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Abstract 

One of the major challenges facing clinicians in modern medicine is how to effectively manage 

excessive host immune response to pathogenic insults such as sepsis. This is demonstrated by the 

fact that despite over half-century research efforts, sepsis and its spectrum of diseases (severe 

sepsis and septic shock) are still associated with poor clinical outcome. Currently, sepsis is a 

leading cause of death in intensive care units.  

The immune system protects the host against pathogens and is therefore armed with an arsenal of 

deadly ammunitions (including chemicals, cells and proteins) necessary for the elimination of 

microbes. It is therefore paramount that the immune system must develop mechanisms necessary 

to prevent destruction of the host it is designed to protect. A good example of such a mechanism 

is found in the subset of lymphocytes known as regulatory T cells (Tregs). There is unequivocal 

experimental evidence of the role of Tregs in the maintenance of immune homeostasis and self 

tolerance and aberrant Treg function has been linked with several inflammatory diseases.  Since 

sepsis is a disease marked by a hyper-inflammatory state, I hypothesized that Tregs play a crucial 

role in dampening sepsis-induced excessive inflammation.  

Using a murine model of lipopolysaccharide (LPS) infusion and bacterial infection, I show that 

Tregs are essential for survival during sepsis because their depletion leads to acute death to an 

otherwise non-lethal dose of LPS. This enhanced susceptibility to LPS following Treg depletion 

was also observed using live E. coli infection. Hence, using two models of sepsis, I 

unequivocally demonstrate that Tregs are important for survival during sepsis.  

Next, I probed the mechanism by which Tregs protect against LPS challenge and bacterial 

infection. I found that defective Treg function leads to exaggerated activity of two immune cells 
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– CD4
+
 effector T cells and neutrophils in response to LPS, leading to severe inflammatory 

response. Hence, this work successfully illustrates the critical role of Tregs in regulating other 

immune cells and the catastrophic consequences of defective Treg function during an immune 

response.  

Tregs have long been known to regulate effector T cells but their regulatory effect on cells of the 

innate immune system is severely underexplored. Hence, the finding that Tregs regulate 

neutrophil activity and function is highly significant and illustrates an interesting mechanism of 

regulation of innate immune cells by cells of the adaptive immune system. 

Overall, this work highlights the significant role of Tregs in the regulation of bacteria associated 

inflammatory processes. The findings hold implications for the successful management of sepsis 

and have potential for use in development of adequate therapeutic intervention for sepsis.   
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1.0 CHAPTER ONE 

INTRODUCTION 

1.1 Sepsis, severe sepsis and septic shock 

The word sepsis appeared in literature as early as 8th Century B.C and literally means decay of 

organic matter in the presence of bacteria (1). Since then, the interpretation of the word has not 

really changed. In 1991, the American College of Chest Physicians (ACCP) laid out terms for 

the definition of sepsis (2). Sepsis was subsequently defined as a systemic response to infection. 

If this response occurs in the absence of infection, the condition was described as systemic 

inflammatory response syndrome (SIRS). Sepsis resulting in organ dysfunction is termed severe 

sepsis while septic shock is sepsis with acute circulatory failure and hypotension. Over the years, 

increase in knowledge of the pathophysiology of sepsis and the heterogeneity of the clinical 

presentation of the syndrome have highlighted these definitions as broad and unspecific. In 2001, 

the International Sepsis Definition Conference (ISDC) was convened with the intention of 

changing the definition of sepsis and basing it on biomarkers. However, participants at the 

conference agreed to let the definition of sepsis by ACCP stand and couldn’t agree on a reliable 

biomarker for sepsis. However, for the ease of sepsis diagnosis, they provided a staging system 

for sepsis called PIRO that stratified patients on the basis of their Predisposing conditions, the 

nature and extent of the Insult (Infection, in the case of sepsis), the nature and magnitude of the 

host Response, and the degree of accompanying Organ dysfunction (3). This staging system for 

sepsis is very basic and relies heavily on the judgment of the physician.  
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1.2 Incidence of sepsis 

It is difficult to estimate the global burden of sepsis as data is nearly non-existent from 

developing countries but it is estimated that there are 19 million cases of sepsis worldwide 

annually (4). In Canada, there were a total of 30,587 sepsis hospitalizations (excluding the 

province of Quebec) between 2008-2009 (5). This represents a 14 percent increase from 2004-

2005. In the United States, between 1979 and 2000, the number of reported cases of sepsis 

increased from about 164,000 cases per year to about 660,000 cases per year, representing an 

annual increase of nearly 9% (6). A more recent study indicates approximately 13% national 

increase in the incidence of severe sepsis in the United States (7). Also severe sepsis is 

responsible for about 2% of hospital admissions and 10 percent of admissions in the intensive 

care unit (8). Similar data have been reported in other developed countries (9). Currently, sepsis 

is a leading cause of death in intensive care units (ICU) (8). Between 2008 and 2009, sepsis 

accounted for 10% of all hospital deaths in Canada (excluding Quebec) (5). However, there is 

evidence of the success of the surviving sepsis campaign and mortality from sepsis has decreased 

in recent years. A retrospective study of patients with severe sepsis in Australia and New 

Zealand revealed that between 2000 and 2012, mortality decreased from 35% to 18.4% 

representing nearly 17% decrease in mortality (10). Besides mortality, sepsis has a significant 

socio-economic burden since survivors of sepsis have been shown to have a lower quality of life 

compared to the general population and the disease has a huge financial cost estimated at nearly 

$17 billion annually (8, 11). Studies have shown greater incidence of sepsis in males compared 

to females and in non-Caucasians compared to Caucasians (8, 12).  
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1.3 Causes of sepsis 

Sepsis usually results from bacterial infections although the cause can be due to viral or fungal 

infections. Lung infections and pneumonia are the most common causes of severe sepsis 

followed by intra-abdominal and urinary tract infections (8). Recent studies have shown that 

Gram-negative bacteria are the major cause of sepsis (13). This is in contrast to previous studies 

which identified Gram-positive infections as the most common cause of severe sepsis (6). The 

increase in Gram-negative infections may be due to increase in antibiotic resistance. 

Gram-negative bacteria unlike Gram-positive organisms have an outer membrane which can 

further inhibit the entry of antibiotics and microbicides thereby promoting antibiotic resistance. 

Frequently identified Gram-negative organisms include Escherichia coli, Pseudomonas 

aeruginosa and Klebsiella species (14). For Gram-positive species, Staphylococcus aureus and 

Streptococcus pneumoniae are the most common isolates (14).  

Certain factors are known to increase the risk for development of sepsis; for example, the 

presence of chronic illness such as HIV infection or cancer (8). Recently, there is interest on the 

role of genetic factors towards susceptibility to infection which will be of significant contribution 

towards effective diagnosis and treatment of sepsis (15). For example, Garred et al showed that 

allelic variants of mannose binding lectin (MBL) a major innate defense molecule is associated 

with susceptibility to sepsis (16). Also, Wang et al identified single nucleotide polymorphisms of 

TLR4 and CD14 that were associated with greater risk of sepsis in Chinese population (17). The 

identification of genetic susceptibility factors in sepsis is highly desirable as this will assist in the 

delivery of appropriate therapy that is tailored to individual need of patients with sepsis.   
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1.4 Diagnosis of sepsis 

The clinical signs of sepsis vary and depend on several factors like the type of inciting pathogen, 

the site of infection and patient predisposition. The ACCP has guidelines for sepsis diagnosis (3). 

However, the use of factors such as body temperature, white blood cell count and hypotension is 

largely unspecific for sepsis and many clinicians have found the ACCP guidelines remotely 

helpful (18). Early diagnosis of sepsis has been shown to be important for survival (19). The use 

of a biomarker for accurate diagnosis of sepsis will be a landmark achievement in sepsis therapy. 

Preliminary studies highlight procalcitonin (PCT) as a potential biomarker for sepsis. 

Procalcitonin is a precursor peptide of calcitonin composed of 116 amino acids and is produced 

by the C cells of the thyroid gland. Proteolytic cleavage of PCT gives rise to calcitonin. PCT is a 

more desirable biomarker compared to calcitonin because PCT has a longer half-life. Serum 

concentration of PCT has been shown to correlate with the severity of infection and PCT has 

been demonstrated to be a potential reliable biomarker for sepsis (20-21). However, in their 

meta-analysis review of literature, Tang et al showed a low diagnostic performance for PCT and 

further demonstrated that PCT measurement could not accurately differentiate sepsis from 

systemic inflammatory response syndrome (22). Advances in technology hold promise for the 

possibility of a reliable biomarker for sepsis. A biomarker able to establish the progression of 

sepsis to severe sepsis and septic shock will be ideal. The use of multiple parameters may 

improve accuracy and reliability compared to a single biomarker as shown by the work of Gibot 

and co-workers (23). 
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1.5 Treatment options for sepsis 

The international consortium of critical care physicians recently released revised guidelines for 

treatment and management of sepsis (24). Concisely, the guideline consists of two main parts: an 

early management therapy encompassing the first six hours of patient arrival and guideline for 

management of patient in ICU. These guidelines have been shown to be effective in reducing 

sepsis mortality (25). Containing infection is critical in sepsis therapy and rapid implementation 

of antibiotic therapy has been shown to reduce sepsis mortality (26). It is recommended that 

blood cultures be done prior to the administration of antibiotics. Normalization of respiration and 

blood pressure is essential in the early management therapy. This usually encompasses the use of 

vasopressors, intravenous fluid administration, and the use of mechanical ventilation if 

necessary. In the ICU, prevention of organ dysfunction and avoidance of other complications is 

the major goal. It is also essential to monitor the progress of the patient and note when care such 

as antibiotic treatment should be withdrawn. This ensures the safety of the patient and prevents 

the development of antibiotic resistance. 

One of the earliest therapies for sepsis treatment was the administration of corticosteroids (27). 

However, the beneficial effects of corticosteroid therapy for patients with sepsis are an ongoing 

debate. The administration of high or low dose of corticosteroids has been shown to be beneficial 

in animal models of septic shock (28-29). Several reports have also shown the beneficial effects 

of corticosteroid therapy for septic shock patients (30-31). In a recent review, Annane et al 

reported a significant improvement in survival of septic shock patients given low doses of 

corticosteroids (32). The use of hydrocortisone is recommended for treatment of patients with 

septic shock (24).  
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The discovery of new therapies for sepsis based on the abundant knowledge of the 

pathophysiology of the disease has proven to be an arduous task. More than 40 clinical trials of 

anti-inflammatory therapies were not successful to be approved as standard of care. Systemic 

inflammatory response to microbes involves the activation of inflammatory mediators. The 

inflammatory response leads to tissue injury and subsequent activation of the coagulation 

pathway in addition to down-regulation of anticoagulant effects. 

In November 2001, Drotrecogin alfa was approved for the treatment of patients with severe 

sepsis at a high risk of death (Acute Physiology and Chronic Health Evaluation II, APACHE ≥ 

25). Drotrecogin alfa was the first biological agent to be approved for the treatment of severe 

sepsis in the United States and this was seen as a breakthrough in critical care medicine. 

Drotrecogin alfa (Xigris, Eli Lilly and Company) is recombinant human activated protein C 

(APC). APC is an anticoagulant protein that has also been shown to have anti-inflammatory and 

anti-apoptotic properties (33-34). Drotrecogin alfa (activated) was initially shown to result in 

19.4% decrease in the relative risk of death and 6.1% decrease in the absolute risk of death 

although this was associated with a greater risk of serious bleeding (35). However, controversies 

trailed the administration of the drug and its approval by the FDA. A major concern was the 

serious bleeding complication associated with the drug. Also, prescription of Drotrecogin alfa 

was dependent on APACHE scoring system, which varies among clinicians. In addition, the drug 

was shown to be of no benefit to patients at a low risk of death (36). Ten years later, following 

extensive review of several clinical outcomes, Drotrecogin alfa was determined to be of no 

benefit to patients with severe sepsis and clinicians were advised not to recommend its use (37). 

In October 2011, Eli Lilly announced the withdrawal of the drug from the market. The outcome 
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of treatment with APC buttresses the fact that clinical trials involving patients with sepsis are 

difficult to interpret and reproduce. 

Statins are a class of drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase 

(HMG-CoA reductase), an essential enzyme in the mevalonate pathway for the synthesis of 

cholesterol. Since increased levels of LDL-cholesterol are associated with increased risks of 

cardiovascular diseases (CVD) (38), which are leading causes of mortality and morbidity, statins 

were discovered in a bid to interfere with cholesterol synthesis (39). Hence, statins were first 

marketed as drugs for the prevention and treatment of CVD. Two decades after its discovery, 

statins have turned out to be a ‘wonder pill’ grossing the most revenue in pharmaceutical history 

and having reported benefits for several diseases like sepsis (40), diabetes (41) and cancer (42). 

Several experimental and clinical studies have shown some beneficial effects of statins in sepsis. 

Merx et al showed that administration of statin either before or after the onset of sepsis improves 

survival in a murine model of CLP (43). In the clinical setting, the use of statins in critical care is 

rapidly increasing and has been recently reviewed (44). In a retrospective cohort study, Dobesh 

et al showed that patients that received statin therapy had a 35% relative reduction in mortality 

compared with those that didn’t (45). Other authors have also reported the protective effect of 

statins in sepsis (46-47). Conversely, in a recently concluded multicenter randomized clinical 

trial, Kruger et al showed that there was no difference in IL-6 concentrations in plasma of 

patients given statins or placebo group (48). They noted that individuals in the group identified 

as prior statin users had lower baseline IL-6 levels and discontinuation of statin led to greater 

mortality in this sub-group while continuation of statin use led to improved survival. The authors 

concluded that the use of statin did not lead to better outcome except for the sub-group of prior 

statin users. Interestingly, the same group had earlier reported that there was no beneficial role of 
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continuing preexisting statin therapy on sepsis and inflammatory parameters (49). In another 

study, Fernandez et al showed that in patients at high risk of ICU-acquired infections, statin 

therapy was associated with worse outcome (50). These conflicting reports highlight the 

necessity of properly defining the criteria for clinical trials in sepsis. In the meantime, continued 

investigation on the role of statins in sepsis is essential.   

Since sepsis is a heterogenous and dynamic syndrome, modulation of the immune system may 

proffer better therapy for patients with sepsis and this is a major consideration of this work. 

1.6 Pathophysiology of sepsis 

Following invasion of a host by a pathogen, the host immune defense mechanisms are activated 

in order to protect it from injury associated with the pathogenic insult. The immune response 

involves activation of immune cells, recruitment of leukocytes, and vascular changes including 

increased permeability of the endothelium and vasodilation (51-52). Simultaneously, there are 

regulatory mechanisms that help to prevent excessive immune responses and ensure that the 

immune system returns to homeostasis following pathogen containment. Failure of these immune 

regulatory mechanisms will result in excessive immune activation leading to an extended pro-

inflammatory immune state, which will ultimately result in tissue injury and organ dysfunction 

(53). This failure in immune regulatory mechanisms can also result in extended anti-

inflammatory state leading to anergy and immunosuppression (54).  

Microorganisms such as bacteria, fungi, viruses and parasites have unique molecular components 

which, when recognized by the host, trigger host immune responses. These molecular 

components have been aptly described as pathogen-associated molecular patterns (PAMPs) or 

more appropriately microbial-associated molecular patterns (MAMPs) because they are also 
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present in non-pathogenic microorganisms (55). The ligation of PAMPs by germ-line encoded 

pattern recognition receptors (PRRs) leads to the initiation of a series of host immune responses 

aimed at eliminating the pathogen. There are four classes of PRRs: 1) toll-like receptors (TLRs); 

2) nucleotide-oligomerization domain leucine-rich repeat proteins (NOD-LRR); 3) cytoplasmic 

caspase activation and recruiting domain helicases such as retinoic acid-inducible gene I-like 

helicases and 4) C-type lectin receptors expressed on dendritic and myeloid cells (56-57). TLRs 

are the most studied PRRs and are expressed by different innate immune cells including 

endothelial cells, macrophages, dendritic cells and monocytes. TLR4 is the ligand for 

lipopolysaccharide (LPS), an endotoxin found on the cell wall of Gram-negative bacteria. 

Following recognition of LPS by TLR4, several intracellular signal transduction pathways are 

activated resulting in hemodynamic changes and the recruitment of immune cells such as 

neutrophils and macrophages to the site of infection. Additionally, there is systemic release of 

cytokine mediators such as tumor necrosis factor (TNF), Interleukin (IL)-1, IL-6 and IL-8 (58-

59). TNF and IL-1 aid in activation of the complement system and also facilitate vasodilation 

and the release of secondary mediators such as nitric oxide (NO), platelet activation factor 

(PAF), prostaglandins and leukotrienes (60-61). In a situation of sustained pro-inflammatory 

immune state, these mediators cause endothelial damage and capillary leakage. The 

inflammatory response also leads to the activation of the coagulation pathway, resulting in 

capillary microthrombi, tissue hypoperfusion and end-organ ischemia (62-63). The extended 

release of these pro-inflammatory mediators also results in multiple organ dysfunction syndrome 

(MODS) as seen in severe sepsis and eventually leads to hypotension and septic shock.  

To ensure that the immune system returns to homeostasis, anti-inflammatory mediators such as 

IL-4, IL-10 and transforming growth factor  (TGF-), are also released by immune cells such as 
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neutrophils and macrophages in response to infection. Studies have shown that these anti-

inflammatory mediators contribute to pathology during sepsis and there is evidence that septic 

shock patients show signs of immunosuppression (64-65). This is because homeostasis can only 

be achieved if these anti-inflammatory mediators are released in optimum amounts. The 

excessive release of anti-inflammatory mediators will inevitably weaken the host immune 

responses and lead to the inability of the host to fight the infection. The contribution of anti-

inflammatory response to the pathogenesis of sepsis has been described as compensatory 

anti-inflammatory response syndrome (CARS) (64). IL-4 is known to promote Th2 cell 

responses, inhibit Th1 cell activity and suppress macrophage activity (66-67). IL-10 has been 

shown to have potent anti-inflammatory activity (67-68). TGF- has been shown to suppress T 

and B cell proliferation and differentiation (69-70), and prevents the production of TNF and IL-

1-induced NO production (71). In line with this, TGF- knock-out mice have fatal uncontrolled 

inflammatory reactions (72). Overall, a high anti-inflammatory response leads to a weakened 

immune state, inability to clear the infection and enhanced susceptibility to nosocomial or 

secondary infections. 

As mentioned earlier, knowledge of the pathophysiology of sepsis has failed to provide effective 

therapeutic strategy for sepsis. However, research is ongoing in this regard to translate these 

discoveries to novel therapies on the bedside. It is expected that increase in knowledge and 

advances in technology will lead to effective and efficient treatment of sepsis syndrome. 
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1.7 Immune response to sepsis 

The development of the germ theory was a landmark achievement in the understanding of the 

etiology of several diseases. The understanding of the role of bacteria in the initiation of sepsis 

led to decades of research efforts in the development of antibiotic therapies for the treatment of 

sepsis. In the later part of the 20
th

 century, as a result of a better understanding of the nature of 

the immune response, there began to appear a shift in paradigm implicating the immune response 

as the mediator of sepsis. Indeed, considering the vast majority of microbes on the planet and the 

diverse species of microorganisms that maintain a symbiotic association with a healthy 

individual, the presence of the microbe alone is not sufficient to account for the pathogenesis of 

sepsis and it is now generally accepted that the immune response plays a crucial role (73-75). In 

his seminal paper, Lewis Thomas highlighted the significance of the immune response to the 

outcome of infection (73). According to Thomas, “the micro-organisms that seem to have it in 

for us in the worst way — the ones that really appear to wish us ill — turn out on close 

examination to be rather more like bystanders, strays, strangers in from the cold. They will 

invade and replicate if given the chance, and some of them will get into our deepest tissues and 

set forth in the blood, but it is our response to their presence that makes the disease. Our arsenals 

for fighting off bacteria are so powerful, and involve so many different defense mechanisms, that 

we are in more danger from them than from the invaders. We live in the midst of explosive 

devices; we are mined”. Although the immune response is intended to protect the host from the 

detected ‘danger’, Thomas describes it as a ‘panic response’ leading to the release of several 

molecules that are potentially lethal to the host. The factors that constitute a ‘good’ or ‘bad’ 

immune response still remain the subject of several ongoing research projects around the world 

and are also the thrust of this PhD thesis. Below, the role of immune cells in the pathogenesis of 

sepsis is described in greater detail. 
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 1.8 The role of innate immunity 

The innate immunity is the ‘gatekeeper’ of the host immune response and plays an important role 

in the pathogenesis of sepsis. The significance of the innate immune system for anti-bacterial 

host defense is further buttressed by the fact that organisms lacking adaptive immunity still 

maintain strong anti-bacterial immunity (76).  The detection of PAMPs by the PRRs of the innate 

immune system triggers the initial host inflammatory response to infection. The most studied 

PRRs are the TLRs. The Toll receptor was initially described as a type I transmembrane receptor 

important for embryogenesis in Drosophila (77). The identification of homologues of the 

Drosophila Toll in mammals was a landmark achievement in the understanding of the immune 

response to microbial components. To date, more than 10 human TLRs have been identified 

(78). Like the Drosophila Toll, all members of the Toll family are transmembrane proteins and 

have extracellular domains with characteristic leucine-rich repeats (79). However, there are 

distinct differences in the sequences of different members, hence, their ability to recognize 

different molecules. The intracellular cytoplasmic domain – the Toll/IL-1 receptor (TIR) domain, 

which contains about 200 amino acids is evolutionarily conserved (79). Gram-negative bacteria 

accounts for half the cases of sepsis and the bacterial endotoxin LPS is one of the most potent 

activators of the immune system (80).  

