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Abstract 

Numerous damage detection methods that use data obtained from contact sensors, physically 

attached to structures and human inspection methods have been developed. However, damage 

sensitive features used for these methods such as modal properties of steel and reinforced concrete 

structures are sensitive to environmental conditions such as temperature and humidity. Besides, 

human inspection is cost, labor extensive, and is controlled by the technical understanding of an 

individual. The uncertainties of the contact sensor methods are difficult to address with a 

regression model or any other temperature compensation method, and these are primary causes of 

false alarms. In order to address some of these challenges of the traditional sensing system, a 

vision-based remote sensing system can be one of the alternatives as it gives the explicit intuitions 

of structural conditions. In addition, bolted connections are common engineering practices, and 

very few vision-based techniques are developed for loosened bolt detection. Thus, this thesis 

proposes an automated vision-based method for detecting loosened structural bolts using the 

Viola-Jones algorithm and support vector machines. The test images of bolt connections are taken 

with a digital single lens reflex camera. The Viola-Jones algorithm is trained on two datasets of 

images with and without bolts. The trained algorithm localizes and crops all the bolts on test 

images. The SVM is trained on another dataset of loose and tight bolts to generate decision 

boundary for classification of the loosened and tight bolts. The cropped bolt images are binarized 

to calculate bolt features as head dimensions and exposed shank length. The extracted features are 

fed into a trained support vector machine to classify the loosened and tight bolts. We test our 

method on images taken by digital single lens reflex and smartphone cameras.  
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Chapter 1. Introduction 

1.1 Overview 

Infrastructure around the world is growing. With an increase in population, the use of existing 

structures is becoming more stressful. Civil structures are designed for safe performance under 

varying environmental conditions and long-term public use. Throughout their life span, structures 

go through uncountable loading cycles and vibrations. As a result, the material and structural 

members such as beams, slabs, columns, cables, bolts, and joints are subject to deterioration with 

time, catastrophic events, or manmade disasters. Earthquakes, public use, and cyclic climatic 

changes etc., deteriorate the safety domain of the structures defined by the designers [1]. Due to 

the above-mentioned reasons, new structures might show signs of fatigue, which have to be 

recognized and examined for safe public use. In addition, existing structures are aging and passing 

their service lives. As per Canadian infrastructure report card of 2016, about one third of 

infrastructure owned by municipal corporations needs repairs. In Canada about 60% of 

infrastructure is under municipal corporations [2]. A 2017 American Society of Civil Engineers 

(ASCE) report rated United States infrastructure at grade D+: a structure at risk [3]. ASCE traces 

the state of structures only periodically. The reasons for the delays are financial, lack of man 

power, and inaccessible structures. 

Damages induced in existing and new structures could be in the material or structural properties 

of the structure, thereby deteriorating serviceability. Concrete and steel cracks, concrete voids, 

delamination, corrosion, and bolt loosening are common material damages witnessed in the 

structures. Meanwhile, deflection, changes in stiffness, dampness, and mass are structural 
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properties that define the state of a structure’s health and are altered due to the aforementioned 

damages. Though material defects will cause changes in structural properties, that is not always 

the case. Minor defects encourage further deterioration but can be detected and cured beforehand. 

Damages in the structures, however, are unpreventable during their lifespan. Therefore, to ensure 

the safety of a structure and the users, it is vital to assess the health of a structure over time and 

after major events (earthquakes, hurricanes, accidents). The acknowledged damages may 

propagate to a severe level if not detected at early stages and may cause accidents. Immediate 

inspection is delayed by various factors such as the severe climate, location, light conditions, 

finances etc., [4].  

1.2 Problem Definition 

Worldwide, the layout of structures is expansive and the need for new structures is increasing day 

by day. Existing structures cannot be rebuilt but instead can be safeguarded by damage detection 

and rectifying the detected damages. Thus, structural health monitoring (SHM) is a process 

adopted by engineers to diagnose structures for damages in material and changes in structural 

properties. The SHM process can be summarized into four phases [5]: 

1. Damage detection 

2. Damage localization 

3. Damage quantification 

4. Structure safety or service life analysis 
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In the past decades, various damage detection methods have been developed such as manual 

inspection, contact sensor-based damage detection, and vision-based damage detection. Every 

method has its limitations and no single method can overcome all limitations. Moreover, one 

method might suit the conditions of a particular structure and type of damage, whereas another 

method might give better results for another type of structure and damage. Further, as mentioned 

earlier, structure location and availability of man power also limits the use of some manual 

inspection methods. Therefore, more options will lead to timely detections and assessments. The 

adaptability of a method depends on various factors such as location, environmental conditions, 

type of damage etc.  

Manual inspection is the oldest and most widely adopted method to date and is time, money, and 

labour intensive. For structures located remotely, however, damage detection becomes even more 

complex since periodic checkups of structures is more intensive in terms of time and finances. 

Furthermore, this method provides a subjective detail account of damages since the details vary 

from individual to individual, and depend on the opinion and experience of the inspector [5]. 

Additionally, damages like cracks, delamination, corrosion etc., can be reported manually, but 

voids or internal damages cannot always be inspected manually. To overcome limitations of 

manual inspection methods, sensor-based and vision-based methods were developed. Sensor-

based methods provide promising damage detection but may not be always applicable as discussed 

further in the literature review. As a result, vision-based methods were developed as alternatives 

to sensor-based methods. Moreover, in the case of loosened bolt detection, not many computer 

vision-based methods are available. Developing automated methods eliminates human 

dependency, is cost effective, as well as fast tracks structure inspection. 
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1.3 Research Objective 

The research objectives of the study are: 

1. To develop an automated vision-based loosened bolt detection method 

2. To improve the limitations of existing vision-based loosened bolt detection methods  

3. To provide a parametric study of the proposed method and study the limitations: 

a. Vertical angle of the bolt from camera lens 

b. Horizontal angle applicability 

c. Loosened length study 

1.4 Methodology 

The proposed model methodology is based on two algorithms – the Viola-Jones algorithm for 

detection of bolts in the image and support vector machines (SVMs) for classification of loosened 

and tight bolts. The cascade bolt detector (CBD) is based on the Viola-Jones algorithm and is 

trained for detecting bolts. The trained CBD detects the bolts in the input test images and crops the 

bolts individually. The SVM is also trained for loosened and tightened bolt classification. The 

images cropped by the CBD are fed to the trained SVM for classification of loosened and tight 

bolts. The detailed working methodology of aforementioned methods are discussed in chapter 3 of 

the thesis. 
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1.5 Thesis Organization 

The thesis consists of 5 chapters as follows: 

• Chapter 1 introduces the research through problem definition, objectives and methodology 

followed to achieve the objectives of research. 

• Chapter 2 provides the information about the various damage detection methods developed 

to the date. The review of limitations of the existing methods which lead to the proposed 

methodology. 

• Chapter 3 provides the detailed working of developed vision based loosened bolt detection 

algorithm. 

• Chapter 4 provides the parametric study and performance of developed algorithm with 

limitations. 

• Chapter 5 summarizes the outcome of the research. The scope of future work is also 

covered in this chapter. 
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Chapter 2. Literature Review 

In this Chapter, a literature review of the previously proposed contact sensor and vision-based 

methods is concluded. Firstly, a review of the contact sensor-based methods is listed, followed by 

the pros and cons of contact sensor-based methods, leading to the development of vision-based 

methodologies.  

2.1 Background 

In civil structures, damages can be classified into structural and material damages. These damages 

will force a change in the modal properties of structures such as stiffness, mass, and dampness, but 

the material damages may not always have an impact on the structural properties. Despite that, 

either type of damage needs to be identified and rectified to prevent further deterioration of the 

structure. There is no single solution to detect all types of damages. Both the methods – vision-

based and sensor-based are handy at times.  

The most common damage in concrete structures are cracks. They might be micro cracks or macro 

cracks. Micro cracks are the outcome of poor workmanship, low quality material, and inadequate 

mixing, as well as the environment during the concrete pouring. Though these cracks have a minor 

impact on natural frequencies and mode shapes, but they can prompt corrosion of reinforced steel 

[6]. Macro cracks, on the other hand, alter the natural frequencies and mode shapes of the members. 

In steel structures, the witnessed damages include member and bolt corrosion, cracks in the steel 

members and joints, bolt loosening at joints, and imperfections in welded joints. All of these 

damages cause a shift in the natural frequencies and mode shapes and can lead to failure of the 
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structures if not repaired or replaced. Figure 2.1 shows some common types of damages in the 

structures [7-10].  

The damages might not affect the performance of a structure negatively but they have to be 

monitored to ensure the safety of the structure. As mentioned in Chapter 1, the SHM is a 

combination of damage detection and the ensuring of the safe performance life of the structure. To 

ensure the state of health, civil structures are monitored periodically and examined for changes in 

the structural behavior. However, manual inspection of infrastructure is the most widely adopted 

method. The limitations of the manual detection methods listed in Chapter 1 lead to the contact 

sensors based methods [11]. 

