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Abstract

We make use of a structure known as signed groups, and known sequences with

zero autocorrelation to derive new results on the asymptotic existence of Hadamard

matrices. For any positive odd integer p it is obtained that a Hadamard matrix of

order 2tp exists for all

t ≥ 1

5
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2

)
+ 13.
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Chapter 1

Introduction. Hadamard matrices

A Hadamard matrix H is a square (±1)-matrix such that any two of its rows are

orthogonal. In other words, a square (±1)-matrix H is Hadamard if and only if

HH⊤ = nI,

where n is the order of H and I is the identity matrix of order n.

The last equation is equivalent to

H⊤H = nI,

because every real matrix commutes with its inverse. Therefore, any two columns of

a Hadamard matrix are orthogonal as well. Denote by H(n) the set of all Hadamard

matrices of order n. Consider some examples.

Obviously, there are two 1 × 1 Hadamard matrices: (1) and (−1). For conve-

nience we will subsequently denote any −1 entry of a matrix or sequence by the

one-byte symbol −. We use commas to indicate concatenation of sequences: (A,B)

is the concatenation of sequences A and B. Furthermore, we denote by ca a vector

(c, c, . . . , c) of length a.

An example of Hadamard matrix of order 2 is:(
1 1

1 −

)
.
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Moreover, every Hadamard matrix of order two is obtained from the above matrix

via row or column permutation or via row or column negation. There exist eight

Hadamard matrices of order 2 in total.

In general, two Hadamard matrices are equivalent if one of them can be trans-

formed into the other by the above mentioned operations. Let us restate this def-

inition in a different way. A square (0,±1)-matrix is called a signed permutation

matrix if in every row and in every column there is exactly one non-zero entry, i.e.,

a monomial (0,±1)-matrix. The set of all signed permutation matrices of order n

is denoted by SPn. There are 2nn! signed permutation matrices of order n in total.

Equivalence can be restated in the following way: Hadamard matrices H,H ′ ∈ H(n)

are equivalent if

H ′ = PHQ,

for some P,Q ∈ SPn. This is an equivalence relation, since SPn is a group with

respect to matrix multiplication. Note, that matrix transposition is not considered

as a part of equivalence definition; H and H⊤ may be inequivalent in general.

Hence, up to equivalence, there exists a unique Hadamard matrix of order two.

There is a general rule that allows a construction of a Hadamard matrix of order

mn from Hadamard matrices of orders m and n. Let

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

am1 am2 · · · amm

 ∈ H(m),

and

B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

 ∈ H(n)

be two Hadamard matrices. We are considering the Kronecker matrix product as



4

the tensor product A⊗B in this work. Consider the matrix

C = A⊗B =

a11b11 a11b12 · · · a11b1n · · · · · · a1mb11 a1mb12 · · · a1mb1n

a11b21 a11b22 · · · a11b2n · · · · · · a1mb21 a2mb22 · · · a1mb2n
...

...
. . .

...
...

...
. . .

...

a11bn1 a11bn2 · · · a11bnn · · · · · · a1mbn1 a1mbn2 · · · a1mbnn
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

am1b11 am1b12 · · · am1b1n · · · · · · ammb11 ammb12 · · · ammb1n

am1b21 am1b22 · · · am1b2n · · · · · · ammb21 ammb22 · · · ammb2n
...

...
. . .

...
...

...
. . .

...

am1bn1 am1bn2 · · · am1bnn · · · · · · ammbn1 ammbn2 · · · ammbnn



.

This is an mn×mn-matrix having property

CC⊤ = (A⊗B)(A⊗B)⊤ = (A⊗B)(A⊤⊗B⊤) = (AA⊤⊗BB⊤) = (mI⊗nI) = mnI.

The middle equation is the distributive law of tensor product over ordinary matrix

product [HJ].

Hence, a tensor product of two Hadamard matrices is again a Hadamard matrix.

Therefore, there are Hadamard matrices of orders 2t for all positive integers t, con-

structed from the 2× 2 Hadamard matrix via tensoring. These Hadamard matrices

were first described by Sylvester in 1867 [Sv] and are called Sylvester Hadamard ma-

trices. Sylvester Hadamard matrices are representatives of the unique equivalence

classes of H(2), H(4), H(8). However, there are five equivalence classes in H(16)

[HSS]. Further, numbers of equivalence classes are too difficult to compute.

Not every positive integer is the order of a Hadamard matrix as we show now.

Let H be a Hadamard matrix of order n ≥ 3. Obviously, H is equivalent to another

Hadamard matrix with first row being 1n. Thus, without loss of generality, we can

assume that the first row of H is 1n. Similarly, we can assume that the second row

equals (1k,−l), where k+ l = n. The dot product of first and second rows is equal to
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k − l. Since H is a Hadamard matrix, this number should be equal to zero. Hence,

k = l, and n = 2k = 2l is an even number. Moreover, consider the third row of H.

As before, we can permute columns in H to get the third row equal to (1a,−b, 1c,−d),

where

a+ b = c+ d = k = l = n/2.

Considering dot products of this row with previous ones, we get two new conditions

a− b+ c− d = 0, a− b− c+ d = 0.

From these equations, we get a− b = c−d = 0. Finally, we get a = b = c = d = n/4.

Therefore, n is divisible by 4. Thus, except for two special cases n = 1 and n = 2,

the order of a Hadamard matrix is always divisible by four.

The first order not equal to a power of two is 12. Up to equivalence, there is a

unique matrix in H(12) [HSS]:

1 − − − − − − − − − − −
1 1 − 1 − − − 1 1 1 − 1

1 1 1 − 1 − − − 1 1 1 −
1 − 1 1 − 1 − − − 1 1 1

1 1 − 1 1 − 1 − − − 1 1

1 1 1 − 1 1 − 1 − − − 1

1 1 1 1 − 1 1 − 1 − − −
1 − 1 1 1 − 1 1 − 1 − −
1 − − 1 1 1 − 1 1 − 1 −
1 − − − 1 1 1 − 1 1 − 1

1 1 − − − 1 1 1 − 1 1 −
1 − 1 − − − 1 1 1 − 1 1



.

An automorphism of a Hadamard matrix H is a pair (P,Q) of signed permutation

matrices, such that PHQ = H. The set Aut(H) of all automorphisms is a group

with respect to the multiplication (P1, Q1) · (P2, Q2) = (P1P2, Q2Q1). Moreover, the

automorphism (−I,−I) commutes with all other automorphisms. Clearly, equivalent

Hadamard matrices have isomorphic automorphism groups. There is an interesting
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connection to Group Theory here, found originally by Marshall Hall [MH]. It is

known that for a Hadamard matrix H of order 12, Aut(H)/⟨(−I,−I)⟩ ∼= M12,

where M12 is a Mathieu group — one of 26 sporadic groups. Furthermore, the map

(P,Q) 7→ (Q−1, P−1) extends to an outer automorphism of M12.

In the next orders 20, 24, 28, Hadamard matrices also exist and there are 3, 60,

and 487 equivalence classes respectively. For more about equivalence of Hadamard

matrices see [HSS].

Hadamard matrices of orders 12 and 20 were constructed first by Hadamard in

1893 [H]. He conjectured that Hadamard matrices exist in all orders divisible by

four. This statement is called the Hadamard conjecture:

Conjecture 1.1 ([H]). For every positive integer k, the set H(4k) is not empty.

As of 2012, this hypothesis remains unresolved. In this thesis an asymptotic

version of the Hadamard conjecture giving special block-circulant Hadamard matrices

is presented and proved.

The smallest odd number p for which no Hadamard matrix of order 4p is known

is currently 167. The previous unknown case p = 107 was solved by H. Kharagani

and B. Tayfeh-Rezaie in 2004 [K428] by constructing corresponding Turyn sequences

(see Section 4.5) with the help of computer computations.

Seberry [S1] showed that for every odd p there exists a power of two, 2t, such that

H(2tp) ̸= ∅. Hadamard conjecture states that we can always take t = 2. Seberry

showed that we can take t ≥ ⌊2 log2((p− 3)/2)⌋. This result was improved 17 years

later by Craigen [C1] with a new bound t ≥ 4⌈1
6
log2((p − 1)/2)⌉ + 2. The latest

bound [C8] is about 3
8
log2((p− 1)/2) and is also due to Craigen.

A (±1, 0)-matrix W , satisfying similar condition

WW⊤ = wI,

for some positive integer w, is called a weighing matrix of weight w. Thus, a weighing

matrix has orthogonal rows (and columns) and every row (and column) has exactly

w non-zero entries. The set of all weighing matrices of order n and weight w is

denoted by W (n,w). Clearly, W (n, n) = H(n). The objects of principal interest for
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us are, of course, Hadamard matrices; however, we will prove some theorems dealing

with weighing matrices as well.

Another useful generalization of Hadamard matrices allows entries to be complex

units. A complex Hadamard matrix H is a square (±1,±i)-matrix of size n, such

that

HH∗ = nI,

whereH∗ denotes the Hermitian adjoint matrix ofH. It is convenient to use one-byte

symbol j instead of −i.

Denote by CH(n) the set of all complex Hadamard matrices of order n. Like in

the real case, not every positive integer is the order of a complex Hadamard matrix.

Assume that H is a complex Hadamard matrix of order n > 1. Clearly, a complex

Hadamard matrix will remain complex Hadamard, if any of its rows or columns is

multiplied with ±1 or ±i. Thus, without loss of generality, we can assume that the

first row of H equals 1n. After performing some column permutations, we can make

its second row equal to (1a,−b, ic, jd). Since the first two rows are orthogonal, it

follows that a = b and c = d. Hence, n is even.

