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Abstract

Iterative reconstruction algorithms are superior to the standard convolution backprop-

agation (CBP) methods when reconstructing from a small number of views (hence

less radiation), but are computationally costly. To reduce the execution time, this

work implements and tests a parallel approach to iterative algorithms using a cluster

of workstations, which is a low cost system found in many offices and non-academic

sites. A previous implementation showed little speedup because of the significant cost

of inter-processor communication. In this thesis, several data partitioning methods

are examined, including some image tiling methods that exploit the spatial locality

demonstrated by local CT. Using these methods, computation can proceed locally,

without the need for inter-processor communication during every iteration. A rela-

tive speedup of up to 17 times is obtained using 25 processors, demonstrating that

good performance can be obtained running computationally intensive CT reconstruc-

tion algorithms on distributed memory hardware.
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Chapter 1

Introduction

This chapter introduces the concept of Computed Tomography (CT), discusses

its place relative to plain film X-ray technology, and the relevance of CT to modern

medical imaging. It then discusses an important problem that motivates this thesis:

exposure to ionizing radiation. The remainder of the chapter outlines the approach

of the thesis in addressing this problem.

1.1 Introduction to Computed Tomography

The goal of medical imaging is to determine the internal structure of an organism

with sufficient detail to yield diagnostic information. Imaging strives to achieve this

in the least invasive manner possible, minimizing discomfort and harm to the patient.

Two dimensional plain film X-ray pictures have been the standard medical imaging

technique for a century, and remain a common technique today. The patient is placed

between an X-ray source and a photographic plate (film) or more recently a digital

1
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detector array. An X-ray exposure of sufficient intensity and duration is used to

project shadows of body tissues onto the detecting surface. The X-ray ‘beam’ is

attenuated by scattering and absorption of the intervening tissue proportional to

the distance the beam must traverse the tissue, the density of the tissue, and the

atomic numbers of the contained elements. A given detector in the detector plane

records the intensity of the beam after this attenuation. The resulting two dimensional

projection reveals structure from which a radiologist, using knowledge of the anatomy,

and possibly other projections in different orientations, can infer detail of the three

dimensional subject.

This section discusses the advantages of CT over the standard plain film technol-

ogy from which it is derived. It then discusses the preeminent place of CT in X-ray

diagnostics, and then finally discusses the correlation of CT images to the actual

pathology.

1.1.1 Advantages of CT over Plain Film

X-ray projections have at least three limitations: limited projection angles from

which the X-ray view can be taken; inability to localize the 3-D position of a struc-

ture; and, most importantly, a lack of detail due to lack of contrast. The limitation

of viewing angles is imposed by the target object and the imaging equipment. Fig-

ure 1.1 (a) shows a computed tomography (CT) slice, while Figure 1.1 (b) shows a

plain film lateral view. Plain film X-rays are the result of X-ray beams striking the

film close to perpendicular to the plane of the image. In the case of Image (b) the

X-ray source is on the right side of the patient’s head and projects X-rays onto a
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film on the left side. A craniocaudal (head to toe) projection similar to Image (a)

on the left of Figure 1.1 is difficult if not impossible to achieve with standard X-ray

films. To direct X-ray beams perpendicular to a cross section of the head, the patient

might stand on a film with the source directed from the top of the patient’s head,

and would thus also include the torso and legs in the view. In the case of CT, the

slices are obtained by X-ray beams projected at various angles within the plane of

the image. If the X-ray source and image cannot be placed in the plane of the desired

image, then obtainable slices from other orientations can be assembled into a 3-D

structure. From this virtual 3-D representation, voxels from any given plane can be

sampled and displayed. Thus volumetric imaging allows a subject to be viewed from

any desired orientation. Alternately, virtual 3-D surfaces can be thresholded and

displayed by assigning a virtual light source to illuminate these surfaces with chosen

colours and textures in a 3-D surface rendering program. A useful example of this

rendering is virtual colonoscopy [87], a CT examination in which views of the interior

surface of the colon are reconstructed to show the colon much as it would appear in

a colonoscope.

The second limitation of plain film projections is that a structure in a two di-

mensional image often cannot be located in three dimensions. An object may be

visualized, but its location in the axis along the X-ray beam is not known. The ra-

diologist may infer an object’s position using other images projected from a different

angle, assuming the object can be identified from other angles.

A common occurrence, which demonstrates this problem, is the “nipple shadow”

in a PA (posteroanterior, back to front) or AP (front to back) chest X-ray. A circular
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Figure 1.1: Improved contrast for CT compared to plain film. From Prof. W. Kalender
[46, page 21], with permission June 18, 2007.

lesion may be visible on the X-ray, projected over the lung. The absence of such a

lesion on a lateral view is somewhat reassuring, however a mass on this view could

be obscured. CT is usually not needed in such an instance. A repeat X-ray with a

paper-clip taped to the chest, its tip touching the periphery of the nipple, is sufficient

to demonstrate that the round lesion is indeed a nipple (if the mass is not adjacent

to the paper-clip then CT is needed).

The chief disadvantage of plain film is the lack of detail, resulting from the lack

of contrast between adjacent tissues. An object that spans only a fraction of the

distance along the axis of the beam changes the detector reading very little. The

detector measures the sum of all tissue attenuation along the beam; a thin tissue

or object contributes little to this overall sum, and may not be seen apart from the

background in the image.
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In the CT of Figure 1.1(a), a tumour is clearly visible, but this tumour is not seen

on the plain film on Figure 1.1(b). The skull has a very high attenuation, hence a

minor increase in skull thickness contributes more to a measured sum of attenuations

than does the tumour. The end result is that minor variations in skull thickness

obscure the tumour.

One technique to overcome this limitation is conventional tomography [89, page

226]. This form of tomography utilizes motion in the X-ray source and detector plane

to blur parts of the subject that are not of interest. A plane of interest in the subject

is relatively motionless with respect to the X-ray source and detectors, and detail in

this region appears against a uniformly blurred background. Only a small number

of planes can be visualized in one examination, and the image contrast is generally

less than that of computed tomography. This technology has been largely replaced

by CT.

