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Abstract

Network meta-analysis (NMA), also known as mixed treatment or multiple

treatment comparisons, is commonly used to incorporate direct and indirect

evidences comparing treatments. This is an extension to meta-analysis which

seeks to estimate the combined estimate of treatment comparisons from multiple

studies making use of just direct evidence from the treatment comparison.

With recent advances in methods and software, Bayesian approaches to

NMA have become quite popular and allow models of previously unanticipated

complexity. However, when direct and indirect evidence differ in an NMA, the

model is said to suffer from inconsistency which is a critical assumption. If it

is violated, interpretation and conclusion of results will be affected. Current

inconsistency detection in NMA is usually based on contrast-based (CB) models;

however, this approach has certain limitations. In this work, we look at an arm-

based random effects model, where we detect discrepancy of direct and indirect

evidence for comparing two treatments using the fixed effects in the model while

flagging extreme trials using the random effects. We define discrepancy factors

to characterize evidence of inconsistency for particular treatment comparisons,

which is novel in NMA research. Our approaches permit users to address

issues previously tackled via CB models. We compare sources of inconsistency

identified by our approach and existing loop-based CB methods using real



and simulated datasets and demonstrate that our methods can offer powerful

inconsistency detection.

After the detection of inconsistency, we try to perform some diagnostics to

network meta-analysis to see if the trials that are causing the inconsistencies

are just outliers or influential. Specifically, we address the question: if these

trials are removed, will they affect the conclusion of results?
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Chapter 1

Introduction

1.1 Meta-Analysis

Meta-analysis is a statistical technique for combining the results of independent

but similar studies to obtain an overall estimate of treatment effect size (Boren-

stein et al., 2015). This treatment effect size can be measured on some scale,

for example, odd-ratios, log-odds ratio and mean effects. The motivation for

meta-analysis lies in the fact that, since we are interested in the combination

of independent studies (Sutton et al., 2000), treatment effects or differences

are estimated precisely. So there is a need to assign weights to the studies to

see how precise a particular study is. For example, if a particular study has

more information, it should be assigned more weight (Borenstein et al., 2015).

Meta-analysis is also known as the extension of the traditional pairwise com-

parison (Whitehead, 2002). It has proven to have an enormous validity of its

use. But with all its benefits, it also has some demerits which every researcher
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should look at when using this statistical method (Shuttleworth, 2009). The

benefits that one gets from the use of this statistical method are

1. It allows data to be collected from a field which will be impossible for a

single research group, for example a rare medical condition.

2. A meta-analysis study can reduce the need for long, expensive and

potentially intrusive repeated research studies.

3. It throws more light to studies that may have some level of correlation

and relationship between them that may not be obvious to see initially

(Whitehead, 2002).

Also with all these benefits alluding to the use of meta-analysis, it is prudent

to state its demerits. Such demerits are

1. One of the most important disadvantage is that there is the tendency for

publication bias which must be accessed thoroughly.

2. It is a very sensitive statistical method. Erroneous or poorly conducted

studies leads to invalid results and conclusions. Hence setting criteria

for inclusion of a study may lead to ending up with few studies to be

analyzed, this results in poor conclusions.

3. The researcher must ensure all the studies are quantitative rather than

qualitative for valid comparisons (Whitehead, 2002).
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In meta-analysis, we wish to estimate the combined effects. Hence it begs the

question how best we can estimate the “combined effects”. It turns out that

there are two models that suggest how to estimate the “combined effects”.

These are fixed effects model and random effects model. Under the fixed effects

model, we assume there is a common effect that is shared among all the studies.

Hence a study with more information is assigned more weight (Borenstein et al.,

2015). The combined effects is an estimate of the common effect size. In fixed

effects model, the only source of error in our estimate of the combined effects

is the random error within studies (Borenstein et al., 2010). Therefore, with

a large enough sample size the error will tend toward zero. This holds true

whether the large sample size is confined to one study or distributed across

many studies. Hence they have a common effect size. The model is given below

yi = µ+ εi, (1.1)

where εi ∼ N(0, σ2
i ) and yi ∼ N(µ, σ2

i ). The model (1.1) is the fixed effects

model. Steps are shown below on how the combined effects are computed under

the fixed effects model. The effect size is shared and only one source of error is

expected. The process of computing the combined effects denoted by Ȳ., is as

follows:

1. Identify the variance of each effect within each study, denoted as σ2
i and

the effect size of each study, denoted as yi .

2. Find the weight for each study, Wi, where Wi = 1
σ2
i
. Thus, a weight is

3



the reciprocal of the variance.

3. Now, assuming that we have n studies, the combined effect is computed

as

Ȳ. =

∑n
i=1Wiyi∑n
i=1Wi

.

4. Compute the weighted variance,

V. =
1∑n

i=1Wi

.

5. Finally compute the standard error, S.E. =
√
V. .

With the random effects model, here it is assumed that the true effect could

vary from study to study (Borenstein et al., 2015). The studies included in the

meta-analysis are assumed to be a random sample of the relevant distribution of

effects, and the combined effect estimates, be the mean effect in this distribution.

In random effects model, there are two levels of sampling and two levels of error.

First, each study is used to estimate the true effect in a specific population.

Second, all of the true effects are used to estimate the mean of the true effects

(Lumley, 2002). Therefore, our ability to estimate the combined effect precisely

will depend on both the number of subjects within studies (which addresses

the first source of error) and also the total number of studies (which addresses

the second) (Borenstein et al., 2015). The mathematical model representation

is given below

yi = µ+ θi + εi (1.2)
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where θi ∼ N(0, τ 2), εi ∼ N(0, σ2
i ) and yi ∼ N(µ, σ2

i + τ 2). The model (1.2) is

the random effects model. In this model, between study variation exist, which

is represented as the τ 2 and the within study variation denoted as σ2
i . These

two form the total variation in the combined study analysis. In the fixed effects

model, the between study variation is zero, thus τ 2 = 0. But in the random

effects model we need to estimate this between study variation. A Generalized

Method of Moments is used to estimate this τ 2 (Borenstein et al., 2010), this

method is shown below. We let M which represents the total variation, given

by

M =
n∑
i=1

ai(yi − ȳ)2,

where ai are some constants and ȳ =
∑n

i=1 aiyi∑n
i=1 ai

. Now we find the expected value

of M, that is E(M). Then

E(M) = E

(
n∑
i=1

ai(yi − y)2

)

= E

(
n∑
i=1

aiy
2
i − 2y

n∑
i=1

aiyi + y2
n∑
i=1

ai

)

= E

(
n∑
i=1

aiy
2
i − 2y2

n∑
i=1

ai + y2
n∑
i=1

ai

)

= E

(
n∑
i=1

aiy
2
i − y2

n∑
i=1

ai

)

5



= E

(
n∑
i=1

aiy
2
i −

(
∑n

i=1 aiyi)
2∑n

i=1 ai

)
.

We know E(yi) = µ and E(y2i ) = V ar(yi) + [E(yi)]
2 = σ2

i + τ 2 + µ2. Hence

E(M) =
n∑
i=1

aiE(y2i )−
E[(
∑n

i=1 aiyi)
2]∑n

i=1 ai

=
n∑
i=1

ai(σ
2
i + τ 2 + µ2)− E[(

∑n
i=1 aiyi)

2]∑n
i=1 ai

.

E[(
∑n

i=1 aiyi)
2] = V ar(

∑n
i=1 aiyi) + (E[(

∑n
i=1 aiyi)])

2 =
∑n

i=1 a
2
i (σ

2
i + τ 2) + µ2(

∑n
i=1 ai)

2,

=
n∑
i=1

ai(σ
2
i + τ 2) + µ2

n∑
i=1

ai −
∑n

i=1 a
2
i (σ

2
i + τ 2)∑n

i=1 ai
− µ2

n∑
i=1

ai

=

(
n∑
i=1

aiσ
2
i −

∑n
i=1 a

2
iσ

2
i∑n

i=1 ai

)
+

(
n∑
i=1

ai −
∑n

i=1 a
2
i∑n

i=1 ai

)
τ 2

Thus, τ 2 =
E(M)− (

∑n
i=1 aiσ

2
i −

∑n
i=1 a

2
i σ

2
i∑n

i=1 ai
)∑n

i=1 ai −
∑n

i=1 a
2
i∑n

i=1 ai

.

Now the above generalized method of moments reduces to different forms of

estimating τ 2 when the constants a′is are changed accordingly. Let ai = 1
s2i

and

the population variances, σ2 are replaced by the sample variances, s2i . Then,

the method of estimating τ 2 is called the DerSimonian-Laird (DerSimonian

and Laird, 1986) method. Thus the estmte of τ 2 is

τ̂ 2 =
Q− (n− 1)∑n
i=1wi −

∑n
i=1 w

2
i∑n

i=1 wi

, (1.3)
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where Q =
∑n

i=1wi(yi − y)2 and wi = 1
s2i

. Since the effect size are not shared

and two sources of errors are expected, the process of computing the combined

effect, denoted as Ȳ., is as follows:

1. Identify the variance of effect within and between each study, denoted as

s2i and τ̂ 2 and the effect size of each study, yi .

2. Find the weight at each study, W ∗
i , where W ∗

i = 1
s2i+τ̂

2 .

3. Now the combined effect is computed as

Ȳ.
∗

=

∑n
i=1W

∗
i yi∑n

i=1W
∗
i

.

4. Compute the weighted variance

V ar(Ȳ.
∗
) =

1∑n
i=1W

∗
i

.

5. Finally compute the standard error, S.E. =
√
V ar(Ȳ.

∗
) .

1.2 Heterogeneity in Meta-Analysis.

Heterogeneity is the differences in studies that are not due to chance. The

presence of heterogeneity helps in the selection of the type of model to use,

either fixed effects model or random effects model (Sutton et al., 2000). When

the presence of heterogeneity is significant, one should settle for the random
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effects model. If there is no heterogeneity, one should just settle for the fixed

effects model. This strategy is quite dicey because it is sensitive to the number

of studies to consider. If one considers a small number of studies, the test for

the presence of heterogeneity will not be effective. In this situation, we need

large number of studies for analysis (Schwarzer, 2015). There are two types of

heterogeneity present in such analysis. These are

1. Clinical heterogeneity: This is always present. This is as a result of

the design from one study to the next, the study setting and how the

interventions or drugs are administered.

2. Statistical heterogeneity: This may not be always present. It is the

variation between the results of the studies that leads to differences in

the results and unlike clinical heterogeneity.

Hence, in studies like this, one has to test for its presence, quantify it and

investigate. Therefore we can use the Chi-square (χ2) test for testing the

presence of heterogeneity. This is usually accurate when the number of studies

is large. Let k be the number of studies. We take the degree of freedom to be

the number of studies minus 1, thus k − 1, under the null hypothesis (Sutton

et al., 2000). Where the null hypothesis has the statement of homogeneity

among studies and the alternative hypothesis suggesting there is the presence

of heterogeneity, this will have a corresponding p-value quantifying evidence

for or against the alternative hypothesis. This might not be enough and we

8



need to quantify this with some indices. Thus, for testing heterogeneity, we

try to quantify the presence of heterogeneity in our analysis. Some of these

indices are Higgins’ (I2) and H-index, H2 (Schwarzer, 2015), which are used to

quantify heterogeneity and are discussed as follows. Higgins (I2) measures the

percentage of variation across studies that is due to heterogeneity and not due

to chance. The representation of Higgin’s index is given by

I2 =
(Q− df)

Q
× 100.

where the df = k − 1 and Q is the overall heterogeneity in the study. Also

the threshold in taking a decision on the presence of heterogeniety using I2 is

shown below

1. 0% to 25% indicates that a low amount of heterogeniety is present.

2. 25% to 50% indicates that a moderate amount of heterogeniety is present.

3. 50% to 100% shows a considerable high amount of heterogeniety is present

(Borenstein et al., 2010).

H-Index (H2) is the ratio of the overall heterogeneity to the degree of freedom,

where the degree of freedom is the number of studies minus one. Thus, the

index is given by

H2 =
Q

df
.

9



Higgins and Thompson (2002) used it to develope a confidence interval for

I2. The interval is formulated by calculating the H2 index of their proposed

measures of heterogeneity (Higgins and Thompson, 2002), which is known as

Birge’s ratio (Birge, 1932). They also derieved the I2 in terms of the H2 index

I2 =
H2 − 1

H2
× 100.

This allows us to express inferences of H2 in terms of I2. For practical

application, Higgins and Thompson (2002) recommends a confidence interval

for the natural logarithm of H, that is ln(H), assuming a standard normal

distribution. The interval is given by

exp{ln(H)± Zα/2 SE(ln(H))},

where Zα/2 is the α/2 quantile of the standard normal distribution, SE(ln(H))

is the standard error of the ln(H), estimated by

SE(ln(H)) =


1
2
ln(Q)−ln(k−1)√

2Q−
√
2k−3 if Q > k,√

1
2(k−2) [1−

1
3(k−2)2 ] if Q ≤ k.

1.3 Network Meta-Analysis

Usually after the collection of studies to estimate the combined effect, the infor-

mation obtained can have a direct comparison, indirect comparison and mixed

treatment comparison. A combination of the direct and indirect comparisons

10



results in a mixed treatments comparison or multiple treatments comparison

meta-analysis. Hence it is called network meta-analysis (Lumley, 2002). Net-

work meta-analysis expands the scope of a conventional pair-wise meta-analysis

by analyzing simultaneously both direct comparisons of interventions within

randomized controlled trials (RCTs) and indirect comparisons across trials

based on a common comparator (e.g., placebo or some standard treatment). In

the simplest case, one may be interested in comparing two interventions, say A

and C. Indirect evidence can be obtained from RCTs of either A or C versus a

common comparator, say B, keeping intact the randomized comparisons within

the RCTs. When both direct and indirect evidences are available, the two

sources of information can be combined as a weighted average when appropriate.

Data structure of this type can be extended to k-comparisons to facilitate

simultaneous inference for all available treatments, and to provide evidence for

selecting the best of several treatment options (Bucher et al., 1997).

Many assumptions behind network meta-analysis methods appear to be similar

to those made in standard pair-wise meta-analysis (Jeroen et al., 2011). How-

ever, for a conventional pair-wise meta-analysis, the methodology for network

meta-analysis must be carefully developed and rigorously evaluated before the

technique is applied widely. Direct treatment comparison is an estimation of the

relative treatment effect or the other relative characteristic of one technology

compared to another informed only by head-to-head comparison (Stegenga

et al., 2008). Also, indirect treatment comparison is an analysis for comparing

interventions that have not been compared directly within a head-to-head ran-
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domized trial (Stegenga et al., 2008). Finally the mixed treatment comparison

is also known as network meta-analysis. It is an analysis that compares two or

more interventions using a combination of direct evidence (from head-to-head

trials of the intervention of interest) and indirect evidence (trials that do not

compare the interventions of interest directly in head-to-head trials) (Stegenga

et al., 2008).

Now we take a look at an example. Assume that there are four medical inter-

ventions, drug A(control), B, C and D. There is direct evidence for drug A and

C, direct evidence for drug A and B and direct evidence for drug A and D.

Direct estimates of the differences of the treatment effects of A and C, A and

B and A and D are denoted by θ̂directAC , θ̂directAB and θ̂directAD respectively. These

evidences are measured on some scales such as odds ratio, log odds ratio or

mean difference effect. Here we realize there is no direct evidence for drug B

and C as well as drug C and D. However, it will suffice if we use the existing

evidences to estimate the evidence we do not have at this time since there is

a common comparator, A. This method of estimating this new evidence is

called the indirect comparison (Bucher et al., 1997). Thus, indirect evidence

for comparing B and C, and C and D are estimated as

θ̂IndirectBC = θ̂directAC − θ̂directAB

θ̂IndirectCD = θ̂directAD − θ̂directAC .

12



D

A

B C

Figure 1.1: The comparison of treatment A, B, C and D in a network.

Hence its corresponding variances are

V ar(θ̂IndirectBC ) = V ar(θ̂directAC ) + V ar(θ̂directAB )

V ar(θ̂IndirectCD ) = V ar(θ̂directAD ) + V ar(θ̂directAC ).

The variances of the indirect estimates have no co-variances because we assume

that the direct comparison studies are independent. This combination of

evidences, through direct and indirect methods brings the rise of network

meta-analysis. This is illustrated in Figure 1.1.

1.3.1 Assumptions for Network Meta-Analysis

For every statistical model to be valid so as to apply some statistical techniques,

we need some assumptions to hold. For network meta-analysis there are three

main assumptions that must be met. These are consistency, homogeneity and

13



similarity (exchangeability) (Kiefer et al., 2015).

For the similarity assumption, all trials included in the analysis should be

comparable in terms of potential effect modifiers like patient characteristics

and geographical area of the patients. The similarity of the individual trials

should be examined on the basis of their essential characteristics. However, in

this case, this must be done for all the investigated interventions. There is a

well-known approach called the PICOS approach, population (P), intervention

(I), comparator (C), outcome (O), and study design (S) (Kiefer et al., 2015).

Important information can be obtained from comparisons of trials regarding

relevant patient characteristics as well as comparisons of trial arms representing

reasonable reference interventions regarding relevant endpoints.

