A Formal Model of an Electronic Commerce System

Kris Hiebert

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Master of Science

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada

Copyright (© 2003 by Kris Hiebert

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

®hkkk

COPYRIGHT PERMISSION

A Formal Model of an Electronic Commerce System

BY

Kris Hiebert

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
of

MASTER OF SCIENCE

Kris Hiebert © 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

This thesis presents a formal model of an electronic commerce system, what issues are
involved in the design of an electronic commerce system, and how formal methods can be
applied to the electronic commerce domain. Also presented is an architecture for electronic
commerce as well as a formal specification of that architecture using the Unified Modeling
Language (UML) and the Z specification language. A small prototype of an electronic
commerce system based on the architecture is also presented. The thesis concludes by

giving recommendations for future research in this field.

1ii

List of Original Contributions

1. Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Model of Electronic Com-
merce. In First International Conference on Software Engineering, Networking and
Parallel and Distributed Computing (SNPD-00), Champagne-Ardenne, France, May
2000.

2. Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Specification of an On-line
Transaction. In First International Conference on Software Engineering, Networking
and Parallel and Distributed Computing (SNPD-00), Champagne-Ardenne, France,
May 2000.

3. Sylvanus A. Ehikioya and Kristofer J. Hiebert. Agents Negotiation in Electronic
Commerce Transactions. In First Annual International Conference on Computer and
Information Science (ICIS-01), The Grosvenor Resort, Orlando, Florida, U.S.A., Oc-
tober 3-5, 2001.

A cknowledgements

The creation of this thesis would not be possible without the help of many people. First, 1
would like to thank my advisor, Dr. Sylvanus A. Ehikioya, for the assistance, understanding,
and coaching he provided. Whether it was editing my latest draft, allowing me to bounce
ideas off of him, or lending me books and materials, I could always sense his desire for my
success. Without him, it would not have been possible.

I would also like to acknowledge the members of my examining committee, Dr. Peter
C. J. Graham and Dr. Robert McLoed. I would like to thank them for their time and
assistance in reviewing and critiquing this thesis.

I would like to thank all my friends and family members who encouraged me to move
forward with this thesis. The constant questioning of when my thesis was to be complete
forced me to work harder and made me believe the work I was doing was important.

Finally, I would like to thank my wife Susan. With eternal patience and an iron will,
she supported me from beginning to end and moved me along when I stalled. I consider

myself very lucky to have found someone like her to spend the rest of my life with.

vi

Contents

1 Introduction
1.1 Benefits of Electronic Commerce
1.2 Problem Definition L.
1.3 Formal Methods and Electronic Commerce
1.4 Significance of this Thesis

1.5 Organization of this Thesis

2 Background Information and Related Work
2.1 Design Issues in Electronic Commerce
2.2 Web-based Architecture for Electronic Commerce
2.3 UML and the Z Specification Language e e e
2.3.1 The Unified Modeling Language (UML)

2.3.2 'The 7 Specification Language

3 A Formal Model of an Electronic Commerce System
3.1 Model Description

3.1.1 TheBuyer.

3.1.3 The Electronic Commerce System
3.1.4 Support Systems
3.2 Unified Modeling Language Description

3.21 ClassDiagrams

vii

11
11
14
17
17
18

23

3.22 UseCase Diagrams 41

3.2.3 Sequence Diagrams 43

3.2.4 State Diagrams L 52

3.2.5 Activity Diagram 55

3.2.6 Deployment Diagram for the Electronic Commerce System 56

3.3 Z Specification Language Model Description 59
3.3.1 Z Language Specification 59

3.3.2 7 Specification Verification 114

4 E-Commerce System Prototype 121
4.1 Application Design 121
4.2 Implementation, 122
4.2.1 Welcome Screen 122

4.2.2 Buyer Summary Screen 124

4.2.3 Browsing for Goods 124

4.2.4 Check Out with Products 125

4.2.5 Receipt for Completed Purchase 126

5 Conclusions and Future Work 127
5.1 Conclusions 127
5.2 Summary of Contributions 128
5.3 Future Work 128

A The Z Notation 133
References 137

viil

List of Figures

1.1

2.1
9.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

A Simple Electronic Commerce Architecture [13] 2
Three-Tier Client/Server Architecture for Electronic Commerce 14
Query and Retrieval of Product Information (modified from [32]) 16
BElectronic Commerce System Classes 32
Buyer Classes e e 33
Seller Classes 34
Inventory Classes 35
Search Classes e 36
Comparaison Classes e 37
Transaction Classes 39
Payment Classes 40
Buyer Use Case e 42
Seller Use Case 42
Buyer Login 43
Buyer Logout 44
View Transaction History, 44
Search Inventory 45
View Product Details L L 46
Compare Products 47
Purchase Product - Part I 48
Purchase Product - Part IT 49

ix

3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

4.1
4.2
4.3
4.4
4.5
4.6

Purchase Product - Part 11T 50

View Sales History 51
Manage Products and Inventory 52
Transaction Class State Diagram 53
Payment Activity Diagram 57
Electronic Commerce System Deployment Diagram 58
Z-Eves Syntax and Type Check of Z Specification 116
Z-Eves Domain Check of Z Specification 117
Z-Eves Domain Check Proof Example 118
Z-Eves Domain Check Results. 119
Development using Microsoft Visual Studio NET 122
Welcbme Screen. 123
Buyer Summary Screen L 123
Searching Product Inventory 124
Check Out with Products 125
Receipt for Completed Purchase 126

Chapter 1

Introduction

With the increase in Internet technologies in the past few years, businesses and consumers
have begun to move their activities towards the digital domain. This new mode of transac-
tions and services, executed over computer networks and outside of the traditional brick and
mortar store, is called electronic commerce. These methodologies and technologies provide
businesses and consumers the ability to buy and sell things like physical goods, financial
vehicles such as stocks and bonds, and services electronically [22].

The basic idea behind electronic commerce is the exchange of value measured in mone-
tary terms (money) for some products or services over the Internet. Generally, in electronic
commerce one party purchases some goods or services from another party. The first party
can be called the buyer, purchaser, or client while the latter may be called the seller,
provider, or supplier. Besides these two basic entities, there are many other support struc-

tures needed to ensure the purchasing transaction is established and completed correctly.

1.1 Benefits of Electronic Commerce

As usage of the Internet increases, more and more businesses and consumers are using
electronic commerce to purchase and promote goods and services in new and different

ways. Some of the benefits of using electronic commerce include:

1. Automation of Business Processes

CHAPTER 1. INTRODUCTION

Buyer .| Seller
Web Enfra i
Buyer eb sntrance E-Comum System [------------ Seller
Page 5
Buyer — Seller
Financial
............. Internet Institution

Figure 1.1: A Simple Electronic Commerce Architecture [13]

By using an electronic interface and computerizing the buying process, many of the
steps required to complete a transaction can be done all at once, with little effort
required by either the consumer or the provider. Billing forms, acquiring shipping
information, and payment processing can be done automatically. This offers a savings
for both the buyer and seller as they invest less time and effort in a transaction. This

automation especially offers a savings in repetitive or bulk transactions.

. Client Customization

By using the Internet to provide business services to different clients, different views of
those services can be presented automatically and with custom enhancements for each.
Customization allows a business to show specific views to different clients. Clients can
also customize their shopping experience. By saving information on searches to be
run again at a later time or by customizing their interface, clients can shorten their

time spent searching for and purchasing goods.

. Comparative Abilities

Some of the current electronic commerce systems allow consumers to compare prod-
ucts from different manufacturers based on specified criteria [23]. These systems allow
a consumer to contrast different attributes of products against each other and can also
recommend certain items based on user input. For example, if a consumer wants to

buy a CD-player the user can compare a single model over many different stores or

1.2. PROBLEM DEFINITION 3

all the models at a single store or across different stores. These comparative abilities

can give the consumer the necessary information to fulfill a purchasing need.

4. Increased Efficiency

When a business offers its services or products through the Internet, the business
and the consumers can save both time and money. The business saves some costs by
the automation process as less manpower is needed for tasks that are now handled
by computer. Also, different parts of a given transaction between a business and a
consumer can occur simultaneously and complete in less time, thus allowing for more
transactions at lower cost. Electronic commerce is also more efficient for the consumer
because he/she no longer has to physically go from one store to another store to shop.
The process of buying the goods customers want is available on their computer and

any goods can be delivered directly to them.

5. Global Coverage

The Internet is reaching more and more people. Everyone connected to the Internet
can theoretically purchase any goods that are available through electronic commerce
Web sites. This global coverage can allow consumers to acquire rare or hard to find

items and allow businesses to expand into untapped marketplaces.

1.2 Problem Definition

To achieve a correct electronic commerce system that is valuable to its owners and users,
three problems must be resolved, as in other software systems design; gathering the require-
ments, specifying the operations of the system, and verifying that the results gained from

the first two activities are correct. These problems are examined in details below.

1. Requirements Gathering

Ehikioya [10, 11], and Ehikioya and Hiebert [13] describe several requirements of
electronic commerce systems. For an electronic commerce system to be usable it must

be secure, reliable, and correct in its transactions. Much of the information exchanged,

CHAPTER 1. INTRODUCTION

such as credit card numbers, inventory amounts, shipping and billing addresses and
client names, are very important and sensitive. The need to maintain the privacy of
such information requires that the security of electronic commerce systems be very
tight. Users of electronic commerce systems, both consumers and businesses, expect
consistent behavior in what they see and use. The system should be functional and
on-line as much as possible (except during periods of planned downtime, e.g., for
maintenance), as any shutdowns are equivalent to a store closing its doors. Each
business must be able to provide services for all its customers as well. If a customer
comes from any part of the world or needs things shipped or ordered according to an
unconventional timetable, then the provider’s electronic commerce solution must be

able to handle that request in a timely fashion.

Correctness is an essential trait of any electronic commerce system. Important events
in any electronic commerce transaction must be guaranteed to be correct. These
important events and attributes include any transfer of funds, current amounts of
inventory, and shipping and billing addresses. Correct record keeping by the system is
also very important because many tasks are now automated and the system produces
a variety of reports such as invoicing and inventory reports. If correctness is not
enforced, a business can rapidly lose its clients as they cannot trust the system because

there is no guarantee of correct results from transactions.

The design of an electronic commerce system is very complex because of its distribu-
tion and the many different technologies that must work together. All heterogeneous
components must be identified beforehand and solutions must be found to make them
work together seamlessly. This includes existing legacy applications and infrastructure
already used by any merchant or organization that wishes to offer electronic services
over the internet. Any new system created must integrate tightly with any existing
systems and environments, otherwise the organization will not leverage past invest-
ments in technology. In addition, electronic commerce applications typically require
that many different computer disciplines work together. This includes such areas as

security, databases, electronic payment, transaction processing, distributed systems,

1.2. PROBLEM DEFINITION 5

artificial intelligence, and multimedia. To understand how to build a good electronic
commerce system, all of these aspects must be carefully examined. Defining all of
the requirements accurately and completely is a pre-requisite for designing a complete

electronic commerce system.

2. Operations Discovery

Even once all of the requirements have been gathered, the operations of an electronic
commerce system must be fully determined. These operations include all the actions
taken by the users, owners and administrators of the system. For example, a user
(customer) may request a purchase over the Internet, the system brocesses the order,
and creates an invoice and shipping notice. Each of these actions affects, and are
affected by, different entities in the system. Understanding each of the operations and
its role in the system is very important in designing a holistic electronic commerce

system.

3. Verification of the Results of Requirements Gathering and Operations Discovery

Once all the requirements are determined and the electronic commerce system oper-
ations specified, the system may not necessarily be correct. There must be a way to
determine if the design is complete and correct. Since these systems are inherently
complex to design and proper and correct operation is necessary, formal methods
should be used to create and verify the design. By using formal methods to design an
electronic commerce system, design related problems can be detected and corrected
early and this enhances product quality [37]. With a formal model, formal proofs
can be developed to ensure the correctness of the specification created and, thus, the

correctness of the electronic commerce system designed.

These three areas (requirements gathering, operations discovery, and verification of re-

sults) in building electronic commerce systems are the focus of this thesis.

6 CHAPTER 1. INTRODUCTION

1.3 Formal Methods and Electronic Commerce

Developing an electronic commerce system is a complex operation involving many different
disciplines. These arcas include databases, user-interfaces, transaction controls, cryptog-
raphy and software engineering. When constructing an electronic commerce system, often
many people are involved and they must have a clear understanding Qf the final goal and the
steps necessary to achieve the development objectives. Thus, there is a need for clear com-
munication among the development team members. One tool that assists in this direction
is the use of a formal method. Formal methods can ease the complexity of designing and
implementing electronic commerce solutions by using mathematical notations to precisely

specify a design. Some of the benefits of using formal methods include [9, 12] :

1. A clear understanding of the system.

Formal methods explicitly demonstrate all of the components of the system and their
interactions. Someone examining a formal specification can determine many of the
salient facts concerning that specification in a short time period. This straightforward
definition helps in the later stages of development and allows everyone involved to have

a common understanding of the system.

2. The formalization process can reveal ambiguities.

Any questionable requirement will become evident when using formal methods. Un-
known and unclear aspects of a set of requirements are identified as the model is

developed because every aspect of the system is fully stated and verified.

3. Incompleteness and contradictions in the informal definition.

Incompleteness in the requirements can be identified by a “metaphorical hole” that
would be present where the information must be included to make the specification
complete. If a component has not been thought of yet, it will become apparent when
the other components are defined. Any contradictions in the requirements become

clear and identifiable as the modeling evolves. The areas responsible for the conflict

1.3. ForMAL METHODS AND ELECTRONIC COMMERCE 7

can be found and re-examined to determine how to resolve the problem caused by the

contradicting requirements.

4. Verification of correctness of the transactions thereby enhancing their reliability.

Formal methods provide a method to verify any formal design. This verification checks
for inconsistencies, contradictions and missing components. Once the design has been
checked correctly, the design will be correct. This is very important for electronic

commerce transactions because if they are not correct users will not trust the system.

5. Provides an abstract view of the system.

Formal methods precisely specify the behaviour of a system by concentrating on its
functions in order to manage complexity and promote correctness, extensibility, main-
tainability, reusability, and understanding. The formal design of a system can be
viewed from different granularities, showing how each part of a system interacts with

others.

Formal methods may be combined with other semi-formal methods to augment the
potency of a formal specification. Such semi-formal methods often use graphical represen-
tations and natural language to bridge the gap between a plain language problem definition
and a provable mathematical specification. Such diagrams aid in showing the interactions,
dataflows, process flows, and the states of the objects used in electronic commerce. From
these a more formalized tool or language can be used to describe the model in a robust and
correctness preserving fashion.

It is important to note that there are many formal methods available and that not all
of them are applicable to the electronic commerce domain. A very rigorous specification
is necessary to properly represent the many interactions between the different components
and actors/users in the electronic commerce system. A rigorous technique is chosen be-
cause it can detect possible omissions or ambiguities in any of the processes or definitions.
The formal specification language (a component of a formal method) used must accurately

describe each static object in an electronic commerce system as well as correctly specify

8 CHAPTER 1. INTRODUCTION

all of the pre- and post-operation conditions. This rigorous specification is critical in an
electronic commerce system as tangible and valuable items are being exchanged and errors
are not permissible.

There exist tools that can examine formal specifications and determine if the require-
ments have been correctly demonstrated [34]. These methods and the tools to prove the
correctness of specifications written using the methods are essential for creating a high

quality product.

1.4 Significance of this Thesis
This thesis is significant for a number of reasons.

1. By using formal methods with appropriate tools the important properties of elec-
tronic commerce transactions can be captured and the correctness and reliability of
the transactions can be guaranteed. This formal specification is desirable in the elec-
tronic commerce domain due to the fiscal nature of the transactions. The checking
of the specifications is achieved, in this thesis, through the use of the Z-Eves [34]
type and syntax-checking tool for the Z [35, 37] specification language. The Enter-
prise Architect [30] tool is used to check the consistency of the Unified Modeling

Language(UML) [20] diagrams in this thesis.

2. By rigorous specification of electronic commerce transactions, complexity is reduced
and the problems clarified. Since all aspects of electronic commerce are examined in

detail, any ambiguities or errors can be identified and corrected at an early stage.

3. A formal specification of an electronic commerce system provides a practical case
study and is applicable to real world problems. The type of electronic commerce
system that is applicable to this type of approach is made clear while also showing

how the integration of different techniques can be used to solve a specific problem.

1.5. ORGANIZATION OF THIS THESIS 9

1.5 Organization of this Thesis

The remainder of this thesis is organized as follows: Chapter 2 examines the characteristics
of electronic commerce systems and reviews formal methods. Chapter 3 presents a model
of a business to consumer(B2C) electronic commerce system using UML diagrams and
Z notation. Chapter 4 describes a prototype implementation of the electronic commerce
system created from the model presented in Chapter 3. Finally, Chapter 5 contains my

conclusions and a roadmap for future work.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background Information and

Related Work

This chapter describes the design issues related to electronic commerce as well as an Internet-
based architecture for retrieval and presentation of data to the end user that is usable in
electronic commerce systems. An overview of formal methods, including the Z specification

language and the Unified Modeling Language is then presented.

2.1 Design Issues in Electronic Commerce

In electronic commerce systems, different classifications can be made depending on the users
of a particular system. Boll et al. [3] explain two different kinds of electronic commerce
systems: business-to-business and private consumer-to-business. Business-to-business sys-
tems involve transactions between two companies. Generally these companies already have
a business relationship and a large, secure network infrastructure between them. Electronic
Data Interchange, or EDI, has been used in the past to enable companies to complete
business-to-business of transactions [2, 3]. A private consumer-to-business system is meant
for users who generally wish to purchase goods from a business, such as an online retail
store. The systems can also be split into two further categories based on the number

of users at each end [3]. There can be a single supplier servicing multiple clients or a

11

12 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

multiple suppliers servicing a multiple clients. Maes [31] also describes three models of
electronic commerce similar to those described in [3]. These are business-to-business(B2B),
business-to-customer(B2C), and customer-to-customer(C2C). The first two correspond to
the similarly named formats in [3] but the third, customer-to-customer, is used to describe
such things as consumer online auctions. An example of online auctions is eBay [8] where
customers place bids on merchandise provided by other customers. The focus of this the-
sis is on business-to-customer(B2C) electronic commerce. Business-to-consumer electronic
commerce is the most common form of electronic commerce. Business-to-business elec-
tronic commerce systems are somewhat similar to business-to-customer systems but there
are some key differences in the participants involved and the environment in which such a
system operates. A business-to-business system generally deals with large corporate cus-
tomers moving goods and services to one another on a large scale. These shipments, such
as inventory for stores or parts needed for manufacturing processes, can be time sensitive
and large in number. Customer-to-customer electronic commerce has different requirements
than business-to-customer electronic commerce. In a customer-to-customer system, the sys-
tem itself simply acts as a medium for different members of the public to transact business
directly. In the case of auction-style electronic commerce systems, such as eBay, goods
are offered for sale by other members of the general public. While a business-to-customer
system also offers goods to the public, it embodies the spirit of a more traditional bricks-and-
mortar store where goods are offered for sale from a company at fixed prices. Negotiation
and bargaining do take place in business-to-customer systems between one consumer and
multiple vendors (i.e. via comparison shopping) while in customer-to-customer systems one
vendor offers a single item for sale with multiple buyers placing bids towards a final price
(i.e. an auction).

These different forms of electronic commerce require that the system under development
must satisfy different prerequisites. Guttman et al. [23] state that electronic commerce
generally requires such things as security, trust between parties, payment mechanisms, in-
termediaries, on-line catalogs of product information, some behind-the-scenes management,

as well as providing a welcome shopping environment through multimedia. Other similar

2.1. DESIGN IsSUES IN ELECTRONIC COMMERCE 13

requirements proposed by Aoun [1] are secure transactions, practical payment methods, and
the use of intelligent agents for product searching. There have been difficulties in realizing
these requirements. Bichler [2] cautions that the creation of electronic commerce applica-
tions is a risk because of a lack of application-level interoperability, reusable components,
and an absence of industry standards.

Many different methods and examples of programming solutions in electronic commerce
exist [2, 3, 7, 16, 21, 29, 31, 33]. Component-based design and component-oriented program-
ming are based around a small kernel with features being added via functionality objects
called components {2]. A component is a specific piece of functionality that can be accessed
by other software through a specified interface. Bichler [2] proposes a component-based
system development life-cycle to allow components to be programmed for the electronic
commerce environment. Also, Bichler [2] discusses different groups which are trying to pro-
mote inter-operability, such as the Open Trading Protocol (OTP), Open Financial Exchange
(OFX) and Open Buying on the Internet (OBI). The RMP system [3] is used in rural area
to give small- to medium-sized enterprises the ability to trade produce over the Internet.
The system is specified as a multi-client multi-server system with many defined processes.
These components enable a logical framework to be built from knowledge of the local com-
mercial situation. The RMP system also defines a typical electronic commerce transaction
as having the following steps: Searches for available products, places an order, negotiates
the price, upon acceptance and delivery issues an invoice and then finally triggers payment.
Dogac et al. [7] use workflows to model the electronic commerce market-place. By giving
buyers and sellers templates of the transactions to perform, the system is aware of what
methods and communications can take place. The model of a marketplace also has defined
system objects and specific functions defined for each object. Jennings et al. [29] describe
the objects that are needed to accomplish a business process in the ADEPT system while
Reich [33] provides an example of an auction market. He [24] provides an Object Z formal
specification of an online Bazaar system (a variant of an auction system). Ehikioya and
Hiebert [15], Maes et al. [31], and Guttman et al. [21] provide frameworks describing how

agents can act to model customer’s behaviours in conducting electronic commerce activities.

14 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

I—— Vendor
Network
. E-Commerce
Client |—Network— \
System
T Network
Network | Financial
System
Support Database

Figure 2.1: Three-Tier Client/Server Architecture for Electronic Commerce

They also provide a set of rules for the agents to follow during negotiation on behalf of the
user. Finally, Ehikioya and Walowetz [16] give an exacting overview of a transaction in an
electronic commerce system and they describe rules to ensure a transaction is successful
and complete.

From the above related work, it is clear that many implementations and ideas have been
developed to support electronic commerce. However, most of these are specialized in nature
or have a very specific problem domain. There is an absence of a model that can be applied

to various electronic commerce scenarios or suited to a multiple markets.

2.2 Web-based Architecture for Electronic Commerce

To provide access to an electronic commerce system, a generic three-tier client/server archi-
tecture [32] can be used with some additional features. Figure 2.1 shows a generic three-tier

client/server architecture. The components of figure 2.1 are described below.

1. Client

The client uses a Web browser to access the electronic commerce system. The client
can shop at any electronic commerce site on any computer provided access to the
Internet is available and the client machine has a browser. If the client is designed to
connect only to one electronic commerce system by running an application, it would
lose the flexibility gained from the Internet. When the client, electronic commerce

server, and support database are viewed as a three-tier system, the client is the first

2.2. WEB-BASED ARCHITECTURE FOR ELECTRONIC COMMERCE 15

tier.

2. Electronic Commerce Server

The electronic commerce server takes the burden of running the actual application
from the client machine and allows communication of requests with that client through
a Web browser. It also connects to the vendor and financial systems as well as the
support databases needed by the system. The electronic commerce server is responsi-
ble for transforming any inputs, outputs, and requests into different formats that both
the client and support systems can understand and use. In addition, the electronic
commerce server is responsible for the initiation of communications for electronic pay-
ment for the goods/services ordered by the client. The electronic commerce server is

the second tier in a three tier system.

3. Vendor and Financial Systems

A vendor system contains information about the goods/services offered for sale on
the electronic commerce system while the financial system keeps track of all the in-
formation needed for each transfer of funds. The vendor and financial systems are
distributed over the Internet and are accessible via Web queries. These systems are
not considered part of the three-tier client/electronic commerce server system as they

are unique entities. Each may be its own N-tier application.

