequence enumeration both

require the same amount of node reads and writes to build the enumeration tree.
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They also both store the same number of nodes into their insertion data structures.

The difference between the two structures is that, for an input sequence of length n,

the depth-first approach requires 2n−1 reads of the input sequence, while the insertion

list approach only requires n reads of the input sequence. The trade-off is that, while

the depth-first approach requires 2n array entries for the node and index stacks, the

insertion list requires 2n−1 array entries. Both enumeration methods achieve all of

the benefits of the ideal mining framework I presented in Section 2.4.1. The user

can modify constraint values, add or remove constraints, and add new data, without

having to re-run the mining algorithm on data it has previously mined.

My shared memory implementation allows all local processors to update the same

enumeration tree. Each processor has its own enumerating structure, be it an insertion

list or node and index stacks, and performs enumeration with very little interaction

between processors. The only locking required is locking the parent node when a

processor creates a new node. Since both of my insertion algorithms only create each

node once, and they search the child list for nodes prior to locking the parent, the

impact of these locks is low. There is a critical section when loading input from the

database but it only reads a row from the database and stores it in array before exiting.

If this critical section limits performance, it means that the central database cannot

keep up with the mining computers, and has become the performance bottleneck.

This is the goal of my research; I want to complete the mining process in as close to

the time it takes to read the central database as possible.
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3.2 Result Collection

Since one focus of my algorithm is avoiding barriers where all computers must

complete a task before any of them can move on, I have chosen to use Rabenseifner et

al.’s Hybrid Overlap model, which allows shared memory processors to perform MPI

communication within OpenMP parallel sections. Each distributed computer has a

partition of the input database assigned to it, and then independently enumerates all

sub-sequences, so the mining process itself does not require any communication. The

only communication required is for results collection.

In the following section, I create two methods for collecting results. The first, using

the idea of Lakshmanan et al.’s Segment Support Map, is to have computers send

sequences to the collecting computer to flag them as potentially globally frequent as

soon as they become locally frequent. Once all computers have completed mining, the

collecting computer only needs to collect the potentially globally frequent sequences.

I call this approach collecting potentially frequent sequences. My second method is

to have each computer serialize its entire local enumeration tree and send it to the

collecting computer as soon as it completes the enumeration process. I call this second

approach collecting all sequences.

3.2.1 Collection of Potentially Frequent Sequences

My first approach to results collection, sending locally frequent sequences to the

root node as they become frequent, requires a modification to the enumeration algo-

rithm. Both of my enumeration methods insert the last item in the input sequence

as a child of every other node created by the enumeration. Because of this, both
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methods check if a sequence has become locally frequent when inserting the last item

from the input sequence. If the node containing the last input item is locally fre-

quent, but the algorithm has not flagged it as sent, it just became locally frequent.

My algorithm then sends the root to node path to the collecting computer to flag the

sequence. The collecting computer flags the sequence as potentially globally frequent

in its local results tree, inserting nodes with a count of zero if they do not exist. If the

node containing the last input item is not locally frequent, my algorithm checks if the

parent is newly locally frequent, and sends the root to parent path to the collecting

computer if it is.

Communication in this stage is between the flagging computer and the collecting

computer only. It does not require a barrier between all computers before sending

a sequence to flag. Using the Hybrid Overlap model, one process on the collecting

computer listens for incoming sequences, while the rest of the processes mine.

Using this technique, only flagging sequences when inserting the last child and

checking the last child before the parent, reduces the amount of sequences that my

algorithm needs to send. Since the root to parent path is a prefix of the root to

child path, sending the root to child path flags the entire root to parent path, so

only one send is necessary when both parent and child become frequent during the

same insertion. Both of my enumeration methods start node insertions from the

longest path in the tree, the depth-first approach by definition, and the insertion

list approach by inserting children starting from the end of the list. This, combined

with only checking for new locally frequent nodes when inserting the last input item,

ensures that my algorithm will never separately send a sequence and a prefix of the
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sequence that both became frequent during the same input sequence enumeration.

Flagging Results

When a node becomes frequent, my algorithm performs a root to node trace to

get the newly frequent sequence, which is the root to newly frequent node path in

the tree. It then sends the sequence to the collecting computer to flag. Using my

depth-first enumeration method, this trace is simple, since the node stack contains

the current path through the tree. If the updated child node is frequent, the new

sequence is the items from the node stack, and the item from the child node. If

the updated child node is not frequent, but the parent node became frequent, the

sequence is the items from the node stack without the item from the updated child

node.

Using my insertion list to enumerate sub-sequences makes this sequence trace

more complicated. The trace algorithm needs a way to calculate which insertion list

entry is the parent of a node. My insertion list algorithm knows the insertion list

index, that is, the position in the insertion list, for any item that it inserts to the

tree, even those that it does not have to add to the list. It can trace the path from

a node to the root using this index. I base my tracing method on the way I fill the

insertion list. Each item insert doubles the size of the list, and I add items from the

end to the start of the new space, as children of the nodes from the end to the start of

the list. The result of this is each power of two in the list is the start of a new item.

The number of list entries for an item is the same as the number of all list entries

that have come before it, and I insert all list entries in the same order. Finding the
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Figure 3.4: Tracing a node to parent path using an insertion list

power of two that an item starts at, and then subtracting it from the current node’s

insertion list index, gives the index of the parent node.

For example, consider the case where the highlighted node, d, becomes frequent

in Figure 3.4. The insertion list index for d is 13, since my insertion algorithm starts

inserting from position 15 in the insertion list, and the highlighted node d is the third

item it inserts. The largest power of 2 less than 13 is 24−1 = 8, so this the d’s start

position in the insertion list. The index of d’s parent in the insertion list is d’s index,

13, minus its start position, 8, giving 13− 8 = 5 for the parent index. Repeating the

process, the parent node for c is 5− 4 = 1 and there is no non-negative integer power

of two less than 1, so the trace is complete. The traced list indices for the sequence

are 1, 5, 13, which correspond to the items a, c, d, in the tree.

Collecting Results

The controlling computer has every node that is locally frequent on one computer

flagged once all computers have completed enumerating sub-sequences. It then starts

a depth-first transversal of its local tree, visiting only those nodes that it has flagged

as potentially being globally frequent. Every time the transversal moves to a poten-
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tially frequent child node, it sends a move to child and count request to all other

computers. The computers move their local transversals to the same position the

collecting computer is in and respond with the count of the requested node. If the

collected node turns out to be globally infrequent, the depth-first transversal does

not need to search its children, even if the algorithm previously flagged them as po-

tentially frequent. The frequency of a child node cannot be greater than that of the

parent since the root to parent path is a sub-sequence of the root to child path. When

a node turns out to be globally infrequent, the controlling computer sends a move to

sibling and count request.

I have implemented the depth-first results collection as an iterator over all fre-

quent sequences. It consists of three functions. The first function initializes the

depth-first transversal on the collecting computer, setting it up so that the iterator

stack contains the longest frequent sequence following the first frequent child nodes.

The second function also runs on the collecting computer, returning the current fre-

quent sequence from the iterator stack, and setting the stack to contain the next

frequent sequence from the depth-first transversal. The third function runs on all

other computers, listening for movement requests from the controlling computer, and

sending it the requested counts. The respective pseudo code for these three functions

is in Algorithm 4, Algorithm 5, and Algorithm 6.

Figure 3.5 shows the stages of my method of collecting only potentially frequent

items. During the first stage, each computer reads a non-overlapping partition of the

database, and enumerates all sub-sequences from each database row. As soon as a

sequence becomes locally frequent on a computer, my algorithm sends the sequence



80 Chapter 3: Single-Scan Sequential Mining Algorithm

Algorithm 4 Pseudo-code for initializing the iterator

//stack[] -- the stack used for the depth-first search

//length -- the current length of the stack

InitializeIterator(tree, stack[],length)

length = 0 //set the length to zero

curr = tree.root.firstChild //the current node being counted

signal //the signal to send to remote modes

//find the first potentially frequent child of the root node

while curr != NULL and curr.flag == FALSE

curr = curr.sibling

//set the signal to move to sibling and count

signal = moveToSiblingAndCount

//while there is at least one potentially frequent node

while curr != NULL

//send the move and count request

sendRequest(curr.item, signal, length +1)

//perform a reduction operation to get the global count

curr.count = MPI_Reduce()

if curr.count >= minSup //if the new count is frequent

//push the counted node onto the stack

stack[length ++] = curr

//set the new current node to the first child

curr = curr.firstChild

//set the signal to move to child and count

signal = moveToChildAndCount

else //the new count is not frequent

curr = curr.sibling //move curr to the next sibling

//set signal to move to sibling and count

signal = moveToSiblingAndCount

//find the next potentially frequent node

while curr != NULL and curr.flag == FALSE

curr = curr.sibling

endWhile

endWhile



Chapter 3: Single-Scan Sequential Mining Algorithm 81

Algorithm 5 Pseudo-code for getting the next frequent sequence from the iterator

//stack[] -- the stack used for the depth-first search

//length -- the current index of the stack

//sequence the returned frequent sequence

NextFrequentSequence(tree, stack[],length, sequence)

curr //the current node being counted

signal //the signal to send to remote nodes

sequence //the sequence to return

if index > 0 //if there is an item on the stack

copyArray(stack, sequence) //copy stack into sequence

//pop the last frequent item off the stack

curr = stack[--length]

//move to the next sibling of the last frequent item

curr = curr.sibling

//find the first potentially frequent sibling

while curr != NULL and curr.flag == FALSE

curr = curr.sibling

//set the signal to move to sibling and count

signal = moveToSiblingAndCount

//while there is a potentially frequent node

while curr != NULL

//send the move and count request

sendRequest(curr.item, signal, length+1)

//perform a reduction operation to get the global count

curr.count = MPI_Reduce()

if curr.count >= minSup //if the node is globally frequent

stack[length++] = curr //push it onto the stack

//move curr to the first child of the frequent node

curr = curr.firstChild

//set the signal to move to child and count

signal = moveToChildAndCount

else //the new node is not frequent

curr = curr.sibling //move to the next sibling

//set the signal to move to sibling and count

signal = moveToSiblingAndCount
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//NextFrequentSequence continued

//find the next potentially frequent node

while curr != NULL and curr.flag == FALSE

curr = curr.sibling

endWhile

//the stack has been updated to contain

//the next frequent sequence

return TRUE

else

//there are no more items on the stack,

//so the transversal is done

sendRequest(NULL, quit, NULL)

return FALSE

endIf

to the collecting computer, which flags it as potentially globally frequent. Since

each computer is using the Hybrid Overlap MPI plus OpenMP approach, multiple

processors on each computer may simultaneously send sequences to the collecting

computer. My algorithm waits until all computers have finished mining, since the

collecting computer needs to have all locally frequent sequences flagged, before it

begins results collection.