A complex weighing matrix W of order n and weight w is defined as an n × n

(0,±1,±i)-matrix satisfying the equation

WW ∗ = wI.

Denote the set of all such matrices as CW (n,w).

The analogue of the Hadamard conjecture for complex Hadamard matrices states

that they exist in all even orders.

Conjecture 1.2 ([T2]). For every positive integer k, the set CH(2k) is not empty.

This conjecture implies the original Conjecture 1.1, since there is a way to con-

struct a real Hadamard matrix from a complex one.

Theorem 1.3 ([T2]). If there exists a complex Hadamard matrix of order m, then

there exists a real Hadamard matrix of order 2m.
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The main idea of the proof is to perform the following replacement operations

±1 7→ ±

(
1 1

1 −

)
, ±i 7→ ±

(
1 −
− −

)
.

The constructed matrix will be twice as large and will be a real Hadamard matrix.

For example, the complex Hadamard matrix
1 1 1 1

1 i − j

1 − 1 −
1 j − i


is mapped to a real matrix,

1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −
1 1 1 − − − − 1

1 − − − − 1 1 1

1 1 − − 1 1 − −
1 − − 1 1 − − 1

1 1 − 1 − − 1 −
1 − 1 1 − 1 − −


.

A complete proof of Theorem 1.3 will be given in the next chapter.

The tensor product works for complex Hadamard matrices as well.

Further properties and various constructions of Hadamard matrices can be found

in [Hr] and [G].

In this work we will present an asymptotic construction for Hadamard matrices.

For the construction of Hadamard matrices we shall develop corresponding machinery

and prove some necessary propositions. We begin by introducing another general-

ization of a Hadamard matrix allowing entries to lie in a special structure called a

signed group. The next chapter deals mostly with signed groups and presents a con-

struction of Hadamard matrices from signed group Hadamard matrices. In Chapter 3
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we present a construction of signed Hadamard matrices from sequences with a prop-

erty called zero autocorrelation. In Chapter 4 we study and classify all known zero

autocorrelation sequences. Finally, in Chapter 5 we summarize results and produce

new asymptotic bounds. The last chapter contains some ideas that can be used for

future constructions and computer development regarding this topic.

The main new results are Theorems 5.3, 5.4, and 5.5. All the new results are

presented in Chapter 5.



Chapter 2

Signed groups and remreps

A signed group S is a group with a distinguished central element of order two. We

will always denote the unit of a group as 1 and the special element of a signed group

as −1. In every signed group the set ⟨−1⟩ = {1,−1} always is a normal subgroup.

For every element x ∈ S, define its negation −x = −1 ·x. We will call the number of

elements in the quotient group S/⟨−1⟩ the order of signed group S. Thus, a signed

group of order n is a group of order 2n.

A homomorphism φ : S → T of a signed group S to a signed group T is a group

homomorphism that preserves −1, i.e. a map with following properties:

• φ(xy) = φ(x)φ(y), for all x, y ∈ S,

• φ(−1) = −1.

An isomorphism of signed groups is a homomorphism having an inverse map,

which is also a signed group homomorphism.

A signed group T is called a signed subgroup of a signed group S, if T is a

subgroup of S and the distinguished elements of S and T coincide. This relation will

be denoted as T ≤ S. If T ≤ S and T ̸= S then T is a proper signed subgroup; this

will be denoted as T < S.

Consider some examples of signed groups:

1. The trivial signed group T = SR = {1,−1} is a group of order 2. Obviously,

every signed group contains an isomorphic copy of T as a signed subgroup.

10
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2. Every group G of order n can be transformed into a signed group of order n

via direct product with T . Such signed groups will be called elementary.

3. The complex signed group SC = ⟨i|i2 = −1⟩ = {±1,±i} is a signed group of

order two. This is the smallest non-trivial signed group.

4. The Quaternion signed group Q = ⟨j, k|j2 = k2 = −1, jk = −kj⟩.

5. The set of all monomial (0,±1)-matrices of order n forms a signed permutation

group SPn. This is a group of order 2nn! and a signed group of order 2n−1n!.

This is the most important example of a signed group in this work.

6. The set Aut(H) of all automorphisms of a Hadamard matrix H is a signed

group. Its distinguished element is (−I,−I).

7. The set GL(n;C) of all n × n invertible complex matrices is a signed group

of infinite order whose unique central element of order 2 is −I, where I is the

identity matrix. Note that SPn < GL(n;C).

There is an interesting analogue of Representation Theory for signed groups. For

a signed group S, a representation of degree m is a signed group homomorphism

π : S → GL(m;C).
We will consider more special representations of signed groups, called remreps. A

remrep (short for “real monomial representation”) π of degree m is a representation

of a signed group S, such that for every s ∈ S, π(s) ∈ SPm. In other words, a remrep

π of degree m is a signed group homomorphism π : S → SPm.

Consider some examples of remreps.

1. Not every signed group admits a remrep of degree 1. For example, the com-

plex signed group SC does not allow such a remrep. Moreover, the following

proposition holds.

Theorem 2.1. A signed group S has a remrep of degree 1 if and only if it is

elementary.
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Proof. Let S be a signed group. If S is elementary, it is isomorphic to some

product G× T . Then the projection on T is a remrep of degree 1.

Conversely, assume that S admits a remrep of degree 1. Let G ⊆ S be the

pre-image of 1. Since G is a subgroup of S of index 2, it is a normal subgroup

not containing −1. Since G is normal, G∩ {±1} = {1}, and S = G∪ (−1 ·G),

S is isomorphic to the direct product of G and {±1} ≤ S. Therefore, S is

elementary.

Hence, the existence of such a representation demonstrates that a signed group

is elementary.

2. For the complex signed group there exists a remrep of degree 2, uniquely de-

termined by the map

i 7→

(
0 1

− 0

)
.

3. The Quaternion signed group has a representation of degree 2,

j 7→

(
0 1

− 0

)
, k 7→

(
0 i

i 0

)
,

which is not a remrep, and another representation of degree 4,

j 7→


0 0 1 0

0 0 0 1

− 0 0 0

0 − 0 0

 , k 7→


0 0 0 −
0 0 1 0

0 − 0 0

1 0 0 0

 ,

which is a remrep.

4. The signed group SPn has a very nice remrep of degree n — the identity map.

Let S be a signed group. Define a (0, S)-matrix to be a matrix whose nonzero

entries lie in S. To multiply (0, S)-matrices we will need an analogue of a group ring
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for a signed group. Recall that for every ring R and every group G there exists a

group ring R[G] that consists of all finite sums

r1g1 + r2g2 + · · ·+ rngn,

where r1, . . . , rn ∈ R and g1, . . . , gn ∈ G. Addition and multiplication are defined

in a natural way. Group elements form a basis of R[G] considered as a free left R-

module. The product of elements r1g1 and r2g2 is defined to be (r1r2)(g1g2), where

the first product is taken in R, and second in G. By distributivity multiplication is

defined on the whole ring.

For signed groups the definition is slightly different. Every signed group has a

distinguished element −1. If the ring R has a unit 1R, its negation is −1R. It is

natural to require that in the signed group ring, the negation of the ring unit should

be identified with the distinguished element −1 of the signed group. Therefore,

for a unital ring R and a signed group S define the signed group ring R[S] as a

corresponding group ring modulo the principal ideal (−1S + 1R), where −1S is the

distinguished element of S, and 1R is the unit of R. That is,

R[S] =

{
n∑

i=1

risi|ri ∈ R, si ∈ P

}
,

where P is a set of coset representatives of S modulo ⟨−1S⟩ and for s ∈ P , r ∈ R

we make the identification −rs = r(−s). Addition is defined termwise and mul-

tiplication is defined by linear extension. We will consider only the simplest case

R = Z.
In particular, for the trivial signed group T , Z[T ] is isomorphic to Z. For the

complex signed group, the corresponding signed group ring Z[SC] is isomorphic to

the ring Z[i] of Gaussian integers. For the Quaternion signed group Q, the signed

group ring Z[Q] is isomorphic to the Lipschitz quaternion ring

L = {a+ bj + ck + djk|a, b, c, d ∈ Z}.

For all s ∈ S define s∗ = s−1. Extend this map linearly to the signed group ring

Z[S]. Obviously, the conjugation is an involution, i.e. x∗∗ = x for all x ∈ Z[S], and
(xy)∗ = y∗x∗ for all x, y ∈ Z[S].
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For an n×m-matrix A = (aij) with entries in Z[S] define its adjoint as an m×n-

matrix A∗ = (bij), where bij = a∗ij. In other words, A∗ is the entry-wise conjugation

of A⊤. For example, consider Q-matrices:

(
k j 1

−1 −k j

)∗

=


−k −1

−j k

1 −j

 .

Since Z[S] is a ring, we can define a product AB of two square matrices A, B of

the same order with entries in Z[S] in a natural way. In particular, we can assume

that A and B are just (0, S)-matrices. Moreover,

(AB)∗ = B∗A∗.

Using signed groups we can generalize the notion of Hadamard and weighing

matrices. Define a signed group Hadamard matrix A of order n over a signed group

S to be an S-matrix of order n, such that

AA∗ = nI.

Denote the set of all such matrices as SH(n;S). Define a signed group weighing

matrix W of order n and weight w to be a square (0, S)-matrix of order n satisfying

similar condition

WW ∗ = wI.

Denote the set of all such matrices by SW (n,w;S).

