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Abstract

In this dissertation we proposed two generalizations of the Second-Order Least Squares

(SLS) approach in two popular dynamic econometrics models. The first one is the regres-

sion model with time varying nonlinear mean function and autoregressive conditionally

heteroskedastic (ARCH) disturbances. The second one is a linear dynamic panel data

model. We used a semiparametric framework in both models where the SLS approach is

based only on the first two conditional moments of response variable given the explanatory

variables. There is no need to specify the distribution of the error components in both

models.

For the ARCH model under the assumption of strong-mixing process with finite

moments of some order, we established the strong consistency and asymptotic normality

of the SLS estimator. It is shown that the optimal SLS estimator, which makes use of the

additional information inherent in the conditional skewness and kurtosis of the process,

is superior to the commonly used quasi-MLE, and the efficiency gain is significant when

the underlying distribution is asymmetric. Moreover, our large scale simulation studies

showed that the optimal SLSE behaves better than the corresponding estimating function

estimator in finite sample situation. The practical usefulness of the optimal SLSE was

tested by an empirical example on the U.K. Inflation.

For the linear dynamic panel data model, we showed that the SLS estimator is consistent

and asymptotically normal for largeN and finite T under fairly general regularity conditions.

Moreover, we showed that the optimal SLS estimator reaches a semiparametric efficiency

bound. A specification test was developed for the first time to be used whenever the

SLS is applied to real data. Our Monte Carlo simulations showed that the optimal



SLS estimator performs satisfactorily in finite sample situations compared to the first-

differenced GMM and the random effects pseudo ML estimators. The results apply under

stationary/nonstationary process and wih/out exogenous regressors. The performance of

the optimal SLS is robust under near-unit root case. Finally, the practical usefulness of

the optimal SLSE was examined by an empirical study on the U.S. airfares.
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Overview

In these few pages we try to give an overview about the method of second-order

least squares (SLS) as a moment-based method of estimation; how it was introduced,

developed, and generalized to different areas of applications. Then we give some

motivations to this current research, and conclude by describing the structure of

this dissertation.

The SLS estimator was firstly introduced in the literature by Wang (2003), who

used to refer to it at early stage as a minimum distance moment-based estimator.

This is because it minimizes simultaneously the distances of the response variable

and the squared response variable to the first and second conditional moments

of the response variable given the observed covariates. The motivation was that

in many situations, parameters in nonlinear regression models with Berkson-type

measurement errors in one predictor can be identified and, therefore, consistently

estimated using the first two conditional moments of the response variable given an

observed (proxy) variable. The consistency and asymptotic normality of the SLS was

shown under the assumptions that the measurement errors are iid normal and the

random disturbances in the regression equation are iid with unspecified distribution

The idea of SLS estimation was extended in (Wang, 2004) to cover the case of

several predictors with Berkson-type measurement errors, wherein the normality
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assumption on the measurement errors was relaxed by assuming a general parametric

distribution, which is not necessarily normal. A refinement to the SLS was suggested

by including a weight matrix in the objective function to attain more asymptotic

efficiency. Moreover, to overcome the possible computational difficulty of minimizing

an objective function which involves multiple integrals, a simulation-based estimator

was constructed. Consistency and asymptotic normality for both estimators are

derived under fairly general regularity conditions.

The name of SLS started to appear in the literature by 2007, where the estimator

was used in a longitudinal data framework after it had been used in a cross sectional

framework in the previous two papers. As a kind of multivariate generalization, Wang

(2007) considered the SLS in a unified estimation framework which covers the

nonlinear mixed effects models and the general nonlinear regression models with

Berkson measurement errors in the covariates. The random effects (or measurement

errors) had a general parametric distribution, whereas the unobserved predictor

variables and disturbance terms had nonparametric distributions. To make use of

the longitudinal structure, the SLS was based on the first conditional moments

and all possible second order conditional moments of the response variables given

the observed covariates. The author also handled a general case where the closed

forms of the first two conditional moments are difficult or impossible to obtain,

he proposed a simulation-based estimator and showed that both estimators are

consistent and asymptotically normally distributed under fairly general regularity

conditions. Limited Monte Carlo simulation studies were conducted, and it was

shown that the SLS estimator with optimal weight matrix; optimal SLS, performs

fairly satisfactorily for relatively small sample sizes and slightly better than the
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Generalized Estimating Equation (GEE) estimator.

Wang and Leblanc (2008) investigated the SLS for a general nonlinear regression

models with cross sectional data, where the random errors have homoscedastic

variance and unknown distribution. They showed that the optimal SLS estimator

is asymptotically more efficient than the ordinary least squares estimator if the

third moment of the random error is nonzero, and both estimators have the same

asymptotic covariance matrix if the error distribution is symmetric. Simulation

studies showed that the variance reduction of the optimal SLS can be as high as

50% for sample sizes lower than 100.

Since 2008 there have been different attempts to apply the method of SLS and

study its properties in different frameworks. We refer to most of them herein.

The first attempt was by Abarin and Wang (2009) who applied the SLS approach to

the Tobit (censored regression) model where the error term has a general parametric

distribution (not necessarily normal). They showed the strong consistency and

asymptotic normality of the estimator and its simulation-based version under fairly

general regularity conditions. They also studied the finite sample behavior of

the SLS estimator with either identity or optimal weight matrices and compared

the two estimators with the ML estimator over a range of error distributions and

censoring degrees. They concluded that both of the ML and optimal SLS have close

performance for the case of correctly specified model, however the SLS with identity

weight matrix is more robust in case of models with misspecified error distribution.

The second attempt was by Abarin and Wang (2012) who used the the SLS

approach in the estimation of generalized linear models with classical errors-in-

variables in the predictor variables. They used the instrumental variable equation
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to build up the estimating moments. The error in the instrumental equation has

parametric distribution that is not necessarily normal, while the distributions of the

unobserved covariates, and the measurement errors are nonparametric. They also

proposed simulation-based estimators for the situation where the closed forms of the

moments are not available. They showed that the proposed estimators are strongly

consistent and asymptotically normally distributed under some regularity conditions.

Simulation studies showed that the estimators perform satisfactorily in some finite

sample situations.

The third attempt was by Li and Wang (2012a) who used the SLS approach

in the framework of generalized linear mixed models. They proposed a strongly

√
n-consistent simulation-based estimator which is based on the first two marginal

moments of the response variables, and it allows the random effects to follow a

flexible distribution (not necessarily normal). They showed the robustness of their

estimator against data outliers. They also suggested a kind of Jackknife technique to

build up the optimal weight matrix. This is in order to reduce the bias which results

from approximating the optimal weight matrix. According to their simulations, the

proposed estimator has desirable finite sample properties in comparison with the

likelihood-based methods.

Last application but not least, Li and Wang (2012b) extended the work of Abarin

and Wang (2012) to the generalized linear mixed models with classical measurement

error in the covariates. They constructed a simulation-based estimator by combining

the method of instrumental variables and the method of moments. Their proposed

approach does not require either the parametric assumptions for the distributions of

the unobserved covariates or the normality assumption for the random effects. The
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strong consistency and asymptotic normality of the estimators are obtained under

mild regularity conditions. They run three simulations and concluded that their

proposed estimator is almost unbiased compared to the sever biased found in the

naive ML estimator that ignores the measurement error.

The semiparametric efficiency of the SLS was investigated for the first time

by Kim and Ma (2012) who showed that Wang and Leblanc (2008) estimator reaches

the optimal efficiency bound in the sense of Bickel et al. (1993). They used the

geometric approach to identify the optimal semiparametric efficient (SE) estimator

in the nonlinear regression model with homoscedastic error variance. Then they

derived the estimation variance of the SE estimator, which appears to be the same

as the asymptotic variance of the optimal SLS. This demonstrated that the optimal

SLS estimator is semiparametrically efficient under this setup.

From all what have been mentioned it is evident that most of the studies on

the SLS were done in a cross sectional framework, and even those studies which

treated the case of longitudinal data models were investigating the asymptotic

properties with regard to the cross sectional dimension. More crucially, all of these

studies assumed strict exogeneity of the explanatory variables. Therefore, all of

the asymptotic and finite sample results obtained so far don’t apply either in case

of dealing with general stochastic process or having endogenous variables in the

regression equation. This raises up two sets of questions to be answered in this

study.

First, how can the SLS be defined in a general stochastic (not iid) framework?,

what are the sufficient regularity conditions to derive the asymptotic properties

such as consistency and asymptotic normality of this estimator?, and what are the
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large sample and small sample merits of this estimator over the other commonly

used estimating approaches such as the Quasi Maximum Likelihood (QML) and the

Estimating Function (EF)?

Second, how does the SLS approach work in dynamic panel data regression

models?, how to make use of the SLS estimation framework to deal with the built-in

endogeneity resulting from regression on the lags of the response variable?, and

how much gain of efficiency of SLS in large and finite samples compared to other

commonly used estimating approaches such as the Generalized Method of Moments

(GMM), Conditional Generalize Lest Squares (CGLS), and other pseudo likelihood

based methods.

This dissertation comes in two main chapters in addition to the conclusion. In the

first chapter we study the SLS approach for a general nonlinear regression model with

time variant dynamic mean function and autoregressive conditionally heteroskedastic

(ARCH) disturbances. We provide answers to the first group of questions. In the

second chapter we provide answers to the second group of questions by investigating

the SLS approach in linear dynamic panel data model. All of the mathematical

proofs and supplementary definitions and lemmas are found in Appendix A, while a

sample of R programming code is included in Appendix B.

For the sake of clarity in notation, the little bold letters are preserved for vectors,

while the capital bold letters are preserved for matrices. The dimensions of a matrix

or vector are given only if it is relevant. Each notation is defined locally within each

chapter.
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Chapter 1

SLS Estimation in ARCH
Non-Linear Regression Model
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Since the seminal work of Engle (1982), the autoregressive conditional het-

eroscedasticity (ARCH) model and its various generalizations have been intensively

studied and widely used to analyze time series data, especially in economics and

finance. The ARCH regression models allow both the conditional means and vari-

ances of a process to jointly evolve over time. Engle (1982) showed that the relative

efficiency of the maximum likelihood (ML) estimator compared to the ordinary least

squares estimator can be infinite under the conditional normality of the disturbances.

Latter, Weiss (1986) showed that violating the normality assumption does not affect

the consistency of the Gaussian quasi-ML estimator for the ARCH(p) regression

models. However, Engle and Gonzalez-Rivera (1991) found that in a GARCH(1,1)

model the asymptotic variance of the QMLE can be six or two times larger than

Cramer-Rao bound if the conditional distribution of the disturbances is highly skewed

or it exhibits leptokurtosis respectively. They also concluded that there was enough

empirical and theoretical evidence to reject the assumption of conditional normality

in financial time series, and that it was worthwhile searching for estimators that

could improve the QMLE. Moreover, they proposed a semiparametric estimator by

using the data to approximate the true generating mechanism of the disturbance

term and pointed out that their estimator did not capture the total potential gain

of efficiency. This finding motivated Li and Turtle (2000) to examine the estimating

functions (EF) approach. Compared to the asymptotic procedures, they combined

linear and quadratic EFs optimally based on the information criterion of Godambe

(1985). They found a significant gain of efficiency from the EF approach over the

quasi-likelihood approach in the case of serious departures from normality. On

the same line, Liang et al. (2011) emphasized the benefit of using the first four

8



conditional moments of the observed process in deriving a quadratic EF which

maximizes Godambe’s information criterion.

So far most of the research in the literature focuses on the theory of QML for

different generalizations of ARCH regression models. To the best of our knowledge,

the paper of Li and Turtle (2000) is the only one which studied in some details

the application of a moment-based approach in ARCH linear regression models.

Moreover, almost all the developed theory in the literature is based on the assumption

of having mean stationary data generating process, specifically ARMA process. This

is not general enough to cover models with time varying nonlinear mean function.

Such models are very useful in capturing the nonlinear dynamic behaviour in time

series data without doing any transformations on the variables of interest, and hence

they preserve any structural relationship from being altered or weakened throughout

the analysis. As stated by Enders (2010) “Economic theory suggests that a number

of important time series variable should exhibit nonlinear behaviour...such as wages

and employment”. Similarly, Franses and Van Dijk (2000) mentioned that “financial

time series display typical nonlinear characteristics”. This assures that nonlinear

time series can be seen frequently in economics and finance, and there is a need to

study in some details the ARCH nonlinear regression models for the sake of more

generality and flexibility.

In this chapter we attempt to fill these theoretical gaps. In particular, we consider

a model with ARCH(p) disturbances and a fairly general nonlinear mean function

that is allowed to be time varying. For this model, we study the SLS approach

which is based on the first two conditional moments of the process. An optimal

estimator is obtained by using the additional information inherent in the conditional
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skewness and kurtosis of the process. The consistency and asymptotic normality of

the SLS estimator are established under general mixing conditions. We demonstrate

that SLS approach leads to efficiency gain over the commonly used QMLE and the

gain is significant under asymmetric distributions. The practical usefulness of this

gain of efficiency is emphasized by an empirical example. Our extensive simulation

results show that the optimal SLS estimator has in most cases superior finite sample

properties over the EF approach based on the same set of moments.

This chapter is organized as follows. In section 1.1, the model is introduced and

the SLS estimator is defined. In section 1.2, the strong consistency and asymptotic

normality of the SLS estimator are shown. In section 1.3, the optimal SLS estimator

is derived and a feasible optimal SLS estimator is suggested. In section 1.4 we

investigate the gain of efficiency of the optimal SLS estimator relative to the QMLE

and highlight the differences between our approach and the EF approach. In

section 1.5 we perform Monte Carlo analysis to examine the behavior of the SLS

estimator in terms of its bias and root mean squared error (RMSE) in the cases of

small and moderate sample sizes and for both skewed and symmetric distributions

of the disturbances. Section 1.6 demonstrates the merits of the SLS approach using

the U.K. price Inflation example of Engle (1982). A summary is given in section 1.7.

1.1 Model Specification and SLS Estimation

Let
{

(x′t, yt)
′} denote a sequence of random vectors defined on a complete probability

space (Ω,F , P ) and let Ft−1 = F {x′i, yi−1, i ≤ t}. For some non-negative integer τ ,
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let vt =
(
x′t−τ , yt−τ , . . . ,x

′
t−1, yt−1,x

′
t

)′
. Assume that yt can be represented as

yt = ft (vt,θ0) + εt, t ∈ Z, (1.1)

where ft : Rυ ×Θ→ R1, are known functions measurable on Rυ for each θ in Θ (a

subset of Rq), and continuous on Θ uniformly in t a.s.-P. Let εt = σtεt, such that

E (εt |Ft−1) = 0 a.s.-P, E
(
ε2
t |Ft−1

)
= 1 a.s.-P, σ2

t = φ00 +

p∑
i=1

φ0iε
2
t−i, (1.2)

where φ00, φ0p > 0, and φ0i ≥ 0 for i = 1, 2, . . . , p − 1. Model model (1.1) - (1.2)

contains the ARCH linear regression model as a special case. Our main interest is

to estimate γ0 = (θ′0,φ
′
0)
′

in Γ (a compact subset of Rq+p+1) based on a realization

of
(
x′1−p−τ , y1−p−τ , . . . ,x

′
T , yT

)′
.

According to the above setup, we can use Theorem 2.11 of White (1996) to show

the existence of functions γ̂T : Ω→ Γ measurable–F , T = 1, 2, . . . such that

γ̂T = argmin
γ∈Γ

QT (γ) a.s.-P, (1.3)

where QT (γ) = T−1
∑T

t=1 h
′
t(γ)W tht(γ), given that W t is a 2 × 2 matrix which

is measurable with respect to F
{
v′t−p, . . . ,v

′
t

}
and non-negative definite a.s.-P,

h′t(γ) = (εt(θ), y2
t − f 2

t (vt,θ)− σ2
t (γ)), εt(θ) = yt − ft (vt,θ), and σ2

t (γ) = φ0 +∑p
i=1 φiε

2
t−i(θ).

1.2 Asymptotic Properties of the SLS Estimator

In this section we establish the consistency and asymptotic normality of γ̂T under

fairly general assumptions. Towards that, we adopt the following mixing condition
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in order to restrict the memory of the underlying process and guarantee a sort of

asymptotic independence.

Assumption 1 The process
{

(x′t, yt)
′} is strong mixing of size −a, for some a > 1.

(See definition 6 in appendix A).

This is a high-level operating assumption which allows for considerable dependence

and heterogeneity in the underlying process. As mentioned by White and Domowitz

(1984), this single assumption preserves the asymptotic independence of the observed

process even under further transformations. The assumption can be justified on a

case by case basis. For example, Lindner (2009) stated that if
∑p

i=1 φ0i < 1, and the

driving noise sequence {εt} is i.i.d. and absolutely continuous with Lebesgue density

being strictly positive in a neighbourhood of zero and finite second moment, then

{εt} is strong mixing with geometric rate. The geometric memory decay implies that

a can be set to arbitrary large number. It is also shown that finite order Gaussian

ARMA processes are strong mixing (Ibragimov and Linnik, 1971, pp. 312–313).

The consistency of γ̂T follows from the uniform convergence of {QT (γ)} (on Γ)

to a non-stochastic sequence
{
Q̄T (γ)

}
which possess unique minimizers at γ0 for all

T sufficiently large. To fulfil that, we impose assumptions 2, and 3 respectively.

Assumption 2 Let ‖.‖ be the Euclidean norm, then we have

sup
t∈N

E

{
‖W t‖

(
1 +

p∑
i=0

ε4t−i + sup
Θ
f 4
t−i (·,θ)

)}r

<∞, for some r >
a

a− 1
.

12



By using Hölder’s inequality and cr inequality, we can easily verify that the sequence

{h′t(γ)W tht(γ)} is dominated by uniformly Lr-bounded variables1. Therefore,

QT (γ) = T−1
∑T

t=1 E {h
′
t(γ)W tht(γ)} is well defined and is continuous on Γ uni-

formly in T . Moreover, by the uniform law of large numbers in (White and Domowitz,

1984, Theorem 2.3) we have supγ∈Γ

∣∣QT (γ)−QT (γ)
∣∣ a.s.−→ 0 as T →∞.

