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ABSTRACT

A general theory is developed for the general stable periodic
motion of an Impact-Pair and impact damper when subjected to a pre-
scribed, sinusoidally time varying external load or displacement. Any
one impact is considered instantaneous and representable by the somewhat
macroscopic coefficient of restitution. The theory is coﬁpared with
previous but sparse theoretical results and more comprehensively with
new experimental data. Agreement is found to be quite good. The
presently employed procedure for designing an impact damper seems
reasonable for constant speed mechanisms operating at or just above
their fundamental natural frequency. Similarities between various
vibroimpact mechanisms is demonstrated for specific conditions. This
procedure offers a useful means of generalising the applicability of

several vibroimpact idealisations often used in practice.
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NOMENCLATURE

maximum amplitude of absolute displacement of primary system
alone due to prescribed sinusoidal displacement or force

viscous damping constant of primary system

clearance between primary and secondary system when both
stationary

maximum amplitude of external sinusoidal force

ratio of duration between three consecutive impacts for
stable two impacts/cycle

Tinear spring stiffness of primary system in case of an impact-
damper

odd number of cycles of prescribed sinusoidal displacement or
force

mass of primary system
mass of secondary system

integer number of impacts between m and M during a periodic
unit of time TO

a matrix product [PN] [PN-1] - [P]] or [PN+] [P(N—1)+]“' [P]+]
in case of Impact-Pair and impact damper respectively

a square matrix that relates perturbation vector at time t(i+1)

to corresponding perturbations at time t. in case of an
Impact-pair !

a square matrix that relates perturbation vector immediately
after the (i+1)th impact to corresponding perturbations
immediately after the ith impact in case of an impact damper

a coefficient of restitution at the ith impact

constant coefficients of restitution due to collisions on side

1 and 2 respectively

constant coefficient of restitution when R] = R2 = R
frequency ratio, Q/w

periodicity of motion

time elapsed after the first impact



ia

Vib

or

Xib or

X
max

X1

-time elapsed between the first impact and the ith impact with

ti Zero

absolute velocity of secondary mass immediately after the
ith impact

absolute velocity of secondary mass just before the ith impact
absolute displacement of primary mass at any instant

absolute displacement of primary mass at the ith impact
absolute displacement of primary mass just after the ith

impact

absolute displacement of primary mass just before the ith
impact

maximum displacement of primary system with impacts

small perturbation in value of Xi immediately after the ith
impact

absolute velocity of primary mass just after the ith impact
absolute velocity of Primary mass just before the ith impact

small perturbation in value of Xi+

relative displacement of secondary mass with respect to primary
mass at any instant

relative displacement of secondary mass at the ith impact
relative velocity of secondary mass with respect to primary mass
absolute displacement of secondary mass at any instant

absolute displacement of secondary mass at the ith impact

small perturbation in value of Zi

absolute velocity of secondary mass

small perturbation in absolute velocity of secondary, Zi’ at
time ti .



AL, small perturbation in absolute velocity of secondary mass just
i+ . .
after the ith impact

o¥ product, Qti

% product, QTO

£ fraction of critical viscous damping

u mass ratio, m/M

w undamped natural circular frequency of primary system alone
Q circular frequency of excitation

T phase angle (initially unknown) of presumed first impact with

respect to prescribed displacement or force

o the ratio, 2A/d

é%—oraderivative with respect to time, t superscript
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SYMBOLS USED GENERALLY IN FIGURES FOR VARIOUS STABILITY ZONES :

two equispaced impacts/three cycles of the external force or

prescribed displacement*

two equispaced jmpacts/cycle

Il B

o0—

[} (-
§ two unequispaced impacts/cycle

B

A 7\
three impacts/cycle
A .

|

four impacts/cycle

§ five impacts/cycle

Symbols employed solely when the coefficients of restitution are unequal
i.e. R, #R
1 2

& one impact on steel and many impacts on tape/cycle

5
%% two impacts on steel and many impacts on tape/cycle
2>-

.(:)_

+It will be understood that the subsequent abbreviation of a cycle
infers implicitly a cycle either of the external force or thé

prescribed displacement.



CHAPTER 1

INTRODUCTION

An impact arises nofma]]y from a collision of masses which
produces finite (discontinuous) changes in their velocities over an
extremely small duration. Impacts occur in moving machines and
mechanisms largely as a result of c]earaﬁces between components.

Then high transient stress and noise levels may be produced which

may result in accelerated wear, malfunctioning or even failure [9-29].
On the other hand, impact interactions may be employed advantageously

to suppress or amplify the displacement of a usually resonant vibrating
system. Vibroimpact devices have been used, for example, to attenuate
the oscillations of radar antennae, machine tools, beams and printing
machines [49-68] and to exaggerate vibrations associated with pile

driving and the crushing or conveying of materials [46-48, 69-75].

The impact process is complex at the microscopic level and
depends at Teast upon the approach velocities, contact geometries
and duration, normally Tocal plasticity effects and external loads
[34-43]. One of the simplest and widely used macroscopic idealisations
stems from the concept of the coefficient of restitution and the
assumption of an instantaneous contact [1-4, 46-48]. The coefficient
gives the ratio of the relative velocity just after and before a

collision of two bodies as a constant. More sophisticated representations



of contact surfaces to include linear [10] or nonlinear compliance
[19, 20] have been employed too. However, the solution of the ensuing
equations of motion usually requires analog or digital computation

which can be very time consuming [20, 26].

The traditional éoefficient of restitution and instantaneous
interaction approach will be adopted here to evaluate the general
behaviour of two periodically colliding bodies. One of these bodies
oscillates with either a prescribed sinusoidal displacement or in
response to a given sinusoidal external force. TIts displacement
amplitude is sufficiently large to overcome the clearance between the
two bodies and ensure régu]ar contact with the second, otherwise free
body. Equations of motion will be formulated conventionally by using
the conservation of Tinear momentum and by applying periodicity instead
of initial conditions [30-33, 52-55]. Transient motions therefore will
be disregarded. More universal solutions than generated hitherto [1-4,
28-33, 49-59] will be determined by assuming more general numbers and
sequences of impacts in some repetition period..~The}repetition period
will be related, as customarily, to the corresponding, not necessarily
integer, number of cycles performed during this time by either the
prescribed displacement or external force. Solutions will be categorized
for convenience by the number of impacts repeated every specified number
of cycles of the prescribed displacement or force. Reference to the
prescribed displacement or force will be omitted when self-evident

although, in any case, the two situations will be shown interchangeable



under certain conditions.

A vibroimpact system undergoing periodic motion is classified
conventionally as asymptotically stable or unstable. The system is
asymptotically stable if it returns eventually to the original perijodic
motion after a small perturbation [1, 53]. Cohsequent]y,a]]
characteristics Tike the amplitude and form of a stable periodic motion
should not ultimately be altered by any small disturbance. Several
difficulties relating to the practical implementation of this theoretical
definition can be envisaged easily. An arbitrarily Tong if not virtually
infinite time is permitted in principle to regain the original periodic
motion. This is obviously impractical experimentally especially when,-
in any eventuality, almost impossible to control draughts and ektraneous
building vibrations happen spasmodically. Additionally, a reafﬁw & |
disturbance's fulfillment of the theoretical definition of “"small"
cannot be guaranteed presently from a priori knowledge of the vibro-
impact system. A less apparent trouble relates to the suggg;ﬁjon of

previous?researcgé};m[1, 59] that any one theoretical solution may not be
necessar;;ngé{ddégiw{aé Aisrééardéd‘tréﬁsient component presumably

may become important under these circumstances. If so, extraneous
experimental disturbances when viewed as transitional “"initial" conditions
to the subsequent transient motions, take greater significance. These

vexatious questions will be discussed later and expedient compromises

will be sought in lieu of difficult to achieve, complete answers.



A completely different theoretical approach [3], used possibly
with a non-smooth transformation [79, 801, employs time averaging.
Mean values are assumed much greater than the variations allowed in
the vibroimpact system's parameters over the averaging time. The
ensuing formulation has the advantage of not being based upon an assumed
and uncertainly applicable number.and sequence of impacts. On the other
hand an assurance of stability,which is important practically when
predictable machinery performance is needed [1, 4, 70-74], 1is not given.
This deficiency coupled with applications otherwise more restricted by
the requirement of small variations detered further investigations with

the averaging technique.

Two basic types of vibroimpact systems and their physical
derivatives will be considered in detail. The first type called
"Impact-Pairs" are those systems which are composed ideally of rigid
bodies alone. The second category consists of vibroimpact systems which
not only have masses but some resilience and maybe damping too.

Systems 1in this latter group are often termed "impact dampers". These
two types of vibroimpact systems have tended historically to be viewed
in isolation. This will be shown unnecessary under certain specified

circumstances.



CHAPTER 2

VIBROIMPACT OF AN IMPACT-PAIR

2.1 Introduction

Clearances occur commonly iﬁ kinematic pairs of mechanisms
such as linkages, gear trains, pinned connections, joints and automatic
control systems [9—33].*' Théy may arise from manufacturing
tolerances, wear, Tubrication spaces, backlash or may be ihcofpérated
intentionally to accommodate thermal expansion. The épefégggﬁmbf
mechanisms with clearances may produce high but transient impact
stresses which may lead to hammer hardening, scoring, pitting or wear
of intermittently contacting surfaces and high noise levels [10, 11,
14, 17, 21-24, 447. The Tife-reducing and noisy phenomenon of “knock
and piston slap in an internal combustion engine, for example, arises
from clearances in bearings [13, 25]. Although many uncertainties
exist, intuition suggests that wear and noise increase generally with
the rate, number and severity of impacts. Therefore it is quite
important from a practical viewpoint to relate these characteristics
to the external Tloads and structural properties like the masses,

geometry, clearance and coefficient of restitution.

Idealised models of typical mechanisms with clearances are
illustrated in Figure 2.1. The models represent an oscillating four

bar Tinkage, a gear assembly and a pin connection with a clearance.



Clearance

Expanded View

(a) Four bar mechanism with clearance.

Clearance
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Expanded View
(b) Gear assembly with backlash.
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(c) Pin connection with clearance.

Figure 2.1. Mechanisms with clearances.



Motions of rigid members A and B are identical when the clearance is
zero but can differ substantially otherwise. This latter situation
can create practical problems like dynamic drift, high frequency

oscillations or mismeasurement if member B with clearance at Joint C

is connected to the measuring }ﬁ&%eéfé;wo% séme instruﬁent t], é; é;
26-29]. A detailed study of the dynamics of joint C is required to
understand and reduce these detrimental effects. In many cases such
as slider-crank mechanisms, pin connections in linkages and fuel
density meters, the displacement of member A varies sinusoidally in
time whilst the motion of B is largely uniaxially. - Linkages are
normally considered rigid at low speeds of»fétat%on. In éuch cases thg
significant features of joints C in the vibroimpact meéﬁaﬁ{;ms'ére
retained by the idealised model shown in Figure 2.2. In this figure
mass m and slotted mass M, with a prescribed sihusoida] displacement,
represent members B and A respectively. The model shown in Figure 2.2

is called traditionally an 'Impact Pair'.

While studying general mechanisms with clearances, both :
Kobrinskii [1, 2, 31, 32] and Stepanenko [33] observed that during
ko k=1, 3, 5.... periods of the prescribed displacement, successive
impacts occur on alternate sides of the clearance. The prescribed
displacement has been shown to be analogous in these cases to a
prescribed external force on the Impact-Pair [2]. Kobrinskii et al
[31] obtained an ané]ytica]so]ution by using the concept of the
coefficient of restitution, conservation of Tinear momentum and

applying periodicity instead of initial conditions. It was found



A

" Prescribed Dis'plocemem‘, A sin{t

Figure 2.2. Simplest model of a mechanism with clearance.



that vibroimpact systems may have nonunique or multivalued solutions
[1]. Kobrinskii et al [32] checked the asymptotic stability for small
perturbations by using a concept analogous to the propagation of errors
in difference equations. The problem of stahility will be considered

in detail later.

Dubowsky et al [10, 11] and Veluswami et al [19, 20] extended
Kobrinskii's model by including linear and nonlinear surface
comp]ianceg to explain multi-impact regions observed experimentally.
The major advantage of this alternative approach to using the concept
of a restitution coefficient is that the contact time, stresses,
accelerations and surface deformations during an impact can be determined
more directly. The direct analogue or digital solution of the resulting
differential equations however can often'be very time consuming
[20, 26]. These direct techniques a]ggAhave the extra disadvantage,
shared with experimental observations, that a large number of cycles
of a given periodic motion may have to be evaluated visually before
a still often uncertain decision can be reached regarding stability.
On the éther hand, all theoretical approaches are restricted by the

fact that the existence and uniqueness of a periodic solution has

never been proved [1, 4, 53].

The contact between two colliding objects like a steel ball or
bar on a steel plate or rigid base, typically lasts from 50 to 300 u

secs [10, 11, 19, 20, 35]. Such durations are negligible compared
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with the usual characteristic times of dynamic engineering systems
operating at speeds lower than 3000 rpm, say. Under such circumstances,
the somewhat macroscopic concept of a restitution coefficient seems

reasonab]e Coeff1c1ents of rest1tut1on of 1mpact1no obJects made from

hard mater1als 1ike metal are known to be fairly 1nsens1t1ve to the1r

relative approach velocity [34 38]. Therefore the often employed first
approximation of a constant coefficient of restitution for two given
contact surfaces seems plausible. Consequently the more traditional
approach will be taken here of simply describing a collision by some
equivalent constant coefficient even though the impact process may be

much more complicated [34, 40-437.

The only available analytical solution involves an Impact-Pair
undergoing two symmetric impacts/odd number of cycles of the external
force or prescribed displacement where al] impacts have the same constant
restitution coefficient [2, 31]. An extension to two unsymmetric
impacts and Lnxequaj_ coefficients will be developed here. These
theories however still do not cover more general periodic motions
observed in practice to have more than two impacts in a periodic unit
[1, 10, 11, 19, 20]. Consequently a computer orientated techn1que

e e ey

based upon the analytical approach of Kobrinskii [1] and Masr1 [59]

will be presented to better accommodate such situations. The effect
of commonly occurring fluctuations in the coefficients of restitution
at different contact surfaces [1] will be investigated too. Results

will be checked as far as possible with available data and additional
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information to be determined from a specially constructed experimental

simulation.

2.2 Theoretical Periodic Motions of an Impact-Pair

The general periodic motion of an Impact-Pair will be formulated
when the absolute displacement of the primary mass, M, is prescribed.
The amplitude A of this prescribed displacement is sufficient to ensure
N impacts happening between M and the secondary mass, m, during the

periodic unit of time Toe

The idealised model of an Impact-Pair with clearance d between
Mand m is shown again for convenience in Figure 2.3. Although the
proposed development is valid for varying coefficients of restitution
Ri where 0 < Ry <1, 1 =1, 2--N, each R, will be restricted to a
constant and known value R] or R2. The R1 and R2 are associated with
every collision at the sideslabelled 1 and 2, respectively, in Figure
2.3. The start of time can be shifted arbitrarily to the instant of
any one impact after the appropriate periodic motion has been
established. This impact is numbered 1 in Figure 2.4(b) and can be
seen from Figure 2.4(a) to have a phase t relative to the prescribed
displacement. The integer N impacts described by the Yi in Figure
2.4(c) occur before the sequence is repeated exactly after time TO.
The N, T, and the distribution in time of the impacts (i.e. ts tys

--- and tN in Figure 2.4(b) are assumed known.



Prescribed displacement
of primary mass, X

Value of Y. at
impact

Figure 2.3. Dynamic model of an Impact-Pair.

A sin (Qt+T)
’ /\
—A i
Q Start of time
(a) Prescribed sinusoidal displacement.
-»]T/Q.l@— Penoducny of motion, To—bl
H | —— | i t
I I 2 3 i N N+I—-—- Impact Number
t iy i3 t, tn Yy Timeof Occurrence
(b) Distribution in time of the N impacts.
d| Y Y, Y (N+1), identical fo ¥,
o] : : |
a1 Ny
Yo Y3 N
(c) Presumed sequence of impacts.
Figure 2.4. General motion of N impacts happéning during period To.

~—
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The absolute displacement of M at time t is

X = A sin (Qt + 1) (2.1)

and the time variation of X is implied.