LPS is important for the structural integrity of Gram-negative bacteria and consists of three 

components – lipid A, a core oligosaccharide, and an O side chain (81). TLR4 is the PRR for 

LPS (82). The recognition of LPS through TLR4 involves the interaction of several proteins 

including LPS binding protein (LBP), CD14 and MD-2 (83-84). MD-2 is a protein that is non-

covalently associated with TLR4 forming the TLR4/MD-2 receptor complex. There is evidence 

that MD-2 can directly interact with LPS in the absence of TLR4 (85). LBP binds directly to LPS 
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leading to the recruitment of CD14 and subsequent activation of the TLR4/MD-2 receptor 

complex. Following LPS recognition, TLR4 oligomerizes and recruits downstream adaptor 

proteins through its TIR domain. Five TIR domain-containing adaptor proteins have been 

identified: MyD88 (myeloid differentiation primary response gene 88), TIRAP (TIR domain-

containing adaptor protein, also known as Mal, MyD88-adapter-like), TRIF (TIR domain-

containing adaptor inducing IFN-), TRAM (TRIF-related adaptor molecule), and SARM 

(sterile  and HEAT-Armadillo motifs-containing protein) (86). Genetic manipulations of these 

adaptor proteins in animal models have resulted in understanding of their individual roles in TLR 

signaling.  

MyD88 is an important adaptor protein for IL-1 receptor (IL-1R) signaling pathway (87). Studies 

demonstrated that MyD88-deficient mice were resistant to LPS-induced septic shock and 

MyD88-deficient macrophages were defective in proinflammatory cytokine production 

following LPS stimulation (88). However, MyD88-deficient macrophages were able to activate 

nuclear factor-B (NF-B) and induce the expression of Type I interferons genes indicating an 

alternative pathway to MyD88/TLR signaling (89). TLR signaling is now known to proceed via 

a MyD88-dependent pathway or MyD88-independent pathway (84).   

MyD88 adaptor protein has a death domain (DD), and following LPS stimulation, activates a 

death domain-containing kinase, IL-1 receptor-associated kinase-4 (IRAK-4), which contains 

both a death domain and a kinase domain. IRAK-4 deficient macrophages are also resistant to 

LPS-induced septic shock and are defective in proinflammatory cytokine production following 

LPS stimulation (90). Downstream of IRAK-4, is the adaptor protein TRAF6 (TNF receptor-

associated factor 6), which forms a complex with UBC13 (ubiquitin-conjugating enzyme 13) and 

UEV1A (ubiquitin-conjugating enzyme E2 variant 1 isoform A), leading to the activation of 
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TAK1 (transforming growth factor--activated kinase 1) (91). The activation of TAK1 results in 

the activation of IKK (IB kinase) and MAPK (mitogen-activated protein kinase) pathways (91). 

Downstream activation of MAPK pathway leads to the induction of the transcription factor Ap-1 

(92). IKK, IKK and IKK form a complex and phosphorylate IB (inhibitor of  light chain 

gene enhancer in B cells) proteins. The phosphorylation of IB results in the degradation of IB 

proteins and the translocation of the transcription factor NF-B. NF-B is a prominent 

transcription factor which controls the gene expression of several immune-mediating proteins 

and proinflammatory cytokines (84). 

There is evidence suggesting that under certain conditions, LPS/TLR4 signaling can occur 

independent of MyD88 signaling. Macrophages deficient in MyD88 are able to induce NF-B 

and MAPK activation although they do not produce proinflammatory cytokines (88). The 

adaptor protein TRIF plays an important role in MyD88-independent signaling through the 

activation of interferon regulatory factor 3 (IRF3), NF-B and MAPK. TRIF has a C-terminal 

region through which it interacts with receptor-interacting protein 1 (RIP1). RIP1 is important 

for NF-B activation and absence of RIP1 impairs NF-B activation (93). Studies have shown 

that TRIF activates IRF3 through the recruitment of TRAF3. In line with this, TRAF3 deficient 

cells have defective induction of Type I interferons (94). TRAF3 signals downstream through 

TRAF family member-associated NF-B activator (TANK), TANK binding kinase 1 (TBK1) 

and IKKi (95). The activation of IRF3 and NF-B leads to the induction of type I interferons, 

which are essential for anti-bacterial responses (96). The binding of LPS to TLR4 and its 

downstream signaling effects triggers the effector functions of innate cells discussed below in 

greater detail. 
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1.8.1 The role of neutrophils 

Polymorphonuclear neutrophils (PMNs) are one of the first responder cells of the innate immune 

system to bacterial infection and inflammation and constitute a hallmark of innate immunity (97-

99). PMNs are the most abundant type of leukocytes in humans and express all known TLRs 

except TLR3. The ligation of TLR4 on neutrophils by LPS leads to the activation of signal 

transduction pathways that lead to increased cell survival, chemokine and cytokine production, 

phagocytosis and the production of enzymes like myeloperoxidase (MPO), which aid in potent 

bactericidal activity. Hence, inadequate neutrophil function is associated with poor outcome in 

sepsis (100-101). Paradoxically, neutrophil effector functions can be injurious to host cells and 

exaggerated neutrophil activity is detrimental in sepsis (102-103). Therefore, the challenge is to 

maintain optimum neutrophil function during sepsis. 

Neutrophil migration to infection foci involves distinct phases: mobilization, margination, 

adherence and transmigration through the walls of the blood vessel (101). The bone marrow is a 

reservoir for both immature and mature neutrophils and neutrophils in the bone marrow are 

rapidly mobilized for release into the circulation during the early phase of sepsis (104). 

Margination involves interaction between the neutrophil and endothelial cells resulting in the 

movement of the neutrophil from the central circulation stream to the vessel periphery. The 

interaction of neutrophils with endothelial cells is mediated by a class of surface adhesion 

molecules called selectins. Neutrophils constitutively express L-selectin while endothelial cells 

express E- and P- selectin upon activation. Neutrophil activation also leads to the expression of  

integrins, which facilitates the adhesion of neutrophils to the vascular endothelium. The last 

stage of neutrophil migration is transmigration and it involves the movement of neutrophils 

through endothelial tight junctions into infected tissue (105).  Neutrophil transmigration requires 
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a difference in concentration gradient of chemokines and inflammatory mediators across the 

endothelial barrier leading to extravasation of neutrophils to infected foci.  

PMNs are one of the first responder cells of the innate immune system and neutrophil effector 

functions are critical for the resolution of bacterial infection. Studies have shown that PMNs are 

a source of several cytokines and chemokines including TNF (106), IL-1 (107), IL-8 (108), 

MIP-1 (109), GM-CSF (110) and many other cytokines (111). Hence, neutrophils play a major 

role in shaping the host immune response. For example, the production of TNF and MIP-1 

which are potent macrophage activators, implies that neutrophils facilitate macrophage 

activation. Also, the production of the chemoattractant IL-8 by neutrophils at the infection foci 

will lead to the recruitment of more leukocytes to the site of infection. Recently, the 

immunoregulatory functions of neutrophils are being investigated. Interestingly, neutrophils have 

been shown to produce the immunoregulatory cytokines IL-10 (112) and TGF-beta (113), two 

cytokines that are associated with CD4+CD25+ regulatory T cells (Tregs). Hence, 

neutrophil/Treg interaction may be a major pathway of immune regulation and this is one of the 

major focuses of this thesis. Since sepsis is a disease marked by disequilibrium in inflammatory 

and anti-inflammatory mediators and neutrophils are major initiators of the inflammation milieu, 

neutrophil dysfunction following bacterial infection will contribute to the pathogenesis of sepsis. 

A prominent mechanism by which neutrophils eliminate bacteria is a process called 

phagocytosis. Phagocytosis literally means ‘cell eating’ and is a process by which phagocytes 

engulf bacteria forming a vesicle called phagosome. The phagosome fuses with the lysosome to 

form a phagolysosome in which the bacteria is degraded (114). The formation of phagolysosome 

triggers a process called respiratory burst, which involves the production of reactive oxygen 

species for antibiotic activity. During respiratory burst, oxygen is converted to superoxide (O
2-

) 
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and hydrogen peroxide (115). Myeloperoxidase (MPO), an enzyme abundant in neutrophils, 

catalyzes the formation of hypochlorous acid from hydrogen peroxide and chloride ion. 

Hypochlorous acid is a microbicide and has potent antibacterial activity. Phagocytosis is critical 

for the resolution of infection and defects in oxidative metabolism of neutrophils causes chronic 

granulomatous disease (116). Chronic granulomatous disease is characterized by the formation 

of granulomas due to an apparent failure to resolve inflammation. Patients with chronic 

granulomatous disease are susceptible to bacterial and fungal infections. 

Recently, another important method of neutrophil antibacterial activity was discovered. 

Neutrophils form extracellular fibers called neutrophil extracellular traps (NETs) for binding and 

killing pathogens (117). NETs contain proteins from azurophilic granules like neutrophil 

elastase, cathepsin G, MPO and histones. Neutrophils trap the pathogen and then mediate killing 

through the release of antimicrobial proteins. Meng et al demonstrated that inhibition of NETs 

formation enhances susceptibility to sepsis in mice (118). Paradoxically, NETs formation also 

leads to tissue injury due to the release of cytotoxic proteins that can be injurious to bystander 

cells (119). Overall, neutrophil response to bacteria is aimed at eliminating the bacteria but can 

unavoidably lead to tissue injury and host damage. 

 1.8.2 The role of monocytes/macrophages 

Monocytes are derived from myeloid progenitor cell lineage. They are mononuclear phagocytic 

cells circulating in the blood stream. Monocytes migrate to tissues and differentiate into 

macrophages. They can also differentiate into dendritic cells and osteoclasts. Monocytes are also 

one of the first responder cells of the innate immune system.  They migrate to the point of 

infection through mechanisms similar to those of neutrophils described above. The chemokine 
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(C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 9 (CXCL9) are important for 

the recruitment of monocytes during inflammation (120). Tissue resident macrophages can 

acquire specific characteristics and last for several years. Examples include Kupffer cells in the 

liver and alveolar macrophages. Interestingly, their function and phenotype is also influenced by 

the stimuli and microenvironment. The activation of macrophages by the cytokine IFN- is 

described as classical activation and such macrophages are called M1 macrophages. The 

activation of macrophages by the cytokines IL-4, IL-10 or IL-13 is described as alternative 

activation and such macrophages are called M2 macrophages (121). M1 macrophages are usually 

associated with effective immune response against pathogen invasion. In contrast, M2 

macrophages are associated with an anti-inflammatory phenotype. For example, tumor 

associated macrophages and macrophages involved in wound healing are M2 type macrophages. 

Similar to neutrophils, macrophages are major players in the immune response to infection. They 

secrete a lot of cytokines like TNF, IL-1, and IL-6 (122). They are also able to engulf bacteria 

by phagocytosis. Additionally, macrophages help in maintaining immune homeostasis through 

the phagocytosis of dead or apoptotic cells. Also, they are antigen presenting cells and match 

antigenic peptides to their major histocompatibility complex class II molecules for the activation 

of antigen specific T cells (123). Hence, macrophages help in the shaping of the adaptive 

immune response and serve as a link between innate and adaptive immunity. 

As a major component of innate immunity, macrophages are important in the pathogenesis of 

sepsis. Studies have shown that the bacterial endotoxin LPS regulates more than 1000 genes in 

mouse macrophages (124). Also in human monocytes, LPS stimulation leads to upregulation of 

several chemokine and cytokine genes (125). Hence, dysfunction in macrophage activity will be 

of significant consequence in sepsis. Studies have shown that prior exposure of macrophages to 
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LPS results in downregulation of proinflammatory cytokine production upon subsequent 

exposure to the endotoxin (126). This phenomenon termed endotoxin tolerance is a teleological 

approach towards prevention of self-toxicity by overwhelming proinflammatory response to 

LPS. Endotoxin tolerance may also be of consequence during sepsis. Monocytes from patients 

with sepsis have been shown to express decreased levels of HLA-DR (127). This decreased 

monocyte HLA-DR expression is a hallmark of the anti-inflammatory response in sepsis and is 

believed to lead to immune paralysis and lethality (128). Hence, macrophages are relevant in the 

pathogenesis of sepsis as they can contribute to the proinflammatory and anti-inflammatory 

stages of sepsis. 

1.8.3 The role of endothelial cells 

The endothelium is a significant player in the pathogenesis of sepsis and endothelial dysfunction 

is a major contributor to sepsis-induced organ dysfunction (129). Endothelial cells express TLR4 

and are therefore activated by LPS resulting in downstream activation of NF-B as described 

above (130). The activation of endothelial cells by microbial components leads to their secretion 

of pro-inflammatory cytokines which contribute to the inflammation milieu (131). Additionally, 

cytokine production by immune cells also leads to activation of endothelial cells (129). Therefore 

microbial components and immune cell cytokine secretion both constitute dual mechanisms of 

endothelial cell activation which is an integral mechanism of the immune response to sepsis. 

Endothelial cells (ECs) are important for the recruitment of leukocytes to the sites of infection. 

They express two important adhesion molecules: intercellular adhesion molecule 1 (ICAM-1) 

and vascular cell adhesion molecule 1 (VCAM-1) which are key ligands that interact with 

integrins on leukocytes and thereby mediate leukocyte migration. ICAM 1 binds to LFA-1 
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(lymphocyte function-associated antigen 1) on leukocytes while VCAM-1 binds to VLA-4 (very 

late antigen 4) also expressed on leukocytes (132). Additionally, ECs express other adhesion 

molecules such as E-selectin which are important in leukocyte migration (133). The expression 

of E-selectin by ECs is markedly increased upon activation by LPS or cytokines such as TNF 

and enables leukocyte rolling to infection site (134). Therefore, the regulation of the expression 

of adhesion molecules by ECs is critical to facilitate optimum immune response to infection via 

leukocyte recruitment and migration. 

In addition to mediating leukocyte migration, ECs help in the maintenance of vascular integrity 

and sepsis is associated with increase in vascular permeability. ECs provide a permeable barrier 

for the exchange of fluids, nutrients and molecules between the vascular system and tissues. LPS 

and cytokines like TNF increase vascular permeability of the endothelium which can result in 

excessive fluid accumulation in tissues (edema) (135). The increase in vascular permeability of 

ECs is thought to be mediated by NO produced by ECs (136).   

Under normal conditions the endothelium is in an anti-coagulatory state. During sepsis, the 

endothelium is shifted towards a pro-coagulatory state and disseminated intravascular 

coagulation contributes to sepsis mortality (63). LPS is known to increase coagulation factors in 

the endothelium. For example, LPS injection has been shown to result in increased fibrin 

deposition in various organs (137). Since, the endothelium plays an important role in the 

pathogenesis of sepsis, preservation of its integrity is critical for survival of sepsis and 

endothelial dysfunction is a major contributor to sepsis mortality. 
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1.9 The role of adaptive immunity 

The receptors for microbial products such as LPS have been traditionally associated with cells of 

the innate immune system. Although the injection of LPS in mice or humans leads to rapid 

mobilization of cells of the innate immune system, the adaptive immune system is also involved 

in the immune response to sepsis. To begin with, the cytokines secreted by innate immune cells 

modulate the functions of cells of the adaptive immune system (138). Also, innate immune cells 

like macrophages present antigen for the activation of T cells. Furthermore, there is emerging 

evidence of expression of PRRs on cells of the adaptive immune system. Several reports have 

shown that T cells express different TLRs. The expression of TLRs by T cells is of great 

significance because it implies they may also function as early responders to bacterial infection 

and is a major part of this thesis research. Additionally, there are some adaptive immune cells 

that are at the intersection of innate and adaptive immunity. Good examples include the  T 

cells, which are able to recognize antigen directly and the natural killer T (NKT) cells.  

As has been discussed above, the innate immune system provides the first line of defense and is 

essential for host protection from microbial invasion. However, an acquired immune response is 

essential for the absolute elimination of pathogen. The adaptive immune response develops over 

several days following antigen presentation by antigen presenting cells to T cells via major 

histocompatibility (MHC) complex molecules. Antigen presentation and recognition occurs in 

lymphoid organs and following antigen recognition, naïve T cells differentiate and proliferate as 

effector cells and modulate immune response via secretion of cytokines and other effector 

functions. The role of T cells in the immune response to sepsis is discussed below.   
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1.9.1 The role of T cells 

CD4
+
 T cells are called helper T cells because of their prominent role in aiding the optimum 

performance of other cells through cytokine secretion or by direct interaction. For example, 

CD4
+
 T cells secrete IFN- which is a major activator of macrophages. Also, activated CD4

+
 T 

cells express CD40 ligand (CD40L) and interact with macrophages through CD40/CD40L 

interaction.  

Two distinct subsets of helper T (Th) cells have been identified in both humans and mice – Th1 

and Th2 cells (139). Th1 and Th2 cells are distinguished by their cytokine profiles and have been 

shown to have different functions. Th1 cells produce IFN-g and IL-2 while Th2 cells produce IL-

4, IL-5, IL-6, IL-10 and IL-13 (140). Th1/Th2 polarization is determined by several factors 

including cytokines, type of antigen, dose of antigen and other factors like host genetic 

composition. Studies have shown that CD4
+
 T cells stimulated in the presence of IFN- and IL-

12 develop into Th1 cells (141) while the stimulation of CD4
+
 T cells in the presence of IL-4 

yields Th2 cells (142). Th1 responses have been shown to be essential for the successful 

elimination of infectious agents whereas Th2 responses are essential for immunity against some 

parasitic infections but are generally ineffective for the immune control of several infectious 

agents. In sepsis, Th1 responses are associated with pathogen clearance and improved survival 

(143-144) whereas Th2 responses are known to contribute to immune suppression and poor 

outcome (145).  

CD4
+
 T cells are generally known to contribute to host defense during sepsis. RAG1 KO mice 

which lack T and B cells have increased bacterial burden and increased mortality following CLP 

compared to WT mice (146). Reconstitution of RAG1 KO mice with T and B cells restores 
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resistance to infection (147). Mice deficient in CD4
+
 T cells also have increased mortality 

following CLP (148). Additionally, lymphocyte apoptosis leading to decreased CD4
+
 T cell 

numbers is a major contributor to sepsis-induced immune suppression and prevention of 

lymphocyte apoptosis has been shown to improve survival in a murine model of sepsis (146). 

Paradoxically, CD4
+
 T cells have also been shown to be pathologic during sepsis (149). The 

pathologic role of CD4
+
 T cells is a major part of this thesis and will be discussed in detail in the 

coming chapters. 

A major problem of bacterial infections is the possibility of the production of exotoxins that 

belong to the class of superantigens. Superantigens are one of the most potent immune activators 

and cause non-specific polyclonal T cell activation (150). They bind directly to MHC class II 

molecules outside the peptide binding groove. In this way, they cross-link with some T cell 

receptor (TCR) of the V families. This leads to the activation of 30-50% of the T cell 

population. This exaggerated T cell activation leads to the production of huge amounts of 

cytokines especially IFN-. The large amount of IFN- in turn leads to exaggerated macrophage 

activation resulting in excessive production of cytokines such as IL-6 and TNF. The end result of 

such an overwhelming immune response is organ damage and shock. Hence, polyclonal 

activation of T cells by superantigens results in toxic shock syndrome (151).  

CD8
+
 T cells recognize antigen presented through MHC class I molecules. They are known as 

cytotoxic T lymphocytes (CTLs) due to their cytolytic action on infected cells. CTLs recognize 

microbial epitopes presented through MHC class I and eliminate infected cells through the 

release of perforin or granzyme or through Fas/FasL. CTLs can also produce cytokines such as 

IFN- which aid in pathogen clearance. Several studies have shown that CD8
+
 T cells contribute 

to sepsis mortality. Sherwood et al showed that mice lacking CD8
+
 T cells have improved 
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survival following CLP compared to WT mice (152). Wesche-Soldato et al showed that CD8
+
 T 

cells promote inflammation in the liver after sepsis (153). von Knethen et al showed that CTLs 

from septic mice have greater cytotoxicity towards allogenic targets compared to CTLs from 

controls (154). Hence, the overwhelming evidence suggests that CD8
+
 T cells contribute 

negatively to sepsis pathology.  

1.9.2 The role of regulatory T cells 

The immune system protects the host against pathogen invasion and is therefore armed with an 

arsenal of deadly ammunition (cells and proteins) necessary for the elimination of microbes. It is 

therefore paramount that the immune system will develop mechanisms necessary to prevent the 

destruction of self. Hence, T cells and B cells that are reactive to self ligands are eliminated 

during the process of negative selection in the thymus and bone marrow, respectively. However, 

it is well established that there are fail-safe mechanisms by which the immune system takes care 

of self-reactive lymphocytes that were not eliminated during the process of negative selection. 

One such mechanism that has been proposed for decades is the ability of a subtype of 

lymphocytes to suppress the function of another lymphocyte. Hence, a subtype of lymphocytes 

identified as regulatory T cells (Tregs) have been proposed as an important executor of 

peripheral tolerance and the role and function of Tregs in the maintenance of peripheral tolerance 

and immune homeostasis constitutes a major thrust of this work. 

Evidence for the existence of suppressor T cells was reported as early as the 1970s. In their 

landmark paper, Gershon and Kondo made the observation that thymocytes were able to induce 

lymphocyte suppression (155). This gave birth to the theory of T cell – mediated immune 

suppression. This was followed by the work of Gershon et al which demonstrated that when two 
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different populations of thymocytes were mixed together, one population was able to suppress 

the response of the other (156). Baker et al also showed that in the absence of T cells, certain 

antigens induce exaggerated antibody production by B cells implying the ability of T cells to 

suppress B cell function (157). These observations led to the acceptance by many immunologists 

of the existence of a subtype of T cells whose function was to suppress lymphocyte response to 

antigen. Suppressor T cells were mostly identified by the expression of Lyt-2 (CD8) although in 

certain instances like hypersensitivity, Lyt-1
+
2

-
 (CD4

+
) suppressor T cells were identified (158). 

In retrospect, this is surprising considering that Tregs which are a synonym for suppressor T cells 

are characterized by the expression of CD4. The theory of T cell suppression was mostly 

abandoned in the late 1980s because of several factors. Firstly, there were no reliable markers 

able to distinguish suppressor T cells from other T cells. Also, there was no definitive 

explanation of the molecular mechanisms that result in suppressive T cell function. The concept 

of suppressor T cell effectively died when analysis of the murine MHC molecule originally 

thought to harbor the I-J locus, which was thought to be responsible for suppressor T cell 

functions, failed to identify the I-J region on the MHC (159).      