Assumption 3 For any open neighbourhood N ( Γ of γ0, there exists T0(N ) such

that

inf
T≥T0

(
T−1

T∑
t=1

min
γ∈N c∩Γ

E
{

(ht(γ)− ht(γ0))′W t (ht(γ)− ht(γ0))
})

> 0.

Since {ht(γ0),Ft} is a martingale difference sequence, and W t is measurable–

Ft−1, we have E {h′t(γ)W tht(γ)} = E
{

(ht(γ)− ht(γ0))′W t (ht(γ)− ht(γ0))
}

+

E {h′t(γ0)W tht(γ0)}. Since W t is non-negative definite a.s.-P, assumption 3 en-

sures that the uniqueness of the minimum of QT (γ) does not vanish as T becomes

arbitrary large. If the process
{

(x′t, yt)
′} is stationary, ft = f : Rυ ×Θ→ R1, and

W t = W
(
v′t−p, . . . ,v

′
t

)
is positive definite a.s.-P, then assumption 3 is equivalent

to say that: f(·,θ) = f(·,θ0) a.s.-P only if θ = θ0.

By applying theorem 3.4 of White (1996) we obtain the following result.

Result 1 Under assumptions 1–3, γ̂T
a.s.−→ γ0, as T →∞.

The following assumptions are sufficient to study the asymptotic distribution of

our estimator.
1A sequence of random variables {Dt} is uniformly Lr-bounded if suptE |Dt|r <∞.
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Assumption 4 The point γ0 is interior to Γ.

Assumption 5 The random functions ft (·,θ) are continuously differentiable of

order 2 on Γ uniformly in t a.s.-P.

Assumption 6

sup
t∈N

E

{
‖W t‖ sup

Θ

(∥∥∇2
θft (·,θ)

∥∥2
+

p∑
i=0

‖∇θft−i (·,θ)‖4 +

p∑
i=1

ε2t−i
∥∥∇2

θft−i (·,θ)
∥∥2

+

p∑
i=0

f 2
t−i (·,θ)

∥∥∇2
θft−i (·,θ)

∥∥2

)}r

<∞, for some r >
a

a− 1
.

Assumption 7 The sequence
{
ĀT (γ0) = 2T−1

∑T
t=1E {∇γh

′
t(γ0)W t∇γ′ht(γ0)}

}
is O(1), and lim infT→∞

∣∣ĀT (γ0)
∣∣ > 0.

Assumption 8 For some r >
a

a− 1
,

sup
t∈N

E

{
‖W t‖2

(
1 + f 2

t (·,θ0) ‖∇θft (·,θ0)‖2 +

p∑
i=1

ε2t−i ‖∇θft−i (·,θ0)‖2

+ ‖∇θft (·,θ0)‖2 +

p∑
i=1

ε4t−i

)(
1 +

p∑
i=0

ε4t−i + ε2tf
2
t (·,θ0)

)}r

<∞.

Both of assumptions 2, 6 and 8 are sufficient for general cases and can be replaced by

much simpler conditions for specific choice of W t as shown at the end of section 1.3.
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Assumption 9 The sequence

{
V T = 4T−1

T∑
t=1

E {∇γh′t(γ0)W tht(γ0)h′t(γ0)W t∇γ′ht(γ0)}

}

is O(1), and lim infT→∞ |V T | > 0.

The following theorem gives the limiting distribution of a scaled version of our

estimator. The proof is given in appendix A.

Theorem 1 Given assumptions 1–9 we have

V
−1/2
T ĀT (γ0)

√
T (γ̂T − γ0)

d−→ N (0, Iq+p+1) as T →∞.

This result is true for any member of the class of estimators defined by equation (1.3)

if W t satisfy assumptions 2, 3, 6–9. In the following section we derive the most

efficient estimator among this class of estimators.

1.3 Asymptotically Optimal SLS

The asymptotic covariance (acov) of
√
T (γ̂T − γ0) is given by Ā

−1
T (γ0)V T Ā

−1
T (γ0)

which depends on W t, t = 1, 2, . . . , T . A reasonable definition of the asymptotically

optimal estimator in the class defined by equation 1.3 is the one which minimizes

the asymptotic variance of
√
T a′ (γ̂T − γ0), a ∈ Rq+p+1. The following proposition

describes the optimal choice of W t which achieves this criterion. The proof is

provided in the appendix A.
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Proposition 2 Suppose that U t = E
{
ht(γ0)h′t(γ0) | v′t−p, . . . ,v′t

}
is nonsingular

a.s.-P, and assumptions 2, 3, 6–9 hold with W t = U−1
t . Then the asymptotically

optimal SLS estimator; γ̂oT , in the class of estimators defined by equation (1.3) is

obtained by letting W t = U−1
t , t = 1, 2, . . . , T , and we have

acov−1
√
T (γ̂oT − γ0) = T−1

T∑
t=1

E
{
∇γh′t(γ0)U−1

t ∇γ′ht(γ0)
}
, (1.4)

or equivalently,

acov−1
√
T (γ̂oT − γ0) = T−1

T∑
t=1

E
{
B′tΩ

−1
t Bt

}
, (1.5)

where

B′t =

(
∇θft (vt,θ0) ∇θσ2

t (γ0)
0 ∇φσ2

t (γ0)

)
, and (1.6)

Ωt = σ2
t (γ0)

(
1 σt(γ0)E

(
ε3
t | v′t−p, . . . ,v′t

)
· σ2

t (γ0)
[
E
(
ε4
t | v′t−p, . . . ,v′t

)
− 1
] ) . (1.7)

It is clear that U t depends on γ0, E
(
ε3
t | v′t−p, . . . ,v′t

)
, and E

(
ε4
t | v′t−p, . . . ,v′t

)
.

Therefore, γ̂oT is infeasible. Two-step estimator can be calculated as follow. First, a

preliminary consistent estimator of γ0 is calculated, such as the QMLE or simply

γ̂T based on the identity weight matrix. Second, the residuals ε̂t are calculated,

then suitable AR models are fitted to ε̂3
t and ε̂4

t respectively. Finally, replace

γ0, E
(
ε3
t | v′t−p, . . . ,v′t

)
, and E

(
ε4
t | v′t−p, . . . ,v′t

)
in U t by the corresponding fitted

values and use W t = Û
−1

t in equation (1.3). Fitting the AR models may be useful
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if the driving noise sequence {εt} is not i.i.d., otherwise it is enough to use the

sample means of ε̂3
t and ε̂4

t respectively. Under fairly general conditions the resulting

two-step estimator (henceforth FOSLS) is consistent even if the preliminary sample

statistics (used in the first step) lead to inconsistent estimator for U t. Moreover, if

Û t is consistent for U t, the FOSLS estimator does have the same asymptotic variance

given by (1.4). For more details about the asymptotics of two-step estimators the

reader is referred to (White, 1996, section 6.3). Alternatively, if the conditioning set{
v′t−p, . . . ,v

′
t

}
is reasonably small, we can use nonparametric regression models of

the conditional skewness and kurtosis to obtain Û t.

Before we conclude this section, it is worthwhile to reconsider assumptions 2, 6

and 8 in case of using the optimal weight matrix. After long steps of mathematical

simplifications which involve using Minkowski inequality and cr inequality, it appears

that we can replace assumptions 2, 6 and 8 by the following three assumptions

respectively if W t = U−1
t

Assumption 10 For k = 0, 1, . . .,

sup
t∈N

E

{
ε4t−k + supΘ f

4
t−k (·,θ)

σ4
t

}r
<∞, for some r >

a

a− 1
.

Assumption 11 For s = 1, 2, and k = 0, 1, . . .,

sup
t∈N

E

{
supΘ ‖∇s

θft−k (·,θ)‖4

σ4
t

}r

<∞, for some r >
a

a− 1
.
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Assumption 12 For k = 0, 1, . . .,

sup
t∈N

E

{
f 8
t (·,θ0) + ε8t−k + ‖∇θft−k (·,θ0)‖8

σ8
t

}r

<∞, for some r >
a

a− 1
.

It is important here to emphasize that these alternative assumptions are sufficient

but not necessary to prove Result 1 and Theorem 1. As we shall see from the Monte

Carlo results (Table 1.2) the small/moderate/large sample properties of the optimal

SLSE are not affected even if the innovation’s moments higher than four don’t exist.

Actually, it is not unexpected to see the asymptotic theory of the optimal SLS

working well under the same regularity conditions of the QML theory. This is most

likely due to the fact that the optimal SLS is a kind of refinement to the QML using

the information inherent in the skewness and kurtosis of the process innovation.

In the following section we investigate the gain of efficiency of the optimal SLS

estimator compared to the Gaussian quasi-ML and the Estimating Function (EF)

estimators.

1.4 Relative Efficiency of the Optimal SLSE

The Gaussian QMLE is considered to be the most popular method of estimation in

the dynamic econometric models that jointly parametrize conditional means and

conditional variances. It is generally obtained by maximizing a normal log-likelihood.

The asymptotic properties of the Gaussian QMLE were firstly studied by Weiss

(1986) for univariate ARMA model with ARCH disturbances. Latter, his results

were extended to multivariate GARCH models in (Bollerslev and Wooldridge, 1992).
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Specifically for model (1.1) - (1.2), the global Gaussian QMLE is defined by functions

γ̂QT : Ω→ Γ measurable–F , T = 1, 2, . . . such that

γ̂QT = argmin
γ∈Γ

T−1

T∑
t=1

log σ2
t (γ) +

ε2t (θ)

σ2
t (γ)

a.s.-P. (1.8)

Under adapted version of assumptions 2–9, we can follow the same steps found in

section 1.2 and the proof of theorem 1 to show that γ̂QT is
√
T -consistent estimator

with acov
√
T
(
γ̂QT − γ0

)
given by

T

(
T∑
t=1

E
{
B′tΣ

−1
t Bt

})−1( T∑
t=1

E
{
B′tΣ

−1
t ΩtΣ

−1
t Bt

})( T∑
t=1

E
{
B′tΣ

−1
t Bt

})−1

,

(1.9)

where Bt, Ωt are defined by (1.6) and (1.7) respectively, and

Σt =

(
σ2
t (γ0) 0

0 2σ4
t (γ0)

)
.

Hence, by using argument similar to that used in the proof of proposition 2, we can

show that

acov
√
T a′ (γ̂oT − γ0) ≤ acov

√
T a′

(
γ̂QT − γ0

)
, a ∈ Rq+p+1,

and for a given a ∈ Rq+p+1, the equality holds if and only if for t = 1, 2, . . . , T ,

ΩtΣ
−1
t Bta = Bt

(
T∑
t=1

E
{
B′tΩ

−1
t Bt

})−1( T∑
t=1

E
{
B′tΣ

−1
t Bt

})
a a.s.-P.

(1.10)

19



This n.s. condition is quite general and can be simplified under specific settings. For

example, if the process
{

(x′t, yt, σt, εt)
′} is stationary with E

(
ε3
t | v′t−p, . . . ,v′t

)
= 0,

and E
(
ε4
t | v′t−p, . . . ,v′t

)
= µ4, then it can be shown that equation (1.10) is equivalent

to

a′1 (Iq −C)∇θft (vt,θ0) = 0, a′1

(
µ4 − 1

2
Iq −C

)
∇θσ2

t (γ0) = 0, (1.11)

where

C =
(
C1 + 1

2
C2

) (
C1 + 1

µ4−1
C2

)−1

, C1 = E
{
σ−2
t (γ0)∇θft (vt,θ0)∇θ′ft (vt,θ0)

}
,

C2 = E
{
σ−4
t (γ0)∇θσ2

t (γ0)∇θ′σ2
t (γ0)

}
, and a1 is a sub-vector which contains the

first q elements of a.

The EF is a general alternative approach which makes use of the available

information inherent in the conditional skewness and kurtosis of the process to

improve the efficiency of the QMLE. This makes it comparable to our approach.

In light of the Corollary given by Durairajan (1992), it can be shown that the EF

estimator; γ̂EFT , under model (1.1) - (1.2) is obtained by solving the equation

g∗(γ) =
T∑
t=1

B′t(γ)Ω−1
t (γ)

(
εt(γ)

ε2t (γ)− σ2
t (γ)

)
= 0, (1.12)

where B′t(γ), and Ωt(γ) are given by equations (1.6) and (1.7) after replacing θ0,

γ0, E
(
ε3
t | v′t−p, . . . ,v′t

)
, and E

(
ε4
t | v′t−p, . . . ,v′t

)
with θ, γ, Eγ

(
ε3
t (γ) | v′t−p, . . . ,v′t

)
,

and Eγ
(
ε4
t (γ) | v′t−p, . . . ,v′t

)
respectively. The function g∗(γ) is optimal with respect

to Godambe’s information criterion. That is, consider the class of estimating
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functions G = {g(γ)}, such that

g(γ) =
T∑
t=1

K ′t(γ)

(
εt(γ)

ε2t (γ)− σ2
t (γ)

)
,

where K ′t(γ) is a (q + p + 1) × 2 matrix which is measurable with respect to

F
{
v′t−p, . . . ,v

′
t

}
and full column rank a.s.-P, and both of Eγ {g(γ)g′(γ)} and

Eγ {∇γ′g(γ)} are nonsingular for each γ ∈ Γ. Then, it can be directly shown that

for every a ∈ Rq+p+1, g∗(γ) is an optimal choice which minimizes

a′
(
E−1
γ {∇γ′g(γ)}Eγ {g(γ)g′(γ)}E−1

γ {∇γg′(γ)}
)
a.

Under some regularity conditions similar to assumptions 2–9, we can show that

γ̂EFT is a
√
T -consistent estimator with acov

√
T
(
γ̂EFT − γ0

)
given by equation (1.5).

Although both of γ̂oT and γ̂EFT share the same asymptotic variance, but they are

distinct due to the following reasons. First, the FOSLS is an extremum estimator

compared to the EF estimator which represents a solution of the optimal estimating

equation (1.12). Second, if Eγ
(
ε3
t (γ) | v′t−p, . . . ,v′t

)
, and Eγ

(
ε4
t (γ) | v′t−p, . . . ,v′t

)
are completely known functions of γ, then γ̂EFT is clearly a one-step estimator

compared to γ̂oT which remains infeasible due the dependence of W t on γ0. Third,

the two estimators may have different finite-sample behaviour. This can be seen

clearly by comparing equation (1.12) with the first order condition for γ̂oT which can

be written as

T∑
t=1

B′t(γ)H t(θ)Ω−1
t H

′
t(θ)

(
εt(γ)

ε2t (γ)− σ2
t (γ)

)
= 0,
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where

H t(θ) =

(
1 2ft (vt,θ)− 2ft (vt,θ0)
0 1

)
.

We conclude this section by examining how much loss of efficiency in the QML

estimator is recovered by using the OSLS estimator instead. Unfortunately, a general

answer to this question is not possible in light of equations (1.5) and (1.9). However,

it is straightforward to investigate this issue for special cases of model (1.1) - (1.2).

For convenience, we consider AR(1) model with ARCH(1) disturbances. The model

is given by yt = θ0yt−1 + εt, σ
2
t = 1 − φ0 + φ0ε

2
t−1, and the innovations sequence

{εt = εt/σt} is i.i.d. drawn from a standardized2 distribution. This model has two

dynamic components represented by the parameters θ0 and φ0 in the conditional

mean and variance functions respectively. Since the OSLS estimator makes use

of the conditional skewness and kurtosis of {εt}, we consider both symmetric and

skewed distributions in our calculations. The asymptotic variance of the true ML

estimator is calculated as benchmark.

Table 1.1 (page 23) gives a snapshot of the obtained results. It shows that

the out-performance of the OSLS estimator over the QML is more emphasized in

case of highly skewed distributions such as the Gamma distribution. On the other

hand, the out-performance of the OSLS estimator diminishes in case of symmetric

distributions such as the Student-t distribution. This is obviously seen by comparing

the asymptotic variances of the QML and the OSLS estimator of φ0 for any pattern

under the Student-t distribution. They turn out to be equal, which is consistent

with the theoretical result given by (1.11).

2A standardized distribution refers to a distribution with zero mean and unit variance.
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Table 1.1: Asymptotic variances of the OSLS, QML, and ML estimators

Distribution Estimation v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0) v(θ̂0) v(φ̂0)
approach Pattern (a) Pattern (b) Pattern (c) Pattern (d)

θ0 = 0.2 θ0 = 0.2 θ0 = 0.8 θ0 = 0.8
φ0 = 0.2 φ0 = 0.6 φ0 = 0.2 φ0 = 0.6

Student-t (5) OSLS 1.34 6.32 1.51 2.86 0.37 6.26 0.29 2.86
QML 1.56 6.32 2.34 2.86 0.41 6.26 0.41 2.86
ML 1.05 2.44 1.04 1.11 0.29 2.41 0.21 1.11

Student-t (7) OSLS 1.26 3.30 1.26 1.51 0.37 3.32 0.29 1.51
QML 1.30 3.30 1.41 1.51 0.38 3.32 0.32 1.51
ML 1.10 2.31 1.05 1.05 0.32 2.34 0.25 1.05

Student-t (13) OSLS 1.20 2.31 1.08 1.06 0.37 2.33 0.26 1.06
QML 1.20 2.31 1.10 1.06 0.37 2.33 0.26 1.06
ML 1.15 2.12 1.03 0.97 0.36 2.17 0.24 0.97

Gamma (2) OSLS 0.83 2.89 0.81 1.23 0.24 2.77 0.19 1.23
QML 1.35 4.48 1.63 2.02 0.42 4.48 0.38 2.03
ML 0.15 0.25 0.08 0.14 0.04 0.06 0.04 0.13

Gamma (8) OSLS 0.97 2.08 0.88 0.94 0.31 2.06 0.22 0.94
QML 1.18 2.52 1.09 1.15 0.38 2.51 0.28 1.14
ML 0.87 1.44 0.69 0.64 0.27 1.35 0.19 0.62

Gamma (12) OSLS 1.02 2.00 0.90 0.90 0.32 1.99 0.23 0.90
QML 1.17 2.30 1.05 1.04 0.37 2.29 0.27 1.04
ML 0.97 1.58 0.79 0.69 0.30 1.50 0.21 0.72

Gamma (20) OSLS 1.06 1.93 0.91 0.88 0.34 1.93 0.24 0.88
QML 1.15 2.11 1.00 0.96 0.37 2.11 0.26 0.96
ML 1.03 1.67 0.86 0.73 0.33 1.62 0.23 0.75

Model: yt = θ0yt−1 + εt, σ
2
t = 1 − φ0 + φ0ε

2
t−1, and εt/σt are drawn independently from the

standardized version of the listed distributions. The numbers in the brackets represent the shape
parameters of the Gamma distributon and the degrees of freedom for the T distribution.