 

Figure 2.1. Types of defects in civil structures 

(a) cracks [7], (b) delamination [8], (c) corrosion [9], (d) loosened bolts [10] 
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2.2 Contact sensor-based methods 

A contact sensor collects the data through a set of sensors and is processed by the central 

processing unit for damage information (Figure 2.2). Structural member’s damages alter the 

physical properties (stiffness, mass, and damping) resulting in changes in frequencies and mode 

shapes. Further, these methods can be classified into the data/response-based and modal-based 

methods. If the numerical model of the structure is available for damage identification, the method 

falls under model-based; if the testing is based on the frequency responses of the structure, the 

method is response/data-based methods [12]. Contact sensor-based methods detect the damage 

through natural frequencies and mode shapes of the structures [13]. To date, many contact sensors-

based methods have been developed for the monitoring and damage detection of structures [14-

18]. From the available literature, the contact sensor-based methods comprise of vibrations, 

wavelets, ultrasonic methods, model updating methods etc. Researchers have applied theories to 

existing methods to improve the sensitivity and applicability of methods, some of which are listed 

below. 

 

Figure 2.2. A schematic diagram of sensor based damage detection method. 
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2.2.1 Contact sensor damage detection in concrete structures 

Data is collected from the structure as frequency responses, wavelets etc. The collected data is 

processed and compared to numerical calculations or previously collected data for detecting 

damages. Any variations in the responses leads to the detection and further damage quantification. 

Sensor-based methods have been extensively researched; Lead Zirconate Titanate/piezoelectric 

(PZT) sensors are the most commonly used patches, and can be used as an actuator and receiver 

at the same time. Moreover, PZT has a higher sensitivity and a wider variety of shapes and sizes. 

Soh et. al. [19] used PZT sensors on a RC beam to test the sensitivity and effectiveness of the 

sensors. The bond between the PZT sensor and the structure also affected the quality of the data 

collected. Their study concluded that PZT sensors are sensitive to cracks at the early stage, and 

thus provide early stage warning. Moreover, the sensitivity of the sensor depends on the distance 

from the crack; with an increase in distance, sensitivity drops and cracks might not be detected. 

Wang et. al. [20] and Song et. al. [21] tested PZT’s for reinforcement debonding and cracks in 

concrete bent caps. To measure the extent of the damage, PZT sensors were attached prior to 

casting. The sensors were able to detect and track the growth of the cracks with time. Long span 

bridges continuously undergo daily heavy cyclic loading and crack propagation is a major concern 

in bridges. Energy drops between the actuator and the sensor indicate crack development.  

Mekjavic et. al. [22] proposed a damage detection method using high natural frequency response. 

The vibrations were measured before and after the damages and were induced by the 

electromagnetic actuator, whereas the piezoelectric accelerometers collected the responses. The 

method was validated by comparing the outputs with theoretical equations. The change in test 

beam stiffness due to cracks resulted in alteration of the measured frequencies. The method was 
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effective in localizing and quantifying the cracks without prior knowledge of mode shapes. Natural 

frequencies are quite simplified and easy to measure for structures. In another study, Kim et. al. 

[23] analyzed the beam using frequency and mode shape changes for crack detection, localization, 

and quantification. The purpose of the study was to evaluate the accuracies of both methods and 

results were validated using finite element analysis of the beam. The method detected the cracks 

and crack localization was within 4% error, which is very promising for heavy civil structures. For 

damage identification, the data has to be processed. Park et. al. [24] proposed a real-time multiple 

crack detection method by measuring the impedance of PZT sensors. Two frequency modes were 

tested: lateral (>20 kHz) and thickness (>1MHz). The finite element model of the test specimen 

assured that both modes detected the crack, but the lateral mode was found to be more sensitive to 

multiple crack detection since cracks are at different distance from the sensor.  

Low vibration frequencies are not always sensitive to local damages or small damages in the 

structure. Another damage detection approach is finite element model (FEM) which updates the 

structure and visualizes changes in the dynamic properties (mode shapes, natural frequencies) [25]. 

The FEM-based method can be described in three steps [25-26]: 

1. The finite element model of the structure is developed with intact dynamic properties as 

close to the real structure as possible 

2. The model is updated to replicate the damaged state of structure 

3. To reduce the disparity between model and the experiment structure, the changes in the 

physical parameters of the finite element model refer to the damages induced 
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Teughels et. al. [25] performed an experiment on the Z24 concrete bridge in Switzerland. The 

eigen-frequicies and mode shapes were extracted using accelerometers over the span of the bridge. 

The damage in the structure was identified in terms of stiffness reduction in the bridge. Moaveni 

et. al. [26] used the first three longitudinal mode shapes and natural frequencies of a six story 

structure to model and update the model for validity purposes.  

2.2.2 Contact sensor damage detection in steel structures 

Civil structures also include steel structures. Unlike concrete structures, steel structures can get 

corroded and connections can get loose due to the loosening of bolts or cracking of the welds, 

whereas cracks in steel can cause structural damages as well. The base concept of detecting damage 

in steel structures is similar to that of concrete structures. Researchers have optimized the existing 

natural frequency-based, impedance-based, wavelet-based etc., methodologies to detect and 

localize damages. Park et. al. [27] experimented the steel plates by measuring PZT sensor 

impedance for detecting cracks. Changes in the structure such as cracks in the steel plate can be 

represented by variations in electrical impedance of a PZT sensor. The closer the damage is to the 

PZT sensor, the more is the accuracy. Additionally, the experiment was built on previously 

developed methods as it used a higher frequency > 1 MHz than the conventional range > 20 kHz. 

Doyle et. al. [28] experimented with acousto-elastic and magneto-mechanical impedance methods 

for loosened bolt detection. Piezoelectric sensors and magneto elastic active sensors measured 

wave variations due to stress changes. In the acousto-elastic method, the damage sensitive feature 

for loosened and tight bolts was the wave phase difference, found to be very effective in the 

experiment. The magneto-mechanical impedance method used impedance peak variation to 



                                                                                   Chapter 2: Literature Review 
 

 12 

differentiate the status of the bolted joints. Although the acousto-elastic method performed better 

than the latter, the sensitivity of the sensors to bolted joint stress changes was very low.  

Chen et. al. [29] used PZT sensors to measure electro-magnetic impedance steel and aluminum.  

Arguably because PZT sensors can simultaneously act as an actuator and a sensor. The PZT’s were 

found to be sensitive to the bolt distance regardless of the material and frequency band as in the 

case of concrete structures. Sevillano et. al. [30] introduced a combination of electro-mechanical 

impedance (EMI) and guided waves to amalgamate the features of both methods. Damage is 

detected by the electro-mechanical power dissipation generated from EMI and the fast Fourier 

transform (FFT) and inverse fast Fourier transform of the guided waves. The method was tested 

on a variety of structures such as beams, fiber reinforced polymer materials, and bolt connections. 

However, in the bolt connection scenario, loosened bolts cannot be localized. Furthermore, single 

or multiple damages cannot be distinguished [30]. Huda et. al. [31] developed a loosened bolt 

detection method using accelerometers and non-contact laser excitation. This was used to generate 

uniform repetitive excitation and high frequency vibrations during sampling, giving better 

outcomes for natural frequency and mode shape changes. Weng et. al. [32] and Frtetzen et. al. [33] 

experimented with FE model updating for the detection of the loosened bolts and cracks in steel 

plates, respectively. Their experiments detected damages in terms of reduction of stiffness. The 

resulting accuracy largely depends on the intact model state of the structure. Discrepancies in the 

structure modelling will lead to the false detections. 

Hence, contact sensor-based methods overcome the limitations of manual inspection. However, 

there are limitations to contact sensor methods as well. Firstly, in the above mentioned methods, 

the sensitivity of the sensor depends on the distance from the damage. If the sensor is close to 
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induced damage, the damaged is detected and localized; however, if the damage is relatively far, 

the alarm can be doubtful. Thus alarms are confirmed by physical verification. Furthermore, to 

evaluate large structures such as buildings or complex structures such as bridges, the required 

number of sensors will be relatively too large. Secondly, in the FEA model updating methods, 

results are dominated by modelling accuracy. The models have to be optimized but for large 

complex structures, and developing an accurate model is close to impossible. If a modelling 

disparity occurs, the damage detection results cannot be trusted. Thirdly, in the above methods, 

the collected data reliability of the sensors is questionable. The contact sensors are uncertain and 

the collected data is vulnerable to environmental effects, as the data from sensors is affected by 

humidity and temperature [34-35]. As temperature increases, the natural frequencies of the 

structures decreases, which is also the case of an increase in humidity [34]. Many temperature 

compensation methods were introduced to counter the effect of temperature on natural frequencies 

but were not effective, since temperature is not uniform throughout the structure. Moreover, 

natural frequencies of concrete structures are more sensitive to temperature than those of steel, 

which can vary by 0.15% per degree change in temperature [34]. As a result, the collected data 

may give false alarms and have to be validated manually every time. Meanwhile, attaching sensors 

to the structures can be a challenging task due to weather and the geometry of the structure [36]. 

2.3 Vision-based damage detection methods 

Therefore, vision-based detection methods are the practical alternative to overcome the limitations 

of sensor-based damage detection methods. Vision-based methods are relatively new in SHM in 

comparison to sensor-based methods, but have enormous opportunities within the field. There are 

many advantages to vision-based methods such as a very simplified process, universality, along 
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with low cost of monitoring. Vision-based damage detection is composed of an image capturing 

device (camera), a computer, and a processing algorithm for detecting damages in the images 

(Figure 2.3). Researchers have developed techniques for detecting damages such as cracks, 

delamination, deflections, corrosion, bolt loosening, etc., which are further briefed in this chapter. 