1.1.2 The Advent of CT

CT is based on the same physical principle as plain film X-ray: an X-ray source

sends a beam through the subject to a detector, which detects an intensity inversely

related to the integral of attenuation of tissues along the beam. However, CT utilizes

detector readings from X-rays taken at many projection angles to compute the atten-

uation of individual volume elements (voxels) inside the subject. Typically a number

of parallel pencil beams or thin fan beams create a one-dimensional projection of each

slice. A sufficient number of these projection measurements from a sufficient number

of projection angles allows for calculation of sufficiently small areas (pixels) to render
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a two dimensional CT slice of the subject.

CT is based on the mathematical work of J. Radon in 1917, who demonstrated

his assertion that “a 2-D or 3-D object could be reproduced from an infinite set of

all projections” [68]. Radon’s work is a generalization of the work published by Abel

[1] in 1826. Basically, CT attempts to calculate the contributing attenuations of

individual voxels by utilizing projection data from numerous angles and applying an

algorithm to the data (hence the ‘computed’ in ‘computed tomography’).

The problem of 3-D location of a structure is then easily solved by reconstructing

a 3-D representation based on voxel attenuations. Views from ‘impossible’ angles are

reconstructed based on projections from numerous ‘possible’ angles, most of these

at right angles to the apparent axis of the final image. Most importantly, improved

contrast from an estimate of individual pixel (or voxel) attenuation yields an image

with superior detail. This contrast and detail is what makes CT a valuable diagnostic

test.

1.1.3 Correlation of CT Images to Pathology

The contrast and detail of the anatomy demonstrated by CT suggest that CT

may be an excellent diagnostic test. However, the images reconstructed should not

be presumed to accurately reflect all pathologies. CT’s real worth as a diagnostic test

must be proven in clinical situations.

A simple binary classification, the presence or absence of a pathological state, is

often used to discuss the value of diagnostic tests. The test in question is compared

to a gold standard; CT is compared to surgical or pathological findings or other gold
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standard tests. Test results fall into one of four categories: correct identification

of the pathological state (true positives, TP), correct exclusion of the pathological

state (true negatives, TN), incorrect identification of the pathological state (false

positives, FP), and failure to identify the pathological state (false negatives, FN).

Several measures of a diagnostic test can then be calculated [2].

sensitivity = TP/(TP + FN) (1.1)

specificity = TN/(TN + FP ) (1.2)

positive predictive value = TP/(TP + FP ) (1.3)

negative predictive value = TN/(TN + FN) (1.4)

Sensitivity is the ability of the test to detect the condition. High sensitivity of a test

is useful to exclude a condition; if a sensitive test has not detected the condition,

then we can be relatively certain that the patient truly does not have the condition.

Specificity is the ability of the test to not ‘over call’ the condition. High specificity

of a test is useful to confirm a condition; if a specific test is positive, then we can be

relatively certain that the patient truly does have the condition. Positive predictive

value is the likelihood that a positive test really is positive. Negative predictive value

is the likelihood that a negative test really is negative.

Sensitivity and specificity are properties of the test, determined experimentally.

The predictive values, however, depend not only on the diagnostic test, but also on

the prevalence of the condition in the population studied. If the test is not a perfect

predictor, then a decrease in prevalence results in more false positives and fewer

true positives, resulting in a lower positive predictive value. Similarly, a decrease in

prevalence results in a higher negative predictive value.
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The value of a diagnostic test depends not only on these measures, but also on

such features as financial cost and risk to the patient. The predictive values, cost, and

risk change according the role that the diagnostic test plays. A screening test must

exhibit high sensitivity, low finacial cost, and low risk to the patient. Although CT

has some risk and significant cost, and is not useful for screening normal populations,

it is becoming a more common means of risk stratification for coronary artery disease

[8]. Coronary artery calcification can be observed without the use of contrast material,

so in this case the risk and cost of CT may be less than the alternative tool, coronary

angiography.

CT is now the standard diagnostic test in many clinical situations. Although

it has been declared a gold standard preoperative diagnostic test for appendicitis

[64; 63], CT continues to be reevaluated and compared to other diagnostic tests. A

study as recent as 2007 [44] shows a sensitivity of 91% and a specificity of 94% for

diagnosing appendicitis. This specificity, along with a high prevalence of the disease

in the population studied (patients presenting to the emergency department with

‘acute abdomen’) leads to a high positive predictive value. The high sensitivity is

valuable in excluding the disease.

Using a complex imaging tool such as CT, there is not a simple binary classification

yielded by the test (i.e., appendicitis or no appendicitis). There are a number of

radiologic signs including fat stranding, enlarged unopacified appendix, adenopathy,

paracolic gutter fluid, multiple signs involving various patterns of wall thickening of

the caecum, ileum or sigmoid colon, and other signs. Each of these signs has its own

sensitivity and specificity for acute appendicitis [71]. Noting the specific signs involved
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for a particular case may alter the certainty of the diagnosis for that particular case.

A useful feature of an imaging test such as CT is that it may lead to an alternate

diagnosis. A CT performed to either confirm appendicitis or rule it out may be

worthwhile for that diagnosis alone, given the high sensitivity and specificity of CT

for appendicitis. However, in the scenario of the acute abdomen, CT has additional

value because it may lead to other diagnoses that require emergency treatment [22].

Another consideration in the use of CT is the importance of knowing what is ‘nor-

mal’. Many findings can exist in tissue that are either normal variants or somewhere

in a continuous spectrum between health and disease. Dalal and Hansell [16] note

that while there is considerable literature on the signs of disease for high-resolution

computed tomography of the lungs, little is documented on the normal findings.