23



In order to study how much loss of efficiency in the QML estimator is recovered

by the OSLS estimator, we suggest the following measure of reduction in the QML

efficiency-loss (inefficiency);

RIFL (a′γ0) = 100 ∗
acov
√
T a′

(
γ̂QT − γ0

)
− acov

√
T a′ (γ̂oT − γ0)

acov
√
T a′

(
γ̂QT − γ0

)
− acov

√
T a′

(
γ̂MT − γ0

) ,

where γ̂MT is the ML estimator of γ0. This measure can be also used to examine

which estimator approaches to the asymptotic variance lower bound faster.

Figure 1.1 (page 25) is produced as a sample of output. According to Figure 1.1-

(a), if the driving noise has a heavy tail Student-t distribution, 45–60% of the

inefficiency of θ̂QT is recovered by θ̂oT . The RIFL(θ0) declines sharply as the degrees

of freedom get higher. This indicates that as the symmetric distribution gets close

to the Gaussian distribution, the performance of the QML is improved very fast

and it becomes very close to the OSLS estimator, and both of them approaches

the variance lower bound. The situation is opposite in Figure 1.1-(b,c) which show

that RIFL(θ0) and RIFL(φ0) are increasing functions of the shape parameter of

the Gamma distribution. This indicates that as the skewed distribution gets closer

to the Gaussian distribution the performance of the OSLS estimator is improved

significantly faster than the performance of the QML. In other words the QML

is persistently affected by the conditional skewness and it is preferable to use the

optimal estimator. Clearly all of these results apply if the OSLS is replaced by the

EF estimator. In the next section we investigate the finite-sample performance of

the FOSLS in comparison to the QML and EF estimators.
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(a) εt ∼ Student-t, φ0 = 0.5
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Figure 1.1: RIFL is Reduction (%) in the QML inefficiency
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1.5 Monte Carlo Simulations

In this section we run several Monte Carlo simulations to present some of the

finite-sample properties of the FOSLS estimator relative to both the QML and

EF estimators. For the sake of simplicity, we generate the data from the AR(1)-

ARCH(1) model which was introduced in section 1.4. The length of the time series;

T ; varies from 30 to 1000. We also consider T = 10, 000 to establish a link with the

asymptotic results in section 1.4. In each simulation the autoregressive parameters

(θ0, φ0) are varied to represent different levels of persistence in the mean and variance

equations. The innovations sequence is drawn from standardized distributions having

different levels of skewness and kurtosis. The comparisons are based on two common

finite-sample criteria, namely the bias and the root mean squared error (RMSE).

Tables (1.2, 1.3) (pages 27,28) report the sample means (
¯̂
θ0,

¯̂
φ0), and root mean

squared errors (RMSEθ̂0 , RMSEφ̂0) for each estimator based on 3000 independent

replications over four different pairs of (θ0, φ0) and three sample sizes.

Table 1.2 presents summary results for Student-t innovations with 5 df. It shows

slight gain of efficiency in estimating θ0 if the FOSLS or EF estimators are used

instead of the QML specially for high value of φ0. Otherwise, the QML performs

fairly well in small samples. It is interesting to see the three estimator having the

same degree of bias almost everywhere.

Table 1.3 presents summary results for Gamma(2,1) innovations. The over-

performance of the FOSLS and EF relative to the QML is clear for all sample sizes

and panels. It is also clear that the three estimator have the same degree of bias
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Table 1.2: Finite-sample properties of QML, EF, and FOSLS under Student-t(5)

T Estimator
¯̂
θ0 RMSEθ̂0

¯̂
φ0 RMSEφ̂0

¯̂
θ0 RMSEθ̂0

¯̂
φ0 RMSEφ̂0

Panel (a): θ0 = φ0 = 0.2 Panel (b): θ0 = 0.2, φ0 = 0.6

60 QML 0.19 0.162 0.26 0.184 0.19 0.162 0.53 0.190
EF 0.19 0.153 0.26 0.177 0.19 0.159 0.53 0.193

FOSLS 0.19 0.157 0.27 0.189 0.19 0.159 0.53 0.195

100 QML 0.19 0.130 0.22 0.151 0.20 0.129 0.53 0.159
EF 0.19 0.122 0.22 0.148 0.20 0.124 0.53 0.167

FOSLS 0.19 0.123 0.22 0.150 0.20 0.125 0.53 0.166

1000 QML 0.20 0.040 0.18 0.068 0.20 0.044 0.58 0.050
EF 0.20 0.037 0.18 0.068 0.20 0.039 0.57 0.050

FOSLS 0.20 0.037 0.18 0.068 0.20 0.039 0.57 0.050

Panel (c): θ0 = 0.8, φ0 = 0.2 Panel (d): θ0 = 0.8, φ0 = 0.6

60 QML 0.77 0.099 0.26 0.188 0.78 0.088 0.53 0.190
EF 0.77 0.093 0.26 0.182 0.78 0.099 0.52 0.206

FOSLS 0.77 0.094 0.27 0.192 0.78 0.085 0.54 0.194

100 QML 0.78 0.074 0.22 0.154 0.78 0.070 0.54 0.156
EF 0.78 0.071 0.23 0.151 0.78 0.078 0.53 0.165

OLS 0.78 0.070 0.22 0.154 0.78 0.065 0.54 0.160

1000 QML 0.80 0.021 0.18 0.068 0.80 0.021 0.57 0.051
EF 0.80 0.020 0.18 0.068 0.80 0.018 0.57 0.052

FOSLS 0.80 0.020 0.18 0.068 0.80 0.018 0.57 0.051

Model: yt = θ0yt−1 + εt, σ
2
t = 1 − φ0 + φ0ε

2
t−1, and εt/σt are drawn independently from the

standardized Student-t distribution with five degrees of freedom. The sample mean and root
mean squared error of the estimates are calculated from 3000 independent replications.
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Table 1.3: Finite-sample properties of QML, EF, and FOSLS under Gamma(2,1)

T Estimator
¯̂
θ0 RMSEθ̂0

¯̂
φ0 RMSEφ̂0

¯̂
θ0 RMSEθ̂0

¯̂
φ0 RMSEφ̂0

Panel (a): θ0 = φ0 = 0.2 Panel (b): θ0 = 0.2, φ0 = 0.6

60 QML 0.21 0.149 0.30 0.213 0.19 0.152 0.58 0.163
EF 0.21 0.120 0.26 0.162 0.19 0.123 0.57 0.141

FOSLS 0.21 0.119 0.27 0.172 0.19 0.121 0.59 0.136

100 QML 0.20 0.116 0.25 0.169 0.20 0.121 0.58 0.134
EF 0.21 0.090 0.23 0.133 0.20 0.094 0.58 0.108

FOSLS 0.20 0.091 0.23 0.138 0.20 0.094 0.59 0.108

1000 QML 0.20 0.038 0.20 0.063 0.20 0.040 0.60 0.037
EF 0.20 0.029 0.20 0.051 0.20 0.028 0.60 0.030

FOSLS 0.20 0.029 0.20 0.052 0.20 0.028 0.60 0.030

Panel (c): θ0 = 0.8, φ0 = 0.2 Panel (d): θ0 = 0.8, φ0 = 0.6

60 QML 0.77 0.098 0.29 0.215 0.77 0.097 0.59 0.161
EF 0.79 0.070 0.25 0.165 0.78 0.079 0.57 0.151

FOSLS 0.78 0.073 0.27 0.178 0.78 0.077 0.59 0.139

100 QML 0.78 0.074 0.25 0.172 0.78 0.071 0.58 0.128
EF 0.79 0.053 0.23 0.134 0.79 0.053 0.58 0.112

FOSLS 0.79 0.054 0.23 0.140 0.79 0.054 0.59 0.106

1000 QML 0.80 0.021 0.20 0.062 0.80 0.021 0.60 0.038
EF 0.80 0.016 0.20 0.049 0.80 0.014 0.60 0.030

FOSLS 0.80 0.016 0.19 0.050 0.80 0.015 0.60 0.030

Model: yt = θ0yt−1 + εt, σ
2
t = 1 − φ0 + φ0ε

2
t−1, and εt/σt are drawn independently from the

standardized Gamma distribution with shape parameter equals to two. The sample mean and
root mean squared error of the estimates are calculated from 3000 independent replications.
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almost everywhere. There is no significant differences between the FOSLS and the

EF estimators with respect to the RMSE or the bias.

Figure 1.2-(a,b) (page 30) give an overall picture about the relative RMSE of

the FOSLS compared to QML and four variants of the EF estimator, namely EF,

EF0, EF1, EF2, as defined right after the graph.

Since εt are i.i.d., we can rewrite equation (1.12) in this form to produce the four

EF variants,

T∑
t=1

B′t(γ1)Ω−1
t (γ2, µ3, µ4)

(
εt(γ)

ε2t (γ)− σ2
t (γ)

)
= 0. (1.13)

Then EF0 is obtained by taking γ1 = γ2 = γ̂QT , and replacing the parameters µ3, µ4

with 1/T
∑T

t=1 ε
3
t (γ̂

Q
T ), and 1/T

∑T
t=1 ε

4
t (γ̂

Q
T ) respectively. EF1 is the same as EF0

except that γ1 = γ, EF is the same as EF0 except that γ1 = γ2 = γ, and EF2

is obtained by letting γ1 = γ2 = γ and replacing µ3, µ4 with 1/T
∑T

t=1 ε
3
t (γ), and

1/T
∑T

t=1 ε
4
t (γ) respectively. The four variants are consistent and sharing the same

asymptotic variance. Figure 1.2-a is produced out from 4050 simulations with 3000

independent replications for each where the innovations are generated from standard-

ized Student-t with 5, 6, 7, 8, 9 df, and T varies on 30, 40, 50, 60, 70, 80, 90, 100,

500, 1000. The RMSE of the QML, EF, EF0, EF1, EF2, and FOSLS are calculated

on parameters grid {(0.1, 0.1), (0.1, 0.2), . . . , (0.1, 0.9), (0.2, 0.1), . . . , (0.9, 0.9)}. In

a similar way 4790 simulations are used to produce Figure 1.2-b except that the

innovations are generated from standardized Gamma distribution with shape pa-

rameter 2, 3, 4, 5, 6, 7. Figure 1.2-a shows that the QML is a reasonable choice in

case of symmetric distributions. However, it is not good choice in case of skewed
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(a) εt ∼ Student-t with df (5, 6, 7, 8, 9)
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Figure 1.2: Relative RMSE of FOSLS compared to QML, and variants of EF
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distributions as shown in Figure 1.2-b. It is also clear from Figure 1.2-(a,b) that

the FOSLS is very good competitor to the EF estimator. Replacing the nuisance

parameters with highly nonlinear generic functions of the estimated parameter makes

the performance getting worse as seen with EF2. So, it is recommended to use

two-step EF estimator such as the EF or EF1.

In order to understand how the values of (θ0, φ0), shape parameter, and T explain

the relative RMSE of FOSLS compared to QML, two regression equations are fitted

with RRMSE of FOSLS as a dependent variable. We use the results of the 4790

simulations which produce Figure 1.2-b. As shown from the summarized output in

Table 1.4, the shape parameter has a significant positive effect on both RRMSE(θ̂oT )

and RRMSE(φ̂oT ). This is consistent with the fact that as the shape parameter gets

larger the the gamma distribution becomes closer to the Gaussian distribution. This

also can be seen from Table 1.1 in page 23. Moreover, an increase in the series length

is associated with a significant decrease in both RRMSE(θ̂oT ) and RRMSE(φ̂oT ). This

indicates that the over-performance of the FOSLS in large samples is more evident

than in small samples if the innovations distribution is skewed. Last but not least,

the performance of the θ̂QT gets better quickly as the value of θ0 gets larger. This

can be seen from the significant negative sign of θ0 in the equation of RRMSE(θ̂oT ).

Table 1.4: The Effect of the shape, series length and the parameters values on
the RRMSE of FOSLS compared to QML under Gamma distribution

Coefficients

Constant Shape T θ0 φ0 R2 Error DF

RRMSE(θ̂oT ) 0.76546 0.02887 -0.00007 -0.02783 0.02525 0.78692 4785

RRMSE(φ̂oT ) 0.79952 0.02078 -0.00003 0.01013 0.00962 0.70135 4785

All the coefficients are significant at 0.0001 level of significance.
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In addition to the Monte Carlo results which support the proposed estimator, we

further investigate the practical usefulness of our estimator with a real data example

in the next section.

1.6 Empirical Example: The U.K. Inflation

In this section we apply our method to the U.K. inflation data studied by Engle

(1982) (see also Enders, 2010). In particular, Engle (1982) studied the wage/price

spiral for the U.K. over the period 1958Q2-1977Q2 and proposed an AR model

with ARCH error. Let pt denote the log of the U.K. consumer price index and wt

denote the log of the index of the nominal wage rates. Then the rate of inflation is

yt = pt − pt−1 and the real wage is rt = wt − pt. Engle (1982) fitted the following

conditional mean equation of the U.K. inflation rate using the method of OLS under

the assumption of homoeosdacticity where the standard errors are in parentheses

yt = 0.0257 + 0.334 yt−1+ 0.408 yt−4− 0.404 yt−5+0.0559 rt−1 + εt,
(0.006) (0.103) (0.110) (0.114) (0.014)

σ̂2
t = 8.9× 10−5

(1.14)

Since the Lagrange multiplier test for ARCH(1) disturbances of the model in

(1.14) was not significant, but test for ARCH(4) process was significant, Engle

specified the following conditional variance equation

σ2
t = φ0 + φ1(0.4 ε2t−1 + 0.3 ε2t−2 + 0.2 ε2t−3 + 0.1 ε2t−4) (1.15)

where the two-parameter variance function with declining set of weights on the

disturbances was chosen to ensure the nonnegativity and stationarity constraints.
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Further, Engle used the method of ML to fit equations (1.14) and (1.15) jointly

using simple iterative schema. All coefficients (except the first lag in the inflation

rate) were significant at level of significance 0.05.

Since we could not obtain the wage rates before 1963, we use the data from

1963Q1 through 1982Q1 to compensate for the 19 missing quarters. The data

are obtained form OECD website http://dx.doi.org/10.1787/data-00052-en

(see OECD, ”Main Economic Indicators - complete database”, Main Economic

Indicators).

We first computed OLS estimation on equation (1.14) to see if there is structural

change or major difference compared to the data used by Engle (1982), which yields

yt = 0.059 + 0.3822 yt−1+ 0.3666 yt−4− 0.3383 yt−5+ 0.0628 rt−1 + εt,
(0.0165) (0.1067) (0.1108) (0.1153) (0.0193)

σ̂2
t = 13.3× 10−5

(1.16)

Accordingly, there is no structural change by replacing the 19 quarters, which means

that our results are to some extent comparable with those in (Engle, 1982).

Next we fit a mean equation with five lags of inflation using the method of OLS,

yt = θ0 + θ1yt−1 + θ2yt−2 + θ3yt−3 + θ4yt−4 + θ5yt−5 + θ6rt−1 + εt (1.17)

The results are shown in the first part of Table 1.5 (next page) under model-I (OLS),

where the White’s correction for the standard errors are reported in parentheses. The

Ljung-Box statistic Q is calculated for ε̂t (denoted by Q1) and ε̂2
t (denoted by Q2) at

lags 5, 10, 15, and 20. They (not listed in the table) are all insignificant at 0.1 level

of significance except for Q2(5), which agrees with Engle’s point of including four
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Table 1.5: The models fitted to the price inflation using British data from 1963Q1
through 1982Q1.

Model-I Model-II

Coef. OLS QML FOSLS QML FOSLS

Conditional Mean Equation

θ0 0.071a 0.079a 0.049a 0.067a 0.063a

(0.016) (0.015) (0.014) (0.015) (0.013)
θ1 0.417a 0.339a 0.280a 0.323a 0.257a

(0.141) (0.1) (0.093) (0.096) (0.086)
θ2 −0.039 0.004 0.050 – –

(0.095) (0.086) (0.081)
θ3 −0.180 −0.235a -0.158 – –

(0.148) (0.101) (0.094)
θ4 0.436a 0.481a 0.563a 0.328a 0.339a

(0.184) (0.108) (0.101) (0.116) (0.104)
θ5 −0.350a −0.310a −0.294a −0.246a −0.234a

(0.101) (0.094) (0.088) (0.094) (0.084)
θ6 0.076a 0.086a 0.051a 0.073a 0.067a

(0.018) (0.017) (0.016) (0.017) (0.015)

Conditional Variance Equation

φ0 0.0001 0.000a 0.000 0.000a 0.000
(0.000) (0.000) (0.000) (0.000)

φ1 0.1064 0.093 0.021 – –
(0.134) (0.126)

φ2 0.0000 0.000 0.000 – –
(0.077) (0.072)

φ3 0.0806 0.100 0.102 – –
(0.146) (0.137)

φ4 0.3364 0.389 0.479a 0.553 0.556a

(0.252) (0.235) (0.308) (0.281)

Diagnostic Statistics of the Standardized Innovations

Q1(5) 0.9(0.97) 1.0(0.96) 2.1(0.83) 2.0(0.85) 1.9(0.86)
Q1(10) 4.4(0.93) 7.4(0.68) 6.4(0.78) 8.4(0.59) 8.5(0.58)
Q1(15) 12.8(0.62) 16.1(0.38) 14.1(0.52) 19.6(0.19) 18.7(0.23)
Q2(5) 3.7(0.59) 4.4(0.50) 0.4(0.99) 6.5(0.26) 6.4(0.27)
Q2(10) 5.7(0.84) 6.9(0.74) 1.3(0.99) 8.2(0.61) 8.1(0.62)
Q2(15) 9.2(0.87) 9.8(0.83) 2.7(0.99) 9.1(0.87) 9.4(0.85)
Skew. 0.78 0.61 1.67 0.73 0.99
Kurt. 4.07 3.49 8.48 3.73 4.27
JB 11.0a 5.35 115a 8.12a 16.93a

Q1(n) denotes the Ljung-Box statistic for the standardized innovations up to lag n. Q2(n)
denotes the Ljung-Box statistic for the squared standardized innovations. The p-values of the test
are reported in parentheses. Model-I is given by equations (1.17,1.18) and Model-II is given by
equation (1.19, 1.20). JB is standard Jarque-Bera test, Skew. and Kur. are skewness and kurtosis
values respectively, a statistically significant at 5% level. The standard errors of the coefficients in
the mean and variance equations are reported in parentheses.
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lags in the variance equation. Further, from this regression the squared residuals are

used to fit an auxillary five-parameter ARCH(4) model for the conditional variance

σ2
t = φ0 + φ1ε

2
t−1 + φ2ε

2
t−2 + φ3ε

2
t−3 + φ4ε

2
t−4 (1.18)

The results are shown in the second part of Table 1.5 under title Model-I (OLS).