For the homogeneity assumption, there should be no relevant heterogeneity

between trials of the pairwise comparisons. Homogeneity should be examined

using standard procedures such as forest plots and measures of heterogeneity

like the I2 and the Cochran Q statistic. Depending on the size of the network,

however, this may be a very lengthy process, as all possible combinations of

two interventions must be included (Jeroen et al., 2011).

For the consistency assumption, there should be some agreement of the indirect

estimates and the direct estimates. Thus there should be no discrepancies in

their comparison (Ades, 2003). It can usually be examined if the direct and

indirect comparisons are available. This gives rise to a consistency equation,

dindirectst = ddirectbt − ddirectbs . Now assuming we have the direct comparison of
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ddirectst , then we can assess the level of inconsistency ICF = ddirectst − dindirectst .

Where ICF is the inconsistency factor (Jeroen et al., 2011).

1.3.2 Evidence of a Network

Usually before applying any statistical techniques, it is important for the ana-

lyst to visualize how the network is. There are two key concepts one has to

have in mind when visualizing the network. These two concepts are Geometry

and Asymmetry (Greco et al., 2013). Geometry of a network shows the shape

of the network and how the nodes or vertices are connected to one another.

Thus it is the overall structure of the interventions or treatments comparisons.

Asymmetry of a network derives from the amount of data for a particular

comparison of interventions or treatments. This helps us to know the weights

of each comparison in a network.

Visualization of the network can also enable us know how to call the avail-

able evidence comparisons. Thus some call network meta-analysis as indirect

treatment comparisons and also mixed treatment comparisons. A network may

have one or more loops in the network, where a number of nodes connected

together form a loop. We called this a mixed treatment comparison. When

the network does not have loops in the network, we then call it an indirect

treatment comparison (Jeroen et al., 2011).

A star-shape can be thought of using an indirect treatment comparison analysis.

For Figure 1.2 we see a clear Star-Shaped network. Here it has one node (A)

which has been connected to all the other nodes. Hence it shows a direct
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Figure 1.2: The Star-Shaped network of treatments A, B, C and D.

A

B

C

Figure 1.3: The Triangular-Shaped network of treatments A, B, C and D.

evidence from AB, AC and AD. Now BC, BD and CD do not have direct ev-

idence. Hence they can be estimated indirectly from the above direct evidences.

A triangular-shaped network from Figure 1.3 which is clearly a closed-loop,

and can be thought of by using a mixed treatment comparison analysis. Here

we see that there are direct evidences for all the nodes in this network. Thus

we have direct evidence for AB, AC and BC. Also we can estimate its indirect

evidence from the direct evidence as well. Now the combination of these

available evidences makes the mixed treatment comparison analysis possible

and a good approach since it makes use of more information.
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1.3.3 Matrix Representation of Network Meta-Analysis

Most network graphs can be represented in terms of matrices to describe its

pattern and structure. There are two types of matrix representation of network

graphs that are important. These are adjacency matrices and incidence matrices.

An adjacency matrix shows the existence of an edge between two immediate

nodes. In the adjacency matrix, both the rows and columns represent the

vertices of the graph (Molitierno, 2012). Let M be a network graph on n nodes,

and we have nodes running from 1, ..., n (Molitierno, 2012). Then the adjacency

matrix of M on n vertices is the n× n matrix A = [aij], where

ai,j =

{
1 if i 6= j and i and j are adjacent,

0 if i = j and i and j are not adjacent.

Hence we take an example of a network graph and try to find out how to

formulate the adjacency matrix. Let the graph 1.4 be the network graph ω and

the adjacency matrix be as follows

A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 .
Also the incidence matrix is a matrix which is based on which two vertices, say

va and vb share an edge (Molitierno, 2012). It is conventional to have the vertex

with lower-number labelled as va and the high-number labelled as vb. For each
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Figure 1.4: Network plot, ω for the adjacency matrix of treatments 1, 2, 3 and
4.

vertex-edge pair (v, e) in which the vertex v is incident to the edge e, we define

a function p(v, e) where p(va, e) = 1 and p(vb, e) = −1. Mathematically, we

can define an incidence matrix to be as follows. Let ω be a network graph on

n nodes, thus we have nodes running from v1, ..., vn and m edges labeled as

e1, ..., en. Then the incidence matrix on n vertices and m edges is the n×m

matrix G = [gij], where

gi,j =

{
p(vi, ej) if vi and ej are incident,

0 if vi and ej are not incident.

Also, let us take a look at an example of how to get the incidence matrix

from the network graph. Let the Figure 1.5 be the network graph ω. Then the

incidence matrix is as follows

G =


1 0 0 1 0
−1 1 0 0 1
0 −1 1 0 0
0 0 −1 −1 −1

 .
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Figure 1.5: Network plot for the incidence matrix of treatments 1, 2, 3 and 4.

The Laplacian matrix is a matrix in graph theory, which is used to describe the

pattern in a network (Molitierno, 2012). Mathematically, let ω be a graph on

n vertices labeled 1, ..., n with dij to be the number of out/in degree directions

coming out of a particular node of an undirected network graph. The Laplacian

matrix of ω is the n× n matrix L = [li,j], where

li,j =


−1 if i 6= j and i and j are adjacent,

0 if i 6= j and i is not adjacent to j,

di,j if i = j.

Hence from the graph ω above Figure 1.5, the Laplacian matrix can be

derived as

L =


2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3

 .

We shall see that the Laplacian matrix is related to the other matrices
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discussed earlier.

1. L = D −A, where D is the diagonal matrix consisting of the degrees of

the vertices of a graph ω and A is the adjacency matrix for ω (Molitierno,

2012).

2. L = GGT , where G is the incidence matrix of a graph ω (Molitierno,

2012).

Matrix Representation of a Weighted Graph Network

For a weighted graph network, adjacency matrix, incidence matrix and laplacian

matrix can be generalized (Molitierno, 2012). The procedure to deal with the

weighted graph of a network is shown below.

• For adjacency and laplacian matrices, we replace the off-diagonal en-

tries with w and −w, respectively, where w denotes the weight of the

corresponding edge.

• Also for the Laplacian matrix of a weighted graph, each diagonal entry is

the sum of the weights of the edges incident to the corresponding vertex.

• For the incidence matrix of a weighted graph, we change the definition of

p(vi, ej) by defining p(va, ej) =
√
w and p(vb, ej) = −

√
w, where w is the

weight at each edge.
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Figure 1.6: Network plot for a weighted graph of treatments 1, 2, 3 and 4.

Let the Figure 1.6 be a weighed network graph denoted as, ω. Then below

is the matrix representaton of the above matrices.

• The adjacency matrix of the the graph, ω, will be

A =


0 4 0 2
4 0 5 7
0 5 0 6
2 7 6 0

 .

• The incidence matrix of the the graph, ω, will be

G =


√

4 0 0
√

2 0

−
√

4
√

5 0 0
√

7

0 −
√

5
√

6 0 0

0 0 −
√

6 −
√

2 −
√

7

 .
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Figure 1.7: Network plot with weights of treatments A, B, C and D.

• The laplacian matrix of the the graph, ω, will be

L =


6 −4 0 −2
−4 16 −5 −7
0 −5 11 −6
−2 −7 −6 15

 .

The weighted Laplacian matrix can also be represented as given in equation

1.5 where the W is a diagonal matrix where diagonal entries are the respective

weights of each study, (1/s21, ....., 1/s
2
m), where s2i are the sample variances. Let

the Figure 1.7 be the network graph ω. Then we have the model


θ̂AB
θ̂BC
θ̂CD
θ̂AD
θ̂BD

 =


1 −1 0 0
0 1 −1 0
0 0 1 −1
1 0 0 −1
0 1 0 −1



θA
θB
θC
θD

+


ε1
ε2
ε3
ε4
ε5

 .

The design matrix X is not of full rank, thereby X>X is not of full rank
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too. Hence we use the Moore-Penrose pseudo-inverse. We first derive the

weighted Laplcian matrix, L = X>WX, as given by

L =


1 0 0 1 0
−1 1 0 0 1
0 −1 1 0 0
0 0 −1 −1 −1




1
s21

1
s22

0
1
s23

0 1
s24

1
s25




1 −1 0 0
0 1 −1 0
0 0 1 −1
1 0 0 −1
0 1 0 −1



L =


1
s21

+ 1
s24

− 1
s21

0 − 1
s24

− 1
s21

1
s21

+ 1
s22

+ 1
s25

− 1
s22

− 1
s25

0 − 1
s22

1
s22

+ 1
s23

− 1
s23

− 1
s24

− 1
s25

− 1
s23

1
s23

+ 1
s24

+ 1
s25

 .

We see that this matrix notation of Laplacian matrix, L = X>WX can be

equally derived from the various approaches of the weighted graph.

1.3.4 Model for Network Meta-Analysis

Let θ̂ be a vector of k × 1, where k is the number of studies if all the pairwise

comparisons are from a two arm trial, else it should be a vector of m× 1, where

m is the number of pairwise comparisons of the treatments. Also, let θtreat

be a vector of n × 1, where n is the number of treatments or interventions

under consideration. Let X be a matrix which is of dimension k × n or m× n

depending whether the pairwise comparisons are all from a two-arm trial or
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from a multi-arm trial. The matrix X is called the design matrix (Schwarzer,

2015). The model for a network meta-analysis is then given by

θ̂ = Xθtreat + ε, (1.4)

where ε ∼ N(0,
∑

),
∑

is the variance-covariance matrix. So, for the above

example of Figure 1.1, our model will be


θ̂AB
θ̂AC
θ̂AD
θ̂BD

 =


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 0 −1



θA
θB
θC
θD

+


ε1
ε2
ε3
ε4

 .

As we mentioned earlier, the design matrix X is usually not of full rank. Hence

its XTX is not invertible. Hence we use the Moore-Penrose pseudo inverse to

estimate the treatment effects. Here we assume an n× n Laplacian-matrix L.

This is denoted as

L = XTWX, (1.5)

where W is an m × m diagonal matrix where the diagonal entries are the

inverses of the variances of the respective studies, that is, (1/s21, ....., 1/s
2
m).

The Laplacian-matrix L is of rank n− 1, so it is not of full rank. Therefore we

need the Moore-Penrose pseudo-inverse as given by

L+ = (L− J/n)−1 + J/n, (1.6)

where J is an n× n matrix with all entries being 1’s.
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1.3.5 Estimation of the Treatment Effects

Let θ̂nma be the network estimates (estimates of the fitted values) of order

n× 1 vector. Here we use the frequentist method of estimation

θ̂nma = XL+X>Wθ̂

= Hθ̂.

(1.7)

Now H can be seen as the Hat matrix with dimension m × m. We realize

that elements of θ̂nma are linear combinations of the elements of θ̂. Hence the

rows of the matrix H are seen as the generalized weights (Schwarzer, 2015).

Therefore, the variance- covariances matrix of θ̂nma is given by

var(θ̂nma) = XL+X>. (1.8)

As we know that θ̂nma = XL+X>Wθ̂, var(θ̂nma) can be derieved as

var(θ̂nma) = var(XL+X>Wθ̂)

= (XL+X>W )var(θ̂)(XL+X>W )>

= (XL+X>W )Σ(XL+X>W )>

= (XL+X>W )ΣW (XL+X>)

= (XL+X>W )I(XL+X>)

= XL+X>WXL+X>

= XL+LL+X> (since Moore-Penrose inverse is L+LL+ = L+)

= XL+X>.
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1.4 Organization of the Thesis

The motivation for this thesis is based on the fact that for a given disease,

there is likely to be many other substitute drugs or new drugs that can be used

to treat the patients. Also, there might be a comparison of treatments (head

to head) and comparison of treatments that have never been compared before

(not head to head). Pooling these sources of evidences together makes a better

estimate of the available treatments in the study. But these drugs may not all

be at the same cost, some may possibly have adverse side effects and the method

of application could be complex for others. On grounds of these information,

we do equivalence testing to see if two different drugs can be regarded as

equivalent in terms of their treatment effect as well as treatments that have

never been compared before to see if they are equivalent. If there are some

significant differences, we try to rank the treatments to see which treatment is

most effective. Network meta-analysis using Bayesian methods seeks to answer

these questions. The remaining section of this thesis is organized as follows. In

Chapter 2, some statistical models in network meta-analysis are discussed in

detail.

Chapter 3 presents some diagnostics to network meta-analysis to test that its

major assumptions for its use are met. In Chapter 4, we perform some data

analysis using the frequentist approach on a dataset comprising of diabetes

treatments. We then look at the anaesthetic drug comparison using the Bayesian

approach to network meta-analysis. Chapter 5 presents a discussion of the
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results and some concluding remarks. As future work, we will be interested

in exploring network meta-analysis using Dirichlet process. This is a meta-

analysis in which multiple treatments are compared in multivariate analysis

thus using a distribution over probability distributions. We assume that there

is a probability distribution over a measurable space. Then a Dirichlet process

is a probability distribution over all the distributions of the subsets of the

measurable space (Sethuraman, 1994).
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Chapter 2

Statistical Models

2.1 Types of Data for Analysis

In the network meta-analysis, the data we use for analysis are from published

results. Hence we use synthesized input data in our analysis instead of the

individual data from individual trials. The synthesized data can be classified

into two formats, normally the Arm-Level summaries and the Contrast-Level

summaries. In arm-level summaries, the effect measures are reported for each

arm, and they are in the form of mean effect, odds effects or absolute risk. In

contrast-level summaries, the effect measures are reported as the difference in

effects between arms, as such they are in the form of mean difference, odds-ratio,

risk-ratio or hazard ratio (Spielgelhalter and Myles, 2004).

There is one advantage of arm-level summaries over the contrast-level summaries.

With the arm-level summaries, it is possible to obtain an exact likelihood for

the data like binomial for binary data instead of the normal approximation
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for the contrast-level summary data. Here we try to do some analysis in the

Bayesian setting. We look at the arm-level summaries analysis.

2.1.1 Arm-Level Summaries

As mentioned earlier, the arm-level summaries usually provide exact likelihood.

In the setting of binary data, it provides a binomial likelihood. Assume there

are N randomized controlled trials which have a mixed comparison with K

treatments. The number of events on treatment k in trial i is denoted by rik,

and the total number of observations on treatment k in trial i is denoted by

nik. The probability of the event of occurrence on treatment k in trial i is

denoted by pik. Given this fixed probability and total number of observations

on treatment k in trial i, rik follows a binomial distribution

rik ∼ Bin(pik, nik), i = 1, 2, 3, ...N ; k = 1, 2, ...K. (2.1)

With this binary data available, we can have the probability, pik, b as the

baseline treatment, µi as the log-odds of the baseline treatment and δi,bk as

the log-odds of treatment k compared to the baseline treatment in study i,

modeled on a Logit scale as

logit(pib) = log

(
pib

1− pib

)
= µi, i = 1, 2, 3, ...N ; k = b = 1, 2, ...K.

logit(pik) = log

(
pik

1− pik

)
= µi + δi,bk, i = 1, 2, 3, ...N ; k = 1, 2, ...K; b < k.

pik =
eµi+δi,bk

1 + eµi+δi,bk
, i = 1, 2, 3, ...N ; k = 1, 2, ...K; b < k,
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2.2 Fixed Effects Model

We can represent the model based on the assumption of a fixed effects model.

Here b is the baseline treatment, µi’s are the trial specific baselines representing

the log odds of the event in the reference treatment (k = b), and instead of δi,bk

which is the trial-specific log odds ratio of event occurrence of the treatment

group k compared with the reference treatment, we use di,bk under the fixed

effects model. The logit link function maps the probability of treatment

response on the real number and the model is shown below (Higgins and

Whitehead, 1996).

logit(pik) = log

(
pik

1− pik

)
= µi + di,bk, i = 1, 2, 3, ...N ; k = 2, ...K; b < k.

2.3 Random Effects Model

In a random effects model, each study i provides an estimate of the study-

specific log odds, δi,bk, which are assumed not to be equal but instead similar in

some sense. It assumes that the trials provided are independent of the order in

which they were carried out, that is they are exchangeable, over the population

of interest. Hence, the random effects model is obtained by replacing di,bk in

the fixed effect model by δi,bk. Hence the logit model will be

logit(pik) = log

(
pik

1− pik

)
= µi + δi,bk, i = 1, 2, 3, ...N ; k = 2, ...K; b < k.
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Equivalently, we can say that the trial-specific treatment effects come from

the same family of distributions. That is, we usually assume that, δi,bk ∼

N(dbk = d1k − d1b, σ2). In the above model, the notation, k > b, stands for k is

after b and d11 = 0. Prior distributions for basic parameters, d12, d13, d14,...,

are assumed in Bayesian framework while the remaining contrasts (functional

parameters) are defined in terms of those treatments compared with the baseline

treatment directly. Thus, for example, d23 = d13 − d12 and so on assuming

consistency. Thus, here 1 = b the baseline treatment. This means that we can

generalize how to estimate the functional parameters as dst = dbt − dbs. It is

not rare to see network meta-analysis that involves trials with more than two

arms (multi-arms) in pooling data across a network of treatments. Studies

have shown that, in the analysis of multi-arm data, any assumptions about

heterogeneity have implications on the relative efficacy of parameters (Higgins

and Whitehead, 1996). It is also characterized by induced correlation between

data-points due to the use of a common comparator in the comparations. This

suggests that there is a need for an adjustment in the likelihood to account

for this induced correlation. Otherwise, results from the contrast-level format

(summaries) will be incorrect (Higgins and Whitehead, 1996). One multi-arm

trial i which compares αi, which is the number of arms in study i, will create

a correlated vector of random effects of αi − 1 given by δi = (δi,12, ..., δi,kαi
)>.