For example, (
j k

k j

)
is a circulant signed group Hadamard matrix in SH(2;Q).

Since Z[SC] = Z[i] we can see that SH(n;SC) = CH(n). That is, signed group

Hadamard matrices over the signed group SC are just complex Hadamard matrices.

Similarly, SH(n;T ) = H(n).
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Using remreps there is a way to construct real Hadamard matrices from signed

group ones. First, if we have a remrep π : S → SPm, extend it to a ring homomor-

phism Z[S] → Mm(Z) linearly by

π(k1s1 + · · ·+ knsn) = k1π(s1) + · · ·+ knπ(sn).

Since P−1 = P⊤ for every matrix P ∈ SPm, for every x ∈ Z[S] we have π(s∗) =

π(s)⊤. Consider the following theorem.

Theorem 2.2. Assume that for some signed group S there exists a signed weighing

matrix W ∈ SW (n,w;S) and a remrep π of degree m, where m is the order of a

Hadamard matrix. Then there exists a weighing matrix U ∈ W (mn,mw).

Proof. Let W = (wij), and let H be a Hadamard matrix of order m. Construct a

matrix U as a n×n block matrix U = (π(wij)H)ni,j=1. Then U⊤ = (H⊤π(wji)
⊤)ni,j=1.

Let UU⊤ = (Gij)
n
i,j=1. Then for fixed integers i, j we have

Gij = π(wi1)HH⊤π(w1j)
⊤ + · · ·+ π(win)HH⊤π(wnj)

⊤ =

m(π(wi1)π(w
∗
1j) + · · ·+ π(win)π(w

∗
nj)) = mπ(wi1w

∗
1j + · · ·+ winw

∗
nj) =

mπ(wδij · 1S) = mwδijI.

where δij = 1 if i = j, and δij = 0 otherwise. Therefore, UU⊤ = mwI and U is a

weighing matrix.

In particular, this works when W is a signed group Hadamard matrix.

Corollary 2.3. Assume that for some signed group S there exists a signed Hadamard

matrix H ∈ SH(n;S) and a remrep of degree m, where m is the order of a Hadamard

matrix. Then there exists a Hadamard matrix of order mn.

And a similar corollary for complex Hadamard matrices.

Corollary 2.4. Assume that for some signed group S there exists a signed Hadamard

matrix H ∈ SH(n;S) and a remrep of degree m, where m is the order of a complex

Hadamard matrix. Then there exists a complex Hadamard matrix of order mn.
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Now we can prove Theorem 1.3 from Chapter 1 regarding the construction of

Hadamard matrices from complex Hadamard matrices.

Proof of Theorem 1.3. Let C be a complex Hadamard matrix. Then C can be viewed

as a signed group Hadamard matrix over SC. On p. 12 we considered a remrep of

the complex signed group of degree 2. Since there is a Hadamard matrix

H =

(
1 1

1 −

)
,

according to Theorem 2.2, we may perform replacement operations

±1 7→ ±

(
1 0

0 1

)(
1 1

1 −

)
= ±

(
1 1

1 −

)
,

and

±i 7→ ±

(
0 1

− 0

)(
1 1

1 −

)
= ±

(
1 −
− −

)
,

to obtain a Hadamard matrix.

Since Q has a remrep of degree 4, we can construct a Hadamard matrix of order

8 from the signed group Hadamard matrix(
j k

k j

)

over Q. Using a Hadamard matrix

H =


1 1 1 1

1 1 − −
1 − 1 −
1 − − 1

 ,
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we construct a bigger one,

1 − 1 − − 1 1 −
1 − − 1 1 − 1 −
− − − − − − 1 1

− − 1 1 1 1 1 1

− 1 1 − 1 − 1 −
1 − 1 − 1 − − 1

− − 1 1 − − − −
1 1 1 1 − − 1 1


.

We will use Corollaries 2.3 and 2.4 in the construction of Hadamard matrices

to obtain the new asymptotic results mentioned in the introduction. In the next

chapter we will describe a construction of a Hadamard matrix in SH(p;SP2n) for

every odd integer p and some n.



Chapter 3

Construction of signed group

Hadamard matrices from

sequences

Let S be a signed group and let A be a (0, S)-matrix. Define the support of A,

supp(A), as the set of positions of all nonzero entries of A. A is quasisymmetric if

supp(A⊤) = supp(A). A is called normal if it commutes with A∗. A is circulant if

A = (ai−j+1)
n
i,j=1 for a sequence (a1, a2, . . . , an), which is identified with the first row

of A, and i− j is reduced modulo n. Pairwise disjoint matrices are supplementary if

their sum has no zero entries.

Let us consider a few ways to construct bigger matrices from smaller ones while

preserving certain properties.

Lemma 3.1 ([C1]). Let A,B be normal, commuting, disjoint, quasisymmetric (0, S)-

matrices of order n. Let

C =

(
A+B A−B

A∗ −B∗ −A∗ −B∗

)
.

Then

CC∗ = C∗C = 2I2 ⊗ (AA∗ +BB∗).

18



19

If S has a remrep of degree m, then there exists a normal (0, S ′)-matrix D of order

n with the same support as A + B, such that DD∗ = D∗D = AA∗ + BB∗, where

S ′ ≥ S is a signed group having a remrep of order 2m. Moreover, if A and B are

circulant, then so is D.

Proof. Since A and B are disjoint, C is a (0, S)-matrix. By definition,

CC∗ =

(
A+B A−B

A∗ −B∗ −A∗ −B∗

)(
A∗ +B∗ A−B

A∗ −B∗ −A−B

)
=

(
(A+B)(A∗ +B∗) + (A−B)(A∗ −B∗) (A+B)(A−B)− (A−B)(A+B)

(A∗ −B∗)(A∗ +B∗)− (A∗ +B∗)(A∗ −B∗) (A∗ −B∗)(A−B) + (A∗ +B∗)(A+B)

)

=

(
2(AA∗ +BB∗) 0

0 2(AA∗ +BB∗)

)
= 2I2 ⊗ (AA∗ +BB∗).

Similarly C∗C = 2I2 ⊗ (A∗A+B∗B) = CC∗.

The matrix D is obtained in the following way. Reorder the rows and columns of

C so that the resulting matrix, D0, is partitioned into 2× 2 blocks whose entries are

the (i, j), (i+ n, j), (i, j + n), (i+ n, j + n) entries of C, 1 ≤ i, j ≤ n. Applying the

same reordering to 2I2 ⊗ (AA∗ + BB∗) we will get the matrix (AA∗ + BB∗) ⊗ 2I2.

Therefore, D0D
∗
0 = (AA∗ +BB∗)⊗ 2I2.

Since A and B are disjoint and quasisymmetric, each non-zero block of D0 will

have one of the forms (
a a

b −b

)
or

(
a −a

b b

)
,

where a, b ∈ S. Multiplying D0 on the right by M = 1
2
In ⊗

(
1 1

1 −

)
, we get a

(0, S)-matrix D1 whose non-zero 2× 2 blocks are of the form(
a 0

0 b

)
or

(
0 a

b 0

)
.

Such 2 × 2 (0, S)-matrices form another signed group, which we will denote by S ′.
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Since

MM∗ =
1

4
· I2n ⊗

[(
1 1

1 −

)(
1 1

1 −

)]
=

1

4
· In ⊗ 2I2 =

1

2
· I2n,

we have that

D1D
∗
1 = D0MM∗D∗

0 =
1

2
·D0D

∗
0 = (AA∗ +BB∗)⊗ I2.

Similarly, D∗
1D1 = (AA∗ +BB∗)⊗ I2.

Consider the signed group S ′ in more detail. First, we can construct a remrep of

S ′ from a remrep of S. Really, let π : S → SPm be a remrep of S. Consider a map

π′ : S ′ → SP2m defined by(
a 0

0 b

)
7→

(
π(a) 0m

0m π(b)

)
,

(
0 a

b 0

)
7→

(
0m π(a)

π(b) 0m

)
,

where 0m denotes the zero m×m matrix. Direct verification shows that π′ is a signed

group homomorphism and a remrep of degree 2m.

Matrices of the form

a⊗ I2 =

(
a 0

0 a

)
, a ∈ S,

form a signed subgroup of S ′, which is isomorphic to S; thus, we can identify this

signed subgroup with S itself and consider S ′ as an extension of S.

Finally, we can replace every 2× 2 block of D1 with corresponding element of S ′

or zero, to obtain a (0, S ′)-matrix D. Since we identify 2× 2-matrix a⊗ I2 ∈ S ′ with

a ∈ S, we get DD∗ = D∗D = AA∗ +BB∗.

If A and B are circulant, then C consists of four circulant blocks, so both D0 and

D1 are block-circulant with block size 2× 2. Consequently, D is circulant.

Here is the corresponding result for weighing matrices.