Again, the ARCH(4) model is confirmed by the LM test at significance level 0.05.

We report only the OLS estimates of the variance function without standard errors

because those estimates are only used as starting values to compute the QML. From

the Q1 and Q2 statistics for the standaridized innovations obtained from model-I

(OLS) (in the third part of Table 1.5), we can see that the mean and variance

equations are fairly well specified since none of these diagnostics is significant at

level 0.1. Therefore we fit model-I again using the QML approach which is more

efficient than the two step OLS procedure. However, although the diagnostics of the

standardized innovations obtained from model-I (QML) do not show serial correlation

of first or second order, all coefficients in the variance function are insignificant

except for the constant term. This contradicts with the ARCH(4) that we found

before to be correctly specified. However, this can be explained by the lack of

efficiency in the QML due to the moderate level of skewness in the corresponding

residuals.

On the other hand, our FOSLS estimation yields significant fourth lag in the

variance function in addition to the correct specification as seen by Q1 and Q2.

Accordingly the model fitted by FOSLS is used in stepwise regression algorithm to

obtain a reduced model (model-II in Table 1.5)

yt = θ0 + θ1yt−1 + θ4yt−4 + θ5yt−5 + θ6rt−1 + εt (1.19)
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σ2
t = φ0 + φ4ε

2
t−4 (1.20)

Note that while the mean equation is identical to that in (Engle, 1982), only the

fourth lag is significant in the variance equation. The above ARCH structure can

only be detected by using the full model that is more flexible than the two-parameter

variance equation in (Engle, 1982). Moreover, the more efficient FOSLS estimation

yields the ARCH(4) structure, while the QML would conclude with a misspecified

homoscedastic model.

1.7 Summary

Although ARCH-type models have been intensively studied for decades, most of

theory is based on ARMA specification for the conditional mean of the underlying

process. However, it is well-known that many economics and financial time series

are nonlinear and/or nonstationary in mean. In this chapter we proposed a flexible

and general model with dynamic structure in the mean and variance functions.

The conditional mean of the process takes general form which covers the case of

stationary linear as well as time variant nonlinear function. The conditional variance

process is a standard ARCH(p). We generalized the SLS approach to this model

based on the first two conditional moments of the underlying process. The root-T

consistency is established under fairly general mixing process assumption. It has

been demonstrated that the OSLS estimator is superior to the commonly used

QMLE, and the efficiency gain is significant when the underlying distribution is

asymmetric. Although the proposed optimal estimator is asymptotically as efficient

as the optimal estimating function estimator based on the first two moments, our
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large scale simulation studies showed that it behaves better in finite sample situation.

The chapter ends up with an empirical example in which we used popular data set

to highlight the practical usefulness of the OSLS gain of efficiency over the QMLE.
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Chapter 2

SLS Estimation in Linear
Dynamic Panel Data Model
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Dynamic panel data models have been intensively studied in econometrics (e.g.

Chamberlain, 1984; Arellano and Honoré, 2001; Arellano, 2003; Hsiao, 2003; Baltagi,

2008). The literature show two main approaches which are being used to control

for the unobserved subject effect in the additive dynamic panel data models. The

first one is the fixed effects (FE) approach which does not assume any statistical

model for relationship between the subject effect and the observed regressors. It

uses some suitable linear transformation such as the first differencing or the forward

orthogonal deviations to eliminate the unobserved effect term from the regression

equation (see Arellano and Bover, 1995). Some commonly used GMM estimators

such as the first-differenced GMM, and the system GMM estimators belong to this

category (see Arellano and Bond, 1991; Blundell and Bond, 1998, respectively).

The second approach is the random effects (RE) which on the contrary to the FE

approach postulates some assumptions on the relationship between the unobserved

subject effect and the observed regressors. These assumptions are mainly about the

conditional distribution of the unobserved effect given the observed regressors. Some

commonly used pseudo-ML estimators such as the marginal PML, the conditional

PML, and the random effects PML estimators belong to this category (see Arellano,

2003, ch. 6). The merits and demerits of these two approaches were discussed

thoroughly by Hsiao (2011). Generally speaking, the RE approach uses both within-

group and between group information to produce more efficient estimators, while

the FE approach yields more robust estimators which are consistent, asymptotically

normal, and computationally tractable under fairly general conditions. Some authors

try to compromise between efficiency and robustness by using the RE approach

with minimal assumptions on the conditional moments of the unobserved subject
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effect given the observed regressors. For example, Blundell and Bond (1998) studied

the conditional generalized least squares (CGLS) estimator which assumes a simple

linear relationship between the random effect and the initial observation.

In this chapter, we use the SLS approach to compromise between the RE and

FE approaches in estimating a general linear dynamic model. The SLS estimator

is defined in terms of the first two conditional moments of the response variable

given its initial observation and the covariates. The data generating process can be

either stationary or nonstationary. This approach requires only the specification of

the first two conditional moments of the unobserved subject effect given the process

initial value and the covariates, and does not require any other initial conditions

or distributional assumptions. We derive the asymptotic properties of the SLS

estimator when the cross section size; N , is large and the time series length; T ,

is fixed. Then, we show that the proposed estimator reaches a semiparametric

efficiency bound in the sense of Chamberlain (1987). The correct specification of

the first two conditional moments (mentioned above) is crucial assumption for the

developed theory and any empirical application of the SLS. In order to double check

such assumption we introduced for the first time a new specification test for the SLS

estimator. Moreover, we conduct Monte Carlo simulations to investigate the finite

sample performance of different variants of SLS estimator and compare them with

other GMM and other likelihood based estimators. Finally, we used a real data set

to show practical merits of using the SLS estimator compared to other commonly

used estimators.

This chapter is organized into six sections. In the first section we introduce the

model in details, and in the second section we define the SLS estimator and give its
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asymptotic properties with the regularity conditions. In the third section we discuss

the asymptotic efficiency of the SLS estimator and some related computational

matters including the newly proposed specification test. In the fourth section

we present the simulation results and discussion. The fifth section is devoted for

empirical example on the determinants of U.S. airfares. The last section gives a

summary of the chapter. Related mathematical proofs, output tables, and graphs

are all included in the appendices.

2.1 Model Specification and SLS Estimation

Let (y′i,x
′
i, ηi), i = 1, 2, . . . , N be independent and identically distributed random

vectors where y′i = (yi0, yi1, . . . , yiT ) is the measurements of the response variable

y taken for the ith subject over T + 1 time periods, x′i = (x′i1,x
′
i2, . . . ,x

′
iT ) is the

corresponding measurements of p strictly exogenous regressors taken for the ith

subject over T time periods such that

yit = α0yi(t−1) + β′0xit + ηi + εit, t = 1, 2, . . . , T, (2.1)

ηi is unobserved subject effect, the disturbance term εit satisfies E(εit|ηi, yi0,xi) = 0,

and E(εitεis|ηi, yi0,xi) = σ2
0 if s = t, zero otherwise. These assumptions are weaker

than the frequently used sequential moments setup (see Arellano, 2003, ch. 6). In

addition, we assume that the conditional moments E(ηji |yi0,xi) = fj(yi0,xi,θ0),

j = 1, 2 are known up to an `-dimensional unknown parameter vector θ0. Again,

this later assumption is more general than the unrestricted initial conditions which

are used by Blundell and Bond (1998) and Alvarez and Arellano (2003) to derive
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the conditional GLS (CGLS) and the random effects ML (RML) respectively. It

is worthwhile to mention here that our semi-parametric assumption on the unob-

served heterogeneity is not restrictive as might be thought. The functional form of

fj(yi0,xi,θ0), j = 1, 2 can be specified naturally based on the residuals produced

from equation (2.1). More important, any suggested specification can be tested

using our developed test of specification.

Let γ0 = (α0, σ
2
0,β

′
0,θ

′
0)′, and Γ ⊂ IRp+`+2 be the corresponding parameter space.

By backward substitution in equation (2.1), we obtain the reduced form equation

yit = αt0yi0 + at(α0)ηi + β′0x̃it(α0) + ε̃it(α0), t = 1, 2, ..., T, (2.2)

where at(α) =
∑t−1

r=0 α
r, x̃it(α) =

∑t−1
r=0 α

rxi(t−r), and ε̃it(α0) =
∑t−1

r=0 α
r
0εi(t−r).

Under this model, the first two conditional moments of yit given the initial

observation yi0 and the exogenous measurements xi are given by

µit(γ0) = E(yit|yi0,xi) = αt0yi0 + β′0x̃it(α0) + at(α0)f1(yi0,xi,θ0), (2.3)

νits(γ0) = E(yityis|yi0,xi) = αt+s0 y2
i0 + at(α0)as(α0)f2(yi0,xi,θ0)

+β′0x̃it(α0)x̃′is(α0)β0 + σ2
0cts(α0) + dts(α0)yi0f1(yi0,xi,θ0)

+yi0β
′
0wits(α0) + f1(yi0,xi,θ0)β′0kits(α0), (2.4)

where

cts(α) = αt−s
∑s−1

r=0 α
2r, wits(α) = αtx̃is(α) + αsx̃it(α),

dts(α) = αtas(α) + αsat(α), kits(α) = at(α)x̃is(α) + as(α)x̃it(α), for t ≥ s.

Let

hi(γ) = (yit − µit(γ), 1 ≤ t ≤ T, yityis − νits(γ), 1 ≤ s ≤ t ≤ T )′ ,
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where in the second part of hi(γ) the t subscript is changing after the s subscript.

Then following Wang (2007) the SLS estimator for γ is obtained by

γ̂N = argmin
γ∈Γ

1

N

N∑
i=1

qi(γ), (2.5)

where qi(γ) = h′i(γ)W ihi(γ) and W i is a nonnegative definite matrix whose

elements are Borel measurable functions of (yi0,xi).

The asymptotic properties of γ̂N are studied in the next section.

2.2 Asymptotic Properties of the SLS Estimator

For the existence, measurability, consistency and asymptotic normality of the γ̂N ,

we make the following assumptions, where ‖·‖ denotes the Euclidean norm.

Assumption 13 The parameter space Γ is a compact subset of IRp+`+2.

Assumption 14 fj(yi0,xi,θ), j = 1, 2 are Borel measurable functions of (yi0,xi)

for each θ in the corresponding parameter space Θ, and are continuous functions of

θ with probability one. Furthermore, for all t

E ‖W 1‖
(
y4

10 + sup
Θ
f 2

2 (y10,x1,θ) + ‖x1t‖4 + η4
1 + ε4

1t + 1

)
<∞.

Assumption 15 E[h1(γ)−h1(γ0)]′W 1[h1(γ)−h1(γ0)] = 0 if and only if γ = γ0.
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Assumption 16 With probability one, fj(yi0,xi,θ), j = 1, 2 are twice continuously

differentiable in int(Θ). Furthermore, for j = 1, 2,

E ‖W 1‖ (y2
10 +‖x1‖2 +1)2−j sup

N (θ0)

(∥∥∥∥∂fj(y10,x1,θ)

∂θ

∥∥∥∥2

+

∥∥∥∥∂2fj(y10,x1,θ)

∂θ∂θ′

∥∥∥∥2
)
<∞,

where N (θ0) ⊂ int(Θ) is a closed neighbourhood of θ0.

Assumption 17 The matrix

A = E

{
∂h′1(γ0)

∂γ
W 1

∂h1(γ0)

∂γ ′

}
(2.6)

is nonsingular.

Assumption 18 It holds

E ‖W 1‖2

(
y8

10 + ‖x1‖8 + f 4
2 (y10,θ0) + η8

1 + ε8
1t

+
(
y4

10 + ‖x1‖4 + 1
) ∥∥∥∥∂f1(y10,x1,θ0)

∂θ

∥∥∥∥4

+

∥∥∥∥∂f2(y10,x1,θ0)

∂θ

∥∥∥∥4

+ 1

)
<∞.

Then we have the following two propositions whose proofs are found in appendix A.

Proposition 3 Under assumptions 13–15, γ̂N
a.s.−→ γ0 as N →∞ for fixed T .

Proposition 4 Under assumptions 13–18,
√
N(γ̂N − γ0)

d→ N(0,A−1BA−1) as

N →∞ and T is fixed, where

B = E

{
∂h′1(γ0)

∂γ
W 1h1(γ0)h′1(γ0)W 1

∂h1(γ0)

∂γ ′

}
(2.7)
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and A is given in assumption 17.

Note that assumptions 13-18 are standard regularity conditions in the M-

estimation literature. In particular, assumption 15 is necessary and sufficient for pa-

rameters identification, while assumptions 14, 16, and 18 are sufficient but not neces-

sary. Moreover, since these assumptions depend on the form of fj(y10,x1,θ), j = 1, 2,

and W 1, they can be significantly simplified under extra specifications of model (2.1)

as emphasized in the next section.

2.3 Asymptotically Optimal SLS

From equation (2.7) we see that the asymptotic covariance of γ̂N depends on the

weight matrix W i. In this section we derive the asymptotically optimal (efficient)

SLS estimator by choosing the optimal weight matrix that minimizes the asymptotic

variance of
√
Na′(γ̂N − γ0), for all a ∈ IR`+2.

Proposition 5 Suppose U 1 = E {h1(γ0)h′1(γ0)| y10,x1} is nonsingular with proba-

bility one, and assumptions 14–18 are satisfied with W 1 = U−1
1 . Then the asymp-

totically optimal SLS estimator is obtained by taking W i = U−1
i , i = 1, 2, ..., N .

The proof is straightforward by noting that E (R′R)−E (R′Q)E−1 (Q′Q)E (Q′R)

is nonnegative definite and it is zero matrix if W 1 = U−1
1 , where

R = U
1/2
1 W 1

∂h1(γ0)

∂γ ′
, Q = U

−1/2
1

∂h1(γ0)

∂γ ′
.
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Since the optimal weight U−1
i depends on γ0, E(εjit|yi0,xi) and E(ηji |yi0,xi), j =

3, 4, the optimal SLS estimator is not feasible. The corresponding feasible SLS

estimator can be calculated by plugging in consistent estimators of these unknown

quantities in U−1
i . This feasible optimal SLS (FOSLS) estimator can be regarded as

a two-step M-estimator which is consistent under the following regularity condition

E sup
Γ∗

∥∥U−1
1 (γ∗)

∥∥(y4
10 + ‖x1‖4 + sup

Θ
f 2

2 (y10,x1,θ) + η4
1 + ε4

1t + 1

)
<∞, (2.8)

where γ∗ is a vector containing all the generic parameters appearing in U−1
1 including

γ itself, and Γ∗ is the corresponding compact parameter space. Moreover, we can

use theorem 6.1 of Newey and McFadden (1994) to show that the FOSLS and the

(infeasible) optimal SLS estimators have identical asymptotic distributions.

Although assumptions 14–18 and condition (2.8) look complicated, they could be

greatly simplified by specifying the functional forms of E(ηji |yi0,xi), j = 1, 2, 3, 4, and

E(εjit|yi0,xi), j = 3, 4. To illustrate this point, we consider a common specification

of model (2.1) which is often used to derive the conditional-type estimators such as

the CGLS (Blundell and Bond, 1998) and the RML (Alvarez and Arellano, 2003).

To simplify the notations and comparisons with other estimation approaches found

in the literature, we consider model (2.1) without the regressor term xit under the

following two assumptions.

Assumption 19 E(ηi|yi0) = θ01 + θ02yi0, and V (ηi|yi0) = exp (θ03).

Assumption 20 E(εjit|yi0) = µj(ε), and E ((ηi − θ01 − θ02yi0)j|yi0) = µj(η), j = 3, 4.
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Under these two assumptions U−1
i has a special structure so that the regularity

assumptions 14, 16, 18 and condition (2.8) are implied by E(y4
i0) <∞. Moreover,

in light of assumption 19 we can rewrite the identification assumption 15 as

E(y4
i0) >

[E(y2
i0)]

3
+ [E(y3

i0)]
2 − 2E(yi0)E(y2

i0)E(y3
i0)

V (yi0)
, and T ≥ 2.

To compute the FOSLS estimator, we suggest to use the RML approach to get a

preliminary consistent estimates of γ0, µj(ε) and µj(η), j = 3, 4, then plug in those

estimates in U−1
i . This does not affect the asymptotic properties as mentioned

before.