It is important to recognize the limits of CT. Many tumours, e.g. pancreatic

cancer metastasized to the surface of the liver and peritoneum, may be too small

to appreciate on CT [26]. Li et al. [53] review cases of lung cancer missed in a

low-dose helical CT screening program. They separate these false negatives into

detection errors (mainly smaller tumours obscured by other anatomical structures)

and interpretation errors (the lesion is seen but interpreted as benign disease). It is

noteworthy that a human observer/interpreter is an integral part of the diagnostic

test in the case of CT. Studies such as this are important to evaluate CT in a screening

role.

CT is often used to exclude pulmonary emboli. The literature review conducted

by Krishnan and Segal [21] revealed that there were “a wide range of reported sensi-

tivities, only a minority of which exceeded 90%.” This is disconcerting to a clinician
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who wishes to rule out the condition, since a negative CT cannot completely exclude

pulmonary emboli, and other tests used individually are less accurate than CT.

On the whole, CT is extremely useful in a wide variety of clinical situations. As

with any diagnostic test, its value is increased when it is used appropriately and its

limitations are understood.

1.2 Motivation

The advantages of CT come at a cost. Multiple exposures in quick succession

are necessary, with the position of the source and detectors precisely known. Precise

movements of heavy equipment and X-ray tubes that take multiple exposures present

engineering challenges [47, page 43] that limit portability and increase financial cost.

The concern of this thesis, however, is the increased X-ray dose to the patient created

by these multiple exposures. One concern is the rising dose to the population from the

increasing prevalence of CT. A recent survey in Japan [65] indicated an examination

rate of about 290 per 1000 population. Another concern is the relatively large X-

ray dose of plain film compared to CT, causing the X-ray doseage from CT to be

disproportionate. Plain films continue to suffice for many diagnostic procedures,

with CT accounting for only about 6% of X-ray investigations. In spite of this,

CT accounted for 47% of X-ray exposure in Germany in 2003 [47, page 155]. The

[estimated] figures are very similar for the UK in 2001/2002 [39], with CT again

accounting for 47% of X-ray exposure. Mettler et al. [58] estimate that

“In United States hospitals with over 100 beds, CT scanning probably
represents about 10% of all radiology procedures and about 67% of the



Chapter 1: Introduction 11

total effective dose. More CT scans are done on males than females.
About 11% of all CT scans are done on children”.

This exposure poses an increased risk of cancer development, which is especially

significant in infants. Estimates are a “one in 2000 risk of induction of fatal carcinoma

from CT of the abdomen” [41]. This risk is higher in infants; as noted by Don [20]

“a 1-year old undergoing an abdominal CT has a risk of 1 in 550 of
developing a fatal malignancy, and a 1-year old undergoing a head CT
has a risk of 1 in 1500. The younger the age of exposure, the greater the
risk because of the latency period needed to induce the malignancy and
the greater the effective dose.”

X-ray exposure from CT poses significant risk to the patient.

The challenge facing CT is to reduce the radiation exposure while maintaining

a quality of image that yields good diagnostic information. The problem and some

solutions were discussed by Gordon as early as 1976 [31]. Reducing the radiation

exposure can be done by decreasing the duration or intensity of each exposure, or,

decreasing the number of exposures in each examination. Rather than attempting

to optimize radiation dosage per projection or improve the resolution or sensitivity

of detector arrays, this thesis focuses on the consequences of decreasing the number

of required X-ray views. Such a reduction is possible by using 3-D cone beam re-

construction (discussed in section 2.1.3), or by decreasing the number of exposures in

each examination and compensating with a robust algorithm [31, page 508] (discussed

in section 2.1.4).

The standard algorithms perform poorly at 3-D reconstruction and at limited

view reconstruction, so the iterative algorithms are used. For either limited view
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reconstruction or true 3-D reconstruction, iterative algorithms are favoured over the

standard algorithms.

Because these algorithms require more execution time, a parallel version of the

Algebraic Reconstruction Technique (ART), the historical and logical forerunner of

the iterative algorithms, is implemented on a distributed memory system. Such ma-

chines, which include the common cluster of workstations (COW), are ubiquitous, and

their hardware components can be as low cost and commonplace as desktop personal

computers (PCs) connected by Ethernet. Implementation on a distributed mem-

ory system requires software to pass messages between processors, and the Message

Passing Interface (MPI) software to do this is easily available.

Others implement parallel versions of ART or similar algorithms on distributed

memory systems, and Melvin [56; 55] implements a parallel version of ART on a

cluster very similar to ours. A recurring problem in these works is that improvements

in speed over the sequential versions are very limited due to the cost of communication

between processors. The processing of data on a given processor may also require data

from a different processor. Such data dependencies are common to many problems,

and the data must be partitioned among the processors in a way that minimizes data

dependencies between processors.

This thesis examines six different data partitioning techniques including four

unique methods that exploit spatial locality to reduce communication overhead. Com-

munication between processors is limited to every second iteration or less, and two of

the six methods maintain reasonable image quality while improving speed over the

sequential algorithm.
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The motivating factor for this thesis is to limit the radiation exposure from CT.

The problem addressed is the communication overhead of parallel iterative CT recon-

struction algorithms implemented on distributed memory systems. This thesis shows

that given appropriate partitioning, the data in given locale is relatively independent

of other data.

1.3 Thesis Overview

Computed Tomography has a vital role in medical diagnostics as an imaging

method that yields detailed information. As an X-ray technology, however, it exposes

the patient to ionizing radiation that is known to be harmful. A challenge for this

technology is to obtain the high quality images that have come to be expected from

it, while limiting this harmful radiation.

CT uses multiple X-ray views of the target for image reconstruction. Each view is

associated with a dose of radiation, hence limiting the number of views will reduce the

radiation. Using a true 3-D reconstruction from 2-D views, rather than assembling

from 2-D reconstructions of 1-D views, should theoretically reduce the number of

views required. A second approach is to limit the number of views outright.

Modifications of the commonly used convolution algorithms allow for some limited

reconstruction in the third dimension, but these algorithms are not ideal for a full

3-D reconstruction. Limiting the number of views outright causes the standard re-

construction algorithms to fail. The Algebraic Reconstruction Technique (ART) and

similar iterative algorithms yield better quality reconstructions using limited views

or a true 3-D reconstruction, but these algorithms are much more costly in execution
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time and memory.