Moreover, the methods reviewed in the literature use cameras instead of laser scanners for damage 

detection. This is because laser scanners are expensive and bigger in size than cameras, and 

secondly, because the external power requirement is significant for lasers [37]. Hence, most studies 

in the literature have focused on digital cameras. 

 

 

Figure 2.3. A basic process of image processing algorithm. 

 

2.3.1 Crack detection by vision-based methods 

Cracks are the most commonly observed damages to structures. The distinction between crack and 

no crack surface in the image is the contrast difference. Pixels in the crack image space will be 
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darker than in the no crack image space despite the material (concrete, pavement, etc.), which is 

the principle for detecting cracks in vision-based crack detection. Images will include noise as 

well, such as, shadows, blurs etc., and thus, have to be taken care or else can provide the wrong 

output. Researchers have proposed and optimized a variety of image-based crack detection 

methods for various conditions and structures.  

Yu et. al. [38] proposed a semi-automatic vision-based crack detection method for tunnels and 

subways etc. The motivation behind the research was to eliminate subjective manual inspection 

and propose a cost effective accurate crack detection method. A mobile robot with a mounted 

camera and a light illuminator was used to capture and store images. An algorithm processed the 

images, detected cracks, and discarded non-cracks due to noise and illuminations. This method 

quantified cracks with width, length, and direction of the crack using Sobel and Laplacian 

operators. The algorithm was tested at lab scale with an accuracy of about 85%. For evaluation 

crack width and length, Yamaguchi et. al. [39] proposed the percolation method for segregating 

and processing cracks in image space. Chen et. al. [40] proposed a method for detecting crack 

continuity in series of images since the complete structure cannot be captured in a single image. 

The crack width and length was measured as well. Meanwhile, Huang et. al. [41] proposed a 

pavement crack detection method with the camera mounted on a pavement inspection vehicle. 

Instead of detecting cracks in a full size image, a grid of 8×8 pixels was evaluated. Detecting the 

potential cracks out of the false detections generated due to noise connectivity of dark pixels was 

examined. Although these methods were performed under controlled conditions, the results were 

promising for future research to develop and improve on the existing ideas at the field level.  
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Vision-based methods research is focused on eliminating existing limitations as well as the 

application of methods to real world problems. One of these is the monitoring the health of 

structures periodically, and the other is post disaster evaluation of structures during earthquakes 

and manual disasters. The latter scenario involves two challenges: (1) real time damage evaluation, 

and (2) the accuracy of detection is the paramount requirement for safeguarding the building for 

human inspection or use. Torok et. al. [42] developed a post disaster 3-dimensional damage 

detection method for buildings. The basic concept is same as in previous methods with the camera 

mounted on a manually controlled robotic vehicle. The concern with vision-based crack detection 

methods is the state of images captured for damage detection. Varying light intensity, shadows, 

blurred images etc., can all reduce the performance accuracy of methods. To overcome these 

limitations in crack detection, Cha et. al. [43] developed a crack detection method based on 

convolution neural networks (CNN). The method was validated on low light to bright images and 

blurred images and produced an almost 97% accurate crack detection. The testing was performed 

on 40K images with a 256×256 resolution. The method was compared with Canny and Sobel edge 

detection methods, the results showing that deep learning CNN performed better than both the well 

known damage detection methods. Since larger images were cropped down to a 256×256 

resolution, the images with cracks at the edges were disregarded because they might lead to the 

false CNN training.  

2.3.2 Corrosion detection by vision-based methods 

Defects visible on the surface of the structures can be detected with vision-based methods. 

Corrosion – occurring on steel structures such as bridges, pipelines, sections etc., is one such 

damage. Various methods have been developed to detect corrosion in bridges, boilers, pipelines 
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[44-46]. Chen et. al. [44] introduced automated rust detection methods in steel surfaces based on 

FFT and SVM. Instead of using RGB, LAB colour space was used for the image processing; 

moreover, only the blue-yellow (*B) component of LAB was used for the rust detection. The 

original image was compared for similarity with the FFT and inverse FFT processed image. 

Further, images with difference in colour space were used to train the SVM for rust defect detection 

and no defect images. Pascual et. al. [45] evaluated the patch initially; once the patch is doubted 

as corroded, the pixel in the patch is evaluated to label the region as corroded. 

2.3.3 Displacement by vision-based methods 

Image processing technique advancements in the SHM field have led to the vision-based methods 

for measuring the displacement in structures as well. Various vision-based displacement 

monitoring systems have been applied in the last decade. Uhl et. al. [47] used unloaded and loaded 

specimen images pixel correlation to calculate deflection. Markers were used as match points in 

the images and were independent of deformation of the specimen due to applied load. The 

normalized cross correlation coefficient was used to get the deflection readings after application 

of the load. The method was tested at lab scale and readings were compared with the laser sensor. 

The developed method discrepancy was less than 0.5%. Ye et. al. [48] introduced a real time, long 

range vision- based displacement measurement system. The method was applicable up to the 

distance of 1000m’s. The main idea of the system is to measure the coordinate difference in a 

series of images of a LED lamp attached to the bridge for displacement measurement. Same as in 

the above mentioned method, cross correlation was used to find the similarities between the 

patterns being tracked. The method was validated at lab scale by comparing the results of vision-

based, vibration tests, and laser transducers. The test was performed in the field, and tested “Tsing 



                                                                                   Chapter 2: Literature Review 
 

 18 

ma” bridge in Hong Kong for midspan displacement. The method provided satisfactory real time 

results from a range of 1km.  

Grano et. al. [49] developed a displacement measurement method based on a Kinect sensor using 

depth images. Another prominent study by Cha et. al. [50] introduced phase-based optical flow for 

displacement measurement and unscented Kalman filter for reducing measurement noise. Here, 

state space equations damage was identified using system stiffness and damping. The most 

important part - excitation input knowledge was not required for the test. The method was validated 

on the intact and damaged cantilever beam. The method offers an opportunity for future 

development of more complex structures such as high-rise buildings. 

2.3.4 Loosened bolt detection by vision-based methods 

Civil structure comprises of various members and often, in steel structures, the structural members 

have bolt connections or welds. Therefore, along with from cracks in steel, corrosion, and 

buckling, another kind of defect in the structures is bolt loosening. In a study conducted by the 

Korea Expressway Corporation, 33% bridges were found to have bolt defects and the major cause 

of bolt defects was bolt loosening [51]. For detecting a loosened bolt, the contact sensor-based 

methods such as impact hammer and torque ranches are available. However, bolted connections 

are complex and connecting sensors and performing a periodic check are not handy tasks. Vision-

based methods are the alternative to contact sensor methods. Park et. al. [51] developed an angular 

loosened bolt detection method using Hough’s transform. This method is limited to only angular 

bolts, and moreover, the images with top view of the bolt work with this method. The results were 

promising, however, and this study provided an opportunity for future development of loosened 

bolt detection. This method was further applied to the detection of loosened bolts in a moving 
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turbine [52]. In another study, Cha et. al. [53] introduced a method based on Hough’s transform 

and SVM. The bolt features are extracted from individual cropped bolt images and the SVM is 

trained to classify loosened and tightened bolts based on the extracted bolt features. Again, this 

method was limited to bolts with ranch holes only.  

To date, very limited vision-based methods have been developed. Bolts are a significant member 

of the steel structures. The limitations and limited methods available for loosened bolts is this 

study’s motivation to develop a more generic method based on existing studies with promising 

results [51-53]. The main motive behind this research is to develop an automated method 

applicable to different bolt heads.  
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Chapter 3 – Methodology of vision based damage detection 

for bolts 

The following chapter introduces an overview of the vision-based loosened bolt damage detection 

method based on the Viola Jones algorithm and SVM. The algorithms involved are summarized, 

including the feature extraction and working methodology of algorithms described.  

3.1 Overview of the vision based loosened bolt detection method 

The developed method is a combination of two methods; cascade bolt detector (CBD) and SVM. 

The CBD is based on the Viola-Jones algorithm for detection of the bolts in test images. The input 

image contains bolts and other structural components. To classify the loosened and tight bolts, the 

bolts have to be isolated from other components in the image. The CBD is trained to detect and 

crop the isolated bolt images from input test images provided by the camera for classification. The 

original classifier is trained for detecting human faces, nose, eyes. However, for the detection of 

any other object, the classifier has to be trained for a detection of a particular object. Therefore, 

CBD is trained for detecting the bolts in the developed method. Figure 3.1 presents an overview 

of the proposed method. CBD is trained on the extracted features of a classified dataset of images 

through Adaboost meta-algorithm [54]. The cropped bolt images are fed to SVM for classification 

into loosened and tight bolts.  

 

For the classification of loosened and tight bolts, the SVM is trained on another image dataset, as 

shown in Figure 3.1. The cropped bolt CBD images are fed into the trained SVM for classification 

based on the extracted feature as proposed by Cha et. al. [53]. The modifications compared to 
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existing method are explained in section 3.4.2  of this Chapter. Since the method uses two different 

algorithms, two different image datasets are used for training. The training images are taken with 

varying orientations, light intensities, distances, and background. Moreover, the training needs to 

be done only once for both the methods and can be used for the detection and classification of 

similar bolt shapes. 

 

 

Figure 3.1. Overview of the method. 

 

3.2 Methodology 

As stated, the proposed method performs the recognition of bolts using a CBD and the 

classification of loosened and tight localized bolts using an SVM. This section summarizes these 
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methods; more detailed explanations of these methods can be found in Viola et. al. [54] and Gunn 

et. al. [55]. 