The results collection algorithm loops over two stages, sending and receiving move-

ment requests, and sending and receiving counts. There is a barrier after each count

reception since the collecting computer must determine if a node is globally frequent

before moving to the next node. My algorithm may need to repeat these two stages

and the barrier numerous times. With a domain of n items, and a maximum trans-

action length of l, there can be as many as n!/(n− l)! nodes in the tree. The n!

represents the n possible children of the root node, the n−1 possible children of each

of these nodes, and so on, until it covers every possible permutation of the n domain
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Algorithm 6 Pseudo-code for listening to requests on remote computers

IteratorListener(tree)

done = FALSE //flag set to true when a quit signal is received

length = 0 //the current length of the iterator stack

inSync = FALSE //if the local and remote computers are in sync

stack[] //the local depth-first transversal stack

remoteItem //the item received from the collecting computer

signal //the signal received from the collecting computer

remoteLength //the current depth of the collecting computer

localCount = 0 //the count of the requested node locally

//push the root node of the tree onto the stack

stack[length++] = tree.root.firstChild

while done != TRUE

(remoteItem, signal, remoteLength) = receiveRequest()

//if the remote search has moved up the tree

if length > remoteLength

length = remoteLength //move up the tree with it

if signal == quit //if a quit signal was received

done = TRUE //set the done flag to true

//if a move to sibling and count signal was received

else if signal == moveToSiblingAndCount

//if we’re on the same level as the remote transversal

if length == remoteLength

//while we haven’t found the item

while stack[length-1].item < remoteItem

//move to the next sibling

stack[length-1] = stack[length-1].sibling

//if we found the remote item

if stack[length-1].item == remoteItem

//we are in sync with the collecting computer

inSync = TRUE

//set the count to send

localCount = stack[length-1].count

else //we didn’t find the remote item

//we’re not in sync with the collecting computer

inSync = FALSE

localCount = 0 //the local count is zero
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else //the collecting computer is deeper in the tree

//the local tree does not have the path being collected

inSync = FALSE

localCount = 0 //the local count is zero

endIf

//send the local count to the collecting computer

MPI_Reduce(localCount)

//if a move to child and count signal was received

else if signal == moveToChildAndCount

//if we’re in sync with the collecting computer

if inSync == TRUE

//push the first child onto the stack

stack[length] = stack[length-1].firstChild

length++

//while we haven’t found the item

while stack[length-1].item < remoteItem

//move to the next sibling

stack[length-1] = stack[length-1].sibling

//if we found the remote item

if stack[length-1] == remoteItem

//we’re in sync with the collecting computer

inSync == TRUE

//set the count to send

localCount = stack[length-1].count

else //we didn’t find the remote item

inSync = FALSE

localCount = 0 //the local count is zero

else //else we’re out of sync

localCount = 0 //the local count is zero

//send the local count to the collecting computer

MPI_Reduce(localCount)

endif

endWhile
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Figure 3.5: Stages of my potentially frequent sequence collection algorithm

items. The (n− l)! represents the n− l nodes that would be children of the nodes on

the lth level of the tree, and all of their descendants.

This method of only collecting potentially frequent sequences eliminates the com-

munication required to send nodes that cannot be globally frequent. It meets the

goals of the ideal mining algorithm I presented in Section 2.4 using multiple proces-

sors and multiple computers. It does not capture or transform the database prior to

mining, meaning it mines the data as it reads it from the input database, and does

not apply any constraints at the local level that could prune a sequence that is fre-

quent at the global level. It does not have any barriers during the mining stage, since

all computers enumerate sub-sequences independently, and the only communication

required during this stage is the flagging of potentially globally frequent sequences.

These flag sends can occur at most once per tree-node.
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The problems with this implementation are that it requires communication, even

though the communication does not require barriers, during the mining stage, and

requires barriers after every node count in the results collection stage. If the network

is the performance bottleneck of the algorithm, increasing the network traffic by

flagging locally frequent sequences will decrease network performance, and not allow

the central database to become the bottleneck. The barriers required while iterating

over the results tree force the algorithm to wait for the slowest computer at each stage.

On the other hand, if the network is not the bottleneck, flagging potentially frequent

sequences during the mining stage will have little performance impact. Having the

algorithm collect only those nodes that it has flagged potentially globally frequent

reduces the amount of nodes that it must transfer during the results collection stage.

The goal of my algorithm is to mine a database and collect the results in as close to

the time it takes to read the database as possible. Reducing the amount of time my

algorithm spends collecting results after reading the database allows it to come closer

to this goal.

3.2.2 Collection of All Sequences

My second approach to results collection is to have each computer serialize its

entire local tree and send it to the collecting computer. Unlike my method of col-

lecting only potentially globally frequent sequences, collecting all sequences does not

require any modification of my enumeration algorithms. Each computer enumerates

sub-sequences from all of the rows in its database partition independently. When a

computer completes sub-sequence enumeration, using either of my enumeration meth-
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ods, it does not need to wait for any other computers to complete mining; it can start

serializing and sending its results. Under the Hybrid Overlap approach of combining

MPI with OpenMP, as processors on the collecting computer complete enumerating

their last input sequence, they switch from mining to loading serialized trees from

other computers.

The collecting computer may not have a processor available to receive a serialized

tree directly. To get around this without having to wait for a processor to become

available, I have each computer store its serialized tree to disk. If possible, they store

it to disk on the collecting computer so that no network communication is required

when the collecting computer has a processor available to load the serialized tree. This

depends on the operating system to handle running my enumeration algorithm or tree-

loading algorithm while receiving files over the network. The benefit of working with

files is that they do not require two-way communication. Where my first collection

method requires numerous broadcast and reduction operations to send signals and

collect counts, this second approach simply saves a tree by opening a file stream and

writing to it until the entire tree is stored, or loads a tree by opening a file stream

and reading from it until it reaches the end of the file.

I use a depth-first approach to serialize a tree as a series of integers. There are

two cases to store in the serial file. The first is a node and its count, which I store as

a signed integer and an unsigned integer. The second case is an instruction to pop

nodes off the depth-first stack. I have stored these using a negative integer. To collect

the result trees my algorithm generates on each computer, I have implemented two

functions, one to serialize a tree and save it to disk, and one to load a serialized tree
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from disk and insert it to the results tree on the collecting computer.

Algorithm 7 shows my tree serialization algorithm. It uses a depth-first method to

serialize the tree. Starting from the first child of the root node, my algorithm writes

the node’s item and its count to the binary file, and then pushes the node onto the

stack. It continues adding the first children in this way until it reaches a node with

no child. It begins a loop at this point. It pops nodes off the stack, keeping track

of the number of nodes removed, until it finds a node with a sibling. Once it finds

a node with a sibling, it writes the number of positions it moved up to the binary

file as a negative integer. Next, it writes the sibling and its count to the binary file,

and then follows all of the first child pointers, adding all of the encountered nodes

and their counts to the file and the stack. It goes back to the top of the loop at this

point, and repeats it until the stack is empty. The serialize function only uses one

local processor.

My tree-loading algorithm works in a similar manner. It reads a signed integer

from the file. If the integer is positive, it is an item, and the algorithm inserts it as

a child of the node it most recently added to the stack. It then reads an unsigned

integer from the file and increments the count of the node by this value. If it reads a

negative integer from the file, it adds it to the current stack position, which pops items

off the stack. Algorithm 8 shows my tree-loading algorithm. Multiple processors on

the collecting computer can run this algorithm simultaneously, using the insert child

function I created in Section 3.1.3.

This method requires far less communication during the mining process than my

algorithm that collects only potentially frequent nodes. The only communication
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Algorithm 7 Pseudo-code for the serialize tree function

//serialize the passed tree and store it to the passed file

Serialize(tree, file)

stack[] //the stack used to perform a depth-first transversal

stackPos = 0 //the current position in the stack

upLevels //the number of items popped off the stack

curr = tree.root.firstChild //the current node being serialized

while curr != NULL //while there is still an item to insert

file.write(curr.item, curr.count) //write the item

stack[stackPos++] = curr //add the node to the stack

curr = curr.firstChild //move to the first child

//all first children have now been added to the file and stack

while stackPos > 0 //while there are still items on the stack

curr = stack[--stackPos] //pop the top item off the stack

upLevels = -1 //set the levels moved up to 1

//loop until we find a sibling or run out of stack nodes

while curr.siblings == NULL and stackPos > 0

curr = stack[--stackPos] //pop a node off the stack

upLevels-- //move up another level

if curr.siblings != NULL //if we found a node with a sibling

file.write(upLevels) //write the number of levels moved up

curr = curr.siblings //move to the sibling

while curr != NULL //now follow the first child pointers

file.write(curr.item, curr.count) //serialize the node

stack[stackPos++] = curr //put the node on the stack

curr = curr.firstChild //move to the first child

endIf

endWhile

is computers telling the collecting computer their serial files are ready for it to load.