We also suggest another version of the FOSLS, called FOSLS1, which may be

more robust to any possible stochastic dependence between εit and ηi, and does not

require initial estimates for µj(ε), µj(η), j = 3, 4. It is obtained by using the following

weight matrix

Ŵ i = C ′
(
yi0, θ̂

0

N , α̂
0
N

)( 1

N

N∑
i=1

h∗i (γ̂
0
N)h∗

′

i (γ̂0
N)

)−
C
(
yi0, θ̂

0

N , α̂
0
N

)
, (2.9)

where γ̂0
N is the preliminary consistent estimator of γ0, and C (yi0,θ, α) is a trans-

formation matrix which maps hi(γ) into

h∗i (γ)=
(
u∗it, 1 ≤ t ≤ T, u∗itu

∗
is − ν∗its(σ2, θ3), 1 ≤ s ≤ t ≤ T

)′
,

where u∗it = yit − αyit−1 − f1(yi0,θ) and ν∗its(σ
2, θ3) = exp (θ3) + σ21{s=t}. It can be

shown that under assumption 20, the FOSLS1 has the same asymptotic distribution

of the infeasible OSLS estimator, however it may have different rate of convergence

compared to the FOSLS.
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A group of researchers have been searching for the semiparametric efficient

estimators for the dynamic panel data model under different setups. Chamberlain

(1992) derived the optimal instrumental variables for the first difference equation

of model (2.1) under the sequential conditional moment restrictions. He showed

that the GMM estimator based on these optimal instrumental variables attains

the semiparametric efficiency bound of the model. Unfortunately, his optimal

instrumental variables involve various conditional expectation functions which need

to be imputed by nonparametric techniques. Hahn (1997) showed that the GMM

estimator based on an increasing set of instruments as the sample size grows would

achieve the semiparametric efficiency bound calculated by Chamberlain (1992). He

also discussed the rate of growth of the number of instruments for the case of

using the Fourier series and polynomial series as instruments. More recently, Park

et al. (2007) used the geometric approach of Bickel et al. (1993) to construct an

estimator which attains the semiparametric efficiency bound under the RE modeling

approach. They assumed stationarity of the process, independence between the

subject effect and the initial observation, normality distribution of the residual errors,

and unknown distribution of the subject effect.

A natural question arises at this point. Does the optimal SLS estimator efficiently

use the information inherent in the conditional moments E {hi(γ0)|yi0,xi} = 0 ?.

To answer this question we use Chamberlain (1987) framework to derive the efficiency

bound under E {hi(γ0)|yi0,xi} = 0. According to lemma 2 of Chamberlain (1987),

the minimum bound of the asymptotic variance under these conditional moments is
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given by

F ∗0 = E−1

{
E

(
∂h′i(γ0)

∂γ
|yi0,xi

)
E−1 (hi(γ0)h′i(γ0)|yi0,xi)E

(
∂hi(γ0)

∂γ ′
|yi0,xi

)}

= E−1

{
∂h′i(γ0)

∂γ
U−1
i

∂hi(γ0)

∂γ ′

}
. (2.10)

According to proposition (5), the optimal SLS estimator attains Chamberlain’s

bound of variance, therefore it is a semiparametric optimal estimator in that sense.

We complete this discussion about the SLS efficiency by comparing the asymptotic

variance of the optimal SLS estimator given in (2.10) with the asymptotic variance

of the RML estimator given by equation (A.11) in the appendix A. Note that the

RMLE is identical to the MLE conditional on the first observation when the error

components are normally distributed. Theoretically the optimal SLSE is not less

efficient than the RMLE as indicated by equations (A.11, A.12 and A.13) in the

appendix A. Unfortunately it is difficult to investigate the gain of efficiency due to

the optimal SLSE analytically, therefore we calculate the asymptotic variances of

the two estimators and compare them numerically. The percentage gain of efficiency

in estimating α0 as a function of T and α0 is calculated as shown in Figure 2.1,

where z-axis represents the percentage reduction in the variance of RMLE(α0) if we

alternatively use the optimal SLSE(α0). Many scenarios are considered wherein we

change the data generating process (stationary or nonstationary), the distribution

of the disturbance term, and the the distribution of the unobserved subject effect.

Our observation indicates strongly that the asymptotic variance of the optimal

SLSE(α0) is strictly less than that of the RMLE(α0) except for the case µ3(ε) = 0

and µ4(ε) = 3σ4
0 (which is true if the disturbance term has a normal distribution), in
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(a) Stationary, εit|ηi, yi0 ∼ χ2
(1) (b) Stationary, εit|ηi, yi0 ∼ t(5)
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Figure 2.1: The reduction (%) in the variance of RML(α0) gained by the OSLS
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which case both estimators have the same asymptotic variances.

We conclude this section by introducing our proposed specification test named

SW. It is designed to test for

H0 : E {hi(γ0)|yi0,xi} = 0 vs. Ha : E {hi(γ0)|yi0,xi} 6= 0,

where

hi(γ) = (yit − µit(γ), 1 ≤ t ≤ T, yityis − νits(γ), 1 ≤ s ≤ t ≤ T )′ ,

and

µit(γ0) = E(yit|yi0,xi), νits(γ0) = E(yityis|yi0,xi).

Define hN(γ) = 1
N

∑N
i=1 hi(γ), then the test statistic SW is given by

SW = N h′N(γ̂N) Ĝ
−1

N hN(γ̂N)

where γ̂N is defined by equation (2.5) and ĜN is given by

ĜN =
1

N

N∑
i=1

P i(γ̂N)hi(γ̂N)h′i(γ̂N)P ′i(γ̂N),

where

P i(γ̂N) = I − D̄N(γ̂N)A−1
N

∂h′i(γ̂N)

∂γ
W i,

AN =
1

N

N∑
i=1

∂h′i(γ̂N)

∂γ
W i

∂hi(γ̂N)

∂γ ′
,
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and

D̄N(γ̂N) =
1

N

N∑
i=1

∂hi(γ̂N)

∂γ ′

Under H0, it can be shown that

SW
d→ χ2

T (T+3)/2 as N →∞ and T is fixed.

The proof is straightforward by applying the mean value theorem for random

functions on two stages. We note here that the SW test can be used to test a

general specification of the first two conditional moments, even more general than

the specification given by equations (2.3, 2.4). More interesting, the test doesn’t

postulate either using the optimal weight matrix in calculating γ̂N nor having initial

estimates for µj(ε), µj(η), j = 3, 4. Moreover, the test can generalized and used in

other platforms of SLS estimation. In the next section we examine the small sample

properties of the SLS estimators.

2.4 Monte Carlo Simulations

In this section we carry out some Monte Carlo simulations to examine the finite

sample performance of the two feasible OSLS estimators, namely FOSLS and FOSLS1.

We also compare them with the marginal pseudo maximum likelihood (MPML)

(Arellano, 2003), the linear first differenced GMM (Arellano and Bond, 1991), and

the random effects pseudo maximum likelihood (RML) (Alvarez and Arellano,

2003) estimators. Following those authors we assume that the data are generated

according to model (2.1) without covariates and after adding assumptions 19 and 20.
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Specifically, yi0
i.i.d∼ N

(
0, 2

(1−α2
0)(1−α0)

)
, ηi|yi0 = θ01 +θ02yi0 +exp (θ03)F1, εit|ηi, yi0

i.i.d
=

σ2
0F2, θ01 = 0, θ02 = c

(
1−α2

0

2

)
, and θ03 = log

(
1−α0

2

)
. We consider the following

scenarios.

Normal stationary process: c = 1, and F1, F2 ∼ N(0, 1). Under this setup, the

MPML estimator is the true MLE computed using all data including the initial

observations.

Nonnormal stationary process: c = 1, and F1, F2 ∼ (χ2
(1) − 1)/

√
2.

Normal nonstationary process: c = 20, and F1, F2 ∼ N(0, 1). This choice of

c makes the y process nonstationary with respect to the first and second

moments. Under this setup the MPML estimator is inconsistent and the

results demonstrate the consequence of misspecifying a nonstationary process.

Nonnormal nonstationary process:

(a) c = 20, F1 ∼ N(0, 1), and F2 ∼ (χ2
(1) − 1)/

√
2.

(b) c = 20, F1 ∼ N(0, 1), and F2 ∼
√

3/5 t(5).

(c) c = 20, F2 ∼ N(0, 1), and F1 ∼ (χ2
(1) − 1)/

√
2.

(d) c = 20, F2 ∼ N(0, 1), and F1 ∼
√

3/5 t(5).

In all scenarios the sample sizes are N = 30, 300 and T = 5, 10, 15, and the

parameter values are α0 = 0.2, 0.5, 0.8. Five criteria were used to assess the finite

sample performance of the given estimators, namely, the mean bias, median bias, root

mean squared error, median absolute deviation (MAD), and the interquartile range.
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All results are based on 1000 Monte Carlo replications. To allow for comparing our

results with literature, some of the specifications are chosen to be very close to those

in (Blundell and Bond, 1998; Alvarez and Arellano, 2003; Okui, 2009).

Tables 2.1–2.4 (next page) give the simulation results of the first three scenarios

and the nonnormal nonstationary (a) scenario respectively. The output tables for

the other scenarios are not produced to save space but their results are mentioned

in the discussion below. In the tables we report the MADs and the medians of the

estimators. The MADs are computed relatively to the FOSLS estimator which is

taken as reference. Other criteria are not reported to save space.

Results and Discussion

Table 2.1 shows that the MAD of the FOSLS is decreasing in T and nondecreasing

in α0. The fact that the FOSLS and the RML have equal asymptotic variance under

the normality of the error components (see A.13) appears clearly for α0 = 0.2, 0.5.

Larger values of N are required to see this fact for larger α0. The MPML has the

smallest MAD almost everywhere. This is consistent with theory because the MPML

is the most efficient estimator under normality. The gap between the MPML and the

FOSLS is getting smaller as α0 decreases or T increases. The linear first-differenced

GMM is generally inferior, and the problem of weak instruments appears clearly

for large α0, which is consistent with (Blundell and Bond, 1998). The FOSLS1 is

not reliable for small N . This is because the robust estimate of the optimal weight

matrix is not well behaved for N < T (T + 3)/2 (see 2.9). Moreover, the relative

MADs of the FOSLS1 for N = 300 show that the estimator has a slower convergence
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rate than the FOSLS, which was expected. The downward bias in FOSLS vanishes

quickly as T increases.

Table 2.2 shows the wide out-performance of the FOSLS for small and large N

and specially for small T . The relative MADs of RML reveal that the true levels of

variance reduction gained by FOSLS (see Figure 2.1.a) require N to be larger than

300. The FOSLS competes well with the MPML for small N . Although the FOSLS1

is not reliable for small ratio N/T , it performs well for N = 300. The FOSLS has

smaller bias for small N than other estimators.

Table 2.3 shows that the FOSLS, RML and GMM compete very well for small

and large N . The close performance of the FOSLS and RML is due to the normality

of εit. The improvement in the GMM performances is due to the nonstationary of

the yit process. The table shows how the MPML breaks down everywhere under

this scenario. The FOSLS1 requires large ratio N/T to get stable so it is not

recommended in this scenario.

Table 2.4 shows the effect of the skewness of the εit distribution on the performance

of the FOSLS. The RML and GMM are less efficient than the FSOLS by at least

30% for N = 30, and by as high as 59% for N = 300. The relative MADs of the

RML for large N are consistent with Figure (2.1.c). Although the true levels of

variance reduction gained by FOSLS require N to be larger than 300, yet the gain of

efficiency for small N is much larger than the corresponding gain in the nonnormal

stationary scenario.

The numerical results of the three remaining nonnormal nonstationary scenarios

(b,c,d) show that the outperformance of the FOSLS(α0) appears clearly if εit is not

normally distributed. .
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Performance in the Presence of Covariates

In the previous simulation studies we considered models without covariates in order

to make our numerical results comparable with existing results in the literature

such as (Blundell and Bond, 1998; Alvarez and Arellano, 2003; Okui, 2009). In

what follows we investigate if the finite sample performance of the FOSLS will

change if we add some covariates in the model. In particular, we consider the

data generating process of (Kiviet, 1995, Appendix B), who compared some least

squares and instrumental variable (IV) type estimators (among them the linear

first difference GMM of Arelano and Bond 1991) over more than 14 parameters

combinations (designs). Following (Kiviet, 1995, Section 5 and Appendix B) and

using his notations and definitions, the structural equation for the individual i takes

the form (we omit the subscript i)

yt = γyt−1 + βxt + η + εt, t = 1, 2, . . . , T, (2.11)

and the yt-process is generated from the reduced equation (Kiviet, 1995, B8)

yt = βφt + ψt + η/(1− γ), t = 0, 1, 2, . . . , T, (2.12)

where φt ∼ AR(2) and ψt ∼ AR(1) are mutually independent stationary processes

and both are independent of η ∼ N(0, σ2
η).

The orthogonality and normality assumptions of Kiviet (1995) imply the following

identities:

E(η xt) = 0 t = 0, 1, 2, . . . , T, (2.13)

V (y0) = β2V (φ0) + V (ψ0) + σ2
η/(1− γ)2, (2.14)
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E(η y0) = σ2
η/(1− γ), (2.15)

E(xt y0) = λ ρt t = 0, 1, 2, . . . , T, λ ≡ β
√
V (φ0)V (ξ0)/(1− ρ2) (2.16)

and

E(η|y0, x1, . . . , xT ) = f1(y0, x1, . . . , xT ,θ) = θ2 y0 + θ4 x1, (2.17)

where

θ2 =
σ2
η

(1− γ)(V (y0)− λ2(1− ρ2)/V (ξ0))
(2.18)

and

θ4 = θ2 λ ρ (1− ρ2)/V (ξ0). (2.19)

Moreover, the joint normality implies that V (η|y0, x1, . . . , xT ) is constant and

does not depend on y0, x1, . . . , xT , and hence the conditional variance is represented

in terms of one extra parameter, namely exp (θ3) as in our notation. Accordingly

we have totally seven parameters. Tables 2.5 and 2.6 give summary statistics (bias,

standard deviation, root mean squred error) of the linear first differenced GMM1

(Arellano and Bond, 1991), RML, and FOSLS across the 14 mentioned designs.

As expected, the RML (which is the conditional MLE) is the best in all cases

because the data are generated using the normal distribution. However, the FOSLS

(which is asymptotically as efficient as the RML) is very close to the RML, as can

be seen from Tables 2.5 and 2.6. These results show that in the presence of strictly
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Table 2.5: Bias, Standard deviation and RMSE of FOSLSE for dynamic
linear model (compared to Kiviet 1995), N = 100, T = 6

Bias Std RMSE

Design Estimator α β α β α β

I GMM1 -0.013 0.003 0.166 0.120 0.168 0.120
RML 0.000 0.013 0.092 0.087 0.092 0.087

FOSLS 0.000 0.013 0.110 0.104 0.112 0.104

II GMM1 -0.029 0.002 0.388 0.130 0.396 0.131
RML -0.005 -0.006 0.106 0.093 0.107 0.094

FOSLS -0.005 -0.006 0.107 0.098 0.107 0.099

III GMM1 -0.060 -0.002 0.215 0.610 0.216 0.611
RML -0.020 0.008 0.117 0.405 0.117 0.405

FOSLS -0.019 0.007 0.141 0.509 0.146 0.509

IV GMM1 -0.015 0.007 0.358 0.616 0.361 0.616
RML -0.003 0.019 0.146 0.436 0.146 0.436

FOSLS -0.003 0.019 0.153 0.503 0.154 0.503

V GMM1 -0.038 -0.007 0.126 0.057 0.128 0.057
RML -0.003 -0.015 0.057 0.042 0.058 0.043

FOSLS -0.003 -0.014 0.067 0.047 0.068 0.047

VI GMM1 -0.060 -0.026 0.304 0.065 0.313 0.066
RML -0.021 0.023 0.059 0.046 0.059 0.047

FOSLS -0.020 0.023 0.063 0.047 0.063 0.048

GMM1 stands for the linear first differenced GMM as in (Arellano and Bond, 1991).
There is little difference between our GMM1 results and Kiviet’s results. This can be
explained in light of two mistakes we found in kiviet’s equation B6, namely ξ0 and ξ1
are supposed to be standardized before used. Some correspondences were done with
Kiviet about this issue.
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Table 2.6: Bias, Standard deviation and RMSE of FOSLSE for dynamic
linear model (compared to Kiviet 1995), N = 100, T = 3

Bias Std RMSE

Design Estimator α β α β α β

VII GMM1 -0.024 -0.008 0.277 0.291 0.280 0.292
RML -0.001 0.009 0.112 0.195 0.112 0.195

FOSLS -0.021 0.010 0.134 0.246 0.138 0.246

VIII GMM1 -0.026 -0.005 0.388 0.297 0.392 0.298
RML -0.006 0.004 0.139 0.210 0.140 0.211

FOSLS -0.010 0.005 0.147 0.236 0.147 0.236

IX GMM1 -0.081 -0.014 0.056 0.071 0.057 0.071
RML 0.006 0.017 0.036 0.050 0.036 0.052

FOSLS -0.002 0.015 0.037 0.050 0.037 0.052

X GMM1 -0.074 -0.011 0.065 0.309 0.067 0.309
RML -0.004 0.009 0.048 0.182 0.048 0.183

FSOLS -0.005 0.009 0.048 0.183 0.048 0.184

XI GMM1 -0.027 -0.036 0.072 0.069 0.077 0.069
RML -0.001 0.006 0.044 0.045 0.044 0.045

FOSLS -0.036 0.008 0.044 0.045 0.044 0.046

XII GMM1 -0.038 -0.019 0.088 0.344 0.096 0.344
RML 0.000 0.006 0.058 0.178 0.058 0.179

FOSLS -0.030 0.003 0.058 0.180 0.058 0.180

XIII GMM1 -0.047 -0.034 0.099 0.148 0.116 0.148
RML 0.013 0.012 0.056 0.086 0.059 0.086

FOSLS -0.006 -0.014 0.059 0.087 0.062 0.087

XIV GMM1 -0.051 -0.018 0.100 0.877 0.117 0.877
RML 0.013 0.009 0.057 0.430 0.060 0.431

FOSLS -0.005 0.007 0.060 0.434 0.063 0.435

GMM1 stands for the linear first difference GMM as in (Arellano and Bond, 1991).
There is little difference between our GMM1 results and Kiviet’s results. This can be
explained in light of two mistakes we found in kiviet’s equation B6, namely ξ0 and ξ1
are supposed to be standardized before used. Some correspondences were done with
Kiviet about this issue.
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exogenous variable the FOSLS is a good alternative to the most efficient RML under

normality.