4. Support Databases

‘The support databases contain all the information needed by the electronic commerce
system while operational. It is local to the electronic commerce system and is the

third tier in the three-tier environment.

There are many different steps involved in an electronic commerce transaction. Each
of these steps involves different entities in the architecture. For example, products can be
requested by a client in Figure 2.2 using the Hypertext Transfer Protocol(HTTP) [5]. A Web

server accepts any user input and the specified URL and communicates with the Database

16 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

Web e "] Database
Browser Web Server Gateway

Product Info
Database

Figure 2.2: Query and Retrieval of Product Information (modified from [32])

Gateway which processes them into a query understandable by the vendor’s system. This
is usually done with some program such as a CGI [19] (Common Gateway Interface) script.
The data from the vendor is formatted into HTML in the database gateway by another
CGI program and given to the Web server which sends the results to the client. There
are many other tools that can be used for retrieving data from databases on the Web,
including JDBC [3] and ColdFusion [25]. Each of these tools may be considered for an
implementation, depending on the specifics of the system being considered.

In an electronic commerce system, there are many different sources of data that may
be accessed and modified in a transaction. These sources are distributed over the Internet,
hidden behind the Web storefront, and implemented using different database management
systems. Because of the many different formats and systems used to represent data, diffi-
culties arise when these systems attempt to share data and work cohesively. This is a data
integration problem. The following factors contribute to the difficulty of consolidating Web
data sources. According to Ozsu and Valduriez [32], there can be a dynamic number of
data sources which may change frequently, the data sources themselves may have different
computational speeds, and the data may have varying levels of structure from source to
source. Also, Florescu et al. [17] state that the data may be embedded in HTML or may
be behind a form interface (such as CGI), so little is usually known about the data source;
the different sources are autonomous, and they can evolve into different forms. This means
that data that was once accessible to the system may change to a form that is unusable.

An additional problem exists because of the nature of web-based applications such as
electronic commerce. When a client uses an electronic commerce system, that client should
not have to re-enter an account name and password to access a different pages. This problem

arises because HTTP used by a web server is stateless and does not remember the client

2.3. UML AND THE Z SPECIFICATION LANGUAGE 17

information received. To overcome this statelessness problem, a session for that client must
be managed by a web-based electronic commerce system to support unlimited shopping and
browsing with a single authentication.

In an electronic commerce system there must also be some method of payment from
buyer to seller for the goods selected. Many methods exist for this kind of operation; credit
cards, on-line bank accounts, and e-cash. The transfer of money must be carefully guarded

and must protect the personal and financial information as it travels over the Internet.

2.3 UML and the Z Specification Language

In this thesis, UML and the Z specification language are used to model an electronic com-
merce system. Each of these languages is described below, giving an overview of the lan-

guage, features, advantages, and drawbacks.

2.3.1 The Unified Modeling Language (UML)

UML, created in 1997 by the Object Management Group [20, 36], is a system of graphical
representations for describing different aspects of object oriented software.

UML comprises nine main diagram types [18]: Activity, Collaboration, Component,
Class, Deployment, Object, Sequence, State and Use Case. Activity diagrams are often used
to model business processes or activities and are similar in presentation to a logical flow
chart. Collaboration and sequence diagrams are similar because they both show the step by
step interactions between objects and classes. Component diagrams show the breakdown of
code modules and their relationships to one another. Class and object diagrams showcase
the entities in the model and their associations. The key difference between object and
class diagrams is that class diagrams give a view of the data in the system at rest while
object diagrams show a snapshot of an instantiated system. Deployment diagrams show
how software is distributed across an enterprise (for distributed systems). State diagrams
show how a particular class may change state internally during an operation or process. A

use case diagram shows the principal actors in the system and describes the operations that

18 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

a user would see between those actors.

With these diagrams, the same information may be represented in different ways pro-
viding multiple views of a particular situation. However, this can permit some ambiguity.
In addition, different organizations use UML differently and there is no standard usage
methodology. Nevertheless, UML is still a very useful tool for describing object oriented

software.

2.3.2 The Z Specification Language

The Z specification language has evolved over the past years into its present form. The Z
specification language is based on set theory and mathematical logic [35, 37} and includes
mathematical types, first order predicate calculus, relations, functions and variables. Z uses
these elements as well as constructs called schemas to formally define system requirements.
The schemas are used to describe a system piece by piece, capturing both static and dynamic
aspects. A schema can be created independently and isolated from others but can also be
related and combined to give a greater or differing view of a system. These components of
the Z language allow the abstract definition of what a system should do without actually
detailing how it will be done. Questions about any of the operations of a system may
be answered confidently once a Z-based specification of the system is created because all
conditions of that operation have been defined. When natural language is used to describe
the operations or states of a system in a Z specification there is much less ambiguity than
when natural language is used alone without mathematical backing.

The Z specification language, through available tools such as Z/EVES [34], also allows
for the proof of correctness of a specification through type and syntax checking. These
proofs are important as they demonstrate that the system requirements have been properly
represented and are fundamentally correct. In addition, refinement of any specification is
possible by adding further precision to each schema and definition. Such refinement, allows
a specification to become closer to the actual implementation of the system and still be
provably correct in its nature. Because of the benefits described above and preliminary

results in [14], a formal specification model of an electronic commerce system using the

2.3. UML AND THE 7Z SPECIFICATION LLANGUAGE 19

Z specification language is a viable option, especially when used in conjunction with a
semi-formal method, such as UML.

One of the main constructs in the Z specification language is the schema. A schema
represents an abstract or real component of a system and all of the component’s properties.
By creating a specification using these schemas many of the complexities of a system can
be decomposed into smaller, more manageable units, and can also be abstracted to show
relationships between concepts and to encapsulate information.

For the following specification, several conventions are used. These include:
e 7 : an input variable

e ! : an output variable

e ' : a variable that is in a post-operation state (i.e. an updated variable)

e = : identifies that there was no state change in the schema
e A : identifies that there was a state change in the schema

Appendix A contains a detailed list of other Z notations used in this thesis. To illustrate
the above conventions and others used throughout the specification, some simple examples
are now provided.

The two types below are created to represent a concept in a specification. The examples
are a definition for a STRING, which is simply a collection of characters in some order, and

a STATUS which may have one of the values in the list following the new type’s name.

[STRING]
STATUS := start | complete | error

There are two methods of representation of schemas, horizontal and vertical. A simple
schema, representing some basic information about a customer, represented as a horizontal
schema, might be defined as follows:

Customer = [customerID : STRING; name : STRING; credit limit : N]
Of note in the definition above is the use of the previously defined type STRING and

the value of the credit.limit must be greater than or equal to 1.

20 CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

Constant values can also be represented in a Z specification by identifying a type and a

maximum value. For example, the maximum credit limit of any customer is defined below.

LIMIT : Ny

LIMIT <1000

The customer schema can then be redefined to incorporate this maximum value for a

credit limit and represented using a vertical schema as follows.

__ Customer
cutomerID : STRING

name : STRING
credit limit : Ny

credit.limit < LIMIT

Two schemas are defined below to show how state change operations are used in con-
junction with schemas to modify information stored in a schema and how information can
be passed to, and retrieved from, a schema. The IncreaseCreditLimit schema adds some
amount to the customer’s credit limit and the GetCustomerName schema returns the name

of the customer.

__IncreaseCreditLimit

A Customer
amount? : Nj

credit limit’ = credit limit + amount?

The IncreaseCreditLimit schema uses the A operator to show that the Customer schema
has changed in state. The new value of the credit.limit is shown by the ’ token. Finally
the ? operator is used to identify an input value to the schema, in this case amount, which

must be greater than or equal to 1.

__ GetCustomerName

=Customer
customer_name! : STRING

customer_.name! = name

The GetCustomerName schema users the = operator to show that the Customer schema

2.3. UML AND THE 7 SPECIFICATION LANGUAGE 21

has not changed but the properties are being accessed to produce some result. The variable

holding the output value, customer name in this case, is marked with the ! identifier.

22

CHAPTER 2. BACKGROUND INFORMATION AND RELATED WORK

Chapter 3

A Formal Model of an Electronic

Commerce System

This chapter presents a model of an electronic commerce system that allows buyers and
sellers to interact in an organized and productive manner. This model resembles an ordinary
marketplace with many different customers looking for various items and many different
vendors with goods for sale. These multiple buyers can interact with the multiple sellers,
browsing and searching through product inventories and selecting goods for purchase from
different merchants. When this concept is applied to the electronic domain, there are many
different customers coming to a single electronic commerce portal for a variety of different
goods instead of customers visiting several different vendor sites for the goods they need.
An electronic commerce portal can be described as a single entry point (i.e. web page) that
allows a client access to a multiple vendor electronic commerce offerings. From a vendor’s
perspective, this is beneficial as many different potential buyers have the opportunity to
browse its products.

The next section describes the components of the model; giving a breakdown of their
attributes and operations used in the system and detailing some of the benefits of this
model. A detailed analysis of each part of this electronic commerce system is also included
in this section and show graphical representations of how the system components interact

giving a detailed account of the processes carried out in the virtual marketplace using UML.

23

24 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Finally, a formal specification of the model using the Z specification language is presented.

3.1 Model Description

This section outlines the model of the electronic commerce system, detailing the major
objects. The main entities in the model are the buyer, the seller, the electronic commerce
marketplace, and support systems. The details of these entities are provided in this section.

The basic tenet of this electronic commerce model is that there exists some buyers ac-
cessing a listing of goods/services they may wish to purchase that are provided by some
sellers and that each event is managed by the electronic commerce system. The buyer and
seller each have priorities that they wish represented in the system. Buyers may want the
facility to find goods/services that interest them quickly and efficiently while sellers want
to ensure that their products are viewed and purchased by as many buyers as possible.
The electronic commerce system ensures that each business transaction is secure and ex-
ecutes completely in addition to providing a forum for the buyers and sellers to interact.
The electronic commerce system needs the support systems’ services to complete its tasks

successfully.

3.1.1 The Buyer

The buyer is a consumer that wishes to purchase one or more products from any number of
sellers through the electronic commerce system. Buyers access the system via a web page
portal. A buyer may create a personalized account upon initial visit which is necessary to
perform some secure transactions. The buyer then has a unique identifier and password
with which he/she accesses the electronic commerce system. Billing information about a
buyer including name, address, phone, fax, email, and any other details are kept so that
when the buyer purchases goods/services in the system an invoice can be generated and
sent. Once an order is made, it must be shipped to some location. The shipping addresses
stored for the buyer can contain many addresses. This allows many different destinations

to be kept on file and removes the need for re-entry when more than one order is sent to

3.1. MODEL DESCRIPTION 25

the same address. Payment information, which is information about the different payment
methods the buyer has, is also stored. The electronic commerce system also keeps credit
card and bank account numbers, expiry dates and other pertinent related information. A
purchase history is also kept for each buyer. This history includes information on each
transaction undertaken such as goods purchased, time and date of purchase, method of
payment, and billing and shipping addresses.

When a buyer logs in using a unique identifier and password, the virtual marketplace
creates a session for the buyer. When the buyer logs out, the session is closed and becomes
part of the buyer’s history in the electronic commerce system. A buyer can add, modify, or
delete his/her own existing shipping addresses and payment methods. The buyer can browse
or search his/her transactions in the system to check shipping dates or compare purchases
against financial records for accuracy or product warranty information. The buyer also has
access to billing and login information and can make changes as necessary, such as changing
a billing address or password modification. The buyer can browse for items they wish to
purchase using an interface supplied by the virtual marketplace. The buyer can search by
product number, type or price. The buyer can search using different criteria and can, at
any time, go back or start a new search. Once the buyer finds an item to buy or once he/she
has narrowed the criteria by some limiting factors, different products can be compared to
determine which would be the optimal selection. The criteria for this comparison can be
price, shipping options, or other characteristics of the products. Finally, the buyer can
purchase selected products during a session in the electronic commerce system. The buyer
pays according to one of the payment methods, and a bill is sent to the billing address, and

the products are shipped to the shipping address specified by the buyer.

3.1.2 The Seller

The seller is a corporate entity selling a variety of products. In the system, sellers are
represented by a human agent who has access to the seller’s login and password information,
set up in a similar fashion to the buyer. The system maintains information about the

seller; such as name, location, and contact information including customer service phone

26 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

numbers and email addresses. For a seller to receive payments for its goods/services sold
in the electronic commerce system, some payment information is needed. This information
includes account numbers and financial institution information such as address and contact
details. The system needs to keep track of what products are available and which seller has
them as well as their prices, availability information, and other product characteristics.
When a human agent logs in (for the seller), a session is created to manage the agent’s
activities in the system. When an agent logs out, the agent’s session is closed and all the
operations in that session become part of the seller’s history in the system. The operations
of a seller include modifying corporate information, viewing sales and payment information,
searching the master inventory of all products, viewing and comparing products, and man-
aging the products the seller has for sale in the system. The seller can view and modify
its corporate information and make any changes to address, profile, contact information, or
password attributes. This functionality allows the seller to remotely manage its information.
The seller can also view its sales history in the system. A seller can enter a date range, prod-
uct number, order number, or other keyword to retrieve matching transactions. The seller
must also be able to edit payment information. A seller can modify account information
such as the account number, the type of the account, and any other information pertain-
ing to the account or financial institution. The seller can browse for items they wish to
investigate using the virtual market’s interface. The seller can search the product database
using different criteria, such as product number, type or price, across not only its own
products but those of its competitors in the system. Once the seller narrows its search by
some limiting factor, different products can be compared. The criteria for this comparison
can be price, shipping options, or different characteristics of products. Sellers can compare
products to ensure they remain competitive and to possibly identify any weaknesses in the
range of products they offer. The seller can use this information to produce business plans,
to move into new markets, or move out of old unprofitable markets/products. Finally, the
seller can manage its own products in the system. If the seller needs to add or remove some
of its products or modify any of the characteristics of a particular product, the seller does

so through the virtual market interface. These operations allow a seller to be in complete

3.1. MODEL DESCRIPTION 27

control of its operations and only contact the administrators of the electronic commerce
system in the event of an error or if special service is required. The seller is responsible for
fulfilling buyer orders received from the electronic commerce system. The seller is expected
to ship the ordered items to the buyer in the time frame specified in the publicly available

product information.

3.1.3 The Electronic Commerce System

The system that manages the virtual marketplace has many different tasks to complete and
large amounts of data to maintain. The electronic commerce system is best described by
breaking it down into logical components. Each of these components is briefly described.
The marketplace manager must be able to manage buyer and seller sessions, keep a master
inventory of products, manage each transaction from beginning to end, manage all the
seller financial accounts, handle all queries on the inventory, and allow comparisons between
products on behalf of buyers and sellers.

There are two components of the electronic commerce system for managing the account
information of buyers and sellers. The buyer session handler is responsible for loading
all of the pertinent information about a buyer when needed. This information includes
buyer payment methods, the products currently selected by the buyer, and any information
required from any of the Web pages in the system previously accessed by the buyer, including
any set preferences for viewing information. The seller session handler functions in the same
manner as the buyer session handler except that it handles seller information, needs, and
requests.

The master inventory contains a list of all the products available to the buyers accessing
the system. The master inventory consists of all the products that each seller is offering.
The products are managed by each seller and the master inventory keeps track of availability
of products and shipping times. The sellers update the master inventory as they add or
remove products.

Each time a buyer decides to purchase any products from the virtual marketplace, the

buyer initiates a transaction within the system. Each transaction has a definite beginning

28 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

and a definite end point. Each transaction must end in some state that will not harm any
of the parties in the marketplace. Transactions involve one buyer, the electronic commerce
system and one or more sellers. The transaction manager is responsible for each of these
transactions. Many different transactions can be ongoing in the system at the same time
and the completeness and correctness of each is important to the integrity of the entire
system.

The process of purchasing one or more items from the system requires multiple steps.
Before this process begins, the buyer must select one or more products from any number of
sellers. The buyer is shown all of the relevant details about the selected purchase including
the product, quantity, price, shipping charges, and any applicable taxes. This information
is reviewed by the buyer and if it is satisfactory, the buyer confirms the purchase. If the
buyer does not confirm the purchase, the buyer may remove any erroneous items, send a
request for more information to the electronic commerce system in the form of a customer
service request, or continue shopping for other products. Once the buyer has confirmed the
goods he/she wishes to purchase, the buyer can select a shipping address or can enter a
new address to ship to if required. Each product to be purchased can be sent to a different
address or all can be sent to the same one. After all goods have been assigned shipping
addresses the buyer must select a method of payment for this purchase. In the same manner
as choosing shipping addresses, the buyer can use an existing payment method or create
a new one. All of the details of this purchase are once again presented to the buyer for
confirmation once the payment method has been decided. Once the buyer confirms the
finalization of all products in the transaction, payment is processed through the electronic
commerce system. The transaction manager checks all the details of the purchase to ensure
that they are correct and then delivers the purchase requests to each seller that has one of
their products listed in the buyer’s purchase.

Once the orders have been sent, the transaction manager builds an invoice for the
purchase and records all of the details in its account manager for payment to the seller
of the products. An entry is created at this time in the buyer’s transaction history for

the completed sale and the invoice is presented to the buyer (on their computer screen

3.1. MODEL DESCRIPTION 29

and is sent to the email address(es) specified in their buyer information). The seller is
responsible for shipping the products to the buyer upon receipt of the order created during
the transaction.

Buyers accessing the system through their account may not know the exact name or
product number of a product that they wish to purchase. The buyer can access a browse
and search function where details such as product type, name, model numbers or other
characteristics can be entered and used to find matching products. By using this function,
a buyer can quickly find the products they are interested in and easily change the criteria to
further narrow the scope to a more specific range of products. This search uses the master
inventory of products. Such searches are handled in the electronic commerce system by a
search engine.

When using the search function, buyers may find a particular product or types of prod-
ucts they are interested in and want to compare for the lowest price, best combination
of features, or some other criteria they desire. The comparison engine in the electronic
commerce system is used for this purpose. The comparison engine reports which products
match the supplied criteria, ordered by the strength of the matching criteria. In addition
to the buyer using this feature, a seller may also use the comparison engine to compare its
products with those of its competitors to determine if it is offering a good and fair price,

etc., for its own products.

3.1.4 Support Systems

The electronic commerce system requires certain external entities to complete its tasks
correctly. These entities assist with the supply of goods to the system and allow for the
transfer of funds from a buyer to the seller.

Each seller has one or more suppliers that provide the products that the seller offers for
sale. The seller buys a ‘lot’ of a particular product at an agreed price and at a guaranteed
shipping time. This method of purchasing goods/services for sale allows the sellers to
determine what products they will offer in the electronic commerce system to buyers and

to set a price and shipping time for them. When a product is purchased from a seller, an

30 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

order is sent to the supplier to ship the items to the address specified by the buyer. The
order gets from the seller to the supplier through different methods, such as mail, fax, email
or another business-to-business electronic commerce system.

When a buyer purchases goods or services from a seller, money must be transferred
from the buyer to the seller as payment. For this to happen in a correct and secure manner,
several third party entities must be involved. The buyer and the seller both have financial
institutions which hold their monetary assets. This can be a credit card company, bank,
or other such monetary institution. In addition to the financial institutions, a method
of authorization and settlement, called a processing gateway, must exist. This processing
gateway allows for secure communication between the electronic commerce system and the
buyer’s and seller’s financial institutions. Some current incarnations of these processing
gateways include PayPal [26], Verisign [27], and any of the telephone solutions seen in any

store that accepts credit or debit cards.

3.2 Unified Modeling Language Description

The Unified Modeling Language (UML) [20] is used to model the system described above
(Section 3.1) in graphical form. Class, sequence, use case, state, activity and deployment
diagrams provide a better understanding of the electronic commerce system and make
clear the connections between the different components. Each type of diagram offers a
different view of some components of the electronic commerce system. Class diagrams
show a static view of the components of a system and allow the representation of the
relationships between classes. Sequence diagrams show the operational steps of a logical
task by identifying and linking all the components involved. State diagrams show how
a given component changes over time; providing a further level of detail on components
requiring transitions over time. Activity diagrams show the logical and programmatic flow
of a task and what conditions result in certain outcomes. Finally, deployment diagrams
show how a hardware or abstract software implementation of a system will be structured

in terms of where the various system components will be placed. These diagrams give a

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 31

robust description of an electronic commerce system. The UML diagrams in this thesis

were created using Enterprise Architect 3.50 [30].

3.2.1 Class Diagrams

In the UML, class diagrams are used to show the components of a system and the relation-
ships between them. They are static diagrams showing data stored and operations carried
out by each component. This electronic commerce system model is described by one cen-
tral class diagram and then followed by several smaller diagrams detailing more specific

components of the system.

Electronic Commerce System Classes

Figure 3.1 shows the major classes in the electronic commerce(EC) system. The EC System
class represents the whole system containing the registered buyers and sellers, the buyer and
seller sessions that are currently active, the transaction manager for completing purchases,
the search engine used to track current searches and the master inventory of products
available. Other components include the payment manager and the comparison engine.
The operations of the EC System class start and stop the system and add and remove

buyers and sellers.

Buyer Classes

Figure 3.2 shows the classes related to buyers in the electronic commerce system. The
Buyer class contains the information about a specific buyer that logs into the system. The
buyer has a unique ID, information about his/her location and contact details, a non-empty
list of shipping addresses and a number of payment methods for products. The Buyer class
contains methods for a log in and log out, modification to any of their details except their
Buyer ID, viewing past transactions, searching the available inventory, to run comparisons
on goods, and to view details of and purchase products. The Buyer Session Handler class
is responsible for tracking all the buyers that are in the system. It contains a list of all

the open buyer sessions and can open new sessions and close existing ones. The Buyer

32

CHAPTER 3.

Buyer Session Handler

Buyer Sessions: Array

+ Create Buyer Session()
+ Close Buyer Session{)

Seller Session Handler

Seller Sessions: Array

+ Create Seller Session()
+ Close Seller Session()

A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Payment Manager Master Inventory
- Payments: Array - Product Entries: Aray
- Proc Gateway: Info -
+ Product Search(} : void
+ Generate Statements() : void + Return Product Entry() : void
+ Create Payment() : void + Add Praduct Entry() : void
+ Delete Product Entry() : void
EC System >

Buyer List: Array
Seller List: Array

Search Engine

Buyer Sessions: Buyer Session Handler
Seller Sessions: Seller Session Handler

Current Searches: Array

Transaction Manager: Transaction Manager
Search Engine: Search Engine

Create Search() : void
Delete Search() : void

- Buyer Account Information: Info -
- Shipping Addresses: Array -
- Payment Methods: Array

- - - Comparison Engine: Comparison Engine
Compasison Engine - Master Inventory: Master inventory
- Payment Manager. Payment Manager "
- Curent Comparisons: Array Y 9 y ’ Transaction Manager
- - + Start System() - -
+ Create Comparison() : void <+ Create Buyer() Active Transactions: Array
+ Return Comparison Results() : void + Create Seller) <> - Completed Transactions: Array
+ Delete Comparison() : veid
P 0 : 8::5:: gz%::g Create Transaction() : void
+ Stop System() Close Transaction() : void
% Y ? Return Transaction Set() : void
Buyer Seller
- BuyeriD: ID - SellerID: D

Seller Account Information: info
Payment Information:

Log In{

Log InQ

Log Out()

R .