If impacts between M and m occur at time tes i=1, 2--N with

t] zero, then the absolute displacement of M at these instants is

given by
x]t=ti = 'xi =Asin (o, + 1), i =1, 2,--N (2.2)
where
a; = Oty =1, 2,---N . (2.3)
d

Impacts occur only when the relative distance Y between m and M is + >
for a collision on the right side of M in Figure 2.3 and - & for a

collision on the left. Hence

= y - ) = _q.. 1 = ————
Vi=Z, =X =t5,4=1,2,-N (2.4)

at impacts because Figure 2.3 indicates that 7 is the absolute displacement
of m. A1l the relative displacements at impacts Yi’ i=1, 2,--N, are
presumed known. The velocity of m remains constant between impacts

because no external forces then act upon it. Consequently the velocity,
Via; of m between the i and (i + 1) impacts is identical to its velocity

after the ith impact. Therefore V., 1s simply the ratio of the absolute



14

distance travelled by m between the i and (i + 1) impacts and the time

elapsed between these impacts. Mathematically,

e

X s, i=1, 2,--N . (2.5)
o than T

Substituting equation (2.3) and (2.4) into equation (2.5) gives

Q[X . + Y . - X..—..Y']
v, = (i+1) (G+1) ™ o i=1, 2,--N . (2.6)

1a “Gi+1) T %

Similarly the velocity, Vib’ of m between the (i - 1) and ith impacts

equals

po Y - XG Y
ib a o

i (i-1)

Li= T, 2N (2.7)

The basic definition of the coefficients of restitition are [1]

X, -V,
Ry = - 2—1 i =1, 2, (2.8)
%ib = Vib

where Xib and Xia are the velocities of the primary mass immediately
before and after the typical i th impact, respectively. However the
primary mass' displacement and its time derivatives are prescribed

to be continuous regardless of the collisions. Therefore
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o
I
><e

_d g oes
1

or

Xib = Xia

D<o

I

A Qcos (ai +1),i=1, 2,--N . (2.9)

Equation (2.9) can be combined with equation (2.8) to produce

Ri = - s 1 =1, 2,--N (2.10)
A Qcos (ai + 1) - Vip

or, alternatively,

V'ia = - R1V1b + (] + R'l) A Qcos (O(,_l + "[)’ i=1, 2,--N . (2.'”)

By employing equation (2.6) and (2.7), equation (2.11) can be rewritten

as

WX emy P Vaaeny = % 0 Y]

= (1 + Ri) A Qcos (ai + )
Hi+l) TN

e G Y Xy - Y]
1

E i= ]9 2;"'N . (2.]2)
% T %i-1)

Now the sequence of N impacts is repeated every QTO or, from equation

(2.3), o, so that
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= :R_
o 1

i+% > Aaan) T X R

07 K1) TRy Sty T ooyt % (2.13)

<
i

Consequent]y by us1ng a( +N- ]), a(1+N) and X( 4N~ ]) 1nstead of a( 1)

and X( -1y respectively, and expanding A s1n(a +r) and A cos(ai+r),

equation (2.3) and (2.11) can be man1pu1atéd into

Xi - sinai A cost - c05ai ‘A sint =0, i=1, 2,--N (2.14)
and
‘ h
__)_(E.l.)ﬁ_ + X R'i - —J-
R e B R R I
. Y(i+1)-Y(4).
X(i+-N- 1) [ 1-(1+R,)cosa. <A cost(= - [a - ]
SALVRRCR ER) b (i+1)-%,
Rl (1+N) (1+N 1)
+(1+R,) sing,-A sint G

) i=1,2,--N . (2.15)

These last two, most general relationships form 2N linear simultaneous
equations when all the i are substituted. There are (N + 2) unknowns
1f the periodicity and timing between impacts is assumed and all passive
components 1ike m, M and d are given. The unknowns are the N values

of Xi’ the amplitude of the prescribed displacement, A, and the phase
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angle, T. An exact, closed form solution is possible only when the
number of equations and unknowns coincide (i.e. 2 =N+ 2 or N = 2).
Otherwise a numerical technique 1like the least square fit method [7]

has to be employed.

Further advancement of an analytical nature requires at Teast
an assumption of the motion's periodicity, To The standard assumption
will be made that two impacts happen every k, k =1, 3, 5,---, cycles
of the prescribed displacement of the primary mass, M. Successive
impacts occur on alternate sides of the slot within this mass. For
convenience suppose that the first impact is on the left-hand surface
of M labelled 1 in Figure 2.3. Then the subsequent impact is on the
right-hand surface, 2. The corresponding constant coefficients of
restitution are R] and R2, respectively, where Ry and R2 may or may not

be equal.

The periodicity condition leads immediately to

0y = QTO =2k . (2.16)

Equation (2.3) takes the particular form

a; = 0 and Gy = 0, and 0 < a, < 20k . (2.17)

2

On the other hand, equation (2.4) still gives

- d . d
Y1 = - §-and Y2 =5 . (2.18)
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Then equation (2.14) and (2.15) can be shown, by using the last three

equations, to take the special form

X] -~ Asint =0

(2.19)
X2 - sinoc2 A cost - COSaiy A sint =0
and
Ly - X] - L]-X2 - (1 + R]) A cost = dL1
L, -X] - L2-X2 - (1 + RZ) cosa, « A cost (2.20)
=dL2
+ (1 + R2) sinaz-A sint
The two coefficients L] and L2 depend upon a, and can be expressed as
R R
1 1 1 2
L= [—5——--"Jand L, = [~ - —=] . (2.21)
1 2mk - o, o, 2 27K, - G oy
Variables Xy and X2 can be eliminated from the two equations numbered
(2.20) by using equations (2.19). Thfs procedure produces the two
equations
[1 - COSaz] L]eAsinT - [L] sinaz + (1 + R]X}ACOST = dL, (2.22a)

and
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[L2(1 - COSaZ) + (1 + Rz) sinrzjoAsinT
dL

2 ° (2.22b)
+ [:LZSinaz - (1 + R2) c05a2]-Ac05T

When the impact timing sequence parameter Gy is known in addition
to To’ L] and L2 can be determined from equation (2.21) given k so

that the only remaining unknowns are A and T.

The solutions of equation (2.22a) and (2.22b) fall into two
categories depending whether these equations are 1ndepéndent or
essentially identical. This last situation arises when o equals one-
half the periodicity parameter oy given by equation (2.16) and R] is
the same as RZ’ The physical interpretation of the requirement for
0 is that the durations between any three consecutive impacts are
equal. Then the impacts will be termed "equispaced". (Conversely
analogous unequal durations will be called “unequispaced". If no
adjective is used in conjunction with impacts/cycle then unequispaced
is implied.) Therefore under the special conditions

Oy = Tk and Ry =R, =R (2.23)

both equation (2.22a) and (2.22b) take the simpler form

1+ R)

. K - d
sint + 7?-(7—:77$ cost = or . (2.24)
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Then it is more convenient to assume A and compute T by manipulating

the Tast equation into

d , 7k 1T+ R ,1+ R? 72k2 d %k
ot % R ah - 1= (5

sint =

2 -l “.‘ZR 2]2'7" 4 (2.25)
1 +R K
=z 7 *7

Equation (2.24) and (2.25) coincide with the equations given in reference
2 specifically for two equispaced impacts/k cycles. It is shown in
Appendix A1 that a necessary condition for two equispaced impacts/k

cycles (k = 1, 3, 5,---) to occur is for Ry to equal R,.
The second more generally applicable category exists if

ar # k. (2.26)

Then equation (2.22a) and (2.22b) are two independent equations in the

two unknowns A and t. It can be shown straightforwardly that

2 24% N
A= [L3 + L4]
with | 4 (2.27)
L L
. _ 3 - _4
sint =R and cosTt T J
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Coefficients L3 and L4 can be expressed as

 +‘[L] sina, + (1 + R])] dL, + dF] [-Lzsinaz.- (1+-R2) c05a2]

Ly = S
and .
) [1 - c05a2] dL]L2 - [L2 (1 - c05a2) +.(1rkR2) s1na2],dL]
Ly = ~ 3 (2.28)
where
S=11- c05a2] [-Lzsina2 - (]4-R2) c05a2] L] + [L] sinaz
+ (1 + R])] [L2 (1 - c05a2) + (1 + R2) sinuz] . (2.29) -

These coefficients can be enumerated given o, distinct from nk (kK = 1,

3, 5,---) and A and then T can be determined from equation (2.27).

Analytical solutions have been given in principle for general
periodic motions having two impacts/k cycles of the prescribed dis-
placement of the primary mass. The k can be any odd integer although
1t is restricted normally in practice to the two 1owest. Impacts may
be equispaced or unéquispaced in time. A necessary condition for
_equispaced impacts has been demonstrated for the first time to be
equal coefficients of restitution, R] and R2. Then the general analytical
solution degenerates into an existing, more specific one, equation
(2.25). The closed form solution (2.27) developed for two unequispaced

impacts/k cycles however is novel.
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Only computationally orientated methods are feasible when the
number of impatts 1s greater than two in any periodic unit. This
situation arises because the number of equations exceeds the number of
unknowns in relationship (2.14) and (2.15). even after the periodicity
and timing of impacts is assumed. Then a numerical solution was
computed based upon the Teast square subroutine LLSQF of the IMSL
Library [45]. Values of the unknowns were finalised when the square of
the difference, .€*, between the left- and right-hand sides of relation
(2.14) and (2.15) was truly minimised and € was Tess than 3% of these
values. Truncation errors were reduced by using double precision
arithmetic throughout. Numerical calculations were performed on an

AMDAHL V7 digital computer.

2.2.1 Stability of Periodic Motion

A vibroimpact system is asymptotically stable if it returns
eventually to the original periodic motion after a small perturbation
[1, 53]. Substantial information of a quantitative nature is sadly
lacking regarding the return time and the definition of small. In
this work the first variable will be fixed somewhat arbitrarily
and the Tikely magnitude of the second will be investigated
experimentally. Previous theoretical and experimental work [1,59]
indicates that multivalued solutions occur for given parameters
which may or may not all be stable. If both stable and unstable

periodic motions appear simultaneously feasible, then a vibroimpact
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system seems inclined to vibrate in the stable mode [1, 55, 65]. The
need for continued stability is especially important in forging,
material conveying and ploughing where predictable machinery performance

is required regardless of parameter changes [1, 4, 70-747.

The asymptotic stability of any periodic motion can be determined
by generalizing the results obtained Tndependently by Kobrinskii [1, 2]
and Masri [53]. Their approach is analogous to evaluating the
propagation of small errors in difference equations. It basically
relates the effect of perturbing the absolute displacement Z and
velocity Z of the secondary mass at the time t1 of the chosen first
contact to corresponding changes, AZ; and AZi, at later contact instants
ti’ i =2, 3,---. These relationships were developed in reference 1 and
59 by using the equations of motion, conservation of linear momentum
and the definition of the coefficient of restitution. The initial

perturbation was considered "small" if corresponding products are

negligible compared to all terms typically involving AZi and Aii'
Then it was shown that

AZyq

= [P] . (2.30a)
N+T

where

[P1 = [PyJ [Py_41 --- [P,] (2.30b)
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and the representative 2 x 2 component matrix [Pi] relates the changes

at impact time ti+] to those at ti' Elements Pi (p, q), p and q equal

one or two, of [Pi] are

Pi(T. 1)=-Ry 1)

Pi(15:2) = = Ris gy Loggpqy - o51/0

il

P.(2, 1)

i [1+ R('i'i‘])] he QZ/G ¢

and

Pi(2:2) = = Reg gy + D1+ Ry, gy IoHeqe Logs 49y - ;176 |

where
H=A5in [a(_i+-|)+'1—] )
and v >
QX + Y. - X. - Y.
.- [ (i+1) (i+1) i i -Amms[a(¥”+T]
L "

when the nomenclature of the previous section is used. Terms Tike

Ri in equation (2.31a) were constant previously but the coefficient
of restitution can be variable now. The periodic motion is asymptot-
ically stable if and only if all the modulii of the eigenvalues of

matrix [P] given by equation (2.30b) are strictly less than unity

(2.37a)

(2.31b)
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[53, 59]. Double precision arithmetic was used in conjunction with
the readily available subroutine EIGRF of the IMSL Tibrary to compute
the eigenvalues of [P] by employing Hessenberg's method [ 45 , 8].

Computer programmes are listed in reference 82.

The theory outlined in this and the previous section will be
used to review various stable periodic motions of particular examples
of Impact-Pairs considered less comprehensively elsewhere. Results will

be given in the form of various stability zones each shown as a hatched
area bounded by two curves with a common symbol. Any one curve will be
called a stability boundary and the modulii of the maximum eigenvalues
are unity there. All points within two associated boundaries are

stable and have an identical form of periodic motion. This form will

be denoted by the number of impacts happening in a usually different

number of cycles of the prescribed displacement.

2.2.2 Theoretical Results

Non-uniform coefficients of restitution can be expected in
practice because small differences occur even in carefully conducted
laboratory experiments [1]. The Tikely practical consequences of such
differences will be assessed by using equal (Rj =R, = R) and unequal

(R] F RZ) coefficients of restitution in the previously detailed theory.
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2.2.2.1 Identical Coefficients of Restitution -

The governing equations of motion are equations (2.14) and
(2.15) when the coefficients of restitution both equal R. Terms Tike
(Y(1+1)— Yi) in the latter equation can be seen from equation (2.4) to
be a muTtiple of d. A simple division by d would non-dimensionalise
both equations leaving the motion to be described in terms of A/d
(or, more conventionally ¢/2) and R for a given a; and T or pattern of
impacts. The equations and, hence, their solutions are independent of

both masses m and M.

Theoretical, asymptotically stable zones are presented in
Figure 2.5 for two equispaced and two unequispaced impacts per one and
three cycles. The stable three, four and five impacts/cycle zones are
given too. Zones of two unequispaced and three impacts/cycle can be
seen to overlap for all R whilst most zones overlap another one at
values of R below about 0.2. This indicates that any one theoretical
solution may not be unique. Then the appropriate solution under such
circumstances probably depends upon the particulars of the initial
conditions. A similar observation has been made previously in theoretical
studies of Toaded Impact-Pairs [1], vibrohammers and vibrotampers [4, 46].

Clarification of the phenomenon will be sought experimentally.

The widely studied two equispaced impacts/cycle stability zone
occurs predominantly below a unity o. Its height grows slightly with

increasing R. Other zones however do not necessarily have the same
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Figure 2.5. Theoretical stability zones of an Impact-Pair
with identical coefficients of restitution, R.
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tendency. The height of the two unequispaced impact/cycle zone, for
example, decreases with larger R. Therefore it cannot be assumed
automatically that a characteristic of the two equispaced impacts/cycle
zone adequately reflects the corresponding property of another stability
zone. In addition, the heights of the three and higher numbered
impacts/cycle zones are larger than both the two impacts/cycle zones

in the commonfy occurring range of 0.4 < R < 1.0. Consequently there
appears to be a greater chance of higher number impact sequences for o

or ratios of A to d greater than one.

The variation of the maximum absolute eigenvalue of matrix P in
equation (2.30b) is shown for completeness within the two unequispaced
impacts/cycle stability zone in Figure 2.6. Various ¢ and representative
values of R are employed. The maximum is unity on the two stability
boundaries and diminishes invariably with greater penetration of the
zone's interior. The minimum attained for the maximum absotlute
eigenvalue is presented in Figure 2.7 for more comprehensive values
of R. It appears to vary as Rz. However the ranaé of o over which the

minimum holds seems, from Figure 2.6, to decrease with R.

Figure 2.8 shows the ratio, I, of the durations between three
consecutive impacts for stable, two unequispaced and also two equi-
spaced impacts/cycle motion. Three intermediate values of R are
empToyed which Teads to o being between 0 and 1.5. The vertical line

I =1 naturally corresponds to equal durations or equispaced impacts
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O 2 equispaced impacts /cycle

B 2 unequispaced impacts / cycle

R=0.4
R=0.6 )
v 5
o

Figure 2.8.

I

Ratio of durations between three consecutive impacts,
I, for stable two impacts/cycle. Coefficients of
restitution are identical and given by R.
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regardless of R. However the value of I increases with o for the
unequispaced impacts (I # 1) in a similar fashion for all three remain-

ing curves.

Repeated collisions of an Impact-Pair will produce wear and,
hence, a changing clearance. Figure 2.8 may be used to find the

instantaneous clearance without dismantling the pair if:

1) the amplitude A of the prescribed displacement of the primary mass
is controllable and measurable; and
2) the initially equal coefficients of restitution are not altered

by the repeated collisions.

The first requirement may be reasonable when the cyclical impact motion
can be sustained noticeably for slow run-ups or run-downs of motor
driven systems. The second assumption is still questionable and will

be commented upon Tater.

Amplitude A has to be controlled such that I remains constant
throughout and, for convenience, the easily observed, two unequispaced
impacts/cycle motion is always obtained. Then the previous assumptions

ensure that o is invariable, i.e.

%new - 9o1d (2.32)

where the subscripts are self-explanatory. The o has been defined

as 2A/d so that
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A
_ ‘new
dnew - Ao]d do]d

(2.33)

from equation (2.32) after cross-multiplication. Both subscripted
values of A can be measured so that the new clearance, dnew’ can be
calculated by using equation (2.33). The initial clearance, do]d’ is

supplied normally by the machinery manufacturer.