Assuming consistency, the functional parameters are obtained from the K − 1

direct treatment effects using δst = δbt − δbs, b = 1, 2, ..., K, s = 2, 3, ...K,
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t = 3, 4, ..., K; that is s < t. When there is at least one multi-arm in the

network, assuming homogeneity between trial variance, the univariate normal

distribution of a single random effect discussed earlier become multivariate

normal distribution for a vector of the random effects as shown below (Salanti

et al., 2008). Also the assumption of homogeneity between-trial variance means

that all σ2
bk are the same and equal to σ2. This implies that the covariance

between two contrasts in the multi-arm trial is σ2/2. Thus we have the vector

of random effects that follows a multivariate normal distribution given by


δi,12
δi,13

...
δi,bai

 ∼ N∑k
i=1 ai−k



δi,12
δi,13

...
δi,bai

 ,

σ
2 · · · σ2

2
...

. . .
...

σ2

2
· · · σ2


 .

Let us assume there are four interventions or treatments (say A, B, C and D)

to bed-wetting. Also assume that we have 4 studies or randomized controlled

trials, making a comparison among the 4 treatments. Now 2 studies are two

arm trials consisting of AB and AD and 2 studies are three arms consisting of

A, B and C for the first three arm study and A, C and D for the second three

arm study. We take treatment A as the base treatment. Hence, from the above

set-up, we have the basic parameters as δAB, δAC and δAD, and the functional

parameters derived from the basic parameters as δBC , δBD and δCD. The basic

parameters will be estimated by the network and the functional parameters

will be estimated by the consistency criteria. As such the random effects model
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will be

logit


p1B
p2D
p3B
p3C
p4C
p4D

 =


µ1

µ2

µ3

µ3

µ4

µ4

+


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




δAB
δAD
δAB
δAC
δAC
δAD


and


δAB
δAD
δAB
δAC
δAC
δAD

 ∼ N6




δAB
δAD
δAB
δAC
δAC
δAD

 ,



σ2 0 0 0 0 0
0 σ2 0 0 0 0

0 0 σ2 σ2

2
0 0

0 0 σ2

2
σ2 0 0

0 0 0 0 σ2 σ2

2

0 0 0 0 σ2

2
σ2




.

Here we have i = 1, 2, 3, 4, and a1 = 2, a2 = 2, a3 = 3 and a4 = 3. Hence∑k
i=1 ai− k =

∑4
i=1 ai− 4 = 2 + 2 + 3 + 3− 4 = 6. Hence, in order to compute

the logit of a particular treatment comparison for the basic parameters and

functional parameters, we first look at what the basic and functional parameters

are. Basic parameters are actually the direct evidence obtained from the study.

Hence from above, we have δAB, δAC and δAD as the basic parameters of our

assumed example. Then the logit for the comparison of δAB is

logit[pAB] = logit[pAB]− logit[pAA]

= µi + δAB − (µi + δAA)

= δAB − δAA.
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But we know that the comparison between the baseline treatment and itself is

zero, thus δAA = 0. Hence we have

logit[pAB] = δAB

= log

(
pAB

1− pAB

)
= δAB.

Therefore the odds ratio of AB is

pAB
1− pAB

= eδAB .

Hence the other basic parameters δAC and δAD follow as above. Also the

functional parameters use the concept of consistency to estimate the other

functional parameters. Thus, for example, the logit for the comparison of δAB

is given by

logit[pBC ] = logit[pAC ]− logit[pAB]

= µi + δAC − (µi + δAB)

= δAC − δAB

= log

(
pBC

1− pBC

)
= δAC − δAB.

Therefore the odds ratio of BC is

pBC
1− pBC

= eδAC−δAB .

Hence, the other basic parameters, δBD and δCD, follow as above.
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2.4 Assessing the Goodness of Fit of a Model

(Model Selection)

After modeling data every statistician wants to make inferences from the model.

They will like to know how best their data fits the model. This gives rise to the

concept of goodness of fit. Goodness of fit is a statistical concept that shows how

well the model fits the observed set of observations. It allows one to describe

the difference between the observed and expected values and has the ability

to help discriminate between alternative models. This enables a statistician

explore and compare differing models that could be used in analyzing the data

and to give the most precise inference. There is a classic test for the goodness

of fit called the likelihood ratio test. However, here we are going to concentrate

more on the following two methods used in the assessment of goodness of fit.

These two are

1. Akaike Information Criteria (AIC).

2. Bayesian Information Criteria (BIC).

Akaike Information Criteria (AIC) for a given model is a function of its

maximized log-likelihood and the number of estimable parameters, say s.

Mathematically AIC is represented by

AIC = −2 log(L(y|θ̂)) + 2s.
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For the Bayesian Information Criteria (BIC), it is also called the Schwarz

Bayesian Information Criteria which consist of s parameters and n observations.

Mathematically BIC is represented as

BIC = −2 log(L(y|θ̂)) + (2s× log(n)).

Now the question is how best one can come to a conclusion based on the results

of these model assessment statistics. It has been shown that smaller values

for these statistics (that is, AIC and BIC) gives a direction of which model

is relatively better. For example, to compare which model to use between

fixed effects model and random effects model, one can use the above model

assessment statistics. The model that has the smallest statistics is adopted

to be the relatively efficient one. One of the major advantages of the AIC

and BIC statistics is that they can be used for non-nested or non-heirarchical

models. Consequently, a generalization and a Bayesian version of AIC was

proposed and it has some level of relationship with the BIC, which is called

the Deviance Information Criteria (DIC). Spielgelhalter et al. (1998), indicated

this in their paper, where they proposed the DIC. The DIC comes in handy

and is very useful in Bayesian model selection issues, where the posterior

distributions of parameters have been obtained by the Markov Chain Monte

Carlo (MCMC) simulation (Spielgelhalter and Myles, 2004). They suggested a

classical deviance, say D(θ), to examine the posterior distribution, which is

given by

D(θ) = −2ln(f(y/θ)) + 2ln(f(y)),
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where f(y/θ) denotes the likelihood function and f(y) denotes a fully specified

standardizing term that is completely determined by the observed data. The

DIC is composed of two components and they sum to form the DIC. The

first component measures the goodness of fit of the model by the posterior

expectation of the overall residual deviance and the second component measures

the complexity of the model by the effective number of parameters. This is

defined by the difference between the posterior mean of the overall residual

deviance and the deviance evaluated at the posterior mean of the parameters

of interest. Hence, mathematically, the DIC is represented by

DIC = D̄ + pD,

where D̄ is the first component and pD is the second component. Also the two

components can be further broken down to,

D̄ = Eθ|y(D(θ̂)) = Eθ|y(−2ln(f(y|θ))),

pD = Eθ|y(D(θ̂))−D(Eθ|y(θ)) = D̄ −D(θ̂).

Therefore, DIC is given by

DIC = D̄ + pD = 2D̄ −D(θ̂) = 2D̄ − 2D(θ̂) + 2D(θ̂)−D(θ̂)

= D(θ̂) + 2pD.

As mentioned earlier, for the interpretation of the AIC and BIC statistics,

small values of DIC suggest a better fit of a particular model over the other,

hence, it efficiently predicts the observed data. The question naturally arises:
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how “small is small”? Hence there is a rule of thumb, that guides in the

choice of which “small” DIC to choose. A difference of more than 10 can

definitely rule out the model with higher DIC, differences between 5 and 10

are considerable and differences in DIC less than 5 may provide very different

inferences, and caution should be taken when referring to the model with the

lowest DIC.

Another way for model selection is by using the Posterior distribution of the

Sum of Residual Deviance, D̄. From our previous method, where we used the

contrast based method, we had a likelihood distribution as binomial. Hence we

shall have to develope a binomial likelihood function for the sum of residual

deviance. This is given by

D̄ =
N∑
i=1

Devi =
N∑
i=1

K∑
k=1

2

[
rik log

(
rik

nikpik

)
+ (nik − rik)log

(
nik − rik

nik − nikpik

)]
,

where rik denotes the number of events of the treatment k in trial i, nik is the

total number of observations and pik is the probability of event occurence. The

posterior distribution of the model deviance difference is denoted by

D̄1,2 = D̄1 − D̄2.

The posterior probability obtained from the posterior distribution of the model

deviance difference is

P [D̄1,2 > β(D̄)],

where β is defined as follows. To allow inference from this Bayesian approach

and to have its association with the frequentist approach, the posterior distri-

bution of the model difference follows approximately a chisquare distribution
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Table by Kass and Raftery
β Evidence in favour of model 2

0-2 Not worth more than a bare mention
2-6 Positive
6-10 Strong
>10 Very strong

Table 2.1: Kass and Raftery Table of β values in model selection.

with degrees of freedom, d.f = p2 − p1, this is, the difference between the

number of parameters estimated from the models involved. Hence the above β

can be approximately, β = χ2
p2−p1 . The higher the probability, the stronger is

the evidence in favour of model 2 against model 1. Also we can use the value β

to determine the best fitted model between model 1 and model 2. A yardstick

is to consider which value of β will have

P [D̄1,2 > β(D̄)] = 0.5.

The question now boils down to how to interpret that β value. This is because

that β value can be used to quantify the evidence against model 1. A table

postulated, which is cited in (Kass and A.E., 1995) can be used for the

interpretation on the β values. This is given in Table 2.1.

2.5 Ranking of Treatments/Interventions us-

ing Baseyian Probability

The advantage of Bayesian approach in network meta-analysis is the ranking

of the treatments so that we know which treatment is the best. In each of the
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MCMC run, the treatments are ranked according to their magnitude. The

proportion of the MCMC cycles in which the treatment ranks first give the

probability that the treatment is the best among the other treatment. Salanti

et al. (2011), suggested a simple method called Surface Under the Cummulative

Rank Curve (SUCRA). This ranks the cummulative probabilities for each

treatment by computing an index of max 1(100%). It can be witten as

SUCRAk =

∑k−1
z=1 Cumk,z

k − 1
, (2.2)

where k is the number of treatments and cum is the cummulative probabilities

at rank z. A graphical representation of this index is called Rankograms.

2.6 Inconsistency Detection in Network Meta-

Analysis Using Arm-Based Model

Consistency is one of the most important assumption of network meta-analysis

which must be met before its use because if inconsistency exist, it affects the

accuracy and conclusion of the study. Consistency arises when the direct and

indirect evidences agree. Hence, if they disagree it brings about inconsistency

(Zhao et al., 2016). Inconsistency arises from non-comparability of trials and

different control groups or differences in patient characteristics. Hence, there

is the need to identify the presence of inconsistency in network meta-analysis

as well as to identify the source of inconsistency. The contrast based model

and arm based model have been used in the detection of inconsistency in
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network meta-analysis. The contrast based method has been widely studied

by Lu and Ades (2006), where they modelled the inconsistency by introducing

some inconsistency factors called w. Also they assesed this inconsistency by

having loops in the treatment comparisons. Hence, this method made use

of the inconsistency degree of freedom (ICDF). This ICDF is the number

of independent loops of evidence in the network (Dias et al., 2011), where

ICDF = T −K + 1 and T is the number of direct comparisons and K is the

number of treatments. For example, if we have four treatments, say A,B,C

and D, then T = 6 and K = 4. Therefore the ICDF = 6 − 4 + 1 = 3, thus

we will have 3 independent loops to model the inconsistency, in addition to

the inconsistency factor. Here the direct evidence consist of dAB, dAC and dAD.

This is denoted by

dBC = dAC − dAB + wABC

dBD = dAD − dAB + wABD

dCD = dAD − dAC + wACD.

Here we look at how to use the arm based model to identify inconsistency and

investigate the sources of the inconsistency. The arm based (AB) model is

denoted by

logit(pik) = µk + ηik, (2.3)

where µk is the (fixed-effect) mean outcome for treatment k and ηik is the

random effect for treatment k in study i. Then the random effects ηi for study
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i are modeled as

ηi = (ηi1, ηi2, ...ηik)
> ∼MVN(0,Σ),

where Σ is a K×K unstructured covariance matrix to allow correlation between

treatment arms in each trial. Compared with the CB model framework, AB

models are more straightforward to interpret, especially when implemented in

a missing-data framework that imputes values for any treatment arms missing

in a given study, thus allowing use of a common baseline across all trials.

Under the AB model, there are two possible ways to determine inconsistency.

The first one is by using estimates of the fixed effects in the AB model to test

the discrepancy of direct and indirect evidence for comparing two treatment

either loop-based or not. The second one is by using estimates of specific AB

random effects to detect inconsistency at certain trial-by-arm combinations,

once inconsistency has been detected through the AB model fixed effects

Zhao et al. (2016). The AB model does not use loops to study inconsistency

since it implicitly performs inconsistency. But we can use it to investigate

inconsistency in a loop-based manner by defining discrepancy factors using a

different subsetting method for the groups. There are four groups that can

be formed when trying to investigate inconsistency. Assume that we have

a network meta-analysis study, where two treatments are suspected to have

some level of inconsistency say treatment A and B. Hence, for the first group

(i), we look at trials that have compared both treatment A and B. For the

second group (ii), we group all trials of treatment comparison with treatment

A excluding treatment B. The third group (iii) will consist of all trials of
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treatment comparison with treatment B excluding treatment A. The fourth

group (iv) will consist of trials of treatment comparisons that exclude treatment

A and B. This can be computed as follows for the discrepancy factor

∆AB = (µ
(i)
A − µ

(i)
B )− (µ

(ii)
A − µ

(iii)
B ), (2.4)

which is the difference in treatment effects in trials including both arms (the

direct evidence) minus the difference in trials including just one arm (the indirect

evidence). If zero is found to be in the far tail of this posterior distribution, we

can conclude that the two sources of evidence for comparing A and B thus the

direct and indirect evidence are discrepant, and thus, inconsistency exists. The

above approach, uses the fixed effects in the arm based model to investigate the

presence of inconsistencies. Using just this method has some short commings

since it only investigates the presence of inconsistencies but does not identify

the potential sources of these inconsistencies in the study. Hence we need to

consider the second step where the random effects of the arm based model

is used. Zhao et al. (2016), considered the top 5% of the absolute values of

the random components in each trial with its corresponding treatment. Here,

we try to find the random components of each treatment in each trial. We

then rank these absolute values of the random components. Then the top 5%

absolute random components are considered to be the ones as the sources of

these inconsistencies.
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Chapter 3

Diagnostics in Network

Meta-Analysis

3.1 Diagnostics to Linear Hierarchical Model

in Network Meta Analysis

Before a model is used for predictive or inference purposes, we need to test

the robustness or check to see if all its assumptions are met. One approach to

appraise a model’s robustness is a diagnostic approach. Here we look at how

to perform some diagnostics on linear hierarchical model. A classic example

of a linear model for which diagnostics can be applied is the linear regression

model, which is of the form Y = Xβ+ε, where Y is the vector of observations

or response variable, X is the design matrix, β is the vector of unknown

parameters and ε is the vector of random errors. The regression model is a

linear model in which we made some assumptions that need to be met before
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inference is made. Such assumptions are

1. There should be a linear relationship and X is fixed.

2. The random errors should follow a normal distribution with mean, zero

and a common variance, σ2.

3. There should be equality of variances, thus satisfying homoscedasticity

assumption.

4. There should be a little or no multicollinearity.

These assumptions are tested using some procedures. Some of these procedures

are

1. Check the residuals and the fitted values. If there is a non-linear pat-

tern between them, then we have a good indication that the linearity

assumption is met.

2. Check the normality of the residuals. This is done by using the normal

Q−Q plot.

3. Check the scale-location or spread-location plot. This is to check if the

homoscedasticity assumption is met by plotting the squared root of the

standardized residuals against the fitted.

4. Check the residuals versus the leverage. This plot helps to find influential

cases or subjects.
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3.2 Generalized Linear Hierarchical Model-Network

Meta-Analysis as a Form of Hierarchical

Model

Hierarchical linear models are statistical models of parameters that vary at

more than one level. They are also known as multilevel models, nested data

models, mixed models, random coefficient, random-effects models, random

parameter models, or split-plot designs (Bryk et al., 2002). Network meta-

analysis are modeled in a hierarchical format because of the different levels

to which the parameters of interests are assigned. Network meta-analysis is

a classic example of hierarchical model. We consider the models for binary

outcomes. Assume that the outcome yik follows a binomial distribution for the

study i and the treatment arm k, as given below

yik|pik ∼ Bin(nik, pik), i = 1, ..., I, k ∈ Si, Si ⊂ {1, ..., K}, (3.1)

where Si denotes the set of treatments compared in trial i, nik is the total of

observations on treatment k in trial i and pik is the probability of occurence of

the event on treatment k in trial i.