3.3 Cascade bolt detector (CBD) 

Viola-Jones is the base algorithm for a CBD. The original cascade object detector was used for 

detecting human faces based on a specific set of features. Also, the default classifier is trained for 

human faces. To detect the bolts in test images, a CBD is trained using specific features of the 

classified dataset. The CBD can be trained with Haar like, Histogram of oriented gradients (HOG), 

or Local binary patterns (LBP) features to detect the intended object. These three feature 

descriptors extract valuable information from the object image regions for detection and 

recognition purposes. The default cascade classifier for detecting human faces is trained using 

Haar like features. Feature descriptors are described below. 

 

3.3.1 Haar like features 

One basic feature of an image is intensity variation. Image intensity is different for different 

objects. For example, when visualizing a car, the image intensity of the tire region, body, windows, 

lights, etc., will differ from each other. The Haar features descriptors are based on the intensity 

difference between the regions of the image or simply the intensity-based descriptors. Much like 

the human face has various features such as, eyes, nose, cheeks, each face feature will have a 

different pixel value as the image intensity varies since eyes are darker than cheeks and nose is 

brighter than cheeks [56]. Viola Jones used Haar features for robust face detection using a cascade 

object detector. Further, Haar features are categorized into two, three, and four rectangle features, 

as shown in Figure 3.2. The white region pixel sum is subtracted from the grey region pixel sum, 
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where the size of the rectangular region is the same for white and gray regions [54]. For robust 

calculation of the pixel sum differences, Viola et. al. [54] inherited the integral image calculations 

in their study. Moreover, rectangular features are sensitive to edges and changes in other image 

features. To generate a set of Haar features for an image, a scanning window sized 24×24 scans 

the image and features are extracted. The scanning window size increments by 1.25 times the 

previous size until it goes to the biggest possible size for an image [54]. 

 

 

Figure 3.2. Haar features (a) two rectangle feature (b) three rectangle feature (c) four rectangle 

feature. 

 

3.3.2 Local binary Patterns (LBP) features 

LBP is another type of descriptor used in image processing for classification. This feature is based 

on the texture variations in image. When visualizing a concrete wall with cracks, the texture of 

wall is different from the crack or window etc. The feature can be briefly defined from the name 

“LBP”, meaning converting the gray scale image into binary patterns [57]. The image is divided 

into smaller regions, where every pixel is evaluated by its eight neighboring pixels. If the value of 

a central pixel is higher than its neighbor, the new value of the neighbor will be 1, otherwise 0, 
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where the central pixel value is threshold, and thus, the grayscale values are converted to binary 

patterns and are added to give the value of the central pixel [58]. 

 

3.3.3 Histogram of oriented gradients (HOG) features 

The third type of image descriptor in cascade object detector is HOG. The HOG is gradient-based; 

the features are extracted in terms of the edges in an image and their direction and can define the 

shape of an object from precise and detailed images [59]. The HOG feature is explained in more 

detail further in this chapter.  

For bolt detection, HOG features were used over the Haar like and LBP. The reasons favoring the 

HOG features were: 

1) Since Haar features are intensity based descriptors, bolt intensity varies with shank and 

head; due to reflections, intensity also varies a lot. Moreover, the other objects in the image 

similar to bolt intensity will be classified as bolts  

2) LBP features are texture-based features but they work best if combined with some other 

feature extractor  

3) Trial and error method was used for all the feature descriptor with varying input arguments; 

apparently, HOG features provided the most optimal results because of uniform shape of 

bolt throughout  

4) Computational time was another factor (2.6 GHz dual core CPU). Haar features were more 

time consuming, where as the LBP features were the least time consuming but also gave 

many false detections as compared to HOG features. Also, computational time between 

LBP and HOG feature descriptors was not significantly different. 

 



                                             Chapter 3: Methodology of vision based damage detection for bolts 
 

 25 

 

3.3.4 Training dataset for CBD 

 

 

Figure 3.3. Training dataset for CBD, images with bolts are positive dataset; images without 

bolts are negative dataset. 

 

Thus, CBD is trained using the HOG features of the bolts. The training dataset for CBD comprises 

of the positive and negative set of the images as shown in Figure 3.3. The positive images dataset 

contains bolts in the images, regardless of whether they are loose or tight and the set of negative 

images contains images without bolts such as steel plates. Positive images and negative images 
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were taken from varied orientation, distances, and light intensities. However, the negative images 

also include objects other than the steel plates which might occur in the background. All the images 

are taken with a digital single lens reflex (DSLR) camera at random distances and angles. The 

number of images for positive and negative datasets that are used in this study is 141 and 359, 

respectfully, at an average resolution of 1024×768. Negative and positive datasets are used to 

differentiate the bolts from the background based on the features of the bolts and background 

according to the classifiers [54].  

 

In a positive dataset, the bolts are interactively defined by bounding boxes or region of interest 

(ROI). There are open source tools available for defining the objects with the bounding boxes as 

well. In training, the CBD should focus on the bolt features only rather than other features in the 

image space, such as background and random objects other than bolts. Also, there may be more 

than one bolt in the image. As a result, the bolts are always specified as a region of interest (ROI) 

as shown in figure 7, because the CBD should only be trained on bolt features. If the bolts are not 

specified by ROI’s, the feature descriptor will extract features of the total image space of all 

positive test images and CBD will be trained for all the objects instead only for the bolts. 

Alternatively, the individual or cropped bolt images can be used as a positive dataset. For example, 

in Figure 3.4 the number of positive samples used by the cascade object trainer will be five, not 

one. The set of negative images consists of steel plates without bolts and random background 

images of steel I-sections or the objects that might appear in image space. As the algorithm uses a 

minimum of two negative images corresponding to each positive image, the number of negative 

images should be greater. Moreover, the negative images once discarded move out of the training 
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process and are not used again. The negative dataset has a very deep impression on training, the 

images should be close to backgrounds of test images for more robust results.  

 

 

Figure 3.4. ROI's. 

 

3.3.5 HOG feature extraction 

 

 

Figure 3.5. This section is focused on HOG feature extraction in CBD training. 
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CBD is trained on the HOG features extracted from positive images as mentioned above. The 

feature extraction process of HOG descriptor is explained in this chapter. Figure 3.6 provides an 

example of visualization of the  HOG features of the bolt. The HOG feature extraction process and 

is explained further in this part. 

 

 

Figure 3.6. HOG feature visualization of the bolt. 

 

The HOG features for detection were studied by Dalal et. al. [59], the features were used for human 

detection in the images using SVM. The HOG features were originally designed to divide the input 

image space into blocks and cells. Where the blocks are formed of 3×3 cells, and cells are formed 

by groups of 8×8 pixels [59]. HOG features can define the object’s shape from the edge directions 

of the object. To overcome the false feature extraction, the blocks are overlapped by 50% in the 

horizontal and vertical direction as shown in Figure 3.7. In a cell, each pixel has a certain 

orientation and the orientation of a cell depends on the summed magnitudes of the pixels [59-61]. 

At the edge there is intensity variation, stronger the intensity more is the magnitude of the pixel. 

The gradient orientations and magnitudes of the cells are computed based on the edges located in 

the pixels as expressed in equations (1) and (2). In the equations, 𝑥 and 𝑦	are the values of 
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horizontal and vertical gradients for calculating the orientation and magnitude, and i and j represent 

pixel locations in the image space [60-61]. 

 

 

Figure 3.7.  (a) A simplified view of image divided into smaller regions blocks and cells, (b) 50% 

block overlapping in horizontal direction, (c) 50% block overlapping in vertical direction. 

 

Magnitude = 𝑥/01 + 𝑦/01  (1) 

Orientation = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦/0
𝑥/0

 (2) 

 

Figure 3.8 explains the HOG feature extraction process on the image patch as shown. The upper 

part of the image shows pixel values in the cell of 8×8 pixels. To calculate the gradient, orientation 

and magnitude of the pixels, x and y directional masks are used. The detailed calculations of 

gradients, orientation, magnitude, and interpolation of the pixel located at i = 3 and j = 2 are shown 

in Figure 3.8. The x and y gradients are computed by convolving [-1 0 1] and [-1 0 1]T masks with 

a pixel and taking the mean values, respectively. For example, when these masks are centered on 
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the highlighted pixel, we obtain the gradients of x3,2 and y3,2 as shown Figure 3.8. The calculation 

of orientation and magnitude matrices follow equations (1) and (2) after the calculations of the x 

and y gradients. 

 

Figure 3.8. Explains the gradient and orientation calculations and interpolation for histogram 

generation. 

 

The orientations are divided into nine bins of 20º each from 0º to 180º, also called unsigned 

gradients [58]. Dalal et. al. [59] used both signed and unsigned gradients, i.e. 0º-360º and 0º-180º 
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respectively, where unsigned gradients outperformed the signed gradients. Thus, 180 is added to 

all the orientations that do not fall in 0º-180º range. Once the orientations and magnitudes are 

calculated, the magnitudes of the pixels are bilinearly interpolated to the nearest two bins. In Figure 

3.8, the highlighted pixel’s magnitude contributes to both of the bins based on the orientation. The 

magnitudes of the pixels are interpolated into neighboring bins only if the orientations do not fall 

on the median of the bins. Also in Figure 3.8, the orientation of pixel at i, j=1 is 70º, this orientation 

falls on the median of 60º-80º bin, therefore, the magnitude of this pixel is not interpolated into 

two bins. To generate the histogram of a cell, the magnitudes of those pixels with similar 

orientations are summed together. Figure 3.9(c) shows the Histogram of a highlighted cell.  