During the results collection stage, computers can serialize their results independently,

and not have to wait for other computers to complete the mining process. There is no

need to send requests for counts, so in situations where most tree nodes are frequent,
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Algorithm 8 Pseudo-code for the serialized tree loading function

//load the passed file and insert it into the local tree

LoadSerialized(tree, file)

stackPos = 1 //the stack contains the root node

inItem //the integer read from the file

stack[] //the stack for the depth-first insertion

stack[0] = tree.root //put the root node on the stack

inItem = file.readInt() //read a signed integer from file

while file.EOF != TRUE //while there is more to read

if inItem > 0 //if the next integer represents a node

//read the count from the file, insert it and the item

//as a child node of the top item on the stack,

//and push the new child onto the stack

stack[stackPos] = insertChild(stack[stackPos-1],

inItem, file.readUnsignedInt())

stackPos++ //increment the stack position

else //the next integer represents an upward move

//decrement the stack position by adding a negative int

stackPos += inItem

endWhile

sending the serialized tree has less overhead than requesting counts for each node.

Figure 3.6 shows the stages of this method.

Unfortunately, computers do not make use of multiple processors while serializing

the tree. Another drawback of my serialization algorithm is that it serializes and

transfers entire trees. When not many tree nodes are frequent, it transfers excess

data, in comparison with my first result collection method.
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Figure 3.6: Stages of the collecting all sequences method

3.2.3 Summary of Results Collection

I have created two methods for collecting results. The first flags all locally fre-

quent sequences as potentially globally frequent during the mining process, and when

the mining process is complete, it only collects those potentially globally frequent

sequences. The second serializes the entire local tree on each computer to disk and

loads all of these trees on the collecting computer. The first method transfers less

tree nodes than the second when there are infrequent tree nodes. It does so at the

cost of multiple movement request broadcasts and count reduction operations. The

second method transfers the entire local tree from each computer to the collecting

computer, but does not require communication during the mining process, and uses a

file stream rather than multiple broadcasts and reductions during results collection.

Only the second method uses multiple processors during results collection, by having
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each processor read a serialized file on the collecting computer.

Because my first method performs communication during the mining process, it

does not perfectly match the framework of the ideal algorithm. My second method

matches the framework for the ideal algorithm. Both algorithms mine a non-overlapping

partition of the dataset on each computer, using all available local processors in a

shared memory environment, and do not need to transfer projected databases between

computers. Neither algorithm requires barriers during the mining process. They both

have the potential to complete the mining process in the time it takes to read the

input database. The first algorithm only communicates during the mining process to

flag potentially frequent sequences, and the second algorithm only sends done signals,

so the amount of scalability-limiting communication overhead is low relative to the

cost of sub-sequence enumeration.

3.3 Load Balancing

The one requirement of the ideal framework I presented in Section 2.4 but have not

yet discussed with either of my enumeration and result collection algorithms is load

balancing. The amount of runtime my algorithms require on each computer depends

on the size of the database partition it assigns to each computer. As outlined in the

ideal framework, the load balancing mechanism should not introduce overhead by

requiring communication, and should not prevent algorithms from mining in the time

it takes to read from the input database.

As She et al. find with their first Synchronous Partitioned Data Algorithm, and

Tanbeer et al. find with their Asynchronous Partitioned Data Algorithm, dividing
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a large database evenly between homogeneous computers provides a balanced load,

and does not incur any load balancing overhead. While sampling the database, such

as Cong et al. do in their Asynchronous Duplicated Data Algorithms, can ensure a

more balanced load, this type of load balancing causes communication overhead, and

further, eliminates the possibility of completing the mining process in the time it

takes to read the input database.

To balance load on heterogeneous computers, I follow the approach She et al.

and Tanbeer et al. used, and modify the number of rows assigned to each computer

without looking at the contents of the rows. Since each computer has different spec-

ifications, I use a modification of Galindo et al.’s algorithm to determine the number

of rows each computer should receive. As described in Section 2.2, Galindo et al.

balance load by starting with the data partitioned evenly between all computers. Af-

ter a set amount of time has passed, each computer reports how much input it has

processed. Their algorithm then reassigns input data, taking some away from the

slower performing computers, and moving it to the faster computers. This approach

uses the performance of the actual algorithm, with the actual data, as a means to

compare the computers and balance the load.

Since my first results collection methods needs to know how many database rows

to assign each computer at the start of execution to determine local minimum sup-

port, and Galindo et al.’s algorithm introduces overhead, I created an approach that

uses the performance of my algorithm, but does not use the actual input data, to

compare computers and balance load. I run my distributed mining algorithm with an

identical benchmark input dataset assigned to each computer to determine the rela-
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tive performance of each computer. I use all available processors on each computer,

so this load balancing method factors in the overhead from using multiple processors,

and I perform result collection to factor in the overhead of my collection methods.

My algorithm partitions the input database relative to performance without any

load balancing work during the mining process. Each computer only needs to have

its performance measured once. The performance will remain constant unless there

are changes to the system. This will not result in a perfectly balanced load, but as I

mentioned in Section 2.2, Utrera et al.’s work on load balancing finds that algorithms

with some load imbalance but little balancing overhead end up taking less runtime

than algorithms that incur high overhead to achieve a perfectly balanced load.

Mining the same dataset on every computer, c, gives the runtime, rc, for each com-

puter. To determine the percentage of the input database that each computer should

read, I first find the reciprocal of each runtime, since my load balancer should assign

a larger number of rows to computers with smaller runtimes. I call this reciprocal the

score of each computer, and denote it by sc in Equation (3.1):

1

rc
= sc (3.1)

Equation (3.2) shows how to determine pc, the portion of the input database

assigned to each computer, by dividing the score of each computer by the sum of

scores from all computers.

sc∑|c|
i=1 si

= pc (3.2)
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Consider this load distribution method running on four computers, with the run-

times from running the benchmark input dataset listed in column Bench Time of

Table 3.2. Applying Equation (3.1) gives the scores of each computer, as listed in

the Scores column, and applying Equation (3.2) gives the sizes in the Portion col-

umn. To show that the portion sizes are correct, consider if the benchmark dataset

has 20,000 rows. Dividing the total number of rows by the runtime of the algorithm

gives the number of rows that each computer can enumerate per second, with the

results in the RpS column. Now consider running the mining algorithm on an input

database containing 1,000,000 rows. Multiplying the size of the input database by

each computer’s portion value gives the number of rows that my algorithm assigns

each computer to achieve a balanced load, shown in the Rows column. The Time

column shows the result of dividing the number of rows each computer receives by the

number of rows per second it can enumerate. Using the portion sizes from the bench-

mark database, all four computers have the same expected runtime for the 1,000,000

row input database, given the number of rows per second that they can enumerate.

Table 3.2: Sizing partitions based on benchmark database runtimes

Computer Bench Scores Portion RpS Rows Time
Time

1 103 0.009708738 0.507322982 194.1747573 507323 2612.71335
2 228 0.004385965 0.229185382 87.71929825 229186 2612.71335
3 303 0.003300330 0.172456327 66.00660066 172456 2612.71335
4 574 0.001742160 0.091035309 34.84320557 91035 2612.71335

To summarize, my load balancing mechanism uses a performance measure of each

computer, based on a benchmark run of my algorithm, to partition input data between

computers. This method divides the data prior to the execution of my algorithm, so it
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does not require any communication during execution. Since the number of rows my

algorithm assigns to each mining computer does not change, mining computers do not

need to use the Hybrid Overlap model to assign a process to receive incoming MPI

requests during the mining process, so it can use the maximum available processors

for mining.

3.4 Summary

In this chapter, I presented two methods for sub-sequence enumeration, two meth-

ods for collecting results, and a method of balancing load between computers. My first

sub-sequence enumeration method uses a list of all tree nodes created or updated by

the current sequence, so that it only has to read each item from the input sequence

once. My second sub-sequence enumeration method takes a depth-first approach,

moving through the tree nodes corresponding to the input sequence and inserting or

updating children, which requires reading an input item for each node it inserts or

updates but uses less memory than the insertion list.

My first results collection method flags sequences as they become locally frequent

on any computer, and then collects results from all computers simultaneously, so

that it only has to collect those tree nodes that are potentially globally frequent and

are children of a globally frequent parent. My second collection mode collects all

tree nodes from every computer by serializing them to disk. This lets the collecting

computer load serialized trees as soon as they become available and it has a free

processor to do so, so it does not require synchronization between computers, but

does not reduce the number of collected nodes based on the minimum support.
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My load balancing mechanism uses the runtime of a previous run of my algorithm

to determine how each computer performs relative to each other. It partitions the

data according to this performance so that all computers will complete execution at

the same time.

Combining my enumeration methods, results collection methods, and approach to

load balancing, gives my new algorithm for mining from a central database in near the

time it takes to read the input data. I implement all of the discussed algorithms in C,

using MPI for distributed-memory communication, and OpenMP for shared memory

parallelism. My algorithms meet the goals I set forth in Section 2.4, the discussion

of the ideal mining framework for mining from a central database.



Chapter 4

Experimental Evaluation

In this chapter, I evaluate my algorithm using a series of experiments, and present

their results. I implement and test my algorithm, with both insertion and collection

modes, in the C programming language [Ker88], using the OpenMP API to uti-

lize shared-memory processors, and the MPI API [Mes] to communicate between

distributed-memory computers. I compile and test my code under both Microsoft R©

Windows R© and Scientific Linux R© 6 running Linux R© Kernel 2.6.32. I used the

MPICH [Arg] MPI library on Windows R© and the Open MPI [Opea] MPI library

on Linux R©. Insertion mode 1 is my sub-sequence enumeration algorithm using the

insertion list, as I presented in Section 3.1.1, and insertion mode 2 is my algorithm

using a depth-first sub-sequence enumeration method, as I presented in Section 3.1.2.

