
A Formal Model of an Electronic Commerce System

Kris Hiebert

submi*ed to the åJliïr Graduare studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada

by

Copyright @ 2003 by Kris Hiebert

TIIE UNTVERSITY OF MANITOBA

FACTILTY OF GRADUATE STUDIES
ìk*rr**

COPYRIGHT PERMISSION

A Formal Model of an Electronic Commerce System

BY

Kris Hiebert

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF' SCIENCE

Kris Hiebert @ 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

This thesis presents a formal model of an electronic commerce system, what issues are

involved in the design of an electronic commerce system, and how formal methods can be

applied io the electronic commerce domain. Also presented is an architecture for electronic

commerce as well as a formal specification of that architecture using the Unified Modeling

Language (UML) and the Z specifrcation language. A small prototype of an electronic

commerce system based on the architecture is also presented. The thesis concludes by

giving recommendations for future ¡esearch in this field.

nl

List of Original Contributions

1. Sylvanus A. Ehikioya and Kristofer J. Hieberi. A Formal Model of Electronic Com-
merce. In First International Conference on Software Engineering, Networking ønd
Parallel and Di,stributed Cornputing (SNpD-77), Champagne-Ardenne, Fyance, May
2000.

2. Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Specification of an On-line
Ttansaction. In Fi'rst International Conference on Software Engineering, Networlcing
and Parallel and Distributed Computing (SNPD-17), Champagne-Ardenne, Fbance,
May 2000.

3. Sylvanus A. Ehikioya and Kristofer J. Hiebert. Agents Negotiation in Electronic
Commerce Tbansactions. In Fi,rst Annual International Conference on Computer and,
Information Sci,ence (ICIS-?1), The Grosvenor Resort, orlando, Florida, u.S.A., oc-
tober 3-5, 2001.

Acknowledgements

The creation of this thesis would not be possible without the help of many people. First, I

would like to thank my advisor, Dr. Sylvanus A. Ehikioya, for the assistance, understanding,

and coaching he provided. Whether it was editing my latest draft, allowing me to bounce

ideas off of him, or lending me books and materials, I could always sense his desire for my

success. Without him, it would not have been possible.

I would also like to acknowledge the members of my examining committee, Dr. Peter

C. J. Graham and Dr. Robert Mcloed. I would like to thank them for their time and

assistance in reviewing and critiquing this thesis.

I would like to thank all my friends and family members who encouraged me to move

forward with this thesis. The constant questioning of when my thesis was to be complete

forced me to work harder and made me believe the work I was doing was important.

Finally, I would like io ihank my wife Susan. With eternal patience and an iron will,

she supported me from beginning to end and moved me along when I stalled. I consider

myself very lucky to have found someone like her to spend the rest of my life with.

vt

Contents

Introduction

1.1 Benefits of Electronic Commerce

I.2 Problem Definition

1.3 Formal Methods and Elecironic Commerce

A Formal Model of an

3.1 Model Description

Electronic Comrnerce System

3.1.1 The Buyer

3.1.2 The Seller

3.1.3 The Electronic Commerce System

3.I.4 Support Systems

3.2 Unified Modeling Language Description

3.2.1 Class Diagrams

1

1

.)

6

7.4 Significance of this Thesis

1.5 Organization of this Thesis

Background fnforrnation and Related Work 11

2.7 Design Issues in Electronic Commerce 11

2.2 Web-based Architecture for Electronic Commerce 14

2.3 UML and the Z Specification Language

2.3.I The Unified Modeling Language (UML) IT

2.3.2 The Z Specification Language 18

I

I

t7

23

24

24

25

27

29

30

31

vu

3.2.2 Use Case Diagrams 4I

3.2.3 Sequence Diagrams 4J

3.2.4 State Diagrams 52

3.2.5 Aciivity Diagram 55

3.2.6 Deployment Diagram for the Electronic Commerce System 56

3.3 Z Specification Language Model Description 59

3.3.1 Z Language Specification 59

3.3.2 Z Speciflcation Verification tL4

E-Commerce System

4.I Application Design

Prototype

4.2 Implementation r22

4.2.I Welcome Screen

4.2.2 Buyer Summary Screen

4.2.3 Browsing for Goods

4.2.4 Check Oui with Products

4.2.5 Receipt for Completed Purchase

Conclusions and F\rture Work

5.1 Conclusions

5.2 Summary of Contributions

5.3 Future Work 128

L33

L37

L27

721

I22

124

724

725

126

L27

127

128

A The Z Notation

References

vltr

List of Figures

1.1 A Simple Electronic Commerce Architecture [13]

Three-Tier Client/Server Architecture for Electronic Commerce .

Query and Retrieval of Product Information (modified from [32])

3.1 Electronic Commerce System Classes 32

3.2 Buyer Classes óó

3.3 Seller Classes 34

3.4 Inventory Classes 35

3.5 Search Classes 36

ta3.6 Comparaison Classes ù r

3.7 Tlansaction Classes 39

3.8 Paymeni Classes 40

3.9 Buyer Use Case 42

3.10 Seller Use Case 42

3.11 Buyer Login 43

3.12 Buyer Logout 44

3.13 View Tbansaction History 44

3.14 Search Inventory 45

3.15 View Product Details 46

3.16 Compare Products 47

3.17 PurchaseProduct-Partl .. 48

3.18 Purchase Product - Part II 49

2.7

2.2

T4

16

ix

3.19

3.20

3.21

3.22

oôo¿.2¿

3.24

3.25

3.26

q4n
ò.2I

3.28

4.r

4.2

4.3

4.4

4.5

4.6

Purchase Product - Part III

View Sales History

Manage Products and Inventory

Tbansaction Class State Diagram

Payment Activity Diagram

Electronic Commerce System Deployment Diagram

Z-Eves Syntax and Type Check of Z Specification

Z-Eves Domain Check of Z Specification

Z-Eves Domain Check Proof Example

Z-Eves Domain Check Results

Development using Microsoft Visual Studio .NET

Welcome Screen

Buyer Summary Screen

Searching Product Inventory

Check Out with Products

Receipt for Completed Purchase

50

51

52

53

57

58

1i6

7L7

118

119

r22

123

r23

724

t25

L26

Chapter 1

fntroduction

With the increase in Internet technologies in the past few years, businesses and consumers

have begun to move their activities towards the digital domain. This new mode of transac-

tions and services, executed over computer networks and outside of the traditional brick and

mortar store, is called electronic commerce. These methodologies and technologies provide

businesses and consumers the ability to buy and sell things like physical goods, financial

vehicles such as stocks and bonds, and services electronically 1221.

The basic idea behind electronic commerce is the exchange of value measured in mone-

tary terms (money) for some products or services over the Internet. Generally, in electronic

commerce one party purchases some goods or services from another party. The first party

can be called the buyer, purchaser, or client while the latter may be called the seller,

provider, or supplier. Besides these two basic entities, there are many other support struc-

tures needed to ensure the purchasing transaction is established and completed correctly.

1.1 Benefits of Electronic Commerce

As usage of the Internet increases, more and more businesses and consumers are using

electronic commerce to purchase and promote goods and services in new and different

ways. Some of the beneûis of using electronic commerce include:

1. Automation of Business Processes

CHeprBn 1- Ii.¡rRoouc'rroN

E-Co¡ru¡r S}'stent

.. .. . Ilttenret

Fiualcial
Instihrtiorr

Figure 1.1: A Simple Electronic Commerce Architeciure [13]

By using an electronic interface and computerizing the buying process, many of the

steps required to complete a transaction can be done all at once, with litile effort

required by either the consumer or the provider. Billing forms, acquiring shipping

information, and payment processing can be done automatically. This offers a savings

for both the buyer and seller as they invest less time and effort in a transaction. This

automation especially offers a savings in repetitive or bulk transactions.

2. Clieni Customization

By using the Internet io provide business services to different clients, different views of

those services can be presented automatically and with custom enhancements for each.

Customization allows a business to show specific views to different clients. Clients can

also customize iheir shopping experience. By saving information on searches to be

run again at a later time or by customizing their interface, clients can shorten their

time spent searching for and purchasing goods.

3. Comparative Abilities

Some of the current electronic commerce systems allow consumers to compare prod-

ucts from different manufacturers based on specified criteria [23]. These systems allow

a consumer to contrast different attributes ofproducts against each other and can also

recommend certain items based on user input. For example, if a consumer wants to

buy a CD-player the user can compare a single model over many different stores or

E
E
E

1.2. Pnoeler,{ Dpplunrow

all the models at a single store or across different stores. These comparative abilities

can give the consumer the necessary information io fulfill a purchasing need.

Increased Efficiency

When a business offers its services or products through the Internet, the business

and the consumers can save boih time and money. The business saves some costs by

the automation process as less manpor¡/er is needed for tasks that are now handled

by computer. Also, different parts of a given transaction between a business and a

consumer can occur simultaneously and complete in less time, thus allowing for more

transactions at lower cost. Electronic commerce is also more efficient for the consumer

because he/she no longer has to physically go from one store to another store to shop.

The process of buying the goods customers want is available on their computer and

any goods can be delivered directly to them.

Global Coverage

The Internet is reaching more and more people. Everyone connected to the Internet

can theoretically purchase any goods that are available through electronic commerce

Web sites. This global coverage can allow consumers to acquire rare or hard to flnd

items and allow businesses to expand into untapped marketplaces.

L.2 Problem Definition

To achieve a correct electronic commerce system ihat is valuable to its owners and users,

three problems must be resolved, as in other software systems design; gathering the require-

ments, specifying the operations of the system, and verifying that the results gained from

the flrst two activities are correct. These problems are examined in details below.

1. Requirements Gathering

Ehikioya [10, 11], and Ehikioya and Hiebert [13] describe several requirements of

electronic commerce systems. For an electronic commerce system to be usable it must

be secure, reliable, and correct in its transactions. Much of the information exchanged,

4.

5.

Csaprpn 1. IxrRonucuoru

such as credit card numbers, inventory amounts, shipping and billing addresses and

client names, are very important and sensitive. The need to maintain the privacy of

such information requires that the security of electronic commerce systems be very

tight. Users of electronic commerce systems, both consumers and businesses, expect

consistent behavior in what they see and use. The system should be functional and

on-line as much as possibìe (except during periods of planned downtime, e.g., for

maintenance), as any shutdowns are equivalent to a store closing its doors. Each

business must be able to provide services for all its customers as well. If a customer

comes from any part of the world or needs ihings shipped or ordered according to an

unconventional timetable, ihen ihe provider's electronic commerce solution must be

able to handle that request in a timely fashion.

Correctness is an essential trait of any electronic commerce system. Important events

in any electronic commerce transaction must be guaranteed to be correct. These

important events and attributes include any transfer of funds, current amounts of

inventor¡ and shipping and billing addresses. Correct record keeping by the system is

also very important because many tasks are now automated and the system produces

a variety of reports such as invoicing and inventory reports. If correctness is not

enforced, a business can rapidly lose its clients as they cannot trust the system because

there is no guarantee of correct results from transactions.

The design of an electronic commerce system is very complex because of its distribu-

tion and the many different technologies that must work together. AII heterogeneous

components must be identified beforehand and solutions must be found to make them

work together seamlessly. This includes existing legacy applications and infrastructure

already used by any merchant or organization thai wishes to offer electronic services

over the internet. Any new system created must integrate tightly with any existing

systems and environments, otherwise the organizaiion will not leverage past invest-

ments in technology. In addition, electronic commerce applications typically require

that many different computer disciptines work together. This includes such areas as

security, databases, electronic payment, transaction processing, distributed systems,

I.2. PRosLpr¿ Dpprxrrro¡¡

artificial intelligence, and multimedia. To understand how to build a good electronic

commerce system, all of these aspects must be carefully examined. Defining all of

the requirements accurately and completely is a pre-requisite for designing a complete

electronic commerce system.

2. Operations Discovery

Even once all of the requirements have been gathered, the operations of an electronic

commerce system must be fully determined. These operations include all the actions

taken by the users, owners and administrators of the system. For example, a user

(customer) may request a purchase over the Internet, the system processes the order,

and creates an invoice and shipping notice. Each of these actions affects, and are

affected by, different entities in the system. Understanding each of the operations and

its role in the system is very important in designing a holistic electronic commerce

system.

3. Verification of the Results of Requirements Gathering and Operations Discovery

Once all the requirements are determined and the electronic commerce system oper-

ations specified, the system may not necessarily be correct. There must be a way to

determine if the design is complete and correct. Since these systems are inherently

complex to design and proper and correct operation is necessary, formal methods

should be used to create and verify the design. By using formal methods to design an

electronic commerce system, design related problems can be detected and corrected

early and this enhances product quality [37]. With a formal model, formal proofs

can be developed to ensure the correctness of the specification created and, thus, the

correctness of the electronic commerce system designed.

These three areas (requirements gathering, operations discovery, and verification of re-

sults) in building electronic commerce systems are the focus of this thesis.

CueprpR 1. INrRooucrtox

1.3 Formal Methods and Electronic Commerce

Developing an electronic commerce system is a complex operation involving many different

disciplines. These areas include databases, user-interfaces, transaction controls, cryptog-

raphy and software engineering. When constructing an electronic commerce system, often

many people are involved and they must have a clear understanding of ihe final goal and the

steps necessary to achieve the development objectives. Thus, there is a need for clear com-

munication among the development team members. One tool that assists in this direction

is the use of a formal method. Formal methods can ease the complexity of designing and

implementing electronic commerce solutions by using mathematical notations to precisely

specify a design. Some of the benefits of using formal methods include Í9, I2l I

1. A clear understanding of ihe system.

Formal methods explicitly demonstrate all of the components of the system and their

interactions. Someone examining a formal specification can determine many of the

salient facts concerning that specification in a short time period. This straightforward

definiiion helps in the later stages of development and allows everyone involved to have

a common understanding of the system.

2. The formalization process can reveal ambiguities.

Any questionable requirement will become evident when using formal methods. Un-

known and unclear aspects of a set of requirements are identified as the model is

developed because every aspect of the system is fully stated and verified.

3. Incompleteness and contradictions in the informal definition.

Incompleteness in the requirements can be ideniified by a "metaphorical hole" that

would be present where the information must be included to make the specification

complete. If a component has not been thought of yet, it will become apparent when

the other components are defined. Ary contradictions in the requirements become

clear and identiflable as the modeling evolves. The areas responsible for the conflict

1.3. Foeuer, Mpruoos exn ElBctRoNrc Corvrtrencp

can be found and re-examined to determine how to resolve the problem caused by the

contradicting requirements.

4. Verification of correctness of ihe transactions thereby enhancing iheir reliability.

Formal methods provide a method to verify any formal design. This veriflcation checks

for inconsistencies, contradictions and missing components. Once ihe design has been

checked correctlg the design will be correct. This is very imporiant for electronic

commerce transactions because if they are not correct users will not trust the system.

5. Provides an abstract view of the svstem.

Formal methods precisely specify the behaviour of a system by concentrating on its

functions in order to manage complexity and promote correctness, extensibilit¡ main-

tainability reusabilit¡ and understanding. The formal design of a system can be

viewed from different granularities, showing how each part of a system interacts with

others.

Formal methods may be combined with other semi-formal methods to augment the

potency of a formal specification. Such semiformal methods often use graphical represen-

tations and natural language to bridge the gap between a plain language problem definition

and a provable mathematical specification. Such diagrams aid in showing the interactions,

dataflows, process flows, and the states of the objects used in electronic commerce. From

these a more formalized tool or language can be used to describe the model in a robust and

correctness preserving fashion.

Ii is important to note that there are many formal methods available and that not all

of them are applicable to the electronic commerce domain. A very rigorous specification

is necessary to properly represent the many interactions between the different components

and actors/users in the electronic commerce system. A rigorous technique is chosen be-

cause it can detect possible omissions or ambiguities in any of the processes or definitions.

The formal speciflcation language (a component of a formal method) used must accurately

describe each static object in an electronic commerce system as well as correctly specify

CsRprpR 1. INrRooucrloN

all of the pre- and post-operation conditions. This rigorous specification is critical in an

electronic commerce system as tangible and valuable items are being exchanged and errors

are not permissible.

There exist tools that can examine formal specifications and determine if the require-

ments have been correctly demonstrated [3a]. These methods and the tools to prove the

correctness of specifications written using the methods are essential for creating a high

quality product.

L.4 Significance of this Thesis

This thesis is significant for a number of reasons.

By using formal methods with appropriate tools the important properties of elec-

tronic commerce transactions can be captured and the correctness and reliability of

the transactions can be guaranteed. This formal specification is desirable in the elec-

tronic commerce domain due to the fiscal nature of the transactions. The checking

of the specifications is achieved, in this thesis, through the use of the Z-Eves [34]

type and syntax-checking tool for the Z 135,37] specification language. The Enter-

prise Archiiect 130] tool is used to check the consistency of the Unified Modeling

Language(UMl) [20] diagrams in this thesis.

By rigorous specification of electronic commerce transactions, complexity is reduced

and the problems clarified. Since all aspects of electronic commerce are examined in

detail, any ambiguities or errors can be identified and corrected at an early stage.

A formal specification of an electronic commerce system provides a practical case

siudy and is applicable to real world problems. The type of electronic commerce

system that is applicable to this type of approach is made clear while also showing

how the integration of different techniques can be used to solve a specific problem.

1.

2.

.).

1.5. ORcRNrz¡.uoN oF'rurs Tnpsls

1.5 Organization of this Thesis

The remainder of this thesis is organized as follows: Chapter 2 examines the characteristics

of electronic commerce systems and reviews formal methods. Chapter 3 presents a model

of a business to consumer(B2C) electronic commerce system using UML diagrams and

Z notation. Chapier 4 describes a prototype implementation of the electronic commerce

system created from the model presented in Chapter 3. Finally, Chapter 5 contains my

conclusions and a roadmap for future work.

10 CgRprpR 1. I¡¡rRooucrrox

Chapter 2

Background Information and

Related \Mork

This chapter describes the design issues related to electronic commerce as well as an Internet-

based architecture for retrieval and presentation of data to the end user that is usable in

electronic commetce systems. An overview of formal methods, including the Z specification

language and the Unified Modeling Language is then presented.

2.t Design Issues in Electronic Commerce

In electronic commerce systems, different classifications can be made depending on the users

of a particular system. Boll et al. [3] explain two different kinds of electronic commerce

systems: business-to-business and private consumer-to-business. Business-to-business sys-

tems involve transactions between two companies. Generally these companies already have

a business relationship and a large, secure network infrastructure between them. Electronic

Data Interchange, or EDI, has been used in the past to enable companies to complete

business-to-business of transactions [2, 3]. A private consumer-to-business system is meant

for users who generally wish to purchase goods from a business, such as an online retail

store. The systems can also be split into two further categories based on the number

of users at each end [3]. There can be a single supplier servicing multiple clients or a

11

12 Cnaprpn 2. B¡.cxcRouwo INpoRn¿ATroN ¡Nn Relerno Wonx

multiple suppliers servicing a multiple clients. Maes [31] also describes three models of

electronic commerce similar to those described in [3]. These are business-to-business(B2B),

business-to-customer(B2C), and customer-to-customer(C2C). The first two correspond to

the similarly named formats in [3] but the third, customer-to-customer, is used to describe

such things as consumer online auctions. An example of online auctions is eBay [8] where

customers place bids on merchandise provided by other customers. The focus of this the-

sis is on business-to-customer(B2C) electronic commerce. Business-to-consumer electronic

commerce is the most common form of electronic commerce. Business-to-business elec-

tronic commerce systems are somewhat similar to business-to-customer systems but there

are some key differences in ihe participants involved and the environment in which such a

system operates. A business-to-business system generally deals with large corporate cus-

tomers moving goods and services to one another on a large scale. These shipments, such

as inventory for stores or parts needed for manufacturing processes, can be time sensitive

and large in number. Customer-to-customer electronic commerce has different requirements

than business-to-customer electronic commerce. In a customer-to-customer system, the sys-

tem itself simply acts as a medium for different members of the public to transact business

directly. In the case of auction-style electronic commerce systems, such as eBay, goods

are offered for sale by other members of the general public. While a business-to-customer

system also offers goods to the public, ii embodies the spirit of a more traditional bricks-and-

mortar store where goods are offered for sale from a company at fixed prices. Negotiation

and bargaining do take place in business-to-customer systems between one consumer and

multiple vendors (i.e. via comparison shopping) while in customer-to-customer systems one

vendor offers a single item for sale with multiple buyers placing bids towards a frnal price

(i.e. an auction).

These different forms of electronic commerce require that the system under development

must satisfy different prerequisites. Guttman et al. [23] state that electronic commerce

generally requires such things as security trust between parties, payment mechanisms, in-

termediaries, on-line catalogs of product information, some behind-the-scenes management,

as well as providing a welcome shopping environment through multimedia. Oiher similar

2.L- DpslcN Issues lN Er.pcrRoNrc CoÀrlvrpncp

requirements proposed by Aoun [1] are secure transactions, practical payment methods, and

the use of intelligent agents for product searching. There have been difficulties in realizing

these requirements. Bichler [2] cautions that the creation of electronic commerce applica-

tions is a risk because of a lack of applicaiion-level interoperability reusable components,

and an absence of industry standards.

Many different methods and examples of programming solutions in electronic commerce

exist [2, 3,7,L6,27,29,31, 33]. Component-based design and component-orientecl program-

ming are based around a small kernel with features being added via functionality objects

called components [2]. A component is a specific piece of functionality that can be accessed

by other software through a specified interface. Bichler [2] proposes a component-based

system development life-cycle to allow components to be programmed for the electronic

commerce environment. Also, Bichler [2] discusses different groups which are trying to pro-

mote inter-operabilit¡ such as the Open Tbading Protocol (OTP), Open Financial Exchange

(OFX) and Open Buying on the Internet (OBI). The RMP system [3] is used in rural area

to give small- to medium-sized enterprises the ability to trade produce over the Internet.

The system is specified as a multi-client multi-server system with many defined processes.

These components enable a logical framework to be buili from knowledge of the local com-

mercial situation. The RMP system also defines a typical electronic commerce transaction

as having the following steps: Searches for available products, places an order, negotiates

the price, upon acceptance and delivery issues an invoice and then finally triggers payment.

Dogac et al. [7] use workflows to model the electronic commerce market-place. By giving

buyers and sellers templates of ihe transactions to perform, the system is aware of what

methods and communications can take place. The model of a marketplace also has defined

system objecis and specific functions defined for each object. Jennings et al. [29] describe

the objects that are needed to accomplish a business process in the ADEPT system while

Reich [33] provides an example of an auction market. He [24] provides an Object Z formal

specification of an online Bazaar system (a variant of an auction system). Ehikioya and

Hiebert [15], Maes ei al. [31], and Guttman et al. [21] provide frameworks describing how

agents can act to model customer's behaviours in conducting electronic commerce activities.

13

t4 Cu¡.preR 2. BecxcRouxn IwpoRn¡ATIoN aivo Rpi,arBo Wonr

Verrclor

Fina¡rcial
Systenr

Figure 2.1: Three-Tier Client/Server Architecture for Electronic Commerce

They also provide a set of rules for the agents to follow during negotiation on behalf of the

user. Finally, Ehikioya and Walowetz [16] give an exacting overview of a transaction in an

electronic commerce system and they describe rules to ensure a transaction is successful

and complete.

Fbom the above related work, it is clear that many implementations and ideas have been

developed to support electronic commerce. However, most of these are specialized in nature

or have a very specific problem domain. There is an absence of a model that can be applied

to various electronic commerce scenarios or suited to a multiple markets.

2.2 Web-based Architecture for Electronic Commerce

To provide access to an electronic commerce system, a generic three-tier client/server archi-

tecture [32] can be used with some additional features. Figure 2.1 shows a generic three-tier

client/server architecture. The components of figure 2.I are described below.

1. Client

The client uses a Web browser to access the electronic commerce system. The client

can shop at any electronic commerce site on any computer provided access to the

Internet is available and the client machine has a browser. If the client is designed to

connect only to one electronic commerce system by running an application, it would

lose the flexibility gained from the Internet. When the client, electronic commerce

server, and support database are viewed as a three-tier system, ihe client is the first

N etwork

--l--

U
Support Databa.se

2.2. Weg-sespt ARcHrrpcruRE poR ElpcrRoNrc Corr¿ir,rBRcp

tier.

2. Electronic Commerce Server

The electronic commerce server takes the burden of running the actual application

from the client machine and allows communication of requests with that client through

a Web browser. It also connects to the vendor and financial systems as well as the

support databases needed by the system. The electronic commerce server is responsi-

ble for transforming any inputs, outputs, and requests into different formats that both

the client and support systems can understand and use. In addition, the electronic

commerce server is responsible for the initiation of communications for electronic pay-

ment for the goods/services ordered by the client. The electronic commerce server is

the second tier in a three tier system.

3. Vendor and Financial Systems

A vendor system contains information about the goods/services offered for sale on

the electronic commerce system while ihe financial system keeps track of all the in-

formation needed for each transfer of funds. The vendor and financial systems are

distributed over the fnternet and are accessible via Web queries. These systems are

not considered part of the three-tier client/electronic commerce server system as they

are unique entities. Each may be its own N-tier application.

4. Support Databases

The support databases contain all the information needed by the electronic commerce

system while operational. It is local to the electronic commerce system and is the

third tier in the three-tier environment.

There are many different steps involved in an electronic commerce transaction. Each

of these steps involves different entities in the architecture. For example, products can be

requested by a client in Figure 2.2 using the Hypertext Tlansfer Protocol(HTTP) [5]. A Web

server accepts any user input and the specified URL and communicates with the Database

15

16 CnRprpn 2. Becxcnou¡¡o INpoRr,rATroN aNo Rsr-Rrpo WoRx

Wel¡

Brorss er
Wel¡ Server

Database
Gatewa-v

h'oduct I¡rfo
Database

Figure 2.2: Query and Retrieval of Product Information (modified from [32])

Gateway which processes them into a query understandable by the vendor's system. This

is usually done with some program such as a CGI [19] (Common Gateway Interface) script.

The data from the vendor is formatted into HTML in the database gateway by another

CGI program and given to ihe Web server which sends the results to the client. There

are many other tools that can be used for retrieving data from databases on the Web,

including JDBC [3] and ColdFusion [25]. Each of these tools may be considered for an

implementation, depending on the specifics of the system being considered.