Corollary 3.2. Let A,B be normal, commuting, disjoint, quasisymmetric weighing

matrices of order n and weights v and w respectively. If S has a remrep of degree

m, then there exists a matrix D ∈ SW (n, v + w;S ′), where S ′ ≥ S has a remrep of

degree 2m. If both A and B are circulant, then so is D.
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Consider an example. Let

A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B =


0 1 1 −
− 0 1 1

1 − 0 1

1 1 − 0


be two disjoint quasisymmetric circulant weighing matrices. The corresponding ma-

trices from Lemma 3.1 are

C =



1 1 1 − 1 − − 1

− 1 1 1 1 1 − −
1 − 1 1 − 1 1 −
1 1 − 1 − − 1 1

1 1 − − − 1 − −
− 1 1 − − − 1 −
− − 1 1 − − − 1

1 − − 1 1 − − −


, D0 =



1 1 1 − 1 − − 1

1 − 1 1 − − − −
− 1 1 1 1 − 1 −
− − 1 − 1 1 − −
1 − − 1 1 1 1 −
− − − − 1 − 1 1

1 − 1 − − 1 1 1

1 1 − − − − 1 −


,

D1 =



1 0 1 0 0 − − 0

0 1 0 − 1 0 0 1

− 0 1 0 1 0 0 −
0 1 0 1 0 − 1 0

0 − − 0 1 0 1 0

1 0 0 1 0 1 0 −
1 0 0 − − 0 1 0

0 − 1 0 0 1 0 1


.

Matrices a =

(
1 0

0 −

)
, c =

(
0 −
1 0

)
generate a signed group

S = ⟨a, c|a2 = 1, c2 = −1, ac = −ca⟩,
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which has a remrep of degree 2. Finally,

D =


1 a c −a

−a 1 a c

c −a 1 a

a c −a 1


is a circulant signed group Hadamard matrix over S.

A circulant matrix can be identified by its first row. Let X be a finite (0, S)-

sequence. Denote by circ(X) the circulant matrix having first row X. We will

call a sequence X quasisymmetric if circ(X) is a quasisymmetric matrix. Similarly,

two sequences X,Y of same length are disjoint if circ(X), circ(Y ) are disjoint.

Disjoint sequences are called supplementary if the corresponding circulant matrices

are supplementary.

If A = (a1, a2, . . . , al) is a (0, S)-sequence of length l, denote by NA(j) its non-

periodic autocorrelation function, which is defined by

NA(j) =

l−j∑
i=1

aia
∗
i+j,

for all 0 ≤ j < l and equals zero for all other j. A set X1, X2, . . . , Xn of (0, S)-

sequences is said to have zero autocorrelation with weight w if the sum

NX1(j) +NX2(j) + · · ·+NXn(j)

equals zero for all j > 0 and equals w for j = 0. Sequences having zero autocorrela-

tion are also called complementary.

Further, denote by PA(j) the periodic autocorrelation function of A defined by

PA(j) =
l∑

i=1

aia
∗
i+j ,

where indices are all reduced modulo l. This is a periodic function with period l.

Periodic autocorrelation function is useful because of the following statement.

Lemma 3.3. Let A = (a1, . . . , an) be an S-sequence. Then, MM∗ = (PA(j−i))ni,j=1,

where M = circ(A).
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Proof. By definition of circulant matrix, M = (ai−j+1)
n
i,j=1, M

∗ = (a∗j−i+1)
n
i,j=1. The

(i, j) entry of MM∗ is equal to

n∑
k=1

ai−k+1a
∗
j−k+1 = PA(j − i).

A set X1, X2, . . . , Xn of sequences of length q is said to have zero periodic auto-

correlation with weight w and period q if the sum

PX1(j) + PX2(j) + · · ·+ PXn(j)

equals w for j ≡ 0 (mod q), and equals zero otherwise. By Lemma 3.3 this is

equivalent to the equality

M1M
∗
1 +M2M

∗
2 + · · ·+MnM

∗
n = wI,

where Mi = circ(Xi).

From now on we will be considering only (0,±1,±i)-sequences. Note, that for

such sequences, the conjugation is the same as the usual complex conjugation x 7→ x.

There is a connection between periodic and non-periodic autocorrelation for complex

sequences.

Lemma 3.4. Let A = (a1, . . . , al) be a (0,±1,±i)-sequence. Then for all k =

0, 1, . . . , l − 1:

PA(k) = NA(k) +NA∗(l − k),

where A∗ = (a∗l , . . . , a
∗
2, a

∗
1) is the reverse sequence of A.

Proof. By definition,

PA(k) = a1a
∗
k+1 + · · ·+ ala

∗
k = (a1a

∗
k+1 + · · ·+ al−ka

∗
l )+

(a∗1al−k+1 + · · ·+ a∗kal) = NA(k) +NA∗(l − k).
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Lemma 3.4 fails in general, when A is a (0, S)-sequence for some signed group

S. Complex sequences of the same length with zero autocorrelation clearly have also

zero periodic autocorrelation. Consider some additional results involving complex

matrices.

Lemma 3.5. Any two circulant complex matrices commute.

Proof. Let C = circ(a1, . . . , an), D = circ(b1, . . . , bn). Then the (i, j) entry of CD

equals
n∑

k=1

ai−k+1bk−j+1 =
∑

p+q=i−j+2

apbq

Obviously, this is the same as the (i, j) entry of DC.

Lemma 3.6. All complex Hadamard, weighing, and circulant matrices are normal.

Proof. Let W ∈ CW (n,w), where w ≥ 1. Then WW ∗ = wI. Thus, a complex

matrix 1
w
W ∗ is the inverse of W . Since every invertible complex matrix commutes

with its inverse, we have ( 1
w
W ∗)W = I, or W ∗W = wI. Thus, W is normal.

Obviously, Hadamard matrices are just special weighing matrices.

Let C be a circulant complex matrix with the first row (a1, a2, . . . , an). Then C∗

is a circulant matrix with the first row (a∗1, a
∗
n, . . . , a

∗
2). By Lemma 3.5 CC∗ = C∗C;

thus, C is normal.

Theorem 3.7 ([C1]). Let X1, X2, . . . , Xn be disjoint, quasisymmetric (0,±1)-sequences

having zero periodic autocorrelation of period q and weight w. Then there exists a

circulant SW (q, w;S) for a signed group S that admits a remrep of degree 2n−1.

Proof. Let Mi = circ(Xi) for all i = 1, 2, . . . , n. Then these matrices are all normal,

disjoint, commuting and quasisymmetric. Apply Lemma 3.1 to matrices M1 and M2

to obtain a circulant normal (0, S1)-matrix N1, such that N1N
∗
1 = M1M

∗
1 +M2M

∗
2 ,

where S1 ≥ ⟨−1⟩ is a signed group with a remrep of degree 2. Since supp(N1) is the

union of supports supp(M1) and supp(M2), N1 is quasisymmetric and disjoint from

M3,M4, . . . ,Mn.
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Assume that we have constructed a circulant quasisymmetric normal (0, Si)-

matrix Ni, where Si is a signed group with remrep of degree 2i, such that Ni is

disjoint from Mi+2, . . . ,Mn, and

NiN
∗
i = M1M

∗
1 +M2M

∗
2 + · · ·+Mi+1M

∗
i+1.

Apply Lemma 3.1 to Ni and Mi+2 to obtain a circulant normal (0, Si+1)-matrix Ni+1

with similar properties, where Si+1 ≥ Si is a signed group with remrep of degree 2i.

Applying this procedure n − 2 times, we will get a (0, Sn−1)-matrix N = Nn−1

with the property

NN∗ = M1M
∗
1 +M2M

∗
2 + · · ·+MnM

∗
n = wI,

where Sn−1 = S is a signed group having a remrep of degree 2n−1.

A complex version of Theorem 3.7 works similarly and produces a circulant

SW (q, w;S) for a signed group with a remrep of degree 2n.

Corollary 3.8. Let X1, X2, . . . , Xn be supplementary quasisymmetric (0,±1)-sequences

having zero periodic autocorrelation of period q. Then there exists a Hadamard matrix

in H(2n−1q).

Corollary 3.9. Let X1, X2, . . . , Xn be supplementary quasisymmetric (0,±1,±i)-

sequences having zero periodic autocorrelation of period q. Then there exists a Hadamard

matrix in H(2nq).

There is a way to construct sequences with all these properties from any finite

set of sequences of various lengths having zero autocorrelation, as follows.

Let p be an odd positive integer. Consider two (±1)-sequences U and V of length

l ≤ p−1
2
. Assume additionally that V ∗ has the same support as U (then in turn

U∗ has the same support as V ). Construct two new sequences XU and XV in the

following way. Take any two nonnegative integers a, b, such that a + b = p − l − 1,

let

XU = (0a+1, U, 02b+1, V, 0a), XV = (0b+1, V, 02a+1,−U, 0b).
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These are both sequences of length 2p. Since supp U∗ = supp V , XU is quasisym-

metric. The same condition holds for XV . Moreover, we can always choose numbers

a and b in a such way that XU and XV would be disjoint. Finally,

NXU
(j) +NXV

(j) = 2(NU(j) +NV (j)),

for all j ∈ Z. Therefore, if U and V have zero autocorrelation, so do XU and XV .

Theorem 3.10 ([C1]). Suppose that A1, B1, . . . , At, Bt are 2t (±1)-sequences with

zero autocorrelation, Ai, Bi both having length li, i = 1, . . . , t, where
∑t

i=1 li = L.

Then there exists a Hadamard matrix of order 4t+1(2L+ 1).

Proof. We can always embed a pair (Ai, Bi) to a quasisymmetric disjoint pair (XAi
, XBi

)

of sequences of length 4L+ 2 as discussed above. Define the sequences

X1 = (1, 04L+1),

XAi
= (0, 02(ln+···+li+1), 0li , Ai, 02(li−1+···+l1), 0, 02(l1+···+li−1), Bi, 0li , 02(li+1+···+ln)),

XBi
= (0, 02(ln+···+li+1), Bi, 0li , 02(li−1+···+l1), 0, 02(l1+···+li−1), 0li ,−Ai, 02(li+1+···+ln)),

X2 = (02L+1, 1, 02L),

Trivially, the sequences X1, X2, XA1 , XB1 , . . . , XAt , XBt are supplementary. Ap-

plying Corollary 3.8 we obtain a Hadamard matrix of order 22t+1(4L+2) = 4t+1(2L+

1).