 

 

Figure 3.9. Visualization of the histogram of a cell. 

 

As shown in Figure 3.9 (a) and (b), vectors are oriented in the direction of the edges and represent 

the dominant direction. The HOG feature vectors of all the cells in a block are concatenated and 

normalized to remove the effects of contrast variations [59]. The block has 9 cells and the 

Histogram of a cell has 9 bins, therefore, the block vector is 81 size long vector. To normalize the 

concatenated vector of the block, each element of a vector is divided by following equation 
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𝑥11 + 𝑥21 + 𝑥31 ……+ 𝑥811. Where x (1,2…. n) are the elements of the vector. The final 

feature vector is the summation of the vectors of all the cells and blocks, which can be represented 

by 𝑙×𝑚 ×𝑛 , where 𝑙 is the number of bins, 𝑚 is the number of cells in each block, and 𝑛 is the 

number of blocks in the image. For example, if 𝑙 is 9, 𝑚 is 9, and 𝑛 is 20, then the feature vector 

size is 1620. Figure 3.9(c) shows the extracted histogram of a cell within a bolt image.  

  

3.3.6 CBD training using Adaboost 

After the features are extracted from the CBD’s positive training dataset, Adaboost meta-algorithm 

is adopted for building the classifier based on extracted features of the bolt (Figure 2.1).  

 

 

Figure 3.10. This section refers to building classifier using Adaboost stage in training. 

 

 

The Adaboost algorithm works on the principle of the decision tree [54]. It is a machine learning 

algorithm widely used for classification of data. The AdaBoost gives highly accurate (i.e. strong) 

classifiers by combining a series of weak classifiers [62-63]. A classifier with an accuracy that is 

slightly greater than a random guess is termed as a weak classifier [54]. The weak classifier in 
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CBD are called as decision stumps [64]. Decision stumps are single node decision trees, such as 

they classify data into two classes. For example, classification has to performed on data of 100 

humans with a height more than 1.6m, so for humans with a height more than 1.6m, class will be 

labelled +1, otherwise –1. To train the CBD classifier, the training dataset mentioned in the 

beginning of this section is used. The images for the training dataset were taken with a DSLR 

camera at varying distances and angles to include different bolt orientations and thus improve the 

accuracy of the CBD.  

 

 

Figure 3.11 -  Simplified view of scanning window over the image for detecting bolts 

 

This algorithm uses a moving scanning window to identify positive and negative images within it, 

as shown in Figure 3.11(a). The sliding window technique is widely used image processing. The 

algorithm automatically picks the smallest size among the positive dataset for the initial window 

size. For example, in this study, the smallest positive image is 100×100 pixels; thus, the initial 

size of the scanning window is equal to 100×100 pixels. From a given training dataset 𝐷 =
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	 𝐴/, 𝐵/ , where 𝑖 = 1, 2, … . , 𝑁, and 𝐴/, and	𝐵/ are the image and its label (positive or negative), 

respectively, which are prepared manually; N is the total number of the training images. Figure 

3.11(a) (i.e. the original image) shows the scanning window for detecting objects based on the 

HOG features. It uses a 50% overlapping method to avoid the incorrect classification of positive 

images that are at the edge of the scanning window (Figure 3.11(a)). Also, the scanning window 

size increases by 1.25 times after scanning the image at one scale and keeps increasing until equals 

the size of the image or vertical or horizontal array of the image as shown in Figure 3.11(b). 

 

 

Figure 3.12 - Schematic diagram explaining working of Adaboost 

 

Figure 3.12 explains the schematic diagram of Adaboost working. The first weak classifier 

performs classifications on positive and negative images from the training dataset provided and 

generates its decision hypothesis based on the extracted HOG features, as shown in Figure 3.12(b) 

[62]. The images are labelled positive (+1) if the bolt is detected, otherwise, negative (–1). The 
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weak classifier is partially better than random guessing. Therefore, all the bolts in the positive 

dataset will not be detected and are labelled as false classifications or negative images are labelled 

as positives (Figure 3.12(c)). After evaluation by the first classifier, the weight of false 

classifications is increased, whereas, decreased for true classifications, as shown in Figure 5(c). In 

this way false classifications are prioritized over true classifications. This step refers to the adaptive 

boosting because initially, the weight of all the images are equal. Updating the weight based on 

classification makes Adaboost standout from other classifiers. Figure 5 (b–f) represents the series 

of weak classifiers. The final classifier is formed by combining all the weak classifiers, as shown 

in Figure 5 (g). The detection accuracy of the final classifier is indeed better compared to the 

individual weak classifiers, and only the final classifier is used for bolt detection in testing. The 

hypothesis given by a strong classifier made from the combination of all weak classifiers is given 

by Equation (3): 

 

𝐶(𝑥) = 𝑠𝑖𝑔𝑛 𝛼OℎO(𝑥)Q
ORS                                                                (3) 

     𝐶 𝑥 > 0	(𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒); 	𝐶(𝑥) < 0	(𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), 

 

where 𝐶 represents the final classifier, 𝑡 represents the number of iterations, ℎO is the hypothesis 

of weak classifier, and 𝛼O is the coefficient calculated from the error (ℰO) of hypothesis (ℎO) of 

each weak classifier given by Equation (4), where error (ℰO) is the number of misclassifications 

divided by the dataset for each classifier.  

 

𝛼O = 1
2

S]^_
^_

                                                                         (4) 
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Prior to the classification of the first weak classifier, the initial weights of all the images are the 

same and updated after the classification by each weak classifier using equation (5):  

 

𝑤OaS 𝐴/ = 𝑤O 𝐴/ 𝑒±c_                                                                (5) 

 

where 𝑤O is the weight at tth iteration, and 𝑤OaS is the weight for the next iteration. If the label of 

an image 𝐵/ is true for a hypothesis, the weight is decreased by 𝑒]c_, otherwise the weight is 

increased by 𝑒ac_.  The training is completed if the algorithm reaches the specified number of 

stages, and the CBD is trained through 20 stages. However, the algorithm halts the training if the 

classifier’s error is more than 50% or a sufficient number of negative images are not available. A 

possible reason for the former is that the training data may not have invariant features. As a result, 

the algorithm cannot generate an effective hypothesis. Therefore, a well-annotated dataset is 

essential. For the later, providing more negative images or reducing the number of stages are 

possible solutions, but this may also cause a deterioration of the accuracy. The algorithm iteratively 

generates classifiers at each stage, where the number of negative images is defined by the negative 

sample factor. If the factor is three, then three negative images corresponding to each positive 

image are used at each stage. The factor used for training CBD is two. 

  

The algorithm moves to the next stage if one of the following conditions are satisfied. First, the 

number of weak classifiers is equal to 100. Second, the false positive rate reaches a defined value 

between 0 to 1. If we set this value to zero then we are expecting very high accuracy from initial 

weak classifiers, which may lead to false detections. For this study, a false positive rate of 0.4 is 

used. Lastly, the detection error decreases to zero. The aforementioned parameters can only be 
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configured by trial and error because they depend on the features of objects. During training, the 

scanning window labels the regions as positive or negative based on the detection. All the negative 

label regions are discarded whereas the positive regions are passed to the subsequent stages. Each 

successive stage is more complex than the previous because the classifiers use more features than 

the previous stages to discard more false positives and detect all the true positive regions. Hence, 

initial stage will have more false positives with all true positives and subsequent stages major 

contribution is to eliminate the false positives and detecting all true positives. In other words, 

Adaboost at every stage discards more non object images than a former stage. The positive images, 

which pass through all the stages, are labeled as objects, and the rest are rejected as shown in 

Figure 3.13 [65-66].  

 

 

Figure 3.13. Explains how sub windows proceed through different stages based on the bolt 

detection. 
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3.4 Support vector machine (SVM) classifier 

As stated in the beginning of this chapter, the proposed methodology consists of two methods: 

CBD as explained above, followed by SVM briefed in this part of the chapter. The CBD’s role is 

to detect bolts and crop the isolated bolt images. The SVM classifier generates a hyperplane to 

differentiate two classes from the input data based on the extracted features of the object. In bolt 

classification, the two classes refer to loosened and tight bolts. As shown in Figure 3.14, SVM 

classifies data into two classes +1 and –1 [67], where ‘m’ is margin, shortest distance between 

hyperplane and points of each class, which are also called support vectors. The bigger the margin, 

the better the SVM performance [61]. The SVM decision boundary is given by: 

	𝑤Q𝑥d + 𝑏                                                                              (6) 

where 𝑤Q is weight vector orthogonal to hyperplane, 𝑥d input data and b is bias of the dataset. 

 

Figure 3.14. Illustration of SVM classifier with hyperplane differentiating data classes. 

 

𝑡d= +1 for  𝑤Q𝑥d + 𝑏 ≥ 1 ; 		𝑡d= –1 for  𝑤Q𝑥d + 𝑏 ≤ 1                                   (7) 
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Where, 𝑡d is the class of the data points provided for training the SVM. For better accuracy, SVM 

seek to maximize the margin. From deriving equation (7), term to maximize the margin is 

generated. 

𝑚 =	 S
∥g∥

                                                                  (8) 

In other words, minimizing 𝑤 and bias 𝑏 will generate the optimal hyperplane. Which is achieved 

through Langrangian equation. 