2.2.2.2 Different Coefficients of Restitution

Corresponding figures to Figure 2.5 and 2.8 obtained for
normally different rather than equal coefficients of restitution R]
and R2 are shown as Figure 2.9 and 2.10, respectively. The R] is a
constant 0.75 in the latter figures because this value is fairly
representative of metals like steel. Theoretical stability zones are
limited in Figure 2.9 to two unequispaced and three impacts/cycle
for greater clarity. Two zones, one labelled ABCDE and the other
FGHDE, with region CDEF in common are shown for the case of three
impacts/cycle. The three impacts of stability zone ABCDE are composed
of two on side 1 and one impact on side 2 of the primary mass. These
same numbers are associated with the reverse sides for zone FGHDE.
AT1 the stability boundaries were determined for R, incremented by
0.05 in the range from 0.05 to 1.00. A few only of the ensuing
results are shown'exp1icit1y in Figure 2.9. Also only a selected
representative sample of these R2 values was utilised in the
computation of Figure 2.10. The vertical Tine I = 1 in this last

figure indicates again that impacts are equispaced. Figure 2.10
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therefore substantiates that equispaced impacts require at least R]

and R, equal. Similarly the stability zone for two equispaced impacts/
cycle can be shown only as the Towest dashed Tine at R2 equal 0.75

(R] a constant 0.75) in Figure 2.9. The other dashed lines at R,

equal 0.75 indicate the range of the remaining two pertinent stability

zones taken from Figure 2.5.

Figure 2.9 indicates that a given stability zone is neither
uniform in height nor horizontal with R] constant and R2 increasing.
fhe space between the two extreme zones appears largest at the left of
this figure where the difference between R1 and R2 is greatest. It
naturally tends to decrease as R2 approaches the value of R] and
subsequently grows again when R2 increases beyond R]. Except for
the common upper three impacts/cycle stability boundary, the slopes
of all boundaries are fairly smooth and reasonably horizontal in the
area near R2 equal R]. Despite the more rapidly changingvupper boundary,
the height of both three impacts/cycle zones does not vary dramatically
in this area for fluctuations of around 5% in RZ‘ Similar R2
fluctuations also do not seem to significantly affect ratio I in

Figure 2.710. A variation of around 5% is typical of careful practice

at fixed operat1ng cond1t1ons [1, 35, 36, 55] Such var1at1ons
“wou1d appear not to part1cu1ar1y change the character of

two o of the 1ower 1mpact numbered stab1]1ty zones. Variations
progressively greater than 5% however should be expected to become

increasingly more important.
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2.0
O 2 Equispaced impacts/cycle
B 2 Unequispaced impacts /cycle
1.5 -
1.O -
0.5 -
] |
0.0
o) [ 2 3

Figure 2.70.

Ratio I of durations between three consecutive
impacts for two impacts/cycle. The R, is a
constant 0.75 and differs normally from the
various RZ'
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Theoretical predictions will be checked next by comparing them
with experimental data. Detajls of the apparatus, built as far as
Ppractical to satisfy the theoretical assumptions, will be presented

in the following section.

2.3 Details of the Experimental Apparatus and Instrumentation

The experimental apparatus is displayed in Figure 2.11 with
important details of the masses shown in Figure 2.12. The primary
mass was made of hardened die tool steel to minimise possible
indentations from repeated impacts. A rectangular slot was machined
inside the steel taking care that surfaces with which the secondary
masses collide were flat, parallel and 0.7000 + 0.0005 inch apart.

This primary mass was fixed essentially rigidly to the e]eg;rggegpefje_

shaker by using a Tight, non- magnet1c a]um1n1um adapter. -

- _ ;
e e e e T TS e

s e —— S—

lemammt1csta1n1ess steel and brass secondary

masses were employed primarily to observe the effect of various
coefficients of restitution. However, an additional secondary mass
was made from a magnetic sensitive, mild steel to assess the effect

of the shaker's magnetic field on the motion of the masses.

ATl secondary masses were machined as integral dumbells with a
spherical 1ike contact surface. Consequently a secondary mass is
always contacted at some point even if it rotates about vertical AA'
in Figure 2.12(b) or, to a less extent, about a perpendicular axis.

This mass was suspended virtually frictionless and 34.25 + 0.05 ins.



(9) Support for capacitance probe

!

Figure 2.11.

Key:

(1) Electromagnetic shaker,
Ling Model 400 Series 192

(2) Hewlett-Packard Function
Generator 3110B

(3) Amplifier Ling Model
PA200

(4) Aluminum adapter

(5) Secondary mass made from

v either steel or brass

(6) Slotted primary mass of
die tool steel

(7) Bruel & Kjaer accelero-
meter Type 4333

(8) Wayne Kerr capac1tance transducer :

(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)

Detai]s of the experimental apparatus and instrumentation.

Two-Tight cotton threads

Solid frame

Wayne-Kerr Feedback amplifier TE MK II

Hewlett-Packard mu1timeter 5306A

Tektronix double beam storage
oscilloscope 7313

Adjusting mechanism
Cold rolled plate

Heavy concrete block
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(a) Primary mass of die tool steel RC 62.

-2 56 Tapped hole

RN

) orso

l
LA

(b) Secondary mass

0.6895%0.0005
Spherical Surface

Cross Section A— A'

< 25.0 *0.1 -
=~ 3 .0X01 — n
Frame —11.500= }/—Slots in frame 0.25x7
Thread length — T
adjustment r_‘ M
; ! Oy
2.0%0.l I ,C.J, i : 1.000
¥ % I D=
3 \~ T 1T~ T
Hole for thread LMA\ Channel Section

4-0.25UNC Tapped holes

(c) Adjusting mechanism

All dimensions are in inches and those tolerances not specified
are £0.00!I inches. »

Figure 2.12. Details of the primary and secondary masses and adjusting
mechanism.
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from a solid frame, item 11 in Figure 2.11, by two Tight cotton strings.
These strings were arranged so that the angle between them (38.5° + 0.5°)
‘was maximised to prevent rotation, 6, about the vertical. It was found
from preliminary experiments that the greatest 6 then occurring (at the
largest prescribed displacements) was reduced from about 90° to 15°.

By also employing the dumbell yather than a spherical.secondary’mass.
Fotations about other axes were substantially less. Therefqre the

experimental secondary mass simulated the free, horizontal

unidirectional movement assumed theoretically. Possible superfluous
effects of varying contact geometries and, hence, coefficients of

restitution were minimised.

The adjusting mechanism high1ighted'in Figure 2.11 enabled the
initial stationary position'of the secondary mass to be modified in
order to evaluate the influence, if any, of the initial conditions on
the final periodic motion. This mechanism, like the capacitance trans-
ducer, item 8 in Figure 2.11, was supported by a solid connection from
a level, horizontal plate, 16, seated on the very heavy concrete block,
17. The electromagnetic shaker, 1, was situated also on the horizontal
plate. Consequently,any extraneous building vibrations should Tikely
affect all major mechanical components equally so that thefpgééé;%bedr
absolute displacement of the primary mass can be measured Wffhkthé“ ‘
capacitance transducer, 8. The additional precaution of performing
all experiments during quiet nights was taken to further reduce

extraneous events. Impacts were monitored most easily by displaying

the signal from the accelerometer, numbered 7 in Figure 2.11, on the
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storage oscilloscope, item 14. A1l the equipment was calibrated accord-
ing to manufacturer's instructions. The accuracy of any one instrument

was generally within + 0.5%.

The prescribed frequency and amplitude of the sinusoidal dis-
placement of the primary mass was generated by controlling carefully
the motion of the rigidly coupled shaker using a function generator and
amplifier. Sinusoids were varied in frequency from 10 to 50 Hz in steps

of 5 Hz. This frequency range was well below the 1nd1v1dua1 f1rst mode

natural frequencies of the secondary mass alone and the pr1mary

mass system, respectively about 10 kHz and 15 kHz. It was a]so above
the fundamental pendulum frequency, 0.53 + 0.02 Hz., of the strung
secondary mass. Therefore the secondary pendulum behaved essentially
as a mass [20] which, like the primary, reasonably satisfied the

theoretical assumption of rigidity.

Prescr1bed d1sp1acement amp]1tude of the pr1mary mass was restr1cted

prac£1ca1]y to less than about 0.05 in. by the limited range of the
capacitance transducer. On the other hand the secondary mass began
noticeably to rotate increasingly about the horizontal and rise

(termed "Tifting") with larger displacements of the primary mass. This
was Tikely the result of not truly horizontal impact forces due to the
secondary's pendulum motion and directional distortions from the

shaker. The effect became excessive when the prescribed displacement
rose above 0.02 in. and 30 Hz, so that measurements were then terminated.

Another, solely practical phenomenon was the change 1in the amplitude
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of the prescribed displacement caused by the collisions of the primary
and secondary masses. These changes increased with a diminishing
prescribed amplitude but were never greater in magnitude than a

5% of the overall displacement amplitude.

There are no clear quidelines regarding én appropriate amplitude
for "small" perturbations in the determination of asymptotic stability.
This question was explored experimentally by using a pulse to disturb
an existing periodic motion. The pulse was produced with an Interstate
Sweep Generator Model F77 so that its amplitude, 0 to 5 volts, and
duration, 1 to 100 p sec., could be controlled. The system was
considered asymptotically stable if it returned to the prior periodic
motion within two minutes of the pulse's application. The somewhat
arbitrary two minutes corresponded to at least 1200 cycles of the
prescribed displacement. Although desirable in princip]e;more cycles
would have been progressively time consuming and increased the
possibility of uncontrolled vibratiéns from external sources becoming
influential. Experience gained in this exercise was useful in assessing
reasonable perturbation characteristics for subsequent stability checks

of all experimental periodic motions.

2.4 Comparison of Experimental and Theoreétical Results

Experimental data will be reported in a form fairly compatible
with the theoretical stability zones of Figure 2.5 and 2.9. The non-

dimensional parameter o (2A/d) will form the ordinate again but the
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usually conjectured constant experimental coefficient of restitution
will be replaced as abscissa by the frequency of the prescribed dis-
placement. In principle stable periodic motions should be independent
of frequency. However they have been observed to vary somewhat in
practice due to changes in the coefficient of restitution arising from
differences in the relative approach velocities of the colliding masses
[34]. Similar variations, although never investigated before, may

stem from surface changes due to repeated collisions. Such effects were

assessed separately by utilising high speed photography and the apparatus

descr1bed in the prev1ous section. Details of these experiments are g1ven L

in Append1x A4 They suggest that co111sons repeated 1nterm1ttent1y f

over six months may cause the coeff1c1ents of rest1tut1on of the

materials investigated to change around 5 to 10%. A number of separate
coefficients were employed additionally by independently using non-
magnetic stainless steel and brass for secondary masses and discriminately

applying tape to stainless steel primary mass.

2.4.1 Equal Coefficients of Restitution

Stability zones are presented in Figure 2.13 and 2.14 for the
various coefficients of restitution employed experimentally.
Experimental data are plotted as curves whereas corresponding
theoretical predictions, independent of frequency, are t]]ustrated as
vertical Tines. These predictions were obtained from Figuhe 2.5 by

using the observed number and spacing of impacts/cycle and the



812 ybnouays
GL°2 @4nbLy uL sydeuaboioyd Pa483118| BuLpuOdsaJd0d YILM UMOYS Bde Sal40lsLy mE.ﬁ++

) "s3oedul paoedsinba sajousp @ pue SNOLAQO 30U usym n Aq usaLb Jo par|dut
9J4e sjoedwl paoedsinbaup ‘Juswede|dsip paqLaossdd Jo 3]245/s10edwl 4o Lmar§2+

43

“Syjuow XS JO 3Sn JuS1]LUMBIUL J834e (q) pue Bunjdeinueu
SwalsAs Jslje A[aeLpouwll S3(Nssd saalLb () eleg UL 5000°0 + SOLO'Q SL 3zLs |
deg. *ssew Auepuodas |a9s SSoLutels dl3aubew-uou YzLm sauU0zZ A3L|Lqels [ejuautuadxy *gl*g aunbry

ZH *AON3INDANS ZH ‘AON3IND3IYA
0 Ob 0¢ 02 o0l 02 0SS Ot o¢
5 —le 5= . 0
. H Q ”ol o o
1782
7 \/ \/
/ - ~ 2
0
1/ 1/t
| - ¢
/76 — _\mg -1
+
‘=2z ! ‘A=2y <!
yjim mms_o>m_won_w8wmzw (g ) yim mm:_o>m_\m%:8w_mcw .A D)




"gL°g a4nBLy UL 1Byl 0 LBDLIUBPL SL UOLIBION,

_ "UL G000°0 + £S00°0 (Q)
pue “ut G000°0 + 00L0°0 (e) -pade3 ssew Adewtad O SBPLS Y30q pue SSBW AURPUODRS  ~~ "7 7 e
< |992s ssajutels (q) pue ‘ssew AUepuodoas ssedq (B) YJLM S2U0Z A31)Lgels |ejuduwidadxy; “plL'g unbLd

"ZH ‘AON3ND3IHA "ZH AONIND3IHAS

‘o oV.eooVe oVe: o' e VAL
SRR RAR IR I MK

V44

B T ]

1/76

B e and

890 y=u (9) (p)
Y}Im S}NSal |DO1}8I08Y | / YHm s§nsal |Do1e I0BY | Hg




45

experimentally determined coefficients of restitution in Table A4.1.
Errors introduced by simply assuming that coefficients of restitution

are constant in theory and equal at collisions on opposite sides of

the primary mass will be discussed later. The cunulative effect of
intermittently regular contacts between éxperimenta] masses over six

- months may be determined by the differences in Figure 2.13(a) and 2.13(b)
and in Figure 2.14 between the full and corresponding dashed curves. Typical
motions under the conditions (a) through (p) in Figure 2.13(a) are shown by
the correspondingly lettered photographs in Figure 2.15 through 2.18.

The upper and Tower signature of those photographs having dual traces
respectively present the time history of the absolute displacement and
acceleration. Acceleration of the primary mass was modified by a Tow band-
pass filtering from 6 to 250 Hz to improve clarity of phase planes. Phase
plans help to determine the spacing and number of impacts per cycle of the
primary mass' prescribed displacement. The two vertical spikes in

Figure 2.15(c) and 2.15(e), for example, indicate clearly two impacts/
cycle. Equal arc separations between spikes in Figure 2.15(c) demonstrates
that these two impacts, unlike those in Figure 2.15(e), are equispaced.
This information can be observed less directly from the spacing and number
of sudden acceleration changes in a time history relative to one period

of the corresponding displacement of the primary mass. The number of
impacts per period, or cycle, and their spacing in the case of two
impacts/cycle alone is stated for convenience under virtually all time

histories.



(d) Two unequispaced impacts/cycle (e) Phase plane representation of (d)

-»TIME (10 msec./division unless -~DISPLACEMENT
shown otherwise)

Figure 2.15. Typical experimental time history and phase plane of two
T T T T Timpacts/three cycles and two impacts/cycle periodic motions
of the primary mass. Traces from top to bottom on the left-
hand side alternately represent the absolute displacement
and acceleration.
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N
\

(3) Five impacts/cycle (k) Phase plane representation of ()

-TIME (10 msec. /division unless +DISPLACEMENT
shown otherwise)

Figure 2.16. Experimental three, four and five impacts/cycle periodic
B - motions of primary mass. Outlay is similar and conventions
are identical to those in previous figure.
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Experimental and theoretical results generally agree quite
well as may be seen in Figures 2.13 and 2.14. The various stability
zones appear in exactly the same order and tend to overlap similarly.
A comparable degree of agreement was found in the corresponding time
histories. Figure 2.13 and 2.14 clearly indicate the basic tendency
of experiment and theory to correlate best, after six months of
intermittent usage. The largest differences occur at the Towest
frequencies of the immediate experimental values. Then experimental
curves generally decrease with frequency especially below about 25 Hs.
Corresponding results after six months of usage are horizontal or
independent of the prescribed frequency of displacement. The last,

unlike the former trend agrees with theoretical predictions.

Veluswami et al. [19] found in contrast to the experimental
results presented here and by Kobrinskii [1] that stability boundaries
tended to decrease rather than increase at the lowest frequencies.
Similar electromagnetic shakers seem to have been employed to obtain °
these contradictory trends. However Veluswami et al. appear to have
taken no precautions to attenuate the magnetic field of the shaker or
to use, as here, non-magnetic materials for the secondary masses.
Consequently a secondary mass made of a magnetic sensitive mild steel

was employed to investigate possible extraneous effects of the
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magnetic field. The primary mass was again coupled directly to the
shaker by using the original magnetic insensitive brass studs and,
additionally, by magnetic prone, mild steel studs. Previous experimental
procedures were followed to produce the data displayed in Figure 2.]9.

It can be seen clearly that the Tikely consequence of stray magnetism
decreases with more effective precautions. A noticeable effect appears
restricted however to the single two equispaced impacts/cycle stability
boundary at frequencies below 40 Hz. Therefore extraneous magnetism is
not the major cause of the invariable low frequency discrepancy between
all the immediate experimental data and the theoretical results of

Figure 2.13 and 2.14. The downward trend with decreasing stray magnetism
does suggest conversely that the Tow frequency,'immediate experimental

values in these figures are plausible.