For the asymptotic constructions we shall discuss, it would be necessary for a

length L to find the smallest possible set of supplementary sequences of total length

2L with zero autocorrelation.

Theorem 3.10 works similarly for complex sequences. However, we need our

sequences to be divided into pairs of equal lengths. This holds automatically for any

set of binary sequences with zero autocorrelation (see Lemma 4.1).

Theorem 3.11. Suppose that A1, B1, . . . , At, Bt are 2t (±1,±i)-sequences with zero

autocorrelation, Ai, Bi both having length li, i = 1, . . . , t, where
∑t

i=1 li = L. Then

there exists a Hadamard matrix of order 22t+3(2L+ 1).
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Proof. Repeat the proof of Theorem 3.10 using Corollary 3.9.

For example, let U = (1, 1,−), V = (1, i, 1). Then,

NU(1) = 1 · 1 + 1 · (−1) = 0, NV (1) = 1 · (−i) + i · 1 = 0,

NU(2) = 1 · (−1) = −1, NV (2) = 1 · 1 = 1.

Therefore, U and V have zero autocorrelation. Then, the following four sequences

X1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

XU = (0, 1, 1,−, 0, 0, 0, 0, 0, 0, 0, 1, i, 1),

X2 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

XV = (0, 0, 0, 0, 1, i, 1, 0,−,−, 1, 0, 0, 0).

are complex supplementary quasisymmetric sequences with zero autocorrelation. By

the complex analogue of Corollary 3.8, there exists a Hadamard matrix of order 112.

Thus, we construct Hadamard matrices from sets of sequences with zero auto-

correlation. In the next chapter we consider basic properties and examples of such

sequences.



Chapter 4

Some classes of sequences with

zero autocorrelation

Any set of complementary (±1)-sequences of lengths greater than one can be parti-

tioned into pairs of sequences having equal lengths. We denote by l(A) the length of

a sequence A.

Lemma 4.1 ([C8]). Let S be a finite set of n binary sequences of various lengths,

all greater than 1, with zero autocorrelation. Then n is even. Further, the number

of sequences in S of any given length is even.

Proof. Let S = {A1, . . . , An}. Denote N(x) = NA1(x) + · · · + NAn(x). Moreover,

assume that l1 > l2 > . . . > lk > 1 are all possible lengths of sequences in S. We

prove by induction that the number of sequences having length li is even for all i.

Consider 0 = N(l1 − 1) =
∑

l(Aj)=l1
NAj

(l1 − 1). Since NAj
(l1 − 1) = ±1 for all j

such that l(Aj) = l1, the number of sequences of length l1 should be even.

Let i be a positive integer. Assume that number of sequences of length li0 is even

for all i0 < i. Consider N(li − 1). Obviously,

N(li − 1) =
∑

l(Aj)=li

NAj
(li − 1) +

∑
l(Aj)>li

NAj
(li − 1).

However, values NAj
(li − 1) have the same parity for all Aj’s of the same length. By

28
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induction assumption, the number of such sequences is even. Therefore,

N(li − 1) ≡
∑

l(Aj)=li

NAj
(li − 1) (mod 2).

Since li − 1 > 0, we have NAj
(li − 1) = ±1, for all j such that l(Aj) = li. Therefore,

the number of sequences of length li is also even.

Consider some general properties of complementary sequences. Obviously, we

can take any two sets of complementary sequences and unite them together to get a

bigger set. The total length of the new set is the sum of total lengths of the original

sets. There are a few more operations we can do with complementary sequences.

Lemma 4.2. If A1, A2, . . . , A2n are complementary (0,±1,±i)-sequences of total

length l, then there exist complementary (0,±1,±i)-sequences B1, B2, . . . , B2n of total

length 2l.

Proof. For i = 1, 2, . . . , n define B2i−1 = (A2i, A2i−1), B2i = (A2i,−A2i−1). Then,

NB2i−1
(j) +NB2i

(j) = 2(NA2i−1
(j) +NA2i

(j)),

for all j ∈ Z. Therefore, B1, B2, . . . , B2n are complementary of total length 2l.

We can also multiply sets of complementary sequences. The tensor product of

two sequences A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn) is the sequence

A⊗B = (a1b1, a2b1, . . . , amb1, . . . , a1bn, a2bn, . . . , ambn).

Lemma 4.3 ([C8]). If A1, A2, . . . , A2n are complementary (±1)-sequences of total

length 2x, and B1, B2, . . . , B2m are complementary (±1,±i)-sequences of total length

2y, then there exists a set of 2mn (±1,±i)-sequences with zero autocorrelation and

total length 2xy.

Proof. Without loss of generality, assume that all pairs Ai, Ai+n, and Bj, Bj+m,

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m consist of sequences of equal lengths. Then the

sequences

Ai + Ai+n

2
⊗Bj +

Ai − Ai+n

2
⊗Bj+m,

Ai + Ai+n

2
⊗B∗

j+m − Ai − Ai+n

2
⊗B∗

j ,
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i = 1, 2, . . . , n, j = 1, 2, . . . ,m, form a set of 2mn complementary sequences with

total length 2xy.

Lemma 4.3 generalizes Lemma 4.2 in the following way. Every set of complemen-

tary binary sequences can be multiplied by any Golay number, not only doubled, as

we now discuss.

4.1 Golay sequences

Lemma 4.1 implies that every set of complementary binary sequences contains at

least two sequences of the same length. The case when there are only two sequences

was first considered by M. Golay in 1949 [G1].

Golay sequences are two (±1)-sequences having zero autocorrelation. The length

of a Golay sequence is called a Golay number. Denote by GS(l) the set of all pairs

of Golay sequences of length l.

For the length l = 1 any pair of real units forms a Golay pair; GS(1) has four

elements.

For the length l = 2 we have the pair A = (1, 1), B = (1,−). All pairs in GS(2)

can be obtained from (A;B) by replacing, reversing, or negating one of the sequences.

There are 8 pairs in GS(2) in total.

For the length l = 3 there are no Golay pairs.

The following product constructs a Golay pair of length mn from Golay pairs of

lengths m and n (first described by R. Turyn in 1974 [T1]).

Theorem 4.4 ([C6]). If (A;B) ∈ GS(m) and (C;D) ∈ GS(n), then(
1

2
[(A+B)⊗ C + (A−B)⊗D∗];

1

2
[(A+B)⊗D − (A−B)⊗ C∗]

)
∈ GS(mn).

Note that this is a special case of Lemma 4.3.

Therefore, 2k is a Golay number for all k. Golay pairs that can not be constructed

by this multiplication are of special interest. Golay showed in [G2] that 10 and 26

are Golay numbers by constructing a pair

A = (1, 1,−, 1,−1, 1,−,−1, 1, 1), B = (1, 1,−, 1, 1, 1, 1, 1,−,−)
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of length 10, and another pair

A = (1, 1, 1, 1,−, 1, 1,−,−, 1,−, 1,−, 1,−,−, 1,−, 1, 1, 1,−,−, 1, 1, 1),

B = (1, 1, 1, 1,−, 1, 1,−,−, 1,−, 1, 1, 1, 1, 1,−, 1,−,−,−, 1, 1,−,−,−)

of length 26. Thus, Golay sequences exist in all lengths of the form 2α10β26γ for all

α, β, γ ≥ 0. As of early 2012, there had been no Golay pairs found with a different

length. Lengths up to 100 were considered in [BF]. For lengths not greater than 200,

only 106, 116, 122, 130, 136, 146, 148, 164, 170, 178, 194 remain unsettled.

There is also the following general non-existence result.

Theorem 4.5 ([E]). No Golay number g is divisible by a number congruent to 3

modulo 4.

4.2 Base sequences

Let us consider sets of four complementary sequences with one or two distinct lengths.

Base sequences are four (±1)-sequences of lengths m,m,m + q,m + q, q ≥ 0

having zero autocorrelation. Denote by BS(m,m + q) the set of all quadruples of

base sequences of lengths m, m, m+ q, m+ q.

For example, (A;B;C;D) ∈ BS(3, 4), where

A = (1, 1, 1), C = (1, 1,−, 1),

B = (1,−, 1), D = (1, 1,−,−),

because

NA(1) = 2; NC(1) = −1;

NA(2) = 1; NC(2) = 0;

NC(3) = 1;

NB(1) = 0; ND(1) = −1;

NB(2) = 1; ND(2) = −2;

ND(3) = −1;
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Base sequences of BS(m,m + 1) have been studied extensively. In [K1] examples

are presented for all m ≤ 30. Base sequences up to length m = 35 are presented on

Christos Koukouvinos’ personal website [K5]. Further examples for m = 36, 37, 38

appeared in [D2].

Lemma 4.3 implies that any quadruple of base sequences can be multiplied with

any Golay pair to obtain another quadruple.

Base sequences with q = 1 are of special interest because of the following theorem.

Theorem 4.6 ([Y]). If there exist base sequences of lengths m, m, m + 1, m + 1

and n, n, n+1, n+1, then there exist four complementary (±1)-sequences of length

(2m+ 1)(2n+ 1).

Since BS(n, n+ 1) is not empty for all 1 ≤ n ≤ 38, Theorem 4.6 provides many

new base sequences. Theorem 4.6 is usually called by Yang multiplication.