In an electronic commerce system, there are many different sources of data that may

be accessed and modified in a transaction. These sources are distributed over the Internet,

hidden behind the Web storefront, and implemented using different database management

systems. Because of the many different formats and systems used to represent data, diffi-

culties arise when these systems attempt to share data and work cohesively. This is a data

integration problem. The following factors contribute to the difÊculty of consolidating Web

data sources. According to Ozsu and Valduriez 1321, there can be a dynamic number of

data sources which may change frequently, the data sources themselves may have different

computational speeds, and the data may have varying levels of structure from source to

source. Also, Florescu et al. [17] state that the data may be embedded in HTML or may

be behind a form interface (such as CGI), so little is usually known about the data souce;

the different sources are autonomous, and they can evolve into different forms. This means

that data that was once accessible to the system may change to a form that is unusable.

An additional problem exists because of the nature of web-based applications such as

electronic commerce. When a client uses an electronic commerce system, that client should

not have to re-enter an account name and password to access a different pages. This problem

arises because HTTP used by a web server is stateless and does not remember the client

2.3. UML exo twø Z SppcrplcRrrox Lexcuacp

information received. To overcome this statelessness problem, a session for that client must

be managed by a web-based electronic commerce system to support unlimited shopping and

browsing with a single authentication.

In an electronic commerce system there must also be some method of payment from

buyer to seller for the goods selected. Many methods exist for this kind of operation; credit

cards, on-line bank accounts, and e-cash. The transfer of money must be carefully guarded

and must protect the personal and financial information as it travels over the Internet.

2.3 UML and the Z Specification Language

In this thesis, UML and the Z specification language are used to model an electronic com-

merce system. Each of these languages is described below, giving an overview of the lan-

guage, features, advantages, and drawbacks.

2.3.L The Unified Modeling Language (UMt)

UML, created in 1997 by the Object Management Group [20, 36], is a system of graphical

representations for describing different aspects of object oriented software.

UML comprises nine main diagram types [18]: Activity Collaboration, Component,

Class, Deployment, Object, Sequence, State and Use Case. Activity diagrams are often used

to model business processes or activities and are similar in presentation to a logical flow

chart. Collaboration and sequence diagrams are similar because they both show the step by

step interactions between objects and classes. Component diagrams show the breakdown of

code modules and their relationships to one another. Class and object diagrams showcase

the entities in ihe model and their associations. The key difference between object and

class diagrams is that class diagrams give a view of the data in the system at rest while

objeci diagrams show a snapshot of an instantiaied system. Deployment diagrams show

how software is distributed across an enterprise (for distribuied systems). State diagrams

show how a particular class may change state internally during an operation or process. A

use case diagram shows the principal actors in the system and describes the operations that

L7

18 CHeprpR 2. BRcxcRouNo INpoRn¿ATroN eNo Rplereo WoRx

a user would see between those actors.

With these diagrams, the same information may be represented in different ways pro-

viding multiple views of a particular situation. However, this can permit some ambiguity.

In addition, different organizations use UML differently and there is no standard usage

methodology. Nevertheless, UML is still a very useful tool for describing object oriented

software.

2.3.2 T}re Z Specification Language

The Z specification language has evolved over the past years into its present form. The Z

specification language is based on set theory and mathematical logic [35, 37] and includes

mathematical types, first order predicate calculus, relations, functions and variables. Z uses

these elements as well as constructs called schemas to formally define system requirements.

The schemas are used to describe a system piece by piece, capturing both static and dynamic

aspects. A schema can be created independently and isolated from others but can also be

related and combined to give a greater or differing view of a system. These components of

the Z language allow the abstract definition of what a system should do without actually

detailing how it will be done. Questions about any of the operations of a system may

be answered confidently once a Z-based speciflcation of the system is created because all

conditions of that operation have been defined. When natural language is used to describe

the operations or states of a system in a Z specification there is much less ambiguity than

when natural language is used alone without mathematical backing.

The Z specification language, through available tools such as ZIEYF,S [34], also allows

for the proof of correctness of a specification through type and syntax checking. These

proofs are important as ihey demonstrate that the system requirements have been properly

represented and are fundamentally correct. In addition, refinement of any specification is

possible by adding further precision to each schema and definition. Such refinement, allows

a specification to become closer to ihe actual implementation of the system and still be

provably correct in its nature. Because of the benefits described above and preliminary

results in [14], a formal specification model of an electronic commerce system using the

2.3. UML AND THE Z SppcrprcATroN Ll¡,lcuecp

Z specifrcation language is a viable option, especially when used in conjunction with a

semi-formal method, such as UML.

One of the main constructs in the Z specification language is the schema. A schema

represents an abstract or real component of a system and all of the component's properties.

By creating a specification using these schemas many of the complexities of a system can

be decomposed into smaller, more manageable units, and can also be abstracted to show

relationships between concepts and to encapsulate information.

For the following specification, several conventions are used. These include:

r ? : an input variable

o ! : an output variable

o ' : a variable that is in a post-operation staie (i.e. an updated variable)

o E : identifies that there was no state change in the schema

¡ A : identifies that there was a state change in the schema

Appendix A contains a detailed list of other Z notations used in this thesis. To illustrate

the above conventions and others used throughout the specification, some simple examples

are novr provided.

The two types below are created to represent a concept in a specification. The examples

are a definition for a STRING, which is simply a collection of characters in some order, and

a STATUS which may have one of the values in the list following the new type's name.

lsrRrNGl
STATUS :: start I complete I error

There are two methods of representation of schemas, horizontal and vertical. A simple

schema, representing some basic information about a customer, represented as a horizontal

schema, might be defined as follows:

Customer 2 fcustomerlD : STRING; name : STRING; credi,t-li,mit:N1l

Of note in the definition above is the use of ihe previously defined type STRING and

the value of ihe credit-limit must be greater than or equal to 1.

19

20 CsnprpR 2. BecxcRouNo INroRvrATroN Awo Rpr.Rrpo WoRx

Constant values can also be represenied in a Z specification by identifying a type and a

maximum value. For example, the maximum credit limit of any customer is defined below.

ZlMl? : \

LIMIT < 1OOO

The customer schema can then be redefined to incorporate this maximum value for a

credit limit and represented using a vertical schema as follows.

Customer

cutornerlD : STRING
narne i STRING
credit-limit : N1

credit-li,mi,t < LIMIT

Two schemas are defined below to show how state change operations are used in con-

junction with schemas to modify information stored in a schema and how information can

be passed to, and retrieved ftom, a schema. The IncreaseCreditlimiú schema adds some

amount to the customer's credit limit and t]ne GetCustomerName schema returns the name

of the customer.

IncreaseCredi,tLimit

A,Customer
arnoznú? : \

credit-limitt : cred'it-l,imit * amount?

The IncreaseCreditLirniú schema uses the A operator to show that the Custorner schema

has changed in state. The new value of the cred,it-li,mit is shown by the ' token. Finalty

the ? operator is used io identify an input value to the schema, in this case arnounú, which

must be greater than or equal to 1.

GetCustomerNarne

ECustomer
customer -namel : S TRING

customer -n arn el. : narne

The GetCustomerName schema users the 3 operator to show that ihe Customer schema

2.3. UML AND THE Z Specm,rcATroN LervculcB 2I

has not changed but the properties are being accessed to produce some result. The variable

holding the output value, customer-narne in this case, is marked wiih the !identifier.

22 Cneprpn 2- BRcxcRour,ro INF.oRùrATroN ¿.wo Rpi,erpo Wonx

Chapter 3

A Formal Model of an Electronic

Commerce System

This chapter presents a model of an electronic commerce system that allows buyers and

sellers to interact in an organized and productive manner. This model resembles an ordinary

marketplace with many different customers looking for various items and many different

vendors with goods for sale. These multiple buyers can interact with the multiple sellers,

browsing and searching through product inventories and selecting goods for purchase from

different merchants. When this concept is applied to the electronic domain, there are many

different customers coming to a single electronic commerce portal for a variety of different

goods instead of customers visiting several different vendor sites for the goods they need.

An electronic commerce portal can be described as a single entry point (i.e. web page) that

allows a client access to a multiple vendor electronic commerce offerings. Fbom a vendor's

perspective, this is beneficial as many different potential buyers have the opportunity to

browse its products.

The next section describes the components of the model; giving a breakdown of their

attributes and operations used in the system and detailing some of the benefits of ihis

model. A detailed analysis of each part of this electronic commerce system is also included

in this section and show graphical representations of how the system components interact

giving a detailed account of the processes carried out in the viriual marketplace using UML.

23

24 Crieprpn 3. A Fonrr¡ai, Moopr, oF AN El-pcr:Ror'rrc Cori¿vrpRce Svsrprvr

Finally, a formal specification of the model using the Z specification language is presented.

3.1 Model Description

This section outlines the model of ihe electronic commerce system, detailing the major

objects. The main entities in the model are the buyer, the seller, the electronic commerce

marketplace, and support systems. The details of these entities are provided in this section.

The basic tenet of this electronic commerce model is that there exists some buyers ac-

cessing a listing of goods/services they may wish to purchase that are provided by some

sellers and that each event is managed by ihe electronic commerce system. The buyer and

seller each have priorities that they wish represented in the system. Buyers may want the

facility io find goods/services that interest them quickly and efficiently while sellers want

to ensure that their products are viewed and purchased by as many buyers as possible.

The electronic commerce system ensures that each business transaction is secure and ex-

ecutes completely in addiiion to providing a forum for the buyers and sellers to interact.

The electronic commerce system needs the support systems' services to complete its tasks

successfully.

3.1.1 The Buyer

The buyer is a consumer that wishes to purchase one or more products from any number of

sellers ihrough the electronic commerce system. Buyers access the system via a web page

portal A buyer may create a personalized account upon iniiial visit which is necessary to

perform some secure transactions. The buyer then has a unique ideniifier and password

with which he/she accesses the electronic commerce system. Billing information about a

buyer including name, address, phone, fax, email, and any other details are kept so that

when the buyer purchases goods/services in the system an invoice can be generated and

sent. Once an order is made, it must be shipped to some location. The shipping addresses

stored for the buyer can contain many addresses. This allows many different destinations

to be kept on file and removes the need for re-entry when more than one order is sent to

3.1. Moonr, DpscRrprroN

the same address. Payment information, which is information about the different payment

methods the buyer has, is also stored. The electronic commerce system also keeps credit

card and bank account numbers, expiry dates and other pertinent related information. A

purchase history is also kept for each buyer. This history includes information on each

transaction undertaken such as goods purchased, time and date of purchase, method of

payment, and billing and shipping addresses.

When a buyer logs in using a unique identifier and password, the virtual marketplace

creates a session for the buyer. When the buyer logs out, the session is closed and becomes

part of the buyer's history in the electronic commerce system. A buyer can add, modify, or

delete his/her own existing shipping addresses and payment methods. The buyer can browse

or search his/her transactions in the system to check shipping dates or compare purchases

against financial records for accuracy or product warranty information. The buyer also has

access to billing and login information and can make changes as necessary, such as changing

a billing address or password modification. The buyer can browse for items they wish to

purchase using an interface supplied by the virtual marketplace. The buyer can search by

product number, type or price. The buyer can search using different criteria and can, at

any time, go back or start a new search. Once the buyer finds an item to buy or once he/she

has narrowed the criteria by some limiting factors, different products can be compared to

determine which would be the optimal selection. The criteria for this comparison can be

price, shipping options, or other characteristics of the products. Finally, the buyer can

purchase selected products during a session in the electronic commerce system. The buyer

pays according to one of the payment methods, and a bill is sent to the billing address, and

the products are shipped to the shipping address specified by the buyer.

3.1.2 The Seller

The seller is a corporate entity selling a variety of products. In the system, sellers are

represented by a human agent who has access to the seller's login and password information,

set up in a similar fashion to the buyer. The system maintains information about the

seller; such as name, location, and contact information including customer service phone

25

26 Csaprpn 3. A Fonuel Monpl oF AN Er,pcrRoNlc Con¡rvrpRcp Sys'rptr

numbers and email addresses. For a seller to receive payments for its goods/services sold

in the electronic commerce system, some payment information is needed. This information

includes account numbe¡s and financial institution information such as address and contact

details. The system needs to keep track of what products are available and which seller has

them as well as their prices, availability information, and other product characterisiics.

When a human agent logs in (for the seiler), a session is created to manage the agent's

activities in the system. When an agent logs out, the agent's session is closed and all the

operations in that session become part of the seller's history in the system. The operations

of a seller include modifying corporate information, viewing sales and payment information,

searching the master inventory of all products, viewing and comparing products, and man-

aging the products the seller has for sale in the system. The seller can view and modify

its corporate information and make any changes to address, profile, contact information, or

password attributes. This functionality allows the seller to remotely manage its information.

The seller can also view its sales history in the system. A seller can enter a date range, prod-

uct number, order number, or other keyword to retrieve matching transactions. The seller

must also be able to edit payment information. A seller can modify account information

such as the account number, the type of the account, and any other information pertain-

ing to the account or financial institution. The seller can browse for items they wish to

investigate using the virtual market's interface. The seller can search the product database

using different criteria, such as product number, type or price, across not only its own

products but those of its competitors in the system. Once the seller narrows its search by

some limiting factor, different products can be compared. The criteria for this comparison

can be price, shipping options, or different characteristics of products. Sellers can compare

products to ensure they remain competitive and to possibly identify any weaknesses in the

range of products they offer. The seller can use this information to produce business plans,

to move into new markets, or move out of old unprofitable markets/products. Finally, the

seller can manage its own products in the system. If ihe seller needs to add or remove some

of its products or modify any of the characteristics of a particular product, the seller does

so through the virtual market interface. These operations allow a seller to be in complete

3.1. Mooni, DpscRrprioru

control of its operations and only contact the administrators of the electronic commerce

system in the event of an error or if special service is required. The seller is responsible for

fulfilling buyer orders received from the electronic commerce system. The seller is expected

io ship the ordered items to the buyer in ihe time frame specified in the publicly available

product information.

3.1.3 The Electronic Commerce System

The system that manages the virtual marketplace has many different tasks to complete and

large amounts of data to maintain. The electronic commerce system is best described by

breaking it down into logical components. Each of these components is briefly described.

The marketplace manager must be able to manage buyer and seller sessions, keep a master

inventory of products, manage each transaction from beginning to end, manage all the

seller financial accounts, handle all queries on the inventor¡ and allow comparisons between

products on behalf of buyers and sellers.

There are two components of ihe electronic commerce system for managing the account

information of buyers and sellers. The buyer session handle¡ is responsible for loading

all of the pertinent information about a buyer when needed.. This information includes

buyer payment methods, the products currently selected by the buyer, and any information

required from any of the Web pages in the system previously accessed by the buyer, including

any set preferences for viewing information. The seller session handler functions in the same

manner as the buyer session handler except that it handles seller information, needs, and

requests.

The master inventory contains a list of all the products available to the buyers accessing

the system. The master inventory consists of all the products that each seller is offering.

The products are managed by each seller and the master inventory keeps track of availability

of products and shipping times. The sellers update the master inventory as they add or

remove products.

Each time a buyer decides to purchase any products from the virtual marketplace, the

buyer initiates a transaction within the system. Each transaction has a definite beginning

27

28 cs¡.ptpn 3. A Fonivrel Moopr, oF AN ElncrRo¡¡rc covrvrpRcp svs:rpH,r

and a definite end point. Each transaction must end in some state that will not harm any

of the parties in the marketplace. Tþansactions involve one buyer, the electronic commerce

system and one or more sellers. The transaction manager is responsible for each of these

transactions. Many different transactions can be ongoing in the system at the same time

and the completeness and correctness of each is importani to the integriiy of the entire

system.

The process of purchasing one or more items from the system requires multipìe steps.

Before this process begins, the buyer must select one or more products from any number of

sellers. The buyer is shown all of the relevant details about the selected purchase including

the product, quantity, price, shipping charges, and any applicable taxes. This information

is reviewed by the buyer and if it is satisfactory, the buyer confi.rms the purchase. If the

buyer does not confirm the purchase, the buyer may remove any erroneous items, send a

request for more information to the electronic commerce system in the form of a customer

se¡vice request, or continue shopping for other products. Once the buyer has confirmed the

goods he/she wishes to purchase, the buyer can select a shipping address or can enter a

new address to ship to ifrequired. Each product to be purchased can be sent to a different

address or all can be sent to the same one. After all goods have been assigned shipping

addresses the buyer must select a method of payment for this purchase. In the same manner

as choosing shipping addresses, the buyer can use an existing payment method or create

a new one. All of the deiails of ihis purchase are once again presented to the buyer for

confirmation once the payment meihod has been decided. Once the buyer confi.rms the

finalization of all products in the transaction, payment is processed through the electronic

commerce system. The transaction manager checks all the details of the purchase to ensure

that they are correct and then delivers the purchase requests to each seller that has one of

their products listed in the buyer's purchase.

Once the orders have been sent, the transaction manager builds an invoice for the

purchase and records all of ihe details in its account manager for payment to ihe seller

of the products. An entry is created at this time in the buyer's transaction hisiory for

the completed sale and the invoice is presented to the buyer (on their computer screen

3.1. Mooer- DpscRrprroru

and is sent to the email address(es) specified in their buyer information). The seller is

responsible for shipping the products to the buyer upon receipt of the order created during

the transaction.

Buyers accessing the system through their account may not know the exact name or

product number of a product that they wish to purchase. The buyer can access a browse

and search function where details such as product type, name, model numbers or other

characteristics can be entered and used io find matching products. By using this function,

a buyer can quickly find the products they are interested in and easily change the criteria to

further narrow the scope to a more specific range of products. This search uses the master

inventory of products. Such searches are handled in the electronic commerce system by a

search engine.

When using the search function, buyers may find a particular product or types of prod-

ucts they are interested in and want to compare for the lowest price, best combination

of features, or some other criteria they desire. The comparison engine in the electronic

commerce system is used for this purpose. The comparison engine reports which products

match the supplied criteria, ordered by the strength of the matching criteria. In addition

to the buyer using this feature, a seller may also use the comparison engine to compare its

products with those of its competitors to determine if it is offering a good and fair price,

etc., for its own products.

3.L.4 Support Systerns

The electronic commerce system requires certain external entities to complete its tasks

correctly. These entities assist with the supply of goods to the system and allow for the

transfer of funds from a buyer to the seller.

Each seller has one or more suppliers that provide the products that the seller offers for

sale. The seller buys a 'lot' of a particular product at an agreed price and at a guaranteed

shipping time. This method of purchasing goods/services for sale allows the sellers to

determine what products they will offer in the electronic commerce system to buyers and

to set a price and shipping time for them. When a product is purchased from a seller, an

29

30 CnaptpR 3. A Fonval Moopr, oF AN Er,pcrnoNlc CovrrvrpRcp Svsrppr

order is sent to the supplier to ship the items to the address specified by the buyer. The

order gets from the seller to the supplier through different methods, such as mail, fax, email

or another business-to-business electronic commerce system.

When a buyer purchases goods or services from a seller, money must be transferred

from the buyer io the seller as payment. For this to happen in a correct and secure manner,

several third party entities must be involved. The buyer and the seller both have financial

institutions which hold their monetary assets. This can be a credit card compan¡ bank,

or other such monetary institution. In addition to the financial institutions, a method

of authorization and settlement, called a processing gateway, must exist. This processing

gateway allows for secure communication between the electronic commerce system and the

buyer's and seller's financial institutions. Some current incarnations of these processing

gateways includePayPal [26], Verisign[27], and any of the telephone solutions seen in any

store that accepts credit or debit cards.

3.2 Unified Modeling Language Description

The Unified Modeling Language (UML) [20] is used to model the system described above

(Section 3.1) in graphical form. Class, sequence, use case) state, activity and deployment

diagrams provide a better understanding of the electronic commerce system and make

clear the connections between the different components. Each type of diagram offers a

different view of some components of the electronic commerce system. Class diagrams

show a static view of the components of a system and allow the representation of the

relationships between classes. Sequence diagrams show the operational steps of a logical

task by identifying and linking all the components involved. State diagrams show how

a given component changes over time; providing a further level of detail on components

requiring transitions over time. Activity diagrams show the logical and programmatic flow

of a task and what conditions result in certain outcomes. Finally, deployment diagrams

show how a hardware or abstract software implementation of a system will be structured

in terms of where the various system components will be placed. These diagrams give a

3.2. UNrpreo Monplr¡rc LewcuRcp DBscRrprrou

robust description of an electronic commerce system. The UML diagrams in this thesis

were created using Enterprise Architect 3.50 [30].

3.2-L Class Diagrams

In the UML, class diagrams are used to show the components of a system and the relation-

ships between them. They are static diagrams showing data stored and operations carried

out by each component. This electronic commerce system model is described by one cen-

tral class diagram and then followed by several smaller diagrams detailing more specific

components of the system.

Electronic Commerce Systern Classes

Figure 3.1 shows the major cìasses in the electronic commerce(EC) system. The EC System

class represents the whole system containing the registered buyers and sellers, the buyer and

seller sessions that are currently active, the transaction manager for completing purchases,

the search engine used to track current searches and the master inventory of products

available. Other components include the payment manager and the comparison engine.

The operations of the EC System class start and stop the system and add and remove

buyers and sellers.

Buyer Classes

Figure 3.2 shows the classes related to buyers in the electronic commerce system. The

Buyer class contains the informaiion about a specific buyer that logs into the system. The

buyer has a unique ID, information about his/her location and contact details, a non-empty

Iist of shipping addresses and a number of payment methods for products. The Buyer class

contains methods for a log in and log out, modification to any of iheir deiails except their

Buyer ID, viewing past transactions, searching the available inventory, to run comparisons

on goods, and to view details of and purchase products. The Buyer Session Handler class

is responsible for tracking all the buyers that are in the system. It contains a list of all

the open buyer sessions and can open new sessions and close existing ones. The Buyer

31

32 CsapreR 3. A Fonvar, Moopr, oF AN ElpcrRoNlc CoMvience Svsrpni

Figure 3.1: Electronic Commerce System Ciasses

Buyer Session Handler P¡yment Mailager lllasle¡ lnventory

Buyer Sessions: Array Paymenls: Anay
Proc Galeway: lnfo

Product Entries: Anay

+ Create Euyer SessionQ
Close Buyer SessionQ+

+ P¡oduct SearchQ: void
+ Return Product Entry0 : void
+ Add Product Enlry0 : void
+ úeiete Product EntryQ : void

+ Generale Staternentsfl : void
Create PaymentQ , void+

Selfer Session Handler

Seller Sessions: Array

+ Creale Seller SessionQ
Ciose Seller SessionQ+

EC S!¡slen¡

Buyer Ust: Aray
Sellet List: Array
Buyer Sessions: Buyer Session Handler

Search Engine

Current Searches: Array

Transact¡on Manager: Transaclion Manager
Search Engine: Search Engine
Comparison Engine: Comparison Engine
Master lnvenl0ry: Mastet Inventory
Paymenl Manager: Payment Manager

+ Creale SearchQ: void
+ Delete SearchQ : void

Conparíson Engine

Cunenl Comparisons: Array Trarrsaclion Manager

+ Creàle Comparisonfl; void
+ Return Comparison Results$: void
+ Delete Comparison$: void

+

+

Start Sysler
Create Euye
Create SBll€
Dèlete Buye
Delele Selle
Stop Syster

+

+
+

nQ

rQ

fu
r$
rQ

rQ

Act¡ve Ttansact¡ons: Array
Completed Transactions: Array

+ Create Transar)tion0 : void
Close TransactionQ : void
Ppltrr¡ T¡:nc¡¡línn Qotll'

+

Ertyer Seller

Buyer lD: lD
Buyer Account lnformation: lnfo
Shipping Addresses: Array
Payment Methods: Anay

Seller lD: lD
Seller Accounl lnformation: lnfo
Paymenl lnfotmation:

+ Log lnO

+ Log Outg
+ lvfodify Account lnformationQ
+ lvlodify Paymenl lnformàt¡on0
+ View Sales HistoryQ
+ Search lnventory0
+ View Product Details0
+ Compare Products$
+ lvlarìage Product lnventoryQ

+ Log tnO

+ Log Out0
+ MDdify Account lnformationQ
+ M¡dify Shipping AddressesQ
+ lt4odify Paymenl ¡,,lethodsO
+ Vie,¡/ Trânsâctìon H¡story0
+ Search lnventory$
+ View Product Detàils0
+ Purchase ProductQ
+ Compare ProductsQ

Buyer lD: lD
Euyer Account lnformation: lnfo
Shipping Addresses: Array
Paymenl Melhods: Array

Buyer Sessions: Anay

Create Buyer SessionQ
Close Éuyer SessionQ

+ Log ln$
+ Log Out0
+ Madify Acrount lnlormation$
+ Modify Shippìng Addressesg
+ Mûd¡fy Payment MelhodsQ
+ ViewTransaction History[ì
+ SearÈh Inventory$
+ V¡ew Product Details0
+ Purchase Productl]
+ Compare Products$

Current Buyer lD: lD
Entry-lìme: Imestamp
Exit llme: Timestamp
Actions Taken: Anay
Selected Products: Anay

+ Return Shipping Addresses$
+ Return Fâyment Methods$
+ Open Session0
+ Close SessionQ+ Cred¡l AccountQ : void

+ Debit Account0 : void
+ Return lnfo0: void

3.2. Un¡rprpo Mo¡pr,rxc LeNcuacp DpscRrprroN

Figure 3.2: Buyer Classes

Session class contains information about the buyer's activities in the electronic commerce

system. The times the buyer enters and exits the system are recorded as well as what

actions the buyer undertakes while logged in and a lisi of any products he/she selected

for purchase but are unpaid. The buyer's session is responsible for retrieving other buyer

information stored in the system including shipping addresses and payment methods when

required. Each buyer has one or more financial institutions that handles monetary transfers

when purchasing products through the system. These financial institutions may represent

a credit card compang bank, or other methods of payment and are represented by the

Financial Institution class.

Seller Classes

Figure 3.3 shows the classes related to sellers in the electronic commerce system. The Seller

class contains a unique ID for the seller, information about his/her location and contact

details, and information about their account for payment of goods sold. The Seller class

methods are similar to those of the Buyer class as the seller can log in and log out, modify

.).)