The theory of T cell suppression was reborn when Sakaguchi et al demonstrated that T cells with 

suppressive phenotype are characterized by the expression of IL-2 receptor- chain (CD25) 

(160). The finding of Sakaguchi et al was significant for many reasons. First, it showed that a 

specific subset of T cells that can be identified by a reliable marker was involved in maintenance 

of immune tolerance. Secondly, it showed that ablation of this specific CD4
+
CD25

+
 T cell 

population resulted in the development of autoimmune disease in mice. Lastly, the transfer of 

CD4
+
CD25

+
 T cell population could rescue these autoimmune prone animals. This marked a new 

era in the theory of T cell suppression and as if to breed optimism to skeptics, the term 
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suppressor T cells was discarded and CD4
+
CD25

+
 T cells were labeled regulatory T cells (Tregs) 

(161).  

How do Tregs arise? Naturally occurring Tregs have been shown to arise from the thymus as an 

essential mechanism of maintenance of peripheral tolerance through ‘altered negative selection’ 

(162). In this model, T cells that recognize self-antigens with ‘intermediate’ affinity are rendered 

anergic and suppressive and develop to become Tregs (163). Tregs are also induced in the 

periphery from naïve CD4
+
 T cells (adaptive Tregs). The development of Tregs from naïve T 

cells is dependent on certain factors such as maturation state of the antigen-presenting cell 

(APC), cytokine environment and antigen load (164-167). In this regard, T cell interaction with 

DC plays an important role in induction of Tregs (166, 168).  

Tregs were initially identified by the expression of CD4 and CD25 molecules. The identification 

of the forkhead box protein 3 (FOXP3) as the transcription factor necessary for the development 

of Tregs was another milestone in Treg biology (169-170). Interestingly, ectopic expression of 

FOXP3 can convert CD4
+
CD25

-
 effector T cells into functional Tregs suggesting the essential 

role of FOXP3 in Treg function (169-170). Additionally, mutations in FOXP3 gene have been 

linked to autoimmune diseases in both mice and humans. In mice, mutation in the FOXP3 gene 

leads to a lethal wasting disease characterized by exaggerated CD4
+
 T cell activity (171).  In 

humans, a similar diseased condition due to mutation in FOXP3 gene is known as immune 

dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome (172). These 

observations highlight the importance of FOXP3 in immune regulation.  

In addition to CD4, CD25 and FOXP3, Tregs have been associated with many more markers. 

Tregs have been shown to constitutively upregulate cytotoxic T lymphocyte-associated antigen – 
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4 (CTLA-4) (173-174) and glucocortocoid-induced tumor necrosis factor receptor-family related 

genes (GITR) (175). Differential expression of lymphocyte activating gene-3 (LAG-3) and 

CD127 has also been reported between Tregs and CD4
+
CD25

-
 effector T cells with Tregs having 

higher expression of LAG-3 and lower expression of CD127 (176-177). 

Critics readily point out that none of these markers are specific to Tregs. As a matter of fact, all 

the notable Treg markers are readily expressed by effector T cells upon activation. For example, 

IL-2 is essential for the proliferation of T cells and all T cells express CD25, which is the -

chain of the IL-2 receptor, upon activation (178). In a similar vein, the upregulation of CTLA-4, 

GITR and LAG-3 has been reported in activated effector T cells with a corresponding 

downregulation of CD127 (179-182). This complicated scenario has resurrected the skepticism 

associated with the existence of a distinct lineage of T cells dedicated to immune suppression.    

How do Tregs mediate suppression? After more than two decades of the study of Tregs, the 

mechanism by which Tregs mediate their suppressive function remain unresolved. Several 

studies have attempted to explain the suppressive role of Tregs in vitro. However, the mechanism 

of Treg suppression in vivo is unclear. For example, it is not clear which signals initiate the 

expansion and homing of Tregs in vivo. It is also not clear where and how Tregs locate and 

suppress effector T cell function. At what stage of activation are effector T cells subject to Treg 

suppression? Does Treg suppression of immune cells take place at lymphoid organs or at the site 

of inflammation? Studies have shown that Tregs mediate their suppressive function through 

contact dependent and independent mechanisms. For example, it was reported that Tregs mediate 

suppression by inhibiting the production of IL-2 in responder effector T cells in a contact 

dependent manner (183). Pandiyan et al showed that Tregs effectively consume IL-2 at a faster 

rate than effector T cells and thereby induce apoptosis of effector T cells (184). In the contact 
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dependent activity of Tregs, molecules expressed by Tregs like CTLA-4 and LAG-3 have been 

implicated. CTLA-4 is differentially expressed by Tregs compared to non-Tregs and has been 

shown to be important in Treg activity (173) and Treg suppressive function is abrogated in the 

absence of CTLA-4 (185). It has been postulated that CTLA-4 mediates Treg suppressive ability 

by interacting with co-stimulatory molecules on APCs CD80 and CD86 to exert suppression 

(186) or directly by triggering the production of the enzyme indoleamine 2,3-dioxygenase (IDO) 

whose activity leads to suppression of the immune response (187). 

LAG-3 is an adhesion molecule that binds to MHC class II molecules and is markedly expressed 

by Tregs upon activation (176). Inhibition of LAG-3 activity impairs Treg function and ectopic 

expression of LAG-3 on CD4
+
CD25

-
 T cells confers on them suppressive ability (176). It is 

possible that LAG-3 on Tregs interacts with MHC class II molecules on different lymphocytes 

and this may be the reason why Tregs are able to suppress different cell types (186). However, it 

is worthy of note that LAG-3 deficient mice unlike CTLA-4 deficient mice do not develop 

autoimmune disease.    

Tregs have also been shown to mediate their suppressive functions through cytokines, notably 

IL-10 and TGF-. Membrane bound TGF- was reported in human and murine Tregs suggesting 

a role for TGF- in Treg function (188-189). However, studies using anti-TGF- antibody were 

not able to abrogate Treg function (190). The expression of membrane TGF- on Tregs has been 

recently challenged and it has been demonstrated that neither latent nor active TGF- is 

expressed on resting human or murine Tregs but both human and murine Tregs have high 

expression of latent TGF- upon activation (191-192). Andersson et al showed that the 

functional relevance of Treg membrane bound TGF- is to generate de novo Tregs from naive 



29 
 

precursors in a cell contact-dependent manner (192). Also, there is compelling evidence of the 

importance of TGF- in Treg function. Mice deficient in TGF- have reduced numbers of Tregs 

(193) and develop fatal lymphoproliferative disease (194). Moreover, naïve T cells in the 

presence of TGF- acquire a suppressive phenotype (165).  However, the exact role of TGF- in 

Treg function is unclear since Tregs isolated from TGF- null mice have been shown to have 

normal suppressive function in vitro (190).  

IL-10 is another cytokine that has been shown to be important in Treg function. Indeed, in the 

presence of IL-10, clones of CD4
+
 T cells which secrete IL-10 and TGF- and suppress antigen 

specific immune responses are obtained. These suppressive CD4
+
 T cell clones are called type 1 

regulatory T cells (Tr1) (195). Other studies have also demonstrated the importance of IL-10 in 

Treg function and identified IL-10 as the major cytokine pioneering Treg activity (196-198). The 

importance of IL-10 in Treg function is buttressed by the fact that Tregs isolated from IL-10 

deficient mice have defective function (199) and inhibition of IL-10 activity abrogates Treg 

function (200).  

Another important mechanism by which Tregs mediate their function is the induction of 

apoptosis in target cells. Grossman et al showed that adaptive Tregs predominantly express 

Granzyme B and kill allogeneic tumor cells in a perforin dependent manner (201). They also 

showed that natural Tregs predominantly express Granzyme A and can mediate cytotoxicity 

against a variety of cell types including CD4
+
 T cells, CD8

+
 T cells, monocytes and DCs in a 

perforin dependent manner (202). Tregs were also shown to kill B cells through the upregulation 

of Granzymes and perforin (203). In contrast, it has been reported that Treg-mediated 

cytotoxicity although dependent on Granzyme B is perforin independent (204). Tregs have also 
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been shown to induce apoptosis through Fas/FasL interaction (205-206). The induction of 

apoptosis in immune cells by Tregs is of major consequence in immune regulation and is 

investigated in this doctoral thesis.   

Which cell type(s) do(es) Tregs regulate/suppress? The possibility of thymocytes suppressing 

other immune cells (in this case B cells) was reported a long time ago (157). In the beginning 

Tregs gained prominence as a critical immune regulatory cell able to suppress autoreactive 

CD4
+
T cells (207). Recently, Tregs have metamorphosed into a master regulatory cell able to 

extend its immunoregulatory dominance across a variety of lymphocytes and APCs including 

CD8
+
 T cells (205), B cells (208), NK cells (189), NKT cells (209), monocytes (210), DCs (211), 

mast cells (212) and neutrophils (213).  

From the above, it is evident that several immunoregulatory functions have been attributed to 

Tregs. Indeed, the function of Tregs in the regulation of host immunity seems to be steadily 

expanding. Initially described as essential for the prevention of autoimmunity (160), Tregs have 

been shown to be important in suppression of allergen-induced immune responses (214), oral 

tolerance (215-216), fetal-maternal tolerance (217), suppression of pathogen-induced 

immunopathologies (218) and many other functions (219). There is unequivocal experimental 

evidence about the paramount immunoregulatory function of Tregs in maintenance of host 

immune homeostasis and peripheral tolerance. However, the use of artificial systems has made 

the interpretation of the exact function of Tregs in host immunity rather ambiguous. 

In addition to naturally occurring CD4
+
CD25

+
FOXP3

+
 Tregs, studies have shown that Tregs can 

arise extrathymically in the periphery. Peripheral Tregs (pTregs) are induced in secondary 

lymphoid organs in response to homeostatic signals such as antigen and cytokines. Apostolou et 
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al showed that pTregs arise de novo from naïve CD4
+
CD25

-
 T cells by suboptimal antigen 

activation of dendritic cells that were exposed to very low doses of antigen (167, 220).  Two 

types of induced Tregs have been identified: type 1 regulatory T cells (Tr1) cells arise in the 

presence of IL-10 and they mediate their suppressive function via secretion of high levels of 

IL-10 (221). Type 3 regulatory T cells arise in the presence of TGF-beta and have been shown to 

be important in the maintenance of oral tolerance (222). 

Although the existence of CD8
+
 Tregs was described many years ago, their function was largely 

ignored and much attention was paid to CD4
+
CD25

+
FOXP3

+
 Tregs. Recently, CD8

+
 Tregs have 

been shown to play a complementary role to CD4
+
 Tregs in immune regulation, maintenance of 

immune homeostasis and prevention of autoimmunity (223-224).  Naturally occurring 

CD8
+
CD122

+
 Tregs recognize activated T cells through the interaction of conventional MHC 

class I-alphabetaTCR and mediate their suppressive function by secretion of IL-10 (225).  

In addition to CD4
+
 Tregs and CD8

+
 Tregs, a subset of alphabetaTCR

+
CD3

+
CD4

-
CD8

-
NK1.1

-
 

(double-negative; DN) Tregs have been identified and shown to be particularly important in 

transplantation tolerance (226-227). DN Tregs develop extrathymically and are also essential in 

immune regulation during infection and prevention of autoimmune diseases (228-229).  

The maintenance of immune homeostatis is of significant interest to the wellbeing of the host 

and it is therefore not surprising that there are multiple mechanisms in immune regulation which 

may have overlapping and redundant functions. Overall, the most widely characterized 

regulatory T cell population is CD4
+
CD25

+
FOXP3

+
 Tregs and this population is the major focus 

of this project.   
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1.9.3 Tregs and Sepsis  

This work investigates the role of Tregs in sepsis and bacterial induced immune responses. 

Studies have shown that Tregs increase in both experimental and clinical sepsis (230-232). 

However, the exact function of Tregs in sepsis – whether they play a protective role by inhibiting 

excessive inflammatory response or contribute to the CARS during sepsis by suppressing 

effector T cells remains a subject of debate (233) and constitutes a major thrux of this work. One 

study reported that immunological or genetic inhibition of Treg activity has no effect on sepsis 

mortality (234). Another study showed that depletion of Tregs using monoclonal antibody had no 

effect on acute lung infection caused by Pseudomonas aeruginosa (235). Other studies have 

actually shown that Tregs contribute to immune suppression during sepsis and advocate the 

inhibition of Treg activity for survival during sepsis (232, 236-238).   

On the other hand, Tregs have also been shown to be protective in experimental models of 

sepsis. Heuer et al using a murine model of CLP showed that adoptive transfer of in vitro 

stimulated Tregs increased bacterial clearance and improved survival, thereby demonstrating a 

beneficial role of Tregs in a clinically relevant model of sepsis (239). Another study done by 

Cambos et al demonstrated that Tregs help to inhibit excessive inflammation in lethal 

plasmodium chabaudi adami infection in which mortality is associated with systemic 

inflammatory response (240). As stated earlier, a major goal of this work was to investigate the 

role of Tregs in sepsis. The interesting findings about the role of Tregs in sepsis will be discussed 

in the following chapters. 
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1.10 Phosphoinositide pathway in sepsis 

The family of lipid kinases able to phosphorylate the 3’-hydroxyl group of phosphatidylinositol 

and phosphoinositides are termed Phosphatidylinositol 3-kinases (PI3Ks). The enzymatic activity 

of PI3Ks leads to the activation of signaling pathways involved in several cell functions such as 

growth, differentiation, proliferation, motility, metabolism, trafficking and survival (241-243).  

PI3Ks are divided into 3 classes (classes I-III) based on their substrate activity and sequence 

homology. Class I PI3Ks have been intensely studied and are further divided into two groups: 

Class IA and Class IB. Class IA PI3K exists as a heterodimer made up of a p85 regulatory 

subunit and either a p110, p110 or p110 catalytic subunit. The p110 and p110 isoforms 

are widely expressed in all cells while the p110 isoform is primarily expressed in leukocytes. 

Class IB PI3K is also a heterodimer made up of a p101 regulatory subunit and a p110 catalytic 

subunit (243-244). The PI3K signaling pathway is involved in inflammation and sepsis. It has 

been reported that inhibition of PI3K signaling increases mortality in experimental sepsis thereby 

implying a protective role for PI3K in sepsis (245-248). However, many of these studies used 

pharmacological agents for the global inhibition of PI3K signaling. The use of specific inhibitors 

of PI3K isoforms will be more insightful in elucidating the individual roles of the PI3K isoforms 

in the pathogenesis of sepsis. One study demonstrated that absence of p110 isoform of PI3K 

leads to increased infiltration of polymorphonuclear leukocytes in the lungs during sepsis, which 

greatly enhances sepsis-induced organ damage (249). On the other hand, another study reported 

that inhibition of p110 activity improves survival in sepsis (250). Also, Aksoy et al reported that 

the p110 isoform of PI3K controls the topology of TLR4 signaling complexes and thereby 

protects from endotoxic shock (251).  
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A major part of this work is looking at the p110 signaling pathway of PI3K. This is because this 

pathway has been implicated in Treg function and activity. For example, mice with genetic 

mutation in the p110 gene (p110 KI mice) have been shown to have reduced Treg number and 

function (252). Hence, p110 KI mice are very suitable for the investigation of the function of 

Tregs in sepsis and form a major part of this work. 

1.11 Animal models of sepsis 

There are three widely used methods for experimental sepsis: 1) Injection of an endotoxin; 2) 

Alteration of endogenous protective barrier e.g. cecal ligation and puncture (CLP); and 3) 

Injection of exogenous bacteria (253). 

Injection of an endotoxin: 

The endotoxin LPS has been widely used in the study of experimental sepsis. LPS is the 

component of the cell wall of Gram-negative bacteria and is a PAMP that is bound to TLR4. As 

stated earlier, LPS is one of the most potent activators of immune cells and LPS-TLR4 coupling 

sets a signaling cascade which ultimately leads to the production of pro-inflammatory cytokines 

by immune cells. In this way, LPS infusion mimics the early stages of clinical sepsis. Also, since 

LPS infusion leads to activation of several immune cells, it also leads to neutrophil infiltration 

and organ damage. It has been argued that LPS administration leads to a much elevated level of 

pro-inflammatory cytokines compared to levels seen in humans. Moreover, the LPS model of 

sepsis lacks infection, which is also a major feature of clinical sepsis. Nevertheless, LPS infusion 

still remains a useful approach to understand the role of cytokines in sepsis. 
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Alteration of endogenous protective barrier e.g cecal ligation and puncture (CLP): 

CLP is currently the most widely used method for inducing experimental sepsis. It is a surgical 

procedure which involves ligation distal to the ileocecal valve followed by puncture with a 

needle (254). Since the cecum is an endogenous source of bacteria, its puncture leads to 

peritoneal polymicrobial sepsis. The intensity of the procedure can be manipulated by varying 

size and number of puncture. CLP is generally accepted as a clinically relevant model of sepsis 

as it closely mimics features of clinical sepsis including levels of pro-inflammatory cytokines 

and also sepsis-induced immunosuppression.  

However, CLP although regarded as the gold standard in sepsis research still has its limitations. 

For example, studies have shown that it does not cause lung injury as seen in clinical sepsis 

(255). Some reports have suggested the injection of cecal slurry as an alternative approach to 

CLP (256).  

Injection of exogenous bacteria: 

The injection of live bacteria is another way of inducing experimental sepsis. This approach is 

particularly useful in studying the ability of the host to clear infection caused by a single 

pathogen and can be used to reproduce the clinical features of an infection caused by a known 

organism. It is also a veritable way of investigating antibiotic activity in sepsis.  

The above listed animal methods are still currently used for sepsis research worldwide. However, 

controversies have trailed animal models of sepsis and they have been blamed for the failure of 

several clinical trials. To begin with, most studies use healthy, young mice for experimental 

sepsis and supportive care is usually minimal or absent in experimental sepsis. In contrast, 

patients with sepsis are usually elderly and have existing co-morbidities, which increase the risk 
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of mortality. Moreover, mortality is recorded in clinical sepsis despite the existence of 

ultramodern intensive care. Additionally, the endpoint in experimental sepsis is usually days 

whereas in humans, it is usually weeks and months. Furthermore, there are genomic differences 

in inflammatory responses across species. In their landmark paper, Seok et al showed that 

genomic responses in humans to inflammatory stimuli differ greatly from that of mice (257). 

They showed that genomic disturbances in mice were recovered within 4 days whereas in 

humans, it took 1-6months. They also showed that there was little or no correlation between 

relevant signaling pathways in humans and mice during the inflammatory response (257). 

Nevertheless, animal models of sepsis have been quite useful in understanding of the 

pathogenesis of sepsis. As our knowledge of the condition improves, modifications to 

experimental procedure are essential.  For example, in an attempt to mimic the existence of co-

morbidity in clinical sepsis, Leelahavanichkul and collegues induced kidney disease in mice 

before CLP and showed that this worsened survival (258). These modifications to experimental 

sepsis are essential to achieve clinical translatable result. 

 1.12 Study rationale 

Knowledge of the mechanisms involved in the pathogenesis of sepsis has rapidly increased over 

the years. However, there still exists a gap in knowledge regarding critical regulatory 

mechanisms of the immune system during sepsis. Initial emphasis was placed on the 

inflammatory response in sepsis but it is now known that the anti-inflammatory response is also 

involved in sepsis pathology. One thing is certain, the maintenance of optimum immune 

response is crucial for survival of sepsis and elimination of infection. 
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Since their discovery, the activity of Tregs has proven to be an essential immune regulatory 

mechanism for the maintenance of immune homeostasis and prevention of exaggerated immune 

response and defects in Treg function are frequently associated with immune pathology (207). 

Despite their importance in immune regulation, the suppressive nature of Tregs has also been 

shown to be detrimental and contribute to certain disease conditions such as cancer (259). 

Recently, Tregs were identified as responders during sepsis, with significant expansion in human 

and animal sepsis (230, 234). However, whether Tregs exacerbate or ameliorate pathology 

during sepsis is not well understood. In addition, conflicting reports about the role of Tregs in 

sepsis abound. While some studies have shown Tregs to be protective during sepsis (239-240), 

other studies have demonstrated that Tregs contribute to mortality in sepsis (232, 236-238). 

Additionally, studies looking at the mechanism of Treg-mediated immune response during sepsis 

are either few or non-existent. 

In view of the above, this work was designed to delineate the immune-regulatory mechanisms 

involved during the pathogenesis of sepsis. In particular, the study is focused on the role of Tregs 

– an essential immunoregulatory cell during sepsis. Since sepsis is a condition marked by a 

defect in immune regulation, having a clear understanding of the role of Tregs in the overall 

immune response during sepsis is vital for the application of adequate therapeutic strategies and 

clinical management of the condition.   
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1.13 Global hypothesis 

I hypothesize that regulatory T cells play a protective role during sepsis through prevention of 

exaggerated immune response. 

1.14 Overarching goal 

The overarching goal of this work is to elucidate the functional relevance of Tregs in the 

pathogenesis of sepsis and the mechanisms by which Tregs mediate their functions during sepsis. 

1.14.1 Specific aims: 

1) To determine the functional relevance of the increase in the number of regulatory T cells 

during sepsis. 

2) To elucidate the mechanism by which regulatory T cells exert their protective role during 

sepsis. 

3) To ascertain the functional relevance of Tregs during sepsis through the examination of 

relevant immune signaling pathways proven to be critical for Treg function, specifically – the 

p110 signaling pathway. 
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 2.0 CHAPTER TWO 

GENERAL MATERIALS AND METHODS 

2.1 Mice 

Four to eight week old female C57BL/6 mice were purchased either from Charles River 

Laboratory, St. Constante, Quebec or from the University of Manitoba Central Animal Care 

Services (CACS) breeding facility. Female CD25 deficient (KO) mice (4 weeks of age), SCID, 

RAG1 KO and Igh KO (B cell deficient) mice all on C57BL/6 background and CD1d KO mice, 

SCID and TLR4 KO mice on BALB/c background and their age-matched wild-type (WT) 

controls were purchased from Jackson Laboratory (Bar Harbor, ME). Four to eight week old 

female p110(910A) mice on BALB/c background were also purchased from the University of 

Manitoba Central Animal Care Services (CACS) breeding facility. All mice were maintained in 

specific-pathogen free environment at the CACS, provided standard chow ad libitum and were 

used according to the guidelines stipulated by the Canadian Council for Animal Care. 