Contrast Based Model and Arm Based Model

In the contrast based (CB) model, we try to model the random effects to

capture the heterogeneity between studies. The model is given by

logit(pik) = αiB + δiBk, (3.2)
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where B is a base treatment chosen for and specific to study i, αiB is the log

odds of an event on the base treatment in study i, and δiBk is the log odds

ratio of an event for the k treatments compared with the base treatment in

study i. We further assume indepedent normal distributions for the random

effect δiBk

δiBk ∼ N(dk − dB, σ2). (3.3)

Diagnostics for the Arm Based Model

To simplify matters, the key is to express a hierarchical model in the for-

m of a linear model by adding artificial “cases” to the dataset. As discussed

earlier, we realised network meta-analysis is a classic example of hierarchical

model. We need to do some transformation of it to a linear hierarcical model

for applying the diagnostic methods.

Also, the errors of the arm-based models are not normally distributed since

they are in a binary format. Hence we need to transform by the normal

approximation to the likelihood. The binary model is of the form

logit(pik) = µk + ηik, (3.4)

η>i = (ηi1, ..., ηik)
> ∼MVN(0,Σ). (3.5)
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Steps to transform the Network Meta-Analysis binary errors to Nor-

mal

1. We begin by transforming each data point, yi to ỹi.

2. This is done by using ỹi = logit( yik
nik

), where logit( yik
nik

) = log

(
yik
nik

1− yik
nik

)
=

log
(

yik
nik−yik

)
.

3. If the data point yik = 0 and yik = nik, then ỹi is undefined. Hence

there is the need to add 0.5 to yik and nik − yik when the undefined case

happens.

4. Using the delta method, var(ỹik) ≈ 1
nikpik(1−pik)

.

5. We finally try to approximate the binary model by applying Hodges’s

method to generalized linear hierarchical models in NMA. The above

transformation method was proposed by Zhao et al. (2017) using the

delta method.

3.3 Formulation of Generalized Linear Hierar-

chical Model

In the formulation of a generalized linear hierarchical model, it was shown from

previous literature that the following equations 3.6 are used to break down a
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hierarchical model to a linear model (Zhao et al., 2017),

ỹik = ξik + εik,

ξik = µk + ηik,

µk = Mk + υk.

(3.6)

From equations 3.6 (Hodges, 1998), we have εik ∼ N(0, 1
nikpik(1−pik)

, ηi =

(ηi1, ..., ηik) ∼MVN(0,Σ). Also, µk represents the priors with mean Mk and

υk ∼ N(0, 1000). And υk has variance to be 1000 because we need a vague

prior so that the analysis is driven solely by the data. Hodges (1998) showed

that we can move the known terms to the left hand side and the unknown

terms to the right handside of the equations

ỹik = ξik + εik,

0 = −ξik + µk + ηik,

−Mk = −µk + υk.

(3.7)

Let #Si denote the number of arms in study i. Hence the total number of arms

is N =
∑I

i=1 #Si. Then the above set of equations from 3.7 can be written in

a matrix form as given below

 ỹikN0N

−Mk

 =

 IN×N 0N×K

−IN×N HN×K

0K×N −IK×K



ξ1
...
ξN
µ

+

εη
υ

 ,

Y = XΘ +E, (3.8)
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where µ = (µ1, ..., µk)
>, ξ, ε and η are vectors of length N and υ = (υ1, ..., υk)

>.

The I matrix is an identity matrix, the 0 matrix is the zero matrix and H is

matrix which shows how treatment arms are arranged in a particular study.

Example of Linear Hierarchical Model Diagnostics

Assume we have three studies or trials where the first trial consists of 3-

arms and the other studies consist of 2-arms with three treatments to be

considered. Hence, we have N = 3 + 2 + 2 = 7, K = 3 which is the number

of treatments. Also let us asssume Mk = 0. Therefore we have our matrix

representation as shown below. From equation 3.8, Y , the transformed data,

and X, the design matrix, are known. But Θ is an unknown parameter vector

and E is an error term with mean 0 and block diagonal covariance matrix, Γ.

The block of Γ corresponds to the covariance matrices of ε, η and υ, where

the upper left 7× 7 block of Γ contains the transformed variances for the εik,

the next 7 rows and columns are composed of 3 block covariance matrices for

the random effects of the 3 trails and the last 3× 3 diagonal block contains

the variances of the υk (the prior variances), all set to 1000. Our interest is

in the estimates of the µk’s. This format is referred to as the constraint case
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formulation of a hierarchical model.

ỹik707

03

 =



I7×7 07×3

−I7×7



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
1 0 0
0 0 1


7×3

03×7 −I3×3





ξ1
...
ξ7
µ1

µ2

µ3


+



ε1
...
ε7
η1
...
η7
υ1
υ2
υ3


.

• Rows of X, Y and E in equation 3.8 corresponding to ỹ and also the

yik are called data cases.

• Rows of X, Y and E corresponding to H are the constrained cases.

This imposes constraints on the parameters, Θ.

• Rows of X, Y and E in equation 3.8 corresponding to υk are denoted

as prior cases. These are generated by the hyperprior.

3.4 Presteps Before Diagnostics

From equation 3.8, we realized the error terms do not have equal variances, that

is from Γ. Hence we have to transform it such that we obtain equal variances.

In doing so we have to premultiply equation 3.8 by Γ−
1
2 . Hence we get

Γ−
1
2Y = Γ−

1
2XΘ + Γ−

1
2E, (3.9)
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where E ∼ N(0,Γ), with Γ, corresponding to the covariance matrices of ε, η

and υ, suggesting unequal variances. Hence we have Γ−
1
2E ∼ N(0, I(2N+k)×(2N+k)),

we then obtain equal varinces. From equation 3.9, we can rewrite it as

Y ∗ = X∗Θ +E∗. (3.10)

We estimate the residuals as: ei = yi− ŷi, where ŷi is the ith row of Xβ̂. There-

fore from this idea, if we define the hat matrix as V = X∗(X∗>X∗)−1X∗>,

then the vector of residuals, Ê∗ will be

Ê∗ = Y ∗ − Ŷ ∗ = Y ∗ −X∗Θ̂

= Y ∗ −X∗(X∗>X∗)−1X∗>Y ∗ = Y ∗ − V Y ∗

= (I − V )Y ∗.

(3.11)

3.5 Diagnostics for case Influence

Case influence diagnostics show how estimates of parameters change when

cases are deleted. In a Bayesian MCMC framework of which we are considering

(Zhao et al., 2017), the most accurate way of detecting influential cases is to

rerun the MCMC algorithm for each deleted cases but this is computationally

cumbersome. Hence there is a an approach to approximate this result. This

approach is the linear approximation method. This uses a classic result in

linear model theory, where if Y = Xβ + ε, then β̂ = (X>X)−1X>Y . Also
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if we have some cases deleted from X, then the new X will be XR. Hence a

standard result of the inverse of X>RXR will be

(X>RXR)−1 = (X>X)−1 + (X>X)−1X>R (I − VR)−1XR(X>X)−1, (3.12)

where VR is the new hat matrix after the deleted cases. This representation is given

when we have more than one deleted cases at the same time. The updated β̂ (after

deletion of cases) is given by β̂R = (X>RXR)−1X>RYR = (X>RXR)−1(X>Y −

X>RYR), where VR = XR(X>X)−1X>R .

Let us consider the case where we have just one deleted case. Equation 3.12 cn be

simplified further. This can be expressed as

(X>r Xr)−1 = (X>X)−1 + (X>X)−1x>r (1 − vr)
−1xr(X

>X)−1, (3.13)

where vr = xr(X
>X)−1x>r . Now we post multiply Equation 3.13 by (X>Y −

X>i Yi. Hence we have

(X>r Xr)−1(X>Y − x>r yr) = (X>X)−1X>Y − (X>X)−1x>r yr

+
(X>X)−1x>r xr(X>X)−1X>Y

1− vr

−
(X>X)−1x>r xr(X>X)−1x>r yr

1− vr
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β̂r = β̂ − (X>X)−1x>r yr +
(X>X)−1x>r xrβ̂

1− vr

−
(X>X)−1x>r xr(X

>X)−1x>r yr
1− vr

= β̂ − (X>X)−1x>r yr +
(X>X)−1x>r xrβ̂

1− vr

−
(X>X)−1x>r vryr

1− vr

= β̂ −
(X>X)−1x>r

1− vr
[(1− vr)yr − xrβ̂ + vryr]

= β̂ −
(X>X)−1x>r

1− vr
[yr − xrβ̂]

= β̂ −
(X>X)−1x>r

1− vr
Êr

Thus, β̂r − β̂ = −
(X>X)−1x>r

1− vr
Êr.

Therefore we have a linear approxiamtion for the change in β̂ arising from the

deletion of the rth case, as giiven by

β̂r − β̂ ≈ −
(X>X)−1x>r

1− vr
Êr. (3.14)

Now relating equation 3.14 to our equation 3.9, we can approximate the change in Θ̂

arising by deleting the rth case, as given by

Θ̂r − Θ̂ ≈ −
(X∗>X∗)−1x∗>r

1− vr
Ê∗r. (3.15)
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where X∗ is transformed using the posterior mean of Γ as in equation 3.9, Θ̂ is

the posterior mean of Θ using the full dataset, Θ̂r is the posterior mean of Θ after

deleting the rth case, Ê∗r is the rth row of 3.11 which is a scalar. Also vr is the rth

diagonal element of V and also a scalar.

Now to give a decision rule about the change in the size after deleting a case, we try

to standardize this change in size and call it a Relative Change (RC). Let θ be an

element of Θ, then the RC arising from deleting the rth observation is given as

RC{θ; r} =
θ̂(r) − θ̂
psd{θ|Y }

, (3.16)

where psd stands for Posterior Standard Deviation computed using the full dataset.

By convention, if |RC| ≥ 2, it suggests the deleted observation is an influential case

(Zhao et al., 2017).

3.5.1 Outlier Detection Using Residuals

We can also check to see if observations that are suspected to be inconsistent are

actually outliers. Since we are using the linear model to approximate the generalized

linear hierarchical model, we can obtain the residuals from the linear model. Residuals

are generally used in the detection of outliers. We can obtain the residuals from

equation 3.11. The rth case standardized residual is calculated by

Ê∗r√
var(Ê∗r)

. (3.17)
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We use the above standardized residuals to conclude whether a case is an outlier or

not. Note that the mean of the residuals is zero in ordinary linear models. However,

the mean is not zero in general for hierarchical models.

56



Chapter 4

Data Analysis

4.1 Example 1: Network Meta-Analysis Using

Frequentist Approach.

Here we try to do an example with R software with a diabetes drug dataset by

Senn et al. (2013). This data is involved with the comparison of the effectiveness

of varieties of 10 diabetes drugs from 26 independent studies. The data is given

in Table 4.1 which is a classic example of a continuous outcome in the analyis of

network meta-analysis. From Table 4.1 on page 59 , we see there are 8 columns,

namely the laboratory in which the study was conducted, the treatment effect (TE),

the standard error of the treatment effect (seTE), Treatment 1 (treat1), Treatment

2 (treat1), the adjusted standard error (seTEadj), the number of arms in each study

(narms) and multi-arm studies (multiarm). Looking at the first column we realize

the number of rows are 28 suggesting this will be the number of studies considered

for this analysis. However, in actual sense, there are 26 studies for this analysis.
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This is because of the presence of multi-arm study in this example. Rows 26, 27

and 28 of the Senn et al. (2013) diabetes data, with the study label, Willms1999 is

a multi-arm study which has been partitioned into series of two-arm studies. The

10 drugs (treatments) are acar = Acarbose, benf = Benfluorex, metf = Metformin,

migl = Miglitol, piog = Pioglitazone, plac = Placebo, rosi = Rosiglitazone, sita =

Sitagliptin, sulf = Sulfonylurea and vild = Vildagliptin. Now we use R and a package

in R, netmeta (Rcker et al., 2018), to run a network meta-analysis first using the

assumption of a fixed effects model. Table 4.1 on page 59 shows the Senn diabetes

drug dataset showing which study is a multi-arm. This is depicted with an asterisk,

∗. Also, a reverse of a comparison of a treatment results in the same effect size, only

the sign of the effect size will be changed accordingly. Also Table 4.2 on page 60

shows the direct and indirect comparions of the various treatments in a matrix-like

table, having each pairwise comparison present. Here, we realize from the Figure

4.1 that it has a link between meft-acar, hence there is direct evidence from this

comparison and can be estimated by the network model. This estimate is shown in

Table 4.2 on page 60 as −0.29. Also, for example, we realize from Figure 4.1 that

there is no link between migl-acar, hence we can have an indirect estimate of this

comparison by

θ̂indirectmigl−acar = θ̂directplac−acar − θ̂directplac−migl. (4.1)

where plac is the common comparator for migl and acar. Hence the corresponding

estimate is θ̂indirectmigl−acar = 0.83 − 0.94 = −0.12. This estimate is also given in Table

4.2. This sort of computations is carried out through out Table 4.2 on page 60, for

the indirect estimate, hence using the assumption of consistency.
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treat1 treat2 TE seTE seTE.adj narms multiarm
DeFronzo1995 metf plac -1.90 0.1414 0.1414 2

Lewin2007 metf plac -0.82 0.0992 0.0992 2
Davidson2007 plac rosi 1.34 0.1435 0.1435 2

Wolffenbuttel1999 plac rosi 1.10 0.1141 0.1141 2
Kipnes2001 piog plac -1.30 0.1268 0.1268 2

Kerenyi2004 plac rosi 0.77 0.1078 0.1078 2
Hanefeld2004 metf piog -0.16 0.0849 0.0849 2

Derosa2004 piog rosi 0.10 0.1831 0.1831 2
Baksi2004 plac rosi 1.30 0.1014 0.1014 2

Rosenstock2008 plac rosi 1.09 0.2263 0.2263 2
Zhu2003 plac rosi 1.50 0.1624 0.1624 2

Yang2003 metf rosi 0.14 0.2239 0.2239 2
Vongthavaravat2002 rosi sulf -1.20 0.1436 0.1436 2

Oyama2008 acar sulf -0.40 0.1549 0.1549 2
Costa1997 acar plac -0.80 0.1432 0.1432 2

Hermansen2007 plac sita 0.57 0.1291 0.1291 2
Garber2008 plac vild 0.70 0.1273 0.1273 2

Alex1998 metf sulf -0.37 0.1184 0.1184 2
Johnston1994 migl plac -0.74 0.1839 0.1839 2

Johnston1998a migl plac -1.41 0.2235 0.2235 2
Kim2007 metf rosi 0.00 0.2339 0.2339 2

Johnston1998b migl plac -0.68 0.2828 0.2828 2
Gonzalez-Ortiz2004 metf plac -0.40 0.4356 0.4356 2

Stucci1996 benf plac -0.23 0.3467 0.3467 2
Moulin2006 benf plac -1.01 0.1366 0.1366 2
Willms1999 acar metf 0.20 0.3579 0.3884 3 *
Willms1999 metf plac -1.20 0.3758 0.4125 3 *
Willms1999 acar plac -1.00 0.4669 0.8242 3 *

Table 4.1: Senn dataset showing the number of arms.
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acar benf metf migl piog plac rosi sita sulf vild
acar 0.00 0.08 0.29 0.12 0.24 -0.83 0.37 -0.26 -0.39 -0.13
benf -0.08 0.00 0.21 0.04 0.16 -0.91 0.30 -0.34 -0.47 -0.21
metf -0.29 -0.21 0.00 -0.17 -0.05 -1.11 0.09 -0.54 -0.67 -0.41
migl -0.12 -0.04 0.17 0.00 0.12 -0.94 0.26 -0.37 -0.50 -0.24
piog -0.24 -0.16 0.05 -0.12 0.00 -1.07 0.14 -0.50 -0.63 -0.37
plac 0.83 0.91 1.11 0.94 1.07 0.00 1.20 0.57 0.44 0.70
rosi -0.37 -0.30 -0.09 -0.26 -0.14 -1.20 0.00 -0.63 -0.76 -0.50
sita 0.26 0.34 0.54 0.37 0.50 -0.57 0.63 0.00 -0.13 0.13
sulf 0.39 0.47 0.67 0.50 0.63 -0.44 0.76 0.13 0.00 0.26
vild 0.13 0.21 0.41 0.24 0.37 -0.70 0.50 -0.13 -0.26 0.00

Table 4.2: Output sowing the Direct and indirect estimates of the treatments.

Figure 4.1: Network Plot from the Senn 2013 data of Drugs for Diabetes.
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Q df pval
Total 96.99 18.00 0.0001

Within designs 74.45 11.00 0.000
Between designs 22.53 7.00 0.002

Table 4.3: Test of heterogeneity / inconsistency.

Figure 4.1 shows the network plot of the Senn et al. (2013) data. Also this figure

shows a colored triangular shape. This colored part denotes the three-arm trial.