We can ameliorate this cost in execution time and memory by running the algo-

rithm in parallel. In this thesis, a parallel version of ART is implemented on a Cluster

of Workstations (COW). To implement this successfully and gain performance, we

must overcome the problem of data dependence; data utilized in one local memory

is dependent upon data in other nodes, and the work required to communicate this

data between nodes nullifies the gains from parallelization in many implementations.

This thesis confronts the problem of data dependence and communication cost by

examining partitioning methods. By separating the data and mapping it to processing

entities (PEs) in such a way that data within a given PE is more interdependent

than data between PEs, two of the six partitioning methods examined contribute

to improved performance. The result is that interprocessor communication is kept

to a minimum and doesn’t detract significantly from the benefits of parallelization.

Significant speed benefits are obtained compared to the sequential version of the

ART algorithm. One of the partitioning methods also shows good scalability: as

more processors are added, the speed continues to improve.

The iterative algorithms may have a role to play in limited view CT reconstruction

or in 3-D CT reconstruction, and should not be rejected out of hand because of speed

or memory limitations. These limitations are overcome significantly by implementing

the algorithms in parallel, if communication is limited and an appropriate partitioning

scheme is used.

The remainder of this thesis is organized into four chapters. Chapter 2 introduces

the technology of CT and the reconstruction algorithms upon which CT is based.
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Chapter 2 also introduces two methods to reduce radiation exposure. It then dis-

cusses some of the literature related to the iterative algorithms, to implementing CT

reconstruction in parallel, and introduces the problem of communication overhead in

CT reconstruction in parallel. Chapter 3 discusses the materials and methods used

in the experimental work, including programming languages, simulator software and

phantoms, hardware, the parallel algorithm, and the data partitioning models used.

Chapter 4 presents the experimental results, comparing the partitioning methods by

image quality, speed, scalability to the number of processors, and scalability to prob-

lem size. Finally, Chapter 5 presents some conclusions and discusses future work

arising out of this thesis.



Chapter 2

Background

This chapter gives some background regarding CT: the hardware and its evolution,

the reconstruction algorithms, and two modalities that may limit X-ray exposure

from CT. It then presents some related work regarding improvements to iterative

reconstruction algorithms, parallel approaches to CT reconstruction, and the problem

of communication overhead for the parallel approaches.

2.1 Computed Tomography

CT is a two step process of collecting the projection data, then calculating the

attenuation values that could have generated these projection values (reconstruction).

This thesis first discusses the geometry of the scanners (the source and detector

arrangements and the beam geometries) then the reconstruction algorithms. Two

modalities that limit the radiation from CT are then presented: 3-D cone beam

reconstruction, and limited view CT.

16



Chapter 2: Background 17

2.1.1 Collecting the Data: CT Scanner Geometry

CT has evolved through five generations, each having different geometries for

projecting the X-ray beam onto the detector. The 1st generation machines scan

using a single pencil beam, projected in a line from the source to a single detector

(Figure 2.1, 1970). The source and detector are translated in the same direction, with

exposures taken at regular intervals, to produce a set of measurements taken from a

set of parallel beams. These beams or rays, projected from a single angle, form one

view. The entire apparatus is rotated about the object and the translation process

repeated, to get another set of parallel projections (another view) as in Figure 2.2

(1st generation). Many views are used to compute a 2-D slice in the plane common

to all of the views. The apparatus or the target object is then moved, and the entire

process repeated to obtain further slices. This is obviously time consuming, but

has the advantage that all rays in a given projection are parallel, which somewhat

simplifies the image reconstruction.

Second generation scanners employ narrow fan beams (Figure 2.1, 1978) so that

a single source can project onto a small linear array of detectors simultaneously. As

in the 1st generation machines, the source and the set of detectors are translated a

number of times before each rotation. Fewer translations allow for a significant im-

provement in speed, while the slight variation from truly parallel beams is insignificant

in reconstruction (Figure 2.2, 2nd generation).

Modern day third generation scanners employ a longer array of detectors (usually

in an arc). A wide angle fan beam strikes the detectors in the arc simultaneously,

and the source and detector array are rotated continuously about the target object.
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Figure 2.1: Beam geometries. From Prof. W. Kalender [46, page 177], with permission
June 18, 2007.

If the fan beam is sufficiently widened, as in Figure 2.2 (3rd generation), translation

is no longer necessary at all.

Fourth generation scanners (Figure 2.2, 4th generation) are similar to third gener-

ation scanners, but have a continuous stationary circle of detectors. These have not

gained favour over the third generation scanners.

Original rotary systems have to be rotated back after each rotation to unwind

power cables. Subsequent slip ring technology allows for continuous rotation for

third and fourth generation scanners, with further improvement in speed.

Fifth generation electron beam CT scanners [89, page 329] have a stationary X-ray
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Figure 2.2: Generations of CT Scanner. From Prof. W. Kalender [46, page 36], with
permission June 18, 2007.
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Figure 2.3: A 2-D slice of a 3-D volume. From Prof. W. Kalender [46, page 18], with
permission June 18, 2007.

source as well as stationary detectors. An electron beam is deflected onto an X-ray

tube anode in the form of a large semicircular ring surrounding the gantry. The

location of the source of X-rays in a given instant is the result of where the electron

beam is deflected.

All of these systems produce an image of a ‘slice’ perpendicular to the axis of

rotation. Consecutive slices can then be stacked to produce a representation of a 3-D

volume (Figure 2.3).

The table has been translated a small distance along the axis of rotation (the z

axis) between each slice, but another innovation has allowed continuous motion of

the table, so that scanning occurs in a spiral or helical pattern. Each slice continues

into the next, much like a twist of lemon. Without the need to repeatedly start and
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stop the motion of the table, there is a further improvement in speed. For such spiral

CT scanners, various ‘z interpolation’ algorithms exist to determine the attenuation

value of a voxel, given its angle of rotation [47, page 81].