2.2 Sepsis induction 

Sepsis was induced by two out of the three methods listed above, namely: LPS injection and 

injection of live bacteria. Both LPS and bacteria were injected via the intraperitoneal route. LPS 

(from E. coli serotype 055:B5) was purchased from Sigma-Aldrich, Mississauga, ON, Canada. 

Different doses of LPS (1-30 mg/Kg) were used and are specified in each experiment varying 

from non-lethal to lethal as needed. In some experiments, Concanavalin A (Con A; Sigma-

Aldrich, Mississauga, ON, Canada, 25 mg/Kg) was administered by intravenous injection before 

LPS injection.  Escherichia coli (E. coli, 10
8
 cfu, ATCC 25922) was used for sepsis induction. 

Bacteria were stored in 20% glycerol at -70 °C. For expansion, bacteria were cultured on Luria 
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broth (LB) agar (Invitrogen, Toronto, ON, Canada) overnight. One colony of bacteria was 

suspended in 3 ml of Luria broth base (Invitrogen) and was incubated in a shaking incubator 

(220 rpm) for 18 hrs at 37°C. The suspension was centrifuged at 6000 x g (5 mins, 4 °C). The 

pellet was washed twice with sterile PBS and then resuspended in 3 ml of sterile PBS and 10-

fold dilutions were plated in LB agar. Colonies were counted after overnight incubation at 37 °C. 

The determined concentration of the suspension was adjusted to the desired dose using sterile 

PBS. Infected animals were monitored periodically for clinical signs after LPS or bacteria 

injection and were non-blindedly assigned arbitrary scores to indicate disease progression. Mice 

were monitored for movement, body condition and alertness. Disease severity was scored in a 

semi-quantitative fashion as follows: 0, = no abnormal clinical sign; 1, = ruffled fur but lively; 2, 

= ruffled fur, moving slowly, hunched, and sick; 3, = ruffled fur, squeezed eye, hardly moving, 

down and very sick; 4, = moribund; and 5, = dead. Clinical score 4 was used as the humane 

endpoint because the institutional ethical regulation does not permit score 5 in all animal 

experiments. 

2.3 Antibodies 

Rat anti-mouse CD25 (PC61) and CD4 (GK1.5) mAbs (all IgG1) were purified from hybridomas 

by Protein G affinity chromatography by the Manitoba Institutes of Proteomics core-facility. 

Mice were injected with 100 g of antibody intraperitoneally (i.p) before LPS or bacteria 

challenge. Several purified and conjugated antibodies were used for this study. A summary of 

these, with their clones and sources are listed in Table 1 
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Table 1: List of antibodies 

Serial 

No 

   Antibody        Clone Company 

1 Purified Rat IgG1 eBRG1 eBioscience 

2 CD25 (APC, FITC) PC61 eBioscience 

3 CD4 (efluor450, APC) GK1.5 eBioscience 

4 CD3 (APC, FITC) 17A2 eBioscience 

5 FOXP3 (APC) FJK-16s eBioscience 

6 CD11b (FITC, PE) M1/70 eBioscience 

7 Gr1 (APC, PE) RB6-8C5 eBioscience 

8 TNF (PE, APC) MP6-XT22 eBioscience 

9 IFN-g (APC) XMG1.2 eBioscience 

10 CD90.2 (PE) 53-2.1 eBioscience 

11 TLR4 (APC) MTS510 eBioscience 

12 CD8 (PE) 53-6.7 eBioscience 

13 MCL-1 D35A5 Cell signaling  

 

 

 

2.4 Cytokine quantification 

Following sepsis induction, whole blood and peritoneal lavage fluid were collected. Blood was 

centrifuged and serum collected. Serum and peritoneal lavage fluids were stored at -20 °C until 

used for cytokine analysis. The levels of cytokines (IFN-, IL-1, TNF, CCL2, IL-10 and TGF-

1, IL-6) in the serum and peritoneal lavage fluids were assayed by sandwich ELISA using 

paired antibodies from eBioscience (San Diego, CA) according to the manufacturer’s suggested 

protocols. The IL-6 kit was purchased from BD Biosciences (San Jose, CA). In some cases, 

cytokine levels (IFN-, IL-1, IL-12p70, KC, IL-10 and IL-6) in serum, peritoneal lavage fluids 

and lung homogenates were determined using a multiplex electrochemiluminescence detection 
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assay (Meso Scale Discovery Rockville, MD, USA) and read on the MSD Sector Imager 2400. 

The levels of cytokines (IL-6, CCL2) in supernatants from co-culture of CD4
+
 T cells and 

macrophages were also determined by ELISA.  

2.5 Cell purification and culture 

2.5.1 Primary mouse bone marrow-derived macrophages (BMDM) 

Bone marrow cells were isolated from the femur and tibia of naïve C57BL/6 mice as previously 

described (260). Briefly, mice were sacrificed by cervical dislocation. Femur and tibia were 

obtained, freed of muscle tissue and flushed with RPMI medium using 10 ml syringe and 30-

gauge needle. Cells were pipetted up and down to obtain a single-cell suspension, centrifuged at 

1200 rpm for 5 mins, resuspended in 10 ml RPMI medium and counted. Cells were plated at 4 x 

10
6
 cells/ml in 15x100 mm plates and were differentiated into macrophages using complete 

RPMI medium supplemented with 30% L929 cell culture supernatant. Cells were harvested on 

day 6 following incubation in 5% CO2 and 37 °C. 

2.5.2 Primary mouse bone marrow-derived neutrophils (BMDN) 

Bone marrow cells were isolated from the femur and tibia of naïve p110D910A) and WT mice 

as previously described (261). Briefly, mice were sacrificed by cervical dislocation. Femur and 

tibia were obtained, freed of muscle tissue and flushed with supplemented Hanks’ balanced 

saline solution (HBSS; 1X HBSS, 0.5% fetal bovine serum (FBS) and 20 mM HEPES) using 10 

ml syringe and 30-gauge needle. Cells were pipetted up and down to obtain a single-cell 

suspension, centrifuged at 1200 rpm for 5 mins and resuspended in 3 ml 45% percoll. The cells 

were laid over four layer percoll gradient of 81%, 62%, 55%, and 50% percoll (GE Healthcare 

Life Sciences, Mississauga, Ontario, Canada), respectively diluted in HBSS (100% percoll = 9 
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parts percoll and 1 part 10X HBSS) and centrifuged (2700 rpm, 30 mins, without braking). The 

neutrophils from the 81%/62% interface were collected, washed in PBS and resuspended in 

complete RPMI medium for use.  

2.6 Co-culture experiments 

2.6.1 T cell and macrophage co-culture 

WT or TLR4 KO mice were sacrificed and splenocytes were obtained by a method previously 

described (262). T cells were isolated using a CD90.2 isolation kit (Stemcell Technologies, 

Vancouver, British Colombia) to a purity > 95%. The isolated T cells were incubated overnight 

(~ 12 hr) in complete medium (RPMI supplemented with 10% heat-inactivated FBS, 2 mM 

glutamine, 100 U/ml penicillin, 25 mM HEPES, and 5 x 10
-5

 M 2-ME) containing 10 g/ml LPS. 

The next day, the cells were washed three times and then co-cultured with the BMDM at a ratio 

of 1:1 in 96-well flat-bottom plate for three days.  

2.6.2 Treg and neutrophil co-culture 

WT and p110D910A) were sacrificed and splenocytes were obtained. Treg cells were isolated 

using a Treg isolation kit (Stemcell Technologies, Vancouver, British Colombia) to a purity > 

95%. The purified Tregs were incubated overnight (~ 12 hr) in complete medium (RPMI 

supplemented with 10% heat-inactivated FBS, 2 mM glutamine, 100 U/ml penicillin, 25 mM 

HEPES, and 5 x 10
-5

 M 2-ME) containing 1 g/ml LPS. The next day, BMDN were introduced 

at varying Treg to neutrophil ratios of 1:1, 1:2, 1:4 and 1:8 respectively and the co-culture was 

incubated for 12 hr in 96-well u-bottom plate.  
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For human Treg and neutrophil co-culture, blood was collected into heparin tubes from the 

peripheral vein of healthy volunteers. Neutrophils were isolated from whole blood by Dextran, 

Ficoll-Paque histopaque sedimentation (Amersham Pharmacia Biotech) and hypotonic lysis 

method as previously described (263)  to a purity > 95%. Tregs were simultaneously isolated 

from the whole blood of volunteers using human Treg isolation kit (Stemcell Technologies). 

Neutrophil and Treg co-culture was done overnight in complete RPMI medium using 96-well u-

bottom plate.  

2.7 Western blot experiments 

BMDN were isolated from WT and p110D910A) as described above.  The neutrophils were 

cultured in complete RPMI with or without LPS (1 ug/ml) for 3, 6, 12, 24 hr respectively. The 

cells were lysed with an NP-40 lysate buffer (Nonidet P-40, 0.1% SDS in PBS) supplemented 

with a protease inhibitor cocktail (Sigma-Aldrich). The protein content of the lysates was 

estimated by Bicinchoninic acid assay (264). 10 g of protein for each sample were resolved on 

polyacrylamide gels (SDS-PAGE) under denaturing conditions and were transferred onto PVDF 

membranes (Amersham Pharmacia Biotech). The membranes were blocked with 5% milk in 

Tris-Buffered Saline and 0.1% Tween 20 and incubated with either rabbit anti-mouse Mcl-1 

(Cell Signaling Technology, MA, U.S.A.), p-p38, p-Erk1/2 (R&D Systems) or mAb p-STAT3 

(Santa Cruz Biotechnology), p-STAT5 (BD Bioscience) overnight at 4 °C. For loading controls, 

membranes were stripped for 20 mins using a glycine-based stripping buffer (2.2M Glycine, 

0.5M NaCl pH4.4), blocked and subsequently incubated with polyclonal anti-Actin antibody 

(Sigma-Aldrich). Densitometry analysis: Band intensity was measured by the intergraded density 

value as determined by BIORAD Image Lab Software v4.1 on ChemiDoc MP Imaging System 

(BIORAD, Mississauga, Ontario, Canada). 
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2.8 Flow cytometry experiments 

Fluorochrome-conjugated monoclonal antibodies were used in flow cytometry experiments for 

extracellular and intracellular staining according to the manufacturer’s instructions. Briefly, cells 

were washed with Flow buffer (PBS containing 5% FBS and 0.01% sodium azide). The cells 

were incubated with Fc-block (0.25 g/tube; eBioscience) for 10 mins on ice. Surface staining of 

cells was done with fluorochrome-conjugated antibodies against CD3, CD4, CD8, CD25, 

CD90.2, TLR4, GR1 and CD11b obtained from eBiosciences. For intracellular staining, 

splenocytes were resuspended at 4 x 10
6
 cells/ml in complete DMEM and plated at 1 ml per well 

in 24-well tissue culture plates for 48 hr. In the last 4 hr, the cultures were pulsed with PMA (50 

ng/ml), ionomycin (500 ng/ml) and brefeldin A (10 g/ml, all from Sigma-Aldrich) before 

surface staining. After surface staining, cells were fixed in 2% paraformaldehyde (Sigma-

Aldrich), permeabilized with 0.1% saponin (Sigma-Aldrich) in staining buffer and stained with 

specific fluorochrome-conjugated mAbs against IFN-, TNF or MPO (BioLegend, San Diego, 

CA). For MPO staining, azide free flow buffer was used. FOXP3 staining kit and fluorochrome-

conjugated antibody was obtained from eBioscience. Cell viability was determined using 

Annexin V (eBioscience) and 4’,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich). Cells were 

acquired using BD FACS Canto II and analyzed using Flowjo software (Tree Star Inc, Ashland, 

OR). 
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2.9 Cell isolation, adoptive transfer experiments and in vivo Treg expansion 

For adoptive transfer of Tregs, splenocytes were obtained from WT mice and labeled with CD4 

and CD25 fluorochrome conjugated antibodies. CD4
+
CD25

+
 cells were then isolated using a BD 

FACS Aria III cell sorter to purity of 97%. Five million (5 x10
6
) Treg cells were then transferred 

by intravenous injection to CD25 KO mice.  

For adoptive transfer of CD4
+
 T cells, mice were sacrificed and splenocytes were obtained from 

WT, CD25 KO and TLR4 KO mice, respectively. CD4
+
 T cells were selectively isolated by 

negative selection using Stemcell Technologies isolation kit to a purity > 95%. Five million cells 

were adoptively transferred into recipient SCID mice via tail vein injection. Reconstitution was 

assessed in peripheral blood of recipient mice by flow cytometry and was deemed to be achieved 

when the percentage of CD3
+
 T cells in peripheral tail blood is similar to those of non-

manipulated mice. 

The expansion of Tregs in vivo was done as previously reported (265). Briefly, mice were 

injected with immune complex consisting of 5 g anti-mouse IL-2 mAb and 1 g murine IL-2 

(Peprotech, NJ, U.S.A) via the intraperitoneal route everyday for 3 days. On the fourth day, mice 

were injected with anti-CD25 mAb (i.p) and then challenged with LPS (1 mg/Kg, i.p). Mice 

were monitored for clinical signs and survival following LPS injection.    

2.10 Bacterial burden estimation 

Bacterial clearance following depletion of Tregs was determined by estimation of bacterial 

burden in liver. Animals were sacrificed and liver samples collected and homogenized in 3 ml 

sterile PBS. The suspension was centrifuged at 6000 x g and the supernatant was collected. Ten 
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fold dilutions of the supernatant were plated in LB agar and colonies were counted after 

overnight incubation at 37 °C.  

2.11 Proliferation assay 

To measure cell proliferation, mice were sacrificed and spleen was collected. Splenocytes were 

processed and labeled with 5- (6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) dye 

(Molecular Probes, Eugene, OR) according to the manufacturer’s instructions. Briefly, 4 x 10
7
 

cells were suspended in 5 ml of warm PBS in a 15 ml tube. An equal volume of CFSE was added 

and the suspension was gently rocked for 5 mins after which 5 ml of FBS was added. The 

suspension was centrifuged to isolate the labeled cells. The labeled cells were resuspended in 

complete medium (DMEM supplemented with 10% heat-inactivated FBS, 2 mM glutamine, 100 

U/ml penicillin, 25 mM HEPES, and 5 x 10
-5

 M 2-ME) and at 0.2 x 10
6
 cells/well in 96-well flat-

bottom plates and stimulated with LPS (1 g/ml). After 72 hr, proliferation (CFSE dilution) was 

analyzed by flow cytometry. 

2.12 Cytospin and histology experiments 

Cytopreparations were permeabilized onto microscopic slides by cytospin centrifugation 

(ThermoShandon, Pittsburgh, PA). The slides were then stained with Hematoxylin and Eosin 

(H&E) solutions. Differential cell counting of stained slides was done under a Zeiss Primostar 

iLED microscope (Carl Zeiss, Ontario, Canada).  

For histology studies, animals were sacrificed after LPS injection and animal tissue (lungs and 

kidney) were collected. Tissue were fixed in formalin and embedded in paraffin. 5-μm-thick 

tissue sections were prepared, deparaffinized in xylene, and rehydrated through graded 
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concentrations of alcohol to water. The sections were stained with Hematoxylin and Eosin and 

examined under a Zeiss Primostar iLED microscope. 

2.13 Statistical analysis 

All data were plotted and analyzed using GraphPad Prism software version 5.0 (La Jolla, CA). A 

Kaplan Meier survival curve plot was used for the survival data and the p values were 

determined using Mantel-Cox or Gehan-Breslow-Wilcoxon tests. For analyses of cytokine 

results, data distribution was first tested for normality using the SPSS software (Armonk NY) 

and a one-tailed Student’s t or Mann Whitney tests (for normal and non-normal distributed 

samples, respectively) were used to compare the differences in cytokine production between 

different groups. Mann Whitney test was also used to compare the median range of clinical 

scores between different groups of mice. Differences were considered significant if p ≤ 0.05.   

2.14 Ethics statement 

All animal and human studies done in this work were reviewed and approved by the University 

of Manitoba Human and Animal Ethics Review Boards. 
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3.0 CHAPTER 3 

CRITICAL ROLE OF TREGS IN SURVIVAL OF SEPSIS 

3.1 RATIONALE 

Sepsis is a leading cause of mortality in the intensive care unit and in spite of decades in sepsis 

research, mortality is still unacceptably high (8). A major reason for this is that the molecular 

mechanisms underlying immune response during sepsis are still not well understood. 

Understanding of the immune regulatory pathways during sepsis will be crucial in reversing the 

high mortality rate associated with sepsis. The immune response during sepsis is initially tilted 

towards a pro-inflammatory state in response to infection (266). This normal immune response to 

infection becomes problematic following inability to regulate the inflammatory response and can 

progress to severe sepsis and septic shock. Therefore, it is pertinent to understand regulatory 

pathways of the immune system, which are critical for the prevention of excessive or prolonged 

inflammatory response.   

There is unequivocal experimental evidence concerning the role of CD4+CD25+FOXP3+ T cells 

in the maintenance of peripheral tolerance, immune homeostasis and prevention of excessive 

immune response (267-268). These cells represent 5-10% of CD4+T cells in the peripheral 

circulation and lymphoid compartments, arise from the thymus and have an overall anti-

inflammatory property (269-270). These so-called naturally occurring regulatory T cells (Tregs) 

have been shown to prevent autoimmunity and suppress inflammation in several animal disease 

models such as type 1 diabetes (271), systemic lupus erythematosus (272), inflammatory bowel 

disease (273), collagen-induced arthritis (274), and organ transplantation (275). Since sepsis is a 

disease characterized by an initial hyper-inflammatory response, it follows that Tregs, which 

prevent excess inflammatory response, may be important in the disease pathogenesis. 
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Interestingly, Tregs have been shown to increase in number in both human and clinical sepsis 

(230-231). However, whether Tregs contribute to immune suppression or ameliorate 

inflammation during sepsis is unclear with published evidence supporting both claims (236, 

239). We therefore decided to investigate the role of Tregs during sepsis using a murine model. I 

used two murine models of sepsis, LPS injection and live bacterial infection in this study. Anti-

CD25 mAb was used to deplete Tregs in mice followed by the injection of LPS or live 

Escherichia coli. I also used mice genetically lacking functional Tregs to determine the role of 

Tregs during sepsis. The results show that injection of LPS leads to expansion of 

CD4
+
CD25

+
FoxP3

+
 Tregs suggesting that these cells may play an important role in immune 

regulation in LPS-induced acute inflammation. Indeed, genetic or immunological inhibition of 

Treg function using mice lacking functional Tregs (CD25 KO mice) or antibody depletion, 

respectively, led to acute death in an otherwise non-lethal LPS challenge. This was accompanied 

by exaggerated production of pro-inflammatory cytokines. Strikingly, adoptive transfer of 

CD4
+
CD25

+
 Tregs to CD25KO mice before LPS challenge rescues mice from death. Unlike 

LPS, depletion of Tregs followed by Concanavalin A (Con A) challenge does not result in 

mortality, suggesting that Treg depletion does not globally influence all models of acute 

inflammation. To further authenticate these findings, I show that depletion of Tregs leads to 

mortality in a non-lethal Escherichia coli challenge accompanied by elevated serum levels of 

proinflammatory cytokines. Collectively, these results indicate that in addition to regulation of 

LPS-induced acute inflammation, Tregs help to improve bacterial clearance and promote 

survival in an acute model of bacterial infection. 
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3.2 RESULTS 

3.2.1 Tregs increase in mice undergoing sepsis 

I injected mice with different doses of LPS and monitored the animals for clinical signs and 

survival. Survival was greatly dependent on the dosage of LPS administered such that mice 

given 30 mg/Kg LPS showed severe clinical signs at 6 hr and recorded 100% mortality by 24 hr 

post LPS challenge (Fig. 3.1A). In a separate experiment, some mice were injected with 10 

mg/Kg LPS and sacrificed after 6 hr and serum levels of proinflammatory cytokines were 

assessed by ELISA. As shown in Fig. 3.1B and consistent with previous reports (276), the serum 

levels of proinflammatory cytokines (IL-1, IL-6, IL-12, CCL2 and TNF) were significantly 

elevated in mice given LPS compared to controls. To find out the numerical response of Tregs 

cells during LPS-induced acute inflammatory responses, I analyzed peripheral blood 

mononuclear cells and spleen cells from mice sacrificed 6 hrs after LPS (10 mg/Kg) injection 

and determined the percentages of Tregs (CD4
+
CD25

+
Foxp3

+
) by flow cytometry. There was a 

significant increase in the percentage and absolute numbers of CD4
+
CD25

+
 and 

CD4
+
CD25

+
Foxp3

+
 T cells in the spleens of animals in response to LPS compared to control 

mice (Fig. 3.1C-F). As in the spleen, similar increases in the percentage and absolute numbers of 

Tregs were also observed in the blood of LPS-challenged animals (Fig. 3.1C, D). Thus, injection 

of LPS leads to acute inflammatory responses, which is accompanied by the production of 

elevated levels of pro-inflammatory cytokines and systemic increase in Tregs. 
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Fig 3.1 Injection of LPS leads to systemic inflammatory response and increase in 

regulatory T cells. Mice were injected with LPS (30 mg/Kg, i.p) or PBS and monitored for 

survival (A). In some experiments, mice were sacrificed after 6 hr post LPS challenge and serum 

levels of proinflammatory cytokines (IL-1ß, IL-6, MCP-1, TNF and IFN-) were determined by 

sandwich ELISA (B). In addition, the percentages of CD4+CD25+ (C) and CD4+CD25+FoxP3+ 

(D) cells in the spleen and blood were determined by flow cytometry. Also, the absolute numbers 

of CD4+CD25+ (E) and CD4+CD25+FoxP3+ (F) cells in the spleens were determined. The 

results presented are representative of 3 independent experiments (n = 4-5 mice per group) with 

similar results. Fig. 3.1A is a pool of 3 independent experiments (n = 12 mice). Bars show mean 

or median +/- standard error; **, p < 0.01; ***, p < 0.001. 
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3.2.2 Depletion of Tregs leads to acute death in an otherwise non-lethal LPS challenge. 