From the Senn diabetes drug dataset, we now conduct test for heterogeneity and

provide the value of test statistics in the corresponding p-value in Table 4.3. We can

see that Q = 96.99 with a d.f = 18 and a corresponding p− value = 0.0001 which is

less than 0.05 if we are taking a 5% level of significance. Hence we reject the notion

of homogeneity and can say there is some level of heterogeneity. This Q is the total

heterogeneity which can be decomposed into heterogeneity due to “within designs”

and “between designs”. With the “within designs” it assesses the heterogeneity

between studies with the same design and the “between designs” assesses the design

inconsistency. Also this is supported by the Higgins’ index, I2 = 81.4% showing

a very high level of heterogeneity in this analysis with τ2 = 0.1087. This τ2 value

suggests that heterogeneity is present since its value was not zero. Now we look at

studies of the same design, thus studies with the same treatment comparison and

the same number of treatment arm-comparison. Hence this is the breakdown of the

“Within design” to see the contribution of each design to the heterogeneity. This is

shown in Table 4.4 on page 62. In the table we see that some treatment comparisons

have 0.00 degrees of freedom. Suggesting that these treatment comparisons were

compared in just one study. Hence it is obvious that they will have no heterogeneity
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design Q df pval
1 acar:plac 0.00 0.00 NA
2 acar:sulf 0.00 0.00 NA
3 benf:plac 4.38 1.00 0.04
4 metf:piog 0.00 0.00 NA
5 metf:plac 42.16 2.00 0.00
6 metf:rosi 0.19 1.00 0.67
7 metf:sulf 0.00 0.00 NA
8 migl:plac 6.45 2.00 0.04
9 piog:plac 0.00 0.00 NA

10 piog:rosi 0.00 0.00 NA
11 plac:rosi 21.27 5.00 0.00
12 plac:sita 0.00 0.00 NA
13 plac:vild 0.00 0.00 NA
14 rosi:sulf 0.00 0.00 NA
15 acar:metf:plac 0.00 0.00 NA

Table 4.4: Heterogeneity analysis within design.

in themselves suggesting Q = 0.00 and the corresponding p-value will be unavailable.

For design “metf:plac” we have a heterogeneity quantity of Q = 42.16 and degrees

of freedom of 2 suggesting that there were 3 studies that implemented this design

with a p-value of 0.00. Hence there is heterogeneity present in this design. But

with design “metf:rosi”, Q = 0.19 which is small with a p-value of 0.67 suggesting

heterogeneity is not present in this design. Therefore all designs with Q 6= 0 have

some heterogeneity in them with the exception of design “metf:rosi”, since it has

a large p-value suggesting homogeneity between the two studies that analysed this

treatment combination.
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4.2 Example 2: Network Meta-Analysis Using

Bayesian Approach.

Here we give a numerical output from Winbugs, firstly using the fixed effects model,

where we use the Anaesthetic drug agent example (Greco et al., 2013). With the

Anaesthetic drug dataset, which is about the beneficial impact of volatile agents on

a 30-day mortality of patients. Here there are four treatments for the comparison

labeled as desflurane (A), isoflurane (B), sevoflurane (C) and total i.v. anaesthesia

(D) and made up of 30 trials or studies. Using Markov Chains Monte Carlo (MCMC)

we calculate an estimate for the effects of interest. Thus dAB, dAC and dAD for the

basic parameters and dBC , dBD and dCD for the functional parameters obtained by

the consistency equation explained earlier. In Table 4.5, we provide the output from

the MCMC process from Winbugs. Here dAB = d[2], dAC = d[3] and dAD = d[4]

corresponds to the estimate of the basic parameters. Now these estimates are

used to estimate the functional parameters using the consistency equation, thus

dBC = d[3] − d[2], dBD = d[4] − d[2] and dCD = d[4] − d[3]. Now using the logit

function from above, the various odds ratios can be computed as follows and the

final results are shown in table 4.7

node mean sd MC error 2.5% median 97.5% start sample
d[2] -0.7743 0.6802 0.005549 -2.142 -0.7681 0.5405 20001 60000
d[3] -0.9500 0.5963 0.004083 -2.162 -0.9343 0.1781 20001 60000
d[4] -0.8658 0.5909 0.004556 -2.067 -0.8526 0.2525 20001 60000

Table 4.5: Estimates of the basic parameters from the Anaesthetic drug dataset
using the fixed effects model.
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logit[pAB] = logit[pAB]− logit[pAA]

= µi + dAB − (µi + dAA)

= µi − 0.7743− (µi + 0)

= µi − 0.7743− µi

= −0.7743

logit[pAB] = log

(
pAB

1− pAB

)
= −0.7743

That is
pAB

1− pAB
= e−0.7743

That is
pAB

1− pAB
= 0.46.

Hence the odds ratio for treatment comparison AB is 0.46 and the other basic

parameters odds ratios are computed as above. With the functional parameters we

can estimate the treatment comparison BC as

logit[pBC ] = logit[pAC ]− logit[pAB]

= µi − 0.95− (µi − 0.7743) = µi − 0.95− µi + 0.7743

= −0.95 + 0.7743 = −0.1757

Thus, log

(
pBC

1− pBC

)
= −0.1757.

Therefore the odds ratio of BC is
pBC

1− pBC
= e−0.1757

pBC
1− pBC

= 0.84.
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Hence, the other treatment comparisons BD and CD are computed as above. Also

the 95% credible intervals are computed as follows. From Table 4.5, the column for

the standard deviation, we compute the credible intervals for the basic parameters

AB, AC and AD by the following approach. For AB we have

elnORAB±(1.96∗SE(lnORAB)).

Here lnORAB = d[2], where d[2] is in table 4.5. Hence we have,

e−0.7743±(1.96∗0.6802).

So the credible interval for dAB is (0.12, 1.75). The remaining basic parameters

are computed like above. For the functional parameters, we have to make a slight

adjustment to the standard error because of the combination of two basic parameters

to get the functional parameter. From elementary statistics we know that if two

events are independent then their variance is V ar(A+B) = V ar(A) + V ar(B). We

know that

lnORBC = lnORAC − lnORAB,

by the consistency assumption. Hence standard error for lnORBC is

SE(lnORBC) =
√
SE(lnORAC)2 + SE(lnORAB)2.

Therefore we can calculate its credible interval as

elnORBC±(1.96∗SE(lnORBC))

elnORBC±(1.96∗
√
SE(lnORAC)2+SE(lnORAB)2)

e(−0.95+0.7743)±(1.96∗
√

0.59632+0.68022)

e−0.1757±1.7730.
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node mean sd MC error 2.5% median 97.5% start sample
d[2] -0.9783 0.8977 0.0224 -2.8970 -0.9052 0.5200 30001 90000
d[3] -1.0880 0.7712 0.0181 -2.7690 -1.0150 0.1839 30001 90000
d[4] -0.9040 0.6958 0.0170 -2.2390 -0.8961 0.4239 30001 90000
τ 2 118.30 321.30 7.9820 0.1646 9.2460 997.70 30001 90000

Table 4.6: Estimates of the basic parameters from the Anaesthetic drug dataset
using the random effects model

The other functional parameter credible intervals are calculated as above. Also, we

perform the analysis using the random effects model, the annotated code for the

analysis of the fixed effects and random effects model is made available in Appendix

A. After using Winbugs to run the MCMC, we had estimates of the basic parameters

after a burn-in of 30001 and iteration of 90000 as given in Table 4.6. We then

calculate the odds ratio’s using the same approach as above and calculating the

functional parameters as we did in the fixed effects model. However, we use different

notations in random effects model. This is given by δAB = d[2], δAC = d[3] and

δAD = d[4] for the basic parameters. Table 4.7 shows the odds ratios and 95%

credible intervals of the the treatment comparison under the fixed effects model

and random effects model. From Table 4.5 of the fixed effects model we realize

the credible intervals of the basic parameters are relatively smaller as compared to

Table 4.6 of the random effects model. This is because the random effects model

quantifies the heterogeneity that might exist across studies. This consequently makes

the credible intervals of the odd ratios of the random effects model to be relatively

larger as compared to the fixed effects model in Table 4.7.

Also, we look at another dataset called the Thrombolytic drug dataset (Lu

and Ades, 2006), which is made up of 8 drugs, reteplase (Ret-6), streptokinase
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Fixed Effects Model
Odds ratio 95% credible interval

dAB 0.46 0.12-1.75
dAC 0.39 0.12-1.24
dAD 0.42 0.13-1.34
dBC 0.84 0.14-4.94
dBD 0.91 0.16-5.34
dCD 1.09 0.21-5.56

Random Effects Model
Odds ratio 95% credible interval

dAB 0.38 0.06-2.18
dAC 0.34 0.07-1.53
dAD 0.40 0.10-1.58
dBC 0.90 0.09-2.21
dBD 1.08 0.12-9.98
dCD 1.20 0.16-9.21

Table 4.7: The odds ratios and 95% credible interval of the treatment compari-
son under the fixed effects and random effects consistency models.
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node mean sd MC error 2.5% median 97.5% start sample
d[2] -0.1651 0.0440 6.66E-4 -0.2515 -0.1648 -0.0804 20001 30000
d[3] 0.0017 0.0304 0.0181 3.365E-4 0.0016 0.0612 20001 30000
d[4] -0.0459 0.0463 4.61E-4 -0.1374 -0.0458 0.0445 20001 30000
d[5] -0.1606 0.0767 0.0011 -0.3095 -0.1610 -0.0108 20001 30000
d[6] -0.1152 0.0599 8.201E-4 -0.2314 -0.1151 0.0027 20001 30000
d[7] -0.1952 0.2181 0.0021 -0.6205 -0.1955 0.2304 20001 30000
d[8] 0.0153 0.0367 3.779E-4 -0.057 0.0153 0.0875 20001 30000

Table 4.8: Estimates of the basic parameters from the Thrombolytic drug
dataset using the fixed effects consistency model

node mean sd MC error 2.5% median 97.5% start sample
d[2] -0.2094 0.1130 0.003001 -0.4963 -0.1915 -0.0408 20001 30000
d[3] -0.0099 0.0811 0.001739 -0.2017 -0.0033 0.1299 20001 30000
d[4] -0.0543 0.1204 0.001539 -0.3066 -0.0524 0.1847 20001 30000
d[5] -0.2036 0.1770 0.003175 -0.6238 -0.1878 0.0955 20001 30000
d[6] -0.1585 0.1260 0.002795 -0.4690 -0.1438 0.0407 20001 30000
d[7] -0.2344 0.2391 0.011140 -0.7105 -0.2303 0.2391 20001 30000
d[8] 0.0408 0.0954 0.001946 -0.1381 0.0347 0.2564 20001 30000
τ 2 376.9 515.2 16.27 10.61 192.0 1804.0 20001 30000

Table 4.9: Estimates of the basic parameters from the Thrombolytic drug
dataset using the random effects consistency model

(SK-1), urokinase (UK-7), alteplase (tPA-3), anistreptilase (ASPAC-8), accelerated

alteplase (AtPA-2), tenecteplase (Ten-5), and streptokinase plus alteplase (SK +

tPA-4) and carried out in twenty-eight trials. We calculate its basic parameters and

the corresponding odds ratios as we did in the previous example. In Table 4.8, we

show the basic parameters estimates from the fixed effects consistency model. Table

4.9 shows the basic parameter estimates from the random effects consistency model.

We obtain the odds ratio’s from both models in Table 4.10
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Fixed Effects Model

Odds ratio 95% credible interval Odds ratio 95% credible interval

d12 0.85 0.78–0.92 d35 0.85 0.72–1.00
d13 1.00 0.94–1.06 d36 0.89 0.78–1.01
d14 0.96 0.87–1.05 d37 0.82 0.53–1.26
d15 0.85 0.73–0.99 d38 1.01 0.92–1.11
d16 0.89 0.79–1.00 d45 1.03 0.75–1.06
d17 0.82 0.54–1.26 d46 0.93 0.80–1.08
d18 1.02 0.94–1.09 d47 0.86 0.56–1.33
d23 1.18 1.06–1.31 d48 1.06 0.95–1.19
d24 1.12 0.99–1.28 d56 1.04 0.86–1.27
d25 1.00 0.84–1.19 d57 0.97 0.61–1.52
d26 1.05 0.91–1.22 d58 1.19 1.01–1.41
d27 0.97 0.63–1.50 d67 0.92 0.59–1.45
d28 1.20 1.07–1.34 d68 1.14 0.96–1.35
d34 0.95 0.86–1.06 d78 1.23 0.80–1.90

Table 4.10: The odds ratios and 95% credible interval of the treatment com-
parison under the fixed effects consistency models.
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Random Effects Model

Odds ratio 95% credible interval Odds ratio 95% credible interval

d12 0.81 0.65–1.01 d35 0.82 0.56–1.21
d13 0.99 0.84–1.16 d36 0.86 0.64–1.16
d14 0.95 0.75–1.20 d37 0.80 0.49–1.31
d15 0.82 0.58–1.15 d38 1.05 0.82–1.34
d16 0.85 0.67–1.09 d45 0.86 0.57–1.31
d17 0.79 0.50–1.26 d46 0.90 0.64–1.27
d18 1.04 0.86–1.26 d47 0.84 0.49–1.41
d23 1.22 0.93–1.60 d48 1.10 0.81–1.49
d24 1.17 0.84–1.61 d56 1.05 0.68–1.60
d25 1.01 0.67–1.52 d57 0.97 0.54–1.74
d26 1.05 0.76–1.47 d58 1.28 0.86–1.89
d27 0.98 0.58–1.64 d67 0.93 0.55–1.57
d28 1.28 0.96–1.72 d68 1.22 0.90–1.66
d34 0.96 0.72–1.27 d78 1.31 0.80–2.18

Table 4.11: The odds ratios and 95% credible interval of the treatment com-
parison under the random effects consistency models.

4.3 Example 3: Model Selection and Ranking

of Treatments.

Now from the Anaesthetic drug agent example, we see the DIC output from this

dataset, as given in Table 4.12 for the fixed effects and random effects models. We

see that the DIC for the fixed effects and the random effects is close, with an absolute

difference of 0.086. Hence, by the principle of parsimony, we settle for the fixed

effects model since it’s much more conservative. Also with the Thrombolytic drug

dataset, we compute the DIC for both the fixed effects and random effects models

and decide which model to choose.
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Fixed effects

Dhat Dbar pD DIC
71.690 88.516 16.826 105.342

Random effects

Dhat Dbar pD DIC
68.024 86.726 18.702 105.428

Table 4.12: DIC for the Fixed effects and Random effects model for the
Anaesthetic dataset.

Fixed effects

Dhat Dbar pD DIC
300.53 335.65 35.12 370.76

Random effects

Dhat Dbar pD DIC
295.95 333.61 37.66 371.28

Table 4.13: DIC for the Fixed effects and Random effects model for the
Thrombolytic drug dataset.

We see from Table 4.13 that the DIC results for the Thrombolytic drug dataset

are also close, with an absolute difference of 0.520. Hence, by the principle of

parsimony, we settle for the fixed effects model since it is much more conservative in

the sense that it makes fewer assumptions and few underlying parameters.

Example of Using the Posterior Distribution of the Sum of Residual

Deviance.

From the Anaesthetic agent example, where we have 4 treatments, we performed

network meta-analysis using the fixed effects and random effects model and settled
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Node Probability Start Sample
p 0.09972 20001 60000

probability[1] 0.5892 20001 60000
probability[2] 0.5021 20001 60000
probability[3] 0.414 20001 60000
probability[4] 0.3282 20001 60000
probability[5] 0.2509 20001 60000
probability[6] 0.1853 20001 60000
probability[7] 0.1316 20001 60000

Table 4.14: Output for Residual Deviance Difference and Some Probabilities of
β.

to use the fixed effects model. Here we try to find out if modeling the fixed effects

model incorporating inconsistency is supported by the data. Let model 1 denote

the fixed effects model assuming the network is already consistent. Let model 2

denote the fixed effects model assuming inconsistency. From the WinBugs program

we performed MCMC simulations. With the fixed effect model assuming the net-

work is already consistent, it estimated 3 parameters and with the fixed effects

model assuming inconsistency, it estimated 6 parameters. Since we know the β

is approximately Chisquare with degrees of freedom being the difference between

the parameters that will be estimated from the models, we have d.f. = 6− 3 = 3.

Thus we have β = χ2
3 = 7.81. The residual deviance difference was obtained

from the MCMC simulations, D̄1,2 = diff = 1.81. Hence from Table 4.14 we had

P [D̄1,2 > β(D̄)] = p = 0.09972 which is quite small. Hence having such small

probability we have little evidence in favour of model 2. As mentioned earlier, the

other way to help in the model selection is to use the Kass and Raftery table by

finding which value of β that will enable P [D̄1,2 > β(D̄)] = 0.5. From the above
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table we realize the value of β that will allow the above probability to be equal

to 0.5 is 2. Hence the value 2 in the Kass and Raftery table corresponds to “Not

worth more than a bare mention” evidence in favour of model 2. Thus it does not

support model 2, which is the fixed effects model assuming one is accounting for

inconsistency.

