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Abstract

A fundamental mathematical approach uses graphs to understand networks repre-
senting objects with their interrelationships. This thesis is dedicated to qualitative
and quantitative research through a bridge—the connections in a graph—with Gram
mates arising in social networks; Fiedler vectors in networks; Kemeny’s constant in
road networks; and perfect state transfer in quantum spin networks. We use tech-
niques from graph theory together with matrix theory—combinatorial matrix theory,
algebraic graph theory, and spectral graph theory.

Our main work is to examine two-mode networks retaining their information
under the conversion approach in social networks. We characterize the relationship
of two-mode networks (Gram mates) with the same single-mode networks via their
singular values and vectors. So, we produce pairs of Gram mates that inform the
retention of the information of two-mode networks. Furthermore, we provide Gram
mates under mathematical restrictions.

Our next goal is to inspect the robustness of the usage of Fiedler vectors in
networks. One popular technique for detecting community structures is based on
spectral bisection that uses Fiedler vectors for graph partitioning. We examine
graphs where the partite sets resulting from spectral bisection are extremely different
in size. We discuss pathological graphs where any choice of Fiedler vectors produces
the bisection where one is a singleton and the other the rest. We furnish some classes
of graphs that are potentially pathological.

Our third task is to explain Braess’ paradox in road networks. Kemeny’s constant
for a Markov chain can be used to measure the travel time of vehicles between two
randomly chosen places. We present graphs where the insertion of an edge increases
Kemeny’s constant. We provide tools for identifying such an edge with examples of
graphs, and produce families of graphs with such edges.

Our goal of the final research is to switch interactions between qubits in a quan-
tum spin network corresponding to a hypercube, in order for the manipulated spin
network to become insensitive to external environments under perfect state trans-
fer (PST). We investigate differences and similarities between hypercubes and the

resulting graphs regarding the graph structure, PST, and the sensitivity of PST.
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Introduction

A graph is a tool to model a network—the representation of a system that consists
of objects with their interrelationships. In order to understand the essential and
intrinsic features of a network, analysis and transformation of the connections in a
graph are used to provide qualitative information from quantitative information, and
vice versa. In this thesis, we study Gram mates, Fiedler vectors, Kemeny’s constant,
and perfect state transfer that arise from qualitative questions in social networks,
road networks, and quantum spin networks, using graph theory together with ma-
trix theory—combinatorial matrix theory, algebraic graph theory and spectral graph
theory.

We consider graph connectedness for these four topics as follows. We study Gram
mates and perfect state transfer by transforming the connections in a graph, and we
analyse Fiedler vectors and Kemeny’s constant that provide algebraic measures of
graph connectedness. In Gram mates, we investigate two bipartite graphs corre-
sponding to the so-called two-mode networks, where one can be obtained from the
other by perturbing its edges while preserving its degree sequence. Secondly, Fiedler
vectors of a graph can be used to partition the graph into two subgraphs while min-
imizing the number of edges between the two subgraphs, by using the signs of the
entries in a Fiedler vector. That is, Fiedler vectors generate partitions of the graph
for which two subgraphs are not ‘well connected’. We analyse Fiedler vectors with
unbalanced sign patterns. Next, Kemeny’s constant provides an overall measure of
connectedness of a graph in the context of a random walk on a graph—‘well con-
nected’ graphs have ‘low’ Kemeny’s constants. We study graphs where adding an
edge results in an increase of Kemeny’s constant. Finally, in perfect state transfer,
manipulating the connectedness of a graph, we shall obtain other graph whose fi-

delity of perfect state transfer between vertices becomes less sensitive to changes of



edge weight. So, we conduct a sensitivity analysis for certain quantum spin networks
that are related by switching edges and changing the weight of an edge.
Here we describe our motivation and quantitative approaches for the following

qualitative questions:

(1) When does a two-mode network retain its information in the conversion ap-

proach in social networks?

(2) Is spectral bisection a robust technique for detecting community structures in

networks?
(3) When does Braess’s paradox occur in networks?

(4) How can a quantum spin network become insensitive to external environments

when it exhibits perfect state transfer?

The present thesis is comprised as follows. We explain background information on
each of these questions in the remaining sections of this chapter. We deal with the
necessary background and notation for each question in Chapter 2] Then, we pro-
duce quantitative and qualitative information for the proposed questions throughout
Chapters [3H6] We conclude this thesis in Chapter [7] by restating the problems and
conjectures described in Chapters with brief comments.

1.1 Two-mode networks retaining their informa-
tion

A two-mode network is a network with two different sets of vertices (a set of actors
and a set of events) and with edges (actions on events) only between vertices belong-
ing to different sets—that is, it corresponds to a bipartite graph. Then, the relations
within a set of actors and within a set of events are called single-mode networks of the
two-mode network. As an example, one vertex set in a two-mode network consists of
students at the University of Manitoba, and the other consists of social events, where
edges are given by students’ participation in events; by examining patterns of which
students participate in which events, one can infer which events are influential and
how those events may affect students’ decision (see [37] for the further background
and details). The two-mode network of this example can be thought of as a (0, 1)
matrix in the following way: rows represent students and columns represent events,

with a 1 in the corresponding position of the matrix if a student joins an event, and



a 0 otherwise. In this manner, every two-mode network can be expressed as a (0, 1)
matrix A, and vice versa. In this setting, A is known as the bi-adjacency matriz for
the bipartite graph. Then, both AAT and AT A represent its single-mode networks.
One of the basic approaches to the study of two-mode networks is the conversion
approach [7], which investigates the patterns from single-mode networks. Naturally,
this raises a question [30] whether the pair of single-mode networks uniquely specifies
the original two-mode network. In other words, is it possible for two different (0, 1)
matrices A and B to have the property that AAT = BBT and ATA = BT B (called
Gram mates)? Such A and B can be thought as the bi-adjacency matrices of two
bipartite graphs, as described in the earlier part of this chapter, where one can be
obtained from the other by modifying its edges.

Further, two-mode networks corresponding to Gram mates can have the same
structure—that is, there exists an isomorphism of two bipartite graphs correspond-
ing to the two-mode networks, which preserves adjacency between the two-mode
networks. To resolve that question, the existence of an isomorphism provides a clue
[30, [44] if a two-mode network exhibits data-loss in the conversion approach. In
Chapter 3] we study two-mode networks (Gram mates) with the same single-mode

networks, and the existence of isomorphisms between them.

1.2 Fiedler vectors for spectral bisection

The state of connectedness of a graph is inherent in Fiedler vectors used to detect
community structures in networks.

For example, a community structure in a social network is a set of groups of
individuals in the network obtained by clustering them according to friendships or
other acquaintances (connection) between them. Considering the network as a graph,
the state of connectedness between two groups in the community structure can be
measured as how many edges there are between the corresponding subsets of the
vertex set, whose deletion results in a disconnected subgraph. By minimizing the
number of such edges, community structures can be obtained [55].

A graph bisection is a partition of the vertex set of a graph into two subsets whose
sizes differ by at most 1. In particular, the fewer edges between two partitioned sets
there are, the less the two parts are related. One of the popular techniques for the
bisection is spectral bisection, which uses a Fiedler vector [32] of a graph G so that
the edges between two vertices valuated by different signs of the Fiedler vector are

cut in order to have the graph G partitioned into two connected subgraphs. Spectral



bisection is iteratively used for detecting community structures in [55]. However,
according to [2], many algorithms based on spectral bisection have no proof for
why they show empirical successes. In Chapter [i] we study Fiedler vectors with

unbalanced sign patterns to examine the robustness of spectral bisection.

1.3 Kemeny’s constant and Braess’ paradox

The extent of connectedness of a road network informs the travel time of vehicles
between two randomly chosen points in the network.

One can expect the trip time of vehicles to be shorter as the extent of con-
nectedness increases in a road network. Considering the network as a graph, this
anticipation can be examined. The level of connectedness can be regarded as the
number of edges in the graph—as more edges are inserted into the graph, there is
a higher probability that there are more routes with shorter distances to arrive at a
random destination from a randomly chosen initial place.

Imagine a situation where adding roads to a road network in order to reduce traffic
congestion results in, contrary to one’s expectation, slowing down overall traffic flow
(this is called Braess’ paradox [9]). Random walks on graphs can also exhibit a
version of this paradox. Random walks on undirected graphs are a special family
of Markov chains. A random walk on an undirected graph can be described by the
transition matrix for a finite, discrete, time-homogeneous Markov chain, where the
transition probability from one initial state to another is given by the inverse of the
degree of the vertex corresponding to the initial state.

The parameter known as Kemeny’s constant can be used to measure the average
time for travel of a Markov chain between two randomly chosen states. Hence,
Kemeny’s constant can serve as a proxy for identifying an edge exhibiting the version
of the paradox, by examining an edge whose insertion into an undirected graph
increases Kemeny’s constant for random walks on the graph (such an edge is called
a Braess edge). In Chapter , we study under what circumstances graphs can have

a Braess edge in order to see what type of graphs exhibit the version of the paradox.

1.4 Sensitivity of perfect state transfer

A quantum spin network describes quantum states and interactions between qubits
(coupling strengths) in the interior of a quantum computer. A quantum state is not

definite—it can exist in multiple states simultaneously—(called quantum superposi-



tion of states) in contrast to the states related to a random walk. Qubits (short for
quantum bit) can exhibit quantum entanglement that allows them to interact with
each other regardless of their distance. These features enable quantum computers
to outperform classical computers for some particular tasks. For the construction of
quantum computers, a crucial task is to transfer a quantum state from one location
to another.

Continuous-time quantum walks play an important role in achieving perfect state
transfer (PST): an initial quantum state at one location along the walk for a specified
length of time is found as the same state at a different location. An undirected graph
can be used to model a quantum spin network by considering qubits as vertices and
their interactions as edges. A continuous-time quantum walk can be represented
by a transition operator U(t) = ¢4 [16] 46], where ¢ is readout time and A is the
adjacency matrix of the undirected graph. The square of the modulus of the entry
in ¢ row and j*® column of U(t) indicates the fidelity (probability) of state transfer
from i to j. Hence, U(t) provides information for PST.

Isolating a spin network completely from external environments is a necessary
task in order to keep quantum superposition of states and couplings between qubits—
this is one of the challenges for the construction of quantum computers. Being
affected by external environments can be considered by quantifying the extent of
connectedness as perturbations in edge weight (coupling strength). In order to re-
duce external effects between particular places, one could manipulate the network.
Then, manipulation of the state of connectedness can be considered as switching
edges (changing interaction between qubits) in the corresponding graph. In Chapter
[0, we study edge-switches on hypercubes and the graphs obtained from hypercubes
by those edge-switches, and compare the derivatives of the fidelity under PST with
respect to the weight of an edge (also with respect to readout time) between hyper-

cubes and the resulting graphs.



2

Preliminaries

We first introduce basic notation and terminologies in graph theory and matrix
theory. Then, we elaborate necessary definitions and background knowledge with

further notation, topic by topic.

2.1 Basic notation and terminologies

Throughout this thesis, we assume familiarity with basic material on graph theory

and matrix theory. We refer the reader to [I7] and [38] for the necessary background.

2.1.1 Graph theory

A graph G is a pair that consists of a finite non-empty set V(G) of objects called
vertices together with a set F(G) of pairs of vertices in V(G) called edges. We say
that V(Q) is the vertex set of G, and E(G) is the edge set of G. The order of G is
the number of vertices. Two vertices v and w are adjacent if {v,w} € E(G). The
subgraph of G induced by a subset S of V(G) is the graph with vertex set S, where
two vertices in S are adjacent if and only if they are adjacent in G. An edge of the
form {v,v} is called a loop. If E(G) is not a multi-set and does not contain any
loops, then G is called a simple graph. If E(G) is a set of unordered (resp. ordered)
pairs of V(G), then G is called an undirected graph (resp. a directed graph). For a
directed graph G, we call the ordered pairs (v, w) in E(G) arcs. We say that for an
arc (v,w) in F(G), v is adjacent to w. A weighted graph is a graph each of whose
edges (or arcs) is assigned a real number, called the weight of the edge (or the arc).

Unless stated otherwise in this thesis, we assume all graphs to be simple, undi-

rected and unweighted though a few graphs are non-simple, directed or weighted.



Let G be a graph of order n. Let mg be defined as |E(G)|. We use u ~ v to
denote an edge {u,v} of G. For an edge e = u ~ v of G, e is said to join u and
v. Two edges are incident if they share a common vertex. A matching in G is a
set of pairwise non-incident edges. A vertex w is a neighbour of v if v and w are
adjacent. We denote the set of neighbours of v in G by Ng(v). For a vertex v of G
and a subset X of V(G), Nx(v) denotes the set of neighbours of v that belong to X.
The degree, denoted degg(v), of a vertex v in G is the number of neighbours of v.
We denote the minimum degree of a graph G by §(G). A vertex v is a dominating
vertex if v is adjacent to all the other vertices in G. A vertex v is said to be pendent
if degi(v) = 1. Given a labelling of V(G), we use dg to denote the column vector
whose i component is deg,(v;) for 1 <i < n, where v; is the i*® vertex in V(G).

Let G be a graph. A walk of length k in G is a sequence of k + 1 vertices
vy, ..., Vg1 such that v; and v;,1 are adjacent for © = 1,..., k. One may consider
a walk as a finite sequence of edges. A path is a walk in which all vertices are
distinct. A path is called an (x,y)-path if = and y are the pendent vertices in the
path. We say that G is connected if, for any two vertices v and w in G, there is
a (v,w)-path. A cycle of length ¢ is a walk (vy,...,v.41) such that vy,..., v, are
distinct and v; = vy41. The distance dg(v,w) between vertices v and w in G is the
length of a shortest (v, w)-path in G. For a connected graph G, a distance dg on
V(G) is a function from V(G) to V(G) that satisfies the following: (i) dg(v,w) >0
for v,w € V(G) with dg(v,w) = 0 if and only if v = w, (i) dg(v,w) = dg(w,v) for
v,w € V(QG), and (iii) dg(v, w) < dg(v, x) +dg(z, w) for v,w, z € V(G) (the triangle
inequality). Hence dg(+,-) is a metric on G. For a connected graph G with a vertex
v, the eccentricity eq(v) of v is eg(v) = max{dg(v,w)|lw € V(G)}. The diameter,
denoted diam(G), of G is diam(G) = max{eg(v)|v € V(G)}. Two vertices v and w
of G are called antipodal vertices if dg(v,w) = diam(G). We also say that v is an
antipodal vertex of w, and vice versa.

We omit the sub-index G in degg, dg, and eg if G is clear from the context.

Let us introduce several types of graphs. The empty graph, denoted Ni, on k
vertices consists of k vertices with no edges. The trivial graph is a graph of order
1. A graph G is called bipartite if V(G) is partitioned into two subsets U and W
(called partite sets) so that each edge of G joins one vertex in U and the other in
W. A graph is r-reqular if each vertex of the graph has degree r. A complete graph
K, is the (n — 1)-regular graph on n vertices. The line graph of a graph G is the
graph whose vertices are the edges of GG, where two vertices are adjacent if and only

if their corresponding edges are incident in G. We denote a cycle of length n by



C,, and a path on n vertices by P,. A tree is a connected graph that has no cycles.
A star S, is a tree on n vertices with one vertex of degree n — 1. For n > 3, v is
called the centre vertex of S, if degg (v) =n —1. Forn >k > 1, a broom B, is a
tree constructed from a path on k vertices by adding n — k pendent vertices to one
pendent vertex on the path.

For v € V(G), we use G — v to denote the graph obtained from G by the deletion
of v. A vertex v of a connected graph G is called a cut-verter of G if G — v is
disconnected. The vertex connectivity, denoted v(G), of a connected graph G is the
minimum number of vertices whose removal disconnects G. The complement G of a
graph G is a graph with the vertex set V(G) where two vertices are adjacent in G
if and only if the two vertices are not adjacent in GG. For two graphs G; and G5 on
disjoint vertex sets, the disjoint union G+ G5 of G7 and G is defined as the graph
(V(G1) UV (Gy), E(G1) U E(G3))). The join of G; and G, denoted as G V Gs, is
the graph obtained from G + G; by joining every vertex in V(Gy) to every vertex
in V(Gy). Furthermore, V¥_ G is defined as GV ---V G. Tt is straightforward to

k times

see that G V (G2 V G3) = (G1 V G2) V G3 and G V G2 = Gy V G1. The Cartesian
product G10G5 of graphs 7 and Gy is the graph with vertex set V(Gp) x V(G,),
and two vertices (v1,v2) and (wy,wy) are adjacent if and only if either v; = w; and
Vg ~ we € F(Gy) or vg = wq or vy ~ wy € E(GY).

2.1.2 Matrix theory

Throughout this thesis, we use boldface lowercase letters to denote column vectors.

Let us consider some notation and terminology in matrix theory. Let A be an
m x n matrix. We denote the transpose of A by AT. Let o C {1,...,m} and
g C{l,...,n}. We denote by Ala, 8] the submatrix of A whose rows and columns
are indexed by « and [, respectively. Let a® denote the complement of o. We use
(A);; to denote the (7, j)-entry of A. We denote by 1,, the all ones column vector of
size n, by I,, the identity matrix of size n x n, and by .J, ,,, the all ones matrix of size
nxm. If k =n = m, then we denote J,,,, by Ji. The subscripts of 1,,, I,,, J,, », and
Ji are omitted if their sizes are clear from the context. We also use 0,, to denote
the all zeros column vector of size n. We write 0,, as 0 if no confusion arises. The
column vector whose component in k" position is 1 and zeros elsewhere is denoted
as ex. We use diag(Ay, ..., Ax) to denote the block diagonal matrix consisting of the
main diagonal blocks Ay, ..., Ay which are square matrices, and zeros elsewhere. In

particular, if all the main diagonal blocks are scalars, it is a diagonal matrix.



For a subset X in R", we denote the subspace spanned by X as span(X). We
use Row(A) and Col(A) to denote the row space of A and the column space of A,
respectively. The rank of A is denoted as rank(A). Given an eigenvalue \ of a
square matrix A, the algebraic multiplicity of X\ is its multiplicity as a root of the
characteristic polynomial of A. We use am(\) to denote the algebraic multiplicity
of an eigenvalue A of a matrix. The spectrum of a square matrix A is the multi-set
of eigenvalues of A. In Chapter [4] we particularly use the spectrum as the sequence
of eigenvalues in non-increasing order.

Let A be an m x n matrix and B be a p x ¢ matrix. The Kronecker product AQ B
of A and B is the mp x ng matrix

al,lB s al,nB
A® B = :

am1B - am,B

where A = [a;;]. Then, it is straightforward to see that if B and C' are of the same
size, then A® (B+C) =A®B+A®Cand (B+(C)®A=BA+C®A.
Furthermore, the following properties can be found in [27]. Given matrices A and
B, we have (A® B)T = AT @ BT. Let A, B, C' and D be matrices of compatible
sizes for AB and C'D to be defined. Then, (A® B)(C ® D) = (AC) ® (BD,).

Let G be a directed, weighted graph on n vertices. The adjacency matriz A(G) =

[a; j]1<i j<n of G is the n X n matrix given by

{wm, if ¢ is adjacent to j, and w; ; is the weight of the arc from ¢ to j,
Clzj =

0, if there is no arc from 7 to j.

If G is an unweighted graph, then the adjacency matrix of GG is defined as that of the
directed, weighted graph obtained from G by assigning weight 1 to each arc of G} if
G is undirected, then the adjacency matrix of G is defined as that of the directed,
weighted graph obtained from G by transforming each edge i ~ j with its weight
in G into two arcs from ¢ to j, and vice versa, with the same weight. Then, the

adjacency matrix of an undirected graph is symmetric.

2.2 Gram mates

Definition 2.2.1. Let A and B be (0, 1) matrices. The matrices A and B are Gram
mates and A is called a Gram mate to B if AAT = BBT, ATA= BTB and A # B.



The vertex set of a two-mode network consists of a set of actors and a set of
events. Permuting rows and columns of the corresponding matrix is equivalent to

relabelling actors and events. Hence, we use the following definition in Chapter [3|

Definition 2.2.2. Let A and B be (0,1) matrices. The matrices A and B are
isomorphic if there exist permutation matrices P and () such that B = PAQ.

1 10
Example 2.2.3. Let A =

all =

1 1
0 . It can be verified that A
1 1 0

and B are Gram mates, and they are isomorphic.

It is readily verified that: (i) A and B are Gram mates if and only if, for any
permutation matrices P and @) of the appropriate sizes, PAQ and PB() are Gram
mates; and (ii) A and B are Gram mates if and only if AT and BT are Gram mates.
So, those statements are used when we need to simplify some hypotheses of a claim
in terms of Gram mates to focus on particular cases without the loss of the generality
of the claim.

Let A be a (0,1) matrix. We say that A1 (resp. 1TA) is the row sum vector
of A (resp. the column sum vector of A). We have a basic observation [44] that
Gram mates A and B must have the same row sum vectors and the same column
sum vectors. Thus, both A — B and B — A are (0,1, —1) matrices such that their

row sum and column sum vectors are 0.

Definition 2.2.4. Let E be a (0,1, —1) matrix such that £1 = 0 and 17F = 0.
The matrix F is said to be realizable (with respect to Gram mates) if there is a pair
of Gram mates A and A+ E. We say that A and B are Gram mates via F if A and
B are Gram mates, and either A— B=For B— A=FE.

Evidently, any zero matrix is not realizable. It is easily seen that E' is realizable
if and only if for any permutation matrices P and @) of the appropriate sizes, PEQ)
is realizable; E is realizable if and only if ET is realizable. Furthermore, every pair
of Gram mates is a pair via some unique realizable matrix up to sign.

The following are used in Section [3.2]

Proposition 2.2.5. [3§] Let ¢ > 1, and let D = diag(dI,, . .., dely,) wheredy, ..., dy
are distinct and k; > 1 for i = 1,...,¢. Suppose that A commutes with D, and A
is orthogonal. Then, A is a block diagonal matriz compatible with the partition of D

such that each of the main diagonal blocks of A is orthogonal.
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Proposition 2.2.6. [6J] Let A and B be matrices of compatible sizes for AB to be
defined. Then,

Col(AAT) = Row
Col(ATA) = Row
Col(AB) C Col(A).

Furthermore, if AB is of rank k, then there are k columns ay,...,a; of A that
comprise a basis of Col(AB).

We briefly introduce the singular value decomposition (the SVD) [38] which is
a factorization of a real (or complex) matrix. We also state a basic observation
regarding change of signs of some positive singular values. Our interest lies in zero-
one matrices, so we assume our matrices to be real. Given an m x n matrix A,
there exist m x m and n x n orthogonal matrices U and V', respectively, such that
A = UXV for some m x n diagonal matrix ¥ whose entries on the main diagonal are
non-negative in non-increasing order. The diagonal entries of ¥ are called singular
values of A. The columns of U and the columns of V' are called the left and right
singular vectors of A, respectively. Note that the number of positive singular values
of A equals rank(A).

Suppose that B is obtained from A by changing signs of some positive singular
values. Then, B can be written as B = USXVT, where S is a diagonal matrix
the main diagonal entries of which consist of » —1’s and m — r ones, for some
number 7. Let U = US. Clearly, U is an orthogonal matrix, so UXV7 is a singular
value decomposition of B. Since SEXTST = 7 and X7ST8Y = 7%, we have
AAT = BBT and ATA = BTB. Furthermore, since A — B = U(X — SY)VT and
Y — S¥Y #0, we have A — B # 0.

Remark 2.2.7. Continuing with A and B = USXVT above, S gives different in-
terpretations for the relationship between A and B. For example, if S is given by
S = diag(—1,—1,1,...,1), then we can say that A is obtained from B by changing
the signs of the first two singular values; or of the first two either left or right singular
vectors; or of the first (resp. second) left and the second (resp. first) right singular
vectors. In order to avoid confusion from the choices of singular vectors for sign
change, we adopt the interpretation ‘changing signs of singular values’ despite the

fact that A and B have the same singular values.
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Lemma 2.2.8. Let A be an m xn (0,1) matriz. If B is obtained from A by changing
signs of some positive singular values of A, then AAT = BBT, ATA = BTB and
A# B.

Remark 2.2.9. For the result of Lemma [2.2.8| if B is not a zero-one matrix, then

A and B are not Gram mates.

2.3 Fiedler vectors with unbalanced sign patterns

Let G be a graph of order n. The Laplacian matriz L(G) of G is L(G) = D(G)—A(G)
where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex
degrees. The spectrum of L(G), S(L(G)) = (M(G),..., \(GQ)), is defined as the
sequence of eigenvalues of L(G) in non-increasing order. It is well known that L(G)
is symmetric and positive semi-definite. In particular, L(G)1 = 0, so A\,(G) = 0.
Similarly, the spectrum of A(G), S(A(G)) = (1 (G),. .., un(G)), is defined as the
sequence of eigenvalues of A(G) in non-increasing order. Moreover, \;(G) and p;(G)
are written as \; and p; if G is clear from the context. The algebraic connectivity
a(@) of a graph G is defined as \,,_1(G). It is proven in [31] that o(G) < v(G) for a
non-complete graph G. We refer the reader to [31] for more properties of «(G). Since
v(G) < §(G), we have a(G) < (G) for a non-complete graph G. An eigenvector
associated with a(G) is called a Fiedler vector. Let V(G) = {vy,...,v,} and x = [z]
be a Fiedler vector of GG. For 1 < i < n, a vertex v; is said to be valuated by x; if x;
is assigned to v;.

Suppose that x = [z;] is an eigenvector associated to an eigenvalue A of L(G) or
A(G). We define iy(x) = min{|{xz;|z; > 0}|, [{z;|z; < 0}|}. To distinguish between
L(G) and A(G), we define

ix(G) := I)I(l;{)l{i,\(x)‘L(G)X = Ax} and iy (G) = T;g{iu(X)M(G)X = ux}.

In particular, iq(q)(x) and iqq)(G) are denoted as i(x) and i(G), respectively.

Example 2.3.1. Consider the Laplacian matrix L(C}) of the cycle Cy:

2 -1 0 -1
-1 2 -1 0
0 -1 2 -1
-1 0 -1 2

L(Cy) =

12



One can verify from computation that a(Cy) = 2 and am(«(Cy)) = 2; further, two

linearly independent Fiedler vectors are given by
T T
xI=[1 0 -1 0] andx}=[0 1 0 —1

Then, i(Cy) = i(x1) = i(x2) = 1. Similarly, considering the least eigenvalue —2 of

the adjacency matrix A(Cy), one can check i*,(Cy) = 2.

We introduce the spectral properties of a join of graphs. Consider two graphs
G1 and G5 on disjoint sets of p and ¢ vertices, respectively. Let S(L(Gp)) =
(AM(G1), ... Ap(Gh)) and S(L(G2)) = (M(Ga), ..., A\(G2)). It is known (see [53])
that the (multi-)set of all eigenvalues of L(G; V G2) is

{07 )\I(Gl) + q,. .-, )\pfl(G1> + q, )\1<G2) +p7 ceey )‘qfl(GQ) +pap + q}

To see this, label the indices of rows and columns of L(G; V G) in order of V(Gy)
followed by V(G2). If x is an eigenvector orthogonal to 1, corresponding to \;(G1)
for 1 <i<p-—1, then [XT OT}T is an eigenvector of L(G; V G3). Similarly, for an
eigenvector y orthogonal to 1, corresponding to \;(G2) for 1 <i < ¢ — 1, we have
{OT yT]T as an eigenvector of L(G; V Gg). Furthermore, 1,,, and [—qlT plT}T

are eigenvectors associated with 0 and p + ¢, respectively.

2.4 Families of graphs with the Braess edge on
twin pendent paths

A forest is a graph whose connected components are trees. A spanning tree (resp.
a spanning forest) of a graph G is a subgraph that is a tree (resp. a forest) and
includes all of the vertices of G. A k-tree spanning forest of GG is a spanning forest
that consists of k trees. If G — v has k connected components G, ..., Gy for some
k > 2 (that is, v is a cut-vertex), then the subgraph induced by V(G;) U {v} for
1 <i <k iscalled a branch of G at v. Two vertices are called twin pendent vertices
if they are pendent vertices with a common neighbour.

Let G be a graph. Let Py, = (vo,...,v) and Py, = (wo,...,ws,) where k;
and ko are non-negative integers with ky + ko > 2. Suppose that G is the graph
obtained from G, Py, and P, by identifying a vertex v of G, vy, and wy. We say
that the paths (v, vy, ..., v, ) and (v,w; ..., wy,) in G are twin pendent paths. Then,

the pendent vertices of the twin pendent paths in G are Vg, and wy, .
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Vky

e
U1 L.t

Figure 2.1: An illustration of twin pendent paths in G.

A Markov chain is a stochastic model of a system where at any given time, tran-
sitions at the next step depend only on the current state of the system, according
to prescribed transition probabilities. Given a discrete, finite, time-homogeneous
Markov chain whose finite state space is {1,...,n}, the Markov chain can be rep-
resented by the n x n transition matrix M whose entries are the transition proba-
bilities. We refer the reader to [63] for the necessary background on Markov chains.
Then, Kemeny’s constant (M) is defined as 327, m; jw;, where m; ; is the mean
first passage time from state i to state j, and w; is the j™ entry of the stationary
distribution. Note that Kemeny’s constant is independent of i. It is found in [51]
that x(M) + 1 = > >0, wim; jw;. This admits the interpretation of Kemeny’s
constant in terms of the expected number of steps from a randomly-chosen initial
state to a randomly-chosen final state. Alternatively, k(M) can be expressed as
k(M) =35 ﬁ where 1, Ay, ..., \, are the eigenvalues of M. For the details, the
reader may refer to [41].

For our work, we use the combinatorial expression for Kemeny’s constant for a
random walk on a connected and undirected graph in [47]. In order to emphasize
that we are dealing with random walks on connected and undirected graphs, given
a connected graph G, we use k(G) to denote Kemeny’s constant for the transition
matrix of the random walk on G. We denote by 74 the number of spanning trees of
G, and by Fg(i;7) the set of 2-tree spanning forests of G such that one of the two
trees contains a vertex ¢ of G, and the other has a vertex j of G. Define F to be

the matrix given by Fg = [f] where f& = |Fg(i;j)|. Then,

T
F,
w(G) = detede

4mgTG ’

We denote by fg; the 7' column of F;. A non-edge e of G is called a Braess edge for
G if k(G) < k(G Ue) where G Ue is the graph obtained from G by adding e to G. A

14



Figure 2.2: The star on 4 vertices used in Example [2.4.1|

connected graph G is said to be paradozical [21] if there exists a Braess edge for G.

Example 2.4.1. Consider the star Sy in Figure 2.2l Then, mg, = 3, 7, = 1,

01 11
T 10 2 2
d§4 = [3 11 1} , and Fg, = L2 0 9 By simple computation, we have
1 2 20
K(Sy) = g Let Sy be the graph obtained from S, by adding edge 2 ~ 3. Then,
02 2 3
o o T T o 2 0 2 5
mg, =4, 75, = 3, dSZ = [3 2 2 1} ,and Fg = 5 9 0 . One can check
3550

K(Sy) = 122 > £(Sy). Therefore, 2 ~ 3 is a Braess edge for Sy, and Sy is paradoxical.

2.5 Equidistant switched hypercubes: their prop-

erties and sensitivity analysis under PST

We introduce hypercubes and their basic properties; these and other details can be
found in [12] and [I7]. The hypercube @, (also called the n-cube) of dimension n is
the graph whose vertex set is the set of ordered n-tuples (z1,...,x,) (called binary
strings of length n) where x; € {0,1} for 1 < i < n, and two vertices are adjacent
if and only if their corresponding ordered n-tuples differ at exactly one coordinate.
We denote by ...z, an ordered n-tuple (z1,...,z,). Evidently, |V (Q,)| = 2".
The n-cube @, is a regular graph, each vertex of which is of degree n. The distance
between v and w in @, is the number of positions in which v and w differ. The
n-cube @, is bipartite. For any vertex x of (), there is a unique vertex y such that
dg, (x,y) = n. Furthermore, diam(@,) = n. So, we denote by z* the antipodal
vertex of x.

An automorphism of a graph G is a bijection f from V(G) to V(G) such that

two vertices v and w are adjacent if and only if f(v) and f(w) are adjacent. Let
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S, denote the set of all permutations of {1,...,n} (called the symmetric group on

{1,...,n}).

Proposition 2.5.1. [66] Let Q, be a hypercube for n > 1. Then, the following
properties hold:

(1) For any two vertices v and w, there exists an automorphism f of Q, such that

f(v) =w. We say that Q, is vertex-transitive.

(ii) For any two paths (vi,ve,v3) and (wy,we,ws) of length 2, there exists an au-
tomorphism [ of @, such that f(v;) = w; for i = 1,2,3. We say that Q,, is

Ps-transitive.

(iii) For any vertices v,w,x and y such that d(v,w) = d(x,y), there exists an
automorphism f of Q. such that f(v) = z and f(w) =y. We say that Q,, is

distance-transitive.

Let A(G) be the adjacency matrix of a weighted (or unweighted) graph G. Let
U(t) = e where t > 0. The fidelity of state transfer from v to w at time ¢ in
G is given by pg(t) = [(U(t))ywl?. If G is clear in the context, we write p(t). If
pa(to) = 1, we say that there is perfect state transfer (PST) between v and w at
time tg, or equivalently that v and w pair up to exhibit (have) PST, or that G
exhibits (has) PST.

Proposition 2.5.2. [20] Letn > 1, and Q,, be the hypercube. Then, for x € V(Q,),

Qn admits PST between x and z* at time 5.

A partition of a set X is a set of non-empty subsets Xi,..., X} of X such that
X =X;U---UX; and X; N X; = () whenever ¢ # j. The subsets in the partition
are called cells. We denote a partition {Xi,..., X;} of X by (X31,..., X}). Given a
labelling of X, we define the characteristic matriz of a partition (X7,..., X) to be
the | X| x k matrix whose 5% column for 1 < j < k is >zex, €

Let G be a graph with or without loops. A partition 7 = (C4,...,Cy) of V(G) is
said to be equitable if for any 7, j € {1,...,k}, |[N¢,(v)| is constant for all v € C;. If
7 is equitable, we denote |[N¢,(v)| for v € C; by ¢;;. Note that c;; is not necessarily
the same as cj;.

Given a graph G with an equitable partition 7 = (CY, ..., Cy), the quotient graph,
denoted G/, of G with respect to 7 is the directed weighted graph with vertex set
{C1,...,Cy}, where there is an arc from vertex C; to vertex C; under weight ¢;;

it and only if ¢;; > 0. The symmetrized quotient graph, denoted Cj/\w, of G with
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respect to 7 is the undirected weighted graph with vertex set {C},...,Cy}, where
vertex C; is adjacent to C; under weight | /¢;;¢;; if and only if ¢;c;; > 0. We note
that if A(G/7) is symmetric, then A(G/7w) = A(G/).

Proposition 2.5.3. [35] Let G be a graph, and let m be an equitable partition of G,
with characteristic matriv P. Then, A(G/n) = (PTP)"'PTA(G)P and A(G)P =
PA(G/m). This implies that if x is an eigenvector of A(G/m) associated to A, then
Px is an eigenvector of A(G) associated to \. Furthermore, if there exists a matriz
B such that A(G)P = PB, then 7 is equitable, and B = A(G/7).

Theorem 2.5.4. [3] Let G be a graph with an equitable partition © where v and w
belong to singleton cells. Then, G admits PST from a vertexr v to a vertex w at time
t if and only if G/m admits PST from {v} to {w} at time t.

Given a graph G with a subset X of V(G), we use S,(X) to denote the set of
vertices v in G such that d(v, z) = r for all z € X. If X is a singleton, say X = {z},
then we write S, ({z}) as S,(x). The distance partition of a connected graph G with
respect to v € V(G) is a partition that consists of the subsets Sy(v), ..., Sk(v) where
k is the eccentricity of v.

The definition of distance-regular graph can be found in [10] and [35]. Moreover,

hypercubes are distance-regular [10].

Theorem 2.5.5. [35] The distance partition of a graph G with respect to v is equi-
table for every v € V(G) if and only if G is distance-regular.

Here are some properties of hypercubes regarding the distance partition.

Proposition 2.5.6. [66] Let m = (Sy(v), S1(v),...,Su(v)) be the distance partition
of Q.. with respect to a vertex v. Then, the following hold:

(i) Every vertex in S;(v) for 1 <i < n is adjacent to exactly i vertices in S;—1(v).

(it) Every vertex in S;(v) for 0 <i <n —1 is adjacent to exactly n — i vertices in

Sprl(’l)).
Example 2.5.7. Let us consider the 3-cube ()35 where

V(Qs) = {000, 001,010,100,011, 101,110, 111}.

Consider a partition 7 = (C4, ..., Cy) of V(Q3) where C; = {000}, Cy = {001,010, 100},
C3 ={011,101,110}, and Cy = {111}. As an example, we can see that |N¢,(v)| = 2
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S (000)

51(000)

S5(000)

S3(000)

Figure 2.3: The distance partition of ()3 with respect to 000.

for all v € Cs. In this way, it can be seen that 7 is equitable. So, we have

0300 0 V3 0 0
1020 — V3 0 2 0
A T) = and A mT) = .
(Qs/m) 092 0 1 (Qs/m) 0 2 0 3
0030 0 0 /3 0
One can check that A(Q3)P = PA(Q3/m) where
T
10000000
111

on 0000

00001110

0000O0UO0TO 01

is the characteristic matrix of 7. Furthermore, 7 is the distance partition of )3 with
respect to 000. Note that diam(Qs;) = 3 and dg,(000,111) = 3. By Proposition
2.5.2], 000 and 111 pair up to exhibit PST at time 7 in Q3. Further, from Theorem
2.5.4{ @T admits PST between vertices C; and Cy at time 7.
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3

Gram mates

Every two-mode network can be represented by a (0, 1) matrix A, and its single-mode
networks by AA” and AT A. In what follows, we consider (0,1) matrices instead of
using the term ‘two-mode networks’. This chapter is a study of pairs of distinct (0, 1)
matrices A and B such that AA” = BBT and AT A = BT B—that is, a study of pairs
of Gram mates. Recall that (0,1) matrices A and B are isomorphic if there exist
permutation matrices P and () such that B = PAQ.

Sections|3.23.4] are based on a version of a journal article co-authored with Steve

Kirkland submitted for publication in Linear Algebra and its Applications.

3.1 Introduction

A study of pairs of Gram mates arises from a question in [30] as to whether the
conversion approach loses structural features of a two-mode network; the topic is
discussed further in [44]. In [30], it is shown how to recover a (0,1) matrix A from
AAT and AT A under certain circumstances, and how non-isomorphic Gram mates
A and B can cause ‘data loss of the information for A’ To be clear about our work
in this chapter, we briefly introduce the way of recovering A from AAT and AT A.
For the recovery of A from AA” and AT A, the singular value decomposition is used
as follows: under the assumption that A has distinct positive singular values, for
fixed singular vectors of A (which are uniquely determined up to sign), we change
some signs of singular values until a (0, 1) matrix is obtained from a singular value
decomposition, or until no (0,1) matrix is produced. It is speculated in [30] that
there is a very high probability that matrices from this reconstruction are isomorphic.

Kirkland [44] presents techniques for a systematic study of a pair of Gram mates.

One of those techniques is to consider a realizable matrix £ and to investigate Gram
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mates A and A+ E. We use that technique in order to understand the relation
between (0, 1) matrices A and B, where B is obtained from A by changing signs of
some positive singular values. Furthermore, regarding the speculation, we provide
an infinite family of pairs of non-isomorphic Gram mates with that relation.

In addition to the works motivated by [30], we study families of pairs of Gram
mates. One of the works of Kirkland [44] is that given two (0, 1) matrices at random
of the same large size, the probability that they are Gram mates is ‘very’ small. For
that reason, we furnish infinite families of pairs of Gram mates according to the rank
of their difference, or in classes of particular (0, 1) matrices. Moreover, from those
families, we give tools to construct other families.

In the present chapter, we discuss the following in each section. We characterize
matrices from the reconstruction regardless of whether they have all distinct positive

singular values in Section (Theorem and Corollary [3.2.10)). Section

establishes all pairs of Gram mates A and B where the rank of A — B is at most 2

(Theorems [3.3.7} [3.3.15| and [3.3.22). Moreover, we provide equivalent conditions for

A being obtained from B by changing signs of at most two positive singular values

of A (Theorems 3.3.19 and [3.3.36)). Section exhibits families of pairs of

non-isomorphic Gram mates A and B, with some extra conditions, where the rank of
A— B is 1 (Proposition and Theorem . In Section , we provide several
tools for attaining pairs of Gram mates via realizable matrices of rank more than
2. In Section [3.6] we mainly focus on circulant Gram mates and realizable matrices.
We also study a few types of Gram mates related to tournament matrices. Finally,
in Section [3.7} we introduce an analogous approach as we analyse Gram mates via
realizable matrices, and we examine (0, 1) matrices A such that A and UA are Gram

mates where U is the so-called discrete Fourier transform matriz.

3.2 Gram mates and the SVD

Proposition 3.2.1. Let A and B be m xn real matrices, and let o+, ..., 0, be distinct
singular values (not necessarily in non-increasing order) of A where ¢ > 1. Then,
AAT = BBT and ATA = BTB if and only if there exist conformable orthogonal
matrices Uy, Uy, some orthogonal V', and some rectangular diagonal matriz 3 such
that A= U XVT, B=UXVT, and U, = Usdiag(Wy, ..., W,), where fori=1,...,¢,
W; is an m; X m; orthogonal matrixz, and m; is the multiplicity of o; as a singular
value. (Here the multiplicity of 0 as a singular value coincides with that of 0 as an
eigenvalue of AAT.)
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Proof. By the singular value decomposition, we find from AT A = BT B that there
exists an n x n orthogonal matrix V such that A = U;XV7 and B = U,XV7 for
some m X n rectangular diagonal matrix Y, and m X m orthogonal matrices U; and
Us. Since AAT = BBT | we have U] U, 33T = LXTUTU,. By Proposition our
desired conclusion is obtained.

It is straightforward to prove the converse. O]

Remark 3.2.2. In the proof of Proposition considering AAT = BBT first
instead of ATA = BT B, we can fix the same left singular vectors for A and B. So,
it can be deduced that there exist conformable orthogonal matrices Vi, V5, some
orthogonal U, and some rectangular diagonal matrix ¥ such that A = UXV]I B =
USVE, Vi = Vodiag(Wy, ..., Wy), where £ is the number of distinct singular values,
W; is an m; x m; orthogonal matrix, and m; is the multiplicity of o; as a singular
value for i = 1,...,¢. (Here the multiplicity of 0 as a singular value coincides with

that of 0 as an eigenvalue of ATA.)

Proposition 3.2.3. Let E be a realizable matriz, and (A, A+ E) be a pair of Gram
mates. For x € Row(E), we have Ax € Col(E), and for y € Col(E), ATy €
Row(FE).

Proof. Since AAT = (A + E)(A+ E)T, we have AET = —E(AT + ET). Tt follows
that for any i*" row vector x! of E, Ax; € Col(E). Similarly, ATE = —ET(A + E)
implies that for any i*" column vector y; of E, ATy; € Row(FE). Therefore, we obtain

our desired results. O

Lemma 3.2.4. Let E be a realizable matriz of rank k, and (A, A+ E) be a pair
of Gram mates. Then, there exist k positive singular values of A such that the set

of their corresponding right (resp. left) singular vectors is a basis of Row(E) (resp.

Col(E)).

Proof. By Proposition [3.2.1] there exist orthogonal matrices Uy, Uy and V such that
A=UXVT and A+ E = U;XV7T for some rectangular diagonal matrix ¥. Then,
EV = (Uy— Uy)X. Since ATA = (A+ E)'(A+ FE), we have ETE = —ATE — ETA.
Substituting VXTUT and VT (Uy — Up)T for AT and E7, respectively, in —ATE —
ET A, we have

E'E=V(-XTUlE - 2T (U, — U)T A).

By Lemma [2.2.6, Col(E" E) = Row(E). Since rank(E) = k, rank(ETE) = k. Again
by Lemma the column space of V(=XTUI'E — XT(Uy — Uy)T A) is spanned by
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k columns vy, ..., vy of V; thus, the vectors vy,..., vy comprise a basis of Row(FE).
Moreover, for any right singular vector v ¢ Row(E), v is orthogonal to Row(FE).
Thus, Ev = 0. The rank of EV is k, so Ev; # 0 for ¢ = 1,..., k. Considering
EV = (Uy — U)X, for i = 1,...,k the singular value corresponding to v; must be
positive.

By Proposition[3.2.3] Av; € Col(E) fori = 1,..., k. Note that AV = U;X. Since
Avy, ..., Avy are linearly independent and rank(E) = k, the set of Avy, ..., Avy is

a basis of Col(F). Our desired conclusion follows. O

Given a (0, 1) matrix A, let B be a (0, 1) matrix obtained from A by changing signs
of some positive singular values. Since A and B are (0, 1) matrices, by Lemma
A and B are Gram mates. Suppose that v is a right singular vector corresponding to
one of those singular values. Then, Av = —Bv and so, (A + B)v = 0. Considering
Lemma [3.2.4] either v € Row(A — B) or v ¢ Row(A — B). We shall investigate the

relation between v and Row(A — B).

Remark 3.2.5. Suppose that B is obtained from A by changing the signs of positive
singular values o4, ..., 0% of A for some k > 1. We can find from Remark that
in the context of obtaining B from A, converting the signs of oy, ..., 0} is equivalent
to changing the sign of one of the left and right singular vectors of A corresponding

too; fori=1,...,k.

Proposition 3.2.6. Let E be an m X n realizable matriz of rank k, and let A be a

(0,1) matriz such that A+ E is a (0,1) matriz. Then, the following are equivalent:
(a) (A, A+ E) is a pair of Gram mates and (2A + E)ET =0,
(b) A+ E is obtained from A by changing the signs of some positive singular values.
Furthermore, if one of and holds, then the following are satisfied:
(1) the number of positive singular values whose signs are changed is rank(E),

(ii) the positive singular values of A whose signs are changed are the same as the

k positive singular values of —%E, and

(1ii) the corresponding left (resp. right) singular vectors of A can be obtained from
the corresponding left (resp. right) singular vectors of —%E. This implies that
the corresponding left (resp. right) singular vectors of A comprise a basis of

Col(E) (resp. Row(E)).
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Proof. Suppose that (A, A + E) is a pair of Gram mates and (2A + E)ET =
0. By Proposition [3.2.1] there exist orthogonal matrices Uy, Uy and V such that
A=UXVT and A+ E = U,XV7T for some rectangular diagonal matrix 3. Let
k = rank(F). By Lemma m, there exist right singular vectors vi,..., vy of A

corresponding to positive singular values oy, ..., 0 that form a basis of Row(FE).
Since (2A + E)ET = 0, we have (2A + E)v; = 0 for i = 1,...,k. Then, we have
Ev;, = —2Av; = —20;u; where u; is a left singular vector of A corresponding to o;.

Furthermore, for any right singular vector v ¢ Row(F), Ev = 0. Then, without loss

of generality, we have

EV=-2[u - w 0%
Since E = (U — U1)XVT, we have (U — U))Y = =2|u; -+ w, 0] 5. If AAT
is singular, then we may choose the same left singular vectors corresponding to the
singular value 0 for A and A+ E. Hence, Uy — U; = —2 [ul | 1A O}. It follows

from Remark that A+ F is obtained from A by changing the signs of oy, ..., 0}.

Furthermore, applying the Gram—Schmidt process to a basis of the orthogonal com-

plement of Row(E), we obtain an orthonormal basis, say {@g11,...,y}. Then,
—E=lw coug G o Gy D)V
where Y = diag(oy,...,0%,0,...,0). Rearranging the diagonal entries of Y in non-

decreasing order, one can obtain a singular value decomposition of —F. Therefore,
201, ...,204 are the positive singular values of —F.

Suppose that A + E is obtained from A by changing the signs of ¢ positive
singular values for some ¢ > 0. By Lemma [2.2.8] A and A + E are Gram mates. By
Remark , there exist orthogonal matrices U, U and V such that A = USV7 and
A+ E =UXVT for some rectangular diagonal matrix 3, where U is obtained from
U by changing the signs of, without loss of generality, the first £ columns uy, ..., uy
of U. Let oq,...,00 be the corresponding positive singular values. Then, F =
(U—-U)2VT = -2 {ul Sy O} YVT. So, each row of F is a linear combination
of the first £ rows vi,..., vl of VT. Hence, Row(E) = span{v; ..., v,}, and this
implies ¢ = k = rank(E). Moreover, since EV = (U — U)X, we have Ev; =
—20u; = —2Av; fori =1,...,k. So, (2A+ E)v; =0 for i = 1,... k. Therefore,
(2A + E)ET = 0. Furthermore, applying the same argument above for finding the
singular value decomposition of —F, we can find that and hold. O

Remark 3.2.7. By a similar argument as in the proof of Proposition [3.2.6, one can
establish that (A, A+ F) is a pair of Gram mates, E7 (2A+F) = 0, and k = rank(FE) if
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and only if for a (0, 1) matrix A, a (0, 1) matrix A+ F is obtained from A by changing
the signs of £ positive singular values. For the proof of the converse, one can begin
with A = USVT and A+ E = USVT for some orthogonal matrices U, V', and v,
where V is obtained from V by changing the signs of k columns of V' corresponding

to the k positive singular values.

Remark 3.2.8. Let £ be an m x n realizable matrix of rank %k, and (A, A + E) be
a pair of Gram mates. Suppose that (24 + E)ET = 0. Then, rank(2A+ E) < n — k.
There are k right singular vectors of A that correspond to positive singular values
and comprise a basis of Row(FE). So, we have Ev = 0 for any right singular vector
v & Row(E). Tt follows that Ex = 0 for x ¢ Row(FE). Therefore, AT A is singular if
and only if rank(24 + E) < n — k. Furthermore, rank(2A + F) = n — k — [ where [
is the nullity of AT A.

Theorem 3.2.9. Let E be a realizable matriz of rank k, and let A be a (0,1) matriz
such that A+ E is a (0,1) matriz. Then, the following are equivalent:

(i) (A, A+ E) is a pair of Gram mates and (2A + E)ET = 0.
(ii) (A, A+ E) is a pair of Gram mates and ET(2A + E) = 0.

(iii) A+ E is obtained from A by changing the signs of k positive singular values

of A. (Here the k positive singular values are the same as those of —%E)

(iv) There exist k right singular vectors vi,...,vy of A corresponding to positive
singular values such that the vectors vy, ..., vy form a basis of Row(E) and v;
is a null vector of 2A+FE fori=1,...,k. (Herevy,..., vy can be obtained from

right singular vectors corresponding to the positive singular values of —%E)

(v) There ezist k left singular vectors uy,...,u, of A corresponding to positive
singular values such that the vectors uy, ..., ug form a basis of Col(E) and u;
is a null vector of (2A+ E)T fori=1,....k. (Hereuy,...,u; can be obtained

from left singular vectors corresponding to the positive singular values of —%E .)
(vi) (A, A+ E) is a pair of Gram mates and AET is symmetric.

(vii) (A, A+ E) is a pair of Gram mates and ATE is symmetric.

Proof. & & (i} It is clear from Proposition and Remark |3.2.7]
& and & Using Lemma and Proposition [3.2.6], the proof is

straightforward.

24



& and & [(vii)} Since AAT = (A + E)(A + E)T, we have AET +
EAT + EET = 0. Hence, (2A + E)ET = 0 implies EAT = AE”, and vice versa.
Similarly, from ATA = (A+ E)T(A+ E), we find |(ii)| & |(vii)l O

Theorem [3.2.9) can be recast with respect to Gram mates A and B.

Corollary 3.2.10. Let A and B be (0,1) matrices with A # B, and let k = rank(A—

B).
(i)
(ii)
(iii)

(iv)

(v)

(vi)
(viti)

Then, the following are equivalent:
(A, B) is a pair of Gram mates and (A + B)(A — B)T = 0.
(A, B) is a pair of Gram mates and (A — B)T(A + B) = 0.

B is obtained from A by changing the signs of k positive singular values. (Here

the k positive singular values are the same as those of 3(A — B).)

There exist k right singular vectors vi,...,vy of A corresponding to positive
singular values such that the vectors vy, ..., vy form a basis of Row(A— B) and
v; is a null vector of A+ B fori=1,...,k. (Herevy,..., vy are obtained from

right singular vectors corresponding to the positive singular values of%(A—B).)

There exist k left singular vectors uy,...,u, of A corresponding to positive
singular values such that the vectors uy,...,u; form a basis of Col(A — B)
and v; is a null vector of (A+ B)T fori = 1,...,k. (Here uy,...,u; are

obtained from left singular vectors corresponding to the positive singular values

of 3(A— B).)
(A, B) is a pair of Gram mates and A(A — B)T is symmetric.

(A, B) is a pair of Gram mates and AT (A — B) is symmetric.

Definition 3.2.11. Let A be a rectangular (0, 1) matrix. The matrix A is said to be
convertible (to B) if there exists a (0,1) matrix B obtained from A by changing the

signs of k positive singular values (possibly with repetition) for some k£ > 1. Such A

and B are called convertible Gram mates. We say that the k positive singular values

of A

are the Gram singular values of Gram mates A (and B). The matrix A is said

to have Gram singular values if A is convertible.

Remark 3.2.12. In order to clarify Definition [3.2.11] consider a (0,1) matrix A
convertible to B. Even though the signs of k positive singular values of A for some
k > 1 are changed for obtaining B, by Remark A and B have the same singular
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values. By converting the signs of the k singular values of B, we can obtain A from
B. So, B is convertible to A. Hence, we may use the term ‘convertible Gram mates’.

Let A = UXVT where U and V are orthogonal matrices and X is a rectangular
diagonal matrix. Suppose that there exist two ways of obtaining B from A by
changing the signs of k positive diagonal entries of ¥, say B = UX,V? and B =
U,VT. Clearly, ¥; = Y. Thus, if A is convertible to B, then the k positive singular
values of A whose signs are changed and their corresponding singular vectors are
uniquely determined. Thus, we may use the term ‘the Gram singular values of A
and B’ Furthermore, if there are repeated values among the Gram singular values,
then we need to indicate which positions on the main diagonal of 3 corresponding to
the repeated values are chosen for the sign changes. Therefore, if the Gram singular
values are not distinct, then we need to specify corresponding right singular vectors

(or left singular vectors).

Remark 3.2.13. Let A and B be (0, 1) matrices with A # B. If one of the conditions
in Corollary holds, then A and B are convertible Gram mates; furthermore,
all singular vectors of A corresponding to the Gram singular values of A and B can
be obtained from those corresponding to all positive singular values of (A — B).
One can establish analogous results with respect to Gram mates A and A 4+ E via a

realizable matrix £ by using Theorem [3.2.9,

Example 3.2.14. Suppose that a (0,1) matrix () is a Gram mate to the identity

matrix [. Clearly, @ # [ and @) is a permutation matrix. Byof Corollary|3.2.10],
Q is convertible to I if and only if I(I — Q)T is symmetric, i.e., Q is symmetric.