Collection mode 1 is my method of collecting only potentially frequent sequences, as

I presented in Section 3.2.1, and Collection mode 2 is my method of serializing local

trees and loading them on the collecting computer, as I presented in Section 3.2.2.

To measure the performance of different aspects of my algorithm, I now design and

98
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run a series of tests. I measure the effects of the number of shared-memory processors,

the number of rows in the input dataset, and the length of sequences in the input

dataset. I measure the performance of my collection modes as the minimum support

threshold decreases, measure the effectiveness of my load balancing mechanism, and

test how my algorithm performs as I increase the number of distributed memory

computers used. Finally, I compared my algorithm with the PrefixSpan algorithm,

using a freely available executable from Illimine [HCC+06]. Before I present my

results, I describe the hardware I ran my experiments on, and the input datasets that

I used.

4.1 Hardware

I run my experiments on two separate distributed-memory systems. The first is the

University of Manitoba Bird Cluster. The Bird Cluster is a homogeneous distributed-

memory system running Scientific Linux R© 6. A gigabit Ethernet network connects

the computers. Each computer has an Intel R© CoreTM i5-661 processor, which is a

dual core processor with Hyper-Threading, and 7.5 gigabytes of DDR3 memory. I

store my input databases and results on one of the Data Mining Lab computers,

Myna-04, which has a quad-core AMDTM OpteronTM 2360 processor, and is not part

of the Bird Cluster.

The second distributed-memory system I use is my heterogeneous cluster of four

home computers. The most powerful computer, which mines while hosting the input

files and storing the results, has an Intel R© CoreTM i7-920 processor, which is a quad

core processor with Hyper-Threading, 6.0 gigabytes of DDR3 memory, and is running
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Microsoft R© Windows R© 7. The other three computers are an Intel R© CoreTM i3-530

processor (dual core with Hyper-Threading) with 4.0 gigabytes of DDR3 memory

running Windows R© Home Server, an Intel R© CoreTM 2 Quad Q6600 (quad core)

with 6.0 gigabytes of memory running Windows R© 7, and an Intel R© CoreTM 2 Duo

E5200 (dual core) with 4.0 gigabytes of memory running Windows R© Vista. A gigabit

Ethernet network connects all four computers.

4.2 Datasets

I use many input datasets to test different aspects of my algorithm. The input

datasets are text files. The first line is the number of rows that the file contains. The

remaining lines are the rows of the dataset, and consist of a series of tab-delimited

integers. The first number is the unique id of the row in the dataset. The second

number is the number of items in the row. Finally, the remaining numbers repre-

sent the sequence that my algorithm will enumerate. Each integer in the sequences

represents the same item across all rows in the dataset. Table 4.1 shows the top left

portion of a dataset with ten thousand rows and a row length of five.

Table 4.1: Structure of an input data file

Num Rows/Row ID Row Length Item 1 Item 2 . . .

10000
1 5 1 5 . . .
2 5 6 2 . . .

. . . . . . . . . . . . . . .

The input datasets fall into two categories: repeat, and synthetic. My repeat

datasets consist of repeated identical rows. This ensures that every sequence enumer-
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ation that my algorithm performs takes the maximum amount of time, requiring the

full 2n−1 node insertions. Another effect of the repeat datasets is that, when the load

is balanced, counts on all computers will reach the local minimum support threshold

at the same time, which is the worst-case scenario for my first insertion mode. This

will cause all of the flagging communication to occur at the same time. I have created

repeat datasets using ten thousand, one million, ten million, and one hundred million

rows, and row lengths of five, ten, fifteen, and twenty. The frequent results of the

repeat datasets are all 2n − 1 sub-sequences, so I can easily verify the results of my

algorithm against these datasets. I have used these repeat datasets to measure the

effects of increasing the number of rows, sequence length, number of processors, and

number of computers.

I use the IBM R© Quest Synthetic Data Generator [AS99], which researchers com-

monly use to evaluate data-mining algorithms, to create the synthetic dataset. The

IBM R© Quest group has designed this data generator to create a dataset following

realistic supermarket purchase trends. I use it to create a dataset consisting of one

million sequences. The average sequence length is 10 items, with a minimum of 0,

and a maximum of 20 items. The data generator creates a report with the counts of

all sequences it has generated, against which I will verify my results. I use this data

set to measure the effectiveness of my load balancing and result-collection methods.

4.3 Experiments and Results

Each of my experiments measures the performance of an aspect of my algorithm,

and is the average over three runs. I start my experimentation on one computer,
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and measure the effectiveness of my shared-memory sequence-enumeration method

as the number of local processes increases. Still using one computer, I measure how

the performance of my algorithm changes as the number of input sequences increases,

and then how it changes as the length of the input sequences increases. Next, I

test my results collection methods by mining the synthetic dataset and varying the

minimum support threshold. Following this, I evaluate my load balancing technique

by comparing the performance of each of my heterogeneous computers. I then measure

the performance of my algorithm as the number of distributed-memory computers it

uses increases. Finally, I compare my algorithm with the serial PrefixSpan algorithm.

4.3.1 Experiment: Number of Shared-Memory Processors

My first experiment tests the effects of the number of shared-memory processors

my algorithm uses. I run my algorithm independently on my CoreTM i7-920 computer,

which measures the effectiveness of multiple cores and Hyper-Threading, and on my

CoreTM 2 Q6600 computer, to measure the effectiveness of multiple cores only. I test

both of my sub-sequence enumeration algorithms on each computer, and compare

their runtime and memory requirements. I perform all of the tests where I vary the

number of processors using a repeat dataset consisting of one million transactions

containing fifteen items each.

With Hyper-Threading

Figure 4.1 shows the average runtime of my algorithm using insertion mode 1

on my CoreTM i7-920 computer, using 1 to 8 processes to utilize the four Hyper-
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Threading cores, running on Windows R© 7. I predict the time for the next number

of processes by multiplying the runtime by the number of processes used, and then

dividing by the next number of processes to use. I also include a line for 1/x, which

represents the single process runtime divided by the number of local processes. This

line represents the runtime if my algorithm scaled perfectly, that is, if it had no

overhead from locks, critical sections, or the OpenMP library itself.
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Figure 4.1: Runtime on an i7-920 using insertion mode 1 as the number of processes
increases

The average runtime using two processes is well above the predicted and 1/x times.

This occurs consistently, and seems to be a quirk of Hyper-Threading processors.

Past the anomalous two processes time, the decrease in runtime closely matches the

predicted and 1/x times. The distance between the runtime and 1/x times slowly

increases, from a difference of 78 seconds using three processes, to 97 seconds using 8

processes. This represents the overhead of OpenMP, the critical section for reading

the input, and the cost of locking tree nodes.
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Figure 4.2 shows the percentage differences between the runtime and the predicted

runtime. The runtime is 45% higher than predicted when two processes are used, but

is 21% lower than predicted when three processors are used, bringing it back in line

with the 1/x time. Past the third process, the differences stay between 3% and 7%.

The trend of differences is a low difference for the odd number of processes, followed

by a higher difference for the even numbers. This suggests that Windows R© 7 is

keeping the processes on as few cores as possible, so it is scheduling the odd number

processes to new cores, and the even number processes to Hyper-Threading units.

Figure 4.3 shows the increase in memory usage as the number of processors in-

creases. The number of memory allocations increases by six with each processor,

representing the extra insertion list for each process, and the extra timers that track

runtime. The number of bytes required increases by 65,744 with each additional pro-

cessor, representing the size of the insertion list, which consists of 214 4-byte pointers

and the memory for the extra timers.

Figures 4.4, 4.5, and 4.6 show the results of the same tests, but using my second

insertion method. The average runtime decreases along with the predicted and 1/x

times until after the fourth process. From the fifth process on, there is a gap between

the runtime and the 1/x time. Based on the differences between the runtimes and

predicted times, it seems that in this case, Windows R© is scheduling the first four

processes to separate cores, and starts using Hyper-Threading for the fifth process.

The runtime using five processes takes an average of 5 seconds longer than the runtime

using four, but it decreases as predicted past five processes. The number of memory

allocations increases by 9 for each process added, representing the timers and insertion
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Figure 4.2: Difference between runtime and predicted time on an i7-920 using insertion
mode 1 as the number of processes increases
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Figure 4.3: The memory usage of insertion mode 1 on an i7-920 using insertion mode
1 as the number of processes increases

stack, and the number of bytes increases by 332, which consists of the two stacks of

14 4-byte pointers and the memory for the extra timers.
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Figure 4.4: Runtime on an i7-920 using insertion mode 2 as the number of processes
increases
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Figure 4.5: Difference between runtime and predicted time on an i7-920 using insertion
mode 2 as the number of processes increases

Figures 4.7 and 4.8 compare the runtimes and memory usage of insertion modes

1 and 2. The best performing algorithm switches because of the different scheduling
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Figure 4.6: The memory usage of insertion mode 1 on an i7-920 using insertion mode
2 as the number of processes increases

strategies used concerning Hyper-Threading. When insertion mode 1 runs with two

processes, insertion mode 2 is faster. Insertion mode 2 stays slightly faster with three

and four processes, until it starts using Hyper-Threading at 5 processes. Insertion

mode 1 is 7% faster than insertion mode 2 with 1 and 7 processes, is 8% faster with 8

processes, and is 16% faster than insertion mode 2 with 5 and 6 processes. The results

with 1, 7, and 8 processes are influenced the least by the scheduling differences, giving

the most accurate direct performance comparison of the insertion modes. As I have

shown, insertion mode 1 requires more memory than insertion mode 2.
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Figure 4.7: Comparison of insertion mode 1 and 2 runtimes on an i7-920 as the
number of processes increases
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Figure 4.8: Comparison of insertion mode 1 and 2 memory on and i7-920 as the
number of processes increases