Log Out{)

Modify Account Information(}
Modify Shipping Addresses()
Modify Payment Methods()
View Transaction History()
Search Inventory()

View Product Details()
Purchase Product()
Compare Products()

R

Modify Account Information()
Modify Payment Information)
View Sales History()

Search Inventory()

View Product Details(
Compare Products()

Manage Product Inventory()

Figure 3.1: Electronic Commerce System Classes

3.2. UNiFIED MODELING LANGUAGE DESCRIPTION 33

Buyer : Buyer Session Handler

- BuyerlD: ID - Buyer Sessions: Array
- Buyer Account Information: Info -
- Shipping Addresses: Array + Create Buyer Session()

Payment Methods: Array + Close Buyer Session()

Log Iny

Log Out()

Madify Account Information()
Modify Shipping Addresses{)
Madify Payment Methods{)
View Transaction Histary()
Search Inventory(}

View Product Details()
Purchase Product{)

Compare Products(y Buyer Session

+ 4tk 4+

0..n - Current Buyer ID: D
- Entry Time: Timestamp
- Exit Time: Timestamp
Ln - Actions Taken: Array
Financial Institution - Selected Products: Array

Return Shipping Addresses()
Return Payment Methods()
Qpen Session()

Close Session()

- Location Information: Info
- Accounts: Array

+ ot o+

+ Credit Account() : void
+ Debit Account() : void
+ Retum Infof) : void

Figure 3.2: Buyer Classes

Session class contains information about the buyer’s activities in the electronic commerce
system. The times the buyer enters and exits the system are recorded as well as what
actions the buyer undertakes while logged in and a list of any products he/she selected
for purchase but are unpaid. The buyer’s session is responsible for retrieving other buyer
information stored in the system including shipping addresses and payment methods when
required. Each buyer has one or more financial institutions that handles monetary transfers
when purchasing products through the system. These financial institutions may represent
a credit card company, bank, or other methods of payment and are represented by the

Financial Institution class.

Seller Classes

Figure 3.3 shows the classes related to sellers in the electronic commerce system. The Seller
class contains a unique ID for the seller, information about his/her location and contact
details, and information about their account for payment of goods sold. The Seller class

methods are similar to those of the Buyer class as the seller can log in and log out, modify

34

CHAPTER 3. A FOrRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Supplier

Products: Array

Product

O.n

Product ID: ID
DBescription: Info
Price: double

Seller

Seller ID: ID
Seller Contact Information: info
Payment Information:

Seller Session Handler

Seller Sessions: Array

ot b h o+ o+

Log In(}

Log Out()

Modify Account Information)
Madify Payment Information()
View Sales History()

Search Inventory()

iew Product Details()
Compare Products()

vtanage Product Inventory(y

Create Seller Session()
Close Seller Session()

Seller Session

O.n
1

Financial lastitution

Current Seller ID: ID
Entry Time: Timestamp
Exit Time: Timestamp
Actions Taken: Array

Location Information: Info
Accounts: Array

Credit Account() : void
Debit Account() : void
Retumn Infop) : void

Open Session()
Close Session)

Figure 3.3: Seller Classes

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 35

Master inventory Product Entry
Product Entries: Array - Product Name: String

- ProductID: ID

+ Product Search() : void «>———1- Description: Info

+ Return Product Entry() : void - Price Per Unit: Currency

+ Add Product Entry() : void - Shipping Time: int

+ Delete Product Entry() : void
+ Modify Product Details() : void

0..n

Seller

- SelleriD: ID
Seller Account Information: Info
Payment Information:

Log In)

Log Out()

Modify Account Information()
Madify Payment Information()
View Sales History()

Search Inventory()

View Product Details()
Compare Products()

Manage Product Inventory()

T

Figure 3.4: Inventory Classes

account and payment information, view sales history, search the inventory for products,
compare and view the details of products, and manage product inventory. The Seller
Session Handler class maintains a list of the current seller sessions in the system. It can
open and close seller sessions. The Seller Session class contains information about the
seller logged in, when the seller enters and exits the system and any actions the seller
undertakes while logged into the system. Each seller has a financial institution, represented
by the Financial Institution class, that handles its monetary transfers when buyers purchase
products through the system. The financial institution may be a credit card company,
bank, or other method of managing money. The products that a seller offers for sale in the
electronic commerce system are provided by a supplier, shown as the Product and Supplier
classes respectively. This supplier is a third party, which ensures that the seller has goods
for sale to buyers and the supplier delivers the goods directly to the buyer upon receiving

an order from the seller.

36 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Search Engine Search
- Current Searches: Array - SearchID: ID
- Criteria:
+ Create Search() : void > 1. Results:

+ Delete Search{) : void

+ Run Search() : void
+ Return Results() : void

O.n G.n
1 1
Master Inventory Buyer
Product Entries: Array - BuyerlD: 1D
- - Buyer Account information: Info
+ Product Search() : void - Shipping Addresses: Array
+ Return Product Entry() © void - Payment Methods: Array
+ Add Product Entry() : void
+ Delete Product Entry(} : void Log Inf)
Log Out)

Modify Account Information{)
Moedify Shipping Addresses()
Modify Payment Methods()
View Transaction History(}
Search Inventory()

View Product Details()
Purchase Product()
Compare Praducts(}

R

Figure 3.5: Search Classes

Inventory Classes

Figure 3.4 shows the classes responsible for products and their availability. The Master
Inventory class contains a list of all the products in the system and it allows the addition
and removal of products from the inventory. In addition, the master inventory returns
search results and detailed information from individual product entries when searches are
initiated. The Product Entry class stores information about a specific product. It contains
a name and ID for each product as well as a description of the product’s characteristics,
price per unit, and the shipping time needed to send the product from seller to buyer.
An operation of this class is to permit the modification of product properties. There is
a relationship between product entries and sellers where each product entry belongs to a

seller and a seller may have many different product entries.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 37

Comparison Engine Comparison

- Current Comparisons: Array - Comparison ID: 1D
- Criteria:

+ Create Comparison(} : void < >— . Results:

+ Return Comparison Results{) : void - Comparison Logic:

+ Delete Cormparison() : void
+ Run Comparisen() : void
+ Retum Results{) : void

0.n O.n
Buyer
1 1
- BuyerD: D
- Buyer Account Information: Info Master Inventory
- Shipping Addresses: Array
- Payment Methods: Array - Product Entries: Array
Log InQ + Product Search() : void
Log Out(+ Return Product Entry() : void
Modify Account Information(} + Add Product Entry() : void
Madify Shipping Addresses() + Delete Product Entry() : void
Modify Payment Methods()
View Transaction History()

Search Inventory()
View Product Details(}
Purchase Product()
Compare Praducts()

R

Figure 3.6: Comparaison Classes

Search Classes

Figure 3.5 shows the classes that are needed to manage and search for products in the
electronic commerce system. The Search Engine class contains a list of all the current
searches(represented by the Search class) in the system and allows the creation of new
searches and the removal of completed searches. The Search class contains the specific
details of an individual search. Each search has a unique identifier, some search criteria
and results that match the criteria. The operations of the Search class include executing
a search and returning search results to the buyer or seller that initiates the search. The
Search class contacts the master inventory for product details to acquire the search results.
The Buyer class is included here to show that each search belongs to a particular buyer and
that any buyer can have concurrent searches in the system. It is important to note that a

seller can also request a search operation.

38 CHAPTER 3. A FOrRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Comparison Classes

Comparisons between products are handled by the classes shown in Figure 3.6. The Com-
parison Engine class manages the current comparisons in the system and creates new com-
parisons, returns results of completed comparisons and removes old comparisons. Each
Comparison class represents a contrast of different product characteristics. Each compari-
son has a unique ID for use by the system, some criteria for determining the results and a
logic component. The logical component of each Comparison class contains what operators
are to be used to determine the results including minimums or maximums. The Compari-
son class applies those criteria and logic to the Master Inventory class to obtain results and
then returns them to the comparison engine for release to a buyer or seller. Buyers may
have multiple comparisons in the system, similar to searches, while any comparison belongs
to only one buyer. As noted in the Search classes description, a seller may also compare

products.

Transaction Classes

The Transaction class diagram shows the necessary classes for a buyer to purchase goods
through the electronic commerce system. The Transaction Manager class contains attributes
for all the active and completed transactions in the system and manages the creation and
deletion of Transaction objects. The transaction manager is also responsible for returning
completed transaction histories to buyers and sellers as requested. The Transaction class
represents a purchase activity in the system. The Transaction class contains the ID of
the buyer making the purchase, product and purchase information on each of the sellers
involved, and an invoice. The Transaction class builds the list of sellers and products
involved, sends orders for shipping to sellers, and creates an invoice for the transaction.
It also invokes the payment manager to handle the electronic transfer of money. The
Invoice class represents the information sent to the buyer upon successful completion of
the transaction. It includes buyer details and a list of all purchases made. Each entry in
this list includes seller details, the shipping address of each purchase, the billing address,

product information, quantity, price, payment method, and the date of the purchase. Each

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION

Transaction Manager

Adtive Transactions: Array
Completed Transactions: Asay

+ 4

Create Transaction(y : void
Close Transaction() : void
Retuin Transaction Set)) : void

Invoice

Buyer Details:
Purchases: amay

Product Entry

Product Name: String
ProductID: ID
Description: info

Price Per Unit: Currency
Shipping Time: int

Transaction

BuyerID: 1D
Seller Purchases: Amay
invoice: lavoice

Create Product Purchase(: void
Send Orders(: void
Craate Invoice() : void

Payment Manager

- Payments: Aray
- Proc Gateway: Info

+

Generate Statement(: void
+ Create Payment) : void

Seller Purchase

Seller1D: 1D
SellerOrder. Seller Ordet
ProductPurchases: amay

+ o+ o+

Create Product Purchase() : void
Create Seliar Order) : void
Attempt Payment() : void

Product Purchase

Modify Product DetailsQ : void

Figure 3.7: Transaction Classes

ID: ID

Product information: Product Entry
Shipping Address: Address
Payment Method: Payment
Quantity: int

Seller Order

- SellerId; 1D

& - QrderLines: amay

+ Create Order Line() : void

Order Line

- ProductiD: ID
- Shipping Address: Address

Get Product Information(: void
Get Shipping Addresse) : void
Get Paymant MethodsQ : void

1l- Quantity: int

39

40 CHAPTER 3. A ForRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Payment Manager Payment Seller
- Payments: Array - SelleriD: ID - Seller ID: D
- Proc Gateway: Info - Seller Fl info: Info - Seller Contact Information: info
- BuyerID: ID - Payment Information:
+ Generate Statements() : void f>—— . Buger Flinfo: Info d
4+ Create Payment() : void - Amount: Currency + Login{
+ Log Out()
+ Make Payment() : void + Modify Account Information{)
+ Modify Payment Information()
+ View Sales History()
0..n O.n + Search Inventory()
+ View Product Details()
4 + Compare Products()
! + Manage Product Inventory()
Processing Gateway On
Seller Financial Institution __] -
- Buyer Fin Inst: Financial Institution 1
- Seller Fin Inst: Financial Institution - Location Information: Info Buyer
- Amount: float ~ - Accounts: Array
.0..n
+ Veiify Fin Insts() : void + Credit Account() : void - SUyer LE). D nformation Inf
- Validate() : void + Debit Account() : void SE&{::ingc;:\c;%?eszzgni\Ir?; nio
- Process Payment() : vaid + _Retum Infof) - void - Payment Methods: Array
O.n
+ Login{
O.n + Log Outl)
I+ Modify Account Information()
Buyer Financial Institution + Modify Shipping Addresses()
+ Modify Payment Methods()
- Location Information: info + View Transaction History()
- Accounts: Array + Search Inventory(}
- - 0.ni+ View Product Details()
+ Credit Account() : void + Purchase Product()
+ Debit Account() : void + Compare Products()
+ Return Info{j : void

Figure 3.8: Payment Classes

Transaction class contains an instance of the Seller Purchase class for each seller involved
in the transaction. This class contains the ID of the seller involved in the sale, a list of
product purchases, and an order line for the seller. Each product purchase acquires and
confirms product information, shipping addresses and payment methods from the buyer.
The Product Entry class is shown in this diagram to demonstrate that each product purchase
must have one product entry but that any particular product entry can appear in zero or
many product purchases. Each Seller Order object consists of one or more Order Line
objects and a seller id. Each Order Line object represents which product to ship, the
shipping address for delivery, the quantity of items on order, and a date when the shipment

must take place according to promises made by the seller in the product description.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 41

Payment Classes

Figure 3.8 shows the classes involved in making payment as part of a purchase transaction.
The main controlling object is the payment manager, which is responsible for generating a
payment for each supplier involved in a transaction. It contains a list of all payments and
location and usage information for a processing gateway to use for electronic fund transfers.
The Payment class is responsible for communicating with the various parties involved in the
purchase and getting the appropriate information to each. It contains information about
both the buyer and seller(s), and their respective financial institutions and the amount(s) to
be transferred. The processing gateway is a third party entity, usually outside the electronic
commerce system, responsible for the actual verification, validation and processing between

the buyer’s financial institution and seller(s) financial institution(s).

3.2.2 Use Case Diagrams

Use case diagrams show the basic operations between actors in a system generally from
the point of view of a user. A use case diagram presents an abstract view, at a high level,
of interactions between major components of a system. In this thesis, the use cases of
the buyer and seller in the electronic commerce system are presented. Any of the other

previously defined classes could be represented in use cases but are omitted in this thesis.

Buyer Use Case

Figure 3.9 shows the actions that a buyer can take in the electronic commerce system. The
actions include logging in and out of the system, viewing the buyer’s transaction history,
searching the entire inventory of products, viewing details about products, making com-
parisons between products, purchasing products from the system, and managing shipping

addresses and payment methods.

Seller Use Case

Figure 3.10 shows all the operations that a seller can perform in the electronic commerce

system. The operations include logging in and out of the system, viewing the seller’s

42 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer

5 Wanagé
. (Compare urchase : Payment
4 A . Products / \ Products / Y
e P . o o dethod
e ot T =5 i ./’ . s s N

Electronic
Commerce

System

Figure 3.9: Buyer Use Case

Seller

iew
Product
etallﬂ‘

Manage
Account
Info_

Manage
Inventory /

Compare
4 \Products ¢

e

%.—.
)

Electronic
Commerce

System

Figure 3.10: Seller Use Case

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 43

Buyer Buyer
Session

Handler

Figure 3.11: Buyer Login

sales history, searching the product inventory, viewing product details, making compar-
isons between products, managing financial account information and making changes to the
inventory of products.

Although not all use cases have been presented for the electronic commerce system,
the following sequence diagrams use the buyer and seller use cases to give further detail of
the actors and steps involved. Each of the activities performed in the use cases are now

presented as sequence diagrams.

3.2.3 Sequence Diagrams

Sequence diagrams show the interactions between different objects in a system. A sequence
diagram shows the order of operations and process flow as well as gives more detailed
operations for a corresponding use case.

Buyer Login

When a buyer wishes to enter the electronic commerce system, they must log in. The steps

necessary for this activity are detailed below.

1. Request Login - The buyer enters the proper identification information via the buyer

session handler and submits this information over the Internet.

2. Process Login - If the information entered is correct the buyer session handler opens

a session for the buyer and returns welcome information to the buyer.

Figure 3.11 illustrates the buyer login activity.

44 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer Buyer
Session
Handler

Figure 3.12: Buyer Logout

Buyer Transaction
Manager

Figure 3.13: View Transaction History

Buyer Logout
Similar to the buyer login, when a buyer exits the electronic commerce system the buyer

logout activity occurs.

1. Request Logout - The buyer wishes to leave the system and activates the logout option

through the web interface.

2. Process Logout - The buyer session handler saves the buyer’s current state in the
system, updates any information that may have changed and displays a screen to the

buyer indicating a successful logout.

Figure 3.12 shows the sequence diagram for the Buyer Logout activity.

View Transaction History

The activity in the buyer use case for investigating a buyer’s transaction history is demon-

strated next.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 45

Buvyer Search Search Master
Engine Inventory

.

Figure 3.14: Search Inventory

1. Request Transaction History - The buyer requests, through a web page interface,
to view some or all of the buyer’s previous transactions. This interface allows the
specification of several key criteria to return a subset of the buyer’s transactions if

desired.

2. Return Transactions - The transaction manager processes the request and returns the

data requested.

Figure 3.13 shows the View Transaction History activity in as a sequence diagram.

Search Inventory
‘The buyer activity of searching the master inventory of products is next shown as a sequence

diagram.

1. Request Search Inventory - The buyer requests information about certain products

by specifying search criteria through a web interface presented by the search engine.

2. Create New Search - The search engine creates a new Search object to handle the

details of the search request.

3. Query Master Inventory - The Search object takes the criteria specified by the buyer

and presents it as a query to the master inventory for processing.

46 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer Master
Inventory

Figure 3.15: View Product Details

4. Return Products - The master inventory returns the product information for those

products matching the buyer’s search criteria.

5. Display Products - The Search object formats the product information returned from

the buyer’s query for the buyer to browse.

Figure 3.14 shows the sequence diagram of the search inventory activity.

View Product Details

A buyer may view the details of a particular product in the master inventory. That activity

1s described next.

1. Request Product Details - The buyer desires more information about a specific product

and requests those product details from the master inventory.

2. Return Product Details - The master inventory returns all the details of the selected

product (formatted appropriately) to the buyer.
Figure 3.15 shows the sequence diagram illustration for the view product details activity.
Compare Products
The activity of comparing multiple products in the master inventory is now shown.

1. Request Comparison - The buyer selects some products in the list from a previous
product search and requests that a comparison be run on them by the comparison

engine using a specified criteria.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 47

Buyer CorEnga_n'son Comparison Master Inventory
Lngine
3 B
[——— ﬁ ---------------------------

Figure 3.16: Compare Products

2. Create New Comparison - The comparison engine creates a new Comparison object

to handle the buyer’s request.

3. Request Product Details - For each product that is to be compared the Comparison

object gets the product details from the master inventory.

4. Return Product Details - The master inventory returns all of the product details
needed by the Comparison object so it can use the data to give the buyer an idea of

the strengths and weaknesses of the goods involved in the comparison.

5. Return Comparison Results - Once the Comparison object receives the product details
from the master inventory and completes its comparison of the products, it returns

the comparison results to the buyer.

Figure 3.16 shows the sequence diagram for the Compare Products activity.

Purchase Product

The sequence of events that may occur in a Purchase Product use case activity may change,
depending on errors or actions by other components of the system. Figures 3.17-3.19 show a
successful purchase operation of one Product from one Seller. If a Buyer wishes to purchase
multiple products from different Sellers, many of the steps below will be repeated as many

times as needed. To show the core functionality of this operation only a best case scenario is

48 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer Transactign Transaction Master Inventory Product Entry
Manager

'—

Figure 3.17: Purchase Product - Part I

considered for the sequence diagrams. The diagrams presented next detail the steps taken

by the electronic commerce system when a product is purchased by a buyer.

1. Inmitiate Purchase - The buyer notifies the system via the transaction manager that

he/she desires to purchase some product.

2. Create New Transaction - The transaction manager creates a new Transaction object

and initiates the transaction to complete the work required for the purchase.

3. Request Product Details - The Transaction object requests the product entry infor-

mation needed from the master inventory.

4. Get Product Entry - The master inventory requests some further information from

the product entry involved in the transaction.

5. Return Product Entry - The product entry returns the information needed by the

Transaction object to the master Inventory.

6. Return Product Information - The master inventory passes the relevant product de-

tails to the Transaction object for the purchase.

3.2.

10.

11.

12.

13.

UNIFIED MODELING LANGUAGE DESCRIPTION 49

Buyer Transaction Buyer
Session
Handler

-

F

Fy

13.

[14.
0 ! Y

Figure 3.18: Purchase Product - Part II

f 3

Y

. Request Product Confirmation - The Transaction object sends the product informa-

tion to the buyer in an understandable format for confirmation that this product is

to be purchased.
Submit Product - The buyer confirms the product to purchase.

Get Shipping Addresses - The Transaction object requests the available shipping ad-

dresses of the buyer from the buyer session handler which stores this information.

Return Shipping Addresses - The buyer session handler returns to the Transaction
object the default shipping addresses that the buyer has selected previously. The
buyer has two other options available but not shown here. A buyer may create a new
shipping address on the spot or select one of their existing addresses. For brevity, the

diagram shows the selection of a default shipping address.

Get Payment Methods - The Transaction object requests the available payment meth-

ods for the buyer from the buyer session handler which stores this information.

Return Payment Methods - The buyer session handler returns to the Transaction

object all the payment methods that the buyer has previously entered in the system.

Request Payment Method - The Transaction object takes the different payment meth-
ods from the buyer session handler, formats them and presents them to the buyer for

selection.

50

14.

15.

16.

17.

18.

19.

CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer Transaction Transactign Payment Seller
Manager Manager

Figure 3.19: Purchase Product - Part III

Submit Payment Method - The buyer has the option of selecting a previously entered
payment method or creates a new payment method to use. The former option is shown
in this diagram but if a new payment method is created, the Transaction object will

request the buyer session handler to add the new payment method.

Display Purchase Details - The Transaction object takes all of the information in-
cluding the product to be purchased, shipping address selected, and payment method

chosen, and displays it to the buyer for final confirmation.

Confirm Purchase - The buyer reviews the details of the purchase and submits autho-

rization to finalize the transaction.

Request Payment - The Transaction object contacts the payment manager and ini-
tiates the electronic payment of the purchase. Details necessary for the payment to
proceed are sent to the payment manager along with all of the other information

needed.

Payment Results Returned - The payment manager, or specific Payment object, re-
turns the results of the payment operations to the Transaction object. For the purpose

of this example, we assume that the payment is successful.

Send Order - The Transaction object sends the completed order for the goods to the

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 51

Seller Transaction
Manager

Figure 3.20: View Sales History

seller to fulfill. This order is passed to the supplier who provides the goods to the

seller and then the product will be shipped.

20. Send Invoice and Notification - The Transaction object sends an invoice showing the
details of the purchase to the buyer along with a notification that the purchase was

successful. The buyer can then save or print the information shown for record-keeping.

21. Return Transaction Message - The Transaction object, having completed all of its
required tasks, returns a message to the transaction manager that it has completed.
The transaction manager can then archive the transaction and remove it from the list
of active Transaction objects.
View Sales History

The activity to view the sales history from the seller use case diagram is shown next.

1. Request Sales History - The seller wishes to see a list of the sales made in the past

set time period and submits this request to the transaction manager.

2. Return Transactions - The transaction manager returns all of the corresponding trans-

actions to the seller in an understandable format.

Figure 3.20 shows the sequence diagram for the View Sales History use case.

Manage Products and Inventory

A seller has the ability to manage the products that it offers in the electronic commerce

system. This steps in this activity are shown next.

52 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Seller Master inventory Product Entry

Figure 3.21: Manage Products and Inventory

1. Request Modify Inventory Item - The seller wishes to modify an inventory item in the

system and sends a request to the master inventory.

2. Retrieve Inventory Entry - The Master Inventory requests the current details of the

specific inventory item to be modified from the Product Entry.

3. Return Product Information - The product entry returns the product information to

the master inventory.

4. Display Product Information - The master inventory displays the product information

for editing to the seller.

5. Submit Product Modifications - The seller sends the modified product information to

the master inventory for entry into the product entry.

6. Save Product Information - The master inventory, after checking the validity of the

information received, sends the product information to the product entry to be saved.

Figure 3.21 shows a sequence diagram for Managing Products and Inventory.

3.2.4 State Diagrams

In UML, State diagrams (or Statecharts) show the dynamic or changing state of one class.

Each state in a statechart as well as the reason for advancing to the next state are described.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 53

Initial

F Product \

Paymeat
Method

o

Figure 3.22: Transaction Class State Diagram

Figure 3.22 shows a statechart for the Transaction class.

Transaction State Diagram

States There are seven named states for a Transaction and these states represent the

entire life cycle that a transaction passes through. Each state is described below.

e Initial - When a transaction is initialized it enters this state. It currently contains

only information about the Buyer and Seller involved in the transaction.

e Product - Transition to this state occurs when the Transaction object receives the
product information from the master inventory which is presented to the buyer for

verification.

e Shipping - Transition to the ‘Shipping’ state occurs when the shipping addresses for

the buyer, from the buyer session handler, are presented to the buyer for selection.

o Payment Method - The ‘Payment Method’ state occurs when the payment methods

for the buyer, from the buyer session handler, are presented to the buyer for selection.