Theoretical accelerations were considered to change instantly
at any one impact. Experimental accelerations on the other hand caﬁ
be seen from Figure 2.15 through 2.18 to have a finite but small
"ring down" duration after a collision. Stress waves travel during
this time between the surfaces of each mass with progressively
attenuated amplitudes. Ring down was completed before the subsequent
impact and complementary research [88] suggests that the theoretical

assumption is then justified.

Coefficients of restitution R] and R2 were assumed identical

and constant in theoretical computations. fﬁzgﬂfaféugﬁd-éxtensiVéuﬁngmépééd
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2.0
Stability boundary for
| 3/ 4
o {j.”,(:}...{j”..{:}.."[}.".().“.c}..u()“..{]
E}.... voor
— Both magnetic and nonmagnetic
couplings
1.5 - |
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Figure 2.19. Influence of electromagnetic shaker's magnetic field. Secondary
mass is magnetic mild steel and gap clearance is 0.0307 + 0.0005 in.
Results obtained by using (a) non-magnetic brass studs (O---Q) and
(b) magnetic steel studs (C+--3) connections between shaker and
primary mass.

+Number of impacts/cycle of displacement. Unequispaced impacts
are implied or given by u when not obvious and e denotes
equispaced impacts.
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photography indicated that R] and R2 were invariably within 3% for the
mature stainless steel secondary mass. A similar correlation was obtained
for the brass secondary mass but only at one operating condition.
Comparable differences should be expected however over the entire range

of experimental conditions because the same vigilance was taken in the
manufacture of both secondary masses. The 3% is within normal careful
practice and has been shown in principle to hardly affect the Towest
stabi]ity zones. Therefore R] and R2 are suff1c1ent]y c]ose to be

R VI . (ST -

cons1dered identical to a common va1ue R. Consequent]y, these

d1fferences were neg]ected in measurements of the coefficient of N
restitution. On the other hand Figure A4.2 of Appendix A4 suggests that
the short-term coefficieﬁt of restitution R of the mature stainless steel
secondary masevvaried by about 8% over the entire range of experimental
conditions. The constant employed computationally was enumerated in

the manner described in Appendix A4. Its value was generally lower and
higher than the measured coefficients below and above 25 Hz, respectively.
Figure 2.5 indicates that an increasing theoretical value of R in the
pertinent region around 0.75 might lower the stability boundaries some-
what below 25 Hz, but only consistently for those zones involving two
impacts. Therefore the ihevitab]e and pronounced downward shift of all
the immediate experimental stability zones below 25 Hz remains largely
unexplained. Approximations more sophisticated than a‘constant R

would seem to offer only marginal improvements.

Effects of prolonged use were evaluated neither comprehensively

nor in a strictly compatible fashion. Restitution coefficients were
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only assessed initially by using the conventional method of determining
the rebound height of the secondary pendulum from the free end of the
tightly held primary mass. They were measured this way and, for stain-
less steel alone, more accurately six months Tater with the help of

high speed photography. Discrepancies in the three sets of coefficients
for the stainless steel secondary mass appeared no worse than errors
associated with the pendulum technique. Consequently the effect of
repeated co]]isions could not be determined from these limited direct
measurements. Costs were tob prohibitive to repeat the photography for
the softer brass and taped steel masses. A visual inspection revealed
that the contact surface of the brass was smoothed by the elimination of
very small "high spots" somewhat more than the plain stainless steel
after similar use. A comparable process has been noted for gears [23, 24].
ATthough the stability boundaries for stainless steel and brass are
similar originally, a comparison of Figure 2.13(b) and the dashed curve
of Figure 2.14(a) suggests that slopes are slightly more horizontal at
higher impact numbers and frequencies for the mature brass. The some-

what more repeatable collision conditions for the older brass seem

to counteract its greater rotation and 1ifting. Counterba]anc;néﬂ}g
slightly Tless presumably for all original and for the final materials
harder than brass. Variations in the impact conditions of original
masses are exaggerated at Tow frequencies by the sudden increase of R

-and by the growing effect of collisions on the primary mass' displacement

amplitude at small o.



55

2.4.2 Unequal Coefficients of Restitution

A difference of over 20% in the coefficients of restitution at
opposite sides of the primary mass was obtained by taping only one side
and using the stainless steel secondary mass. As far as could be
discerned from pendulum tests, the tape gave a consistent coefficient
of restitution even after impacts repeated continuously over thirty
minﬁtes. Experimental and theoretical procedures were identical to
previous tests and the presentation of data in Figure 2.20 and 2.21

follows the same format.

Figure 2.20 indicates that the most frequently studied two
equispaced impacts/cycle stable motion observed for equal coefficients
of restitution could predictably, not be found for such widely dissimilar
coefficients. The agreement between experimental and theoretical two
unequiépaced and three impacts/cycle is as good or better than noted
for equal coefficients of restitution. Much more complex stable motions
were seen experimentally, however, at o over one. They involve one or
two impacts on the steel and many impacts subsequent]y on the tape. Such
motions are displayed in Figure 2.21(d) and 2.21(e). The much larger
transient accelerations in these figures were generated by collisions
on the steel. These motions were not observed for equal coefficients
of restitution. They appeared to be similar to the phenomenon of
sliding where a large number of impacts with decreasing strength happen
in a small but finite duration [47, 48]. Major theoretical modifications
needed to adequately describe this particular behaviour could not be

Justified.
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Figure 2.20. Stability zones of experimental periodic motions for stainless
steel secondary mass and only one side of primary mass taped.

Gap clearance is 0.0081 + 0.0005 in.
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2.5 Conclusions

Previous theory has been generalised and a more comprehensive
set of stability charts have been computed for an Impact-Pair. The
general theory subsumes previous theories without conflict. In addition
correlates well with experiments covering a wide range of conditions.
The worst, yet still minor disagreements occurred generally at the
Towest prescribed frequencies and highest numbered stability zones for
recently manufactured secondary masses. Differences occur due to not
absolutely non-uniform contact surfaces, lifting of the secondary mass,
fluctuations in the coefficients of restitution and in a supposedly
constant prescribed displacement were contributory and sometimes
compensatory. Coefficients of restitution need not be equal at opposite
sides of the primary mass but interactions like sliding with appreciable

contact times cannot be accommodated presently.

A simple technique has been proposed in principle which employs
the general theory to conveniently determine the clearance of an Impact-
Pair. Regular measurements may be necessary however to ensure that the

coefficients of restitution do not change significantly in the interim.

The presence of a particular periodic motion was found experimentally

to presence depend upon the initial conditions of the secondary mass only

when:

1) the value of ¢ was so small (typically less than about one)
that collisions never happened; and

2) different periodic motions had stable points in common. (A

typical example is displayed in Figure 2.17). Figure 2.18(s),
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2.18(t) and 2.18(u) illustrate that even a perturbation so large
as to virtually double the original displacement amplitude of
the primary mass did not seem to influence a periodic motion
permanently if its stability zone was distinct. Conversely,
Figure 2.18(p), 2.18(q) and 2.18(r) demonstrate that a
perturbation may transform an initially aperiodic motion into

an unstable periodic one.
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CHAPTER 3

GENERAL MOTION OF AN IMPACT-DAMPER

3.1 Introduction

An impact damper is used to reduce the resonant displacement
of a vibrating mechanical system. It is envisaged usually as a Tight
but rigid mass moving unidirectionally without friction. The mass
impacts against either a container attached solidly to the vibrating
system or the ends of a slot within the system. A properly designed
impact damper can be quite effective despite the transitional high
accelerations generated at impacts [49-68]. It also is less sensitive
to small changes in either the vibrating system's parameters or

external Toad than a conventional dynamic neutralizer [6, 53].

Periodic, two equispaced impacts per cycle of sinusoidal
excitation have been considered almost exc]Qsive1y previously [1, 2
49-56, 61]. Impacts have been assumed to be instantaneous and
idealised by using identical coefficients of restitutioh. An |
exact, closed form solution was obtained independently by Warburton -
[52] and Korbrinskii [1] using periodicity in the manner of boundary
conditions. Masri [53] subsequently applied the concept of error

propagation in difference equations to determine the asymptotic stability.

Limited exper1menta1 and theoret1ca] stud1es by Sadek [57] and

Dittrich [58] suggests that unequ1spaced 1mpacts are more 11ke1y than equ1—
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spaced periodic impacts near the fundamental resonance of the original
mechanical system. Sadek also inferred form carefuy] experimentation
that "equally spaced impacts hardly ever occur" even away from this
resonance [57]. The differen-es in views [54, 57] could arise from the
not always consistent influence of gravity in the various experiments.
They are more likely the result however of ignoring small variations in

the coefficients of restitution at consecutive impacts.

Both Sadek [57] and Masri [591 attempted to generalise the theory
for two equispaced impacts per excitation cycle. Sadek did not account
properly for the velocity discontinuity at an impact [57] whilst Masri's
iterative proposal may converge slowly and be computationally time
consuming. A more efficient algorithm will be developed here. The
usual concept of assuming the duration known between any two equispaced
impacts will be replaced by presuming a priori knowledge of all
durations between any periodic N impacts per periodicity period To.

The ensuing 2N Tinear simultaneous equations in (N + 2) unknowns will
be solved exactly when N equals two and otherwise approximately by
using a method of least square fit [7]. Computed values will be
compared with‘thé” theoretical results of previous investigators and
more extensively with experimental data. The effect of unequal co-
efficients of restitution on the general motion of an impact damper

will be investigated as well.
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3.2 Theoretical Development of the General Periodic Motion of
an Impact Damper

An idealised vibroimpact device is shown in Figure 2.1. The

primary system consists of a linear spring with stiffness K, a

R =7 g

7

2——“«/\/\/\/5\/\/\/\ @Q g»

2 1] 2®2 —>F, sin{lt
Y ~ M =Y

7 C

4 X

Figure 3.1. Model of a single degree-of-freedom system with an
impact damper.

viscous dashpot having damping constant C and mass M excited by the
external harmonic load, FO sinQt. The secondary system is composed
of a rigid mass m which can move uniaxially without generating
frictional forces in a slot inside the usually much heavier mass M.
Motion of m is provoked only by contacts between it and M which are
intermittent due to a clearance, d, between the two masses. Any
one impact i is assumed, for metal-like masses, to be instantaneous
and to be described adequately by a coefficient of
restitution, Ri' This coefficient is assumed for simplicity to be

invariant with time and any parameter changes of the vibroimpact
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device or external load. However the initial coefficients associated
with collisions on the right- and left-hand sides of the slot in

Figure 3.1, R] and R2 respectively, need not necessarily be 1dentic§1.
Then the conjectured periodic motion is identical to that shown in
Figure 2.4 with the exception that the external load rather than the
primary mass' displacement is prescribed. The sequence gf‘and the
durations between, consecutive collisions of generally N‘gébéété in

the periodic duration TO are presumed. Conversely the amplitude of

the external load Fo’ its phase with respect to an arbitrarily selected

first impact and the absolute displacement of M at each of the N

impacts are considered unknown,initially.

The equation of motion of mass M between impacts is

MX + CX + KX = F, sinat (3.1)

where X(t) represents the absolute displacement of the primary mass

M. A dot superscript indicates differentiation with respect to tiﬁe,
t. The solution of equation (3.1) can be obtained conventionally by
superimposing free and forced motions [5]. A typical solution between

the i and the (i + 1) impacts is

X(t) = exp [- %-(Qt - o;)]-[a; sinl (0t - a)
+ bi cos?—(ﬂt - ai)] + A sin(Qt - ¥)

1;1.+ <t<t (3.2)

(i+1)_



Subscripts i, i+ and i- respectively represent quantities at, just
after and just before the typical ith impact. For example, ti+
is the instant immediately after the occurrence of the i th impact.

Variables £, n, w, A, r and ¥ are given conventionally by

£= 02 ()7, w= (kKME, p =8
n=(1- <Sz)l/2 , V= tan! 2er/(1-r2) §
and
FO N
A= DO - )2+ (2er)217% .

The remaining variables used in equation (3.2) are defined as
X, = X(ti),' Xig = X(ti+)
and

91 = oy - v, bi = Xi - A s1n61

m o
M=y a; = [ X.a - Ar cosp, + gbi]

1r1
1 n w1

If t] is chosen arbitrarily as the temporal origin after the
initiation of periodic motion, then equation (3.2) can be expressed

as

X(t) = exp [- & (at - ;)] [a; sin® (at - o)
+ bi cos%—(Qt - ai)] + A sin(Qt + 1)

R D RN T VA S
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(3.3)

(3.5a)

(3.5b)

(3.6a)
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where invariably

o = 0, T = oty - v, b, =T+ o (3.6b)

and the t in equation (3.6a) implies (t - t]). Equations (3.4)
through (3.6) hold between any of the N impacts occurring in the

basic period,vTO. This implies that they can be generalised
straightforwardly by letting i equal one through N. Impacts occur only
when the relative displacement Y between m and M is + g-for a collision
on the right side of M in Figure 3.1 and - §~for a collision on the
left. Hence at impacts,

= - = g. i = ————
Vi=Zo-X =+, i=1, 2,--N (3.7)

where Z 1s the abso]ute d1sp1acement of the secondary mass at contact

time ti‘ A11 of the N Y are determ1nab1e after account1ng for co111s1on

Tocations.

The absolute displacement of the primary mass is

continuous at any one impact so that [1, 59]

X, =X, = X(t.) = X._ =X

i~ ib i ja j+ > 1715 2N (3.8)

for all N impacts. Velocities on the other hand are discontinuous
at the impacts. The absolute velocity of M just before the

representative ith impact can be determined by substituting the
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instant of this impact, ti’ into the time derivative

of equation (3.6a). Expressed more generally,

. X(t) 5 i=1, 2----N . (3.9)

Its velocity immediately after the i th impact, Xia is related to Xib
by the conservation of momentum and the definition of the coefficient
of restitution. Applying these principles to the vibroimpact device

shown in Figure 3.1 leads to

M Xib +m Vib M Xia +m via’ i=1, 2---N . (3.10)
and .
. - v,
R, = -8 1@ g9 o _.N . - (3.11)
1 X.. - V.
ib ib

The V].b and Via are the absolute velocities of the secondary mass,
m, just before and after the ith impact, respectively. Equation

(3.10) and (3.11) can be solved to .give

Xib = k7i 'Vib + k81 .Via’ i=1,2----N . (3.12a)

and

<o

= ko o V.

ia 9i * Vip t Kigi o Vs s 1 =1, 2--—-N . (3.12b)

104 ia

Expressions for the coefficients k7i through k]Oi are given

Cin Appendix A2 and the nomenc1§tgreujsmq]grjfied in Figure 3.2.



Impact (i-1) (1)

Absolute velocity of m
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(i+1)

V(i-])tL! ,V(i—l)a Vib{ lvia YGenp [ ] Viien)a
Yaanp — Aeena Kb = Xa Rene — Xena
Absolute velocity of M
Absolute displacement of M
X(i-T) X X(i+])
Absolute displacement of m
Z(3-1) 23 Z(41)
Relative displacement between masses
Y(3-1) Y Y441
Coefficient of restitution
R(5-1) R Rin)
Contact instant
ti-1) E ity
Figure 3.2. Nomenclature of variables describing the (i-1) through

(i+1) impacts.

Calculation of the V., and Vs in equation (3.12a) and (3.12b)

is simp]ifiedvby the assumption that no external forces act upon m

between impacts. The velocity of m therefore remains constant

between impacts. Consequently its velocity Via between ith and (i+1)th



68

impacts, for example, is simply the ratio of the absolute distance
travelled by m and the time elapsed between these two impacts.