34 Cunptpn 3. A Fonn¿al MooBl oF AN Er-ecrRoNrc CovnvrpncB Systpl,l

Figure 3.3: Seller Classes

Seller Sesion Handler

Seller lD: lD
Seller Conlact lnformation: lnfo
Payment lnformalion:

- Seller Sessions: Array

Create Seller SessionQ
Close Seller SessionQ+ Log InO

+ Log Out0
+ lvlodify Account lnformation0
+ Modify Payment lnformalionQ
+ Vierv Sales Historyû
+ Search lnventory0
+ View Product DÐtails0
+ Conìpare ProductsI
+ ¡,,lanaùe Product Inventory$

Cunent Seller lD: lD
Entry T¡me: Timestamp
Exit Time: Tìmestamp
Actions Taken: Array

+ Open SessionQ
+ Close Sessionfl

Location lnformalion: lnfo
Accounts: Array

+ Credit AccountQ : void
+ Debit Acc'lunl0 : void
+ Return lnfo$: void

3.2. UNrplp¡ Moopr,lNc LRNcuRce DpscRrptroN

Master lnventory Producl Entry

Product Entr¡es: Array Product Name: String
Product lD: lD
Description: lnfo
Price Per Unit: Cunency
Shippinq Tme: int

+ Product Search$: void
+ Return Product EntryQ: uoid
+ Add Product Entrv0: void
+ Delete Product Entry0 : void

+ Nlodify Product Detailsll : void

0n

Seller

Seller lD: lD
Seller Account lnformation: lnfo
Payment lnformation:

+ Log tnO

+ Loü Out0
+ Modify Account lnfonnation0
+ l'¡lodify Payment lnformat¡on0
+ Ve'rv Sales HistoryQ
+ Seerch lnventoryO
+ View Product DeteilsQ
+ Compare Products0
+ Manage Product lnrentory0

Figure 3.4: Inventory Classes

account and payment information, view sales history, search the inventory for products,

compare and view ihe details of products) and manage product inventory. The Seller

Session Handler class maintains a list of the current seller sessions in the system. It can

open and close seller sessions. The Seller Session class contains information about the

seller logged in, when the seller enters and exits the system and any actions the seller

undertakes while logged inio the system. Each seller has a financial institution, represented

by the Financial Institution class, that handles its monetary transfers when buyers purcha^se

products ihrough the system. The financial institution may be a credit card company,

bank, or other method of managing money. The products that a seller offers for sale in the

electronic commerce system are provided by a supplier, shown as the Product and Supplier

classes respectively. This supplier is a ihird pariy, which ensures that the seller has goods

for sale to buyers and the supplier delivers the goods directly to ihe buyer upon receiving

an order from the seller.

35

36 CH¡.ptpn 3. A Fonlral Mooei. oF AN ElpcrRoi.lrc Corr,rupRcp Sys.rev

Search Engine Search

Current Searches: Array Search lD: lD
Criteria:
Results:+ Create SearchQ: void

+ DeletÈ SearchQ . vaid
+ Run Search0 : void
+ Return Resultsf : void

0 n
l:'

hlaster lnventory Euyel

Product Entries: furay Buyer lD: lD

Buyer Account lnformation: Info
Shipping Addresses: Array
Payment N{ethods: Array

+ Pr':duct Search[: void
Return Product EntryQ : void
Add Producl Entry(l : void
Delete Product Entryfl : void

+
+

+ Log lnO

+ Log Out0
+ Modìfy Account lnformalir,nQ
+ Modify Shipping AddressesQ
+ L4odify Payment N4ethodsQ
+ Vievr Transaction H¡slory$
+ Search lnvenloryQ
+ View Product Details0
+ Purchase ProductQ
+ Compare Products0

Figure 3.5: Search Classes

Inventory Classes

Figure 3.4 shows the classes responsible for products and their availability. The Master

Inventory class contains a list of all the products in the system and it allows the addition

and removal of products from the inventory. In addition, the master inventory returns

search results and detailed information from individual product entries when searches are

initiated. The Product Entry class stores information about a specific product. It contains

a name and ID for each product as well as a descripiion of the product's characteristics,

price per unit, and the shipping time needed to send the product from seller to buyer.

An operation of this class is to permit ihe modification of product properties. There is

a relationship between product entries and sellers where each product entry belongs to a

seller and a seller may have many different product entries.

- Current Comparisons: Array

+ Create ComparisonQ: void
+ Relurn Comparison PesultsS: void
+ Delete CornparisonQ: void

+ Run Comparison0 : void
+ Retum Results$: roid

- Euyer lD: lD
- Buyer Account lnformalion: lnfo
- Shipping Addresses: Aray
- Paymenl Methods: Anay

+ Log tnO
+ Log Out0
+ Modil'y ADcour't lnformatiDn0
+ ModÍfy Shipping Addresses{)
+ l'/odify Payment Methodsû
+ Viev¡ Transaction H¡story0
+ SearÈh lnventoryO
+ View Product Deta¡lsO
+ Purchase Productfl
+ Compare Products0

+ Product SearchQ : 'roìd+ Return Product EntryQ : void
+ Add Producl EntryQ: void
+ Delete Product ErrtryQ : void

3.2. Uwrr'rcn Moopr,lNc LeNcuacp DBscRrprrox

Figure 3.6: Comparaison Classes

Search Classes

Figure 3.5 shows the classes that are needed to manage and search for products in the

electronic commerce system. The Search Engine class contains a list of all the current

searches(represented by the Search class) in the system and allows the creation of new

searches and the removal of completed searches. The Search class contains the specific

details of an individual search. Each search has a unique identifier, some search criteria

and results that match the criteria. The operations of the Search class include executing

a search and returning search results to the buyer or seller that initiaies the search. The

Search class contacis the master inventory for product details to acquire the search results.

The Buyer class is included here to show that each search belongs to a particular buyer and

that any buyer can have concurrent searches in the system. It is important to note that a

seller can also request a search operation.

tnJT

38 C¡reprpn 3. A Fontrnl MonBl oF AN Ei,pcrRoxrc CornupRcB Svsrpu

Comparison Classes

Comparisons between products are handled by ihe classes shown in Figure 3.6. The Com-

parison Engine class manages the current comparisons in the system and creates new com-

parisons, returns results of completed comparisons and removes old comparisons. Each

Comparison class represents a contrast of different product characteristics. Each compari-

son has a unique ID for use by the system, some criteria for determining the results and a

logic component. The logical component of each Comparison class contains what operators

are to be used to determine the results including minimums or maximums. The Compari-

son class applies those criteria and logic to the Master Inventory class to obtain results and

then returns them to the comparison engine for release to a buyer or seller. Buyers may

have multiple comparisons in the system, similar to searches, while any comparison belongs

to only one buyer. As noted in the Search classes description, a seller may also compare

products.

tansaction Classes

The Tlansaction class diagram shows the necessary classes for a buyer to purchase goods

through the electronic commerce system. The TYansaction Manager class contains attributes

for all the active and completed transactions in the system and manages the creation and

deletion of Tbansaction objects. The transaction manager is also responsible for returning

completed transaction histories to buyers and sellers as requested. The Tlansaction class

represents a purchase activity in the system. The tansaction class contains the ID of

the buyer making the purchase, product and purchase information on each of the sellers

involved, and an invoice. The TTansaction class builds the list of sellers and products

involved, sends orders for shipping to sellers, and creates an invoice for the transaction.

It also invokes the payment manager to handle the electronic transfer of money. The

Invoice class represents the informaiion sent to the buyer upon successful completion of

the transaction. It includes buyer details and a list of all purchases made. Each entry in

this list includes seller details, the shipping address of each purchase, the billing address,

product information, quantity price, payment method, and the date of the purchase. Each

3.2- U¡¡m'rpo Mo¡er,rxc LeNcuRcB DpscRrprroN

Figure 3.7: Tbansaction Classes

39

Adive Tr¿nr¿ct¡ont Arr¡y
ComÞleled Trans¡ct¡onr furry

Euyer lD: lD
Selìer P{rchases: Arðy

Creãle Tr¿ns¡c.t¡on0 : voíd
CIose f r¡n5åc'tion0 : vo¡d
Return Tr¿nsrction SeQ: vo¡d

Çênerale StatemenÐ : vo¡d
Cre¡te P¿yúen0: vo¡dCre¿te Product Purch¿reo

SÉnd O¡deÐ: void
Cre¿te lñvoiceo: vo¡d

Sèller lD: lD
SellerOrder: Seller Order
Produc{Purchãses: ¿r¡y

Creãle Produd Purrh¿seo: void
Creãte Sellèr O¡úeO : void
AfremÞt P¡vmenhl: voìd

Produd N¿me: Slring
Produd lD: lD
Descript¡on: lnfo
Pr¡ce Per Unit Curency
Shipping T¡me: ¡nt

- l0: lD

' Product lnformàüon: Product Entry
. Sh¡pping Addres: Addres
' P¿yment Method: Pàyment
' Ournlity: ìnt

lúlodiû Product DÉtàil$: vo¡d Get Product ¡nformàìiúñ0: vo¡d
Gêt Shippin0 AddrÈseÐ: void
Get Pryment lúethod{: aoid

Payments: Array
Proc Gateway: lnfo

Seller lD: lD
Seller Fl lnfo: lnfo

Buyer lD: lD
Buyer Fl lnfo: Info
Amount: Currency

+ Generate Statements0 i void
+ Creale Payment0 : vo¡d

+ Make PaymentQ : void

Buyer Fin Inst: Financial lnstitut¡on
Selle¡ Fin lnst: Financial lnstitution
Amount: floât

- Euyer lD: lD
- Buyer Account lnformâtion: lnfo
- Shipping Addresses: Array
- Payment Methods: Array

+ Verifl, Fin lnstsf : void
- Validate$: void
- Process Payment(): void

+ Credit Account0 : void
+ Debit Account0 : void
+ Return lntb0 : void

+ Log lnO

+ Log Out0
+ Modify Account lnformation0
+ Modily Shipping Addressesl)
+ Mod¡ty Pryment MethodsO
+ V¡ev/ Transaction History$
+ Search lnventory0
+ View Product Deta¡ls0
+ Pur¡hase ProductS
+ Compare Products$

Location lnformation: lnfo
Accounts: Array

+ Credit Account0 : void
+ Debit Account0 : void
+ Relurn lnfoQ: void

40 Cseprpn 3. A Fonual Moopl oF AN ElscrRoNrc CoMMERCE SysrEM

Seller

Seller lD: lD
Seller Contact lnformation: lnfo
Payment lnformation:

+ Log lnO
+ Log Out0
+ lt¡lodify Àccounl lnformationrJ
+ Nlodify Payment lnlormationff
+ Velv Sales Historyfl
+ Search hventÐryO
+ V¡ew Product Details0
+ Compare ProductsQ
+ Manage Producl lnventory0

Figure 3.8: Payment Classes

Tbansaction class contains an instance of the Seller Purchase class for each seller involved

in the transaction. This class contains the ID of the seller involved in the sale, a list of

product purchases, and an order line for the seller. Each product purchase acquires and

confilms product information, shipping addresses and payment methods from the buyer.

The Product Entry class is shown in ihis diagram to demonstrate that each product purchase

must have one product entry but that any particular product entry can appear in zero or

many product purchases. Each Seller Order object consists of one or more Order Line

objects and a seller id. Each Order Line object represents which product to ship, the

shipping address for deliver¡ the quantity of items on order, and a date when the shipment

must take place according to promises made by the seller in the product description.

3-2. Ur{rprpo Moopr,wc LRwcuece DnscRrprrow

Payment Classes

Figure 3.8 shows the classes involved in making payment as part of a purchase transaction.

The main controlling objeci is the payment manager, which is responsible for generating a

payment for each supplier involved in a transaction. It contains a list of all payments and

location and usage information for a processing gateway to use for electronic fund transfers.

The Payment class is responsible for communicating with the various parties involved in the

purchase and getting the appropriate information to each. It contains information about

both the buyer and seller(s), and their respective financial institutions and the amount(s) to

be transferred. The processing gateway is a third party entity, usually outside the electronic

commerce system, responsible for the actual verification, validation and processing between

the buyer's financial institution and seller(s) financial instituiion(s).

3.2.2 IJse Case Diagrams

Use case diagrams show the basic operations between actors in a system generally from

the point of view of a user. A use case diagram presents an abstract view, at a high level,

of interactions between major components of a system. In this thesis, the use cases of

the buyer and seller in the electronic commerce system are presented. Any of the other

previously defined classes could be represented in use cases but are omitted in this thesis.

Buyer IJse Case

Figure 3.9 shows the actions that a buyer can take in the electronic commerce system. The

actions include logging in and out of the system, viewing the buyer's transaction histor¡

searching the entire inventory of products, viewing details about products, making com-

parisons between products, purchasing products from the system, and managing shipping

addresses and payment methods.

Seller IJse Case

Figure 3.10 shows all the operations ihat a seller can perform in the electronic commerce

system. The operations include logging in and out of the system, viewing the seller's

4I

42 Cunprpn 3. A Fonlral Moopr. oF AN Elpcrnollc Con¡lurpRco Sysrpu

Electronic
Comme¡ce

Stñtenì

Figure 3.9: Buyer Use Case

Electronic
Commerce

System

Figure 3.10: Seller Use Case

3.2. UNtpten Monelrnc L¡.¡¡cuacn DesczuprroN

Figure 3.11: Buyer Login

sales history, searching the product inventory viewing product details, making compar-

isons between products, managing financial account information and making changes to the

inventory of products.

Although not all use cases have been presented for the electronic commerce system,

the following sequence diagrams use the buyer and seller use cases to give further detail of

the actors and steps involved. Each of the activities performed in ihe use cases are now

presented as sequence diagrams.

3.2.3 Sequence Diagrams

Sequence diagrams show the interactions between different objects in a system. A sequence

diagram shows the order of operations and process flow as well as gives more detailed

operations for a corresponding use case.

Buyer Login

When a buyer wishes to enter the electronic commerce system, they must log in. The steps

necessary for this activiiy are detailed below.

1. Request Login - The buyer enters the proper identification information via the buyer

session handler and submits this information over the Internet.

2. Process Login - If the information entered is correct the buyer session handler opens

a session for the buyer and returns welcome information to the buyer.

43

Figure 3.11 illustrates the buyer login activity.

44 Cueprpn 3. A Fonn¡el Motpr. oF AN ElpcrRoxlc Corvrrr¿pRcp Sysrppr

Figure 3.12: Buyer Logout

Figure 3.13: View Tlansaction History

Buyer Logout

Similar to the buyer login, when a buyer exits the electronic commerce system the buyer

Iogout activity occurs.

1. Request Logout - The buyer wishes to leave the system and activates the logout option

through the web interface.

2. Process Logout - The buyer session handler saves the buyer's current state

system, updates any information that may have changed and displays a screen

buyer indicating a successful logout.

Figure 3.12 shows the sequence diagram for the Buyer Logout activity.

View Transaction History

The aciivity in the buyer use case for investigating a buyer's transaction history is demon-

strated next.

in the

to the

3.2. UNU'reo Moopr-ri{c Le¡¡cuecp DpscnrprroN

1.

Figure 3.14: Search Inventory

Request Tbansaction History - The buyer requests, through a web page interface,

to view some or all of the buyer's previous transactions. This interface allows the

specification of several key criteria to return a subset of the buyer's transactions if

desired.

Return Tlansactions - The transaction manager processes the request and returns the

data requested.

Figure 3.13 shows the View Tlansaction History activity in as a sequence diagram.

Search Inventory

The buyer activity of searching the master inventory of products is next shown as a sequence

diagram.

1. Request Search Inventory - The buyer requests information about certain products

by specifying search criteria through a web interface presented by the search engine.

2. Create New Search - The search engine creates a new Search objeci to handle the

details of the search request.

3. Query Master Inventory - The Search object takes the criteria specified by the buyer

and presents it as a query to the master inventory for processing.

45

46 cneprpn 3. A Fonn¿el Moopr, oF AN Eloc'rRoNrc courr¿pRcp svsrpl¿

Figure 3.15: View Product Details

Return Products - The master inventory returns the product information for those

products matching the buyer's search criteria.

Display P¡oducts - The Search object formats the product information returned from

the buyer's query for the buyer to browse.

Figure 3.14 shows the sequence diagram of the search inventory activity.

View Product Details

A buyer may view the details of a particular product in the master inventory. That activity

is described next.

1. Request Product Details - The buyer desires more information about a specific product

and requests those product details from the master inventory.

2. Return Product Details - The master inventory returns all ihe details of the selected

product (formatted appropriately) to the buyer.

Figure 3.15 shows the sequence diagram illust¡ation for the view product details activity.

Compare Products

The activity of comparing multiple products in the master inventory is now shown.

1. Request Comparison - The buyer selects some products in ihe list from a previous

product search and requests that a comparison be run on them by the comparison

engine using a specified criteria.

4.

rJ.

3.2. Ur{rprBo MooelrNc Lawcuacp DBscRlprlox

Figure 3.16: Compare Products

Create New Comparison - The comparison engine creates a new Comparison object

to handle the buyer's request.

3. Request Product Details - For each product that is to be compared the Comparison

object gets the product details from the master inventory.

Return Product Details - The master inventory returns all of the product details

needed by the Comparison object so it can use the data to give the buyer an idea of

the strengths and weaknesses of the goods involved in the comparison.

Return Comparison Results - Once the Comparison object receives the product details

from the master inventory and completes its comparison of ihe products, it returns

the comparison results to the buyer.

Figure 3.16 shows the sequence diagram for the Compare Products activity.

Purchase Product

The sequence of events that may occur in a Purchase Product use case activity may change,

depending on errors or actions by other components of the system. Figures 3.17-3.19 show a

successful purchase operation ofone Product from one Seller. Ifa Buyer wishes to purchase

muliiple products from different Sellers, many of the steps below will be repeated as many

times as needed. To show the core functionality of this operation only a best case scenario is

47

2.

4.

tr
rJ,

48 Csep'rpn 3. A Fonuel Moner, oF AN Ei.pcrnoxrc Covin¿encp Sysrpl¡

Figure 3.17: Purchase Produci - Part I

considered for the sequence diagrams. The diagrams presented next deiail the steps taken

by the electronic commerce system when a product is purchased by a buyer.

1. Initiate Purchase - The buyer notifies the system via the transaction manager that

he/she desires to purchase some product.

2. Create New Tlansaction - The transaction manager creates a new Tbansaction object

and initiates the transaction to complete the work required for the purchase.

3. Request Product Details - The tansaction object requests the product entry infor-

mation needed from the master inventory.

4. Get Product Entry - The master inventory requests some further information from

the product entry involved in the transaction.

5. Return Product Entry - The product entry returns the information needed by the

Tbansaction object to the master Inventory.

6. Return Product Information - The master inventory passes the relevant product de-

tails to the Tlansaction object for the purchase.

3.2. UNmrpo MooelrNc LeNculcp DpscRrprlow

Figure 3.18: Purchase Product - Pari II

7. Request Product Confirmation - The Tbansaction object sends the product informa-

tion to the buyer in an understandable format for confirmation that ihis product is

to be purchased.

8. Submit Product - The buyer confirms the product to purchase.

9. Get Shipping Addresses - The Tlansaction object requests the available shipping ad-

dresses of the buyer from the buyer session handler which stores this information.

10. Return Shipping Addresses - The buyer session handler returns to the Ttansaction

object the default shipping addresses that the buyer has selected previously. The

buyer has two other options available but not shown here. A buyer may create a new

shipping address on ihe spot or select one of their existing addresses. For brevity, the

diagram shows the selection of a default shipping address.

11. Gei Payment Methods - The Tbansaction object requests the available payment meth-

ods for the buyer from the buyer session handler which stores this information.

12. Return Payment Methods - The buyer session handler returns to the Tbansaction

object all ihe payment methods that the buyer has previously entered in the system.

13. Request Payment Method - The Tlansaction object takes the different payment meth-

ods from the buyer session handler, formats them and presents them to the buyer for

selection.

49

tJ.

14.

t0

l1

12.

50 Cueprpn 3. A Fonunl Monpl oF AN Er,pcrRoxrc Covruencp Sysrpnr

Figure 3.19: Purchase Product - Part III

Submit Payment Method - The buyer has the option of selecting a previously entered

payment method or creates a new payment method to use. The former option is shown

in this diagram but if a new payment method is created, the Tbansaction object will

request the buyer session handler to add the new payment method.

Display Purchase Details - The Tlansaction object takes all of the information in-

cluding the product to be purchased, shipping address selected, and payment method

chosen, and displays it to the buyer for final confirmation.

Confirm Purchase - The buyer reviews the details of the purchase and submits autho-

rization to finalize the transaction.

Request Payment - The Tlansaction object contacts the payment manager and ini-

tiates the electronic payment of the purchase. Details necessary for the payment to

proceed are sent io the payment manager along with all of the other information

needed.

Payment Results Returned - The payment manager, or specific Payment object, re-

turns the results ofthe payment operations to the Tlansaction object. For the purpose

of this example, we assume that the payment is successful.

t4.

15.

16.

77.

18.

19. Send Order - The Tbansaction object sends the completed order for the goods to the

3.2. UNrprBo Moopr,rwc LaNcuece DpscRrprro¡t

Figure 3.20: View Sales History

seller to fulfill. This order is passed to the supplier who provides the goods to the

seller and then the produci will be shipped.

Send Invoice and Notification - The Tbansaction object sends an invoice showing the

details of the purchase to the buyer along with a notification that the purchase was

successful. The buyer can then save or print the information shown for record-keeping.

Return Tbansaction Message - The Tbansaction object, having completed all of its

required tasks, returns a message to the transaction manager that it has completed.

The transaction manager can then archive the transaction and remove it from the list

of active Tlansaction objecis.

View Sales History

The activity to view the sales history from the seller use case diagram is shown next.

1. Request Sales History - The seller wishes to see a list of the sales made in the past

set time period and submits this request to the transaction manager.

2. Return Tlansactions - The transaction manager returns all of the corresponding trans-

actions to the seller in an understandable format.

Figure 3.20 shows the sequence diagram for the View Sales History use case.

Manage Products and fnventory

A seller has the ability to manage the products that it offers in the electronic commerce

system. This steps in this aciiviiy are shown next.

51

20.

21.

52 CsaprpR 3. A Fonu¡l Moool, oF AN ElpcrRoivrc Con¡trpRcp Sysrpnr

Figure 3.21: Manage Products and Inventory

Request Modify Inventory Item - The seller wishes to modify an inventory item in the

system and sends a request to the master inventory.

Retrieve Inventory Entry - The Master Inventory requests the current details of the

specific inventory item to be modified from the Product Entry.

Return Product Information - The product entry returns the product information to

the master inventory.

Display Product Information - The master inventory displays the product information

for editing to the seller.

Submit Product Modifications - The seller sends the modified product information to

the master inventory for entry into the product entry.

Save Product Information - The master inventorS after checking the validity of the

information received, sends the product information to the product entry to be saved.

Figure 3.21 shows a sequence diagram for Managing Products and Inventory.

3.2.4 State Diagrams

In UML, State diagrams (or Statecharts) show the dynamic or changing state of one class.

Each state in a statechart as well as the reason for advancing to the next state are described.

1.

2.

J.

4.

5.

6.

3.2. UNm'rpo Moopr.rNc Ll¡rcu.A.cp DoscRlprroiç

Figure 3.22: Tbansaction Class State Diagram

Figure 3.22 shows a statechart for the Tbansaction class.

Tbansaction State Diagram

States There are seven named states for a Tbansaction and these states represent the

entire life cycle that a transaction passes through. Each state is described below.

o Initial - When a transaction is initialized ii enters this state. It currently contains

only information about the Buyer and Seller involved in the transaction.

¡ Product - Tlansition to this state occurs when the Tlansaction object receives the

product information from the master inventory which is presented to the buyer for

verification.

Shipping - Tlansition io the 'Shipping' state occurs when the shipping addresses for

the buyer, from the buyer session handler, are presented to ihe buyer for selection.

Payment Method - The 'Payment Method' state occurs when the payment methods

for the buyer, from the buyer session handler, are presented to the buyer for selection.

53

54 CHeprpR 3. A Fonuar, Moopl oF AN El¡crRoNrc Corr¡trpRcp Sysrprvr

o Confirmation - This state represents the final decision point for the buyer to back out

of the transaction.

¡ Processing - The "behind the scenes" actions take place in the 'Processing' state as the

payment for the goods is resolved and reports are generated along with any possible

error messages.

o Display End Information - Upon successful completion of the 'Processing' state the

transaction enters the'Display End Information'state. Here the purchase information

is presented to the buyer and the transaction is complete.

Activities Fifteen different activities occur in a Tïansaction that cause a transition from

one state to another- A brief explanation of each of these activities follows:

1. Display Product - The transaction shows the product information to the buyer from

the master inventory and corresponding product entry. The state changes from 'Initial'

to'Product'.

2. Deny Product & Quit - The buyer decides not to purchase a particular product and

quits the transaction. The state changes from 'Product' to 'End'.

3. Confirm Product - The buyer confirms the product as the one he/she wishes to pur-

chase. The state changes from'Product' to 'Shipping'.

4. Select Shipping Address - The buyer selects a shipping address to be used for the

purchase. The state remains as 'Shipping'.

5. Deny Shipping Address & Quit - The buyer does not wish to select a shipping address

and quits the transaction. The state changes from'shipping' to 'End'.

6. Confirm Shipping Address - The buyer confirms the shipping address for this purchase.

The state changes from'Shipping'to 'Payment Method'.

7. Select Payment Method - The buyer selects a payment method to be used for the

purchase. The state remains as 'Payment Method'.

3.2. UNI¡'le¡ Moopr,rNc Leucuecp DpscRrprrox

8. Deny Payment Method & Quit - The buyer does not wish to select a payment method

and quits the transaction. The state changes from ,payment Method' to ,End'.

9. Confirm Payment Method - The buyer confirms the payment method for this purchase.

The state changes from'Payment Method' to ,Confirmation'.

10. Deny Purchase Confirmation & Quit - The buyer does not wish to confirm all of the

details of the transaction and quits. The state changes from 'Confirmation' to ,End'.

11. Confirm Purchase - The buyer confirms all of the purchase details including prod-

uct information, shipping address, and payment method. The state changes from

'Confirmation' to'Processing'.

55

12. Payment Meihod Failure - The

error. In recovery from the error,

or requests the buyer to correct

'Payment Method'.

payment method selected by the buyer causes an

the transaction asks for a different payment method

the error. The state changes from ,Processing' to

System Er¡or in Processing - There was an unrecoverable error during the processing of

the payment and the transaction must terminate. The state changes from'Processing'

to'End'.