54 CHAPTER 3. A ForMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

¢ Confirmation - This state represents the final decision point for the buyer to back out

of the transaction.

e Processing - The “behind the scenes” actions take place in the ‘Processing’ state as the
payment for the goods is resolved and reports are generated along with any possible

€rror messages.

e Display End Information - Upon successful completion of the ‘Processing’ state the
transaction enters the ‘Display End Information’ state. Here the purchase information

is presented to the buyer and the transaction is complete.

Activities Fifteen different activities occur in a Transaction that cause a transition from

one state to another. A brief explanation of each of these activities follows:

1. Display Product - The transaction shows the product information to the buyer from
the master inventory and corresponding product entry. The state changes from ‘Initial’

to ‘Product’.

2. Deny Product & Quit - The buyer decides not to purchase a particular product and

quits the transaction. The state changes from ‘Product’ to ‘End’.

3. Confirm Product - The buyer confirms the product as the one he/she wishes to pur-

chase. The state changes from ‘Product’ to ‘Shipping’.

4. Select Shipping Address - The buyer selects a shipping address to be used for the

purchase. The state remains as ‘Shipping’.

5. Deny Shipping Address & Quit - The buyer does not wish to select a shipping address

and quits the transaction. The state changes from ‘Shipping’ to ‘End’.

6. Confirm Shipping Address - The buyer confirms the shipping address for this purchase.

The state changes from ‘Shipping’ to ‘Payment Method’.

7. Select Payment Method - The buyer selects a payment method to be used for the

purchase. The state remains as ‘Payment Method’.

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION 55

8. Deny Payment Method & Quit - The buyer does not wish to select a payment method

and quits the transaction. The state changes from ‘Payment Method’ to ‘End’.

9. Confirm Payment Method - The buyer confirms the payment method for this purchase.

The state changes from ‘Payment Method’ to ‘Confirmation’.

10. Deny Purchase Confirmation & Quit - The buyer does not wish to confirm all of the

details of the transaction and quits. The state changes from ‘Confirmation’ to ‘End’.

11. Confirm Purchase - The buyer confirms all of the purchase details including prod-
uct information, shipping address, and payment method. The state changes from

‘Confirmation’ to ‘Processing’.

12. Payment Method Failure - The payment method selected by the buyer causes an
error. In recovery from the error, the transaction asks for a different payment method
or requests the buyer to correct the error. The state changes from ‘Processing’ to

‘Payment Method’.

13. System Error in Processing - There was an unrecoverable error during the processing of
the payment and the transaction must terminate. The state changes from ‘Processing’

to ‘End’.

14. Payment Succeeds - The payment operation completes successfully and the transaction
details sent to create invoices for the buyer and orders for the sellers. The state changes

from ‘Processing’ to ‘Display End Info’.

15. Buyer Closes Transaction Screen - The buyer closes the transaction screen or goes to
a different part of the electronic commerce system. The state changes from ‘Display

End Info’ to ‘End’.

3.2.5 Activity Diagram

Activity diagrams are similar to Statecharts. However, they demonstrate the conditional
sequence of activities in a particular use case, detailing all possible situations. Activity

diagrams are useful because they can show conditional logic and parallel processing.

56 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Payment Activity Diagram

Figure 3.23 shows the steps in a payment operation. The payment operation begins with a
‘Transaction object requesting a monetary transfer relating to a product purchase by a buyer.
A new Payment object, created by the payment manager, submits the appropriate infor-
mation to the processing gateway which undertakes some initial verification of identities. If
this verification is unsuccessful, an error message is generated that indicates submission of
incorrect information and returns control to the Transaction ob ject where this information
may be changed and resubmitted. If the verification is successful then some parallel pro-
cessing occurs. Both the buyer’s and the seller’s financial institutions are contacted with
authorization information. The financial institutions process the authorization information
and return results as to whether the authorization is a success or failure. If either completes
unsuccessfully, the Payment object creates another error message explaining that one of the
financial institutions did not recognize the validity of the submission. Control is returned to
the Transaction object so that another payment method may be chosen. If the authoriza-
tion is successful then the buyer’s and seller’s accounts are settled by crediting and debiting
monetary amounts. If this settlement is unsuccessful another exception is raised and the
buyer and seller settlements that may have occurred if one succeeded while the other failed
are undone the transaction is rolled back to its beginning. Another payment method can
be chosen or the transaction can be reattempted. If the settlement is successful for both
the buyer’s and seller’s financial institutions then the payment is a success and the payment
can now end. In addition, the transaction can also terminate itself if some error occurs in

its own processing environment occurred, rolling back all results.

3.2.6 Deployment Diagram for the Electronic Commerce System

The deployment diagram of the electronic commerce system (Figure 3.24) shows not only
the breakdown of the hardware and processing but also the software distribution. In the dia-
gram, boxes represent machines containing an operating element of the electronic commerce
system. The circles in the deployment diagram represent an area, for specialized communi-

cation between machines. Buyers and sellers access the system via an Internet-connected

3.2. UNIFIED MODELING LANGUAGE DESCRIPTION

Start

ransaction \,

Requests
p

P '3
ayment

Error

Ermor

Creation of } initial
Payment J Verification §
,,,,,,,,,, o o ____.,»";
Ermor -
Exception: No
lucorrect >3
f -~
Yes
Submit Submit

Exception:
System
Error

Exception: }
No Auth /

(o

Buyer Autl h]

Seller Autl h

I

\W/

72

Run Buyer Run Selle
Auth 2, Auth

Submit .

j Seller ;
Payment /

Settle]
Seller Acc ¢

Unde
Buyer Debit
4

a

Undo
Seller

Error

®

Presentation?
Show j
Complete &

Payment /"

End

Figure 3.23: Payment Activity Diagram

57

58 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Buyer Seller
Client 1 Internet Client 1

% ~
Internet LAN Intemet

Seller
Client2

Electronic
Commerce
Application
Server

LAN/]

Internet

Buyer
Client 2

Support Intemet Processing
Database / Gateway
Server Comumon Processing Interface

Internet

Financial

Internet /Y Internet Financial
Institute 1 g

Institute 2

Comumon Fin Inst Interface

Figure 3.24: Electronic Commerce System Deployment Diagram

web server. The web server is responsible for serving all of the interface web pages used for
all of the buyer’s and seller’s operations. The web server is connected to a dedicated elec-
tronic commerce system processing server that manages all of the actual processes carried
out by the buyers and sellers. A database server also supports the electronic commerce ap-
plication. These three components (the web server, electronic commerce application server
and the support database server) are connected via a local area network. For the electronic
processing of payments to take place during transactions, a processing gateway is necessary
to handle the requests. This processing gateway manages the operations when transferring
money from one financial institution to another. The processing gateway and the electronic
commerce application server require a common interface to enable communication between
them. This common processing interface provides a common set of functions to any system
accessing the processing gateway. A similar interface, the common financial institute inter-
face, supports communications between the processing gateway and financial institutions.

The processing gateway, interfaces, and financial institutions are connected via the Internet.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 59

3.3 Z Specification Language Model Description

A 7 language specification of the electronic commerce system discussed in this thesis is now
presented. This specification formally defines the requirements of the electronic commerce
system model. Components of the Z specification are grouped by logical elements of the
system. The section concludes with a demonstration of syntax, type and domain checking

of the specification using the Z/EVES tool.

3.3.1 Z Language Specification

The Z specification language is based on mathematical concepts and it uses many symbols
for its syntactic and semantic definitions. Because of these mathematical concepts and
a move towards international standardization, Z specifications have a ‘universal’ syntax
and semantics. To specify a system, this syntax can be combined with natural language,
which is used to explain the mathematical symbols. By combining these two methods,
a specification is understandable but still retains its mathematic foundation and remains

rigorous and provable.

Common Type Definitions

The specification of the electronic commerce system requires the definition of some basic
constants and types. These values are used throughout the system to describe and abstract

important concepts and to allow for logical naming and use of different data types.
[STRING,ADDRESS, ACTION, CODE]

The above defines four basic types that are available throughout the specification. The
STRING type represents a sequence of characters of some length and is used in a variety of
ways including for names, descriptions and other character-based elements. The ADDRESS
type logically encapsulates all of the information associated with the address of a location.
This location may belong to a buyer or seller as a shipping or billing address. ACTION
describes a particular step taken by a buyer or seller in the electronic commerce system.

ACTION types are used by the buyer and seller session handlers to track what is done

60 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

during each session. Finally, CODE represents an authorization code used in payment

transactions with financial institutions.

STATUS == start | complete | error
PAYMENT STATUS ::= begin | auth | pay | end

The STATUS type is used by components of the electronic commerce system that have
recognizable states during processing. STATUS can have one of three possible values:
start, complete, or error. Start signifies that the process undertaken has begun but has
not completed and has not encountered an error. Complete simply means that the process
has finished its task successfully while error signifies that the process has failed. Similar
to STATUS, the PAYMENT.STATUS type represents the current state of a payment at-
tempt. Each payment attempt may have the following possible values: begin, auth, pay or
end. Begin signifies the start of the payment process and that no errors have occurred.
Auth signifies that authorization for the payment has succeeded and pay represents a suc-
cessful payment attempt. Finally, the end value signifies that an error occurred during the
processing of a payment attempt.

| sys.time : Ny

The sys_time variable is used throughout the system as a reference to the current time.
It is used where processes are time sensitive or where time is important to a schema. This
variable is stored as a natural number(N;) greater than zero and is used in calculations
with other time values in the system. This choice allows for time values to be added and
subtracted from each other without violating the rules in the mathematical Z domain while
still representing the concept of time.

PAYMENT_TYPE = credit_card | debit | internet

The PAYMENT_TYPE type is used in the electronic commerce system to classify pay-
ment types for a buyer. Each of these payment types represents a real world payment
method. Credit.card identifies a credit card such as MasterCard or American Express, debit
represents transfers directly from a financial institution and internet identifies such payment

methods as PayPal.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 61

Common Schemas and Definitions

The basic definitions necessary for defining more complex entities later in the specification
are given below. Some of these items are used throughout the system while others may only

be used to describe a unique and specific component of the system.

ProdChar
id, pid : Np
name, value : STRING

The ProdChar schema describes a characteristic of a product supplied by the electronic
commerce system. These product characteristics(ProdChars) describe each product in detail
and are used in making comparisons between products using the comparison engine. Each
product characteristic has an id, the id of the product entry it relates to(pid), a characteristic
name, and a corresponding value. Below are two functions used to create and return product

characteristics.

create.prod_char : Ny x Ny x STRING x STRING — ProdChar

Vid,pid : Ni; n,v : STRING; pc : ProdChar e
create_prod_char(id, pid, n,v) = pc =
pc.id = id A pe.pid = pid A pc.name = n A pc.value = v

The create_prod_char function creates a new product characteristic for a product entry.
The function assigns input values to the attributes of a new product characteristic. Another
function is presented below to return a specified product characteristic from a set of product
characteristics.

return_prod_char : Ny x P ProdChar — P ProdChar

Vi:Ni; p,pc : P ProdChar e return_prod.char(i,p) = pc =
pc Cp A (Vz: ProdChar | z € pc e z.id = 1)

The return_prod.char function returns the requested characteristic of a given product
from a set of product characteristic schemas. The function returns the correct product
characteristic using the identifier specified.

The schemas and functions used to describe the representation of a product are presented

next.

62 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

— ProductEntry
id, seller_id, price, ship_time : N
name, keywords : STRING
chars : P ProdChar

Vz,y: ProdChar & x € chars A y € chars = z.id # y.id

The ProductEntry schema represents a product class in the system. Each seller has a
number of these product entries that they offer for sale to buyers. Each product entry has
an id, the id of the seller, a name, a description of the product keywords used in searching,
a selling price, the amount of time the product is expected to take to be shipped when
ordered, and a set of characteristics describing the product. The price definition used in
this schema and throughout the specification is represented as a natural number with no
decimal places. This is done for the sake of simplicity and in an actual implementation of
an electronic commerce system the prices would include two decimal places to match the
conventional standards for monetary values. A pre-condition on this schema is that each
product characteristic of a product entry be unique. A schema describing the initialization

of a product entry is presented below.

__InitProductEntry
A ProductEntry

chars’ =0

When a product entry is created, its product characteristics are empty. The definition
below is useful to create a product entry.

create_product_entry : Ny x Ny x STRING x STRING x N; x Ny — ProductEntry

Vid, sid,p,st : N; n,k: STRING; pe : ProductEntry e
create_product.entry(id, sid, n, k, p, st) = pe =
pe.id = id A pe.seller_id = sid A pe.name = n A pe.keywords = k A
pe.price = p A pe.ship_time = st A pe.chars = ()

The create_product_entry function takes a set of entry parameters and returns a product
entry schema. The create_product.entry function is used in the remainder of the specification,
especially when lists of products are being generated. Once a product entry exists in the

master inventory, a method to retrieve the information stored for that product is necessary.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 63

The function below fulfills that purpose.

return_product.entry : Ny X P ProductEntry — P ProductEntry

Vi:Nyp; p,pe: P ProductEntry e return_product.entry(i, p) = pe =
pe C p A (Vz : ProductEntry | z € pe o z.id = 1)

The return_product.entry function is used in the remainder of the specification to return
a given product entry from a set of product entry schemas. The function returns the correct
product entry based on the identifier specified. Additional operations on a product entry
include the addition and removal of product characteristics from a product entry. The

operational schemas below describe the addition and removal operations.

__AddProdChar
A ProductEntry
’i?,pid? : Nl
n?,v?: STRING

create_prod_char(i?, pid?,n?,v?) ¢ chars
chars' = chars U {create_prod_char(i?, pid?,n?,v?)}

The AddProdChar schema takes a new id, product entry id, name, and value and creates
a product characteristic in a product entry. The characteristic created must not have the
same id as another characteristic for that product. To remove characteristics from a product
entry, a removal operation must also exist. The RemoveProdChar operation provides this

function.

_ RemoveProdChar

A ProductEntry
id? . Np

chars’ = chars \ return_prod_char(id?, chars)

The RemoveProdChar schema, uses the return_prod.char function to retrieve a specified
characteristic and then uses set difference to remove it from the set of characteristics in a
product entry.

The next abstract concept is Action. Schemas and definitions follow that describe an

Action and the behaviours that are associated with it.

64 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Action

id, sesston_id : Ny
action_type : ACTION
details : STRING

The Action schema is used to document events (i.e. actions) that occur in the system.
These events are usually driven by the buyer or seller and they are tracked to provide
knowledge of the activities of the users of the system. Each action has a unique id, a session
id that it is associated with, the type of the action, and some details of what occurred. To

create an Action all of the component parts required are assembled by the definition below.

create.action : Np x Ny x ACTION x STRING — Action

Vid,sid : Ny; at : ACTION; d : STRING; a : Action e
create.action(id, sid, at,d) = a = a.id = id A a.session.id = sid N\
a.action type = at A a.details = d

The create.action function takes the elements of an action and creates a new action to
be used for both buyers and sellers.

The next schemas and definitions describe financial institutions and their associated sub-
components. These components provide functionality for the necessary financial operations

in the electronic commerce system.

Account

acc.num : Np
balance : N

A financial institution uses Account to track money for an individual buyer or seller.
Each account has an account number and a balance. In this electronic commerce system
the balance must be greater than zero. To create an account, the following definition is

applicable.

create_account : Ny x N — Account

Van :Ni; b:N; a: Account e create_account(an,b) = a =
a.acc.num = an A a.balance = b

The create_account function takes a new account number and starting balance and cre-

ates a new account.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 65

A Financiallnstitution represents a business that holds monetary accounts for customers.
In the electronic commerce system, these customers are buyers and sellers. A financial
institution can debit and credit accounts for a customer. Each financial institution has a
unique name, an authorization code, and a number of accounts. Each account number is
unique. The authorization code is used during the payment process to ensure the proper

access is granted for a monetary transfer.

__ Financiallnstitution
name : STRING
auth_code : CODE
accounts : P Account

Vz,y : Account e x € accounts A y € accounts = T.acc.num # y.acc.num

A general constraint over the entire electronic commerce system holds that no two finan-

cial institutions may be the same. This constraint is described by the following definition.

finiinsts : P Financiallnstitution

Vz,y : Financiallnstitution e z € fin.insts A y € fin.insts = z.name # y.name
The schema below represents the initial state of a Financiallnstitution.

__InitFinanciallnstitution

A Financiallnstitution

accounts' =

When a financial institution is initialized, it has no accounts. As the electronic commerce
system evolves, a financial institution can add or remove accounts as customers come and
go.

__AddAccount

A Financiallnstitution
a?,b?7: N

create_account(a?, b?) ¢ accounts
accounts’ = accounts U {create.account(a?,b?)}

The AddAccount schema takes a new account number and balance and creates an ac-

count in a financial institution. The new account must not have the same account number

66 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

as a previous account. It should be possible to remove customer accounts from a financial

institution. To remove an account, a method must exist to find the account.

return.account : Ny X P Account — P Account

Van:Ny; as,a : P Account e
return.account(an, as) = a = a C as A
(Vz : Account | z € a ® z.acc.num = an)

The return_account function takes an account number and a set of accounts and returns
the account that matches the id in the set of accounts. This function is used to identify

information about a specific account. The RemoveAccount operation removes an account

from a financial institution.

— RemoveAccount

A Financiallnstitution
an?:Np

accounts’ = accounts \ return.account(a.n?, accounts)

The RemoveAccount schema uses the return.account function to retrieve a specified
account and then uses the set difference method to remove it from the set of accounts in
the financial institution.

To use the accounts to handle funds, they must have the ability to increase and decrease

their balances.

credit_account : Account x N; — Ny

Va : Account; amount, new_bal : N; e credit.account(a, amount) = new_bal =
new.bal = a.balance + amount

The credit.account function demonstrates how to credit an account in a financial institu-
tion. An account and amount to be deposited are given as inputs and the amount is added
to the account balance. When this function is used by a financial institution the new value

of the account balance is assigned to the results.

debit.account : Account x N; - N

Va : Account; amount : Ni; new_bal : N o debit_account(a, amount) = new_bal =
new.bal = a.balance — amount

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 67

The debit.account function demonstrates how to debit an account. An account and
amount to be withdrawn are given as inputs and the amount is subtracted from the account
balance. When this function is used by a financial institution the new value of the account
balance is assigned to the results.

Buyers and sellers need to identify a suitable payment method. Each payment method
encapsulates the pertinent information needed to transfer funds. A payment method schema,

follows.

PaymentMethod
id, acc.num : Ny
name, finame : STRING
auth_code : CODE

payment_type : PAYMENT TYPE

The PaymentMethod schema represents the information needed for the payment man-
ager of the electronic commerce system to initiate a payment. Each payment method has

an id, name, financial institution name, authorization code, and payment type.

create.payment_method : Ny x Ny x STRING x STRING x
CODE x PAYMENT_.TYPE — PaymentMethod

Vi,an :Ny; n,fin: STRING; a.c: CODE,
pt: PAYMENT TYPE; p : PaymentMethod e
create_payment.method(i, a.n,n, fin,a.c,pt) = p =
p-id =i A p.acc.num = an A p.name = n A p.finame = fin A
p.auth_code = a_c A p.payment.type = p_t

The create_payment.method function creates a payment method given the proper com-
ponents. This definition assigns the input values given to the attributes of the new payment
method. In addition to creating a payment method, a function is needed that returns an
identified payment method from a collection. This function is necessary to return infor-
mation about a payment method for use in transactions and for the removal of payment

methods.

return_payment.method : Ny x P PaymentMethod — P PaymentMethod

Vi:N; pm,p : P PaymeniMethod
return_payment.method(i,pm) = p = p C pm A
(Vz : PaymentMethod | z € p e z.id = 1)

68 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

The return_payment.method function returns a set of payment methods specified by a
unique id from the set of all possible payment methods.
In the electronic commerce system, the actions that a buyer or seller have taken in the

system are important. To capture this information, session information is vital.

Session
—

td, owner, entry, exit : Ny
actions : seq Action

entry < exit

The Session schema represents a user’s activity from login to logout in the electronic
commerce system. Each time a buyer or seller enters the system, a session is created. Each
session has an id, the id of the buyer or sglller called the owner, an entry and exit timestamp,
and a sequence of actions of the user. For every session, the entry time must be before the
exit time. A Session must be initialized when a buyer or seller enters the system and the

schema below describes that operation.

__InitSession

ASession

actions = ()

The InitSession schema sets the initial sequence of actions in a session to be empty.
Once a Session has been initialized, it must be updated with current user information
including owner id and entry and exit times. The operational schema below describes that

action.

— ModifySession

ASession
id?, ow?, en?, ex? : N;

id? = id
owner' = ow?
entry’ = en?
exit’ = ex?

The ModifySession schema takes new values for a session as inputs and applies them to

the individual values of a Session. Each Session records the actions taken by a buyer or

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 69

seller. The operation AddSessionAction adds a new action to a session.

AddSessionAction
ASession

id? : Ny

at? : ACTION
d?: STRING

actions' = actions ™ (create_action(id?, id, at?, d?))

The AddSessionAction schema takes an id, an action type, and a description and creates
a new action using the create_action definition. The new action is appended to the end of

the sequence of actions for the session through the use of the concatenation operator.

create_session : Ni x Ni x Ny x N — Session

Vid, ow, en, ex : Ni; s: Session e create_session(id, ow, en, ex) = s =
s.1d = id A s.owner = ow A s.entry = en A s.ezit = ex

The create session function takes a unique id, the owner, and entry and exit times-
tamps and returns a session schema with those input values applied as initial values. The
return.session function provides the ability to find an existing session in the list of current

sessions.

return_session : Ny x IP Session — P Session

Vi:Ni; 85,5 : P Session e return_session(i,ss) = s =
s Css A (Vz: Session |z € s e z.id = 1)

The return_session function takes the id of a session and a set of active sessions and

returns a set of sessions containing a single item with an id matching the input value.

Schemas and Definitions related to Buyers

The buyer is now described using schemas and functions. These definitions abstract a buyer

and its possible operations.

70 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

—_ Buyer
id : N1
name, phone, email : STRING
address : ADDRESS
shipping_addresses : P ADDRESS
payment.methods : P PaymentMethod

Vz,y: ADDRESS e z € shipping_addresses A
y € shipping.addresses = 1 # y
Vi,7 : PaymentMethod e i € payment_methods A
j € payment_methods = i.id # 7.id

The Buyer schema contains the attributes of a buyer in the electronic commerce system.
Each buyer has a id, name, address, phone number and email address. The address stored
by the buyer outside of the shipping addresses represents the buyer’s home or invoicing
address. This address may have a matching shipping address but is used for all other
mailings. In addition to these attributes, each buyer also has a set of shipping addresses
and a set of payment methods. The shipping addresses are used to keep track of where
goods purchased by the buyer may be sent. The payment methods are set up by the buyer
so that the buyer may purchase goods using more than one type of payment. Every item
in each set is unique. This constraint eliminates duplicate shipping addresses and payment

methods. The InitBuyer schema defines the initialization of a buyer.

_ InitBuyer
ABuyer

shipping.addresses’ = ()
payment_methods’ = ()

The InitBuyer schema initializes the buyer so that the list of initial shipping addresses
and payment methods are set to be the empty set.

Once a buyer has been initialized, a mechanism is required to modify the information
about a buyer. The operational schema ModifyBuyer, defined below, captures this require-

ment.

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 71

__ModifyBuyer
A Buyer
1d? : Nl
n?,p?,e?7: STRING
a? : ADDRESS

id' = 1d?
name' = n?
address’ = a?
email = e?
phone’ = p?

The ModifyBuyer schema provides the mechanism to change the values of a buyer. These
changes may be requested by the buyer due to a change of address, name, or different phone
number or email address. The schema takes an id, name, address, phone number and email
address and sets the corresponding buyer values. The buyer may need to add and remove

shipping addresses and payment methods as required. These operations are defined below.