Mathematically,

g = i) T h
1a t(_|+-l) - t_i

1=1, 2----N . (3.13)

Substituting equation (3.4) and (3.7) into equation (3.13) produces

X, gy F Voenay - X = Y. ]
V. = (i) G+1) % s 1= 1,2---=N . (3.14)

Similarly the velocity of the secondary mass just before the i th impact,

Vib’ equals its velocity between the (i-1) and i impacts. Therefore

gL Y - Xy - Y] ,

i=1, 2----N . (3.15)
1b (X_i -Ot(i_-l)

These expressions for Via and Vib can be-substituted directly into

equation (3.12) to give

k7i D5 Y5 - Xogy = Yo

1b O = Oy
o, i (i-1)

ki DXy * Yy - % - Ve

s 1= 1,2---=N .
STy - o i (3.16)

and
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K91 Dy + V5 - Xy - Yo
%7 %-1)

D<o

ia
+Y,. - X, -Y.]Q
(i+1) i =1, 2emeoN . (3.17)

K101 FX 541y
%341 T %

The relationship for xia can be used in conjunction with equation
(3.5a) and (3.5b) to express coefficient a in the equation (3.6a) for

the absolute displacement of M as

ST e Yy - Xy - Yo
-i N w OL_i = OL(i_])

OL(.]-_I_-I) _a

+

] - Ar cosf, + &bi} , i=1,2---N
(3.18)

Given all passive components of the vibroimpact damper, parameters n,w
and r in this Tast expression can be determined from equation (3.3).
A1l the Y-, k91 and k]0 can be evaluated explicitly for known i
coefficients of restitution from equation (3.7) and equation (A2 ]1a)
‘and(AZ 115 oprpend1xA2 The a; can be detailed in a manner identical
to that explained in Section 2.2 by using the assumed contact instants
and periodicity in equation (3.4). On the other hand the Xi’ i=1,2,
----N, are still unknown. Coefficient bi here and in equatiqg4(3.§a)

is written already in equation (3.5a) as a function of the N of the Xi and

the two other unknowns A and ei or, by combining the o in equation
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(3.4) with equation (3.6b), A and 1. Therefore (N + 2) unknowns exist.
They are determined by the imposition of condition (3.8) and satisfaction
of identity (3.9). The particular Xia in equation (3.8) is found
directly in terms of the (N + 2) unknowns from equation (3.6a) applied
at the contact instant ti' The Xib is determined similarly but from

the counterpart of equation (3.6a) valid between the (i-1) and i rather
than i and (i+1) impacts. Also the Xib of relation (3.9) coincides
identically with both the time derivative of equation (3.6a) at time

ti and the right-hand side of equation (3.16). Applying these two
requirements for all N impacts produces 2N Tinear simultaneous equations
in the (N + 2) unknowns. Details of the algebraic manipulations and

all the resulting a dependent coefficients,‘W]i through w61 and V]i
through V7i’ =1, 2---N, are supplied in Appendix 2. The 2N equations

are shown to take the form

W61, i=1, 2----N
+ W41 A cost + WSi A sint (3.19a)
V2i Xi + V]i X(

+ V3, X
i

i+1) (i+2)

2-——-N

1
[

V7., i

+ V41 X(1+N-]) + V51 A cost + V61 A sint (3.19b)
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Exact solutions are not possible when N exceeds two (i.e. when
the nﬁmber of equations is larger than the number of unknowns). Then
the (N + 2) unknowns of X where i = 1, 2,----N, the amplitude and
phase factor, A and T, were computed by using the least square fit
method described in Section 2.2 [7]. If N equals two, equation (3.19a)
and (3.19b) each give two equations which are independent normally.

The resulting, solutions however involve very cumbersome expressions.
Consequently these equations were left in the form of equation (3.19a)
and (3.19b) which were solved numerically by using the IMSL Tibrary
subroutine LEQTTF [45]. This subroutine solves a set of independent
Tinear simultaneous equations by performing a Gaussian Elimination with
partial pivoting [45]. Double precision arithmetic was employed through-
out all numerical computations. However the two equations in both sets
become essentially identical in the special case

= 7k and R] = R2 =R (3.20)

%2
with k an odd integer and N still equal two. This situation is
reminiscent of that observed from equation (2.23) for the Impact-Pair
having two equispaced impacts/odd integer of cycles. A{cyc]e
corresponds here to a period of the prescribed external force rather
than the displacement of the primary mass. Then the absolute dis-
placement of M at the first collision, X], can be eliminated as before

to produce a single equation in A and t. The final equation is
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identical to the one produced by Masri [53] algebraic certain. = _

change was made. Details are given in Appendix A3. It is more

convenient again to calculate T by first assuming some value for A.
Unlike the Impact-Pair however only one value of k (i.e. k = 1) has

been apparently considered in any detail for the vibroimpact damper.

A technique to assess the stability of any periodic motion of
a vibroimpact damper will be evolved next. The technique is basically
an extension of the method outlined in Section 2.2.1 for the Impact-

Pair.

3.2.1 Stability

The methodology of determining the stability of generé] periodic
motions of a vibroimpact damper is described essentially in Section
2.2.1. Therefore only major differences of detail will be reported

here,

The external force is prescribed on M in the case of a vibro-
impact damper as opposed to the displacement for an Impact-Pair.
Consequently the absolute displacement and velocity of M, X and X
respectively, are no 1qnger constant. Therefore these additional
two variables have tobe perturbgd‘ initially along with the previously
changeable Z and ZhWhich describe the motion of m. Masri [59] on
the other hand preferred to substitute the non-dimensional frequency

parameter o given by equation (3.4) for the 7 at co]}isions which
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depends therefore upon the Qs - Subsequently he also systematically
replaced changes at the contact times by corresponding changes just
afterwards. However the end result is no different [2, 59]. The
cause and effect relationship between the initial perturbation and

subsequent changes still takes the form

AX(N+])+\ (AX1+\
A).((n+])+ Ak1%
N B . (3.20a)
Aa(N+])+J \Aa]+J

which is analogous to equation (2.30a). Matrix [P] is given by

[P] = [PN+] [P(N_])_*_]"“_"[P'H_] (3'20b)

where the typical [P ] is now a 4 x 4 rather than the 2 x 2 matr1x of

before to accommodate the two additional variables X and X

Masri [59] derived explicit expressions for all representative

components P, (p» q) of [P He assumed again that corresponding

1+]
products are negligible compared to all terms typically involving
AX1+, AXi+, AZi+ and Aai+ and that coefficients of restitution are

invariably constant. The expressions were checked and modified to
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incorporate possible changes in the coefficients of restitution.

They are given more conveniently in Appendix A2. A periodic motion of
the damper is asymptotically stable if and only if all the modulii

of the eigenvalues of [P] in equation (3.20b) are again strictly less
than unity. Computational details were described in Section 2.2.1

and will not be repeated here.

3.3 Checking the General Theory

Motions involving two equispaced impacts per cycle of sinusoidal
force have been primarily studied previously [1, 2, 49-56, 61]. Much
less theoretical data has been published for two unequispaced impacts/
cycle [57, 59] and the result of only one, probably analog computed
illustration of three impacts/cycle is available [59]. However these
few examples which relate to specific vibroimpact dampers should form
an adequate basis for checking the general theory of N impacts/cycle.
Computations were performed for the general theory by using double
precision arithmetic on an AMDAHL V7 digital computer. Single precision
arithmetic which presumably is Tess accurate “have Béé;‘-‘ '

employed elsewhere [53].

A resulting comparison of the stability zone of two equispaced
impacts/cycle predicted for a particular damper is illustrated in Figure 3.3.

The convention will be adopted of giving damper characteristics (&, m/M,

R] and R2, etc.) in the upper right-hand corner of a figure. Differences
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—
Parameters of primary and secondary system
£ =A9;995,_Mﬁr = 0.94, u = 0.042, R]= R2==O.75, F/K ™ 37
2 equis aced 2 equispaced 2 _unequispaced
Present | Previous | Present | Previous | Present Previous
results | results | results | results results results
az/ﬂ 1 1 1 1 1.37 1.37
Qt]/ﬂ 0.68 0.68 -0.53 -0.53 0.52 0.52
/7 0.66 0.65 -0.56 -0.55 0.50 0.49
X] 16.17 16.21 -5.10 -5.07 13.65 13.76
X2 -16.17 -16.21 5.10 5.07 -9.31 -9.37
Z] 34.67 34.71 13.41 13.42 32.15 32.26
Z2 -34.67 -34.71 -13.41 -13.42 -27.81 -27.87
Xia -2.22 -2.22 -0.86 -0.85 5.47 5.56
X2a 2.22 2.22 0.86 0.85 9.81 10.03
)’(w ~3.96 -3.96 -1.53 -1.53 3.73 3.80
Xop 3.96 3.96 1.53 1.53 11.66 11.78
Z]a -20.74 -20.77 -8.02 -8.03 -13.09 -13.10
Z2a 20.74 20.77 8.02 8.03 28.48 - 28.69
Xmax -16.67, |-16.72, -5.18, -5.16, -15.17, -15.32,
16.67 16.72 5.18 5.16 14.77 13.79
Modulus
pf eigen- 3.83 4.02 12.08 12.15 0.93 0.93
values of o o 0.77 0.99 0.69 0.93 0.93
[P] 0.95 0.52 0.99 0.43 0.58 0.58
0.09 0.03 0.25 0.01 0.58 0.58
Stabi]i%y Unstableg Unstable Unstab]e Unstable . Stable Stable

+Impacts/cyc]e is implied.

Table 3.1

unequispaced impacts/cycle.

A numerical comparison of previous [59] and present
theoretical results for two equispaced and two
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between results from the general theory and those of Masri [54]

are indicated in Figure 3.3 by the relatively small hatched region abc
and a'b'c'. Region abc is replaced by region a'b'c' and other areas
are slightly affected when the general theory is applied. A close
examination of Masri's theoretical development revealed that this
slight discrepancy is caused largely by an algebraic mistake which is
explained in Appendix A3. Similar differences exist in the stability
governing eigenvalue modulii of the analogous two equispaced impacts/
cycle cases presented in Table 3.1. They are eliminated correctly
however in the two unequispaced impacts/cycle situation indicated in
this table because the mistake does not then apply. The sole major
fluctuation in this instance, the change in the otherwise strongly
tallying Xmax’ is most probably a printing error in the 13.79.
Finally the initial four colums of Table 3.1 suggest that although
the values of az/ﬂ, Qt]/ﬂ »——-- and XmaX may be very close, significant
differences can arise in the étabi]ity eigenvalues. Therefore it is
quite feasible that subtle variations stemming from the use of either
single or double precision arithmetic, say, may lead to opposite
conclusions regarding stability. The lattersituation is most Tikely
to arise when the true maximum eigenvalue modulus is near unity or,
in other words, at a position close to a stability boundary. This

point will be expanded later.

An additional comparison is given in Figure 3.4 of the results

from the degeneration of the general theory into two unequispaced
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80
—— Sadek's resuls r=0.96
—-—= Particular results of
general theory
60

[ Parameters applicable 2" 7 =7
to (a) and (b)

— .
—— N

dK
Fo
0.3 04 05
Ratio of Durations between
Three Consecutive impacts
1.0 = L]
0.8 ' |
0.6
. 0.4
sin T
0.2
0.0
~0.2
—-0.4 1 | 1 ]
0.0 oO.l 02 03 04 05
Ratio of Durations between
Three Consecutive impacts
Key : Sadek's results |

————— Particular results of general theory

Figure 3.4. Comparison of two unequispaced impacts/cycle theoretical

results with those of Sadek [57]. Both data sets were computed

without regard for stability.
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impacts/cycle and those from a Fourier series approach proposed by
Sadek [57]. Sadek disregarded the question of stability so that the
information is presented without such a determination. Figure 3.4(a)

indicates that values of d/(F /K) correlate c]ose]y whereas

large differences occur generally in Figure 3.4(b) for sint at
frequency ratios, r, near one. These particular differences are not
surprising in view of the demonstrated substantial agreement with the
work of Masri who, in an unresolved dispute, questioned the validity
of Sakek's resu]ts [59]. A detai]ed examination of Sadek's theory

1nd1cates that the ve]oc1ty d1scont1nu1ty of the pr1mary mass. at an

1mpact is treated 1mproper1y Consequent1y equat1on (13) of reference 57

1mp11es that the phase angle 1 is 1ndependent of the amp11tude F of
the external force. This assertion is refuted clearly by Sadek's own
evidence presented unadulterated as the solid curves of Figure 3.4.

An indepeneent increase in FO reduces d/(FO/K) but the frequency ratio,
r, remains una]tered'at e value, for example, of 0.999. Consequently
point B is transposed leftward along the dashed curve r = 0.999 to
position B' say if the periodic motion, despite a change in the ratio
of durations, is still to consist of two unequispaced impacts/cycle.
Points B and B' respectively correspond to points A and A' in Figure

3.4(b) which obviously relate to different T.

The only previous example of three impacts/cycle stable periodic
motion [59] is presented as point 'a' in Figure 3.5. Masri also

1Tlustrated for the particular damper indicated special cases of the
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stability of two equispaced and two unequispaced impacts/cycle. His
results therefore correspond to the single point 'a' and the dashed
Tines along dK/F0 = 37. The much more comprehensive continuous

curves in this figure emanate from analogous computations based upon
the general theory. These two sets of results agree completely along
dK/FO = 37 except in the very narrow two unequispaced impacts/cycle
zone near r = 1 and the two equispaced impact/cycle zone but only when

r is greater than 1.04. The disagreement in the equispaced zone,

' occurrwng as in F1gure 3. 3 when r>1, 11ke1y stems aga1n from the d1screpancy

discussed in Append1x A3 The comp]ete omission by Masri of the two

unequ1spaced 1mpacts/cyc1e zone on the other hand arises most probab]y
from s1ightly less accurate computations. Similar small differences
have been seen previously to produce opposite views of stability when,
as here, stability.boundaries are extremely close. Finally,it should
be observed that point 'a', the sole three impacts/cycle example,
certainly falls within the corresponding stability zone obtained from

the general theory.

In summary, the general theory has been shown to agree
quite well with the sparse theoretical results of Masri. The reasons for
discrepancies with Masri's as well as Sadek's work have been_§1ven o
However, the incongruences are disturbing so that further verificatfon';
was considered prudent. Consequently, additional comparisons were

sought with experimental data. This entailed the building of mechanical

systems to simulate as far as possible the idealised model shown in
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Figure 3.1. Precautions taken to ensure a reasonable simulation are

described in the following section.

3.4 Details of the Experiment

The experimental model and measuring equipment are displayed in
Figure 3.6 with additional details shown in Figure 3.7. The primary
system consists of the previous, rigid slotted mass cantilevered from
essentially the concrete base rather than the shaker. Two cantilivers
were composed of two flexible, spring steel strips interposed by a
very still but Tlight hollow beam. Tightened screws and bolts were used
to connect structural components to ensure, as far as possible, that the
primary system moved integrally. It is practically impossible to prevent
all such relative motions, however some friction developed at the
Joints. The ensuing dissipation was found from conventional free
decay and sinusoidal resonance tests [5] to be equivalent to a viscous
damping ratio, £, of 0.0114 + 0.0005. The first and second natural
frequencies of the primary system alore were found to be 19.87 + 0.03 Hz.
and 430 * 2 Hs. from solely the resonance tests. Standard checks of
the amplitude and phase of the displacement of the primary system to
those contemplated for the external sinusoidal force indicated good
linearity. Therefore this system fairly represents a linear oscillator
over the Timited frequency range of 10 to 50 Hz. employed in the
vibroimpact experiments. Also, the Tength 12.0 + 0.8 in. of

the vertical supports ensured that the primary mass, in conjunction
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ON®)

(® | =~

Figure 3.6. Details of the experimental apparatus and instrumentation.

Key:

(1) Electromagnetic shaker, (10) Two-light cotton threads

(2) Hewlett-Packard Function (12) Wayne-Kerr feedback amplifier TE MK II
Generator 31108 (13) Hewlett-Packard multimeter 5306A

(3) Amplifier Ling Model (14) Tektronix double beam storage
PA300 oscilloscope 7313

(15) Adjusting mechanism

: (16) Cold rolled plate
(5) Secondary mass made from a7
either steel or brass

(4) Aluminum adapter

Heavy concrete block

(18) Hollow beams
Slotted i .
(6) die to01 simayy mass of (19)  Weak spring
(20) Bruel & Kjaer Impedance Head,
(7) Bruel & Kjaer accelerometer Type 8000

Type 4333. (21) Bruel & Kjaer mass compensation
(8) Wayne Kerr capacitance unit Type 5565
transducer (22) Bruel §& Kjaer conditioning amplifier
Type 2626

(9) Support for capacitance probe  (23) Bruel & Kjaer mass compensation
unit Type 5565
(24) Hewlett-Packard multimeter 5306A
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(c) Hollow beam
ATl dimensions are in inches and those tolerances not specified are + 0.01 inches.

Figure 3.7. Details of spring steel strip, spacer and hollow beam .
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with the secondary, never moved more than 0.38° + 0.05° from the
vertical. Consequently gravitational effects were neg1ected
These same supports were also much stiffer in torsion than ffexure
so that the experimental primary mass should travel unidirectionally
like the theoretical model. Secondary masses, described already in
Section 2.3, have been shown previously to move virtually freely and

unidirectionally too.

The primary system was connected as shown in Figure 3.6 through
an impedance head and spring to the electromagnetic shaker. This
spring was much weaker than the primary system's effective stiffness
so that a force rather than a displacement-Tike input was obtained.
The sinusoidally time varying input, generated to within 2% of the
nominal ampTitude, was monitored with the aid of the directly coupled
impedance head. Compensation for the extraneous mass of this head
was achieved by employing the electrical compensation circuit recommended
by its manufacturer [83]. . Precautions taken to avoid disturbances from
building vibrations have been explained in Chapter 2. The absolute
displacement and acceleration were measured as before at essentially

the "free" end of the cant11evered pr1mary system. Displacements were

determ1ned re]at1ve to a 11ght a]um1n1um bracket attached

r1g1d1y to the s]otted mass. An identical bracket was fixed
similarly to the other side of this mass to maintain symmetry and

prevent unbalance. Measurement procedures were the same as in Chapter 3.

However the evaluation of the stability zones of the damper with h1gh
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periodic impact numbers was restricted by the Timited force capability
of the shaker [84]. Only those experimental results will be presented
for which the mechancial model was deemed a reasonable representation

of the idealised vibroimpact damper.
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3.5 Comparison of Experimental and Theoretical Results

Experimental and theoretical results are reported in Figure 3.8

through 3.11 and also in Figure 3.12 and 3.13 for impact dampers

with equal and unequal coefficients of restitution respectively.