Previous reports have shown that the numbers of Tregs increase in both experimental models of 

sepsis and septic patients (230, 236). However, the exact role of these cells in the pathogenesis of 

sepsis and septic shock remains equivocal.  To determine the role of Tregs in LPS-induced acute 

inflammatory responses, I injected mice with depleting anti-CD25mAb (PC61, 100 ug/mouse) to 

deplete Tregs, and monitored survival following non-lethal (1 mg/Kg) LPS challenge. This dose 

of antibody has been previously shown to cause sustained and selective depletion of natural 

Tregs in mice (277-280). Indeed, I found that anti-CD25 mAb treatment caused over 70-75% 

depletion of CD4
+
CD25

+
Foxp3

+
 T cells (Tregs, Fig. 3.2A). Strikingly, all the mice given 

anti-CD25mAb before sub-lethal LPS challenge progressed rapidly to endotoxic shock as 

indicated by very high clinical scores (Fig. 3.2B) and attained 100% mortality within 6 hr (Fig. 

3.2C).  In contrast, the clinical score in mice injected with control antibody was significantly 

reduced and none of the mice died (Fig. 3.2B and C). 

Previous reports showed that anti-CD25 mAb-mediated depletion of Tregs occurs through 

FcgammaRIII on macrophages (279). I therefore investigated if injection of anti-CD25 mAb 

resulted in the activation of macrophages which contributed to the enhanced susceptibility of the 

animals to LPS challenge. I cultured BMDM at minute intervals of 15, 30, 60 and 120 in the 

presence or absence of LPS and/or anti-CD25 mAb or isotype control and investigated the 

activation of the transcription factors signal transducer and activator of transcription (STAT) 1 

and STAT 3. There was no difference in the expression of STAT 1 and STAT 3 by macrophages 

cultured in the presence of anti-CD25 mAb or isotype control (Appendix I). I therefore conclude 

that the enhanced mortality observed following Treg depletion and LPS challenge is not due to 

the enhanced activation of the macrophages by the anti-CD25 mAb.       
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It is worthy of note that the susceptibility to a non-lethal dose of LPS in anti-CD25 mAb-treated 

mice was accompanied by significantly increased serum levels of proinflammatory cytokines 

including IL-6 (Fig. 3.2D-F), which is a key predictor of mortality in sepsis (281). Interestingly, 

mice depleted of Tregs had lower levels of TGF1 (Fig. 3.2G), a cytokine that is associated with 

Tregs and plays an important role in their immunoregulatory function (194). Collectively, these 

observations show that depletion of Tregs enhances sensitivity and susceptibility to LPS, 

suggesting that Tregs play a protective role in the pathogenesis of LPS-induced acute 

inflammatory responses. 
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Fig. 3.2 Depletion of Tregs leads to acute death in an otherwise non-lethal LPS challenge. 

Mice were injected intraperitoneally with anti-CD25 mAb (100 g/mouse), which causes 

selective and partial (~75%) depletion of Foxp3+ cells (A). Control mice received isotype-

matched control mAb (100 g/mouse). After 24 hr, mice were challenged with a sublethal dose 

(1 mg/Kg) of LPS and the animals were monitored for clinical signs (B) and survival (C). Some 

mice were sacrificed after 6 hr, and the levels of IL-6 (D), TNF (E), CCL2 (F) and TGF- (G) in 

serum were determined by ELISA (D-G). The data presented are representative of 4 independent 

experiments (n = 4-6 mice per group; n = 12 in Fig. 2C) with similar results. Bars show mean or 

median +/- standard error; **, p < 0.01; ***, p < 0.001. 
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3.2.3 Mice with genetically impaired Treg function also show enhanced susceptibility to LPS 

challenge 

Previous reports show that CD25 KO mice have impaired Treg activity due in part, to the 

absence of CD4
+
CD25

+
Foxp3

+
 cells (282). Therefore, I speculated that if Tregs are protective in 

LPS induced acute inflammatory responses, CD25 KO mice (which lack Tregs) would be more 

sensitive to LPS than their WT counterpart mice. Thus, I injected CD25 KO mice with sub-lethal 

dose of LPS (1 mg/Kg) and compared the disease severity and survival with similarly treated 

WT mice. Similar to my observation with anti-CD25mAb, CD25 KO mice showed enhanced 

sensitivity to LPS and failed to recover from a sub-lethal dose of LPS (Fig. 3.3A, B). This 

enhanced sensitivity was accompanied with massive production of proinflammatory cytokines 

(Fig. 3.3C, D). Taken together, my data shows that genetic or immunological inhibition of Treg 

function is detrimental to survival in LPS induced inflammatory responses.  
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Fig. 3.3 Mice with genetically impaired Treg function are hypersensitive to LPS challenge. 

Groups of CD25 KO and WT mice were injected with sublethal dose of LPS (1 mg/Kg) and 

monitored for clinical signs of sepsis (A) and survival (B). In a separate experiment, some mice 

treated as above were sacrificed after 6 hr of LPS challenge and serum levels of proinflammatory 

cytokines (IL-6, C and CCL2, D) were determined by sandwich ELISA. The results presented 

are representative of 2 independent experiments (n = 4-5 mice per group) with similar results. 

Bars show mean or median +/- standard error; **, p < 0.01. 

 

 

To further confirm the protective role of Tregs in LPS-induced acute inflammatory responses, I 

reconstituted CD25 KO mice with Tregs by adoptively transferring highly enriched WT 

CD4
+
CD25

+
 (> 94% Foxp3

+
) Tregs (Fig. 3.4A) into CD25 KO mice 24 hr prior to the 

administration of sub-lethal dose of LPS. As shown in Fig. 3.4B and 3.4C, adoptive transfer of 

Tregs into CD25 KO mice resulted in decreased clinical signs as indicated by significantly 

reduced clinical scores and abrogation of LPS induced mortality (100% survival). My results 

suggest a potential therapeutic role for Tregs in LPS-induced acute inflammatory responses. 
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Fig. 3.4 Adoptive transfer of WT Tregs abrogates LPS-induced sepsis mortality in CD25 

KO mice. CD4
+
CD25

+
 cells were purified from spleens of WT mice by cell sorting (> 95% 

purity) and injected intravenously into CD25 KO mice. (A) the purity of the sorted cells 

(CD4
+
CD25

+
 cells) and percent composition of Foxp3

+
 cells (CD4

+
CD25

+
Foxp3

+
 cells). 

Twenty-four hours after cell transfer, recipient mice where challenged with sublethal dose of 

LPS (1 mg/Kg) and monitored for clinical signs (B) and survival (C).  The results presented are 

representative of 2 independent experiments (n = 4-5 mice per group) with similar results. Bars 

show mean or median +/- standard error; **, p < 0.01. 
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3.2.4 Depletion of CD4
+
CD25

-
 T cells does not lead to enhanced sensitivity to LPS 

To confirm that the enhanced susceptibility to LPS following anti-CD25 mAb treatment is 

strictly related to reduced number of CD4
+
CD25

+
 Tregs, I injected mice with anti-CD4 mAb (to 

deplete CD4
+
 T cells) and after 24 hr challenged the mice with LPS (1 mg/Kg). Surprisingly, I 

found that depletion of CD4
+
 T cells did not mirror the effect observed with depletion of Tregs, 

such that mice depleted of CD4
+
 T cells neither succumbed to a non-lethal dose of LPS (Fig. 

3.5A) nor showed increased serum levels of pro-inflammatory cytokines (Fig. 3.5B-D). In 

contrast, mice depleted of only Tregs developed severe signs of endotoxic shock, succumbed 

within 6 hr and contained high levels of pro-inflammatory cytokines in their serum (Fig. 3.5A-

D). Taken together, these results suggest that the enhanced susceptibility of mice to LPS is 

specific to the depletion of Tregs.  
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Fig. 3.5 Depletion of CD4
+
 T cells does not lead to enhanced susceptibility to LPS. Mice (n = 

5) were injected intraperitoneally with anti-CD25 (100 g/mouse) or anti-CD4 (1mg/mouse) 

mAb, challenged with sublethal dose of LPS (1 mg/Kg) after 24 hr and survival was monitored 

for over 12 hr (A). In a separate experiment, some mice treated as above were sacrificed after 6 

hr of LPS challenge and serum levels of TNF (B), IL-1 (C) and CCL2 (D) were determined by 

sandwich ELISA. The results presented are representative of 3 independent experiments (n = 4-5 

mice per group) with similar results. Bars show mean +/-SEM; **, p < 0.01; ***, p < 0.001. 
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3.2.5 Depletion of Tregs does not lead to enhanced sensitivity to non-bacterial inflammation 

So far, my results have shown that depletion of Tregs leads to hypersensitivity and mortality to 

LPS challenge. To determine whether the enhanced sensitivity to LPS challenge is specific or a 

non-specific phenomenon associated with all acute inflammatory responses, I tested the 

expansion of Tregs and the outcome of Treg depletion in Con A-induced model of acute 

inflammation. I therefore injected mice anti-CD25 or control mAb and after 24hr challenged 

with Con A. Depletion of Tregs did not lead to hypersensitivity to Con A and resulted in 100% 

survival (Fig. 3.6). This was in stark contrast to the result obtained upon LPS challenge where all 

mice treated with anti-CD25 mAb died (Figs. 3.2C and 3.6). Collectively, these results indicate 

that the effects of Tregs are specific to LPS, suggesting that these cells may also play a protective 

role during acute bacterial infection. 

 

Fig. 3.6 Depletion of Tregs does not lead to mortality in Con A-induced acute inflammation. 

Groups of mice were injected with anti-CD25 or isotype-matched control mAb and after 24hr, 

were challenged with either LPS or Con A and the percent survival was plotted. The data is 

representative of 2 independent experiments (n = 4-5 mice per group) with similar results; ***, p 

< 0.001. 
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3.2.6 Depletion of Tregs leads to susceptibility to live bacterial infection 

Since depletion of Tregs leads to hypersensitivity and mortality to bacterial component LPS, it is 

possible that the same effect will be observed in a more physiologic model of sepsis initiated by 

Gram-negative bacteria infection. To investigate this, I injected mice with anti-CD25 mAb and 

24 hrs later challenged them with a non-lethal dose of E. coli (10
8
 cfu). Consistent with the 

findings using LPS, depletion of Tregs led to hypersensitivity to bacterial infection resulting in 

mortality in an otherwise non-lethal dose of E. coli (Fig. 3.7A). In addition, this sensitivity was 

accompanied by elevated levels of pro-inflammatory cytokines in the serum and peritoneal 

lavage fluids (Fig. 3.7B, C) and significantly higher bacterial burden in the liver (Fig. 3.7D). 

These results show that depletion of Tregs significantly impairs efficient bacterial clearance 

resulting in death to a non-lethal E. coli infection. They further suggest that as in LPS challenge 

model, Tregs are critically important for controlling bacteria-induced excessive inflammatory 

responses. 
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Fig. 3.7 Depletion of Tregs leads to enhanced susceptibility to bacterial infection. Groups of 

mice were injected intraperitoneally with anti-CD25 or isotype-matched control mAb. After 

24hrs, mice were challenged with E. coli (10
8
 cfu) and monitored for survival (A). In a separate 

experiment, mice were sacrificed at 48 hr post E. coli challenge and serum levels of IL-6 (B) and 

CCL2 (C) were determined by sandwich ELISA. At sacrifice, the liver was homogenized in PBS 

and bacterial burden in liver homogenate was also determined (D). The results presented are 

representative of 3 independent experiments (n = 4-6 mice per group) with similar results. Bars 

show mean +/-SEM; **, p < 0.01; ***, p < 0.001. 
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4.0 CHAPTER FOUR 

TREGS RESTRAIN CD4
+
 T CELLS FROM CAUSING EXAGGERATED IMMUNE 

ACTIVATION AND HYPERSENSITIVITY TO LPS 

4.1 RATIONALE: 

In the previous chapter, I investigated the role of Tregs during sepsis. The results were quite 

stimulating. In line with my hypothesis, I found that depletion of Tregs led to acute death to a 

non-lethal dose of LPS or live bacterial infection. This work is one of the first to describe the 

protective role of Tregs in live bacterial infection and thus provides even stronger evidence 

concerning the protective role of Tregs in survival of sepsis.  

These findings are important and have potential for use in sepsis therapy. However, questions 

still abound concerning the role of Tregs during sepsis. The work from the previous chapter 

makes it imperative to determine the mechanism by which Treg depletion mediates sensitivity 

and lethality to LPS and live bacterial challenge.  

In general, lymphocytes are an important component of the immune system and are generally 

important for the elimination of microbial pathogens and host defense. However, there are 

instances where immune cells have been implicated in the pathology of diseases thereby 

resulting in autoimmunity (283).  

It is generally accepted that sepsis is due to an initial exacerbated inflammatory immune 

response as a result of infection (284). Also, Tregs are known to be suppressive and have been 

shown to prevent exaggerated effector T cell response in several disease models. For example, 

aberrant Treg function has been linked to pathologic effector T cell activation, which is a 

hallmark of several autoimmune diseases including type 1 diabetes (271), multiple sclerosis 

(272) and inflammatory bowel disease (273). It is possible that in the context of sepsis, Tregs 
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help to prevent excessive effector T cell activation. It is also conceivable that in the context of 

sepsis, Tregs help to prevent the excessive activation of another lymphocyte subset. Hence, it is 

relevant to identify which lymphocyte subset(s) Tregs help to regulate during sepsis and the 

particular lymphocyte subset(s) which in the absence of Tregs, contributes to sepsis mortality. 

This forms the basis for the work in this chapter. Here, I used different murine lymphocyte gene 

knock-out models to investigate the effect of Treg depletion on different lymphocyte subset(s). I 

found that depletion of Tregs leads to mortality to an otherwise non-lethal dose LPS challenge in 

wild type (WT), B cell deficient (Igh KO), NKT deficient (CD1d
 
KO) but not in SCID or RAG1 

KO mice, thereby implicating T cells as the major lymphocyte population responsible for 

aggravated immune response to endotoxin upon Treg depletion. In line with this observation, 

reconstitution of SCID mice with CD4
+
 T cells restores enhanced LPS sensitivity and death as 

seen in WT mice upon Treg depletion. Additionally, depletion of Tregs leads to increased 

proliferation and activation of CD4
+
T cells in response to LPS challenge. Remarkably, LPS-

primed T cells induced high levels of proinflammatory cytokine production in macrophages. 

Furthermore, I show that a subset of CD4
+
 T cells express toll-like receptor 4 (TLR4), the pattern 

recognition receptor for LPS and that signaling via TLR4 on CD4
+
 T cells is critically important 

for their activation of macrophages and the subsequent enhancement of proinflammatory 

response following LPS challenge. Collectively, my results show that Treg depletion leads to 

unrestrained CD4
+
 T cell activation leading to aggravated activation of other immune cells that 

contribute to host injury and poor outcome in LPS-induced acute inflammation. 
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4.2 RESULTS 

4.2.1 Mice lacking conventional T cells do not show enhanced sensitivity to LPS after injection 

of anti-CD25 

I used B cell deficient (Igh KO), NKT cell deficient (CD1d KO), SCID and RAG1 KO mice to 

assess the contribution of different lymphocyte subsets in enhanced sensitivity to LPS in the 

absence of Tregs. Interestingly, similar to WT mice, NKT and B cell deficient mice showed 

enhanced susceptibility to LPS upon Treg depletion and succumbed to a non-lethal dose of LPS 

(Fig. 4.1A and B). This was accompanied with increased levels of proinflammatory cytokines in 

the serum (Fig 4.1C and D). Since mice lacking B cells and NKT cells were also sensitive to LPS 

after Treg depletion, I concluded that B or NKT cells are not responsible for the enhanced 

sensitivity of WT mice to LPS after Treg depletion. 
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Fig. 4.1 Mice lacking B cells or NKT cells also show enhanced susceptibility to LPS upon 

Treg depletion. Wild-type (WT), CD1d KO and Igh KO mice were injected intraperitoneally 

with anti-CD25 mAb or isotype-matched control mAb (100 g/mouse). After 24 hr, mice were 

challenged with a sublethal dose (1 mg/Kg) of LPS and the survival of CD1d KO (A) and Igh 

KO (B) mice was determined. Some LPS-challenged mice were sacrificed after 4 hr and the 

levels of CCL2 (C) and IL-6 (D) in serum were determined by ELISA. The data presented are 

representative of 2 independent experiments (n = 5 mice per group) with similar results. **, p < 

0.01; ***, p < 0.001. 

 

Next, I assessed the impact of injecting anti-CD25 mAb into SCID and RAG1 deficient mice that 

lack functional adaptive immune (B and T) cells. Surprisingly, SCID mice injected with anti-

CD25 mAb and challenged with LPS did not show enhanced sensitivity as shown by decreased 

clinical score (Fig. 4.2A), enhanced survival (Fig 4.2B) and reduced levels of proinflammatory 

cytokines in peritoneal wash fluids (Fig. 4.2C and 4.2D).  
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Fig. 4.2 SCID mice do not show enhanced susceptibility to LPS upon treatment with anti-

CD25 mAb. Groups of SCID and WT mice were injected intraperitoneally with anti-CD25 mAb 

or isotype-matched control mAb (100 g/mouse). After 24 hr, mice were challenged with a 

sublethal dose (1 mg/Kg) of LPS and monitored for clinical signs (A) and survival (B). Some 

mice were sacrificed after 4 hr and serum levels of CCL2 (C) and IL-6 (D) were determined by 

ELISA. The data presented are representative of 3 independent experiments (n = 4-6 mice per 

group) with similar results. *, p < 0.05; ***, p < 0.001 

 

 

Because SCID mice are leaky and had been shown to possess few extraperitoneal derived T cells 

(285), I further verified the results using RAG1 deficient mice. Similar to SCID mice, RAG1 KO 

mice given anti-CD25 mAb were resistant to LPS challenge unlike anti-CD25 mAb-treated WT 

mice that developed severe disease and succumbed (Fig. 4.3A-D). Collectively, these results 

suggest that T cells are the lymphocyte population that mediates the enhanced susceptibility to 

LPS challenge following Treg depletion. They further show that the enhanced susceptibility to 

LPS following anti-CD25 mAb injection is not due to non-specific effects of the antibody on the 

innate immune cells. 
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Fig. 4.3 RAG mice do not show enhanced susceptibility to LPS upon treatment with anti-

CD25 mAb. Groups of RAG1 KO and WT mice were injected intraperitoneally with anti-CD25 

mAb or isotype-matched control mAb (100 g/mouse). After 24 hr, mice were challenged with 

sublethal dose (1 mg/Kg) of LPS and the animals were monitored for clinical signs (A) and 

survival (B). Some mice were sacrificed after 4 hr and serum levels of CCL2 (C) and IL-6 (D) 

were determined by ELISA. The data presented are representative of 2 independent experiments 

(n = 4 mice per group) with similar results. **, p < 0.01; ***, p < 0.001. 

 

 

 

To confirm the role of T cells in the enhanced sensitivity of WT mice to LPS following depletion 

of Tregs, I reconstituted SCID mice with highly purified CD4
+
 T cells from WT mice. Following 

repopulation of T cells after 2 weeks (Fig. 4.4A), the animals were treated with anti-CD25 mAb 

and challenged with LPS 24hr later. In contrast to control mice (SCID mice that did not receive 

T cells), those reconstituted with WT CD4
+
 T cells showed enhanced sensitivity and succumbed 

to a non-lethal LPS challenge (Fig. 4.4B and C). This enhanced sensitivity to LPS was 
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accompanied by exaggerated levels of proinflammatory cytokines in the serum (Fig. 4.4D and 

E). Thus, akin to observations in WT mice, depletion of Tregs in SCID mice reconstituted with 

CD4
+
 T cells led to mortality to an otherwise non-lethal LPS challenge, a phenotype that is not 

observed in non-reconstituted SCID mice.  These results suggest that Tregs ameliorate LPS-

induced acute inflammation and mortality at least in part by restraining pathogenic CD4
+
 T cells. 
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Fig. 4.4 Reconstitution of SCID mice with CD4
+
 T cells restores sensitivity to LPS upon 

anti-CD25 mAb treatment. CD4
+
 T cells were isolated from spleens of WT mice by negative 

selection using magnetic beads and injected intravenously into SCID mice. Expansion of CD4
+
 T 

cells in recipient SCID mice was confirmed by flow cytometry on blood sample from tail blood 

(A). Recipient and control (non-reconstituted) mice were injected with anti-CD25 or isotype-

matched control mAb and challenged with sublethal dose of LPS (1 mg/Kg) 24 hr later. LPS-

challenged mice were monitored for clinical signs (B) and survival (C). Some animals were 

sacrificed after 4 hr and serum levels of IL-6 (D) and CCL2 (E) was determined by ELISA. The 

results presented are representative of 2 independent experiments (n = 4-6 mice per group) with 

similar results. *, p < 0.05; ***, p < 0.001. 
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To further authenticate the pathogenic effects of CD4
+
 T cells in the absence of Tregs, I 

reconstituted SCID mice with CD4
+
 T cells from WT or CD25 KO mice, which have defective 

Treg function (282), and challenged the animals with sub-lethal dose of LPS. SCID mice that 

received CD4
+
 T cells from WT mice were normal and only exhibited sensitivity to LPS 

following depletion of Tregs by treatment with anti-CD25 mAb (Fig. 4.5A and B). In contrast, 

SCID mice reconstituted with CD25 KO CD4
+
 T cells were highly sensitive to a non-lethal LPS 

challenge as shown by high clinical scores and acute death even in the absence of anti-CD25 

mAb treatment (Fig. 4.5A and B). Taken together, these data show that lack of Treg function has 

deleterious effect on LPS challenge strictly in the presence of CD4
+
 T cells, suggesting that 

Tregs may function to ameliorate LPS-induced inflammatory response and death via restraining 

CD4
+
 T cell activation and/or function. 