Payment Succeeds - The payment operation completes successfully and the transaction

details sent to create invoices for the buyer and orders for the sellers. The state changes

from'Processing' to 'Display End Info'.

15. Buyer Closes Tlansaction Screen - The buyer closes the transaction screen or goes to

a different part of the electronic commerce system. The state changes from ,Display

End Info' to 'End'.

3.2.5 Activity Diagram

Activity diagrams are similar to Statecharts. However, they d.emonstrate the conditional

sequence of activities in a particular use case, detailing all possible situations. Aciiviiy

diagrams are useful because they can show conditional logic and parallel processing.

i3.

74.

56 CHapten 3. A Fonuel Monpr, oF AN Er,ecrRo¡¡lc CouunRcp Sysrptr¡

Payment Activity Diagram

Figure 3-23 shows the steps in a payment operation. The payment operation begins with a

Tlansaction object requesting a monetary transfer relating to a product purchase by a buyer.

A new Payment object, created by the payment manager, submits the appropriate infor-

mation to the processing gateway which undertakes some initial verification of ideniiiies. If
this verification is unsuccessful, an error message is generated that indicates submission of

incorrect information and returns control to the Tïansaction object where this information

may be changed and resubmitted. If the ve¡ification is successful then some parallel pro-

cessing occurs. Both the buyer's and the seller's financial institutions are contacted wiih

authorization information. The financial institutions process the authori zation information

and return results as to whether the authorization is a success or failure. If either completes

unsuccessfully, ihe Payment objeci creates another error message explaining thai one of the

financial institutions did not recognize ihe validity of the submission. Control is returned to

the Tlansaction object so that another payment method may be chosen. If the authoriza-

tion is successful then the buyer's and seller's accounts are settled by crediting and debiting

monetary amounts. If this settlement is unsuccessful another exception is raised and the

buyer and seller settlements that may have occurred if one succeeded while the other failed

are undone the transaction is rolled back to its beginning. Another payment method can

be chosen or the transaction can be reattempted. If the settlement is successful for both

the buyer's and seller's financial institutions then the payment is a success and the payment

can now end. In addition, the transaction can also terminate itself if some error occurs in

its own processing environment occurred, rolling back arr results.

3-2-6 Deployment Diagram for the Electronic commerce system

The deployment diagram of the electronic commerce system (Figure 3.24) shows not only

the breakdown of the hardware and processing but also the software disiribution. In ihe dia-

gram' boxes represent machines containing an operating element of the electronic commerce

system' The circles in the deployment diagram represent an area for specialized communi-

cation between machines. Buyers and sellers access the system via an Internet-connected.

3.2. UNiprpo Moopr,wc LnNcuecp DpscRlprror.¡ 57

Figure 3.23: Payment Activity Diagram

58 CHeprBn 3. A Fonuel Moopl oF AN Er,pc:rRoxrc CovupRcp Sysrptr

Figure 3.24: Electronic Commerce System Deployment Diagram

web server. The web server is responsible for serving all of the interface web pages used for

all of the buyer's and seller's operations. The web server is connected to a dedicated elec-

tronic commerce system processing server that manages aII of the actual processes carried

out by the buyers and sellers. A database server also supports the electronic commerce ap-

plication. These three components (the web serverT electronic commerce application server

and the support database server) are connected via a local area network. For the electronic

processing of payments to iake place during transactions, a processing gateway is necessary

to handle the requests. This processing gateway manages the operations when transferring

money from one financial institution to another. The processing gateway and the electronic

commerce application server require a common interface to enable communication between

them. This common processing interface provides a common set of functions to any system

accessing the processing gateway. A similar interface, the common financial institute inter-

face, supports communications between the processing gateway and financial institutions.

The processing gatewa¡ interfaces, and financial institutions are connected via the Internet.

Internet

3.3. Z Sppcn'rcATroN LeNcuacp Moopr, Dnscnrprrou

3.3 Z Specification Language Model Description

A Z language specification of the electronic commerce system discussed in this thesis is now

presented. This specification formally defines the requirements of the electronic commerce

system model. Components of the Z specification are grouped by logicat elements of the

system. The section concludes with a demonstration of syntax, type and domain checking

of the specification using tlne ZIEVES tool.

3.3.1 Z Language Specification

The Z specification language is based on mathematical concepts and it uses many symbols

for its syntactic and semaniic definitions. Because of these mathematical concepts and

a move towards international standardization, Z specifrcations have a 'universal' syntax

and semantics. To specify a system, this syntax can be combined with natural language,

which is used to explain the mathematical symbols. By combining these two methods,

a specification is understandable but siill retains its mathematic foundation and remains

rigorous and provable.

Common Type Definitions

The specification of the electronic commerce system requires the definition of some basic

constants and types. These values are used throughout the system to describe and abstract

important concepts and to allow for logical naming and use of different data types.

ISTRING, ADDRESS, ACTION , CODE]

The above defines four basic types that are available throughout the specification. The

STRING type represents a sequence of characters of some length and is used in a variety of

ways including for names, descriptions and other character-based elements. The ADDÈESS

type logically encapsulates all of the information associated with the address of a location.

This location may belong to a buyer or seller as a shipping or billing address. ACTION

describes a particular step taken by a buyer or seller in the electronic commerce system.

ACTION types are used by the buyer and seller session handlers to track what is done

59

60 CHaprpn 3. A Fonuei- Moopr, oF AN Er,pcrRolic CoruveRcB Svsrpvr

during each session. Finall¡ CODE represents an authorization code used in payment

transactions with financial institutions.

STATUS ::: start I cornplete I error
PAYMENTßTATUS ::: begin I auth I pay I end

Tbe STATUS type is used by components of ihe electronic commerce system that have

recognizable states during processing. STATUS can have one of three possible values:

start, complete, or error. 5úørú signifies that the process undertaken has begun but has

not completed and has not encountered an error. Cornplete simply means that the process

has finished its task successfully while error signifies that the process has failed. Similar

to STATUS, the PAYMENTSTATUS type represents the current state of a payment at-

tempt. Each payment attempt may have the following possible values: beg,in, auth, pay oT

end. Begin signifies the start of the payment process and that no errors have occurred.

Auth signifres that authorization for the payment has succeeded and paA represents a suc-

cessful payment attempt. Finally, the end value signifies that an error occurred during the

processing of a payment attempt.

I sys-úirne : \

The sys-time variable is used throughout the system as a reference to the current time.

It is used where processes are time sensitive or where time is important to a schema. This

variable is stored as a natural number(\) greater than zero and is used in calculations

with other time values in the system. This choice allows for time values to be added and

subtracted from each other without violating the rules in the mathematical Z domain while

still representing the concept of time.

PAYMENT-TYPE ::: cred,'it-card I debit I i,nternet

The PAYMENT-TYPE type is used in the eiectronic commerce system to classify pay-

ment types for a buyer. Each of these payment types represents a real world payment

method. Credit-card ideniifies a credit card such as MasterCard or American Express, debit

represents transfers directly from a financial institution and interneú identifies such payment

methods as PayPal.

3.3. Z Specm'rcATroN L¡.Ncuacn Moopr, DpscRrpuoN

Common Schemas and Definitions

The basic definitions necessary for defining more complex entities later in the specification

are given below. Some of these items are used throughout the system while others may only

be used to describe a unique and specific component of the system.

ProdChar

id,pid : N1

narne)ualue ; STRING

The ProdChar schema describes a characteristic of a product supplied by the electronic

commerce system. These product characteristics(ProdChars) describe each produci in detail

and are used in making comparisons between products using the comparison engine. Each

product characteristic has an id, the id of the product entry it relates to(pi.d,) , a characteristic

name, and a corresponding value. Below are two functions used to create and return product

characteristics.

create-prod-char : Nr x NIr x STRING x STRING -+ ProdChar

Y id,pid: Nr; n, u : STRING; pc: Prod1har t
create-prod-char (id, p,id, n, u) : pc è

pc.id : i,d A pc.pi,d, : pi.d, A pc.name : n A pc.ualue : u

The create-prod-char function creates a new product characteristic for a product entry.

The function assigns input values to the attributes of a new product characteristic. Another

function is presented below to return a specified product characteristic from a set ofproduct

characteristics.

return-prod-char : N1 x IF ProdChar -+ P ProdChar

Vi : Ni; p,pc:P ProdChar t return-prod-char(i,,p): pc+
pc C p A (Vr : ProdChar I r e pc . r.id, : i)

The return-prod-char function returns the requested characteristic of a given product

from a set of product characteristic schemas. The function returns the correct product

characteristic using the identifier specified.

The schemas and functions used to describe the representation of a product are presented

next.

61

62 CneprBR 3. A Fonuer, Moopr, oF AN ElecrRoxrc CounrpRcp Sysrpu

ProductEntry
id, seller-id, pri,ce, ship-tirne : N1

narne j keywords : STRING
chars ;P ProdChar

Y r,y : ProdChar c r e chars A y € chars + r.id I y.id,

The ProductÛntry schema represents a product class in the system. Each seller has a

number of these product entries that ihey offer for sale to buyers. Each product entry has

an id, the id of the seller, a name, a description of the product keywords used in searching,

a selling price, the amount of time the product is expected to take to be shipped when

ordered, and a set of characteristics describing the product. The price definition used in

this schema and throughout the specification is represented as a natural number with no

decimal places. This is done for the sake of simplicity and in an actual implementation of

an electronic commerce system the prices would include two decimal places to match ihe

conventional standa¡ds for monetary values. A pre-condition on this schema is that each

product characteristic of a product entry be unique. A schema describing the initialization

of a product entry is presented below.

InitProductEntry
A,ProductEntry

chars' : Ø

When a product entry is created, its product characteristics are empty. The definition

below is useful to create a product entry.

create-product-entry : Nl x N1 x 5?411t[G x STRING x Nr x Nit -+ ProductÛntry

V id,sid,p,st; Nr; n, k: STRING; pe: ProductØntry o

create-product-entry (i,d, s,id, n, k, p, st) - pe +
pe.id : i,d A pe.seller-id : sid A pe.name : n A pe.keywords : lc A
pe.price : p A pe.shi,p-ti,me : st A pe.chars : Ø

The create-product-entrg function takes a set of entry parameters and returns a product

entry schema. The create-prod,uct-entrg function is used in the remainder of the specifi.cation,

especially when lists of products are being generated. Once a product entry exists in the

master inventory, a method to retrieve the information stored for that product is necessary.

3.3. Z SppcrprcATloN Lerucuace Monpl DpscRrpriol,r

The function below fulfills that purpose.

return-product-entry: NI1 x P ProductÐntry 4P ProductÛntry

Vi : \ I p,pe :P ProductÛntrg o return-product-entry(i,'p) : pe +
pe C p A (Vz : ProductÛntry I r € pe o r.id : i)

The return-product-enúryr function is used in the remainder of the specification to return

a given product entry from a set of product entry schemas. The function returns the correct

product entry based on the identifier specified. Additional operations on a product entry

include the addition and removal of product characteristics from a product entry. The

operational schemas below describe the addition and removal operations.

AddProdChar
L.ProductØntry
i?, pid? : \
n?, u? : STRING

create-prod-char (i,?, pid?, n?, u?) Ç chars
chars' : chars U {create-prod-char(i7, pid?, n7, a?)}

The AddProdChar schema takes a new id, product entry id, name, and value and creates

a product characteristic in a product entry. The characteristic created must not have the

same id as another characteristic for that product. To remove characteristics from a product

entrg a removal operation must also exist. The RemoueProdChar operation provides this

function.

RemoueProdChar

A,ProductEntry
id?: N

chars' : chars \ return-prod-char(id?, chars)

The RemoueProdChar schema uses the return-prod-char function to retrieve a specified

characteristic and then uses set difference to remove it from the set of characteristics in a

product entry.

The next abstract concept is Action. Schemas and definitions follow that describe an

Action and the behaviours that are associated with it.

63

64 CsRprBn 3. A Fonrrer, Moopr, oF AN ElpcrRoNrc Con¡upRcp Sysrplr¡

Action
id,session-id r N
act'ion-type : ACTION
details: STRING

The Action schema is used to document events (i.e. actions) that occur in the system.

These events are usually driven by the buyer or seller and they are tracked to provide

knowledge of the activities of the users of the system. Each action has a unique id, a session

id that it is associated with, the type of ihe action, and some details of what occurred. To

create an Action all of the component parts required are assembled by the definition below.

create-action : N1 x lV1 x ACTION x STRING -+ Action

V id, si,d: \; aú : ACTION; d : STRING; a : Action o

create-act'ion(id,si,d, at, d) : a è a.id, :|d A a.session-id : sid A
a.action-type : at A a.details : d

The create-action function takes the elements of an action and creates a new action to

be used for both buyers and sellers.

The next schemas and definitions describe financial institutions and their associated sub-

components. These components provide functionality for the necessary financial operations

in the electronic commerce system.

Account

acc-nurn : N1

åal¿nce : N

A financial institution uses Accounú to track money for an individual buyer or seller.

Each account has an account number and a balance. In ihis electronic commerce system

the balance must be greater than zero. To create an account, the following definition is

applicable.

create-account : N1 xN-+Account

a: Account o create-account(an,b): o +Van: \; ó: N;

a.o,cc_nuIn anAa.balatuc€:b

function takes a new account number and starting balance and cre-The create-account

ates a new account.

3.3. Z SppcmrcATroN Laxcu¿.cp Monpi. DpscRlprroN

A Financiallnsti,tution represents a business that holds monetary accounts for customers.

In the electronic commerce system, these customers are buyers and sellers. A financial

institution can debit and credit accounts for a customer. Each financial institution has a

unique name) an authorization code, and a number of accounts. Each account number is

unique. The authorization code is used during the payment process to ensure the proper

access is granted for a monetary transfer.

F i,n an ci al I n s ti,tuti o n

narrLe i STRING
auth-code : CODE
accounts;P Account

Yrry; Account. r e accounts Ay e. accounts + r. o.cc-nurn f y. acc-num

65

A general constraint over the entire electronic commerce system

cial institutions may be the same. This constraint is described by

fi,n-insts : P Financiallnstituti,on

holds that no two finan-

ihe following defi nition.

V r,y : Financiallnst,ituti,on o

The schema below represents

r Q fi,n-insts A y € f,n-insts + ï.naTne f y.name

the initial state of a Financiallnsti,tuti,on.

Ini,t F in an c i al I n s titut'i o n

A, Fin an ci al In stitutio n

When a financial institution is initialized, it has no accounts. As the electronic commerce

system evolves, a financial institution can add or remove accounts as customers come and

go.

AddAccount

A. F in an ci, al In stituti o n
a?,å?:\

creat e -acco unt (a?, b?)
accounts' : accounts

f accounts
U {create-account(a?, b7)}

The AddAccount schema takes a

count in a financial institution. The

new account number

new account must not

and balance and creates an ac-

have the same account number

66 CHeprnR 3. A Fonuel Moopr. oF AN Er,pcrRourc Con¡vrsRce Sysrev

as a previous account. It should be possible to remove customer accounts from a financial

institution. To remove an account, a method must exist to find the account.

return-accounú : fSr x P Accounú -+ IP Account

Y an : NIr; ¿s, a :P Account c
return-account(an, as) : ¿ è a C as A

(V r : Account I x € a. r,.otc-nlrm : an)

TIte return-account function takes an account number and a set of accounts and returns

the account that matches the id in the set of accounts- This function is used to identify

information about a specific account. Tlne RemoueAccount operation removes an account

from a financial institution.

RernoueAccount

L, F in an ci aI In sti,tuti o n

a-n?: \

accounts' : accounts \ return-account(a-n?, accounts)

T}ae RemoueAccount schema uses the return-account furrction to retrieve a specified

account and then uses the set difference method to remove it from the set of accounts in

the financial institution.

To use the accounts to handle funds, they must have the ability to increase and decrease

their balances.

cred'it-account : Accounú x Nr -+ Nr

V a ; Account; amount,new-bal: Nr o cred'it-account(a, amount) : new-bal +
new-bal : a.balance * arnount

The credit-account function demonstrates how to credit an account in a financial institu-

tion. An account and amount to be deposited are given as inputs and the arnount is added

to the account balance. When this function is used by a financial insiitution the new value

of the account balance is assigned to the results.

debit-account : Account x N1 -+ N

V a : Account; arnount : N1; neu,r-ó¿l : N o debit-account(a, amount) : new-bal +
new-bal : a.balance - arnount

3.3. Z Sppcm'rcATroN LnNcuacp Moopi, DpscRrp'uoN

The debit-o,ccount function demonstrates how to debit an account. An account and

amount to be withdrawn are given as inputs and the amount is subtracted from the account

balance. When this function is used by a financial institution the new value of the account

balance is assigned to the results.

Buyers and sellers need to identify a suitable payment method. Each payment method

encapsulates the pertinent information needed to transfer funds. A payment method schema

follows.

PaymentMethod

id, acc-num ; N1

name,finame: STRING
auth-code : CODE
pagrnent -type : PAYMENT -T YP E

The PaymentMethod schema represents the information needed for the payment man-

ager of the electronic commerce system to initiate a payment. Each pavment method has

an id, name, financial institution name, authorization code, and payment type.

create-payment-method: Nr x N1 x ^9TÃIllG x STRINGx
CODE x PAYMENT-TYPE -+ PaymentMethod

V 'i,, a-n: N1; n,fn : STRING; a-c : CODE;
p-t: PAYMENT-TYPE; p: PaymentMethod, o

create-payment-rnethod(i, a-n,n,rtn, a-c,p-t) : p +
p-id : i A p.acc-nurn : o,n A p.name : n A p.finame : fi,n A
p.auth-code: a-c A p.payment-type: p-t

Tbe create-payment-method finction creates a payment method given the proper com-

ponents. This definiiion assigns the input values given to the attributes of the new payment

method. In addition to creating a payment method, a function is needed that returns an

identified payment method from a collection. This function is necessary to return infor-

mation about a payment meihod for use in transactions and for the removal of payment

methods.

return-payment-rr¿ethod : NI1 x P PaymentMethod -+ P PaymentMethod

67

Vi : \, pn,p :P PayrnentMethod o

return-payrnent-method(i, pm) : p
(V r : PaymentMethod I * e p

+pCpmA
. r.id : i)

6B cnepren 3. A Fonl¿el Moopr. oF AN Ei,pcrRoNrc corr¡ueRcp Sysrprr,r

The return-payrnent-rnethod fiinction returns a set of payment methods specified by a

unique id from ihe set of all possible payment methods.

In the electronic commerce system, the actions that a buyer or seller have taken in the

system are important. To capture this information, session information is vital.

Session

id, owner, entry , erit
act'ions :, seqAction

entry 1 erit

The Sessi,on schema represents a usel's activity from login to logout in the electronic

commerce system. Each time a buyer or seller enters the system, a session is created. Each

session has an id, the id of the buyer or sel .er called the owner, an entry and exit timestamp,

and a sequence of actions of the user. For every session, the entry time must be before the

exit time. A Session must be initialized when a buyer or seller enters the system and the

schema below describes that operation.

In'i,tSession

A,Session

actions : 0

The InitSession schema sets the

Once a Session has been initialized,

including owner id and entry and exit

action.

initial sequence of actions in a session to be empty.

it must be updated with current user information

times. The operational schema below describes that

Modi,fySession

A,Session
id?, ow?, en ?, ez? : \

id,? : id,

ouJner' : ow?
entrY' : en?

eritt : er?

The ModifySession schema takes new values for a session as inputs and applies them to

the individual values of a Sess'ion. Each Session records the actions taken by a buyer or

3.3. Z Sppcru.lcATroN LeNcuacp Moosl DpscRrprrox

seller. The operation AddsessionAct'ion adds a new action to a session.

AddSessionAction

A,Session
id?: \
at? : ACTION
d? : STRING

actionst : acti,ons ^ (create_action(id? , id, at? , d?))

The AddSess'ionAct'ion schema takes an id, an action type, and a description and creates

a new action using the create-action definition. The new action is appended to the end of

the sequence of actions for the session through the use of the concatenation operator.

create-session:\ xNl xN xNr -+Session

V'i,drow,en)er: Ni; s : Session o create_sessi,on(id,,o,u))enjer): s I
s.id: id A s.owner: o?t) A s.entry: €n A s.erit: er

The create-session function takes a unique id, the owner, and entry and exit times-

tamps and returns a session schema with those input values applied as initial values. The

return-session function provides ihe ability to find an existing session in the list of current

sessions.

return-session : N1 x P Session -+ P Session

Vi : \; ss,s :P Session o return_session(i,ss) : s =;
s C ss Â (Vr : Session I r € s . r.id : i)

The return-session function takes the id of a session and a set of active sessions and

returns a set of sessions containing a single item wiih an id matching the input value.

Schemas and Definitions related to Buyers

The buyer is now described using schemas and functions. These definitions abstract a buyer

and its possible operations.

69

70 Cnaprpn 3. A Fonvar- Moopr, oF -A.N Er,BctRoi.rrc Corr¡upncp Sysrev

Buger

narne) phone, ernail : STRING
address : ADDRESS
shipping -addresses : P ADD RESS
payment -rnethods : P P aymentM ethod.

V r,y : ADDRESS o x e shi,pping-addresses A
g € shi,ppi,ng-addresses + r + g

Y i, j : PaymentMethod o i, € payrnent-methods A
j e payment-methods + ¿.id + j.i,d

The Buyer schema contains the attributes of a buyer in the electronic commerce system.

Each buyer has a id, name, address, phone number and email address. The address stored

by the buyer outside of the shipping addresses represents the buyer's home or invoicing

address. This address may have a matching shipping address but is used for all other

mailings. In addition to these attributes, each buyer also has a set of shipping addresses

and a set of payment methods. The shipping addresses are used io keep track of where

goods purchased by the buyer may be sent. The payment methods are set up by the buyer

so that the buyer may purchase goods using more than one type of payment. Every item

in each set is unique. This constraint eliminates duplicate shipping addresses and payment

methods. The InitBuyer schema defines the initialization of a buyer.

InitBuyer
A,Buyer

shippi,ng -addresses' : Ø

pagment-rnethodst : Ø

The InitBuyer schema initializes the buyer so that the tist of initial shipping addresses

and payment methods are set to be the empty set.

Once a buyer has been initialized, a mechanism is required to modify the information

about a buyer. The operational schema ModifyBuyer, defined below, captures this require-

ment.

3.3. Z SppcipIcATIoN Llivcuecp Moopr. DpscRtpttoN

ModifyBuyer
L,BuEer
id?:\
n?,p?, e? : STRING
A?: ADDRESS

idt : i,d?

namet : n?

addresst : a?

ema'ilt : e?

phonet : P?

T}re ModifUBuyer schema provides the mechanism to change the values of a buyer. These

changes may be requested by ihe buyer due to a change ofaddress, name, or different phone

number or email address. The schema takes an id, name, address, phone number and email

address and sets the corresponding buyer values. The buyer may need to add and remove

shipping addresses and payment methods as required. These operations are defined below.

AddShi,ppingAddress

A,Buyer
A? : ADDRESS

a? (shi.ppi,ng -addresses
shipping -addresses' : shi,ppi,ng -addresses U { a?}

The Addshi,ppingAddre.çs schema takes a new address and appends it to the existing list

of shipping addresses for the buyer. A precondition for the execution of the operation is

that the new address must not already be in the list of existing shipping addresses. The

operation to remove a shipping address follows.

D elete Ship p in g A d dres s

L,Buyer
a? : ADDRESS

a? e shipping -addresses
shipping-addresses' : shippi,ng-addresses \ {o?}

The DeleteShippingAddress schema takes an address and removes it from the list of

existing shipping addresses. For this operation to execute, the shipping address to be deleted

must be in the list of the buyer's shipping addresses. Like the shipping addresses, payment

7T

72 CHepren 3. A Fonuel Moopi, oF AN Er.ecrRourc ColrruaRcp Svsrpu

methods can be added and deleted from a buyer. The operational schemas representing

these functions are given next.

A dd B uy er P ag ment M eth od

A,Buuer
n?,fi,n?: STRING
a-c? : CODE
i?, a-n? : N1

p-t? : PAYMENT-TYPE

create-payment-rnethod('i,? , a-n? , n? , fi,n?, a-c? , p-t?) Ç. payment-tnethods
payment -methodst - payment -rnethods l,)

{create-payment-method(i?, a-n? , n? , fin?, a-c? , p-t?)}

The AddBuyerPaymentMethod schema adds a new payment method to the existing

payment methods for the buyer by using the create-payment-rnethod function. This schema

also states ihat the payment method to be created must not be in the existing payment

methods. Just as a payment method can be added to a buyer, the functionality must also

exist to remove a payment method.

Rem o u e B uy er P ay m ent M eth o d

A,Buger
id? : Nr

return -payment -method (id?, payment -rnethods) C payment -methods
payment-methodst : palrnent-methods \

return -p ay m ent -meth o d (i, d?, p ay m ent -metho d s)

The RernoueBuyerPaymentMethod schema takes the id of the payment method to be

removed from the set of existing payment methods. Using the return-payment-method func-

tion, the schema returns a set containing the payment method identified by the id sup-

plied. That payment method is then removed from the set of payment methods using

the set difference operator. The initial constraint on the schema states that the payment

method to be removed must be in the set of payment-methods for ihe buyer. Since the re-

turn-payement-method function returns a single element set, the subset equality operaior(Ç)

is used instead of the element operator(e).

The session information stored for a buyer differs slightly from the initial definition

presented for a Session. The system keeps track of the items that a buyer wishes to purchase

3.3. Z SpncmrcATroN LaxcuRcp Moopl DescRtprroN

yet. This electronic shopping cart is used across buyer logins and

ion when a buyer is active in the system.

f.)

but has not paid for

maintained by a sess

BuyerSession

Sess'ion
products : P Prod,uctÐntrg

The BuyerSession schema represents the activities of a buyer when he/she enters the

electronic commerce system. This schema inherits the Session schema described earlier and

adds a new component, products. The new attribute is a list of all the product entries that

the buyer has added to his/her electronic shopping cart. A BuyerSession also requires an

initialization.