The format used in these figures is similar to that employed previously
for an Impact-Pair. The major difference is that the 2A in the former
2A/d stability ordinate is replaced by the standard "static" deflection
of the primary system, FO/K. Frequéncy and the conventional frequency
ratio Q/w, or r, form basically the same stability abscissa because
was taken as a constant 19.87 Hz. Data is given only for a sfnusoida]
Toading frequency © of 12 to 27 Hz. This range adequately encompasses
the primary interest of the damper's behaviour at the natural frequehcy,
w, of the primary system alone. Nomenclature, symbols and the lettering
notation used to relate time histories to corresponding points of a

stability chart are identical to before. Parameters employed

theoretically are given specificially at the top of a pertinent figure.

The mature stainless steel secondary mass<§g}e]y was employed
experimentally. Unequal coefficients of restitution were obtained as
before by taping one impact surface of the otherwise invariant stain-
less steel primary mass. Computations were performed by utilising
measured values for all passive components and the dynamic character-
istics of the sinusoidal Toading. The method of determining the passive

components of that equivalent oscillator which fairly describes the
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basic nature of the primary system is given in Appendix A5. Any one
coefficient of restitution was assumed constant and identical again
to the arithmetically averaged extremes of the observed values.

This procedure generally produced reasonable stability correlations

for the seasoned stainless steel Impact-Pair.

3.5.1 Identical Coefficients of Restitution

The impact damper's experimentally determined stability zones
in Figure 3.8 are much more sensitive to variations in the driving
frequency than the comparable zones of an Impact-Pair. This
sensitivity seemed particularly keen around the natural frequency
19.87 Hz. of the primary system acting alone. The complementary

narrowing of all stability zones around this frequency made the

correspond1ng]y requ1red f1ner contro] of the amp11tude of the pre-

: scribed force. Consequent]y, no exper1menta] data cou]d be

given in this narrow but cruc1a1 region. Similar difficulties have
been encountered previously in the study of two impacts/cycle stability

zones [51].

Time histories at the points designated by the letters in
Figure 3.8 are displayed correspondingly in Figure 3.9. Except for
the beating motion of Figure 3.9(f), the time displays are similar to
those of the analogous Impact-Pair. The beating can be seen from

Figure 3.9 to occur when the frequency of the sinusoidal Toading
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differed slightly from the natural frequency of the primary system

acting alone.

Theoretical results are presented as continuous curves in
Figure 3.70 and 3.11 whereas the vertical Tlines correspond to the
experimental data of Figure 3.8. Stability zones for two impacts/
cycle are separated to improve clarity. Experimental determination
of the stable five impacts/cycle boundaries was impaired by the
restricted forcing amplitude of the electromagnetic shaker. Con-
sequently these experimental data points, shown in this instance

alone as vertical lines with end dots, are few in number.

Figures 3.10 and 3.11 indicate that the experimental and
theoretical results generally agree well. The largest differences
seem to occur in the two highest numbered, four and five impacts/
cycle,stability zones again and, somewhat surprisingly, in the case
of two equispaced impacts/cycle. A closer inspection of the latter
stability zone revealed that the maximum absolute eigenvalue of [P]
in equation (3.20b) varied between 0.996 and 0.999 in this zone.

It has been seen already from Table 3.1 that minor differences in the
computation of a periodic motion may substantially alter the eigen-
values. Even a slight change in this instance may change the

conclusion regarding stability. Computations were repeated by using B

single rather than the otherwise employed double precision

arithmetic to illustrate this particular point. The resulting clear
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differences which happen in the upper two equispaced impacts/cycle
stability boundary alone are displayed in Figure 3.10(a). Double
precision arithmetic produces values which seem to correlate better
generally with the upper experimental stability boundary. However
it also gives an unusually substantial and inexplicable blip around
/w of one. Further investigations are needed to experimentally
verify this observation and to assess the accumulated error in the
maximum absolute eigenvalue stemming from the propagation of small

computational inaccuracies.

Sources of experimental error additional to those described
for the Impact-Pair are the extra weak spring coupling and the
possible excitation of more than one structural mode of the primary
system. The probable non-linearity of the spring at the largest forc-
ing amplitudes may affect somewhat the highest numbered impact zones.
At the smallest forcing amplitudes conversely, the coupling between
shaker and primary system became more noticeable. Consequently it
was more difficult to control the forcing amplitude particularly close

to a @/w of one. Problems of interactions between different modes of

 the primary system should be ameliorated by the more restricted

frequency span than that covered for the Impact-Pair. The uppermost

frequency of 27 Hz. was much smaller than the frequency of about 430 Hz.

for the second, lightly damped mode. Therefore none of these

additional factors should be expected to degrade seriously the
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cumulative error observed for the seasoned Impact-Pair. Consequently
the generally comparable experimental and theoretical differences to
those noted for the Impact-Pair should not be surprising. The most
major discrepancies in the four and five impacts/cycle stability
zones were probably still largely caused by superfluous lifting of

the secondary mass.

3.5.2 Unequal Coefficients of Restitution

Experimental and theoretical stability zones for unequal rather
than equal coefficients of restitution are displayed in Figure 3.12(a).
Figure 3.12(b) presents those experimental zones involving many rapid
impacts on the tape. They are analogous to the sliding-Tike cases
observed for the Impact-Pair wjth unequal restitution coefficients.
Consequently the presently developed theory is inapplicable. Other-
wise the agreement between experiment and theory appears reasonable
although somewhat poorer than for equal coefficients. Stable equi-

spaced impacts were,predictably, not found.

3.5.3 Performance of an Impact Damper

Se]ective,stab]e,periodic motions shown previously are presented

again in F1gure 3 14 The form of th1s f1gure 1s _more amenab]e

to the assessment of the pract1ca11y important, impact damper's

ability to attenuate the displacement amplitude at frequencies near
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0.02863N L—

e

0.269

(a) Two unequispaced impacts/cycle with (b) Three impacts/cycle with one
one impact on steel and one on tape impact on steel and two on
tape

(c) One impact on steel and mény on (d) Two impacts on steel and
tape many on tape

Horizontal time scale is 16.7 msec./division

) Figure 3.13. Typical experimental motions of primary mass when the

-—— -~ impact damper has unequal coefficients of restitution.
Top and bottom trace in all figures represent prescribed
force and absolute acceleration of primary mass,

respectively.
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the resonant frequency, w, of the single primary system. Attenuations
happen when Xmax/A’ the ratio of the maximum deflection of the primary
system with and without the damper, is less than unity. Amplification
occurs conversely when this ratio is greater than one which is generally
considered detrimental. Both experimental and theoretical data is

shown for which the two coefficients of restitution are either equal

or have the Tlargest observed difference. Resu]ts are 1imited to those

experimental frequency ratios r (Q/w) c]osest to one.

F1gure 3 ]4 1nd1cates that the 1mpact dampers cons1dered 1nvar1ab]y

— ~ R SO

attenuate the maximum deflection of the pr1mary system most at :

the initial resonant frequency w or when r equals one. It then seems
beneficial to have equal coefficients of restitution to ensure two
equispaced impacts/cycle. The attenuation at a given FO/dK diminishes
for a slight increase in r but, more important]y, amp1ifications

always happen and may even be 1arge for a sma1] decrease 1n r.

Therefore the traditional 1mpact damper deS1gn based upon two equi-
spaced impacts/cycle [53, 68] seems reasonable in this instance.
However its performance may deteriorate even more than that of a
conventional vibration neutraliser [6, 90] if fluctuations in Q

produce r less than one in practice.
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3.6 Conclusions

A general theory has been developed for an impact damper to
accommodate any number of impacts in some repetitive cycle. The
theory agrees on the whole with previous, more restrictive and sparser
predictions. The credibility of the general theory is enhanced greatly
by the close correlation demonstrated between it and comprehensive
experimental results. The recommended procedure for designing impact
dampers 1is seen to be reasonable for one example of a lightly damped
primary system with external sinusoida1b1oading. This particular
example, however, suggests that the operation of the primary system

should be maintained at or slightly above its fundamental resonance.
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CHAPTER 4

SIMILARITIES BETWEEN VARIOUS
VIBROIMPACT SYSTEMS

4.1 Introduction

Vibroimpact systems are nonlinear essentially because of the
discontinuous velocities at impacts. Nonlinear, unlike Tinear
systems cannot be generally solved universally by using, say, the
prfncip1e of superposition. Consequently nonlinear systems are
often studied individually which can be tedious [1, 2]. It would
be beneficial therefore if the particularsolution of a given vibro-
impact system could be derived under certain specified conditions
from a similar known solution. Solutions will be considered
similar if they stem under specific conditions from the same equation
and if they additionally involved identical impacts in a repetitive

cycle.

The solution developed in the previous chapter for the sinu-
soidally forced vibroimpact damper will form the basis of those
simiTar solutions appropriate to the idealisations of Figure 4.1.
This figure also shows the connection between the idealisations and
the conditions required for possible similar solutions. Kobrinskii
[2] has noted already the general similarity between case (a) and
(b.1) of Figure 4.1. Also, by using thé approximations indicated, Dubowsky

[10] has demonstrated the general similarity of case (b.71) and (b.3)
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when the primary mass M does not drift radically to one side. Like
similarities will be shown exactly for case (a), (c.1) and (c.2) or
(b.3). The connection between the high frequency approximation (d)
with (b.3) or (c.2) will be only suggested at this time for two
impacts/cycle by employing several numerical illustrations. On the
other hand case (b.1) and (b.2) are compatible physically only if M
does not drift at all sideways. Drifting does not happen in situation
(b.1) for two equispaced impacts/cycle when these two cases will be
demonstrated similar. A comparable relationship will be drawn between
situation (a) and (e.1) where drifting obviously cannot occur. Case
(e.1) has been applied commonly to piping, heat exchanger tubes and
PWR assemblies [78, 85-87]. It has been shown previously to be like
the rotating system of (e.2) [2]. An analogous situation exists too
between a sinusoidal Toad applied to the primary mass of the impact
damper and the base acceleration indicated in case (f) [53, 89]. The
amplitude of the external load FO 1s replaced merely by the inertial

amplitude Mé.

These similarities not demonstrated before will be considered
along with appropriate conditions in the order suggested by Figure

4.1.
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4.2.1 Similarities Between Case (a), (c.1) and (c.2) of Figure 4.1

The displacement amplitude of M is simply A between consecutive
impacts in both case (a) and (c.1) of Figure 4.1 if the FO in (a) is

tuned to
1

F,o= AKIO - 224 (2 g 08 (4.1)

Then the motions of m must be identical for a given perijodic impact
sequence in these two cases because all other corresponding variables

are equal. Consequently the two idealisations are similar providing

equation (4.1) holds. The S1m11ar1ty of case (c 1) to (c 2) w111 be

proved next for any periodic repet1t1on of 1mpacts prov1d1ng the cond1t1on

po<< (4.2)

applied often in practice, is valid. Equations developed in Chapter

RV e i e

3 for the forced 1mpact damper genera]1y remain true prov1d1ng the amp1itude,

Fo’ of the external force is transformed by u31ng equat1on (4 1)

to an equ1va]ent prescr1bed d1sp1acement amplitude, A. It remains
to be shown that the general equations of motion of the impact damper

and Impact-Pair, both having the identical prescribed displacements

X(t) = A sin(Qt + 1) , (4.3)

are common when condition (4.1) and (4.2) hold. The essentially
immaterial phase T has been reintroduced into equation (4.3) for

convenience.
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A comparison of equation (4.3) with equation (3.6a) of Chapter

3 indicates that

a;=0=b, =1, 2--xN (4.4)

for usually non-zero £, r, n, Q and Q. The a, and bi are given
alternatively by equation (3.5a) and (3.5b) which, when combined

with requirement (4.4), produce

Xi = A sinei = A sin(t + ai)’ i=1, 2--==N (4.5)

and

Xia = Arwcosei = AQcos(t + ai), i=1, 2----N (4.6)

when r and 6, are obtained from equation (3.3) and (3.6b). However

Xia is given also by equation (3.12b) so that

Aszcos(f+a1.) = kqs V., + k

9 Vip =12 (4)

10i Via

Coefficients k9i and k101 in the last expression may be obtained from

equation (A2.17a) and (A2.11b) of Appendix A2 as

_<]+U)Ri _]-UR‘i .
Kgi = TR, d kg TFR TN

These last relationships take the simpler approximation

R.
- i _ 1
Koi = 7% R and kyp; = 773 R

s 1 =1, 2----N (4.8)
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when condition (4.2) is applied in conjunction with the usual practical
requirement of Q < Ri <T1,1=1, 2----N. Substituting equation (4.8)
and variables Via and Vib from equation (3.74) and (3.15) directly

into equation (4.7) leads to

(i e Y X V)
PR (i) T % (i4N-1)

AQCOS(T+@1)=

X, . +Y,. - X, - Y}
1 (i+1) (i+1) i i .
Sl wi) - 6 1, i=1,2-—--N. (4.9)

Expansion of the trigonometric terms in equation (4.5) and
(4.9) immediately gives equation (2.14) and (2.15), the general

equations of motion of the Impact-Pair.

4.2.2 Correspondence Between Case (d) and (b.3) or (c.?)

The relationship between the practically important two impacts/
cycle stability zones of certain externally Toaded impact dampers
and an Impact-Pair with prescribed displacement in case (b.3) or
(c.2) is illustrated in Figure 4.2. Numerical computations were
performed for the damper by using the invariable Tight damping ratio
€ of 0.05 and the various p and r given in the figure. Values were

selected generally to obey the restrictions

r >> 1, H<<Tand g << 1 (4.10)
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Figure 4.2, Comparison between the two impacts/cycle stability zones of
particular impact dampers (a), (b) and (c) and (d) an Impact-Pair.
Dampers have a constant € of 0.05 but other values are (a) u = 0.5,
r==6; (b) u=0.05, r = 6; and (c) u=0.01, r - 12. Coefficients
of restitution take identical value R.
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typical of the high frequency behaviour of a realistic damper.
Stability zones were plotted in the standard format of Figure 2.5.

This procedure entailed the conversion of the external load's

ampTitude FO by using equation (3.3) of Chapter 3 to an equivalent
displacement amplitude A of the primary mass. The equivalence,
written explicitly again in case (d) of Figure 4.1, is invariant

for constant passive components and a given frequency ratio. It
‘is understood however that the repetitive period may reference the
(identical) cyclical behaviour of the external load or, as appropriate,

the prescribed displacement.

A comparison of the dampers' stability zones in Figure 4.2
suggests that their correspondence with those of the Impact-Pair
improves as restrictions (4.10) are satisfied better. For example,
both two impacts/cycle stability zones of the damper with the largest
r and smallest p and the Impact-Pair virtually coincide. Consequently
case (d) of Figure 4.1 appears to be similar to (b.3) or (c.2) under
the restrictions listed in the inequalities designated by (4.10).
Hence further investigations of a more theoretical nature seem

justified.

4.2.3 Similarity of Case (a) and (e.1)

The similarity of case (a) and (e.1) shown in Figure 4.1
will be proved in this section for two equispaced impacts/cycle of

the external load F0 sinQt. An essential condition is for the
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secondary mass m to be infinitely larger than the primary M. The
M and FO should be finite to ensure that the strength of the impacts
remains bounded [17]. Then the velocity of m will be virtually zero

after an impact or essentially fixed as in case (e.1).

The equations of motion (3.19a) and (3.19b) developed generally

in Chapter 3 for impact damper (a) simplify to

2 sint +Hcost =-op | (4.10a)
where ‘
Y= 20 [65-07) + 070, (gu-¢,)Thq + [1+h,1[070,(9; + nw)] (4.10)
(gw2"01¢2)h] + (]+h2)[01¢]+n02w] ’
and
d[(1-r2)? + (2er)2 ]2
p = (4.70c¢)

Fo/K

for two equispaced impacts/cycle with R], R2 both equalsto R and a
given FO expressed in terms of a corresponding constant A by equation
(3.3). The above particular equations were given originally in
reference 53. Varijables h], h2, ¢], ¢2, o and o, are defined

explicitly in Appendix A3~ where it is shown that

Lt oy * 0, Lt oy > 0 (4.17a)
g Yoo
but
9
Lt — > - R . (4.11b)
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The mass ratio y tends to infinity in the 1imit when m is very much
lTarger than a finite M. Then by employing tendencies (4.17a) and

(4.11b) in equation (4.10b), it can be demonstrated that

(1 + R)h1

H+29(€w +Ro,) Py F (nw - Re (T + hy) (4.12)

Lt

oo

If the last relationship is substituted into equation (4.70a), the
resulting equation is identical to the one developed in Reference 2
and 29 specifically for case (e.1). Therefore the solutions of case

(a) and (e.1) are similar for the outlined conditions.