Therefore, any non-convertible Gram mate to I is a non-symmetric permutation

matrix.
A Ay .
Example 3.2.15. Let A = 4 be a (0, 1) matrix where A; and A, have the
2 A
. Ay Aif .
same size and A; # A,. It can be checked that B = 4 A is a Gram mate to
1 A2

A. Furthermore, one can verify that (A + B)(A — B)T = 0. Since the condition
of Corollary [3.2.10| holds, A and B are convertible Gram mates. Furthermore, it
follows from the structure of A — B that the Gram singular values of A and B can

be obtained from the k positive singular values of A; — Ay where k = rank(A4; — A,).
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3.3 Gram mates via realizable matrices of rank 1
and 2

In this section, we shall completely characterize Gram mates A and B where the
rank of A — B is 1 or 2. We also investigate convertible Gram mates A and B, their
Gram singular values, and corresponding singular vectors.

Recall that given a realizable matrix E and a pair of Gram mates (A, A + FE),
PAQ and P(A + E)Q are Gram mates for any appropriately sized permutation

0

matrices P and (). Hence, we may consider a (0,1, —1) matrix F = such

that £1 =0 and 17E = 07.

Proposition 3.3.1 ([44, Lemma 2.1]). Let E = be realizable, and let A =

A X
Xs X3
if and only if (A, A+ E) is a pair of Gram mates, EXT =0 and ETX, = 0.

] be compatible with the partition of E. Then, A and A+ E are Gram mates

Remark 3.3.2. Note that X7 E = 0 and EXJ = 0 if and only if columns of X; are
(0,1) left null vectors of £, and rows of X, are (0,1) right null vectors of E.

Proposition 3.3.3. Let £ =

0
()] be a (0,1, —1) matriz such that E1 = 0 and

17E = 0T. Then, E is realizable if and only if E is realizable.

Proof. Suppose that F =

] is realizable. Then, there exists a (0,1) matrix

A X,

Xs X3
to A+ E. By Proposition m, (ﬁ, A+ E) is a pair of Gram mates, and so E is
realizable. Conversely, assume that E is realizable. Then, for a pair (;1, A+ E) of

] that is compatible with the partition of E, and is a Gram mate

A0 A+E 0
Gram mates, and i are Gram mates. Hence, F is realizable. [
iy E 0 . A X
Proposition 3.3.4. Let E = be realizable, and let A = be com-
0 0 X X3

patible with the partition of E. Suppose that A and A+ E are Gram mates. Then,
AET = EAT if and only if AET = EAT. This implies that if A is convertible to
A+ E, sois Ato A+ E, and vice versa.
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Proof. From Proposition [3.3.1, we have EXT = 0. It can be readily checked from
computation that AET = EAT if and only if AET = FAT. By Remark [3.2.13] the
desired conclusion follows. O
E 0 A X
Proposition 3.3.5. Let E = 0 0 be realizable, and let A = " be com-

Xo X
patible with the partition of E. Suppose that A and A + E are Gram mates. We

may assume (by Lemma M) that ¥1,...,Vy, form a basis of Row(E), where v; is
a right singular vector associated to a positive singular value o; of;l fori=1,... k.

Furthermore, suppose that fori=1,...,k, @; is the corresponding left singular vec-
tor. Then, ﬁ;] (resp. [f;]) is a right (resp. left) singular vector corresponding to
o; of A fori=1,... k.

Proof. Using Proposition [3.3.1, we have EXJ = 0 and ETX; = 0, i.e., Row(E) and
COI(E ) are orthogonal to Row(X5) and Col(X,), respectively. Let v be a right singu-

lar vector corresponding to a positive singular value o of A such that v € Row(E).

Since EXQT = 0, we have Xov = 0. For oi = AV where  is the corresponding

- v AV ¥ -
left singular vector of A, we have A VI = XV~ =0 3] Since v € Row(E),
2V
by Proposition we obtain ot = Av € Col(E). We find from ETX; = 0 that
. . i ATq v
XT(ou) = XTAv = 0. Note that ATa = ov. Hence, AT = 1~1 —a |l
XTa 0
Therefore, our desired result is obtained. O]
0 A X
Corollary 3.3.6. Let £ = 0} be realizable, and let A = 1] be compat-
2 A3

ible with the partition of E. Suppose that A and A + E are Gram mates. If A is
convertible to A+ E, then A is convertible to A+ E; the Gram singular values of A
and A+ E are the same as those of A and A+ E; and the corresponding singular

vectors of A are obtained from those of A by adjoining a column of zeros.

Proof. Combining Propositions[3.3.4]and [3.3.5] the conclusion is straightforward. [

Summarizing Propositions and Corollary [3.3.6], given a realizable ma-

E

trix B = , characterizing realizability of E , Gram mates via E , convertible

Gram mates via F, and their Gram singular values and corresponding singular vec-
tors endows E with the same properties except that we need the extra conditions in
Proposition [3.3.1] to find Gram mates via E.

28



3.3.1 Gram mates via matrices of rank 1

Suppose that a realizable matrix F is of rank 1. Without loss of generality,

Joiks  — ik O
E=- ‘]k‘1 k2 ‘]kl ka2 0
0 0 0

~ J —J
for some ki, ky > 0. Let E = 1 k2 kv,k2

. It is straightforward that A=
_Jk1,k2 Jk17k2

Jkl,kQ
realizable. Furthermore, AET = EAT. This implies that A is convertible to A + E.

Since rank(E) = 1, there is only one positive singular value of —%E‘ , which is the

0 J) ~ = ~
[ kl’k2] and A + E are the only pair of Gram mates via E. Thus, F is

Gram singular value of A and A+ E. One can find that the positive singular value
of —%E is vkiks and the corresponding left and the corresponding right singular
1, : .

1 up to sign, respectively.

ko

—1,
1 1 1
vector are ol { 1 ] and o

1

Theorem 3.3.7. Suppose that E is a realizable matrix of rank 1:

Jiiks  — Ik O
E = _Jkl,kz Jkl,kz 0

0 0 0
0 Tk ke X1
for some ki, ky > 0. Let A= |Ji, 1, 0  Xy| bea (0,1) matriz compatible with
Xs X, Y

the partition of E. Then, we have the following:
(i) A and A+ E are Gram mates if and only if 17X, = 17X, and X31 = X,1.
(ii) E is realizable.

(iii) For any Gram mates via E, A and A+ E are convertible into each other.

(iv) For any Gram mates via E, their Gram singular value is \/kiks, and the cor-

—15,
responding left and right singular vectors are (up to sign) V%Tl 1, | and
0
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14,
\/%TQ —1,, |, respectively.
0

Proof. Applying Proposition [3.3.1] we have

J, —J X J, —J
ko,k1 ko, k1 1 _ 07 |:X3 X4:| ko k1 ko k1
_Jk’z,k1 Jk’z,kl XQ _Jkg,k’l Jk‘Q,kl

=0.

Since Ji, k, is an all ones matrix, we have 17X; = 17X, and X31 = X,1. Ap-
plying Propositions |3.3.3 and Corollary with the argument immediately

preceding this theorem, the desired conclusions follow. O

Remark 3.3.8. Consider A and A + E in Theorem [3.3.7 Let B = A+ E and
k = ki = ko. One can check that AB = BA if and only if A and B are Gram mates.
Suppose that A and B are diagonalisable. It is known (see [38]) that A and B are
simultaneously diagonalisable. Since rank(A — B) = 1, we have |0(A) —o(B)| =1
where o(A) and o(B) are multisets of eigenvalues of A and B, respectively. It follows
that 0(A) — o(B) = {—k} and o(B) — o(A) = {k}.

Example 3.3.9. Let

0 0j1 1|1 10 1 1 }-1 —-1]0 0 O
0 0|1 1|0 0 1 1 1 (-1 -1/0 0 O
1 1{0 01 1 1 -1 -1, 1 1,0 0O
A=1]1 1|0 0|0 OO|,E=|—-1 =11 11]0 00
1 0{1 01 1 1 0O 0|0 O01]0O0O0
1 01 01 11 0O 0[O0 O00O0O

|0 1|1 0j1 1 1 0 0]0 01]00 0]

Clearly, F has rank 1. By Theorem [3.3.7, A and A + E are Gram mates, and the
1,

—1,| is a corresponding right singular vector.
03

Gram singular value is 2. Moreover, %

3.3.2 Gram mates via matrix of rank 2
. , E 0 ,
We first show that given a (0,1, —1) matrix £ = 0 0 of rank 2 with £1 = 0 and

17F = 07, E is in one of the following forms (M5)l Unless stated otherwise,
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we assume that all the indices of each block in matrices of types (M5)| are

nonnegative and each of their row and column sum vectors is zero.

(M1)

(M2)

(M3)

(M4)

Jk,a
_Jk,a
Jl,a
_Jl,a

Jke
—Je
0
0

Jk,a
_Jk,a
Jl,(z
_']l,a

Jk:,a
_Jk,a
Jl,a
_Jl,a

Ik,
—Jia
Ja
~Jya
0
0

Jrp
—Jip
—Jip

Jieb
—Jp
—Jip

Jip

—Jip
—Jip
J1b

—Jkp
Jip
— Tt
Jab
0
0

—Jkp
Jkp
T

—Jip

_Jl,g

_Jk,c
Jk,c
Jl,c

_Jl,c

a+b+c+d>D0.

Jl,c
_Jl,c

Te
—Tpe
0
0
Tre
—Jye

_Jk,a
Jk a . . o
J’ where all indices of each block are positive.
—Jla
Jl,a
0
0 o "
7 where all indices of each block are positive.
—Jin
Jin
—Jka  Jke —Jky
J —Jie J
hd Be IR Where k1 > 0, e+ f > 0 and
_Jl,d 0

Ja O 0

—Jkd  Ike —Jkg 0 0
Jea —Jke Jry 0 0 where k,1 >0, a +
—J1a 0 0 Jg  —Jin

J1.d 0 0 —Jg Jin

b+c+d>0,e+ f>0,and g+ h > 0.

—Jwa O 0 ]
Jid 0 0
0 Jpe ﬁkfw@ma+@c+¢e+ﬂk+h
0 —Jge o
—dJdrd _Jr,e Jr,f
Js,d Js,e _Js,f_

p 4 g and r + s are positive.

As done in Subsection [3.3.1], we examine properties related to Gram mates via
E for types [(M4)| and [(M5), We also show that the types inherit the
same properties from the type [(M4)l For ease of exposition, we only present an

interpretation from the viewpoint of the null space in order to find Gram mates via
E by using Gram mates via E with Proposition m
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Unless stated otherwise, we assume that a (0,1, —1) matrix E has neither a row
of zeros nor a column of zeros. Suppose that a (0,1, —1) matrix £ with £1 = 0 and
17E = 07 is of rank 2. Then, there are two (0,1,—1) rows x! and xJ of E that

form a basis of Row(E). Without loss of generality,

T _

Xl - [ 1?);1 1’52 _153 _154 1%‘1 _1%12 O%‘d 01/8—‘4 i| ’
T _ T T T T T T T T

Xy = [ 1a1 _1a2 1a3 _1a4 051 0,32 133 _154 }

where oy + s+ 1 =as+as+ P2 >0, a1 +as+ Pz =as+as+ B4+>0, a;, 3; >0
fori=1,2,3,4.

Consider further conditions for the indices and pairs («, 5) such that ax; + fxa
is a (0,1, —1) vector for the following three cases: (i) 81 + 2 > 0 and B3 + 4 > 0,
(ii) either 5y + B2 =0 or B3+ B, =0, (i) f; =0fori=1,...,4.

e Suppose that g1 + B > 0 and B3 + B, > 0. Evidently, x; and x, are linearly
independent. Since ax; + x2 is a (0,1,—1) vector, we have o, € {0,1,—1}.
Considering xI'1 = xI'1 = 0 and possible (0,1, —1) linear combinations of x; and

X, we have three subcases:

(C1) Suppose that ay + a4 > 0 and ay + a3 > 0. If o, 5 € {1, —1}, then ax; + [x2
is not a (0,1, —1) vector. So, («, ) € {(£1,0),(0,£1)}. Moreover, we have
atay+ 0 =as+as+ P2, a1 +as+ P33 =+ ay + .

(C2) If without loss of generality a3 + a4 > 0 and ay + a3 = 0, then ay = a3 = 0,
a1+ 1=y + B2, a1 + B3 = s + B4 and (a, B) € {(£1,0), (0, £1), (£1,F1)}.

(C3) If a; +as=0and as +a3 =0, then a; =0 fori =1,....4, 81 = Ba, B3 = b4
and (a7ﬁ) S {(:l:]-70)7 (07:':1)7 (i17i1)7 (:t17:F1)}

e Suppose that either 81+ = 0 or S5+ 5, = 0. Without loss of generality, 8+ 3 >
0 and 3+ B4 = 0. For x; and x5 to be linearly independent, oy + as + ag + ay > 0.
Considering xI'1 = x2'1 = 0 and possible (0,1, —1) linear combinations of x; and

Xg, we have two subcases:

(C4) Let oy +ay > 0 and as+ag > 0. By an analogous argument as in|(C1)] (o, 8) €
{(£1,0), (0, £1)}. Furthermore, o + g + 81 = az+ag+ fa, a1 + a3 = @z + ay.

(C5) If without loss of generality, a1 + a4 > 0 and ay + ag = 0, then ay = ag = 0,
o =, B = P2 and (avﬁ) S {<:|:170)7 <07 il)a (:l:lv :Fl)}
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e Assume that 3; =0 for i = 1,...,4. Then, we have a single subcase:

(C6) Obviously, ay = ay and ay = a3. Since x; and X are linearly independent, a; >
0 for i =1,...,4. Moreover, (o, 8) € {(£1,0), (0, £1), (£3, £3), (£, F3)}.

Summarizing the conditions for the indices and pairs (o, 3) in each of the six

subcases, they can be recast as:

(Cl) ar+ay >0,as+a3 >0, 814+ 62 >0, 5454 > 0, a1 + g+ 51 = az+ay + o,
(0%} —|—C¥3 +ﬁ3 = Q2 +Oé4—|—64 and (avﬁ) € {<i170)7<07i1)}7

(C2) a1 +ag >0, 0 =03 =0, 51+ 02 >0, 3+ 04 >0, a1 + 51 = ayg + Po,
ay + P35 = ay + By, and (a, B) € {(£1,0), (0, £1), (£1,F1)};

(C3) ay =0fori=1,...,4, py = B2 >0, B3 = B4 > 0, and («, 5) € {(£1,0),
(0, £1), (£1,£1), (£1,F1)};

(C4) ar+tas >0, as+0a3>0,51+52>0,0=01=0, a1 +az+1 = az+as+ s,
a1 + a3 = ag + ay, and (o, B) € {(£1,0),(0,£1)};
(C5)a1:a4>O,a2:a3:0,61:52>0,63:64:O,and(a,6)G
(C6) ay = ay >0, a0 =3 >0, 5, =0 fori =1,...,4, and (o, ) € {(£1,0),
(0,1), (£3,£3), (£3.F3)}-
Now, we shall see that any (0,1, —1) matrix £ with each of the conditions

(C6)| corresponds to one of the following types (M5)| (up to transposition and

permutation of rows and columns).
Let us consider x! and xI where the condition holds. Suppose that ax! +

BxLis a (0,1, —1) vector for some o and /3. Since

(o, 8) € {(:I:l,()), (0, +1), (:t;:t;) | (ii;i)}

we have four distinct (0,1, —1) rows up to sign as follows:

1
i =[1f, 1, 1, 1l | Seatx)"= (1 of, of, —1f ],
1
xg =15, -1, 1f, -1l | S -x)t =0l 1f -1l of |

Consider all possible combinations of the four row vectors that span the row space of
a (0,1, —1) matrix E such that rank(E) = 2, E1 = 0 and 17E = 07. Suppose that
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x{ and 1(x; + x2)" are the only distinct rows in E up to sign. Then, we generate

E’ from E by permuting rows as follows:

J717041 J717012 _‘]71,00 _J%,Oq
E = _J’Vz,oél _']’}'27042 J72,a2 J’yg,al
J’Y&Oél O 0 _J'yg,al
_J7470¢1 0 0 J74,a1

for some v; > 0 for i = 1,...,4. Since 17E’" = 07, we have 7, = 75 and v3 = ;.
By rank(E’) =2, v; > 0 for i = 1,...,4. Taking the transpose of E’ and permuting
rows of (E')T, we find that the resulting matrix is of type Similarly, one can
check that for the other choices among the four rows, F must be of one of types
(M4)| (up to transposition and permutation of rows and columns).

Given x] and x3 with we have (a, 8) € {(£1,0), (0,%1), (1, F1)} so that

there are three distinct rows up to sign:

T _ T T T T T T

X1 = { 1 _1044 1 1 —1 2 0/33 054 ]’
T _ T T T T T T

Xy = { 1, -1, 03 05 15 —15 } ;

(x1 — %2)7 = [ of of 1% -1% —1% 1% } .

Then, if the rows of E consist of rows +x! and +xI, then E is of form ; if £
consists of rows £x!, +xJ and £(x; — x2)7, then E is of form [(M5)]

In this manner, one can verify that any (0,1, —1) matrix E whose either row

space or column space spanned by x; and xo with [(C1)|is in type|(M4); E with |[(C3)!
is in one of types(M1)H(M4); E with is in type [(M3)} and F with is in
one of types (M4)|

Here is a useful lemma for characterizing Gram mates via F of rank 2.

Lemma 3.3.10. Let X, X5, Y] and Yy be matrices of sizes k X a, k X b, | X ¢ and
[ x d, respectively. Then, kachT + Jk7dY2T + XiJog + Xodyy = adyy if and only if
X1, + Xoly = 21y and Y11, + Yol, = y1;, where x +y = «.

Proof. Consider the sufficiency of the statements. Suppose that x;, x5, y; and y,

yi+vys
are row sum vectors of X, Xo, Y7 and Y5, respectively. Then, we have : +
yi+vys
X] +Xo o X; 4 X2i| = a.J. Let (x); be the i*" component of x. Considering the

J™ columns of the both sides, x; + %2 + (y1 + y2);1 = al. Then, x; + x2 = z1 for
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some x. Similarly, from the rows of both sides, it can be deduced that y; +y, = y1
for some y. Hence, the equation Jk,chT + Jk’dYQT + XiJag + Xodyy = aJi; can be
recast as yJ +zJ =aJ,and so z +y = a.

The converse is straightforward. O

3.3.2.1 Realizable matrices in the form [(M1)H(M4)|

Here, we first focus on Gram mates via a matrix of the form [(M4)| It is shown that

the cases |(M1) are special cases of [(M4)|

Lemma 3.3.11. Let A and B be m x n (0,1) matrices such that A+ B = J. Then,
AAT = BBT if and only if n is even, and A1 = Bl = 51. Similarly, ATA = BTB
if and only if m is even, and 1"A =1"B = 217,

Proof. Suppose that AAT = BBT and A+ B = J. Since (0, 1) matrices A and B

have the same row sum vector, n is even and A1 = B1 = §1. Conversely, assume
that n is even, and A1 = B1 = 7. Then,

AAT = (J - B)(J - B)T
:JJT—BJT—JBT+BBT:nJ—gJ—gJ+BBT:BBT.

Similarly, one can deduce the remaining conclusions. O]

Remark 3.3.12. Suppose that F is of form [(M1), By Lemma 1, (A,B) =
(3(J+E),L(J - E)) is a pair of Gram mates. l\/[oreovelr7 it is the only pair of Gram
mates such that A — B = E.

A Ay X B, By, X

Lemma 3.3.13. Let A= | 72 and B=|_" "7 be (0,1) matrices.
Ag Y A4 B3 Y B4

Suppose that (A — B)1 =0, and 1TA; = 17B;, A;+ B; = J fori=1,...4. Then,

A and B are Gram mates if and only if

(By — A)YT 4+ X(BT — ATy = A JT + JAY — JJ" (3.3.1)
(Bl — A1) X =0, (3.3.2)
(BY — ADYyY =0, (3.3.3)
(B — ADX +YT (B, — A) =0. (3.3.4)

Proof. Since (A — B)1 = 0, we have

(A4 A))1=[B, Byland [4; A]1=[B; Bj1.
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Applying Lemma [3.3.11| to pairs ([Al Ag} : [Bl B2}) and ([Ag A4} , [B3 B4}),
we obtain AjAT + A, AT = By B] + ByBI and A3AL + A4AT = B3BY + ByBY. Let
the numbers of rows of A; and As be k and [, respectively. Since 17A4; = 17 B; and
A;+ B; = J fori=1,...4, the numbers k and [ are even, 174, = 1T A4, = ng and
174; =174, = élT. From B, = J — A; fori =1,...4, we have

BBy — A ALY = (J — AN (J — A)T — A AL = JJF — AT — JAT, (3.3.5)
BBy — ATAy = (J—A)'(J — Ay) — AT A, =J' T - ATJ—J Ay =0, (3.3.6)
BiBy— AT A = (J - A)T(J - A) —ASA, =TT - AT —J Ay =0. (3.3.7)

Furthermore, using Lemma |3.3.11| for each pair (4;, B;) for i = 1,...,4, we obtain
ATA, = BTB.
One can check that AAT = BBT if and only if

AAT + A AT + XXT = B BT + BB + XXT,
AAY + A YT + XA = BB + B,YT + XBY,
AsAY + A AT +YYT = BB + ByBY +YYT.

Using " AlA{*FAQAg = BlB?+Bng and A3A§+A4AZ = Bng+B4BI, we
find that AAT = BBT if and only if (By— Ao) YT+ X (BT — AT) = Ay JT+JAT— JJT.
One can verify that AT A = BT B if and only if

ATA + AZAs = BBy + BiBs, AJ A, + Y'Y = BI B, + Y'Y,
ATA,+ XT"X =BIBy+ XX, AT Ay + ALY = BI'B, + BYY,
ATX + ATA, =BTX +BIBy, ATX +YTA, =Bl X +Y"B,.

By (3.3.6), (3.3.7) and the fact that ATA; = BI'B; for i = 1,...,4, the desired

conclusion follows. O

Remark 3.3.14. Let C' and D be Gram mates, and let a and 3 be sets of some
row and column indices, respectively. Then, C[«, 5] and D], 5] are not necessarily
Gram mates. That is, the submatrices do not necessarily inherit properties of being
Gram mates from C' and D. However, the matrices with the hypothesis in Lemma
3.3.13| yield the following submatrices with inherited properties in the matrices.

A Ay B By

Az Bs
17A;, =17B;, A;+B; = J fori = 1,2,3. It can be found from the definition of Gram

Let A = and B = Suppose that (A — B)1 = 0, and
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mates that A and B are Gram mates if and only if (By— Ao) YT = Ay JT + JALY — JJT
and (BY — AT)Y = 0. Then, the equivalent condition for Gram mates A and B is

the same as that obtained from the conditions (3.3.1)—(3.3.4) in Lemma |3.3.13| by

removing the terms containing Ay, By or X.

Ay
and B =
4

17B; and A; + B; = J for i = 2,4, we can find from the definition of Gram mates
that A and B are Gram mates if and only if (By — A2)Y? + X(BT — AT) = 0 and
(BY — ATYX + YT(By — Ay) = 0. Then, the equivalent condition for Gram mates
A and B can be also obtained by annihilating the terms having A;, A3, By or Bs in
the conditions f in Lemma .

Therefore, equivalent conditions for Gram mates via matrices of forms and
can be induced by those for Gram mates via matrices of form .

Similarly, given A =

B, X
’ where A4;1 = B;1, 1TA; =
Y By

Theorem 3.3.15. Let

Jra ey ke —Jkd ke —Jky O 0
—Jrka —Ikp Jke  Ika  —Jrke  Jiy 0 0
Jo —Jp Jie —Jia O 0 Jig  —Jin
—Jia iy =i Jia 0 0 —Jig Jin

E =

where any column index in each block is a nonnegative integer, and k,l > 0, a + b+
c+d>0,e4+f>0,9g+h>0, E1 =0 and 17E = 0". Let

0 0 Jie Jka 0 Joyp X Xio
Jea J 0 0 J,. 0 Xy X
A= | T Tk k, 21 Xoo (3.3.8)
0 Jp 0 Jag Y Yo 0 Jp

Jl,a 0 Jl,c 0 }/21 }/22 Jl,g 0

where each block of A is a (0,1) matriz. Then, A and A+ E are Gram mates if and

only if the following conditions are satisfied:

(Z) 1TX1i = ].TXQi and ].TYVM = ].TYQZ fOTi = 1,2,’

X X 1 1
(ii) 1 12 = % and
Xo1 Xoo| |1 1

e — f are even.

Yii Y
Yo Yo

-1

1 et |1
] = 2f [1] where g—h and

Proof. Let A; = , Ay =

Jea Jep 0 0 Jo 0 Jo 0 Jie 0

0 0 Jke Jk,d] [0 Jip 0 Jia
7A3:

0 J f]
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Yin Y

and Ay =
! Yo Vi

and B,L =J - Az for
l X21 X22

g 0

t=1,...,4.
Applying Lemma [3.3.13] to our setup, it is enough to show that our desired

conditions (i) and are deduced from the conditions (3.3.1)—(3.3.4). From the
condition (3.3.2)), which is (B — AT)X = 0, we have

T
Jea ey —Jke —Jra| | X Xi2 _0
—Jba —JIkp ke  Jrd Xo1 Xoo

Since a + b+ ¢+ d > 0, there is at least one row in Bf — AT that is [1T —1T]
or [—1T 1T}. Hence, 17X,; = 17Xy, for i = 1,2. Conversely, 17 X; = 17 X,; for
i = 1,2 implies (B — AT)X = 0. Similarly, we can find that the condition ({3.3.3)) is
equivalent to 17Y}; = 17Yy; for i = 1,2. Since k,l > 0, each of BY — AT and BT — AT
consists of rows that are + [1T —1T}. Thus, 17X;; = 17Xy, and 17Y;; = 17Y5; for
i = 1,2 imply (3.3.4).

Consider the condition . Then, it can be checked that is equivalent

to
Tre  —Jrs| [V Yol n X Xuo| | Jou —Jgu _ (d—a)dg; (c—0b)Jg,
~Jke  Jrg | [Yib Yo Xor Xoo| |=Jng Jny (b—c)Jgs (a—d)Jg,

It follows from Lemma that the condition is equivalent to Yi11, —
Yioly = 11y, X111, — X0y, = 211 and Yo 1. — Yool y = 101, Xo11,— Xool), = 221,
where 1 +y; = 29+ y2 = d — a and y; — x1 = y; — x5 = ¢ — b. Furthermore, pre-
multiplying both sides of Y131, — Y121, = y11; and Y1, — Yaoly = w1, by 17,

respectively, we have
1Yl — 1Yl = y11] 1 = yil and 1] Yo 1, — 1] Yool = 111 = yol.

Since 17Yy; = 17Yy; for i = 1,2, from subtraction of the two equations, we obtain
(y1 — y2)l = 0 and so y; = ys. Similarly, using X311, — X121, = 211, and X911, —
X1, = x91,, it can be checked that z; = x5. It follows from E1 = 0 that

T = w = % and y; = W = % Furthermore, since x; and 1, are
integers, g — h and e — f must be even. O

Corollary 3.3.16. Let E be a (0,1, —1) matriz of form|(M4). Then, E is realizable
if and only if g — h and e — f are even.
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Proof. Suppose that FE is realizable. By Theorem [3.3.15] the conclusion is straight-

forward. Conversely, let g—h and e — f be even. We only need to show the existence

X1 X Y Y
of X — |1 20 qy = [Tt
Xo1 Xao Yor Yoo

g —h =0, then our desired matrix can be obtained by choosing X = 0. We can also
obtain X with |(i)| and (ii)| by choosing X1; = X5 = [ka% O} and X2 = X9 =0
if g— h >0, and choosing X;; = Xo; = 0 and X1p = Xop = [Jki 0] if g —h <0.
In this manner, we can also construct Y satisfying|(i)| and . O]

satisfying |(i){ and |(ii)| of Theorem [3.3.15, If

Remark 3.3.17. Consider a (0,1, —1) matrix £ of form [(M3)] Then, E1 = 0
impliesc—b=d—a = % The matrix F can be regarded as a matrix of form
by setting ¢ = 0 and A = 0. From Remark equivalent conditions for Gram
mates via E can be induced by those for Gram mates via matrices of form
annihilating the conditions related to X in|(i)| and of Theorem Hence, A
and A + FE are Gram mates where A is in form (3.3.8) with ¢ = h = 0 if and only
Yo Ya| |1 ] et
Yo Yool [-1] 7
Furthermore, F is realizable if and only if e — f is even.

Let E be a (0,1, —1) matrix of form [[M2)] Then, E1 = 0 implies e = f > 0 and

g = h > 0. By an analogous argument with Remark [3.3.14] we can find that A and

A+ E are Gram mates where A is in form witha =b=c=d =0 if and only

X Xip [1] o Y Y| 1
-1 ’

Xo1 Xao Yor Yao| |1
for i =1,2. Since e — f = g — h = 0, E is realizable for any e, f, g, h > 0.

if 17Y;; = 17Y5; for i = 1,2 and

1
1] where e — f is even.

if

] = 0, 1TX1i = 1TX2i and 1T}/1Z = 1T}/21

Finally, from Remark [3.3.12 there is only one pair of Gram mates via E of form
(M1)| and so E is realizable. Thus, one may consider E as a matrix of form
by settinge=f=g=h=0.

Remark 3.3.18. Let F =

] be a realizable matrix where E is of one of types

(M1)[{(M4)| and let A and E be Gram mates. Suppose that A =

and Remark
| completely determining Gram mates via E is equivalent to finding all left and

B32 y g g

right (0, 1) null vectors of E for X; and Xo.

(0, 1) matrix compatible with the partition of E. By Proposition

Let E be a matrix of form [(M4)| Suppose that A and A + E are Gram mates
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where A is in the form (3.3.8]). Then,

Jea Jep Jke Ikd ke ey 22X 2Xi
Jia I Jie J Jee J 2X91 2X
oA+ = | Ter ke Jea k. f 21 22 (3.3.9)
la Jip e Ja 2Yn 2Yie  Jig Jip
Jo Dip e Ja 2Y 2Ye Jig Jin

where e 4+ f and g + h are positive even numbers, k,l > 0 and a +b+c+d > 0.
Consider two vectors x] and x2 that form a basis of Row(FE):

1T

a

4

a

x] = 17 —17 17 17 1% o of |,

(3.3.10)

x7 = ~1f 17 -1F of of 17 -1} |.
From £1 =0, we havea+b+e=c+d+ fand a+c+ g = b+ d+ h. By Theorem
3.3.15) 2(X;11, — Xi21,) = g —h and 2(Y;11. — Yioly) = e — f for i = 1, 2. It follows
from a computation that (24+ E)x; = 0 for j = 1, 2. Since Row(E) = span{xy, Xa},
we obtain (2A+E)ET = 0. By Theorem , A+ F is obtained from A by changing
the signs of 2 positive singular values. Hence, A is convertible to A+ E. Furthermore,
for E’ in each of types|(M1), |(M2)| and [((M3), we may consider e = f = g = h =0,
a=b=c=d=0and g =h = 0, respectively, in and . One can
readily check for each case we have (24’ + E')(E')T = 0 where A’ is a Gram mate
to A’ + E’. Therefore, for any pair of Gram mates A and A + F via E in any form

among (M4)l A and A+ E are convertible Gram mates.

We now consider right singular vectors v; and vy corresponding to the Gram sin-
gular values of A and A+ E. Since Row(E) = span{xy, X2}, we have span{x;, X2} =
span{vy,vo}. Usinga+b—c—d+e—f=0,a—b+c—d+g—h =0 and the
conditions |(i)| and in Theorem one can verify from computations that

_(k(a—i—b—i-e ll(a—b—c—i-d))la (%k(a—b—c+d)+l(a+c+g))1a
(k(a+b+e)—3la—b—c+d)1, (3k(a—b—c+d)—I(a +c+g))1b
(—k(a+b+e)+ %l(a—b—c+d))lc (=ikla—b—c+d) +l(a+c+g)l.

AT Ax, = (=k(a+b+e)—Llla—b—c+d))ly AT Axy = (- %k(aflbchrd)fl(achJr o)a|

k(a+b+e)l. sk(a—b—c+d)l.
—k(a+b+e)ly —2k(a—b—c+d)1y

slla—b—c+d)1,
—illa=b—c+d)1,

lla+c+g)1,
—lla+c+g)1,

Consider an equation ATA((1x1 + (ox2) = M%) + (3Xo) where (i, (; and \ are
real numbers. Set a; = k(a+b+e), as = k(a —b—c+d), a3 = l(a + c+ g) and
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ays =1(a —b—c+d). Then,

(Gi(ar + 3a4) + G502 + a3))1, (G +G) 1,
(Ci(ar — %CM) + Cz(%az —a3))1, (G1— )1
(Gi(=ay + %CM) + Cz(—%az +a3))1, (=G + ()1
T (Gi(—a1 — $aq) + G(—3a2 — as))1q (=G — (&)1
SSRGS (Glar + 2Gan)1, =4 Gl '
(—Gar — 2Gan)1y —G11y
(3¢Gias + Gas)ly, C21,
I (—3C1as — Ca3)1y, | LY

This implies that (;x; +(3Xs is an eigenvector of AT A corresponding to an eigenvalue

A if and only if ({1, (s) is a solution to the system of equations a;(; + %aggg = A3
1
a;  3a
and $as(1 + azCs = A(o. Hence, for an eigenvector (¢, (») of the matrix [1 o2 2]
504 a3
associated to an eigenvalue A\, a normalized vector of (1x; + (sXs is a right singular
vector corresponding to a Gram singular value v/ of A. Furthermore, for E’ in each
of types [(M1)} |(M2)| and |(M3)], considering the extra conditions e = f =g =h =0,

a=b=c=d=0and g =h =0, respectively, one can find that analogous results

are established for right singular vectors associated to the Gram singular values of

Gram mates via E’. Therefore, we have the following result.

Theorem 3.3.19. Let E be a realizable matriz of rank 2 corresponding to one of

forms . Let

k(a+b+e) Ltk(a—b—c+d)
Hla—b—c+d) l(a+c+g)

where the entries in M correspond to the sub-indices in|(M1){(M4 ). Suppose that A
and A+ E are Gram mates via E. Then, A and A+ E are convertible, and their

Gram singular values are the square roots of the eigenvalues X of M. Furthermore, a

right singular vector corresponding to v/ is a normalized vector of (1x1 +CoXo, where
x; and Xy are the vectors in (3.3.10) and ((1,(2) is an eigenvector of M associated
to A.

3.3.2.2 Realizable matrices in the form |[(M5)]

We now investigate Gram mates via matrices of the form [(M5)| Furthermore, we

shall show that there exist non-convertible Gram mates via matrices of the form
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(M5)|, while any Gram mates via matrices in any form among (M4) have Gram

singular values.

Lemma 3.3.20. Let

A Ay X B, By X
A = Ag Y A4 5 B = B3 Y B4
Z As Ag Z Bs DBg

be (0,1) matrices such that (A — B)1 =0, 17(A — B) = 07, and A; + B; = J for
i=1,...6. Then, AAT = BBT if and only if

(B, — A)YT + X (B — A]) = A1A7 — BBy,
(B, — AN Z" + X(BY — AY) = A,AY — ByBY,
(Bs — A3)Z" +Y/(BY — ALy = A,AY — ByB!.

Furthermore, AT A = BT B if and only if

(Bf — ADYX + YT (B, — A)) = AL A — BT B,
(Bl — AD)X + Z"(Bs — Ag) = A3 Ay — BI By,
(BY — ADY + Z27(Bs — As) = AT A, — BT'B,.

Proof. From (A — B)1 = 0, we have {Al AQ] 1 = [Bl BQ} 1, |:A3 A4} 1 =
|:Bg B4} 1, and [A5 AG} 1= [B5 Bﬁ} 1. Moreover, A; + B; = J fori =1,...6.
By Lemma [3.3.11} A1 AT + A, AY = BB + ByBY, A3AY + AyAT = B3BY + B,BT
and As AT + AgAL = Bs;BY + BsBl. Similarly, one can deduce from 17(A — B) =
07 that ATA, + ATA; = BTB, + BIB;, ATAy + ATAST = BYB, + BT B; and
AT Ay + AT Ag = BB, + Bl Bs. Considering AA” = BBT and AT A = B" B, the

desired conclusion is straightforward. O]

Remark 3.3.21. Continuing with the notation and hypothesis of Lemma [3.3.20
consider A that is a 3 x 3 block partitioned matrix. Let n; be the number of columns
in the ¢*® column partition of A for i = 1,2,3. Then, (A— B)1 =0and A; + B; = J
imply that n;+ns, ny+ng and ny+ng are even. Hence, n; is either even for i = 1,2, 3
or odd for 7 = 1,2,3. Similarly, the number of rows in each row partition of A has

the same parity.
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Theorem 3.3.22. Let

Jka  —Ikp  Jke —Jka O 0
—Jia iy —Jie  Jid 0 0
pa —JIpb 0 0 Ipe  —Jpgs
—Jya  Jgp 0 0 —Jge  Jog
0 0 Jre  —Jra —Jre  Jrg
0 0 —Joe Joa  Joe sy

where E1 =0, 1TE =07, and a+0b, c+d, e+ f, k+1, p+q and r + s are positive.
Let

0 Jep 0 Jpa Xin Xio

A= (3.3.11)
an 0 }/21 Y'22 qu 0
le ZlQ 0 Jr,d Jre 0
_Z21 Z22 Js,c 0 0 Js f_
. - . X1 X
be a (0,1) matriz conformally partitioned with E. Suppose that X = ,
Xo1 Xao
Y1 Y AL
y=|" "2l adz=|"" "7 Then, A and A+ E are Gram mates if and
Yor Yoo Zor Iz

only if X, Y and Z satisfy the following conditions:

(1) there are integers x1, T2, Y1, Y2, 21 and zz such that X = 1|’ Y 1 =
) —

yil 1 211
,Z = andxl:y2:—227x2:y1:—217x1+x2:y1+y2:
y21 -1 221
—(z1+22) =e— f; and
1 1 1
(ii) there are integers ay, s, 31, Ba, v1 and Yo such that XT L = all] YT [ 1] =
_ o _

pil 1 7l

;ZT = and y1 = B2 = —ag, Yo = b1 = —a1, 1+ =
[521 -1 721

Bi+fo=—(1+ay) =1—k.
In particular, and [(it) imply (a) eay — fas = kxy — lzs, ¢Bi — dfs = py1 — quo,

and avy; — bys =1z — 525.
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A Ay X E, Ey, 0

Proof. Let A= |A; Y Ayl and E= |E3 0 E4|.Set B=A+FE. By Lemma
Z  As Ag 0 E; FEs

AAT = BBT if and only if

_ . - T

Jee —J Jpe —d b—a)J 0

. YT x| pi| |0y . (3.3.12)
__Jl,c Jl,d | _—Jq@ Jq’f 0 (CL - b)Jl,q
_ - - T

oo —J —Jre Jp d—c)Jy, 0

k, kb 7T L X : f _ ( c)Jx, ’ (3.3.13)
__Jl,a Jl,b ] L Js,e _Js,f 0 (C - d)Jl,S
_ r T

Jpa —, Jre —J; 0 —e)dys

P, pbl 7T 4y : Ll - (f =)y . (3.3.14)
__Jq,a Jq,b __Js,c Js,d (6 - f)Jq,r 0

From (3.3.12)), we have

JieY11 — JeaViy + X dep — X12Jpp = (b — a) Jyp,
— D Y1+ JiaYiy + XorJep, — XooJp, =0,

JicYay — Jua¥ay — X1 deq + X12Jyq =0,

— i Yoy + J1aYes — XorJeg + XaaJpg = (a— b)Jyg.

By Lemma [3.3.10} (3.3.12) is equivalent to the conditions that X131, —X121f = 211,
Xoi1le — Xooly = 201, Y11, — Yiolg = 11, and Yo 1. — Yuly = yp1, where
T1+y1 = oty = b—a and x1 —ys = xo—y; = 0. Similarly, applying Lemma [3.3.10
to and , we find that is equivalent to 21 —x1 = 29 —29y = d—c
and 2z + 11 = 21 + x5 = 0 where Z111, — Z121, = 211, and Z911, — Zyoly = 291;
(3.3.14])) is equivalent to zo —yy = 21 —yo = f —e and 23 +y; = 22 + yo = 0. Note
that 1 —yo = 290 —y1 = 20+ 21 = 21+ 22 = 21 +y1 = 22 +yo = 0 if and only

if 11 = yo = —29 and 9 = y; = —2z. Since F1 = 0 and 17F = 07, we have
a—b=d—c=f—e. It follows that x1 + xo =1 +y2 = —(21 + 20) = e — [.

Applying an analogous argument to the equivalent conditions for ATA = BT B
from Lemma [3.3.20] it can be found that v; = By = —aw, 72 = 1 = —a1, 71 + 72 =
Bi+ By = —(a1 + az) = | — k where X1, — X111, = ay1., XL1, — XL1, =
agly, Vi1, — Y1, = B, Y51, — Y51, = Bely, Z41, — Z11, = 11, and
Zisl, = Z31s = 71y,

On the other hand, subtracting 17 Xo11, — 17 X991 = 25171, from 17 X7;1, —
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1£X121f = l’llzlk, we have
(].gXH — 1lTX21)1e — (1%X12 — 1lTX22)1f = .%'11%1]6 — ZEQ].ZT].Z.

Hence, ea; — fan = kxy — lxo. Similarly, we can find ¢f, — dfy = py1 — qyo from

1yl — 1]Y151y = 1101, and 1751 — 175014 = 1171, and ayy — by, =

rz21 — SZz9 from 177:2111(1 — 177;21215 = 21177:17« and 1?2211(1 — 1222215 = 221515.
Again by a similar argument, one can verify that |(i)[ implies @ O]

Remark 3.3.23. Let us continue the notation and result of Theorem [3.3.22] Sup-
pose ¢ = 0. This is equivalent to the fourth row partition of F being annihilated.
Since Y3; and Ya, in the corresponding A are removed, the parameter y, does not
appear for this case. Furthermore, examining the proof of Theorem [3.3.22] in or-
der to attain the equivalent condition for A and A + E to be Gram mates, we
only need to modify the conditions as follows: x; = —z5, 9 = y; = —2z; and
r1+ x9 = —(21 + 22) = e — f; that is, we can obtain the equivalent condition by
annihilating the constraints involved with ¥, in|(i)|and . In this manner, one can
check that if the sub-indices indicating positions of row or column partitions in F are
zero, then the equivalent condition is achieved by removing the constraints involved
with the parameters in and that do not appear, due to the resulting matrix
being obtained from FE by deleting row or column partitions corresponding to the

sub-indices.

Example 3.3.24. Maintaining the notation and result of Theorem forn > 1,
sstk=a=s=f=n+1,l=b=r=e=n,p=c=0,and ¢ =d = 1. By Remark
we obtain the equivalent condition for A and A+ FE to be Gram mates, from
andby modifying as follows: x1 = yo = —29, T3 = —21, T1+72 = —(21+20) = —1,
M=y = —qg, Yo = —a, 11 +7 = —(ag +a) = —1. Since p = ¢ = 0 and
g=d=1, we have Y = —y, = —3,. For ease of exposition, permuting the 4" and

5% row partitions and the 4™ and 5 column partitions, we have

Jn-l—l _Jn+1,n _1n+1
—Jnn+1 Jn 1n
E=| -1, 1, 0 e
1n+1 —Jdn41 Jn+1,n
i 1, | Junrr —Ju |

Then, one can verify from the equivalent condition that A is a Gram mate to A+ E
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if and only if A is of the form as follows:

0 Jnt1n | In
+1, +1 M,
Jn,n—f—l 0 0
A= | 11, 0 m | 0 1%
0

n

Jn 0
M, +1
1, 0o J,

where for m € {0,1}, M; and M, are (2n + 1) X (2n 4+ 1) matrices such that
Mi 1n+1 _ m1n+1 and MZT 1n+1 _ m]-n—l-l
( n (1-m)1,

for i € {1,2}.
-1, 1-m)1 -1, 1.2}

E 0 _ . =
Remark 3.3.25. Let F = 0 0 be a realizable matrix where E is of type |(M5)|

Then, Gram mates via F can be characterized as in Remark [3.3.18]

Remark 3.3.26. Continuing the hypotheses and notation in Theorem [3.3.22] let us
consider eay — fag = kxy —lxy, ¢y —dBy = py1 — qys and ay; —byy = rzy — sz where
Ty =Yoo= —20, Ty =Y = —21, 1= Po=—ay, Vo =1 = —ai, r; + 12 =€ — f and
ay + ag =k — 1. Then,

ey — fag = kxy — lxg,
—can + dag = pry — gy,

—aog + bay = —rxy + ST

Furthermore, we obtain a linear system

(e+ flon = (k+ Dz = f(k—1) = l(e— f),
(c+d)ay — (p+ q)ry = d(k — 1) — ple — f), (3.3.15)
(a+b)ay — (r+s)xy =alk—1) —r(e—f).

Note that the equations (e+ f)(p+q) = (k+1)(c+d), (e+ f)(r+s) = (k+1)(a+Db)
and (¢c+d)(r+s) = (p+q)(a+b), which are from the determinant of the coefficient
e+f _ ctd _ atb

matrix of each pair of equations in (3.3.15)), are equivalent to 74 = e = rrs e

the ratios of the numbers of rows and columns of X, Y and Z are in proportion. For
such case, the sizes of X, Y and Z are said to be proportional.

We observe that a pair of a; and z; completely determine the integers in |(i)| and
. Usinga—b=d—-—c=f—eand k-1l =qgq—p=s—r from £F1 = 0 and

17E = 07, respectively, it can be checked that (ay,z;1) = (45, <5L) is a solution to
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the linear system (3.3.15)). Then, ay = as and z; = 5. Considering (0, 1) matrices,
k — 1 and e — f are even whenever there exist Gram mates A of form (3.3.11)) and

A+ E with (o, 21) = (5, <.

Suppose that there are two matrices among X, Y and Z such that their sizes
are not proportional. Then, the system (3.3.15)) has a unique solution (g, ;) =
(%, %) So, if k— 1 or e — f is odd, then there are no (0, 1) matrices X, Y and Z

satisfying [(i)] and [(ii)} In other words, if E is realizable, then k — [ and e — f both

are everl.

Assume that the sizes of X, Y and Z are proportional. Considering the equation
(e+ floq — (k+ Dy = f(k —1) — (b — a) with a solution (ay,z1) = (&L, <L), we
obtain (ar,x1) = t(k + e+ f) + (5L, e;f) for any ¢ as the solutions to (3.3.15)).
Set t = L. Then, (ai,71) = (k,e). So, 11 =y = —zm =€, Ty =y1 = —21 = —f,
M =B
showing that FE is realizable under the condition that £ — [ or e — f is odd.

|| N

—ag =l and v = ; = —ay = —k. This particular solution is used for

Continuing the hypotheses and notation in Theorem [3.3.22] by Remark
the number of rows (resp. columns) in each of X, Y and Z has the same parity. Let
X be an m x n (0,1) matrix. We shall establish the equivalent condition for E to
be realizable (Theorem by considering two cases: m and n are even (Lemma

3.3.28), and m or n is odd (Lemma [3.3.33). Note that we only need to show the
existence of X, Y and Z satisfying|(i) and of Theorem [3.3.22,
X1 Xig

X
21 22
where X171 and Xas are my X ny and mo X no matrices, respectively. Suppose that

Lemma 3.3.27. Let my,mg,ny,ny > 0. Let X = [ ] be a (0,1) matriz

1, al,, 1,, b1, X, X
X = ™ and XT = M For X = |0 T we have
—1,, a1y, —1,, 521n2 2 Xo1
1, —ail,, 1, be1,, .
X 2 = @1tmy and XlT L Furthermore, given Xy =
_1n1 —a21m2 —1m2 b11n1

22 we have Xo = 2rmelgnd X7 2= P
X12 Xll _1n1 —aq ]-m1 _]-m1 _b11n1
Lemma 3.3.28. Let my, ma, ni,ng > 0. Suppose that my+mo and ni+ns are even.
X1 Xio

Then, there exists an (my + mg) X (nq + nz) (0,1) matriz X = , where
Xo1 Xoo

1
X11 and Xoy are my X ny and my X ny matrices, respectively, such that X { = } =

-1,
n1;n2 1m1 and XT lml — mlgmz ]-m .
1m2 _1m2 1”2



Proof. 1If m; = my and ny = ny, then X can be chosen as the zero matrix. By Lemma

3.3.27, we only need to consider two cases: (i) m; > mg and ny = no, (ii) my > me

Sy —moy
2

0

desired matrices. Suppose m; > my and n; > ny. Let o = ™52 and § =

,n1+n2

and ny > no. If my > mo and ny = ny, then X = is one of our

ni—na
2 .

Then, it is straightforward to check that the following matrix can be our desired

matrix:

Jag 0 0
0 0 Joygs
0 Jams Jop | Jom
0 0 Jps| O

X =

]

Let n > 0, and let « = (ay,...,a,) and B = (B4, ..., B,) be real vectors. Suppose
that o/ = (o}, ...,al,) and 8’ = (81, ..., 3)) are obtained from « and f3, respectively,
by rearrangements such that of > --- > o/ and gy > --- > (/. The vector «
majorizes (3, denoted by a = B, if ¥F o/ > SF Bl forall 1 < k < n, and
Yo, ap =", Bl For nonnegative integers aq, ..., oy, define of = {ajlo; > 4,5 =
1,...,n}| for i = 1,...,n. The vector a* := (af,...,a) is said to be conjugate to
a. For instance, if a« = (3,3, 3,3,3), then o* = (5,5,5,0,0).

Let U(R,S) denote the set of all (0,1) matrices with row sum vector R and
column sum vector S. Let R = (ry,...,r,) and S = (s1,...,5,) be nonnegative
integral vectors. In the context of majorization, we may adjoin zeros to S (resp. R)

if m > n (resp. m <n).

Theorem 3.3.29. [58/(the Gale-Ryser theorem) Let R = (ry,...,rmy) and S =
(S1,-..,8n) be nonnegative integral vectors. Then, there exists a (0,1) matriz in

U(R,S) if and only if S < R* andr; <n fori=1,...,m.

We refer the reader to [58] for the construction of a matrix in U#(R,S). From

Theorem [3.3.29, we immediately have two lemmas as follows.

Lemma 3.3.30. Let R = (r,...,r) and S = (s,...,s) be nonnegative integral vectors
of size m(> s) and n(> r), respectively. Then, rm = sn if and only if there exists a
matriz in U(R, S).

Lemma 3.3.31. Let S = (s1,. .., S,) be a nonnegative integral vector where Y1 | s; =

(. Let m be a positive integer such that s; < m for alli=1,...n and { = qm +r
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for some ¢ >0 and 0 <r <m — 1. Suppose

R=(q+1,....q+1,q,...,q).
——

r times m—r times

Then, there exists a matriz A € U(R, S).

Proof. Evidently, [ < mn, so ¢ + 1 < n whenever » > 0. Since we have R* =

(m,...,m,r,0,...,0) where m appears ¢ times, we can see that S < R*. By Theorem
3.3.29] our desired result is obtained. O]
Given a nonnegative integral vector R = (71, ...,7,,) where >/, r; = £, we shall

establish an analogous result for Lemma by constructing a concrete matrix.
Let n be a positive integer such that r;, <n foralli=1,...,m. Choose ¢ > 0 so that
¢ =qgn+rforsome 0 <r <n-—1. Let ro = 0, and let Ay be the m x n(g+ 1) matrix
such that if 7; > 0, then the i*" row of Ay consists of 1’s from the (1 + 23-:1 ri_p)h
position to the (Z§:1 rj)th position and 0’s elsewhere; if 7, = 0, then the i*® row of A,
is a row of zeros. Then, A, can be partitioned into (¢ + 1) submatrices Ay, ..., A,y
so that for 1 <i < ¢+1, A; is an m X n submatrix of Ay whose columns are indexed
by (i—1n+1,...,(i—1)n+n.

Let A=Ay + -+ Ay It is clear that the row sum vector of A is R. Since
ones in each row of Ay appear consecutively and each row contains at most n ones,
A must be a (0, 1) matrix. Furthermore, every column of A; for i = 1,..., ¢ contains
precisely a single one, and each of the first  columns of A,;; contains a single one.

Therefore, A € U(R, S) where

S=(@+1,....9+1,q¢,...,9). (3.3.16)
———

r times n—r times

Example 3.3.32. Let R = (3,3,0,2,3). Consider the described matrix Ay above:

‘11 10/0000/0000]
000 1[1 1000000
Ay=10000/0000[0000
0000[0011/00°00
0000[000O0/1 110
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As explained above, we obtain

1110
1101
A=100 00
0011
1 110

Continuing with the hypotheses and notation in Theorem [3.3.22] assume that E
is a (0,1, —1) matrix of the form and A is a (0, 1) matrix of the form ([3.3.11).
Recall from Remark that given that the number of rows or columns of X in A
is odd, if F is realizable, then necessarily the sizes X, Y and Z in A are proportional.

We now claim that the converse holds. In order to establish the claim, we shall
construct (0, 1) matrices X, Y and Z satisfying [(i)| and [(ii)] of Theorem [3.3.22] under
the condition that the sizes of X, Y and Z are in proportion in absence of the parities
of their size. Since the sizes of X and Y are proportional, if the number of rows of Y
is bigger than that of rows of X, then the number of columns of Y is bigger than that
of columns of X, and vice versa. Hence, we may assume that X has the smallest size.
Then, it is enough to show that the existence of X implies that of Y. Considering
the last paragraph of Remark we shall find X and Y with the condition that
Ty =Y =¢€, 29 =1y = —f, fo = —ay =1 and f; = —a; = —k. Then, one of the
Jre O

e
If the size of Y is the same as that of X, then we choose Y = X. Suppose

p+q>k+1land c+d > e+ f. Since the sizes of X and Y are proportional,

%:%. From F1 =0and 17E =07, wehaveg—p=k —landc—d =¢ — f.

We need to construct a (0, 1) matrix Y such that

1. | |-f1, 1, | |-kl
—14| | el, 1, ||’

By Lemma [3.3.27, we may prove that there exists a (0, 1) matrix Y7 such that
1

1 1 k1
= | amdy? | e = | T
—14 —f1, -1, —I14

Lemma 3.3.33. Let ay,as,by,bs > 0. Suppose that mq, ms, ny and ny are positive

desired matrices for X can be obtained as

Y and YT

Y

integers such that my + mo > aj; + ag, Ny + ng > by + by, my — my = a1 — aog,
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_ _ _ ni+ns __ bi+bo : : .
ny —nyg = by — by and e = A2 Then, there exists a (0,1) matriz Y of size

(my + mg) X (n1 + n2) such that

Y 1n1 —_ b11m1 YT 1m1 _ allnl
—1,, —bol, | —1,, —agl,,
. Yin Yo . .
Proof. We shall construct a (0,1) matrix ¥ = Vo v with our desired prop-
21 Y22

erty where Yj; and Yy are m; X ny and ms X ny matrices, respectively. Here, for
i,j € {1,2}, we denote the row sum and column sum vectors of Y;; by R;; and S;;,
respectively.