___AddShippingAddress

A Buyer
a?: ADDRESS

a? ¢ shipping.-addresses
shipping.addresses’ = shipping.addresses U {a?}

The AddShippingAddress schema takes a new address and appends it to the existing list
of shipping addresses for the buyer. A precondition for the execution of the operation is
that the new address must not already be in the list of existing shipping addresses. The

operation to remove a shipping address follows.

__DeleteShippingAddress
A Buyer
a? : ADDRESS

a? € shipping_addresses
shipping.addresses’ = shipping_addresses \ {a?}

The DeleteShippingAddress schema takes an address and removes it from the list of
existing shipping addresses. For this operation to execute, the shipping address to be deleted

must be in the list of the buyer’s shipping addresses. Like the shipping addresses, payment

72 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

methods can be added and deleted from a buyer. The operational schemas representing

these functions are given next.

— AddBuyerPaymentMethod
ABuyer

n?, fin? : STRING

ac?: CODE

17,an? : Ny

pt?: PAYMENT.TYPE

create.payment.method(i?, a.n?, n?, fin?, a.c?, pt?) ¢ payment methods
payment_methods' = payment.methods U
{create_payment.method(i?, a.n?,n?, fin?,a.c?,pt?)}

The AddBuyerPaymentMethod schema adds a new payment method to the existing
payment methods for the buyer by using the create_payment.method function. This schema
also states that the payment method to be created must not be in the existing payment
methods. Just as a payment method can be added to a buyer, the functionality must also

exist to remove a payment method.

__ RemoveBuyerPaymentMethod

A Bugyer
id? : Ny

return_payment.method(id?, payment_methods) C payment.methods
payment_methods' = payment methods \
return_payment_method (id?, payment_methods)

The RemoveBuyerPaymentMethod schema takes the id of the payment method to be
removed from the set of existing payment methods. Using the return.payment.method func-
tion, the schema returns a set containing the payment method identified by the id sup-
plied. That payment method is then removed from the set of payment methods using
the set difference operator. The initial constraint on the schema states that the payment
method to be removed must be in the set of payment methods for the buyer. Since the re-
turn_payement_method function returns a single element set, the subset equality operator(C)
is used instead of the element operator(€).

The session information stored for a buyer differs slightly from the initial definition

presented for a Session. The system keeps track of the items that a buyer wishes to purchase

3.3. 7Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 73

but has not paid for yet. This electronic shopping cart is used across buyer logins and is

maintained by a session when a buyer is active in the system.

BuyerSession

Session
products : P ProductEntry

The BuyerSession schema represents the activities of a buyer when he/she enters the
electronic commerce system. This schema inherits the Session schema described earlier and
adds a new component, products. The new attribute is a list of all the product entries that
the buyer has added to his/her electronic shopping cart. A BuyerSession also requires an
initialization.

__InitBuyerSession

A BuyerSession

actions = ()
products =

The InitBuyerSession schema initializes the buyer’s session. The schema sets the se-
quence of actions taken by the buyer to be empty, and sets the set of products chosen by
the buyer in the current session to be empty. The ability to modify a BuyerSession is also

important and this functionality is provided by the next operational schema.

__ModifyBuyerSession

A BuyerSession
wd?, ow?, en? ex? : Ny

id? = id
owner' = ow?
entry’ = en?
exit’ = ex?

The ModifyBuyerSession schema modifies the attributes of a BuyerSession to represent
changes. The schema accepts an id, owner, entry and exit time, and changes the values
for a BuyerSession accordingly. In addition to modifying a BuyerSession, mechanisms to

support the addition and removal of items from a buyer’s shopping cart are vital.

74 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

— AddBuyerSessionProductEntry
ABugyerSession

17, 51d7, p?, st7 1 Ny

n?,d? : STRING

create_product_entry(i?, sid?,n?, d?, p?, st?) ¢ products
products’ = products U {create_product.entry(i?, sid?, n?,d?,p?, st?)}

The AddBuyerSessionProductEntry adds a new product entry to the set of products in
the buyer’s electronic shopping cart. The schema does this using the create_product_entry
function provided with the inputs for a product entry. The pre-condition of the schema
operation is that the new product entry must not already exist in the set of product entries.

Similarly, a schema to remove a product entry is defined as follows:

— RemoveBuyerSessionProductEntry

A BuyerSession
1d? : N1

return_product_entry(id?, products) C products
products’ = products \ return_product_entry(id?, products)

The RemoveBuyerSessionProductEntry schema is used when a buyer decides to remove
a product entry from the list of products to purchase during a session. This schema uses
the return.product_entry function to get the selected product from the electronic shopping
cart. The initial constraint on the schema is that the product entry to be removed must
exist in the set of products for the buyer.

The BuyerSession schema and other functions and operational schemas are used in the
electronic commerce system by a buyer session handler. The definition of a buyer session

handler follows.

— BuyerSessionHandler

buyer_sessions : P BuyerSession

Vz,y : BuyerSession e 1 € buyer_sessions A
y € buyer_sessions = x.id # y.id

The BuyerSessionHandler schema contains a set of all of the currently active buyer ses-

sions in the electronic commerce system. Each buyer session must be unique. An additional

3.3. 7Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 75

schema is required to initialize the buyer session handler.

— InitBuyerSessionHandler

ABugerSessionHandler

buyer_sessions’ = ()

The InitBuyerSessionHandler schema initializes the buyer session handler and sets the
set of active buyer sessions to be empty. For use in the electronic commerce system, buyer

sessions need to be added and removed from the session handler.

create_buyer_session : N; x Ny x Ny x Ny X iseq Action
x P ProductEntry — BuyerSession

Vid, ow, en, ex : Ni; a:iseq Action; p : P ProductEntry; bs : BuyerSession e
create_buyer session(id, ow, en, ex,a,p) = bs =
bs.id = id A bs.owner = ow A bs.entry = en A
bs.exit = ex A bs.actions = a A bs.products = p

The create.buyer_session operator creates a new buyer session. This function takes an
id, owner, entry and exit time, sequence of actions and set of product entries and creates

a buyer session. To use this function, an operational schema modifies the buyer session

handler.

— AddBuyerSession
ABuyerSessionHandler
td?, ow?, en?, ex? : Ny
a? : iseq Action

p? : P ProductEntry

create_buyer_session(id?, ow?, en?, ex?, a?, p?) ¢ buyer.sessions
buyer_sessions’ = buyer_sessions U
{create_buyer session(id?, ow?, en?, ex?, a?,p?)}

The AddBuyerSession schema adds a new buyer session to the list of currently active
sessions. The schema states that the new session to be added must be unique to the list of
current sessions and that it is created using the create_buyer.session definition.

The ability to remove buyer sessions from the buyer session handler is also required and

is defined below.

76 CHAPTER 3. A FOrRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

return_buyer_session : N; x P BuyerSession — P BuyerSession

Vi :Ny; bss, bs : P BuyerSession e
return_buyer_session (i, bss) = bs = bs C bss A
(Vz : BuyerSession | z € bs e z.id = i)

The return._buyer_session function finds a specified buyer session in a set of buyer sessions.
The operator returns a set of buyer sessions where the id matches the id provided as an
input to the definition. To remove the buyer session from the handler, the operational
schema below uses return_buyer_session.

— RemoveBuyerSession

A BuyerSessionHandler
1d? : Nl

return.buyer_session(id?, buyer_sessions) C buyer.sessions
buyer.sessions’ = buyer_sessions \ return.buyer session(id?, buyer_sessions)

The RemoveBuyerSession schema takes the id of a buyer session as an input and uses the
return_buyer_session function to retrieve that buyer session from the list of buyer sessions
in the buyer session handler. This retrieved value is then removed from the set of buyer
sessions using the set difference operator. The pre-condition on the schema is that the buyer
session to be removed must already exist in the set of buyer sessions stored in the buyer

session handler.

Seller Schemas and Definitions

The seller is now described using schemas and functions. These definitions outline what
components make up a seller and describe what possible operations a seller can perform. A

schema describing the seller is given below.

Seller
id : Nl
name, phone, email : STRING
address, shipping_address : ADDRESS
payment.method : PaymentMethod

The Seller schema represents each seller in the electronic commerce system. This schema,

contains information about a seller including a unique id, name, address, phone number,

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 77

email address, payment method and shipping address. The payment method is used to
settle payments between buyers and sellers during a transaction and the shipping address
can be provided to buyers to allow them to return goods for warranty or repair work. To

make changes to a Seller, the ModifySeller operational schema is used as defined below.

— ModifySeller
ASeller
17 N1
n?,p?7,e?: STRING
a?,s.a?: ADDRESS

id =17

name' = n?

address’ = a?

phone’ = p?

email’ = e?
shipping.address’ = s.a?

The ModifySeller schema takes a number of inputs for a seller and assigns them to the
appropriate attributes. The only attribute not assigned at this time is the payment method

attribute which is set by the AddSellerPaymentMethod schema defined below.

. AddSellerPaymentMethod
ASeller
pmid?, pman? : N
pmn?, pmfin? : STRING
pma.c?: CODE

pmp t?: PAYMENT.TYPE

payment.method’ = create_payment_method(pmid?, pma.n?,
pmn?, pmfin?, pma_c?, pmp_t7)

The AddSellerPaymentMethod schema modifies the seller schema by using the function
create_payment.method to assign a new payment method to the seller. To accomplish the
creation of the payment method, inputs for the payment method attributes are needed,
including id, name, financial institution name, authorization code, and the payment type of
the financial service. In addition to adding a new payment method to a Seller, the ability

to modify that payment method is also required.

78 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

ModifySellerPaymentMethod

ASeller

i?, an?: N1

n?, fin?7: STRING

ac?: CODE

p-t?: PAYMENT . TYPE

17 = payment_method.id
payment.method' .name = n?
payment_method'.finame = fin?
payment_method' .acc.num = a.n?
payment_method’.auth_code = a_c?
payment-method' .payment_type = p_t?

‘The ModifySellerPaymentMethod schema allows a seller to update a payment method.
The schema uses a number of inputs matching the attributes of a payment method and
applies them to the seller payment method accordingly.

The electronic commerce system tracks the activities of a seller by maintaining a session
each time the seller visits the system. A session handler manages these seller sessions. The

seller session handler is defined below.

SellerSessionHandler

seller_sessions : P Session

Vz,y : Session e x € seller_sessions A y € seller_sessions = z.id # y.id

The SellerSessionHandler schema represents the session handler that manages all the
sessions currently open by sellers in the electronic commerce system. This schema contains
a set of sessions, each representing one seller that is currently active in the electronic com-
merce system. The schema also states that each session is unique. The initialization of a

SellerSessionHandler is defined by the operational schema given below.

__InitSellerSessionHandler
ASellerSessionHandler

seller_sessions’ = ()

The InitSellerSessionHandler schema initializes the seller session handler by setting the

set of seller sessions to empty.

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 79

The seller session handler also requires the ability to add and remove sessions. These

operational schemas are defined below.

__AddSellerSession

ASellerSessionHandler
1d?, ow?, en?, ex? : N;

create_session(id?, ow?, en?, ex?) ¢ seller_sessions
seller_sessions’ = seller_sessions U {create_session(id?, ow?, en?, ex?)}

The AddSellerSession schema adds a new seller session to the seller session handler.
The schema takes as inputs the attributes needed to create a new session and creates a new
session using the create_session function. The schema also states that the new seller session
to be added must not exist in the seller sessions already stored by the seller session handler.
"The ‘non-membership’ operator(¢) is used to check that the results of the create_session
function does not currently exist in the seller_sessions.The ability to remove sessions from

the seller session handler is defined next.

__RemoveSellerSession

ASellerSessionHandler
id? : N

return_session(id?, seller_sessions) C seller_sessions
seller_sessions’ = seller_sessions \ return_session(id?, seller_sessions)

The RemoveSellerSession schema removes a current seller session from the list of seller
sessions by specifying its id and using the return_session function to find the correct seller
session. The pre-condition on the schema is that the session to be removed must exist in
the set of seller sessions.

A seller provides goods for sale in the electronic commerce system that are purchased
through a supplier. Each of these suppliers sells products in the form of product lots. The
sellers then make the products purchased in one of these lots available at lesser quantities
to the buyers. The following schemas and functions describe this supply chain of goods for

the sellers.

80 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Product
od, supid, price : Ny
desc : STRING

The Product schema represents an item that a supplier makes available to a seller for
sale in the electronic commerce system. Each product has an id, a supplier providing the
product, a description of its characteristics and a individual unit price. To modify the

product information, an operational schema, is presented next.

— ModifyProduct

A Product

id?,p?: Ny
d?: STRING

id' = id?
desc’ = d?
price’ = p?

The ModifyProduct schema demonstrates the modification of a product schema. This
operational schema takes the attributes of a product as inputs and sets them to be the new

attributes of a product. Each product is unique, as stated by the constraint below.

products : P Product

Vz,y : Product e z € products A y € products = z.id # y.id
The products constraint specifies that every product across the entire electronic com-
merce system must be unique. Each product is presented to a seller by a supplier in a

product lot, described below.

ProductLot
id, quantity : Ny
product : Product

The ProductLot schema represents a quantity of a certain product made available to a
seller by a supplier. Each product lot has a unique id, a product associated with it and the
quantity of that product. The ability to modify a product lot is important to a supplier

and the ModifyProductLot operational schema, defined below, provides this support.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 81

— ModifyProductLot

AProductLot
id?, g7 . Ny

id' = 1d?
quantity’ = q?

The ModifyProductLot schema is used to change the quantity of a product and the lot
id. In addition to modifying a product lot, a supplier also needs to be able to add a new

product lot to the product lots that have currently been made available to sellers.

create_product_lot : Ny X Product x Ny — ProductLot

Vid,q :Ny; p: Product; pl: ProductLot e create_product lot(id,p,q) = pl =
pl.id = id A pl.product = p N\ pl.quantity = q

The create_product_lot function is used to create a new product lot from the provided
inputs. The schema takes the attributes for the creation of a new product lot and returns
the completed item by assigning each of the input parameters to the appropriate attribute
for the new product lot. To retrieve information or remove product lots, a function is

required to return a product lot.

return_product.lot : Ny x P ProductLot — PP ProductLot

Vid : Ny pl,p : P ProductLot e return_product_lot(id,pl) = p =
p Cpl A(Vz : ProductLot | z € p e z.id = id)

The return_product.lot function is used to return a selected product lot. It takes a set
of product lots and a unique product lot id as inputs and returns the matching product lot
in the set.

With the definition of products and product lots, a supplier and its operations can now

be defined.

Supplier
name, phone : STRING
address : ADDRESS
product_lots : P ProductLot

The Supplier schema represents a supplier that makes product lots available to sellers

for sale in the electronic commerce system. Each supplier has a name, address, and phone

82 CHAPTER 3. A FORMAL MODEL OF AN ELEcTRONIC COMMERCE SYSTEM

number as well as a number of products lots available for sale. Next is an operational

schema to initialize a supplier.

__InatSupplier

ASupplier

product_lots' =

The InitSupplier schema initializes the supplier schema by setting the product lots set

to empty. After initialization other operations can be carried out on a supplier.

__ AddSupplierProductLot
ASupplier

id?,q7 : Ny

p? : Product

create_product.lot(id?,p?, q7) ¢ product_lots
product_lots’ = product_lots U {create_product.lot(id?,p?, q?)}

The AddSupplierProductLot schema adds a new product lot to those available for sale by
the supplier. The schema takes inputs for the id, quantity, and product for a product lot and
adds a new product lot to the existing lots using the create_product_lot function. The schema,
also states that the product lot must be unique relative to the other product lots offered
by the supplier. To remove a product lot from a supplier the RemoveSupplierProductLot

operational schema is defined.

_ RemoveSupplierProductLot

ASupplier
id? : Nl

return_product_lot(id?, product_lots) C product_lots
product_lots’ = product lots \ return_product_lot(id?, product_lots)

The RemoveSupplierProductLot schema represents removal of a product lot from a sup-
plier. The set of available product lots is reduced by the lot identified by an id given as an
input to the schema and uses the return_product.lot function to retrieve the correct product
lot from the current listing. There is a constraint on the schema that the product lot to be
removed must be in the supplier’s product lots.

Additional functions used by the electronic commerce system to retrieve information

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 83

from a seller are defined below. These functions are used during a purchase transaction.

return_seller-name : P Seller x N; — STRING

Vsl : P Seller; sid : Ni; sn: STRING e return_seller name(sl, sid) = sn =
(37 : Seller | z € sl @ sn = z.name = z.id = sid)

The return.seller.name function returns the name of a seller from a, list of all the sellers

in the system given the id of the seller.

return_seller_address : P Seller x N; — ADDRESS

Vsl : P Seller; sid : Ni; sa : ADDRESS e return_seller_address(sl, sid) = sa =
(313 : Seller | z € sl o sa = z.address = z.id = sid)

The return_seller.address function is similar to the return_seller name function. The
return_seller.address operation returns the address of a seller given a unique id and a set of

all the sellers in the electronic commerce system.

return_seller payment.method : P Seller x Ny — PaymentMethod

Vsl : P Seller; sid : Ny; spm : PaymentMethod e
return.seller_payment_method (s, sid) = spm =
(3,7 : Seller | z € sl o spm = z.payment.method = z.id = sid)

The return_seller_payment method function is used to return the payment method asso-

ciated with a seller in the system identified by an id given as an input parameter.

Master Inventory Schemas and Definitions

"The inventory of products available for sale are specified next. These products are supplied
by different sellers and are available to all buyers. The schemas and functions presented

below define the components of the master inventory.

— MasterInventory

available_products : P ProductEntry

Vz,y : ProductEniry e = € available_products A y € available products =
z.1d # y.id

The MasterInventory schema represents the mnventory of all products available in the
system. The list of all the products is stored as a set of product entries. The master

inventory is used for querying and selecting goods for purchase by the users of the system.

84 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

A pre-condition on this schema is that each product entry is unique. The initialization of

the master inventory is defined as follows.

InitMasterInventory

-

A MasterInventory

available_products = ()

The InitMasterInventory schema initializes the master inventory by setting the initial set
of products available to empty. The ability to add and remove product entries to/from the

master inventory is important and the operations to support this functionality are defined

below.

—AddProductEntry
A MasterInventory
1?,51d?, p?,5t7 1 N;
n?,k?: STRING

create_product_entry(i?, sid?, n?, k7, p?, st?) ¢ available_products
available_products’ = available_products U
{create_product_entry(i?, sid?,n?, k?, p?, st?)}

The AddProductEntry schema creates a new product entry and adds it to the set of
available products. The schema accomplishes this by using the create_product_entry function.
A pre-condition of the operation is that the product entry to be created must not exist in
the available products.

The operational schema to remove a product entry from the master inventory is defined

as follows:

RemoveProductEntry

A MasterInventory
1d? : N

return_product_entry(id?, available_products) C available_products
available_products’ = available_products \
return.product.entry(id?, available_products)

The RemoveProductEntry schema removes a product entry from the list of available

products by identifying the product entry to be removed using the return product.entry

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 85

function with an id supplied as an input. A pre-condition on this schema is that the

product entry to be removed must exist in the set of available products.

master_inventory product_search : P ProductEntry X STRING — P ProductEntry

Vpl,r : P ProductEntry; k: STRING e
master_inventory.product_search(pl, k) = r =
(Vz : ProductEntry | z € r e z.keywords = k)

The master.inventory.product_search function takes a set of product entries and search
criteria as inputs and returns a set of product entries where a keyword matches the search
criteria provided. In this specification, this is shown as an equality even though in a real
electronic commerce system the agent searching for goods would be much more specific in
its search criteria and allow for many other options including less than, greater than, etc.
For simplicity and conciseness, only equality is shown. This function is used during the

search process in the electronic commerce system.

Search Engine Schemas and Definitions

This search capabilities in the electronic commerce system are described below using schemas
and functions. These definitions specify the components of a search and their possible op-

erations. A schema describing a search is given below.

Search
id - Ny
criteria : STRING

results : P ProductEntry

The Search schema represents a single search activity executed by the search engine.
Each search has a unique id, some search criteria and a set of results containing product

entries. The initialization of the search schema follows.

__InitSearch
ASearch

results’' =

The InitSearch schema, initializes the search schema by setting the results obtained to

86 CHAPTER 3. A ForMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

the empty set. The ability to modify a search is also important.

— ModifySearch
ASearch
d? : Ny
c¢?: STRING
id' = 1id?
criteria’ = ¢?

The ModifySearch schema permits the modification of the id or criteria of a search.
These new values are inputs to the schema and are assigned accordingly. After a search is
initialized and values have possibly been modified, the electronic commerce system needs

the ability to execute the search for products against the master inventory.

EzxecuteSearch
ASearch
mi? : MasterInventory

results’ = master.inventory_product_search(mi?.available_products, criteria)

The EzecuteSearch schema modifies the Search schema by setting the results to be a set
of product entries using the master_inventory_product_search function to return results from
the master inventory. Searches are created and deleted by the search engine in the electronic
commerce system. The following schemas and functions describe the search engine and its

operations.

create_search : Ny x STRING — Search

Vid : Ni; ¢: STRING; s : Search e create_search(id,c) = s =
s.id = id A s.criteria = ¢ A s.results = ()

The create.search function takes a unique id and a string criteria and creates a new
search. The id and criteria are set to the appropriate inputs while the set of results is set
to the empty set. The function describing how a search is identified by the search engine is

described next.

return.search : Ny x P Search — IP Search

Vi:Np; s, 87 : PSearch o return_search(i,s) = sr =
st Cs A (Ve : Search | z € sr e z.id = 1)

3.3. 7Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 87

The return_search function finds and returns a search description from a listing of all
search descriptions. An input of an id is given by the search engine and the result of the
function is the search description that contains an id matching that value. The search

engine, which holds the active search descriptions in the system, is described as follows:

SearchEngine
{'current_searches : P Search

The SearchEngine schema manages all the active search descriptions in the system.
This schema contains a set of all the search descriptions currently in the system. The

InitSearchEngine schema describes the initialization of the SearchEngine.

_InitSearchEngine

ASearchEngine

current_searches =

The InitSearchEngine schema initializes the search engine so that the set of current
search descriptions is empty. As the buyers and sellers request search descriptions, the
search descriptions are added to the search engine. The operation to add a search description

is specified below.

. AddSearch
ASearchFEngine
i7: Ny

¢?: STRING

create.search(i?, c?) ¢ current_searches
current_searches’ = current_searches U {create_search(i?, c?)}

The AddSearch schema adds a new search description to the set of current search de-
scriptions in the search engine. This is accomplished by using the create_search function. A
pre-condition on the search description to be added is that it must not be the same as any
of the other search descriptions currently in the system.

The schema below describes the removal of a search description.

88 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

__ RemoveSearch

ASearchEngine
id? : Nl

return_search(id?, current_searches) C current.searches
current_searches’ = current_searches \ return.search(id?, current_searches)

The RemoveSearch schema takes a unique id and removes the search description con-
taining that id from its list of current search descriptions. The removal is accomplished
by first using the return_search function to identify the search description and then use the
set exclusion operator to remove the identified search description from the set of search
descriptions. The constraint on this schema is that the search description to be removed

must exist in the set of current search descriptions.

Comparison Engine Schemas and Definitions

This product comparison capabilities in the electronic commerce system are described next.
In the context of this electronic commerce system, a comparison is a task applied to the
master inventory of to retrieve information on what products best match criteria provided by
the user. The following definitions abstract the components of comparisons and comparison
operations. To define the results of a comparison, it is necessary to give a ranking of each
product that applies to the logic provided in a comparison. A schema representing this

ranking is presented next.