The following slight generalization of Yang multiplication requires only one quadru-

ple to have q = 1.

Theorem 4.7 ([K3]). If there are base sequences of lengths m, m, m + q, m + q

and n, n, n+ 1, n+ 1, then there are four complementary (±1)-sequences of length

(2m+ q)(2n+ 1).

Consider the following generalization of base sequences. Complex base sequences

are four (±1,±i)-sequences of lengths m,m,m+q,m+q having zero autocorrelation.

It seems that this definition does not appear in the literature. Denote by CBS(m,m+

q) the set of all quadruples of complex base sequences of lengths m, m, m+ q, m+ q.

Another form of Yang multiplication works in this case.

Theorem 4.8 ([C2]). If there exist complex base sequences of lengths m, m, m+ q,

m+ q and n, n, n+ 1, n+ 1, then there are four complementary (±1,±i)-sequences

of length 2(2m+ q)(2n+ 1).

Proof. For sequences X = (x1, x2, . . . , xn+1), Y = (y1, y2, . . . , yn) we write X/Y for

the sequence (x1, y1, x2, y2, . . . , xn, yn, xn+1). Let the first sequences be P , Q, R, S
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and the second T , U , V , W . The four sequences

A = (P, 0m+q, 0m+q, Q), B = (P, 0m+q, 0m+q,−Q),

C = (0m, R, S, 0m), D = (0m, R,−S, 0m)

of length 2(2m+ q) have zero autocorrelation, as do the four sequences

E = V/0n, F = 0n+1/T, G = W/0n, H = 0n+1/U

having length 2n+ 1. Then, the four sequences

E ⊗ A+ F ∗ ⊗B +G∗ ⊗ C +H∗ ⊗D,

−E∗ ⊗B + F ⊗ A+G∗ ⊗D∗ −H∗ ⊗ C∗,

−E∗ ⊗ C − F ∗ ⊗D∗ +G⊗ A+H∗ ⊗B∗,

−E∗ ⊗D + F ∗ ⊗ C∗ −G∗ ⊗B∗ +H ⊗ A,

have zero autocorrelation. Verifying the claim is straight-forward.

Furthermore, by Lemma 4.3 the product of four base sequences and a complex

Golay pair is a set of four complex base sequences. This will be used further in

Chapter 5.

4.3 Complex Golay sequences

According to the previous definition, complex Golay sequences are two (±1,±i)-

sequences having zero autocorrelation. Complex Golay sequences appeared first in

1970s under the name quadriphase pairs [T2]. By 1980 some computer searches were

done that gave examples of such sequences in various lengths not exceeding 13.

The length of any complex Golay sequence is called a complex Golay number.

Some constructions that worked for Golay sequences can be generalized to the com-

plex case. Denote by CGS(l) the set of all complex Golay pairs of length l.

Theorem 4.9 ([C6]). If (A;B) ∈ CGS(m) and (C;D) ∈ CGS(n), then

1.
(
(A⊗ C,B ⊗D∗); (A⊗D,−B ⊗ C∗)

)
∈ CGS(2mn).
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2. If we further assume that A and B are real, then(
1

2
[(A+B)⊗ C + (A−B)⊗D∗];

1

2
[(A+B)⊗D − (A−B)⊗ C∗]

)
∈ CGS(mn).

There is no construction for direct multiplication of complex Golay numbers, as

in the real case. It is known that there is no complex Golay pair of length 15, though

both 3 and 5 are complex Golay numbers. Here is another multiplication construction

for complex Golay numbers that comes close to this (in a certain respect).

Theorem 4.10 ([C7]). If g1, g2 are complex Golay numbers and g is an even Golay

number, then gg1g2 is a complex Golay number.

Prime complex Golay numbers are of special interest. The following complex

Golay sequences of prime lengths g are known.

g = 2 : A = (1, 1), B = (1,−);

g = 3 : A = (1, 1,−), B = (1, i, 1);

g = 5 : A = (i, i, 1,−, 1), B = (i, 1, 1, i,−);

g = 11 : A = (1, i,−, 1,−, i, j,−, i, i, 1),

B = (1, 1, j, j, j, 1, 1, i,−, 1,−);

g = 13 : A = (1, 1, 1, i,−, 1, 1, j, 1,−, 1, j, i),

B = (1, i,−,−,−, i,−, 1, 1, j,−, 1, j).

Examples of complex Golay sequences of lengths 11 and 13 appeared first in [HK].

Applying Theorem 4.3, we have the following set of complex Golay numbers.

Corollary 4.11 ([C7]). All numbers of the form 2a+u3b5c11d13e, where a, b, c, d, e, u ≥
0, b+ c+ d+ e ≤ a+ 2u+ 1, u ≤ c+ e, are complex Golay numbers.

In [C7] complex Golay sequences were exhaustively studied for all lengths g ≤ 21.

The numbers shown above are the only prime complex Golay numbers known so far,

and numbers presented in Corollary 4.11 are the only known complex Golay numbers.

By an exhaustive computer search it has been proven that there is no complex Golay

pair of lengths 7, 9, 15, 17, 19, 21. However, other prime complex Golay numbers

may exist.
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4.4 Normal sequences

Normal sequences of length n are three sequences A, B, C of length n with zero

autocorrelation such that A is a (±1)-sequence, whileB and C are supplementary and

quasisymmetric (0,±1)-sequences. Denote by NS(n) the set of all Normal sequences

of length n.

For example, (A;B;C) ∈ NS(3), where

A = (1, 1,−), B = (1, 0, 1), C = (0,−, 0),

because

NA(1) = 0; NB(1) = 0; NC(1) = 0;

NA(2) = −1; NB(2) = 1; NC(2) = 0.

Any Golay pair (A;B) can be easily transformed to a triple of Normal sequences by

adding a third sequence C consisting of all zeros.

Consider the following non-existence theorem for Normal sequences of lengths

not exceeding 40.

Theorem 4.12 ([D2]). For n ≤ 40, NS(n) = ∅ if and only if

n ∈ {6, 14, 17, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39}.

All other known Normal sequences are of Golay lengths. It also known that there

is no Normal sequences of lengths 46, 56, 62, 78, 94. The smallest unresolved length

is n = 41.

Base sequences may be constructed from Normal sequences, as follows.

Theorem 4.13 ([K2]). Let (A;B;C) ∈ NS(n). Then(
(A, 1); (A,−);B + C;B − C

)
∈ BS(n, n+ 1).

Corollary 4.14. If g is a Golay number, then BS(g, g + 1) ̸= ∅.

Corollary 4.14 provides sequences suitable for Yang multiplication.

Another form of Yang multiplication allows multiplication of Normal sequences

directly with base sequences.
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Theorem 4.15 ([Y, K3]). If BS(m,m+ q) ̸= ∅ and NS(n) ̸= ∅, then
BS((2m+ q)n, (2m+ q)n) ̸= ∅.

Examples of Normal sequences and some facts about them can be found in [K2].

Normal sequences and the above versions of Yang multiplication were used exten-

sively throughout the computer computations described in the next chapter.

4.5 Turyn sequences

Four (±1)-sequences X,Y, Z,W of lengths n, n, n, n− 1 are said to be of Turyn type

(or just Turyn sequences), if NX(j) +NY (j) + 2NZ(j) + 2NW (j) = 0 for all j > 0.

For example,

X = (−, 1, 1, 1, 1, 1, 1, 1);

Y = (1,−,−,−, 1, 1, 1,−);

Z = (−, 1,−, 1, 1, 1, 1,−);

W = (1,−, 1, 1,−,−, 1);

are Turyn sequences with n = 8.

Sequences of Turyn type were first presented by Richard Turyn [T1].

Theorem 4.16 ([T1]). If X, Y, Z,W are Turyn sequences of lengths n, n, n, n − 1,

then
(
(Z,W ); (Z,−W );X;Y

)
∈ BS(n, 2n− 1).

Examples of Turyn sequences for n = 10, 12, 14, 16, 18, 20, 22, 24 were presented

in [K2]. Further sequences with n = 26, 28, 30, 32, 34 are presented in [KS].

Turyn sequences for n = 36 provided the construction of a Hadamard matrix of

order 428 [K428]. We will need these sequences only for obtaining the corresponding

base sequences.

Sequences of Turyn type with n > 36 are not known yet.
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4.6 Other sequences

The following sequences were not used in our computer search; however, some of

their properties can be used in future constructions. We summarize a few important

instances briefly here.

T -sequences are four supplementary (0,±1)-sequences with zero autocorrelation.

Denote by TS(n) the set of all T -sequences of length n.

T -sequences are very helpful in Hadamard matrix construction because of the

next theorem.

Theorem 4.17 ([K2]). If (T1;T2;T3;T4) ∈ TS(n) then there exists a Hadamard

matrix of order 4n.

Proof. Define

A1 = circ(T1) + circ(T2) + circ(T3) + circ(T4),

A2 = −circ(T1) + circ(T2) + circ(T3)− circ(T4),

A3 = −circ(T1)− circ(T2) + circ(T3) + circ(T4),

A4 = −circ(T1) + circ(T2)− circ(T3) + circ(T4).

Let

H =


A1 A2R A3R A4R

−A2R A1 A⊤
4 R −A⊤

3 R

−A3R −A⊤
4 R A1 A⊤

2 R

−A4R A⊤
3 R −A⊤

2 R A1

 ,

where

R =


0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


is an n × n back diagonal identity matrix. Direct verification shows that H is a

Hadamard matrix.