 

 

Fig. 4.5 Reconstitution of SCID mice with CD4
+
 T cells from CD25 KO mice also leads to 

sensitivity to LPS. CD4+ T cells were isolated from spleens of CD25 KO or WT mice by 

negative selection using magnetic beads. Enriched cells were injected intravenously into SCID 

mice and allowed to expand. After full reconstitution, mice were challenged with LPS with or 

without prior treatment with anti-CD25 mAb and the animals were monitored for clinical signs 

(A) and survival (B). The results presented are representative of 2 independent experiments (n = 

4-5 mice per group) with similar results. *, p < 0.05. 
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    4.2.2 Depletion of Tregs increases CD4
+
 T cell activation and proliferation in response to 

LPS 

The observation that depletion of Tregs leads to CD4
+
 T cell-mediated sensitivity to LPS 

suggests that CD4
+
 T cells may be directly or indirectly activated by LPS. Therefore, I 

hypothesized that depletion of Tregs leads to increased activation and proliferation of CD4
+
 T 

cells in the presence of LPS. To investigate this experimentally, I depleted mice of Tregs (by 

anti-CD25 mAb treatment), challenged them with LPS after 24 hr and sacrificed them after 4 hr 

to assess CD4
+
 T cell cytokine production directly ex vivo. As shown in Fig. 4.6A-F, splenocytes 

from Treg-depleted mice (given anti-CD25 mAb) contain significantly higher percentages of 

TNF- and IFN-producing CD4
+
 T cells compared to isotype-matched treated controls. In 

addition, the mean fluorescence intensity (MFI) of these cells were significantly higher than 

those from isotype-matched control mAb-treated mice (Fig. 4.6C and F). 

 

Fig.4.6 Depletion of Tregs increases CD4
+
 T cell cytokine production in response to LPS. 

Groups of mice were treated with anti-CD25 or isotype-matched control mAb and 24 hr later 

challenged with LPS (1 mg/Kg). Animals were sacrificed after 4 hr and whole splenocytes were 

assessed for cytokine production directly ex vivo following 4 hr in vitro stimulation with PMA 

and ionomycin stimulation.  Shown are the percentages (A, B, D and E and mean fluorescence 

intensities (C and F) of IFN- (A-C) and TNF (E-F) -producing CD4
+
 T cells. The results 

presented are representative of 3 independent experiments (n = 4 mice per group) with similar 

results. **, p < 0.01; ***, p < 0.001 
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4.2.3 CD4
+
 T cells are directly activated by macrophages and in the absence of Tregs lead to 

exaggerated macrophage activation 

Following the observation that CD4
+
 T cells from LPS-treated mice produce TNF and IFN-, I 

speculated that LPS may directly activate CD4
+
 T cells. Therefore, I assessed CD4

+
 T cells for 

their expression of TLR4, the innate pattern recognition receptor for LPS. Consistent with 

previous reports (286-287), I found that a sub-population of CD4
+
 T cells expressed TLR4 and 

this number was upregulated following in vitro stimulation with LPS (Fig. 4.7A and 4.7B). Next, 

I assessed whether depletion of Tregs affects CD4
+
 T cell proliferation in response to LPS 

following Treg depletion. Splenocytes were labeled with CFSE dye, cultured for 3 days in the 

presence of LPS and assessed for proliferation by flow cytometry. I found that CD4
+
 T cells 

from splenocytes of mice depleted of Tregs showed greater proliferation compared to those from 

isotype control-treated mice (Fig. 4.7C and 4.7D). In addition and consistent with the direct ex 

vivo results, mice depleted of Tregs had greater percentage of IFN--producing CD4
+
 T cells 

relative to the isotype treated controls (Fig. 4.7E and F). Thus, depletion of Tregs leads to greater 

proliferation and cytokine production of CD4
+
 T cells in response to LPS. Because I found that 

in the absence of Tregs, LPS induces CD4
+
 T cell activation and increased production of IFN-, a 

cytokine known to potently activate macrophages (288), I hypothesized that LPS-activated CD4
+
 

T cells activate macrophages leading to proinflammatory cytokines production. I co-cultured 

LPS-primed or unprimed T cells with bone marrow-derived macrophages (BMDM) and after 72 

hr, assessed the production of IL-6 and CCL2 by ELISA. As shown in Fig. 4.7G and H, LPS-

treated T cells induced macrophages to produce increased amounts of IL-6 and CCL2. Taken 

together, these results suggest that the enhanced susceptibility to LPS following Treg depletion is 

due to hyper-activation of macrophages by overly active CD4
+
 T cells. This is in line with 
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previous reports, which showed that Tregs prevent over-activation of CD4
+
 T cells thereby 

preventing excessive immune activation and inflammatory responses.   

 

Fig. 4.7 CD4
+
 T cells express TLR4 and proliferate in response to LPS following Treg 

depletion. Splenocytes from naïve mice were incubated for 6 hr with or without LPS analyzed 

for TLR4 expression (on CD4
+
 T cells) by flow cytometry (A and B). In another experiment, 

groups of mice were treated with anti-CD25 or isotype-matched control mAb. After 24 hr, the 

mice were sacrificed and their splenocytes were labeled with CFSE and stimulated with LPS (1 

g/ml) in vitro for three days and CD4
+
 T cell proliferation (C and D) and total CD4

+
IFN-

+
 cells 

(E and F) were analyzed by flow cytometry. In addition, some LPS-stimulated T cells were co-

cultured with BMDMs for 72 hr and the culture supernatant fluids were assayed for IL-6 (G) and 

CCL2 (H) by ELISA. The results presented are representative of 2 independent experiments (n = 

4 mice per group) with similar results. *, p < 0.05; ***, p < 0.001 
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4.2.4 TLR4 signaling is important for CD4+ T cell-mediated enhancement of LPS-induced  

inflammatory response 

So far, my results have shown that a sub-population of CD4
+
 T cells express TLR4 (the pattern 

recognition receptor for LPS) and LPS-primed CD4
+
 T cells induced proinflammatory cytokine 

production by macrophages, I therefore investigated whether TLR4 signaling in CD4
+
 T cells is 

necessary for the increased LPS responsiveness following Treg depletion. I co-cultured LPS-

primed T cells from TLR4 KO and WT mice with BMDMs from WT mice and assessed 

cytokine production by ELISA. I found that LPS-primed CD4
+
 T cells from TLR4 KO, unlike 

those from WT mice, were significantly impaired in their ability to induce IL-6 production by 

BMDMs (Fig. 4.8A). Additionally, reconstitution of SCID mice with CD4
+
 T cells from TLR4 

KO mice led to reduced clinical signs and better survival in response to LPS challenge following 

Treg depletion compared to reconstitution with CD4
+
 T cells from WT mice (Fig. 4.8B, C). The 

improved clinical score and survival of SCID mice that received CD4
+
 T cells from TLR4 KO 

mice was also accompanied by decreased levels of IL-6 in the peritoneal wash fluids (Fig. 4.8D). 

Collectively, these results indicate that signaling via TLR4 on CD4
+
 T cells is important for their 

activation and subsequent activation of macrophages for increased proinflammatory cytokine 

response following LPS stimulation.        
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Fig. 4.8 CD4
+
 T cell-mediated enhancement of LPS response is TLR4 dependent. CD4

+
 T 

cells were isolated from TLR4 KO or WT mice, stimulated with LPS in vitro and co-cultured 

with WT BMDMs for 72 hr and the culture supernatant fluids were assayed for IL-6 by ELISA 

(A). In another experiment, highly purified CD4
+
 T cells from WT or TLR4 KO mice were 

adoptively transferred to SCID mice. Following full CD4
+
 T cell reconstitution, the recipients 

were treated with anti-CD25 or isotype-matched control mAb and then challenged with LPS (1 

mg/kg) after 24 hr. Animals were monitored for clinical signs (B) and survival (C) and the levels 

of IL-6 in the peritoneal wash fluid was determined by ELISA (D). The results presented are 

representative of 2 independent experiments (n = 6 mice per group) with similar results. *, p < 

0.05; **, p < 0.01; ***, p < 0.001 
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5.0 CHAPTER FIVE 

ABSENCE OF P110 DELTA SIGNALING LEADS TO DECREASED TREG NUMBERS 

AND INCREASED NEUTROPHIL RECRUITMENT AND FUNCTION RESULTING IN 

MORTALITY TO NON-LETHAL LPS CHALLENGE 

5.1 RATIONALE 

The work on the previous chapters led to two important conclusions. The first is that Tregs play a 

protective role and promote survival in LPS-induced inflammation and live bacterial infection. 

The second is the unraveling of the mechanism by which Tregs confer protection during LPS-

induced inflammation. A process that involves restricting aggressive immune response of CD4
+
 

T cells to LPS as described in chapter four.  In this chapter, I continue to investigate the role of 

Tregs in sepsis using another murine model of LPS-induced inflammation.  

The activity of PI3Ks leads to the activation of signaling pathways associated with numerous cell 

functions such as growth, differentiation, proliferation, motility, metabolism, trafficking and 

survival (241-243) all of which are crucial during sepsis. Hence, it is pertinent to investigate the 

role of PI3K signaling during sepsis. In particular, the p110 isoform of PI3K has been shown to 

be relevant in immune response as it is primarily expressed on leukocytes compared to other 

isoforms, which are ubiquitiously expressed (289). Also, there is cross-talk between p110and 

Tregs since mice with mutation on the p110 gene leading to non-functional p110 delta protein 

(p110
D910A

 mice; hereafter known as p110 mice) have decreased Treg numbers and function 

(252). Hence, the p110 mice constitute a perfect system to investigate the role of diminished 

Tregs numbers in sepsis. In this chapter, I show that p110 mice, which have diminished Treg 

numbers, are highly susceptible to LPS compared to their WT counterpart. I found that following 

intra-peritoneal LPS challenge, as expected, neutrophils are recruited to animal peritoneum. 

However, overtime, peritoneal neutrophil accumulation in p110 mice is significantly greater than 
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that of WT mice. I speculated that neutrophils from p110 mice survived longer than those of WT 

mice. Indeed, I found this to be the case. Additionally, neutrophils from p110 mice have greater 

activity following LPS challenge compared to WT mice. Depletion of neutrophils in p110 after 

but not before LPS challenge, rescued the animals from LPS mortality. Since p110 mice have 

characteristically diminished Treg numbers, I investigated the role of diminished Treg numbers 

in exaggerated activity and survival of neutrophils from p110 mice following LPS challenge. 

Interestingly, Tregs abrogated exaggerated neutrophil activity and increased apoptosis of 

neutrophils from p110 mice. Moreover, adoptive transfer of Tregs to p110 mice rescued p110 

mice from LPS-induced mortality.  I authenticated my findings by showing that human Tregs 

also regulate neutrophil function and survival. Collectively, these results indicate that Tregs 

regulate neutrophil activity and survival and in the absence of adequate Treg function, 

neutrophils exhibit exaggerated activity and increased survival in response to LPS challenge. 

Importantly, this work adds to the growing evidence that Tregs exert their regulatory activities 

on cells of the innate immune system and highlights a critical link in regulation of the immune 

response between innate immunity and adaptive immunity. 

5.2 RESULTS 

5.2.1 Mice lacking p110 delta signaling have decreased Treg numbers and are more 

susceptible to LPS 

Mice with mutation in the p110 gene leading to non-functional p110 delta protein (p110
D910A

 

mice; p110 mice) have been shown to have fewer Tregs compared to their WT counterpart (252). 

Indeed I found this to be the case (Fig. 5.1A). Absence of p110 signaling results in almost 

halving of Treg numbers (Fig. 5.1A). To investigate the effect of diminished Treg numbers on 

the response of p110 mice to LPS, I injected p110 and WT mice with LPS and monitored the 
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animals for clinical signs and survival. In contrast to WT mice, p110 mice had higher clinical 

score (Fig. 5.1B) and were unable to recover from the LPS challenge showing 100% mortality 

unlike WT mice which had 75% survival (Fig. 5.1C). To verify the role of the diminished Treg 

numbers in the mortality of p110 mice, Tregs were isolated from WT mice and intravenously 

transferred into p110 mice. Next day, recipient mice were challenged with LPS and monitored 

for clinical signs and survival. Interestingly, adoptive transfer of WT Tregs to p110 mice resulted 

in lower clinical scores (Fig. 5.1D) and rescued p110 mice from LPS mortality (Fig. 5.1E). These 

data suggest that the susceptibility of p110 mice to LPS is associated with decreased Treg 

numbers and is in line with the results of the previous chapters that diminished Treg numbers 

leads to susceptibility to LPS-induced inflammation.  
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Fig. 5.1 Mice lacking p110delta signaling are highly sensitive to LPS challenge. 

Quantification of splenic Tregs numbers in p110 (left panel) and WT(right panel) mice (A). 

Groups of p110 and WT mice were injected intraperitoneally with LPS (10 mg/Kg) and 

monitored for clinical signs (B) and survival (C). In a separate experiment, one group of p110 

mice intravenously received highly purified Treg cells (CD4
+
CD25

+
) T cells from WT mice 12 

hr before LPS challenge and clinical score (D) and survival (E) were also determined. The data 

presented are representative of at least 3 independent experiments (n = 4 mice per group) with 

similar results. *, p < 0.05; **, p < 0.01. 

 

5.2.2 Acute death of p110 mice following LPS challenge is associated with lung pathology and 

increased cytokine production: 

A hallmark of endotoxic shock and acute inflammation is the production of proinflammatory 

cytokines and exaggerated production of proinflammatory cytokines is associated with poor 

outcome during sepsis (290). I therefore, assessed the level of proinflammatory cytokines in 

p110 mice. There was no difference in proinflammatory cytokine production in the serum (Fig. 
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5.2A-D) or peritoneal wash (Fig. 5.2E, F) of p110 and WT mice. This observation made me to 

do organ-specific analysis of p110 and WT mice following LPS injection .  

 

Fig. 5.2 Comparison of proinflammatory cytokines in p110 and WT mice after LPS 

challenge. Groups of p110 and WT mice were injected intraperitoneally with LPS (10 mg/Kg). 

After 15 hr, animals were sacrificed and the levels of proinflammatory cytokines in serum (A-D) 

and peritoneal wash (E, F) were determined using mesoscale discovery. The data presented are 

representative of at least 2 independent experiments (n = 4 mice per group) with similar results.  

 

 

Given that organ dysfunction is a major problem in endotoxic shock and acute lung injury is a 

common occurrence in septic shock (291), I did histology on the lungs of p110 and WT mice 

following LPS injection. Samples from p110 mice showed greater signs of lung injury as 

evidenced by greater leukocyte infiltration of the airways (Fig. 5.3A). Additionally, analysis of 

lung pro-inflammatory cytokines revealed that p110 mice had significantly higher levels of the 
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cytokines IL-1 and IL-10 in the lungs (Fig. 5.3D, E). These results indicate the occurrence of 

acute lung injury in p110 mice.   

 

Fig. 5.3 Evidence of acute lung injury in p110 mice after LPS challenge. Groups of p110 and 

WT mice were injected intraperitoneally with LPS (10 mg/Kg). After 15 hr, lung sections were 

processed and stained with H&E (A). In a separate experiment, the lungs were homogenized in 

in 1 ml of saline and the levels of KC (B), IL-12p70 (C), IL-1b (D) and IL-10 (E) in the lung 

homogenate fluids were determined. The data presented are representative of a least 2 

independent experiments (n = 4 mice per group) with similar results. ***, p < 0.001. 

 

 

5.2.3 Mice lacking p110 delta exhibit increased neutrophil influx upon LPS challenge 

Previous studies have shown that during sepsis, neutrophils are the major producers of IL-1 

(292) and IL-10 (112). Based on the observations in Fig. 5.3D and 5.3E, I speculated that 

injection of LPS may cause increased neutrophil infiltration and activity in p110 mice. Indeed, I 

found this to be the case. I found greater accumulation of neutrophils in peritoneum of p110 mice 

compared to WT mice following LPS challenge (Fig. 5.4A, B). Since the p110 mice begin to die 
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at 15 hr post LPS injection, I examined neutrophil numbers at 3hr and 15 hr post LPS injection. 

Interestingly, there was no difference in neutrophil numbers between p110 and WT mice 3 hr 

after LPS injection (Fig 5.4C, D). However, at the time of death, there was significant difference 

in neutrophil numbers between p110 and WT mice with p110 mice having up to three times 

more neutrophil numbers (Fig. 5.4C, E). Hence, neutrophils accumulate in peritoneum of p110 

mice following LPS challenge compared to their WT counterpart.  
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Fig. 5.4 Increased neutrophil accumulation in peritoneum of p110 mice after LPS 

challenge. Groups of p110 and WT mice were injected intraperitoneally with LPS (10 mg/Kg). 

After 15 hr, animals were sacrificed and cytospin preparations of peritoneal wash were stained 

with H&E and assessed under a light microscope (A). Bar graph represents the number of 

neutrophils within 300 cells  (B). In addition, the numbers of neutrophils in the peritoneal wash 

were further analyzed by flow cytometry by assessing the percentage of CD11b
+
Gr

+
 cells at 3hr 

and (upper) and 15 hr (lower) panels (C-E). The data presented are representative of at least 3 

independent experiments (n = 4 mice per group) with similar results. ***, p < 0.001. 
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5.2.4 Increased neutrophil recruitment correlates with enhanced neutrophil activity and 

survival and contributes to sepsis mortality 

So far, I have shown that p110 mice are more susceptible to LPS challenge and that the enhanced 

susceptibility of p110 mice to LPS is accompanied by greater accumulation of neutrophils in 

their peritoneum compared to their WT counterpart. Since there was no difference in neutrophil 

numbers between p110 and WT mice 3 hrs after LPS challenge but there was difference at the 

time of death, I speculated that neutrophils from p110 mice do not undergo apoptosis as fast as 

neutrophils from WT mice. I therefore compared the level of apoptosis in peritoneal neutrophils 

from WT and p110 mice injected with LPS by flow cytometry through annexin V staining. In 

line with my hypothesis, neutrophils from WT mice showed greater apoptosis compared to 

neutrophils from p110 mice (Fig. 5.5A). Next, I wondered whether the delayed apoptosis of 

neutrophils correlated with increased neutrophil activity by staining for the peroxidase enzyme 

myeloperoxidase (MPO). I found that there was greater expression of MPO in neutrophils from 

p110 mice compared to neutrophils (Fig. 5.5B). These data suggest that the mortality of p110 

mice may be due to enhanced neutrophil activity and survival following LPS injection. 
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Fig. 5.5 Impaired apoptosis and increased MPO activity in neutrophils from p110 mice 

following LPS challenge. Groups of p110 and WT mice were injected intraperitoneally with 

LPS (10 mg/Kg). After 15 hr, the mice were sacrificed and the degree of apoptosis in peritoneal 

neutrophils was analyzed by flow cytometry by assessing the percentage of Annexin V positive 

cells (A) – gated on CD11b
+
Gr1

+
 cells. In addition, the peritoneal cells were also stained for 

MPO intracellularly and the percentage of Gr1
+
MPO

+
 cells (neutrophils) was analyzed by flow 

cytometry (B). The data presented are representative of at least 2 independent experiments (n = 4 

mice per group) with similar results. **, p < 0.01; ***, p < 0.001. 
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5.2.5 Neutrophils from p110mice have prolonged survival in response to LPS challenge 

So far, my results show that neutrophils from p110 mice have delayed apoptosis and increased 

activity in response to LPS. Next, I used in vitro technique to compare the response of 

neutrophils from p110 and WT mice to LPS in a more carefully controlled setting. I enriched 

neutrophils from bone marrow of p110 and WT mice by a method that was previously described 

(261), cultured overnight them in presence of LPS and assessed apoptosis by flow cytometry. 

Consistent with direct ex vivo results (Fig. 5.5A), BMDN from p110 mice were less apoptotic 

(lower percentage of annexin V
+
 cells) compared those from WT mice (Fig. 5.6A). Interestingly, 

this difference in cell death between BMDN from p110 and WT mice was evident only in the 

presence of LPS. The decreased apoptosis in p110 neutrophils correlated with increased Mcl-1 

expression, an anti-apoptotic protein that belongs to the Bcl-2 family (Fig. 5.6B). Taken together, 

these data show that neutrophils from p110 mice have greater activity and delayed apoptosis in 

response to LPS and suggest that exaggerated neutrophil activity and increased survival may 

contribute to mortality of p110 mice following LPS challenge.  
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Fig. 5.6 Reduced apoptosis in neutrophils from p110 mice following in vitro stimulation 

with LPS. Bone marrow-derived neutrophils from p110 and WT mice were cultured in the 

absence (top panel) or presence (bottom panel) of LPS overnight and apoptosis (A) and survival 

(B) was analyzed by flow cytometry.  The data presented are representative of at least 2 

independent experiments with similar results. **, p < 0.01. 
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  5.2.6 Depletion of neutrophils rescues p110mice from LPS mortality 

Neutrophils are one of the first responder cells to bacterial infection and are necessary for the 

maintenance of anti-bacterial immunity (99). However, exaggerated neutrophil activity is 

detrimental and has been implicated in the pathology of several diseases (103). To investigate the 

role of exaggerated neutrophil activity and survival in the mortality of p110 mice, I injected 

groups of p110 mice with anti-GR1 depleting antibody to deplete neutrophils, before and six 

hours after LPS challenge. Interestingly, depletion of neutrophils before LPS challenge resulted 

in mortality of p110 mice following LPS challenge (Fig. 5.7). However, depletion of neutrophils 

six hours after LPS challenge rescued p110 mice from LPS mortality (Fig. 5.7). These results 

indicate that the mortality of p110 mice following LPS challenge is due in part to exaggerated 

neutrophil activity. They further support my hypothesis that neutrophils are important in sepsis 

but exaggerated neutrophil activity is detrimental to survival from sepsis. 
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Fig. 5.7 Depletion of neutrophils after LPS challenge rescues p110 mice from LPS 

mortality. Groups of p110 mice were injected with anti-GR1 antibody either overnight before or 

6 hr after LPS challenge and monitored for clinical signs (A) and survival (B). The data 

presented are representative of at least 2 independent experiments (n = 4 mice per group) with 

similar results. *, p < 0.05;  **, p < 0.01. 

 

5.2.7 Tregs regulate neutrophil function and reverse LPS-induced survival of neutrophils 

from p110 mice  

So far, I have shown that p110 mice have diminished Treg numbers and that decreased Treg 

numbers contribute to the mortality of p110 mice as adoptive transfer of Tregs rescues p110 

mice from LPS mortality. In a similar vein, p110 mice have delayed neutrophil apoptosis and 

enhanced neutrophil activity following LPS challenge and these contribute to mortality as 

depletion of neutrophils rescues p110 mice from LPS mortality. It remains to be determined 

whether there is any link between reduced Treg numbers and enhanced neutrophil activity in 

p110 mice following LPS challenge. In other words, does Tregs regulate neutrophil activity and 

survival? 