___ProdRank
pid, cid, rank : Np

rank < 100

The ProdRank schema describes the result of a comparison product characteristic(Prod Char)

applied to a particular product. Each product is ranked on each criteria provided and re-
turned to the comparison for calculation of a final product entry listing. A schema describing

comparisons is given below.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 89

Comparison
id : Nl
chars : iseq ProdChar
rankings : P ProdRank
results : iseq ProductEntry

The Comparison schema represents a comparison of products in the system. Fach
comparison has an id, comparison operators in the form of product characteristics desired,
a set of product rankings, and a set of product entries which match the criteria. Initialization

of a comparison is specified below.

__InitComparison

A Comparison

chars’ = ()
rankings’ = {)
results’ = ()

The InitComparison schema initializes a comparison by setting the set of characteristics,
rankings, and results to be empty. A function to delete a comparison from a sequence of

comparisons is defined as follows:

delete_prod_char : Ny x iseq ProdChar — iseq ProdChar

Vpid : Ny; old : iseq ProdChar e
(old = () = delete_prod_char(pid, old) = ()) A
((head old).id = pid = delete_prod_char(pid, old) = tail old) A
((head old).id # pid = delete.prod_char(pid, old) =

(head old) ™ delete_prod_char(pid, tail old))

The delete prod_char function deletes a product characteristic from a sequence of prod-
uct characteristics given an id. This function recursively searches the sequence until it
finds the product characteristic identified by the id given as a parameter. Similarly, the

AddCompChar schema provides the ability to add product characteristics to a comparison.

90 CHAPTER 3. A FoOrRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

— AddCompChar
A Comparison
i?7,pid? . N
n?,v?: STRING

delete_prod_char(i?, chars) = chars
chars' = chars ™ (create_prod_char(i?, pid?,n?,v?))

The AddCompChar schema takes a new id, product entry id, name, and value and
creates a product characteristic in a comparison. The characteristic created must not have
the same id as another characteristic for that comparison. The operational schema to

remove a characteristic from a comparison is presented next.

. RemoveCompChar

A Comparison
1d? : N1

chars' = delete_prod_char(:d?, chars)

The RemoveCompChar schema uses the delete_prod.char function to delete a specified
characteristic from the sequence of product characteristics used in the comparison.
| compute.rank : STRING x STRING — N
The compute_rank function determines the strength of a match, a value between 0 and
100, between two values of a characteristic. If the characteristic values match exactly, the
value would be 100 and if they have no similarity or likeness a value of 0 would be returned.

The exact value will be determined by an artificial intelligence module represented by this

function.

get.rank : STRING x STRING X P ProdChar — N;

Vn,v: STRING; pc : P ProdChar; 7 : Ny e get_rank(n,v,pc) =r =
(3; 2 : ProdChar | z € pc o r = compute.rank (v, z.value) = n = z.name) V
(Vy : ProdChar | y € pc e 7 = 0 = n # y.name) '

The get.rank function takes the name and value of a comparison characteristic and a
set of product characteristics and sets the rank of the product ranking to either the results
of the compute_rank function or 0. The value assigned depends on the degree of match of

the name passed as a parameter to the name of a product characteristic from the set of

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 91

products’ characteristics. This function is used by the operation described below.

rank_product : ProdChar X ProductEntry — ProdRank

V pc : ProdChar; pe : ProductEntry; pr : ProdRank e rank_product(pc, pe) = pr =
pr.pid = pe.id A pr.cid = pe.id A
pr.rank = get.rank(pc.name, pc.value, pe.chars)

The rank_product function creates a new product ranking based on the desired product
characteristic and the product entry provided as inputs. This function uses the get.rank
function to compute the value for the product ranking. This function is used by the defini-
tion below.

return.rankings : ProdChar x P ProductEntry — P ProdRank

YV pc : ProdChar; mi : P ProductEntry; pr : P ProdRank e
return.rankings(pc, mi) = pr =
(V pe : ProductEntry | pe € mi
pr # 0 = pr = pr U {rank_product(pc, pe)} A
pr = 0 = pr = {rank_product(pc, pe)})

The return.rankings function applies the rank_product function to each member of a set
of product entries taken as an input. This set of product entries is the master inventory
in the system and the results are returned as a set of product rankings. The function

return_comparison.rankings, described below, uses return.rankings as part of its processing.

return.comparison_rankings : P ProductEntry x iseq ProdChar — P ProdRank

¥ mi : P ProductEntry; pc : iseq ProdChar e
(pc = () = return_comparison_rankings(mi, pc) = 0) A
(pe # () = return_comparison_rankings(mi, pc) =
return_rankings(head pc, mi) U return_comparison_rankings(ms, tail pc))

The return_comparison_rankings function takes a set of product entries, in this case the
entire master inventory, and a sequence of comparison characteristics and returns a set of
product rankings that at least partially match the conditions set out in the logic. This
definition is based on some artificial intelligence used by the electronic commerce system to
arrive at the correct set of products and provide the requestor with the product entries that
will suit their needs. Now that the comparison method has been described, an operational

schema can be shown that updates a Comparison with rankings.

92 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

— DetermineRankings

A Comparison
mi? : MasterInventory

chars # ()

rankings' = return_comparison_rankings(mi?.available_products, chars)

The DetermineRankings schema uses the return.comparison.rankings function to deter-
mine the rankings of a comparison using the comparison operators(desired product char-
acteristics) stored for that comparison. A pre-condition on the schema is that the list of
characteristics to compare against must not be empty. To build the comparison results from
the rankings, additional definitions are necessary.

] create.comparison.results : P ProdRank x P ProductEntry — iseq ProductEntry

'The create_.comparison_results function takes a listing of product rankings along with the

master inventory and builds a set containing the ordered results of the comparison. The

operational schema defined below demonstrates this function.

__DetermineResults

A Comparison
mi? : MasterInventory

results' = create.comparison.results(rankings, mi?.available_products)

The DetermineResults schema uses the return_comparison_results function to provide a
listing of the product entries that best match the criteria provided by a comparison.
Comparisons are stored in the electronic commerce system and are described by the

following functions and schemas.

create.comparison : Ny — Comparison

Vid : Ny; ¢ : Comparison e create_comparison(id) = ¢ =
c.id = id A c.chars = () A c.rankings = 0 A c.results = 0

The create_comparison function creates a new comparison from given input. It takes a
unique id and initializes the remaining attributes of a comparison. To return an existing

comparison for information purposes or for deletion, the function below is useful.

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 93

return.comparison : Ny x P Comparison — P Comparison

Vi:Ny; ¢, cr: P Comparison e return.comparison(i,c) = cr =
cr C c A (Vz: Comparison | z € cr o z.id = 1)

‘The return_comparison function retrieves a desired comparison from the set of compar-
isons given an id as an input. This function can be used to retrieve information about
a comparison or be used in the process of deletion of a comparison. The management of

comparisons in the electronic commerce system is described next.

ComparisonEngine

licurrent_comparisons : P Comparison

The ComparisonEngine schema manages all the comparisons in the electronic commerce
system. This schema keeps a list of all the current comparisons in the system and this list
grows and shrinks as comparisons are added or deleted. To be operational, the comparison
engine must first be initialized. The operational schema representing this initialization is

defined as follows.

InitComparisonEngine
A ComparisonEngine

current.comparisons = ()

The InitComparisonEngine schema initializes the comparison engine by setting the set
of current comparisons to be empty. The comparison engine must be able to add and remove

comparisons from its listing.

—AddComparison

A ComparisonEngine
17Ny

create_.comparison(i?) ¢ current_comparisons
current.comparisons’ = current.comparisons U {create.comparison(i?)}

The AddComparison schema adds a new comparison to the comparison engine’s list
of active comparisons. This schema uses the create_comparison function, and an id and
comparison operators to create the new comparison. The operational schema for removal

of a comparison is similarly defined as:

94 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

__ RemoveComparison

A ComparisonEngine
id?: Nl

return_comparison(id?, current_.comparisons) C current_.comparisons
current.comparisons’ = current_comparisons \
return_comparison(id?, current_comparisons)

The RemoveComparison schema removes a comparison identified by the input id using
the return.comparison definition. This schema is used when a comparison is complete or
has been cancelled by the user or the system. A pre-condition on the schema is that the

comparison to be removed must be a member of the set of current comparisons.

Transaction Schemas and Definitions

Purchase transactions are now described using schemas and functions. These definitions
outline the components of transactions and their possible operations. A schema describing

an orderline, a component of a transaction, is given below.

OrderLine
product.id, shipping_date, quantity : N;
name : STRING

shipping_address : ADDRESS

The OrderLine schema represents a request from the electronic commerce system to a
seller to ship a quantity of a single product to a buyer. An order line consists of the id of
the product purchased, the name and shipping address to appear on the shipping label, the
date the order must be shipped by, and the quantity that is to be shipped. A function that

is used by a SellerOrder to create a new order line is presented next.
create_order_line : Ny X STRING x ADDRESS x Ny x N; — OrderLine

Vpid,sd,qu : Ny; n: STRING; o: ADDRESS; o : OrderLine o
create.order.line(pid, n, a, sd, qu) = 0 = o.product_id = pid A
o.name = n A o.shipping_address = a A
o0.shipping_date = sd A o.quantity = qu

The create_order_line function is used to create a new order line for a SellerOrder. The

function takes all of the attributes of an OrderLine as inputs and creates a new order line by

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 95

assigning those inputs to the corresponding values in the order line schema. The SellerOrder

schema is defined below:

__SellerOrder
seller_ad : Ny
order.lines : P OrderLine

Va,b: OrderLine o a € order_lines A b € order.lines = a # b

The SellerOrder schema represents a collection of OrderLine objects meant for a single
seller as the result of a transaction. The schema contains the id of the seller to send the
order to and a list of order lines. The constraint on the schema states that each order
line in the SellerOrder must be unique. The next schema, InitSellerOrder, initializes the

SellerOrder.

__InitSellerOrder

ASellerOrder
std? : N1

seller_id' = sid?
order_lines’ = {)

The InitSellerOrder schema initializes the SellerOrder schema by setting the seller id to
the value of the corresponding input and the set of order lines to empty. Another component

used during a transaction, ProductPurchase, is defined as:

_ ProductPurchase

id, quantity : N

product : ProductEntry
shipping.address : ADDRESS
payment.method : PaymentMethod
status : STATUS

The ProductPurchase schema represents the purchase of a product in the electronic
commerce system by a buyer. Each product purchase is specific to one product, shipping
address and payment method. The attributes of a product purchase include an id, the
product entry for the product, the shipping address for the goods, the payment method to

pay for the goods, the quantity of product purchased, and the current status. A function

96 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

to create a new product purchase, is presented below.

create_product_purchase : Ny X ProductEntry x ADDRESS x
PaymentMethod x Ny — ProductPurchase

Vi,qu : Ny; pe : ProductEntry; a : ADDRESS);
pm : PaymentMethod; p : ProductPurchase e
create_product_purchase(i, pe, a, pm, qu) = p =
p.id = 1 A p.product = pe A p.shipping.address = a A
p.payment.method = pm A p.quantity = qu A p.status = start

The create_product.purchase function creates a new product purchase. It takes inputs
mirroring the attributes of a product purchase and binds them appropriately.
With the specification of ProductPurchase, a schema. to add a new order line is defined

as follows.

__AddOrderLine

ASellerOrder
n?: STRING
pp? : ProductPurchase

order_lines’ = order.lines U {create.order line(pp?.product.id,n?,
pp?.shipping_address, pp?.product.ship_time + sys.time, pp?.quantity)}

The AddOrderLine schema takes the name to appear on the shipping label as an input
parameter and uses the create.order. line function to create an order for the seller to fulfill.
The parameters passed to the create_order_line definition come from the existing information
stored in the product purchase. The effective shipping date is determined by taking the
shipping time from the product entry and adding the current system time, defined at the

beginning of the specification.

— SellerPurchase
1d, seller_id : Ny

seller_order : SellerOrder

product_purchases : P, ProductPurchase

Vz,y : ProductPurchase o z € product_purchases A y € product.purchases =
z.1d # y.id

The SellerPurchase schema, represents all the information about the products being

purchased from a single seller by a buyer. This schema contains an id, the seller’s id, the

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 97

order sent to that seller for shipping, and a list of the specific product purchases involved.
The constraint is that each product purchase must be unique. The InitSellerPurchase

schema initializes the SellerPurchase schema.

__InitSellerPurchase
ASellerPurchase
1d?, sid? : Ny

pp? : P, ProductPurchase

id" = id?
seller id’ = sid?
product_purchases’ = pp?

The InitSellerPurchase operation sets the initial values of the SellerPurchase schema.
The input values are the id, seller id, and a listing of product purchases. The function

presented below, create_seller purchase, is needed by the transaction to add a seller purchase.

create seller_purchase : Ny x Ny x P, ProductPurchase — SellerPurchase

Vid, sid : Ny; pp : P; ProductPurchase; sp : SellerPurchase o
create_seller_purchase(id, sid, pp) = sp =
sp.id = id A sp.seller.id = sid A sp.product_purchases = pp

The create_seller_purchase function creates a new SellerPurchase given the inputs as
parameters. This function is used in the processing of user transactions.

Upon successful completion of a transaction, an invoice is sent to the buyer showing
the details of the purchase. The schemas and functions necessary to specify an invoice are

presented next.

BuyerDetails
name, phone, email : STRING
address : ADDRESS

The BuyerDetails schema represents the portion of an invoice that contains the buyer
information including name, address, phone number and email. The schema describing

information about each purchase is described below.

98 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

PurchaseDetails

seller_name, product.name, payment_method_name : STRING
seller_address, shipping_address : ADDRESS
product_price, shipping.time, quantity : Ny

The PurchaseDetails schema represents the information stored about one product in-
volved in a transaction. Each purchase detail record contains the seller’s name and address,
product name and price, the quantity of product, the shipping time and address, and the
payment method name. For an entire transaction all PurchaseDetails are combined and

displayed together on a single invoice.

Invoice

buyer.details : BuyerDetails
purchases : P, PurchaseDetails

The Invoice schema represents the document given to the buyer at the completion of a
transaction in the electronic commerce system. The invoice contains information about the
buyer involved in the transaction and a purchase detail entry for each product purchased
n the transaction. Other operations on an invoice are described next, beginning with a

function used to create buyer details.

create_buyer_details : Ny x P, Buyer — BuyerDetails

Vbid : Ny; bl : P, Buyer; bd : BuyerDetails o create buyer_details(bid, bl) = bd =
(3,2 : Buyer | z € bl @ z.1d = bid A bd.name = z.name A
bd.address = z.address A bd.phone = z.phone A bd.email = z.email)

The create_buyer.details function takes an id and a buyer and creates a buyer details
schema by assigning the appropriate values to the buyer details schema from the buyer
schema. This function is used when an invoice is created during the processing of a trans-
action. The product details entry for each product purchased is created using a similar

function defined below.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 99

create_product_details : ProductPurchase X Ny x P, Seller — PurchaseDetails

V pp : ProductPurchase; sid : Ni; sl : P, Seller; pd : PurchaseDetails o
create_product_details(pp, sid, sl) = pd =
pd.seller_name = return_seller name(sl, sid) A
pd.seller_address = return_seller_address(sl, sid) A
pd.product_name = pp.product.name A
pd.product_price = pp.product.price A
pd.quantity = pp.quantity A
pd.shipping_time = pp.product.ship_time A
pd.shipping_address = pp.shipping_address A
pd.payment_method_name = pp.payment_method.name

‘The create.product_details function builds purchase details using a seller and the product
purchase information. The purchase details are built by assigning the correct attributes
from the seller and product purchase to define the purchase details needed for the invoice.
The attributes needed from the seller are obtained by using the return.seller-name and
return._seller_address functions. A function is needed to modify the structure of the set of
product purchases to clarify its use in the specification. The signature of the function,
transform_product_purchases, is given as:

l transform_product.purchases : P ProductPurchase — seq ProductPurchase

Since the create_product_details function creates the product details for a single product
purchase in a transaction, a function is needed to create all the product details for the
SellerPurchase.

create_purchase_details : seq ProductPurchase x Ny x P, Seller — P PurchaseDetails

V pp : seq ProductPurchase; sid : Ny; sl : P, Seller; pd : P PurchaseDetails o
(pp = () = create_purchase_details(pp, sid, sl) =) A
(#pp > 0 = create_purchase_details(pp, sid, sl) =
{create_product._details(head pp, sid, sl)} U
create_purchase_details(tail pp, sid, sl))

The create_purchase_details function uses a sequence of ProductPurchases from a Sell-
erPurchase to generate all the purchase details for the invoice. This function recursively
processes the sequence of ProductPurchases and applies the function create_product_details to
each. The create_invoice.purchases function, defined below, uses the create_purchase.details

function.

100 CHAPTER 3. A ForMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

create.invoice.purchases : seq SellerPurchase x P, Seller — P PurchaseDetails

V sp : seq SellerPurchase; sl : IP; Seller; pd : P PurchaseDetails o
(sp = () = create.invoice.purchases(sp, sl) = 0) A
(#sp > 0 = create_invoice_purchases(sp, sl) = create_purchase_details(
transform.product_purchases((head sp).product_purchases),
(head sp).seller_id, sl) U create_invoice_purchases(tail sp, sl))

The create_invoice.purchases function takes a sequence of SellerPurchases and a set of
sellers and returns a set of purchase details. If the sequence of seller purchases is empty,
which represents cases where there are no more seller purchases to create purchase details
for, the empty set is returned. Otherwise, if there are elements in the seller purchase
sequence the returned value is set to the first entry in the seller purchase sequence along
with the list of sellers passed to the create purchase_details function combined with the
create_invoice_purchases function applied to the remaining product purchases. A function,

create.invoice, to create a new invoice for use in the transaction is now described.
create invoice : seq SellerPurchase x | Seller x P, Buyer x Ny — Invoice

V sp : seq SellerPurchase; sl : P, Seller; bl : P, Buyer; bid : Ny; in : Invoice o
create_invoice(sp, s, bl, bid) = in =
in.buyer_details = create buyer_details(bid, bl) A
in.purchases = create.invoice_purchases(sp, sl)

The createinvoice function builds an invoice by assembling the buyer and purchase
details. The function takes a sequence of seller purchases, the list of sellers, the list of
buyers, and a buyer id and creates an invoice. The function uses the create_buyer.details
and create_invoice_purchases functions.

With the definition of the subcomponents of a transaction complete, schemas and func-

tions describing a transaction and a management mechanism for transactions are presented.

— Transaction
id, buyer_id : Ny
seller purchases : P SellerPurchase

invoice : Invoice
status : STATUS

Vz,y : SellerPurchase o © € seller_purchases A y € seller purchases =
z.id F# y.id

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 101

The Transaction schema represents a buyer’s attempt to purchase some goods in the
electronic commerce system from one or more sellers. Each transaction has an id, the
buyer’s id, a set containing the seller purchases, an invoice and a status for the transaction.
A constraint on a transaction is that each seller purchase must be unique. An additional

constraint on transactions is given below.

transactions : P Transaction

Vz,y : Transaction e z € transactions A y € transactions = z.id # y.id

This constraint states that each transaction in the system must be unique. The initial

state of a transaction is defined by:

__InitTransaction
ATransaction

seller_purchases’ = ()
status’ = start

The InitTransaction schema initializes the transaction so that the set of seller purchases
is empty and the status is set to start. This signifies that the transaction has begun and
has not ended either correctly or in error.

With the definition of a transaction and its initial state, operational schemas and func-
tions can be presented to show the creation and use of the information stored in a transac-
tion.

] transform_seller_purchases : PP SellerPurchase — seq SellerPurchase

The transform.seller_purchases definition changes the set of seller purchases into a se-
quence of seller purchases. This function is useful in the definition of the operational schema,
AddTransactionInvoice defined below, because it aids in the use of the create_invoice func-

tion.

102 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

__AddTransactionInvoice

A Transaction
bl? : P Buyer
sl? . P Seller

status = complete
invoice’ = create_invoice(transform_seller purchases(seller_purchases),
sl?, bl?, buyer_id)

The AddTransactionInvoice schema creates the invoice for the transaction by using the
transform_seller_purchases and create_invoice functions along with the list of buyers and
sellers in the electronic commerce system. A pre-condition on the creation of an invoice is
that status is equal to complete, signifying the correct end to a transaction and providing
impetus to produce the invoice.

To manage transactions, the TransactionManager schema is defined, which describes

the management of all transactions in the electronic commerce system.

— TransactionManager

active, completed : P Transaction

active N completed = ()
Vz,y : Transaction e € active A y € completed = z.id # y.id

The TransactionManager schema is responsible for the management of all the transac-
tions in the system. This schema contains a list of all the completed and active transactions
in the system. Constraints on this schema are that each transaction be unique and that
each transaction must exist in either active or completed. The next schema defines the

initialization of the transaction manager.

— InitTransactionManager
A TransactionManager

active' =0
completed’ = ()

The InitTransactionManager schema, initializes the transaction manager so that the sets

of active and completed transactions are empty.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 103

Payment Schemas and Definitions

To complete a transaction, payment must be made from the buyer to the seller. The schemas

and functions presented next detail the requirements of a payment.

Payment
id, amount : Ny

buyer_pm, seller_pm : PaymentMethod
status : STATUS

The Payment schema represents the information necessary to settle transactions finan-
cially (i.e. transfer money from a buyer to a seller). A Payment has an id, an amount, a
buyer and seller payment method, and a status. The payment methods contain the financial
information needed for the monetary transfer. The status of the payment is used to indicate
the outcome of the processing and may either be success or failure. A function is needed

for the creation of a payment in the electronic commerce system.
create_payment : Ny x Ny X PaymentMethod x PaymentMethod — Payment

Vid,am : N; bpm, spm : PaymentMethod; p : Payment
create_payment(id, am, bpm, spm) = p =
p.id = id A p.amount = am A p.buyer pm = bpm A
p.seller pm = spm A p.status = start

The create_payment function takes the input for a payment schema and creates a Pay-
ment by assigning the values given to the correct attributes. The ability to find a payment
in the list of payments maintained by the system is important so that a current status of the
payment may be reported to the system and users. The return_payment function describes

that operation.

return_payment : Ni x P Payment — P Payment

Vi:Ny; p,results : P Payment e return.payment(i,p) = results =
results C p A (Vz : Payment | z € results o £.id = 1)

The return_payment function finds a payment in a set of payments given an id. For pay-
ments to succeed, additional third parties are required for communication and the transfer
of monetary amounts. Several schemas and functions are presented below to aid in this

process.

104 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

PaymentAttempt
id : Nl
buyer_status, seller status : PAYMENT STATUS
payment : Payment

The PaymentAttempt schema contains the data needed by the processing gateway to
make a payment from a buyer to seller. Each PaymentAttempt contains an id, the status
of the payment for the buyer and seller financial institutions and payment information
contained in the Payment schema. A function to create a new PaymentAttempt is presented

below.

create_payment_attempt : Ny X Payment — PaymentAttempt

Vid : Ny; p: Payment; pa : PaymentAttempt o
create_payment._attempt(id,p) = pa = pa.id = id A\ pa.payment = p A
pa.buyer_status = begin A pa.seller_status = begin

The create_payment_attempt function creates a new PaymentAttempt by taking an id and
payment information as inputs. The buyer and seller status are set to start to signify the
beginning of the payment process for the buyer and the seller. The return_payment.attempt
function, defined below, is used to return an existing PaymentAttempt from the processing
gateway.

return_payment._attempt : N x P PaymentAttempt — P PaymentAttempt

Vi :Nyp; pa,result : P PaymentAttempt e return_payment_attempt(i, pa) = result =
result C pa A (Vz : PaymentAttempt | z € result o z.1d = 1)

The return_payment.attempt function uses an id to locate a PaymentAttempt. The Pro-

cessingGateway and associated functions are defined next.