4.2.4 Similarity of Case (b.2) and (b.1)

The similarity between case (b.1) and (b.2) is demonstrated
more easily by first considering the idealisation of (b.2) in Figure
4.1. Rigid mass M totally clears the fixed stop by a non-zero distance
d. It collides with the stop twice after the establishment of periodic
motion for every cycle of the external load Fo sin Qt. Durations
between consecutive collisions are assumed identical and, hence, equal
m/Q. Any impact in the periodic motion may be designated arbitrarily
as the first. This first impact is assumed for convenience to occur
at time zero on the left side of M in Figure 4.1. Therefore the

absolute displacement of M, X, is known to be
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X =+ d/2 at t=20
and (4.13)
X =-d/2 at t=mn/9.
On the other hand the equation of motion of M is
MX = F_ sinat (4.14)

between impacts. The solution of this second order ordinary differential
equation is given straightforwardly by
X = A sin(qt+r) + C,t + C, (4.15)

where

A= Fo/(MQZ) (4.16)

and ¢y and C2 are arbitrary constants. Equation (4.15) has to satisfy

the two conditions numbered (4.13) so that

+ 3= psine + c, (4.17a)
and
d _ . T
- 5 = -Asint + Cieg*C - (4.17b)
Adding equation (4.17b) to (4.17a) and rearranging gives
C,=-2L¢ (4.18)
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The velocity of M immediately after the first impact, X]a’
is obtained by differentiating equation (4.15) and substituting O+

for t. This produces

X, = Aqcost + C (4.19)

la 1

Similarly the velocity of M just before the second impact, XZb’ at
(W/Q)_ is

XZb = -AQcost + C] . (4.20)

However XZb is merely in the opposite direction to X]b due to the
symmetry of the periodic motion [1]. Mathematically
- X

XIb = = %9p

or, from equation (4.20),
i]b = AQcost - C] . (4.21)

Now X]b and R]a are related through the coefficient of restitution,

R, by

X3 (4.22)

= - R X]b

Substituting equation (4.19) and (4.21) into equation (4.22) gives

AQcosT + C] = - R (AQcost - C])

or
- (1 +R
C-l = - AQ (]—:——R) COST . (4.23)
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Combining equation (4.18) and (4.23) leads fo

_ 2T /1 +R
C, = A 2—(] ~ R) cost . (4.24)

Equation (4.24) can be substituted in equation (4.17a) to produce

. .m 1 +R . d
sint + '2— (T—:—-R—) cost = oA (4.25)
after division by A. The last equation is identical to that given in
Reference 2 for the system shown in case (b.1). Therefore the two

systems are similar for periodic motion involving two symmetrical

impacts per cycle of the external load.

4.3 Conclusions

Relationships between existing similar solutions have been
placed into better perspective. They have been complemented by
several new and practically relevant examples. Similarity relation-
ships do provide a useful means of extendihg and checking various

idealisations even though a completely general set relationships

cannot be provided.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A theory is developed to predict general stable periodic
motions of an Impact-Pair and impact damper when subjected to a
prescribed, sinusoidally time varying external load or displacement.
Any one impact is considered instantaneous and representable by the
macroscopic coefficient of restitution. Times between individual
impacts and the overall periodicity are presumed known. Ensuing
predictioné are compared with previous but, sparse, theoretical
results and more comprehensively with new experimental data. Agree-
ment between theories is fairly good generally but several incongruences,
although explainable, remain in the case of the impact damper.
Credibility is increased therefore by the close corre]ations demonstrated
between general theory and experiments involving widely different
conditions. Minor discrepancies arise, however, due primarily to
imperfect experimental simulations of single direction motions and
supposedly plane surfaces which change slightly after many contacts.
The Tatter variations seem to become progressively less pronounced
after an initial work-hafdening phase. If such behaviour is general,
a proposal to simply determine the clearance without dismantling an

Impact-Pair would be useful.

Impact dampers are currently designed assuming stable periodic

motion comprising two equispaced impacts. The validity of this
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assumption is certainly questionable when the external load, say, is

so transient that periodic motion cannot even be established. It has
also been demonstrated that even with stable periodic motions, equi-
spaced impacts happen strictly only when consecutive collisions involve
 identica1 coefficients of restitution. However, extrapolation from the
corresponding Impact-Pair investigation suggests that differences less
than about 5% are not likely to be practically significant. On the
ofher hand uncontrolled fluctuations in the frequency of a sustained
sinusoidal Toading of a lightly damped primary system could seriously
degrade the impact damper's performance. The damper will amplify rather
than attenuate the primary's maximum deflection for large fluctuations
which drive the forcing frequency even slightly below its own fundamental
natural frequency. Optimal deflection reductions are produced in these
circumstances when the primary system alone is resonant and the damper
generates exactly equispaced, two 1mpacts/¢yc1e of the sinusoidal Toad.
In other words, the present design philosophy concerning impact dampers

is, then, certainly appropriate.

The solution of any one particular problem becomes increasingly

useful as its applicability is demonstrated more universally. This is

generally not a straightforward procedure in vibroimpact problems
. because the principle of superposition is invalid. However, similarities
have been shown to exist under certain conditions between various

Impact-Paris and mpact dampers. Work is needed to generalize the
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concept and place it on a more rigorous foundation. Other major

questions requiring theoretical answers relate to:

1)  The conditions needed for a stable periodic motion to be unique;
2)  the Teast'time taken for a stable periodic motion to revert

back to.its form after the application of a small perturbation;
3) the effect of numerical errors when absolute eigenvalues are

near one.

Of these the first two offer most promise of furthering our
understanding of'vibroimpact'systems. Further experimentation should
be performed to investigate the possibility of optimizing the number
and timing of impacts produced by a damper under earthquake-Tike
loading. Such loads could encompass a wide range of amplitudes and,
unlike the present sinusoidal force, simultaneously applied frequencies
which could be non-stationary. Then, many different secondary systems
may be needed or, alternatively, feedback may be introduced to

continuously adjust the character of the single unit damper.
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APPENDIX AT

It is required to show that a necessary condition for two
equispaced impacts/k cycles (k = 1, 3, 5,---) to occur in an
Impact-Pair is for R] to equal RZ'
of the main text hold generally and certainly for the special

periodicity condition
a, = mk

associated with two equispaced impacts/k cycles. Substituting

equation (A1.1) into these general equations leads to

=(1-'R2)_ 1-R

2
2 ok (ﬁ;h:_T) LI’ 0 < R] <1
and, from equation (2.19),
x] = A sint = - x2

Then by using equation (A1.1) through (A1.3), the two equations

numbered (2.20) respectively become

ZL].Asinr - (1 + R]).ACOST = dL]

and, after some simple algebraic manipulation,

(1+ R)(Ry - 1)

ZL].ASinT + (] — Rz) - .ACOST = dL

1 -

Equations (2.17) through (2.21)

(A1.1)

(A1.2)

(A1.3)

(A1.4)

(A1.5)
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Consequently

- (1 + R]) = (A1.6)
by inspecting equation (A1.4) and (A1.5). After cross-multiplication
and cancellation of common terms, equation (A1.6) gives the required

result that

Ry = R2 ,» 0< R1 <1 , (A1.7)

for two equispaced impacts/k cycles.
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APPENDIX A2

DERIVATION OF GENERAL EQUATIONS
OF AN IMPACT DAMPER

The general equation (3.19a) and (3.19b) of Chapter 3 will be
derived. Components of the 4 x 4 matrix [P1] will be given sub-

sequently because they involve variables which are defined here.

The absolute displacement of the primary system at the (i+])th
impact, X(i+1)’ is obtained by substituting the contact instant
t(i+]) in equation (3.6a). Then by using equation (3.4) to write

a(i+]) instead of Qt(i+]), X(i+]) can be shown to be

X(is1) = @@ [- %'(a(i+1) - o3)][a; sin 2—(a(i+]) - o)

by sy logqugy Tog ) Asin(agg gy + o),

i=1, 2----N . (A2.1)

The velocity of the primary mass just before the (i+1)th impact,

X(i+])b’ s simply the time derivative of equation (3.6a) at time

t(1+])— s Or
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i
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(el ¢ (o) - o)y c0sD (apy,gy - o)

r
...N _ Dﬂ
- b, s1n?-(a(i+1) ai)} -
- £ ofa. sind (o). - a.) +b. cosDe
; r i r (i+1) i i r

(a(i+1) - ai)}] + AQCOS(a(i+]) + 1),

i=1, 2----N

exp [- %'(a(1+1) o)l 4y = o) - ay)

= E. sin¢i . C]Oi E. cos¢i

1 1

(A2.2)

(A2.3)

so that equation (A2.1) and (A2.2) may be expressed more succinctly as

and

X(341) = Coi 35 * Cypq by + Asin(agygy + 1),

i=1, 2----N

[(Cyp5a5 - CoibyTnw - g [Cgia; + Cpgyb.]

X(i+])b T+ AQcos(a(i+]) +1) ,1i=1, 2----N .

(A2.4)

(A2.5)
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Equation (A2.5) can be simplified to

a]- [(nc]o]" €C91' )UU] + bi[(-ani - gC]Oi )w]

fp |+ AQcos(apiyqy + 7)1 = 1,2---N (R2.6)

i+]
by collecting terms involving a, and bi' If

Ciys = w(nC

174 101 ~ ECgq) and Cppy = - wlnCoy + £Cyq;),

i=1, 2----N (A2.7)
then equation (A2;6) can be rewritten as

Xiem)p = €

it C]Zibi + AQcos(a(i+1) +1), i=1,2---N (A2.8)

The N constituent relations implicit to both equation (A2.4)
and (A2.8) form the basis of the 2N equations to be developed.
Coefficients C91 through C]21 can be enumerated from the known
frequencies Q and w, the given passive components and the assumed

impact sequence and periodicity. The a; and bi can be expressed in
4

terms of the unknowns A, T and all Xi by using equation (3.5a)
separately and, together with equation (3.6b) and (3.7), in conjunctioﬁ
with equation (3.18). The only remaining determinable Variab]e

on the right of equat?on (A2.4) and (A2.8) is the A(547)0 whicHMEgﬁvﬁe

obtained from equation (2.13) by using the assumed sequenée and
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periodicity of impacts. Also the i(i+])b on the left of equation (A2.8)
may be found in terms of the X by employing equation (2.13) again and
replacing subscript i in equation (3.16) with (i+1). These procedures
will be shown next to produce the final 2N linear simultaneous equations
required in Chapter 3 which involve the (N+2) unknowns of Xi’ i=1, 2,

----N, A and T.

Equation (A2.4) and (A2.8) become

x ] [k91(x Y Xy Yan)
(+1) = St |7 “ - %)
0i Ry - %)

+

1]9

a(i+]) - a

Arcos(ai + 1) +¢ [Xi - A Sin(ai + 1)]}

C101 [Xi - A sin(ai +1)] +A Sin(a(1+]) + 1),

i=1, 2---N (A2.9)
and

k

7(i+1) X ()Y (i )Y Kg ey DX ey Y () Xie1) Y41y 20
Ali+1) T 4 %(5+2) i+1)
RCT R
“10i Kien) Y (541 = X5 - Y5)
a(i+]) - Qa

+

19
- Ar cos(ai+r)

+

g[xi - A sin(ai + T)]}J + C]21 {Xi - A sin(di+r)}
+ AQCOS(%i4ﬂ) +1) , 1 =1, 2---N (A2.10)
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by substituting the a, and bi directly from equation (3.18) and (3.5),
respectively, and by using X(i+1)b from equation (3.16) with subscript

(i+1) replacing i. The newly introduced coefficients k ; through k

7 1014
are given in terms of p and Ri by
R, -
k7i = T3 R? . kg Ty Ei (A2.11a)
and
Ry (1+11) 1~ 1R,
i TTERT kol T TER T (A2.11b)

with i = 1, 2---=N invariably.

Slight difficulties arising when i equals one in terms ]ike (ui - a(i_]))
of equation (A2.9) and (A2.10) are avoided by the substitution
[a(i+N) - a(1+N-])] obtained from the periodicity equation (2.13).

Then equation (A2.9) and (A2.10) can be rewritten as

6,
- 11 - -
N1 Coi) T MY - XY

6,
2i Ar
T B T Yy - %Y - Teos(agr)

z e ) o
+ : {Xi As1n(ai + 1)} + C]Oi [Xi As1n(ui+r)]

thsin{aggygy # 1) 5 1 =1, 2. (A2.12)

and’
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S31 i) ¥ V) - % - ¥yl v g, i Ky (ia2) K1) Vi)

Gy . :
- Ti - - 2i
SO e Y Xy Yoy e D
+ - Y }o- Ar cos(a +r) + = {X - Asin(a.+1)}
(1”) n i
+ C]Zi [Xi - Asin(ui+ )]+ AQcos(a1+]+r) s 1 =1, 2---—-N (A2.13)

by also employing variables

o - Ko o - %0
R T T R 2 B TRUe T s
and
L Te i) (A2.14)
3i OL(_H_-I) - OL1- 44 OL(_H_Z)_OL(.H_-I)

-
i
—
-
[BS]
I
I
|
1
=
.

introduced for convenience. If the trigonemetric terms like cos(ai+ T)
are expanded and coefficients of the Xi’ Asint and Acost are collected,

equation (A2.12) and (A2.13) can be demonstrated to become
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X 1--—~——C9"GGZ" X [+ 6. - -g)L-C
(i+1) nw i 21 w 10i

G, *Cqs
+ X(1 N *ll__91-+ A cost [Cgi {%—COSai + %—sinai}

i i L Acd roo.
+ C]Oi sina; - s1na(i+])J + Asint [Cgi (- n o Sino,

& -
+ : cosai) * Cqps cosa, cosu(i+])J
.ot Gys {Y. - )+ Gy, (Y =Y. s 4 = 1,2---N  (A2.15)
nw ]'i 'i ( ) (]-{-") i s 5 .
and
C...G..
: 111721
X(541) [631 BT Ml } t X [' G3i7Cyz;
C...
111
e U Gyy6yy Ew}}+ Xi+2) *

Ciqs
11i r

& .si . si -

. r o £ .
+ A sint [Clli ( = 51nai + . cosai) + C]Zi COSai + Qs1na(i+])

S3i Yaan) ™) = G5 (YVqu) ™Y (han)

+

. [G]i Yoy * 6y {Y(i+1)“Yi}J ’

i=1, 2----N . (A2.16)
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(i+N-1) 18

applied next so that the last two sets of equation can be shown to

take the forms

WZiXi + (T~W11)X

(i+1) © 135X )

It

WGi’ 1

+ w4i-Ac05T + wsi AsinT

and

Vi

+ V41X(1+N—]) + V5, Acost

+ V6i Asint J

The above equations have been simplified by the

. X

1

+ V2.X

iAier) T V3K

(i+2)

i

V7i’ i

the coefficients defined by

W]i
W2,

1
WB_i
W4i

WSi

W6,

(]

Coi Gy

nw

= Gy - gw) - Gy

nw
C -'{E-COSa. + §-sinu.} + C.n: Sina.
91 *q i n i 101 i

(-r . g
Cq; ( 7 Sinay + : cosai) * Cio cosa,

- COSOL(.H_])

i

nw

i
[Gli Y)Y a1t ¥ G5 Wigan

=1, 2---N .

_Yi}

=1, 2---N (A2.17)

(A2.18)

introduétion of

(A2.19)

J
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and
VI, = - G, - C -C”"{G- ¥ Ew) ]
i 3 7 Y21 T e 1i i e
C.o .
= - _ 1T
V23 = B3y - Gy - i Gy
V3; = Gy
C...
= 11i,
V&, = <" Gyy
= L. _E. T ° 7
V5i C]]i {n cosa, + . s1nai} + C]Zi s1nui
- QCOS&(T+])

r (A2.20)

- _r . S
V6i = C]]i ( o Sinay + . cosai) + C]Zi coso.;

+ Qsina(i+])

4077 Gy (i) ™s) - By (Y(ap) Y (4an))
Ciqa
111
+_nTn_[ O™ 1)) G5 Ogaq)7Yy) -
Subscript i invariably takes the integer valves of 1, 2----N in

equation (A2.19) and (A2.20). Consequently equation (A2.17) and
(A2.18) are identical to the required equation (3.19a) and (3.19b)
of Chapter 3.