Another innovation is the addition of multiple rows of detectors to produce a

‘thick’ fan beam (Figure 2.1, 1998). This allows for thicker slices or overlapping slices

to be used.

Extending these multiple row detectors to a true 2-D array of detectors yields cone

beam CT (Figure 2.1, future). The diverging rays project in the shape of a cone or

pyramid, the 3-D equivalent of the 2-D fan beam. Introducing the effects of a third

dimension into the reconstruction has implications for the choice of reconstruction

algorithm.

2.1.2 Reconstruction Algorithms

There are two major families of reconstruction methods: filtered or Fourier back-

projection (FBP), or convolution backprojection (CBP) methods, and iterative, or

algebraic techniques. An outline of both major methods is presented here.

Convolution Backprojection

An image can be obtained by adding the detection value to every contributing

voxel in the projection. If the target object has sharply defined contrasting regions,

this summation method will cause these to be blurred much like a photograph out of

focus (see the left hand side of Figure 2.4). This summation is termed backprojection

because it involves placing the projections back into the image. This thesis uses
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the terms straight backprojection or unfiltered backprojection to refer to this process

when no other operations are performed on the backprojection image.

The result can be focused using a filtered backprojection (FBP) algorithm. Typ-

ically, a convolution filter is utilized that is based on the Fourier Slice Theorem [45].

Because the convolution in the CBP methods is typically done in Fourier space, we

use the terms Filtered backprojection or Fourier backprojection (FBP) and convolution

backprojection (CBP) collectively to refer to the whole group of filtered backprojec-

tion methods. Although in principle the backprojected image could be deconvoluted

using a 2-D filter, an equivalent transformation can be obtained by passing a 1D filter

over the projection data before the backprojection in the case of parallel projections.
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Figure 2.4: Summation vs. convolution and backprojection. From Prof. W. Kalender
[46, page 28], with permission June 18, 2007.
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An overview of CBP is given in Kalender’s book [46]. The CBP algorithm is

shown as Algorithm 2.1, and is comprised of four steps for each view angle [72]. The

Qθi
’s are views taken at various angles θi at which the projections were taken, K is

the number of angles, and f(x, y) are the pixel values of the resulting image.

1: for each projection Qθi
at angle θi do

2: Find the 1-D Fourier Transform (FT)

3: Convolve the result of step 2 by a response function in the spatial domain, or

multiply the result of step 2 by a response function in the frequency domain

4: Find the inverse FT of the results of step 3

5: Backproject by computing f(x, y) =
∑K

i=1(x cos(θi) + y sin(θi))Qθi

Algorithm 2.1: Convolution Backprojection Algorithm.

This method has some advantages that were important in the first and second

generations of CT. The Fast Fourier Transform (FFT) algorithm developed by Coo-

ley and Tukey in 1965 [15] greatly increase the speed of the Fourier Transform. The

FBP algorithm can be hard wired for further speed increases. Also, given that the

projections at each angle can be made to approximate a parallel set, the Central Slice

Theorem allows each set of projections to be convolved separately. This can occur in

parallel with the scanning process, so that calculations can be made on some projec-

tions before others have even been collected. Due to the minimal computing power

in the early decades of CT, this ability to interleave data collection with computing

was of great importance.
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Figure 2.5: The reconstruction problem as a system of linear equations. From Prof.
W. Kalender [46, page 27], with permission June 18, 2007.

Iterative Methods

The problem of CT reconstruction can be viewed as a system of linear equations.

In this model, each pixel (voxel) j is assumed to have a homogenous attenuation µj,

an unknown value to be solved. The measured projection data is a set of attenuation

sums Si. Each Si is the weighted sum of the attenuations of pixels along a given

ray, also known as a ray integral or raysum (as seen in the left hand illustration of

Figure 2.5).

Different variations of the model can be used to determine the weight wij that

each pixel j contributes to the ith weighted attenuation sum Si. Let us use a model

where each weight wij is the product of the pixel’s attenuation µj and the length

of the ray’s intersection with the pixel (expressed in pixel widths). The weights can

then be determined geometrically from the angle and position of the ray (these are

determined from the geometry of the scanner) and the chosen pixel dimensions.
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Generally, the scanner has a linear array of D equally spaced detectors, and the

entire array is rotated through Q angles. The collection of D rays at a given angle

is called a ‘view’ (the term used in this thesis) or a ‘projection’. There is a total of

M = DQ raysum measurements. Let us assume that there are N pixels in the image;

then there are MN weights that each pixel contributes to each raysum.

Using the left hand side of Figure 2.5 as an example, we have an image of N = 4

pixels. There are 2 detectors in the detector array, and the array is rotated through

2 views (horizontal and vertical) to produce M = 4 raysums.

We therefor have MN = 16 weights. The weights for raysum S1 are calculated

easily in this case. The ray traverses the width of pixel 1, so the weight of contribution

of pixel 1 to the raysum is w11 = 1. Likewise, w12 = 1. Pixels 3 and 4 do not intersect

ray 1, so w13 = w14 = 0. Similarly for the other rays in this example, all weights are

0 or 1, and the raysum equations are as follows:

S1 = µ1w11 + µ2w12 + µ3w13 + µ4w14 = µ1 + µ2

S2 = µ1w21 + µ2w22 + µ3w23 + µ4w24 = µ3 + µ4

S3 = µ1w31 + µ2w32 + µ3w33 + µ4w34 = µ2 + µ4

S4 = µ1w41 + µ2w42 + µ3w43 + µ4w44 = µ1 + µ3

In general, each ray Si can be represented as:

Si =
N∑

j=1

wijµj, i = 1, 2, ..., M (2.1)

Half of the NM weights wij are zero. For the case of the 9 pixel image on the

right hand side of Figure 2.5, approximately two thirds of the weights are zero. In
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general, for large images, a substantial portion of the weights are zero, because many

of the pixels make no contribution to a particular raysum.