__ ProcessingGateway

current_payments : P PaymentAttempt
fin_insts : P Financiallnstitution

Va,b: PaymentAttempt o a € current_payments A b € current_payments =
a.id # b.id
Vz,y : Financiallnstitution e z € fininsts A y € finiinsts =
z.name F y.name

The ProcessingGateway schema is a third-party resource for the processing of payments.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 105

This schema contains sets of PaymentAttempt and Financiallnstitution schemas. The cur-
rent_payments property represents the current attempted payments undergoing processing
by the gateway and the set of fin_insts represents the banking resources available. Two con-
straints on ProcessingGateway are that each PaymentAttempt and each Financiallnstitution

are unique. A function to initialize the ProcessingGateway is defined as:

— InitProcGate
A ProcessingGateway

current_payments’ = ()
fin_insts' =0

The InitProcGate operation initializes a ProcessingGateway by setting the initial set
of current payments and the set of financial institutions to be the empty set. The next
operations specify the details of the addition and removal of payment attempts and financial

institutions from the ProcessingGateway. The AddPayAttempt schema is presented first.

__AddPayAittempt

A ProcessingGateway
1d? : Np
p? : Payment

create_payment._attempt(id?,p?) ¢ current_payments
current_payments’ = current.payments U {create_payment_attempt(id?,p?)}

The AddPayAttempt operational schema uses the create_payment_function to add a new
payment attempt to the set of current payment attempts. The constraint is that the pay-

ment attempt to be created must not already exist in the set of current payment attempts.

__ RemovePayAittempt

A ProcessingGateway
id? : Ny

return.payment_attempt(id?, current_payments) C current_payments
current_payments' = current_payments \
return_payment_attempt(id?, current_payments)

A payment attempt is removed from the set of current payment attempts using the

RemovePayAttempt operational schema. Utilizing the remove_payment.attempt function

106 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

and the set difference operator, a payment attempt identified by a given id is removed from
the set of current payment attempts. Similar operations required for financial institutions

are presented next.

___AddFinInst

A ProcessingGateway
fi? = Financiallnstitution

fi? & fin_insts
fin_insts’ = fininsts U {fi7}

The AddFinlnst operation modifies the set of financial institutions by adding a financial
institution given as an input. The constraint on this operation is that the financial institu-
tion to be added must not already exist in the current set. The return_fin.inst function is

defined below.

return_fin.inst : STRING x P Financiallnstitution — P Financiallnstitution

Vn: STRING,; fi,result : P Financiallnstitution e return_fin_inst(n, fi) = result =
result C fi A (VY z : Financiallnstitution | z € result z.name = n)

The return_fin_inst function returns a selected financial institution from a list of financial

institutions given an id as an input. This function is used below by RemoveFinInst:

__ RemoveFinInst

A ProcessingGateway
name? : STRING

return_fin_inst(name?, fin.insts) C fin_insts
fininsts’ = fininsts \ return_fin.inst(name?, fin_insts)

The RemoveFinInst operation removes a specified financial institution from a processing
gateway, using the remove.fin.inst function. The constraint on the schema is that the
financial institution to be removed must exist in the set of financial institutions.

With the specification of a payment, payment attempt, processing gateway and associ-

ated functions, a mechanism for managing payments is useful.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 107

PaoymentManager

current_payments : P Payment
proc_gateway : ProcessingGateway

Vz,y: Payment ® x € current_payments A y € current_payments =
z.id # y.id

The PaymentManager schema represents the mechanism for managing all the payments
attempted by the system. The payment manager contains a sequence of current payments
as well as information about the processing gateway to be used in the transfer of money
between the buyer’s and seller’s financial institutions. The constraint on the schema is that
each Payment in the payment manager is unique. An operational schema used to initialize

the payment manager is described next.

— InitPaymentManager
A PaymentManager

current_payments’ = ()

The InitPaymentManager operation initializes the payment manager by setting the set
of current payments to empty. Other values of the payment manager require modification

during the operation of the system.

__ ModifyProcessingGateway

A PaymentManager
pg? : ProcessingGateway

proc_gateway’ = pg?

The ModifyProcessingGateway schema allows the payment manager to modify the in-
formation stored about the processing gateway by setting a new value given as an input.
Another requirement of the system is to be able to add new payments to the payment
manager.

To initiate payment in the system the following function is used by a SellerPurchase in
a transaction:

] consolidate_payments : P, ProductPurchase — P, Payment

The consolidate_payments function groups each of the product purchases in a seller

108 CHAPTER 3. A ForMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

purchase by payment method and sums the amounts of each product purchase. The set
of payments created is presented for use by the payment manager by the RequestPayment
schema:

_ RequestPayment

ZSellerPurchase
p! : P; Payment

p! = consolidate_payments(product_purchases)

The output of the RequestPayment schema is a list of the current payments required for
a particular seller purchase in a transaction. This operation uses the consolidate_payments

function to create the set of payments used by the AddPayments operational schema defined

below.

__ AddPayments
RequestPayment
APoymentManager
p? : P, Payment

p? =p!
V pp, cp : Payment | pp € p? A cp € current_payments e pp.id # cp.id
current_payments’ = current payments U p?

The AddPayments schema adds a set of payments, created in the RequestPayment
schema, to the current payments stored by the payment manager. The constraint on the
schema is that each payment in the set to be added must be unique when compared to each

existing payment in the PaymentManager.

__ RemovePayment

A PaymentManager
pid? : Ny

return_payment(pid?, current_payments) C current_payments
current_payments’ = current.payments \
return_payment(pid?, current_payments)

The RemovePayment schema is used to remove a payment from the set of current
payments using the return_payment function and the set difference operator. The pre-

condition on the schema is that the payment to be removed must exist in the current set

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 109

of payments.
With the preceding definitions of the required building blocks, a series of schemas and
functions are now presented to demonstrate the transfer of funds between financial institu-

tions through the processing gateway.

auth_fin.inst : STRING x CODE x Financiallnstitution — PAYMENT STATUS

Vn:STRING; a.c: CODE; fi : Financiallnstitution e
(auth fin_inst(n, a.c, fi) = auth = fi.name = n A fi.auth.code = a_c) V
(auth_finiinst(n, a.c, fi) = end = fi.name # n V fi.auth-code # a_c)

The auth_fin.inst function uses a name and authorization code and compares them
against the name and authorization code of an existing financial institution. If the val-
ues match, the financial institution authorizes the credit or debit to take place and returns
a payment status of auth. If either of the values do not match, a payment status of error
is returned. The schema below uses the auth_fininst function for initial processing of a

payment attempt.

__ AuthorizePayment
APaymentAttempt
bfi?, sfi? : Financiallnstitution

buyer_status = begin

seller_status = begin

buyer_status’ = auth. fin_inst(payment.buyer_pm.finame,
payment.buyer_pm.auth_code, bfi?)

seller_status’ = auth_fin.inst(payment.seller_pm.finame,
payment.seller_pm.auth_code, sfi?)

The AuthorizePayment operational schema attempts to gain authorization from the
buyer’s and seller’s financial institutions to modify account balances contained within each.
The buyer and seller PAYMENT.STATUS are modified by the auth_fin_inst function. The
pre-conditions on AuthorizePayment are that buyer and seller status must both be begin.

The function defined next is used to debit a financial institution account.

110 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

debit_fin_inst_acc : Ny x Ny x Financiallnstitution — PAYMENT STATUS

Yan,am :Ny; fi : Financiallnstitution e
(debit fin_inst.acc(a.n, am, fi) = pay =
(3, @ : Account | a € fi.accounts ® a.acc.num = an A
a.balance = debit.account(a, am))) V
(debit fin_inst.acc(an, am, fi) = end =
(Va: Account | a € fi.accounts e a.acc.num # a.n))

The debit_fin_inst.acc function uses an account number and an amount to debit a finan-
cial institution account using the debit.account function. The result of this function is a
modification to the payment status of a payment. If the account number exists, the amount
is debited from the account and a payment status of pay is returned. If the account is
not found then a payment status of end is returned. Similarly, credit.fininst.acc is used to

credit a financial institution account:
credit_fin_inst_acc : Ny x Ny x Financiallnstitution — PAYMENT STATUS

Y a.n,am : Ny; fi : Financiallnstitution e
(credit.fin_inst_acc(a-n, am, fi) = pay =
(3, a : Account | a € fi.accounts & a.accnum = an A
a.balance = credit_account(a,am))) V
(credit_fin_inst.acc(a-n, am, fi) = end =
(Va: Account | a € fi.accounts e a.acc.num # a.n))

The credit_fininst.acc function uses the credit.account function to credit the account
of a financial institution supplied a parameter. If the account number provided exists in
the financial institution then a payment status of pay is returned. If the account number
does not exist, a payment status of end is returned. For debiting a buyer account, the

BuyerPayment schema is presented next.

— BuyerPayment
APaymentAttempt
bfi? : Financiallnstitution

buyer.status = auth

seller_status = auth

buyer_status’ = debit_fin_inst_acc(payment.buyer_pm.acc.num,
payment.amount, bfi?)

The BuyerPayment operational schema debits a buyer’s account at their financial insti-

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 111

tution by using the debit_fininst.acc function. The account number from the buyer payment
method and the amount from the payment in the payment attempt are used as input pa-
rameters along with the buyer financial institution. The pre-conditions on this schema are
that the buyer and seller status must both be auth, meaning that the debit of the buyer
may not occur until the financial institutions of the buyer and seller involved have both
provided authorization for the transfer of funds. The second part of the monetary transfer,

SellerPayment, is defined below.

__SellerPayment

APaymentAttempt
sfi? : Financiallnstitution

buyer_status = pay

seller_status = auth

seller_status’ = credit fin_inst_acc(payment.seller_pm.acc.num,
payment.amount, sfi?)

The SellerPayment operation uses the credit_fininst.acc function to credit the seller’s
account at their financial institution account with the amount specified in the payment
amount. The pre-conditions on the schema are that the buyer status must be pay and the
seller status must be auth. This ensures that the buyer’s account has been successfully deb-
ited and the seller’s financial institution has authorized the transfer. After the completion

of the payment attempt, the outcome is presented back to the transaction.

return_pay.att_status : PAYMENT STATUS x PAYMENT STATUS — STATUS

Vbs,ss : PAYMENT STATUS e
(return_pay.att_status(bs, ss) = complete = bs = pay A ss = pay) V
(return._pay.att_status(bs, ss) = error = bs # pay V ss # pay)

The return._pay.att_status function returns the status of a payment using the results of
the buyer and seller payment status from the payment attempt. The function sets the
status to complete if the buyer and seller status were both pay. The value error the result
of the function if either the buyer or seller status was not pay. This function is used in the

schema, below.

112 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

__SetPaymentStatus
A PaymentAttempt
status! : STATUS

payment’ .status = return_pay_att_status(buyer_status, seller_status)
status! = payment’ .status

The SetPaymentStatus modifies the payment attempt and sets an output value equal
to the status of the payment using the return_pay.attstatus. This value is then set in the

transaction payment by the following schema:

__ Receive PaymentStatus

A Payment
status? : STATUS

status’ = status?

The ReceivePaymentStatus schema, sets the status of a payment to a value passed as an
input. This operation is used to record the status of a payment that was attempted by the
processing gateway.

With the definition of all aspects of payments in the electronic commerce system, an

integrating schema for payments is presented below.

__Integrated PaymentManager

PaymentManager
AddPayments
RemovePayment
AuthorizePayment
BuyerPayment
SellerPayment
ModifyProcessingGateway

The Integrated PaymentManager schema groups all aspects of payment in a transaction
into an integrated schema. This integration allows for the use of the separate schemas by

the electronic commerce system together.

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION 113

Electronic Commerce System

Based on the components specificed, a representation of the entire electronic commerce
system is now presented.

__ ElectronicCommerceSystem

buyers : P Buyer

sellers : P Seller

buyer_session.handler : BuyerSessionHandler
seller_session_handler : SellerSessionHandler
transaction.manager : TransactionManager
search.engine : SearchEngine
comparison_engine : ComparisonEngine
master.inventory : MasterInventory

payment manager : IntegratedPaymentManager

Vz,y : Buyer © € buyers A y € buyers = z.1id #* y.id
Vu, v : Seller o u € sellers A v € sellers = u.1d # v.id

The ElectronicCommerceSystem schema contains all the components in the entire sys-
tem. The schema contains a set buyers and a set sellers that have registered with the
system. The buyer and seller session handlers are used to track when a buyer or seller is
active in the electronic commerce system. The transaction manager controls all the trans-
actions, where a buyer wishes to purchase some goods, in the electronic commerce system.
The transaction manager works in concert with the payment manager to complete these
transactions. The payment manager is responsible for transferring the money involved in
transactions. The search engine and comparison engine are tools used by the buyers and
sellers to find, compare, and contrast products from the master inventory in the electronic
commerce system. The master inventory contains all of the products available for purchase
from the sellers. There are two pre-conditions on this schema describing the uniqueness
of each buyer and seller in the electronic commerce system. The next operational schema

initializes the system.

__ InitElectronicCommerceSystem

A ElectronicCommerceSystem

114 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

The InitElectronicCommerceSystem schema initializes the entire electronic commerce
system by setting the initial set of buyers and sellers to be empty. The information used
for the operation of the electronic commerce system is needed after initialization. The

operational schema that modifies the attributes of the system is presented below.

__LoadFElectronicCommerceSystem
A ElectronicCommerceSystem
b? : P Buyer
s?: P Seller
bsh? : BuyerSessionHandler
ssh? : SellerSessionHandler
tm? : TransactionManager
se? : SearchEngine
ce? : ComparisonEngine
mi? : MasterInventory
pm? : Integrated PaymentManager

buyers’ = b?

sellers’ = s?
buyer_session_handler’ = bsh?
seller_session_handler’ = ssh?
transaction.manager’ = tm?
search_engine’ = se?
comparison_engine' = ce?
master_inventory’ = mi?
payment.manager’ = pm?

The LoadElectronicCommerceSystem schema is needed to supply the operational infor-
mation needed by the electronic commerce system. This schema represents the setup of
the electronic commerce system for use. After the successful completion of this schema,
the system is ready to receive buyers and sellers and to carry out searches, comparisons,

transactions and payments.

3.3.2 Z Specification Verification

The specifications were checked for correctness using the Z/EVES tool [34]. The checks
performed include syntax, type, and domain checking. Z/EVES reads a specification from

a file and parses the Z symbols to build schemas, axiomatic definitions, and rules.

3.3. Z SPECIFICATION LANGUAGE MODEL DESCRIPTION 115

Syntax and Type Checking

In Z/EVES the only mandatory checking of a Z specification is syntax and type check-
ing [34]. Syntax checking ensures that the specification is written correctly and contains no
errors which prevent proper parsing. Without correct syntax, as in any other programming,
errors will either appear in the result or terminate the parsing altogether. Examples of im-
proper syntax in a Z specification would be leaving certain elements out of a pre-formed
statement, incorrect spelling of names, and erroneous characters. Type checking ensures
that the specification uses the proper types at all times. This applies to all rules, schemas,
and functions defined in a specification. An example of an incorrect type is to assign a
string value to a numeric field.

In the Z/EVES program, syntax and type checking are accomplished during the “read”
command. Figure 3.25 shows a syntax and type checking session of the specifications in
this thesis using the Z/EVES tool. An input file can read and a user can scroll through the

results to find errors syntax and type errors.

Domain Checking

Domain checking of a Z specification can be accomplished in the Z/EVES program by
reading in a specification, identifying proofs that can be tested, and writing a proof script
to demonstrate those proofs. Domain checking is done to ensure that all expressions written
are meaningful. Figure 3.26 demonstrates all of the possible domain checks that can be
accomplished based on the Z specifications presented in this chapter.

Figures 3.27 and 3.28 demonstrate the use of domain checking in the Z specification.
Figure 3.27 shows the domain proof for the credit.account definition. The Z/EVES com-
mands try lemma and prove by reduce are used together to produce a proof result of frue
for all domains of credit_account.

By using the domain checks provided by the Z/EVES tool, all the possible proofs avail-
able can be reduced as shown in Figure 3.28. The results demonstrated are similar to Figure
3.26. However, the Z/EVES tool now lists which possible domain checks have been proven

and which remain. The entire list of proofs can be submitted to the domain checking process

116 CHAPTER 3. A FoRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

axiom BuyerSessionHandler\$thetaMemb

axiom BuyerSessionHandler\Sdeclaration

axiom SellerSessionHandler\SthetasEqual

. axiom SellerSesgionHandler\SinSet

. axiom SellerSessionHandler\SthetalInSet

. axiom SellerSessionHandler\$setInPowerSet

axiom SellerSessionHandler\$member

. axiom SellerSessionHandler\SthetaMember

... axiom SellerSessionHandler\Sdeclaration

. axiom TransactionManager\SthetasEqual

. axiom TransactionManager $inSet

. axiom TransactionManager\SthetalnSet

. axiom TransactionManager\$setInPowarSet

. axiom TransactionManager\Smembar

. arxiom TransactionManager\SthetaMember

. axiom TransactionManager\Sdeclaration

axiom SearchEngine\$thetasEqual

axiom SearchEngine\§inSet

axiom SearchEngine\SthetalnSet

. axiom SearchEngine\SsetInPowerSet

. axiom SearchEagine\$member

. axiom SearchEngine\SthetaMember

. axiom SearchEngine\Gdeclaration

. axiom ComparisonEngine\SthetasEqual

axiom ComparisonEngine\SinSet

. axiom ComparisonEngine$thetaInSet

axiom ComparisonEngineN$setInPowerSet

axiom ComparisonEngine\Smember

axiom ComparisonEngine\SthetaMember

. axiom ComparisonEngine\Sdeclaration

. axiom PaymentManager\SthetasEqual

. axiom PaymentManager\SinSat

. axiom PaymentManager\SthetalnSet

. axiom PaymentManager\SsetInPowerSet

. axiom PaymentManager\Smember

. axiom PaymentManager\$thetaMember

. axiom PaymentManager\Sdeclaration

-.. axiom ElectronicCommerceSystem\$declarationPart
schema InitElectronicCemmerceSystem

. schema “Delta ElectronicCommerceSysten

... axiom Delta\gElectronicCommerceSystem\SdeclarationPart
... axiom InitElectronicCommerceSystem\SdeclarationPart
schema LoadElectronicCommerceSystem

... axiom LoadElectronicCommerceSystem\$declaraticnPart
Done.
>
2

Figure 3.25: Z-Eves Syntax and Type Check of Z Specification

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION

*Z/EVES (Z/LaTeX mode)

Done.

«> print status:
Current status:
No current goal

Untried goals: create\ prod\ char\SdomainCheck.
return™_prod_char\$domainCheck, create_product>_entry\$domainCheck,
return_product'_entry\$domainCheck. AddProdChar\SdomainCheck.
RemoveProdCharngdomainCheck. create™_action“SdomainCheck.
createN_accountSdomainCheck, AddAccount $demainCheck,
returns_account\SdomainCheck, RemoveAccount\SdomainCheck.

credit_account SdomainCheck. debit™_ account\SdomainCheck.
create_payment\ method\$domainCheck., return_ payment_method\SdomainCheck,
‘AddSessionAction\SdomainCheck, create>_session“$SdomainCheck.,
return_session\SdomainCheck. AddBuyerPaymentMethod\SdomainCheck.
‘RemoveBuyerPaymentMethod\SdomainCheck.,
‘AddBuyerSessionProductEntry\SdomainCheck,
RemoveBuyerSessionProductEntry\SdomainCheck,
create™_buyer_session\$domainCheck, AddBuyerSession\SdomainCheck,
return_buyer_session“$domainCheck, RemoveBuyerSession‘SdomainCheck.
'AddSellerPaymentMethod\SdomainCheck, AddSellerSession“SdomainCheck.
RemoveSellerSessions$domainCheck, create_product™_lot\SdomainCheck,
return™_product_lot \$domainCheck. AddSupplierProductlot\SdomainCheck,
iRemoveSupplierProductlot\SdomainCheck. return’_seller:_name\$domainCheck,
return_seller_address\SdomainCheck,

return_seller_ payment_method\$domainCheck. AddProductEntry\SdomainCheck.
RemoveProductEntry\SdomainCheck .,
master_inventory_preduct_search\SdomainCheck, ExecuteSearch\SdomainCheck,
create_search\¢domainCheck. return_search\$demainCheck,
lAddSearch\$domainCheck. RemoveSearch\SdomainCheck.,
delete_prod>_char\SdomainCheck, AddCompChar\SdomainCheck,
RemoveCompChar\SdomainCheck. get_rark\SdomainCheck.
rank™_product\SdomainCheck. return_rankings\SdomainCheck.
return_comparison_rankings\SdomainCheck, DetermineRankings\GdomainCheck.
DetermineResults\SdomainCheck, create_comparisonsSdomainCheck,
return_comparison’SdomainCheck, AddComparisoaSdemainCheck,
RemoveComparisan\$domainCheck, create™_order\$domainCheck.
CreateOrder\$domainCheck. create™_product_purchase\SdomainCheck.
createN_buyer\ _details\SdomainCheck. create™_product_details‘SdomainCheck.
create_invoice™_purchases\$domainCheck, AddPurchaseDetails\SdomainCheck,
create™_invoice\SdomainCheck. AddProductPurchaseNSdomainCheck,
AddTransactionlnvoice\SdomainCheck, SendOrders\SdomainCheck.
create™_payment\GdomainCheck., return’_payment_status\SdomainCheck,
delete™_payment\$domainCheck. AddPayment\SdomainCheck.
RemovePaymentManagerPayment \SdomainCheck

Figure 3.26: Z-Eves Domain Check of Z Specification

117

118 CHAPTER 3. A FORMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

ComparlsonEnglne\SsetInPowerSet
. axiom ComparisonEngine\$nember
. axiom ComparisonEngine\$thetaMember

axiom ComparisonEnginen$declaration

axion IntegratedPaymentManager\$thetasEqual

axiom IntegratedPaymentManager\$inSet

axiom IntegratedPaymentManager\$thetalnSet

axion IntegratedPaymentManager\$setlInPowverSet

axiom IntegratedPaymentManager\$member

axiom IntegratedPaymentHanager\$thetaMember

axiom IntegratedPaymentManager\$declaration

axion ElectronicCommerceSystem\$declarationPart
schema InitElectronicComnerceSysten

schema \Delta ElectronicComnerceSysten

axiomn Delta\SElectronicCommerceSystemn\s$declarationPaxrt
... axion InitElectronicConmerceSystem\$declarationPart
schena LoadElectronicConmerceSysten

axiom LoadElectronicCommerceSysten\$declarationPart
Done.
=> try lemma credit_account\$domainCheck;
Beginning proof of credit_account\$domainCheck

\Local credit_account \Nin Account “cross “nat_1 “fun “\nat_1 \\
Nland (a \in Account \\
\land amount \in \nat_1 \\
Nland new™_bal Nin “\nat_1) \\
Nimplies (a. amount) \in \dom \local credit_account
i=> prove by reduce;
iSubstituting produces

N\Local credit_account “Nin Account “cross “nat_1 Nfun “nat_1 \\
N\land a \in Account \\
N\land amount \in Nnat_1 “\\
N\land new_bal Nin “nat_1 \\
\inplies (a. amount) \in Ndom \Local credit>_account
Which simplifies
vhen revriting with tuplelnCross2. domFunction, CrossSubsetCross2, weakening,
pover_sub. inNatl
forward chaining uslng KnownMember\$declarationPart, knownMember,

“[internal items]’®

with the assumptions natType. ~“&domS$declaration’, select_2_1, select_2°_2.
fun_type. natl_type. Account\Sdeclaration, ‘[internal items]’ to
true
Proving gives
itrue

Figure 3.27: Z-Eves Domain Check Proof Example

3.3. 7 SPECIFICATION LANGUAGE MODEL DESCRIPTION

Z/EVES (Z/LaTeX mode) .

ed goals: credit_account:\sdom

Prov

Untried goals: create_prod\ char\$domainCheck,
return_prod_char\$domainCheck, create™_product_entry\$domainCheck,
return_product_entry\$domainCheck, AddProdChar\$dorainCheck.
RemoveProdChar\$donrainCheck. create_action\$domainCheck,
create_account\SdomainCheck, AddAccount\s$domainCheck,
return’_account\$donainCheck. Removeldccount\SdomainCheck.
debit_account\$domainCheck, create_payment\ method\SdomainCheck.
return™_payrent™_mnethod\$domainCheck. AddSessiocniction\SdomainCheck,
create_session\$domainCheck. return_session\$domainCheck,
AddBuyerPayrentMethod\$donainCheck, RemoveBuyerPaymentMethod\$domainCheck.
AddBuyerSessionProductEntry\SdomainCheck,
RemoveBuyerSessionProductEntry\SdomainCheck,

create™_buyer_ session\S$domainCheck., AddBuyerSession\$domainCheck.
return™_buyer_ session\S$domainCheck. RemoveBuyerSession“\SdomainCheck.
AddSellerPaymentethod\$donainCheck, AddSellerSession\$domainCheck.
RemoveSel lerSession\$domainCheck. create_product_lot\S$domainCheck,
return_product™_lot\SdomainCheck, AddSupplierProductlot\$domainCheck.
RemoveSupplierProductLot\$domainCheck, return_seller_namre\SdomainCheck.
return_seller_address’\$domainCheck,
return_seller_payment_method\SdomainCheck, AddProductEntry\s$domainCheck.
RemoveProductEntry\$domainCheck.
naster_inventory_product_search\S$domainCheck., ExecuteSearch\$domainCheck,
create_search\$domainCheck, return™_search\$domainCheck,
AddSearch\$domainCheck. RemoveSearch\SdomainCheck,
delete_prod_char\sdomainCheck. AddCompChar\$domainCheck,
RemoveCompChar\sdomainCheck, get_rank\SdomainCheck.
rank_product\$domainCheck, return_rankings\$domainCheck.
return_comparison’_rankings\$domainCheck, DetermineRankings\$domainCheck.
DeternineResults\$domainCheck, create_comparison\$domainCheck,
return_comparisoni\$domainCheck, AddComparison\s$domainCheck,
RemoveComparison\$domainCheck, create_order_line\$domainCheck,
create_product_purchase\$domainCheck. AddOrderLine\$domainCheck.
create_seller_purchase\$domainCheck. create_buyer\ details\$domainCheck.

create_invoice™_purchases\sdomainCheck, create_invoice\$domainCheck,
tAddTransactionInvoice\$donainCheck, createN_payment\SdomainCheck.
return_payment\$dorainCheck, create_payment_attempt\SdomainCheck,
return_payment_attenpt\SdomainCheck, AddPayAttempt\SdomainCheck.
RemovePayAt tenpt\$domainCheck, return™_fin_inst\$domainCheck.
RemoveFinInst\$domainCheck, RequestPayment\$domainCheck,
RemovePayment\$domainCheck, auth_fin_inst\$domainCheck.
AuthorizePaynent\$donainCheck, debit_fin_inst_acc\$domainCheck,
BuyerPayment\$domainCheck, SellerPayment\$domainCheck

=>

ainCheck; credit_fin_inst_acc\$domrainCheck

create_product_details\$domainCheck. create\ purchase_details\$domainCheck,

Figure 3.28: Z-Eves Domain Check Results

for future work.