 To investigate this, I isolated Tregs (CD4
+
CD25

+
) or effector T cells (CD4

+
CD25

-
) from the 

spleens of p110 and WT mice, co-cultured them with BMDN from p110 mice in the presence or 

absence of LPS and examined apoptosis by annexin V staining. Strikingly, both p110 and WT 
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Tregs were able to reverse LPS-induced delayed apoptosis of neutrophils from p110 mice as 

shown by increased annexin V expression and decreased Mcl-1 expression (Fig. 5.8). This 

reversal of delayed apoptosis of p110 neutrophils was dose dependent (Fig. 5.8B) and specific to 

Tregs as effector T cells were not able to produce similar effect (Fig. 5.8A). Additionally, Tregs 

dramatically reduced proinflammatory cytokine production by neutrophils (Fig. 5.9A-D). Taken 

together, these data suggest that the diminished Treg numbers in p110 mice may in part 

contribute to the exaggerated neutrophil activity and survival in response to LPS. These data also 

suggest that Tregs regulate neutrophil activity and survival and highlights a possible mechanism 

of regulation of innate immunity by adaptive immunity. 
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Fig. 5.8 Tregs reverse LPS-induced survival of neutrophils from p110 mice. BMDN from 

p110 mice were co-cultured with varying ratios of either Tregs or T helper cells (Th) of 1:1, 1:2, 

1:4 and 1:8 overnight. The next day, neutrophil apoptosis (A, B) and survival (C) were analyzed 

by flow cytometry. The data presented are representative of at least 3 independent experiments 

with similar results. ***, p < 0.001. 

 

 

Fig. 5.9 Tregs reverse LPS-induced exaggerated activity of neutrophils from p110 mice. 

BMDN from p110 mice were co-cultured with Tregs overnight. The next day, the levels of 

proinflammatory cytokines (A-D) were analyzed by mesoscale. The data presented are 

representative of at least 2 independent experiments with similar results.  
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The above results are compelling. Following these observations, I wondered the clinical 

implication of the regulation of neutrophil activity by Tregs. I isolated neutrophils and Tregs 

from healthy volunteers and co-cultured neutrophils and autologous Tregs in the presence or 

absence of LPS overnight. Similar to the results obtained in mice, human Tregs were able to 

increase neutrophil apoptosis and decrease neutrophil activity in response to LPS (Fig. 10A, B). 

Therefore I conclude that Tregs regulate neutrophil activity and survival and that the regulation 

of neutrophil activity by Tregs could play an important role in the resolution of bacterial 

infection.  

 

  

Fig. 5.10 Human Tregs also reverse LPS-induced survival of neutrophils from p110 mice. 

Neutrophils were isolated from the blood of healthy volunteers and co-cultured with either 

autologous Tregs or helper T cells in LPS overnight. Neutrophil apoptosis was then analyzed by 

flow cytometry (A, B). The data presented are representative of 3 independent experiments with 

similar results. *** , p < 0.001. 
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6.0 CHAPTER SIX 

GENERAL DISCUSSION 

6.1 CRITICAL ROLE OF TREGS IN SURVIVAL OF SEPSIS 

Regulatory T cells (Tregs) play a crucial role in maintenance of peripheral tolerance and 

prevention of aggressive immune response and their potent suppressive function are being 

investigated for in the treatment of several autoimmune and inflammatory diseases (293). 

However, their suppressive function can also be detrimental and lead to inability of the host to 

clear infection (294). Increased numbers of CD4
+
CD25

+
 Tregs has been reported in septic shock 

patients and these cells have been proposed to contribute to the so called ‘immunoparalysis’ in 

individuals with septic shock conditions (230). In line with this proposal, Hiraki et al reported 

that a decrease in the numbers of CD4
+
CD25

+
 Tregs led to improved survival of septic mice 

(237). However, this study did not directly assess the impact of CD4
+
CD25

+
 Tregs as mice were 

treated with anti-IL-10 and/or anti-TGF-, and this was shown to indirectly reduce the numbers 

of Tregs as well as their function. Conversely, Heuer et al reported that in a murine model of 

septic shock induced by cecal ligation and perforation (CLP), adoptive transfer of ex vivo 

stimulated CD4
+
CD25

+
 Tregs improved survival (239). This was the first study demonstrating a 

beneficial role for CD4
+
CD25

+
 Tregs in a clinically relevant model of sepsis.  

Herein, I report an increase in CD4
+
CD25

+
 Tregs following LPS-induced acute inflammatory 

responses and that depletion of these cells leads to enhanced sensitivity and mortality to LPS 

challenge. I showed that this effect was specific to LPS as it was not reproduced in another 

model of acute inflammation following Con A administration. Consistent with the protective role 

of Tregs, I showed that CD25 KO mice, which do not have functional Tregs, are hypersensitive 

to LPS challenge. Adoptive transfer of Tregs was able to rescue CD25 KO mice from LPS-
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induced mortality. More importantly, I showed that Tregs play a protective role during Gram-

negative bacteria (E. coli) infection; depletion of Tregs resulted in acute death from an otherwise 

sub-lethal dose of LPS or E. coli. Collectively, my data show that Tregs dampen LPS-induced 

acute inflammatory response and protect from an acute experimental model of bacterial 

infection. 

Why does LPS injection lead to increase in Treg numbers? 

My findings show increase in Treg numbers in spleen and blood of mice injected with LPS (Fig. 

3.1). It is worthy of note that increase in Treg numbers have been reported in patients with sepsis 

(230). It is conceivable that injection of LPS leads to the induction of Tregs from naïve 

CD4
+
CD25

-
 T cells in the periphery. It is also possible that injection of LPS leads to the 

migration of Tregs to lymphoid organs. Alternatively, the activation of the inflammation cascade 

may be compensated for by an increase in Treg numbers in the periphery. In any case, the 

overwhelming evidence indicates increase in Treg numbers following LPS challenge and during 

sepsis.    

How do Tregs mediate their protective effect following acute bacteria and/or LPS challenge? 

Previous reports show that CD4
+
 T cells (particularly Tregs) express TLR4 and respond to LPS 

stimulation (287, 295). The binding of LPS to TLR4 on innate immune cells triggers a cascade of 

intracellular signaling events leading to the release of cytokine and non-cytokine inflammatory 

mediators including TNF, IL-1, IL-6, eicosanoids, and platelet activation factor (58, 296). 

Collectively, these events lead to mobilization of more inflammatory cells, particularly 

neutrophils and macrophages to the site of the infection. Dysfunction in regulation of these 

factors leads to diffuse cellular activation, excessive systemic inflammatory response and death. 
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Since CD4
+
CD25

+
Foxp3

+
 Tregs play a critical role in maintaining immune homeostasis by 

preventing excessive activation of CD4
+
 T cells (297), it is conceivable that their depletion 

following LPS challenge leads to hyper-activation of T cells, leading to overall excessive 

immune activation and enhanced susceptibility. Consistent with this, I found that depletion of 

CD4
+
CD25

-
 T cells does not lead to susceptibility to LPS (Fig. 3.5 A-D). In addition, I have 

found that depletion of Tregs leads to increased proliferation and cytokine production by CD4
+
 T 

cells following LPS challenge (Figs. 4.5, 4.6), suggesting that Tregs may help to prevent over-

activation of CD4
+
 T cells. More studies are needed to fully determine the mechanism through 

which Tregs regulate over-activation of the immune system following LPS challenge.  

The immunoregulatory properties of Tregs have been shown to occur via contact dependent and 

independent mechanisms. The contact dependent mechanism is mediated by direct cell-to-cell 

contact through cytotoxic T-lymphocyte antigen 4 (CTLA4) expression (173). In contrast, 

contact independent mechanism is mediated by the production of immunoregulatory cytokines 

IL-10 and TGF(221). Interestingly, I found that the acute death and exaggerated serum levels 

of proinflammatory cytokines in anti-CD25 mAb-treated mice challenged with sublethal dose of 

LPS was associated with significantly lower serum levels of TGF1 (Fig. 3.2F) while IL-10 

levels were unaffected. It is conceivable that the diminished levels of TGF1 may be due to 

depletion of Tregs leading to detrimental outcome in LPS-induced acute inflammatory responses. 

This is not surprising since TGF1, (a potent immunoregulatory cytokine), has been shown to 

prevent aggressive T cell responses (298) and its deficiency leads to autoimmune 

lymphoproliferative disease as seen in TGF1 null mice (194). More work is needed to properly 

decipher the role of Treg derived TGF1 in immune regulation upon LPS challenge. 
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In contrast to my findings, Scumpia et al reported that inhibition of CD4
+
CD25

+
 Tregs activity 

either by antibody-mediated depletion or genetic deletion does not affect survival outcome in a 

CLP model of sepsis (234). LPS infusion or live bacterial injection are both more acute animal 

models of sepsis compared to CLP (299). This may explain the difference between my findings 

and those of Scumpia et al but also strongly agrees with my proposal that CD4
+
CD25

+
 Tregs are 

initially protective in sepsis but this beneficial activity may be lost over time. However, Heuer et 

al (239) showed that adoptive transfer of ex vivo stimulated CD4
+
CD25

+
 Tregs improved 

survival in CLP model of sepsis an observation that is in agreement with my findings. Thus, 

although more work is needed to delineate the role of CD4
+
CD25

+
 Tregs in sepsis, the 

overwhelming evidence suggests a potential beneficial role for these cells in several 

experimental models of sepsis. In conclusion, my results show that depletion of Tregs resulted in 

high mortality in a non-lethal LPS challenge and E coli infection. Collectively, my results 

suggest that Tregs may help to suppress inflammation, improve bacterial clearance and promote 

survival in an acute model of LPS challenge or bacterial infection. 

6.2 TREGS RESTRAIN CD4
+
 T CELLS FROM CAUSING EXAGGERATED IMMUNE 

ACTIVATION AND HYPERSENSITIVITY TO LPS 

Previously, I showed that depletion of Tregs leads to enhanced sensitivity to LPS that is 

characterized by acute death to an otherwise non-lethal dose of LPS challenge or E. coli infection 

and production of high levels of proinflammatory cytokines. Following that observation, I 

investigated the mechanism by which Treg depletion results in enhanced sensitivity to LPS. 

Using different murine lymphocyte gene knock-out models, I showed that in the absence of T 

cells, the enhanced sensitivity to LPS is abolished thereby implicating T cells as the drivers of 

unrestrained host immune response to LPS following Treg depletion. Critically, I showed that 

reconstitution of SCID mice with CD4
+
 T cells restores enhanced sensitivity to LPS following 
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Treg depletion. Furthermore, reconstitution of SCID mice with CD4
+
 T cells from CD25 KO 

mice (which lack functional Tregs) results in acute death to a non-lethal LPS challenge. 

Collectively, my results implicate CD4
+
 T cells as the lymphocyte subset that drives aggressive 

immune response to LPS in the absence of Tregs. This novel protective role of Tregs in LPS-

induced acute inflammatory response is consistent with the  numerous reports showing that 

Tregs prevent over-activation of CD4
+
 T cells and that aberrant Treg function leads to T cell-

mediated autoimmune diseases in both human and animal studies (300-302). 

Previous reports have shown a significant increase in the percentage (and absolute numbers) of 

Tregs in both human and animal models of sepsis (232, 236). However, the role of Tregs in 

sepsis remains controversial with some reports suggesting they may contribute to mortality by 

mediating immunosuppression (232). On the contrary, my data indicates that during bacterial 

infection and in LPS model of acute inflammation, Tregs are important for survival and that 

diminished Treg numbers leads to excessive CD4
+
 T cell activation and acute death to an 

otherwise non-lethal dose challenge. In agreement with my findings and using a more relevant 

clinical model of sepsis, Heuer et al showed that Tregs improve survival in a murine model of 

polymicrobial sepsis (239). 

Studies have shown that depletion of Tregs can efficiently reduce chronic retroviral loads and 

that therapy targeting Tregs may be a promising approach for the treatment of chronic infectious 

diseases (303). In addition, it has been suggested that since Tregs contribute to tumor-mediated 

immunosuppression in cancer patients (304), therapies targeting Treg depletion may be 

beneficial in managing the condition (305).  My findings highlight Tregs as essential regulators 

of the inflammatory milieu in response to LPS challenge or bacterial infection. Additionally, my 
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data shows that the use of such Treg-targeted therapies may lead to an unwanted susceptibility to 

bacterial infection.    

How do CD4
+
 T cells contribute to susceptibility to LPS challenge? I speculated that following 

their interaction with LPS, a subset of TLR-4-expressing CD4
+
 T cells become activated and 

produce IFN- and TNF (Fig. 4.6A and D), cytokines that are potent activators of macrophages 

(288). These cytokines activate macrophages, which in turn contribute to the inflammation 

milieu by producing inflammatory mediators such as the proinflammatory cytokines TNF, IL-6 

and CCL2 (306). As has been previously shown in several models, Tregs are critically important 

in keeping CD4
+
 T cells under tight check and regulation to avoid their excessive activation. 

Thus, it follows that the hyper-activation of CD4
+
 T cells as a result of Treg depletion, will 

indirectly lead to hyper-activation of macrophages. The end-result of such an aggressive immune 

response is host injury and mortality to an otherwise non-lethal challenge with LPS or with live 

bacteria. Hence, Treg depletion is detrimental to survival in a murine model of acute 

inflammation and a sepsis model of live E. coli infection. 

Pattern recognition receptors (PRRs), such as TLR4, have long been identified as essential 

receptors of the innate immune system. However, accumulating evidence suggest that these 

receptors are not exclusive to innate cells but are also present on cells of the adaptive immune 

system. Indeed, it was recently reported that human T cells express TLR4 (287, 307). Similarly, 

it has been shown that a subset of mouse T cells, including Tregs, express TLR4 (286). In line 

with these observations, I found that CD4
+
 T cells express TLR4 and are activated by LPS in 

vivo and in vitro resulting in proliferation and enhanced IFN- and TNF production (Fig. 5.7A-

F). Additionally, I show that LPS-stimulated T cells (but not unstimulated cells) activate bone 

marrow-derived macrophages to produce inflammatory cytokines (Fig. 5.7G and H). 
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Importantly, I demonstrate that absence of TLR4 expression on CD4
+
 T cells leads to 

significantly diminished response to LPS in both in vitro and in vivo studies (Fig. 5.8A-D). Thus, 

my findings corroborate the results of other studies that show that T cells possess germline 

encoded pattern recognition receptors such as TLR4 and are able to respond to pathogen 

associated molecular patterns such as LPS. More work is needed to delineate the signaling 

pathways involved in CD4
+
 T cell activation by LPS. 

How do Tregs restrain CD4
+
 T cells from becoming overly activated and thereby prevent 

sensitivity to LPS? Although not directly assessed in this study, certain observations provide 

possible clues to this question. Previous reports have shown that some subsets of Tregs express 

TLR4 and respond to LPS (286). It is conceivable that as for CD4
+
 T cells, TLR4-expressing 

Tregs may become activated to produce inhibitory and/or regulatory cytokines, including IL-10 

and TGF- upon recognizing LPS. As has been shown in other studies (221), these 

immunoregulatory cytokines may directly or indirectly regulate CD4
+
 T cell activation and/or 

inhibit proinflammatory cytokine production by T cells and macrophages. Indeed, it was shown 

that LPS-activated Tregs were able to prevent wasting disease caused by naïve CD4
+
 T cells in 

alymphoid recipients (286).  In line with this, I found that depletion of Tregs was associated with 

dramatic reduction in TGF- production following LPS or E. coli challenge (Fig. 3.2).  

In conclusion, my data shows that in the absence of Tregs, CD4
+
 T cells drive systemic 

inflammatory response following LPS challenge that is detrimental to survival and injurious to 

the host. Collectively, these data are consistent with previous reports that demonstrate a 

beneficial role of Tregs in several experimental models of sepsis (239-240). They further suggest 

that these cells may help suppress inflammatory responses and promote survival in an acute 

model of LPS challenge. 
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6.3 ABSENCE OF P110 DELTA SIGNALING LEADS TO DECREASED TREG NUMBERS 

AND INCREASED NEUTROPHIL RECRUITMENT AND FUNCTION RESULTING IN 

MORTALITY TO NON-LETHAL LPS CHALLENGE 

The results obtained in the previous chapters showed that Tregs are able to respond to LPS and 

help to prevent excessive activation of effector T cells in response to LPS. Hence, depletion of 

Tregs leads to enhanced susceptibility and mortality to non-lethal LPS challenge or bacterial 

infection. Mice lacking p110 signaling have characteristically diminished Treg numbers and 

therefore constitute a suitable model for the investigation of the role of diminished Treg numbers 

in LPS challenge (252). I therefore used these animals to investigate the effect of diminished 

Treg numbers in LPS challenge. Consistent with the results in previous chapters, I found that 

p110 mice are susceptible to LPS challenge and succumb to a non-lethal dose of LPS (Fig. 5.1A-

C). This susceptibility is directly related to decreased Treg numbers as adoptive transfer of WT 

Tregs rescues p110 mice from LPS-induced mortality (Fig. 5.1D, E). Thus, the p110 mice model 

confirms my previous findings (using anti-CD25 mAb) that diminished Treg numbers is 

associated with susceptibility to LPS challenge. This also further provides evidence of the 

protective role of Tregs in bacterial infection. 

The upregulation of neutrophil survival in the presence of LPS has been well described as a 

necessary mechanism for the elimination of infection by neutrophils (308). While there is no 

difference in survival of neutrophils from p110 and WT mice in the absence of LPS, neutrophils 

from p110 mice show delayed apoptosis and increased survival in response to LPS. Hence, it 

appears that the absence of p110 signaling leads to delayed apoptosis of neutrophils in response 

to LPS. Since mice lacking p110 signaling also have diminished Treg numbers (252), it is 

conceivable that the absence of p110 signaling and diminished Treg numbers constitute a dual 

hit that leads to the susceptibility of p110 mice to LPS challenge. 
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Majority of the regulatory function of Tregs has been ascribed to their ability to regulate CD4
+
 T 

cells (207). Recently, there is emerging evidence of the suppressive function of Tregs on CD8
+
 T 

cells (205), B cells (208), monocytes (210), mast cells (212) and neutrophils (213). In this study, 

I found that p110 mice, which have diminished Treg numbers and are more susceptible to LPS 

challenge, have exaggerated neutrophil activity and increased neutrophil survival. This enhanced 

neutrophil activity contributes to mortality of p110 mice as depletion of neutrophils abrogates 

this mortality (Fig. 5.7). Strikingly, co-culture of Tregs and neutrophils resulted in reduced 

neutrophil activity and increased neutrophil apoptosis. These results demonstrate that Tregs 

regulate neutrophil function and survival and illustrates a mechanism for the regulation of innate 

immunity by adaptive immunity. 

It is well known that neutrophils are important for the elimination of bacterial infection. For 

example a mechanism for antibacterial activity by neutrophils is the process of respiratory burst, 

which involves the production of superoxide anion from molecular oxygen to yield microbicides 

(115). Hence, patients with chronic granulomatous disease – a genetic disease that affects the 

respiratory bursts of phagocytes are susceptible to bacterial infections (309). Paradoxically, 

neutrophil activity has been implicated in the pathogenesis of several diseases. For example, 

Bullous pemphigoid (BP) is a skin disease caused by autoimmunity to the epidermal protein BP 

180. Studies in animal models revealed that depletion of neutrophils resulted in resistance to BP 

(310). Interestingly, BP is triggered by the injection of anti-BP 180 antibodies in WT mice but 

not in mice deficient in the neutrophilic granular protein – Gelatinase B, although there was 

normal recruitment of neutrophils and pathogenic deposition of IgG (311). These experiments 

demonstrate that neutrophil activity is a major contributor to the pathogenesis of BP. In the same 

vein, neutrophils have been implicated in the pathogenesis of vasculitis (312), rheumatoid 
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arthritis (313) and systemic lupus erythematosus (314). Interestingly, all these diseases have been 

associated with defective Treg function (315). These observations are intriguing and show that in 

many cases, defective Treg function is usually associated with exacerbated neutrophil activity. 

This further lends credence to this work that diminished Treg activity in p110 mice is 

accompanied by exaggerated neutrophil activity.  

A major mechanism of maintenance of immune homeostasis and function involves the 

programmed elimination of immune cells through apoptosis. Dysfunction in the regulation of 

apoptosis constitutes a major problem for the immune system and can lead to immune 

suppression (in the case where there is too much apoptosis) or cancer (in the case where 

apoptosis is too low). Hence, there are immunoregulatory mechanisms that are in place to ensure 

the maintenance of optimum apoptosis and immune balance. In this work, I identify Tregs as a 

major regulatory cell responsible for the regulation of neutrophil apoptosis particularly in 

response to bacteria associated inflammatory response. Since increased neutrophil survival is a 

major consequence of neutrophil activation by LPS (308), it is conceivable that Tregs ensure 

programmed cell death of neutrophils following activation by LPS. In fact, my results suggest 

this to be the case. This work is also in agreement with the findings of Lewkowicz et al, which 

showed that Tregs inhibit neutrophil function and promote their apoptosis (213). So far, these are 

the only two publications indicating Treg/neutrophil interactions.  

Tregs play a major role in the maintenance of peripheral tolerance and immune homeostasis. 

Indeed, several theories have been put forward to explain Treg-mediated immune suppression 

and most of them point to the fact that the mechanisms of Treg-mediated immune suppression 

are not well understood. Tregs have been shown to suppress the function of other immune cells 

via direct cell-to-cell contact through cytotoxic T-lymphocyte antigen 4 (CTLA4) expression 
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(173) or by the production of immunoregulatory cytokines IL-10 and TGF(221). Another 

important mechanism by which Tregs mediate their suppressive function is by promoting 

apoptosis of the target cell. Indeed, Tregs have been shown to mediate apoptosis of T cells (202), 

B cells (203), monocytes (202) and neutrophils (316). Hence, apoptosis of immune cells is a 

well-established process of maintaining immune homeostasis by Tregs. 

How does Tregs mediate apoptosis of target cells? Studies in animal and human models show 

that Tregs mediate apoptosis through the Fas/FasL interaction. Tregs have also been shown to 

mediate apoptosis by the direct release of perforin and granzyme (202-203). This work did not 

explore the mechanism by which Tregs mediate neutrophil apoptosis. However, Lewkowicz et al 

demonstrated that Treg suppression of neutrophil function is partially dependent on the 

cytokines, IL-10 and TGF- (316).  