We have also done another simulation under nonnormal nonstationary setup

(including strictly exogenous variable) which is different from the setup of Kiviet

(1995). The results are not reported because they are similar to those in Table 2.4.

They also emphasize the outperformance of FOSLS compared to the RML due to

deviation from normality.

Robustness of FOSLS against Near Unit-root Specification

It is well known in the literature that linear first-differenced GMM is generally

inferior when the true value of the autoregressive parameter; α0 is close to one due to

the problem of weak instruments see (Blundell and Bond, 1998). On the other hand,

from Tables 2.1–2.4 we have seen that the performance of FOSLS is not affected

by large values of α0. Furthermore, it becomes closer to the MPML and sometimes

is even better due to the efficiency gain in the case of nonnormal disturbances, see

Table 2.2. Hence it is interesting to investigate the performance of FOSLS when α0

is very close to one (unit root case) and see if it breaks down like the GMM or it is

stable like the MPML.

To answer these questions we carry out a simulation using the nonnormal

stationary process defined on page 53. The sample sizes are N = 100, 300 and T =

3, 6 and parameter values are α0 = 0.9, 0.95, 0.99. The results are reported in

Table 2.7 which shows that the FOSLS is more efficient than the RML due to the

skeweness in the within group disturbance and it comes with less bias. Although

the FSOLS has larger downward bias than the MPML but the difference vanishes
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quickly as T and α0 increase. These results demonstrate that the FSOLS is robust

against unit root process and is even more efficient than the MPML for T = 6 and

α0 = 0.99. This is the case because, first, the MPML loses some efficiency due to

nonnormality and, second, the MPML is not allowed to go over the boundary 1. In

contrast, the FSOLS is computed in a fashion which permits so. Generally speaking,

the FSOLS gets closer to the MPML as α0 increases.

We conclude this section by examining to what extent the asymptotic variance

formula for the OSLS (see A.12) can be used to approximate its counterpart for

different values of N , T and α0. Table 2.8 shows that the asymptotic formula

provides reliable estimates of the corresponding small sample standard errors (as

given by the simulations). In the next section we use the U.S. airfares data to apply

the FOSLS and investigate its practical merits.

Table 2.8: The RMSE of the FOSLS calculated by simulation and
using the asymptotic formula (Nonnormal Nonstationary)

α0 = 0.2 α0 = 0.5 α0 = 0.8

Simulation Asy Formula Simulation Asy Formula Simulation Asy Formula

N T = 5
30 0.00866 0.00815 0.00526 0.00501 0.00268 0.00288
300 0.00265 0.00258 0.00159 0.00158 0.00094 0.00091

T = 10
30 0.00761 0.00724 0.00365 0.00388 0.00161 0.00157
300 0.00239 0.00229 0.00127 0.00123 0.00047 0.00050

T = 15
30 0.00729 0.00703 0.00369 0.00364 0.00119 0.00122
300 0.00229 0.00222 0.00112 0.00115 0.00038 0.00039
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2.5 Empirical Example: The U.S. Airfare

In this section we use a real data example to demonstrate the practical usefulness

of the SLS approach in comparison with the IV approach and to assess the prac-

tical gain of efficiency over the RML estimator. In particular, we use a data set

published in (Wooldridge, 2010) and downloadable from http://mitpress.mit.

edu/sites/default/files/titles/content/wooldridge/statafiles.zip. The

dataset airfare.dta contains data for the average airfares, average number of pas-

sengers, distance, and the market share of the largest carrier for each of the top

1149 city-pair markets within the contiguous 48 US states for the fourth quarters of

1997, 1998, 1999, and 2000. The data are from the Domestic Airline Fares Consumer

Report published by the U.S. Department of Transportation. The city pairs in the

sample account for about 75 percent of total within-48-state passenger trips. The

panels are balanced. A fairly clear description of the data can be found at website

http://academic.reed.edu/economics/parker/s10/312/Asgns/proj3.html.

Among the main factors that are likely to influence airfares are the flight distance

(directly related to flight-crew wages, fuel and airplane user cost), the market size

(average number of passengers per day flying the route), and market concentration

(fraction of route traffic accounted for by the largest carrier). The ticket prices are

set and adjusted through a fairly dynamic and interactive system. In addition, most

airfares determinants are also influenced by the airfare hence they are endogenous

variables. Since in most cases the airline set the current airfare by adjusting the

previous year fare, a linear dynamic panel regression model with unobserved route

heterogeneity and time dummies may be appropriate to measure the dynamic effect

of those determinants. All the variables (except the concentration) are measured
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in logarithmic scale and hence we are estimating the elasticity of the airfare with

respect to other determinants.

The bivariate scatterplots are shown in Figure 2.2. It shows linear dependence

Figure 2.2: Matrix plot for the airfares determinants

between the current and previous (log of) airfares; lfare and lfare1 respectively,

justifying a dynamic linear panel data model. Matching with rational expectation

Figure 2.2 shows moderate positive linear association between the lfare and ldist.

Another factor that is likely to influence airfares is the amount of competition on the

route. More concentrated routes would be expected to have higher fares than routes

on which many airlines compete. A higher value of the variable concen should be
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associated with higher lfare. However, this is not clear from Figure 2.2. A possible

explanation is the clear negative correlation between the concen and ldist which

-given the positive correlation between the lfare and ldist- probably hides the rational

positive correlation between concen and lfare. The relation between lfare and the

first lag of concen (concen1) is not clear either theoretical or empirically. It can be

positive or negative depending on how fast the airlines market can change from the

state of monopoly to the state of perfect competition over the time.

Full planes are cheaper (per passenger) than empty ones, so costs, and therefore

fares, are expected to be lower on heavily travelled routes. More serious, the

log of average number of passengers (lpassen) is likely to be endogenous to the

determination of airfares. Figure 2.2 shows weak correlation between (lpassen or

lpassen1) and the lfare. This again emphasizes the need for multiple regression

model. Although we are expecting to see negative correlation between the lpassen

and lfare, the direction of the relationship between lpassen1 and lfare can be positive

or negative depending on how the airlines set their ticket prices in response to last

year changes in average number of passengers per day flying the route.

In light of the above discussion, it reasonable to start by a linear dynamic model

with unobserved route heterogeneity and time dummies D99, D00 for years 1999

and 2000 respectively. The model equation takes the form

lfareit = α0 + α1 lfarei(t−1) + β1 ldisti + β2 concenit + β3 conceni(t−1)+

β4 lpassenit + β5 lpasseni(t−1) + β5D99 + β6D00 + ηi + εit

i = 1, 2, . . . , 1149, t = 1998, 1999, 2000. (2.20)
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We started by fitting the proposed equation (2.20) using a naive OLS estimation.

The results are shown in the OLS column of Table 2.9 (page 71). It is well known

that the OLSEs are not consistent due to the built-in correlation between ηi and

lfarei(t−1), however the high goodness of fit of the OLS fitted model (R2 = 0.95)

reflects the high explanatory power in the regressors. We also use the two stage

linear first differenced (GMM2) of Arellano and Bond (1991) to fit the model, where

the lags of order at least two of lfare, concen, and lpassen are used as instrumental

variables. This was necessary to turn around the possible endogeneity of (concen,

lpassen) and of course lfare. We used the xtdpd command in STATA 13.0:

xtdpd L(0/1).lfare y99 y00 L(0/1).concen L(0/1).lpassen,

noconstant twostep dgmmiv(lfare) dgmmiv(concen) dgmmiv(lpassen)

div(y99) div(y00) div(ldist, nodifference) artests(2)

The results are shown in Table 2.9 under Model-I. Wooldridge (2010, 373) used

the GMM2 to fit a first order linear dynamic model which includes only concen

(treated as strictly exogenous) in addition to the dummies. The estimate of the

autoregressive parameter was 0.333 which is not far from ours. According to the

reported value of Sargan test (see Table 2.9) the GMM sequential moments based

on the reduced difference form of model (2.20) are not rejected. The only concern

is the negative sign of the estimated elasticity of lfare with respect to concen (p-

value=0.059). A possible explanation for this unexpected sign is the problem of

weak instruments which is likely to occur in identifying β2 given the strong positive

linear correlation between concen and concen1 as seen in Figure 2.2. This is similar

to the situation where we use the first differenced GMM estimator to estimate the
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autoregressive parameter when it is closed to one (see Blundell and Bond, 1998).

This problem causes inflation in the coefficient variance and may lead to unreliable

estimates. This is an example where it is highly recommended to use the RE

approach with the level data instead of adopting the FE approach with differenced

data. The RE approach doesn’t depend on instrumental variable and hence is able

to give more reliable estimates in such a case.

However, since the sequential moments are correctly specified for Model-I, the

GMM estimates can still be used to recover the within group errors εit and the

unobserved routes effects ηi. We followed Arellano (2003, 118–119) to estimate the

time effect for year 1998 and consequently ηi. Then realizations of εit are obtained

directly from equation (2.20).

Examining the relationship between η̂i and the initial values (1997) of the model

variables, (lfare0, concen0, lpassen0 and ldsit0) will help in breaking the built-in

correlation between the unobserved route effect and other regressors when we use

the RML or the SLS approaches. Figure 2.3 (page 73) shows that ηi is likely to be

linearly correlated with initial values. For more investigation on this point we fitted

the following auxiliary regression equation

η̂i = −5.507+0.641 lfarei0 +0.464 conceni0−0.041 ldisti0 +0.286 lpasseni0, (2.21)

with all of its coefficients significant at 0.01 level of significance. Furthermore,

Figure 2.4 (page 74) indicates that the variance of εit is time invariant. In addition,

the within groups residuals don’t show significant correlation over time. Hence the

standard assumptions on ηi and εit can be adopted as reasonable working assumption

for model (2.20). These assumptions will be tested implicitly when we use our SW
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Figure 2.3: Correlation between GMM-η̂ and initial values of the study variables.

test latter.

Based on the auxiliary equation (2.21) the RML estimates are obtained by fitting

the following equation using the ‘lme’ command in R.

lfareit = θ0 + α1 lfarei(t−1) + β1 ldisti + β2 concenit + β3 conceni(t−1)+

β4 lpassenit + β5 lpasseni(t−1) + β6D99 + β7D00 + θ1 lfarei0+

θ2 conceni0 + θ3 lpasseni0 + η∗i + εit,

i = 1, 2, . . . , 1149, t = 1998, 1999, 2000. (2.22)

The coefficients estimates are given Table 2.9 under model-I. Figure 2.5 (page 75)

shows the flat tail symmetrical distribution of the within group residuals ε̂it, which

can be approximated by a Student t-distribution with df=5. Hence there is a possible
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Figure 2.4: Homoscedasticity of GMM-ε̂it across time

efficiency gain by applying the FOSLS estimator. We used the sample skewness and

kurtosis of ε̂it, and η̂∗it to calculate the optimal weight matrix and fit the FOSLS.

Only the estimates of the main regression equation are reported in Table 2.9.

The estimates for the the other auxiliary variables lfare0, concen0, lpassen0 are not

reported to save space and also the estimates of the variance components are not

reported because they are not of main interest. The standard errors of the GMM2

are computed using the robust formula. The standard errors of RML and FOSLS

reported in Table 2.9 are computed using formula (A.11 and A.12) respectively.

In Model-I, Sargan test doesn’t provide evidence against the GMM sequential
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Figure 2.5: Flat tails symmetric distribution of RML-ε̂it

moments, however our test (SW) shows slight evidence against the first and second

moments specification as given by equations (2.3 and 2.4). This motivates us to

double check the empirical sampling distribution of SW under the specification

defined by equations (2.3 and 2.4). We used the following steps: First, use the

RML estimates of Model-I to generate data from equation (2.22), drawing η∗i and

εit from Student t-distribution with df 6 and 5 respectively to be as close as possible

to the observed residuals and estimated random effect of Model-I. Second, use the

generated data to fit equation (2.22) using the RML followed by FSOLS and then

calculate the SW statistic. We Repeated these two steps 1000 times and plot a graph

75



for the SW statistics to get approximation to the empirical sampling distribution

of SW under H0. Figure 2.6 shows that a sample size of 1149 routes is enough to

SW Test Statistic

D
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0.
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08

χ2(9)

Figure 2.6: The empirical vs. asymptotic sampling distribution of SW using 1000
data cloning

make the empirical sampling distribution very close to the asymptotic one; χ2
9 under

H0. Accordingly Model-I needs some adjustments by adding or eliminating some

variables to pass the SW test.

To proceed, we fit equation (2.22) without the auxiliary variable concen0 because

it is not of main interest and at the same time it has weak correlation with η̂i as

seen from Figure 2.3. This leads to Model-II which has the same list of explanatory

variables as Model-I and of course the same value of Sargan test (6.41). On the other

hand the value of SW statistic drops to 4.01 which is insignificant at any reasonable
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level of significance. This suggests that Model-II should be used for testing purpose

on condition that the signs of FOSLS estimates are consistent with the economic

theory. Before going further, it is important to take into consideration the robust

standard error of the FSOLS as computed using formula in proposition 4. Due to

lack of space in Table 2.9 they are reported in Table 2.10 below. According to these

Table 2.10: Model-II robust standard errors of the FOSLS calculated by
proposition 4

θ0 α1 β1 β2 β3 β4 β5 β6 β7

Const. lfare1 ldist concen concen1 lpassen lpassen1 D99 D00

0.061 0.041 0.007 0.034 0.034 0.026 0.023 0.004 0.005

robust standard errors, two variables are candidate to be dropped from the model,

namely the concen1 and lpassen1.

Model-III is obtained by dropping only concen1 from model-II. However, both

Sargan test and SW test reject this new specification. Accordingly, Model-IV is

obtained by dropping only lpassen1 from model-II. Interestingly, SW test rejects

Model-IV specification, while Sargan test doesn’t reject the GMM sequential moments

of this model. Since the GMM estimate of β2 comes with negative sign (which doesn’t

make sense), model-IV is not recommended and therefore model-II is preferred. It

does include both concen1 and lpassen1 although they may be insignificant if we

use the robust standard errors to test for them. On the other hand, if we use the

standard errors of RML and FOSLS as reported in Table 2.9 we can keep both

concen1 and lpassen1 according to FOSLS and keep only lpassen1 according to

RML. Since we know that Model-III is rejected by SW test, it follows that using the

information inherent in the fourth moment through FOSLS was effective in keeping
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concen1 in model-II.

Finally, we emphasize that using the goodness of fit criteria for model selection

may lead to completely inappropriate conclusion. For example, if we try to use

the adjust R2 or RMSE, we will select the OLS estimates which are completely

misleading if we are interested in measuring the individual effects of the explanatory

variables.

In summary, the outcomes of this empirical study are useful in emphasizing the

following points.

First, differencing the data and using IVs is generally a risky approach to estimate

linear dynamic panel models with covariates. Sometimes it produces misleading

relations if the time varying variables are generated from autoregressive process

with high autocorrelation (common situation with economic data). In such a case

the linear first differenced GMM or other similar methods are not only unable to

estimate the marginal effect of the time invariant variables but also, more harmful,

weakly identify the marginal effect of the time variant explanatory variables.

Second, similar to Engel’s empirical example in the first chapter the information

inherent in the sample skewness and kurtosis of the within groups residuals can be

used to gain some efficiency and consequently save some important variables from

being wrongly eliminated from the model which may cause model misspecification.

In other word, by using the extra efficiency of the OSLS we avoid falling in any

misspecification traps.

Third, in this application we practically applied our proposed specification test,

and examined its sampling distribution under the correct specification of the model

using a data cloning approach. The empirical outcomes on this test cope with its
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theoretical ones, and we showed the usefulness of this test in selecting the suitable

model instead of using other commonly used goodness of fit criteria (such as RMSE

or R2, AIC) which are completely misleading if the model is not correctly specified,

especially with dynamic regression where the problem of endogenous is the default.

2.6 Summary

We examined SLS approach as an alternative to the commonly used RML or GMM

estimators for the linear dynamic panel data model. The estimator is introduced

through a semiparametric random effect approach which does not postulate any

distributional assumptions on the error components in the model. This SLS is based

on the first two moments of the outcome process given the initial observations and

covariates. For large N and fixed T , the consistency and asymptotic normality of the

SLS estimator were proven under fairly general regularity conditions. Furthermore,

we showed that the optimal SLS efficiently uses the information given by the

conditional moments of the outcome process. It reaches the bound of efficiency given

by Chamberlain (1987).

Focusing on the autoregressive parameter α0, we studied the over efficiency

of the optimal SLS relative to the RML. We found that there is a considerable

gain of efficiency when the distribution of the disturbances is asymmetric. From

a computational point of view, we suggested two feasible versions of the optimal

SLS. They (FOSLS, FOSLS1) are two-stage estimators having the same asymptotic

properties as the true optimal SLS. Furthermore, we introduced a new specification

test which can be used to compensate for the lack of robustness in the RE approach.
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We conducted different simulations to study the small sample performance

of FOSLS and FOSLS1 compared to the RML, first-differenced GMM, and the

MPML. We considered four main scenarios and various levels of N , T and α0. The

results showed the competitive performance of the FOSLS whether the process is

stationary or not and whether the error components are normally distributed or

not. The outperformance of the FOSLS appears clearly when the distribution of the

disturbances is skewed. The median absolute deviation of the RML was between

1.3 to 1.6 times higher than the median absolute deviation of the FOSLS under the

nonnormal nonstationary scenario. However, the performance of the FOSLS1 wasn’t

stable for N < T (T + 3)/2, so we don’t recommend it for small N and large T panel

data. Moreover, extra simulations were done to show that the good performance of

the FOSLS is not affected if either a strictly exogenous variable was added to the

structural autoregressive equation or the autoregressive parameter become very close

to one. It turns out that the asymptotic formula of the FOSLS variance provides

very accurate estimates of its small sample standard error.

Finally, we examined the practical usefulness of the SLS approach through an

empirical study on the U.S. airfares data. We make use of all the developed tools

in this chapter to find the best model which describes the determinants of airfares.