As an example, we try to solve for the attenuation values given: S1 = 5, S2 = 9,

S3 = 8, S4 = 6.

There is no unique solution, but rather an infinite number of solutions. Among

the M equations, there must be N independent equations and all of the equations

must form a consistent system in order for us to find a unique solution. By inspection,

we can see that S1 + S2 = S3 + S4, hence the equations are not independent.

For demonstration purposes, we can remedy the situation by adding a single ray,

running diagonally through the centres of pixels 1 and 4. The distance that this

new ray, (labelled ray 5), travels through pixel 1 is
√

2 pixel widths, so the weight of

contribution of pixel 1 to the raysum is w51 =
√

2. Likewise, w54 =
√

2. Pixels 2 and

3 do not intersect ray 5, so w52 = w53 = 0. We add the equation

S5 = µ1w51 + µ2w52 + µ3w53 + µ4w54 =
√

2µ1 +
√

2µ4

Given the additional information that S5 = 7
√

2 ≈ 9.89949493661167, we can now

obtain a unique solution: µ1 = 2, µ2 = 3, µ3 = 4, µ4 = 5.

Now, suppose that there is a 1% measurement error in S1, so that S1 = 5.05

instead of S1 = 5. There is no solution to satisfy all of the equations, since the

system is inconsistent.

We may choose the number of detectors and the number of views such that their

product is N . In practice, some equations may be linear combinations of others,

causing the system to have an infinite number of solutions. Very often, detector noise

creates inconsistencies, so no exact solution can be found. Hence, it is not practical
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to solve such systems of equations using a method such as Gauss-Jordan.

One approach to solving large systems of equations, iterative approximations,

forms the basis of the iterative or algebraic methods. Successive adjustments are

made to the attenuation values until a solution is reached that is consistent with the

projection values by some criterion. Iterative methods compare the computed ray

sums of an estimated image with the original projection measurements and use the

error obtained from this comparison to correct the estimated image. Though there

is unlikely to be an exact solution because of inconsistencies, this method yields an

approximate solution to the attenuation values.

In general, M and N are quite large. For example, when reconstructing an image

size of 256×256 pixels, from 256 detector measurements in each of 256 views, N

and M are both 65,536. In such cases the weight matrix size is 65, 536 × 65, 536 =

4, 294, 967, 296. We require algorithms that are efficient in terms of both time and

memory requirements to solve this on a computer without increasing turnaround time

in the CT suite.

A variety of algebraic techniques exist for CT reconstruction. One such algorithm

is ART (Algebraic Reconstruction Technique). Developed in 1970 by Gordon et al.

[32] for work in electron microscopy, it is historically the first algebraic (iterative)

technique. A pseudo-code synopsis of the (sequential) ART algorithm is given in

Algorithm 2.2. The meanings of the variables are found in Table 2.1.

The iterations of the outer loop (k = 1..K) are called ‘cycles’ by some authors,

who then use the term ‘iteration’ to apply to loops within the views. The term

‘view’ is synonymous to the term ‘projection’, and refers to the collection of rays
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Require: a seed image consisting of pixels S0
ij

1: for each iteration k = 1 to K (or until convergence) do

2: for each view q = 1 to Q at angle θ do

3: for each ray d = 1 to D do

4: Pcalc ⇐ 0; wtotal ⇐ 0; h ⇐ 0;

5: for each column in the pixel array i = 1 to n do

6: for each row in the pixel array j = 1 to n do

7: if wijθd > 0 then

8: Pcalc ⇐ Pcalc + Sq−1
ij wijθd

9: wtotal ⇐ wtotal + wijθd

10: h ⇐ h + 1

11: for each column in the pixel array i = 1 to n do

12: for each row in the pixel array j = 1 to n do

13: Uij ⇐ Uij + Pθd−Pcalc

denominator

14: for each column in the pixel array i = 1 to n do

15: for each row in the pixel array j = 1 to n do

16: Sq
ij ⇐ Sq−1

ij + αUij

17: end

Algorithm 2.2: ART Algorithm.

projected in a given direction. The detector index specifies a given ray within the

view. The total number of iterations K is specified in advance for some variations

of the algorithm, but can be determined by a measure of convergence (such as the

correction factors being below a given threshold). Note that the angles may be
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ART Algorithm Variables

Variable Description

k iteration index

K total number of iterations

q view index

Q total number of views

θ angle of view

d detector (or ray) index

D total number of detectors

Sq
ij current pixel value at row i, column j during the q’th

view

Uij array to store updates to pixel value at row i, column j

Pθd intensity detected by detector d at view angle θ

Pcalc calculated raysum

α relaxation factor

wijθd weight of the contribution of pixel Sij to Pθd

wtotal sum of weights of all pixels contributing to ray

h count of pixels contributing to ray

denominator EITHER wtotal OR h OR path length of ray

Table 2.1: Variables used to describe the ART algorithm.

processed in any order, depending on the specific variation of ART, so that θ for

q = 1 may be greater than θ for q = 2. The variable α is the relaxation factor, and, if

set to less than 1, decreases the magnitude of corrections made, possibly generating

a smoother image or preventing oscillation. The denominator is typically h, the

count of pixels contributing to the particular raysum, but variations allow for the
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denominator to be the sum of the weights of all pixels contributing to the raysum

wtotal, or the length of the portion of the ray contained within the image (expressed

in pixel widths) [45].

ART, as well as its successor the Multiplicative Algebraic Reconstruction Tech-

nique (MART) [30, page 85], have been shown to converge on a least squares solution

by Byrne and Graham-Eagle [9]. The Simultaneous Algebraic Reconstruction Tech-

nique (SART) [4], was proposed in 1984 as a refinement of ART. This has now

become popular, at least, in academia. Recently, Jiang and Wang [43] proved that

SART also converges to a weighted least squares solution.