There is a natural way to construct T -sequences from base sequences.
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Theorem 4.18 ([K2]). If (A;B;C;D) ∈ BS(n, n+ q), then(
((A+B)/2, 0n); ((A−B)/2, 0n); (0n+q, (C+D)/2); (0n+q, (C−D)/2)

)
∈ TS(2n+q).

Corollary 4.19. If BS(n, n+ q) ̸= ∅, then there exists a Hadamard matrix of order

4(2n+ q).

There exists another form of Yang multiplication for T -sequences and Normal

sequences.

Theorem 4.20 ([Y]). If there exist TS(t) ̸= ∅ and NS(n) ̸= ∅, then BS(tn, tn) ̸= ∅.

And another construction of T -sequences from Normal and base sequences.

Theorem 4.21 ([Y]). If BS(m,m+q) ̸= ∅ and NS(n) ̸= ∅ then there exist TS((2m+

q)(2n+ 1)) ̸= ∅.

Ternary complementary pairs (TCPs) are pairs of (0,±1)-sequences with zero au-

tocorrelation. In particular, Golay sequences are a special case of TCPs. A sequence

is called reduced if its first and last entry is non-zero. A TCP is called reduced if it

consists of two reduced sequences. Denote the set of all TCPs of length n and weight

w by TCP (n,w). The deficiency of a pair in TCP (n,w) is the number δ = 2n−w,

which equals the number of zeros in the two sequences. The Golay sequences are

exactly TCPs with zero deficiency.

Theorem 4.22 ([C5]). If w ̸= 0 has a factor congruent to 3 modulo 4, then TCP (n,w)

is empty.

There is also a multiplication construction for TCPs.

Theorem 4.23 ([C5]). Suppose (A;B) ∈ TCP (m,w) and (C;D) ∈ TCP (n, z) and

one of the pairs is disjoint. Then,

U = A⊗ C +B ⊗D;

V = A⊗D∗ −B ⊗ C∗

is a TCP (mn,wz).
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Near-normal sequences of even length n are four (±1)-sequences (A;B;C;D)

of lengths n + 1, n + 1, n, n (n has to be even) with zero autocorrelation, such

that A = (a1, a2, . . . , an+1), and B = (b1, b2, . . . , bn+1) are related by bi = (−1)iai,

i = 1, . . . , n + 1. The set of all quadruples of near-normal sequences of length n is

denoted by NN(n). Clearly, NN(n) ⊆ BS(n, n+ 1).

Near normal-sequences were introduced in [Y], where it was conjectured that such

sequences exist for all positive even lengths n. It is known that NN(n) is non-empty

for all even n ≤ 34. The classification of all sequences in NN(n) up to n ≤ 30 was

done in [D3].

Yang-type multiplication theorems and further constructions on near-normal se-

quences can be found in [K4].



Chapter 5

Asymptotic Existence results

Let p > 1 be an odd positive number. Denote by t the least positive integer such

that a Hadamard matrix of order 2tp exists. Of course, t is a function of p. Since any

order of a Hadamard matrix greater than 2, is divisible by four, we have that t ≥ 2.

The Hadamard conjecture states that t = 2 for all such p. Similarly, define s to be

the least positive such that a complex Hadamard matrix of order 2sp exists. We will

give here some upper bounds for t, based on constructions using zero autocorrelation

sequences. All bounds come from Theorems 3.10 and 3.11. All logarithms shown will

be to the base 2: log = log2. All further asymptotic results are based on a computer

search which we describe later.

5.1 Asymptotic formulas based on Golay sequences

A simple bound for t can be obtained from Golay sequences. Denote by b(m) the

number of units in the binary expansion of m. Consider the binary expansion of the

number (p− 1)/2. Each nonzero digit corresponds to a power of 2. It is known that

there exists a Golay pair of length equal to any power of 2. Collect the Golay pairs

corresponding to every nonzero digit of expansion of (p−1)/2 and apply Theorem 3.10

to them, obtaining a Hadamard matrix. Altogether we have b
(
p−1
2

)
= b(p)−1 Golay

pairs that give 2b(p) sequences of length 2p having zero autocorrelation with weight

2p. So, Theorem 3.10 gives a Hadamard matrix of order 2tp, where t = 2b(p). The

40
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total number of binary digits in the binary expansion of m is equal to ⌊logm⌋ + 1,

so b(m) ≤ ⌊logm⌋+ 1. Thus, we have the first asymptotic bound.

Theorem 5.1 ([C1]). t ≤ 2b(p) ≤ 2(⌊log p⌋+ 1) < 2 log p+ 2.

A slightly better construction is easily obtained in the following way. Consider

the expansion of (p − 1)/2 to the base 32. Every positive integer between 1 and 31

is equal to the sum of at most three Golay numbers:

1 = 1, 12 = 4 + 8, 23 = 1 + 2 + 20,

2 = 2, 13 = 1 + 2 + 10, 24 = 8 + 16,

3 = 1 + 2, 14 = 4 + 10, 25 = 1 + 8 + 16,

4 = 4, 15 = 1 + 4 + 10, 26 = 26,

5 = 1 + 4, 16 = 16, 27 = 1 + 26,

6 = 2 + 4, 17 = 1 + 16, 28 = 2 + 26,

7 = 1 + 2 + 4, 18 = 2 + 16, 29 = 1 + 2 + 26,

8 = 8, 19 = 1 + 2 + 16, 30 = 10 + 20,

9 = 1 + 8, 20 = 20, 31 = 1 + 10 + 20.

10 = 10, 21 = 1 + 20,

11 = 1 + 10, 22 = 2 + 20,

Therefore, each positive integer m is a sum of at most 3⌊log32 m⌋ + 3 Golay

numbers. Hence, for number p there are at most 6⌊log32(p−1
2
)⌋ + 8 sequences of

length 2p having zero autocorrelation with weight 2p. This gives a nice bound for t,

still based only on Golay numbers:

Theorem 5.2. t ≤ 6⌊log32(p−1
2
)⌋+ 8 = 6⌊1

5
log(p−1

2
)⌋+ 8 ≤ 6

5
log(p−1

2
) + 8.

This construction will not work on next Golay number base 40, since 39 is not

equal to a sum of any three Golay numbers. However, up to 198, any number is a sum

of at most four Golay numbers. Therefore, we could repeat the above construction

using expansion to the base 160, since 160 is the maximal Golay number less than
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199. We get immediately a new bound

t ≤ 8

⌊
log160

(
p− 1

2

)⌋
+ 10.

With the help of a computer we establish some further similar results.

Define hn to be the least positive integer that is not equal to any sum of up to n

Golay numbers and let gn be the greatest Golay number not exceeding hn. Then

t ≤ 2n

⌊
loggn

(
p− 1

2

)⌋
+ 2(n+ 1) ≤ cn log

(
p− 1

2

)
+ 2(n+ 1),

where cn = 2n/ log gn.

By a computer search we get that h7 ≥ 233963479 and g7 ≥ 224972800 (we

have only inequalities here, since we do not know whether or not we know all Golay

numbers). Thus, we have the following theorem:

Theorem 5.3. t ≤ 14
⌊
log224972800(

p−1
2
)
⌋
+ 16 < 0.505 log(p−1

2
) + 16.

Since any number up to 233963479 is equal to a sum of at most seven Golay

numbers, we get that actually for any odd p ≤ 467926957, the corresponding value

t, constructed only using Golay sequences, is at most 16.

The result of our computer search is summarized in Table 5.1.

Table 5.1: Results obtained from Golay sequences
n hn ≥ gn ≥ cn ≤
2 7 4 2
3 39 32 1.2
4 199 160 1.0926
5 11999 10816 0.7462
6 637399 562432 0.6382
7 233963479 224972800 0.5046

New values of the sequences gn and hn, or their asymptotics, would produce great

improvement to the asymptotic existence results for Hadamard matrices. However,

finding such bounds is a problem in additive number theory that seems to be very

difficult. Some ideas about this approach are presented in Chapter 6.
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5.2 Hadamard matrices from complex Golay se-

quences

With complex Golay sequences there is more freedom than in the real case. Define

c
(k)
n to be the smallest positive integer divisible by k which can not be presented as

a sum of up to n complex Golay numbers. By Theorem 4.10, we have c
(gk)
n ≥ gc

(k)
n

for every Golay number g and positive integers k, n.

An asymptotic result giving s ≤ 4
⌊
log(p−1)

10

⌋
+ 5, based mainly on two complex

Golay pairs, was established by Craigen, Holzmann and Kharagani in [C2]. In par-

ticular, it was calculated that c
(2)
2 ≥ 1598 = 2 · 799. We do some computations with

three and four complex Golay pairs to present another asymptotic bound. Results

are presented in Table 5.2.

Table 5.2: Results obtained from complex Golay sequences

n c
(1)
n ≥ c

(2)
n ≥ c

(4)
n ≥ c

(8)
n ≥ c

(16)
n ≥

2 87 1598 3836 7672 15344
3 24175 1657166 26120804 186128248 1255960976
4 77217575 230 231 232 233

Similarly, we have only lower bounds for these numbers, since we do not know all

complex Golay numbers yet.

Consider the expansion of q = (p− 1)/2 to the base 226 = 67108864:

q = q0 + 226q1 + 226·2q2 + · · ·+ 226·sqs,

where s =
⌊

1
26
log q

⌋
. From the bounds above, we get that q0 equals to a sum of

at most four complex Golay numbers. Since c
(16)
3 ≥ 230 and 226iqi = 226i−4 · 16qi

for i > 0, 226·iqi equals to a sum of at most three complex Golay numbers for all

i > 0. Thus, at most 6
⌊

1
26
log q

⌋
+ 8 sequences are needed to construct a set of

complementary sequences of total length q required in Theorem 3.11. We have the

following result.