𝐿 = 	 S
1
𝑤Q𝑤 −	 𝛼dj

dRS (𝑡d 𝑤Q𝑥d + 𝑏 − 1)                                           (9) 

Where 𝛼	is Lagrange multiplier. Partial derivatives of this equation w.r.t 𝑤 and 𝑏 and substituting 

back in equation (9) gives:   

𝑡dkl = 𝑠𝑖𝑔𝑛 𝛼dj
dRS 𝑡d𝑥dQ𝑥dkl + 𝑏                                                 (10) 

𝑏 = 	 𝑡d − 𝛼mj
mRS 𝑡m𝑥mQ 𝑥d                                                             (11) 

In equation (11) 𝑥d is the closet data point or the support vector. The trained SVM uses equation 

(10-11) for classifying any data point fed. 

 

3.4.1 SVM training dataset 

After training the CBD, next step is to train the SVM for classification of loosened and tight bolts. 

SVM is trained on another dataset of loose and tight bolt images as shown in Figure 3.15. SVM’s 

training dataset consist of 17 tight and 14 loosened bolts, where the training dataset is completely 

independent of the test dataset. The images for the training dataset consists of varied loosened 

length of the bolts (5mm-25mm), also varying vertical and horizontal angle for the loose and tight 

sets.  
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Figure 3.15. Training dataset for SVM training. 

 

3.4.2 Feature extraction 

The SVM classifier adopts a previously introduced method [53] with a few modifications, which 

are detailed in this section. The SVM classifier is trained on bolt features. The following features 

are considered: (1) the width of the bolt head (l); (2) the vertical length or half the minor-axis of 

the ellipse on the bolt head (h'); and (3) the exposed thread length of the bolt (h), as shown in 

Figure 3.16(a). Also, Figure 3.16 shows the flow of the feature extraction process of the proposed 

method. The width l and h' are extracted from detected ellipse parameters, whereas the binary 
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detector is used for measuring h as shown in Figure 3.16(b, c, d). The shape of the bolt head and 

the washer resemble an ellipse and are detected using Hough’s transform [68]. The five major 

components of an ellipse are two coordinates of centroid, major axis, minor axis, and orientation. 

The major axis of the best fitted ellipse is directly used as width of the bolt head, whereas half the 

minor axis of the best fitted ellipse is used as h'. The binary detector moves downward pixel-by-

pixel, starting from the minor axis of bolt head and stops at the encounter of white pixel in the 

background measuring h (Figure 3.16(c)). The feature extraction method proposed by Cha et. al. 

[53] struggles to find ellipses fitting the bolt heads because the Hough transform detects some of 

the pixels in the image background as part of the ellipses [68-69]. To overcome this issue, contrast 

adjustment was adopted as shown in Figure 3.17 [70]. For detecting the ellipses fitting the bolt 

head, the images are denoised and the contrast is enhanced between foreground and the 

background, resulting in improved detectability of ellipses.  

 

 

Figure 3.16. (a) Represent bolt features used for classification (b) represent the ellipse detection 

over the bolt head (c) binary detector for calculating the vertical height of the bolt (h) and (d) 

shows the calculated bolt features from the ellipse parameters and binary detector. 
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Another issue related to the previous method was, hollows in the binarized images of the bolts, as 

shown in Figure 3.17(c). These hollows are caused by different light intensities or reflections on 

the bolt surface and hinder the accurate calculation of h, which leads to false classifications. Since 

the binary detector stops at the encounter of white pixel, the hollows on either bolt head, shank, or 

washer can lead to false calculation of the vertical height feature h, as shown in the Figure 3.17 

the red dashed box. This issue has now been eliminated by adopting a masking technique [71], and 

the modified algorithm can segment the bolts from background effectively.  

 

 

Figure 3.17. Shows the contrast enhancement and masking of the binary image for accurate 

feature calculation. 

 

3.4.3 Building a SVM classifier 

Even if the physical conditions of the bolts are the same, the bolts have varying features in image 

spaces due to different image taking conditions (distance and angles). Therefore, for bolt 

classification, ratios of l/h, l/h', and h'/h are considered instead of l, h', and h. In Figure 3.18, the 
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loose bolt images are taken at more distance from the camera lens than the tight bolt images. Since 

both the images have the same dimensions, the binary detector calculates the feature through pixel-

by-pixel movement. Therefore, the vertical height feature h on the loose bolt images is quite similar 

to the tight bolts images. If these images are classified based on these features directly, it will 

generate more false classifications and the results will be misleading. Realistically, not all the bolts 

in the image are at the same distance and vertical angle. To overcome the issue of vertical angle 

and distance variations, instead of using the bolt features, direct ratios of the extracted features 

were used for classification. In Figure 3.18, feature l and h' are different. Hence, using the ratios 

l/h, l/h', and h'/h as the feature for classification generates more accurate results. 

 

 

Figure 3.18. Bolt feature comparison between loose bolts at farther distance and tight bolts at 

lesser distance. 

 

All the training images were manually cropped and carefully chosen in order to set a decision 

boundary for the SVM that effectively classifies the test images. Figure 3.19 shows the trained 
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SVM, where the gray hyperplane separates the tight and loosened bolt features; this hyperplane is 

used for bolt classifications in the test dataset, which is detailed in Section 4. 

 

 

Figure 3.19. Trained SVM. 
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Chapter 4 -  Validation 

4.1 Experimental setup 

The proposed method is motivated from the Cha et. al. [53] study by removing the limitations. The 

methodology was tested on steel I-section with eight bolts of varying looseness or tightness, and 

varying vertical and horizontal angle. Figure 4.1(a) shows the experimental setup details with 

specimen and camera, where;  

• L is the horizontal distance of the camera from the specimen centroid 

• H is the height of the camera lens from ground level 

• Ah is the horizontal angle of the camera from the centroid of specimen 

• Av is the vertical angle of the bolt 

 

 

Figure 4.1. (a) Experimental setup (b) bolt details on the specimen. 
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The vertical angle Av is calculated by subtracting the height of the specimen from H. Figure 

4.1(b) demonstrates the staggered bolt layout with 150 mm pitch, 95 mm gauge, and edge 

distance as shown. M20 hexagonal structural bolts were used for the experiment. The test images 

were taken in Agriculture engineering building’s hallway. 

4.2 Experimental study 

The length of the I-section specimen used for this study was 610mm. The bolt images were taken 

from four horizontal angles corresponding to every vertical angle as shown in Table 4.1. Total 198 

bolt images were taken at 4000×6000 resolution using a Nikon D5200 DSLR camera. 

 

 

Table 4.1. Images were taken at combination of vertical and horizontal angle 

Av = Tan-1(H'/L); 

L=1000mm; 

H' = (H - 310)mm 

Ah 

 

H'=270 mm; 15º 

H'=365 mm; 20º 

H'=490 mm; 26º 

H'=580 mm; 30º 

H'=730 mm; 36º 

H'=900 mm; 42º 

0°, 30°, 60°, 90° 

0°, 30°, 60°, 90° 

0°, 30°, 60°, 90° 

0°, 30°, 60°, 90° 

0°, 30°, 60°, 90° 

0°, 30°, 60°, 90° 

@ each angle 

combination 2 images 

are taken with random 

loose and tight bolts 

locations 
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The vertical angle was incorporated to study the effective range of this method. SVM can classify 

loosened and tight bolts at low vertical angles very precisely; at sharp vertical angles, the SVM 

cannot classify bolts correctly, arguably because at sharp vertical angles the feature h becomes too 

small. In Figure 4.2, feature h drastically reduces at 53º vertical angle compared to 20º. As a result, 

the SVM might not classify small loosened length correctly. On the other hand, horizontal angles 

were used for accommodating the bolt layout geometry. In Figure 4.3, same bolt layout is captured 

at four horizontal angles but the bolts overlap at 30º and 90º. Thus, a single horizontal angle cannot 

accommodate all bolt layout geometries. For example, Figure 4.3 shows a staggered bolt layout 

where the bolts are well distinguished at 0º and 60º but in case of parallel bolt layout, a 30º 

horizontal angle will provide better results than 0º. Also, this issue is limited to low vertical angles; 

at higher vertical angles (26º and above), bolt overlapping reduces to negligible.  

 

 

Figure 4.2. Vertical angle comparison. 
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Figure 4.3. Effect on horizontal angle on bolt layout geometry. 

The bolt layout and vertical angle presented in Figure 4.1 show the variation of 3º to 8º vertical 

angle variation of each bolt that occurs within the same image. Therefore, the vertical angle of 

each bolt is calculated to conduct the precise experimental study, as shown in Table 4.2. A total of 

1584 loosened and tight bolts were tested for detection and classification.  
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Table 4.2. The number of bolts according to the range of vertical angles and loosened length. 

Vertical 

angle(°) 

Loosened length 
Sum 

Tight 5mm 10mm 15mm 20mm 25mm 

10 – 14 16 18 17 29 34 23 137 

15 – 19 29 29 26 50 36 27 197 

20 – 24 19 26 29 47 33 30 184 

25 – 29 29 34 29 49 53 43 237 

30 – 34 23 29 33 37 36 39 197 

35 – 39 32 33 33 44 29 36 207 

40 – 44 40 47 44 36 37 38 242 

45 – 51 31 33 32 28 27 32 183 

Sum 219 249 243 320 285 268  

 

4.3 Results 

A total of 198 images at a resolution of 6000	×	4000 with eight bolts in each image were tested 

and the results evaluated. First, the cascade classifier detects and crops the localized images of the 

bolts from the test images. Second, the SVM classifies the loosened and tight bolts from of the 

total cropped images generated by the cascade detector. Hence, the accuracy of both methods is 

calculated as well as the overall performance. Moreover, the accuracy of the SVM is calculated 

from the total number of bolts correctly cropped by CBD as the SVM cannot classify images 

partially cropped by the CBD.  
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4.3.1 Accuracy in bolt detection 

 

 

Figure 4.4. This section is focused on CBD accuracy. 