Historically, the Fourier (convolution backprojection) methods have been favoured

over iterative methods in production CT scanners, and it is these faster “analytic

methods that are currently used today in CT machines” [89, page 324]. The com-

putational speed and the analytical nature of the CBP methods may be among the

factors responsible for this.

In fact, both families of methods, iterative and CBP, accomplish the same task,

shown to have a theoretical common ground noted by Older and Johns [66]. The

approaches to creating the image, however, are quite different. In many situations,

the iterative methods provide better image quality than CBP methods, particularly

with noisy data or a limited number of views, as described in the sections that follow.

This thesis uses ART, and iterative algorithms that are minor variations of ART,

exclusively.
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2.1.3 Cone Beam Reconstruction

To date, CT has been done by accumulating a large number of one dimensional

projections and reconstructing a two dimensional slice, usually by a convolution

method. Three dimensional reconstructions are made by stacking these slices. In

this conventional configuration, the X-ray beam from source to detectors is in the

shape of a fan (see Figure 2.1). Cone beam technology, on the other hand, uses a

beam directed at a 2-D detector surface array, and allows for direct reconstruction in

3-D.

The problem of reconstruction from cone beam data is not one of simply combin-

ing 2-D views. In any 2-D view, a voxel’s point of rotation about the axis as well

as its distance and direction from the axis impacts on the z location of its represen-

tation, as seen in Figure 2.6. This increases the difficulty of performing such 3-D

reconstructions.

Cone beam technology makes more efficient use of the X-ray source. The total

X-ray dose for a typical CT examination is the product of a large number of 1-D

views per slice and the number of slices. Cone beam offers the potential to make a

3-D reconstruction from a much smaller total number of 2-D views, since separate

slices are not required. However, an array of d× d detectors used to take a 2-D view

requires a larger X-ray dose than does a linear array of d similarly sized detectors used

to take a 1-D view. Mueller et al. [62] estimate the number of projections required to

reconstruct a spherical region of interest as 0.67n, where n is the length in pixels of

the n×n×n cubic reconstruction grid. In the more practical case of reconstructing a

cylindrical area of interest, which could be done with modification of a helical scanner,
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Figure 2.6: Challenge of cone beam reconstruction. From Prof. W. Kalender [46,
page 64], with permission June 18, 2007.

the number of projections required is 0.78n [62, page 539]. This suggests a theoretical

basis to expect improved efficiency with cone beam reconstruction.

Defrise [19, page 115] notes that the improved speed and efficiency comes at a

computational cost:

“By increasing the number of photons detected, this 3-D approach allows
faster imaging, but image reconstruction becomes much more complex
since the 3-D object can no longer be separated into a stack of independent
slices.”

Basu and Bresler [6] discuss a CBP algorithm that runs in time O(N2 log N), and

adapt this for 3-D reconstruction [7] in O(N3 log N). Grass et al. [35] develop an

algorithm which created a 3-D reconstruction from 2-D projections, using an extra
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‘rebinning’ step to convert the diverging cone beam rays into parallel rays striking

a “virtual detector plane”. With the addition of this step, an overall decrease in

complexity is claimed. De Man and Basu [18] discuss a time and memory efficient

algorithm for projection and backprojection which is easily extensible to 3-D.

The developments in cone beam reconstruction discussed thus far deal with CBP

algorithms, some of the studies using the Feldkamp algorithm (FDK), an adaptation

of CBP for cone beam CT [23]. However, the FDK algorithm is primarily used with

wide fan beam, rather than full 3-D cone beam reconstruction.

Progress has also been made with 3-D cone beam iterative algorithms. Mueller

et al. [62] examine methods to speed up iterative algorithms with the goal of making

3-D cone beam iterative reconstruction practical. Chlewicki et al. [12] examines cone

based 3-D reconstruction, comparing the Feldkamp algorithm to SART, an iterative

algorithm. Chlewicki et al. [13] also propose a fast SART implementation for 3-D use.

There is a significant role to fill for fast iterative algorithms in full 3-D reconstruction.

2.1.4 Limited View Reconstruction

Another approach to limiting radiation exposure is to reduce the number of views

from the number currently used in most CT scanners, using algorithms that optimize

use of the information present and minimize artifacts when presented with small

numbers of projections. The examination and modification of such reconstruction

algorithms is a problem that clearly falls within the scope of computer science.

The Central Slice Theorem applies only to parallel projection rays. To utilize

convolution backprojection with any Fourier method, (2-D) fan beam or (3-D) cone
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beam projections must be sorted into parallel projections. As the number of views

becomes more limited, it becomes more difficult to ‘re-bin’ individual detections to

parallel rays, and true 3-D reconstruction algorithms must be considered. An it-

erative method does not have this limitation; while geometric distortion can occur

if this is done naively, there is no inherent requirement for rays of any view to be

parallel. Mueller [61] notes the degradation that may occur with convolution back-

projection methods when the number of projections is limited, and proposes the use

of iterative algorithms for limited view cone beam reconstruction. Thibault et al. [83]

find improved image quality using iterative methods compared to CBP methods (the

Feldkamp algorithm) when working with 3-D cone beam reconstruction.

In general, Fourier convolution backprojection methods tend to degrade the image

badly when the number of views is reduced [36, page 25]. It is therefore likely that

any limited view algorithm will use the iterative approach, in spite of the increased

computational cost.

Kak and Slaney [45, page 275] note:

there are situations where it is not possible to measure a large num-
ber of projections, or the projections are not uniformly distributed over
180 or 3600, both these conditions being necessary requirements for the
transform-based techniques to produce results with the accuracy desired
in medical imaging.

In such situations, algebraic techniques are essential. Iterative methods also suffer

from streak artifacts with limited views, but there are some solutions to this problem

[69; 70]. An example of a limited view application is CT imaging of the heart, where

the beating motion limits the number of views that can be acquired for a given

position of the heart. For such an application, iterative methods are preferred.
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2.2 Related Work

This chapter discusses the relevant literature on CT with regard to improvements

in iterative CT reconstruction algorithms, parallel approaches to CT reconstruction,

and in particular with regard to communication overhead in parallel approaches.