Without Hyper-Threading

I perform the same tests on both insertion modes on my computer with an Intel R©

CoreTM 2 Q6600 quad core processor to measure the effects of increasing the number
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of processes on a processor without Hyper-Threading. The memory usage scales the

same as it does on the Intel R© CoreTM i7-920, but the runtime does not have the

same anomalies that it does when run on a Hyper-Threading processor. Figure 4.9

shows the average runtime of insertion mode 1 on the Q6600. The runtime decreases

following the same trend as the 1/x values, and average runtime closes on the pre-

dicted runtimes, coming within 5% of it when the number of processes reaches four,

as shown in Figure 4.10. The difference between the runtime and the 1/x values is

372 seconds when using two processes, and slowly increases, up to 378 seconds with

four processes. This shows that the majority of the overhead from OpenMP, locks,

and critical sections is incurred when moving to two processes, and that it slowly

increases with each additional process.
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Figure 4.9: Runtime on a Q6600 using insertion mode 1 as the number of processes
increases

Using insertion mode 2, the runtimes decrease as the number of cores used in-

creases, again with none of the anomalies seen on the Hyper-Threading processor.
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Figure 4.10: Difference between runtime and predicted time on a Q6600 using inser-
tion mode 1 as the number of processes increases

Figure 4.11 shows the average runtime, predicted time, and 1/x times of insertion

mode 2 on a Q6600. The average runtime and 1/x times decrease following the same

trend, and the average runtimes converge with the predicted runtimes, coming within

6% of it when the number of processes reaches four. I show this in Figure 4.12. Sim-

ilar to my first insertion method, the differences between the runtimes and the 1/x

times slowly increase, moving from 439 seconds with two processes, to 446 seconds

with four processes.

Figure 4.13 compares insertion modes 1 and 2 on the Q6600. Unlike the compar-

ison between modes 1 and 2 on the i7-920, the average runtime of insertion mode 1

is always faster than that of insertion mode 2 on this computer, 7% faster with one

processor, 8% with two, 9% with three, and 10% with four. The memory required is

the same as that for one to four processes on the i7-920.

Considering the results from the i7-920 using 1 and 8 processors, which are not
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Figure 4.11: Runtime on a Q6600 using insertion mode 2 as the number of processes
increases
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Figure 4.12: Difference between runtime and predicted time on a Q6600 using inser-
tion mode 2 as the number of processes increases

susceptible to scheduling differences, and all of the results from the Q6600, insertion

mode 1 has steadily increasing performance compared to insertion mode 2 as the

number of processes increases. This increase comes at the cost of increased memory
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Figure 4.13: Comparison of insertion mode 1 and 2 runtimes on a Q6600 as the
number of processes increases

usage. Increasing improvement shows that insertion mode 1 scales better as the

number of computers increases than insertion mode 2. The difference in scalability is

due to insertion mode 2 needing to perform 2n− 1 reads of the input sequence, while

insertion mode 1 only needs to perform n reads of the input sequence.

The result of Experiment 4.3.1 is that for both of my insertion modes, with the

exception of quirks in the runtime caused by scheduling on Hyper-Threading capable

processors, as the number of shared-memory processors used increases, the runtime

divides between the available processors. OpenMP, locks, and critical sections cause

some overhead, but the majority of this overhead occurs when moving from one to two

processes, and only slowly increases when adding additional processes. Equation (4.1)

predicts the runtime of a dataset with p processes, rp, using the runtime of the same

dataset running on fewer processes:
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rp =
rp−1 ∗ (p− 1)

p
(4.1)

Applying this equation recursively, until it reaches a known runtime, loses preci-

sion with each call due to the precision of the structures used to time the application.

Insertion mode 1 performs faster than insertion mode 2, requiring less runtime, but

for an input sequence of length l, it requires 2l−1 additional bytes of memory per

processor, compared to the 2l bytes required by insertion mode 2.

For every test with multiple processors, I measured the amount of time each

processor spends reading input sequences and inserting their enumerations to the

tree. In all tests, each processor required the same amount of runtime. This means

that the greedy approach I used for reading rows from the input database, having

each processor claim the next row from the database when it finishes its current row,

balances the load between processors.

4.3.2 Experiment: Number of Input Sequences

My second experiment measures the effect of increasing the number of rows in the

input database on the runtime and memory requirements of my algorithm with both

insertion modes. I perform this test using one of the University of Manitoba Bird

computers, which have Intel R© CoreTM i5-661 processors. I use three repeat datasets

as input, one with one million, one with ten million, and one with one hundred million

rows, with each row containing the same sequence of five items. Since the number of

rows in my input datasets increases by a multiple of ten, I predict the runtime of each

dataset to be ten times the runtime of the previous. I also include the time to read
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the input file without mining it to show how this scales with the number of rows.

Figure 4.14 shows the average runtimes and predicted times of my algorithm using

insertion mode 1, and Figure 4.15 shows the memory requirements. As the runtime

graph shows, the average runtimes of my algorithm match the predicted times, with

any differences attributed to rounding and the precision of the timers used to measure

runtime. The memory usage remains the same regardless of the number of input rows,

since all of the rows contain the same sequence. Similarly, Figures 4.16 and 4.17 show

the runtimes and memory requirements of insertion mode 2. The differences between

the runtime and predicted times can again be attributed to rounding and the precision

of the timers used to measure runtime, and the memory requirements are independent

of the number of rows in a repeat dataset.

The time to read the database without inserting is near the time to insert for both

insertion modes, again with differences attributed to rounding. This shows that when

the number of rows increases by a factor of ten, both the time to read the database

and the time to perform insertion, also increase by a factor of ten.

Figure 4.18 compares the average runtimes of insertion modes 1 and 2 as the

number of input rows increases. The average runtimes for both insertion modes are

the same for the one million and ten million row datasets, but in the dataset with

one hundred million rows, the difference between insertion modes becomes visible. As

in the experiments with the number of shared memory processors, insertion mode 1

requires less runtime than insertion mode 2, at the cost of increased memory as seen

in Figure 4.19.

The result of Experiment 4.3.2 is that the runtime of both of my insertion algo-
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Figure 4.14: Runtime of insertion mode 1 as the number of input rows increases
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Figure 4.15: Memory use of insertion mode 1 as the number of input rows increases

rithms is the time it takes them to insert one row, multiplied by the number of rows

in the input dataset. Equation (4.2) predicts the runtime with w rows, rw, based on

runtimes of datasets with the same number of items per row and fewer rows:
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Figure 4.16: Runtime of insertion mode 2 as the number of input rows increases
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Figure 4.17: Memory use of insertion mode 2 as the number of input rows increases

rw =
rw−1 ∗ w
w − 1

(4.2)

This same result holds for the read only test. The memory requirements of my
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Figure 4.18: Comparison of the runtimes of insertion modes 1 and 2 as the number
of input rows increases
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Figure 4.19: Comparison of the memory requirements of insertion modes 1 and 2 as
the number of input rows increases

insertion modes do not change as the number of input rows increases. Insertion mode

1 performs better than insertion mode 2, requiring less runtime, but it requires more
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memory to achieve this.

4.3.3 Experiment: Input Sequence Length

My third experiment measures the effect changing the number of items in each

input sequence has on the runtime of my algorithm. I test both of my insertion modes

for this using one of the University of Manitoba bird computers. I use six repeat

datasets, each with ten thousand transactions, and identical sequences ranging from

fifteen to twenty items in length. Since both of my insertion algorithms require 2l− 1

node reads and writes, where the number of items in the input sequence is l, I predict

the runtime will double with each increment of the input sequence length. I also

measure the time it takes to read the input file without mining it.

Figure 4.20 and Figure 4.21 show the average runtimes of my algorithm using

insertion modes 1 and 2 respectively. For both modes, the average runtime matches

the predicted time, with any differences attributed to rounding and precision of the

timers used to measure runtime. The memory usage, both the number of memory

allocations and the number of bytes used, also doubles with each increase in sequence

length. The time to read the input dataset grew much more slowly, taking an average

of 3 seconds for the length 15 and 16 sequences, 3.3 seconds for length 17 and 18

sequences, and 3.6 seconds for length 19 and 20 sequences. Figure 4.22 and Figure 4.23

show the memory used by the first and second insertion modes.

Figure 4.24 compares the average runtimes, and Figure 4.25 compares the memory

requirements, of insertion modes 1 and 2. As the length of the input sequence in-

creases, the distance between the average runtimes also increases, with insertion mode
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Figure 4.20: Runtime of insertion mode 1 as the input row length increases
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Figure 4.21: Runtime of insertion mode 2 as the input row length increases

1 consistently requiring less runtime than mode 2. Insertion mode 1 requires 2 sec-

onds less runtime than insertion mode 2 with an input sequence of length 15, and this

distance increases to 19 seconds less for an input sequence of length 20. This increase

in performance comes at the cost of increased memory usage. The enumeration-trees
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Figure 4.22: Memory use of insertion mode 1 as the input row length increases
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Figure 4.23: Memory use of insertion mode 2 as the input row length increases

increase in size equally for both insertion modes, but insertion mode 1 doubles the

size of its insertion list, while insertion mode 2 increases the size of its stack by one.

The result of Experiment 4.3.3 is that the runtime of both of my insertion algo-

rithms follows their predicted values, doubling every time the number of items in the
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Figure 4.24: Comparison of runtimes of insertion modes 1 and 2 as the input row
length increases
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Figure 4.25: Comparison of the memory requirements of insertion modes 1 and 2 as
the input row length increases

input sequences increases, so the runtimes are the time to insert one item multiplied

by 2l, where l is the number of items in the input sequence. Since my algorithm
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performs 2l insertions for each row, and doubles the runtime as a result, this suggests

that algorithms that transform the database prior to mining may be more suited to

mining long sequences. Transforming the database overlaps identical prefixes of the

input sequences, effectively reducing the number of unique rows in the database to

mine.