Theorem 5.4. t ≤ 6
⌊

1
26
log(p−1

2
)
⌋
+ 11 ≤ 3

13
log(p−1

2
) + 11.
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This construction shows an improvement over the previous asymptotic bound

featuring constant 3/8 times the logarithm [C8].

5.3 Hadamard matrices from all complementary

sequences considered

Using more sequences with zero autocorrelation a better asymptotic bound is con-

structed. As before, we rely on computer computations.

Previous computations with only three complex Golay pairs required a huge

amount of memory. We consider sets of at most six complementary complex se-

quences. Improvement of the following results using eight sequences does not seem

to be feasible yet, since it deals with very big numbers.

Complex Golay pairs are added to complex base sequences. In turn, complex base

sequences are constructed from Normal, Turyn, Golay and complex Golay sequences.

Theorems 4.7 and 4.15 regarding Yang multiplication were used extensively during

the computations.

Define the following sets of integers:

1. G: the set of all Golay numbers;

2. C: the set of all complex Golay numbers;

3. N : the set of lengths of Normal sequences;

4. D: the set of all integers 2n+1, such that base sequences of lengths n, n, n+1,

n+ 1 exist;

5. B: the set of all integers 2n+q, such that base sequences of lengths n, n, n+q,

n+ q exist;

6. T : the set of all integers n, such that Turyn sequences of lengths n, n, n, n− 1

exist;
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7. S2k: the set of all lengths s such that 2k complex complementary sequences

X1, X2, . . . , X2k of total length 2s exist, where X2i and X2i−1 have the same

length for every 1 ≤ i ≤ k (e.g. S4 is the set of numbers 2n + q, such that

CBS(n, n+ q) ̸= ∅).

Small-case letters g, c, n, d, b, t respectively are used to indicate an arbitrary

element in each of the first 6 sets. Subscripts are used to distinguish more than one

number from the same set.

For any sets A, B of positive integers, define A + B to be the set containing all

sums a + b, where a ∈ A, b ∈ B. Similarly, for any integers p, q, define pA + q as a

set containing all numbers pa+ q, a ∈ A.

The following properties of sets G,C,N,D,B, T were used during our computa-

tions. All of them were described in the previous chapter.

1. 0, 1, 2, 10, 26, g1g2 ∈ G;

2. 0, 1, 2, 3, 5, 11, 13, c1c2g ∈ C;

3. {2m+ 1|1 ≤ m ≤ 38} ⊆ D, 2n+ 1 ∈ D;

4. 3, 5, 7, 9, 11, 12, 13, 15, 18, 19, 25, 29, g ∈ N ;

5. {2m|5 ≤ m ≤ 18} ⊆ T ;

6. d, 3t− 1, 2nb, 2bd ∈ B

7. c1 + c2, cb ∈ S4;

Since D contains all odd numbers up to 77, and S4 contains any product of such

number with any Golay number, without any computer computations we can see

that all numbers up to 77 belong to S4. Therefore, with expansion to the base 64 we

have an asymptotic bound

t ≤ 4

⌊
log64

(
p− 1

2

)⌋
+ 7 ≤ 2

3
log

(
p− 1

2

)
+ 7.

This bound is similar to one given in [C1].
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Let b
(k)
n the smallest positive integer divisible by k that does not belong to S2n.

With the help of computer computations we establish some lower bounds for

numbers b
(k)
n . Computations are done in the following way. The set S4 is constructed

first, and then complex Golay numbers are added to all numbers in S4. We consider

numbers, which are less than the upper bound M , which is taken to be slightly

greater than 232. Here is a sketch of our algorithm.

1. Initialize all lists of integers G,C,N,D, T, S4, S6 to be empty;

2. Add 1, 2, 10, 26 to G. Fill G further by its multiplicative property (prop. 1);

3. Add 1, 2, 3, 5, 11, 13 to C. Fill C further by its multiplicative property

(prop. 2);

4. Add numbers 3, 5, 7, 9, 11, 12, 13, 15, 18, 19, 25, 29 to N . Add Golay numbers

to N (prop. 4);

5. Add all odd lengths between 3 and 77 to D. Add all numbers from 2N + 1 to

D (prop. 3);

6. Add all even numbers between 10 and 36 to T (prop. 5);

7. Add all numbers from D to the empty list S4. Add all numbers from 3T − 1

to S4 (prop. 6);

8. Add all numbers of the form gb to S4, where g ∈ G, b ∈ S4 (prop. 7).

9. Add all sums c1 + c2, where c1, c2 ∈ C to S4 (prop. 7).

10. Add all numbers of the form (2n+ 1)b to S4, where b ∈ S4, n ∈ N (prop. 6,7).

11. Add all numbers of the form db to S4, where b ∈ S4, d ∈ D (prop. 6,7).

12. Construct S6 as S4 + C;

13. Obtain bounds for numbers b
(k)
n from S6 and S4.
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Table 5.3: Results obtained from all complementary sequences considered

n b
(1)
n ≥ b

(2)
n ≥ b

(4)
n ≥ b

(8)
n ≥

2 127 1934 4124 8248
3 142919 61161358 232 233

Bounds for b
(k)
n obtained by our computations are presented in Table 5.3.

Consider the expansion of q = (p− 1)/2 to the base 230:

q = q0 + 230q1 + 230·2q2 + · · ·+ 230·sqs,

where s =
⌊

1
30
log q

⌋
. Then q0 is equal to a half of the total length of at most five

pairs of sequences, since every even number up to 230 is a sum of four complex Golay

numbers. Since 230·iqi = 230·i−2 · 4qi and b
(4)
3 ≥ 232, all numbers 230·iqi, i > 0 are

equal to a half of the total length of at most six complex complementary sequences.

Therefore, q is equal to a half of the total length at most 6
⌊

1
30
log q

⌋
+ 10 complex

complementary sequences. We now apply Theorem 3.11 to obtain a new bound from

all sequences discussed here.

Theorem 5.5. t ≤ 1
5
log(p−1

2
) + 13.

A similar result regarding the existence of complex Hadamard matrices can be

obtained in the same way.



Chapter 6

Thoughts about further

development

Our computations revealed that among all complementary sequences the complex

Golay sequences are most useful for us. Since the last computer search for them was

done more than ten years ago, it looks as if a new search may produce new results.

Another search is needed for Base sequences. Examples of BS(m,m+1) for m =

36, 37, 38 were found only recently with the help of massive computer computations.

It seems that new base sequences will be presented in the near future after similar

computer development. Moreover, the following “Base sequence conjecture” implies

the Hadamard conjecture:

Conjecture 6.1 ([D4]). For any positive integer n, BS(n, n+ 1) is not empty.

This conjecture is verified to be true for all n ≤ 38 [D2]. Similarly, there is a

“T -conjecture” regarding T -sequences:

Conjecture 6.2 ([D2]). For any positive integer n, TS(n) is not empty.

The T -conjecture follows from the Base sequence conjecture and also implies the

Hadamard conjecture. It has been verified to be true for all n ≤ 100 apart from two

undecided cases n = 79 and n = 97 [D2].

48
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However, any bound of the form t ≤ c log p + d (t is defined in Chapter 5) even

in the light of Theorem 5.3 looks too crude. The following additive number theory

development could improve such bounds considerably.

Let n1, n2, . . . , nk be positive integers. Define S(n1, n2, . . . , nk) to be the smallest

multiplicatively closed set containing n1, n2, . . . , nk and 1. Further, for any set of

positive integers S, define lm(S) to be the smallest positive integer that is not equal

to any sum of at most m numbers from S, i.e.,

lm(S) = min

(
N \

m∪
n=1

(S + S + · · ·+ S︸ ︷︷ ︸
n

)

)
,

where N denotes the set of all positive integers.

For example, if k = 1 and S = S(2) = {1, 2, 22, 23, . . .}, then lm(S) = 2m+1 − 1,

since this is the smallest integer that has m units in its binary expansion. If S =

S(2, 3) = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, . . .}, then the first values of the sequence lm(S)

are 5, 23, 431, 18431, 3448733, 1441896119, . . . [BI]. We did not establish any results

regarding asymptotics of this sequence; however, it looks as if lm(S(2, 3)) is growing

much faster than any exponent. Moreover, it seems that exp m(m+1)
2

is very close to

this sequence.

Asymptotics for lm(S(2, 10, 26)) are of special interest for us, since S(2, 10, 26) ⊆
G, where G is the set of all Golay numbers.

Assume that lm(S(2, 10, 26)) ≥ Can
2
for some positive real constants C, a, where

a > 1. Then any positive integer q equals to a sum of at most
⌈√

loga(q/C)
⌉
Golay

numbers. Therefore, such an asymptotics for lm(S(2, 10, 26)) implies existence of a

Hadamard matrix of order 2tp, for all

t ≥ 2

⌈√
loga

(
p− 1

2C

)⌉
+ 2

by Theorem 3.10. This bound would be considerably better than any existing asymp-

totic bound for t.

However, we did not manage to prove any asymptotic results of this kind. Similar

development involving complex Golay sequences or complex base sequences could

produce significant improvement too.
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All the new results are described in Chapter 5. In this thesis a new statement

regarding asymptotic existence of Hadamard matrices was proved. A similar result

regarding asymptotic existence of complex Hadamard matrices can be proven also

using the results of our computer search.
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