Also we look at the Thrombolytic drug dataset, where we have 8 treatments. We

performed network meta-analysis using the fixed effects and random effects model

and also settled on the fixed effects model. Here we try to find out if modeling

the fixed effects model incorporating inconsistency and comparing it to the fixed

effects consistency model is supported by the data. Again, let model 1 denote the

fixed effects model assuming the network is already consistent. Fixed effects model

assuming one is accounting for inconsistency, is denoted by model 2. From the

WinBugs program we performed MCMC simulations based on the data. The fixed

effects model assuming the network is already consistent, estimated 7 parameters and

the fixed effects model accounting for inconsistency, estimated 28 parameters. We set

the β = χ2
21 = 32.67 since its d.f = 28− 7 = 21. In Table 4.15, the residual deviance

difference was obtained from the MCMC simulations, D̄1,2 = diff = 6.32, Hence we

had P [D̄1,2 > β(D̄)] = p = 0.6664 which is quite large. Hence having such large

probability we have sufficient evidence in favour of the fixed efffects inconsistency

model. Another method we can use to support our conclusion is to use use the Kass

and Raftery table by finding which value of β will ensure that P [D̄1,2 > β(D̄)] = 0.5.

From Table 4.15 we realize the value of β that will allow the above probability to be

equal to 0.5 is 6. The value 6 in the Kass and Raftery table corresponds to “a strong”
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Node Probability Start Sample
p 6.667E-1 20001 60000

probability[1] 0.7684 20001 60000
probability[2] 0.7242 20001 60000
probability[3] 0.6759 20001 60000
probability[4] 0.6245 20001 60000
probability[5] 0.5712 20001 60000
probability[6] 0.5160 20001 60000
probability[7] 0.4597 20001 60000
probability[8] 0.4047 20001 60000
probability[9] 0.3527 20001 60000
probability[10] 0.3026 20001 60000

Table 4.15: Output for Residual Deviance Difference and Some Probabilities.

evidence in favour of model 2. Thus, here also, it does show support for model 2,

suggesting inconsistency is present. With inconsistency being present, it will be good

to determine the source of the inconsistency. Hence some diagnostic techniques must

be performed on the network to know if this presence of inconsistency will affect the

conclusion one will come to with this analysis and determine the source and whether

it is just an influential or an outlier observation.

Ranking of Treatments Using the SUCRA Index.

Here we look at a table of the SUCRA generated as output from WINBUGS

in Table 4.16 for the Anaesthetic drug dataset, where it shows the cummulated

probabilities of the ranks of each treatment. Here we see that treatment C has the

highest SUCRA index of 69.7% suggesting it was the best treatment, followed by

treatments D, B and A being the least effective. To get the SUCRA, we first have
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Treatment j

Rank z A B C D

1 (best) 0.005 (0.005) 0.266 (0.266) 0.418 (0.418) 0.311 (0.311)
2 0.035 (0.040) 0.304 (0.570) 0.295 (0.713) 0.366 (0.677)
3 0.158 (0.198) 0.318 (0.888) 0.248 (0.961) 0.276 (0.953)

4 (worst) 0.802 (1.000) 0.111 (1.000) 0.039 (1.000) 0.048 (1.000)
SUCRA(%) 8.100 57.500 69.700 64.700

Table 4.16: Ranking of Treatment A, B, C and D using the SUCRA Index.

to calculate the cummlative probabilities to a certain rank which is shown in the

brackets above. They are then summed and divided by the number of treatments

less 1. Hence, for treatment A, we have (0.005 + 0.04 + 0.198)/3 = 0.081. The rest

follows similarly. Also, here we see the rankograms of the treatments after applying

the SUCRA formular to the ranking probabilities in Table 4.16. The pictorial view

of the SUCRA index is shown in Figure 4.2 for the anaesthetic drug dataset.
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Figure 4.2: The Rankogram diagrams of the treatments
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4.4 Example 4: Inconsistency Detection in Throm-

bolytic drug dataset and Simulated data

This dataset seeks to compare eight thrombolytic drugs for use after acute myocardial

infarction with the primary outcome being 30 to 35 day mortality. There were twenty-

eight trials which were conducted to study eight drugs: reteplase (Ret), streptokinase

(SK), urokinase (UK), alteplase (tPA), anistreptilase (ASPAC), accelerated alteplase

(AtPA), tenecteplase (Ten), and streptokinase plus alteplase (SK + tPA). There is

only one three-arm comparison in trial 2 and the rest of the 27 trials are all two-arm

comparisons. This dataset is used as a motivating example because from the existing

literature (Lu and Ades, 2006) the authors detected the presence of inconsistency

in this dataset using their novel contrast based approach. They found out that

trials 22 and 23 of treatments 2 are the potential sources of inconsistencies. Here

we will look at how the arm based approach will be used to identify these sources

of inconsistencies. The first step to investigate the presence of inconsistency using

the fixed effects in the arm based model. Here there is the need to identify the two

treatments in which one suspects the inconsistency in the analysis. By doing so,

one must group the treatments into the four groups discussed above. In Lu and

Ades (2006), the trials introducing inconsistency are made up of a comparison of

treatment AtPA(2) and ASPAC(8) using the contrast based model. Hence, with the

arm based model, we have the discrepancy factor given by

∆28 = (µ
(i)
2 − µ

(i)
8 )− (µ

(ii)
2 − µ(iii)8 ),

where µ
(i)
2 and µ

(i)
8 are the trials that compare both treatment 2 and 8 whilst µ

(ii)
2
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Figure 4.3: The Network graph of the Thrombolytic drug dataset where the
drugs are reteplase (Ret), streptokinase (SK), urokinase (UK), alteplase (tPA),
anistreptilase (ASPAC), accelerated alteplase (AtPA), tenecteplase (Ten) and
streptokinase plus alteplase (SK + tPA).
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are trials that compare treatment 2 with other treatments except treatment 8. Finally

µ
(iii)
8 are trials that compare treatment 8 with other treatment except treatment 2.

Hence from the statistical software R, we call OpenBugs using the BRugs package

which is used to run Markov Chain Monte Carlo (MCMC) in Bayesian analysis.

We obtain estimate for the discrepancy factor comprising of comparing the direct

and indirect evidences of treatment 2 and 8 with their corresponding 95% Bayesian

credible interval (BCI). From the BCI we realize a deviation from zero (the value zero

does not fall in the BCI) suggesting a discrepancy between treatment 2 and 8, hence

indicating the presence of inconsistency. This can be seen in Table 4.17. Now that we

have identified the presence of inconsistency, we try to investigate the source of the

inconsistency to know which trial is causing it. We use the random effects approach

of the arm based to investigate this. Here we shall use the yardstick proposed in

(Zhao et al., 2016), where the authors suggested that we assess the top ranked 5%

of the absolute values of the random effects. From this dataset with 28 trials and

8 treatments, we will have 224 (28× 8) random effects. Hence the top ranked 5%

of the absolute values of the random effects will be 11 random top ranked random

effects. This shown in Table 4.18. From Table 4.18, we realize trial 2 with treatment

3, 8 and 1 have large random effects corresponding to 0.5271, 0.4562 and 0.4035

respectively. Also, we have trials 6 and 22 with their corresponding random effects of

treatment 3 and 2 to be 0.3676 and −0.2846 respectively and so on. Now identifying

these sources of inconsistencies, it will be prudent to use the fixed effects approach of

the arm based model to investigate which treatment combinations give discrepancy

factors that have zero further away at the tail of the posterior distribution. From
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mean sd MC error val2.5pc median val97.5pc start sample
dis 28 -1.48 0.61 0.02 -2.74 -1.46 -0.34 30001 20000

Table 4.17: The discrepancy factor for treatment 2 and 8 from the Thrombolytic
drug dataset.

η[i, k] η[2, 3] η[2, 8] η[2, 1] η[6, 3] η[22, 2] η[11, 1] η[20, 7] η[23, 2]
Posterior mean 0.5271 0.4562 0.4035 0.3676 -0.2846 0.2713 0.2586 -0.2427

η[18, 2] η[11, 6] η[19, 6]
0.2231 0.2206 -0.2089

Table 4.18: The top ranked 5% of the absolute values of the random effects of
study i with treatment k.

the above discrepancy factor, we realized that treatment 2 and 8 were introducing

inconsistencies in the studies. Hence potential sources are from trials 2, 22, 23 and

18. The paper (Lu and Ades, 2006), shows that trials 22 and 23 are potential sources

of inconsistencies which are comprised of treatments 2 and 8 using the contrast based

model. Therefore the arm-based method for inconsistency detection did a good job

in identifying these sources of inconsistencies.

4.4.1 Simulation Setting of Inconsistency Detection.

Here we develop a simulation setting to show how the arm-based model can detect

inconsistency as well. We use the contrast based model to generate a dataset where

we model it by using an inconsistency factor labelled as w. We will define a set of

equations considering four treatments with direct estimates to be d12, d13 and d14.

Using the consistency assumption with inconsistency factors, we define the indirect
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estimate as below:

d23 = d13 − d12 + w123

d24 = d14 − d12 + w124

d34 = d14 − d13 + w134.

With this kind of set up, let us introduce some inconsistency by assigning w123 =

w124 = 0.01 and w134 = 2.5 with d12 = 0.5, d13 = 0.9 and d14 = 1.2. Hence indirect

estimates using the above set of equations will be d23 = 0.41, d24 = 0.71, and

d34 = 2.8. Also all the number of observations in study i using treatment k were all

assigned 100, thus nik = 100. Now we set up 30 trials where αiB with i = 1, ..., 30

will be assigned values from −2 to −3 of equal intervals. With four treatments,

we will have 6 treatment combinations where each combination will be assigned

5 studies. Thus we will have treatment combination 1 − 2 to have trials 1 − 5,

treatment combination 1− 3 to have trials 6− 10, treatment combination 1− 4 to

have trials 11− 15, treatment combination 2− 3 to have trials 16− 20, treatment

combination 2− 4 to have trials 21− 25 and treatment combination 3− 4 to have

trials 26− 30. With the inconsistency factor of w134 = 2.5, treatment loop of 134

will have some level of inconsistency and in particular between treatment 3 and 4.

Simulated data is then generated with this set up using the contrast based model

and the binomial likelihood where inconsistency checks are done using the arm-based

model. First we tend to check the discrepancy factor between treatment 3 and 4

using the fixed effects and realise it is −2.27 with a 95% BCI of (−2.723,−1.817).

This provides evidence that indeed inconsistency does exist in this study. This is

shown in Table 4.19. Hence, in the second step, we try to find out where the sources
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mean sd MC error val2.5pc median val97.5pc start sample
dis 34 -2.27 0.2312 0.002137 -2.723 -2.2690 -1.817 50001 20000

Table 4.19: The discrepancy factor for treatment 3 and 4 from the Simulated
dataset.

η[i, k] η[27, 4] η[30, 4] η[26, 4] η[28, 4] η[29, 4] η[26, 3]
Posterior mean 0.92080 0.9074 0.8985 0.8514 0.8396 -0.5574

Table 4.20: The top ranked 5% of the absolute values of the random effects of
study i with treatment k in the Simulated dataset.

of inconsistencies might be occuring most. We then use the random effects arm-based

model to investigate this as shown above. Here we will see the top ranked 5% of the

absolute values of the random effects where we will have 120 (30× 4) random effects.

Thus, we will have 6 top random effects. These 6 consisted of trials 27, 30, 26, 28 and

29 comprising of treatment 4 and the sixth one being trial 26 of treatment 3. From

the setup we realised the loop of treatment combination 134 of the inconsistency was

assigned trials 26− 30, and the random effects arm-based model was able to detect

these, suggesting this technique of inconsistency detection is effective. This is shown

in Table 4.20. Figure 4.4 shows the evidence network of the simulation study for the

analysis showing the four treatments.

4.5 Example 5: Diagnostics of Network Meta-

Analysis after Inconsistency Detection.

In the previous example, we used the Thrombolytic drug dataset to perform some

network meta-analysis diagnostics. We were able to determine or detect some level

of inconsistencies present in the network. Here, we try to perform some diagnostics
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3

4

Figure 4.4: The simulation evidence network of the four treatments.

to this network to assess the impact of this inconsistencies identified. We know

the network meta-analysis used is a classic example of Bayesian hierarchical model.

Hence we shall try two methods for diagnostics of the network. These methods are

deleting the suspected sources of inconsistencies and re-running the MCMC. The

first one is called the exact-approach for the diagnostics and the other method is

the linear approximation method by converting the Bayesian hierarchical model to a

linear model. Hence we first look at the exact method approach using the relative

change (RC) as the yardstick to determine if a source of inconsistency is influential

or not by checking if the absolute value of the RC is greater than or equal to 2,

that is |RC| ≥ 2. Table 4.21 shows the exact effects from the full dataset of the

Thrombolytic dataset after running the MCMC. Now from the previous example,

we realized trials 22 and 23 introduced some level of inconsistency in the network,

hence we delete each trial and assess if it is influential or not using the RC formula,
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in which we have the relative change as given by

RC{θ; r} =
θ̂(r) − θ̂
psd{θ|Y }

,

with θ̂(r) being the deleted rth case from the dataset, θ̂ the estimate of the full

dataset and finally the denominator being the posterior standard deviation from

the full dataset. Also after deleting trial 22 (since it was suspected to be a source

of inconsistency), we re-run the MCMC cycle and get estimates from the reduced

dataset. This is shown in Table 4.22. Hence we can calculate the RC for treatments

2 and 8 since they make up trial 22, which is shown below. Trial 23 (which was a

source of inconsistency) was also tested to see if its influential or not by calculating

the RC. It was calculated like trial 22 below. Hence the RC for treatment 2 was,

RC{µ2} = 0.3984 and, for treatment 8, it was RC{µ8} = −0.3149 for trial 23. The

absolute value for the RC’s for trials 22 and 23 of treatment 2 and 8 suggest they

are not influential (since they are all less than 2), although they are sources of

inconsistencies.

RC{µ2} =
−2.722− (−2.788)

0.1230
= 0.5366,

RC{µ8} =
−2.642− (−2.598)

0.1588
= −0.2771.

Also, looking at the Thrombolytic drug dataset, we realized treatment 5 was

only introduced in trial 17, so we decided to check if this treatment was influential

by deleting trial 17 and re-running the MCMC and calculating the RC. The RC

was calculated as, RC{µ5} = 9.7788, which is much greater than 2. Hence this trial,
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i µi Sd
1 -2.535 0.0906
2 -2.788 0.1230
3 -2.674 0.1335
4 -2.625 0.2151
5 -2.735 0.2536
6 -2.535 0.1838
7 -2.988 0.1973
8 -2.598 0.1588

Table 4.21: The exact effects from the full dataset of the Thrombolytic dataset.

i µi Sd
1 -2.547 0.0925
2 -2.722 0.1143
3 -2.697 0.1324
4 -2.641 0.2304
5 -2.745 0.2542
6 -2.563 0.1947
7 -2.994 0.2067
8 -2.642 0.1739

Table 4.22: The exact effects after deleting trial 22 of the Thrombolytic dataset.
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although not a source of inconsistency, but is influential. This might be the case

because the treatment 5 is primarily driven by the prior of itself. We have realized

that by deleting suspected sources of inconsistencies and re-running the MCMC, we

are able to calculate the RC’s and therefore come to a conclusion which trials are

influential or not. This process is most efficient but the issue is that, if we have

a very large network consisting of many trials, then deleting and re-running the

MCMC will be a herculean task. Hence a linear approximation method can be useful

to estimate the numerator component of the RC formular.

Here, we will look at how to use the linear approximation method where we will

consider three scenarios with matrix A and B where below is the set up for the

η covariance matrix. From Equation 3.8, the H matrix is formed as per how the

treatments are compared in a particular trial. For the rows in H corresponding

to the error term, η, the formulation of the variances of η will result in the three

scenarios of the linear approximation method we will be looking at. From Equation

3.9, we multiply it with inverse square root of Γ. Hence the constituent of Γ is

made up of the variances of ε, η and υ. The variance of ε is made up from the

transformed data and the variances of υ will all be assigned 1000. Here we are using

the arm based model and as such we can consider deletion of individual data cases.

Thus, for example, if we have a two arm trial where we delete one arm, only one

treatment arm is left. With this single arm left we can keep it in the arm based

model since it still contributes to the likelihood function under the missing data

framework (Lin et al., 2016). For scenario one, we generate once, variances from the

Wishart distribution with parameters 58 as the degrees of freedom and a 58 × 58

matrix consisting of 0.1 in the diagonals and the off diagonals consisting of 0.005.
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After a random 58×58 matrix is generated from the Wishart distribution in software

R, we select the diagonal elements of this matrix to form the variances of the η with

its off diagonals setting them to 0, hence using matrix A below. And the variances of

the ε and υ are generated as above and set both their off diagonals to 0. Combining

all these constituents of ε, η and υ forms the Γ(1) matrix of 124× 124, since the ε is

also a matrix of 58× 58 and the matrix of υ is 8× 8.