Equation (4.3) predicts the runtime of a dataset with sequences of length l given

the runtime of a dataset with the same number of rows and sequences of l− 1 items:

rl = rl−1 ∗ 2 (4.3)

Insertion mode 1 performs faster than insertion mode 2, since it only performs l

reads of each input sequence, or one read per item, compared to the 2l reads insertion

mode 2 performs, but requires 33% more memory. While the insertion time increases

exponentially, the read only time increases linearly, as it does when the number of

rows increases.

4.3.4 Experiment: Result Collection

Experiment 4.3.4 compares the performance of my two collection modes. Collec-

tion mode 1 collects only potentially frequent sequences, and collection mode 2 collects

all sequences. I perform this experiment on my four heterogeneous computers using

the synthetic dataset, since it is the only dataset affected by minimum support.

Collection mode 1 works by sending any locally frequent sequence to the collecting

computer, as soon as it becomes frequent, so that the collecting computer can flag

it as potentially being globally frequent. Once all computers have completed sub-
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sequence enumeration and inserted the corresponding nodes into the enumeration

tree, the collecting computer performs a depth-first transversal of only potentially

frequent nodes. Each time the search visits a node, the collecting computer sends a

request for counts of that node to each distributed computer. The transversal moves

to a node’s potentially frequent children only if it is frequent after collection.

This collection method has three different components. Two, tracing and sending

locally frequent sequences, take place during the insertion process. The third com-

ponent, collecting potentially frequent results, takes place after the insertion process.

Figure 4.26 shows the runtime of the components of collection mode 1 as the mini-

mum support increases. The time spent inserting sub-sequences to the enumeration

tree remains constant as the minimum support decreases, since my algorithm always

enumerates all sub-sequences. The time spent tracing and sending newly frequent

sub-sequences to the collecting computer is under one second for all tests. The time

spent collecting results is under one second until the minimum support threshold

reaches 10%. As the minimum support threshold decreases from 10% to 1%, the

time spent collecting results increases. This increase follows the number of nodes

collected, shown in Figure 4.27. This cost comes from the need for both a broadcast

and reduction operation for each node collected.

Collection mode 2 works by serializing the local result trees and saving them to

disk, where the collecting computer reads them as it has a processor available to do

so. This collection mode has two components, the time each computer spends saving

serialized trees to disk, and the time the collecting computer spends loading serialized

trees. Since minimum support does not reduce the size of the serialized trees, it does
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Figure 4.26: Runtime of collection mode 1 as the minimum support decreases
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Figure 4.27: Number of nodes collection mode 1 collects as the minimum support
decreases

not have any effect on the resulting runtimes. Figure 4.28 shows this.

Figure 4.29 compares the total runtimes of collection modes 1 and 2. While the

minimum support value is above 10% and the number of frequent tree nodes is low,
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Figure 4.28: Component runtimes of insertion mode 2 as the minimum support
decreases

collection mode 1 performs faster than collection mode 2. Both collection modes have

the same performance with minimum supports from 10% to 8%. As the minimum

support drops below 8%, and the number of frequent tree nodes is high, the runtime

collection mode 1 requires is higher than collection mode 2.

The result of Experiment 4.3.4 is that collection mode 1 has better performance

than collection mode 2 as long as the minimum support value is high. If a user needs

to mine with a low minimum support threshold, they should use collection mode 2,

as collection mode 1 has poor performance in this case. For my synthetic dataset,

a minimum support value of 8% or higher requires collection mode 1 to collect at

most 2504 nodes, and the runtime is less than or equal to that of collection mode 2.

As the minimum support threshold drops below 8%, collection mode 1 takes more

runtime than collection mode 2, due to the number of MPI broadcast and reduction

operations it performs. The minimum support value does not affect the runtime for
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Figure 4.29: Comparison of collection mode 1 and 2 runtimes as the minimum support
decreases

collection mode 2, as it always collects the entire result set from each computer. Even

though collection mode 2 has more data to collect, it can perform this collection using

a file stream, which only has to initiate and finalize communication once, rather than

a series of separate communications through MPI.

4.3.5 Experiment: Load Balancing

My fourth experiment compares the runtimes on my four heterogeneous computers

to show the effectiveness of my load balancing technique. I use three input datasets

for this experiment. Two are repeat datasets with ten thousand rows and sequence

lengths of 15 and 20 items, and the third is the synthetic dataset.

As I presented in Section 3.3, my load balancing mechanism works by running

the same dataset on each computer to determine the relative performance of each

computer. Using this method, I do not partition the input datasets between the
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computers for this experiment, but rather assign the entire dataset to each computer.

I measure how long it takes each computer to enumerate all sub-sequence from the

input dataset. My load balancing algorithm uses these runtimes to determine the

portion of input data that it should assign to each computer. I measure the overall

accuracy of my load balancing mechanism by comparing the portion sizes it creates

for each input dataset.

Figure 4.30 shows the average runtimes of the three input datasets on each of

my four Intel R©-based heterogeneous computers. For all datasets, the CoreTM i7-

920 requires the least runtime, followed by the CoreTM i3-530, the CoreTM 2 Q6600,

and the CoreTM 2 E5200. Figure 4.31 shows how much the average runtimes change

between datasets. Comparing the repeat datasets with 15- and 20-item sequences,

the i7-920, i3-530, and E5200 have the same change in average runtime, with their

15-item sequence datasets requiring 3% of the time their 20-item sequence datasets

do. The Q6600 changes slightly more, with its 15-item sequence dataset requiring 4%

of the time its 20-item sequence dataset does.

There is more variation when comparing the repeat set with 15-item sequences to

the synthetic dataset. While both the i7-920 and the E5200 have average runtimes for

their 15-item sequence datasets that are 7% of their synthetic average runtimes, the

ratio on the i3-530 is 5%, and the ratio on the Q6600 is 9%. Similarly, comparing the

repeat set with 20-item sequences with the synthetic dataset, the i7-920, Q6600, and

E5200 have similar ratios of 39%, 44%, and 41%, but the i3-530 has a ratio of 53%.

The runtime changes between datasets remains level across the four computers, with

the exception of the change between the synthetic dataset and repeat dataset with
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20-item sequences on the i3-530. With this exception, the largest difference between

change ratios is 5, between the i7-920 and the Q6600 when comparing the synthetic

dataset to the repeat dataset with 20-item sequences.
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Figure 4.30: Runtime comparison between heterogeneous computers
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Figure 4.32 shows the portion sizes that my load balancing algorithm assigns

based on the repeat datasets and the synthetic dataset. The portion sizes do not

stay constant for all three datasets, but the average difference between portion sizes

is 2.5, so the portion sizes assigned from each dataset remain close. My algorithm

saves these portions to use for future runs so that it does not have to perform load

balancing during the mining process. As I have presented in Section 2.2, algorithms

that provide a reasonably balanced load without impacting performance have better

overall performance than algorithms that balance the load perfectly at high cost.
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Figure 4.32: Portion sizes based on three input datasets

The result of Experiment 4.3.5 is that while my load balancing mechanism does

not provide a perfectly balanced load, the portion sizes remain close at an average

distance of 2.5 from each other, which will provide a near-balanced load. As my load

balancing algorithm only needs to load the portion sizes from a previous benchmark

and multiply them by the total number of rows when mining, it requires essentially no
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overhead and will not impact scalability. As I found in Section 2.2, an algorithm with

a near-balanced load and low load balancing overhead typically requires less total

runtime than an algorithm with a perfectly-balanced load and high load balancing

overhead.

4.3.6 Experiment: Number of Computers

Experiment 4.3.6 measures the effect of increasing the number of computers used

on the runtimes of my algorithm. I perform this experiment using 1 to 24 University of

Manitoba bird computers. I use the repeat dataset with ten thousand rows of 20 items.

This puts an emphasis on row length rather than the number of rows. I emphasize

this because the number of items collected has an effect on the collection methods,

where the number of rows does not. I measure the runtimes of both collection modes

to show how they scale with the number of computers. I use insertion mode 1 for

both tests as it consistently outperforms my second insertion mode. The amount of

memory used remains constant, as the number of computers does not affect it. I also

measure the time to read the database without mining.

Figures 4.33 and 4.34 show the average component runtimes of collection mode

1 as the number of computers increases. Since increasing the number of computers

decreases the number of rows assigned to each computer, the time spent inserting

sequences matches the predicted time, as it does in Experiment 4.3.2. The time to

read the database also scales as expected, as it does when changing the number of

rows in Experiment 4.3.2. The time my algorithm spends flagging frequent sequences

on the collecting computer stays low until the number of computers reaches 22, where
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Figure 4.33: Component runtimes of collection mode 1 as the number of computers
increases
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Figure 4.34: Component runtimes of collection mode 1 as the number of computers
increases

it jumps from 2 to 9 seconds. This jump indicates that the flagging computers have

saturated the receiving process on the collecting computer, and need to wait for it to
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become available.

I expected the runtime of c computers, rc, to be rc = rc−1∗(c−1)/c, but Figure 4.34

shows that this is not the case. The total runtime is the sum of the insertion, flagging,

and collection times. As the number of computers increases, the cost of the broadcast

and reduction operations in the results collection stage also increases. Rather than

decreasing as the number of computers increases, the total runtime increases as a series

of three steps. Note that this test is using a repeat dataset, so my first collection

method has to collect all nodes. I found that my first result collection method does

have good performance when few nodes are frequent in Experiment 4.3.4.

On the first step, using 1 to 7 computers, the total runtime remains level, since the

increasing communication balances out the decreasing insertion time. I would expect

this trend to continue, with the total runtime remaining the same, but Figure 4.34

again shows that this is not the case. When I add the 8th computer, the average

collection time jumps from 304 seconds to 633 seconds, and when I add the 16th

computer, the average collection time jumps from 678 seconds to 953 seconds. These

two jumps are the start of the second and third level steps in the collection time

graph. Since the reduction that collects the global counts of each potentially frequent

node requires every computer to finish sending before it completes, these steps show

that computers 8 and 16 are slower than the others, and are limiting performance.