InitBuyerSess'i,on

A.BuyerSession

actions : (l
products : Ø

The InitBuyerSession schema initializes the buyer's session. The schema sets the se-

quence of actions taken by the buyer to be empty, and sets the set of products chosen by

the buyer in the current session to be empty. The ability to modify a BuyerSession is also

important and this functionality is provided by the next operational schema.

ModifyBuyerSession

L.BuyerSession
'id?, ow?, en?, er? : NI1

i,d,? : i,d,

owner' : ow?
entrYt : en?

etitt : er?

The ModifyBuyerSession schema modifies the attributes of a BuyerSession to represent

changes. The schema accepts an id, owner, entry and exit time, and changes the values

for a BuyerSession accordingly. In addition to modifying a BuyerSession, mechanisms to

support the addition and removal of items from a buyer's shopping cart are vital.

74 Cnaprpn 3. A Fonurr. MooBr, oF AN ElpcrtoNrc ColrupRcp Sys.rpu

A dd B uy er S e s s i onP ro duct Entry
A.BugerSession
i?, sid,?,p?, sú? : \
n?, d? : STRING

create -product -entry (i,?, sid,?, n?, d?, p?, st?) Ç products
productst : ï,rod,ucts U {create-product-entry(i? , sid?, n7 , d? , p? , st?)}

The Ad'dBuyerSess'ionProductUntry adds a new product entry to the set of products in

the buyer's electronic shopping cart. The schema does this using the create-product-entry

function provided wiih the inputs for a product entry. The pre-condition of the schema

operation is that the new product entry must not already exist in the set of product entries.

Similarly, a schema to remove a product entry is defined as follows:

Remo u e B uy er S e s s i o nP ro du ctÛntry
A.BuyerSession
id?: \

r etur n -p r o du ct - entr y (i d?, p ro du ct s) C p ro du ct s

productst : products \ return-product-entry(id?, products)

The RemoueBuyerSessi,onProductÐntry schema is used when a buyer decides to remove

a product entry from the list of products to purchase during a session. This schema uses

the return-product-entry function to get the selected product from the electronic shopping

cart. The initial constraint on the schema is that the product entry to be removed must

exist in ihe set of products for the buyer.

The BuyerSess'ion schema and other functions and operational schemas are used in the

electronic commerce system by a buyer session handler. The definition of a buyer session

handler follows.

BuyerSessionHandler

buyer-sessions : IF BuyerSess,ion

V r,y : BuyerSession . r e buyer-sessions
g € buyer-sessions + r.i,d # y.id

The Buy erS essionHandler schema contains

sions in the electronic commerce system. Each

a set of all of the currently active buyer ses-

buyer session must be unique. An additional

3.3. Z Sppcr¡'rc¡TroN LaNcuaco Moonr, DpscRrprroN

schema is required to initialize the buyer session handler.

Init B ug er S e s si o nH an dl er
A, B ug er S es si,o n H an dl er

buger-sessions' : Ø

The InitBuyerSessionHandler schema initializes the buyer session handler and sets the

set of active buyer sessions to be empty. For use in the electronic commerce system, buyer

sessions need to be added and removed from the session handler.

create-buyer-session: N1 x ñ x Nr x Nl x iseqAction
xP ProductEntry -+ BuyerSession

V'i,d, ow, en1 er : N1; ø : iseqAction; p : P Prod,uctÛntry; bs : BuyerSession o

create-buyer-sessi,on(i,d1o'u)1en) er, arp) : bs +
bs.id : i,d A bs.owner : o'tr A bs.entry : en A
bs.erit : etr A bs.actions : a A, bs-products : p

The create-buyer-sess'ion operator creates a new buyer session. This function takes an

id, owner, entry and exit time, sequence of actions and set of product entries and creates

a buyer session. To use this function) an operational schema modifies the buyer session

handler.

AddBuyerSession

L, B uy er S e s si, o n H øn dl er
id,?, ow?, en?, er? : N1

a? : iseq Acti,on
p? : P ProductEntru

create-buyer-sessi,on(id? , ow? , en? , er?, a? , p?) # buyer-sessions
buy er -s ess'ions' : buy er -sessions l)

{create-buyer-session(id?, ow? , en? , er?, a7 , p?))

The AddBuyerSession schema adds a new buyer session to the list of currently active

sessions. The schema states that the ne\Ã¡ session to be added must be unique to the lisi of

current sessions and that it is created using the create-buyer-sess'ion definition.

The ability to remove buyer sessions from the buyer session handler is also required and

is defined below.

75

76 CnaptpR 3. A Fonrual Moopr, oF AN Elnc:rRoxrc Corr¿lvrpRco Svsrel,r

return-buyer-sess'ion: N1 x P BuyerSession -+ P BuyerSession

V'd : N1 ; bss,bs :P BuyerSession c

return-buyer-session(i, öss) : bs + bs Ç öss A
(Y r : BuyerSession I x e bs . r.id : i)

The return-buyer-session function finds a specified buyer session in a set of buyer sessions.

The operator returns a set of buyer sessions where the id matches the id provided as an

input to the definiiion. To remove the buyer session from the handler, the operational

schema below :uses return-buyer-session.

RemoueBuyerSession

A, B uy er S es s i on H an dl er

return -b uy er -s es si on (id?, b uy er -s e s si, on s) C b uy er -s es s'i o ns
buyer-sessions' : buyer-sessions \ return-buyer-session('ìd? , buger-sessions)

The RemoueBuyerSession schema takes the id of a buyer session as an input and uses the

return-buyer-session function to retrieve that buyer session from the list of buyer sessions

in the buyer session handler. This retrieved value is then removed from the set of buyer

sessions using the set difference operator. The pre-condition on the schema is that the buyer

session to be removed must already exist in the set of buyer sessions stored in the buyer

session handler.

Seller Schernas and Definitions

The seller is now

components make

schema describing

described using schemas and functions. These definitions outline what

up a seller'and describe what possible operations a seller can perform. A

the seller is given below.

Seller

id:\
nan'Le) phone, email : STRING
address, shi,ppi,ng -address : AD D RESS
p ay rn ent -metho d : P ay m ent M eth o d

The Seller schema represents each seller in the electronic commerce system. This schema

contains information about a seller including a unique id, name, address, phone number,

3.3. Z SppcrrrcATroN LaNcuacp Moopl, DpscRrpuoN

email address, payment method and shipping address. The payment method is used to

settle payments between buyers and sellers during a transaction and the shipping address

can be provided to buyers to allow them to return goods for warranty or repair work. To

make changes to a Seller, the ModifySeller operational schema is used as defined below.

Modi,fySeller

A,Seller
i?: \
n?,p?, e? : STRING
a?, s-a? : ADDRESS

id,t : i?
name' : n?
addresst : a?

Phonet : çt?
ema'il' : e?

shipping-addresst : s-a?

77

The ModifySeller schema takes a number of inputs

appropriate attributes. The only attribute not assigned

attribute which is set by the AddSellerPaymentMethod

for a seller and assigns them to the

at this time is the payment method

schema defined below.

A d d S eI I er P ay m ent M eth o d

A,Seller
pmid?,prna-n ? : N1

pmn?,pmf,n?: STRING
pma-c? : CODE
pmp-t? : PAYMENT-TYPE

payment -methodt : create -payment -m ethod (pmi d7, pma -n7,
pmn? , pmf,n?, pma-c? , pmp-t?)

The AddSellerPaymentMethod, schema modifies the seller schema by using the function

create-payrnent-rnethod to assign a new payment method to the seller. To accomplish the

creation of the payment method, inputs for the payment method attributes are needed,

including id, name, financial institution name, authorization code) and the payment type of

the financial service. In addition to adding a new payment method to a SeIIer, the ability

to modify that payment method is also required.

78 CnaptnR 3. A Fonual Mo¡pr, oF AN ElpcrRoNrc CovrunRcp Svsrpl¿i

M o dify S eller P ay m ent M eth o d

A.Seller
i?,4-n?:N{1
n?,f,n? : STRING
a-c?: CODE
p-t? : PAYMENT-TYPE

i? - payment:nethod.i,d
pagment-methodt .name : n?
payment -methodt .fi,nams : fin?
payment -rnethodt . acc -nurn : a-n?
payment-methodt . auth-code : a-c?
pagment -methodt -payment -type : p -t?

The ModifySellerPagmentMethod schema allows a seller to update a payment method.

The schema uses a number of inputs matching the attributes of a payment meihod and

applies them to the seller payment method accordingly.

The electronic commerce system tracks the activities of a seller by maintaining a session

each time the seller visits the system. A session handler manages these seller sessions. The

selle¡ session handler is defined below.

SellerSessionHandler

seller-sessions : lF Session

V x,y : Session o r e seller-sessions A y e seller-sessions è r.id, t y.id

The SellerSessionHandler schema represents the session handler that manages all the

sessions currently open by sellers in the electronic commerce system. This schema contains

a set of sessions, each representing one seller that is currently active in the electronic com-

merce system. The schema also states that each session is unique. The initialization of a

SellerSessionHandler is defined by ihe operational schema given below.

Init S el I er S e s s i o n H an d I er

L,S ellerS es sionil andler

seller-sess'ions' : Ø

The InitSellerSessionHandler schema initializes the seller session handler by setting the

set of seller sessions to empty.

3.3. Z SppcrpicATroN LaNcuacp Mooer, DpscRrprroN

The seller session handler also requires the ability to add and remove sessions. These

operational schemas are defined below.

AddSellerSession

A,S ellerS es sionH andler
id?, ou?, en ?, ez? : N1

79

create-session(id?, ou?, en?, ex?)
s eller -sessionst : s eller -s ess'i,ons

(seller-sessions
U {create-session(id?, ow?, en?, er?)}

The AddSellerSessi,on schema adds a new seller session to the seller session handler.

The schema takes as inputs the attributes needed to create a ne\Ãr'session and creates a new

session using the creøte-session function. The schema also states that the new seller session

to be added must not exist in the seller sessions already stored by the seller session handler.

The 'non-membership' operator(f) is used to check that the results of the create-session

function does not currently exist in the seller-sessions.The abitity to remove sessions from

the seller session handler is defined next.

RernoueSellerSession

A,S ellerS es sionil andler
id? : Nr

return -s es s'i on (i d?, s ell er - s e s si or¿s) ç s eller -s es s'i o ns
seller-sessions' : seller-sessions \return_session(id?, seller_sessions)

The RemoueSellerSess'ion schema removes a current seller session from the list of seller

sessions by specifying its id and using the return-session function to find the correct seller

session. The pre-condition on the schema is that the session to be ¡emoved must exist in

the set of selier sessions.

A seller provides goods for sale in the electronic commerce system that are purchased

through a supplier. Each of these suppliers sells products in the form of product lots. The

sellers then make the products purchased in one of these lots available at lesser quantities

to the buyers. The following schemas and functions describe this supply chain of goods for

the sellers.

80 cHnproR 3. A Fonunl Moopr, oF AN Er,pcrRowic covrrr¿pRcB sysrpl¿

Product

id,supid,price: N1

desc: STRING

The Producú schema represents an item ihat a supplier makes available to a seller for

sale in the electronic commerce system. Each product has an id, a supplier providing the

product, a description of its characteristics and a individual unit price. To modify the

product information, an operational schema is presented next.

ModifyProd,uct

A,Product
id?, p? : \
d? : STRING

id,t : i,d?

desct : d?

Pricet : p?

The ModifyProd'uct schema demonst¡ates the modification of a product schema. This

operational schema takes the attributes of a product as inputs and sets them to be the new

attributes of a product. Each product is unique, as stated by the constraint below.

products :P Product

V r,y ; Product . r € products A y e products + r.id I A.id

The producfs constraint specifies that every product across the entire electronic com-

merce system must be unique. Each product is presented to a seller by a supplier in a

product lot, described below.

ProductLot
id, quantity : N1

product ; Prod,uct

The ProductLot schema represents a quantity of a certain product made available to a

seller by a supplier. Each product lot has a unique id, a product associated with it and the

quantity of that product. The ability io modify a product lot is important to a supplier

and the Modi'fyProductlot operational schema, defined below, provides this support.

3.3. Z Sppcm'lcATIoN LaxcuRcp Monpl DBscRrp'rroN

ModifyProductLot
A,ProductLot
,id?, q? : N1

id' : id?
quantityt : q?

The ModifyProductLot schema is used to change the quantity of a product and the lot

id. In addition to modifying a product lot, a supplier also needs to be able to add a new

product lot to the product lots that have currently been made available to sellers.

create-product-lot : lN1 x Prodzcú x N1 -+ ProductLot

Vid,q: Nl; p : Product; pl: ProductLot o create-product-lot(id,p,q): pl +
pl.id : id A pl.product : p A pl.quantity : q

The create-product-lot function is used to create a new product lot from the provided

inputs. The schema takes the attributes for the creation of a new product lot and returns

the completed item by assigning each of the input parameters to the appropriate attribute

for the new product lot. To retrieve information or remove product lots, a function is

required to return a product lot.

return-product-lot: Ni x PProductlot -+P Productlot

Vid : N1i pl,p :P ProductLot o return-product-Iot(i,d,,pl) : p +
p C pl Â (Vr : ProductLot I r e p c r.id, : id,)

The return-product-lot function is used to return a selected product lot. It takes a set

of product lots and a unique product lot id as inputs and returns the matching product lot

in the set.

With the definition of products and product lots, a supplier and its operations can now

be defined.

Supplier
nan'r,ejphone : STRING
address : ADDRESS
product-lots : P Productlot

The Supplier schema represents a supplier that makes product lots available to sellers

for sale in the electronic cornmerce system. Each supplier has a name, address, and phone

81

82 Cneptpn 3. A Fonual Mooel oF AN Er,ncrRoNrc CovnvrpRcB Sysrpn¡

number as well as a number of products lots available for sale. Next is an operational

schema to initialize a supplier.

InitSupplier
A,Supplier

product-lotsl

The InitSupplier schema initializes the supplier schema by setting the product lots set

to empty. After initialization other operations can be carried out on a supplier.

Add S up pli er P ro du ctL ot
A,Suppláer
zd?, q? : \
p? :. Product

creat e-product -lot (id?, p?, q?) (product -Iots
product-Iotst - prod,uct-Iots U {create-product-Iot(i,d?, p? , q?)}

The AddSupplierProductLot schema adds a new product lot to those available for sale by

the supplier. The schema takes inputs for the id, quantity, and product for a product lot and

adds a new product lot to the existing lots using the create-product-lot function. The schema

also states that the product lot must be unique relative to the other product lots offered

by the supplier. To remove a product lot from a supplier the RemoueSupplierProductLot

operational schema is defined.

Rem o u e S up pli, er P rodu ct L o t
A,Supplier
id? : N1

return-product-lof (i,d? , product-lots) Ç product-Iots
product-lotst - çtrod,uct-loús \ return-product-lot(id?, prod,uct-lots)

The RemoueSupplierProductLot schema represents removal of a product lot from a sup-

plier. The set of available product lots is reduced by the lot identified by an id given as an

input to the schema and uses the return-product-Iot function to retrieve the correct product

lot from the current listing. There is a constraint on the schema that the product lot to be

removed must be in the supplier's product lots.

Additional functions used by the electronic commerce system to retrieve information

3.3. Z Sppcrr.lcATroN LRNcuacp MoopL DpscRrprrow g3

from a seller a¡e defined below. These functions are used during a purchase transaction.

return-seller-narne :P Seller x Nr -+ STRING

V s/ : tr Seller; sid : \ ; sn : STRING o return_seller_name(st, sid) : sn :+
(lrz : Seller I r e st. sn : r.nan¿e + r.id, : sid,)

The return-seller-name function returns the name of a seller from a list of all the sellers

in the system given the id of the seller.

return-seller-address :P Seller x N -+ ADDRESS

V s/ : tr Seller; sid : N1 ; sa : ADDRESS o return_seller-address(st, sid.) - sa +
(3rr : Seller I r e sl . sa : r.add,ress + r.id, : sid.)

The return-seller-address function is similar to ihe return-seller-narne function. The

return-seller-address operation returns the address ofa seller given a unique id and a set of

all the sellers in the electronic commerce system.

return-seller-payment-rnethod :P seller x N1 -+ paymentMethod,

Vs/: tr Seller; szd: \; sprn: PayrnentMethod. o

return -s eller -payment _rnethod (sl, sid) : spnx +
(lrø: Sellerlr e st. sprn: xr.payment-method + r.i.d: sid)

T}re return-seller-payntent-method function is used to return the payment method asso-

ciated with a seller in the system identified by an id given as an input parameter.

Master fnventory Schemas and Definitions

The inventory of products available for sale are specified next. These products are supplied

by different selle¡s and are available to all buyers. The schemas and functions presented

below define the components of the master inventory.

Masterlnuentory

au ail abl e -pro ducts : P P ro du ct Entry

Yr,y: ProductÛntr! c x € aaailable_products Ay € auailable_products +
r.id, I y.id

The Masterlnuentory schema represents the inventory of all products available in the

system- The lisi of all the products is stored as a set of product entries. The master

inventory is used for querying and selecting goods for purchase by the users of the system.

84 CHaprpn 3. A FonwiRt, Moopr, oF AN Er,pcrRoNrc Covn¡pRcp Sys'rptr

A pre-condition on this schema is that each product entry is unique. The initialization of

the master inventory is defined as follows.

InitMasterlnuentory
A.Masterlnuentory

auailable-products : Ø

The InitMasterlnuentorgr schema initializes the master inventory by setting the initial set

of products available to empty. The ability to add and remove product entries to/from ihe

master inventory is important and the operations to support this functionality are defined

below.

AddProductUntry
A,Masterlnuentory
i?, sid?,p?, sú? : N1

n?,k? : STRING

create-product-entry (i? , s'id? , n? , k? , p? , st?) Ç aua,ilable-products
au ailable-productst : aa ailable -products l)

{create-product-entry(i?, s'id?, n?, k?, p?, st?)}

T}re AddProductÛntry schema creates a new product entry and adds it to the set of

available products. The schema accomplishes this by using ttre create-product-entry function.

A pre-condition of the operation is that the product entry to be created must not exist in

the available products.

The operational schema to remove a product entry from the master inventory is defined

as follows:

RemoueProductÙntry

A,Masterlnaentory

r eturn -p ro du ct - entry (i, d?, au ai,l ab I e -p r o du ct s) C au ail ab I e -p ro du ct s

au ailable-productst : aa ailable -products \
return -p ro du ct -entry (i d?, au ail abl e -p ro du cts)

The RemoaeProductÐnúrgr schema removes

products by identifying the product entry to

a product entry from

be removed using the

the list of available

return-product-entry

3.3. Z SppcrrrcATroN Laxcuacp Monpl DpscRrprlor.r

function with an id supplied as an input. A pre-condition on this schema is that

product entry to be removed must exist in the set of available products.

master-inuentory-prod,uct-search :P ProductUntry x STRING -+ F ProductÛntry

V pl,r :P ProductÛntrg; k: STRING o

master,inuentory -product-search(pl, k) :, +
(V x : ProductÛntry I r € r . r.lceywords : Ic)

The master-'inuentory-product-searcå function takes a set of product entries and search

criteria as inputs and returns a set of product entries where a keyword matches the search

criteria provided. In this specification, this is shown as an equality even though in a real

electronic commerce system the agent searching for goods would be much more specific in

its search criteria and allow for many other options including less than, greater than, etc.

For simplicity and conciseness, only equality is shown. This function is used during ihe

search process in the electronic commerce system.

Search Engine Schemas and Definitions

This search capabilities in the electronic commerce system are described below using schemas

and functions. These definitions specify the components of a search and their possible op-

erations. A schema describing a search is given below.

The Search schema represents a single search activity executed by the search engine.

Each search has a unique id, some search criteria and a set of results containing product

entries. The initialization of the search schema follows.

[ni,tSearch

A,Search

85

the

criteria : STRING
results : P Prod,uctEntry

The InitSearcå schema initializes the search schema by setting the results obtained to

86 Cueprpn 3. A Fonv¡.r- Mooer, oF AN Ei,pcrnoxrc Corvrueacs SysrBN,r

the empty set. The ability to modify a search is also important.

ModifySearch

A,Search
id?: \
C? : STRING

i,d,t : id?
criteriat : c?

The ModifySearch schema permits the modification of the id or criteria of a search.

These new values are inputs to ihe schema and are assigned accordingly. After a search is

initialized and values have possibly been modified, the electronic commerce system needs

the ability to execute the search for products against the master inventory.

ErecuteSearch

L,Search
mi,? : Masterlnaentory

r e s ult s
| : m a s t er -ina ent o r y -p r o du ct -s earch (mi? . au ail abl e -p ro du ct s, crit er i, a)

The ErecuteSearch schema modifies tlne Search schema by setting the results to be a set

of product entries using the master-'inuentory-product-search function to return results from

the master inventory. Searches are created and deleted by the search engine in the electronic

commerce system. The following schemas and functions describe the search engine and its

operations.

create-searcñ : N1 x STRING -+ Search

Vid : N1; c: STRING; s : Search o create-search(id, c) : s +
s.id : id A s.criteria : c A s.results : Ø

The create-search function takes a unique id and a string criteria and creates a new

search. The id and criteria are set to the appropriate inputs while the set of results is set

to the empty set. The function describing how a search is identified by the search engine is

described next.

return-searcå r Nr xP Search -+P Search

Vi : \; sl sr :P Search o return-search(i,s) : sr =>
sr C s Â (Vr : Search I r e sr . r.id. : i)

3.3. Z SpncmrcATroN LeNcu¡cp Mooel DpscRtprlo¡¡

The return-search function finds and returns a search description from a listing of all

search descriptions. An input of an id is given by the search engine and the result of the

function is the search description that contains an id matching that value. The search

engine, which holds the active search descriptions in the system, is described as follows:

SearchEngine

current-searches : P Search

87

The SearchEngine

This schema contains

InitSearchÛngine sche

schema manages all the active search descriptions in the system.

a set of all the search descriptions currently in the system. The

ma describes the initialization of the SearchÛngine.

InitSearchEngi,ne

L,SearchÐngine

current-searches : Ø

The InitSearchÐngi,ne schema initializes the search engine so that the set of current

search descriptions is empty. As the buyers and sellers request search descriptions, the

search descriptions are added to the search engine. The operation to add a search description

is specified below.

AddSearch

A,SearchEngine
i?: N1

C? : STRING

create -s earch (i?, c?) (. current -s earch es

current -s earches' : current -s earches U {create -s earch (i?, c7)}

The AddSearch schema adds a ne\¡/ search description to the set of current search de-

scriptions in the search engine. This is accomplished by using the create-search fitnction. A

pre-condition on the search description to be added is that it must not be the same as any

of the other search descriptions currently in the system.

The schema below describes the removal of a search description.

88 Csaptpn 3. A Fonvar, Moopr, oF AN Er-ecrRoNrc CorurvrpRcp Sysrev

RemoueSearch

A,SearchEngine
id?: \

return -s earch (i d?, cur rent - s ear ch e s) C cur r ent -s earch e s

current-searches' : current-searches \ return-search(i,d7 , current-searches)

The RemoueSearch schema takes a unique id and removes the search description con-

taining that id from its list of current search descriptions. The removal is accomplished

by first using the return-searcrl function to identify the search description and then use the

set exclusion operator to remove the identified search description from the set of search

descriptions. The constraint on this schema is that the search description to be removed

must exist in the set of current search descriptions.

Comparison Engine Schemas and Definitions

This product comparison capabilities in the electronic commerce system are described next.

In the context of this electronic commerce system, a comparison is a task applied to the

master inventory of to retrieve information on what products best match criteria provided by

the user. The following definitions abstract the components of comparisons and comparison

operations. To define the results of a comparison, it is necessary to give a ranking of each

product ihat applies to the logic provided in a comparison. A schema representing this

ranking is presented next.

ProdRank

pid, ci,d, røn& : N1

rank I I00

The Prod&anfr schema describes the result of a comparison product characteristic(ProdChar)

applied to a particular product. Each product is ranked on each criteria provided and re-

turned to the comparison for calcuìation of a final product entry listing. A schema describing

comparisons is given below.

3.3. Z Sppcr¡'rcATroN L¡.wcuRce Monnl DpscRrprroN

Comparison

zd: \
chars ; iseqProdChar
ranki.ngs : P Prod&anlç
results :, iseq Prod,uctÛntry

The Comparison schema represents a comparison of products in the system. Each

comparison has an id, comparison operators in the form of product characteristics desired,

a set of product rankings, and a set of product entries which match the criteria. Initialization

of a comparison is specified below.

InitComparison
A.Comparison

chars' :0
ranlc'i,ngst : Ø

results' :0

The InitComparison schema initializes a comparison by setting the set of characteristics,

rankings, and results to be empty. A function to delete a comparison from a sequence of

comparisons is defined as follows:

delete-prod-char : x iseqProdChar -+ iseqProdChar

V pid : Nr; o/d : iseqProd,Char c

(old : 0 + delete-prod-char(pid, otd) : 0) n
((head old).i,d : pid) delete-prod-char(pid, otd)
((head old).id # pid + delete-prod_char(pid,otd)

(head old) ^ d,elete-prod,-char (pid, tadl old))

tail old) A

The delete-prod-char function deletes a product characteristic from a sequence of prod-

uct characteristics given an id. This function recursively searches the sequence until it

finds the product characteristic identified by the id given as a parameter. Similarly, the

AddCompCh¿r schema provides the ability to add product characteristics to a comparison.

89

AS

N1

90 CnaptpR 3. A Fonu¡,r. Moper. oF AN ElBcrRoxlc Covlrr¡pRcp Svsrpvr

AddCompChar
L,Comparison
z'?,pid? : N1

n?,u? : STRING

delete-prod-char (i?, chars) : chars

charst : chars ^ (create-prod-char(i?,pid?,n7, u?)l

The AddCompChar schema takes a new id, product entry id, name) and value and

creates a product characteristic in a comparison. The characteristic created must not have

the same id as another characteristic for that comparison. The operational schema to

remove a characteristic from a comparison is presented next.

RemoaeCompChar

A.Comparison
zd?: \

charst : delete-prod-char (id7 , chars)

The RemoueCompChar schema uses the deleteprod-char fitnction to delete a specified

characteristic from the sequence of product characteristics used in ihe comparison.

I compute-ranlç : STRING x ^9?rtll/G -+ N1

The compute-ranlc function determines the strength of a match, a value between 0 and

100, between two values of a characteristic. If the characteristic values match exactly, the

value would be 100 and if they have no similarity or likeness a value of 0 would be returned.