 

CBD false detections consist of undetected or partially detected bolts. The background detections 

were neglected because we want to calculate bolt features for classification. As long as the dataset 

for the feature calculation has all the bolts localized and cropped, the evaluation of the loosened 

and tight bolts can be done. In Figure 4.5, the bolts highlighted with a solid red line are partially 

detected and are considered as false detections. Whereas, the detections highlighted in dashed red 

and solid orange are neglected because they do not affect the accuracy of the CBD. Table 4.3 

shows the accuracy of the CBD for all 1584 bolts. The average accuracy of the CBD is 

approximately 97%. CBD accuracy is lower at low vertical angles because of bolt overlapping. As 

the vertical angle increases, the detection accuracy also increases because bolt overlapping 

decreases with an increase in vertical angle. Moreover, at low vertical angles, tight bolts fall behind 

25 mm loose bolts, which also leads to no detection of the bolt. 
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Figure 4.5. Partial detections, shadows effect and false detections by CBD. 

 

Table 4.3. Accuracy of the CBD for loosened and tight dataset. 

Vertical angle(°) Loosened length Average 

Tight 5mm 10mm 15mm 20mm 25mm 

10 – 14 0.56 1.00 0.94 0.97 0.91 0.70 0.86 

15 – 19 0.93 0.90 0.88 0.96 0.92 0.74 0.90 

20 – 24 0.95 1.00 1.00 1.00 1.00 0.97 0.99 

25 – 29 0.97 1.00 1.00 1.00 1.00 1.00 0.99 

30 – 34 1.00 1.00 1.00 1.00 1.00 1.00 1 

35 – 39 1.00 1.00 1.00 1.00 1.00 1.00 1 

40 – 44 1.00 1.00 1.00 1.00 1.00 0.97 0.99 

45 – 51 0.87 1.00 1.00 1.00 1.00 1.00 0.98 

Average 0.93 0.99 0.98 0.99 0.98 0.94  
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4.3.2 Accuracy of the SVM classification 

 

 

Figure 4.6. This section is focused on SVM classification accuracy of images provided by CBD. 

 

The SVM accuracy is based on 1536 bolt images cropped by the CBD. The classification accuracy 

is shown in Table 4.4; the average accuracy of the SVM is 93%. The classification accuracy is 

minimum at a 45º–51º and 40º - 44º vertical angles, as illustrated in Table 3, for tight and 5 mm 

loosened bolts. Arguably, this is because the loosened length of the bolts is sensitive to the vertical 

angle changes. At a sharp vertical angle, the vertical height feature becomes very sensitive. Hence, 

5 mm loosened lengths are classified as tight, and tight are sometimes classified as loose, because 

of the very small margin between 5 mm and tight bolts. On the contrary, at a low vertical angle, 

the exposed shank can be observed reasonably well and therefore classification is more accurate. 

Additionally, a few false classifications are due to the wrong ellipse detection on the bolt head, 

which is a result of edge detection of the bolt head. 
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Table 4.4. Accuracy of the SVM classification for the loosened and tight dataset. 

Vertical angle(°) 
Loosened length 

Average 
Tight 5mm 10mm 15mm 20mm 25mm 

10 – 14 1.00 1.00 1.00 1.00 0.97 1.00 0.99 

15 – 19 1.00 0.96 0.96 1.00 1.00 1.00 0.99 

20 – 24 1.00 0.92 0.93 1.00 1.00 0.97 0.97 

25 – 29 0.86 1.00 1.00 0.98 1.00 0.98 0.97 

30 – 34 1.00 0.93 1.00 0.92 0.97 0.97 0.96 

35 – 39 0.81 0.76 1.00 0.98 1.00 1.00 0.93 

40 – 44 0.48 0.79 0.98 0.94 1.00 1.00 0.86 

45 – 51 0.41 0.64 0.94 1.00 1.00 1.00 0.83 

Average 0.77 0.86 0.97 0.98 0.99 0.99  

 

 

The overall performance of the method is 91%, as detailed in Table 4.5, which shows the combined 

efficiency of CBD and SVM.  
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Table 4.5. Overall accuracy. 

Vertical angle(°) 
Loosened length 

Average 
Tight 5mm 10mm 15mm 20mm 25mm 

10 – 14 0.56 1.00 0.94 0.97 0.88 0.70 0.85 

15 – 19 0.93 0.86 0.85 0.96 0.92 0.74 0.89 

20 – 24 0.95 0.92 0.93 1.00 1.00 0.93 0.96 

25 – 29 0.83 1.00 1.00 0.98 1.00 0.98 0.97 

30 – 34 1.00 0.93 1.00 0.92 0.97 0.97 0.96 

35 – 39 0.81 0.76 1.00 0.98 1.00 1.00 0.93 

40 – 44 0.48 0.79 0.98 0.94 1.00 0.97 0.86 

45 – 51 0.35 0.64 0.94 1.00 1.00 1.00 0.82 

Average 0.77 0.85 0.96 0.97 0.97 0.93  

 

4.4 Discussions 

The previous methods [51-53] are the only existing vision-based methods for loosened bolt 

detection. The former method [51-52] is suitable for angular bolts; it measures changes in angles 

due to the rotation of the bolt. The latter [53] is suitable for round bolts with wrench holes to 

measure the bolt features, using multilevel de-noising to crop localized bolts. Cha et. al. [53] used 

only one loosened length for the classification of bolts. However, the proposed method 

automatically localizes bolt images, crops the bolts using CBD, and can be trained for any bolt 

shape. Therefore, it removes the bolt head shape limitation. Additionally, the current methodology 

removes the image multilevel de-noising and cropping processes by using contrast adjustment to 
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improve the computational efficiency and loosened bolt detection rate. The proposed method was 

also tested on a broader range of loosened lengths (i.e. 5 mm to 25 mm) to test the robustness of 

the method. The proposed method detected and classified the bolts from four horizontal angles 

(intervals of 30º). This demonstrated that varying the horizontal angle can accommodate different 

bolt layouts for detection and classification. 

 

Although the method detects different shapes and orientations of bolts, there are some limitations. 

First, the computational time for training the cascade detector is slightly longer depending on the 

resolution and size of the training data and may go up to an hour or more. This is not a major 

drawback since the training has to be done only once for similar kinds of bolts, making it a one-

time consumption in terms of time. Second, sharp camera angles still remain a limitation for SVM, 

whereas CBD is sensitive to low vertical angles. In Figure 4.7(a), a 5 mm loosened bolt is detected 

as tight because of the sharp angle; this is due to the small margin between the feature h and 5 mm 

tight bolts, as mentioned previously. Also, in Figure 4.7(b), the bolt outlined in the highlighted 

image is not detected due to overlapping. Although vertical angles are improved when compared 

to the previous method, the horizontal camera angle is advantageous when countering the vertical 

angle issues in CBD detection. Third, as a vision-based approach, reflection and shadow play a 

major role both in detection and feature extraction. However, this can be avoided by using the 

camera at different angles and times of day. Finally, the training dataset plays an important role 

for CBD and SVM. For CBD, a negative dataset with a similar background of bolts improves the 

detection percentage and reduces the training size of training data. If similar background images 

are not available, this limitation can be countered by using a larger training dataset. For SVM 

training, bolt images with accurate extracted features should be used. The proposed method is 
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effective for visual detection of the bolts (i.e. loosened or tightened), but measuring the mechanical 

properties of the bolted connections remains a limitation. 

 

Figure 4.7. (a) False classification by SVM due to sharp vertical angle. (b) No bolt detection by 

CBD due to overlapping at low vertical angle. 
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Chapter 5 -  Summary, Conclusions and Recommendations 

5.1 Summary 

A damage detection method was developed based on a Viola-Jones algorithm and SVM. The study 

offers an automated vision-based method for bolt detection and evaluates the performance in terms 

of accuracy. First, the CBD was trained with a positive and negative image dataset to detect and 

crop the isolated bolt images using HOG features. The CBD was trained using the Adaboost 

algorithm. Second, the SVM was trained on the ratios of three features of loose and tight bolt 

image, using image processing to build a classification frontier for loosened and tight bolts. The 

training datasets for CBD and SVM were different from the test images and were not used for 

performance evaluation. The CBD detect bolts in the test images using a detection window at 

increasing scale and isolated bolt images are cropped. The cropped bolt images provided by the 

CBD were classified into loosened or tight based on bolt features extracted by the trained SVM. 

The images for the cascade detector and the SVM training were taken using smart phone cameras 

with an average resolution of 1024 ×	768 and 90 ×	100 pixels, respectively, whereas test images 

were taken using a Nikon D5200 DSLR with a resolution of 4000	×	6000 pixels.  