Using my — mg = ay — ag, ny — Ny = by — by, we find from my +ms > a; + ao
and ny + ng > by + by that my > aq, ma > as, ny > by and ny > by; and we see from
gifn‘; = 2112?2 that miby + maby = nia; + noas. Suppose that m b, = nia;. Then,
maby = noas. By Lemma , there exist Y11 € U(Rq1,S11) and Yas € U(Raz, S2o)
such that Ry = b11,,,, S11 = a11,,,, Ro2 = bo1,,, and Soy = asl,,. Choosing Y15 =0

and Y5, = 0, our desired matrix is obtained.

Considering the transpose of Y, we may assume that mib; > nja;. Set Y5 = 0.
Let £ = m1by — n1a;. We first construct Yi;. Choose ¢; > 0 such that ¢ = niq; +
for some 0 < r; < ny. Let S = (g +1,...,¢1 + 1,q1,...,q1) where ¢; + 1 and
q1 appear r; times and n; — r; times in 5, respectively. Let S1; = a11,, + S and
Ry = b11,,,. Since £ = m1b; — nja;, the sum of the entries of S1; is the same as
the sum for Ry;. We shall show that each entry in Si; is not greater than m,. From
ny > by, we have
nia; + 0 —ry

my — (a1 +q1) = my —
ny

miby —r mi(ny —by) +r
e 101 1_ 1(n 1) Lo
ni ny

So, m; — (q1 +1+ay) > 0. Furthermore, R}, > S11. By Theorem [3.3.29] there exists
a matrix Yy, € U(Rq1,S11)-

Now, we shall construct Y3; with a column sum vector as S. Then, we need to
show msy > ¢; + 1. From my — my = a1 — as and n, > by, we have
momn, — 14 + 7
my—q=——"—

n1
many —maby +nyay +r1 ma(ng — b)) +njag + 1

= = > 0.

ny ny
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So, ms > g1 + 1. Choose ¢ > 0 such that ¢ = maygs + 19 for some 0 < ry < ms.
Applying Lemma with S, there exists Yy € U(Ry1, S21) such that Sy = S
and Roy = (g2 + 1,...,q2+ 1,¢2,...,q2) where g5 + 1 and ¢o appear 75 times and
ms — 19 times in Ry, respectively.

Let Rgy = byl,,, + Ro; and S22 = asl,,. Then, the sum of the entries of Ry is
equal to the sum for Sys. Using £ = myby — nyay, miby + moby = nia; + ngas and
ms > a9, we obtain

moby + € —19  no(mg — ag) + 12

ng—(b2+qQ)=n2— = > 0.
mo mo

Then, ny — (g2 + 1 4+ be) > 0. Moreover, S;, = Ras. By Theorem [3.3.29, there exists
Yy € U(Ra2, Sa2). Therefore, the conclusion follows. O

Example 3.3.34. Let a; =4, a, =6, by =5, by =3, m; =9, my =11, ny =9 and
ny = 7. One can check that the indices satisfy the hypothesis of Lemma [3.3.33] We
use the results and notation in the proof of Lemma [3.3.33] Then, mb; — nia; =9
and so S = 1yg. It can be found that we have Yj; € U(Ryy, S11) where Ry; = 51g
and Sy = 419 + S; Yo € U(Ry, Ss1) where REL, = (17,0,0) and Sy = S; and
Yoo € U(Rya, Sa2) where Ros = Ry + 3141 and Sy = 617. As in the construction

Iy

described in Example |3.3.32] we can obtain Yy = [O . (One can obtain Yj; and

Y55 by using the process illustrated in [58].)

Applying Lemmas [3.3.28 and [3.3.33, the following result is established.

Theorem 3.3.35. Let E be a (0,1, —1) matriz of form|(M5). Then, E is realizable

if and only if one of the following conditions is satisfied:
(i) a+b,c+d, e+ f, k+1, p+qandr+s are all even, and

(ii) three numbers a+b, c+d and e + f are all odd or three numbers k + 1, p+ q

etf _ ctd _ atbd
k+1 pt+q r+s°

and r + s are all odd; and

Assume that A and A+ E are Gram mates via a (0,1, —1) matrix £ of the form
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(M5)l. We use the results and notation in Theorem [3.3.22| Consider

Jea  Jkp Ike Jra 2X11 2Xpo
Jo iy Jie Jia 2Xo 2Xg
Jp,a Jp,b 2lel 2}/12 Jp,e Jp,f

2A+F =
Jq,a Jq,b 2}/21 2}/22 Jq,e Jq,f
2le 2212 Jr,c Jr,d J'r,e Jr,f
2Z21 2Z22 Js,c Js,d Js,e Js,f
Let
x| =17 -1f 17 1% of of |,

(3.3.17)
x; =17 -1 of o} 17 -17|.

From F1 =0, we haveb—a=c—d=e¢— f. So,

0 (f —e+2x1)1y
0 (f—e+2x2)ll
(2A + E)x; = E“;:Zizzgip , (2A+ E)xy = 8
(221 + e — f)lr (221 +e— f)lr
_(222 +e— f)ls_ _(2z2 +e— f)ls_

Since A and A + E are Gram mates, the condition in Theorem holds, so
we have £1 =yo = —2zp, to=y1 = —zpand x1+ 2o =y1 + Yo = —(21 + 22) = e — f.
Note that x; and x, form a basis of Row(FE). Hence, (2A + E)ET = 0 if and only if
z; = <L Therefore, by Theorem , A and A 4+ E are convertible if and only if

2

Suppose that z; = egf. Since (aq,x1) is a solution to the system ({3.3.15)) in
Remark 3.3.26 we have aq = £L. Hence, from E1 = 0, 17E = 07 and the conditions
and |(ii)| of Theorem [3.3.22] for i = 1,2, @; = 3, = —z = &L = <4 = b=a 4p(d

2 2 2
I—k —q

Vi =B = —a; = 5 = 1 =% We now find the Gram singular values of A and
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A+ E and the corresponding right singular vectors. It can be computed that

1, (l(a—l—c) +qla+y2))la + (21 — ) Z1 1, + (20 + ¢) ZH 1,
-1, (k(=b—d) 4+ p(=b+y1))1p + (21 — d) ZL1, + (22 + ¢) 23,1,
ar g | e | _ | Wato)+s(z+c))le+ (=0 +y)Y 1, + (a+y2) Y51,
—14 (k(=b—d) +r(z1 —d))1a+ (=0 + y1) Y51, + (a +12) Y51,
0 (qla+y2) +r(z1 —d)1e + (=b—d) XL 1, + (a + ) XL 1,
L0 | [((=bty) +s(z )1y + (=0 = d) X3 1, + (a+ ) X351 |
Substituting ¢ ¢ into 21 and zp in the first entry of the right side, we have —%(c +

d)Z11, + 2(c—|—d)Z2Tlls =

—v1(c+d)1,. So, from y, =

, we find (I(a+c)+3q(a+

b) + v1(c + d))1, in the first entry. Applying a similar argument for the remaining
entries of the right side, it follows that

1, (lla+c)+ 2qla+b) — In(c+d)1,
—1, (—k(a+c) — 3p(a+b) — 37(c+d))1,
| L (l(a+¢) + Ls(c+d) — 11 (a+ D)1,
~1 (—k(a+c) = ir(c+d) — 3Ba(a+0)1a|
0 (3q(a+0b) — ir(c+d) —ar(b+d))1,
0 | |(=3platb)+gs(c+d) —ax(b+d))1y

Similarly, one can verify that

1, (3l(a+0) +qla+e)+ 3mle+ f))L
-1, (— %k(a—i—b) (a+e)+%72(e—|—f)1b
ata| O (3la+0) —zs(e+f) = Alb+ e |
0 (—3k(a+0)+5r(e+ f) = Bo(b+ f))1a
L. (qa+e) +gr(e+ f) — gai(a +b))L
—1;]  |(=plate)— ss(e+ f) — son(a+ b))1y)

Consider an equation ATA((1x; + (oxa) =

AMix1 + (ox2) where (1, (o and A

-k _

are real numbers. Using v, = 6; = a; = = = %‘1 5?2, it can be checked that
the equations from the first, third and fifth row blocks are identical with those from
the second, fourth and sixth row blocks, respectively. Moreover, we can find that
the equation from the first row block is the same as the addition of two equations

from the third and fifth row blocks. Hence, AT A((1x; + (ox2) = M(1%1 + (oXo) is
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equivalent to a linear system of two equations from the third and fifth row blocks:

G <l(a +c)+ ;s(c—I—d) — ;51(a + b)) + G2 (;l(a—i— b) — ;s(e +f) = Bulb+ f)) = A1,

6 (Gata+0) = gric+d) — a4 ) + G (alat o)+ grle+ )= sanla+ b)) =26

Therefore, we have the following result.

Theorem 3.3.36. Let E be a realizable matriz of form|(M5), and let

0 Jep O Jra Xun Xio
Jl,a 0 Jl,c 0 X21 X22

be a (0,1) matriz conformally partitioned with E. Suppose that A and A+ E are
Gram mates. Then, A and A + E are convertible if and only if one of the fol-
lowing hold: (i) (Xn — Xio)1 = SL1 fori = 1,2; (i) (X} — X5)1 = 511 for
i =1,2; (iii) (Yo — Yio)1 = 591 fori = 1,2; (iv) (V] — V)1 = 591 fori=1,2;
(v) (Zin — Zp)1 = %21 fori = 1,2; and (vi) (Z} — Z5)1 = 521 for i = 1,2.
Furthermore, if A is convertible to A + E, then the Gram singular values of A and

A+ E are the square roots of the eigenvalues A of M where

lla+c)+is(c+d)+i(k—=D(a+b) Fl(a+b)—isle+ f)+3(k—1(a+e)
saa+b) —3r(c+d)+3p—qla+c) qlat+e)+zr(e+f)+ip—a)(a+b)

Further, a right singular vector associated to /X is a normalized vector of (1x14CaXa,
where x1 and Xy are the vectors in (3.3.17) and ((1,(2) is an eigenvector of M

associated to M.

3.4 Non-isomorphic Gram mates via realizable ma-

trices of rank 1

Here we revisit the speculative statement in [30]: if Gram mates A and B with
distinct positive singular values are convertible, then A and B are isomorphic with

very high probability. We characterize non-isomorphic square Gram mates with all
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distinct singular values—in particular the multiplicity of 0 as a singular value is 1, if
Gram mates are singular—via a realizable matrix of rank 1. As seen in Subsection
3.3.1] those Gram mates are convertible.

Let A and B be Gram mates such that rank(A — B) = 1. Let « (resp. f3) be
the set of row indices (resp. column indices) such that there is a nonzero entry in
the corresponding rows (resp. columns) of A — B. Then, A[a*, 5°] = Bla®, 5¢]. The
submatrix Ala®, §¢] is said to be the remaining matriz of Gram mates A and B.
Rearranging rows in order of a and o and columns in order of 8 and (¢, we can
obtain isomorphic matrices to A and B, respectively, as we preserve the structure of

the remaining matrix. Without loss of generality, by Theorem [3.3.7],

0 Tk Xi Joke 0 Xy
A=|Jun 0 X|.B=| 0 Juwm X (3.4.1)
X3 X4 Y X3 X4 Y

17X, = 17X, and X351 = X,1 where ki, ky > 0. Note that Y is the remaining
matrix of A and B.

We now consider sets of particular permutation matrices in order to establish
families of non-isomorphic Gram mates (Proposition and Theorem [3.4.11). Let
Z;bean mxn (0,1) matrix fori = 1,...,4. Define Rz, z, to be the set of all 3-tuples
(P, P»,Q), where P, P, and () are permutation matrices such that 7, = P Z;Q
and Z; = PyZ5@Q). We also define Lz, 7, as the set of all 3-tuples (P, ()3, Q4), where
P, ()3 and (), are permutation matrices such that Z3 = PZ3Q)3 and Z, = PZ,Q4.

If there exist (Pr, P2, Q) € Ry, x, and (P, Q3,Q4) € Lx, x, such that Y = PYQ,
then

0 P o] [Qs 0 o0 i s 0 PXoQ
P, 0 0lAl0 Q4 0|=] o0 Jow PX1Q| = B.
0 0 P 0 0 Q| |PX3Q;s PXuQs PYQ

So, A and B are isomorphic. Similarly, if there exist (P, P, Q) € Rxa‘T’X:{ and
(P,Q3,Q4) € Lxr x7r such that YT = PYTQ, then

QY 0 0 0o P 0

0 QF ol|A|Pf 0 o0|=8B
0 0 QT |o o PT

Hence, A is isomorphic to B. The remaining matrix ¥ of A and B is said to be
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fizxable if there exist permutation matrices P and () such that Y = PY Q) and one of

two cases holds:

(1) (Pl, PQ, Q) - RX1,X2 and (P, Qg, Q4) € £X3,X4 for some Pl, PQ, Qg, Q4; and
(11) (Qg, Q4, PT) < RX;:F,XE and (QT, Pl, PQ) < £X1T7X2T for some Pla PQ, Qg, Q4.
The following proposition immediately follows.

Proposition 3.4.1. Suppose that A and B are Gram mates and rank(A — B) = 1.

If the remaining matrix of A and B is fixable, then A is isomorphic to B.

Remark 3.4.2. Let Z; and Z, be (0, 1) matrices of the same size. We have (I,1,1) €
Lz, z,- It Z; and Zy are not isomorphic, then Rz, 7, and Rzr zr are empty. For the
matrices A and B in (3.4.1), if Ry, x, and Rxz xr both are empty, then Y is not
fixable.

Example 3.4.3. Here we revisit Example [3.3.9;

(0 01 1|1 1 0] (1 1]0o 01 1 0]
0 0[1 1|0 0 1 1 110 0/0 0 1
1 1/00[1 11 00[1 1|1 1 1
A=|11l00/000|,B=|00/11/00 0
1 0[10[1 11 1 0[10[1 11
1 0[1 0111 1 0[10[1 11
(0 1101 11| (0 1)1 0f1 1 1]

where A and B are conformally partitioned with the matrices in , and we use
the same notation in (3.4.1)). Since X; and X, are not isomorphic, Ry, x, is empty.
Similarly, RX??" xT 18 also empty. So, the remaining matrix is not fixable.

We claim that A and B are not isomorphic. The multi-sets of row sums and
column sums of a matrix are invariant under permutation of rows and columns in
the matrix. The row and column sum vectors for A and B are (4,3,5,2,5,5,5). So,
if A and B are isomorphic, then necessarily Ao, a] is isomorphic to Bla, a] where
a = {3,5,6,7}. However, A[a, a] contains fewer ones than Bl«, o). Hence, A and B

are not isomorphic.

We shall consider the converse of Proposition [3.4.1] under some circumstances

motivated by Example [3.4.3]
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Remark 3.4.4. Let A = where ki, ky > 0.

0 ke and B = ke 0

Jk1,k2 0 J, k1,k2

One can verify that for any permutation matrices P and ) such that B = PAQ,
P 0 0 0 P 0

a pair (P, Q) is either ! @ or 1@ for some
Bl Q1 0 P 0 0 @2

permutation matrices Py, Py, ()1 and Q)s.

Y Y

Proposition 3.4.5. Let A and B be Gram mates of the form . Let R and S
be the row and column sum vectors of A, and conformally partitioned with the rows
and the columns of A as R = (Ry, Ra, R3) and S = (S1, Se, S3), respectively. Suppose
that for i = 1,2, the set of all entries of R; (resp. S;) does not have any element in
common with that of R3 (resp. Ss3). Then, A is isomorphic to B if and only if the

remaining matriz is fizable.

Proof. Suppose that A and B are isomorphic, say B = PAQ for some permutation
matrices P and (). Since the multi-sets of row sums and column sums of a matrix
are preserved by permutation, for ¢ = 1,2, any row of A indexed by an entry in
R; cannot turn into some row indexed by an entry in R3 in order to obtain B by
permutation. Similarly, one can find an analogous result with respect to columns by
using 51, Sz, and S3. Hence, considering Remark [3.4.4] a pair (P, Q) must be one of
the following:

P 0 0 0 @ O 0 A 0 @ 0 0
0 PQ 0 s QQ 0 0 and PQ 0 0 s 0 QQ 0 . (342)
0 0 Py 0 0 Q 0 0 P 0 0 Q

Let (P,Q) be the former of the two cases. From B = PAQ, one can check that
X3 = P3X4Q2, Xy = P3X3Q:, Xi = PX1Q3, Xo = P,XoQ3 and Y = BY(Qs.
Hence, Y is fixable. The other case of (P, Q) can be easily checked. Hence, the
remaining matrix is fixable.

The converse of the proof follows from Proposition [3.4.1] O
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Js  —J3 0

Example 3.4.6. Let £ = |—J; J3 0]|. Consider
0 0 0
(0000|1111 10 0]
0O 0 0|1 11{01 10
0O 0 0|1 1.1{]0 0 1 1
11 1{0 0 0j0 1 01
0 J3 Xi
11 1(]0 000 1 10
A= Jg 0 Xg -
11 10 001 010
Xs X, Y
1 01/1 100111
1 1 1/1 111 1120
1 10/01 11 111
_O 1 1/]1 0 11 1 1 1_

Since 17X, = 17X, and X351 = X41, A and A + E are Gram mates. Moreover,
(P, P, Q) € Rx, x, where Py, P, and @) correspond to permutations (1,3), (1,3)
and (2,3) in cycle notation, respectively. Note that (I,1,I) € Lx, x,. Since Y
is invariant under the column permutation corresponding to (2,3), the remaining

matrix of A is fixable. The row and column sum vectors of A are (517,7,9,8,8) and
(61F,5,8,8,5), respectively. By Proposition A and B are isomorphic.

Let square matrices A and B be Gram mates, where rank(A — B) = 1. Suppose
that all singular values of A are distinct. We claim that if the remaining matrix
of A is not fixable, then A and B are not isomorphic. To establish the claim, we
consider that for the adjacency matrix X of a (multi-)graph, the automorphism group
of X, denoted T'(X), is defined as the set of all permutation matrices P such that
PXPT = X. We refer the interested reader to [24] for properties of T'(X) regarding
spectrum of X, and to [35] for an introduction to the automorphism group of a
connected simple graph regarding group action.

Let A and B (not necessarily square) be Gram mates. Suppose that A and B are
isomorphic. Then, there exist permutation matrices P and () such that B = PAQ.
Since A and B are Gram mates, we have PAAT PT = AAT and QTATAQ = AT A.
Therefore, P € T(AAT) and Q € T'(AT A). However, the converse does not hold.

Example 3.4.7. Non-isomorphic symmetric balanced incomplete block designs A
and B can be found in [69]. Since AAT = ATA = al + bJ for some a,b > 0, ['(AAT)

and T'(AT A) are isomorphic to the symmetric group.
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Problem 3.4.8. As seen above, for a (0,1) matriz A, we could understand non-
isomorphic Gram mates to A by studying the automorphism groups I'(AAT) and
(AT A). Since AAT is an integral matriz, AAT can be expressed as AAT = a; X, +
o+ ap Xy for some k > 1, where a; and X; for 1 <i <k are a scalar and a (0,1)
symmetric matriz, respectively, and o; # oy and X o X; = 0 whenever j # | (where
o denotes the Hadamard product of matrices). It follows that T(AAT) = N I'(X,).
If there exists an index j such that the graph associated to X; is asymmetric—that
is, T(X;) = 0, then T(AAT) = 0. This provides information that if A and B with
A # B are isomorphic Gram mates and T'(AAT) = 0, then B must be obtained
from A only by permuting columns of A. From this observation, characterize (0,1)
matrices A such that T(AAT) = (. Further, we may study (0,1) matrices X such
that T'(X) = ().

Theorem 3.4.9. [27, [5]|] Let X be the adjacency matriz of a multigraph. Suppose
that X has all distinct eigenvalues. Then, for any P € T'(X), P2 = I. Furthermore,
this implies I'(X) is abelian.

Corollary 3.4.10. Let n x n matrices A and B be Gram mates with all distinct
singular values. If A and B are isomorphic, then B is obtained from A by permuting
rows and columns according to permutations, any cycle in which is of length at most
2.

Theorem 3.4.11. Let nxn (0,1) matrices A and B be Gram mates of form (3.4.1))
with all distinct singular values where rank(A — B) = 1. Then, A and B are iso-

morphic if and only if the remaining matrix is fixable.

Proof. Assume for contradiction that A and B are isomorphic and the remaining
matrix is not fixable, say B = PyAQ), where Py and )y are permutation matrices.
By Corollary , P = Q% = 1. Let 0y and 79 be permutations corresponding
to Py and (), respectively. Adopting the notation in for A and B, let a; =
{1,... k1}, a0 = {k1 +1,...,2k1}, a3 = {2ks + 1,...,n}, 1 = {1,... ka}, B2 =
{ka+1,...,2ks} and B3 = {2ks + 1,...,n}. Let A be the resulting matrix after
applying the permutation oy to rows of A, and let B be the resulting matrix after

applying 7 to columns of A. Consider

0 Jok Xi Ay Ap X Jw 0 Xy
A — Jkl,kz XQ ﬂ) A — Av21 ggg Xz l) B — O thkQ X2
X; X, Y X; X, Y X; X, Y



Suppose to the contrary that o¢(a) € as for all a € az. We consider three cases:

a) og(ay) # aq and og(ay) # g, (b) og(ay) = aq, (¢) og(a1) = as. Let the condition

A A
(a)| hold. Then, |{z € ai|og(z) € ar}| > 0. So, neither |~""| nor |~"

Ag Aga
O,
or
O, 1,

order to obtain B from A, the first column x; of A must be swapped with some gth

contains

1,

the columns [ . Note that any cycle of 7 is of length either 1 or 2. In

~ 1
column X; of A for some j € 5. Then, the subvector x;[a; U ap] must be 0k1] . So,
k1

los) 1k1

for the j™ column x; of A, we have x;[a; U ag] =% [

] . Further, we can readily
k1

1,
i.e., Xjlag U ag] = X1[a; U ay]. Hence, we obtain

0 oo, ~ . . . o
find [ kl] 2% %1 [oq Uaw]. Since j € Bs, the 5™ columns of A and B must coincide,

However, the mapping contradicts the fact that o2 is the identity. Therefore, the
case |(a)| does not hold.
Consider the case @ that oo(a;1) = ;. Since 17X, = 17X,, there are no

~ 1 0
columns in Afay U s, (3] that are M or [ M| This implies that 79(51) = O,

1
ey ey
10(B2) = p1 and 19(f3) = P3. Then, a pair (P, Q) corresponds to the former in

(3.4.2). By the argument of the proof in [3.4.5, Y is fixable, which is a contradiction
to the hypothesis. Finally, suppose that og(a;) = ay. Since 17X, = 17 X,, we have

10(51) = B1, T0(P2) = B2 and 1(PB3) = P3. Using an analogous argument as for case
@, we have a contradiction for the case Therefore, there exists a € ag such
that og(a) ¢ as.

We now suppose that there exists j € as such that o¢(j) ¢ as. Let i = g¢(j).
Then, i € ay U, say i € ay. Let a] and a] be the ™™ and j™ rows of A,
respectively, where al = [0;{1 1 xﬂ, aj
with the partition of a]. Since each cycle of oy is of length either 1 or 2, al” and a]

= {xg xT yT} and a] is compatible

are mapped to the i*" row al and the j* row éjT of /Nl, respectively, after applying

the row permutation oy. After permuting columns of a and éijT according to 7y, we
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must have b and b} that are the i"" and ;" rows of B:
e v ] o N
~jT_0T1T T_>bJT_ T T T

X1 X3 X4 Y
Since A and B are Gram mates, the row sums of xJ and x. are the same, say /.

e

AT T
Permuting columns of {fT] and [ ’T] simultaneously, we can obtain
at L

j j

1 0y 17 0y y'

Z, =
OeT Og—z 1zT 1%—6 XlT

]&22:

1éT 1%—@ 0? O;EF—@ X{]

1 05, 17 0p, y"

1
Suppose that ¢ > 0. Note that if the kth column of Z; for k € f3 is i SO is
the kth column of Z,. Considering that each cycle in 7y is of length either 1 or 2,

1
the first column [O of Z5 where

1
of Z, must be swapped with some k{® column [1

ko € [B3. Then,

1
0] is the k" column of Z,, which is a contradiction. Similarly,

applying an analogous argument of the case £ > 0 to the case ¢ = 0, one can obtain
a contradiction. Therefore, our desired result is established.

For the proof of the converse, apply Proposition [3.4.1] O]

Conjecture 3.4.12. Let A and B be Gram mates of form (3.4.1)) where rank(A —

B) =1. Then, A and B are isomorphic if and only if the remaining matriz is fizable.

The following result could be used for proving the conjecture [3.4.12] with an extra

condition that the multiplicity of each singular value of Gram mates is at most 2.

Proposition 3.4.13. Let A be a (0,1) matriz. Suppose that each eigenvalue of AAT
is of multiplicity at most 2. Then, for any P € T(AAT), P* = 1.

Proof. Since AAT is a real symmetric matrix, there exists an orthogonal matrix U
and a diagonal matrix D = diag(dl,,...,dsly,) for some s, where 1 < k; < 2 for
i=1,...,s such that AAT = UDUT. Let P € T'(AAT). Then, PAATPT = AAT
implies that UTPUD = DUTPU. Since UTPU and D commute, by Proposition
, UTPU = diag(B;, ..., Bs) where B; is a k; x k; orthogonal matrix for 1 < i < s.
In particular, if k; = 1 for some 1 < j < s, then B; = £1. We may assume k; = 2.

Then, it is enough to show that B = I in order to obtain the conclusion.
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Note that since B; is orthogonal, there exist real numbers a and b such that either

—b b
B, = “ or By = “ ] where a? 4+ b? = 1. Let u be an eigenvector of AAT

a b —a

associated to the eigenvalue d;. Then,
AATPu = PAA"u = P(dju) = d,Pu.

So, u and Pu are eigenvectors of AAT. We consider two cases: u and Pu are linearly
independent, or not.
Suppose that u and Pu are linearly independent. From PU = Udiag(B, ..., Bs),
a —b

we have P [u Pu} = [u Pu} B;. Consider By = [b . Then, Pu = (al +
a

bP)u, P*u = (—bl + aP)u. We recast Pu = (al + bP)u as (1 — b)Pu = au. Since

u and Pu are linearly independent, we have a = 0 and b = 1. Similarly, it can be

b
checked that if By = Z , then a =0 and b= 1.
—a
Assume that u and Pu are linearly dependent. Then, there are linearly inde-

pendent vectors u; and u, such that P {ul ug} = {ul ug} By and Pu; = +u; for

—b
1 = 1,2. Consider B; = Z . Then, Pu; = au; + buy, Puy = —bu; + au,. If
a
Pu; = u; for i = 1,2, then (1 — a)u; = buy and (1 — a)uy = —buy; since u; and
uy are linearly independent, a = 1 and b = 0. If Pu; = u; and Puy = —us, then

(1 —a)u; = buy and (1 + a)uy = buy; so, there are no desired values of a and b.

In this manner, it can be checked that a = +1 and b = 0. Applying an analogous

a b
argument to the case By = ; , one can verify that a = +1 and b = 0.
—a

Summing up all the cases, any 2 x 2 block diagonal matrix in diag(By, ..., Bs) is

one of the following matrices:

0 -1 0 1 10 -1 0 1 0 -1 0
) Y ) ) ) or *
1 0 1 0 |0 1 0 -1 0 —1 0 1

Evidently, B} = I for all cases. Therefore, the conclusion follows. O

3.5 Construction of Gram mates

In this section, using given pairs of Gram mates, we provide several tools for con-
structing other pairs. Similarly, with given realizable matrices, we construct others;

and we discuss realizable matrices of rank more than 2.
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Proposition 3.5.1. Let A and B be Gram mates. Then, J— A and J— B are Gram

mates.

Proof. Since A and B are Gram mates, A1 = Bl and 17A = 17 B. From Al = B1,

we have

(J=A)J - AT =% - JAT — AJ" + AAT
=J?-JB" - BJ"+ BB" = (J - B)(J - B)".

By a similar argument with 174 = 17B, we can find that (J — A)T(J — A) =
(J—B)Y(J - B). O

Proposition 3.5.2. Suppose that (A1, By) and (Ay, Bs) are pairs of Gram mates

(that are not necessarily square matrices). Then, we have the following pairs of

( ) )

Proof. For 1 = 1,2, A; and B; have the same row sum vector and the same column

Gram mates:

A O
0 A,

B, 0
0 B,

A J
J Ay

B, J
J DBy

? ?

sum vector. Then, it is straightforward to establish the desired results. O]

Proposition 3.5.3. Suppose that (A, B1) and (As, By) are pairs of Gram mates.
Then, A1 ® By and Ay ® By are Gram mates.

Proof. Since (A;, B1) and (A, By) are pairs of Gram mates, we have
(Al ® Bl)(Al ® Bl)T — AlA{ ® BlB%1 - 142AAg1 ® BQB’QT — (AQ ® BQ)(AQ ® BQ)T.

Similarly, it can be checked that (A; ® By)T(A; ® By) = (Ay ® By)T(Ay ® By). [

Remark 3.5.4. In analogy to graph operations, one might regard ways of the con-
structions for Gram mates in Propositions as the complement of a graph,
the disjoint union of two graphs and the join of two graphs, and the Cartesian prod-

uct of two graphs, respectively.

We can apply analogous approaches with Propositions[3.5.2]and [3.5.3]to realizable
matrices. Given realizable matrices F/; and Fj, it follows from Proposition that
E, 0

0 Es

} is realizable.
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Proposition 3.5.5. Let E be a realizable, and let X be a (0,1) matriz. Then, XQ@F
and E ® X are realizable.

Proof. Let A and A+ E be Gram mates via E. Since EF1 = 0, we have (X ® F)1 =
X1® F1=X1®0=0. Similarly, 17(X ® F) = 0. By Proposition [3.5.3] we have

(XRA+XQE(XRA+XQE ! =(X®@(A+E) (X (A+E)"
(X ®A)(X AT

In a similar way, we can find that (X@A+XQE)T (X@A+XQFE) = (X®@A)T (X®A).
Therefore, X ® E is realizable. An analogous argument establishes that £ ® X is

realizable. n

Remark 3.5.6. With the aid of the results in this section, we can construct Gram
mates via realizable matrices of rank more than 2 from those of rank at most 2 that
we studied in Section 3.3 As an example, let us consider a realizable matrix E of
rank 2. For a (0,1) matrix X of rank £ > 0, X ® E is realizable, and its rank is 2k.

Problem 3.5.7. Regarding the construction of Gram mates, we can pose the follow-

ing question: given non-negative integral vectors R and S, does there exist a pair of
Gram mates in U(R, S)?

We can approach this question under specific circumstances. Here we revisit

Ar A Ay A

2 A 1 Ay

and Ay are (0,1) matrices of the same size with Ay # Ay. We note that Ay and Ay

can be chosen arbitrarily. Eramining the row and column sum vectors R and S of

FExample|3.2.15: we have Gram mates A = and B = where Aq

A, each distinct integer in R (resp. S) appears an even number of times.

Motivated by the example, we have the following problem. Let R and S be non-
negative integral vectors. Suppose that each distinct integer in R (resp. S) appears
an even number of times. Prove or disprove that if R* = S, then there exists a pair
of Gram mates A and B in U(R,S) with A # B. One could check if such Gram
A A, Ay Ay
Ay Ay A Ay

mates A and B can be constructed as A = and B = for some

A1 and A2 with A1 7& AQ.

3.6 Several types of Gram mates

In this section, we deal with Gram mates related to tournament matrices or circulant

madtrices.
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An n xn (0,1) matrix A is called a tournament matriz if A+ AT = J —1. An
n X n tournament matrix A is called reqular if n is odd and Al = ”T_l It is found in
[14] that given a tournament matrix A, the following are equivalent: (i) A is regular,
(ii) JA = AJ, (iii) AAT = AT A. An nxn tournament matrix A is called a Hadamard

tournament matriz if n = 3 (mod 4), A is regular and AAT = “H ] 4 223 ],

Proposition 3.6.1. Let A, and By be n xn Hadamard tournament matrices. Then,
17 0 0 17
A J— A J—B, B
Proof. Let Ay = J — A, and By, = J — B;. Direct computation shows that AAT =
BBT if and only if 17 AT = 17 BT and A, AT + Ay AT = ByBI + B, BT; and ATA =
BT B if and only if J+ AT A; = BI By, AT Ay = BY By, and AT Ay, = J+ BY B;. Since
Aj and Aj are regular, Aj AT = AT A, = B|Bf = BT B,. From A, AT = "THI+ "T_?’J,
one can check that A,AT = AT A, = B,BI = BI'B, = "TH] + ”THJ. Since Bl =
211, we have B,1 = "1, Then, we can find that A] (J — A;) = BJ (J — Ba). So,
AT Ay = BY B;. The desired conclusion follows. O

and B = are Gram mates.

Remark 3.6.2. One can illustrate Proposition with the Hadamard designs

and their complements [69].

T _1T
Remark 3.6.3. Let £ = | " "} where n > 1. Then, it is found in [44] that
o 17
any Gram mates A and A 4+ E via E are given by A = and A+ F
M+1I MT

for some regular tournament M. We note that Gram mates in Proposition are

not necessarily via E.

Proposition 3.6.4. Let A and B be (0,1) matrices such that A+ B = J — I and
A # B. Then, A and B are Gram mates if and only if B = AT and AAT = AT A,

i.e. A is a reqular tournament.

Proof. Suppose that A and B are Gram mates. Then, (A—B)1 = 0and 17(A—-B) =

0. Since there is a single zero in each row and column, n is odd and each column of

A and B has ”T_l ones. Assume to the contrary that B # AT. Then, there is a pair

(¢,7) with ¢ # j such that either a;; = a;; = 0 or a;; = aj; = 1. If a;; = a;; = 0, then

we have b;; = bj; = 1. So, we may assume a,;; = a;; = 1. Let a; and a; be the it and

j™ columns of A, respectively. Then, 1 —e; —a; and 1 — e; — a; are the i and ;%
_ n-3

: g T, _ T
columns of B. Since a;; = a;; = 1, we have (1 —e;)"a; = (1 —e;)"a; = "5=. Hence,

(1 —e)—a)"((1— ej)—aj)=Mn—-2)—(n—-3)+ aiTaj =1+ a;-faj.
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We have (BBT);; = (AAT);; + 1, a contradiction to AA” = BB*. Thus, B = A”.
Since A and B are Gram mates, we have AAT = BBT = AT A.

The converse follows readily. m

3.6.1 Circulant Gram mates and realizable matrices

Throughout this subsection, we assume that all sub-indices indicating positions of
entries in matrices or vectors are in Z,, = {0,...,m — 1}, where m is given by the
number of rows or columns in the context, and 7Z,, is the set of integers modulo m.

An n x n matrix C of the form

Co Ct +° Cph—2 Cp—1
Ch—1 Co "+ Cp—3 Cp_2
C =
(&) Cy - Co C1
| &1 C -t Cp1 Coo |
is a circulant matriz. We denote C' by circ(cy,...,c,—1). Given two row vectors

a” and b’ of the same size, we have circ(a”) + circ(b?) = circ(a” + b”). In this
subsection, let P, denote the n x n circulant matrix circ(0,1,0,...,0). Let H, be

the n x n matrix given by:

[0 0 1]
1 0
H, =
0
0 0

We write P, and H,, as P and H, respectively, if the size is clear from the context. It
can be readily checked that PT = P!, H?2 = ] and HP'H = P~ for i € Z. Then,

C' can be recast as

CTPO
C = : :[P””Hc‘---‘PHc‘Hc]

CTPnfl

where ¢!’ = (cg,...,ch1).

An interchange in a (0, 1) matrix A is a transformation that changes a submatrix
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10 01
of A into L ol One of the works of Ryser [59] is that given A and B in

U(R,S), A can be transformed into B by a finite sequence of interchanges. Kirkland

[44] applied this idea to Gram mates by considering a realizable matrix, without loss

! -1 1
where £/ = . That is, Gram mates via F can be

of generality, £ =

regarded as two matrices where one is obtained from the other by an interchange with
the property of being Gram mates. Furthermore, Kirkland [44] generalised the notion
of an interchange by considering E’ as the difference of two permutation matrices
such that their Hadamard product is zero. Then, characterizing Gram mates via
such generalised realizable matrices can be simplified as finding Gram mates via the
direct sum of realizable matrices in form P — I (see [44] for the details). Motivated
by the fact that P — I is a circulant matrix, we therefore explore circulant Gram

mates and circulant realizable matrices.

Proposition 3.6.5. [/4] Let e’ = (—1,1,0,...,0). Then, circ(a) and circ(a” +eT)
are Gram mates if and only if there exists scalars as, ... ,a,—1 € {0,1} with a; =
Any1-j for j=2,...,n—1 such that a¥ = circ(1,0,az,...,a,_1).

Example 3.6.6. Let e/ = circ(—1,0,0,0,1,0,0,0). Then, A and A + circ(el) are

Gram mates where

O O OO o o =
o O O Ol o O —~= O
o O OO = O O
O O Ol= O O =
oSO O RO O O O
S = OO O O O
— O Ol o O o O
S O RO O O O

0 0 0[O0 0 0 1

Example tells that given a circulant realizable matrix £, Gram mates via
E are not necessarily circulant unlike the result of Proposition [3.6.5]

Remark 3.6.7. The paper [44] illustrates how to find all Gram mates via E =
P,’f—[nwherenZ?)andQSkgn—l.

Now, we consider (0, 1) circulant matrices A and B with A # B. From commu-
tativity of multiplication for circulant matrices, it suffices to consider AAT = BBT
in order to see if A and B are Gram mates. We note that every circulant matrix is

completely determined by its first row. Therefore, we only need to compare the first
rows of AAT and BBT.
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Theorem 3.6.8. Let a” and b” be (0,1) row vectors with a® # b™. Then, circ(a’)
and circ(b?) are Gram mates if and only if aT Pla = b™ P'b fori € Z,.

Proof. Note that AT = [(PO)T - (P"fl)Ta] Considering the first rows of AAT
and BBT, we can readily see that AAT = BB” if and only if a’ Pla = b” P'b for
t=0,...,n—1. The conclusion follows. O]

Remark 3.6.9. In Theorem [3.6.8, since a’ Pla = aT P~a for i € Z,, it suffices to
have a’” P'a = b" P'b for 0 < i < | %] in order that circ(a”) and circ(b”) are Gram

mates.

The centralizer of a subset S of a group G is defined to be
Cq(S) ={g € G|gs = sg for all s € S}.

Recall that S,, denotes the symmetric group of degree n. Here we use a permutation
in §,, as a bijection from Z,, to Z,. Let &2, denote the set of all n x n permutation
matrices, and let %, := {P' € Z,]i = 0,...,n — 1}. Then, P corresponds to
the cyclic permutation o = (01 ... n — 1). It can be found in [2§8] that Cs, (o) =
{o!,...,0"}. Furthermore, 0’0’ = o70’. Hence, we have C» (%#,) = %,. Therefore,
for (0,1) row vectors al’ and bT with a” # bT, if there exists Q € Cy, (.%,) such
that b? = a”Q, then a’ P*a = b” P*b for k = 0,...,n—1; so, circ(aT) and circ(b?)
are Gram mates.

The normalizer of a subset S of a group G is defined to be
Ne(S) = {g € GlgS = Sg}.

It can be found in [28] that N (%) = Z, x Aut(Z,) where x denotes the semidirect
product. It is well-known that Aut(Z,) = {0 € S,|0(1) = k where ged(k,n) =1}
(see [28]) where ged(a,b) for a,b € Z denotes the greatest common divisor of a

and b. Given a permutation o € §,, ), denotes the permutation matrix where

(ch)z‘,j - (Q)g(i)d‘. Then,
Ny (F,) = {P'Q,0<i<n-—10¢€Aut(Z,)}.

Let %, denote the set of all n x n (0,1) circulant matrices. Given a (0,1) row
vector a’', let €,r denote the set of all circulant matrices that each of them is either
circ(al) or a Gram mate to circ(a T) Suppose that circ(a’) and circ(b”) are Gram
mates. Let Q € Ny, (£,). Then, Z, = {QP'Q"|i =0,...,n—1}. Hence, we obtain
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that for 0 <i <n — 1, al Pla = b? P'b if and only if aTQP'QTa = bTQP'Q™b. It
follows from Theorem that for any Q € Ny, (%,), there is a bijection between
Gar and G,rq. Therefore, we may identify €,r with €,r(.

Example 3.6.10. Let a’ = (0,0,0,1,0,1,0,0,1,0,0,0) and o = (1 5)(2 10)(4 8)
in Aut(Zj5). Note that indices indicating positions of entries in vectors are in Z,.
Then, a’Q, = (0,1,0,1,1,0,0,0,0,0,0,0). One can check that a’Pa = 0 and
a’Q,PQTa = 1. Therefore, for R € Ny, (%,), circ(a”) and circ(a’ R) are not

necessarily Gram mates.

Proposition 3.6.11. Let a” and b” be (0,1) row vectors of size n with a # b'.
If there exist indices i and j such that bT = aT” H'P7 then circ(a”) and circ(b”) are

Gram mates.

Proof. It is enough to show that a’P*a = b P*b for kK = 0,...,n — 1. Since
H? = P" = I, there are i € {0,1} and j € {0,...,n — 1} such that b” = a’ HPJ.
Leti=1. Wehave HP/P*P7H = HP*H = P~*. So, bT P¥b = a’ P~%*a = a” P*a.
For the case ¢ = 0, it is straightforward. O]

Let &, denote the set of all (0,1) row vectors of size n with m ones where
n > m. Define a relation ~ on &, ,, as follows: for a’, b’ € &,,,, al ~ b’ if and

only if either a” = b’

or circ(a”) and circ(b”) are Gram mates. It can be readily
verified that the relation ~ is an equivalence relation. So, &, ,, is partitioned into
equivalence classes. Let 53;1 denote the equivalence class of &,,, containing a’.
Then, Ean may be identified with €,r. We note that from Proposition , we
may assume 0 < m < [Z].

Now, we introduce a representation of the dihedral group Ds, of order 2n. We
refer the reader to [28] for details. The presentation of Dy, is Do, =<7, s|r" = s* =
e, srs = r~1 > where e is the identity of D,,. Consider a matrix representation of
Da,,, i.e. a group homomorphism from Ds,, to GL,(R) where GL,(R) is the general
linear group of degree n, i.e. the set of all n x n invertible matrices. Then, it can be
checked that the dihedral group D, has a representation p on R" given by p(r) = P
and p(s) = H. Furthermore, we can see that the image of p is isomorphic to Dy,.
We may interchangeably use Dy, =< P,H|P" = H*> = [, HPH = P7! >. Any
element in Dy, can be written as H'P? for some i € {0,1} and j € {0,...,n — 1}.

Define a function ¢ from Sfl‘:n X Dy, to Sﬁ’fn by

o(b", X) =b"X.
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By Proposition , we have b? ~ bTX. So, ¢ is well defined. For any b’ € Esjn,
$(bT,. 1) = bT. Let X1, Xs € Dan. Then, ¢(b”, X1Xz) = b7 (X1 Xs) = (b7 X)X, =
d(bT X1, X5). Therefore, ¢ is a (right) action of Dy, on the set 52;,1. We denote by
Oy the orbit of a vector b” in €2 —that is, Opr = {bTX|X € Ds,}. Furthermore,

it is known that 522 /Dy, = U r Oyr is a partition of 52;

,m

bTega

Example 3.6.12. Let
a’ =(1,1,1,1,0,1,0,0,0,1,0,0,0,0) and b’ =(1,1,1,0,1,0,1,1,0,0,0,0,0,0).

One can check from direct computation that a’ Pla = b” P'b for 0 < i < 7. Hence,
al bl ¢ 5f4T) ¢ Since a’ contains 4 consecutive 1’s while b does not, a” # b’ X for

any X € Ds,. So, bT ¢ O,r and |5f‘f,6/D28| > 2.

We provide a geometric viewpoint for Eszn and O,r where al is a (0, 1) row vector.
Let war := (wo, .. .,wy_1) where w; = a’ Pla for i = 0,...,n — 1. We may consider
a’ as a circular sequence. For example, a row vector (1,1,1,1,0,1,0,0,0,1,0,0,0,0)
can be expressed as Figure . Then, for i > 1, w; is the number of pairs (1,1) in

Figure 3.1: A representation of a circular sequence (1,1,1,1,0,1,0,0,0,1,0,0,0,0).

the circular sequence such that there are i — 1 elements between the pair in either
a clockwise or counterclockwise direction. We have several observations. First,
w; = wy_; for all i. Next, wy is the number of ones in a”, and n — wy is the number of
zeros in a’. Moreover, wy — w; is the number of groups consisting of consecutive 1s
in the circular sequence; for instance, wy —w; = 6 —3 = 3 from the circular sequence
in Figure . Finally, b? ¢ O,r if and only if a circular sequence corresponding to

b? cannot be obtained from that corresponding to a’ by rotations and reflections.

Remark 3.6.13. One can apply the observations above regarding the interpretations
of wy — w; and bT ¢ O,r to Examples [3.6.10] and [3.6.12] respectively.
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Problem 3.6.14. Let a” be a (0,1) row vector of size n, and war = (Wo, - - -, Wn_1)-
Provide combinatorial interpretations for w,...,wz|, and bounds on each w; for

2 <i < |%]. Develop some algorithms to find a vector b" such that wyr = wyr and
b ¢ O,r.

Problem 3.6.15. We have results by using MATLAB® that for n < 16 and any
(0,1) wector a®, |€;’:n/D2n| < 2 for any m < n. By increasing n, we are able to find
n and m such that |5§;/D2n| > 2. From this observation, prove or disprove that

€27/ Day| < m. Investigate the relationship between m and |E2,,/Day|.

We shall show an equivalent condition for two circulant matrices to be Gram

27i

mates. Spectral properties of circulant matrices can be found in [50]. Let ¢ = ™ .

Given an n x n circulant matrix C' = circ(c?) where ¢ = (cy, ..., c,_1), n linearly
independent eigenvectors can be determined as x; = ﬁ(l,s{ e for ¢ =
0,...,n — 1. Hence, the unitary matrix U = ﬁ [xo Xn—J diagonalises any

circulant matrix. Let f.(z) := Y074 c;z’. Then, the corresponding eigenvalues )

are given by A\ = fo(¢f) for £ =0,...,n — 1.

Proposition 3.6.16. Let a’ and bT be distinct (0,1) row vectors of size n with
m ones. Let ig = jo = 0. Then, circ(a’) and circ(b”) are Gram mates if and
only if there are two strictly increasing sequences (i1, ..., im) and (ji,. .., Jjm) with

0<ip,jr<n-—1fork=1,...,m satisfying the following:
(1) ai, =1 and bj, =1 fork=1,...,m,

(ii) for =0,....,n—1,

> cos ((% - ik1)2:€> = >  cos ((jk2 —jk1)2ﬂ£> .

0<ky <ka<m 0<k1<ka<m n

Proof. Let D, = diag(fa(€°),..., fa(e"™')) and Dy, = diag(fu(e"),..., fu(e™1)).
Then, circ(a’) = UD,U* and circ(b?) = UD,U*. Hence, circ(al)circ(a?)? =
cire(b”)circ(b™)T <= UD,DU* = UDyDyU* <= |fa(e")| = |fp(e9)| for £ =
0,...,n— 1. Consider the sequence (i1, ...,4y) with 0 <i; < -+ <4, <n—1such
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that a;, =1 for k =1,...,m. Then, for £=0,...,n —1,

|fa(5g)’ = Zgikz
k=1
(oo () o ()
= 1> |cos | ig— | +isin | i—
= n n
m 2ml\\* (& 21\ \*
= <Z Cos (zkﬂ>> + (Z sin (ka>>
\ k=1 n k=1 n
27l
=, m+2 > cos <(zk2 —ikl)ﬁ>.
0<ki<ka<m n
Similarly, one can find |fi,(¢%)|. From |fa(¢%)| = |fu(g%)], the conclusion follows. [
We now consider circulant realizable matrices. Let el = (ep,...,e,_1) be a

(0,1, —1) row vector such that e/1 = 0. Then, 1circ(e’) = 0 and circ(e?)1 = 0.
We use €7, to denote the set of all pairs of circulant Gram mates via circ(e”). A
similar argument as in €,r with Ny (%,) immediately preceding Example
applies for €7 with Ny, (%,). So, we can find that for each Q € Ny, (#,), there

is a bijection between €7 and CngQ‘ Hence, €7 may be identified as ‘ﬁfTQ.
Example 3.6.17. Consider e/ = (-1,0,0,0,0,1,0,0,1,—1,0,0). Then, e'P =
(0,-1,0,0,0,0,1,0,0,1,—1,0). We have 0 = (1 5)(2 10)(4 8) in Aut(Z2). Then,

e’ PQ, = (0,0,-1,0,0,—-1,1,0,0,1,0,0).

Therefore, since PQ, € Ny, (#,), the set €.r can be identified as Corpg, -

The characteristic vector of a subset T of a set U is defined as a vector (z)ucv
such that z, = 1 ifu € T, and z, = 0 if u ¢ T. Let e’ be a (0,1,—1) row
vector of size n. Let Ny = {u € Z,le, = 0}, Ny := {u € Z,le, = 1}, and

N_ = {u € Zyple, = —1}. We use e}, e}, and e} to denote the characteristic
vectors of the subsets Ny, N,, and N_, respectively. Then, e’ can be written as
e’ =ey, —ey .

Theorem 3.6.18. Let el = (eq,...,e,_1) be a (0,1, —1) row vector with sum 0. Let
a’ be a (0,1) row vector. Then, circ(a”) and circ(a® + e’) are Gram mates if and
only if there exists a (0,1) vector xT = (zq,...,Tn_1) with x, =0 foru € Ny UN_

such that a7 = el;, +xT and x is a solution to the following system:
e'(P'+ P ")x=—e'(Pex, + P'en ) fori € Z,. (3.6.1)
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Proof. Suppose that circ(a’) and circ(a’ +e”) are Gram mates. By Theorem [3.6.8]
we have that a” Pla = (a+e)T Pi(a+e) fori =0,...,n—1. Since a’ Ple = e’ P~'a,

we can see that
e’ (P'+ P "a = —e’ Ple. (3.6.2)

Since a” and a” + eT are (0,1) vectors, there is a (0,1) vector x = (zg,...,Tn_1)
with x, = 0 for v € N, U N_ such that a” = €%+ x”. Setting a = ey_ + x and

e =ey, —ey_ in (3.6.2) and simplifying yield (3.6.1]).

The converse is straightforward. O]

Remark 3.6.19. From e’ = efu — e}, the right side —e’(P'ey, + P 'ey_) of
the equation in (3.6.1)) can be written as —e%+1[’ie]\;+ —|—e%7 Pley_for0<i<n-—1.
Since P~ = HP'H, we have that —e}, P'ey, + ey P'ey. = 0 if and only if
ey, Pley, = ey HP'Hey_. Therefore, by Theorem W, the linear system (3.6.1))

is homogeneous if and only if circ(ef, ) and circ(e}y H) are Gram mates.

Remark 3.6.20. Maintaining the notation of Theorem [3.6.18] consider the linear
system (3.6.1). Given any (0,1) vector x' = (zg,...,%,_1) with z, = 0 for u €
N UN_, we have e"x = 0. Since ey, ey_ = 0, we obtain e’ (ey, +ey_) = 0. So,
the equation for ¢ = 0 in holds for x. Furthermore, examining in the
proof of that theorem, we find that the equation for ¢ = k in (3.6.1)) is equivalent
to that for ¢ = —k. Let S be the characteristic matrix of the partition of Ny each
cell of which is a singleton. Then, considering the condition that x, = 0 where

u € Ny UN_, the coefficient matrix of the linear system (3.6.1)) can be simplified as

ef(P+ P
: S. (3.6.3)
e’(Plzl + p~13))

Let e’ be a (0,1, —1) row vector with the row sum 0. The coefficient matrix of
the linear system (3.6.1]) is denoted by M., and the matrix (3.6.3)) by M,.

Proposition 3.6.21. Let e’ be a (0,1, —1) row vector with the row sum 0. Suppose
e'H = —e. If there exists a (0,1) vector xT = (xg,...,Tn_1) with x, = 0 for
u € Ny UN_ such that xTH = x*'| then circ(a®) and circ(a” +e') are Gram mates
where a = ey + X.

- T _ T — (T T T 17 _ T T 17 _ T
Proof. Since (ey, —ey )H = —(ey, —ey ), wehaveey, H = ey and ey H = ey, .

By Remark [3.6.19, we have e’ (Pley, + P~'ey ) = 0 for 0 < ¢ < n — 1. Since
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e'P7 = —e"HP™' = —e"P'H for 0 <i <n— 1, we have

e’ p°
Me =L — LH, where L =

eTPn—l

Hence, Hx = x implies M¢x = 0. By Theorem [3.6.18] we obtain the desired
result. O]

Example 3.6.22. Continuing Example [3.6.17, we have
7 = e’ PQ, = (0,0,—1,0,0,—-1,1,0,0,1,0,0).

Since f"H = —f, we have f{, H = f{; and f{ H = f5 . From Remark [3.6.19} the
linear system with respect to f7 is homogeneous. Furthermore,

o -1 -1 -1 1 1 1 O
-1 0 -1 0 0 1 0

M — o 1 o0 0 -1 0 -1
o o o o0 0 0 0 O
-1 1 0 1 -1 -1 1
2 0 2 0 0 -2 0 =2

Direct computation yields the following basis of the null space of M;:

el o] Jol [1] Jol] [1]
~1 —1 1 1 1 0
1 0 0 0 0 0
0 1 0 0 0 0
o'l o |'f1]|’lo]’]o]|']oO
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

We can see from this example that the converse of Proposition [3.6.21| does not hold.

3.7 Gram mates via orthogonal matrices

Let A and B be Gram mates. Note that A # B. By Proposition [3.2.1] there exists
an orthogonal matrix ) such that B = QQA. Inspired by the approach that for a
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given realizable matrix £ we have analyzed Gram mates A and A + F, we consider
the following question: given an orthogonal matrix (), how can we obtain Gram
mates A and B such that B = QA? Here @) plays a similar role as E in the sense
that B is obtained from A by pre-multiplying by @), while by adding to E.

Definition 3.7.1. Let @ be an orthogonal matrix. Zero-one matrices A and B are
said to be Gram mates via an orthogonal matriz Q if B = QA, AAT = QAATQT,
and A # QA.

Remark 3.7.2. Let A and B be distinct (0, 1) matrices such that B = QA for some
orthogonal matrix (). Then, AT A = BT B. So, it suffices to check if AAT = QAATQT
for A and B being Gram mates via Q.

Remark 3.7.3. We have a basic observation that if A and QA are Gram mates
for some orthogonal matrix (), then necessarily each column of QA has the same

number of ones as the corresponding column of A does.