The exact value will be determined by an artificial intelligence module represented by this

function.

get-rank : STRING x STRING xP ProdChør --) N1

V n,u : STRING; pc:P ProdChar; r : N1 r get-rank(n,u,pc) : r +
(lrr: ProdChar lr e pc. r: connpute-rank(u,r.ualue)) y¿- r.name)v
(V y : ProdChar I y e pc. r: 0 =+ n f y.name)

The get-ranå function takes the name and value of a comparison characteristic and a

set of product characteristics and sets the rank of the product ranking to either the results

of the compute-ranfr function or 0. The value assigned depends on the degree of match of

the name passed as a parameter to the name of a product characteristic from the set of

3.3. Z SpecmrcATroN LRNcuecp Motpl, DBscRrprror.r

products' characteristics. This function is used by the operation described below.

rank,-product : ProdChar x ProductUntry -+ Prodfuanlc

Vpc: ProdChz,r; pe: ProductÐntry; pr: Prodfuanh c rank-product(pc,pe): pr +
pr.pid : pe.id A pr.ci,d : ptc.id, A
pr . ranlt : g et -rank (pc. n o,nL e) p c. u alu e, p e. ch ar s)

The ranlc-product function creates a new product ranking based on the desired product

characteristic and the product entry provided as inputs. This function uses the get-ranlc

function to compute the value for the product ranking. This function is used by the defini-

tion below.

return-rankings : ProdChar x P ProductÛntry -+ P Prod&anlc

V pc : ProdChar; mi : P ProductÛntry; pr : P Prod&anlc o

return-ranlcings(pc,mi) : pr è
(V pe : ProductÛntry I pe e mi o

pr +ø è pr: pr U {rank-product(pc,pe)} A
pr : Ø è pr : {rank-product(pc, pe)})

The return-ranldngs function applies the ranle-product htnction to each member of a set

of product entries taken as an input. This set of product entries is the master inventory

in the system and the results are returned as a set of product rankings. The function

return-comparison-ranlçings, described below, uses return-rankings as part of its processing.

return-comparison-ranlçi,ngs : P ProductÐntry x iseq Prod,Char -+ P Prod&ank

V rni :P ProductEntry; pc : iseqProdChar .
(p": 0 è return-comparison-ranki,ngs(mi,pc) :Ø) n
(p" * 0 è return-comparison-rankings (rni, pc) :

return-ranlci,ngs(head pc, rni,) l) return-comparison-rankings(mi, tail pc))

The return-comparison-ranlcings function takes a set of product entries, in this case the

entire master inventory, and a sequence of comparison characteristics and returns a set of

product rankings that at least partially match the conditions set out in ihe logic. This

definition is based on some artificial intelligence used by the electronic commerce system to

arrive at ihe correct set ofproducts and provide the requestor with the product entries that

will suit iheir needs. Now ihat the comparison method has been described, an operational

schema can be shown that updates a Comparison with rankings.

91

92 CneprpR 3. A Fonual Moopr, oF AN Er,ecr:Roxrc Cotrn¡BRce Sysrpu

Determine&ankings

A,Comparison
m'i,? : Masterlnuentory

chars I 0
rank'ingst : return-comparison-rankings(mi,? -auailable-products, chars)

The Determi,ne&anlci,ngs schema uses the return-comparison-rankings function to deter-

mine the rankings of a comparison using the comparison operators(desired product char-

acteristics) stored for that comparison. A pre-condition on the schema is that the list of

characteristics to compare against must not be empty. To buitd the comparison results from

the rankings, additional definitions are necessary.

I create-compari,son-results : P Prodfuanlc x P Prod,uctÛntry -+ iseq Prod,uctùntry

The create-comparison-results function takes a listing of product rankings along with the

master inventory and builds a set containing the ordered results of the comparison. The

operational schema defined below demonstrates this function.

DeterrnineResults

A.Comparison
rni,? : Masterlnuentory

resultst: create-comparison-results(rankings,mi?.auai,lable-prod,ucts)

The Determi,ne&esults schema uses the return-comparison-resulfs function to provide a

listing of the product entries thai best match the criteria provided by a comparison.

Comparisons are stored in the electronic commerce system and are described by the

following functions and schemas.

create-comparison : N1 -+ Compari,son

Vid: \; c: Comparisonc create-cornparison(i,d) - c+
c.'id: id A c.chars:0 A c.rankings:Ø A c.results:Ø

Tbe create-cornparison function creates a new comparison from given input. It takes a

unique id and initializes the remaining atiributes of a comparison. To return an existing

comparison for information purposes or for deletion, the function below is useful.

3.3. Z SpecrrrcATroN L¡rqculcp Monpr, DpscRrpr:lor.¡

return-comparison: N1 x P Comparison -+ P Cornparison

Vi: N1 ; clcr:P Cornparison t return-comparison(i,c) - cr +
cr C cA (Vr : Comparison I r e cr o a.'i,f,, :i)

The return-compari,son function retrieves a desired comparison from the set of compar-

isons given an id as an input. This function can be used to retrieve information about

a comparison or be used in the process of deletion of a comparison. The management of

comparisons in the electronic commerce system is described next.

Compari,sonØngine

current-comparisons : P Comparison

The ComparisonÛngine schema manages all the comparisons in the electronic commerce

system. This schema keeps a list of all the cu¡rent comparisons in the system and ihis list

Srows and shrinks as comparisons are added or deleted. To be operational, the comparison

engine must first be initialized. The operational schema representing this initialization is

defined as follows.

Init C o mp ar i. s o n E n g i,n e

A,Cornpari,sonÛngine

current -comparis ons : Ø

The InitComparisonÛngine schema initializes the comparison engine by setting the set

of current comparisons to be empty. The comparison engine must be able io add and ¡emove

comparisons from its listing.

AddCornparison

A,Compari,sonÛngine

i?:\

93

creat e -co mpari.s o n (i?) f
current -compar,ís onst :

current-comparisons
current -comparis ons U {create -comparis on (i7)}

The AddCompari,son schema adds a new comparison to the comparison engine's list

of active comparisons. This schema uses the create-comparison function, and an id and

comparison operators to create the new comparison. The operational schema for removal

of a comparison is similarly defined as:

94 Cneptpn 3. A Fonuu Moopr. oF AN Er,BcrRoNlc CouvipRcp Sysrprvi

RemoueComparison

A,ComparisonEng'i,ne

return -co mp ar i,s o n (i, d?, current - c o mp ari s o n s) C curr ent - co mp ari s o n s

current -comparis o n st : current -comp aris ons \
return-cotnp aris o n (i,d?, current - co mp ari,s on s)

The RemoaeCompari,son schema removes a comparison identified by ihe input id using

the return-cornparison definition. This schema is used when a comparison is complete or

has been cancelled by the user or the system. A pre-condition on the schema is that the

comparison to be removed must be a member of the set of current comparisons.

Tlansaction Schemas and Definitions

Purchase transactions are now described using schemas and functions. These definitions

outline the components of transactions and their possible operations. A schema describing

an orderline, a component of a transaction, is given below.

OrderLine
product-'id , shipping -date, quantity
naTTLe: STRING
shipping -ad,dress : AD D RESS

The OrderLine schema represents a request from the electronic commerce system to a

seller to ship a quantity of a single product to a buyer. An order line consists of the id of

the product purchased, the name and shipping address to appear on the shipping label, the

date the order must be shipped b¡ and the quantity that is to be shipped. A function that

is used by a SellerOrder to create a new order line is presented next.

create-order-line: \ x SZr?ING x ADDRESS x N1 x N1 -+ OrderLine

V pid, sd, clu : NI1; ?? : STRING; a : ADDRESS; o : OrderLine o

create-order-Ii,ne(pid, n) a) sd) qu) : o + o.product-i,d : pid, A
o.nzlne : n A o.shippi,ng-address : a A

o.shipping-date : sd A o.guantity : qu

The create-order-line function is used to create a new order line for a SellerOrder. TLre

function takes all of the attributes of an OrderLine as inputs and creates a new order line by

3.3. Z Sppcm'rcATroN LeNcuecp Monpl DescRrprroN

assigning those inputs to the corresponding values in the order line schema. The SellerOrder

schema is defined below:

SellerOrder
seller-id : \
order-lines : P Ord,erLine

Y a,b : OrderLine c a e order-lines A b e order-Iines + a f b

The SellerOrder schema represents a collection of OrderLe'ne objects meant for a single

seller as the result of a transaction. The schema contains the id of the seller to send the

order to and a list of order lines. The constraint on the schema states that each order

line in the SellerOrder must be unique. The next schema, Iní,tSellerOrder, initializes the

SellerOrder.

InitSeIIerOrder
A,SellerOrder
sid? : N1

seller-'id' :
order-I'inest

The InitSellerOrder schema initializes the Sellerorder schema by setting the seller id to

the value of the corresponding input and the set of order lines to empty. Another component

used during a transaction, ProductPurchase, is defined as:

ProductPurchase

id., quantity : lñ1
product : Prod,uctÛntry
shipping -address : AD D RESS
p ay rn ent -rn eth o d : P ay m ent M etho d
status : STATUS

The ProductPurchase schema represents the purchase of a product in the electronic

commerce system by a buyer. Each product purchase is specific to one product, shipping

address and payment method. The attributes of a product purchase include an id, the

product entry for the product, the shipping address for the goods, the payment method to

pay for the goods, the quantity of product purchased, and the current status. A function

95

96 Cueprpn 3. A Foatrnl Mooor, oF AN Er.pcrRor{rc CovrrvrpRce Sysrpl.r

to create a new product purchase, is presented below.

create-product-purchase : Nl x ProductUntry x ADDRESS x
PaymentMethod x Nr -+ Prod,uctPurchase

V 'i, qu : Nr; pe : ProductÛntry; a : ADDRESS;
pm: PaymentMethod,; p : ProductPurchase o

create-product-purchase(irpe, arpffi, qu) : p +
p.id : i A p.product : pe A p.shipping_address : a A
p.payment-method - prn A p-quantity : qu A p.status : start

The create-product-purchase function creates a new product purchase. It takes inputs

mirroring the attributes of a product purchase and binds them appropriately.

With the specification of Prod,uctPurchase, a schema to add a new order line is defined

as follows.

AddOrderLine,

A,SellerOrder
N? : STRING
pp? : ProductPurchase

order -linest : ord,er -l'ines \J {create -order -l'ine (pp? . product. id,, n?,
pp? .shi,pping-ad,dress, pp? .product.ship-ti,rne * sys-time, pp? .quantity)j

The AddOrderl'ine schema takes the name to appeil on the shipping label as an input

parameter and uses the create-order-I'ine function to create an order for the seller to fulfitl.

The parameters passed to the create-order-l'ine definition come from the existing information

stored in the product purchase. The effective shipping date is determined by taking the

shipping time from the product entry and adding the current system time, defined at the

beginning of the specification.

SellerPurchase

i,d, seller-id : N1

seller -ord,er : S ellerOrder
product -purchas es : P, ProductPurchase

V r,y : ProductPurchase o r € product-purchases A y e product-purchases +
r.id I y.id

The SellerPurchase schema represents

purchased from a single seller by a buyer.

all the information about the products being

This schema contains an id, the seller's id, the

3.3. Z SppcrprcATroN LlNcuecp Monpi, DescRlpuoN

order sent to that seller for shipping, and a list of the specific product purchases involved.

The constraint is that each product purchase must be unique. The InitsellerPurchase

schema initializes the SellerPurchase schema.

InitSellerPurchase
A.SellerPurchase
id?, sid? : \
pp? : P, ProductPurchase

id' : id?
seller-idt : sid?
product-purchases' : pp?

The InitSellerPurchase operation sets the initial values of the SellerPurch¿se schema.

The input values are the id, seller id, and a listing of product purchases. The function

presented below, create-seller-purchase, is needed by the transaction to add a seller purchase.

create-seller-purchase: Nl x Ni x F1 ProductPurchase -+ SellerPurchase

Y id, sid : Nl; pp : P, ProductPurchase; sp : SellerPurchase o

create-sellerqurchase(id, sid, pp) : sp +
sp.i,d,: id A sp.seller-id,: sid A sp.product_purchases: pp

The create-seller-purchøse function creates a new SellerPurchøse given the inputs as

parameters. This function is used in ihe processing of user transactions.

Upon successful completion of a transaction, an invoice is sent to the buyer showing

the details of the purchase. The schemas and functions necessary to specify an invoice are

presented next.

BuyerDetails

naTrLe I phone, email : STRING
address : ADDRESS

97

The BuyerDetails schema represents the portion of an invoice that

information including name, address, phone number and email. The

information about each purchase is described below.

contains the buyer

schema describing

98 CnRprpn 3. A Fonual Monpr, oF AN Ei,pcrRoNrc ColurueRcp Sysrpu

PurchaseDetails

s el ler -n ame, pro du ct -n am e j p ayrn ent -m eth od -n am e : S T R I N G
seller -address, shipping -address : A D D RE S S
pro duct -pri,ce, shi.pp in g -time, qu antitg : N1

The PurchaseDetails schema represents the information stored about one product in-

volved in a transaction. Each purchase detail record contains the seller's name and address,

product name and price, the quantity of product, the shipping time and address, and the

payment method name. For an entire transaction all PurchaseDetails are combined and

displayed together on a single invoice.

Inuoice

buyer -details : Buy erD eta'ils
purchases ; P, PurchaseDetails

The Inuoice schema represents the document given to the buyer at the completion of a

transaction in the electronic commerce system. The invoice contains information about the

buyer involved in the transaction and a purchase deiail entry for each product purchased

in the transaction. Other operations on an invoice are described next, beginning with a

function used to create buyer details.

create-buyer-details: Nl x PrBuyer -+ BuyerDetails

Vbid: N1; ó/ :PrBuyer; bd: BuyerDeta,ils o create_buyer_details(bid,bl):6¿ I
(3rz: Buyerlr €bl . r.id:bi,d, Abd.name: r.name A

bd.address : r.address A bd.phone : r.phone A bd.email : r.email)

The create-buyer-detai,/s function takes an id and a buyer and creates a buyer deiails

schema by assigning the appropriate values to the buyer details schema from the buyer

schema. This function is used when an invoice is created during the processing of a trans-

action. The product details entry for each product purchased is created using a similar

function defined below.

3.3. Z Sppcm'lcATroN LRNcu¡.ce Moopr. DpscRpuoN

create-product-detai,ls : ProductPurchase x N1 x Prseller -+ PurchaseDetai,Is

Vpp: ProductPurch.ase; si,d: \; sl :PrSeller; pd: PurchaseDeta'ils o

create-product-details (pp, sid, sI) : çtd +
pd. s eller -narne : retu,rn -s eller -name (sl, sid) n
pd - s eller -addres s : return-s eller _addres s (sl, si,d) A
pd.product-narne : pp.product.narne A
pd.product-price : pp.product.price A,

pd.quantity : pp.quantity A
pd.shipping -time : pp.product.ship -time A
pd. shippi,ng - addres s : pp . shipping _addres s A
pd.payment -rnethod -nanxe : pp.pl,yment -rnethod. n am e

ilhe create-product-detazils function builds purchase details using a seller and the product

purchase information. The purchase details are built by assigning the correct attributes

from the seller and product purchase to define the purchase details needed for the invoice.

The attributes needed from the seller are obtained by using the return-seller-name and

return-seller-address functions. A function is needed to modify the structure of the set of

product purchases to clarify its use in the specification. The signature of the function,

transform-product-purchøses, is given as:

I transform-prod,uct-purchases :P Prod,uctPurchase -+ seq Prod,uctPurchase

Since the create-product-details function creates the product details for a single product

purchase in a transaction, a function is needed to create all the product details for the

SeIlerPurchase.

create-purchase-details : seqProductPurchase x NI1 x P, Seller -+ P PurchaseDetails

V pp : seq ProductPurchase; sid : N1 ; s/ : P, Seller; pd : P PurchaseDeta'ils o

(pp : 0 + create-purchase-details(pp,sid,sl) : Ø) n
(#pp > 0 + create-purchase-details(pp, sid, sl) :

{create-product-details (head pp, sid, sl)} U

cr eat e -p urch a s e -d et a'il s (t ail p p, s i, d, s I))

The create-purchase-detazls function uses a sequence of ProductPurchases from a Sell-

erPurchase to generate all the purchase details for the invoice. This function recursively

processes the sequence of ProductPurchases and applies the function create-product-details to

each. The create-inuoice-purchases function, defined below, uses the create-purchase-details

function.

99

100 CH¿.p'rBn 3. A Fontral Moo¡r, oF AN Ei-BcrRoNlc CopnvrpRcp Svsrpvl

create-'inuo'ice-purchases : seq SellerPurchase x IF, Seller -+ P PurchaseDeta'ils

V sp : seq SellerPurchase; sl : P, SeIIer; pd : P PurchaseDetails o

("p : 0 è create-inuo,ice-purchases(sp,s/) : 6¡ ¡
(# tp > 0 + create -'i,nu oice -purchas es (sp, sl) :

"r"o¡"-purchas
e -details (

transforrn -prod,uct -purchas es ((head sp).product -purchas e s),
(head sp) . s eller -i,d, sl) lJ create_'inu oice _purchas es (tail sp, sl))

The create-inaoice-purchases function takes a sequence of SellerPurchases and a set of

sellers and returns a set of purchase details. If the sequence of seller purchases is empty,

which represents cases where there are no more seller purchases to create purchase details

for, the empty set is returned. Otherwise, if there are elements in the seller purchase

sequence the returned value is set to the first entry in the seller purchase sequence along

with ihe list of sellers passed to the create-purchase-deta'ils function combined with the

create-'inuo'ice-purchases function applied to the remaining product purchases. A function,

creøte-'inuoice, to create a new invoice for use in the transaction is now described.

create-'i,nuoice ; seqSellerPurchase xPrSeller xPrBuyer x Nt -+ Inuo'ice

Vsp: seq SellerPurchasel sl PrSeIIer; öl: IF, Buyer; óid : N1; in; Inuoice c

create-inuoice(sp, sl, bl, bid) : in è
in.buy er -det ails : create-buy er -detai,ls (bi,d,, bI) n

in.purchas es : create -inu oice-purchas es (sp, sl)

The create-inuo'ice function builds an invoice by assembling the buyer and purchase

details. The function takes a sequence of seller purchases, the list of sellers, the list of

buyers, and a buyer id and creates an invoice. The function uses the create-buyer-detai,ls

alad create -ina oi ce -purch¿s es funct ions.

With the definition of the subcomponents of a transaction complete, schemas and func-

tions describing a transaction and a management mechanism for transactions are presented.

Transaction

id, buyer-id : N1

s eller -purchases ; P S ellerPurchase
inuoice; Inuoice
status : STATUS

Yr,y: SellerPurchase. r €. seller-purchases Ay € seller-purchases +
r.id I y.id

3.3. Z SppcrprcATroN LaNcu¡.ce Moopr. DpscRrprroN 101

The Transact'i,on schema represents a buyer's attempt to purchase some goods in the

electronic commerce system from one or more sellers. Each transaction has an id, the

buyer's id, a set coniaining the seller purchases, an invoice and a status for the transaction.

A constraint on a transaction is that each seller purchase must be unique. An additional

constraint on transactions is given below.

transactions : P Transact'ion

This constraint states that each transaction

e transact'i,ons + r.id # y.id

in the system must be unique. The initial

state of a transaction is defined by:

InitTransaction
L,T\ansact'ion

seller-purchases' : Ø

statust : start

The InitTransaction schema initializes the transaction so that the set of seller purchases

is empty and the status is set to sú¿rú. This signifies that the transaction has begun and

has not ended either correctly or in error.

With the definiiion of a transaction and its initial state, operational schemas and func-

tions can be presented to show the creation and use of the information stored in a transac-

tion.

I transf orm-s eller -purchas es : P S eIIerP urchas e -+ seq S ellerP urchas e

The transforrn-seller-purchases definition changes the set of seller purchases into a se-

quence of seller purchases. This function is useful in the definition of the operational schema,

AddTransactionlnuoice defined below, because it aids in the use of t}re create-inuoice finc-

tion.

102 Cnaprpn 3. A Fonrrel Monel oF AN Er,pcrRoNrc Covrri¡pRcp Systpu

A d d Tr an s a cti o n I nu o i ce

L,Transaction
bI? : P Buyer
s/? : tr SeIIer

status : complete
inuoicet: create-inaoi,ce(transform-seller-purchases(seller-purchases),

sl?,bI?,buyer-id)

The AddTransactionlnuoice schema creates the invoice for the transaction by using the

transform-seller-purchases and create-inuoice functions along with the list of buyers and

sellers in the electronic commerce system. A pre-condition on the creation of an invoice is

that status is equal to complete, signifying the correct end to a transaction and providing

impetus to produce the invoice.

To manage transactions, the TransactionManager schema is defined, which describes

the management of all transactions in the electronic commerce system.

TbansactionManager

actiue, completed : P Transaction

act'i,ue f\ completed : Ø

V r,y : Transact'i,on o r e actiae A y € completed + r.id t' y.id

The Ttransacti,onManager schema is responsible for the management of all the transac-

tions in the system. This schema contains a list of all the completed and active transactions

in the system. Constraints on this schema are that each transaction be unique and that

each transaction must exist in either actiue or completed. The next schema defines the

initialization of the transaction manager.

Init Tr an s a cti o n M an a g er

L,TlansactionManager

actiae' : Ø

completedl

The InitT\ansact'i,onManager schema initializes the transaction manager so that the sets

of active and completed transactions are empty.

3.3. Z SppcrprcATroN LaircuRcp Moopl DpscRrprroN 103

Payrnent Schemas and Definitions

transaction, payment must be made from the buyer to the seller. The schemas

presented next detail the requirements of a payment.

To complete a

and functions

Payment
id,ramount:N1
buy er -pm, s eller -pm : P ayrnentMethod
status: STATUS

The Pøymenú schema represents the information necessary to settle transactions finan-

cially (i.e. transfer money from a buyer to a seller). A Payment has an id, an amount, a

buyer and seller payment method, and a status. The payment methods contain the financial

information needed for the monetary transfer. The status of the payment is used to indicate

the outcome of the processing and may either be success or failure. A function is needed

for the creation of a payment in the electronic commerce system.

create-paymenú : N1 x Nl x PaymentMethod x PayrnentMethod -+ Payment

V'id, am: N; óprn, spm : PaymentMethod; p : Payment o

create-payment(i,d,, am,bprn, spm) : p +
p.id : àd A p.antount : am A p.buyer-prn : bpm A
p.seller-prn : sprn A p.status : start

The create-payrnent function takes the input for a payment schema and creates a Pay-

ment by assigning the values given to the correct attributes. The ability io find a payment

in the list of payments maintained by the system is important so that a current status of the

payment may be reported to the system and users. Ttre return-payment function describes

that operation.

return-paymenú : \ x P Paymenú + tr Payment

Vi : N1 ; p,results :P Payment . return-payment(i,p) : results +
results C p A (V r : Payment I r e results . r.i,d : i)

The return-payment function finds a payment in a set of payments given an id. For pay-

ments to succeed, additional third pariies are required for communication and the transfer

of monetary amounts. Several schemas and functions are presented below to aid in this

process.

buy er -status, seller -status : PAY MENT S TATUS
payment: Payrnent

r04 Cueprpn 3. A Fonunl Moopr, oF AN Ei-ncrRoNrc CoMMERCE SysrEM

PaymentAttempt

The PayrnentAttempt schema contains the data needed by the processing gateway to

make a payment from a buyer to seller. Each PayrnentAtternpt contains an id, the status

of the payment for the buyer and seller financial institutions and payment information

contained in the Payrnent schema. A function to create a new PayrnentAttempt is presented

below.

create-payment-atternpt : N1 x Payrnent -+ PayrnentAtternpt

V z'd : N1 ; p : Payment; pa : PayrnentAtternpt o

create-payment-attempt(id,p) : p0, è pa:id : id A pa.payment : p A
pa.buy er -status : begin A pa. s eller -status : beg'in

The create-payment-attempt frnction creates a new PagmentAttempt by taking an id and

payment information as inputs. The buyer and seller status are set to start to signify the

beginning of the payment process for the buyer and the seller. Ttre return-payment-attempt

function, defined below, is used to return an existing PaymentAtternpt from the processing

gateway.

return-payment-attempt : NI1 x P PaymentAttempt -+ P PaymentAtternpt

Vz : \; pa,result ;P PagrnentAttempt o return-payment-atternpt(i,pa) : result +
result Ç pa A (V r : PayrnentAttempt I r € result . r.i,d : i)

The r etur n -p ay m ent -att ernp t

cessing G ateway and associated

function uses an id to locate a PaymentAttempt. The Pro-

functions are defined next.

Process'i,ngGateway

current -payments : P P aymentAttempt

fi,n-insts : P Financiallnstitution

Va,b: PaymentAttempt. ae current-payments A ö € current-payments è
a.id I b.id

V x, y ; Financiallnstituti,on e r e rtn-insts A y e fin-i,nsts +
r.narne f y.narne

The ProcessingGatewau schema is a third-party resource for the processing of payments.

3.3. Z SppcrprcATroN LeNcuecB Moopl, DnscnrprroN

This schema contains sets of PaymentAttempt and Financi,øllnstituti,on schemas. The cur-

rent-paymenfs property represents the current attempted payments undergoing processing

by the gateway and the set of f,n-insús represents ihe banking resources available. Two con-

straints on Process'ingGateway are that each PaymentAttempt and each Financ'iallnstituti,on

are unique. A function to initialize the Processi,ngGatewag is defined as:

Ini,tProcGate

A.ProcessingGateway

current-paymentst : Ø

fin-'instst : Ø

105

The InitProcGate

of current payments

operations specify the

institutions from the

operation initializes a ProcessingGateway by setting the initial sei

and the set of financial institutions to be the empty set. The next

details of ihe addiiion and removal of payment attempts and financial

Process'ingGateway- The AddPayAttempt schema is presented first.

operational schema uses the create-payment-function to add a new

set of current payment attempts. The constraint is that the pay-

ted must not already exist in the set of current payment attempts.