119

to ensure their correctness. This process requires the creation of several instantiations of
variables and environments. This is a substantial amount of work for a specification of this

size and scope. The domain checking of the entire specification in this thesis is a subject

120 CHAPTER 3. A ForRMAL MODEL OF AN ELECTRONIC COMMERCE SYSTEM

Chapter 4

E-Commerce System Prototype

This chapter presents an partial implementation of an electronic commerce system based
on the model presented in Chapter 3. The design methodology, tools used, and the design
environment are discussed. The chapter concludes with a description of the application and

shows some sample screen shots of the application.

4.1 Application Design

The prototype was designed using the UML diagrams and the Z specifications presented in
Chapter 3. The UML class diagrams were used to create the database tables and relation-
ships and the sequence diagrams aided in establishing program flow between components.
The Z specification was used to define the rules for each object in the system.

The tools and platform used to create the prototype include Microsoft SQL Server
2000, Microsoft Visual Studio .NET, and Microsoft Internet Information Server installed
on a personal computer running Windows 2000 Professional. Microsoft SQL Server 2000
was used for the storage of the database constructs needed by the application and was
selected for its ease of installation and use with Microsoft Visual Studio .NET and Microsoft
Internet Information Server(IIS). The application was created in Visual C# in Microsoft
Visual Studio .NET using aspx pages to display data access components on web pages using

Microsoft’s code behind [6] methodology. Microsoft Internet Information Server was used in

121

122 CHAPTER 4. E-COMMERCE SYSTEM PROTOTYPE

2} Web contg

Figure 4.1: Development using Microsoft Visual Studio .NET

conjunction with the Microsoft .NET Framework to serve the web pages onto the Internet
and to provide a gateway to the information stored in the database for the application.
This combination of tools allowed for the quick creation and deployment of web-based
applications on a single machine connected to the Internet. Figure 4.1 contains a screen

shot of development using Microsoft Visual Studio .NET.

4.2 Implementation

Several key areas of operation of the electronic commerce system have been selected for

demonstration using screen shots from the application together with textual explanations.

4.2.1 Welcome Screen

Figure 4.2 shows the welcome screen of the electronic commerce system. The navigation

options on this screen include Buyer Log In, Seller Log In, and Search Inventory. The buyer

4.2. IMPLEMENTATION 123

i

55128} bttp:/£24.77.194. 101 Thesisapplcationfmain. btm

Electronic Commerce Prototype System

4 Buyer LogIn
4 Selter LogIn
Search Inventory

Figure 4.2: Welcome Screen

‘Welcome Back, Test User

You are logged i as: Test1

Bugyer Profile

Shipping Addresses 3 Ttems
Payment Methods 4 Items

Shopping Cart 2 Ttems

Available Products

Figure 4.3: Buyer Summary Screen

and seller log in screens, which are invoked by clicking on the links, allow an existing buyer
or seller entry to the system. Additionally, new buyer and seller accounts can be created
by following these links. The third link brings up the search interface. This link allows

for anonymous access to the product information stored in the system and allows potential

buyers to browse the goods offered without the inconvenience of creating a buyer’s account.

124 CHAPTER 4. E-COMMERCE SYSTEM PROTOTYPE

8] htp:J[24.77. 194,101

1 Electronic Commerce Prototype - Search Product Inventory

Enter Search Criteria

Category

Men's Fashien 4

Reywords |
Separate Keywords with AND or OR [Exact Match

M

Price

Category l:D éi\lmmﬁ.lrmror (Name . Seller EDascriplion .’ :
Men's Doyle Leather Century Leather Bomber
Fashion 3 td. L3-50208 Goldsmiths }Jacket, Black

Men's . Century Nylon Jacket,
Fashien 4 | Aasics Inc. 1-987-AB Goldsmiths | Aubum

10 23567

21 |8575

Figure 4.4: Searching Product Inventory

4.2.2 Buyer Summary Screen

Figure 4.3 shows the summary screen for a buyer. After a successful login, the system
presents to the buyer a summary of his/her current status in the system. The page contains
links presenting detailed information about, and functions for, the buyer. The page displays
the buyer’s name and login id along with links to the shipping addresses, payment methods,
products for purchase in his/her shopping cart, and the products in the inventory. These
links load other pages with additional information and allow the buyer to modify personal

data, manage items in the shopping cart, and search the product inventory.

4.2.3 Browsing for Goods

Figure 4.4 shows a snapshot of the product inventory search interface. The user can enter
values for several different criteria including product category, manufacturer, a minimum

and maximum price, and any number of keywords. The drop down list on the form is

4.2. IMPLEMENTATION 125

[3 PurchaseProduct - Microsoft Interriet Explorer

€] bepiff24.72,194. 101/

Electronic Commerce Prototype - Purchase Product
Current Buyer: Test User
Buyer Logm: Testl
Step 4 of S : Confirm Product Purchase

Product Details

Name' Lo ;I\Ianul':n(hlrcr L ini:mtiry Ve %Totnl_:‘

Sprocket 1234 Mc Daniel's Sprockets 2.34 1 2.34

-987-AB Aasics Inc. 86.75 3 260.25

Shipping Address

Name |First Tost Province |{MB

Address {325 Devon Country |Canada
Brandon Postal [RIGEY7

Payment Method
Name |Mastercard Author [Mastercard }
Account [1234123412341234 Type [Credit Card i

8712004 12:00:00 AM

Figure 4.5: Check Out with Products

dynamic, limiting selections for manufacturer based on the category selected. The keywords
entered must be separated by AND or OR. This search criteria is then parsed by the system
and a full text scan of the products is executed using these values. The two buttons below
the criteria fields execute the query or clear the fields back to empty. Upon execution of
the search, the results are displayed, in tabular form, directly underneath the criteria entry
area. Fach product displayed may be selected and viewed in detail by selecting the product

id and comparisons between products may be made by the comparison button.

4.2.4 Check Out with Products

Figure 4.5 shows the final screen for a product purchase in the electronic commerce system.
Each item to be purchased is presented along with a quantity, shipping address and payment
method. The quantity is the quantity of the item the buyer wishes to purchase, the shipping
address is the destination to which the goods should be shipped, and the payment method

is the payment type for that product as selected by the buyer. Once the Proceed button

126 CHAPTER 4. E-COMMERCE SYSTEM PROTOTYPE

BaA

2) ;,
bitp:/124.77.194,101]

Electronic Commerce Prototype - Purchase Invoice

Current Buyer: Test User
Buyer Login: Testl

Step 5 of 5 : Purchase Results

Your Transaction is Complete!

The Following Products were purchased:

il %I\-Ian\lfnthn'er e N ;Pnic’e _’ an:{mity E ;Tnt‘al}" .

Sprocket 1234 IMc Daniel's Sprockets 2.34 1 2.34
1-987-AB IAasics Inc. 86.75 3 260.25
Shipping To:

First Test

325 Devon

Brandon, MB

Canada R3G 6Y7
Payment Method Transaction Details

Name [Mastercard Number [4495783 }

Account [123812301 2341234 Date [Jan7,2004 23507 1

Expuy [8/1/2004 12:00:00 AM
Author {Mastercard
Type |Credit Card

Please Print a copy of this Invoice for your records.

Figure 4.6: Receipt for Completed Purchase

is clicked, the system processes all the data presented and contacts the processing gateway
to begin payment for the items. After processing is complete, a report of the status will be

presented to the buyer as shown in Figure 4.6.

4.2.5 Receipt for Completed Purchase

After processing payments for goods in a buyer’s shopping cart, the system displays a final
screen to the buyer. Figure 4.6 shows the results of purchases and provides details on
shipping times, addresses, and amounts charged to the different buyer payment methods.
This information is presented with a unique number to allow for order tracking in the
system at a later date. All successfully completed payments result in orders sent to the
sellers involved to ship the goods to the addresses designated by the buyer. A buyer can
now return to normal use of the system, including searching for more products, viewing

buyer information, or logging out.

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis by recapping what has been presented in previous chapters,
presenting a summary of the contributions made by this thesis, and giving an outline of

possible future work in this area.

5.1 Conclusions

This thesis presented a thorough discussion of the use of formal methods in the electronic
commerce domain. In Chapter 1, the benefits of electronic commerce, problems that had
to be considered, and an introduction to formal methods was given. Chapter 2 began with
an outline of the design issues in electronic commerce, using many different methodologies
and examples of previously created systems. Additionally, a Web-based architecture for an
electronic commerce system was presented. The chapter concluded with a discussion of the
Unified Modeling Language(UML) and the Z specification language. Chapter 3 presented
an original model of an electronic commerce system. The model was then described using
UML Class, Use Case, Sequence, State, Activity and Deployment diagrams. Using the
UML and textual descriptions of the electronic commerce system, a Z specification based
on mathematical relations and textual explanations was presented. Chapter 3 closed with
the use of the Z/EVES tool to show the syntax and type checking of the Z specification

and to show domains available for testing and how they can be tested. Finally, Chapter 4

127

128 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

contained a discussion of a prototype system created from the model presented in Chapter
3 and explained the tools and architecture used to create the prototype. Chapter 4 also
provided some screen shots of the implemented system.

5.2 Summary of Contributions

This thesis has made the following contributions:

The thesis formalized the main requirements of an electronic commerce system.

e The thesis identified and integrated the elements required for successful operation of
an electronic commerce system, including databases, security, networks, distributed

systems, and artificial intelligence.

e The thesis provided a case study for modeling electronic commerce using the Unified

Modeling Language and the Z specification language.

The thesis provided a partial prototype of an electronic commerce system.

5.3 Future Work

This thesis provides opportunity for further research in the following areas:

o Alternate forms of electronic commerce.

In addition to business-to-consumer electronic commerce, as presented in this the-
sis, business-to-business and consumer-to-consumer methods of electronic commerce
models could be examined. This is important as the requirements and operations of
different types of electronic commerce could be compared and contrasted. Common
components and type-specific problems could be identified. This could be accom-
plished by the application of formal methods to other forms of electronic commerce
systems design, enabling a full description of the problem domains and the ability to

compare them with the requirements presented in this thesis.

5.3. FUTURE WORK 129

e Further examination of electronic commerce transactions and payments made over

the Internet.

A key component of any electronic commerce system is the ability to correctly carry
out transactions for goods or services and transfer monetary amounts between buy-
ers and sellers. A further analysis of the communication methods and information
exchange between stakeholders in this process might provide benefits in several ar-
eas. By clearly defining the rules of a transaction and the required components and
communications, a checklist of steps that must be performed, and points of failure
could be identified. This also applies to payments between clients in the system as
these transfers must be correct, precise, and secure. Further work in this area might
include the use of formal methods to specify each component of transactions, the fur-
ther identification of an order of operations in transactions and payments, and the
creation of a common application and network interface for implementing electronic

commerce transactions.

e Security implications of electronic commerce.

Security is essential in an electronic commerce system where sensitive information
about clients, products, and financial matters are communicated over the Internet.
The security of financial information is of utmost importance as this information, if
left unsecured, can be used without the owner’s permission or knowledge. Formal
methods can be used to identify the areas of an electronic commerce system that
require secure access and can assist in the application of a security methodology to an
electronic commerce implementation. The locations and strengths of security needed

can be identified and incorporated into a specification and design.

e Enhanced intelligent searching and comparison methods.

The ability to find a product or supplier on the Internet assists the shopping experience
of a consumer. Additionally, the ability to compare characteristics of products for
purchase, aids the consumer in finding the goods that best suit the customers needs

at the best price possible. With enhanced searching and comparison capabilities, a

130

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

broader marketplace is opened to the consumer and more information can be gathered
to support product purchases. This leads to a higher satisfaction for the consumer
with purchases made over the Internet. Future work in this area includes examination
of agent-based search and comparison programs that use artificial intelligence and
distributed computing and further research in the field of data mining. Agents can be
used to automate searches and comparisons across electronic commerce sites as bots

and also aid in automating negotiation for prices and quantities.

Further application of object-oriented software engineering concepts to electronic com-

merce.

As suggested in this thesis with the Unified Modeling Language, object-oriented con-
cepts can be applied to the electronic commerce domain. Existing electronic com-
merce systems vary widely in approach and implementation with custom modules
and differing communication methods. Concepts such as encapsulation, inheritance,
and polymorphism used in electronic commerce can result in common code libraries,
methods of communication, and a common architecture. Results would see an ease
of communication between electronic commerce systems and shorter implementation

time for new entries into the marketplace.

Analysis of data storage methods used in electronic commerce.

Data storage and manipulation is an important part of an electronic commerce sys-
tem. Between electronic commerce systems, data structures, methods of presentation,
querying, and database transactions can vary. Information storage and use within an
electronic commerce system may differ and speed and accuracy are important. Future
work in this area might include the use of formal methods to identify common com-
ponents and storage methods, optimization strategies for data storage including tools
such as XML and specially tuned database servers for querying, and a data architec-
ture for electronic commerce transactions. Many different application architectures
are already using UML to present structured data on the Internet that a framework

for electronic commerce could be developed. Additionally, future work might include

5.3. FUTURE WORK 131

research and development of “wrappers” to allow heterogeneous data sources to be

connected.

132 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Appendix A

The 7Z Notation

This section lists the meaning of the Z notations used in this thesis. This list of the Z

notation was taken from [4] and [28].

Z Paragraphs, Declarations

[X] given set
S=T horizontal schema definition
X==c¢ abbreviation definition

T:=A|B{E) free type definition

Expressions, Schema Expressions

(a, b) tuple
{a, b} set display
XxY cross product

let V==FeP local definition

AS schema name prefix
=S5 schema name prefix
ST sequential composition

133

134

Numbers and Finiteness

H

div

Predicates

> Mm

L L <C ﬂ: ,U’ <

—

natural numbers

positive integers

integers

finite set

non-empty finite set

number of members of a finite set

division

equality

membership

conjuction

disjunction

implication

equivalence

universal quantification
existential quantification

unique quantification

Relations, Functions

dom

ran

relation

maplet (ordered pair)
domain

range

domain restriction

range restriction

APPENDIX A. THE Z NOTATION

Sets

N = H YL

c - DS C N

Sequences

seq
seq;
head
last
front

disjoint

domain anti-restriction
range anti-restriction
relational inversion
relational image
overriding

reflexive transitive closure
partial function

total function

inequality
non-membership
empty set
subset

proper subset
set union

set intersection
set difference

generalized union

finite sequence

non-empty finite sequence
first element

last element

all but the last element

disjointness

135

136 APPENDIX A. THE Z NOTATION

References

[1] Bassam Aoun. Agent Technology in Electronic Commerce and Information Retrieval
on the Internet. In AUSWEBY6 - The Second Australian World Wide Web Conference,
pages 240-246, Gold Coast, Australia, July 1996.

[2] Martin Bichler, Arie Segev, and J. Leon Zhao. Component-based E-Commerce: As-
sesment of Current Practices and Future Directions. SIGMOD Record, 27(4):7-14,
1998.

[3] Susanne Boll, Wolfgang Klas, and Bernard Battaglin. Design and Implementation of
RMP - A Virtual Electronic Market Place. SIGMOD Record, 27(4):48-53, 1998.

[4] ORA Canada. Z/FEves Quick Reference Card. Available at: ftp://ftp.ora.on.ca/pub
Jdoc/975493-07.ps.Z.

[5] World Wide Web Consortium. World Wide Web Consortium. Available at:
http://www.w3.org/.

[6] Microsoft Corporation. ASP.NET Code-Behind Model Overview. Available at:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;303247.

[7] Asuman Dogac, Ilker Durusoy, Sena Nural Arpinar, Nesime Tatbul, Pinar Koskal,
Ibrahim Cingil, and Nazife Dimililer. A Workflow-based Electronic Marketplace on the
Web. SIGMOD Record, 27(4):25-31, 1998.

[8] eBay Inc. eBay Auctions. Available at: http://www.ebay.com.

[9] Sylvanus A. Ehikioya. Specification of Transaction Systems Protocols. PhD thesis, De-
partment of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada,
September 1997.

[10] Sylvanus A. Ehikioya. A Formal Perspective to Modelling Electronic Commerce Trans-
actions. Columbian Journal of Computation, 2(2):21-40, 2000.

[11] Sylvanus A. Ehikioya. A Formal Characterization of Electronic Commerce Transac-
tions. International Journal of Computer and Information Sciences, 2(3):97-117, 2001.

[12] Sylvanus A. Ehikioya and Ken E. Barker. Towards a Formal Specification Methodology
for Transaction Systems Protocols. In 8rd Annual IASTED International Conference
on Software Engineering and Applications (SEA ’99), pages 374-380, Scottsdale, Ari-
zone, USA, October 1999.

137

138

(13]

(14]

[15]

[24]

[25]

[26]
[27]

REFERENCES

Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Model of Electronic Com-
merce. In First International Conference on Software Engineering, Networking and
Parallel and Distributed Computing (SNPD-00), pages 400-409, Champagne-Ardenne,
France, May 2000.

Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Specification of an On-line
Transaction. In First International Conference on Software Engineering, Networking
and Parallel and Distributed Computing (SNPD-00), pages 3-10, Champagne-Ardenne,
France, May 2000.

Sylvanus A. Ehikioya and Kristofer J. Hiebert. Agents Negotiation in Electronic Com-
merce Transactions. In First Annual International Conference on Computer and In-
formation Science (ICIS-01), pages 278-285, The Grosvenor Resort, Orlando, Florida,
U.S.A., October 3-5 2001.

Sylvanus A. Ehikioya and Trevor Walowetz. A Formal Specification of Transaction
Systems in Distributed Multi-Agents Systems. In ISCA 14th International Conference
on Computers and their Applications, pages 378-383, Cancun, Mexico, April 1999.

Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database Techniques for
the World-Wide Web: A Survey. SIGMOD Record, 27(3):59-74, 1998.

Centre for Software Engineering Ltd. Unified Modelling Language. Technical Briefing
Note, (8), 2000. Available at: ftp://ftp.cse.dcu.ie/pub/briefing/8 luml.pdf.

National Center for Supercomputing Applications. National Center for Supercomputing
Applications. Available at: http://hoohoo.ncsa.uiuc.edu/cgi/intro.html.

Object Management Group. The Unified Modelling Language, Ver 1.5, 2000. Available
at: http://www.omg.org/uml.

Robert H. Guttman and Pattie Maes. Agent-Mediated Integrative Negotiation for
Retail Electronic Commerce. Lecture Notes in Computer Science, 1571:70-90, 1999.

Robert H. Guttman, Pattie Maes, Anthony Chavez, and Daniel Dreilinger. Results from
a Multi-Agent Electronic Marketplace Experiment. In Poster Proceedings of Modeling
Autonomous Agents in a Multi-Agent World (MAAMAW’97), Ronneby, Sweden, May
1997.

Robert H. Guttman, Alexandros G. Moukas, and Pattie Maes. Agent-mediated Elec-
tronic Commerce: A Survey. Knowledge Engineering Review, 13(2):143-152, June
1998.

June He. A Fromal Specification and Design of an Online Bazaar System. Master’s
thesis, University of Manitoba, Winnipeg, Manitoba, Canada, September 2002.

Macromedia Inc. Macromedia ColdFusion MX. Available at: http://
www.macromedia.com/software /coldfusion/.

PayPal Inc. PayPal. http://www.paypal.com.

VeriSign Inc. VeriSign. Available at: http://www.verisign.com.

REFERENCES 139

[28] Indratmo. A Formal Specification of Web-Based Data Warehouses. Master’s thesis,
University of Manitoba, Winnipeg, Manitoba, Canada, 2001.

[29] Nicholas R. Jennings, Timothy J. Norman, and Peyman Faratin. ADEPT: An Agent-
Based Approach to Business Process Management. SIGMOD Record, 27(4):32-39,
1998.

[30] Sparx Systems Pty Ltd. Enterprise Architect 3.50. Available at: http://
Www.Sparxsystems.com.au/.

[31] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents That Buy and
Sell. Communications of the ACM, 42(3):81, 1999.

[32] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems,
Second Edition. Prentice-Hall, Upper Saddle River, NJ, 1999.

[33] Benny Reich and Israel Ben-Shaul. A Componentized Architecture for Dynamic Elec-
tronic Markets. SIGMOD Record, 27(4):40-47, 1998.

[34] Mark Saaltink. The Z/EVES User’s Guide, 1997. Available at: http://www.ora.on.ca
/z-eves/documentation.html.

[35] J. M. Spivey. The Z Notation: A Reference Manual (2nd Edition). Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[36] Roel Wieringa. A Survey of Structured and Object-Oriented Software Specification
Methods and Techniques. ACM Computing Surveys, 30(4):459-527, 1998.

[37] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and Proof. Prentice-
Hall, 1996.