Figure 4.35 shows the total average runtime of collection mode 1 as the number of

computers increases, and shows how much of the runtime comes from each component.

The time each computer spends inserting nodes decreases as the number of computers

increases. The collection time, on the other hand, generally increases as the number of
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Figure 4.35: The total runtime of collection mode 1 as the number of computers
increases

computers increases. The time spent flagging frequent sequences during the insertion

remains low using 1 to 21 computers, with an average flagging time of 2 seconds.

The flagging time jumps from 2.7 seconds with 21 computers to 9.6 seconds with 22

computers, and takes an average of 11.9 seconds between 22 and 24 computers. This

increased flagging time is small, relative to the average collection time between 16

and 24 computers, which is 917 seconds.

Figure 4.36 shows the component runtimes of collection mode 2 as the number

of computers increases. The average insertion time follows its predicted time, as

increasing the number of computers reduces the number of input rows, as in Experi-

ment 4.3.2. Unlike collection mode 1, the average total runtime follows the expected

total runtime, decreasing with each additional computer. The total runtime of the

collecting computer is its insertion time followed by the time it spends waiting for,

reading, and inserting serial files. The total runtime of the other computers is the
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Figure 4.36: Component runtimes of collection mode 2 as the number of computers
increases

time they spend inserting sequences, followed by the time to serialize their results to

disk. The time spent saving and loading files remains near zero throughout the range,

which makes insertion take up the majority of the time in my algorithm.

All computers complete mining and start serializing their trees within a second

of each other, since dividing a repeat set evenly over homogeneous computers gives a

perfectly balanced load, making this the worst case for the saving times. The saving

and loading times remain constant until 14 computers are used, at which point the

computer storing the serialized results cannot keep up with the incoming data, and

the average time each computer spends saving its serial file increases. Figure 4.37

shows the detailed saving and loading times as the number of computers increases.

Some load imbalance and having the collecting computer complete mining first

would be ideal for collection mode 2. It would avoid having all computers save at

the same time, and the collecting computer would be able to start loading serial files
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Figure 4.37: Detailed view of the saving and loading times required by collection
mode 2 as the number of computers increases

while it waits for other computers to complete. Even though collection mode 2 writes

serialized files to disk, rather than copying trees straight from memory to memory in

collection mode 1, writing to a file stream is much more efficient than multiple MPI

broadcast and reduction operations.

Figure 4.38 compares the total average runtimes of collection mode 1, collection

mode 2, and the read only time, as the number of computers increases. While the

communication cost cripples the performance of collection mode 1, the runtime of

collection mode 2 approaches the read only time as the number of computers increases.

The result of Experiment 4.3.6 is that the overhead of the MPI broadcast and re-

duction operations collection mode 1 uses negates the impact of reducing the number

of nodes it has to collect. This communication causes the runtime of collection mode

1 to increase as the number of computers increases when there are many nodes to

collect. As in the collection mode tests, reducing the number of potentially frequent
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Figure 4.38: Comparison of the average runtimes of collection modes 1 and 2 as the
number of computers increases

nodes would reduce this communication cost. Collection mode 2 performs much bet-

ter as the number of computers increases, with the sub-sequence enumeration time

scaling as expected, and the communication cost remaining low. Equation (4.1),

the function that predicts the performance as the number of processors increases,

works for collection mode 2 on homogeneous computers. When all computers are

the same, my load balancing algorithm partitions the input data evenly, so the total

runtime splits evenly between computers. On heterogeneous computers, where my

load balancing algorithm assigns portions with different sizes based on the computers

performance, the equation used to predict the runtime based on the number of rows

predicts the performance of collection mode 2, when applied to any computer and its

balanced dataset.
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4.3.7 Experiment: Comparison with PrefixSpan

In my final experiment, I compare the performance of the serial PrefixSpan al-

gorithm with my algorithm using insertion mode 1, my insertion list, and collection

mode 2, my serialization method. I perform these experiments on my cluster of

four Microsoft R© Windows R© computers. I perform the single computer tests on my

CoreTM i7 computer, and use my CoreTM i3 computer as the central database.
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Figure 4.39: The runtime of PrefixSpan in comparison to the runtime of my algorithm
using four heterogeneous computers, one computer with multiple processes, and one
computer while limited to one process

Figure 4.39 shows the runtime of the Illimine PrefixSpan implementation on

Windows R© in comparison with my algorithm. The three runtimes of my algorithm

are using four computers, the runtime using only one computer, and the runtime

limited to a single process on one computer. The runtimes of my algorithm are lower

than PrefixSpan when using multiple computers and when using multiple processes

on one computer. The runtime of PrefixSpan is lower when my algorithm is limited
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to one process on one computer because PrefixSpan performs recursive projections of

the database rather than enumerating each row. However, it is important to note that

my algorithm is specifically designed for distributed- and shared-memory computers,

rather than a single computer using only one process. In this experiment, when I use

the multiple computers and processes that I designed my algorithm for, it achieves a

lower runtime than PrefixSpan.
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Figure 4.40: The memory usage of PrefixSpan in comparison to the runtime of my
algorithm using four heterogeneous computers, one computer with multiple processes,
and one computer while limited to one process

Figure 4.40 shows the memory requirements of PrefixSpan compared to those of

my algorithm. PrefixSpan uses near the same amount of memory as my algorithm

running in one process. It captures the input database to memory and stores two

levels of database projections at a time. My algorithm stores the entire result set as

well as the insertion list. Running my algorithm with multiple processes increases

its memory usage, as it requires multiple copies of the insertion list. The reduction
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in memory usage when using four computers is due to my algorithm assigning one

OpenMP process to receiving communication. The communicating process does not

need an insertion list.
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Figure 4.41: The runtime of PrefixSpan as the minimum support threshold decreases,
compared to my algorithm

Figures 4.41 and 4.42 show the runtime and memory usage of PrefixSpan mining

the synthetic dataset as the minimum support threshold decreases, again in compari-

son with my algorithm. The runtime of PrefixSpan increases as the minimum support

threshold drops, while the runtimes of my algorithm remain the same. Again, my

algorithm is specifically designed for distributed- and shared-memory computers. It

cannot take advantage of my algorithmic design when limited to a single process on a

single computer. When not limited to a single process, my algorithm requires less run-

time than PrefixSpan when the minimum support threshold drops below 5%. When

the minimum support threshold reaches 0%, my algorithm using multiple processes

on one computer, and multiple processes on four computers, requires less than half
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Figure 4.42: The memory usage of PrefixSpan as the minimum support threshold
decreased, compared to my algorithm

the runtime of PrefixSpan. Interestingly, even though PrefixSpan only has to keep

two levels of projected datasets in memory at any time, it requires far more memory

than my algorithm as the minimum support threshold decreases. It has to keep more

rows in each projected dataset as the number of rows in the input database increases.

I have compared the results of the PrefixSpan algorithm to the results of running

my algorithm on the same dataset. The results match, showing the correctness of my

algorithm.

4.4 Summary

Experiment 4.3.1 shows that my algorithm scales predictably when the number

of processors increases, splitting the required runtime evenly between processors, and

my greedy approach for reading input on each processor results in a balanced load.
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It also shows that Hyper-Threading is beneficial when using all available processors

and thread units, but has unpredictable performance due to the operating systems

scheduling decisions when using a subset of available resources.

Experiment 4.3.2 shows that as the number of rows increases, the runtime of

my algorithm increases linearly. The runtime is the time to mine one row, times the

number of rows. Experiment 4.3.3 shows that as the row length increases, the runtime

of my algorithm increases exponentially. Each additional item doubles the runtime.

Experiment 4.3.4 shows that the per-node collection cost of using MPI broadcast

and reductions is much higher than the cost of using a file stream. Collection mode

1 performs slightly faster than collection mode 2 when it has to collect few nodes,

but collection mode 2 performs much faster when many nodes are frequent. Experi-

ment 4.3.5 shows that my load balancing method gives a reasonably balanced load,

with an average difference between portion size percentages of 2.5, with no overhead

when using my algorithm to perform data mining.

Experiment 4.3.6 shows that, for collection mode 2, increasing the number of

homogeneous distributed-memory computers used divides the runtime evenly between

computers. On heterogeneous distributed-memory computers, the runtime is the time

to run the dataset assigned to any computer by the load balancer. For collection mode

1, as the number of computers increases, the cost of the MPI broadcast and reduction

operations also increases, limiting the scalability of the algorithm.

Experiment 4.3.7 shows that serial frequent-sequence mining algorithms, such as

PrefixSpan, can perform faster than my algorithm if my algorithm is limited to one

process on one computer. This is expected, since I designed my algorithm to run
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on multiple processes on multiple computers. PrefixSpan captures the database,

and then performs recursive projections of the database, which reduces the input

cost per row. This performance benefit comes at the cost of a large increase in

memory usage when the database contains a high number of rows. My algorithm

performs faster when the minimum support values are low, and when it makes use

of all available resources such as processors, processor cores, and thread units. This

makes my algorithm a good choice when it can make use of multiple processing

resources or when memory is limited.

Combining my results, insertion mode 1 performs faster than insertion mode 2,

but requires more memory. Collection mode 1 performs faster than collection mode

2 only when the number of nodes it has to collect is low. Collection mode 2 requires

less runtime when many nodes are frequent, and is more scalable, since it does not

require MPI broadcast and reduction operations. It is possible to predict the time

required to mine a dataset with collection mode 2 using previous runtimes from the

mining computers, such as those from my load balancing mechanism. The parameters

this prediction requires are the number of available computers, the number of rows

in the dataset, and the average number of items in each row.