Let (Q be an orthogonal matrix. In order to find Gram mates A and AQ), we
necessarily consider the condition that AQ is a (0, 1) matrix. However, since @ is a
real matrix, it is not easy to find information about the structure of the (0, 1) matrix
A (while a realizable matrix F provides such information that can be developed into
the systematic method to obtain Gram mates via E in [44]). Here we indirectly
approach our original question by generalising the notion of Gram mates via ). We
shall consider Gram mates via unitary matrices—an analogous definition holds as in
Definition [3.7.1}—since we can obtain further information by checking if the sum of
complex numbers is either 0 or 1.

In the remaining of this subsection, we assume that sub-indices indicating po-
sitions of entries in matrices or vectors are in Z, = {0,...,n — 1}, where n is
appropriately given according to the number of rows or columns in the context.

We shall narrow our focus to a family of particular unitary matrices. Consider a

discrete Fourier transform matriz (DFT matriz) [38] defined as

1 1 1 e 1
1 e g2 ... gt
1
U=—"11 52 54 . 82(7171)
Jn
1 en—1 62(n71) . E_:(nfl)z

27

where ¢ = e™» . We now investigate Gram mates via a DFT matrix. Suppose that
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A and UA are Gram mates. Then, Ua is a (0,1) vector for each column a of A. If
a is the zero vector, so is Ua. If a is a non-zero vector, then since the first row of U
is ﬁlT, a contains exactly v/n ones and n must be a perfect square. From Remark
, Ua also contains y/n ones.

The set of all n'" roots of unity forms a group under multiplication, and it is
isomorphic to Z, [28]. We may regard ¢ as a generator 1 of the group Z,. The order

of each element x in Z, is % This implies that the number of 1’s in j* row of

ged(z,n
VnU for 1 < j <n—1is ged(j,n). Hence, if e%Ua =1 for some 1 < jo <n—1,
then e] U contains at least /n ones in order that A and UA are Gram mates, and

so ged(jo, n) > /n.

Lemma 3.7.4. Letn >2 andc =en . For1<k<n—1, Z’j:& ghi =

Proof. Considering the telescoping sums, we have
n—1 ) n—1 ) n )
(1-Y = e ei="—¢"=0.
j=0 7=0 j=1

Since 1 — ¥ # 0, our desired result is obtained. m

The following trivial result is a benefit we can obtain in that DFT matrices are

unitary.

Lemma 3.7.5. Let k be a positive integer, and let z1,...,z, € C. Suppose that
lz1|=-=lz|=1. If 1+ -+ 2, =k, then z; = - - - =z, = 1.

Proposition 3.7.6. Let n be a perfect square, and U be the n x n DFT matriz.
Suppose that £ = |{j[1 < j < n, ged(j,n) = v} and & = |{j]1 < j < V-
1, ged(j,n) = 1}|. Assume that { — ¢, < /n. Then, AAT = UAATUT if and
only if A = UA and each column of A is either the zero vector or 1 5 @ x where
x = (1,0,...,0)T and x is of size \/n. In other words, there is no pair of Gram

mates via U.

Proof. Suppose that A and UA are Gram mates. If ged(m,n) = /n for some
1 < m < n, then m = sy/n for some 1 < s < /n — 1 with ged(s,n) = 1. Hence,
there are exactly ¢; rows in U such that each of them contains precisely y/n ones in
positions ky/n for 0 < k < /n — 1. Then, £ — ¢, = |{j|1 < j <mn, ged(j,n) > /n}|.

Let a be a non-zero column of A. Then, a and Ua contain exactly y/n ones.
Consider the indices ji, ..., jm such that €] Ua = - - - = ejTﬁUa = 1. Since £ —{; <
/1, there must be an index j; for some 1 < k < y/n such that ged(jr,n) = /n,
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that is, ekaU is one of the ¢; rows with precisely y/n ones in positions k./n for
0<k</n—1. Since ekaUa: 1, by Lemmawe have a =1 5, ® x.

For j =0,...,n— 1, we have

el Ua = (50‘/ﬁj F eV Vg 5(‘/7“1)‘/57')

(1 + <€?}%)j + (62?}%>j R (6(\/5_1)3}%)3') ‘

If j =0 (mod \/n), we have e]Ua = 1. Otherwise, by Lemma we obtain

e}FUa = 0. Hence, Ua = a. If a is the zero vector, so is Ua. Therefore, A = U A.

Si- 5l

The converse is straightforward. O]

Corollary 3.7.7. Let n be a perfect square, and \/n be prime. Let U be the n x n

DFT matriz. Then, there is no pair of Gram mates via U.

Problem 3.7.8. Given a unitary (or an orthogonal) matriz U, develop a systematic

way to find Gram mates via U.

Problem 3.7.9. Let n be a perfect square, and U be the n x n DF'T matriz. Suppose
that |{j|1 < j <n, ged(j,n) > /n}| > /n. Characterize Gram mates via U.
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4

Fiedler vectors with unbalanced

sign patterns

This chapter is based on a study of spectral properties of the Laplacian matrix of a
graph. We consider the signs of the entries in a Fiedler vector x of a graph G that
is an eigenvector associated to the algebraic connectivity a(G). Recall that i(x) =
min{|[{z;|z; > 0}/, [{z;]z; < 0}|} and i(G) = r}{%l{z(x)] x is a Fiedler vector of G}.
Furthermore, the join of graphs and its spectral property are used a lot, so we refer
the reader to Section 2.3] for a review.

This chapter is a slight rewording of work with Kirkland accepted for publication
[42].

4.1 Introduction

When does spectral bisection work well? The graph partitioning problem, which has
applications in scientific computing [57] and VLSI layout [62], is to partition a graph
into k subgraphs each of which is similar in size while minimizing the number of edges
between each pair of components; even though finding the optimal solution to the
problem is an NP-complete problem, spectral bisection is a method to approximately
solve the problem. Regarding the robustness of spectral bisection, [64] shows that
the technique works well on some classes of particular graphs. On the other hand,
[68] provides the result about the maximal error in spectral bisection with respect
to the minimal cut while partition sizes are the same.

In contrast to [68], we shall investigate if spectral bisection is a robust technique
by considering the partition sizes. The paper [67] of Urschel and Zikatanov pro-

vides a generalisation of the work of Miroslav Fiedler [32] with respect to spectral

79



bisection. Specifically, [67] proves the existence of a Fiedler vector such that two
induced subgraphs on the two sets of vertices valuated by non-negative signs and
positive signs, respectively, are connected. If all Fiedler vectors of a graph G have
a sign pattern such that a few vertices are valuated by one sign and possibly 0, and
the others are valuated by the other sign, then spectral bisection provides an inad-
equate partition regarding the graph partitioning problem. This chapter examines
such graphs and their properties.

In Section we find equivalent conditions for G to have i(G) = 1 (Theorem
4.2.8). In Section all graphs G with i(x) = 1 for all Fiedler vectors x are
characterized by studying minimum values of am(a(G)), according to the number of
vertices with minimum degree (Theorem [4.3.19). Furthermore, we characterize the
graphs for which the sign patterns of all Fiedler vectors are extremely unbalanced
(Theorem [4.3.22). In Section [4.4] threshold graphs with i(G) = 1 and graphs with
three distinct Laplacian eigenvalues and i(G) = 1 are described. Section provides
a characterization of all regular graphs G with i(G) = 2 by investigating sign patterns

of eigenvectors corresponding to the least adjacency eigenvalue of the complement

of G (Theorem {4.5.14)).

4.2 Characterization of graphs with i(G) =1

Proposition 4.2.1. Let G be a graph of order n > 2. Then, G is disconnected if
and only if i(G) = 0.

Proof. Suppose that G is disconnected. Then, a(G) = 0. So, the all ones vector is a
Fiedler vector of G. Hence, i(G) = 0. Conversely, assume that i(G) = 0. Then there
exists a non-negative Fiedler vector x. Since L(G)x = a(G)x, 17 L(G)x = o(G)17x

and it follows that o(G) = 0. Hence, G is disconnected. O

For a graph G of order 1, we have i(G) = 0, but G is connected. So, if G is a
graph on n vertices where n > 2, then i(G) > 0 implies that G is connected.

Lemma 4.2.2. Let G be a non-complete graph of order n > 3. If i(G) = 1, then
a(@) =6(G).

Proof. Let x be a Fiedler vector with i(x) = 1, and we may suppose that z; <
0. We have (L(G) — a(G)I)x = 0, and considering the first entry, we find that
(l11 — a(G))w1 + gy Lixzy = 0. Since 1 < 0, £, <0 and x5 > 0 for all k # 1, it
must be the case that ¢1; < o(G). Hence o(G) > §(G), and since G is non-complete,
a(G) < 6(G). We deduce that a(G) = §(G). O
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Example 4.2.3. Consider the complete graph K,. Then, (1,—1,0,...,0)" is an
eigenvector of a(K,) = n and by Proposition 4.2.1} i(K,) = 1. Moreover, a(G) >
0(G)=n—1.

Now, we shall characterize non-complete connected graphs G' with a(G) = 0(G).
A characterization of graphs for which «(G) = v(G) appears in [45]: for a non-
complete, connected graph G on n vertices, «(G) = v(G) if and only if there exists
a disconnected graph G; on n — v(G) vertices and a graph Gy on v(G) vertices with
a(G2) > 2v(G) — n such that G = G V Ga. Since a(G) < v(G) < §(Q), if a(G) =
d(G), then o(G) = v(G) = §(G). So, we begin with a join of a disconnected graph
G1 on n — §(G) vertices and a graph G2 on §(G) vertices with a(Gy) > 20(G) — n.

Lemma 4.2.4. Let G be a non-complete, connected graph of order n > 3. Then,
a(G@) = 6(Q) if and only if G can be expressed as a join of Gy and Go where the
graph Gy on n — §(G) wvertices has an isolated vertex, and Gy is a graph on §(G)
vertices, and o(Gs) > 26(G) — n.

Proof. Suppose that a(G) = 0(G). We will establish the desired conclusion by
induction. For order 3, there is only one graph, N; V N,, that is non-complete and
connected; its algebraic connectivity is equal to the minimum degree and it has the
desired structure. Let n > 4. Suppose that a graph G of order n with a(G) = §(G)
is non-complete and connected. Since a(G) = v(G) = §(G), G is expressed as
G1V Gy where G is a disconnected graph of order n — 6(G), and G, is a graph of
order 0(G) with a(G2) > 20(G) — n. We have deg(v) > §(G) for v € V(Gy) and
degn(w) > n — §(G) for w € V(Gq). If Gy has an isolated vertex, we are done.
Suppose that G has no isolated vertex. Since 6(G;) > 0, we have degq(v) > §(G)
for all v € V(G1). So, there exists a vertex w € V(Gy) such that

degg(w) = degg, (w) + (n — 6(G)) = 0(G), and degg, (w) = 6(Ga).

Since degg, (w) > 0, we obtain n — §(G) < 0(G).

Suppose that n — 6(G) = 0(G). Then, degg, (w) = 0 so that G5 has an isolated
vertex. Since G is disconnected, a(G1) = 0. Moreover, 06(G) = §. By exchanging
the roles of GG; and G5, we obtain the desired description of G.

Assume that n — §(G) < 6(G). Note that 6(Gs) = 20(G) — n. Since a(Gy) >
20(G) — n, we obtain a(Gs) > §(G). Suppose that 6(Gy) = §(G) — 1. Then, we
have §(G) = n — 1, which contradicts the non-completeness of G. Therefore, Gy is

a non-complete, connected graph of order §(G) with a(Gy) = 0(G2). By induction,
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there exists a graph H; of order §(G) — §(G,) with an isolated vertex and a graph
H, of order §(G2) such that Gy = Hy V Hy and a(Hsy) > 25(G2) — 6(G). Hence, G =
G1V Hy1V Hy. Consider GV Hy of order n—§(G) +(Gs). Since §(Gy) = 20(G) —n,
the order of Gy V Hy is §(G). Furthermore, Gy is disconnected so that «(Gy V Ha)
is either §(G3) or a(Hs) +n — 0(G). Considering a(Hsy) > 20(G2) — 0(G), it follows
that a(Hz) +n — 0(G) > 0(Ga). So, a(Gy V Hy) = 6(G2) = 20(G) — n. Therefore,
G can be expressed as a join of H; and GV Hs.

Conversely, suppose that G is a graph of order n — k with an isolated vertex
where 1 < k < n — 2, and G; is a graph of order k with a(G2) > 2k — n. Since
a(Gy) +n —k > k, we have o(Gy V G2) = k. Let v be an isolated vertex in Gj.
Then, degi(v) = k. So, §(G) < k = o(G) implies 6(G) = a(G). O

Remark 4.2.5. If G is a non-complete connected graph on n vertices, we have
0(G) <n—1. So, Gy in Lemma is of order at least 2. However, G5 can consist
of a single vertex v. Then, the vertex v is a cut-vertex of (G, and also a dominating
vertex in G.

Considering the fact that |V (G1)| > 2 and G = G V Ga, there is no cut-vertex
of G in G;. Moreover, if Gy contains a cut-vertex of G, |V(G3)| = 1. Therefore, if

i(G) =1, then G has at most one cut-vertex.

Lemma 4.2.6. Let G be a non-complete, connected graph of order n. Suppose that
G can be expressed as a join of G1 and Gy where the graph Gi on n — 6(G) vertices
has an isolated vertex v, Gy is a graph on 0(G) wvertices, and a(Gy) > 26(G) — n.
Then, i(G) = 1.

Proof. There exists an eigenvector x corresponding to «(G) where entries corre-
sponding to vertices in Gy except v are all ones, the entry for v is —(|V(Gy)| — 1)

and zeros elsewhere. Therefore, i(G) = 1. O

Corollary 4.2.7. Let G be a non-complete, connected graph. There exists a cut-
vertex v and i(G) = 1 if and only if v is a dominating vertex that is adjacent to a
pendent vertex, that is, G = (G —v) V {v} where G — v is disconnected, and has an

isolated vertex.

Proof. Suppose that v is a cut-vertex in G and that i(G) = 1. By Remark 4.2.5]
G is expressed as G V G5 where (G; contains an isolated vertex w and Gy = {v}.
It is straightforward that v is a dominating vertex and is adjacent to w, which is a

pendent vertex.
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Conversely, suppose that v € V(@) is a dominating vertex and is adjacent to a

pendent vertex w. Let G; = G — v and Gy = {v}. Then, w is an isolated vertex in

G7 and G = G; V Gy. By Lemma [4.2.6], we have the desired result. O

Thus, the following theorem is obtained by Lemmas [4.2.2] [4.2.4] and [4.2.6]

Theorem 4.2.8. Let G be a non-complete, connected graph of order n. Then, the

following are equivalent:

(i) i(G) =1,
(i) o(G) = 0(G),

(1ii) G can be written as a join of G and Go where the graph Gy on n—4§(G) vertices
has an isolated vertex, Go is a graph on §(G) vertices, and a(Gs) > 20(G) —n.

Problem 4.2.9. In order for a connected graph G to have i(G) = 1, G must be
expressed as a join of two graphs. Then, G might be regarded as a highly structured
graph so that G could be rarely seen in empirical settings. From this speculation, find
bounds on the probability of a connected graph G to have i(G) = 1. By extension,
one could pose a question as follows: given € > 0, find the probability of a random
graph of order n to have @ < g, e.g., one could consider graphs in the Erdés—Rényi

random graph model.

Proposition 4.2.10. Suppose that G is a connected graph of order n > 3 and
i(G) # 1. Then, we can construct a graph G’ such that i(G') = 1 and G is an
induced subgraph of G’ by adding one vertex or two wvertices and joining them to
some vertices of G. In particular, we need only one vertex if G is a join. Otherwise,

we need two vertices.

Proof. Suppose that G can be expressed as a join of two graphs, say H; of order ny
and Hj of order ny where ny > ny. Let G’ be ({v} + H;y) V H; for a new vertex v.
Then, §(G") = ng. Since a(G’) = min{ny, a(Hz) 4+ n1}, we have 6(G’) = a(G’), and

i(G") = 1.
Assume that G is not a join of some graphs. Let H; = {v} + G and Hy = {w}
where v # w. Consider G’ = H, V Hy. Since H; contains an isolated vertex and

a(Hy) = 0 > 20(G") — n, by Theorem [4.2.8 i(G') = 1. It remains to show that
every graph H obtained from a graph G by adding just one new vertex v and joining
it to some vertices does not satisfy i(H) = 1. Suppose to the contrary that there

exists such a graph H with i(H) = 1. By Theorem and Remark [4.2.5] H is
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expressed as a join of two graphs GG; and G5 where GG7 has an isolated vertex and
|V (G1)] > 2. Suppose that the new vertex v is in Gy. Since |V (G1)| > 2, a removal
of v in H results in the graph G that is a join of some graphs, a contradiction.
Hence, v € V(G3). Furthermore, G5 = {v}, for otherwise, G would be written as
a join of some graphs. Thus, G = G; and so G is disconnected. This contradicts
the hypothesis that G is connected. Therefore, we need to add at least two vertices;

adding two vertices, we obtain a connected graph G’ with the desired properties. [

4.3 Algebraic multiplicity of the algebraic connec-
tivity of a graph with ¢(G) =1

Recall that i(x) is defined as the minimum number of negative components in x or

—X.

Example 4.3.1. Let G; = Ky + Ny and G5 = N; V N3. Since G; has an isolated
vertex and a(Gs) = 26(Gy V G2) — 7, we have i(G V G2) = 1 by Theorem [4.2.8|
Furthermore, a(G1V Gy) = 4 and am(a(G1V Gs)) = 3. Labelling vertices in order of
V(G1) and V(Gs), there are three linearly independent Fiedler vectors corresponding

to a(Gy V Gy):
x] = (1,1,-2,0,0,0,0), x§ = (0,0,0,0,1,—1,0), and xJ = (0,0,0,0,1,0,1).

Therefore, i(x; + x3) = 2 and i(x; + X2 + X3) = 3.

Let G be a non-complete graph of order n with i(G) = 1. So, G can be written as
G = GV Gy where the graph G on n—40(G) vertices contains an isolated vertex, and
G is a graph on §(G) vertices with a(Gs) > 25(G) — n. We observe from Example
that if a(G2) = 26(G) — n, then am(a(G3)) must be considered to compute
am(a(G)). Let S(H) denote the number of connected components in a graph H.
Since the algebraic multiplicity of the eigenvalue 0 of Gy is §(G1), by considering
G = G1 V G5, we have

am(a(G) B(G1) — 1+ am(a(Gs)), %f a(Gs) = 20(G) — n, )
B(Gy) —1, if a(G) > 20(G) — n.

Moreover, from Example 4.3.1] we see that for a non-complete connected graph G
the condition that i(G) = 1 and am(«a(G)) > 1 does not guarantee that i(x) = 1 for

every Fiedler vector x.
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Proposition 4.3.2. Let G be a non-complete graph of ordern andi(G) = 1. Suppose
that G # N3V G' for any graph G" with o(G") > 20(G) —n. Then, am(a(G)) > 1 if

and only if there exists a Fiedler vector x such that i(x) > 1.

Proof. Suppose that am(a(G)) > 1. Since i(G) = 1, there are graphs G; and G
such that G = G V Gy where the graph G; on n — 6(G) vertices contains an isolated
vertex and Go is a graph of order §(G) with a(Gs) > 26(G) — n. Assume that
a(Gg) > 20(G) — n. From (4.3.1)), we find that there are at least three connected
components in G;. Since Gy # N3, [V(G1)| > 4. Choose two components H; and Hy
of G such that H; and H, are the smallest and second smallest orders in G;. Then,
H, = N;. Labelling vertices in order of V(Hy), V(Hz), V(G1)\(V(H;) UV (H;)) and
V(G3), there exists a Fiedler vector

x! = |1 (ORI 1 Woeoverni-van el
Then, x and —x have |V (Hy)| + |V (H2)| and |V (G1)| — |V (H1)| — |V (Ha2)| negative
components, respectively. It is clear that |V (H;)|+|V (Hz)| > 2. Since G; # N3 and
H, and H, are the components of the smallest and second smallest orders in G, we
have |V (Gy)| — |V(Hy)| — |V (Hz)| > 2. Therefore, i(x) > 2.

Suppose that a(Gs) = 20(G) — n. Let v be an isolated vertex in G;. Then,
Ly — [V(Gi)ley

Ov(ca)l
an eigenvector y corresponding to a(Gs) such that y'1 = 0 and i(y) > 0. Since

we have a Fiedler vector x; = where |V(G1)| > 2. Choose

Ojva)

a(Gy) =26(G) —n, xg = is a Fiedler vector of G. Then, i(x; + x2) > 1.

Suppose that there is a Fiedler vector x such that i(x) > 1. By hypothesis, there
is a Fiedler vector x’ such that i(x’) = 1. Evidently, x" is not a scalar multiple of x,

so those two vectors are linearly independent. Hence, am(a(G)) > 2. O

Proposition establishes that the condition that i(G) = 1 and am(«a(G)) =1
forces any Fiedler vector x to have i(x) = 1. Moreover, the set of all graphs G such
that am(a(G)) > 1 and i(x) = 1 for all Fiedler vectors x is

{N3 Vv G'|G" is a graph with a(G") > 26(N3 V G') — |[V(N3 V G')|}.

We will characterize graphs with i(G) = 1 and am(a(G)) = 1 by studying the
relation between am(a(G)) and the number of vertices of degree §(G). Before pre-

senting the characterization, lower bounds on am(a(G)) will be derived.
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Lemma 4.3.3. Let G be a non-complete connected graph of order n. There are
exactly { vertices of degree 6(G) and i(G) = 1 if and only if for some k > 1 there
are graphs Gy, ..., Gy satisfying the following conditions:

(i) V(G1)| = -+ = [V(Gi)| = n—6(G) = 2
(ii) fori=1,...,k each G; contains (;(> 1) isolated vertices of degree 6(G) in G,
and ¢ = ;?:1 l;

(1ii) G is described by one of two cases:

(a) G=Vi_G; or

(b) G = (V¥_,G;) Vv G where G' is a graph on k§(G) — (k — 1)n vertices such
that degq(v) > §(G) for allv € V(G') and o(G") > (k+ 1)6(G) — kn.

Proof. We will use induction on ¢ to prove the necessity of conditions and
in order for G to have exactly ¢ vertices of degree §(G) and i(G) = 1. The case
¢ =1 follows immediately from Theorem [£.2.8 Let ¢ > 2. Since G is non-complete
and i(G) = 1, G can be written as a join of two graphs G, and Gy where G is a
graph on n—0(G) vertices with an isolated vertex and G5 is a graph on §(@G) vertices
with a(Gs) > 26(G) — n. The order of Gy is more than 1 by Remark . It G,
contains ¢ isolated vertices, then deg,(v) > 0(G) for all v € V(G,). By choosing
G, = G‘l and G’ = Gg, we have the desired result with & = 1, which corresponds
to the case Assume that there are ¢; isolated vertices in Gy where ¢; < .
Then, G5 contains exactly f := ¢ — ¢, vertices of degree 6(G) in G. Since §(G) is
the minimum degree in G, the /5 vertices are also of the minimum degree in Go.
We have (5(@2) = 26(G) — n from the fact that G = GV Gy If Gy is complete,
then 6(Gy) = 0(G) — 1 and so 6(G) = n — 1, which contradicts the fact that G
is non-complete. Hence, G is a non-complete graph and §(Gy) > a(Gsy). Since
§(Gs) = 26(G) —n and a(Gs) > 20(G) — n, we have

Assume that Gy is disconnected. Then a(Gs) = 0, which yields 6(G) = 0 and
d(G) = §. Since 5(G5) = 0, the f5 vertices are the only isolated vertices in Ga.
Moreover, we have |V (G1)| = |V(G)]| since 6(G) = 5. Setting up £, = 0y, Gy = G,
Gy = ég, we have the result with & = 2, which corresponds to .

Suppose now that Gy is connected. Then, i(Gy) = 1 by Theorem [4.2.8. Since

by < ¢, by induction, there are graphs G, ..., G} for some k£ > 2 satisfying the
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conditions:

1 |V(Ga)| = = [V(Ge)| = 8(G) — 6(Ca) = n — 6(G) > 2;

2 fori=2,...,k each G, contains ¢;(> 1) isolated vertices of degree 5(@2) in Gg
with fy = Z;?:Q ¢;; and

3 @2 is described by one of two cases:

(a) ég = \/?ZQG]' or

(b) Go = (VF_,G;) VG’ where G" is a graph on (k —1)5(G2) — (k — 2)|V(Gs)|
vertices such that degg, (v) > 5(Gy) for all v € V(@) and a(G') >
kO(G) — (k= 1)V (Go)l.

Clearly, the condition |(i)| is satisfied. Since the f5 vertices in Gy have degree 6(G)
in G, we have ( = (1 + 0y = Zleﬁj. So, the condition ((ii)| is shown. Let G| = G,
If Gy = Vi_,Gj, we obtain the case |(iii)al Suppose that Gy = (ViL,Gy) v G
Considering the fact that G = G V Ga, §(G2) = 26(G) —n and |V (Gs)| = §(G), it
is straightforward to check the remaining conditions in Therefore, our desired

description of GG is obtained.

For the proof of the converse, suppose that there exists a graph G with G4, ..., Gy
for some k& > 1 satisfying the conditions |(i)| and in the statement. For the case
, GG contains ¢ vertices of degree 0(G) by the condition . Consider the case
Since degy(v) > 0(G) for all v € V(G'), G contains exactly £ vertices of degree
§(G). Tt remains to show i(G) = 1. Suppose that G is as in case [(iii)b] Note that
a(G") > (k+1)6(G) — kn. So, a(G) can be obtained from the eigenvalue 0 in G by

computing the spectrum of the join so that
a(G) = (k= 1)(n - 6(G)) + [V(G)] = 4(G).

Therefore, by Theorem i(G) = 1. Similarly, for the case [(iii)a] it is straight-
forward to show that a(G) = §(G). O

Remark 4.3.4. Continuing with the notation and result of Lemma [4.3.3] we have
V(G| = k6(G) — (kK — 1)n and |V(G1)| =n — §(G). So,

(G > (k+1)6(G) —kn = [V(G)| — |V(GY)].

Furthermore, we observe that the complement G; of each G; for i = 1,...,k is

connected, so GG; can not be expressed as a join of graphs. Thus, the decomposition
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of G in terms of joins in Lemma is unique (up to the ordering of the graphs).

In particular, k£ is uniquely determined.
Definition 4.3.5. Let ¢ > 1. Graphs Hy, ..., H, are called elementary if
(i) [V(H)| =---=[V(H,)| = 2 and

(ii) each H; for ¢ =1,...,¢ contains at least one isolated vertex.

A graph G is said to be an elementary k-join if G can be written as G = \/leGj for
some k > 2 such that Gq,..., G} are elementary. The graphs Gy, ..., Gy are called
elementary graphs of G.

Definition 4.3.6. A graph G on n vertices is said to be a combined k-join if G can
be expressed as G = (\/;?ZlGj) V G’ for some k > 1, where Gy, ..., G}, are elementary
and G’ is a graph on kd6(G) — (k — 1)n vertices such that degq(v) > §(G) for all
v € V(G) and o(G') > |[V(G")| — |[V(G;)|. The graphs Gy, ..., Gy are called the
elementary graphs of G, and the graph G’ is called the combined graph of G.

Remark 4.3.7. If (G is an elementary k-join, then £ > 2. Otherwise, G would be
disconnected. Considering Remark [4.3.4] an elementary k-join G does not imply

that GG is a combined k-join, and vice versa.

Definition 4.3.8. A graph G is said to be a k-join if G is either an elementary

k-join or a combined k-join.
Remark 4.3.9. A k-join is not a complete graph.

The following result is straightforward from Lemma [4.3.3]
Theorem 4.3.10. Let G be a non-complete connected graph. Then, i(G) = 1 if and
only if G is a k-join.
Example 4.3.11. Consider the Shrikhande graph G’ with parameters (16,6, 2, 2),
which is a strongly regular graph, see [11]. By computation, a(G’) = 4 and am(«a(G"))
6. Let G; = K3 + {v}. Then i(G; V G') = 1 and it has only one vertex with the

minimum degree, but am(a(G; V G')) = 7. Moreover, G; V G’ is a combined 1-join.

Theorem 4.3.12. Suppose that G is an elementary k-join and G4, ...,Gy are the
elementary graphs of G. Then, am(a(G)) = X8, B(Gy) — k. Assume that G is a
combined k-join, and Gy, ..., Gy and G’ are the elementary graphs and the combined

graph of G, respectively. Then,

am(a(G)) _ Zle 6(Gz) —k+ am(a(G’))’ Zfa(G’) _ 2(5(G) _n,
S B(Gi) — if (@) > 25(G) —n.
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Proof. Considering the spectrum of a join of graphs, we immediately obtain the
desired result. O

Let A, be the set of all non-complete graphs GG with ¢ vertices of minimum degree
0(G) such that i(G) = 1. For G € A;, G is a k-join for some 1 < k < ¢. Note that
if k=1, then G is a combined 1-join. In order to attain the minimum of am(a(G))
where G € A, is a k-join, by Theorem we only need to consider elementary
k-joins and combined k-joins G where the combined graph G’ of G satisfies a(G') >
26(G) — |V(G)]. Let Ay denote the subset of A, that consists of elementary k-joins

and such combined k-joins. Define
my, = min{am(a(G))|G € Ak}

We will investigate my; and families of graphs attaining myj;. Then, the greatest
lower bound of {am(a(G))|G € A} will be derived.

Let G € Ay, where 1 < k < (. Let Gy, ..., Gy be the elementary graphs of G.
For i = 1,...,k, each G; contains at least one isolated vertex, say v;, so 5(G;) — 1
is the number of connected components in G; — v;. Since there are ¢ — k isolated
vertices left in the disjoint union of G; — vy, ..., Gy — v by Theorem we have

am(a(G)) =4 — k+ p(G)

where p(G) is the total number of components of order more than 1 in the elementary
graphs Gy, ..., Gy of G. Define

Dok ‘= mm{p(G)\G € Agyk}.
Therefore, we have
My = {—k + Do k-

Then, myy, can be completely determined by considering 3 cases for 1 < k < ¢: (i)
k| ¢where { >2and 1 <k < ¥{ (ii)k=FCork=/¢—-12>2 (iii) k {1 ¢ and
2<k</(-2.

Lemma 4.3.13 (Case (i)). Let G € Ay where £ > 2 and 1 < k < {. Suppose that
Gi,...,Gy are the elementary graphs of G. Then, k | £ if and only if mey = ¢ — k.
In particular, G; = Nyyq fori=1... k wherea > 1 and { = (a + 1)k.

Proof. Note that k | ¢ if and only if k£ | ¢ — k. Assume that ¢ — k = ak for some
a > 1. By choosing G; = N, for i = 1...,k, we have p(G) = 0. Hence, p; = 0
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and myy = ¢ — k. Conversely, if my, = ¢ — k, then py, = 0 and so each G; must
consist of isolated vertices. Since |V(G)| = -+ = |V(G)| > 2, it follows that there
is @ > 1 such that { — k = ak. Furthermore, G; = N, fori =1,... k. m

We shall consider an example to illustrate that p(G) depends on how Gy, ..., Gy

consist of isolated vertices.

Example 4.3.14. Let G € Aj25, and let Gy,...,G5 be the elementary graphs of
G. Note that for ¢ = 1,...,5, GG; has at least one isolated vertex. Consider the
configurations of three distributions of 12 isolated vertices in Gy, ..., G5 in Figure
; for each case in Figure , a e indicates an isolated vertex, and the 7' column
describes how many isolated vertices G; has. Note that for each case, there are no

more isolated vertices in G; for 1 < j < 5; G; may have disconnected components

of order more than 1 under the condition that |V (Gy)| =--- = |V(Gs)| > 2.
[ ] [
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ¢ ¢
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] : : : . .
G Gy Gs Gy G Gi Gy Gs Gy Gj GG, G Gi G-
Case 1 Case 2 Case 3

Figure 4.1: The configurations of three distributions of 12 isolated vertices in
Gl; N G5.

Consider Case 1. If |V(G;)| = 3 for ¢ = 1,...,5, then G3,G4 and G5 must
have three isolated vertices, a contradiction to £ = 12. In order for G to satisfy the
condition that it only has 12 isolated vertices and |V (G1)| = -+ = |V(G5)| > 2, at
least one component of order more than 1 must be added to each G;. Thus, p(G) > 5
for Case 1.

Using the same argument for Case 2, it follows that we also need at least five
components of order more than 1. Hence, p(G) > 5 for Case 2.

For Case 3, we minimally need three components: K,, K3 and K3 in G3, G4 and
G5, respectively. Thus, |V(Gy)| =--- = |V(G5)| > 4 and p(G) > 3.

Let G € Ay where ¢ — k > 1. Suppose that Gi,...,Gy are the elementary
graphs of GG, and v; is an isolated vertex in G; for i = 1,... k. Let ¢;(G) > 0 be
the number of isolated vertices in Gy — v; so that £ — k = S | ¢;(G). Suppose that
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Cmax(G) := max{c|(G),...,cx(G)} and q(G) := |{i|ci(G) = cmax(G) for 1 <i < k}|.
Since ¢ — k > 1, we have ¢pax(G), q(G) > 1. If G is clear from the context, then
¢i(G) and cpax(G) can be written as ¢; and ¢y, respectively. Assume that there
is a G; — v; such that cpae —¢; = 1. Since |V(Gy)| = --- = |V(Gy)| and there
are only ¢ — k isolated vertices in the disjoint union of G| — v;, ..., Gy — vg, there
must be at least one component of order more than 1 in each G;. Thus, p(G) > k.
Furthermore, choosing G; = N, 41 + Ky, -1 for j = 1,... k where s > cpax + 3,
we have |V (G1)| = -+ = |V(Gg)| = s and so p(G) = k. On the other hand, suppose
that cpmax — ¢; # 1 for all 1 < j < k. Choosing

NCj+1 + Kcmaxfcp if Cmax — Cj > 27
G, =
Ncrrlax+17 lf C] - Cmaxv
for 1 < j <k, we obtain |V(G1)| = --- = |V(Gx)| > 2 and so p(G) = k —q(G) where

q(G) > 1.
Let Gy be the set of graphs G € Ay such that for the elementary graphs
G1,...,Gk, Cmax —¢; # 1 forall 1 < j <k, where £/ — k > 1. Then, we immediately

have the following proposition.

Proposition 4.3.15. Suppose that G € Ayy, where £ —k > 1. If G € Gyy, then
p(G) > k — q(G) where q(G) > 1, and there exists a graph H € Gy such that
p(H) = k — q(G) where ¢(G) > 1. If G ¢ Gy, then p(G) > k and there exists a
graph H € Ay, such that p(H) = k.

Proposition implies that if Gy is non-empty, then p,, < k. Otherwise,

Per =k, and so myy = /.
Lemma 4.3.16 (Case (ii)). Let G € Agy. If k=0 ork=0—12>2, then myy = {.

Proof. Let Gy,...,G} be the elementary graphs of G. Suppose that k = ¢. Note
that |V(G;)| > 2 for i = 1,...,k. Since each G; for i = 1,...,k has exactly one
isolated vertex, every G; must have at least one component of order more than 1.
Thus, pee = k, and so my = £. If Kk ={ —1 > 2, there exists a graph G for some
1 < j < k such that cpax — ¢j = 1. So, Gy is the empty set, which implies that

mye—1 = £ ]

Example 4.3.17. Let G € Ajg5, and let G, ..., G5 be the elementary graphs of G.
Note that each G; for ¢ = 1,...,5 has at least one isolated vertex.

See the configurations of three distributions of the 16 vertices into Gy, ..., G5
in Figure for each case in Figure f.2] a e indicates an isolated vertex and the
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[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ] [ ] o [ ) [ ) [ )
o o o

[ ] [ ] o [ ] [ ) [ ) [ ) [ ) [ )
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] o [ ] [ ) [ ) [ ) [ ) [ )
[ ] [ ] [ ] [ ] [ ]
G Gy Gi Gi Cn Gi Gy Gy Gy Gs Gi Gy Gz Gy Gs

Case 2 Case 3
Case 1

Figure 4.2: The configurations of three distributions of the 16 vertices into
Gl,...,G5.

J™ column describes how many isolated vertices G; has.. For Case 1, G € Gig5
and by Proposition , we may have p(G) = 3. Suppose that G corresponds to
the configuration of Case 2. Since ¢pax — ¢4 = 1, G ¢ Gy and so p(G) > 5. If G
corresponds to Case 3, then cpax —¢; # 1 for all 1 < j < 5 so that we can obtain
p(G) = 2 by placing K, in G4 and G35, respectively. Furthermore, there is no graph
in G € Gigps such that cnax = 2, by the pigeonhole principle. Therefore, pigs = 2
and so mye5 = 13.

Let H € Ajs54, and let Hy,..., H, be the elementary graphs of H. Consider
the configurations of two distributions of the 15 vertices into Hy,..., Hy in Figure
; for each case in Figure , a e indicates an isolated vertex and the ;™ column
describes how many isolated vertices H; has. For Case 4, H ¢ Gy54, so p(H) > 4.
For Case 5, we have p(H) > 2. One can check that my;4 = 13.

H, H, H; H,
Case 4

H, Hy, Hs; H,
Case b

Figure 4.3: The configurations of two distributions of the 15 vertices into Hy, ..., Hy.

Observe from Cases 1, 2 and 3 in Example |4.3.17] that ¢y (G) should be mini-

mized in order to maximize ¢(G) so that pyj can be attained. So, we shall consider

92



graphs G' € Ay, such that 0 < £ — k — ¢ax(G)¢(G) < cmax(G) — 1, and then in-
vestigate the minimum of ¢y, (G) among the graphs G. However, Cases 4 and 5

in Example |4.3.17 show that the minimum of ¢,,,x(G) being attained at G does not

A A

guarantee attaining pyy if £ — k = cax(G)q(G) — 1.

Lemma 4.3.18 (Case (iii)). Let G € Ay where k { € and 2 < k < { —2. Let
¢ = max{ [%W ,2}. Then,

(— | 5E], if 0 =k is odd, and |5E] <k —1,
mep = 0— MR if k| (04 1), and €+ 1 > 4k,

(- |EE], otherwise.

Proof. Let us consider a graph G € Ayy. Then, there exist the elementary graphs
G1,...,Gg of G. Suppose that 0 < £—k — ciax (G)q(G) < emax(G)—1 where k t £ and
2 <k <{—2. We may assume that c; = -+ = ¢cy) = tmax(G) and cyay41 = 7(G)
where 7(G) = £ — k — cnax(G)q(G). Note that if 0 < 7(G) < cpax(G) — 2, then
G € Gy

Let co = min{c > 2||[E5] <k —1}and ro =0 — k — ¢ L%j We shall consider
3 cases: (a) ¢g =2 and r9 = 1, (b) L%J =k —1and ry = ¢y — 1 where ¢y > 3, (c)
neither (a) nor (b) holds.

o (case (a)) If cmax(G) = 2 and 7(G) = 1, then cnax(G) — cq@)+1 = 1 so that
p(G) > k. Suppose that cuax(G) = 3. Since g =2 and ro =1, |55 <k —1
implies that |5*] < k—2. If #(G) = 0 or r(G) = 1, then G € G and by
Proposition , per = k — |55]. Assume that r(G) = 2. Since |5F] <
k — 2, there exists a graph G € Gy such that ¢,(G) = --- = cq((;)(é') =3 and
cx-1(G) = cx(G) = 1. By Proposition , we find that mey, = € — [55].

Furthermore, considering ¢y = 2, the condition ry = 1 is equivalent for ¢ — k to
be odd.

o (case (b)) If cpax(G) = ¢ > 3, ¢(G) = k —1 and r(G) = ¢y — 1, then
Cmax — €k = 1 so that G ¢ Gyx. Note that £ — k = co(k — 1) + ¢o — 1 can be
expressed as ¢y = ”Tl — 1> 3, ie, {+1is divisible by k and ¢ + 1 > 4k.

Suppose that cpax(G) = ¢o + 1. We have ¢(G) = Lfo—flJ — L%J Since

L%J — k — 1, we have ¢(G) < k — 2. If 7(G) = 0, there exists G' € Gy, such
that ¢i(G) = -+ = cy)(G) = co + 1. If r(G) > 1, choose a graph G € Gy,
such that ¢;(G) = --- = cq(G)(é) =co+1, o1 (G) =7(G) — 1 and ¢x(G) = 1.
Hence, by Proposition [4.3.15] my = { — Lk(f;lk)J.
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e (case (c¢)) Considering the cases (a) and (b), if ¢g = 2, then g = 0; if 1o = ¢o—1,
then L%J <k —2. Let cpax(G) = ¢p and ¢(G) = L%J It is readily checked
that for ¢g = 2 we can obtain our desired result. If r(G) = ¢g — 1 > 2,
then ¢(G) < k — 2. Then, there exists a graph G e Ge such that cl(é) =

= cqe)(G) = co, s 1(G) = 7(G) — 1 and c,(GQ) = 1. T r(G) < ¢ — 1,
it is straightforward that G € Gyj. Therefore, my, = ¢ — L%j Consider
co = min{c > 2|| =] < k — 1}. Since {%J <k-le ke tE <o

we have ¢y = max{ [%W .2}

]

Summarizing Lemmas [4.3.13], [4.3.16| and [4.3.18], we have the following theorem.

Theorem 4.3.19. Let G € Ay, where 1 <k < {. Then,

l, ifk=0—-1>2o0rk=2{, (4.3.2)

0 —k, ifk|Cand1<k<t, (4.3.3)

0 — k(;;lk)J’ k| (C+1), 0+1>4k, 2<k<(-2 (4.34)
ek 0k

(- SJ, ifkte, 21 (0—k), 555 <k—-1<¢-3, (4.3.5)

l— £ _6 kJ : otherwise, (4.3.6)

where ¢ = max{ [%W ,2}.

Corollary 4.3.20. Let G be a non-complete connected graph of order n with i(G) = 1
and £ > 1 vertices of 6(G). Then,

L

am(a(G)) > {27 , '
(— 3], (s odd.

( is even,

¢ L
with equality for even € if and only if G = V2 Ny ({ >4) or G = (V2 1N2) V K,,_y.
In particular, G = Ny V K, _o for { = 2.

Proof. Let my := min{am(«a(G))|G € A;}. We need only find m, for even ¢ and odd
¢, respectively, to complete the proof. Continuing the notation of Theorem
for the case (4.3.4), there exists a > 4 such that £+ 1 = ak. So, ¢ — Lk(ﬁj)j can be
recast as { — [@J >0 — L(ZQ—MJ, pe., R < L@j

a
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Suppose that ¢ is even. Then, £ | ¢. From (£.3.3)), we have my e =€ — £ with

k = £. Note that ¢ > 2. So, we have [@J < £ and L@J <ifforl1<k<Ll

Hence, my = ¢ — %, which is only attained from (4.3.3)). Furthermore, we find from

Lemma {4.3.13 that am(a(G)) = £ for G € A, if and only if G = vi%:lNQ (¢ >4) or
G = (VA1 N2) V G’ where a(G') > |[V(G")| — 2. Tt follows from §(G’) < |[V(G')] — 1
that G’ is the complete graph.

It is straightforward that m; = 1. Assume that ¢ is odd and 3 | ¢. Applying

(4.3.3), my e = (- § Suppose that for (4.3.6)), there are ¢ > 2 and kg > 1 such

that ¢ # 3k and V’%J > é. Since kg > 1, we must have ¢ = 2. This implies that

{ > 3kg. So, V’kow > 2, which is a contradiction to ¢ = max{ V”ﬂ ,2} = 2. Hence,

k‘o kO
V‘e J < é Furthermore, since LMJ < g for 1 <k </, we have my = { — é

3
Suppose that ¢ is odd and ¢ = 3b + 1 for some b > 2. In order to consider the

minimum in the case , we choose k = b+ 1 so that £ — k = 2b. Then, it follows
from |5%] = b that myy = € — | £]. If k is in the case of (£.3.3), then k (5 () is
a divisor of /. Then, k =1 or k > 5. Note that ¢ is odd and ¢ > 7. It follows that
k< %J for all divisors k (# ¢) of £. Moreover, since we have L@j < [£] for k > 2,
Mypr1 < Mgy for any k corresponding to (4.3.4) or (4.3.5)). Therefore, m, = ¢ — Lg]

Similarly, assume that ¢ is odd and ¢ = 3d + 2 for some d > 1. In order to
consider the minimum in the case , we choose k = d+ 2. Then, it follows from
{—k = 2d that myq» = (— | £]|. Note that £ > 5. For ([£.3.3)), let k (5 () be a divisor
of ¢. Then, k < |£]| with equality if and only if ¥ = 1 and ¢ = 5. Furthermore,
L(ﬁg—k)J < [£] for k > 2 with equality if and only if & = 2. In particular, one can
verify that if & = 2, then k falls under (4.3.4)), and {k(fglk)J = | %] if and only if £ = 5.
Hence, my 410 < myy for any k corresponding to (4.3.4) or (4.3.5) with equality if

and only if k =2 and ¢ = 5. O]

Remark 4.3.21. Continuing the notation of Corollary [4.3.20] graphs attaining the
equality for odd ¢ can be classified Zby the proof in Corollary . Suppose that
3| ¢ By Lemma [4.3.13, G = V2 N3 for £ > 6 or G = (V2 ;N3) V G' where
a(G") > |V(G")|—3. Assume that ¢ is odd and ¢ = 3b+1 for some b > 2. Since ¢ > 7,
the equality is only attained by the case (4.3.6]). Hence, G = (Vi_;N3)V (N; + K3) or
G = (VO_ N3) V (N; + K5) V G’ where a(G’) > |V(G")| — 3. Suppose that £ = 3d + 2
for some d > 1. For ¢ = 5, we have following cases: for £k = 1, G = N5 V G’ where
a(G) > V(G| =5; for k=2, G = NysV (N, + K3), G=NyV (N + (N V Ky)),
G = NyV(N1+K3)VG or G = NyV(N1+ (N1 VKy)) VG where a(G') > |V(G')|—4;
for k=3,G= N3V (N1 + K3) V(N1 + K) or G= N3V (N + K) V(N + Ko) VE
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where a(G") > |V(G")| —3. For £ > 11, it can be checked that my is only attained by
G = (\/gleg) V (Nl —|—K2) V (Nl +K2) or G = (\/gleg) V (Nl +K2> V (Nl +K2) \/GI
where a(G") > |V(G")| — 3.

The following theorem is our main result in this section for classifying graphs G
with i(G) = 1 and am(«a(G)) = 1.

Theorem 4.3.22. Let G be a non-complete connected graph of order n. Then,
i(G) =1 and am(a(G)) = 1 if and only if either G = NoV K, o or G = G; V G
where G is a graph of order n — §(G) with exactly one isolated vertex, and G’ is a
graph on §(Q) vertices with a(G") > 26(G) —n and 6(G") > 26(G) — n.

Proof. Suppose that i(G) = 1 and am(a(G)) = 1. Let ¢ be the number of vertices
of the minimum degree in G. By Corollary £.3.20, ¢ = 1 or £ = 2. For ¢ = 1, since
G is connected, G is a 1-join with G’. Since degg(v) > §(G) for all v € V(G'), we
have 0(G") > 2§(G) — n. The hypothesis that am(a(G)) = 1 implies that a(G’) >
20(G) — n. For ¢ = 2, the conclusion is clear from Corollary [4.3.20]

It is straightforward to prove the converse. O]

Example 4.3.23. Suppose that Gy = K,,, + N; and G' = K,,, where ny,ny > 0.
Consider G = G1 V G'. Then, a(G’) = ng, §(G') = ny — 1 and 20(G) — |V(G)| =
ny —ny — 1. By Theorem [4.3.22] we have i(G) = 1 and am(«a(G)) = 1.

4.3.1 Pathological graphs with respect to applying spectral

bisection

Now, we shall introduce a result without proof, as well as some notation in [67], to
find pathological graphs with respect to applying spectral bisection for the graph
partitioning problem. Let G be a connected graph of order n, and let X be the

eigenspace corresponding to a(G), and denote

ir(x):={j]1 <j<n,z; >0},
i—(x):={jj1 <j<n,z; <0}
io(x) = {j[1 < j < mn,z; =0},
io(X) == [ io(x).

xeX

Theorem 4.3.24 ([67]). Let G be a connected graph. Then, there exists a Fiedler

vector x such that the subgraphs of G induced by i, (x)Uig(x) andi_(x) are connected.
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Proposition 4.3.25. Let G be a connected graph of ordern, and X be the eigenspace

corresponding to a(G). Suppose that there exists an induced subgraph Go of G such
that G = G1 V G2 and Oé(GQ) > CY(G) — ’V(G1)| Then, V(GQ) - ’lo(X)

Proof. Considering eigenvectors of the join of graphs and the condition that o(Gs) >
a(@) —|V(G1)], it implies that for any Fiedler vector, vertices of V(Gy) are valuated
by 0. Hence, V(G5) Cig(X). O

U1 (%) (%] V4

Us Vg U7 Ug

Figure 4.4: A graph G considered in Example {4.3.26]

Example 4.3.26. The converse of Proposition does not hold for the graph
G in Figure [1.4] Let X be the eigenspace corresponding to a(G). It follows from
computations that A\ (G) < |V(G)| = 8, am(a(G)) = 1 and io(X) = {vs, vs, v7, Vs }.

Since A\ (G) < 8, G cannot be expressed as a join.

Theorem provides the existence of a Fiedler vector preserving connected-
ness of the two subgraphs for any connected graph. However, this does not guarantee
that such a Fiedler vector gives a partition into two subgraphs such that they are
similar in size. Next, we will show a family of graphs such that sign patterns of all
Fiedler vectors are extremely unbalanced. In Theorem we may slightly change
the condition for the result as follows: the subgraphs of G induced by i_(x) U iy(x)

and 74 (x) are connected.

Example 4.3.27. Suppose that G is a non-complete connected graph of order n
with (@) = 1 and am(a(G)) = 1. Then, by Theorem [1.3.22] either G = N» V K,,_»
or G = G1VG' where G is a graph of order n—§(G) with exactly one isolated vertex,
and G’ is a graph on 0(G) vertices with a(G’) > 26(G) —n and §(G") > 20(G) — n.
For a Fiedler vector x of G = N, V K,,_5, without loss of generality, two subgraphs
of G induced by i_(x) Uip(x) and i4 (x) are K,,_; and Ny, respectively.

For the latter case G = GV G, let us revisit Example 4.3.23, Suppose that X is
the eigenspace corresponding to a(G) where G = (K,,, + N7) V K,,,. By Proposition
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4.3.25, we have K,,, C iz(X). Since am(a(G)) = 1, ix(X) = K,,. From Theorem
4.3.24] we may have that i_(x) U iy(x) and i, (x) are K,,1 and K,,, respectively.
Therefore, for pairs (nq,n2) such that ™ — 00, the corresponding graph G will be

pathological with respect to spectral bisection.

4.4 Some classes of graphs with i(G) =1

In this section, we will consider threshold graphs and graphs with three distinct

Laplacian eigenvalues in the context of i(G) = 1.

Definition 4.4.1. A threshold graph is a graph obtained from a single vertex by

repeatedly performing one of the following operations:

(i) addition of a single isolated vertex to the graph,

(ii) addition of a dominating vertex.
Proposition 4.4.2. Fvery connected threshold graph G of order n has i(G) = 1.

Proof. We will use induction on the number of vertices to complete the proof. If G is
a complete graph, we are done. Let G be a non-complete connected threshold graph
of order n. For order 3, Ny V Nj is the only such graph, and i(No V N;) = 1. Let
n > 3. Suppose that any non-complete connected threshold graph H of order k < n
satisfies i(H) = 1. Since G is a connected threshold graph, there exists a vertex v
with deg(v) = n — 1. Let G" = G — {v}. Suppose that G’ is connected. Then, G’
is not complete, otherwise, G would be complete. By induction, i(G’) = 1, and so
d(G") = a(G"). Considering the spectrum of G’V {v}, we have

Therefore, i(G) = 1. If G’ is disconnected, then G’ has an isolated vertex. By

Theorem [4.2.8] i(G) = 1. O

The spectrum of a threshold graph appears in [52]. In the paper [52], a connected
threshold graph is called a maximal graph since it is proved there that the degree
sequence of a connected threshold graph of size m is not majorized by any other
degree sequences of graphs of size m. In particular, we will introduce the following

results used for seeing how am(a(G)) plays a role.

Theorem 4.4.3 ([52]). If G is a connected threshold graph, then S(L(G)) = d*

where d* is the conjugate of the degree sequence of G.
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Theorem 4.4.4 ([52]). Let G be a threshold graph. Suppose that G is disconnected
so that there are £ +1 connected components. Then, { components consist of isolated

vertices.

Proposition 4.4.5. Suppose that G is a non-complete connected threshold graph
of order n. Then, a(G) = k and am(a(G)) = £ if and only if there are exactly k
vertices vy. ..., vy so that degg(v;) =n—1 fori=1,... k and the subgraph Gy of G
induced by V(G) — {v1,...,vx} consists of £ +1 components, £ components of which

consist of a single vertex, respectively.

Proof. Suppose that o(G) = k and am(a(G)) = {. By Theorem [£.4.3] the number
of vertices of degree n — 1 is a(G). There are exactly k vertices vy, ..., vy such that
degq(v;)) =n—1fori=1,... k. Suppose that G is the subgraph of G induced by
V(G) — {v1,...,vx}. Since there are only k vertices of degree n — 1 in G, the graph
G is disconnected. Moreover, G = G V Kj. Since am(a(G)) = ¢, from Theorem
[4.4.4] we obtain the desired result.

For the converse, evidently we have G = GG; V K. Since (G; has exactly ¢ isolated
vertices, a(G) = k and am(a(G)) = (. O

Now, we will investigate an equivalent condition for a graph G that is a join

having three distinct Laplacian eigenvalues to have i(G) = 1.

Proposition 4.4.6. Let G be a non-complete, connected graph of order n. The
graph G has three distinct Laplacian eigenvalues 0, (G) and n where am(a(G)) = k
if and only if there exist integers p > 0, ¢ > 1 and r > 2 such that p+ q > 2 and
G =K,V (Vi N,) where n =qr +p, o(G) =r(¢—1) +p and k = q(r — 1).

Proof. Suppose that G has 3 distinct Laplacian eigenvalues 0, «(G) and n. Then, the
complement G of G has n — k connected components since G has 0 as an eigenvalue
with multiplicity n — k. Hence, there are graphs Gy,...,G,_; such that G = G; V
-+« V G where n — k > 2. Note that for i = 1,...,n — k, L(G;) does not have
|[V(G;)| as an eigenvalue. If there is a G; with three distinct eigenvalues, then
from the spectrum of a join of graphs, we find that G has more than three distinct
eigenvalues, a contradiction. So, each G; has either one or two distinct eigenvalues.
The only graphs with one eigenvalue are empty graphs, and the only graphs with
two distinct eigenvalues are complete graphs. So, each Gj is either N,, or K, for
some 7; or p;. Consider N,, and N, for r;,r; > 2 and r; # r;. Then, L(N,, V N,,)
has 4 distinct eigenvalues 0,7;,7; and r; + r;. Hence, all empty graphs as factors
in Gy V-V G, must have the same order. Evidently, K, V K, = K, for
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pi,p; > 1. If G; is a complete graph, then G; = K;. Let p be the number of isolated
vertices in G, let ¢ be the number of the complete graphs of order r > 2 in G. If
q = 0, then G is a complete graph. So, ¢ > 1. If p+ ¢ = 1, then G is disconnected
and so p+¢q > 2. Therefore, we have the desired graph G. Considering the spectrum
of a join of graphs, the remaining conditions for n, a(G) and k can be checked.