Few messages are got from this empirical study. First, using the extra information

inherent in the third and fourth moments of the process can refine the value of

the estimates considerably and this may save important explanatory variables from

being eliminated. Second, the FE approach may lead to unreliable estimates if there

is a possibility to have weak instruments for the differenced time varying covariates.

Last but not least, the level data is likely more informative than difference data, and

this can improve the estimation precision and the goodness of fit considerably.
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Conclusion and Future Work

In this dissertation we succeeded to generalize the SLS estimation approach of

Wang (2003, 2004) in two study areas of dynamic modelling; the ARCH nonlinear

regression model, and the linear dynamic panel data model. It is the first time to

provide a rigorous theory for the SLS approach in dynamic framework. Specifically,

in chapter 1 we generalized the SLS approach from the framework of cross sectional

data to the framework of time series, and in chapter 2 we generalized the treatment

of the SLS approach from static longitudinal data modelling to dynamic one. In both

cases the results come encouraging. For the first time, we proposed a specification

test for the SLS approach which can be used a diagnostic tool when we deal with

real data application.

There are several possible generalizations and extensions of the SLS approach

worth future investigation. For example, it is interesting to consider more general

linear or nonlinear GARCH structure for the error variance. Generalization to

multivariate processes should also be studied. Furthermore, since the SLS was

originally proposed in the literature to handle the problem of measurement error

in regression models, it is of a great interest to study the potential of using the

SLS approach to treat the measurement error problem in the GARCH nonlinear

regression models, and the nonlinear dynamic panel data models.
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Appendix A

Mathematical Proofs

Definition 6 Let {Zt} be a sequence of random vectors defined on a complete prob-

ability space (Ω,F , P ). Define Fn−∞ = F {Zt, t ≤ n}, F∞n+m = F {Zt, t ≥ n+m},

and

α(m) = sup
n

sup
{F∈Fn−∞, G∈F∞n+m}

|P (F ∩G)− P (F )P (G)| ,

then {Zt} is strong mixing of size −a if α(m) = O(m−a−δ), for some δ > 0.

Proof of Theorem 1

The proof is done in four steps as follow.

Step 1. We apply the mean value theorem for random functions, as given in

(Jennrich, 1969, Lemma 3), on the first order condition for a minimum of

QT (γ). Since γ0 is interior to Γ, there is a neighbourhood N ⊂ Γ of γ0.

Let F ∈ F be the set with P (F ) = 1 on which γ̂T (ω) → γ0 as T → ∞,

γ̂T (ω) = argminγ∈ΓQT (ω,γ), and fT (ω,θ) is continuously differentiable of
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order 2 on Θ, uniformly in T , T = 1, 2, . . .. By Jennrich’s Lemma, there exist

γ̈iT : Ω → Γ measurable–FT , T = 1, 2, . . . and i = 1, 2, . . . , (q + p + 1), such

that for ω ∈ F there exist T1(ω) ∈ N, where γ̂T (ω) is interior to N , γ̈iT (ω) is

lying on the segment connecting γ̂T (ω) and γ0, and∇2
γQ̈T (ω) (γ̂T (ω)− γ0) =

−∇γQT (ω,γ0) for all T > T1(ω), given that ∇2
γQ̈T (ω) is the (q + p + 1) ×

(q + p+ 1) Hessian matrix ∇2
γQT (ω,γ) with i th row evaluated at γ̈iT (ω).

Step 2. Let ĀT (γ) = 2T−1
∑T

t=1 E {∇γh
′
t(γ)W t∇γ′ht(γ)}, then we show there

exist F ′ ⊂ F with P (F ′) = 1 such that for ω ∈ F ′, we have

∥∥∥∇2
γQ̈T (ω)− ĀT (γ0)

∥∥∥ −→ 0 as T −→∞. (A.1)

By Hölder’s inequality, triangle inequality, and cr inequality, it turns out

that assumptions 2, 6 are sufficient to verify that ‖At(γ)‖ are dominated

by uniformly Lr-bounded functions, where At(γ) = 2∇γh′t(γ)W t∇γ′ht(γ) +

2 (h′t (γ)W t

⊗
Iq+p+1)∇γ′vec (∇γh′t (γ)) . Hence, by the the uniform law of

large numbers given in (White and Domowitz, 1984, Theorem 2.3) we have for

ω ∈ F ′

sup
γ∈Γ

∥∥∥∥∥∇2
γQT (ω,γ)− T−1

T∑
t=1

EAt(γ)

∥∥∥∥∥→ 0 as T −→∞.
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Moreover, by the triangle inequality we have

∥∥∥∥∥∇2
γQ̈T (ω)− T−1

T∑
t=1

EAt(γ0)

∥∥∥∥∥ ≤ sup
γ∈Γ

∥∥∥∥∥∇2
γQT (ω,γ)− T−1

T∑
t=1

EAt(γ)

∥∥∥∥∥
+ sup

K∈N

∥∥∥∥∥K−1

K∑
t=1

Ät:T (ω)−K−1

K∑
t=1

EAt(γ0)

∥∥∥∥∥ ∀ω ∈ F ′,

where Ät:T (ω) is EAt(γ) with i th row evaluated at γ̈iT (ω). Since γ̈iT (ω)→ γ0

as T → ∞, EAt(γ) is continuous on Γ uniformly in t, and EAt(γ0) =

2E {∇γh′t(γ0)W t∇γ′ht(γ0)}, then equation (A.1) is obtained immediately by

letting T → ∞ in the last inequality. Since ĀT (γ0) and V T are uniformly

nonsingular for all T sufficiently large (assumptions 7 and 9 respectively), then

for ω ∈ F ′ there exist T2(ω) ∈ N such that for all T > T2(ω),

V
−1/2
T ĀT (γ0)

√
T (γ̂T (ω)− γ0) = −V −1/2

T

√
T∇γQT (ω,γ0)

+ V
−1/2
T ĀT (γ0)

(
Ā
−1
T (γ0)−∇2

γQ̈
−1
T (ω)

)
V

1/2
T V

−1/2
T

√
T∇γQT (ω,γ0) .

(A.2)

Step 3. We use Cramér-Wold device (Rao, 1973, p. 123) to show that

V
−1/2
T

√
T∇γQT (γ0)

d−→ N (0, Iq+p+1) as T → ∞. Let λ ∈ Rq+p+1 such

that ‖λ‖ = 1, then it is enough to show that T−1/2
∑T

t=1 λ
′V
−1/2
T St (γ0)

d−→

N (0, 1) as T →∞, where St (γ0) = 2∇γh′t(γ0)W tht(γ0). By assumption 9

we have V
−1/2
T = O(1) and therefore it turns out by using Hölder’s inequality

and cr inequality that assumption 8 is sufficient for the double array of scalars{
mTt = λ′V

−1/2
T St (γ0)

}
to be uniformly Lr-bounded for all T sufficiently
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large. Since {ht(γ0),Ft} is a martingale difference, then E (mTt) = 0, and

var
(
T−1/2

∑T
t=1mTt

)
= 1 for all T sufficiently large. By Theorem 14.1 of

Davidson (1994), assumption 1 is sufficient for {mTt} to be strong mixing of size

−a, and hence by Theorem 5.20 of White (2001) we have T−1/2
∑T

t=1mTt
d−→

N (0, 1) as T →∞.

Step 4. Viewing γ̈iT as pointwise limits of sequences of simple functions, then

∇2
γQ̈T are measurable, and from step 2 we have

∥∥∥∇2
γQ̈T − ĀT (γ0)

∥∥∥ a.s.−→ 0 as

T →∞. By assumption 7 and Proposition 2.16 of White (2001), we can show

that
(
∇2
γQ̈
−1
T − Ā

−1
T (γ0)

)
is op(1). Since V

−1/2
T

√
T∇γQT (γ0) is Op(1) from

step 3 then it follows that

V
−1/2
T ĀT (γ0)

(
Ā
−1
T (γ0)−∇2

γQ̈
−1
T

)√
T∇γQT (γ0) = op(1).

By applying the method of subsequences (Davidson, 1994, Theorem 18.6) to a

subsequence indexed by {T ′}, there exists a further subsequence indexed by

{T ′′} such that

V
−1/2
T ′′ ĀT ′′(γ0)

(
Ā
−1
T ′′(γ0)−∇2

γQ̈
−1
T ′′

)√
T ′′∇γQT ′′ (γ0)

a.s.−→ 0 as T ′′ −→∞,

and therefore

V
−1/2
T ′′

√
T ′′
(
ĀT ′′(γ0) (γ̂T ′′ (ω)− γ0) +∇γQT ′′ (ω,γ0)

)
−→ 0 a.s.-P as T ′′ −→∞.

Since {T ′} is arbitrarily chosen, then

V
−1/2
T ĀT (γ0)

√
T (γ̂T − γ0)+V

−1/2
T

√
T∇γQT (γ0) −→ 0 prob-P as T −→∞,
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and the proof is completed by applying result (2c.4.12) of Rao (1973).

�

Proof of proposition 2

The proof follows by noting that for all a ∈ Rq+p+1,

a′E
{(
R−M E−1 {M ′M}E {M ′R}

)′ (
R−M E−1 {M ′M}E {M ′R}

)}
a ≥ 0,

(A.3)

where

R′ = 1√
T

(R′1,R
′
2, . . . ,R

′
T ), M ′ = 1√

T
(M ′

1,M
′
2, . . . ,M

′
T ), R′t = ∇γh′t(γ0)W tU

1/2
t ,

and M ′
t = ∇γh′t(γ0)U

−1/2
t . Moreover the equality in (A.3) holds if W t = U−1

t , t =

1, 2, . . . , T , which justifies equation (1.4). The equivalence between equations (1.4)

and (1.5) follows form substituting Ω−1
t and Bt in equation (1.5). �

Proof of proposition 3

For the simplicity of notation, we use fj, yt, x̃t, at, cts, dts, wts, kts for fj(y10,x1,θ),

y1t, x̃1t(α), at(α), cts(α), dts(α), w1ts(α), and k1ts(α) respectively.
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First, by Cauchy-Schwarz inequality we have

‖h1(γ)‖2 ≤ 2
T∑
t=1

y2
t + 8y2

0

T∑
t=1

α2t + 8f 2
1

T∑
t=1

a2
t + 4

T∑
t=1

β′x̃tx̃
′
tβ + 2

T∑
1≤s≤t

y2
t y

2
s

+ 16y4
0

T∑
1≤s≤t

α2(t+s) + 16f 2
2

T∑
1≤s≤t

a2
ta

2
s + 16σ4c2

ts + 16y2
0f

2
1

T∑
1≤s≤t

d2
ts

+ 8
T∑

1≤s≤t

(β′x̃tx̃
′
sβ)

2
+ 16y2

0

T∑
1≤s≤t

(β′wts)
2

+ 16f 2
1

T∑
1≤s≤t

(β′kts)
2
,

and

E‖W 1‖(ytys)2 ≤ E‖W 1‖y4
t E‖W 1‖y4

s ,

E‖W 1‖y2
0f

2
1 ≤ E‖W 1‖y4

0 E‖W 1‖f 2
2 .

Therefore by assumptions 13 and 14 we have

E sup
Γ
|q1(γ)| ≤ E‖W 1‖ sup

Γ
‖h1(γ)‖2 <∞.

It follows from the uniform law of large numbers (ULLN Jennrich, 1969; Amemiya,

1985) that

sup
Γ

∣∣∣∣∣ 1

N

N∑
i=1

qi(γ)− Eq1(γ)

∣∣∣∣∣ a.s.−→ 0 as N →∞ and T is fixed. (A.4)

Second, since

Eq1(γ) = Eh′1(γ0)W1h1(γ0) + 2E [h1(γ)− h1(γ0)]′W1h1(γ0)

+ E [h1(γ)− h1(γ0)]′W1 [h1(γ)− h1(γ0)]
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and the second term is apparently equal to zero, Eq1(γ) ≥ Eq1(γ0) and the equality

holds if and only if γ = γ0. Finally the result follows from (A.4) and Lemma 1 of

Wang and Leblanc (2008). �

Proof of proposition 4

For the simplicity of notation, we use fj, yt, x̃t, at, cts, dts, wts, kts for fj(y10,x1,θ),

y1t, x̃1t(α), at(α), cts(α), dts(α), w1ts(α), and k1ts(α) respectively.

First, by the mean value theorem for random functions (Jennrich, 1969), assump-

tions 13–16 guarantee that

1γ̂N∈N (γ0)

[
N∑
i=1

si(γ0) +

(
N∑
i=1

H̄ i

)
(γ̂N − γ0)

]
= 0, (A.5)

where si(γ) = ∂qi(γ)
∂γ

= 2
∂h′i(γ)

∂γ
W ihi(γ), and the rth row of H̄ i is given by

∂2qi(γ̄
r
N)

∂γ(r)∂γ
′ , r = 1, 2, . . . , (p+ `+ 2),

and γ̄rN are measurable mappings into N (γ0) and they lie on the segment joining

γ̂N and γ0.

Next we use the consistency of γ̂N and the ULLN to show that, for fixed T ,

1

N

N∑
i=1

H̄ i
a.s.−→ 2A as N →∞.
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Starting by the triangle inequality we have

∥∥∥∥∂2q1(γ)

∂γ∂γ ′

∥∥∥∥ ≤ 2

∥∥∥∥∂h′1(γ)

∂γ
W 1

∂h1(γ)

∂γ ′

∥∥∥∥+ 2

∥∥∥∥∥∥
(
∂2h′1(γ)

∂γ(i)∂γ(j)

W 1h1(γ)

)
i,j

∥∥∥∥∥∥ , (A.6)

and further by Cauchy-Schwarz inequality

E sup
N (γ0)

∥∥∥∥∂h′1(γ)

∂γ
W 1

∂h1(γ)

∂γ ′

∥∥∥∥ ≤ E‖W 1‖ sup
N (γ0)

∥∥∥∥∂h′1(γ)

∂γ

∥∥∥∥2

,

and the following inequalities hold for 1 ≤ s ≤ t ≤ T ,(
∂µ1t(γ)

∂α

)2

≤ 4t2α2(t−1)y2
0 + 4

(
∂at
∂α

)2

f2 + 2

(
β′
∂x̃t
∂α

)2

,

(
∂ν1ts(γ)

∂α

)2

≤ 8(t+ s)2α2(t+s−1)y4
0 + 8f 2

2

(
as
∂at
∂α

+ at
∂as
∂α

)2

+ 8σ4

(
∂cts
∂α

)2

+ 8y2
0f2

(
∂dts
∂α

)2

+ 8y2
0

(
β′
∂wts

∂α

)2

+ 8f2

(
β′
∂kts
∂α

)2

+ 8

(
β′
∂x̃t
∂α

)2

(β′x̃s)
2

+ 8

(
β′
∂x̃s
∂α

)2

(β′x̃t)
2
,

∥∥∥∥∂ν1ts(γ)

∂θ

∥∥∥∥2

≤ 4a2
ta

2
s

∥∥∥∥∂f2

∂θ

∥∥∥∥2

+ 4d2
tsy

2
0

∥∥∥∥∂f1

∂θ

∥∥∥∥2

+ 2 (β′kts)
2

∥∥∥∥∂f1

∂θ

∥∥∥∥2

,

∥∥∥∥∂ν1ts(γ)

∂β

∥∥∥∥2

≤ 4 ‖x̃tx̃′s‖
2 ‖β‖2 + 4y2

0 ‖wts‖2 + 4f2 ‖kts‖2 .

Then, by assumptions 14 and 16, it is clear that

E‖W 1‖ sup
N (γ0)

∥∥∥∥∂h′1(γ)

∂γ

∥∥∥∥2

<∞. (A.7)
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With similar argument, by the Cauchy-Schwarz inequality and assumptions 14 and 16

we have

E sup
N (γ0)

∥∥∥∥∥∥
(
∂2h′1(γ)

∂γ(i)∂γ(j)

W 1h1(γ)

)
i,j

∥∥∥∥∥∥ ≤ E‖W 1‖ sup
N (γ0)

‖h1(γ)‖2

× E‖W 1‖ sup
N (γ0)

p+`+2∑
i,j

∥∥∥∥∥ ∂2h′1(γ)

∂γ(i)∂γ(j)

∥∥∥∥∥
2


< ∞. (A.8)

By combining inequalities (A.6, A.7, and A.8) together with assumptions 14 and 16,

the ULLN implies that

sup
N (γ0)

∥∥∥∥∥ 1

N

N∑
i=1

∂2qi(γ)

∂γ∂γ ′
− E∂

2q1(γ)

∂γ∂γ ′

∥∥∥∥∥ a.s.−→ 0 as N →∞ for fixed T. (A.9)

According to Lemma 2 of Wang and Leblanc (2008), the strong consistency of γ̂N

and equation (A.9) are sufficient to conclude that

1

N

N∑
i=1

H̄ i
a.s.−→ E

∂2q1(γ0)

∂γ∂γ ′
= 2A as N →∞ for fixed T. (A.10)

Finally, under assumption 18 the multivariate central limit theorem implies that

1√
N

N∑
i=1

si(γ0)
d→ N(0, 4B) as N →∞ for fixed T,

where B is given in Theorem 4. Hence by Slutzky theorem and equations (A.5,

A.10), we obtain
√
N(γ̂N − γ0) = −(2A)−1 1√

N

∑N
i=1 si(γ0) + op(1), for fixed T . �
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The asymptotic variance of the RMLE

Using the GMM framework we derive the asymptotic variance of the RML estimator

under model (2.1). It is given by

F 0 = E−1 (K ′V K)E (K ′VMVK)E−1 (K ′V K) , (A.11)

where

K ′ =

(
∂µ′(γ0)

∂γ

∂vech′(S(γ0))

∂γ

)
, µ′(γ) = (µ1t(γ), 1 ≤ t ≤ T ) ,

vech′(S(γ)) =
(
atase

θ3 + σ2cts, 1 ≤ s ≤ t ≤ T
)
,

V =

(
S(γ0)−1 0

0 1
2
L′ [S(γ0)−1 ⊗ S(γ0)−1]L

)
, vec(S(γ)) = L vech(S(γ)),

M =

(
S(γ0) E {u1vech′(u1u

′
1)|y10,x1}

. E {vech(u1u
′
1)vech′(u1u

′
1)|y10,x1} − vech(S(γ0))vech′(S(γ0))

)
,

u1 = (y1t − µ1t(γ0), 1 ≤ t ≤ T )′ .