 

5.2 Conclusions  

The experiment was performed on 198 images and the vertical angle of every bolt calculated, as 

tabulated in Table 4.2. The accuracy of the cascade detector and SVM were measured individually 

along with the overall accuracy. The accuracy of the SVM was independent of errors in the cascade 
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detector. The average detection accuracy of the cascade, SVM, and overall accuracy is 97%, 93%, 

and 91%, respectively.  

 

During the experiment, the pros and cons of this method compared to existing vision-based 

loosened bolt detection were revealed as: 

• Applicable to different shapes of bolt heads unlike the previous methods [51-53], which 

were only applicable to angular bolts and bolts with wrench holes in bolt head  

• The horizontal and vertical angles can take care of a complex bolt layout geometry on 

structures. A bolted connection can occur in dense geometry, therefore varying angles can 

overcome the overlapping and isolated view of bolts 

• Like previous vision-based methods, the method overcame environmental conditions when 

making damage detections since the data cannot be altered by environmental effects, which 

is also a motivation behind the vision-based methods 

 

However, there are also limitations to the proposed method: 

• The mechanical properties of connections cannot be measured. No vision-based method 

exists to the date that can measure torque of the bolted connection 

•  Reflections and shadows effect bolt detection and classification. Both CBD and SVM are 

sensitive to image noise. The CBD use HOG features and uses intensity values of pixels, 

hence, shadows can lead to the wrong detections; whereas, the SVM binarizes the image 

for feature extraction and is affected by shadows and reflections. The images must be taken 

carefully to avoid shadows, which is doable 
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• Images with an exposed shank length that is hidden under the bolt head due to a sharp 

shooting angle is a limitation to this approach. Moreover, the small loosened lengths are 

more sensitive to sharp angles. The optimal range for best results is a 26º - 42º vertical 

angle 

 

5.3 Future recommendations  

The limitations discussed in this study provide an opportunity for further exploration of this 

method and future research should:  

• Explore detecting other type of damages in steel structures, since the cascade algorithm 

provides three type of feature descriptors  

• Improve on the feature calculation and detection methods. The image noise effect on CBD 

and SVM can be further explored and improved for more robust performance 

• Explore the prime area of this study - SVM sensitivity to the loosened length -  as a 

progressive area of development  
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Appendix A: Detailed information vertical angle of each bolt 

and corresponding CBD and SVM classifications 

 

 

 

 

 

 

 

 

 

 



Appendix A 
 

 A-2 

Vertical angle of all the bolts  

Vertical 
angle 

Loosened Length 
mm 5mm 10mm 15mm 20mm 25mm 

10º 0 0 0 0 0 1 
11º 0 1 1 4 6 3 
12º 3 3 4 6 6 5 
13º 5 6 7 11 11 8 
14º 8 8 5 8 11 6 
15º 10 8 5 7 5 4 
16º 5 4 4 4 8 6 
17º 3 5 5 12 7 4 
18º 5 5 6 16 10 6 
19º 5 7 6 11 6 7 
20º 2 7 7 15 7 5 
21º 6 4 3 4 4 6 
22º 3 6 6 10 7 4 
23º 2 4 4 8 5 5 
24º 6 5 9 10 10 10 
25º 7 6 4 9 11 11 
26º 4 8 10 13 14 10 
27º 8 8 6 6 6 2 
28º 2 5 4 12 12 12 
29º 8 7 5 9 10 8 
30º 3 6 10 8 10 12 
31º 8 8 6 6 4 3 
32º 5 2 1 6 8 11 
33º 5 8 9 7 8 4 
34º 2 5 7 10 6 9 
35º 9 8 6 8 6 6 
36º 5 4 5 7 9 9 
37º 6 10 9 15 4 6 
38º 7 4 6 7 4 6 
39º 5 7 7 7 6 9 
40º 10 16 13 8 9 10 
41º 6 5 6 9 5 9 
42º 7 8 8 8 11 9 
43º 10 14 13 6 8 6 
44º 7 4 4 5 4 4 
45º 8 8 10 9 7 11 
46º 8 9 6 3 3 3 
47º 2 4 5 3 6 8 
48º 8 6 5 8 6 4 
49º 5 4 3 1 1 2 
50º 0 2 3 4 4 4 



Appendix A 
 

 A-3 

Number of bolts detected by CBD 

Vertical 
angle 

Loosened Length 
mm 5mm 10mm 15mm 20mm 25mm 

10º 0 0 0 0 0 1 
11º 0 1 1 4 5 2 
12º 2 3 4 6 6 5 
13º 3 6 7 10 10 4 
14º 4 8 4 8 10 4 
15º 9 8 5 6 5 2 
16º 4 3 3 3 6 3 
17º 3 4 5 12 7 3 
18º 5 5 5 16 9 5 
19º 5 6 5 11 6 7 
20º 2 7 7 15 7 5 
21º 6 4 3 4 4 5 
22º 2 6 6 10 7 4 
23º 2 4 4 8 5 5 
24º 6 5 9 10 10 10 
25º 6 6 4 9 11 11 
26º 4 8 10 13 14 10 
27º 8 8 6 6 6 2 
28º 2 5 4 12 12 12 
29º 8 7 5 9 10 8 
30º 3 6 10 8 10 12 
31º 8 8 6 6 4 3 
32º 5 2 1 6 8 11 
33º 5 8 9 7 8 4 
34º 2 5 7 10 6 9 
35º 9 8 6 8 6 6 
36º 5 4 5 7 9 9 
37º 6 10 9 15 4 6 
38º 7 4 6 7 4 6 
39º 5 7 7 7 6 9 
40º 10 16 13 8 9 10 
41º 6 5 6 9 5 9 
42º 7 8 8 8 11 8 
43º 10 14 13 6 8 6 
44º 7 4 4 5 4 4 
45º 8 8 10 9 7 11 
46º 6 9 6 3 3 3 
47º 1 4 5 3 6 8 
48º 8 6 5 8 6 4 
49º 4 4 3 1 1 2 
50º 0 2 3 4 4 4 



Appendix A 
 

 A-4 

True classification by SVM out of detected bolts by CBD 

Vertical 
angle 

Loosened Length 
mm 5mm 10mm 15mm 20mm 25mm 

10º 0 0 0 0 0 1 
11º 0 1 1 4 5 2 
12º 2 3 4 6 6 5 
13º 3 6 7 10 10 4 
14º 4 8 4 8 9 4 
15º 9 8 5 6 5 2 
16º 4 3 3 3 6 3 
17º 3 3 4 12 7 3 
18º 5 5 5 16 9 5 
19º 5 6 5 11 6 7 
20º 2 7 7 15 7 4 
21º 6 3 3 4 4 5 
22º 2 5 5 10 7 4 
23º 2 4 4 8 5 5 
24º 6 5 8 10 10 10 
25º 5 6 4 9 11 10 
26º 4 8 10 13 14 10 
27º 7 8 6 6 6 2 
28º 2 5 4 11 12 12 
29º 6 7 5 9 10 8 
30º 3 6 10 8 9 12 
31º 8 7 6 6 4 3 
32º 5 2 1 6 8 11 
33º 5 8 9 7 8 3 
34º 2 4 7 7 6 9 
35º 9 7 6 8 6 6 
36º 4 3 5 7 9 9 
37º 4 7 9 14 4 6 
38º 4 4 6 7 4 6 
39º 5 4 7 7 6 9 
40º 4 12 13 7 9 10 
41º 3 4 6 9 5 9 
42º 4 5 7 7 11 8 
43º 5 13 13 6 8 6 
44º 3 3 4 5 4 4 
45º 3 5 9 9 7 11 
46º 4 6 6 3 3 3 
47º 0 4 5 3 6 8 
48º 2 2 5 8 6 4 
49º 2 3 2 1 1 2 
50º 0 1 3 4 4 4 



Appendix A 
 

 A-5 

False classifications by SVM out of detected bolts by CBD 
Vertical 

angle 
Loosened Length 

mm 5mm 10mm 15mm 20mm 25mm 
10º 0 0 0 0 0 0 
11º 0 0 0 0 0 0 
12º 0 0 0 0 0 0 
13º 0 0 0 0 0 0 
14º 0 0 0 0 1 0 
15º 0 0 0 0 0 0 
16º 0 0 0 0 0 0 
17º 0 1 1 0 0 0 
18º 0 0 0 0 0 0 
19º 0 0 0 0 0 0 
20º 0 0 0 0 0 1 
21º 0 1 0 0 0 0 
22º 0 1 1 0 0 0 
23º 0 0 0 0 0 0 
24º 0 0 1 0 0 0 
25º 1 0 0 0 0 1 
26º 0 0 0 0 0 0 
27º 1 0 0 0 0 0 
28º 0 0 0 1 0 0 
29º 2 0 0 0 0 0 
30º 0 0 0 0 1 0 
31º 0 1 0 0 0 0 
32º 0 0 0 0 0 0 
33º 0 0 0 0 0 1 
34º 0 1 0 3 0 0 
35º 0 1 0 0 0 0 
36º 1 1 0 0 0 0 
37º 2 3 0 1 0 0 
38º 3 0 0 0 0 0 
39º 0 3 0 0 0 0 
40º 6 4 0 1 0 0 
41º 3 1 0 0 0 0 
42º 3 3 1 1 0 0 
43º 5 1 0 0 0 0 
44º 4 1 0 0 0 0 
45º 5 3 1 0 0 0 
46º 2 3 0 0 0 0 
47º 1 0 0 0 0 0 
48º 6 4 0 0 0 0 
49º 2 1 1 0 0 0 
50º 0 1 0 0 0 0 

 