By the spectrum of a join, the proof of the converse is straightforward. m

Corollary 4.4.7. Let G be a non-complete, connected graph of order n with three

distinct Laplacian eigenvalues. The largest Laplacian eigenvalue is n if and only if

i(G) = 1.

Proof. Suppose that the largest Laplacian eigenvalue is n. From Proposition [4.4.6]
there exist p > 0, ¢ > 1 and r > 2 such that p+¢ > 2 and G = K, V (VL N,).
Since G = N,V (K, V (VIZ/N,)), we obtain i(G) = 1 by Theorem 4.2.8l Conversely,

i(G)) = 1 implies that G is a join of some graphs. So, the largest eigenvalue is n. ]

Corollary 4.4.8. Let G be a non-complete, connected graph of order n with three
distinct Laplacian eigenvalues 0, o(G) and n where k = am(a(G)). Then, the clique
number of G is

w(G) =n—k.

Proof. 1t follows from Proposition that there exist p > 0, ¢ > 1 and r > 2 such
that p+¢ > 2 and G = K, V (VL_,N,). So, w(G) = p+ q. Since n = gr + p and
= qr — q, we have w(G) =n — k. ]

Problem 4.4.9. As done in this section, find more classes of graphs G withi(G) = 1,
and investigate am(a(G)). One could consider cographs, split graphs, Laplacian

integral graphs, and so on.

4.5 Characterization of regular graphs with i(G) =
2

In this section, we shall consider i(G) = 2. It turns out that i(K,) = 1. So, if

i(G) = 2, then G is non-complete and connected.

Proposition 4.5.1. Let G be a connected graph of order n with i(G) = 2, and x be
a Fiedler vector with i(x) = 2. Then, two vertices valuated by negative numbers of x

are adjacent and 0 < §(G) — a(G) < 1. Moreover, one of the two vertices has degree
i(G).
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Proof. Since i(G) = 2, there exists x = (z1...,2,)7 € R" such that z;,75 < 0,
xz; > 0for j=3,...,nand (L(G) — o(G)I)x = 0. We have

(611 - Oé(G))l'l + 512962 + 6131'3 + e 4 glnxn = O, (451)
6211:1 + (622 — CY(G))J?Q + 623x3 +---+ Kgnxn =0. (452)

Since i(G) > 1, it follows that

for + = 1,...,n. Assume that ¢15 = f5; = 0. Thus, ({17 — a(G))r; < 0 and
>i—glijr; < 0, which leads to having the left side of negative. Therefore,
by =ly = —1.

Adding (4.5.1)) and (4.5.2)), we have

(l11 — (G) = D)y + (b2 — (G) — D)o + Y (£1j + Loj)z; = 0. (4.5.4)

=3
Without loss of generality, suppose that ¢1; < fas. If £1; — a(G) > 1, then the left
side of the equation (4.5.4) is negative. Therefore, ¢;; — a(G) < 1 and by ,
0 < §(G) —a(G) < 1. Furthermore, suppose that ¢1; > 6(G), that is, ¢1; > §(G) + 1.
Using (11 — a(G) < 1, we deduce a(G) = §(G), which is a contradiction to i(G) = 2.
Thus, 1, = §(G). O

Remark 4.5.2. Proposition provides two cases: 0 < 0(G) — a(G) < 1 and
0(G) — a(G) = 1. Note that 6(G) > v(G) > a(G). Consider the case 0 < 6(G) —
a(G) < 1. Since a(@G) is not an integer, we have §(G) = v(G) > a(G).

Suppose that §(G) — a(G) = 1. Then, continuing the notation and hypothesis in
the proof of Proposition [4.5.1] it follows from that ly < a(G)+1 =0(G); by
lyy > §(G), we have lyy = §(G). Hence, the two vertices valuated by negative signs
of a Fiedler vector x in Proposition have degree 6(G). Furthermore, we have
either §(G)—v(G) = 0 or 6(G)—v(G) = 1. For the latter case, since 6(G)—a(G) = 1,
we have v(G) = «(G). It follows from [45] that G can be written as a join of two
graphs G and G5 such that Gy is a disconnected graph of order n — v(G) and Gy is
a graph on v(G) vertices with a(G3) > 2v(G) — n.

Recall that given the sequences of eigenvalues S(A(G)) = (u1(G), ..., u(G))
and S(L(G)) = (M(G), ..., \u(G)) in non-increasing order for a graph G, the p(G)

and \,(G) are k*™-Laplacian and k*M-adjacency eigenvalues, respectively. We shall

101



consider a connected r-regular graph G of order n with i(G) = 2. Note that L(G) =
rl — A(G). So, a(G) = r — pu2(G) where ps < r, and any Fiedler vector of G is an
eigenvector of A(G) associated to py. Therefore, we also use eigenvectors associated
to the second largest eigenvalue of A(G) as Fiedler vectors without distinction.

A matching in a graph G is a set of edges in G such that no two edges in the set

share a common vertex.

Proposition 4.5.3. Let G be a connected r-reqular graph G of order n with i(G) = 2.
Then,

In particular, if ps(G) = 1, then there is a matching of size at least 2 in G.

Proof. Consider a(G) = r — (@) and §(G) = r. It is straightforward from Propo-
sition that 0 < us(G) < 1.

Suppose that po(G) = 1. Since i(G) = 2, there exists x € R™ such that (A(G) —
pa(G)I)x = 0 and i(x) = 2. We may assume that x = (x1,...,2,)7 € R" such
that x1,20 < 0, z; > 0 for j = 3,...,n. Let A(G) = [aj|nxn. By Proposition
4.5.1, we have a;s = ag; = 1. From the equations in the first and second rows of
(A(G) ~ (@) Dx =0,

n n
—r1 + T2 + Z a1;T5; = 0 and T1 — Tg + Z A2;T; = 0.
j=3 7j=3

Adding the two equations, we obtain

n n
> a1y + ) agw; = 0.
=3 i=3

Since x; > 0for j = 3,...,nand A(G) > 0, it follows that 3=7_s a1j7; = 37_3 agjz; =
0 and xp = 0 for any vertex vy adjacent to v; or vy. Furthermore, x; = 5. Let
I = {k € [n]|lz;, > 0} where [n] = {1,...,n}, and let A be the corresponding
principal submatrix A[I] and % be the corresponding subvector x[I]. Then, Ax = x
where x > 0. Suppose that a subgraph H associated with A is connected. By the
Perron—Frobenius theorem, the eigenvalue 1 is the spectral radius of A and is simple.
It implies that H = K,. Since any vertex vy for k € I is not adjacent to v; and wvs,
there are two edges, namely v; ~ vy and the edge in H, such that they do not share
any vertex in common. Next, assume that H is disconnected. Since each component
of H is connected, H consists of pairwise non-adjacent edges. Therefore, G' contains

at least 2 pairwise non-adjacent edges. O]

102



It can be found in [26] that po(K, n,...n,) = 0, where max(ny, no, ..., ng) > 2,
p2(Ky,) = —1, and pe(G) > 0 for all other connected graphs G. It is clear that
i(Kn) = i(Kpyny..n,) = 1. Motivated by Proposition we will consider all

regular graphs G with 0 < p(G) < 1 and i(G) = 2. Since A(G) + A(G) = J — I,

it follows that 0 < p2(G) < 1 is equivalent to —2 < pu,,(G) < —1. Moreover, any
eigenvector of A(G) associated to u,(G) is an eigenvector of A(G) associated to
p2(G), vice versa. It follows that the eigenspace associated to a(G) coincides with
the eigenspace associated to un(é), which is the least adjacency eigenvalue of G.

Furthermore, the eigenspace corresponding to 11, (G) is the same as the eigenspace

corresponding to A;(G). Recall that i}(G) := min{i,(x)|A(G)x = Ax}. Therefore,
for a regular graph G,

i(G) = iy, (G) =1, (G) =i, (G).

Let G be a connected regular graph of order n with i(G) = 2. Then z;‘;(@) = 2.
It can be easily checked that G is connected if and only if GG is not expressed as a
join of graphs. Hence, the difference between the degree in G and p,(G), which is
the largest Laplacian eigenvalue of G, is less than n. Suppose that G is disconnected
and H; is a component on m; vertices in G for j =1,... k for some k > 2. Then

there exist components Hj,, ..., Hj, for some 1 < g < k such that 1,(G) = pum, (Hj,)
fori=1,...,q. It follows that

it (H;) >, ()

#m]-i — HUn

for i = 1,...,q. Since the eigenspace of G corresponding to s, is the direct sum of

the eigenspaces associated to p,, of Hj for i =1,...,¢, the condition i, (C_J) =2

implies that there exists an i € {1,...,q} such that i ~(H;) = 2. Thus, we have
J4

the following result.

Lemma 4.5.4. Let G be a connected reqular graph of order n. Suppose that H;
is a component on m; vertices in G for j = 1,...,k for some k > 1. We have
i(G) = 2 if and only if there exists a component H; for j € {1,...,k} such that
fon; (Hi) > i, (H;) for all1 <i <k and i;mj(Hj) = 2.

Lemma tells us that to understand a regular graph G with i(G) = 2, we
should investigate the components of the complement of G. Specifically, we may
narrow our focus to eigenvectors of the least adjacency eigenvalue —2 < p,, < —1 of

a connected r-regular graph H of order n where r — p,, < n, that is, H can not be
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written as a join of graphs.

It appears in [25] that an r-regular graph H of order n with u,,(H) > —2 is either
a line graph, a cocktail party graph or a regular exceptional graph. It is known that
every cocktail party graph is written as a join of graphs. So, all cocktail party graphs

are excluded.

Proposition 4.5.5. [25] A connected regular graph with least adjacency eigenvalue

greater than —2 is either a complete graph or an odd cycle.

Since i(K,) = 1, K, is ruled out. We will consider eigenvectors of the least
adjacency eigenvalue of a cycle C), of length n. As stated in [11], for £ =0,...,n—1,

T
2c0s (27”@) is an eigenvalue of A(C,) associated to x, = (1, e, ... ,e("_l)g) where
e = en. If nis even, then fin(Cy) is simple and x» = (1,-1,1,...,1,—1)7 is

o
n is odd. Then, the algebraic multiplicity of u, is 2, and corresponding linearly

a corresponding eigenvector. So, we have i; (C,) = 5 for even n. Suppose that

independent eigenvectors are x»—1 and Xnt1. Let v = (vg,...,v,1)7 and w =
2

(wo, ..., wp—1)" where v; = (—=1)7cos (%j) and w; = (—1)7sin (%j) forj=0,...,n—

Xp—1+Xn41 —Xn—1+Xn+t1

1, respectively. One can verify that v = —>——2- and w = —25—>—. Hence, in
order to find i%, (C,) for odd n, we need to consider all possible linear combinations

of v and w.
Proposition 4.5.6. Let C, be a cycle of length n. Then, i}, (C,) = [5].

Proof. For an even cycle, it is clear that 7}, (Cn) = 5. Suppose that n is odd. Since

every Fiedler vector of (), is a linear combination of v and w,

iy (Cn) = min{i,, (1v + cow)|c1, ca € R, (e1,¢2) # (0,0)}.

Hn

Let u = ;v + cow where u = (ug,...,u,_1)". If ¢ = 0 and ¢y # 0, then

ir (u) = "7_1 Assume that ¢; # 0. Note that for j = 0,...,n — 1, u; =

cv; + cow; = (—1)74/c} + c3cos (%] — 6) where tan(f) = 2. We have uju;1 =

— (& + c3)cos (a ) cos (ozj + %) where a; = 7j — 0. One can check that uju;,; >0
if and only if ;; € (0,%) and o; + = € (5,7), or o € (m, %) and o + T € (3F, 2m).
Suppose that u; # 0 for all j = 0,...,n — 1. Since ag,..., 0,1 € [—0,—0 + 7),
there exists at most one index j in {0, ...,n—2} such that w;u;; > 0. Hence, since
ujujr1 > 0 implies that u; and w1, have the same sign, a change of signs between

uj and ujiq for j =0,...,n — 2 occurs at least (n — 2) times. It follows that there

n+1 n+1
2 2

n—1

are either 5

negative and positive signs in u or "T_l positive and negative
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signs in u. Therefore, 4}, (u) = n=1 Assume that there exists jo € {0,...,n — 1}
such that u; = 0. Since ay,...,0,—1 € [—0,—0 + 7), the j; is the only solution to

u; =0 for j =0,...,n— 1. Consider uj,_1ujor1 = (& + ¢3)cos (aj,—1) cos (@jo41).

Since aj,—1 € (0,%) and ajo41 € (2,7), or aj—1 € (7, %) and a1 € (&

obtain w;j,_1u;o+1 < 0. Furthermore, u;ju;y; < 0 for j € {0,...,n —2}\{jo — 1, jo}

,2m), we

Then, there are "T’l positive and negative signs, respectively, and one 0 in u. Hence,

ir (u) = "5+, Therefore, we have the desired result. O

Corollary 4.5.7. Let C,, be a cycle of length n. Then, iy, (C,) = 2 if and only if
n=4,5.

Lemma 4.5.8. Suppose that a connected reqular graph H of order n has pu,(H) >
—2. Then, ir, (H) =2 if and only if H = Cs.

Proof. Tt is immediately proved by Proposition [£.5.5] and Corollary [4.5.7] O

Problem 4.5.9. Develop a systematic tool to find i(G) where G is a connected graph.
As seen in the proof of Proposition[{.5.6, we consider all possible linear combinations
of Fiedler vectors of C,, in order to find i(Cy,). It can be seen that this work is related
to polyhedra [33]. One could approach this question with oriented matroids.

h

Recall that e; is a vector whose ¢! component is 1 and zeros elsewhere.

Definition 4.5.10. [25] For n > 1, let D,, be the set of vectors of the form +e; e
(¢ <j).
Definition 4.5.11. [25] Let Fg be the set of vectors in R® consisting of the 112

vectors in Dg together with the 128 vectors of the form i%el + %eg b O %eg,

where the number of positive coefficients is even.

Now, the regular line graphs and regular exceptional graphs with least adjacency
eigenvalue —2 are left to consider. These graphs are studied in [25] using D,, and
Ej, the so-called root systems. Let H be a graph on n vertices with least adjacency
eigenvalue —2. The symmetric matrix 27 + A(H) is positive semi-definite of rank s,
say. Since 21+ A(H) is orthogonally diagonalisable, it follows that CTC' = 27+ A(H)
where C' is an s X n matrix of rank s. According to [25], the column vectors of C'

are determined by D,, or Eg.

Lemma 4.5.12. Let H be a connected reqular graph with the least adjacency eigen-

value —2. If H contains an induced 4-cycle, there exists an eigenvector x! =

(1,-1,1,-1,0,...,0) of A(H) associated with —2.
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Proof. Considering the root systems, there exists a real matrix C such that C7C =
2] + A(H). Since H contains an induced 4-cycle, without loss of generality, the
leading principal 4 x 4 submatrix of A(H) is an adjacency matrix of Cy. Let the first

four columns of C' comprise the matrix C. Then,
CTC =21 + A(Cy).

Since xT = (1,—1,1,—1) is an eigenvector of A(C}) associated to —2, we have that
(C~'§<)TC~'§< = 0. C is real, so Cx = 0. Suppose that x7 = (1,-1,1,-1,0,...,0).
Then, Cx = 0. Therefore, follows that x is an eigenvector of A(H) associated to
—2. ]

Lemma 4.5.13. Let H be a connected r-reqular graph of order n with p,(H) = —2
where r+2 < n. Then, z;’;n(H) = 2 if and only if H contains a 4-cycle as an induced
subgraph.

Proof. Suppose that iy (H) = 2. Since r + 2 < n, the complement H of H is con-
nected and regular with po(H) = 1. Moreover, i,,(H) = i(H) = 2. By Proposition
, H contains two non-adjacent edges as an induced subgraph. Therefore, H has
an induced subgraph C}.

Let us consider the converse. By Lemma [£.5.12] there exists an eigenvector
xI' =(1,-1,1,—-1,0,...,0) of A(H) associated to —2. So, ir. (H) < 2. Since i, # 7,
any eigenvector associated to pu, must contain negative and positive components.
So, iy (H) > 0. Suppose that iy (H) = 1. Since H is connected, it follows that

it (H) = i, (H) =i(H) = 1. So, H can be expressed as a join of two graphs

by Theorem [4.2.8] This is a contradiction to being a connected graph. Therefore,
i (H) =2 [

Here is the our main result in this section regarding the characterization of all

connected regular graphs G with i(G) = 2.

Theorem 4.5.14. Let G be a connected r-reqular graph of order n. Then, i(G) = 2 if
and only if there exists a component H of order m in G such that i,(G) = pim(H) =
a(G) —r —1 and H salisfies either

(i) r—1<a(G) <rand H=Cs, or
(i) a(G) =r—1, H is not a cocktail party graph and H contains Cy as an induced

subgraph.
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Proof. Combining Lemmas [£.5.4] and [£.5.13] we obtain the desired result. [J

Example 4.5.15. Let H be a strongly regular graph with least adjacency eigenvalue
—2. According to Seidel’s classification [61], H is one of

(i) the complete n-partite graph Ky o for n > 2,

(ii) the Petersen graph,

(iii) the line graph of K, for n > 5,
(iv) the Cartesian product of two K,s for n > 3,
(v) the Shrikhande graph,

(vi) one of the three Chang graphs,

(vii) the Clebsch graph,

(viii) the Schléfli graph.

-----

pressed as a join of graphs. The girth of the Petersen graph is 5. It can be checked
that H has an induced 4-cycle if and only if the line graph of H contains Cj as an
induced graph. This implies that any line graph of a complete graph is Cy-free. For
the other graphs from (4) to (8), it can be checked that they have Cy as an induced
subgraph. Therefore, if a connected regular graph G has one of graphs from (4) to
(8) as a component in G, then i(G) = 2.

Problem 4.5.16. Completely characterize graphs with i(G) = 2.

107



5]

Families of graphs with the Braess

edge on twin pendent paths

This chapter is essentially based on a study of Kemeny’s constant from a combina-
torial standpoint. Recall that for a connected graph G, Kemeny’s constant x(G) for

the transition matrix of the random walk on G is

diFed
K(G) = —¢-C¢=¢
4mg7' G
We refer the reader to Sections[2.1]and [2.4]for the symbols in the formula of Kemeny’s
constant. We also recall that if, for a non-edge e of G, kK(G) < k(G Ue), then e is
said to be a Braess edge for G. Let us revisit Figure for twin pendent paths:

Vk

e
v .-

1

Then, our main work is to study if the non-edge vg, ~ wy, is a Braess edge for G.
This chapter is based on a version of a journal article submitted for publication

in the Electronic Journal of Linear Algebra.
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5.1 Introduction

Kemeny’s constant can be used to quantify the average time for travel of a Markov
chain between randomly chosen states; related applications can be found in [70]
for detecting potential super-spreaders of COVID-19, and in [22] for determining
‘critical” roads in vehicle traffic networks based on Markov chains.

Intuitively, in the context of a random walk on a graph, ‘well connected’ graphs
have ‘low” Kemeny’s constants. However, there are graphs such that the addition
of an edge results in an increase of Kemeny’s constant. The term Braess edge is
introduced for such edges in [47], and acknowledges Dietrich Braess who studied the
so-called Braess’ paradox for traffic networks [9]. Kirkland and Zeng [47] provide a
particular family of trees with twin pendent vertices such that the non-edge between
the twin pendent vertices is a Braess edge. Furthermore, Ciardo [2I] extends the
result to all connected graphs with twin pendent vertices. Unlike the works [47] and
[21], Hu and Kirkland [39] establish equivalent conditions for complete multipartite
graphs and complete split graphs to have every non-edge as a Braess edge.

Our objective is to generalise the circumstances in [47, 21] where graphs have a
pair of twin pendent vertices; so, we consider graphs that can be constructed from a
connected graph and two paths by identifying a vertex of the graph and a pendent
vertex of each path. We call the two paths twin pendent paths in the constructed
graph. In Section [5.2] a formula is derived that identifies a graph with twin pendent
paths in which the non-edge between the pendent vertices of the twin pendent paths
in the graph is a Braess edge. In Sections [5.3]and [5.4], tools are provided in order to
investigate the asymptotic behaviour of a family of graphs with twin pendent paths
regarding the tendency to have a non-edge as a Braess edge. Furthermore, several
families of graphs are discussed throughout Sections 5.2} [5.3] and In particular,

asymptotic behaviours of families of trees are characterized in Section [5.4]

5.2 Graphs with the Braess edge on twin pendent
paths

Recall that given a graph G of order n with a labelling of V(G), dg denotes the

h

column vector whose i® component is deg,(v;) for 1 < i < n, where v; is the '

vertex in V(G).

Proposition 5.2.1. Let Hy and Hy be connected graphs, and let vy € V(Hy) and
vy € V(Hy). Assume that G is obtained from Hy and Hs by identifying v1 and vo
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as a vertex v. Suppose that [71 = H{ —v; and Eg = Hy — vy. Then, labelling the
vertices of G in order of V(H,), v, and V (H,), we have:

d; = dgl degy, (v) Oﬁ/(HQ)} + {OTV( = degy, (v) dgg ,
mag = Mg, + Mm,,
TG = TH,THy,
T Fg, 7,81 | T, 0117 + T, 1E]
Ie = T, T 0 T, £ ;
i, BT + 7, 1L | 7, £, T F,

where f1 and fy are the column vectors obtained from £y and £}, by deleting the vt

component (which is 0), respectively.

Proof. The conclusions for dg and mg are readily established. Since = fG for
all i,7 € V(G), Fg is symmetric. Hence, we only need to verify the entrles above
the main diagonal. Note that v is a cut-vertex of G. Since all spanning trees of G
can be obtained from spanning trees in H; and H, by identifying v; and vy as v, we
have 7¢ = 7g,7h,. Let i,5 € V(H;). For each spanning forest of Hy in Fy, (7;7),
we can obtain 7y, spanning forests of G' in F¢(i;j) from the forest of H; and each
of 7y, spanning trees of Hy by identifying v; and vy. Therefore, f’; = TH, le for
i,j € V(Hy). Similarly, for i,j € V(H,), we have f = i, f2. Let i € V(H;) and
j € V(H3). The set Fg(i;7) is a disjoint union of A; and A;, where A; is the set of
spanning forests of G in F(7; j) such that the tree having the vertex ¢ among the two
trees contains v, and A; = Fg(i;5)\A;. Since for each spanning forest in A; the tree
with ¢ has v, the tree contains a spanning tree of H; as a subtree. So, any forest in

A; can be constructed from a spanning tree of H; and a spanning forest in Fpy, (va; j)

with v; and v, identified as v. Hence, we have |4, = 4, f1? %;. Note that i - = flhl
Applying an analogous argument to the case |A,|, we have |A;| = 7, f/1! - Therefore,
= T, [0+ T, f12 for i € V(H,) and j € V(Hy). O

Continuing with the hypotheses and notation of Proposition [5.2.1] we have

7'H2F1H1 =

THQFﬁl TH2f1 ] 9 THlFHQ —= [ O THlféT

T
T, £} 0 7, fo THlpﬁQ
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Note that (f,)” = [f/' 0] and (£3,)" = [0 £F]. Then,

THf1 THfl]_T ~ +TH1 7 fg " "
2 2 |V (Ha)| ; LTV (Hy)| _ THngl 1\7€/(H2)| + TH11|V(H1)|(fH2)T-
Aerine AT — (47 0T T T
Considering d/; = [d;, O\V(FIQ)|] + [O\V(Hﬁ)\ dj,], we have

d} Fedg

=1r,d}y, Frr,dp, + 7, dfy, Frr,dp, + 2d7;, dy,

TH2f1 TH2f11T + THl].féF
THlfQT

:TszEIFHldHl + THldII;QFH2dH2 + 2d71;1 (THQf}L)Il 1‘1;/(H2)‘ + TH11|V(H1)|(fIv{2)T> dH2

=T, d}y, Frr,dp, + 7, dfy, Fr,dp, + 4ty mu,dyy, £, + 47y mp, djy £ (5.2.1)

Hence, given my, and 7g, for i = 1,2, d§;Fedg can be computed from df; Fiy,dp, and
dﬁi f7. for i = 1,2. The following examples regarding K,, C,, P, and S,, present the
corresponding quantities d” F'd and d7f?, and will assist us later to obtain several

results and related examples.

Example 5.2.2. Consider a complete graph K,,. Then, m = (;) and 7 = n""2 by
Cayley’s formula (see [I7]). Note that K, is edge-transitive (see [35]), i.e., for any
pair of edges of K, there is an automorphism that maps one edge to the other. So,
Fg, = a(J — I) where a = ffg“ for all 4,j € V(K,,). Then, « is the determinant of
a submatrix obtained from the Laplacian matrix of K, by deleting i*" and j* rows
and columns where i # j (see [I5]). It can be seen that o = 2n™~3. Therefore, for

any vertex v in K,,, we have

d’Fd =a(n—1)*17(J — 1)1 = 2n"2(n — 1)?,
d’f' =a(n - 1171 —e,) =2n"*(n — 1)%

Example 5.2.3. Consider the cycle C,, = (1,2,...,n,1) where n > 3. For 1 <v <

n, we obtain

Fe, =[G j)(n = d(i.5)] .- d =21,

) ={w-Dn—-(-1) - 1-(n=1) 0 1-(n—1) - (n—v)|.
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It can be checked that
T 2 2
d' Fd = g(n—l)n (n+1),
1
d'f’ = g(n— Dn(n+1)forv=1,...,n.

Note that for any tree 7, Fr is the distance matrix of 7 (see [47]), which is the
matrix whose (i, j)-entry is the distance between i and j.
Example 5.2.4. Consider the path P, = (1,2,...,n) where n > 2. Let v be a
vertex of P,. For 1 < v <n, we have
FPn = [|Z _j’:|1§i,j§n’ d= 21, —e; — €n,

() =v-1 - 101 - n—vf.
One can verify that

4 2
d"Fd = 41" F1 — 41" Fe, — 41" Fe,, + 2e! Fe, = g(n -1+ g(n —1),

A7t = (v -1+ (n—v)*forv=1,...,n.

Example 5.2.5. Consider a star S,, where n > 3. Suppose that n is the centre

vertex. Then, we have

2(J—=1) 1,4
T T . o n
d' = {171_1 O} +(n—1)e,, Fs, = [ e 0 } :

Hence, for a vertex 1 < v <n,
d"Fd =21 (J-D1,1+2(n—1)?=2(n—1)(2n-23),

I n—1, ifv=n
3n—>5, ifv#n.

Lemma 5.2.6. Let P, be a path with two pendent vertices x and y where k > 2,
and H be a connected graph. Suppose that G is the graph obtained from Py and H
by identifying a vertex of Py and a vertex of H, say v. Suppose that dg(v,x) = k;
and dg(v,y) = ky. Then,

4 2
AL Fodg = b Fudy + 4k — 1)d5 S + 74 (3(k: S 1) (= 1) + A (R + k;g)) .
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Proof. The conclusion is straightforward from (5.2.1)) and Example [5.2.4] O

Lemma 5.2.7. Let Cy be a cycle where k > 3, and H be a connected graph. Suppose
that G is the graph obtained from Cy and H by identifying a vertex of Cy and a vertex
of H, say v. Then,

2
d%Fade = kd% Fydy + 4k2d5 e + %(k + 2mp)(k — Dk(k + 1).

Proof. The conclusion is readily established from (j5.2.1)) and Example O

We shall investigate paradoxical graphs under certain circumstances. Let G be
a connected graph on n vertices, and v € V(G). Fix two non-negative integers
k1, ko with ki + ko > 2. Let é’(v, ki, ks) denote the graph obtained from G, Py, =
(vo, ..., vk ) and Py, = (wy,...,wy,) by identifying the vertices v, vg and wy. Also,
we denote by @(U, ki, ks) the graph obtained from é(v, k1, ks) by inserting the edge
Up, ~ Wy,. We say that G is (v, ky, ko )-paradozical if k(G (v, ky, ka)) > £(G (v, ky, k2)).
If G is (v, ky, ko)-paradoxical for every v € V(G), then we say that G is (ky, ks)-

paradoxical.

Theorem 5.2.8. Let G be a connected graph with a vertexv. Suppose that ki, ko > 0,
ki +ky>2and k— 1=k, +ky. Then, G is (v, ky, ks)-paradozical if and only if

2
kAL (28217 — Fo)de + dm2rok (—3(k1 ko) (k1 + ks — 1) + 2k1k2))

2 k
TCTCE (<5 + ko) + (k1 + k) + (ko + ko) + 12Kka(ky + ko +1)) (5:22)
21qk
— T; (l{il + ko + 1)(1{51 + kz)(lﬁ + ko — 1)2 > 0.
Proof. Evidently, mgz = mg +k — 1, mg = mg + k and 75 = 7¢. Since v is a
cut-vertex in G , we have 75 = k7g. Then,

dLFpd;  dLFadg
dmsTs dmeTs
(mG + k- 1)dgFadé\ — k(mg + k)dgFédé

Ak(mg + k)(mg + k — 1)71¢

K(G(v, k1, ks)) — k(G (v, k1, ks)) =

(5.2.3)

Then, G is (v, k1, ko)-paradoxical if and only if
(mg + k — 1)dgFé:dé\ — k(mg + k)dgFadé > 0.
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For simplicity, let d = dg, f¥ = 2, F' = Fz, m = mg and 7 = 7¢. Using Lemmas

5.2.6| and [5.2.7], we have

(m +k— 1)de/:Fada — k:(m + k?)dgFad@
2
—(m+k— 1) <k:dTFd +ARRATE 4 (k= 2m) (k — Dk + 1))
4 2
— k(m + k) (dTFd 4k = ATE + Sr(k = 10+ Sr(k = 1) + dmr(k} + kg))

|

— — kd"Fd + 4mkd"£ + 4m>rk <3(/<; Dk 1) - k- k§>
omrk

+ ”;T (k= Dk + 1)+ 2(k = 12(k + 1) = 2(k — 1) — (k — 1) — 6k(K? + £3) )

27k

+55 (= DPk(k 4+ 1) = 2k(k = 1)° — k(k — 1)),

(5.2.4)

Since 17d = 2m, we have 4mkd”f' = 2kd”f’17d. Then, one can check from
k —1 = ki + ko that the last expression in (5.2.4) can be recast as the left side of

the inequality (5.2.2)). O
Problem 5.2.9. Generalise Theorem [5.2.8 as follows. Let G be a connected graph
with a vertex v, and let Py, = (vo, ..., vk, ) and Py, = (wo, ..., wy,) where ky, ko >0

with ki +ko > 2. Suppose that H is the graph obtained from é(v, ki, ko) by adding an
edge v; ~ w; for some 1 <i < ky and 1 < j < ky. Establish an equivalent condition
for k(H) > k(G (v, k1, ko)) as in that theorem.

Let G be a connected graph of order n with V(G) = {1,...,n}. Let

(U) (Qfg]_T — Fg)dg,
(kly 2

) =
(k‘l, ko) i= —(ky + ko) (5(ky + ko) — (k1 + ko) — 1) + 12k ko (ky + ko + 1),
) (lﬁ + ko + )(lﬁ -+ /{2)(/{1 + ko — 1)2,

——(kl + ko) (k1 + ko2 — 1) + 2k ko,

where v, k; and ko are integers such that 1 < v < n, ki, ks > 0 and ky + ko > 2.
Furthermore, let

ZmGTGk 2Tgl€

Qi (v, ki, ko) = koa(v) + 4m2GTGk<Z51(7€1, ko) + Ga(kr, k2) + ¢3(kq, k2).

(5.2.5)
By Theorem | G is (v, ky, ko)-paradoxical if and only if &g (v, ky, ko) > 0. We

114



simply write @ (v, k1, k2) and ¢g(v) as (v, k1, ko) and ¢(v), respectively, if G is clear
from the context. Note that ¢;(ki, ko) = ¢;(ko, k1) for i = 1,2,3. So, Pg(v, k1, ks) =
O (v, ko, k).

Remark 5.2.10. A connected graph G is (v, k1, ko)-paradoxical if and only if G
is (v, ks, k1)-paradoxical. Furthermore, G is (k1, ks)-paradoxical if and only if G is

(ko, k1)-paradoxical.
We shall consider the signs of ¢;(ky,ks) for i = 1,2,3 in terms of &k and k.

Evidently, ¢3(k1, ko) decreases as ki + ko increases, and so
¢3(k1, ko) < —6 for any ky, ko > 0 where ki + ky > 2 (5.2.6)
with equality if and only if ki + ks = 2. Next, ¢1(k1, k2) can be written as

2,

Dr(kis ko) = =S (k= (ko + Dby + 43 — ko).

Setting ¢ (k1, ko) = 0, we have

1
b= ((k:2+1) + \/—3k§+6k2+1>.

Since ¢1(k1, ko) is symmetric, without loss of generality, we shall fix ks first. It fol-
lows from —3k3 + 6ky +1 < O that if ks < 1 — 22 < 0or ky > 1 4+ 22 > 2,
then ¢q(ki, k) < 0 for any k; > 0. Furthermore, if ks = 1, then ¢(1,1) =
2, ¢1(2,1) = 0 and ¢1(k1,1) < O for ky > 2. Finally, for ky = 2, we have
$1(0,2) = =3, ¢1(1,2) = ¢1(2,2) = 0 and ¢1(k1,2) < 0 for k; > 2. There-
fore, ¢1(ky1, ko) > 0 if and only if (ki, k) = (1,1); ¢1(k1, k) = 0 if and only if
(k1,k2) € {(1,2),(2,1),(2,2)}; and ¢1(k1, ko) < 0 for any ky, ko > 0 with ki + ko > 2

and (lﬁ, kZ) ¢ {(17 1)7 (17 2>7 (27 1)7 (27 2>}

Remark 5.2.11. We have 5% = —2k; + 2(ky + 1). Then, ¢;(2,0) = —3 and

g%i <Ofork =2 ¢1(3,1)=—2and% < 0 for ky > 3; (251(3,2):_% and
k2=0 ka=1

S S 0 for ky > 3; finally, ¢y (ky, ko) = —2(k§—2ky) < —2for ky > 3and §2* < 0

for k1 > ko > 3. Hence, since ¢y (ky, ko) is symmetric, ¢q(k1, ko) < —% for integers
ki, ko > 0 with ky + ko > 2 and (ky, ko) ¢ {(1,1),(1,2),(2,1),(2,2)}. Furthermore,
by computation, we have ¢1(3,0) = ¢1(4,2) = —4. Therefore, ¢;(k, ky) < —2 for
integers kq, ko > 0 with k; 4+ ko > 2 and

(kl’ k2) ¢ {(07 2)7 (27 0)7 (1’ 1)’ (17 2)7 (27 1>’ (2’ 2)7 (27 3)7 (3’ 2)}
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Putting k — 1 = ky + ko > 2, ¢2(k1, ko) can be written as
¢o(k1, ko) = —12kk7 + 12k(k — 1)ky — (K — 1)(5k* — 11k + 5).

Setting ¢o(k1, ko) = 0, we have

1

ey — ——
DY

(6k(k 1) 12Kk — 1)(2k2 — Sk + 5)) |

Since 2k? — 8k +5 > 0 for all k > 4, ¢o(ky, ks) < 0 for any ki, ks > 0 with
ki + ke > 3. For k = 3, we have ¢o(1,1) = 2 > 0 and ¢(2,0) = —34 < 0. Let
f(t) = —(t — 1)(2t* — 8t + 5) where t is real number. Then, for fixed ¢ > 3, the
maximum of ¢o(t1,ts) for nonnegative numbers t; and ty with ¢, +ty = ¢t — 1 is
attained as f(t) at ¢; = 551, We can find that f(3) > 0, f(4) = —15 and f'(t) <0
for t > 4. From computation, we have ¢5(0,3) = —123 and ¢»(1,2) = —27. Hence,

¢2(k17 ]{72) < —15 for any ]{71, kg Z 0 with kl -+ ]{72 Z 2 and (k?l, kg) 7£ (1, 1) (527)

We claim that for a non-trivial connected graph G, ¢(v) = d?(2f*17 — F)d > 0

for v =1,...,n. In order to establish our claim, we first show that S

on the vertex set of G by using the resistance distance (see [49] for an introduction).
Let L be the Laplacian matrix of G, and let LT = [KT |nxn be the Moore—Penrose

Y]
inverse of L [56]. Then, the resistance distance €2; ; between vertices ¢ and j of G is

is a metric

represented (see [48]) as:
Quj =L+ 0, -0, -0,

Moreover, the resistance distance is a metric on V(G) (see [6]). As proved in [I§],

the number ZGJ of 2-tree spanning forests of G having ¢ and j in different trees is

G
/[:7‘7

= Tgﬂi,j.
Therefore, we have the following properties endowed by the metric €2 ;:
(i) f& >0, with equality if and only if i = j;
.. G _ G . .
(i) fi; = fj5 for all i, j;
iii) for any 4, 5, k, f& < f& + 9., with equality [I3] if and only if either all paths
i, i,k k,j

in G from ¢ to j pass through £ or k is one of 7 and j.
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Let X = 2f°17 — F, and R = [r;;] = ¥2X°. Then,

1
d’Xd = 5(dTXd +d"X7d) = 2d" Rd.

Since 2R = 17 + 1(f*)" — F, we have 2r;; = fi, + fo; — fi; > 0. Since G is
connected, if ¢ # v, then there exists a 2-tree spanning forest having ¢ and v in
different trees, i.e., f;,, > 0. For a non-trivial connected graph G, there exists a
vertex ¢ with ¢ # v such that 2r;; = f;, + f,;, > 0. Hence, R is a non-negative
symmetric matrix with R # 0. Since d > 0, we have d"Rd > 0. Therefore,
d’(2f17 — F)d > 0.

We now discuss a combinatorial interpretation for r; ;. Denote by Fe (4, j;v) (or
equivalently Fg(v;i,j)) the set of all spanning forests consisting of two trees in G,
one of which contains vertices ¢ and j and the other of which contains a vertex v.

Then, we have

[ Fai: )] = |Falizv, )| + [Feli vi )],
[ Fa(i;v)| = [Fali, jiv)| + [Fali v, )l
[Fa(vij) = [Fali,v; ) + [ Fa(vii, j)l-

It follows that 2r; ; = fi, + fu; — fij = 2|Fa(i, j;v)|, that is, r; ; is the number of 2-
tree spanning forests of G having i, j in one tree and v in the other. Thus, we define
R, as the matrix R, = [r; ;] associated to G and v where r;; = L(fi.o+ fo; — fij)-

The matrix R¢ , is written as R if no confusion arises from the context.

Remark 5.2.12. Let G be a connected graph with a vertex v. Let Rg, = [ri;]-
Since 2r;; = fin + fv; — fij, we have r; ; = 0 whenever v = 7 or v = j. Suppose
that v is a cut-vertex. If there is no path from ¢ to j with ¢ # v and 7 # v in
G — v, then by the combinatorial interpretation for r; ;, we obtain r; ; = 0. Consider
a branch B of G at v. Let i,j € V(B). For each forest in F¢(i,j;v), the subtree
with the vertex v in the forest must contain all vertices of V/(G)\V(B). Thus, we
have | Fe(4, j;v)| = | Fp(i, j;0)|.

Given a tree 7 with a vertex v, let Ry, = [r; ;]. Consider two vertices i and j in
T with i # v and j # v. For each forest in F7(i, j;v), there is a subtree of the forest
having ¢ and j. Then, all vertices wg, wy, ..., wqq ;) on the subpath with pendent
vertices ¢ and j must be contained in the subtree. Therefore, r; ; = min{d(v, w,)|p =

0,...,d(:,7)}. In particular, if ¢ = j then r; ; = d(i,v).
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Example 5.2.13. Consider the path Ps = (1,...,6). Let Rp, , = [r;;] where v = 3.
Remark can be used for finding Rp, , as follows. Evidently, 73, = ;3 = 0 for
1 < i < 6. Since v is a cut vertex, we have r;; = 0 for i € {1,2} and j € {4,5,6}.
Finally, using the argument in the last paragraph in Remark we have

Rp, ., =

o O O o o O
= = = OO O O
w N o= O O O
w N o= O O O

S O O O = N
S O O O = =

We now compute d” Rd for K,,, C,,, P,, and S,.

Example 5.2.14. Given a complete graph K,, and a vertex v of K,,, from 2d” Rd =
dT(2f°17 — Fy, )d and Example [5.2.2 it is readily seen that

d"Rd = n""%(n — 1)

Example 5.2.15. Given a cycle C,, with a vertex v, from 2dTRCmUd =dT(2f 17 -
F¢,)d and Example |5.2.3] we have

1
d"Rd = g(n — )n?(n+1).

Let us compute d” Rd for P, and S, by finding R instead of using F and f*.

Example 5.2.16. Given the path P, = (1,2,...,n) and a vertex v for 1 < v <mn,
considering Remark [5.2.12| and Example [5.2.13] we have

My, 0
RPn,v - '
0 M,
where M; = [min{v — 1,0 —j}L<U<U and My = [min{i,j}hqﬂniv. We have
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dp, =21, —e; —e,. Then,
d"Rd = 41" Rp, ,1 + (My) 11 + (M2)p_vno — 417 Re; — 417 Re,,

:4<§k2+§k2>—|—n—1—2U(v—1)—2(n—v)(n—v—l—1)

The minimum of d” Rd is attained as gn(n—1)(n—2) if n is odd, and as 3n® —n*+

2n —1if nis even. The maximum of d”Rd is £(n —1)(2n —1)(2n — 3) at v =1 or

V=n.

Example 5.2.17. Consider a star S,,. Suppose that n is the centre vertex. Using
Remark [5.2.12] it can be checked that

v

I,1 O
J+ [ 0 ' 0} —e,17 —1e!, if deg(v) =1,

Rg, v =
{Ino_l 8] : if deg(v) =n — 1.
Hence,
I Rd — {(n —1)(4n —7), if deg(v) =1,
n—1, if deg(v) =n — 1.

Recall that given a connected graph G of order n where n > 2, G is (v, ky, k2)-
paradoxical if and only if ®(v, ky, ky) > 0, where 1 < v < n and integers ki, ko > 0
with ky 4+ ko > 2. We have seen that ¢(v) > 0 for any 1 < v < n regardless of k; and
ka; ¢1(k1, k2) > 0 if and only if (k1, ko) € {(1,1),(1,2),(2,1),(2,2)}; ¢2(k1,k2) <0
for any kq, ke with (ki,k2) # (1,1); and ¢3(k1, ko) < O for any ki, ke. Hence, ¢(v)
must have a relatively larger quantity in order for G to be (v, k1, ko )-paradoxical.

Consider the case k; = ko = 1. Then, ®(v, 1,1) = 3¢(v) +8mZ1g+4meTe—1276.
Clearly, ®(v,1,1) > 0 for any non-trivial connected graph G' and any vertex v of G.

Hence, we have the following result.

Theorem 5.2.18. [2]] Let G be a connected graph of order n where n > 2. Then,
G is (1,1)-paradozical.

We now find conditions for K,, C,, P, or S, to be (v, ky, ks)-paradoxical or
(k1, ko)-paradoxical. For simplicity, set k — 1 = k; + ko and ¢; = ¢;(ky, ko) for
1= ]_, 2,3 Note that ¢G(U) = QdERG,vdG and sz‘(kil, k?g) = ¢i(k27 kl) for i = ]_, 2,3
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For convenience, the following quantities are computed in advance: ¢o(1,2) = —27,
$3(1,2) = —48, $5(2,2) = —60 and ¢3(2,2) = —180.

Example 5.2.19. Consider a complete graph K,. Let v be a vertex of K,. From

Example [5.2.14) ¢(v) = 2n""2(n — 1)* = 27(n — 1)3. Using (5.2.5) with m = n(n2_1)7

we obtain
3 2 2 1 2
Br (0, by, ky) = Tk (z(n 1)+ nd(n = 1261 + Sl — )6 + 3¢3> .

Suppose that (ki, ko) ¢ {(1,1),(1,2),(2,1),(2,2)}. By Remark [5.2.11} ¢; < —3.
From (5.2.7), we have ¢ < —15. By (5.2.6)), ¢35 < —6. Hence,

4 14
(I)(U, kl,k2> <7k (—3n4 + Eng - 3?;7712 + 11n — 6> .

One can verify that —%n‘l + 1—34713 — %nQ + 11n — 6 < 0 for n > 1. Therefore, if
(k1, ko) ¢ {(1,1),(1,2),(2,1),(2,2)}, then K, is not (v, k1, k2)-paradoxical for any
n>1.

Consider (ki, ko) = (1,2) and (kq, k2) = (2,2). Then,

®(v,1,2) =47 (2(n — 1)* = 9n(n — 1) — 32),
®(v,2,2) =57 (2(n — 1)* = 20n(n — 1) — 120) .

Using the derivatives of Q(Z’TM) d Cb(féi’z) with respect to n, it can be checked that
®(v,1,2) > 0 if and only if n > 7; ®(v,2,2) > 0 if and only if n > 13. Hence, K, is

(1,2)-paradoxical for n > 7, and (2, 2)-paradoxical for n > 13.

Example 5.2.20. Given a cycle C),, with a vertex v, by Example [5.2.15, we have
¢(v) = 2(n—1)n*(n+1) = % (n — 1)n(n + 1). Using (5.2.5)), we find

2 2 2
e, (v, ky, k) = Tk <3<n — D+ 1) + 42y + 2né + 3¢3> .

D (v,k1,k2)
Tk

n has a positive coefficient. This implies that given ky, ko > 0 with k; + ko > 2,

We observe that the term with the highest degree in as a polynomial of

C, is (ky, ko)-paradoxical for sufficiently large n. Consider (ki,k2) = (1,2) and
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(kla k?) = (27 2) Then7

[\

®(v,1,2) =47 ((n —1)n(n+1) — 18n — 32> :

[NV

®(v,2,2) = b7 ((n —1)n(n+1) —40n — 120) .

w

One can verify that ®(v,1,2) > 0 for n > 6 with equality if and only if n = 6;
®(v,2,2) > 0 for n > 9 with equality if and only if n = 9. Hence, C, is (1,2)-
paradoxical for n > 7, and (2, 2)-paradoxical for n > 10.

Example 5.2.21. Consider the path P, = (1,...,n) with a vertex v. By (5.2.5))
and the minimum of ¢(v) = 2d” Rd in Example [5.2.16} we have

Bp (0, kit ko) > <§n<n 1) —2) + 4(n — 1)2; + g(n 1)+ §¢3> |

Hence, given ki, ke > 0 with ky + ko > 2, P, is (ki, k2)-paradoxical for sufficiently

large n.

Example 5.2.22. Consider a star S,, with a vertex v. Suppose that v is the centre
vertex. Then, n > 3. By Example [5.2.17]

(I)Sn('U, k’l, k’g) = k <2(77, — 1) + 4(n — 1)2¢1 + ;(n — 1)@52 + §¢3> .

Let (k1,k2) # (1,1). Clearly, ¢; < 0. By and (5.2.6)), we have ¢, < —15 and

o3 < —6, respectively. So, ®(v,ky, ko) < —4k(2n — 1). Hence, if S, is (v, ky, k2)-

paradoxical where v is the centre vertex of S, then (ky, k2) = (1,1) and n > 3.
Suppose that v is a pendent vertex. From Example [5.2.17]

B (v, k1, k) = k (2(n CD)(dn—7) +4(n — )%, + g(n D+ §¢3> .

We have ¢1(270) = _%7 ¢2(270) = —34 and ¢3(270) = _67 ¢1(37 2) = _%a ¢2(3a 2) =
—163 and ¢3(3,2) = —480. One can check that ®(v,2,0) = 8n? — 102n + 82 > 0 for
n > 12; ®(v,2,1) = 32n* — 160n > 0 for n > 6; ®(v,2,2) = 40n* — 310n — 330 > 0
for n > 9; and ®(v, 3,2) = 16n? — 720n — 1216 > 0 for n > 47. Let

A={(0,2),(2,0),(1,1),(1,2),(2,1),(2,2),(2,3),(3,2)}-

Suppose that (ki, k2) ¢ A. By Remark|5.2.11} we have ¢y (ky, ko) < —2. From ((5.2.7))
and (5.2.6)), ¢ < —15 and ¢3 < —6, respectively. Hence, ®(v, ki, ko) < —k(16n—12).
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Therefore, if S, is (v, k1, ka)-paradoxical for a pendent vertex v, then ki, ko and n
satisfy one of the following: (i) (k1,k2) = (1,1), n > 2; (ii) (k1,k2) € {(0,2),(2,0)},
n > 12; (iii) (ki ko) € {(1,2),(2, 1)}, n > 6; (iv) (k1,k2) = (2,2), n > 9; and
(v) (k1,k2) € {(2,3),(3,2)}, n > 47.

Problem 5.2.23. If Problem is resolved, then apply the result to the graphs

K,, C,, P,, and S, as done in this section.

5.3 Asymptotic behaviour of a sequence of graphs
with twin pendent paths regarding the Braess
edge

We have seen the families of complete graphs, cycles, stars, and paths in the previ-
ous section, and we have observed their asymptotic behaviours with respect to the
property of being (v, k1, ko)-paradoxical as the orders of graphs increase. In partic-
ular, except for complete graphs and stars, any graph with sufficiently large order n
relative to k; and ks in a family of cycles or paths is (ky, ko)-paradoxical. This idea

is formalized and a tool for finding such families is described in this section.

Definition 5.3.1. Let G” be a sequence of graphs G, Gs, ... where for each n > 1,
G, is a connected graph of order n with a vertex v. Fix integers ki, ko > 0 with
k1 + ko > 2. The sequence G" is asymptotically (kq, ks)-paradoxical if there exists
N > 0 such that G, is (v, kq, ke)-paradoxical for all n > N. The sequence G"
is asymptotically paradozical if for any integers ly,ls > 0 with Iy + [y > 2, G" is
asymptotically (I, ls)-paradoxical.

In what follows, G = (G,,)" denotes a sequence of connected graphs Gy, G, . ..
where for each n > 1, |V(G,)| =n and v € V(G,,).

Example 5.3.2. From Theorem [5.2.18] any sequence G¥ = (G,,)" is asymptotically
(1, 1)-paradoxical.

Example 5.3.3. Let G} = (K,,)", G5 = (C,)", G§ = (P,)" and G} = (5,)". From
Examples[5.2.19/{5.2.22] G3 and Gj are asymptotically paradoxical, but G} and Gj are
not. In particular, G is asymptotically (ki, k2)-paradoxical if and only if (kq, ks) €
{(1,1),(1,2),(2,1),(2,2)}. Consider G§ = (S,)". Suppose that there exists N > 0
such that v is a pendent vertex of S, for all n > N. Then, G} is asymptotically
(ky, ko)-paradoxical if and only if (ky, k») is in the set A described in Example
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If there exists N > 0 such that v is the centre vertex of S, for all n > N, then G is
asymptotically (ki, ks)-paradoxical if and only if (k1, ko) = (1,1).

Consider a sequence G* = (G,)". Examining the proof of Theorem with
(5.2.3)), we find from ([5.2.5)) that

K(G(v, k1, k) — (G (v, Ky, k)
_ Oq, (v, ky, k2)
dk(mg, + k)(me, +k — 1)7g,
:¢Gn (v) + 4mg, 7a, d1(k, k) + %(/ﬁz(lﬁ, ko) + 2T§" P3(k, k)
4(mg, + k)(mg, +k —1)1q, '

Note that since ¢g, (v) > 0 for all n > 2, we have —25=0 > 0.

4m GnTG
G (v)
m

Suppose that ;-3 is bounded, say 0 < 423"(;2

Gn Gn Gn n
L > 0. Then,

< L for any n > 2 where

KJ(G\!TL(U’ klv kQ)) - H<én(va kla k?))
<¢Gn (v) +4mg, Ta, 1 (k1, ko) + %%(/ﬁ? ko) + 273?” P3(k1, ka)

4m2G TG,
ki, k ki, k
<L+ ¢1(k17k2) + D2k, ko) + 03 2)
6mGn GTI’LG

Considering Remark [5.2.T1] there exist integers K; > 0 and Ky > 0 with K7+ Ky > 2
such that (G, (v, K, KQ)) K(Gn(v, Ky, Ky)) < 0 for all n > 2.

Suppose that d’G" diverges to infinity. Fix ki, ky > 0 with ky + ko > 2. Since
G, is connected for Gajl n > 1, mg, approaches infinity as n — oo. Then,

lim (1(Go(v, k1, k2)) = (G (v, k1, k2))) = 00

n—oo
Therefore, we have the following theorem.

Theorem 5.3.4. Given a sequence G' = (G,)", GY is asymptotically paradoxical if
¢Gn

,7_

and only if ;-57~~ — 00 asn — oo.

Example 5.3.5. Here we revisit Examples [5.2.1445.2.17, Note that ¢¢, (v) =

2d” Rg, ,d. One can verify that as n — oo, 74:;%(;271 =0; 4:3;% (Tgn — 00; 4;*‘;? (2”
0; 4¢§” @ _ 9 where v is a pendent vertex of S,,; and 4¢52n(”) = 0 where v is the
Mg, TSn Sn TSn

centre vertex of S,,. By Theorem [5.3.4] the sequences (C,)" and (P,)" are asymp-

totically paradoxical.
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Proposition 5.3.6. Let G be a connected graph, and v be a cut-vertex. Suppose that
there are { branches By, ..., By of G at v. Then,

¢
diRg.de =) dp Rp, .dp,. (5.3.1)
k=1

This implies that ¢q(v) = 4, b, (V).

Proof. Let Rg, = [r;]. By Remark[5.2.12] if i = v or j = v, then r;; = 0. Consider
i # v and j # v. Suppose that i € V(By,) and j € V(By,) for ki # ko. Since v is a
cut-vertex of G, we find from Remarkthat ri; = 0. Hence, for k =1,...,¢, the
submatrix of R¢, whose rows and columns are indexed by V(By) and V(G)\V (By),
respectively, is the zero matrix. For k = 1,..., /¢, assume 7,j € V(By). Since v is a
cut-vertex, by Remark |\Fa(i,5;v)| = |FB, (i, j;v)|. Therefore, the submatrix
of Rg, whose rows and columns are indexed by the vertex set V' (By) is Rp, .-

Let 1 < k < £. For dp, = (di)icv(sy, let dp, = (di)icv(e) where d; = d; if
i€ V(By), and d; = 0 if i € V(G)\V(By). Then, for 1 < ky, ky < ¢,

- -
dp, Rc.dp, = dp, Re.ds,

where EGW is the submatrix of R, whose rows and columns are indexed by V' (By,)
and V(By,), respectively. Hence, it follows that dgklﬁgﬂ,dBk2 = dj, Rp,, .dp, if
ki = ko, and dgklégmd]g@ — 0 otherwise. Evidently, dg = ¥¢_, dp,. Therefore,
the desired result follows. [

Proposition 5.3.7. Let H; be a connected graph with a vertex v; for v =1,...,¢.
Suppose that a sequence G' = (G,)" is asymptotically paradoxical. Consider a
sequence (G')* = (G1)” where for 1 < n < Y0 |V(H))|, G = G,, and for
n > Y |\V(H)|, G is the graph obtained from Hy,..., H, and G”*Zf,1 V(D)
by identifying the vertices vy, ..., ve,v. Then, (G')" is asymptotically paradoxical.