The distinction between the innate and adaptive immune systems is a central dogma in 

immunology (317). The inter-dependency of both arms of the immune system is well 

established. For example, antigen presentation and the requirement for co-stimulation provide 

evidence of the dependence of the adaptive immune system on innate immune response. In a 

similar vein, cytokines produced by the adaptive immune system are known to affect the cells of 

the innate immune system.  This work portrays the interaction of Tregs (cells of the adaptive 

immune system) with neutrophils (cells of the innate immune system) as an essential mechanism 

of immune regulation during infection. Hence, the results present a new paradigm in the 

regulation of the innate immune system by the adaptive immune system.  

The results presented here have implications in the clinic for sepsis treatment. Neutrophil activity 

is known to be important in sepsis and has been proposed as a reliable biomarker for sepsis 
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(318). The results of this work indicate that neutrophil activity is a potential clinical predictor of 

outcome during sepsis. Furthermore, it is conceivable that inhibition of neutrophil activity can 

also be a veritable approach in sepsis treatment as demonstrated here. Indeed, Hasan et al have 

already shown that targeting neutrophil CD44 prevented lung damage in abdominal sepsis (319). 

Hence, there is an opportunity here for clinical translation of this work. 

Overall, this work illustrates the significance of Tregs in regulation of bacterial infection and 

highlights the cross-talk between innate and adaptive immunity. 
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6.4 OVERALL DISCUSSION 

6.4.1 Tregs and regulation of sepsis 

There is unequivocal experimental evidence in human and animal models regarding the 

paramount role of Tregs in maintenance of immune homeostasis (219). Hence, this work adds to 

the numerous evidences illustrating the role of Tregs in immune regulation. Tregs were 

discovered as immune cells that were essential for tolerance to self-antigens and prevention of 

autoimmunity (160). However, since their discovery, there has been an explosion in the role of 

Tregs in immune function from fetal-maternal tolerance to asthma (219). Since Tregs are 

suppressor cells, it is paradoxical that they will be important in pathogen-induced immune 

response. However, this function of Tregs has been demonstrated in several studies. For 

example, depletion of Tregs resulted in increased susceptibility to herpes simplex virus and 

lymphocytic choriomeningitis virus indicating a protective role for Tregs in virus-induced 

immunopathology (218). Also, Cambos et al showed that Tregs help to control excessive 

inflammation in lethal plasmodium chabaudi adami infection in which mortality is associated 

with systemic inflammatory response (240). In line with the above studies, this work shows that 

Tregs are important in the regulation of bacteria associated inflammatory responses. Specifically, 

diminished Treg numbers leads to mortality to a non-lethal dose of LPS and bacteria challenge 

(Fig. 3.2, 3.7) In view of these observations, in the case of pathogen-induced immune response, 

it is pertinent to regard Tregs as regulatory cells and not suppressor cells. This is because 

although Tregs help to maintain immune homeostasis by ‘suppressing’ the immune response, 

their ‘suppressor’ function is indeed a regulatory mechanism that is indispensable in the immune 

response to pathogen invasion. Removal of this regulatory mechanism as has been demonstrated 

in this work can be catastrophic to the host analogous to a moving automobile without brakes. 
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However, in light of the well known suppressive function of Tregs, there is a school of thought 

that is associated the increased Treg numbers found during sepsis with immune suppression that 

is associated with increased mortality. Monneret et al associated increased Treg numbers in 

septic shock patients with sepsis-induced immunosuppression (230). They showed that Tregs 

actually induce apoptosis in monocytes and conclude that this is a mechanism by which Tregs 

contribute to immune suppression during sepsis (210). For one thing, their study agrees with 

mine in the ability of Tregs to regulate the function of innate immune cells, in their own case 

monocytes. In contrast, I hold that Tregs are protective during sepsis as the data in this work has 

demonstrated. I propose that the role of Tregs in sepsis can be rightly described in two words: 

dosage and timing. The increase in Tregs observed in patients with sepsis and in experimental 

sepsis is protective during the initial stages of the disease. It is also possible that these Tregs 

contribute to immune suppression in the later stages of sepsis. However, patients with sepsis are 

already in a state of immune dysfunction and the suppressed immune state cannot be due to the 

presence of Tregs alone.  

It is generally accepted that sepsis results from excessive and dysregulated immune response to 

infection which can culminate in tissue damage and organ dysfunction (284). However, studies 

show that the hyper inflammatory response is often accompanied by an opposite and/or 

equivalent anti-inflammatory response, a phenomenon that can be likened to Newton’s law of 

momentum in physics (64). In addition, sepsis is a complex, heterogeneous and dynamic 

syndrome consisting of three stages: sepsis, severe sepsis and septic shock. This complexity 

makes results from clinical and experimental research involving sepsis usually difficult to 

interpret (320).  
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The results presented here show a beneficial role of Tregs in sepsis. In light of the increase in 

knowledge of the immune response during sepsis, there is a gradual shift in paradigm on the 

major consequence of a suppressed immune state in sepsis compared to the inflammatory 

response. While the beneficial role of Tregs has been reported in several immune pathologies 

like type 1 diabetes (271), systemic lupus erythematosus (272) and inflammatory bowel disease 

(273), the immune suppressive role of Tregs is detrimental in certain cases like cancer (321). For 

example, adoptive transfer of Tregs leads to reduced anti-tumor immune response in mice (322). 

In their recent review, Hotchkiss and Moldawer drew an analogy between cancer and infectious 

disease (323). They argue that the immune response in cancer and chronic infectious disease are 

similar, and marked by persistent inflammation and immune activation which can ultimately lead 

to ‘immune exhaustion’. They suggest that therapies aimed at boosting the immune system are 

ideal for sepsis treatment (323). Also, as mentioned earlier, Monneret et al associated increased 

Treg numbers in septic shock patients with sepsis-induced immunosuppression (230). These 

findings argue against the potential use of Treg therapy for sepsis patients. I agree that there is a 

concern of Treg-mediated immune suppression in sepsis which is in contrast with the major 

findings of this work. However, there is no doubt that inflammation contributes to sepsis 

mortality (324). Hence, Treg therapy may be beneficial for a select group of patients and should 

be investigated further.  

As shown in this work (Fig. 4.7A and B) and in other studies (287, 307), pattern recognition 

receptors such as TLR4, which have long been identified as essential receptors of the innate 

immune system, are also present on cells of the adaptive immune system. Accordingly, 

Caramalho et al showed more than a decade ago that Tregs possess TLR4 and are able to 

respond to LPS (286). The fact that Tregs respond to LPS strongly suggests that they are 
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activated during bacterial infection. Since Tregs suppress inflammation, depletion of Tregs or 

diminished Treg function will contribute to excessive inflammation in response to bacterial 

infection as shown in this work.    

The inflammatory response has long been implicated in the pathogenesis of sepsis. Indeed sepsis 

is defined as systemic inflammatory response to infection. As already mentioned earlier, the 

changes which the immune system undergoes during the inflammatory response – the release of 

proinflammatory cytokines, aggregation of immune cells, activation of immune cells, changes in 

endothelial permeability and vasodilation, can be detrimental to the host (324).  

Several studies have implicated the inflammatory response in the pathogenesis of several 

diseases, notably, allergy and cancer (325-326). This work adds to the growing body of evidence 

of the paradoxical role of the immune system in disease pathogenesis. Hence, the data shows that 

in the absence of adequate Treg function, two immune cells – CD4
+
 T cells (Fig. 4.6, 4.7) and 

neutrophils (Fig. 5.4) become the culprit in LPS-induced mortality. In general CD4
+
 T cells have 

been shown to contribute to the pathogenesis of other diseases (327). On the same note, 

neutrophils have also been implicated in disease pathology in many studies (328). In view of the 

above evidences and as shown in this work, the immune response – our arsenal for fighting 

infections can evidently be a major contributor to mortality. 

The quality of the immune response is the ultimate decider of susceptibility and resistance of the 

host following pathogen invasion. Hence, following bacterial infection, an optimum immune 

response is needed for pathogen elimination. An immune response below the optimum will lead 

to pathogen colonization of the host and susceptibility to infection. In contrast, an immune 

response above the optimum will lead to organ damage and mortality. The problem of 
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elucidating factors that determine an optimum immune response is a basic problem in 

immunology and beyond the scope of this work. This work however, highlights the fine line 

between susceptibility and survival and implicates immune cells as contributors to pathology 

during sepsis. 

6.4.2 Cross-talk between innate and adaptive immunity 

The term immunity, which is the ability of a living organism to resist microbial colonization, has 

many different attributes. Classically, the immune system is broadly divided into two: innate and 

adaptive immunity. Cells of the innate immune system are characterized by a rapid response to 

microbial products, and having a finite repertoire of germline-encoded receptors. On the other 

hand, cells of the adaptive immune system have a time lag to respond following infection and are 

able to expand in a clonal manner producing a large repertoire of antigen-specific receptors by 

somatic recombination. The cells of the adaptive immune system, T and B cells, encounter 

antigen in lymphoid organs and then undergo clonal expansion differentiating into effector cells. 

These two arms of the immune system are notably different in three areas: speed of response, 

specificity of receptors and memory. Memory is a distinct property of the adaptive immune 

system arising from the fact that antigen-specific T and B cells can persist-long term and can 

clonally expand rapidly producing stronger effector functions upon secondary challenge. While 

there are valid reasons for this distinction between innate and adaptive immunity, emerging 

evidence suggests that the separation between innate and adaptive immunity is indeed blurred. 

This work further highlights the blurry line dividing innate and adaptive immunity. For one 

thing, my results show that a subpopulation of CD4
+
 T cells possesses TLR4 (Fig. 4.7A, B). This 

in itself is not surprising since Tregs have been shown to possess TLR4 more than a decade ago 
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(286). However, this finding of the germline-encoded PRRs on T cells as reported in this work 

and in other studies (287, 307) brings to light many unanswered questions. If T cells respond to 

LPS through TLR4, does that imply rapid immune response and elimination of the lag phase by 

adaptive immune cells in response to primary infection? Does the T cell response to LPS through 

TLR4 eliminate the requirement for co-stimulation and antigen presentation? What are the 

genetic markers and distinct phenotype of the subset of T cells that respond to LPS? What are the 

implications of the presence of PRRs on cells of the adaptive immune system? These questions 

remain to be answered and are the subject of different immunological research going on all over 

the world. The final question was answered in part through this study. I showed that T cells are 

able to respond directly to LPS (Fig. 4.6, 4.7) and that the response of Tregs to LPS is a critical 

regulatory mechanism for the control of responses of other immune cells, particularly T cells and 

neutrophils. 

Critics of the separation of both arms of the immune system point to numerous studies that 

further show a significant overlap in their functions. For example, germline encoded receptors of 

the innate immune system although limited in diversity show ‘specificity’ in their ability to 

detect specific microbial products. Hence TLR4 will detect LPS (82) but not double-stranded 

RNA, which is recognized by TLR3 (329). Also, the notion of the lack of memory in innate 

immune cells has been challenged by recent studies. There is evidence of immune memory in 

primitive organisms that do not have adaptive immunity (330). Natural killer (NK) cells are cells 

of the innate immune system that have been shown to have memory-like attributes. NK cells 

were previously shown to have a half-life of about 2 weeks (331) but recent evidence has 

challenged that assertion. For example, NK cells have been shown to have memory-like 

attributes in hapten-induced contact hypersensitivity (CHS) in mice. CHS was previously 
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thought to be mediated by CD4
+
 T cells (332). However, (Rag-2)–deficient mice, which lack T 

and B cells but possess NK cells were shown to exhibit NK cell–mediated CHS response (333). 

The ‘memory-like’ NK cells showed hapten-specific responses and were detected 4 weeks after 

hapten priming. Interestingly, adoptive transfer of hapten-primed NK cells could induce CHS in 

recipient mice (333-334). Other studies have shown evidence of immune memory using NK cells 

(335-337). 

The interdependency of the innate and adaptive immune system is well established. The 

requirement for co-stimulation to mount an effective immune response by T and B cells 

emphasizes this. Hence cells of the innate immune system have long been known to influence 

adaptive immunity. Studies have shown that activated neutrophils release several chemokines 

like CCL20, CXCL10, CXCL9 and CCL2 that can attract T cells to sites of inflammation (338). 

Likewise, activated T cells can release CXCL8, which is a neutrophil chemoattractant (338). 

Also, activated T cells produce cytokines like IFN- which modulates neutrophil function and 

survival (339). In particular, Tregs produce CXCL8, which is a strong neutrophil 

chemoattractant (340). Recent findings suggest that neutrophils shape adaptive immunity 

significantly more than previously thought (341). Neutrophils have been shown to migrate to 

lymph nodes following antigen encounter suggesting the possibility of antigen presentation to T 

and B cells (342). In vitro, murine neutrophils have been induced by T cells to express MHC 

class II molecules (343). Also, injection of neutrophils pulsed with antigen into mice resulted in 

the differentiation of naïve CD8
+
 T cells into effector cytotoxic cells (344). These studies 

highlight the expanding role of neutrophils in shaping adaptive immunity and vice versa. 

Therefore, it is not surprising that Tregs regulate neutrophil function as found in this study since 
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the regulatory activity of Tregs can lead to the production of cytokines like IL-10 and TGF- 

which affects neutrophil function (345-346). 

As mentioned earlier, this work highlights the interdependency of the innate and adaptive 

immune system. Sepsis is well known to be a consequence of innate immune cells to infection. 

However, it is possible for cells of the adaptive immune system to contribute to the pathology of 

sepsis. The importance of T cells in sepsis is emphasized in this work. In particular, the 

regulatory role of Tregs is highlighted. This work shows that in the absence of Tregs, there is 

enhanced susceptibility and increased mortality in response to infection (Fig. 3.2, 3.7). This 

enhanced susceptibility and increased mortality in response to infection is caused by exaggerated 

T cell responses in the absence of Tregs (Fig. 4.6, 4.7). Exaggerated T cell response, marked by 

enhanced production of cytokines like TNF and IFN- (Fig. 4.6) will in no doubt affect innate 

immune cells like neutrophils and macrophages (Fig. 4.7G, H) leading to organ damage and LPS 

mortality. Therefore, it is possible for the excessive inflammatory response of innate immune 

cells to bacterial infection to originate from the signals they receive from cells of the adaptive 

immune system as shown in this work.  
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CHAPTER SEVEN 

SIGNIFICANCE AND IMPLICATIONS 

7.1 SIGNIFICANCE 

The work in this thesis constitutes a significant contribution to immunology and infection. 

Firstly, it expounds the role of Tregs in LPS and E. coli-induced acute inflammation. Since their 

discovery, Tregs have proven to be paramount for normal immune function and maintenance of 

homeostasis. Interestingly, Tregs were originally identified as immune cells necessary for the 

maintenance of peripheral tolerance (160). This inherently meant that Tregs have the function of 

suppressing immune response. Indeed, it is paradoxical that this subtype of suppressor cells is 

important for host immunity to infection. Nevertheless, recent evidence has shown that Tregs are 

essential for host immunity to infections (218, 240). As shown in this work, depletion of Tregs 

leads to susceptibility to E. coli infection. Heuer et al previously showed that in a murine model 

of septic shock induced by CLP, adoptive transfer of ex vivo stimulated CD4
+
CD25

+
 Tregs 

improved survival (239). However, the work reported here is the first demonstration of the 

importance of Tregs in live bacterial infection. My results affirm that depletion of Tregs leads to 

susceptibility to live bacterial infection (Fig. 3.2B, C) and thus has contributed to our knowledge 

of the role of Tregs in anti-bacterial immunity. 

Another important contribution of this work is its elucidation of the role of Tregs in the 

regulation of neutrophil function and survival. Neutrophil activity is critical in several immune 

functions and has been implicated in several immunopathologies. Interestingly, most diseases 

associated with neutrophil activity have been shown to involve defective Treg function. For 

example, neutrophils are known to contribute to the progression of rheumatoid arthritis (RA) 



116 
 

(347), at the same time diminished Treg function is associated with the progression of RA (274). 

In spite of these evidences suggesting a link between exaggerated neutrophil activity and 

defective Treg function, only one study had previously looked at the ability of Tregs to regulate 

neutrophil function and survival (213).  This work therefore highlights the important cross-talk 

between neutrophils and Tregs and the catastrophic implication of diminished Treg function on 

neutrophil activity and survival. It holds implications not only for sepsis but several 

immunopathologies in which inflammation is driven by exaggerated neutrophil function. 

7.2 IMPLICATIONS 

Previous reports show that Tregs increase in patients with sepsis (231) but whether Tregs 

contribute to sepsis pathology through immunosuppression or helps to prevent excessive 

inflammation during sepsis is dogged with controversy. I report here that Tregs are protective 

during sepsis and that depletion of Tregs leads to susceptibility and mortality to non-lethal LPS 

and bacterial challenge (Fig. 3.2 B, C; Fig. 3.7). Importantly, I show that Treg therapy is able to 

rescue mice from LPS-induced inflammation (Fig. 3.4 B, C). This finding is significant and has 

implications for sepsis treatment in the clinic. Hence from my findings, it is conceivable that 

Treg therapy may be a veritable approach in sepsis treatment. Treg therapy has also been 

established in animal models of several immune-mediated inflammatory diseases like type 1 

diabetes (348) and graft-versus-host-disease (GVHD) (349). Recently, Treg therapy has found its 

application in the clinic. Di lanni and co-workers performed the first human Treg infusion 

therapy for the prevention of GVHD in patients with HLA unmatched donors in bone marrow 

transplantation (350). Similar work has also been reported by Brunstein and co-workers (351). 

The use of Treg therapy for clinical sepsis is foreseeable in the future especially in the early 

stages of sepsis when excessive inflammation is a major concern. Hence, following the diagnosis 
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of severe sepsis, a patient can be infused with autologous Tregs or with Tregs from HLA-

matched donors. 

A major finding in this work is the role of immune cells in immunopathology during LPS-driven 

inflammation. In particular, this work shows that exaggerated neutrophil activity is associated 

with poor outcome from LPS challenge. The results presented here have implications in the 

clinic for sepsis treatment. Neutrophil activity is known to be important in sepsis and has been 

proposed as a reliable biomarker for sepsis (318). The results of this work indicate that 

neutrophil activity is a potential clinical predictor of outcome during sepsis. Furthermore, it is 

conceivable that inhibition of neutrophil activity can also be a veritable approach in sepsis 

treatment as demonstrated here. Indeed, Hasan et al have already shown that targeting neutrophil 

CD44 prevented lung damage in abdominal sepsis (319). Hence, this work implicates neutrophils 

as a major contributor to sepsis in the case of diminished Treg numbers. This implies that 

neutrophil activity can be used as a marker of disease severity in sepsis and indeed in certain 

inflammatory disorders. In this regard, a clinical study investigating neutrophil function in sepsis 

survivors vs non-survivors will be essential.  Also, it will be important to determine the 

relationship between the numbers of Tregs and neutrophils in sepsis survivors vs non-survivors.  

The data presented here highlights that the suppressive nature of Tregs is beneficial during 

infection. In contrast, the suppressive function of Tregs in certain clinical conditions like cancer 

is known to be detrimental (305). In the case where Treg suppressive function is not desired, 

Treg depletion is advocated. The results of this work imply that Treg depletion in patients may 

result to susceptibility to infections.  Overall, the results presented here are of major clinical 

significance and may have implications for the clinical treatment of sepsis. 
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 7.3 FUTURE DIRECTIONS 

As stated earlier, the work presented here is a significant contribution on the role of Tregs in 

infection and immunity. However, there are certain questions that remain to be answered in this 

project which were not addressed due to time constraints. For example, this work did not address 

the mechanism by which Tregs mediate its protective activity during sepsis. In particular, I report 

here that Tregs regulate neutrophil function and survival (Figs. 5.8, 5.9, 5.10). It remains to be 

determined if Tregs regulate neutrophil function and survival in a contact dependent or contact 

independent manner. Trans-well experiments will be necessary in future to answer this question. 

If the regulation of neutrophil activity by Tregs is contact dependent, it will be imperative to 

determine the receptors by which Tregs mediate this function. If it is contact independent, what 

is the secreted protein or cytokine by which Tregs regulate neutrophil activity and survival? 

These questions will be answered in future.  

The work presented here shows that Tregs are protective in LPS driven inflammation and live 

E.coli infection. Hence this work highlights the importance of Tregs in Gram-negative 

infections. Although Gram-negative infections are the major cause of sepsis in the clinic (13), 

Gram-positive infections still pose a significant problem. Therefore it is imperative that future 

work will investigate whether depletion of Tregs will result in susceptibility to Gram-positive 

bacterial infection. It will also be important to validate the findings in this work with CLP which 

is a more clinically relevant model of sepsis. 

The results of this work also highlight some clinical studies that will be pursued in future. As I 

mentioned earlier, a clinical study investigating neutrophil function in survivors of sepsis vs 

non-survivors will be essential.  Also, it will be important to determine the relationship between 
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the numbers of Tregs and neutrophils in survivors of sepsis vs non-survivors. Finally, it will be 

important to conduct a clinical study investigating Treg therapy in patients with sepsis. The 

results of this work strongly suggest a potential benefit of Treg therapy to patients with sepsis. 

However, the potential of Treg-induced immune suppression cannot be ruled out. Hence, any 

clinical study investigating the role of Tregs in sepsis should first exclude patients that exhibit 

signs of immune suppression such as diminished lymphocyte response to antigenic stimulation. 

This will make it possible to identify a select group of patients that can benefit from Treg therapy 

in sepsis. It is hoped that my findings in conjunction with future research efforts will lead to 

better outcome for patients with sepsis.  
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There is no difference in upregulation of STAT signaling in BMDM treated with 

anti-CD25 monoclonal antibody (anti-CD25 mAb) or isotype control antibody. 

BMDM were cultured in the presence of LPS 1 ug/ml and/or anti-CD25 mAb or isotype 

control antibody for 15, 30, 60 and 120 mins respectively. Cells were lysed following 

which STAT 1 (A) and STAT 3 (B) protein expression was examined by western blot. 

Plots show relative protein expression with respect to basal loading control.    
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