A =



σ11 0 0 0 . . . 0
0 σ22 0 0 . . . 0
0 0 σ44 0 . . . 0
0 0 0 σ11 0 0 . . . 0
0 0 0 0 σ33 0 . . . 0
0 0 0 0 0 σ88 . . . 0

...
0 0 0 . . . 0 σ33 0
0 0 0 . . . 0 0 σ88



B =



σ11 σ12 σ14 0 . . . 0
σ21 σ22 σ24 0 . . . 0
σ41 σ42 σ44 0 . . . 0
0 0 0 σ11 σ13 σ18 . . . 0
0 0 0 σ31 σ33 σ38 . . . 0
0 0 0 σ81 σ83 σ88 . . . 0

...
0 0 0 . . . 0 σ33 σ38
0 0 0 . . . 0 σ83 σ88


For scenario 2, we generate 10000 random covariance matrices from a Wishart

distribution with parameters 58 as the degrees of freedom and a 58 × 58 matrix

consisting of 0.1 in the diagonals and the off diagonals consisting of 0.005. With

these 10000 covariance matrices we find the mean of each entries of the matrices,

then the mean covariance matrix we take the diagonal entries of these elements which
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will be the variances of the η matrix. The variances of the ε and υ are generated as

the first scenario, hence for another Γ(2) matrix of dimension 124× 124.

Finally for scenario 3, we formulate the covariance matrix of η by using matrix

B above, where we take into consideration the dependencies that exist between

the random components in each trial. Trials 1 and 2 are 3-arm trials, with trial 1

consisting of treatments 1, 2 and 4 and trial 2 consisting of treatments 1, 3 and 8,

with the rest being two arm trials. For trial 1, we generated 10000 random covariance

matrices from a Wishart distribution with parameters 3 as the degrees of freedom

and a 3× 3 matrix consisting of 0.1 in the diagonals and the off diagonals consisting

of 0.005. From these 10000 3× 3 covariance matrices generated from the Wishart

distribution, we find the mean of each entry and the new covariance matrix will be

for trial 1. This procedure is also done for trial 2 as it is also a 3 arm trial. For the

rest which are made of 2 arm trials, we generated 10000 random covariance matrices

from a Wishart distribution with parameters 2 as the degrees of freedom and a 2× 2

matrix consisting of 0.1 in the diagonals and the off diagonals consisting of 0.005.

From these 10000 2× 2 covariance matrices generated from the Wishart distribution

for each of the 26 remaining trials, we find the mean of each entry and the new

block of 26 covariance matrix will be for the rest of the trials. We get a new 58× 58,

η matrix and combine it with ε and υ to form another Γ(3) matrix of dimension

124× 124.

Now we pre multiply Equation 3.9 by the three new gamma’s developed from the

above scenarios. This gives us new sets of equations for which we will use in the

linear approximation method for the numerator of the RC formular. The constituents

of this new set of equations will be used in the approximation of Equation 3.15
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Omitted case Trial 22,trt 2 Trial 22, trt 8 Trial 23,trt 2 Trial 23, trt 8 Trial 17, trt 5
Parameter µ2 µ8 µ2 µ8 µ5

Rerun MCMC 0.5366 -0.2771 0.3984 -0.3149 9.7788

Linear approximation
Scenario 1 0.9482 -0.2011 0.7629 -0.3531 10.6800
Scenario 2 0.8773 -0.2150 0.9479 -0.2952 10.6600
Scenario 3 0.7087 -0.2116 0.5634 -0.2965 -4.0367

Table 4.23: RC’s using the arm-based model for the respective treatments and
corresponding trials .

as the numerator of the RC. From Table 4.23, we see the various approximations

of the three scenarios give the same conclusion as the exact method of re-running

the MCMC. Hence the linear approximation can be used in place of re-running

the MCMC when the network is very large to reduce the herculean task involved

in re-running the MCMC when a deleted trial is made. But scenario 3 should be

used often since it incorporates the dependencies among the random components

in each trial which is usually the case in real world application. Thus, in the linear

approximation method, we shall use

Θ̂r − Θ̂ ≈ −
(X∗>X∗)−1x∗>r

1− vr
Ê∗r , (4.2)

where X∗ is transformed using the posterior mean of Γ as in equation 3.9, Θ̂ is

the posterior mean of Θ using the full dataset, Θ̂r is the posterior mean of Θ after

deleting the rth case, Ê∗r is the rth row of 3.11 which is a scalar. Also vr is the rth

diagonal element of V and also a scalar, for the numerator of the RC formula, where

RC{θ; r} =
θ̂(r) − θ̂
psd{θ|Y }

. (4.3)
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4.5.1 Outlier Detection from the Linear Approximation

Model

Here we look at the treatments and their trials that may be potential outliers. We

see that trials 22 and 23 of treatment 2 which were sources of inconsistency are

actually outliers. These values were actually among the top ranked standardized

residuals. This is given in Table 4.24

Trial Treatment Standardized Residuals
20 7 1.83
22 2 -1.55
23 2 -1.44
2 2 1.15
6 3 1.10
19 6 -1.06
13 1 -1.01
10 1 -1.00

Table 4.24: Outlier detection for the Thrombolytic drug dataset.
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Chapter 5

Discussion and Future Work

In the clinical world, clinicians have the need to compare new interventions/treat-

ments to existing ones and also new interventions/treatments to new intervetion-

s/treatments to see which ones are of outmost benefit to a medical condition. Hence,

with the necessary comparison being made among interventions, clinicians need to

make decisive decisions keeping in mind the most cost effective approach. Therefore

a statistical procedure called network meta-analysis was used with the available data

of the comparison of treaments/interventions. This method has been used over the

years to answer these questions asked by clinicians by performing just a single analysis.

The frequentist method had been used extensively for this method but as things got

complicated, the Bayesian paradigm proves to provide a more robust approach to

model such complexity and provides a suitable approach to rank interventions/treat-

ments and even perform better in a missing data framework.

We looked at how to perform network meta-analysis using both the frequentist
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approach and the bayesian approach. This incorporated a continuous and binary

data framework where we used the frequentist approach to analyse the continuous

data and the bayesian approach to analyse the binary data. We realized that, with

the frequentist approach, ranking of the treatments to know which one has the

optimal benefit was difficult to incorporate. Also, in a missing data framework, it

will under-perform. Hence we needed to analyse a network meta-analysis data using

the Bayesian approach. We saw how the treatments were able to be ranked and how

historical data could be used to update our new results.

We further used some model selection techniques to discriminate between two

models and suggested the optimum model to use in our network meta-analysis. For

this purpose, we used deviance information criteria (DIC). Further, we made use of

the paper (Kass and A.E., 1995) for model selection as well.

There were certain assumptions that needed to be met, such as the consistency

assumption. If this assumption is not met, conclusions drawn out of such network

meta-analysis will not be appropriate. We investigated to know if there is a presence

of inconsistency in a network. If we found inconsistency, we then find the sources of

these inconsistencies. Hence, we tried to detect the presence of inconsistencies as

well as to identify the sources.

We further considered the fact that, a network meta-analysis is a classic example

of linear hierarchical model. Hodges (1998) suggested that every linear hierarchical

model could be approximated by a linear model. Hence, if the linear model is

formulated, some linear model approaches can be implemented on this approximated
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hierarchical model. This helped us in identifying influential observations and outlier

observations. We investigated whether the inconsistencies were in our network, and

if so we checked whether there were influential observations outliers or both. For

identifying influential observations, we used a linear model theory approach called

the relative change (RC) and evaluated its absolute magnitude. We look at using

the standardized residuals from our model for the assessment of outlying observations.

We encountered some challenges in our analysis, we tried to establish the opti-

mum covariance matrix structure for the error term components of the approximate

linear model of the linear hierarchical model. In particular, we considered three

scenarios to see which will be the optimum in our analysis. Also, acquiring datasets

for our analysis was difficult to see how robust this linear approximation method is.

For future work, we would like to study if we can extend this approach to a continuous

dataset and see how the implementation of a varying our prior distributions affect

the robustness of the model. We hope to explore our model by using the Dirichlet

prior and see how best it works with this prior distribution. This is a meta-analysis

in which multiple treatments are compared in a multivariate setup, where we assume

that there is a probability distribution over a measurable space. Then a Dirichlet

process is a probability distribution over all the distributions of the subsets of the

measurable space (Sethuraman, 1994).

We also hope to extend our methods to other types of outcomes such as time-

to-event outcome. However, this will require individual-level patient data which

could be incorporated with the aggregated data summaries. We would like to pursue
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with details in future.
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Appendix A

Code for Anaesthetic Drug

Dataset

##########################################################
#Author : Kamso Mohammed Mujaab
#The f i x e d e f f e c t s model f o r the Anaesthet i c drug
# datase t In WINBUGS
##########################################################
model{
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r ( i in 1 : ns ){
f o r ( k in 1 : na [ i ] ) {
#Binomial l i k e l i h o o d
r [ i , k ] ˜ dbin (p [ i , k ] , n [ i , k ] )
#Model s p e c i f i c a t i o n
#Each treatment e f f e c t e s t imate i s de f ined by d i f f e r e n c e
#between arm k and arm 1 ( r e f e r e n c e group )
#The d i f f e r e n c e d [ t [ i , k ] ] − d [ t [ i , 1 ] ] i s a f i x e d e f f e c t
l o g i t (p [ i , k])<−mu[ i ] + d [ t [ i , k ] ] − d [ t [ i , 1 ] ]
}
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Prior d e f i n i t i o n
#Vague p r i o r f o r the r e f e r e n c e treatment in each ns t r i a l s
#Normal d i s t r i b u t i o n i s s p e c i f i e d in term
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#of mean and p r e c i s i o n
f o r ( i in 1 : ns ){mu[ i ] ˜ dnorm (0 , 0 .0001)}
#The treatment e f f e c t d i f f e r e n c e between a treatment
#and i t s e l f i s s e t t e d to zero
d[1]<−0
#Vague p r i o r f o r nt−1 ba s i c parameters :
#treatment e f f e c t d i f f e r e n c e
# between treatment k and r e f e r e n c e group
f o r ( k in 2 : nt ){d [ k ] ˜ dnorm (0 , 0 . 0001 )}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
}

#DATA
#LOAD DATA
l i s t ( nt=4, ns=30)
t [ , 1 ] t [ , 2 ] t [ , 3 ] n [ , 1 ] n [ , 2 ] n [ , 3 ] r [ , 1 ] r [ , 2 ] r [ , 3 ] na [ ] #ID
1 4 NA 19 21 NA 0 0 NA 2 # study 1
1 4 NA 50 50 NA 2 1 NA 2 # study 2
1 4 NA 22 22 NA 0 0 NA 2 # study 3
1 4 NA 11 12 NA 0 0 NA 2 # study 4
1 4 NA 15 15 NA 0 0 NA 2 # study 5
1 3 4 15 15 15 1 0 0 3 # study 6
1 3 4 80 80 80 1 0 0 3 # study 7
1 4 NA 50 150 NA 0 0 NA 2 # study 8
3 4 NA 137 132 NA 2 1 NA 2 # study 9
1 2 NA 35 35 NA 0 0 NA 2 # study 10
1 2 NA 49 51 NA 0 0 NA 2 # study 11
1 3 NA 55 57 NA 1 0 NA 2 # study 12
1 4 NA 50 50 NA 0 1 NA 2 # study 13
2 4 NA 20 20 NA 0 0 NA 2 # study 14
1 2 NA 30 30 NA 0 0 NA 2 # study 15
1 2 NA 10 20 NA 0 0 NA 2 # study 16
1 2 NA 33 39 NA 0 0 NA 2 # study 17
1 3 NA 61 59 NA 2 0 NA 2 # study 18
1 2 NA 20 20 NA 1 1 NA 2 # study 19
1 3 NA 14 14 NA 0 0 NA 2 # study 20
1 2 NA 12 12 NA 0 0 NA 2 # study 21
1 3 NA 91 91 NA 0 0 NA 2 # study 22
1 4 NA 62 62 NA 0 2 NA 2 # study 23
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2 4 NA 142 142 NA 4 1 NA 2 # study 24
1 2 4 120 120 120 2 0 1 3 # study 25
1 2 NA 22 23 NA 1 0 NA 2 # study 26
2 3 NA 20 21 NA 1 2 NA 2 # study 27
1 3 NA 55 52 NA 3 1 NA 2 # study 28
1 3 NA 75 75 NA 1 1 NA 2 # study 29
1 2 4 20 20 20 0 0 0 3 # study 30
END

#INITS VALUES
#chain 1
l i s t ( d=c (NA, 0 , 0 , 0 ) , mu=c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0) )
#chain 2
l i s t ( d=c (NA, −1, 4 , 2 ) , mu=c (−2 , 2 , −2, 2 , −2, 2 , −2,
2 , −2, 2 ,−2 , 2 , −2, 2 , −2, 2 , −2, 2 , −2, 2 ,−2 , 2 , −2, 2 ,
−2, 2 , −2, 2 ,−2 ,2))

#chain 3
l i s t ( d=c (NA, −2, 2 , 2 ) , mu=c (−2 , 3 , −1, −3, 5 , −2, 3 ,
−1, −3, 5 ,−2 , 3 , −1, −3, 5 , −2, 3 , −1, −3, 5 , −2, 3 , −1,
−3, 5 , −2, 3 , −1, −3, 5 ) )

##########################################################
#Author : Kamso Mohammed Mujaab
#The random e f f e c t s model f o r the Anaesthet i c drug
# datase t In WINBUGS
##########################################################
model{
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r ( i in 1 : ns ){
f o r ( k in 1 : na [ i ] ) {
#Binomial l i k e l i h o o d
r [ i , k ] ˜ dbin (p [ i , k ] , n [ i , k ] )
#Model s p e c i f i c a t i o n
#Each treatment e f f e c t e s t imate i s de f ined
#by d i f f e r e n c e between
#arm k and arm 1 ( r e f e r e n c e group )
#The node de l t a [ i , k ] i s a random e f f e c t
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l o g i t (p [ i , k])<−mu[ i ]+ d e l t a [ i , k ]
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Adjustment f o r multi−arm t r i a l
f o r ( k in 2 : na [ i ] ) {
md[ i , k]<−d [ t [ i , k ] ] − d [ t [ i , 1 ] ] + sw [ i , k ]
taud [ i , k]<−tau ∗2∗(k−1)/k
w[ i , k]<−( d e l t a [ i , k ] − d [ t [ i , k ] ] + d [ t [ i , 1 ] ] )
sw [ i , k]<−sum(w[ i , 1 : k−1])/(k−1)
}
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Prior d e f i n i t i o n
#Vague p r i o r f o r the r e f e r e n c e treatment in each ns t r i a l s
f o r ( i in 1 : ns ){
w[ i ,1]<−0
d e l t a [ i ,1]<−0
mu[ i ] ˜ dnorm (0 , 0 .0001)
#Vague p r i o r f o r the random e f f e c t node within−t r i a l
f o r ( k in 2 : na [ i ] ) { d e l t a [ i , k ] ˜ dnorm(md[ i , k ] , taud [ i , k ] ) }
}
#Vague p r i o r f o r nt−1 ba s i c parameters :
#treatment e f f e c t d i f f e r e n c e
#between treatment k and r e f e r e n c e group
#The treatment e f f e c t d i f f e r e n c e between
#a treatment and i t s e l f
#i s s e t t e d to zero
d[1]<−0
f o r ( k in 2 : nt ) {d [ k ] ˜ dnorm (0 , 0 . 0001 )}
#Vague Gamma p r i o r f o r random−e f f e c t p r e c i s i o n
#( u s e f u l in case o f spar s e data )
tau ˜dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
sd<−pow( tau ,−0.5)
#Al t e rna t i v e : vague p r i o r f o r random−e f f e c t
#standard dev i a t i on
#sd˜ dun i f ( 0 , 2 )
#tau<−pow( sd , −2)
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100



#DATA
#copy the data from the f i x e d e f f e c t s model

#INITS VALUES
#chain 1
l i s t ( d=c (NA, 0 , 0 , 0 ) , tau =0.1 , mu=c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0) )
#chain 2
l i s t ( d=c (NA, −1, 4 , 2 ) , tau =0.1 , mu=c (−2 , 2 , −2, 2 , −2, 2 ,
−2, 2 ,−2 , 2 ,−2 , 2 , −2, 2 , −2, 2 , −2, 2 , −2, 2 ,−2 , 2 , −2, 2 ,
−2, 2 , −2, 2 ,−2 ,2))

#chain 3
l i s t ( d=c (NA, −2, 2 , 2 ) , tau =0.1 , mu=c (−2 , 3 , −1, −3, 5 , −2,
3 , −1, −3, 5 ,−2 , 3 , −1, −3, 5 , −2, 3 , −1, −3, 5 , −2, 3 ,
−1, −3, 5 , −2, 3 , −1, −3, 5 ) )

101



Appendix B

Code for Thrombolytic Drug

Dataset

###########################################
#Author : Kamso Mohammed Mujaab
#Finding the d i s c repancy between treatment
#2 and 8 in the Thrombolytic drug #datase t
############################################
l i b r a r y (”BRugs”) # load ing BRugs

## Now s e t t i n g the working d i r e c t o r y to the temporary one :
oldwd <− getwd ( )
setwd (”C: / Users /Mujaab/Dropbox/ Thes is2 / f i n a l work/
f ina lnew /Brugs/Thrombo”)