Proof. Suppose that n > Y0 |V(H;)|. Let ng = n — X'_, |[V/(H;)|. Since v is a

cut-vertex in Gy, we have 7¢; = 7¢, 7n, - - - Ta,. Using Proposition W,

¢ay (v) Gy (V) + iy b, (03)

2 = 7 :
Amg, Tar, Ama,, + X1 ME,)* TG, TH, * TH,

As n — 0o, we have ng — oo. Since (G)" is asymptotically paradoxical, by Theorem

5.3.4{ we obtain % — 00 as n — o0o. It follows that 4(;52%(1;) — 00 asn — oo.
Gn Gng mGéLTG{n
Therefore, (G')" is asymptotically paradoxical. ]
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Example 5.3.8. Suppose that for a connected graph G with a vertex v, G is not
(v, k1, ko)-paradoxical for some integers ki and ko with k; + ko > 2. By Example
and Proposition , we can obtain a (v, k1, ko )-paradoxical graph G’ from G
by identifying v and a vertex of a cycle C,, (or a vertex of a path P,) for sufficiently

large order n.

5.4 Asymptotically paradoxical sequences of trees

In order to examine the asymptotic behaviour of a sequence of trees, we shall find the
minimum of d-Rr ,d7 for trees T with a vertex v provided the number of branches
of T at v and the eccentricity of v in each branch are given. We first consider the
minimum of d¥R7,d7 when v is a pendent vertex.

Let T be a tree of order n, and v be a pendent vertex in 7. Consider Ry, =

[15.5]. Suppose that « is the eccentricity e7(v) of v in T. Then, there exists a path

P = (vg,v1,...,0,) of length o in T with vy = v. Evidently, vy and v, are pendent
vertices in 7. Let 7y and 7, be the trees where V(7y) = {vo} and V(T,) = {va}.
For k =1,..., a— 1, if there are more than two branches of 7 at vy, then we define

Tr to be the tree obtained from 7T by deleting the two branches except v, where one
contains vg_1 and the other vy, q; if there are exactly two branches of T at vy, then
we define Ty to be the tree with V(7;) = {vx}. Then, V (7o), ...,V (7,) are mutually
disjoint sets. Moreover, for each k = 0,...,«a, we have er, (v;) < o — k.

Recall that r; ; = |F7(i, j;v)| is the number of 2-tree spanning forests of 7 having
i, 7 in one tree and v in the other. Note that v = vg. Suppose that ¢ € V (7T, ) and
j € V(Tg,) where 0 < k; < ky < «. For each forest in Fr(i,j;v), since i and
j belong to the same subtree in the forest, the subtree must contain vy, and vy,.
For any vertex w on the subpath of 7 with ¢ and j as the pendent vertices, we
have dr(v,vg,) < dr(v,w). Hence, by Remark rij =k for i € V(T,) and
J €V (Tr,) with 0 < kg < ko < av.

Assume that i,j are in V(7) for some 1 < k < «. Consider the subpath P’ of
Tr with ¢ and j as the pendent vertices. Suppose that wy is the vertex on P’ such
that dr, (v, wo) < dr, (vg, w) for w € V(P'). Then, dr(v,wy) = k + dr, (vg, wp). Let
R7, v, = [Fi;]. By Remark [5.2.12] we have r;; = k + 7 ;.

Labelling the rows and columns of Ry, in order of v, V(T;), ...,V (7,), we obtain
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the following structure:

0 0 0 0 e 0
0J+ Ry J J J
0 J 2J + Ry, 0, 2J 2J
RTﬂ} =
0 J 2J 3J + Ry 0,
: ; : (a—1)J
i 0 J 2J 3J ad + Ry, ., |

where the Js in the blocks of Ry, are appropriately sized. Let n, = |V (7x)| for

k=0,...,

L0 0

o
|

RT,'U

I
' M

I
o

i
L

0 _1n—(no+--~+ni)

.
I

where n =ng+mnqy + - --

e, + X% 2e, +e,, . Then,

oa—2

x'Rr,x =Y (dT+11 + -

=0

o'
4
=0

42

0 Jn—(no+-~~+ni)

- 0rng+-+n, ][

-2

T T
077/0"‘ +n; 1

+ Ng-
Now, we shall compute d-R,d7. Let x* =

(ai(nj—l

j=it1

(S0

+ diag(0, R7y 0,5 - - -

n*(n0+---+m)}

)

i=1

=1

’ R'Touva)

0 d%

a. Note that ng = n, = 1. Then, Ry, can be recast as

+ diag(0, Ry v, - - -

dr.

—1

a—1
-t dT 11)2 + Z d%RTiMdTi
=1
a—1
)) + > d} Ry, »d7;

a—1
+ > dL Ry, d7.

) RTouUa)

O] and y =

We can find that the submatrix of Ry, whose rows and columns are indexed by
So, (X8 gen)’ Rro (X8 ge,,) is the

{U(),...,

Vo } is the matrix [min(7, j)]o<ij<a-

sum of all entries in [min(7, j)]o<i j<a. Thus, from y =2 (35 ey, ) —
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Figure 5.1: An illustration of a broom on n vertices considered in Example m

have

y' Rruy
= 417 [min(i, j)]o<ij<al — 4(€y + €a) Ry, (Z evk> + (e, +eq) Ry ,(e, +en)
k=0

= ?}a(a +1)2a+1) —2a(a+1)+a= ;a(Qoz —1)(2a+1).

Finally, we find

0 0
y
0 Jn*(ﬂ0+---+m)

=Y (df 1+ +df 1) (2a—i)—1)
55 (z <>) 2la—i)-1 =25 (z<>) o)1 1)

From Remark [5.2.12] for each k =0, ..., «, we have |Fr, (I, v; vg)| = 0 for L € V(Ty).

So, the vi' column of diag(0, Rz, ., R7, ) is the zero vector. This implies
xTdiag(0, R7;.0,5 - - - s R, 0, )y = 0. Hence,

2x" R,y = 4(2 (az::(nj - 1)) (2(a — i) +1).

Note that d- = x +y. Therefore, for a tree 7 with a pendent vertex v,

dg'RT,vdT = XTR'T,vX + ZXTRT,vy + yTR’T,vy

a—1 [fa—1 2 a—1
1% (Si-v) <t
=1

2 | & 2 (5.4.1)
+ 42 (QZ(TL] — 1)) 2(a—1i)+1)+ ;a(Qoz - 1)(2a+1).
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Example 5.4.1. Let n > o > 1, and B,, , be the broom with vertices v, vy, ..., v, in
Figure[5.1] Let vo = v, and X = {0,...,a}\{a—1}. Suppose that fori € X, 7; is the
tree with V(7;) = {v;}, and 7,1 is the subtree induced by V (By,.o)\{v1, - - -, Va—2, Va }-

Then, 7,1 is a star of order n — o with the centre vertex v,_;. Let n; = |V(T;)] for

i=0,...,a. By (5.4.1) and Example [5.2.17] we obtain

a—1
dTRBn,ay'Ud - 4 Z (n —a— 1)2 + dgn,aRSnfa,UafldSnfa
=1

a—1

A (n—a—D(2(a—i)+1) + ;a(Za— 1)(2a+1)

=1

=4la—1)n—-—a—-1>+n—-—a—-1)(4a®—-3) + ;a(%z —1)(2a +1).

We now consider the minimum of d¥ Ry ,dr for trees 7 and a pendent vertex
v in 7. We adopt the same hypotheses and notation used to derive (5.4.1). Note
that for ¢ = 0,..., a, v; is not necessarily a pendent vertex in 7,,. The result for the
minimum of d7. Ry, ,,d7, for i = 1,...,a —1in appears in the paper [47] as
the minimum of d7.(2£217 — Fr;)ds,. We shall introduce the result, which is proved
by induction in [47], with a different proof by using the combinatorial interpretation

for entries in Ry, ,,.

Lemma 5.4.2. [{7] Let T be a tree of order n > 2 with a vertex v. Then,
dTRTﬂ,d Z n—1

with equality if and only if one of the following holds: (i) forn =2, T = Py; (ii) for

n>3,7T =S5, and v is the centre vertex.

Proof. Let Ry, = [r;;]. By Remark[5.2.12] we have ry; = d(i,v) > 1 whenever ¢ # v.
The degree of each vertex is at least 1. So, we have d” Ry,d > (n — 1). To attain
the equality, r;; = 0 if ¢ # j. From Remark , we find that v is a cut-vertex
so that 7 — v consists of n — 1 isolated vertices. Therefore, our desired result is
obtained. O]

Applying Lemma to d7. Ry, ,,d7; in (5.4.1)) for each i = 1,..., a0 — 1, we
obtain ¥°¢7" d% Ry, ,,d7, > n — o — 1. Thus, d% Ry ,d7 in (5.4.1)) is bounded below
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as follows:

dt Ry ,dr > 4O§ (af(nj —1) ) +4 Z (azl ) (2(a — i) + 1)

=1 j=t 1

+(n—a-1)+ zl))a(Za —1)(2a+1).

Counsider

z_j(af ) +a_1 (i ) (a—i)+1) (5.4.2)

i=1 \ j=1
=[(ni 4+ nacr— (@@= 1)+ (m+ -+ ney — (@ —1))(20 = 1)]
+ [(n2+ Hmac1 — (@ = 2))+ (ng + -+ 4 nacy — (@ — 2))(2a — 3)]
o (a1 = 1)+ (neer — 13

Since nq+- - -+mnq-1 is constant, we find that the minimum of (5.4.2)) can be attained

as(n—a—1)(n+a—2)atng =n—«aand ny =--+ =n,_1 = 1. Therefore, when

v is a pendent vertex, we have

1
d*Rr,dr > (n—a—1)4n+4a —7) + ga(Za —1)(2a+1) (5.4.3)
where equality holds if and only if 7 is a broom B, , with v,vy,...,v, described
below:

v U1 Vg VUg—1 Vg

Here is the result for the minimum of d- R ,d7 mentioned at the beginning of

this section.

Proposition 5.4.3. Let T be a tree with a vertex v. Suppose that By,..., B, are
the branches of T at v for some ¢ > 1. Let n; = |V(B;)|, and let e; = epg,(v) for
1=1,...,¢0. Then,

14
1
i=1

where equality holds if and only if fori=1,...,¢, each branch B; is a broom B, .,

such that if n; > e; + 1, then v is one of the (n; — e;) pendent vertices having a
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common neighbour; if n; = e; + 1, then v is a pendent vertex in By, ., (which is a
path).

Proof. The conclusions can be readily established by Proposition and ((5.4.3]).
[

Hereafter, the symbols w, O and © stand for the small Omega notation, the big
O notation and the big Theta notation, respectively (see [4] for an introduction).

Now, we consider the following sequence of trees. We assume, in what follows,
that for any sequence G” = (7,)" of trees, V(7;) = {v} and for each n > 2, T,
is obtained from 7,_; by adding a new pendent vertex to a vertex of 7,_1, or by
subdividing an edge in 7,_; into two edges connecting to a new vertex. We denote
by «, and ¢, the eccentricity of v in 7, and the number of branches of 7, at v,
respectively. Define Bil) = 71 and ¢; = 1. Assume that for n > 2, Bin_l), e Bé:;l)
are the branches of 7,1 at v. Let {w} = V(7,)\V(T,-1). Consider the case ¢, —
l,_1 = 1. Then, w must be added to the vertex v in 7,_; to form 7,. For this
case, we define BZ»(n) as Bi(”_l) fori = 1,...,¢, — 1, and define Bé:) as the path
(v,w). Suppose ¢, = {,_1. Then, there exists exactly one branch B,(cnfl) for some
ke {1,...,0,_1} such that w is adjacent to at least a vertex of B,(fnfl) in 7,. We
define Bl-(n) as Bi(”_l) for 1 <i < /¢, 1 with i # k, and define B,gn) as the induced
subtree of 7, by V (B,g”_l)) U {w}. Hence, we define

Bn = |{i|€B£n)(’U) =0O(ap),i=1,...,0,}.

Remark 5.4.4. Consider a sequence G¥ = (T,,)" of trees. Evidently, 3, < ¢, = O(n)
and a,, = O(n). Since o, = max{ezm (v)|1 < i < £, }, we have 3, > 1.

Here is the main result in this section.

Theorem 5.4.5. Let G° = (T,) be a sequence of trees. If B,a3 = w(n?), then G¥ is

asymptotically paradozical.

Proof. Suppose that 3,a2 = w(n?). For n > 2, suppose that B™ .. Bé:) are the
branches of 7, at v. Let ™ = € g (v) and k™ = ‘V (Bl(n)ﬂ fori = 1,... 0,
We may assume that e§-n) = O(ay) for j =1,...,8,. Then, for each j =1,...,0,,
there exist C; > 0 and N; > 0 such that egn) > Cjay, for all n > N;. Choose

Co = min{Cy|j = 1,...,8,} and Ny = max{N;|j = 1,...,0,}. Then, e§n) > Chay,
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for all n > Ny and 1 < j < f3,. By Proposition [5.4.3] for n > Ny, we have

¢7,(v) _ 2dT Ry, .d7,

Am2-rr, 4(n—1)2
L S [0 — e — DR + e - 7) + e 26" — 1) (26" +1)]
- 2(n —1)2
< BnCoan(2Co0r, — 1)(2Chau, + 1)
- 6(n —1)2 '
Since 3,03 = w(n?), we have % — 00 as n approaches infinity. Therefore, the
conclusion follows. O

Corollary 5.4.6. Suppose that G = (T,)" is a sequence of trees such that o, =

w(ng) Then, G¥ is asymptotically paradoxical.
Proof. 1t is straightforward from Theorem [5.4.5, O]

Corollary 5.4.7. Suppose that G* = (T,,)" is a sequence of trees such that diam(7,) =

w(n%) Then, GY is asymptotically paradoxical.

Proof. Let P be a longest path in 7,. Suppose that wy is the vertex on P such that
d(v,wp) < d(v,w) for all vertices w on P. Then, a,, > d(v,wo) + 3diam(7,). By

Corollary our desired result follows. O

A rooted tree, or a tree rooted at v, is a tree in which a vertex v is designated as
the root vertex. Conventionally, we place the root vertex on top, and every edge is
directed away from the root. A leaf in a rooted tree is a vertex of degree 1 which is
not the root vertex. The depth of a vertex v in a rooted tree is the distance between
v and the root. The height of a rooted tree is the maximum distance from the root

to all leaves.

v v
v v v(w)
w
z x
z x
x
T2 T3 Ta T
Ts To

Figure 5.2: A sequence of rooted trees considered in Example .
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Example 5.4.8. Let G¥ = (7,)" be a sequence of trees. For each n > 1, 7, can be
considered as a tree rooted at v. We may also regard branches BYL), ceey Bé:) of T,
at v as trees rooted at v. For each n > 3, let 7,, be obtained from 7,_; as follows: if
eBYH)(v) = [n®] — 1, then a new vertex z is added to a leaf z of B%"fl) such that
the depth of z is the height of B if eBYH)(U) = [n®], then a new vertex x is
added to a vertex w in 7,_1 such that d(v,w) < € pn-1) (v). Assume that ¢y = 0.7.
Considering [3%°| = |[4°| = 2 and [5°] = |6%| = 3, one of all possible sequences
can be obtained as in Figure 5.2l Note that the very left branch of each tree rooted
at v in that figure is B for n = 2,...,6. Then, eBYL)(v) > epm (v) for all n > 2
and 2 < k < /,,. Moreover, € (v) > n® —1 for all n > 2. By Corollary |5.4.6, G"
is asymptotically paradoxical—that is, for integers ky, ko > 0 with ky + ko > 2, T, is

(v, k1, ko)-paradoxical for sufficiently large n.

From the following example, the converses of Theorem Corollaries [5.4.6
and do not hold.

Example 5.4.9. Consider a sequence G = (7,)" where for n > 4, 7T, is a broom
B, With o, > 3. Suppose that for each n > 4, v is the pendent vertex of B, ,, that
does not have any common neighbour with other pendent vertices in B,, o,. Clearly,
B, = 1. Suppose that a,, = w(1). By Example [5.4.1] we obtain

Aan —1)(n = — 1) + (n — o, — 1) (402 — 3) 4+ 300 (200, — 1) (200, + 1)
2(n —1)2

>2(an —1)(n—a, —1)?

b7, (v)
4m%-n 7T,

Therefore, G* is asymptotically paradoxical. Moreover, we have 3,03 = w(1).

2

for n > 4. Since n’a,, = w(n?), we have — o0 as n approaches infinity.

Problem 5.4.10. If Problem[5.2.9 is solved, then with the result from that problem,
establish analogous results as done in Sections[5.5 and[5.4)
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6

Equidistant switched hypercubes:
their properties and sensitivity

analysis under PST

This chapter is a study of graph properties and spectral properties of hypercubes
and graphs resulting from switching edges on hypercubes. Using those properties,
we conduct sensitivity analysis under perfect state transfer (PST) with respect to
readout time and edge weight.

Before we begin this chapter, let us recall the definition of PST for the hypercube
(), and a related property. Consider the adjacency matrix A(Q,) of the hypercube
Q.. The fidelity of state transfer between vertices v and w at time ¢t in @, is
0, (1) = |[(U(#))vw|? where U(t) = e®A@); and if pg, (to) = 1, then we say that
there is PST between v and w at time to. By Proposition [2.5.2] for any vertex z in

T

V(Qy), z and the antipodal vertex of x pair up to exhibit PST at time 7

6.1 Introduction

An important task within a quantum computer is to transfer a quantum state from
one place to another. To realize the task, a quantum spin network, represented by a
graph, is used as a channel for quantum communication within a quantum computer
[8]. While a collection of qubits (vertices) allows quantum states to be transferred
from one location to another by continuous time quantum walks, we consider the
amount of similarity between the transmitted state and the received state. The
fidelity of state transfer, as a measure of the closeness between two quantum states,

is the probability of a quantum state placed at a vertex to be transmitted to another
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vertex at a given time. Although graphs exhibiting perfect state transfer (PST)—
the fidelity of transfer is 1—have been extensively researched, e.g., [3, 34], practical
benefits from the discovery of such graphs need to be discussed further.

In order to control qubits within a quantum computer, they need to be isolated
completely from external environments, a crucial and challenging task. This brings
our attention to researching PST under perturbation of readout time or the weight
of an edge [40]. Sensitivity of the fidelity of state transfer with respect to readout
time or the weight of an edge is analysed in [43]. Recent work [46] explores graphs
constructed from hypercubes by Godsil-MaKay switching so that they are not iso-
morphic, but maintain PST and preserve the same sensitivity (of the fidelity of state
transfer) with respect to readout time under PST. Regarding switching edges on hy-
percubes and the structure of resulting graphs, there are further works: the twisted
n-cube in [29], the Mobius cubes in [23], and the generalized twisted cubes in [19].

The direction of our work is parallel to that of the work [46], but our ultimate
goal is to furnish graphs obtained from hypercubes by certain types of switches
that are less sensitive to changes in the weight of an edge under PST. In Section
6.2 we define particular matchings in graphs through distances among vertices, and
study them in a family of bipartite graphs. In Section [6.3] those matchings are
used to define the so-called equidistant switches, and in particular, the so-called
equidistant switched hypercubes obtained from hypercubes by equidistant switches
are investigated. We show that the switched graph is not isomorphic to the original
one (Theorem , and we provide a sufficient condition for equidistant switched
hypercubes to maintain PST (Theorem . Furthermore, we analyse the number
of pairs of vertices exhibiting PST in equidistant switched hypercubes with extra
conditions. In Section [6.4, we first provide a result that the sensitivity to readout
time errors under PST between particular vertices in hypercubes is invariant under
equidistant switches (Theorem . Moreover we produce explicit expressions for
the sensitivity under PST in hypercubes with respect to the weights of two types of
edges (Theorems [6.4.20] and [6.4.22 for the one, and Theorems [6.4.23| and |6.4.24] for
the other). In Section , we present spectral properties of particular equidistant
switched hypercubes (Theorem , and provide all necessary interim results
(introduced by Remark required to reach the expressions for the sensitivity to

the edge-weight errors in the equidistant switched hypercubes. Finally, we conclude

Section by providing numerical results about our ultimate goal and a related
conjecture (Conjecture |6.5.24)).
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6.2 Equidistant matchings in bipartite graphs

We shall define matchings with a certain restriction regarding distance in graphs in

order to describe a particular type of switch on hypercubes in Section [6.3]

Definition 6.2.1. A matching M in a graph G is said to be equidistant if there
exist subsets {vy,..., v} and {wy,...,wi} of V(G) for k > 2 such that M = {v; ~
w;|i = 1,...,k}, the distances between v;’s are the same constant, and the distances
between w;’s are also the same constant (the two constants are not necessarily equal).
The subsets {vq,...,vx} and {wy, ..., wi} are called distance-partite sets of M.

A matching M in a graph G is said to be a (k, a, b; I')-matching if M is equidistant

so that for distance-partite sets {vy,...,vx} and {wy, ..., wg} with k£ > 2, we have
(i) d(vi,v;) =afori,je{l,... ,k} with i # j;
(ii) d(w;,w;) =0bfori,je{l,... .k} with i # j; and
(iii) T'is the multi-set of distances d(v;, w;) for i,j € {1,...,k} with i # j.

When the distances a and b are specified, we use M* and M, to denote {vy,..., v}

and {wy, ..., wy}, respectively.

Remark 6.2.2. Let M be a (k, a, b;T')-matching in a graph G. Since M consists of

non-incident edges, we have a,b > 2.

Example 6.2.3. Let v; = 0000, v = 0111, w; = 1000, and wy = 1111 in Q4. Let
M = {v; ~ wy,vy ~ wa}. Since dg,(vi,v2) = dg,(w1,ws) = 3, M is equidistant.
Furthermore, M is a (2,3, 3;{4,4})-matching in Q4.

Let G be a bipartite graph. Suppose that M = {v; ~ w;|i = 1,...,k} is a
(k,a,b;I')-matching in G with distance-partite sets M* = {vy,..., v} and M, =
{wi,...,wp}. Fori,j e {l,... k} with i # j, consider v;,v; € M® and w;, w; € M,.
By the triangle inequality, we have

d(vi, v;) < d(vi, wy) + d(wy, v;) and d(vs, w;) < d(vg, v;) + d(vy, wy).

Since d(v;,v;) = a and d(wj,v;) = 1, we obtain a — 1 < d(v;,w;) < a+ 1. Since
G is a bipartite graph and v; ~ w; € E(G), v; and w; are in the different partite
sets of G. Similarly, v; and w; are in the different partite sets. It follows that

d(v;,v;) and d(w;, w;) have the same parity. Furthermore, d(v;, w;) has the opposite
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parity from that of d(v;,v;) and d(w;, w;). Thus, from d(v;,v;) = a, we have either
d(vi,wj) =a—1 or d(v;, w;) = a+ 1.

Applying the triangle inequality twice, we have d(w;, w;) < d(w;, v;) + d(v;, v;) +
d(vj,w;) = a+2. So, b < a+ 2. Similarly, one can find that a < b+ 2. Without
loss of generality, a < b. Since d(v;,v;) and d(w;,w;) have the same parity, we
have either b = a or b = a + 2. In particular, if b = a + 2, then we find from
d(w;, w;) < d(w;,vj) + d(vj, w;) that d(w;,v;) > a+ 1; and from the fact above
that either d(v;,w;) = a — 1 or d(v;, w;) = a + 1, we must have d(w;,v;) = a + 1.

Therefore, we have the following.

Proposition 6.2.4. Let G be a bipartite graph. Suppose that M is an equidistant
matching in G. Then, M is one of the following cases: for k > 2 and a > 2,

(M1) M is a (k,a,a;{(a+ 1)™}-matching;

(M2) M is a (k,a,a+ 2;{(a+ 1)"})-matching;

(M3) M is a (k,a,a;{(a — 1)™})-matching;

(M4) M is a (k,a,a;{(a — 1), (a + 1)™*})-matching for some 0 < s < m,

where m = k(k — 1) in [(M1JH{(M4)

Remark 6.2.5. Let GG be a bipartite graph with partite sets U and W. Let M be
a (k,a,b;T)-matching in G with distance-partite sets M and M,. Suppose k > 3.
Then, for vertices  and y of G, d(z,y) is odd if and only if x is in one of U and
W, and y is in the other. So, if d(z,y) and d(y, z) both are odd, then d(z, z) must
be even. This implies that a and b must be even. Hence, M is one of the following
cases: for k >3 and a > 1, (i) M is a (k,2a, 2a; {(2a + 1)™})-matching; (ii) M is a
(k,2a, 20+ 2; { (2 + 1)™ })-matching; (iii) M is a (k, 2a, 2a; {(2ae — 1)} )-matching;
and (iv) M is a (k,2a,20; {(2a — 1)%, (2 + 1)™~*})-matching for some 0 < s < m,
where m = k(k — 1).

As seen in Example [6.2.3], if £ = 2, then a and b need not be even.

Problem 6.2.6. Given a bipartite graph G, investigate quadruples (k,a,b,T") that
guarantee the existence of a (k,a,b;T")-matching in G. One might explore, using
Menger’s theorem, the range of k by considering graph parameters such as vertex-

connectivity.
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equidistant switch
_— >

Wy W W Wr(1) Wr(2) Wr (k)

Figure 6.1: An illustration of the equidistant switch via M, in Definition m

6.3 Properties of equidistant switched hypercubes
and PST

In this section, we discuss a difference and a similarity between (),, and the graph
obtained from @), by a switch related to an equidistant matching. Furthermore, we
investigate pairs of vertices exhibiting PST in the resulting graph.

Recall that Sy is the symmetric group on {1,...,k}.

Definition 6.3.1. Let M = {v; ~ w;|i = 1,...,k} be an equidistant matching in a
graph G with distance-partite sets {vy,...,vs} and {wy, ..., w,} where k > 2. Given
T € Sk, M, denotes the set {v-;y ~ w-»y|i =1,...,k}. (M; may be regarded as an
ordered set of edges in M.) The process of deleting edges v; ~ w; for i = 1,... k
from G' and adding edges v-(x) ~ wrq) and vy ~ wepr) for j=1,...k —=1to G
is referred to as the equidistant switch via M, in G. The equidistant switch via M.,
in G is said to be the (k,a,b;T")-switch via M, if M is a (k,a,b;T)-matching in G.
The graph, denoted G| obtained from G by the equidistant switch via M, (resp.
the (k,a,b;T")-switch via M) is said to be the equidistant switched graph via M,
(resp. the (k,a,b;T')-switched graph via M,). If GM) is isomorphic to GM7) for all

o € Sk, then we use GM) to denote a representative GXM7).

Remark 6.3.2. For clarity we discuss Definition [6.3.1] Given an equidistant match-
ing M of size k in a graph GG, we have k edges for performing an equidistant switch on
G. Considering orderings of the edges, we have k! choices for an equidistant switch.
(Note that we permute the edges, not vertices of a distance-partite set.) So, if M, is
specified in the context, i.e. an ordered set of edges in M is given, then we use ‘the’
before each related terminology in Definition [6.3.1} unless M, is given, we shall use

indefinite articles.

Example 6.3.3. Consider the graph G in Figure . Then, M = {v; ~ w;|1 <i <
4} is a (4,2,2,{(3)'?})-matching. Let id be the identity permutation, and 7 = (1 2)
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Figure 6.2: A graph G used in Example m

in the cyclic notation. One can verify that while G has two adjacent vertices vy

and w; of degree 3, G does not. Hence, GMid) and GM) are not isomorphic.

Problem 6.3.4. Given an equidistant matching M of size k > 3 in a graph G, find
conditions in order that an equidistant switched graph is uniquely determined up to

permutations of the non-incident edges in M.

Remark 6.3.5. Continuing with Problem [6.3.4] it is straightforward that if k = 2,
then since M contains only two non-incident edges, we have GMi) — G(Maz),

Hence, for the case k = 2, we may use G to indicate GM) for 7 € Ss.
We now turn our attention to hypercubes.

Problem 6.3.6. Letn >4 and k > 3. Let M = {v; ~w;li = 1,...,k} be an equidis-

tant matching in Q,, with distance-partite sets {vy,...,vx} and {wy, ..., wg}. Prove
or disprove that if there exists a vertez x in Q,, such that d(x,v,) = --- = d(z,vy) and
d(zx,wy) = -+ =d(z,wy), then an equidistant switched n-cube is uniquely determined

(up to permutations of the edges in M ).

We first consider whether there is an equidistant switched n-cube isomorphic to

the n-cube.

Lemma 6.3.7. [60] Let n > 2. A graph G is the n-cube if and only if (i) G is con-
nected, (i) every pair of incident edges lies in exactly one 4-cycle, and (iii) |V (G)| = 2".

Theorem 6.3.8. Let n > 4, and let M be a matching in Q,, where M = {v; ~ w;|i =
1,...,k} for some k > 2. Suppose that H is the graph obtained from Q,, by deleting
edges v; ~ w; fori=1,...,k from @, and adding edges vy ~ wy and v; ~ w;y; for
j=1,...k—=1toQ,. Then, H is not isomorphic to Q.

Proof. 1t is clear that H is connected and |V (H)| = 2". Assume to the contrary
that H and @, are isomorphic. Note that we use the condition in Lemma m
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without reference in this proof. Let M; = {vy,..., v} and My = {wy,...,wi}.
Consider vy, w, v, and wg. Choose z in Ng, (w1)\{vi1}. Since M is a matching,
z ¢ M. For incident edges v; ~ w; and w; ~ z, there exists exactly one vertex 2’
such that (vy,wn, z,2’,v;1) is a 4-cycle in @,,. Since v; is not adjacent to any vertex
in Mo\{w}, we have 2/ ¢ My. So, wy ~ z,z ~ 2,2 ~ vy € E(H). Note that
vy ~wy ¢ FE(H). Since @), and H are isomorphic, for incident edges w; ~ z and
z ~ 2" of H, there must be exactly one vertex v such that (wy, z, 2/, v, wy) is a 4-cycle
in H. Clearly, v # v;. Since Ny(wy) N My = {vx}, the vertex v is either vy or
some vertex not in Mj. If v # vy, then there are two 4-cycles (vq,ws, 2, 2’,v1) and
(wn, 2,2, v,wq) in @, for the incident edges wy ~ z and z ~ 2’ of @Q,, which is a
contradiction. Hence, v = v,. By 2/ ¢ My, 2/ ~ v, € E(Q,). For incident edges
z ~ 2 and z/ ~ v of Q,, there is a unique vertex w such that (z, 2, v, w, 2) is a
4-cycle in @,. Evidently, w # w;. Since Ng, (vi) N My = {wy}, the vertex w is either
wy, or some vertex not in My. Note that 2’ ~ v, € E(H). If w # wy, then for incident
edges z ~ z’ and 2’ ~ vy, there are two 4 cycles (z, 2/, v, w, z) and (z, 2/, vg, w1, 2) in
H, a contradiction. Thus, w = wy and z ~ wy, € E(Q,,). Hence, dg, (w1, wy) = 2.
Consider wy and wy. Since dg, (wy, wy) = 2, wy and wy, have exactly two common
neighbours that are neither v; nor vg. Otherwise, it would contradict in Lemma
[6.3.7 Since every vertex in @, is of degree n > 4, there exists a vertex y in @, such
that y ¢ My, y ~ wy, € E(Q,) and y ~ w; ¢ E(Q,). For incident edges vy ~ wj and
wg ~ y of @, there exists a unique vertex 3" such that (vy, wg,y,y’, vx) is a 4-cycle
in @,. Since Ng, (vy) "My = {wy}, we have y' ¢ M. Then, y ~ ',y ~ v, € E(H).
Since H is isomorphic to @, and vy, ~ wy, ¢ E(H), for two incident edges v, ~ y" and
y' ~ y, there must be a unique vertex z such that = # wy and (vg, v, y, x, vx) is a 4-
cycle in H. We have Ny (v)N My = {w; }, so x is either w; or some vertex not in Ms.
Since y ¢ My and y ~ wy ¢ E(Q,), we have y ~ wy ¢ E(H). So, x # w;. Hence,
for incident edges vy ~ 3 and 3y’ ~ y, there are two 4-cycles (vg, wg,y,y’, vx) and

(v, ¥, y, T, vx) in @y, a contradiction. Therefore, our desired result is obtained. [J

Corollary 6.3.9. Let n > 4. Then, no equidistant switched n-cube is isomorphic to

the n-cube.

Remark 6.3.10. Any matching in Q)3 is equidistant and is a (2, 2, 2; {3, 3} )-matching.
It can be easily seen that any (2,2, 2;{3,3})-switched 3-cube is isomorphic to Q3.

Even though for n > 4, any equidistant switched n-cube is not isomorphic to
the n-cube, they share the following property—used in Section for showing that

under PST, they have the same sensitivity to readout time errors.
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Proposition 6.3.11. Let M = {v; ~ w;|i = 1,...,k} be an equidistant matching
in Q, with distance-partite sets {vy,..., v} and {wy, ..., wp}. Let © be a vertex of
Qn, and T € S;. Suppose that dg, (x,v1) = -+ = dg, (z,v;) and dg, (v, wy) = -+ =
dg, (x,wy). Then, for any integer j > 1, the number of walks of length j from x to

x in Q, is the same as that in @;MT).

Proof. Let j > 1 and 7 € 8. Suppose that MT = {vrq) ~ Wr), . Vrlm1) ~
Wr(k), Ur(k) ~ Wr(1y}. Then, M. is a matching in @%MT). Define X; (resp. Yj) to
be the set of walks of length j from z and back to itself in @, (resp. Q7)) such
that there appears at least one edge of M (resp. JT/L) in each walk (as a sequence
of edges). Note that considering M as a subgraph in @, the subgraph induced by
the distance-partite sets is M. Since the equidistant switch via M, only changes
adjacency of the induced subgraph M in @, it suffices to show that |X,| = |Y}| in
order to obtain the desired conclusion.

We claim that there is a bijection between X; and Y;. Choose any walk w in X.
Regarding w as a sequence of edges, we suppose that (ey,...,e,) is the subsequence
of w such that e¢; € M for i =1,...,p. A walk &' is constructed from w as follows:
fori=1,...,p,if e; is v, ~ wy for some 1 < ¢ < k — 1, then e; is replaced by the
edge € = vr(p) ~ Wr(e41); and if e; = v ~ wy, then ef = v () ~ wy) is substituted
for e;. Then, all the replaced edges in ' are in M. Thus, o' € Y;. Furthermore, w’
can be restored to w by replacing €} by e; for 1 <1 < p. This construction yields the

desired bijection. Therefore, the conclusion follows. m

Now, we provide a sufficient condition for an equidistant switched n-cube to
maintain PST. Recall that for a vertex v of a graph G and a subset X of V(G),
Nx(v) is the set of neighbours of v that belong to X.

Theorem 6.3.12. Let M = {v; ~ w;|i = 1,...,k} be an equidistant matching in
Qn with distance-partite sets My = {vy,..., vt} and My = {wy,...,wi}. Suppose
that there exists a vertex © € V(Qn) such that dg, (z,v1) = -+ = dg,(x,v;) and
dq,(v,w1) = -+ =dg,(z,wy). Then, v and x* pair up to exhibit PST at time % in
@%MT) for any T € S.

Proof. Let 7 € Sk. Suppose that dg, (z,v;) = £ and dg, (v, w;) =L+ 1for 1 <i <k
where ¢ > 1. Consider the distance partition 7 = (Sp(x),..., S (x)) of @, with
respect to . Then, M; C Sy(z) and My C Spiq(x). Since the equidistant switch via
M. only changes adjacency of the subgraph of @),, induced by M; U M,, we can find
from Proposition m that the distance partition 7 of CZ(IMT) with respect to x is the
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same as m. By Theorem 7 is equitable. So, |Ng,, (2)(vi)| and |Ng, ) (w;)| are
constant for 1 < ¢ < k. Furthermore, we find that |Ng,, ) (v;)| and [Ng, () (w;)| are

invariant under the equidistant switch. Hence, 7 is equitable, and @%MT) /7 is the

same as @r Therefore, using Proposition |2.5.2/and Theorem [2.5.4} @;MT) exhibits

PST between x and z* at time 7. For £ > 1, applying an analogous argument to the
case that dg, (z,v;) = £ and dg, (z,w;) = ¢ — 1 for 1 < i < k, the desired conclusion
is established. O

Remark 6.3.13. In this remark we maintain the hypotheses and notation of The-
orem [6.3.12] Inspecting the proof of that theorem, we can see that dg,(z,v) =
dé(MT)(x, v) for v € V(Q,). So, x* is a unique antipodal vertex of z in @%MT), and

dégMﬂ(:c, *) = n.

Example 6.3.14. Consider the hypercube (4, and antipodal vertices x = 0000
and z* = 1111. Let z = 0000, v = 0011, w; = 1000 and ws = 1011. Then,
M = {x ~ wy,ve ~ wy} is a (2,2,2,{3,3})-matching in ;. We note Remark
Since £ ~ wy € (@gM)), we have déilw) (z,2*) = 2. One can check that 1000, 1110,
1101 and 0111 are all at distance 3 from x, so they are all antipodal vertices of x in

QELM). Therefore, x and z* are not antipodal vertices in QiM).

Conjecture 6.3.15. Prove the converse of Theorem [6.5.12. If this is proved, then
for a (2,a,b;T)-matching M with a and b odd, @%M) does not exhibit PST between

us

any pair of vertices at time 5

We claim that a (k, 2a, 2a; {(2a 4 1)1} )-switched n-cube in type needs
a weak condition relative to the hypothesis of Theorem [6.3.12] to exhibit PST.

Lemma 6.3.16. Let z =0...01...1 be a binary string of length n with p ones where
p is even. Suppose that y is a binary string of length n with q ones and dg, (2,y) = q.
Then, y contains @ ones among the first n — p positions, and § ones among the

last p positions.

Proof. Suppose that in y, 1 appears ¢; times for the first n — p positions, and ¢,
times for the last p positions. Then, ¢ = dg, (2,y) = ¢1 + (p — ¢2). Since ¢1 + ¢ = g,

it follows that ¢; = 2‘1—2_1’ and g = §. The conclusion follows. n

Lemma 6.3.17. Let M = {v; ~ wi|i = 1,...,k} be a (k,2a,2a; {(2a + 1)FE=D1)-

matching in Q,, with distance-partite set {vy,...,vx} and {wy, ..., wi} where n > 3.
Let x € V(Q,). Then, d(z,v;) = -+ = d(x,vx) if and only if d(x,w;) = -+ =
d(x,wy,).
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Proof. 1t is enough to show that d(z,v,) = d(x, vy) if and only if d(z, w) = d(x, w,).
Let d(z,v1) = d(z,v9) = ¢. From d(vy,v3) = 2a, we have { > «. By of
Proposition [2.5.1) we may assume that v; = 0...0 and v, = 0...01...1 where 1
appears 2« times in vy. By d(z,v1) = ¢, x contains £ ones. Applying Lemma to
vertices v, and x, the vertex x must contain /—« ones among the first n—2« positions,
and « ones among the last 2« positions. Let wy = a4 ...a, and wy = by ...b,. From
v ~w; € E(Q), wy has a single one. By d(vg, w;) = 2ar+ 1, the single one appears
among the first n — 2« positions of wy, say a;, = 1 for some iy € {1,...,n — 2a}.
Since d(vy, wy) = 2a+1, we contains 2a+1 ones. Furthermore, by vy ~ wy € E(Q,,),
bj=1for j =n—2a+1,...,n, and b, = 1 for some j, € {1,...,n — 2a}. Since
d(wy,wy) = 2a, we must have ig = jo. It follows that d(x, w;) = d(z,ws). In a similar

way, it is readily established that d(z,w;) = d(x,wy) implies d(x,v1) = d(x,vy). O

Given an equidistant matching M in one of types|(M2)} |[(M3)|and |(M4)|in @,,, we
can see from the following example that it does not hold for the property in Lemma
that if a vertex is at the same distance from all vertices in a distance-partite

set of M, then so is it from all vertices in the other distance-partite set.

Example 6.3.18. Let v; = 0000, v, = 0011, wy = 0100, wy = 1011, and x; = 1001.
Then, My = {v; ~ wy,vy ~ wy} is a (2,2,4;{3,3})-matching of type in Q.
But, d(z1,v1) = d(z1,v2) and d(x1,w;) # d(x1,ws).

Furthermore, let v3 = 0000, vy = 1111, w3 = 0100, wy = 1011 and x5, = 0011.
Then, My = {v3 ~ ws,vs ~ wy} is a (2,4,4;{3,3})-matching of type in Q4.
However, d(z2,v3) = d(z2,v4) and d(zq, ws3) # d(xs, wy).

Finally, let v5 = 000 000, v¢ = 001 111, ws = 010 000, wg = 000 111 and
x3 = 000 011. Then, M3 = {vs ~ ws,vs ~ wg} is a (2,4,4; {3,5})-matching of type
in Q. However, d(z3,vs) = d(r3,ve) and d(x3,ws) # d(x3,we).

Proposition 6.3.19. Let n > 4, and let M be a (k,2a,2a;{(2a + 1)¥})-matching
with distance-partite sets M>** and Moo, where k > 2 and o > 1. Suppose that a
vertex x of Q, satisfies either dg, (x,v) = £ for all v € M** or dg, (z,w) = { for
all w € Msy,. Let T € S,. Then, @%MT) exhibits PST between x and x* at time 7.
|S;(M?>®)| wvertices pair up to exhibit

—Q

Furthermore, a« < ¢ <n —« and at least ;"
PST at time % in QM.

Proof. Let 7 € §;. Without loss of generality, suppose that z is a vertex in (),, such
that dg, (z,v) = ¢ for all v € M?**. By Lemma [6.3.17], do, (z,w) is constant for all
w € My,. Hence, by Theorem [6.3.12, x and x* pair up to exhibit PST at time 7 in
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@gMT). Since pairwise distances among vertices in M?2® are constant as 2a, we have
¢ > «. Considering the distance partition of (), with respect to x with Proposition
2.5.6] we have dg, (z*,v) = n — £ for all v € M?*. Moreover, n — £ > «a. It follows
that = € U2 S;(M>) if and only if z* € U!Z® S;(M?). Therefore, our desired

result is established. O

Conjecture 6.3.20. If Conjecture holds, we obtain the exact number of pairs
exhibiting PST at time 3 in Proposition |6.5.19.

Now, we find Y722 |S;(M?*)| where M is a (2, 2a, 2; {(2a + 1)*})-matching in
Qn-

Proposition 6.3.21. Let n > 4, and M be a (2,2, 2a;{(2a + 1)?})-matching in
Q, for « > 1. Then, at least 2" 2 (25) vertices pair up to have PST at time 7 in
Q.

Proof. Let M** = {vy,v5} and My, = {w;,ws}. Suppose that v; ~ w; and vy ~ ws.
By of Proposition vy =0...0and v =0...01...1 where 1 appears 2«
times in ve. Since d(vi,w;) = 1 and d(ve, w1) = 2« + 1, there is a single 1 in wy,
and it must be placed on a position among the first n — 2« positions of w;. For
i € {a,...,n — a}, consider x € S;({v1,v2}). Applying Lemma to vy and
x, we see that x has exactly ¢ — a ones among the first n — 2a positions, and «
ones among the last 2« positions. Hence, |S;({v1,v2})| = (m) ("_2a). Therefore, by

[} t—a

Proposition [6.3.19], our desired result follows. O
Proposition 6.3.22. Let n > 4 and M be a (k,2«,25;T")-matching in Q, where

k>3 and a,8 > 1. If |So(M?*)| # 0, then ka < n and |S,(M?>**)| = 1. Similarly,
if |Ss(M?P)| # 0, then kB < n and |Ss(Mys)| = 1.

Proof. Let M** = {vy,...,v}, and let x be a vertex such that d(z,v;) = « for
t=1,...,k. By of Proposition , we may assume that v; = 0...0, and x
contains exactly « ones in the last « positions. From d(vy,v;) = 2 for j =2,... k,
each vertex v; contains exactly 2« ones. Since d(z,v;) = « for each j =2,... k, we
find that v; contains a ones in the last a positions. Moreover, since v;, and v;, for
Q1,09 € {2,...,k} with iy # iy differ in exactly 2« positions, the « ones of v;, that
are not in the last a positions do not have any position in common with those of
v;, not in the last o positions. Hence, ko < n. Furthermore, since vs, ..., v; share
exactly a ones in the last a positions, there are no vertices y other than x such that
y has precisely « ones and d(y,v;) = « for i = 2,..., k. Therefore, |S,(M?**)| = 1.

An analogous argument establishes the remaining result. O]
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Example 6.3.23. Consider v; = 0000 0000, vo = 0000 1111, v3 = 0011 0011 and
vy = 0101 0110 in Qg. Pairwise distances among vy, vy, v3, and v, are constant as
4, but Sy({v1,v2,v3,v4}) is empty; furthermore, 0100 0011 and 0010 0110 are in
S3({v1, v2,v3,v4}).

Problem 6.3.24. Given a (k,2a,2a;{(2a + 1)¥})-matching M where k > 3, find
| Uiz Si(M2)].

We consider ‘transitivity of a (2, 2a, 2a; {(2a + 1)?})-matching’ in Q,,—used in
Subsection [6.5.1] for a = 1.

Proposition 6.3.25. Let n > 3, and let M = {v; ~ wy, vy ~ wa} and N = {v3 ~
w3, vy ~ wy} be (2,2a,2c; {(2a + 1)%})-matchings in Q,. Suppose that d(vy,ve) =
d(wy,we) = d(vs,vy) = d(ws,wy) = 2. Then, there exists an automorphism [ of

@n such that f(vi) = v, f(v2) = va, f(wr) = w3, and f(ws) = wy.

Proof. Let y; =0...0and yo =0...01...1 in V(Q,) where 1 appears 2« times in
y2. Let z; and 2y be in V(Q,,), where d(y1, 21) = d(ys, 22) = 1, a single one appears
at the (n — 2a)™ position in z;, and 2a + 1 ones appear in the last 2« + 1 positions
in 2. Then, it suffices to show that all (2, 2a, 2c; { (2 + 1)?})-matchings in Q,, may
be identified as the (2,2« 2a; {(2a + 1)?})-matching {y; ~ 21, y2 ~ 22}

Suppose that M = {v; ~ wy,va ~ wy} is a (2,2q,2a; {(2a + 1)?})-matching
in Q, with distance-partite sets M?® = {v;,v2} and My, = {wi,wy}. By
of Proposition , there exists an automorphism f of @, such that f(v1) =
and f(vy) = y,. Considering the distances among vertices in M?* U My,, we can
find that f(w;) = ay...a, and f(wy) = by...b, must contain a single one and
(2ce + 1) ones, respectively, so that a;, = b;, = 1 for some ig € {1,...,n — 2a}, and
by =1fori e {n—2a+1,...,n}. Let o be the permutation (ip,n — 2«) in the
cyclic notation. Then, one can check that a bijection ¢ : V(Q,) — V(Q,) defined
by g(z1...2,) = Zo) ... To@m) is an automorphism of @,. Hence, g(f(v1)) = w1,
g(f(v2)) = ya, g(f(wy)) = 21, and g(f(ws)) = z2. The conclusion follows. ]

Remark 6.3.26. When we classify equidistant switched n-cubes up to isomorphism,
we need to consider two factors: orderings of the edges in an equidistant matching
M (discussed in Remark [6.3.2), and transitivity of M in Q,.

Given (2,2« 2a; {(2a.+ 1)?})-matchings M and N in Q,,, by Remark QM)
and @ELN ) both are uniquely determined up to orderings of the edges in M and N,
respectively. Furthermore, it follows from Propositionthat @ELM ) and @;N ) are
isomorphic. Therefore, we may study only @;M ) in order to describe any properties
of (2,2a,2a; {(2a + 1)*})-switched n-cubes.
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Problem 6.3.27. Study quadruples (k,c, 5,1") that allow attaining ‘transitivity of
a (k,a, B;T)-matching’ in Q. As discussed in Remark this problem is re-
lated to classification of non-isomorphic equidistant switched n-cubes via (k,«, 5;T)-

matchings.

6.4 Sensitivity of the fidelity under PST in hyper-

cubes

Kirkland [43] derives formulas to quantify sensitivity of the fidelity: derivatives of all
orders of the fidelity of state transfer with respect to readout time, and the first and
second partial derivatives of the fidelity of state transfer with respect to the weight
of an edge. Throughout Sections and we shall ultimately compare sensitivity
of the fidelity under PST—between the pair of vertices in Theorem [6.3.12}—in @,
and in an equidistant switched n-cube Q,,. In Section , we first show that (),, and
Q,, have the same sensitivity under PST between that pair with respect to readout

time, and we focus on sensitivity under PST to changes in the weight of an edge in

- In Subsections [6.4.1] and [6.4.2] we provide necessary information to establish
the desired first and second derivatives for (),,. Through Subsections|6.4.3|and [6.4.4],

we derive explicit expressions for the derivatives with respect to the weights of two

types of edges.
We introduce the following theorem that can be readily deduced from the result
(Theorem 2.2) in [43].

Theorem 6.4.1. [[/3] Let Gy and Gy be weighted graphs with the same vertex set.
Suppose that G and Gy both exhibit PST between s and r at time ty. If for any
positive integer j, the number of walks of length j from s to s in Gy is the same as
that in G4, then the fidelity of state transfer from s to r has the same derivatives of

all orders with respect to readout time in G1 and Gs.

Theorem 6.4.2. Let M be an equidistant matching of size k in Q,. Suppose that
x s at the same distance from vertices in each distance-partite set of M. Then, for
any 7 € Sk, Q, and Q;Mﬂ exhibit PST between x and x* at time 3, and the fidelity
of state transfer between x and x* have the same derivatives of all orders with respect

to readout time in Q, and QM.

Proof. 1t is straightforward from Proposition [6.3.11 Theorems [6.3.12| and [6.4.1} [J
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We briefly elaborate formulas in [43] for the first and second partial derivatives
of the fidelity with respect to the weight of an edge in @),,. Let k£ and [ be vertices
in @,. Let A(Q,) be the adjacency matrix of @), and E = [ek el} {el ek}T. We
shall adopt the notation used in Subsection 3.2 of the paper [43]. As stated in [43],
there is an € > 0 such that for each h € (—¢,¢€), A(Q,) + hE can be diagonalised as
A(Q,) + hE = VA, VT where both Vj, and Ay, are analytic in h, V}, is orthogonal,
and A, = diag(A;(h), ..., A\, (h)). Furthermore, it is found that

d\;
dh Ih=o

e} Vil EVqe,. (6.4.1)

for i = 1,...,n. Considering the dependence of V}, and A, for h € (—¢,€) on two

particular vertices k and [ among 2" vertices, we use % and aA to denote < E
: h=0

and % , respectively. For simplicity, let V :=V{ and A := AO.

Let s and r be vertices of @,. For each t > 0, let U(t) = ¢*4(@) and p(t) =
|(U(t))s.|?. Suppose that for some ¢, > 0, p(ty) = 1 and denote (U(to))s, by a+if.

The first derivative % (Theorem 3.3 in [43]) and the second derivative %
°y k,l

(Theorem 3.10 in [43]) with respect to the weight of k ~ [ for @, are

Ip(to) d*p(to)

= 2t0X1 +2Xy, —5— = —2(3Y; — 2Y5, (6.4.2)
8k,l am

where

X; =e; VgA (Becos(toA) — asin(teA))V e,

k7
T
Xy =€, gv(acos(to/\) + Bsin(toA))V e, + el V(acos(toA) + Bsm(toA))aav
kel kel
2 2
Y =elV <8A> Vie, — ( ry A VTes> :
O Okl
ov ovT 7OV OVT ov 8VT
Y, =el — . —2el toA toA
> =e, o 00 e, +e Takl &” e, o — (acos(toA) + Bsin(toA)) —— akl
(6.4.3)

In order to compute the desired derivatives under PST between s and r in @,
with less complexity of computation, we are to determine A, V, . and e A under
a specific condition that tg = 5, r = s*, s ~ k, and k ~ [. In Subsectlon we

investigate sign patterns of entries in (1, —1) eigenvectors of A(Q,). In Subsection

6.4.2) by the sign patterns and the algorithms for computing V' and % in [43], we
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obtain %, the particular rows of V indexed by s, k, [, and r, and the s and r** rows

of %. In Subsection [6.4.3] our desired derivatives with respect to the weight of the
edge k ~ [ for @), are established. Finally, Subsection [6.4.4] exhibits the derivative
with respect to the weight of the edge s ~ k.

6.4.1 Sign patterns of (1, —1) eigenvectors for @,

In order to examine sign pattern of (1, —1) eigenvectors, we shall define a particular
total order on V' (@, ), and find the corresponding adjacency matrix.

Given two disjoint (totally) ordered sets P and @, the linear sum P Up Q) of P
and @ is defined as the union of P and ) such that elements of P (resp. Q) in the
union are ordered as in P (resp. @), and z < y for each z € P and y € Q.

Let S; = {0} and Ty = {1}. Suppose that fori =1,...,n — 1, Siy1 (resp. Ti1)
is the ordered set of binary strings obtained from those in S; Uy, T; by attaching a 0
at the end of each string, i.e., on the right (resp. by attaching a 1 at the end of each
string).

Example 6.4.3. For S; = {0} and 77 = {1}, we can obtain ordered sets Sy =
{00,10} and Ty = {01, 11}; S5 = {000, 100,010, 110} and T3 = {001, 101,011, 111}.

Taking the vertex set of ), as the linear sum of S,, and T,,, the adjacency matrix

A, of @, can be recursively constructed:

01 A Iy
]7Ai+1: 2

A =
Igi Az

ci=1,....n—1. 6.4.4
10 (6.44)

Throughout Subsections|6.4.1H6.4.4] we use A,, to denote the adjacency matrix of @),
in form (6.4.4). Moreover, we consider the standard (normalized) Hadamard matriz

H,, generated as follows:

1 1 H; H,; .
H, = , Hiyp = ,i=1,...,n—1 6.4.5

It is well-known that H, HI = 2" (see [69]). Then, one can check, using induction,

that the columns of \/127Hn form an orthonormal basis of eigenvectors for A,. Fur-

thermore, it can be found that eigenvalues of A,, are given by n — 25 with respective
multiplicity (?) for j =0,...,n. Let H,(j) denote the submatrix of H,, that con-
sists of all columns in H,, that are eigenvectors of A,, corresponding to the eigenvalue

n — 27. Evidently, there are (?) columns in H,(j).
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In what follows, we define V(Q,,) as the set {1,...,2"}, and adjacency of vertices
in Q, is given by entries of the matrix A, in form (6.4.4): vertices k and [ are

adjacent if and only if (A,)r; = 1.