AddPayAttempt
A,ProcessingGateway
id? : Nr
p? :, Payment

creat e -p ay m ent -att e mp t (i d?, p ?) Ç. current -p ay m ent s

current-paymentst: current-payments U{create-payment-attempt(i,d7,p?)}

The AddPayAttempt

payment attempt to the

ment attempt to be crea

RemoaePayAttempt

A,ProcessingGateway
id? : N1

r etur n -p ay m ent - att empt (i d?, current -p ay m ent s) C current -p ay m ent s

current -paymentst : current -payrnents \
return -pay rn ent -att empt (id?, current -p aym ent s)

A payment attempt is removed from

RemoueP ay Atternpt operational schema.

the set of current payment attempts using the

Utilizing the rernoue-payment-attempt function

106 Cn¿.prpn 3. A Fonuu Moopr- oF AN ElpcrRoNlc Covnrpncp Sysrev

and the set difference operator, a payment attempt identified by a given id is removed from

the set of current payment attempts. Similar operations required for financial institutions

are presented next.

AddFinlnst
L,ProcessingGateway

fi,? : Financi,allnsti.tution

fi? (f,n-i,nsts
fi,n-instst : fi,n-'insts U {fr,?}

The AddFi,nlnst operation modifies the set of financial institutions by adding a financial

institution given as an input. The constraint on this operation is that the financial institu-

tion to be added must not already exist in the current set. The return-fi.n-insú function is

defined below.

return-fi,n-'inst:STRINGxfFinanci,alInstitution-+PFi,nanciallnstitution

V n : STRING; fi.,result :,P F'inanciallnstitution o return-fi,n-inst(n,f,) : result +
result Ç,fi A (V r : F'inanc'iallnsti,tution I r € result o lx,.narne : n)

The return-fi,n-inst function returns a selected financial institution from a list of financial

institutions given an id as an input. This function is used below by RernoueFinlnst:

RemoueFinlnst
A.Process'ingGateway
name? : STRING

r etur n,fi n -in s t (n arn e?, fin -i,n s t s) Ç fin -in s t s

fin -inst st : fi,n -in st s \ return -fin -in st (n ame?, fi,n -in sts)

The RernoueFinlnst operation removes a specified financial institution from a processing

gateway using the remoue-fin-inst function. The constraint on the schema is that the

financial institution to be removed must exist in the set of financial institutions.

With the specification of a payment, payment attempt, processing gateway and associ-

ated functions, a mechanism for managing payments is useful.

3.3. Z Sppct¡'rcATIoN Lencuace Moopl, DpscRrprror.¡

PaymentManager

current-payments :, P Payment
proc-g ateway ; Processing G atew ay

Y r,y : Payrnent . r e current-payments A y e current-payments è
r.id I y.id

The PaymentManager schema represents the mechanism for managing all the payments

attempted by the system. The payment manager contains a sequence of current payments

as well as information about the processing gateway to be used in the transfer of money

between the buyer's and seller's financial institutions. The constraint on the schema is that

each Payment in the payment manager is unique- An operational schema used to initialize

the payment manager is described next.

InitPaymentManager
A,PaymentManager

current-payrnents' : Ø

The Ini,tPayrnentManager operation initializes the payment manager by setting the set

of current payments to empty. Other values of the payment manager require modification

during the operation of the system.

M o dify P ro ce s s in g G at ew ay

L,PayrnentManager
pg? : ProcessingGateway

proc-gateway' : pg?

The ModifyProcessi,ngGateway schema allows the payment manager to modify the in-

formation stored about the processing gateway by setting a new value given as an input.

Another requirement of the system is to be able to add new payments to the payment

manager.

To initiate payment in ihe system the following function is used by a SellerPurchase in

a transaction:

I consolidate-payments : P, Prod,uctPurchase -+ P, Payment

The consolidate-paymenús function groups each of the product purchases in a seller

r07

108

purchase by

of payments

schema:

CuaprpR 3. A Fonnrel Moopr- oF AN Er.pcrRoNrc CoMMERcE SysrEM

payment method and sums the amounts of each product purchase. The set

created is presented for use by the payment manager by the RequestPayment

RequestPayment

ESellerPurchase
p! : IF, Payment

pt : consolidate-payrnents (product-purchas es)

The output of the RequestPøyment schema is a list of the current payments required for

a particular seller purchase in a transaction. This operation uses the consolidate-payrnents

function to create the set of payments used by ihe AddPayrnenús operational schema defined

below.

AddPayments

RequestPayrnent
A,PaymentManager
p? : P, Payment

p?:pl
V pp, cp : Payment

I

current-payn'¿entst :
pp e p? A cp e current-payrnents o pp.id,I cp.id
current-payrnents U p?

The AddPayments schema adds a set of payments, created in the RequestPayment

schema, to the current payments stored by the payment manager. The constraint on the

schema is that each payment in the set to be added must be unique when compared to each

existing payment in the PayrnentManager.

RernouePayment

A,PaymentManager
pzd?: \

retur n -p ay m ent (p i d?, cur rent -p ay m ent s) C current -p ay m ent s

current -payrnentst : current -payments \
return-payment (pid?, current -payments)

The RemouePayment schema is

payments using the return-payment

condition on the schema is that the

remove a payment from the set

and the set difference operator.

to be removed must exist in the

used to

function

payment

of current

The pre-

current set

3.3. Z SppcrpicATroN LRNcU¡.cp Monpl DpscR¡prroN

of payments.

With the preceding definiiions of the required building blocks, a series of schemas and

functions are now presented to demonstrate the transfer of funds between financial institu-

tions through the processing gateway.

auth-fi,n-inst: STRING x CODE x Financiallnstitution -+ PAYMENTSTATUS

(auth-fi,n-inst(n, a-c, fi) : auth + f..name : n A fi.auth-code : a-c) Y
(auth-f,n-inst(n, a-c, fi,) : end + fi,.name I n V f,.auth-code * o-")

The auth-fin-inst function uses a name and authorization code and compares them

against the name and authorization code of an existing financial institution. if the val-

ues match, the financial institution authorizes the credit or debit to take place and returns

a payment status of auth. If either of the values do not match, a payment status of error

is returned. The schema below uses the auth-fi,n-i,nsú function for initial processing of a

payment attempt.

Authori,zePayment

L,PaymentAtternpt
bfi,?, sfi? : Financiallnstitution

buyer-status : beg'in

seller-status : beg,in

b uy er -s t atu s
t : auth -fr,n -in s t (p ay m ent . b uy er -p m . fi,n arn e,

payment . buy er -prn . auth-code , bfi.?)

s el I er -s t atu s
t : auth -fr,n -in s t (p ay m ent . s el I er -p m. fi,n am e,

pagment. s eller -prn. auth-code, sfi?)

The AuthorizePaymenl operational schema attempts to gain authorization from the

buyer's and seller's financial institutions to modify account balances contained within each.

The buyer and seller PAYMENTSTATUS are modified by the auth-f,n-insú function. The

pre-conditions on AuthorizePayment are that buyer and seller status must both be begi,n.

The function defined next is used to debit a financial institution account.

109

110 Csaprpn 3. A Fonuel Moopr, oF AN ElpcreoNrc CotßrencB Sysr:pl,r

debi,t-fi,n-inst-acc: Nr x Ni x Financiallnstitution -+ PAYMENTSTATUS

V a-n, am , Nt; "fi : Financiallnsti,tution o

(debit-f,n-inst-acc(a-n, arn, rt) : pay +
(1, a: Accountl aefi.accounts o a-o,cc-nurn:0,n A

a.balance : deb'i,t-account(a, am))) v
(debit-fin-inst-acc(a-n, anx, rt) : end +

(Y a : Account I a € fi,.accounts . a.acc-nlnn * o-"))

The debit-fi,n-inst-acc function uses an account number and an amount to debit a finan-

cial institution account using lhe debit-account fitnction. The result of this function is a

modification to the payment status of a payment. If the account number exists, the amount

is debited from the account and a payment status of pay is returned. If the account is

not found then a payment status of end is returned. Similarly, credit-f,n-i,nst-acc is used to

credit a financial institution account:

credit-fi,n-inst-acc: N1 x NI1 x Finønciallnstitution -+ PAYMENTSTATUS

Y a-n, arn : Nr ; f ; Financ'iallnsti,tut'ion o

(credi,t-fi,n-i,nst-acc(a-n, am, fr) : pay +
(1, a: Accountl ae fi.accounts o a.o,cc-nurn: a-n A
a.balance : cred,it-account(a, arn))) v

(credit-fi,n-inst-acc(a-n, an, fr) : end +
(Y a : Account I a e fi,.accounts . a.acc-nun'L * o-"))

The credi,t-fi.n-inst-acc function uses the cred'it-accounú function to credit the account

of a financial institution supplied a parameter. If the account number provided exists in

the financial institution then a payment status of pag is returned. If the account number

does not exist, a payment status of end is returned. For debiiing a buyer account, the

BuyerPaymenú schema is presented next.

BuyerPayment
A.PaymentAttempt
bfi,? : Financi,allnsti,tution

buyer-status : auth
seller-status: auth
b uy er -s t atu st : d eb it -fr,n -in s t -a cc (p ay rn ent . b uy er -p n'L . a cc -num)

payment . amount, bf.?)

The BuyerPayment operational schema debiis a buyer's account at their financial insti-

3.3. Z SppcmlcATroN Leucuecp Mooer, DescRprron

tution by using the debit-fi,n-'inst-acc function. The account number from the buyer payment

method and the amount from the payment in ihe payment attempt are used as input pa-

rameters along with the buyer financial institution. The pre-conditions on this schema are

that the buyer and seller status must both be auth, meaning that the debit of the buyer

may not occur until the financial institutions of the buyer and seller involved have both

provided authorization for the transfer of funds. The second part of the monetary transfer,

SellerPayment, is defined below.

SellerPayrnent

A.PaymentAttempt
sfi? : Financiallnsti,tution

buyer-status : pay

seller-status : auth
s eI I er -st atu st : cred,it -frn -in st -a cc (p ay rn ent . s el I er -p nx . a cc -nurn)

payment.amount, sfi,?)

The SellerPayment operation uses the credi,t-f,n-inst-acc fitnction to credit the seller's

account at their financial institution account wiih the amount specified in the payment

amount. The pre-conditions on the schema are that the buyer status must be pay and the

seller status must be auth. This ensures that the buyer's account has been successfully deb-

iied and the seller's financial institution has authorized the transfer. After the completion

of the payment attempt, the outcome is presented back to the transaction.

return -pay -att -status : PAY M E N T ß TAT U S x PAYM E N T ß TAT U S -+ S TAT U S

V ös, ss : PAYMENTßTATUS o

(return-pay-att-status(bs, ss) : complete è bs : pay A ss : pay) V
(return-pay-att-status(bs, ss) : error + bs I pay V ss I pay)

The return-pay-att-statzs function returns the status of a payment using the results of

the buyer and seller payment status from the payment attempt. The function sets the

status to complete if the buyer and seller status were both pay. The value error the result

of the function if either the buyer or seller status was not pay. This function is used in the

schema below.

111

tt2 CsnprpR 3. A Fonuel Moopl, oF AN ElpctRoxtc CotvttrtnRcp SYsrsvr

SetPayrnentStatus

A,PayrnentAttempt
status!: STATUS

p ay m entt . s t atu s : r etur n -p ay - att -s t atu s (b uy er - st atu s, s el I er - st atu s)

statusl. - payrnentt . status

The SetPayrnentStatus modifies the payment attempt and sets an output value equal

to the status of the payment using the return-pay-att-status. This value is then set in the

transaction payment by the following schema:

ReceiuePaymentStatus

A,Payment
status? : STATUS

statust : status?

The Recei.uePaymentStatus schema sets the status

input. This operation is used to record the status of a

processing gateway.

With the definition of all aspects of payments in

integrating schema for payments is presented below.

Int egrat ed P ay rn ent M anag er
PayrnentMano,ger
AddPayments
RemouePayrnent
AuthorizePayment
BuyerPayrnent
SellerPayrnent
M o di,fy P ro ce s sin g G at ew ay

of a payment to a value passed as an

payment that was attempted by the

the electronic commerce system, an

The IntegratedP aymentM anag er schema

into an integrated schema. This integration

the electronic commerce system together.

all aspects of payment in a transaction

for the use of the separate schemas by

groups

allows

3.3. Z SPncIPtcATIoN LRI'rcuacP Moopr, DpscetPrtoN 113

Electronic Cornmerce SYstem

Based on the components sPecificed,

system is now presented.

a representation of the entire electronic commerce

E I ectr o ni c C o mm er ce S y st em

buyers :P Buyer
sellers :P Seller
b uy er -s e s s'i o n -h an d I er : B uy er S e s s i o n H an d I er

s eller -s e s si on -han d l er ; S eller S es si o nH andler

tran s acti on -rn anag er : Tran s a cti o n M ana g er

s earch -engine : S earchUngine

comparison-engine : C omparisonØng'ine

master -znu entory : M aster Inu entory

p ay m ent -m an a g er : Integrat edP ay m ent M an ag er

V r,g : Buyer c r € buyers A y e buyers + r-id t y'id
V u,u : SeIIer ¡ u e sellers Â u € sellers + u.i,d t' u'i'd

The Electron,icCommerceSystern schema contains all the components in the entire sys-

tem. The schema contains a set buyers and a set sellers that have registered with the

system. The buyer and seller session handlers are used to track when a buyer or seller is

active in the electronic commerce system. The transaction manager controls all the trans-

actions, where a buyer wishes to purchase some goods, in the electronic commerce system'

The transaction manager works in concert with the payment managel to complete these

transactions. The payment managel is responsible for transferring the money involved in

transactions. The search engine and comparison engine are tools used by the buyers and

sellers to find, compare, and contrast products from the master inventory in the electronic

commerce system. The master inventory contains atl of the products available for purchase

from the sellers. There are two pre-conditions on this schema describing the uniqueness

of each buyer and seller in the electronic commerce system. The next operational schema

initializes the system.

Ini,t El ectro ni c C o mm er ce S Y st ern

A. EI ectro ni c C omm erce S Y st em

buyers' : A

sellers' : Ø

Tt4 CsRprpn 3. A Fonrrrel Monel oF AN Er,ecrRoNlc Cori.rvrpRcB Svsrov

The Ini,tØIectron'icCornmerceSystem schema initializes the entire electronic commerce

system by setting the initial set of buyers and sellers to be empty. The information used

for the operation of the electronic commerce system is needed after initialization. The

operational schema that modifies the attributes of the system is presented below.

L o a d E I ectr o ni c C o mm erce S g s t ern

A, El ectro ni, c C o rnrn erce S y s t ern

b? : P Buyer
s? : F Seller

BuyerSessionHandler
S eI I er S e s si, on H an dler
TransactionManager

SearchÛngine
ComparisonEngine
Masterlnuentorg
Int eg rat ed P ay rn ent M an a g er

bsh?

ssh?

trn?
se? :

ce? :

mi?
pnn?

buyerst : b?

sellerst : s?

buyer-sess'i,on-handler' : bsh?

seller -s ession-handler' : ssh?

trans action-manag er' : tm?
search-eng'inet : se?

comparison-engine' : ce?

master-inaentoryt : mi?
payment-manager' - prn?

The LoadUlectron'icCommerceSystern schema is needed to supply the operational infor-

mation needed by the electronic commerce system. This schema represents the setup of

the electronic commerce system for use. After the successful completion of this schema,

the system is ready to receive buyers and sellers and to carry out searches) comparisons,

transactions and payments.

3.3.2 Z Specification Verification

The specifications were checked for correctness using the Z|ÐVES tool [3a]. The checks

performed include syntax, type, and domain checking. ZIEVF,S reads a specification from

a file and parses the Z symbols io build schemas, axiomatic definitions, and rules.

3.3. Z SpecrrtclTroN Lawcu¡.cp MoopL DpscRlptIoN

Syntax and Type Checking

In ZIEYES the only mandatory checking of. a Z specification is syntax and type check-

ing [3a]. Syntax checking ensures that the specification is written correctly and contains no

errors which prevent proper parsing. Without correct syntax, as in any other programming,

errors will either appear in the result or terminate the parsing altogether. Examples of im-

proper syntax in a Z specification would be leaving certain elements out of a pre-formed

statement, incorrect spelling of names, and erroneous characters. Type checking ensures

that the specification uses the proper types at all times- This applies to all rules, schemas,

and functions defined in a specification. An example of an incorrect type is to assign a

string value to a numeric field.

In the ZIEVE,S program, syntax and type checking are accomplished during the "read"

command. Figure 3.25 shows a syntax and type checking session of the specifications in

this thesis using the ZIEVES tool. An input file can read and a user can scroll through the

results to find errors syntax and type errors.

Domain Checking

Domain checking of a Z specification can be accomplished in the ZIEVES program by

reading in a specification, identifying proofs that can be tested, and writing a proof script

to demonstrate those proofs. Domain checking is done to ensure that all expressions written

are meaningful. Figure 3.26 demonstrates all of the possible domain checks that can be

accomplished based on the Z specifications presented in this chapter.

Figures 3.27 and 3.28 demonstrate the use of domain checking in the Z specification.

Figure 3.27 shows the domain proof for the credit-account definition. The ZIEVES com-

mands try lemma and proue by reduce are used together to produce a proof result of true

for all domains of credit-account.

By using the domain checks provided by the ZIEVES tool, all the possible proofs avail-

able can be reduced as shown in Figure 3.28. The results demonstrated are similar to Figure

3.26. However, the ZIEVES tool now lists which possible domain checks have been proven

and which remain. The entire list of proofs can be submitted to ihe domain checking process

115

116 Cu¡,prpn 3. A Fonnrel Monpl oF AN ElpcrRollc CotrunRcp Sysrplr

, - àaioE Buy€rsessionHðndler\SthetèMsdber
àxioE Buy€rsessionHôndler\SdeclÂrèt ioD
èxi oE Sel IersessionHòndler\9thotdsEquô I
àx j.oú Sel lersessionHÀ!d ler\9i nset
ðxim Sel Iersessio¡Hand Ier\9thetà IhSe!
àxion Sel LersessionHdnd Isr\SsBtInPowe¡Set
àxion Sel lerssssionHÂrdlsr\gheE-ber
Àxion Sel lersessiohHâûdìer\gthetôl'lenber
ôxi6 Sel lsrsessionHôndler\9declôràtion
àxioE Trànsactiorù{ôDôger\sthêtÀsEquàl
èxioB TrônsòctionMðnôger\9inSêt
èxion TrànsàctionMânòge¡\9thetèlnSet
òx j,oñ TrônsàctionyôDðgeNSsst IhPofl orset

schÊEa LoàdElectrcDicCo@erceSysten
... àxioE LoàdElectrcbiccoMercesysteh\SdeclÀrÀtioDPart

Figure 3.25: Z-Ðves Syntax and Type Check of Z Specification

i... axion TrèÂsàctioDl,,àDÀger\SBenbsr
1... axi.on TrônsôctionMônàger\sthEtÀlleEbeÌ
1.., axiom TrànsÀctiohMÀÀÀSe^Sdeclèràtiotr
1... ôxiob SeàrchEbgine\SthetdsEquôl
i... ôxioE SeÀrchEngine\9iDSst
i. .. Àxioß SeðrchEDgine\sthetàI¡Set
i... à*ion SeàrchEÞgine\SsêtltrPowerset
1... axion SeôrchEogins\SneEber
i... òxioE SsòEhEngine\SthetðHeEbÊr
¡j... àxiod SeàrchEngins\SdecIôràtioD
1... axion ConpàrisonEDgine\sthÊtôsEquàl
{. . . axion ConpdrisonEngine\Sinset
1... axron CompôrisonEngine\sthetÀInSet
i... oxion CohpôrisonEagine\SsetInPowerset
l-,, axioø ConpÀrisonEagins\gnenber
Ì-.. axion ConpÀrisonEÃginÊ\9thetèl'feDber
{.., ôxion ConpôrisonEngihe\sdÊclôrÀtion
1... axion PòyEsntManager\9thetÀsEquèl
i... axion PôyEeÞtMànàg€r\Sinset
;... ôxion PòyEentMònôger\9thet6Inset
i... axion PäreDtMè¡dger\SsetlnPowsrsot
]... axiom PalmentMdnôger\SEenber
1... öxioh PôFentMÀnàgÊr\9thetôMcEber
1... a¡ion PÀFentMðnager\9declôrôtion
i. . . axion E lec!rcniccomeEesysten\sdeclàràtioDPôrt
ischena IÞ r tEl€ctrcn iccome¡cesysten
1... scheEÀ \Deltà Electrcniccomercesysten
j. . . axi on Del !à\9EIectrcb iccoeercesysleE\Sdecldrât iolPôrt
1.., ôxioh InitElectrcniccomercesysten\SdeclàròtronPàrt

3.3. Z SpncrprcATroN L¿.Ncuecp Moopr, DpscRrprroN

i.> prinr stôtus:
lCu¡rent statuc:
Ño current goal
I
iuntri ed goa Is : creôle\jrcd\-chàr\€dondi DCheck.
]roturD\-prcd_cbòr\5donài nCheck, creòte_product_eÃtry\SdoEainCheck.
rreturD_Þrcducc_entry\SdohôinCheck. ÀddPrcdChô¡\9doEà r nCheck,
4R4ovePrcdChàr\SdoEôinChsck, croàte_àction\SdodôrnCheck,
ììcæàte\-ÀccouDt\5doEòincheck. ÀddÀccount\9doEàrnch6ck,
{returnr-accountrgdonàihCheck, R€noveÀccouat\SdoEàinChÊck.
ícredi t_àccount\Sdonèincheck. debìt_òccoun¿\5donäinCbeck.
icreàte_pòyEent\-rethod\SdoEòinCheck, EturD_pÀJÃent_Eothod\sdoEÀinchsck,
FddssssionÀction\SdonàinCheck- c¡eåte_session\SdomainChsck.
íreturn_session\5doñòinCheck - ÀddBuye¡PôyúeûtMethod\SdonainCbeck.
!RenoveBuyerPôyhÊntÌ{€thod\SdoEè i nCheck,
,ÀddBuyerSessÍonProductEÀtry\9doEô i nCheck.
iRehovoBuyersess i on Product Entry\sdonâ i ncheck ,
lcreÀte\-buyer\-sessioû\dohÀinChock. ÀddBuyersession\sdonÀinCheck,
¡rÊlu¡D_buyer\-session\5donôinCheck, RenoveBuyorSossion\5donÀinCheck.
lÀddsel lerPôyEebtMethod\5donàinCheck. ÀddseI Isrsêssion\SdoEòinchsck,
ìRenovsSsllerSession\SdonàinChock, creôte_Þrcduct_lot\9donòinCheck,
lreturnr_prcductr-¡ot\SdonôiDCheck- ÀddsuppliorProductLot\sdoEÀiûCbeck.
lReñovesupplisrPrcductLot\sdohôincheck. return_seller_nôñe\5donàiDCheck.
lrsturn_sel Ìer\ address\sdohà iÂCheck,
;1return\-seller_pa)fteot_nethod\SdoEòincheck. ÀddPrcductEntry\sdonòincheck.
ìReEoveProductEntry\sdonö i nCheck.
þrèster_invetrtory_prcduct_seòæh\9donàincheck, Executeseôrch\SdomÀincheck:crôtÊ_seàEh\Sdonà

r nCheck. return_seärch\SdomÀ r nCheck.
1ÀddS€ärch\SdoEô incheck. Renovesedrch\Sdonô i nCheck,
!delete_prod_chÀr\sdoúèiuch€ck. Àddconpcbàr\Sdomòi nCheck,
llRenoveconpChôr\sdonôincheck. get\-rèDk\SdoBàincheck.
irônk_product\5domãinCheck, æturn_rÀnkings\SdomdinCheck,
llreturn_compà¡ison_rônkings\SdonainCheck, DatemineRðnkings\sdonàincheck.
¡DetehineResu I ts\Sdonòi nCheck. c¡eòte_conpôrison\sdoEèinCheck.
lre!ur!_cohpôrison\sdomöinCbeck. ÀddCmpôrisoo\5donÀincheck,
jRenovecohpôrisoD\SdonðiDCheck, creåts_o¡dor\9domðrocheck.
rCrsòte0rder\Sdonô i nCheck. creÀte_product_purchôse\5donè i nCheck,
icreàre_buyer_d€tèils\SdonÀinChêck. creôte_prcduct_detdils\SdomàihCheck.
lcreòto_invoice_pu¡chôses\Sdonàincheck, ÀddPurchàsoDetòiIs\9dohÀinCheck.
lcreôte_r nvoice\SdoBð inCheck. AddPñduc!Purchòse\Sdonô inCheck.
þddTràDsôctionlnvoice\9domÀinCheck, SeDdOrdeF\SdonàinCheck.
ic¡êùte_payñênt\9donàinCbeck, return_ÞàlEent_stÀtus\Sdonô i nCheck,
idelete_pà)ment\sdonòinCheck. ÀddPô)eent\SdonàinCheck,
,RemovePô)mentMônàgerPàyment\5donÀi nCheck
l-)

Figure 3.26 Z-Eves Domain Check of Z Specification

117

118 CuRprpn 3. A Fonl,ral Moopr. oF AN Er,pcrRor.lrc Corr,rupRcp Svsrppr

æion ConparisonEngine\Sset InPocerSet
axion ConparisonEngine\Snenber
axion ConparisonEngine\StheÈalfenber
axion Conpari sonEngine\Sdeclarat ion
axion IntegratedPaynentMæage¡\S thetasEqual
axion f n teglatedPaynentHðager\S inSeL
axion IntegratedPaynentüæager\S LhelaIBSet

,i . . . axion IntegratedPaynentl'fanage^SætInPowelset
11. . . axion IntegrètedPaynentHanager\Snenber
' . . . axion In legratedPaynentuanager\S thetaMenber
'. . . axion In¿egratedPaynentl{anager\Sdeclaration
ri. . . axion ElectronicConnercesysten\SdeclarationPèrt
!;schena Ini tElectroniÇConnercesysten
ii... schena \DeIta ElectronicCoínerce5ysten
'
. . . axion DeI ta\SElecLronicConne¡ceSysten\Sdeclarat ionPart

il . . . axion f ni tEleclronicConnercesysten\Sdecla¡ationPæt
i;sche^a loadElect¡onicConnerceSystén
Ìi. . - axi.on loadElecLronicConnerceSysten\Sdeclarat ionPart
:iDone.
tí=) t¡y Lenna c¡edi L_accout\SdonainCheck;
.ìBeginning proof of credit_account\6donainCheck . , .