By using the same notations, the asymptotic variance of the optimal SLS estimator

is given by

F ∗0 = E−1
(
K ′M−1K

)
. (A.12)

It is easy to show that F 0−F ∗0 is nonnegative definite and the difference vanishes if

and only if

MVK = KE−1
(
K ′M−1K

)
E (K ′V K) . (A.13)

The vec operator stacks by columns a matrix, and the vech operator stacks by column the
lower triangle of a square matrix.
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Appendix B

Sample of R Programming Code

##########################################

#The following code was used to produced The results of tables B11-B12

##########################################

rm(list=ls())

local({r <- getOption("repos")

r["CRAN"] <- "http://cran.stat.sfu.ca/"

options(repos=r)})

pkg_list = c(’snow’, ’snowfall’,’MASS’,’matrixcalc’,’plm’,’nlme’,’Matrix’)

for (pkg in pkg_list)

{

# Try loading the library.

if ( ! library(pkg, logical.return=TRUE, character.only=TRUE) )

{

# If the library cannot be loaded, install it; then load.

install.packages(pkg,dependencies=T)

library(pkg, character.only=TRUE)
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}

}

#Define the model parameters (exactly like kivit 1995)

#fixed values

n=100;vareps=1

#variable values

mu=1;pro=0.8;alpha=0.4;t=3;sigm2_s=2

#marginal variance of eta

vareta=(1-alpha)^2*vareps*mu^2

beta=1-alpha

sigm2_exi=(sigm2_s-alpha^2/(1-alpha^2)*vareps)*

(1+(alpha+pro)^2/(1+alpha*pro)*

(alpha*pro-1)-(alpha*pro)^2)/beta^2

p1=(alpha+pro)/(1+alpha*pro)

p2=(alpha+pro)^2/(1+alpha*pro)-alpha*pro

varphi_0=sigm2_exi/(1-(alpha+pro)*p1+alpha*pro*p2)

varepsi_0=vareps/(1-alpha^2)

vary0=varphi_0*beta^2+varepsi_0+vareta/(1-alpha)^2

covy0eta=vareta/(1-alpha)

varx1=sigm2_exi/(1-pro^2)

theta0=log(vareps)

# the slope of (eta on y0 equation)
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theta2=covy0eta/(vary0-beta^2*varphi_0*pro^2)

#the intercept of eta on y0,x1

theta1=0

# theta3 is reparametrized conditional variance of eta given y0,x1

theta3=log(vareta-covy0eta^2*varx1/(vary0*varx1-beta^2*varphi_0*

sigm2_exi*pro/(1-pro^2)))

#the solope of (eta on x1)

theta4=theta2*beta*pro*sqrt(varphi_0/sigm2_exi*(1-pro^2))

#centeral marginal and conditional third moment of epsilon (disturbance )

m3eps=0

#centeral conditional third moment of eta on y0 an x1(subject effect)

m3eta=0

#centeral marginal and conditional fourth moment of epsilon

m4eps=3*vareps^2

#centeral conditional fourth moment of eta

m4eta=3*exp(2*theta3)

gamm0=c(alpha,beta,theta0,theta1,theta2,theta3,theta4)

#number fo simulation runs

ss=1000
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#####################################################

#Define the GMM1 function and it’s supplementary matrix

#(This is the GMM of Arelano baond 1991 simulation, and also kiviet 1995)

####################################################

#Difference Transformation

Dff=cbind(diag(rep(-1,t-1)),rep(0,t-1))+cbind(rep(0,t-1),diag(rep(1,t-1)))

GMM=function(v){

y=v[1:(t+1)]

x=v[(t+2):(2*(t+1))]

Z=y[1]

for (i in 1:(t-2)){

Z=bdiag(Z,y[1:(i+1)])

}

Dffx=Dff%*%x[2:(t+1)]

Z=rbind(as.matrix(Z),t(Dffx))

Dffy=Dff%*%y[2:(t+1)]

Dffy_1=Dff%*%y[1:(t)]

weight=Z%*%Dff%*%t(Dff)%*%t(Z)

return(c(Z%*%Dffx,Z%*%Dffy,Z%*%Dffy_1,as.vector(weight)))

}

#####RML related matrices########

#define the forward orthoganal opertator
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FOO1=matrix(1,t-1,t-1)

FOO1[lower.tri(FOO1,diag=T)]=0

FOO=diag(((t-1):1)/(t:2))^.5%*%

(diag(-1/((t-1):1))%*%cbind(FOO1,1)+cbind(diag(1,t-1),0))

######################################

#compute the projection matrix

proj<-function(X,n){

Y=matrix(t(X),nrow=n)

return(Y%*%solve(t(Y)%*%Y,t(Y)))

}

##################################################

#computing the RML (CGLS) using the concentrated likelihood as in Arelano

#book chapter 6

###############################################

cgls=function(param){

alpha=param[1];beta=param[2]

FOOY=FOO%*%B[2:(t+1),,1]

FOOY_1=FOO%*%B[1:(t),,1]

FOOX=FOO%*%B[2:(t+1),,2]

Part1=log(sum(as.vector((FOOY-alpha*FOOY_1-beta*FOOX)^2)))

ybar=apply(B[2:(t+1),,1],MARGIN=2,mean)

y_1bar=apply(B[1:(t),,1],MARGIN=2,mean)

xbar=apply(B[2:(t+1),,2],MARGIN=2,mean)

Part2=1/(t-1)*log(sum(lm(ybar-alpha*y_1bar-beta*xbar~B[1,,1]+

B[2,,2])$residuals^2))
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return(Part1+Part2)

}

#Auxilary matrices

plus=outer((1:t),(1:t),’+’)

mins=outer((1:t),(1:t),’-’)

#calculating the objective function of the SLS

fuu<-function(gam,W){

a=gam[1]^(1:t) #alpha^t

fa<-cumsum(gam[1]^(0:(t-1))) #a_t

FA<-gam[1]^mins

fc<-FA*(rep(1,t)%o%cumsum(gam[1]^(2*(0:(t-1)))))

fc[upper.tri(fc)]=t(fc)[upper.tri(fc)]#c_ts

fd<-a%o%fa+fa%o%a #d_ts

FA[upper.tri(FA)]=0

FH=apply(rbind(B[,,1],B[,,2]),MARGIN=2,FUN=fh,gam,fa,fc,fd,a,FA)

obj=0

for (k in 1:n){

obj=obj+ FH[,k]%*% matrix(W[,k],t*(t+3)/2,t*(t+3)/2)%*% FH[,k]

}

return(obj)

}

##########the vector h in objective function of the SLS
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fh<-function(yy,gam,fa,fc,fd,a,FA){

y=yy[1:(t+1)]

x=yy[-(1:(t+1))]

f1<-gam[4]+y[1]*gam[5]+x[2]*gam[7]#f_1

f2<-exp(gam[6])+f1^2#f_2

fax=as.vector(FA%*%x[-1])#x_t^tilda

wts<-a%o%fax+fax%o%a #w_ts

kts<-fa%o%fax+fax%o%fa #d_ts

h=c(

y[-1]-a*y[1]-fa*f1-gam[2]*fax,

(y[-1]%o%y[-1]-(gam[1]^plus*y[1]^2+

fa%o%fa*f2+exp(gam[3])*fc+fd*y[1]*f1+fax%o%fax*gam[2]^2+

wts*y[1]*gam[2]+kts*gam[2]*f1

))[lower.tri(diag(t),diag=T)]

)

return(h)

}

#This function is auxilary to calculate optimal weight matrix of SLS

Trans<-function(K,y,gam){

x=y[-seq(K+2)]

y0=y[1]

f1<-gam[3]+y0*gam[4]+gam[7]*x[1]

R=diag(nrow=K*(K+3)/2)

for (k in 2:K)
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{R[k,k-1]=-gam[1]}

R[K+1,1]=-2*(gam[1]*y0+f1+gam[6]*x[1] )

R[K+2,c(2,1,K+1)]=c(-f1-gam[1]*y0-gam[6]*x[1],-gam[6]*x[2]-

f1+gam[1]^2*y0+gam[1]*f1+gam[1]*gam[6]*x[1],-gam[1])

for (r in 3:K)

{R[K+r,c(r,1,r-1,K+r-1)]=c(-f1-gam[1]*y0-gam[6]*x[1],-f1-gam[6]*x[r],

gam[1]^2*y0+gam[1]*f1+gam[1]*gam[6]*x[1],-gam[1])}

for (s in 2:(K-1)){

R[s*K-(s-2)*(s-1)/2+1,

c(2+(s-1)*K-(s-3)*(s-2)/2,1+(s-1)*K-(s-3)*(s-2)/2,

s,s-1)]=c(-2*gam[1],gam[1]^2,-2*f1-2*gam[6]*x[s],2*gam[1]*f1+

2*gam[1]*gam[6]*x[s])

for (r in (s+1):K){

R[r-s+s*K-(s-2)*(s-1)/2+1, c(

r-s+2+(s-1)*K-(s-3)*(s-2)/2,

r-s+s*K-(s-2)*(s-1)/2,

r-s+1+(s-1)*K-(s-3)*(s-2)/2,

r,s,r-1,s-1)]=c(

-gam[1],-gam[1],gam[1]^2,-f1-gam[6]*x[s],-f1-gam[6]*x[r],gam[1]*f1+

gam[6]*x[s]*gam[1],gam[1]*f1+gam[6]*x[r]*gam[1])

}

}
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R[K*K-(K-2)*(K-1)/2+1,

c(2+(K-1)*K-(K-3)*(K-2)/2,1+(K-1)*K-(K-3)*(K-2)/2,

K,K-1)]=c(-2*gam[1],gam[1]^2,-2*f1-2*gam[6]*x[K],2*gam[1]*f1+

2*gam[6]*x[K]*gam[1])

for (s in 2:(K-1)){

R[s*K+2-(s-1)*(s-2)/2,s]=-f1-gam[6]*x[s+1]+gam[1]*f1+

gam[6]*x[s]*gam[1]

}

return(R)

}

#This function is used to calculate optimal weight matrix of SLS

fw<-function(y,gam,U)

{

R=Trans(t,y,gam)

W=t(R) %*% U %*% R

return(W)

}

############################################

#Define the output matrix

################################################
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output=array(NA,dim=c(ss,7,7))

dimnames(output)=list(seq(1,ss),c(’alpha’,

’beta’,’theta0’,’theta1’,’theta2’

,’theta3’,’theta4’),c(’RMLgam’,’GMMgam’,’True’, ’Empoptsls’,

’SLSoptCGLS’,

’RMLgam1’,’GMMgam1’))#the target estimators are GMMgam and Empoptsls

output[,,3]=matrix(1,ss,1)%*%gamm0

set.seed(t*t+n*100*gamm0[1])

###########################################################

# This is to generate the fixed x or equivalently (exi) for all

#simulations like kiviet (X is fixed) and using his notation

#####################

#note we tried also to generate x in a stochastic version, i.e, different

# accross simulation runs and it doesn’t make difference

A=array(NA,dim=c(t+1,n,2))# for phi, and psi

B=array(NA,dim=c(t+1,n,2))# for y, and x

eta=rep(NA,n)

for (i in 1:n){

xi=rnorm(t+1,0,sqrt(sigm2_exi))

B[1,i,2]=xi[1]/sqrt(1-pro^2) #the initial value of x

B[2:(t+1),i,2]=filter(xi[-1],pro,’rec’,init=B[1,i,2]) #the rest of x
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A[1,i,1]=xi[1]*sqrt(varphi_0/sigm2_exi) #the initila value of phi

A[2,i,1]=A[1,i,1]*p1+xi[2]*sqrt(varphi_0/sigm2_exi)*

sqrt(1-p1^2) #the in

itial value of phi

A[3:(t+1),i,1]=filter(xi[-c(1,2)],c(alpha+pro,-alpha*pro),’rec’,init=

c(A[2,i,1],A[1,i,1])) #the rest of phi

}

for (s in 1:ss){

for (i in 1:n){

epsilon=rnorm(t+1,0,sqrt(vareps))

A[1,i,2]=epsilon[1]/(1-alpha^2)^.5 #the initial value of epsi

A[2:(t+1),i,2]=filter(epsilon[-1],alpha,’rec’,init=A[1,i,2])

#the rest of epsi

eta[i]=rnorm(1,0,vareta^.5)

B[,i,1]=beta*A[,i,1]+A[,i,2]+eta[i]/(1-alpha) #the values of y

}#end of the data generating loop

output[s,1:2,6]=

nlm(cgls,c(alpha,beta),print.level=1,iterlim=200)$estimate

#this the RML As in Arelano 2003
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#Computing the GMM1 (Instruments of Arlano1991)

gmm=apply(rbind(B[,,1],B[,,2]),MARGIN=2,GMM)

tt=(t-1)*t/2+1

Winv=solve(matrix(apply(gmm[-c(1:(3*tt)),],MARGIN=1,sum),tt,tt))

DffX=apply(gmm[1:tt,],MARGIN=1,sum)

DffY=apply(gmm[(tt+1):(2*tt),],MARGIN=1,sum)

DffY_1=apply(gmm[(2*tt+1):(3*(tt)),],MARGIN=1,sum)

R=rbind(DffY_1,DffX)

output[s,1:2,7]=solve(R%*%Winv%*%t(R),R%*%Winv%*%DffY)#this is the GMM1

###################

#Another (more elegent)way to calculate

the GMM1 (Instruments of

#Arlano1991)Stacking the data of n subject in dataframe with

#subject index

################################################

C=data.frame(array(NA,dim=c(n*(t+1),4)))

names(C)=c(’subject’,’time’,’y’,’x’)#staking the data with index

for (i in 1:n){

C[(1+(i-1)*(t+1)):(i*(t+1)),]=cbind(i,seq(t+1),B[1:(t+1),i,1],

B[1:(t+1),i,2])

}

E <- pdata.frame(C, index = c("subject", "time"),
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drop.index = TRUE, row.names = TRUE)

output[s,1:2,2]=pgmm(formula = y ~ lag(y, 1) +

x | lag(y, 2:99), data = C, effect = "individual", model = "onestep")$coef#this the GMM

###########################################

#Another way(more elegent) to comupte the CGLS

#########################

CC=data.frame(array(NA,dim=c(n*(t),7)))

names(CC)=c(’subject’,’time’,’y’,’x’,’y0’,’y_1’,’x1’)#staking the data

for (i in 1:n){

CC[(1+(i-1)*(t)):(i*(t)),]=cbind(i,seq(t),B[2:(t+1),i,1],B[2:(t+1),i,2],

B[1,i,1],B[1:(t),i,1],B[2,i,2])

}

CGLS= lme(y~y_1+y0+x+x1, data=CC,random=~1|subject,control=

list(maxIter=500,returnObject=T) ,method=’ML’)

output[s,,1]=c(fixef(CGLS)[2],fixef(CGLS)[4],log(CGLS$sigma^2),

fixef(CGLS)[1], fixef(CGLS)[3],

log(coef(CGLS$modelStruct$reStruct,unconstrained=F)*CGLS$sigma^2),

fixef(CGLS)[5])#this the RML
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#compute the residuals to use it latter to compute the third and forth

#moments of the error components appearing in the optimal weight

#matrix W_i

residuals=CC$y-fixef(CGLS)[1]-CC$y_1*fixef(CGLS)[2]-

CC$y0*fixef(CGLS)[3]-CC$x*fixef(CGLS)[4]-CC$x1*fixef(CGLS)[5]

##############################################################

##computing the optimal SLS with Ui evaluated at cgls using

#the estimated third and fourth moments

###########################################################

gam=output[s,c(1,3:6,2,7),1]

#using the estimated third and fourth moments

ETA=tapply(residuals,CC$subject,FUN=’mean’)

EPS=residuals-rep(ETA,each=t)

ETA=scale(ETA,scale=FALSE)

EPS=scale(EPS,scale=FALSE)

m3eta=mean(ETA^3);m3eps=mean(EPS^3);

m4eta=mean(ETA^4);m4eps=mean(EPS^4)

#define the auxilary matrices to compute the optimal weight for SLS

###############################################

L <- duplication.matrix( t )

Linv=ginv(L)

a=matrix(1,t,1)
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aa=matrix(1,t^2,1)

A1=matrix(0,t,t^2)

A3=kronecker( diag(1,t),matrix(1,t,t))

A6=vec(diag(1,t))

A4=A6%*%matrix(1,1,t^2)

A2=kronecker(matrix(1,t,t), diag(1,t))

A5=kronecker(t(a),kronecker(diag(1,t),a))

A1[,seq(1,t^2,by=t+1)]<-diag(m3eps,t)

U2=(m3eta*a%*%t(aa)+A1)%*%t(Linv)

A9=commutation.matrix(t,t)

U1=exp(gam[2])*diag(t)+exp(gam[5])*matrix(1,t,t)

A7=vech(U1)

U3<-Linv%*%(

m4eta*matrix(1,t^2,t^2)+

exp(gam[2])*exp(gam[5])*(A2+A3+A4+t(A4)+A5+t(A5))+

exp(2*gam[2])*(diag(1,t^2)+A9+A6%*%t(A6)+

diag(c(vec(diag((m4eps*exp(-2* gam[2])-3),t))))))%*%

t(Linv)-A7%*%t(A7)

if (eigenvalue<-min(eigen(cbind(rbind(U1,t(U2)),rbind(U2,U3)),

symmetric=T,

only.values = T)$value)>0)

{

U=solve(cbind(rbind(U1,t(U2)),rbind(U2,U3)))
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W=apply(rbind(B[,,1],B[,,2]),MARGIN=2,FUN=fw,gam,U)

SLS=nlm(fuu,gamm0,W)

output[s,,4]=SLS$estimate

}

}#end of simulation runs

save(output,sigm2_s,t,alpha,pro,mu,beta,n, file = ’output.Rdata’)
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