Remark 6.4.4. From the recursive construction of (),, through the linear sum of S,
and T,,, we can find that vertices 1 and 2" of @),, correspond to binary strings 0...0

and 1...1, respectively. Hence, dg, (1,2") = n.

Before we characterize sign patterns of two entries in each column of H,(j) for
0 < j < n that are indexed by distinct vertices [y and [, we first find the column
H,(0) and the first row of H, in Lemma [6.4.5 investigate each row of H, (i) for
1<i¢<nvia H,_; in Lemma , and obtain the last row of H, (i) for 0 <i <mn
in Lemma [6.4.7]

Lemma 6.4.5. Let n > 1. Then, for any 1 <1 < 27, the I entry of the column
H,(0) is 1, and el H,(j) = lf@) for j=0,...,n.
Proof. Since A,1 = nl, we have H,(0) = 1. We observe that the first row of the
standard Hadamard matrix is the all ones vector. ]
Lemma 6.4.6. Let n > 2. Then, we have the following:
(i) If 1 <1 < 2" then the ™" row of H,(j) for 1 < j < n—1 is obtained from
the 1" rows of H,_1(j — 1) and H,_,(j) by appending one after the other, and

permuting the entries of the resulting row appropriately.

(ii) If 201 +1 < 1 < 27, then the I row of H,(j) for 1 < j < n —1 is obtained
from the (I — 2" Y™ row of H,_1(j — 1) with change of the sign of the row
and the (I — 2" YY" row of H,_1(j), by appending one after the other, and

permuting the entries of the resulting row appropriately.
(iii) If 1 <1< 2771 then the 1™ entry of H,(n) equals that of H,_1(n —1).

(iv) If 201 + 1 < 1 < 2", then the I entry of H,(n) and the (I — 21" entry
H,_1(n —1) differ by sign.

Proof. Let n > 2. For i = 0,...,n — 1, suppose that x is an eigenvector of A, _;

corresponding to the eigenvalue (n — 1) — 2i. Then,

x| [Ans T ] [x L x
= = (n — 2i) :
X I A, |x X

x| _ A, 1 X]:(n—2—2z’)[X].

—X I A, |—x —X




Any eigenvector of A, _; generates two linearly independent eigenvectors of A,,.

For 1 < j <n —1, any eigenvector of A, corresponding to the eigenvalue n — 2j
e X
can be expressed as either " or 2 , where x; and x5 are eigenvectors of A, 1
X1 —X9
corresponding to (n —1) —2j and (n—1) —2(j — 1), respectively. Note that H,,_1(j)

consists of all eigenvectors of A,,_; associated to the eigenvalue (n — 1) — 2j. Hence,

H,_ -1
andHfollow From H,(n) = 1(n—1)

for 1 < 7 <n—1, the statements|(i) ,
n_l(n — 1)
we obtain the results and |(1

Lemma 6.4.7. Let n > 1. Then, el H,(j) = (—1)7'1?@) forj=0,...,n.

Proof. We use induction on n. Evidently, €2 H;(0) = 1 and el H,(1) = —1. Sup-
pose that for n > 1, el H,(j) = (—1)3'1%?) for j = 0,...,n. We claim that
eQTnHHnH(i) = (— 1)11(T”f1) for 0 < i < mn+ 1. For the case i = 0, by Lemma
| we have e, H,,+1(0) = 1. Consider 1 <4 < n. Using|(ii)|in Lemma the
row e2,1 H,1(i) consists of —el, H,(i—1) and €2, H,(i). By the inductive hypothe-
sis, we have —el, H,(i — 1) = (—1)7’1% ") and el H, (i) = (— 1)11%) So, by Pascal’s
identity, el H,11(i) = (— 1)11:{%1) Let i = n+ 1. Applying |(iv) in Lemma (6.4.6
to the last entry of H,,1(n+1), we have el,,. H,1(n+1) = —el. H,(n) = (—1)"*.

Therefore, the conclusion follows by induction. O]

Let hﬁjb (a,b) denote the number of columns of H,(j) whose entries are indexed
by l; and l, with [y # [y are a and b, respectively. Let hf%j(a) denote the number
of columns of H,(j) whose the I entry is a. Define hﬁ;fj(a, b) = 0 if a # b, and
hf;fj(a, b) = hi, ;(a) if a = b. We observe that for 1 <1y <1l <27,

I, 11,0 I1,l I, _[n
P (1, 1) + hy 2 (=1, —=1) + hy 2 (1, =1) + by (—1,1) = (j) (6.4.6)
Example 6.4.8. From Figure we have h§;8(1, 1) =1; hgf(l, 1)=1, hgf(—l, -1) =
1, and h35(1,—1) = 1; h35(—1,—1) = 1, h3%(1,—1) = 1, and h35(—1,1) = 1; and
hys(—=1,1) = 1.

Example 6.4.9. Let n > 2. If 0 < j < n for j even, then by Lemmas and
6.4.7 we have hy2"(1,1) = (7); by (646) we have hy2'(1,-1) = b3 (=1,1) =
h,ll’g-n(—l, —1) = 0. Similarly, for 0 < j < n with j odd, we have h,ll’in(l, -1) = (?)
and h,% (1,1) = b5 (=1,1) = hy?' (—1,-1) = 0.
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(n=2)
_.I_ —
1] [ 1] 17 (1]
1 1 —1 ~1
1 1 —1 _1
1 1 1 1
nr =1 1 1 (n=3)
1 1 1 1
1 —1 —1 1
I Y Y I S I O e I R I O I

Figure 6.3: The vectors in each row corresponding to n = 1, 2, 3 are aligned in order
of H,(0),..., H,(n), and the sign in each arrow indicates the addition or subtraction
by 1 for the eigenvalue associated to the eigenvector at the starting point of the arrow.

Let (a,b) € {(1,1),(1,-1),(=1,1),(=1,—1)}. We define hfjf(a, b) = 0 for all
n>1and 1<, <ly <2" whenever j <0 or j > n.

Proposition 6.4.10. Let (a,b) € {(1,1),(1,-1),(=1,1),(=1,—1)}. Then, forn >

2 and 7 =0,...,n, we have

11l
Bt (a, b)

s 54 (a,0) + B3 (a,b), 1<l <lp<onl,
= S (0, —b) + BT (a0, flr<ii<ontonlil<i<om,
W (e, )+ AR agn), df 2t e 1< < Dy < 2n,

Proof. Consider hfﬁjf(a, b) for je{1,...,n—1}. If 1 <1y <1ly <2"! then by (i)

in Lemma [6.4.6] the I!* and I$! rows of H,(j) are obtained from the I!" and I rows
of H,1(j) and H,_1(j — 1) (by an appropriate permutation). Hence, hlnl,’;? (a,b) =
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hfj’_lij_l(a, b)—i—hlnl’_lﬁ,j(a, b). Suppose that 1 <y <2771 27141 <[, < 2" Applying
and in Lemma to the It and " rows of H,(j), respectively, we find
that the I'" and I rows of H,(j) are obtained from the I{* and (I — 2"~1)*" rows of
H,_1(j), and from the I{* and (I — 2" rows of H,,_;(j — 1) with change of the
sign of the (I — 2" 1)*™ row. Thus, hillf(a, b) = hfll’_l“{f_nfl(a, —b) + hfll’_lﬁgwl(a, b).
A similar argument applies to 2771 4+ 1 < [; <[, < 2" with in Lemma one
can find that A (a,b) = k7 727" (—a, —b) + BUTE 2T (a,).

Consider hill,’éz (a,b). By Lemmam h’:,i’é”(l, 1) =1foranym > land 1 < k; <
ko < 2™. Since hp* i (a,b) = 0 for all m > 2 and 1 < k; < ky < 2™, our desired
result for hilly’ég(a,b) is obtained. Using |(iii)| and |(iv)| in Lemma M for the case
hﬁl{’ff(a, b) with the fact that hfﬁ’fim(a, b)=0forallm >2and 1 < ky < ky <27,

the result for hll>(a,b) can be established. O

Example 6.4.11. Let n > 2. Recursively applying Proposition [6.4.10, one can

verify that hi2(a,b) = hy%y,_1(a,b) = -+ = hy}(a,b). Since hyi(1,—1) = 1, we
have h);?,(1,—1) = 1 for all m > 1. Considering the identity (6.4.6), h,;2,(1,1) =

hrlﬁ?m(_L 1) = hi,’fm(—l, —1) =0 for all m > 1.

Example 6.4.12. By Proposition [6.4.10, we have h,llﬁnflﬂ(a, b) = hyly;_i(a, —b)+

h,ll’iLj(a, b). Let a = b. Then, hi’?nilﬂ(a,b) = h,,_ j(a). By Lemma [6.4.5} if a = 1

then h,ll’jn_ a,b) = ("]_.1); and if a = —1 then hxn_ 1(a,b) = 0. Suppose a # b.
n—1

A similar argument yields that if a = 1 then hij (a,b) = ("_1); and if a = —1

j—1
then hb2" (a4, b) = 0.

6.4.2 A and particular rows of V and ;2%
ako’lo 8}60,[0

Throughout Subsections|6.4.216.4.4] given (),,, we assume that sq 1= 1, ky := 277141,

lo ;== 2" 1 +2 and ry := 2". By Remark the antipodal vertex s§ of sg in @,

is 2", and so ryp = s;. From the structure of A, in form (6.4.4), we find that

dQn(So, k’o) = 1, dQn<80,lo) = 2, and dQn(ko, lo) =1.

Let (a,b) = {(1,1),(1,-1),(~1,1),(~1,~-1)}. Consider h°(a,b) for 0 < j < n.
By Proposition [6.4.10, we have

ko, ,

hﬂ?j “(a,b) = hy?

n—1,j—1

(—a,—b) + hy?, i(a,b). (6.4.7)

n—1,7

We now consider h,lrfj(a, b) for m > 1 and 0 < j < m. Since the first row of H,,
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is the all ones vector, we have
1,2 _ 12 _
hm,j<_17 1) - hm,j(_lu _1) =0 (648)
for all m > 1 and 0 < j < m. By Proposition [6.4.10

haZi(1L,1) = hi? o (1,1) + b2y (1,1),

m_17]_1 m—l,]
)2 1,2 1,2
h7ln,j(17 _1) = hm717j71<1a _1) + hmflyj(l, —1)

From Lemma , we obtain h}n,fo(l, 1) =1 for m > 1. By Example|6.4.11} we have

h;fm(l, —1) =1 for m > 1. Then, labelling rows and columns as m = 1,2,3,... and
7=0,1,2,..., respectively, we obtain
10 ] 010 ]
11 0 01 1 0
1,2 _ 1,2 _
B2 ={1 2 1 0 -, [B20,-1]=1]0 12 1 0
1 3 3 0 013 3

Define (T) = 0 for any m > 1 whenever ¢ < 0 or ¢ > m. Then, one can check by

induction on m and j that

1,2 m — 1 1,2 m — 1

Lemma 6.4.13. Let n > 2. Then,

-2 -2
= (%) e = (073),

Jg—1

-2 n—2

poto(r, —1) = (" hkoto(—1,1) = .
nj (1,=1) <j_1>: my (CLD =1

Proof. By (6.4.7)), we have hffj’»l“(a, b) = h}z’zl,j_l(—a, —b) + h}ﬁl,j(a, b) for 0 <j<n

where (a,) = {(1,1), (1, =1), (=1,1), (=1, ~1)}. Using (G45) and (629), the result
can be established. O

Now, we present the algorithms for obtaining V' and 61‘?—‘/1 suppressing the tech-
0-'0
nical details (see Subsection 3.2 of [43] for the details).

We first introduce some notation to describe V' and BS—VZ. Let n > 2, and let
0-'0
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E = [eko elo} [elo eko}T. Let j € {0,...,n} and m = (?) We denote by xJ, ..., xJ,

the m unit eigenvectors of A, associated to the eigenvalue n — 25 that comprise

1
Ve
k. Since the rank of F is 2, we have k < 2. Furthermore, H,, is a (1, —1) matrix, so

H,, (7). Suppose that the subspace spanned by columns of E'H,(j) has dimension

k=1 or k = 2. Without loss of generality, we assume in what follows that the first
k vectors x], . .. ,xi of the vectors xJ, . . . ,xJ satisfy that Ex), ..., Exi form a basis
of the subspace. Recall that V' = Vj and A = Ay. Let V be an orthogonal matrix
obtained from the algorithm [43] described below so that A, = VAVT. Vectors
%, ... , %) denote m columns in V that are eigenvectors of A, associated to the
eigenvalue n — 27.

For a matrix X, we use X' to denote the Moore-Penrose inverse [56] of X.

Suppose that k = 1. Then, %! is given by %I = ﬁ > 0;x) where §; =

(x{ YT ET ExJ

W fori=1,...,m. rl“'he othgr (m — 1) columns ﬁ%,,f{ﬁn inV form an
orthonormal basis of span{d1x] — §;x}]|i = 2,...,m}. Furthermore, if Ve, = X for
some 2 < i < m, then af—v;ep =0; and if Ve, = %7, then
0:0
oV A
——e, = ((n—2j)I — A, Ex]. (6.4.10)
ako,lo

Consider the case k = 2. There is a decomposition of (n — 2j)-eigenspace of A,
into the direct sum of S; = span{>", a;x}, ", Bix]} and Sy = span{x} — a;x] —
6¢X§|z':3,...,m}, where ay = 8o =1, ap = 51 = 0 and for 3 < i < m,

RSN

Given an orthonormal basis {%X],%}} of S; and an orthogonal matrix U that diago-

nalises {5{{ 5{%} E [5({ 5{%}, we can obtain X{ and X} as
% %] =[x U

We denote [fc{ 5{%} E {5{{ 5{%} by B’. The other m — 2 corresponding columns

X},...,%, in V form an orthonormal basis of Sy. Moreover, if Ve, = X! for some
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3 < i <m, then afo—"/loep =0; and if V {epl em} = [f{{ fc%}, then
ov
A [em ep2}
YAVA _9:\T _ T Igd
T tmled od (X1)" E((n —2j)1 — A,)"EXy NI
(=2 - AVER S e e e M
(6.4.12)
We now apply the algorithms to the n-cube @,,. We first find 8}?/\1 and the rows

0-t0
of V indexed by sq, ko, Iy and rg, according to the dimension of the column space of

EH,(j) for each 0 < j < n. Since H,(0) and H,,(n) both are (1, —1) column vectors,
the column spaces of EH,(0) and EH,(n), both, are of dimension 1. On the other
hand, if 1 < j <n — 1, then we find from Lemma [6.4.13| with Pascal’s identity that
AR (1,1) 4+ Aol (—1, —1) = (n;.l) >0 and A0 (1, —1) + hlo(—=1,1) = (;:11) > 0.
Hence, the subspace spanned by the columns of FH,(j) has dimension 2.

Here we revisit the formula (6.4.1): fori =1,...,n,

( oA ) =e!V'EVe,.

a/’COJO

Suppose that the column space of EH,(j) is of dimension 1. Then, j = 0 or
Jj = n. It can be checked that X! = x{ and X7 = x}. So, X! = #Hn(()) and
X{ = —5=H,(n). Evidently, H,(0) = 1. By Lemma , e) H,(n) = (=1)". From
Lemma m and Example , we find that e H,(n) = —e{ H,_1(n — 1) = —1
and e} H,(n) = —eJ H,_1(n — 1) = 1. Thus,

el 1 1
T

eko ’\0 An _ ]_ ]_ _1 64 13
o [xl XJ o1 | (6.4.13)
efo 1 (=1

If Ve, = %9, then we have

oA Ty, T sONT 50 ezj(; 50
B = epv Evep - (Xl) Exl = (Xl) {eko elo] T X1 = on—1
kolo / pp €0
Similarly, if Ve, = %7 then ( A ) = — 5t
0-t0

Suppose that the column space’ of FH,(j) is of dimension 2. For clarity in
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the following long computation, we fix jo € {1,...,n — 1}. Let my = (Z) Note
that hFolo(—1,—1) = (;5312) > 0 and hfol (1, —1) = (;‘)f) > 0. Without loss of

n,j0 1 n,j0 1
el | . ~1 el | .
generality, we may assume in the sequel that L’? x]" = ﬁ ] and [e];?] X3 =
lo B lo
1 1
Var g
Let us compute «; and 3; for i = 1,...,mg. As defined above, a; = 5 = 1 and

ag = 1 = 0. Consider the case 3 < i < mg. We have

By (6.4.11)), for i = 3,.....,mo,

- S -
! if | %o | xio = 1 !
01’ el | ' var g’
- F o
OZ‘ 0 ! el K N 1’
'3 L L lO_ L i
MR - - (6.4.14)
(2 0 lf eko XJO _ 1 1
i S R BT
- F o
0 if | ko | xio = 1 ! :
| P R I
We shall find an orthonormal basis {%]°,%%} of span{>7% a;x7°, X7 B;x1}.

For 1 < i < myg, we observe that a; = 0 if and only if 8; # 0. Since the vectors

x1,...,xJ9  are mutually orthonormal, 7™ a;x}” and Yi™% 3;x/° are orthogonal.

Furthermore, using (6.4.14) and Lemma [6.4.13| with Pascal’s identity,

2
—1
ﬂﬁ@#&hﬂwwWMZW%@U+@%F%—D=ﬁb>,

mo )
> o
=1

mo 2
j . . n—1
3| = 13 £ 0= L) = g1, -0+ L = (7).
i=1
So, %) = —L— >0 a;x% and xJ° = ——L— 3" B;x2°.

(") VG

Let us compute the rows of xJ° and X}’ that are indexed by sg, ko, lo and 7. By
Lemmas [6.4.5( and (6.4.7, we have el H,(jo) = 1% and e} H,(jo) = (—=1)"1] . For

mo
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o

el | . 1
i=1,...,mgp, we see from (6.4.14]) that if Ll;? x10 = \/127 | then aleSTOxfO |

lo
T
: 0 Jo _ _1 T Jo _ _1 . T Jo
if o X = 1 , then aie; x;" = —=; and e, x;° = 0 for the other two
lo

cases in (6.4.14)). By Lemma |6.4.13| we obtain

T gjo __ T Jjo
el X{* = Zauoz
(go)

( hﬁoj’i)o(l 1)+hioj’éo( 1’_1)) B _(n'—Q) + (7'1_2>

_ Jo Jjo—1

v () v ()

In a similar way, one can verify el X{O, el %0 and e’ x%‘) given in (6.4.15). Using

el . 1 T .
(6.4.14), for i« = 1,...,mg, we find that if [ ko] xP° = 1 [] or [ekol x7°

e}, V2 e,
1| T ydo — —1 T -
vl B , then ae, x;° = —=; and a;e, x;° = 0 for the other two cases in (6.4.14).

Then, by Lemma [6.4.13] with Pascal’s identity,

T gjo
€, X1 = Zaleko X;

(m)

—_71 ko,lo ko,lo o . —1 (n — 1)
- h”]o L1 hnjo 17 1 - — . .
v oy VL) = G

Jo

By an analogous argument, one can obtain eLx%°, el %2 and el 0 therefore,
) lo*1 9 Yko2 l )

: -6 G-

Jjo—1

- | | _ (1 _(n1
R I &
eTO (—1)do n_2j0 n—2 (—=1)d0 nioz_l n—2
" [(n—1 ((jO*l) N (jo )) n—1 ((jO*Q) N (jo*l))
( J ) (J 1)
L 0 0~ .
(6.4.15)
Now, we compute B, the particular rows of %° and %J°, and the entries in 82)/;0

156



corresponding to X7°,...,%/9 . Recall that B/ = [5({ 5{%} E {5’({ 5(%] Then,

jo _ (x1)" e e el gdo g = 1 (nj?) 0
e [ M R e

ko jo—1

The matrix B’ is diagonal. This implies that %J° = %J° and %J° = %J°. Thus,

T T

eso eSO

T T

e . . e . .

ko| |gdo gdo| — | ko | |gdo o

ol & &)= | [P =P (6.4.16)
e e

lo lO

T T

em ero

Remark 6.4.14. When we use entries of %7° and %J° for 1 < jo < n — 1 that are
indexed by sg, ko, lp and 7o, we directly refer to (6.4.15) without the reference of

(6.4.16).

Let p and ¢ be indices such that V' [ep eq} = {f{{o fcﬂ By (6.4.1)),

T T
e | OA e ,
P —_ | T —
LT o e, e =| 2| VTEV e, e,]=B". (6.4.17)
q 0,0 q
Consider the remaining entries in 31?71\1 corresponding to fch, L, XD , that form an
0-°0
T
. . . e .
orthonormal basis of span{x}® — a;x7" — B;x3’|i = 3,...,mg}. Note that ];0 x]’ =
e,

__»1 T . 1 I . 1
and | ho| x) = cLeti € {3,...,mo}. If {e’“] X" = H then we see

T T
__'1 (3[0 __'1 e

lo
from (6.4.14]) that o; = —1 and §; = 0; so,

T T T

e . ~ - e ‘ e - 0
ko Jo Jo Jjoy _ | “ko| Jo ko | (Jo

oF (x)° — a;x1” — Bix}) = oF x}0 — o x1’ = ol
lo lo lo

In this manner, it can be verified that for 3 < i < my,

el . ) ) 0
[ IirO] (%" — aixy” — Bixy’) = { ] :

€, 0

T 7

T . 0 .
It follows that [ekf’] XN = [0] for i = 3,...,mg. Therefore, if Ve, = X° for some
e},
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3 <1 < myg, we have

oA , T
el ——e,=eV'EVe, = (x°)" [eko elo} [elo eko} % = 0. (6.4.18)

Now, we investigate the s{" and ri* rows of af—vl. It appears in [43] that
0-t0

&)TE((n—2j)I — A,)TEx, =0

for j=1,...,n — 1. Hence, from (6.4.10) and (6.4.12)), we obtain

((n—2j)I — A)VER], if Ve, =%] for j=0or j =n,
ov . .
5 &= ((n—2)I- Ap)TEX], if Ve, =% for somei € {1,2},1<j<n—1,
ko,lo
0, otherwise.

(6.4.19)

Note that considering (6.4.3), we only need eqaf—vl for ¢ € {sg,r0}, not all of the
0-t0

oV

k.10

%} for 1 < j < n—1, we shall find the s and r§* rows of ((n—25)I — A,)} [eko elo}.

entries in . Since we have explicitly shown the k" and I§® rows of %, %7, %] and

Lemma 6.4.15. [56] Let B = UDU” where U is an orthogonal matriz and D is a
diagonal matriz. Then, Bt = UDTUT.

Lemma 6.4.16. [50] Let D = diag(dy,...d,) for some n > 1. Then, DI =
diag(czl, . ,czn) where for 1 < i <mn, d; = % if d; # 0, and d; = 0 otherwise.

Reordering eigenvalues of A,, in A, we may assume that

A, =VAVT = ;anAHZ :

Fix jo = {0,...,n}, and let \g = n — 2jo. By Lemmas [6.4.15[and [6.4.16]

1 1 1
(Nl — AT = —H,(\I — NTH = — —_
2n 2n ()g%gjn, 2(j — Jo)
J#jo

H,(j)H.(5)*.  (6.4.20)

Lemma 6.4.17. Letn >2,0<j<n, and 1 <[y <ly <2". Then,
ef Ho(§) Hn(§) e, = hyl 32 (1,1) + 2 (=1, =1) = b2 (1, =1) — B (=1, 1),

Proof. Considering that H,(j) is a (1, —1) matrix, the conclusion follows. O
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Let 0 < j < n. We have el H,(j) = 1(TT‘L) and e} H,(j) = (—1)3'1{@). So,
W (=1, 1) = B (=1,1) = 0; hyY°(=1,—1) = h27°(1,—1) = 0 for j even; and

hﬁ?fo(—l, 1) = hﬁafo(l, 1) = 0 for j odd. Hence, by Lemma
el Hu () Ha ()" |ex, en,) = [hiofo(1,1) = o1, 1) h%o(1,1) — B (1, 1)) .

s Tonyg
hfl(fj"ko(l, -1)= hfl‘jj’.lo(—l, 1)+hﬁ?]’~l°(—1, —1). Using Lemmal|6.4.13] we obtain hfl(fj"ko(l, 1) =
("7") and (1, 1) = (77}). Similarly, one can find that A3%°(1,1) = (%) +

(573) and ki (1, =1) = 2(573). Thus

1

Since the s row of H,(j) is all ones, 1% (1,1) = hM*(1,1) + hy(1, 1) and

LG o o] = [(7) - () (7)+ () 2] 602
An analogous argument yields

efOHn(j)Hn(j)T [eko ezo}
{ BRSO (1, 1) — BR (<1, 1) RRO(L 1) - RT(—1,1)] if j is even,
AROTO(—1, 1) — hEOTO(1,-1) BT (=1, 1) — hR7O(1, —1)], if 5 is odd,
_ { () -G (5 + (%) —207)] itdiseven,
()= () 20~ (39— ()] o
=[E0((F) - 0) (7)) + 672) —207)]- (6:4.22

Combining (6.4.20)) and (6.4.21]), we have that

el ((n— 2jo)T — A)' [eg, ey

1 1 ‘ -
o ogzén 2(j — jo)eZ;Hn(])Hn(])T {eko elo]
J#30
5 [Pt () - (5) Doty (059 + (22) -2(2)].
(6.4.23)
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Similarly, using ((6.4.20)) and (6.4.22)), we find that

el ((n = 2j0)] = Au)' [er, ey

= [Pogenais () - (7)) Sogenaih ((59) + (72) —2(2)].
(6.4.24)

6.4.3 The 1st and 2nd partial derivatives with respect to the
weight of the edge ky ~ [y in @),

us 2p( T
In this subsection, we shall find 9(3) and 2 2p(2) for Q,.
Fo.lo 8k0,l0

Theorem 6.4.18. Let G be a weighted graph. Suppose that G exhibits PST between
s and r at time to. Then, for k,l € V(G), we have %’f?) =0 and % < 0.

Proof. Suppose that A is the adjacency matrix of G and F = [ek el} {el ek}T.
Given ¢ > 0, let W(h) = e®A+"E) and q(h) = |efW (h)e,|? for h € (—¢,€). One
can verify that W(h) is a unitary matrix. Since each row and column of W(h)
has Euclidean norm 1, we have 0 < ¢(h) < 1. Since G exhibits PST between

s and r at time ¢y, ¢(0) = 1. Furthermore, ¢(h) is analytic for its domain. It
follows that %’f?) = ¢'(0) = 0. By Taylor’s theorem, for any h € (0, €), there exists
ho € [0, 7] such that g(h) = q(0) + hq'(0) + 2 ¢"(he) = 1 + Z¢"(hy) < 1. Therefore,
f’gf“lo) = ¢"(0) < 0. O

From Theorem [6.4.18 we immediately obtain % = (0. We also shall provide
other proof (in Theorem [6.4.20) for % = 0 by using the formula in (6.4.2), in
order to show how the differentiable eigenbasis V' and its derivative 31?0‘20 obtained

in the previous section are used.
For A, = ;- H,AH! where n > 2, let U(t) = e"4r. Then, U(t) = ;- H,e"* H}.
There are well-known properties that >;_, (Z) = 2" and Y p_o(—1) (Z) = 0. Note
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that eSTOHn(j) = 1:(Fn) and el H,(j) = (—1)71Tn) for 0 < j < n. Then,

T I 7 TiA 77T
(U (2)) el HeE Hle,

1, ifn=0(mod4),
i, ifn=1 (mod4),
—1, ifn=2 (mod4),

(mod 4).

—i, ifn=3

Denote a + i3 by (U(%))syr- Then, one can check the following according to the
residues of n modulo 4: «cos (M) + fsin (%ﬂ)”) = (=1) for 0 < 5 < n.

Hence, without loss of generality,

QCoS (;TA> + [sin (;TA) = diag (1&), —l(Tn), o (—1)"1{2)) . (6.4.25)

1

Similarly, we can find that Scos (W) — asin (@) = 0. Thus,

Beos <2A> — asin (gA) = 0. (6.4.26)

Remark 6.4.19. Let R = diag(ry,...,rn). Then, R can be written as R =
212;1 rpepel. So, val RVT = Z;nlrp eyel V. Considering (6.4.19), we have

Ok 1o

r OV .
so O RVTeTo = so((n —25)1 — An)T (Taox(l)(xl> + 7y, X} (Xl) )ero
0,0
n_l . . . .
+ > el ((n—25)1 — A E(re, & (%0)" + 15, %5(%3)" ey,
j=1

where Ve,, = %Y, Ve, =X, and V [ea]. ebj} = [ﬁ{ fc%} for1<j<n-—1.
When we need to deal with pairs of consecutive terms as in the right side above, we

shall use the following notation in this subsection in order to simplify the exposition.

Set ¥ := %] and §} := %} for 1 < j < n — 1. Note that when we handle X0 as
an eigenvector of A,, we may use —X!. So, let ¥ := —x9, 99 := 0, 7 := 0, and
Yy = XT.
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Theorem 6.4.20. Letn > 2, and s,r, k,l € V(Q,). Suppose thatr = s*, s ~ k and

k ~ 1. Then, under PST between s and r at time 7, we have

Ip(3)

=0.
Okl

Proof. By of Proposition [2.5.1] we may assume that s = sg, k = ko, and [ = .
Then, r = rg. Let to = 5. Recall that % = 2ty X1 + 2X5 where
0-'0

X, =elV oA (Bcos(toA) — asin(toA))V 7 e,,,
akoJo
ov . T ovT
X, =€s 5 (acos(toA) + Bsin(toA))V e, + el V(acos(toA) + 581n(t0A))a €,
ko lo k/'O lO

From ((6.4.26)), we have X; = 0. Since we deal with V' and 5=, we may use ([6.4.25)
0
and the notation described in Remark BZTA It follows that

el o (acos(toA) + Bsin(toA))V e,

% Oko o
el o .
=Y el ((n=2)1— A" e, eyl | 2| (C1HED" + (179555 er,
Jj=0 eko
(6.4.27)

We claim that for 0 < jo <n — 1,

ey, (1 = 2j0)I — A" B((=1)"37°(31"))ex,
= — ey, ((n—2(jo + 1)) — AT E(=1) g (58 er,.

|

L Jo Jo—1

We can find from (6.4.13)) and (6.4.15)) that

H (15 (51 e, =5 E) _ E%

L\ Jo Jo—1
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Let K = (”j?) — (J’Z__Ql) By with Pascal’s identity,

: el o
(0= 2i0)1 ~ 4,)' [ex, ] [ ] (P3G e,
ko
S ()60 () (62)-=00)
22n0§j§n2(j—j0) J j—1 7 j—2 j—1
J#Jo
=2 (57 -(20)
2o OSanj - jU j ] —1 '
J#Jo

Similarly, by (6.4.23) with Pascal’s identity,

) el ) v v
el ((n=2(jo+ )1 = Ay)' [er, ey] Lfﬁ] (=19 39 ) ey,
ko
K 5 1 ((n—2> (n—2>>
2 (S i — (ot 1) \\J—1 i=2))

J#Jjo+1

Note that (Z) = 0 whenever k < 0 or k£ > n. Setting j/ = j — 1, we have

T am(620)-022)

J#jo+1

200 -62))- 2 (057)-G2)
—1§j'§n—1j/_j0 j/ j/_l OSJISTL]/_JO j/ j/_]‘ '
J'#io 3'#3o

Therefore, our claim now follows.
Note that §5 = 37 = 0. Applying our claim along with the telescoping sum to
(6.4.27), we obtain e’ -2V (acos(toA) + Bsin(toA))V 7 e,, = 0.

S0 akOvZO

A similar argument applies to e af—vl(acos(gA) +Asin(5A))V7e,, as follows. Let
00

e o
Jo € {0,...,n—1}. Using (6.4.13)) and ((6.4.15)), one can find eifo (=191 (37°) e,
ko

T
e , , »
and ,}0 (_1)]0+1§/%0+1(§1320+1)Te50, Then, it can be verified from ((6.4.24)) with Pas-
€k,
cal’s identity that

el ((n — 2jo)I — A E((—1)°97(31°)")es,

To

= — el ((n — 200 + D) — A B((-1H 50 G5 ey,
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By the telescoping sum, one can check that e af—vl(acos(toA)+Bsin(t0A))VTe50 = 0.
0:°0
Hence, X5 = 0. Therefore, M = 2tp X1 +2X, = 0. O

Letn > 2, and H(p,q,j) == eg((n—Qj)f—An)*E((—l)]S’{(yl) +H(=1)93(5%)T ey
for 0 < j <nand (p,q) € {(s0,70), (r0, s0)}. In the proof of Theorem [6.4.20] we see
the relation between terms in H(p,q,i) and H(p,q,i+ 1) for 0 < i < n — 1. The
following result describes the relation between H(p, q,7) and H(p,q,n — j).

Proposition 6.4.21. Let n > 2, and let (p,q) € {(so,70),(ro,50)}. Then, for
7 =0,...,n, we have

H(p,q,j) = H(p,q,n —j).
Proof. Let jo = {0,...,n}. Then, 0 < n — jo < n. Substituting n — jo for jy in

(6.4.23), setting 7/ = n — j for 0 < j < n, and using the relation (Z) = (nfk> for
0 < k < n, we obtain

e (n = 2(n = jo))I = Ay)' [eko em}
. lz°<~"<“ G Toge <<"f>+<?§>2<’;f>>]

2 | iz 2(j+jo—n) i 2(j+jo—n)

1 "71 _ n/:l . n72 + n/:z 9 n/:2
=— [20<j'<n % ZOSj’Sn (( J )2%,_52) (] 1))] .

2 i'#d0 §'#io

Note that el (—(n — 2jo)I — A,)f {eko elo} =el (n—2(n—jo)l —A,) {eko elo}.
Comparing (6.4.23)) with the last expression above yields

el ((n—2j)I — A er, =el (—(n—2j)I — A,)'e ,
(=200l = v, = el (=201 ~ 4, .
eg((n = 2jo) — An)ley, = —ef (—=(n — 2jo) I — Ay)'ey,.

Applying an analogous argument with (6.4.24)), we have

ey (—(n - 2jo>f — A Jex, e
- [z CCDG) HV(("f%(?%)Z(?f))]

Ton j#n—jo Gtio=n) J#n—jo 200

[ EVTCG) 0 () 2()

Con Ojg’ ;ﬁjgon 2(5"=Jjo) Ojg’;éjgon 2(5"—jo) '
Therefore,

ey, ((n = 2jo) 1 — An)ler, = (=1)"ey (—(n = 2jo)] — An) ey,

(6.4.29)
er,((n = 2j0)] — Ay)ley, = (=1)" ey, (—(n — 2jo) ] — Ay) ey,
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Recall that §7° = %I = % and §° = % = %) for 1 < jo < n—1; and §9 = —%9,

$9=0,y7 =0, and % = X}. Consider the entry esTO}Afo_jO. Using ((6.4.13)) for jo =0
or jo =mn, and (6.4.15) for 1 < jo <n —1, el 777 is given by

o (G52) = GEn) _ (G2 -G) oo

esT Y1 = = = s0Y2 -
° V26 V26 °

In this manner, one can check from ((6.4.13)) and (6.4.15) with the relation that

T T &Jo T 70
eSO _eSOyJQ _QSOYI
T T &Jo T &0
o | [an—jo w~n—jol _ €L, Y2 €LoY1 (6.4.30)
el y1 ¥2 o _el o _elgio ) T
lo 1oY2 oY1
T n+1 T &Jo n+1 T &Jo
ero (_1) eron (_1> eroyl

For simplicity, let \g = n — 2j5. Using ((6.4.28]) and ({6.4.30|), we have

H(so,ro,n —jo)

_eT P AT— 0 AT M0 AT
—el (=Nl — Ap) ey, ey, eé? (D) (T v () e
L ko
[ eT i i
=eh, (0ol = A fen, —en] | | (CD)T GG + 5 ) ey
L ko
el o o
:esTo(/\ol — A, {eko elo} L;? (1P )" + 35 (35) e,
ko

:H(SOa TOij)-

Similarly, applying (6.4.29)) and ({6.4.30)), one can establish H (rg, so, jo) = H (70, So, n—

jo) for 0 < jo < n. u
Now, we provide the second derivative % under PST between sy and ry in
ko.lo
Qn where to = 7. Recall that % = —212Y; — 2Y; where
oA\’ AA ?
Y; =el'V () V¥e, — (eSTVVTeS> ,
Ok, Ok,
ov ovT ov ovT A% ov’T
Yy, =el —— e, +el — e, — 2el ——(acos(toA) + Bsin(toA))——e,.
L Oy Oy Okt O By (2osliod) A,

Note that we may use the notation introduced in Remark for computations
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of Y7 and Y. Here we revisit (6.4.17) and (6.4.18): for j =1,...,n—1,if Ve, =y’
for some 3 < ¢ < m where m = (7;), we have el 224 e, = 0;and if V [epl em} =

. . P Bko.dg
[j/jl yg}, then

T n—1
TR RN
1 2 n— n—

A 2o ()

From the fact that if Ve, = §{ then eza]ii\lo e, = Qn%l; and if Ve, = y5 then
10 0 0

T 9N , _ -1 0_ _1 n_ _1
e, By 10 €, = 5.1, we define B® = 57 0 and B" = 5= [O e

Using (6.4.13)) and (6.4.15)) along with the telescoping sum yields

By (6.4.13) and ([6.4.15)) with the telescoping sum and the identity (";2) - (?:f) =
M(";l) for 0 < 7 <n—1, we obtain

n—1

2
eZ;V <8A ) VTeSO
alfo,lo
— - T &3 oI J (yjl)
=Y el |91 93| (B) e;
j=0 [1 2} (y;)T] ’

=5 (0()-62)) -+ 62) <<?f>—<?§>>j
=5 (5 )(0)-62)) -5t )

Hence, Y) is completely determined with respect to n.

We now consider Y;. Regarding computation of Y, we may use (6.4.25]). Then,

166



Y5 can be recast as follows:

- OV VT - OV VT

—el ——
S0 S0 0 To
ako,lo ak’o,lo alfoJo akoJo

Yy
—9e” IV i ( -17, (—1)"17, )avTe
R () Rl () KA (1)) Bsg ™

ovT

oV
=\Cs T ]-Tn . " 1T ) s T
G akOZOdlag ((500( 2 , 01 (1) S (=1)"4, () 3k010(e0+60)

ovr

oV T n T ) o
+ (830 em) ako . dlag ((511( ) 520(711), . ( ) 5n+11( ) ako . (eso em),

where §; = mod(i,2) for 0 < i < n. We find from (6.4.23) and ((6.4.24]) that for

7=0,...,n

(€sy + €5) (0 — 2)1 — A,) e, e,
n—2 n—2

- [T A () C) T (7 + () 2()]

iAj I\

= [mi(5) ma(j)]
and

(eSO - eTO)T((n - 2])1 - An)]L [eko elo]
n—2 n—2

ST =) St () + (2) -2020)]

= — |: i:}Od'd E i i—1 vy

Applying Pascal’s identity to (";1) and (7:11 )7 using the identity (n 2) - (?:12) -
M(nzl) for 0 <i <n —1, we obtain

n—1
n—2z—1 n—1
1753
n—22—1 n—1
m3(j) +ma(j) = 5— ( . >
T2 1z§d (n—1)(—j) ?
i#]

We find from (6.4.13)) and (6.4.15)) with Pascal’s identity that for 7 =0,...,n

[j;] FAEDT + 54T [ eko]_;n[ (n_,l)@(@_l) (";-)(;)(’;:1)],
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Thus, it follows from (6.4.19)) that

oV i ovT
(eSO + eTO) 8k0 . dlag (600( ) 511%&), ceey (—1) (5,11"{2)) %(eso + ero)

=3 [mG) ma()] H DT+ 526597 [en, e [:1@

ogjdgdn €0 2(7)
1 A9 AL ‘ . n—1 n—1
:@%gngmn+wMﬁ)@>+mmgmmﬁ<<j >_Q_£»>
j:odd
1 . YAl n—1
:2n0q<n<0nﬂﬁ-+nm0))(j)——@nﬂ)n@@)<]_1>>. (6.4.31)
j:0dd

Similarly, one can find that

(eso - ero) aivl dlag (511( ) 520%;{)7 R (_1)n5n+11€2)> gkvl(eso - ero)
7 (mat) + a2 () = amatima) (1)) (643

Hence, Y5 is the sum of the expressions ((6.4.31)) and ((6.4.32)). Therefore, considering
of Proposition we have the following theorem.

Theorem 6.4.22. Let n > 2, and s, 7, k,l € V(Q,). Suppose thatr = s*, s ~ k and

k ~ 1. Then, under perfect state transfer between s and r at time 3, we have

Rt ()
= () + a2 () = (1))
R Z ((mai) -4 a2 () = amatiymah (1))
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6.4.4 The 1st and 2nd derivatives with respect to the weight
of edge sy ~ ky in @),

2 (T
Given @,, under PST between so and ry at time 7, we shall find p : and 382 (2).
50 0

In this subsection, we use the same notation introduced in Subsection [6.4.2 except

B = e ew] o ] -

As noted, V' depends on the choice of an edge for changes of the weight, i.e. here

X7,...,%XJ,, are not necessarily the same as those in Subsection [6.4.2, Procedures for
) o n Subsect
finding a , particular rows of V' and ‘Wk , ap (z) , and aQP (2) are the same as those
50 0 S0:R0

as done i 1n Subsectlons [6.4.2| and [6.4.3] Hence, we shall present the results with brief

explanations.

From Example [6.4.12] we have

n—1 n—1
ROk (1. 1) = ROk (1, 1) = .
n,j ( ) ) ( j )’ n,j ( ) ) <j— 1)

A 1 1
Let x° = ) and X ”O = . for 1 < jo < n — 1. Then, as done in order to obtain

(6.4.13)—(6.4.16]), one can find the following:

el 1 1

1
el | % xﬂ:\/Q_n 1 -1 |,
T 1 —1)"
€, (=1)

and for jo=1,...,n—1,

(nfl) (n 1)
T :

€5, Jo \/ Jo—1
T &J

€0 [Xl

NG )

n—1
. : 0
Furthermore, B/ = 1. [( J0 ) 3
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(6.4.24)), one can establish that for 0 < 57 < n,

. o)1 — Ay)f _ 1 () N G Gy
eso((n — 2]O)I - n) {eso eko] ~ on ZO<_]<TL 2G—7o) ZO§]§n 3G=30) ,
3730 J#Jo
. 1 ( 1)] (71)3' n—1)_ n:1
ery(n = 2j0)T = An)! [eso eko} T on lZ°<J<n 207](5)) > 0<j<n <§<;_30>(J 1))] .
J#3o J#Jo

(6.4.33)
Set §) = %J and §) = %J for j = 1,...,n — 1. Define 39 = %%, 9 =0, 7 = 0,
and 35 = X7

Theorem 6.4.23. Let n > 2, and s,k € V(Q,). Suppose s ~ k. Then, under PST

between s and s* at time 5, we have

o(3) _
as,k
Proof. Tt is straightforward from Theorem [6.4.18] O
0 0

1 0
Define B? = 2n1,1 [0 O] and B" = 27}71

} . It can be found that

dA ? A \? —1
(eZ;VVTeS()) =0 and eZLV( ) Vie, = 23n . Z <n )

a80 ko a‘>’0J€0

Furthermore, one can verify that for j =0,...,n,

(es0 ) ((0 = 2)T = A} [es, ] = 5 [Sren

and

(ens = )T ((0 =21 = A [, e1] = 5 [T
= [ns() )]

Theorem 6.4.24. Let n > 2, and s,k € V(Q,). Suppose that s ~ k. Then, under
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jus
927

2, (T —7-(2 n—1 n— 3 n n —
8;;2(;) ~93n—2 ;} ( 1) - 2n1—1 > ((nl(j) +na(4))? <]> —4”1(j)”2(j)<j _ i))

perfect state transfer between s and s* at time %, we have

j 0<j<n
j:odd
Ly <<n3<j> 1 na(5))? (”) ~dns()ma(h) (“ B 1))
on—1 05 j j—1))"

6.5 Sensitivity of the fidelity under PST to edge
weight errors in the (2,2 2, {3,3})-switched hy-
percube

Our ultimate goal of this subsection is to compare the sensitivity of the fidelity of
state transfer under PST to changes in the weight of an edge in @), and in ‘the’
equidistant switched n-cube @;M ) where M is a (2,2,2,{3,3})-matching in Q,, (note
Remark . The comparison of the sensitivity depends on the choice of an edge
(as seen in Theorems and . Since the edges in M are not in QM)
selecting an edge in M results in ‘comparing apples and oranges’. Therefore, we
conduct a sensitivity analysis particularly by choosing an edge incident to one of the
edges in M.

Then, we need to obtain the first and second partial derivatives of the fidelity
under PST with respect to the selected edge-weight for @;M ). In Subsection , we
shall investigate spectral properties of A(Q;M )) by using equitable partitions and rank
one updated matrices. Furthermore, we shall find particular entries of eigenvectors
of A(QM)) that correspond to vertices s, k and 7 in V(QWM)) where r = s* and
s ~ k is incident to an edge in M; here we note that there are three types of vertices
[ in V(QUM) such that [ ~ k is incident to an edge in M (Remark [6.5.21)), and we
leave related tasks for future works. In Subsection [6.5.2] we produce all necessary
results in explicit form in order to obtain our desired derivatives. We remark about
formulating the derivatives, provide numerical results regarding our goal, and finally

pose a related conjecture.

6.5.1 Spectral properties of the adjacency matrix of Q,

Let n > 3, and M be a (2,2,2,{3,3})-matching in @,. For ease of notation, we
denote, in what follows, the (2,2,2,{3,3})-switched n-cube @9@ by Q.. We shall
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find an equitable partition 7 of V(@n) that produces 2"~! eigen-pairs of A(Q,). In
order to obtain such a partition, we first construct the adjacency matrix of ), in a
particular form.

For an ordered set X of binary strings and a € {0,1}, we use X + a to denote
the ordered set obtained from X by attaching an a at the end of each binary string
(on the right).

Consider the following ordered sets: a{® = {000,011}, ol = {101,110}, B =
{100,111} and B = {001,010}. Then, labelling V(Q3) in order of a\? ¥ P

and 653), we have

0 0|L J
0 0| I
A@s) = |17
2 2
Jo I

Suppose that for n > 4, o™ = (Ozl(-nfl) + O) Ur, (62-("71) + 1) and A" = (ﬁi("fl) + O) Ur,
( (=) 4 ) for 1 =1, 2 (recall that Uy, is the linear sum). We claim that labelling

V(Q,) in order of ol ol 3™ and B, we obtain the adjacency matrix A(Q,)
in the form of - below. We shall check the first row partition of A(Q,) by

induction, and leave the remaining task to the reader.

No vertex in a{" ™ (resp B?*l)) is adjacent to all vertices in 04("71) (resp. B](-nfl))
for j = 1,2. This implies that any vertex in ozg 1o (resp ﬁ(n s 1) is not
adjacent to all vertices in ag- 40 (resp. Bj ) for 7 € {1,2}. For two

distinct binary strings, attaching a 0 at the end of one of them and a 1 at the end of
the other results in two binary strings whose distance is more than 1. So, any vertex
in a{"™V+0 (resp. pinh 4 1) is not adjacent to all vertices in (U?Zl (B](-nfl) + 1)) U
(ag g 1) (resp. (U]2~21 (045-"_1) + 0)) U (ﬁén_l) + 0>> Given a binary string, the
string obtained by attaching a 0 to the end is adjacent to the string obtained by
attaching a 1 to the end. Thus, £*® vertex in ay" 4o (resp. 51 ) 4 1) is only
adjacent to k' vertex in aﬁ”‘” + 1 (resp. Bfn_l) + 0). Finally, the remaining parts

in the first row partition of A(Q,) are filled by induction. Therefore, we have the
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following:

0 0 B, Iyn-3 ® Jo
0 0 Ign-3 ® J: B,
AQn) = o (6.5.1)
By, Ign-s ® Jo 0 0
127173 ® J2 Bn 0 O
(Bo_i Ipn-
where B3y = I, and while for n > 4, B,, = Lo

Ign—3 anl

From A(Q,) in with ol we observe that the first and second vertices
vy and vy in V(@) correspond the binary strings 0...0 and 0110...0, respectively.
Considering 8™, the (27! + 1)™ and (2"~ + 2)* vertices w; and ws correspond
10...0 and 1110...0, respectively. Then, {v; ~ wy,ve ~ wo} is a (2,2,2;{3,3})-
matching in @),. By Proposition |6.3.25] we may assume in this section that M =

{v1 ~ wy,vy ~ wy}. Hence,

én IQn—S ® JQ
- 0 0 121%3 ® J2 Bn
A(Q,) = = (6.5.2)
B, Ion-3 @ Jo 0 0
Ian?: ® J2 Bn 0 O
_ 1 ~ By_1 Ion-
where Bs = ()] , and while n > 4, B, = I ! 32 ’l.
2n—3 n—1

In the sequel, we assume that V(Q,) is defined as {1,...,2"}, and adjacency
of vertices in @, is given by entries of the matrix A(Q,) in (6.5.2): vertices k
and [ are adjacent if and only if (A(Q,))x; = 1. Furthermore, let ko := 1 and
so:=2""1+2""2+ 1. As seen in (6.5.2)), ko is adjacent to so. Since sy corresponds
to the first element in ﬁén), 5o can be regarded as the string 0010...0. Let ry := s§.
Then 7y corresponds to 1101 ... 1. It can be checked that 1101...1 is the last element
in a8 if n is odd, and the last element in A" if n is even. Therefore, ro = 271 if
n odd, and rq = 2™ if n is even.

Given a (0, 1) symmetric matrix B, let G be the undirected graph with or without
loops associated to B. If there exists an equitable partition 7 of G, then we use B(™
to denote the adjacency matrix of the quotient graph G/m.

Consider a partition 7 = U2, {2i—1,2i} of V(Q,). We can find from (6.5.1) and
that by induction each block in the partitioned matrix for A(Q,,) according to
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0 0| (1 0] (0 1 11
7 is one of the following: {O ] , [ ] , { ] , and [1 A Hence, 7 is equitable,

0o 10 1| (1 O

and so we have

0 0 B 2050 s

A B 0 0 |2lns B
(Qn/ﬂ') - B7(17'n) 2on—3 0 0
2Ipn-s B 0 0

where 7, = U¥,*{2i — 1,2}, B{™ = [1] and for n > 4,
B,,(,LT_”]TI) I2n74
Iy BTV

n—1

B(m) —

n

Then, 2" eigen-pairs of A(Q,,) can be obtained from A(Q,/x) by Proposition [2.5.3|
(Since the subindex n of 7, is clear from B{™) we simply write B{™) as B{").)

We consider the remaining 2"~! eigen-pairs of A(@n) Consider the following

equations:
u®c u®c 0 0
~ 0 0 ~ V®cC vV®c
A(Qn =A , A(Qn =\ 6.5.3
@ |y oel =M |wme - 2@ =27 (65.3)
0 0 VRcC vV®c

. Then, we are led to equations

. 1
where A, A2 € R, u,v € R’ and ¢ := [

B,(u®c) =X (u®c)and B,(v®c) = l(v®c). (6.5.4)
In order to consider the following lemma, for n > 3, we define a matrix C), to be

C, = B\ —2eel.
Cn_l 12n74
]2n—4 B(T)l '

n—

Then, for n > 4, C,, can be expressed as C,, =

Lemma 6.5.1. Let n > 3, A€ R, and x,y € R*"°. Then, B, (x®¢c) = A (y ® c)
if and only if B{)x = \y; and B, (x®c)=A(y®c) if and only if C,x = \y.
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10
Proof. We shall use induction on n. Let n = 3. We have By = [O ) and
B = [1], so the statement holds. Suppose that for n > 3 and u,v € R?" ",
B, (u®c) = \(v®c)ifand only if B{u = \v. Let x = | @c and y = Y ee
X2 Y2

where x1, X2, y1,y2 € R, We first assume for the sufficiency that B, (x®c) =
A (y ® c¢). Then, we have

A\ y1®c _ Y1 wc| =B, X1 o c
Y2 ®c Y2 X2
| By 2| [x1®c B.(x1®¢c)+x2® ¢
Iom2 B, | |[xx®c X] ® € + By (x2 ® c)

This implies that B, (x; ® ¢) = (Ay1 —X3) ® ¢ and B, (X2 ® ¢) = (A\y2 —x1) ® c. By
the inductive hypothesis, Bg)xl = \y1 — X2 and BT(LT)XQ = \y2 — x;. Hence,

X1 _ X1 — Y1 .
X9 X2 y2

By induction, B, (x ® c) = A (y ® ¢) implies B{)x = \y for n > 3. The converse

B(T) ]2n—3

n

B("’)
e Iyns BO)

An analogous argument applies to the remaining case. One can check that

follows readily.
Y1 ®c) _ én—i—l (|:Xl

A
Y2 X2

and B, (x2 ® ¢) = (Ay2 — x1) ® ¢. Therefore, applying induction for B, (x; ® ¢) =

®c) if and only if B,(x; ® ¢) = (A\y; — x3) @ ¢

(A\y1 — x2) ® ¢, and using the result above for B,(x3 ® ¢) = (Ay2 — X;1) ® ¢, the

desired conclusion can be established. O

By (6.5.3) and (6.5.4) with Lemma6.5.1] we can obtain 273 eigen-pairs of A(Q,,)

from B() (resp. C,). Since Q, is a bipartite graph, we see that if [XT yT} for some

x,y € R is an eigenvector of A(@n) associated to an eigenvalue A, then so is
[XT —yT} associated to —\. Hence, each eigen-pair (A1,u) of C,, generates two

eigen-pairs of A(Q,,):

()\1, [(u ®c)’ 07 (u®c)’ ()TD and (—)\1, [(u @c)l 07 —(u®c)” OTD _
(6.5.5)
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Similarly, each eigen-pair (\y, v) of B{") generates two eigen-pairs of A(Qn):

(X2, [07 (v@ )" 07 (veo)]) and (=X, |07 (veo)” 07 —(vec)]).

Furthermore, since any eigenvector z of A(@n) obtained from an eigenvector of
A(@n/w) by Proposition is in form z; ® 1, for some z; € R?"', we see that
no eigenvector of A(Q,) in form [OT (vec)? 07 (ve c)T} can be expressed as
a linear combination of vectors in form z; ® 1, or {(u ®@c)l 07 (u@c)? OT].
We also can see that any non-zero vector in form z; ® 1, is linearly independent
of any vector in form [(u @c)l 07 (u®c)? OT] Therefore, the remaining 27!
eigen-pairs of A(@n) can be completely determined by eigen-pairs of B{™) and C,, as
in forms and .