For instance, it takes 293 seconds for one of the bird computers to mine the repeat

dataset with ten thousand rows of 20 items. Based on Equation (4.3), it would take

9 seconds for this computer to mine a repeat dataset with ten thousand rows of 15

items using insertion mode 1 and collection mode 2. Running this test shows that this

estimate is accurate, with an actual runtime of 7 seconds. Applying Equation (4.1)

for the number of computers to the 9-second estimate results in an estimated 10
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computers required to reduce the runtime below 1 second and match the time to read

the input database. Running the test on this dataset shows that it takes at least 8

computers before the average runtime is below one second, and 11 computers before

the average runtime matches the time to read the input file, so this estimate is again

accurate.

Due to the communication cost of collection mode 1, its runtimes are harder to

predict, as it would require an estimate of the number of nodes that it will collect.

Further experimentation shows that collection mode 1 can mine a dataset with ten

thousand rows of 10 items in the time it takes to read the dataset using 2 to 7

computers, with the communication cost increasing the runtime past 7 computers.

Collection mode 2 can mine this dataset in the time it takes to read the input file

using at least 2 computers. Both collection modes can read the dataset with ten

thousand rows of 5 items in the time it takes to read the input dataset using any

number of computers.

In summary, my algorithm meets my goal of mining the entire database in near the

time it takes to read the input database when there are enough computers available

to do so. When the central database becomes a bottleneck, the difference between

the runtime and the read only time is the time my algorithm spends mining the last

input row, and the time spent collecting results. My algorithm reduces the number

of database rows enumerated by each computer, and each processor or thread unit

within each computer, by spreading the work over all available resources. There are

enough computers to mine in near the time it takes to read the input if the expected

time to mine one row is near the time to read a row. Dividing the expected runtime
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by the total number of rows gives a prediction of the time to mine one row.

If a computer is not constrained by memory, does not have multiple mining re-

sources available, or the user only wants to find very frequent sequences, PrefixSpan

performs faster than my algorithm. If the user is looking for an algorithm capable

of mining from a data stream, that is capable of incremental mining, or that they

can add, remove, or modify constraint values of without re-mining, my algorithm

could be extended to support these needs. It also performs faster than PrefixSpan

when using multiple OpenMP processes, multiple distributed-memory computers, or

a combination of both.
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Conclusions and Future Work

5.1 Conclusions

The goal of my research was to create a frequent-sequence mining algorithm that

performs one scan of a central database, and completes the mining process when it

completes this scan. If I can force the central database to be a performance bottleneck

in this algorithm, the runtime of my algorithm will be the time to mine the database,

plus some relatively small extra time to finish mining the last sequence and collect

the results. Further, there were four key questions I sought to answer, as I presented

in Section 1.6.

1. “Can I mine frequent-sequences on a distributed memory computer using only

one scan of the original database?”

I designed two frequent-sequence mining algorithms that require one scan of the

original database, one in Section 3.1.1, and the other in Section 3.1.2. I achieved

this by having my algorithms completely mine each row from the input database

145
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as they read it. Both perform the mining process without requiring context or

information from the rest of the database by enumerating all sub-sequences

from each input row. In contrast, existing algorithms that do not perform

multiple scans of the database perform multiple scans of a transformation of

the database, such as a CanTree or CP-tree that I reviewed in Section 1.4.

2. “Can I avoid transforming the database and scanning said transformed database

multiple times?”

Since my frequent-sequence mining algorithms in Section 3.1 enumerate all sub-

sequences directly from the input dataset, they do not need to capture the

contents of the database to an intermediate structure. Existing algorithms that

do not capture and transform the database perform multiple scans of the original

database. For example, PrefixSpan (Section 2.3.1) or the Apriori algorithms

(Section 1.3) mine all sequences of length k on the kth scan of the database, all

sequences of length k+1 on the (k+1)st scan of the database, and so on. I have

not found another algorithm that does not perform multiple scans of either the

original database or a transformation of it in literature.

3. “Can I limit the amount of communication between computers so that my

algorithm scales well?”

In Experiment 4.3.6, I found that the frequent-sequence mining algorithms that

I created in section 3.1 are successful in keeping the amount of communication

low, and are scalable in regards to the number of computers. I also found that of

my results collection modes, collection mode 2, which I created in Section 3.2.2,
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scales better than collection mode 1, which I created in Section 3.2.1. Even

though collection mode 1 reduces the number of nodes collected in comparison

with collection mode 2, and moves counts from memory to memory rather

than saving them to disk as an intermediate step, the communication cost of

MPI broadcast and reduction operations is higher than that of writing to a file

stream. This is since broadcast and reduction operations require all computers

to act in sync, whereas when serializing to a file stream, each computer sends

independently.

4. “Can I make use of multiple processors, cores, and thread units to reduce the

runtime of my algorithm?”

The frequent-sequence mining algorithms I created in Section 3.1 take advan-

tage of multiple processors, cores, and thread units on each computer. They

do this using the Hybrid Overlap model for combining MPI, which handles

communication between distributed-memory computers, with OpenMP, which

manages the shared-memory processes within each computer, as I describe in

Section 3.1.3. Using the Hybrid Overlap model allows mining computers to

flag sequences as potentially frequent while mining for collection mode 1, and

allows the collecting computer to switch processors from mining to collecting

using collection mode 2. Experiment 4.3.2 measures the performance of my

frequent-sequence mining algorithms using multiple processor cores and thread

units. Using multiple cores performs as expected, dividing the runtime using

one core by the number of available cores. Using multiple thread units does not

improve the performance as much as using multiple cores. It can cause the run-
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time not to scale as expected, depending on if the operating system schedules

threads to separate cores, or uses multiple thread units on one core. When my

algorithm uses all cores and thread units, so that scheduling does not make a

difference, the performance improves and behaves predictably in all tests.

Ultimately, using insertion mode 1, my insertion list, and collection mode 2, se-

rializing local trees, I was able to achieve my goal of mining in close to the time it

takes to read the input dataset on heterogeneous computers, when the number of

computers available is great enough to cause a performance bottleneck at the central

database. The runtime of my algorithm is the time to read the database, plus the

time to enumerate the last row of the database, and the time to collect results. Run-

ning my algorithm on homogeneous computers may require more or less computers

than running it on heterogeneous computers, depending on the relative performance

of each computer. My load balancing method provides a reasonably balanced load

with no overhead during the execution of my algorithm, so the predicted runtime on

a heterogeneous system is the predicted time of any computer in said system, using

the input assigned by the load balancer.

Existing distributed-memory frequent-sequence mining algorithms are modifica-

tions of serial algorithms. I have designed my algorithm specifically for distributed-

memory computers, rather than modifying an existing algorithm, so that it does

not suffer as badly from the communication constraints the modified algorithms en-

counter. My algorithm meets the requirements I defined for the ideal distributed-

memory frequent-sequence framework. Using collection mode 2, my serialization-

based results collection method, it also matches the structure of the ideal framework I
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presented in section 2.4. When there are not multiple computing resources available,

I have found that PrefixSpan performs faster than my algorithm, but may require

more memory.

To summarize, my contribution is the proposal of a single-scan sequential min-

ing algorithm. Of the components of this algorithm, the sub-sequence enumeration

method is not only applicable to mining from a static database, as I have presented

in this thesis, but can also be applied to mining from dynamic data streams. For

instance, in real life applications, huge volumes of streaming data can be generated

by wireless sensors. This data comes in at such a rapid rate and large quantity that

users do not have the luxury of scanning the data stream multiple times. It is im-

portant to have a method to mine a sequence in a single scan. Another component

of my algorithm, my load balancing method, could also be applied to mining from

data streams. It knows the relative performance of each computer before they begin

mining, so it could determine the relative rates at which to send data to distributed

computers.

5.2 Future Work

My research provides opportunities for future work. By not performing any prun-

ing during the mining process, my algorithm has many additional benefits, of which

future work can take advantage. Examples of these are changing the values of con-

straints, adding or removing constraints, and adding data to the dataset, all of which

my algorithm could perform without re-mining data. To change values of, add, or

remove constraints, my algorithm would iterate through the results tree, and only
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return those sequences that satisfy the new constraints. To add new data to previous

results, my algorithm could have the collecting computer serialize and save its final

tree when it completes mining, and then load this serialized tree while it is collecting

distributed serialized trees.

The results of Experiment 4.3.6, which showed that the computer collection mode

2 stores serialized trees on becomes saturated when 15 or more computers are saving

to it, suggests a second opportunity for future work. One possible future improvement

of my algorithm is adding the ability to scale the number of computers to which it

saves serialized trees. Increasing the number of these computers would prevent my

algorithm from saturating them with saves, and avoid them becoming a performance

bottleneck and limiting scalability in regards to the number of computers used.

A third area of potential future work uses the ability to predict the required

runtime of a dataset. For datasets with a large number of items per row, the time

to insert each row will be high, and there may not be sufficient computers to mine

in the time it takes to read the input dataset. Modifying my algorithm to capture

the database before mining may perform better in this case. It would insert all of

the input sequences into a tree, and then combine my depth-first and insertion list

approaches to enumerate all sub-sequences from the tree. The modification would

use the depth-first stack to keep track of the next sibling of each node to add to the

insertion list, and the insertion list would enumerate all sub-sequences. Cases such as

the repeat datasets would be the best case for this algorithm, since it would combine

all of the input rows into one. This would still provide all of the additional benefits

of my algorithm, and maintain the scalability, but would leave the central database
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idle during the mining process.

Other possible future work would include using a faster structure than an ordered

list to track child nodes. Giving each tree node an existential probability would add

support for uncertain mining, and adding an additional node type to differentiate

between ordered and unordered nodes would add support for mining sequences of

unordered itemsets. Adding the option to sort input sequences into a pre-defined

order before enumeration would let my algorithm perform frequent-itemset mining

rather than frequent-sequence mining.
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