The explicit expressions for all representative components of[Pi+]
in equation (3.20b) given by Masri [59] were modified to incorporate

possible changes in the coefficient of restitution, the modification



involves changes in variables k]i through k

of [Pi ] are given below
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4i- ATl the elements

r ]
S10i™12 Sy7 513 514
515i%3175 Sy S18 5195
[Pi,] -
520i%S22i  Soqs 553 So4
S5i%S7; S6i Sgi S9i |
where
Dy; = (1/9) Vig - Acose(i+]) = Sa1;
_ T
S5i = 514/D34 s Sgi = Spi/Dg;
S7‘i = . ]/D3_i ’ 881 = - [(a(’i’*‘]) - OL.]')]/(QDS.E)
_ _ . 1
Sg; = [- S35 AS;jcose, + AQS,;sine, + o Viad/Ds;
Qp; = Acosbyyq + S3qs
SToi =511 * Qg Ssy > Syq5 = Spp + Qpy S

(A2.21)
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21

So3q T

241

'y

=S

221

1

.= - AS]icosei + A932151n61 - 8311 + QfS

532
St
Ky

Ky

f)

S

+

i

32i

il
=

k]i'

. S
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S S

7i > 137 - Q4 Sg;
791
~ AQsinei+] |
[S3; *+ Qpy Sg;1

[S45 * Qs Sg41

Q; Sy

QitSgi * Ky;

(]/Q) [bi'SBi + (Xia - AQCOSGi) C]]i/(wn)]

[- ASsicosei + AQS4is1nei - 5321

(8321 - AQs1nei+]) 591]

[(]/Qn)][-wC]]ibi + (nc]21 - EC]]i)(x]a - AQCOSGi)]

- AQs1nei+]

i D315 ¥ U34°554]
i [543 * Qg4 Sgy]
i O35 S74

i O35 Sgi * Ky

9i]
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APPENDIX A3

PARTICULAR FORM OF IMPACT DAMPER'S EQUATIONS
FOR TWO EQUISPACED IMPACTS/CYCLE

The general equations of motion of an impact damper have been
developed in Chapter 3 with some details given in Appendix 2. These
equations will be shown here to simplify to the particular forms given

in reference 53 and 54 for two equispaced impacts/cycle, i.e.

N=2and k =1 . (A3.7)

Unfortunately the final general equations (3.19a) and (3.19b) cannot be
used straightforward}y because the different variables X], X]b’ X]a’
ays b] and A were treated essentially as the unknowns in these two
references. A slightly different nomenclature was adopted too. To

avoid unnecessary confusion, the notation of Chapter 3 will be retained
with explanatory notes added to facilitate direct comparisons for the
interested reader. For example, subscript ones were omitted previously
from X], X]b’ X]a whilst 3y and b] were replaced by b] and b2 respectively
[53, 54]. Derivations will be based upon the more fundamental equations
(3.5a) (3.6a), (3.7), (3.16) and (3.17) of Chapter 3 and (A2.4) and

(A2.8) in Appendix 2 rather than their off-shoots, general equations
(3.19a) and (3.19b). This change leads to a better accommodation of

the X], X]b’ X]a’ a5 b], A or, in column vector abbreviation, {U}Gx]‘



139

The procedure will be shown to produce six Tinear simultaneous equations

with the matrix form:

[A] 6x6'{U}6X] = 19}, (A3.2)

where the six components of vector {g}6x1 depend only upon the known gap
size, d. A1l elements of the 6x6 square matrix [A]6x6 will be found
explicitly. Unknowns {U} were obtained in reference 53 and 54 by pre-

multiplying equation (A3.2) by the inverse of [A]6x6’ [A]él6’ so that
_ -1
Wlex = [lgye 193607 - (A3.3)

In the process, however, an error appears in the evaluation of the
determinant, A , of [A]6X6. The correct A will be given here along with

the Timits needed in Section 4.2.3.

It is assumed in reference 53 and 54 that the first impact
occurs on the right side of M in Figure 3.1. Therefore equation (3.7)

in Chapter 3 takes the specific form

Y] =+ d/2 and Y2 = - d/2 (A3.4)
for the first two collisions (i.e., i=1, 2). The primary mass' absolute
displacements and velocities just before these two collisions must be

equal in magnitude but reversed in direction for two symmetrical (equi-
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spaced) periodic impacts/cycle [53, 54]. Hence

X; = - X

1 and x]b:—x2b ) (A3.5)

2
Subscript b has been omitted from X] and X2 because the primary mass'
displacement, unlike its velocity, is continuous at a collision. (see
equation (3.8)). Times between contacts are related through the

symmetry and periodicity requirements. They are expressed conventionally
in terms of the o; of equation (2.3). By using equatiog (A3.1) in
conjunction with (2.16), (3.6b) and, for equispaced impacts, équatibﬂ

(3.20) it can be shown straightforwardly that

ag = 2 , a; = 0 and a, =T . (A3.6)

Other a; may be determined from the periodicity condition (2.13) with
N equal two from equation (A3.1). For example when i equals one,
equation (2.13) gives

%3701 o
or, by using equation (A3.6),

ag = 2t . (A3.7)

Basic relations (A3.4) through (A3.7) pertinent to periodic, two equi-

spaced impacts/cycle motion will be used next to obtain the particular
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solution in appropriate form.

A relationship between two of the unknowns, X] and b], may be

derived by simply taking i equal one in equation (3.5a) so that

b] = X] - A sinG] (A3.8)
The 6] may be determined from equation (3.6b) as

e] T+ 0y
or, by using equation (A3.6),

6] = T .
Employing the last relationship in equation (A3.8) produces

X] - b] -Asint=0 . (A3.9)

The velocity of the primary mass just after the first impact, X]a’
~is merely the time derivative of its displacement, X(t) given by

equation (3.6a), evaluated at instant t = 0 Differentiating equation

4
(3.6a) and substituting t = 0, Teads to

= ol -0t
9) R Qy b1 + AQcost

or, by employing equation (3.3),
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Xia - nwa; Emb] - AQcost =0 . (A3.10)

Equation (A2.4) with i equal one on the other hand gives
Xy = C9] a; *+ Gy b] + As*in(cxz +1)
which, in conjunction with equation (A3.5) and (A3.6), leads to
X, + C9] a] + C]O] b] - Asint =0 . (A3.11)

1

The two coefficients Cg] and C]O] may be determined from equation (A2.3)

as
Cgq = exp [- %%J sin(%?) (A3.72a)
and
Cig7 = exp [- %;ﬂ cos(%?) . (A3.12b)

The two alternative symbols h] and h2 were used respectively for CQ]
and €;4; in reference 53 and 54. Consequently equation (A3.11) was

written there in the form

X] + h] a; + h2 b] - Asint = 0 . (A3.13)
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Unknown velocity X]b may be obtained by first substituting i equal one

in equation (A2.8) so that
Yab = L1 21 * gy By * Aacos(op + 1)
and then using equation (A3.5) and (A3.6) to give

)'(1b *Cyyq 2y * c]21 b1 - AQcost = 0 . (A3.14)

Coefficients C111 and C]21 may be evaluated by substituting equation
(A3.12a) and (A3.12b) into equation (A2.7) with i equal unity. This

procedure may be shown straightforwardly to give

Cqyq =wexpl- Ing_] (ncos™! - gsin'l) (A3.15a)
and
Cip7 = -wexp E-%?] (nsin%?-+ gcos%? (A3.15b)

which were termed e] and 92, respectively, in reference 53 and 54.
However dashed superscripts will be used additionally here to avoid
confusion with the ei of equation (3.6b). Therefore equation (A3.14)

can be rewritten as

+ 0.

X1 1377 eé b] - AQcost = 0 (A3.16)

where
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ei = C]]] and 8'2 = C]21 . (A3.17)

The Tast two equations required are developed in a similar manner
from equation (3.16) and (3.17). For example by substituting i equal
one in equation (3.16) and employing the periodicity condition (2.13)

with requirement (A3.1), the following equation is derijved

kpp X+ Y- % - Y00
OL3 -

%

+ k8] [X2 + Y2 - x] - Y]]Q

Z (A3.18)
ay - oy

Substituting equation (A3.4), (A3.6) and (A3.7) into the last equation

and rearranging terms gives

><o
i

1 = (kgq = kgp) (24 + d) % . (A3.19)

Similarly,

I

X (kgy - kqg7) (2% + d) -f} (A3.20)

1a 91

starting from equation (3.17). Now the coefficients of restitution

R], R2 ++-. must be equal (to R) for two equispaced impacts/cycle,

periodic motion. Consequently differences in the coefficients on the right-
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hand of the Tast two equations can be shown to be

L L Re2p-1 i
kg7 = kgy = “75B= and k k

71 91

_ RE2uR-1

101 1+R

from equation (A2.171a) and (A2.11b) of Appendix 2. Substituting these

coefficient expressions into equation (A3.

last needed equations

m 1+R -
Y1 % 20 Gagr) Ryp = - 422
and
1l 1 +R ° _
Y1420 Gomrem) Kjg = - 972

after minor rearrangement. These equation

53 and 54 as

"

- d/2

and

X] + o, X]a = - d/2

respectively, where

. T+R . - T
91 = 2q (Gazg) and 0y = 55 (

19) and (A3.20) produces the

(A2

S were written in reference

(A3
(A3.

1+R
_Téﬁﬁfﬁ) (A3.

(A3.

21)

.22)

.23)

.24)

25)

26)

Equations (A3.9), (A3.10), (A3.13), (A3.16), (A3.24) and (A3.25)

were derived specifically in reference 53 and 54 but in the matrix form
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comparable to

1 0 0 0 -1 -sint [x] ) [0 )

0 0 1 -nw &w -Qcost X]b 0

1.0 0 hy h, -sing k]a 0

0 1 0 6; 65 -qcost 4a] = {0} . (A3.27)
1 o, 0 0 0 0 b, -d/2

1.0 o, 0 0 0 A -d/2]

Equation (A3.27) is the completely detajled version of equation (A3.2).

The correct determinant, A, of the above 6x6 matrix is

h] [C(02 - G]) - (S + COZ) oy eé + (S + Co]) Ewoz]

+

+ (1 + h2) [(S COZ) O]Gi + (S + CO]) nwoz] (A3.28)

where

i

S = sint and C = Qcost . (A3.29)
Finally, the limits of oy and o given by equation (A3.26) and

their ratio are needed in Section 4.2.3 as the mass ratio y tends to

infinity. A physically realizable driving frequency © must remain

finite whilst 0 < R < 1. Consequently it can be proved from equation

(A3.26) that



lt o

-0

1

and simi]ar]y,

Lt 9y

oo

m
Lt 5g
Yo
m
Lt 70
u—x:o

14R
(1

-R+2y

( 14R

1-R-2uR

)

By straightforward algebraic manipulation

Lt

QI_'Q

N

u—)OO

Lt

o

(R

1-R-2uR
1-R+2y

) -

~-2uR

—_—T e =

2y
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(A3.30)

(A3.31)

(A3.32)
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APPENDIX A4

MEASUREMENT OF THE COEFFICIENT OF RESTITUTION

Several coefficients of restitution were measured in situ by using
high speed photography. A camera, Action Master 500 made by Photosonic
Ltd., was mounted on a sturdy tripod, Tevelled and aligned carefully
so that cross-wires in its eyepiece coincided with lines etched on the
initially stationary secondary mass. The Impact-Pair shown in Figure
2.11 was then set into motion and permitted to reach a stable state
before filming at 500 frames/second was started. Various amplitudes
and frequencies of the untaped primary mass were employed when using
the mature stainless steel secondary mass in order to encompass all
contact velocities in the vibroimpact experiments. Restricted funds

limited all other measurements to a single frequency of aboutA35szf

Adequate resolution was maintained by ensuring no fewer than

ten film shots per cycle of the primary mass' displacement.

Films were developed commercially and analyzed in slow motion
with the aid of the Motion Analyzer manufactured by Photographic
Analysis Ltd. Appropriate lengths of film were discarded to eliminate
the starting acceleration and finishing deceleration phases of the
camera and thereby guarantee constant speed photography [92].

Absolute positions of both masses could be determined straightforwardly
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by reference to a short rigid pointer fixed to the concrete base of
Figure 2.11. A plot of typical displacements is presented in Figure
A4.1 where experimental data points have been Jjoined by eye with an
appropriate Tine or sinusoid. Impacts happened between the two

masses at points B], BZ’ B3.... and, correspondingly, Bi, Bé, Bé....
in the upper and Tower figures respectively. Therefore the slopes
Just before and after these points give velocities appropriate to the
direct application of equation (2.8) and, hence, the coefficient of
restitution, Ri‘ The number of data points used however inadequately
described the more rapidly changing slopes near Bi, Bé, Bé.... compared
with B], BZ’ 83, etc. Conversely the A, Q or from equation (2.16) for
this illustration of two impacts/cycle, Zﬂ/TO, and (ai'FT) associated
with the more particular equation (2.10) for Ri may be measured
accurately from Figure A4.1(b). Variables A, T and T are shown
explicitly in this figure. The remaining a;s or from equation (2.3)
Qti, may be calculated after quantifying the last unknowns ti’ the time
delays of subsequent impacts after the first one at B]. The first
delay t; is specified in Figure A4.1(b). There was little discernible
difference in practice between nominally corresponding impacts in
different periods. Consequently, parameters were evaluated typically
from fifty periods and averaged arithmetically. Finally the Via and

Vi in equation (2.10) were measured similarly from the slopes between
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Figure A4.2. Variation in the coefficient of restitution with relative approach
velocity for mature stainless steel secondary mass and untaped
primary mass.

*The vertical Tine Tn the symbol @ indicates the least and
greatest measured values of R at any one Y.
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Figure A4.3. Variation in coefficient of restitution with approach
velocity. Glass ball hitting a steel plate [36]----- ; two

impacting steel spheres [35]----; and a steel sphere hitting
an aluminium plate [39]-- — -- . -

"The vertical line in the symbo]‘dHndicateg the least and
greatest measured values of R at any one Y.

++Enve]ope of the greatest variation which was not given for
the Towest curve — -- ——
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8182’ 8283, etc. Any one of these slopes appeared fairly constant.
Therefore;the constant velocity assumption reasonably described the

secondary mass' motion between consecutive impacts.

Computations of Ri based upon equation (2.10) at various approach
velocities, Y, are displayed in Figure A4.2 for the untaped primary
and mature stainless steel secondary mass. Variations observed in the
Ri for consecutive impacts were always within the extreme errors
denoted by a symbol's vertical Tine. Consequently, the assumption
that the Ri equal a constant value R in this case is reasonable 1in
the short-term whilst surfaces are hardly affected by contacts.
Analogous data obtained prévious]y for comparably hard materials but
somewhat different body geometries [35, 36, 39] is presented in
Figure A4.3. The coefficients are numerically similar to those in
Figure A4.2 and show generally the same tendency to decrease with
increasing Y.  Additional effects of repeated collisions do not

seem to have been considered in these references.

Coefficients of restitution used theoretically for a given
combination of materials and contact surfaces of the primary and
secondary masses are noted in Table A4.1. The highest R in this table,
0.75, is the arithmetic average of the greatest and smallest mean
values shown in Figure A4.2 over the applicable range of Y. Remaining

information on the other hand corresponds to the average of extreme R
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Stainless steel primary Material of R
mass with contact surfaces: | secondary mass..
Untaped stain1ess_stee1» 0.75
Untaped brass ..0.68
Taped stainless steel‘ ~ 0.61

Table A4.1 Coefficient of restitution, R, used in

theory.

Any two, short-term experimental

extremes fluctuated about the given R but
within + 3%.
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observed over the short-term again but only at a single Y. This ¥
was selected to be approximately midway in the range of the Y for
the true vibroimpact experiments. Then the extreme R were found to

be always within its average value + 3%.
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APPENDIX A5

COMPONENT PROPERTIES OF THE IMPACT DAMPER

The properties of the experimental impact damper shown in
Figure 3.6, unlike the theoretical ones in Figure 3.1, are mostly
distributed. Procedures used to make the experimental and idealised

behaviours largely equivalent will be described here.

The predominant frequency range of interest just encompassed
the Tirst natural frequency of the primary when acting independently
of thebsecondary system. All natural frequencies and corresponding
viscous damping ratios were measured in standard resonance tests [91].
The fundamental frequency and damping ratio of the primary system alone
are given for convenience in Table A5.1. . This fundamental was found
to be over twénty times smaller than any other, 1ightly damped natural
frequency. Consequently the first mode of the primary system can
be reasonably assumed to act alone over the frequencies of interest.
Therefore the distributed weight of each canti]everedvsupporting beam
behaved effectively as a weight 33/140 times the beam's total weight
concentrated at its free tip [5]. The weight of the beam was measured
Tike that of remaining components on an accurate laboratory weigh

scale. Hence the effective weights of both beams were calculated
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straightforwardly. These effective weights were added to the measured
and essentially tip weights of the accelerometer and aluminium brackets

to form the equivalent weight, we of the ideal primary system. The

q’

corresponding equivalent stiffness, K__, was approximated fairly for

€q
the very light damping by the square of the experimental fundamental

circular frequency times weq divided by the gravitational constant.

Both we and Keq of the primary system are presented for convenience

q
in Table A5.1.

The first natural frequency of the secondary mass alone was

more than 500 times greater than the frequencies of concern. There-

fore it was considered yigid. Its weight was measured as

0.044 + 0.002 1b.
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Property Methodology 1. Value.

Equivalent weight, weq Computation 1.61 1b

Equivalent stiffness,

K Computation 65.01 1b/in

eq .
Fundamental natural
frequency of primary Measurement 19.87 + 0.03 Hz
alone
Effective viscous
damping ratio Measurement 0.0114 + 0.0005

Table A5.1 Component properties of the impact damper's

primary system.