## some usua l s t ep s ( l i k e c l i c k i n g in WinBUGS) :
modelCheck (” Thrombomodel . txt ”) # check model f i l e
modelData (” Thrombodata . txt ”) # read data f i l e
modelData (” Thrombodata2 . txt ”) # read data f i l e
modelCompile ( numChains=1) # compi le model with 1 cha ins
modelGenInits ( )
#mode l In i t s (” Thromboinits . txt ” ,2) # read i n i t data f i l e
modelUpdate (30000) # burn in
samplesSet (” d i s 2 8 ”) # d i s 2 8 should
#be monitored f o r the descrepancy o f treatment 2 and 8
modelUpdate (20000) # 20000 more i t e r a t i o n s . . . .
samplesStats (”∗”)# the summarized r e s u l t s
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xtab l e ( samplesStats (”∗”) )#tabulated r e s u l t s
## some p l o t s
samplesHistory (”∗” , mfrow = c (4 , 2 ) ) # p lo t the chain ,
samplesDensity (” d i s 2 8 ”) # p lo t the d e n s i t i e s ,
samplesBgr (” d i s 2 8 ”) # p lo t the bgr s t a t i s t i c s , and
samplesAutoC (” d i s 2 8 ” , 1) # p lo t a u t o c o r r e l a t i o n s o f
#1s t chain
## switch back to the prev ious working d i r e c t o r y :
setwd ( oldwd )

######################################
#Author : Kamso Mohammed Mujaab
#Finding the h i ghe s t ranked random
#e f f e c t s in the Thrombolytic drug #datase t
######################################
l i b r a r y (”BRugs”) # load ing BRugs

## Now s e t t i n g the working d i r e c t o r y to the temporary one :
oldwd <− getwd ( )
setwd (”C: / Users /Mujaab/Dropbox/ Thes is2 /
f i na lwork / f ina lnew /Brugs/ThromboRandomModel”)

## some usua l s t ep s ( l i k e c l i c k i n g in WinBUGS) :
modelCheck (”ThromboRandomModel . txt ”) # check model f i l e
modelData (”ThromboRandomData1 . txt ”) # read data f i l e
modelData (”ThromboRandomData2 . txt ”) # read data f i l e
modelCompile ( numChains=1) # compi le model with 1 cha ins
modelGenInits ( )
#mode l In i t s (” ThromboRandomInits . txt ”) # read i n i t data f i l e
modelUpdate (60000) # burn in
samplesSet ( c (” Dbar ” ,” v ”) ) # r should be monitored
#samplesSet (” v ”)
modelUpdate (20000) # 1000 more i t e r a t i o n s . . . .
samplesStats (”∗”) # the summarized r e s u l t s
v<−as . vec to r ( samplesStats (” v ” ) [ , 1 ] )# r va lue s
v [137 :144 ]# v f o r study 18
v [145 :152 ]# v f o r study 19
v [153 :160 ]# v f o r study 20
v [169 :176 ]# v f o r study 22
v [177 :184 ]# v f o r study 23
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v exce l<−matrix (v , 2 2 4 , 1 )
v e x c e l
v e x c e l [ order ( abs ( v e x c e l ) ) ] #orde r ing the random e f f e c t s

## some p l o t s
samplesHistory (”∗” , mfrow = c (4 , 2 ) ) # p lo t the chain ,
samplesDensity (” r ”) # p lo t the d e n s i t i e s ,
samplesBgr (” r [ 1 : 6 , ] ” ) # p lo t the bgr s t a t i s t i c s , and
samplesAutoC (” r [ 1 : 6 , ] ” , 1) # p lo t a u t o c o r r e l a t i o n s
#of 1 s t chain
## switch back to the prev ious working d i r e c t o r y :
setwd ( oldwd )
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Appendix C

Code for Linear Approximation

Method

####################################################
#Author : Kamso Mohammed Mujaab
#Linear approximation method f o r s c e n a r i o 3
#
####################################################

#i n c o r p o r a t i n g dependenc ies among random components

#s e t t i n g seed
s e t . seed (5555)

#formulat ing the des ign matrix
x1<−diag (58)
x2<−matrix (0 , 58 , 8 )
x3<−−diag (58)
x4<− matrix ( c (1 , rep ( 0 , 8 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 4 ) ,
1 , rep ( 0 , 8 ) ,
1 , rep (0 , 13 ) , 1 ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
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1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep ( 0 , 9 ) , 1 , rep ( 0 , 5 ) ,
1 , rep (0 , 10 ) , 1 , rep ( 0 , 4 ) ,
1 , rep (0 , 12 ) , 1 , rep ( 0 , 2 ) ,
1 , rep (0 , 14 ) , 1 ,
1 , rep (0 , 14 ) , 1 ,
1 , rep (0 , 14 ) , 1 ,
1 , rep (0 , 14 ) , 1 ,
1 , rep (0 , 13 ) , 1 ,
rep ( 0 , 2 ) , 1 , rep (0 , 10 ) , 1 , rep ( 0 , 4 ) ,
1 , rep (0 , 11 ) , 1 , rep ( 0 , 3 ) ,
1 , rep (0 , 11 ) , 1 , rep ( 0 , 3 ) ,
1 , rep (0 , 12 ) , 1 , rep ( 0 , 2 ) ,
1 , rep (0 , 12 ) , 1 , rep ( 0 , 2 ) ,
1 , rep (0 , 13 ) , 1 ,
0 ,1 , rep (0 , 13 ) , 1 ,
0 ,0 ,1 , rep (0 , 11 ) , 1 , rep ( 0 , 3 ) , 1 ,
rep (0 , 11 ) , 1 , rep ( 0 , 3 ) , 1 ,
rep (0 , 11 ) , 1 , rep ( 0 , 3 ) , 1 , rep (0 , 12 ) , 1 ,
rep ( 0 , 2 ) , 1 , rep ( 0 , 1 2 ) , 1 ) , 5 8 , 8 , byrow = TRUE)
x5<−matrix (0 , 8 , 58 )
x6<−−diag (8 )

e<−cbind ( x1 , x2 )
d<−cbind ( x3 , x4 )
f<−cbind ( x5 , x6 )
dd1<−rbind ( e , d )
X<−rbind ( dd1 , f )
dim (X)
inv<−s o l v e ( t (X)%∗%X)
dim ( inv )
V<−X%∗%inv%∗%t (X)
dim (V)

#formulat ing the Y data−Loading the
#thrombolyt i c drug datase t
r<−c (1472 ,652 ,723 ,1455 ,1418 ,1448 ,9 ,6 ,5 ,2 ,3 ,3 ,887 ,929 ,
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7 ,4 , 12 , 7 , 10 , 5 , 4 , 6 , 285 , 270 , 3 , 2 , 3 , 6 , 3 , 2 , 13 , 11 , 10 , 7 , 522 ,
523 , 356 ,757 , 13 , 7 , 2 , 7 , 12 , 16 , 5 , 17 , 3 , 13 , 8 , 4 , 10 , 6 , 6 , 5 , 13 , 10 , 7 , 5 )

n<−c (20173 ,10344 ,10328 ,13780 ,13746 ,13773 ,130 ,123 ,63 ,59 ,
65 ,64 ,10396 ,10372 ,85 ,86 ,147 ,143 ,135 ,135 ,107 ,109 ,2992 ,2994 ,
58 ,52 ,86 ,89 ,58 ,58 ,182 ,188 ,203 ,198 ,8488 ,8461 ,4921 ,
10138 ,155 ,169 ,26 ,54 ,268 ,350 ,210 ,211 ,138 ,147 ,132 ,66 ,
164 ,166 ,124 ,121 ,164 ,161 ,93 ,90)

#c r e a t i n g a dataframe f o r the datase t
df<−matrix ( c ( r , n ) , 58 , 2 )
df
dim ( df)#dimension o f the datase t

#Test ing f o r the nece s sa ry cond i t i on be f o r e conver t ing
#datase t o f b inary to a normal
y<−numeric ( nrow ( df ) )
f o r ( i in 1 : nrow ( df ) ){
i f ( ( df [ i ,1]== df [ i , 2 ] ) | | df [ i ,1]==0){
y [ i ]<− l og ( ( df [ i ,1 ]+ 0 . 5 ) / ( ( df [ i ,2]− df [ i , 1 ] ) + 0 . 5 ) )
} e l s e {
y [ i ]<− l og ( df [ i , 1 ] / ( df [ i ,2]− df [ i , 1 ] ) )
}
}

#c r e a t i n g the 124∗1 Y vecto r
y
y<−matrix (y , 5 8 , 1 , byrow = T)
z<−matrix ( rep (0 , 66 ) , 66 , 1 )
Y<−rbind (y , z )
Y

#formulat ing the Gamma matrix

#transformed var iance o f e i k
sigma<−numeric ( nrow ( df ) )
f o r ( i in 1 : nrow ( df ) ){
sigma [ i ]<−(1/( df [ i , 2 ] ∗ ( df [ i , 1 ] / df [ i , 2 ] ) ∗
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(1−df [ i , 1 ] / df [ i , 2 ] ) ) )
}
sigma
e new<−diag ( sigma )

#c r e a t i n g 3∗3 wishart p r i o r
rr<−rep ( 1 . 0 0E−01 ,3)
o f f d i a g<−numeric (0 )
f o r ( i in 1 : 2 ){
o f f d i a g<−c ( o f f d i a g , rep ( 5 . 0 0E−03,(3− i ) ) )
}
o f f d i a g
m124 <− matrix (NA, nco l = 3 , nrow = 3)
m124 [ lower . t r i (m124 ) ] <− o f f d i a g
m124 [ upper . t r i (m124 ) ] <− t (m124 ) [ upper . t r i ( t (m124 ) ) ]
d iag (m124) <− r r
m124
dim (m124)

#covar iance matrix f o r treatment 124
cov tr t124<− l i s t (10000)
f o r ( k in 1 :10000){
cov trt124Mat<−matrix ( as . vec to r ( rWishart (1 , 3 , m124 ) ) ,
3 ,3 , byrow = TRUE)
cov t r t 124 [ [ k]]<− cov trt124Mat
}
e ta ik124<−apply ( s i m p l i f y 2 a r r a y ( cov t r t 124 ) , 1 : 2 , mean)

#covar iance matrix f o r treatment 128
cov tr t128<− l i s t (10000)
f o r ( k in 1 :10000){
cov trt128Mat<−matrix ( as . vec to r ( rWishart (1 , 3 , m124 ) ) ,
3 ,3 , byrow = TRUE)
cov t r t 128 [ [ k]]<− cov trt128Mat
}
e ta ik128<−apply ( s i m p l i f y 2 a r r a y ( cov t r t 128 ) , 1 : 2 , mean)

#c r e a t i n g 2∗2 wishart p r i o r
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m52rest<−matrix ( c ( 1 . 00E−01 ,5.00E−03 ,5.00E−03 ,1.00E−01) ,2 ,2)

#covar iance matrix f o r treatment f o r remaing 52 matr i ce s
e t a i k r e s t<− l i s t (26)
f o r ( i in 1 : 26 ){
c o v t r t r e s t<− l i s t (10000)
f o r ( k in 1 :10000){
cov tr t re s tMat<−matrix ( as . vec to r ( rWishart (1 , 2 , m52rest ) )
, 2 , 2 , byrow = TRUE)
c o v t r t r e s t [ [ k]]<− cov t r t r e s tMat
}
e t a i k r e s t [ [ i ]]<−apply ( s i m p l i f y 2 a r r a y ( c o v t r t r e s t ) ,
1 : 2 , mean)
}
i n s t a l l . packages (” magic ”)
l i b r a r y (” magic ”)
eta restNew<−adiag ( e t a i k r e s t [ [ 1 ] ] , e t a i k r e s t [ [ 2 ] ] ,
e t a i k r e s t [ [ 3 ] ] , e t a i k r e s t [ [ 4 ] ] , e t a i k r e s t [ [ 5 ] ] ,
e t a i k r e s t [ [ 6 ] ] , e t a i k r e s t [ [ 7 ] ] , e t a i k r e s t [ [ 8 ] ] ,
e t a i k r e s t [ [ 9 ] ] , e t a i k r e s t [ [ 1 0 ] ] , e t a i k r e s t [ [ 1 1 ] ] ,
e t a i k r e s t [ [ 1 2 ] ] , e t a i k r e s t [ [ 1 3 ] ] , e t a i k r e s t [ [ 1 4 ] ] ,
e t a i k r e s t [ [ 1 5 ] ] , e t a i k r e s t [ [ 1 6 ] ] , e t a i k r e s t [ [ 1 7 ] ] ,
e t a i k r e s t [ [ 1 8 ] ] , e t a i k r e s t [ [ 1 9 ] ] , e t a i k r e s t [ [ 2 0 ] ] ,
e t a i k r e s t [ [ 2 1 ] ] , e t a i k r e s t [ [ 2 2 ] ] , e t a i k r e s t [ [ 2 3 ] ] ,
e t a i k r e s t [ [ 2 4 ] ] , e t a i k r e s t [ [ 2 5 ] ] , e t a i k r e s t [ [ 2 6 ] ] )
eta restNew
dim ( eta restNew )

#var iance f o r l a s t 8∗8
v new1<−diag ( rep (1000 ,8 ) )

etaadvance<−adiag ( e ta ik124 , e ta ik128 , eta restNew )

#Creat ing Gamma 4 matrix f o r s c e n a r i o 4
gammaadvance<−adiag ( e new , etaadvance , v new1 )
dim ( gammaadvance )

#load ing l i b r a r y f o r square−root func t i on f o r matr i ce s
l i b r a r y (”expm”)
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#Inve r s e square−root Gamma matrix
gamma rtInvadvance<−s o l v e ( sqrtm ( gammaadvance ) )

#Transforming the X and Y matrix with
#the Inve r s e square−root Gamma
Y new<−gamma rtInvadvance%∗%Y
X new<− gamma rtInvadvance%∗%X

#c r e a t i n g the Hat−matrix us ing the transformed X matrix
inv<−s o l v e ( t (X new)%∗%X new)
V<−X new%∗%inv%∗%t (X new)
dim (V)

#Creat ing a 124∗124 i d e n t i t y matrix
I<−diag (124)

#c r e a t i n g the r e s i d u a l vec to r
E<−(I − V)%∗%Y new
E
dim (E)

#f o r de l e t ed t r i a l 22 o f treatment 2
xr<−matrix (X new [ 1 0 3 , ] , 1 , 6 6 )
xr
w<−−inv%∗%t ( xr )
k1<−w∗(E[103 ,1 ]/(1−V[ 1 0 3 , 1 0 3 ] ) ) #RC=0.7087
k1 [ 6 0 , 1 ] / 0 . 1 2 3

#f o r de l e t ed t r i a l 22 o f treatment 8
xr<−matrix (X new [ 1 0 4 , ] , 1 , 6 6 )
xr
w<−−inv%∗%t ( xr )
k2<−w∗(E[104 ,1 ]/(1−V[ 1 0 4 , 1 0 4 ] ) ) #RC= −0.2116
k2 [ 6 6 , 1 ] / 0 . 1 5 8 8

#f o r de l e t ed t r i a l 17 o f treatment 5
xr<−matrix (X new [ 9 4 , ] , 1 , 6 6 )
xr
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w<−−inv%∗%t ( xr )
k3<−w∗(E[94 ,1 ]/(1−V[ 9 4 , 9 4 ] ) ) #RC= −4.0367
k3 [ 6 3 , 1 ] / 0 . 2 5 3 6

#f o r de l e t ed t r i a l 23 o f treatment 2
xr<−matrix (X new [ 1 0 5 , ] , 1 , 6 6 )
xr
w<−−inv%∗%t ( xr )
k4<−w∗(E[105 ,1 ]/(1−V[ 1 0 5 , 1 0 5 ] ) ) #RC= 0.5634
k4 [ 6 0 , 1 ] / 0 . 1 2 3

#f o r de l e t ed t r i a l 23 o f treatment 8
xr<−matrix (X new [ 1 0 6 , ] , 1 , 6 6 )
xr
w<−−inv%∗%t ( xr )
k5<−w∗(E[106 ,1 ]/(1−V[ 1 0 6 , 1 0 6 ] ) ) #RC= −0.2965
k5 [ 6 6 , 1 ] / 0 . 1 5 8 8

###########################################
#c r e a t i n g a s tandard i zed r e s i d u a l matrix
#f o r o u t l i e r d e t e c t i o n
g<−(I − V)%∗%t ( ( I − V) )
dim ( g )
E[ 9 8 , 1 ] / s q r t ( g [98 ,98 ] )# t r t 6 19
E[ 7 9 , 1 ] / s q r t ( g [79 ,79 ] )# t r t 1 10
E[ 8 5 , 1 ] / s q r t ( g [85 ,85 ] )# t r t 1 13
E[ 1 0 0 , 1 ] / s q r t ( g [100 ,100 ] )# t r t 7 20
E[ 1 0 5 , 1 ] / s q r t ( g [105 ,105 ] )# t r t 2 23
E[ 1 0 3 , 1 ] / s q r t ( g [103 ,103 ] )# t r t 2 22
E[ 1 0 3 , 1 ] / s q r t ( g [103 ,103 ] )# t r t 2 22
E[ 7 2 , 1 ] / s q r t ( g [72 ,72 ] )# t r t 3 6
E[ 6 3 , 1 ] / s q r t ( g [63 ,63 ] )# t r t 2 2
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