)i

.l \local credit_aæount \in Àccoun¿ \cross \nat_l \fun \na!_l \\
\land (a \in Àccount \\

ll \Iand ènount \in \nèt 1 \\
: rland new\-bal \in \nãt-1) \\
lirinplies (a- anount) \in \don \loæI credit\-account
ji=> prove by reducei
'.Substituting prcduces ...
; rlocal cred.it\ èÇcount \in Àæount \cross \na! 1 \fun \nat 1 \\

\land a \i.n Àccaunl \\
\l.and anount \in \nat 1 \\

ii rland new\-bal \in \nat-l \\
.i\inplies (a. amounl) rin \don \local crediL\-aæount
illhich sinplifies
jvhen revriLing with tuplefnCæss2, donFunction. CrossSubsetCross2, weakening
;pover_sub, inNatl
lìf o¡ward chaining using l(novnl{enber\SdeclarationPart, knovnlfenber,
,i'Iinternal itens]'
rlvith the assunptions natType, '&donSdecla¡ation'. select\-z\-1. selæt\-2\-2ifun_type. na!l_type, Àccount\SdeclüèÈion.'Iinternal itens]' Lo .. -

Lrue
Proving gives
Lrue

t.-...1

Figure 3.27: Z-Eves Domain Check Proof Example

!
I

L

il.
il.

3.3. Z Specr¡'rcATroN LRNcuRce Moopl, DpscRpuox 119

jProved goals : credi t_account\SdonainChæk- t_ nst_èæ\SdonainCheck

.!Unt¡ied goals; create_Þrcd_char\SdonainChæk,
:jreturn\lrcd_chæ\SdonainCheck. cæate\3roduct_entry\Sdonai¡Check.
:¡re¿urnlrroduct_entry\SdonainCheck. ÀddProdChar\SdonainCheck.
.jRenoveProdChæ\SdonainChæk. cæate\-action\SdonainCheck.
lc¡eate_aæout\SdonainChæk. ÀddÀcæunl\SdonainCheck.
llreLurn\-account\Sdonèinchæk- RenoveÀcæut\SdonainCheck.
:idebi tr-acæunt\SdonainChæk. create_paynent_nethod\Sdonèincheck.
'ireturn_paynent_nethod\SdonainCheck. ÀddSeæi.onÀcLionrSdonainCheck.
:icreate\ session\Sdonainchæk, retuln_session\SdonainChæk,
'jÀddBry"iP.y".ntMethod\SdonainChæk, RËnoveBuyerPaynentltethod\SdonainCheck.
.ÀddEuyerSessionProductEntry\SdonainCheck.
j;RenoveBuyerSsionPrcducÈEntryrSdomainCheck.
.icreate_buyer_sessioñSdonainCheck, ÀddBuyerSessionrSdonainCheck.
',retun_buyer_sæsion\SdonainCheck, RenoveBuyerSession\SdonainCheck-
iÀddsellerPaymentlfethod\SdonainCheck. ÀddSellerSessionrSdonainCheck.:iRenove5ellerSession\SdonainCheck. cræte_prcduct_lot\SdonainChæk.
.return\-produc!\-lot\SdonainChæk, AddsupplierP¡oductI,ot\SdonainCheck.
lRenoveSupplierPrcductl€L\SdonainCheck. return_seller_nène\SdonainCheck.jreturn_seI Ier_address\SdonainCheck,
lreturn_seIIe¡_paynent_Det.hod\SdonainCheck. ÀddProductEntry\SdonainCheck.
,lRenoveProductEnLry\SdonainCheck.
¡naster_inventory_product_seæchrSdonainCheck. ExæuteSearch\Sdonaincheck-
lcreate\-search\SdonainCheck. return\-search\SdonainCheck,
:Àddsearch\SdonainCheck. RenoveSea¡ch\SdonainCheck.
'delete_prod_char\SdonainCheck. AddConpChü\Sdonaincheck,
lRenoveConpChu\Sdonaincheck. get_rènk\SdonainCheck.
,rènk\-product\SdonainCheck, tetuln_rankings\9donainCheck,
,iretu¡n_conpa¡ison_rankings\SdonainCheck, Dete¡nineRankings\SdonainCheck.
lDeternineResul ts\SdonainCheck. creaLe_conparison\SdonainCheck,
ijreturnr-6apsison\SdonainCheck. ÀddCoñparison\SdonainCheck.
,lRenoveConparison\SdonainCheck, create\-order\-I ine\SdonainCheck,
ic¡eaLe_product_purchase\$donainCheck. Äddorderline\SdonainCheck.:icreate\-seller\-purchase\SdonainCheck. create_buyer_details\SdonainCheck.
itcreète_product_details\SdonainCheck. create_purchase_details\SdonainCheck.
I'create_invoice\-¡lurchases\SdonainCheck. create_invoice\Sdonai.nCheck.
:iÄddTransactj.onlnvoi.ce\SdonainCheck. creaLe_pèynent\SdonainCheck-
:ireturn_Þaynent\SdonainCheck, create_paynent_attenpt\SdonainCheck-
i:re!utn_Þaynenl\-aL LenÞt\SdonainCheck, AddPayÀt tenpt\Sdonaincheck.
r:RenovePayÀt tenÞL\Sdonaincheck. retu¡n_f in_inst\SdonainCheck.
ìiRenoveFinf nst\SdonainCheck. RequestPaynent\SdonainCheck,
,RenovePaynent\Sdonaincheck. "rt¡r-t i.(-inst\$donainCheck.
iÀuthorizePaynent\SdonainCheck. debi L_f in_insL_acc\SdonainCheck.
iBuyerPaynent\SdonainCheck. SellerPaynentrSdonainCheck

Figure 3.28: Z-Eves Domain Check Results

to ensure their correctness. This process requires the creation of several instantiations of

variables and environments. This is a substantial amount of work for a specification of this

size and scope. The domain checking of the entire specifi.cation in this thesis is a subject

for future work.

I20 CseprøR 3. A Fonuni. Mooor. oF AN ElpctaoNrc Cotvttr¿pncn Svsrpvl

Chapter 4

E-Commerce System Prototype

This chapter presents an partial implementation of an electronic commerce system based

on the model presented in Chapter 3. The design methodology, tools used, and the design

environment are discussed. The chapter concludes with a description of the application and

shows some sample screen shots of the application.

4.L Application Design

The prototype was designed using the UML diagrams and the Z specifications presented in

Chapter 3. The UML class diagrams were used to create the daiabase tables and relation-

ships and the sequence diagrams aided in establishing program flow between components.

The Z specification lvas used to define the rules for each object in the system.

The tools and platform used to create the prototype include Microsoft SQL Server

2000, Microsoft Visual Studio .NET, and Microsoft Internet Information Server installed

on a personal computer running Windows 2000 Professional. Microsoft SQL Server 2000

was used for the storage of the database constructs needed by the application and was

selected for its ease of installation and use with Microsoft Visual Studio .NET and Microsoft

Internet Information Server(IIS). The application was created in Visual Cff in Microsoft

Visual Studio .NET using aspx pages to display data access components on web pages using

Microsoft's code behi,nd [6] methodology. Microsoft Internet Information Server was used in

121

T22 Cseprpn 4. E-Couir¿eece Svs'rpn¡ PRororypp

:i O ñôd4did¿.

' ìr@.{*F
'llt,.@6s

'.dffi
.qõ;-sdi,-'d- '

. ¡lMry--F

r 5 tupÉg@oq
: I ñô!+tñnEútó

Figure 4.1: Development using Microsoft Visual Studio .NtrT

conjunction with the Microsoft .NET Framework to serve the web pages onto the Internet

and to provide a gateway to the information stored in the database for the application.

This combination of tools allowed for the quick creation and deployment of web-based

applications on a single machine connected io the Internet. Figure 4.1 contains a screen

shot of development using Microsoft Visual Studio .NET.

4.2 Implementation

Several key areas of operation of the electronic commerce system have been selected for

demonstration using screen shots from the application together with textual explanations.

4.2.L 'Welcome Screen

Figure 4.2 shows the welcome screen of the electronic commerce system. The navigation

options on this screen include Buyer Log In, Seller Log In, and Search Inventory. The buyer

4.2. Irr¡pr,pMelrr,{ttoN

Figure 4.2: Welcome Screen

Figure 4.3: Buyer Summary Screen

and seller log in screens) which are invoked by clicking on the links, allow an existing buyer

or seller entry to the system. Additionallg new buyer and seller accounts can be created

by following these links. The third link brings up the search interface. This link allows

for anonymous access to the product information stored in the system and allows potential

buyers to browse the goods offered without the inconvenience ofcreating a buyer's account.

L23

124 Criap'rpn 4. E-ColrMencn Svsrpn¿ PRororype

Figure 4.4: Searching Product Inventory

4.2.2 Buyer Summary Screen

Figure 4.3 shows the summary screen for a buyer. After a successful login, the system

presents to the buyer a summary of his/her current status in the system. The page contains

links presenting detailed information about, and functions for, the buyer. The page displays

the buyer's name and login id along with links to the shipping addresses, payment methods,

products for purchase in his/her shopping cart, and the products in ihe inventory. These

links load other pages with additional information and allow the buyer to modify personal

data, manage items in the shopping cart, and search the product inventory.

4.2.3 Browsing for Goods

Figure 4.4 shows a snapshot of the product inventory search interface. The user can enter

values for several different criteria including product category, manufacturer, a minimum

and maximum price, and any number of keywords. The drop down list on the form is

4.2. Iir¡pr,prrexrauon t25

Electron¡c Commerce Prototype - Pu¡chase Product

Ckd Buyr Tcst Urcr

Buyalogu Tcstl

Step 4 of 5 : ConfmProduct Pwchase

Product DcÞils

Egãäã¡îtpi-ïîtr"içtiå"-Ëül$.'l'l

ShbpiDg.Add¡cas

Næ
Addr¿sr

3G 6Y7Ciry 1il"d";------------
ffi,,T¡õiíriÉItrì"fi q-þ.Þ--,iç,;'91

PaymdMcúod

sËrtü,{íitï#ffi ¡X1ü',f4:g,gl

F,ãðË.Ë.4çl

Figure 4.5: Check Out with Products

dynamic, limiting selections for manufacturer based on the category selected. The keywords

entered must be separated by AND or OR. This search criteria is then parsed by the system

and a full text scan of the products is executed using these values. The two buttons below

the criteria fields execute the query or clear the fields back to empty. Upon execution of

the search, the results are displayed, in tabular form, directly underneath the criteria entry

area. Each product displayed may be selected and viewed in detail by selecting the product

id and comparisons between products may be made by the comparison button.

4.2.4 Check Out with Products

Figure 4.5 shows the ûnal screen for a product purchase in the electronic commerce system.

Each item to be purchased is presented along with a quantity, shipping address and payment

method. The quantity is the quantity of the item the buyer wishes to purchase, the shipping

address is the destination to which the goods should be shipped, and the payment method

is the payment type for ihat product as selected by the buyer. Once the Proceed button

Næ¿

Acco@

EÐiry

ad

126 CHeprpR 4. E-Cotrn¿pncp Sysrpl,r PRororyps

Electronic Commerce Prototype - Purchase lnvoiæ

CwctBuyæ Test U:cr

BuycrLogi(Testl

StepS of5 : PrchseResu¡B

YoE Træactioû È ComplctE I

Thc Following Produs wdc puchæc4

sbþpins To:

F¡rst fesl
325 DeYoô
BEndon. MB
Canada R3G 6\'/

Paymd Mct¡od Tæætion Dcuils

Nmc

El¡p;y

-A,uthor

Tvp"

a41Z3t1Z3AtZ3Á

/1ræÁ 12:m æ Alú

led¡t Cãrd

7 mÁÐ:%Ol
Nmbø
De

Plcæc Prit a copy ofhis Invoicc for yow rccords

gÊft
-åEõ.T.tr-q!!.ãäËígg;T

Figure 4.6: Receipt for Completed Purchase

is clicked, the system processes all the data presented and contacts the processing gateway

to begin payment for the items. After processing is complete, a report of the status will be

presented io the buyer as shown in Figure 4.6.

4.2.5 Receipt for Completed Purchase

After processing payments for goods in a buyer's shopping cart, the system displays a final

screen to the buyer. Figure 4.6 shows the results of purchases and provides details on

shipping times, addresses, and amounts charged to the different buyer payment methods.

This information is presented with a unique number to allow for order tracking in the

system at a later date. All successfully completed payments result in orders sent to the

sellers involved to ship the goods to the addresses designated by the buyer. A buyer can

now return to normal use of the system, including searching for more products, viewing

buyer information, or logging out.

Chapter 5

Conclusions and Fbture \Mork

This chapter concludes the thesis by recapping what has been presented in previous chapters,

presenting a suinmary of the contributions made by ihis thesis, and giving an ouiline of

possible future work in this area.

5.1 Conclusions

This thesis presented a thorough discussion of the use of formal methods in the electronic

commerce domain. In Chapter 1, the benefits of electronic commerce, problems that had

to be considered, and an introduction to formal methods was given. Chapter 2 began with

an outline of the design issues in electronic commerce, using many different methodologies

and examples of previously created systems. Additionall¡ a Web-based architecture for an

electronic commerce system was presented. The chapter concluded with a discussion of the

Unified Modeling Language(UMl) and the Z specification language. Chapter 3 presented

an original model of an electronic commerce system. The model was then described using

UML Class, Use Case, Sequence, State, Activity and Deployment diagrams. Using the

UML and textual descriptions of the electronic commerce system, a Z specification based

on mathematical relations and textual explanations was presented. Chapier 3 closed with

the use of the ZIEVES tool to show the syntax and type checking of the Z specification

and to show domains available for testing and how they can be tested. Finally, Chapter 4

127

I28 CH¡.preR 5. CoNcr,usloNs AND FuruRp Wonx

contained a discussion of a prototype system created from the model presented in Chapter

3 and explained the tools and architecture used to create the prototype. Chapter 4 also

provided some screen shots of the implemented system.

5.2 Summary of Contributions

This thesis has made the following contributions:

. The thesis formalized the main requirements of an electronic commerce system.

o The thesis identified and integrated the elements required for successful operation of

an electronic commerce system, including databases, security, networks, distributed

systems, and artificial intelligence.

o The thesis provided a case study for modeling electronic commerce using the Unified

Modeling Language and the Z specification language.

o The thesis provided a pariial prototype of an electronic commerce system.

5.3 F\rture 'Work

This thesis provides opportunity for further research in the following areas:

¡ Alternate forms of electronic commerce.

In addition to business-to-consumer electronic commerce, as presented in this the-

sis, business-to-business and consumer-to-consumer methods of electronic commerce

models could be examined. This is important as the requirements and operations of

different types of electronic commerce could be compared and contrasted. Common

components and type-specific problems could be ideniified. This could be accom-

plished by the application of formal methods to other forms of electronic commerce

systems design, enabling a full description of the problem domains and the ability io

compare them with the requirements presented in this thesis.

5.3. Furunp Wonx t29

Further examination of electronic commerce transactions and payments made over

the Internet.

A key component of any electronic commerce system is the ability to correctly carry

out transactions for goods or services and transfer monetary amounts between buy-

ers and sellers. A further analysis of the communication methods and information

exchange between stakeholders in this process might provide benefits in several ar-

eas. By clearly defining the rules of a transaction and the required components and

communications, a checklist of steps that must be performed, and points of failure

could be identified. This also applies to payments between clients in the system as

these transfers must be correct, precise, and secure. F\rrther work in this area might

include the use of formal methods to specify each component of transactions, the fur-

ther identification of an order of operations in transactions and payments, and the

creation of a common application and network interface for implementing electronic

commerce transactions.

Security implications of electronic commerce.

Security is essential in an electronic commerce system where sensitive information

about clients, products, and financial matters are communicated over the Internet.

The security of financial information is of utmost importance as this information, if

left unsecured, can be used without the owner's permission or knowledge. Formal

methods can be used to identify the areas of an electronic commerce system that

require secure access and can assist in the application ofa security methodology to an

electronic commerce implementation. The locations and strengths of security needed

can be identified and incorporated into a specification and design.

Enhanced intelligent searching and comparison methods.

The ability to find a product or supplier on the fnternet assists the shopping experience

of a consumer. Additionally, the ability to compare characterisiics of products for

purchase, aids the consumer in finding the goods that best suit the customers needs

at the best price possible. With enhanced searching and comparison capabilities, a

130 CntprBn 5. CoNci,usroNs AND FuruRp WoRx

broader marketplace is opened to the consumer and more information can be gathered

to support product purchases. This leads to a higher satisfaction for the consumer

with purchases made over the fnternet. Future work in this area includes examination

of agent-based search and comparison programs ihat use artificial intelligence and

distributed computing and further research in the field of data mining. Agents can be

used to automate searches and comparisons across electronic commerce sites as bots

and also aid in automating negotiation for prices and quantities.

¡ Further application of object-oriented software engineering concepts to electronic com-

merce.

As suggested in this thesis with the Unified Modeling Language, object-oriented con-

cepts can be applied to the electronic commerce domain. Existing electronic com-

merce systems vary widely in approach and implementation with custom modules

and differing communication methods. Concepts such as encapsulation, inheritance,

and polymorphism used in electronic commerce can result in common code libraries,

methods of communication, and a common architecture. Results would see an ease

of communication between electronic commerce systems and shorter implementation

time for new entries into the marketplace.

o Analysis of data storage methods used in electronic commerce.

Data storage and manipulation is an important part of an electronic commerce sys-

tem. Between electronic commerce systems, data structures, methods of presentation,

querying, and database transactions can vary. Information storage and use within an

electronic commerce system may differ and speed and accuracy are important. F\rture

work in this area might include the use of formal methods to identify common com-

ponents and storage methods, optimization strategies for data storage including tools

such as XML and specially tuned database servers for querying, and a data architec-

ture for electronic commerce transactions. Many different application architectures

are already using UML to present structured data on the Internet that a framework

for electronic commerce could be developed. Additionally, future work might include

5.3. FuruRp Wonr

research and development of "wrappers"

connected.

131

to allow heterogeneous data sources to be

r32 Cseprpn 5. CoNcr-usroNs AND Furunp WoRx

Appendix A

The Z Notation

This section lists the meaning of ihe Z notations used in this thesis. This list of the Z

notation was taken from [4] and [28].

Z P ar agr aphs, Declarations

[X] given set

S = T horizontal schema definition

X :: e abbreviation definition

T ::: A I B(¿') free type definition

Expressions, Schema Expressions

(u, b) tuple

{u, b} set display

XxY crossproduct

let V --: E o P localdefinition

AS schema name prefix

35 schema name prefix

S aT sequential composition

IÓI)

734

Numbers and Finiteness

ApppNotx A. Tuø Z Nor¡:rron

N{

N1

.v
b

F'

lFi

JL
1f

div

natural numbers

positive integers

integers

finite set

non-empty finite set

number of members of a finite set

division

Predicates

equality

€ membership

A conjuction

V disjunction

+ implication

<+ equivalence

V universal quantification

I existential quantification

ft unique quantification

Relations, F\rnctions

ê relation

l-+ maplet (ordered pair)

dom domain

rân range

135

(D

O

-+

-+

Sets

+ inequality

ç non-membership

Ø empty set

C subset

C proper subset

U set union

n set intersection

\ set difference

U generalized union

Sequences

seq

seQr

head

Iast

front

disjoint

domain anti-restriction

range anti-restriction

relational inversion

relational image

overriding

reflexive transitive closure

partial function

total function

finite sequence

non-empty finite sequence

first element

last element

all but the last element

disjointness

136 Apppxorx A. Tut, Z NorauoN

References

[1] Bassam Aoun. Ageni Technology in Electronic Commerce and Information Retrieval
on the Internet. In AUSWEB96 - The Second Austral'ian World Wi,de Web Conference,
pages 240-246, Gold Coast, Australia, July 1996.

[2] Mariin Bichler, Arie Segev, and J. Leon Zhao. Component-based E-Commerce: As-
sesment of Current Practices and Future Directions. SIGMOD Record, 27(4):7-14,
1998.

[3] Susanne Boll, Wolfgang Klas, and Bernard Battaglin. Design and Implementation of
RMP - A Virtual Electronic Market Place. SIGMOD Record,27@):a8-53, 1998.

[4] ORA Canada. Z/Eues Quick Reference Card. Available at ftp llftp.ora.on.ca/pub
I doc 1975493-07 .ps.Z.

[5] World Wide Web Consortium. World Wide Web Consortium. Available at:
http://www.w3.org/.

[6] Microsoft Corporation. ASP.NET Code-Behi,nd Model Oueruiew. Available at:
http: //support.microsoft.com/default. aspx?scid:kb;EN-US ; 303247.

[7] Asuman Dogac, Ilker Durusoy, Sena Nural Arpinar, Nesime Tatbul, Pinar Koskal,
Ibrahim Cingil, and Nazife Dimililer. A Workflow-based Electronic Marketplace on the
Web. SIGMO D Record, 27 (\:25-31, 1998.

[B] eBay Inc. eBay Auctions. Available at: http:llwww.ebay.com.

[9] Sylvanus A. Ehikioya. Speci,ficati,on of TYansaction Systems Protocols. PhD thesis, De-
partment of Computer Science, University of Maniioba, Winnipeg, Manitoba, Canada,
September 1997.

[10] Sylvanus A. Ehikioya. A Formal Perspective to Modelling Electronic Commerce Tlans-
actions. Colurnbian Journal of Computati,on, 2(2):21-40, 2000.

[11] Sylvanus A. Ehikioya. A Formal Characterization of Electronic Commerce Tlansac-
tions. International Journal of Computer and Inforrnation Sciences,2(3):97-L17, 2001.

[12] Sylvanus A. Ehikioya and Ken E. Barker. Towards a Formal Specification Methodology
for Tbansaction Systems Protocols. In ?rd Annual IASTED International Conference
on Software Engi,neering and Applicøt'ions (SEA '99), pages 374-380, Scottsdale, Ari-
zone, USA, Ociober 1999.

t37

138 RppBRpNcps

[13] Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Model of Electronic Com-
merce. In First International Conference on Software Engineering, Netuorking and
Parallel and Distributed Computing (SNPD-00),pages 400-409, Champagne-Ardenne,
France, May 2000.

[14] Sylvanus A. Ehikioya and Kristofer J. Hiebert. A Formal Speciflcation of an On-line
Tbansaction. kt First Internat'i,onal Conference on Software Eng'i,neering, Networking
and Parallel and Distri,buted Computing (SNPD-}1),pages 3-10, Champagne-Ardenne,
France, May 2000.

[15] Sylvanus A. Ehikioya and Kristofer J. Hiebert. Agents Negotiation in Electronic Com-
merce Tlansactions. In First Annual International Conference on Cornputer and In-
forrnation Sc'i,ence (ICIS-11), pages 278-285, The Grosvenor Resort, Orlando, Florida,
U.S.A., October 3-5 2001.

[16] Sylvanus A. Ehikioya and Tïevor Walowetz. A Formal Specification of Tlansaction
Systems in Distribuied Mulii-Agents Systems. In ISCA 14th Internati,onal Conference
on Computers and their Applications, pages 378-383, Cancun, Mexico, April 1999.

[17] Daniela Florescu, Alon Y. Levy and Alberto O. Mendelzon. Database Techniques for
the World-Wide Web: A Survey. SIGMOD Record,27(3):59-7a. 1998.

[18] Centre for Software Engineering Ltd. Unified Modelling Language. Technical Briefing
Note, (8),2000. Available at: ftp:l f ftp.cse.dcu.ie/pub/briefing/B-1uml.pdf.

[19] National Center for Supercomputing Applications. Nati,onal Center for Supercomputing
Appli,cati,ons. Available at: http://hoohoo.ncsa.uiuc.edu/cgi/intro.html.

[20] Object Management Group. The Unifi,ed Modelling Language, Ver 1.5, 2000. Avatlable
at: }rttp: I lwww.omg.org/uml.

[21] Robert H. Guttman and Pattie Maes. Agent-Mediated Integrative Negotiation for
Retail Electronic Commerce. Lecture Notes in Computer Science,157i:70-90, 1999.

[22] Robert H. Guttman, Pattie Maes, Anthony Chavez, and Daniel Dreilinger. Results from
a Multi-Agent Electronic Marketplace Experiment. In Poster Proceedings of Modeling
Autonomous Agents in a Multi-Agent World (MAAMAW'9T),P':onneby, Sweden, May
1997.

[23] Robert H. Guttman, Alexandros G. Moukas, and Pattie Maes. Agent-mediated EIec-
tronic Commerce: A Survey. Knouledge Engineering Reuiew, 13(2):143-152, June
1998.

[24] June He. A Fromal Specification and Design of an Online Bazaar System. Master's
thesis, University of Manitoba, Winnipeg, Manitoba, Canada, September 2002.

[25] Macromedia Inc. Macrorned'ia ColdFusion MX. Available at: http:ll
www.macromedia.com/software /coldfusion/.

[26] PayPal Inc. P ay P aI. http: I f www.paypal.com.

[27] VeriSign Inc. VeriSign. Available at: http:f f www.verisign.com.

RpppRpwcns

[28] Indratmo. A Formal Specification of Web-Based Data Warehouses. Master's thesis,
University of Manitoba, Winnipeg, Manitoba, Canada, 2001.

[29] Nicholas R. Jennings, Timothy J. Norman, and Peyman Faratin. ADEPT: An Agent-
Based Approach to Business Process Management. SIGMOD Record, 27(4):32-39,
1998.

[30] Sparx Systems Pty Ltd. Enterprise Architect 3-50. Available at: http:ll
www.sparxsystems. com. au/.

[31] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents That Buy and
Sell. Commun'icat'ions of the ACM,42(3):81, 1999.

[32] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems,

Second Edition. Prentice-Hall, Upper Saddle River, NJ, 1999.

[33] Benny Reich and Israel Ben-Shaul. A Componentized Architecture for Dynamic Elec-
tronic Markets. SIGMOD Record, 27(\:a0- 7, 1998.

[34] Mark Saaltink. The Z/EVES User's Gui,de,1997. Available at: http://www.ora.on.ca

f z- eves f do cumentation. html.

[35] J. M. Spivey. The Z Notation: A Reference Manual (?nd Editi,on). Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[36] Roel Wieringa. A Survey of Structured and Object-Oriented Software Specification
Methods and Techni ques. ACM C ornputing Suruey s, 30() :a59-527, 1998.

[37] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and Proof. Prentice-
Hall, 1996.

139