Here is an outline for establishing our main result of this subsection (Theorem
6.5.14)) about the spectral properties of A(Qy):

e In Step 1, 2! eigen-pairs of A(@n) are obtained from those of A(Q, /7) by
Proposition [2.5.3

e In Step 2, another 272 eigen-pairs of A(@n) are constructed from 2”3 eigen-

pairs of B{™) as in form (6.5.6)).

e In Step 3, another 2”2 — 2(n — 2) eigen-pairs of A(Q,) are constructed from
2773 — (n — 2) eigen-pairs of C, as in form (6.5.5)).

e In Step 4, the other 2(n — 2) eigen-pairs of A(Q,,) are constructed from (n — 2)
eigen-pairs of €, as in form (6.5.5)).

e In all the steps, we find the k", si? and ri® entries of each eigenvector, and

the multiplicity of the corresponding eigenvalue.

6.5.1.1 Step 1

We claim that for n > 3, the columns in H,_; consist of eigenvectors of A(Q, /).
In order to establish the claim, using induction, we first show that for n > 3 the
columns of H, 3 consist of eigenvectors of B{") where Hy := [1]. (We may extend
the inductive construction of H,, in for n > 0.) For n = 3, it is trivial that
the eigenvalue of Bz@ is 1. Suppose that for n > 3, B,(LT)Hn,g = H,,_3D,, where D,
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is a diagonal matrix. Then,

Zgﬁﬁ H . lggﬂ I ]Yn_g ]?n_g B f{n_3 ffn_3 ljn + 1 0
nt1ddn—2 I Bv(f) H, s —H, 3 H, s —H, 3 0 D, 1 )

Thus, by induction, H,,_3 diagonalises B{") for n > 3. Let

1
2n—3

D, = H .BOH, .

Considering D3 = [1] and the inductive relation between D,, and D, = diag(D,, +
I,D,, — I), eigenvalues of B{™) (the main diagonal entries of D,,) are given by (n —
2) — 2i for i = 0,...,n — 3 with respective multiplicity (";3) Furthermore, it can
be checked that

Hy 35 Hn3 Hnps Hyps
H, 3 —H, 3 H,3 —Hy3
Hy3 H,3 —H,3 —H,3 (6.5.7)
H, 3 —H, 3 —H,3 Hy3

—H,_diag(D,, + 2I,D,, — 2I,—D, — 2I,—D,, + 2I).

A(@n/ﬂ-)Hn—l :A<©n/7r)

Hence, H,_; diagonalises A(Q,/n). Then, the distinct eigenvalues of A(Q,/m) are
given by n — 25 for j = 0,...,n. We denote ﬁHn_l ® 15 by X;. By Proposition
2.5.3] X consists of 2”1 eigenvectors of A(Q,) such that X7 X, = I. Let A; denote
the diagonal matrix such that A(@n)Xl = XjAy. For j =0,...,n, we use X;(j) to
denote the submatrix of X; that consists of all columns in X; that are eigenvectors
of A(Q,) corresponding to the eigenvalue n — 2j.

We consider the multiplicity of eigenvalue n—2j of A(@n /m) for j =0,...,n, and
examine sign patterns of the rows of X(j) indexed by ko = 1, s = 2"t +2"2 4 1,
rg = 2" (if n is even), and ry = 2" (if n is odd). From the structure of X; =
\/%Hn_l ® 1o, for the sign patterns we may consider the rows of H,,_; indexed by 1,
22 4 2n=3 41, 27! (if n is even), and 2"72 (if n is odd). We observe from
that the multiplicity of n — 25 is derived from the (";3> entries (n — 2) — 2j in D,
by adding 2; from the (?:3) entries (n —2) —2(j —2) in D,, by adding —2; from the
(Z:j) entries —(n—2)+2(n—j) in —D,, by adding —2; and from the (nﬁ;z) entries
—(n—2)+2(n—j—2) in —D,, by adding 2. This implies from Pascal’s identity that
the multiplicity of n — 2j is (”;2> + (?:;) In other words, there are (”]_.2) - (?:g)
columns in X;(j).

177



Remark 6.5.2. Recall that for 0 < j < n — 3, H,_3(j) consists of all columns in
H, 3 that are eigenvectors of A,_3 associated to the eigenvalue (n —3) — 2j; and the
first and last rows of H,_3(j) are I?nj__g) and (—1)7 lfnj__g), respectively. Comparing
the arguments for recursively finding the eigenvalues of A,_3 and B{") by using the
standard Hadamard matrix H,_3, we can see that each column of H, 3(j) is an
eigenvector x of B(") corresponding to the eigenvalue (n — 2) — 2j. Therefore, the

first and last entries of x are 1 and (—1)7, respectively.

Considering the four column partitions of H,_; in (6.5.7)) and the corresponding
four diagonal matrices with the argument above about the multiplicity of n — 25, we
can find from Remark [6.5.2] that

oF 17, 1%, 17, 17,
[ 7;0 (ﬁXl(]D _ 1(Tj ) _1(%2) _1(%3) 1%‘1) : (6.5.8)
o0 (5 T T )

and by checking two cases that n is even or odd,

efo (\/2_”X1 (]))
[(—1)3'1:(”‘3) —(—1)j_21:(rn,3) —(—1)”_]'1%”73) (—1)”_j_21%n3)] , if n is even,

_ i i—2 i-3 i-1

[(—1)1'1(2__3) —(—1)]'—21(2_3) (—1)”—j1(Tn_3) —(—1)"‘j‘21(Tn_3)], if n is odd,

=0 [y My e ) (6:5.9)

6.5.1.2 Step 2

Let us consider Bff). As explained in Step 1, we have that B,(f)Hn_g = H, 3D, for
n > 3, and the eigenvalues of B{") are given by (n —2) —2i for i =0,...,n — 3 with
respective multiplicity (”;3> By Lemma |6.5.1} B,(H, 3®c) = (H,_3®c)D,. So,

we let

0 0
1 Hn73 ® C Hn,:), ® C
e 0

Hn—3®c - n—3®c

X2 =

Then, X, consists of 22 eigenvectors of A(Q,) such that X7 X, = I. Denote by
A, the diagonal matrix such that A(@n)Xg = XoAy. Then, Ay = diag(D,,, —D,,).
For j =1,...,n— 1, we use X3(j) to denote the submatrix of X, that consists of

all columns in X, that are eigenvectors of A(@n) corresponding to the eigenvalue

178



n—2j. We observe that for j = 1,...,n—1, the entries n — 25 on the main diagonal

of Ay are derived from the (?:f) eigenvalues (n —2) —2(j — 1) of B{"), and from the

(n"_?’ ) eigenvalues (n—2)—2(n—j—1) of B{") by changing their signs. Hence, there

—j—1
are (?:f) columns in X5(j). Furthermore, considering the fact ¢ = [ concerning
computation for ef (\/ 2n X ( j)), it follows from Remark [6.5.2| that

0% _ ol _
ego (j—f) (j—g)
. T T
eZO (\/ 2”X2(j)) = \/§ 1(?:3) —1@:3) . (6.5.10)
ef —1)717 —1)i+t117T
: R A

6.5.1.3 Step 3

We now consider spectral properties of C,, = B — 2e;el” where n > 3. Since

Dy = yis HY 4B Hy oy and ] s = 17, we have

1

S 117

1
ﬁHEL—LgCanffi = Dn -

By a similarity transformation on C),, the spectrum of C), is the same as that of D,, —

1
on—4

x of D,, — 2,1#_411?

117, and any eigenvector of C,, can be expressed as H,_sx for some eigenvector

Lemma 6.5.3. [36] Let C = D+ouu’ whereo <0, u € R" and D = diag(dy, ..., d,)

with dy > - -+ > d,. Suppose that cq, ..., c, are the eigenvalues of C' where ¢y > -+ >
Cn. Then,

di—i—lgciédiv izl,...,n—l,

d, +ouTu<e, <d,.

Lemma 6.5.4. [1] Let C = D+ouv? whereo € R, u,v € R" and D = diag(dy, . ..,d,).
Then, the characteristic polynomial p(x) of C is

n

p(z) = ﬁ(dz —r)+ aiuivi H(dj — ).

i=1 =1 7j=1
J#i
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Furthermore, if X is not in the spectrum of D, then X\ is an eigenvalue of C' if and

only if

Lemma 6.5.5. [27] Let 0 € R, u € R"” and D = diag(ds,...,d,). Suppose that \
is not in the spectrum of D. If X is an eigenvalue of D + ouu”, then (D — X\ )~tu

is an eigenvector of D + ouu” associated to .

The spectral property of C5 = [—1] is obvious. We assume n > 4. By Lemma

6.5.4] the characteristic polynomial ¢(z) of D,, — 57117 is given by

o(x) = Tijow -~ - Z (” ; 3) (i =) () TH(Aj —a)(")

JF

where \; = (n —2) —2j for j =0,...,n — 3. It can be checked that ¢()\g) # 0 and
¢(An—3) # 0. Clearly, ¢(N;) =0 for j =1,...,n—4. Fix jo € {1,...,n —4}. Note

() B0 and L (s
that (\j, —x)% 9 / is a factor of ] (\;—)\ 7 /, and is also a factor of 2n,4( : )(/\,-—

)

7=0
n— n—3 n—
x)( ) (A — x)( ) for i e {0,...,n — 3} with ¢ # jo. Considering the term
=0
2
n—3 n—3 n—
s (57 Oy = )5 T 0 = )5 i 6a), we find that 6¥();,) = 0 for
J:
J#jo

1<k< ("353) — 2, and qb(( io )_1) (Aj,) # 0. Thus, the multiplicity of eigenvalue Aj;
of C), for jo=1,...,n—41is ("j;?’) — 1. Therefore, the 2773 — (n — 2) eigenvalues of
C,, are given by (n—2) —2j for 1 < j < n — 4 with respective multiplicity (”;3) -1,
and the remaining n — 2 eigenvalues of C,, are not in the spectrum of B{") (and D,,).

Now, we consider eigenvectors corresponding to the 273 —(n—2) eigenvalues of C,,
that are in the spectrum of D,,, where n > 5. Let j € {1,...,n—4}, and m = (”;3)
Suppose that pi,...,p,, are indices such that egs Dye,, = A for s =1,...,m. Then,

for 1 <i<m —1, we have

1 i ] i .
<Dn ~ o J) (Z e, — zepm) = (Z e, — zele) .
=1 k=1

So, (Z};:l e, — i€y, +1) is an eigenvector of D,, — 5:=J. Tt follows from Remark

6.5.2{that the first and last entries of H,,_3 (EZ:1 e, — i€y, +1) are zero. Hence, there
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exist (";3> — 1 mutually orthonormal eigenvectors y of D,, — QTLIJ corresponding
to eigenvalue (n — 2) — 2j for 1 < j7 < n — 4 such that the first and last entries of
H,_3y are zero. We denote by Y; the matrix that consists of those 2”3 — (n — 2)
eigenvectors. We note that eigenvectors corresponding to distinct eigenvalues of a

symmetric matrix are orthogonal. Thus, Y'Y; = I. Let

Hn73§/1 ®c an?)Y’l ®c

1 0 0
Xq = .
Vo |HyYi®e  —H, 3Yi®c
0 0

Then, for each column y of Vi, (y'H! 5 ® ¢")(H,-3y ® ¢) = 2"2. This implies
that X3 consists of 22 — 2(n — 2) eigenvectors of A(Q,) such that X7 X5 = I. We
denote by As the diagonal matrix such that A(@n)Xg = X3A;.

For 2 < j <n — 2, we use X3(j) to denote the submatrix of X3 that consists of
all columns in X3 that are eigenvectors of A(@n) associated to the eigenvalue n — 2.

Note (6.5.3)) and (6.5.4) with Lemma [6.5.1] The entries n — 2j on the main diagonal

of Az are derived from the (’;:i’) — 1 eigenvalues (n —2) — 2(j — 1) of C,,, and from

the (niﬁl) — 1 eigenvalues (n — 2) — 2(n — j — 1) of C, by changing their signs.

Thus, there are (?:12) — 2 columns in X3(j).

From the first and last rows of H,_3Y7, we have el X3 = 0 for
i€ {1,2,2"2 —1,2" 2 on"t ot g ont poonm2 p gnl oy g2

Moreover,
el | X3=0. (6.5.11)

6.5.1.4 Step 4

Let n > 4. We shall consider the (n — 2) eigenvalues of C,, not in the spectrum of
D,, (explained in Step 3) and corresponding eigenvectors, where TL%SHE_SCan_g =
D, — 5i=J. We denote by g, ..., p,—2 those (n — 2) ecigenvalues. We assume
f1 >0 > pip_o. Let A\ = (n—2)—2j for j =0,...,n—3. Since pu, ..., fn_o are
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not in the spectrum of D, it follows from Lemma that

(6.5.12)

)\j<ﬂ’j<)\j—la forj=1,...,n—3,
—n+ 2 < Pn—2 < )\n73'

Leti=1,...,n—2. By Lemma m, (D,, — ;1)1 is an eigenvector of D,, — 27%“]
associated to ;. Without loss of generality, the eigenvector (D,, — u; 1)1 is of the

form
T _ T T . T
v, = |:U01(n03) Ull(nIS) Un—?l(:;g)] (6.5.13)
where v; = ﬁ for 0 < j <n—3. Let ¥; = (v, ..., v,_3)7. Then, (Dn—w%“])vi =

w;v; implies that (u;,V;) is an eigen-pair of the matrix given by
n : 1 n—3 n—3
D, = diag(Xo, -, Adn-s) = 5, Ln () ()] (6.5.14)

Therefore, the (n — 2) eigenvalues of C,, not in the spectrum of D,, are the same as
those of 5n

Remark 6.5.6. One can find an equitable partition on D,, — 2,%“] to deduce D,,.

Now, we consider the k{", st and r{" entries of the eigenvectors of A(@n) corre-
sponding to the eigenvalues +y1, ..., *+pu, o where n > 4. Since puq, ..., jt,_o are not
in the spectrum of diag(\o, ..., A\n,_3), we find from Lemma that the eigenvalues

of D, are given by the roots of a polynomial

n—3 n—f‘;
a(z)=2"""=-%" "y J_>x. (6.5.15)
j=0 "\J

Define Y3 to be the 2”73 x (n — 2) matrix whose i** column is (D, — p;I)~'1 for

t=1,...,n — 2 where

R B e

= /\ _Nz)
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Then, Y5 consists of (n — 2) unit eigenvectors of D,, — 2,1%41] . Let

Hn—3}/2 ®c Hn—3}/2 ®c

1 0 0
X4 = .
YTV | Y ®e  —H, 3Ya®c
0 0

Then, X4 consists of 2(n — 2) unit eigenvectors of A(@n) corresponding to the eigen-
values +p1, ..., *,_o. Furthermore, we use A4 to denote the diagonal matrix such
that A(QH)X4 = XyA4. Since ¢1(p;) = 0 fori =1,...,n — 2, we see from ({6.5.13)
and that

j=0 )‘j — M
Hence, for n > 4, we have
T 1 1 1 1
eko 2TL74 Z Un—2 Z Un—2
el | Xy= —— 0 0 0 (6.5.16)
T 2n
e 0 0 0

Now, we claim that columns in X, are mutually orthogonal. In order to establish
this claim, we first consider the case X; when n = 4 in Remark [6.5.7, and then we
show that for n > 5, the spectrum of diag(b\n, —D\n) consists of simple eigenvalues—

that is, £, ..., £u,_o are distinct.

Remark 6.5.7. It can be checked that two eigenvectors (D, — +/2I)~'1 and (D4 +

V2I)7'1 of D, — J are orthogonal where D, = diag(2,0). It follows that X' X, = I

1 -1

for n = 4. Furthermore, one can find that 54 = and —54 have the same

cigenvalues as ++/2; so, the eigenvalues of diag(b\% —54) are not simple.

Consider n > 5. Note that \; = —\,_o_; for j = 1,...,n — 3. Let \,_p =
(n—2) —2(n —2). Then, A\g = —A,_s. So, —D,, can be recast as

— D,y =diag(Mn—2s Ay Aty - s M) + 2711_41“ (7)) - ()]

From Lemma m, the eigenvalues of —D,, are given by the roots of a polynomial

)\j—ZL’.

@) =2""* + >

n—2
Jj=1
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We note that —puy, ..., —pu,—o are the roots of ga(z); and by (6.5.12) m, i < —p; <

-\ fori=1,... ,n—S, and —\,_3 < —fip_o < n—2. That is, Aj11 < —fin—o—; < Aj
for 1 <j<n-—3and \y < —p,_o < A\g. Hence, ¢;(z) and ¢2(x) have exactly one
root in each interval (41, A;) for i = 1,...,n —4; in (A1, AoJ; and in [A,_2, Ap_3).
Therefore, we only need to show that in each of those intervals, ¢;(z) and g2(x) do

not have a common root in order to prove that +pu., ..., £u,_o are distinct.

Lemma 6.5.8. Let n > 5. Then, 2" * > ( ) forn — 3 even; 24 > 4 ([n 31) for
2
n — 3 odd; and 2"~ > %(%g’) + g(éil) forn — 3 even.

Proof. We shall use induction on n to prove 274 > ( 3) for n — 3 even. Clearly,
2
it holds for n = 5. Suppose that for k > 5 with k — 3 even, 284 > (’g) Since
k—1\ _ 4(k—1)(k—2)
() = #5252 (12) < 4(i52), we have

2
B k—3 kE—1
k=2 — 4. 2’f4>4<3>><k_1>.
2 2

By induction, we obtain the result, as desired. Similarly, one can establish the

remaining results from induction. O
Lemma 6.5.9. Let n > 5. Then, for j =0,...,n—3,
¢1(n—3—=27) >0 and g2(n —3 —2j) > 0.

Proof. Let \; = (n—2) —2j for 0 < j < n—3. Given zyp = n — 3 — 2j, for

0 < jo < n—3, we have \; — xg = 1+ 2(jo — j). So, from 2"~* = 2373 (ny_'g)’

¢1(zo) can be written as
o= () () o) () 6D )
Jr<1_1><n3>Jr _.+<1_ 1 )<n3>
2 1=2/ N+l 27 T+20jo-(n—3)/) \n-3)"

Evidently, § — 5= < 0if and only if j = jo. If (".*) < (27%) then gy (o) >

2
_ _ (1 1 n—3 1 1
For k=0,...,n—3,let p(k) = (5 - 1+2(j07k)) ( k )+ (5 T 112G —(n—3—F) ) (n 3—k
n—3 n—3 : 1 1
Note that ( k() :) (n_3_k) and p(k) = p(n—3—k). Since 1+2(j0_k)+1+2(j0_(n_3_k)) =
2+4jo—2(n—3 . n—3 : :
(1+2(j07k))(]10+2(j07(n737k))), we find from jo > [%52] that if 14 2(jo — k) > 0 and

1+2(jo— (n— 3 —k)) <0, then p(k) > (".*) +1(,"3%,)-

0.
By the unimodality of the binomial coefficients, we only consider the case jo > [%52].
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Suppose that n — 3 is even and jo = *3%. Then, for 0 < < "7% — 1, we have
1+2(jo—i) > 0and 1+ 2(jo — (n — 3 —4) < 0. So, p(i) > %(H)
Lemma [6.5.8, we obtain

@ () = —; < ) Z pli (n;3>+; j;: (n j_ 3) = on <nn;_33> > 0.

Assume that n—3is odd and j, = [”T_?’], i.e., Jjo = ”—_3—1—1 By a similar argument

as in the previous case, we obtain p(i) > %(";3) + 1 (n - ) for i = 0,. T3 — %
Note that p(jo) = (5 — %)(;;—?i) + (3 — 1)(” 3). By Lemma [6.5.8] ql(x) = p(jo) +

n=3_3
iz p(i) > —*<[n 31) +5 250 g(nj3> =2nt - %((" 31) > 0.

Consider the case jo = [";’W + 1. If n — 3 is odd, then p(jo) = %(” 3) and
p(jo—1) = %(;;‘31) Since (;::j) > (”J 3) we have p(jo — 1) + p(jo) > 0. It follows
that ¢i(xo) > 0. Let n — 3 be even. One can check that p(i ( ; ) + %( ) for
i=0,...,%2 — 2. Then, q(z) = 8(7%5’) — %<n2§ 1) ( ). From Lemma
6.5.8 q1(z0) > —3(a8) — ¢ (a3, + 3 2 (75°) = 2 l( H-2(ad) >0

Finally, suppose jo > [“52] + 2. Then, p(jo) > g(njog) and p(]o 1) >3 (;Z; 31)

where both equalities hold for j, = [”T_?ﬂ +2 with n—3 even. So, p(jo—1)+p(jo) > 0.
Hence, ¢i(xo) > 0. Therefore, ¢;(n —3 — 25) > 0 for 0 < j < n — 3, as desired.

An analogous argument applies for ¢ga(n —3 —25) > 0 for 0 < j < n — 3. Then,
one can see in a similar setting as above that the argument goes in a reverse way; if

(37?;31) > (”]_03) then go(n — 3 — 2j) > 0, and so we consider jo < [25%]. As done

above with Lemma [6.5.8] our desired result can be established. O
Remark 6.5.10. Let n = 4. Then, ¢;(—1) <0, ¢2(—1) > 0, ¢:(1) > 0 and ¢2(1) < 0.
Proposition 6.5.11. Forn > 5, all eigenvalues of diag (Bn, —b\n) are simple.

Proof. Let \j = (n —2) — 2j for 0 < j < n — 2. Consider the graph of ¢;(z). For
0 < j <n-—3, eachline z = ), is a vertical asymptote of ¢;(x). Moreover, ¢;(z) <0
except at © = \; for 0 < j < n—3. Similarly, ¢2(2) has vertical asymptotes x = \; for
i=1<i<mn-—2 and g(z) is strictly increasing except at z = \; for 1 <i <n — 2.
By Lemma [6.5.9] there is a number ¢ in (Ai11,A;) for ¢ = 0,...,n — 3 such that
q1(c) > 0 and go(c) > 0. It follows from the intermediate value theorem that ¢ ()
and ¢o(x) have a root in (¢, \;] and [A;11, ¢), respectively. Hence, ¢;(x) and ¢o(x) do
not have a common root in each interval (A1, A;] for i =0,...,n — 3. As explained

in the earlier part of Lemma this is enough to establish the conclusion. O]
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Corollary 6.5.12. Let n > 5. The eigenvalues tpiq, ..., T, o of A(@n) are dis-

tinct, and so Xy consists of 2(n — 2) mutually orthonormal columns.

Remark 6.5.13. Let n > 5. Define p,,_oy; to be —p; for 1 < i < n — 2. Then, for
1<j<2(n—2),j* column of X, is an eigenvector of A(Q,,) associated to ;.

Let n > 4, and let
X = [Xl Xy X3 Xy| and A :=diag(Aq, A2, Ag, Ag). (6.5.17)

Note that for any vectors x and y of the same size, x ® ¢ and y ® 15 are orthogonal;
that each column of X5, X3, and X, is in the form or ; that any
entry on the main diagonal of A4 does not appear on main diagonals of A; for
1 =1,2,3. It follows that X is orthogonal. Moreover, X diagonalises A(Qn) so that
XTA(Qn)X = A. For j =0,...,n, X(j) denotes the submatrix of X that consists
of all columns in X that are eigenvectors of A(@n) corresponding to the eigenvalue
n — 2j. We denote by 7127’;2(61, b) the number of columns in /27X (j) whose entries
indexed by [ and Iy with [y # [ are a and b, respectively.

Summarizing this subsection about the spectral properties of A(@n)7 we have the

following theorem.

Theorem 6.5.14. Let n > 4, and let M be a (2,2,2,{3,3})-matching with a

distance-partite set {vi,vo}. Let Q, = QM) Suppose that s € Sy({vi,v2}) and
k = wvy. Then, the following hold:
(i) The eigenvalues of A(Q,) are given by n —2j for 0 < j < n, and +pu; for

1 <1< n—2 where py,...,u,_o are the eigenvalues of the matriz D\n m

(6.5.14).

(1)) We have that am(n) = am(—n) =1, am(n —2) = am(—n +2) =n — 1, and
am(n —2j) = (?) —2forj=2,...,n—2.

(1ii) If n =4, then py = —po and g = —py. If n > 5, then am(p;) = am(—p;) = 1

fori=1,...,n—2.

(iv) The orthogonal matriz X in (6.5.17)) diagonalises A(@n) so that XTA(Qn) X =
A.

(v) Forj =0,....n, hy5(1,1) = (%), his(L,=1) = (753), hi50,v/2) = (02F),
750, —V2) = (723), and Fy5(0,0) = (773).
Proof. Inspecting Steps 1-4, the results can be established. In particular, from

(6.5-8), (6.5.10) and (6.5.11)), we obtain [(v)| O
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6.5.2 aaA and particular rows of V' and 83V for Q,,
50,k0 50,k0

We begin with modifying some conditions—unless stated otherwise in this subsec-
tion, we assume the same condition—for the notation introduced in Subsection [6.4.2
Assume that n > 4 and A, = A(Q,) where A(Q,) is of form (6.5.2). Recall that
sg=2""1 422 41 kg =1, 1o = 2" (if n is even), and o = 2"~ (if n is odd).
We consider the weight of the edge sg ~ kg. Let F = [esO eko} {eko esO}T. Assume
that A, = VAVT where A is the diagonal matrix in (6.5.17)), and columns of V
consist of vectors in a differentiable eigenbasis evaluated at h = 0 in the context of
A, + hE as explained in Subsection Let j =0,...,n, and m = am(n — 2j).
We use x7,...,xJ, to denote the columns of X (). Suppose that V' is obtained from
the algorithms described in Subsection , Vectors fc{, ..., %) denote m columns

in V that are eigenvectors of A, associated to eigenvalue n — 2j5. Here we revisit the
formula (6.4.1): fori=1,...,2", (aBA ) = e/ VTEVe;.
(X

50,k0

We first consider the case that for an eigenspace Z corresponding to an eigenvalue
of A,,, the subspace spanned by columns of EZ is of dimension 1. If an eigenvalue
of A, is simple, then its corresponding column in V' can be taken as that in X.
Evidently, am(n) = am(—n) = 1. From (6.5.8)) and (6.5.9)), we have

eSTO ) 1 -1
el | [ ﬁ?]:ﬁ 11 . (6.5.18)
el 1 (=1

For Ve,,, = XY and Ve,,, = X}, we can see that

oA 1 oA 1
(850»]{70 ) mi,mi 2n_1 and (as(),ko > mo,mso 2n_1 <6 5 9)

Let n > 5. By of Theorem [6.5.14] and Remark [6.5.13] am(y;) = 1 for ¢ =

1,...,2(n—2). Let z} (resp. 2}) denote the column in X, (resp. V) corresponding to
eigenvalue y; of A, fori =1,... ,2(n—2). Thus, from (6.5.16)), fori = 1,...,2(n—2),

eZ:) 2n74 0

T | 4t _ 1
| 2= 7= | (6.5.20)
el 2 0

T0

where v,,_oy; =v; for j =1,...,n—2. It is straightforward that for 1 <i < 2(n—2)

it Ve,, — 21, then (8“ —0.
50,k0 m,m
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Consider n = 4. Then, am(u;) = am(us) = 2 where p; = —ps. Let z and z}
(resp. z! and 2%) denote the columns in X, (resp. V') corresponding to eigenvalue
w; for i = 1,2. It follows from that for ¢ = 1,2, the subspace spanned
by Ez| and Ez) is of dimension 1. According to the algorithm with the notation

described in Subsection , one can verify that §; = 1 and 05 = Z—; Thus, 2| =

ﬁ(wzi + v12h). Since z| and z) are orthogonal, it can be checked that 2, =
2

2
1
1 Vvitys

i i T 5i _ T 5i _ :
W(—ylzl +v925). Then, e 2] = N and ey, z; = 0. By computations of v,

and vy, we can find that for ¢ € {1,2},

el | 0 0
ef | |25 )= 0 (6.5.21)
el 0

For Ve,,, =2} and Ve,,, = 2}, we obtain (aaA ) = (8‘9/\ ) =0.
3050 / 1 ma 3050 / o mo
Now, we investigate the case that for an eigenspace Z corresponding to an eigen-
value of A, the subspace spanned by columns of EZ is of dimension 2. Let j, =
1,...,n—1and mog = am(n —2jy). By|(v)|of Theorem [6.5.14} we have Bﬁ?ﬁo(l, 1) =
n—2 7 ko,s _ (n—2 7 ko,s _ (n-3 7 ko,s _ (n-3
(jo ) hoy (1, —1) = <j0—2)’ h”?joo(f)’ﬂ) - (jo—l)’ and h 500 (0, —V2) = (jo—2)‘

For 1 < j, < n—2, h*(1,1),h%*0,v/2) > 0, and for 2 < j, < n — 1,

TL,jO 7’L,j0 -

hEoo(1, —1), hEo50(0, —/2) > 0. So, the subspace spanned by ExX for 1 < i < my is

n,j0 ’ n7j0
T
€ko X%'O _ 1 0
T V2n
€5, V2

el | . 1
of dimension 2. We may assume that { ];? x] = \/127 ) and

e;,
el 1 el 0
for 1 < jo<n—2 and | *|xit=_1 and | Fo| xp-l = L _
SJo s LZ; 1 ver | g esT0 2 Var V2

We shall compute the entries of X2° and X% that are indexed by so, ko, and rq for

1 < jo <n—1. Then, we need to consider two cases 1 < jp <n—2and jo=n—1

€5

In order to obtain the related result

T
e .
for the computations since [ l;“] X! ] xPtforl1 <jo<n—2andi=1,2

, we consider the case 1 < jp < n — 2,

and leave the remaining task for jo = n — 1 to the reader—we note that —x5 ! is

used in (6.5.23)) for ease of exposition.

Let jo =1,...,n—2, and let us compute «; and 3; fori = 1,...,my. As explained
in Subsection [6.4.2] vy = B3 = 1 and as = 1 = 0. Consider the case 3 < i < my.
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We have

-1 ~1
T
ol i o B 1 {1 0 B 1 0
x;’ X = =V2" .
(e =) -Gl ) -7 g
Note that for 3 < i < my, either e;foxgo =lorefx x7° = 0. So,
! if it xJ0 = 1 it
O ’ eT 1 \/27 1 )
L L0 L
! if iy x0 = 1 L,
- _\/§ ’ eg:) ) No 1 )
=< F ] - (6.5.22)
Bi 0 i €k, o — 1 0
1 ’ eg:) 1 \/271 \/§ )
. if it x10 = 1 .
—1|’ el |7 V2|
L L0 L
Rerr_lark 6.5.15. Let 3 < i < n—1. By of Theorem [6.5.14, we find that
ego n—1 : : 1 0 : Q; ego n—1
o | Xi s either or . One can verify that = it | %
€5 -1 -2 i €;,
1 i 0 e}, 0
L and = if | R xnTl=_L .
v —1] Bi 1 el VI 2
We shall find an orthonormal basis {%1°,%}°} of span{>7 a;x2°, Y7 Bix°}.
Since the vectors x1 Yo ,xfgo are mutually orthonormal,
x| ={ila; £0,i=1,...,mg}|

_9 _9
=R (1, 1) + REoo(1, 1) = (" >+ (7.1 )

Jo Jo— 2

Let xJ° = ﬁ S0 a;x2°. Considering the orthogonality of xJ°, ... ,xﬁgo
( Jo )+(j0*2>

and the relation between the «;’s and §;’s in (6.5.22)), the dot product of Y1 a;x

and Y0 Bix is (—v/2)hFo (1, 1) = \/5(" 2). Applying the Gram—Schmldt

n,J0 Jjo—2
70 we obtain

va(; )
u2 _Zﬁlxm_’_ — Jo Zal ]O‘
(57) + G2)

Jo i=1

Jo
process to > i a;x:° and Y19 Bix;
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For simplicity, let 6 = (n\/%(f(Q)) From the «;’s and §;’s in (6.5.22]), we have
Jjo—2

Jo

2 mo )
= (0 + Bi)xI°
1

mo
= 2(5204? + 260 3; + 7)
i=1

=02RE0 (1, 1) + (6 — V2)2RE0 (1, —1) + Ao (0, v/2) + i (0, —v/2)

() () () + ()
)+ 62

1 Jo
ol

So, we obtain X%’ = =
2 .
We compute the si, k& and rf" rows of %J° and %J°. By the a;’s in (6.5.22), we

obtain
el = Y el
\/( go ) - (jo—Z) =1
(oo —Rman) () - ()

A6 VGG

Similarly, one can find e;fofc{o as in (6.5.23)). By the «;’s and ;s in (6.5.22)), we can
find that

eT Jo _ (Z /@GZ; go + 520‘1650 X; >

||u

! ( V2 e (1, 1) + V2 (PR (0,v/2) + Byt (0, —ﬂ)))

i Lo Ve
1 L s k V2|ud |
+—— 10 proso(q 1) — proso(1, -1 = —
i (7 (0.0 =Rz —0)) - T
By a similar argument, efofc can be found as in m Moreover, -
. 1
and (6.5.10) yield that for i = 1,...,mq, el x = (\/12)%0 if L];O] x]0 = W 1 ;
50
, ; el | . 1 - : el 0
el xI° = (_1)ji+l if | ol xdo = L cel xI0 = (_1)](:@ if | Rl xdo = L :
0 V2r e’ VZr g 0 V2r e’ var \/ﬁ
o o] 0
and el xJ° = e i eTO X = & sl Then, as done for finding ef, x{°
s0




T GJjo T]O

and e; Xy’, one can check e, x7’ and eT %20

-1

Furthermore, computing x7~" and

—x5~! wit Remark [6.5.15 m as done above, we establish

Jo  ZJo
€ko {Xl Xz}

n—2 n—2 n—2 n—2 n—2 6523
[ ey GG |
:\/2"(«00 'njio T ;?):2 ' 0
00 = 63 0yl -2

where wy = ("fz) + (T“Z).

Jo Jo—2
Now, we compute the rows of fc”o and %2 that are indexed by sg, ko and rg, and

. Recall that B — [ posb] BxP =)
1 2 1 2

the remaining diagonal entries in 8

50 O
For simplicity, let ag = (";02) — (;; 22 and by = \/ 4" ]0 2 + 2w0( ) Then,
Bio — i 2a0 b )
2" by 0

Let ¢y = wo( ) Then, af + b2 = ¢3. One can verify that B can be diagonalised
by an orthogonal matrix

1 b ap — ¢
U — 0 0~ C|
200(00 - CL[)) —ap + Co bO
Then, we obtain
i bo+/co co(co—ao)
el € |V V2
N i - bo+/w \/ wo(co—aop)
ego |:X{O X%0:| = ego |:X{O X%O] U = /27’1, \/20(:)E£:O—a0) o 0\/% :
e;ljo ez; (71)1‘01)0\/5 (—1)-70 Co(CQ—ao)
L \/QWQ (Cofao) V' 2wo ]
(6.5.24)
Furthermore, let p and ¢ be indices such that V' [ep eq] = [}2{0 f{%‘)} Since the
. el
eigenvalues of B’ comprise the main diagonal of [ ? 8‘9Ak {ep eq}, it can be
e 50:F0
q
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checked that

ﬂ[ep N :21n

6.5.25
ok (6.5.25)

0 ag — Cy

ap + Co 0 ]

q

Remark 6.5.16. Regarding 86—‘;, we use the following later:
S0-R0

SJoNT

) ) ) . ) 1
&TERP = (Uey)T E[xl xp| (Ue)) = (Ue))" B (Ue,) = o (0 + o),

and similarly, (X3°)7ExY = 5L (ao — cp).

We note that }Acéo, e }AcZgO can be obtained from an orthonormal basis of span{x;°—

|

0
or { \/§] , and using the a;’s and ;s in (6.5.22)) for 1 < jo < n — 2 and in Remark

6.5.15| for jo = n — 1, it can be verified that lek()] (x° — a;x]® — B;ix)) = 0 for

T 1
€, 1 -1

; el | 1 1
a;x1® — Bix)i = 3,...,mg}. Considering all cases that [ Fo | %70 g ,

T 1
i =3,...,mg. This implies that if Ve, = %xJ° for some 3 < i < mg, we have
OA
el e, =20
50,ko0

Remark 6.5.17. For ease of exposition, we define Xo(k;) and X3(k) for ky € {0,n}

and ky € {0,1,n — 1,n} as the zero column.

Now, we consider e/ (A — A [eso eko} where p € {sg,70}, in order to find
‘W . We note that (/\I AN = XM — A)7'XT. From (6.5.8), (6.5.10) and

310, for j ...

el X(NX() [esy eo]

T
el X1(j) el Xa(j) el X;3())

TX T X (4 T X. (4
1) €L Xa(j) el Xs())] el X1(j) el Xo(j) el X3(j)

~[e
10 (-2

In a similar way, it can be found from (6.5.8)), (6.5.9)), (6.5.10) and (6.5.11]) that

(%) - (G=2)]-

LXGXGN [en o] = 0 [(2)




From (6.5.16), el X4 = e} X4 = 0. So, forn > 5,1 <1 <2(n—2), and p € {so, 70},

we have
elz!(z})" [e e } =0
p “1\“1 S0 ko .
Similarly, for n =4, i = 1,2, and p € {sg, 0}, we have
T, i i i e
e, [zl z2} [zl ZQ} [eso eko} = 0. (6.5.26)

Let A\ be an eigenvalue of A,. Let Aj=mn—2jfor 5 =0,...,n. Then, forn >5,

el (M — A, ey, ex,)
=l X(\ = A)7'XT [e,, ey

1 1 .
:O;n,x_ 3 XX () es ex) +1§i§%_2), )\_Miezozﬁ(zl)T les, e,
Ai7A i
5 [Pz e 0) Bog s (099079 657

We can find from m that e; ()\I A4) [esO eko} can be obtained by setting
n=4in m An analogous argument yields that for n > 4,

DL A e 0] = o [Trosp B0 s 2 ((5) - ()]

pyeY NEN

Remark 6.5.18. Pascal’s identity yields (";1)—(2:1) = (”;2)—@:;) for0 <k <n.

Comparing (6.5.27) and (6.5.28)) with (6.4.33)), we obtain that for 0 < 7 < n and

p S {807 TO}?

el ((n—2j)I - A,)f {eso eko} =el((n—2j)I — A,)! {eso eko} :

Now, we shall find the s and 7{" rows in 88—‘/

s50,k0
one cases—that is, the subspace spanned by the vectors Ey for eigenvectors y cor-

. We first consider the dimension
responding to some eigenvalue of A, is of dimension 1. Then, there are 4 cases: an

eigenvalue of A, is n, —n, one of the pi’s (i = 1,2) when n = 4, or one of the u;’s
(1<i<2(n—2)) whenn >5. Givenn > 5 and Ve,, =2} for 1 <i <2(n—2), we
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find from (|6.5.20) and (6.5.27)) that

oV - €| i
T e, =e. (A — A,) {eSO eko} L];O] VA

eso
(6.5.29)

50,k0

5 S )

We leave to the reader the other three cases.

Next, consider the dimension two case. Let jo € {1,.
the formula (6.4.12)): for V' [ep eq} = [X{O )A(%O}, we have

ov

aso ko

,n— 1}. Here we revisit

e e
. = , - TE((n — 2jo)I — A, EXY .

= —2j)I — A, TR [gdo  (Jo + ( ) @Jo ol
((n Jo) ) [Xl X2 } (% JO)TEAJO — (%] )TEﬁ{o [ X2 X1 }

Let us compute (%3°)TE((n — 2jo)I — A,)VE%Y. From (6.5.8), (6.5.10) and (6.5.11)),

for j =0,...,n, it can be found that

X o o] = L5 = GE) (15)+ (623)
e eu] XOIXO) [en e = 5 PR

J

Since el X, = el X, = 0, we have [eko eSO}Tz’i(zi)T [eso eko} =0 for n > 5 and

1 <i<2(n—2); and we have [eko eSO}T [zll z%} {zzl zé}T [eSO eko] =0forn=4

and 7 € {1,2}. By Remark [6.5.16{and (6.5.24)), for 1 < jo < n — 1, we have

(XIVTE((n — 2jo)I — A,)TEXY

(% Jo)TEAJo_( )TEAJO

2™ 1 . el el ~

= i (ko T e, e kol x (X (4 e, e ko | &do
—2260 082”7 j— j(]( 1 ) |: 0 k0:| Z:) (]) (]) |: 0 k0i| eg; 2

J#Jo
_ bo (7 + (=)
- w2 )

J#jo
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Hence, if Ve,, = x{°, then

S0 €m

s0,ko0

T . 1 aj (ﬁ{O)T ((n —2jo)1 — ) AJO T &
:esO((n — 2jo)I — An)TEX{O — & )TE)ACJO (%] )TE'XJO eSOX%O

_ b 3 1 (w(5) e () - (22)) (6.5.30)
gn+1 /2n+1w0 ogjgn,j — jO CO(CO _ ag)
J#jo
by colco — av) ( 6 () + (=) ) |

on+l /2”+1w0 0<5%n, 4(] — jo)
J#Jo

() )+ G)

T 0V
70 BSOJCO

T 0V
p16

We leave to the reader the computations for e e, and e ep2 where p; €

{50,770} and Ve,, = %%

Remark 6.5.19. Summing this subsection up, we have found the s, k", and r
rows of V' in (6.5.18)), (6.5.20)), (6.5.21)), and . Furthermore, non-zero entries

of 5 92 can be found in (6.5. 19|) and (/6.5. 25|) and the remaining entries in aaAk are
30 $0:R0
ZEeros. Fmally, the s and r{" entries of a non-zero column in 83‘2 can be obtained

0,70

as done in ([6.5.29) and ([6.5.30)).

Recall that Q,, is the (2,2,2,{3,3})-switched n-cube and A(Q,) = A,.

Remark 6.5.20. As seen in (6.5.30), quantity ()7 E((n — 2j)I — A(Q,))TEX} for
jg=1,...,n—11is not necessarﬂy zero while those quantities are zeros for @), so
that we compute the si and r{" rows of each column of 33)%0 for @, with less
complexity, and without distinction between the dimension one and dimension two
cases. This difference complicates obtaining the desired derivatives for Q.. in explicit
form (which can be obtained), and comparing them between @, and Q.. Thus,
we close this chapter after reporting some numerical results for the comparison and

making a related conjecture.

Remark 6.5.21. Let n > 4. Consider A(Q,) and A(Q,) of the forms and
(65.2). Let M = {k ~ wi,vy ~ wy} where k = 1, vy = 2, w; = 2" + 1,
and wy = 2"~ + 2. Then, M is the (2,2,2;{3,3})-matching used for obtaining Q.
Furthermore, Sy ({k,va}) = {s,{1} where s = 2" 1 4+2"" 241 and [; = 2"~ ' +2"242.
We note that s and s* pair up to have PST in Q,.

2 Tr
for n > 5, where

Suppose that [ is adjacent to k and [ # w;. Consider

ps. (1) = [(UM)s]?

82
for U(t) = eitAQn) (t > 0). Even though s and [; are the
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common neighbours of k and v,, since we consider PST between s and s* in Q,,, we
need to distinguish s from [;. Furthermore, if [ is neither s nor [y, then by of
Proposition regarding Ps-transitivity, we may assume [ = [, where I, = 277143,

Remark 6.5.22. Let n >4, and s, r, k,l € V(Q,,). Suppose that r = s*, s ~ k, and
k ~ 1. By Theorem [6.4.18, under PST between s and r at time 7 in @n, we have
Op5,(5)  Opg (5)

= =0.
Os i Ok,

Example 6.5.23. Maintaining the notation and result of Remark [6.5.21] let r = 2".
We note that 22¢:(3) — 2Pou(3) Using MATLAB®, we have the following table:

8)%,11 82’12
2 ox 9%p~ () 2 (m 9%p~ () 9%p~ (Z)
aan(E) an 2 8an(§) an 2 pQ’rL 2
8§,k a?,k- 813,11 alz,ll 8£7l2

n=4|-0.720300 —0.717532 | —0.174329 —0.173932 —0.175813
n=>5|—0.555745 —0.552891 | —0.096518 —0.096284 —0.096788
n =06 —0.452203 —0.449722 | —0.061181 —0.061050 —0.061226
n=7|-0.381113 —0.379031 | —0.042215 —0.042139 —0.042213
n =8| -0.329308 —0.327567 | —0.030874 —0.030827 —0.030862

Conjecture 6.5.24. Let n > 4, and let us maintain the notation in Remark|6.5.21].

Prove that under PST between s and r = s* at time 5 in Q, and Qn,

o2 T O?p~ (& o2 T O?p~ (&
pQQ"(Q) < sz"<2) <0 and pcg"(2) < pg”(Q) <0
as,k as,k ak,ll 8k,l1

and formn > 17,
Png,(5) _ g5 _,
a’%,lg a£7l2
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7

Future work

In this chapter, we restate the problems and conjectures described in Chapters

with extra commentaries.

7.1 Gram mates

In Chapter [3| we mainly discussed Gram mates via realizable matrices—that is, given
a realizable matrix E, we studied Gram mates A and A+ E. Instead of starting with
a realizable matrix, it would be interesting to begin with two non-negative integral

vectors, and to consider Gram mates with them as row and column sum vectors.

Research direction 1. (Problem Given non-negative integral vectors R and
S, does there exist a pair of Gram mates in U(R,S)? We shall pose a concrete
question under the following assumption. Suppose that each distinct integer in R
(resp. S) appears an even number of times and R* > S. Prove or disprove that there
exists a pair of Gram mates A and B in U(R,S). One could check if such Gram
A A Ay Ay

2 Ay 1 A

mates A and B can be constructed as A = and B =

] for some

A1 and A2 with Al 7£ Ag.

Motivated by Gram mates via realizable matrices, we dealt with Gram mates via
unitary (orthogonal) matrices in Section [3.7

Research direction 2. (Problems 3.7.9) Given a unitary (or an orthogonal)
matrix U, develop a systematic way to find Gram mates via U. If U is the n x n
DFT matrix and [{j|1 < j < n, ged(j,n) > /n}| > /n, then characterize Gram

mates via U.
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It is important to find non-isomorphic Gram mates A and B in order to discern
that the two-mode network corresponding to A retains the information in the con-
version approach. Such A and B can be analysed through the automorphism groups
['(AAT) and T(AT A) in that if [(AAT) = T(ATA) = ), then any Gram mate to A is
non-isomorphic to A. As explained in Problem , we may study (0, 1) matrices
X such that T'(X) = 0 in order to understand A with ['(AAT) =T(ATA) = 0.

Research direction 3. (Problem [3.4.8) Characterize (0,1) matrices X such that
T(X) = 0.

Moreover, regarding non-isomorphic Gram mates, we have the following.

Conjecture 4. (Conjecture [3.4.12)) Let A and B be Gram mates where rank(A —
B) = 1. Prove that A and B are isomorphic if and only if the remaining matrix of
A and B is fixable.

In Section [3.6] we investigated Gram mates in several classes of (0,1) matrices.
We particularly posed problems concerning circulant Gram mates from combinatorial

and algebraic viewpoints. Recall that Dy, is the dihedral group of order 2n.

Research direction 5. (Problem Let a be a (0,1) row vector of size
n, and war = (wp,...,wy_1) where w; = alPla for i = 0,...,n — 1 and P =
cire(0,1,0,...,0). (a) Provide combinatorial interpretations for ws,...,w s, and
bounds on each w; for 2 < i < |Z]; (b) Find a (0,1) row vector b such that

2
War = wpr and b ¢ O,r.

Research direction 6. (Problem [3.6.15) Let a” be a (0,1) row vector of size n
with m ones. Prove or disprove that |€fl’q;n /D2y, < n. Investigate the relationship

between m and |Sfl‘fn /Day|.

7.2 Fiedler vectors with unbalanced sign patterns

In Chapter {4 we investigated graphs G with {(G) = 1 or i(G) = 2 in order to
study the robustness of spectral bisection. Since we completely characterized graphs
G with ¢(G) = 1, it would be interesting to find more classes with the characteri-
zation in addition to the classes described in Section then, one could consider
cographs, split graphs, and Laplacian integral graphs. Furthermore, we need to fully

characterize graphs G with i(G) = 2.
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Research direction 7. (Problem [4.4.9) Find classes of graphs G with i(G) = 1,

and investigate am(a(G)) for graphs in those classes.

Research direction 8. (Problem|4.5.16)) Completely characterize non-regular graphs
with i(G) = 2.

If we develop a systematic tool to find ¢(G) where G is a connected graph, then
it would be helpful to characterize graphs G with i(G)) > 2. As discussed in Problem

4.5.9] one could use oriented matroids to develop such a tool.

Research direction 9. (Problem |4.5.9)) Given a connected graph G, how can we
find i(G)?

Considering the equivalent conditions in Theorem for a connected graph G
to have i(G) = 1, G could be regarded as a highly structured graph. In order to see

if such G is rarely seen in empirical settings, we need to understand the probability
of G to have i(G) = 1.

Research direction 10. (Problem {4.2.9) Find bounds on the probability of a con-
nected graph G to have i(G) = 1.

Given a connected graph G of order n such that @ < 0.1, say, one might
consider G as a pathological graph with respect to spectral bisection. So, it would
be helpful to provide a probability of a randomly chosen graph H of order n to have
) <01,

Research direction 11. (Problem [4.2.9) Given £ > 0, find the probability of a

random graph G of order n in the Erdés—Rényi model to have @ < e.

7.3 Families of graphs with the Braess edge on
twin pendent paths

In Chapter |5 we considered graphs with twin pendent paths, and investigated if the
non-edge between the two pendent vertices on the twin pendent paths is a Braess
edge or not. One could generalise the works in Chapter [5| by considering any non-edge

on the twin pendent paths.

Research direction 12. (Problems|[5.2.9] [5.2.23] and |5.4.10)) Let G be a connected
graph with a vertex v, and Py, = (v, ..., v, ) and Py, = (wo, . .., wy,) where ki, ky >
0 with &k + ks > 2. Let é(v, k1, ks) be the graph obtained from G, Py, and Py, by

199



identifying the vertices v, vy and wy. Suppose that H is the graph obtained from
é(v,kl,kg) by adding an edge v; ~ w; for some 0 < ¢ < ky and 1 < j < ky with
i+j > 2. Establish an equivalent condition for x(H) > k(G(v, k1, k2)) as in Theorem
[5.2.8 Next, apply the equivalent condition to the graphs K,,, C,,, P,, and S,, as done
in Section [5.2] Finally, establish analogous results as done in Sections [5.3] and [5.4]

7.4 Equidistant switched hypercubes: their prop-

erties and sensitivity analysis under PST

The ultimate goal of Chapter @ is to prove that the switched n-cube leM ) where M
is a (2,2,2,{3,3})-matching in @, is less sensitive to changes in the weight of some
particular edge than (),,. To achieve that goal, we only need to resolve the following

problem.

Conjecture 13. (Conjecture ) Let n > 4, and @%M) be the switched n-cube
where M = {k ~ wy,ve ~ ws} is a (2,2,2,{3,3})-matching in @, with distant
partite sets {k, v} and {wy,ws}. For simplicity, let @, = Q). Choose a vertex
s € V(Q,) such that s # w; and s is adjacent to k in @),,. Suppose that [ is adjacent
to k in @),, and Qn Then, | # wy and [ # wy. When it comes to evaluatmg ”(E)
under PST between s and s* at time 7, by Remark [6.5.21} m [ can be c0n81dered as

one of the following cases: (i) [ = s, (11) [ # s and [ is a common neighbour of k& and

v, say [ = [y, (iii) otherwise, say [ = [5. Prove that under PST between s and s* at
time § in @, and Qn,

52 T O?p~ (& o2 T O?p~ (&
pQQ”(2) < pQQ"<2) < 0and ZX (3) < pQQ"(2) <0
as,k: 8s,k o 1 ak,ll

and for n > 7,
Pna,(5) _ g, (B) _,
a’%,lz aIEJZ

In quantum spin networks, it is crucial to understand under what circumstances
a graph exhibits PST. So, we need to characterize pairs of vertices exhibiting PST

in an equidistant switched hypercube.

Conjecture 14. (Conjecture [6.3.15)) Let £ > 2, and let M = {v; ~w;|i = 1,...,k}

be an equidistant matching in @Q,, with distance-partite sets M; = {vq,...,vx} and
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My = {wy,...,wy}. Suppose that z and x* pair up to exhibit PST at time 7 in
QM) for any 7 € Sj. Prove that dg, (z,v1) = - = do, (2,v;) and dg, (z,w;) =

c e — dQn(xywk)

If Problem [14] is resolved, then we immediately obtain the following: (i) for a
(2, a,b;T')-matching M with a and b odd, Q™ does not exhibit PST between any

pair of vertices at time Z;

Z; (ii) the number of pairs exhibiting PST in Proposition
6.3.19| is exactly given.

Recall that given @, with a subset X of V(Q,), S.(X) is the set of vertices v
in @, such that d(v,z) = r for all x € X. Considering Theorem , counting
pairs of vertices exhibiting PST in an equidistant switched hypercube is related
to understanding the cardinality of |S,(X)|. In general, it is not easy to compute

|S,-(X)| without constraints. We pose a related problem under some circumstance.

Research direction 15. (Problem [6.3.24) Given a (k, 2a, 2a; {(2a+1)*})-matching
M in Q,, where k > 3, find |U!=2 S;(M?*)|. This provides a lower bound on the
number of pairs of vertices exhibiting PST at time 7 in Q%MT) for any 7 € Sy. Further,
if Problem [14|is proved, then we obtain the exact number as | J'=* S;(M3?)].

Given an equidistant matching M in a graph G, when we apply an equidistant
switch with M on a graph, we need to consider orderings of the edges in M and
transitivity of M in @),,. We refer the interested reader to Example [6.3.3, Remarks
6.3.2] and [6.3.26| for understanding. Hence, we discussed classification of (k,a,b;T')-

switched n-cubes (or graphs) up to isomorphism in Section [6.3] We shall introduce

the following related problems.

Research direction 16. (Problems|6.3.4] [6.3.6) Given an equidistant matching M
of size k > 3 in a graph G, find conditions in order that an equidistant switched
graph is uniquely determined up to permutations of the edges in M. Further, we

pose a concrete question about @,. Let n > 4 and k > 3. Let M = {v; ~ w;|i =

1,...,k} be an equidistant matching in @, with distance-partite sets {vy,...,vx}
and {wy,...,wg}. Prove or disprove that if there exists a vertex z in @), such that
d(x,v1) = -+ =d(z,v;) and d(x,w;) = - - - = d(z, wy), then an equidistant switched

n-cube is uniquely determined up to permutations of the edges in M.

Before we consider quadruples (k, «, 5,T") that allow attaining transitivity of a
(k, , B; I')-matching in a graph G, we need to understand what quadruples (k, a, b, I")

guarantee the existence of a (k, a, 8, ')-matching in G.
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Research direction 17. (Problems , Given a graph G, investigate
quadruples (k,a,b,T') that guarantee the existence of a (k,a,b;T')-matching in G.
One might explore, using Menger’s theorem, the range of k£ by considering graph pa-
rameters such as vertex-connectivity. After that, determine quadruples (k,«, 5,T")
that allow transitivity of a (k, a, ;')-matching. One could consider G as a hyper-

cube, or more generally as any bipartite graph.
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