2.2.1 Improvement in Iterative Algorithms

This thesis uses iterative algorithms, ART and minor variations of ART, hence

some related work regarding iterative algorithms is reviewed. Prior to the invention

of the first commercial CT, Gordon at al. [32] developed ART, the forerunner of

the iterative algorithms, to use for electron microscopy. The application to radiol-

ogy became immediately clear, and Gordon [34; 33; 30] along with others describe

early iterative algorithms primarily for use with CT (then called ‘reconstruction from

projections’ or ‘computerized axial tomography’). The ART algorithm has been fine

tuned by various researchers. For example, Rangayyan et al. [69; 70] refine the al-

gorithm to prevent streaks with limited views. Wang et al. [88; 74] use iterative

deblurring techniques to reduce artifacts in local region CT.

The rate at which the algorithm converges on a solution is a major factor in the

overall speed of the algorithm. The rate of convergence is affected by the order in

which views are accessed, an issue studied by several researchers. Herman and Meyer

[40] propose a scheme that uses variable angles between successive projections as they

are accessed. Guan and Gordon [37] implement a Multilevel Access Scheme (MLS) to

maximize orthogonality between consecutive projections, and demonstrate a dramatic

improvement in the speed of the convergence of ART. They claim that their algorithm
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speeds the convergence rate of ART and has superior image quality compared to the

Fourier backprojection algorithm for a small number of projections. Their algorithm

works best when the number of projections is a power of two. Mueller et al. [60]

propose a Weighted Distance Scheme (WDS) that speeds up the convergence of ART

algorithms. This scheme heuristically determines the angular distances of the newly

selected projections. They claim that their scheme produces better images with less

noise than other ordering schemes, but it is sub optimal compared to a global optimum

selected from all permutations of the projection angles.

There are variations of iterative algorithms including the Multiplicative algebraic

reconstruction technique (MART) [30, page 85], the Maximum Likelihood (ML), Ex-

pectation Maximization (EM) [75; 80; 49], Simultaneous Iterative Reconstruction

Technique (SIRT) [17; 48; 86], and Simultaneous Algebraic Reconstruction Tech-

nique (SART) [3; 4], that is recently proven to converge [43; 42]. The EM algorithm

is mainly applied to Positron Emission Tomography (PET) imaging techniques where

the noise level in projection data is relatively high. The EM algorithm is efficiently

parallelized on the transputer [5; 10], BBN butterfly and Intel Paragon [14], Beowulf

cluster [78] and P2P environments [54].

There are a wide variety of iterative algorithms, many of which demonstrate adapt-

ability to 3-D and robustness to input of a limited number of views. Iterative algo-

rithms are necessary in those situations, where radiation exposure is reduced, and

are the algorithms of choice in this thesis. Many enhancements to improve speed

are listed in this section, but performance remains an issue. The section that follows

discusses a means of improving performance: parallelization.
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2.2.2 Parallel Approaches to CT Reconstruction

CT reconstruction algorithms are implemented on a wide variety of hardware.

Lattard et al. [51; 50] use a SIMD data-flow machine (a fine-grained array of processing

elements) to run parallel ART implementations. Fitchett [24] also implemented ART

on a SIMD machine, using a different type of processing element (PE). One objection

to the use of such specialized hardware is cost. Mueller and Yagel [59] use a much lower

cost hardware: the modern PC’s graphics hardware. They exploit the parallelism of

texture mapping hardware to achieve significant speedup with the SART algorithm.

A common and hence less expensive form of parallel hardware is a computer

network, which can be anything from a homogeneous Cluster of Workstations (COW)

to a loosely connected heterogeneous network. Software such as the Message Passing

Interface (MPI) [25, Chapter 8] or Parallel Virtual Machine (PVM) [27] is often

used in such systems to handle the communication between processors. Typically

under MPI, all processors execute the same program in a single program multiple data

(SPMD) model, but it is possible for the processors to execute different programs,

creating a multiple program multiple data (MPMD) model [25]. PVM runs on MPI

and provides additional functionality for heterogeneous networks, and is especially

suited for running programs under the MPMD model.

Guerrini and Spaletta [38] implemented reconstruction algorithms on vector com-

puters. These computers were quite limited in terms of power and memory for large

3-D reconstruction problems.

Chen et al. [11] implemented the convolution backprojection algorithm for 3-D

parallel beam geometries on the Intel hypercube, iSPC/2 multiprocessor. They use



Chapter 2: Background 39

the 3-D incremental backprojection algorithm [11] that performs backprojection on

a ray-by-ray (beam-by-beam) basis as opposed to a pixel-by-pixel approach. This

algorithm is faster than the conventional backprojection algorithm. They exploit

functional parallelism on two functions, convolution and backprojection, by a two

stage pipelining approach. Task partitioning in the convolution and backprojection

stages is discussed extensively. Processing an image containing 31×31×31 voxels, a

speedup of 5 is obtained using 6 processing elements (PEs): 5 for convolution and 1

for backprojection. However, a speedup of 26 is obtained on a 63×63×63 voxel image

using 32 PEs, 30 for convolution and 2 for backprojection.

Rao et al. [72] implemented the filtered back projection algorithm for 2-D cone

beam tomography on the CM5 and Intel Paragon parallel platforms. On the CM5,

they use the Connection Machine Scientific Subroutine Library (CMSSL) for finding

the FFT and Inverse FFTs. Their results indicate that the Intel Paragon produces

much more efficient results than the CM5. The CM5 does not produce speedup until

it reaches 256 processors, while the Intel Paragon produces speedup at 8 processors.

As the number of processors is increased in the CM5 (from 200 to 500 processors) the

communication overhead takes over the whole computation. While the communica-

tion overhead dominates at larger numbers of processors on both types of machine,

the communication overhead is more marked on the CM5 due to the overall higher

number of processors used and “the greater communication requirements between the

processors of the CM5 as compared to the Intel Paragon” [72].

Reimann et al. [73] extend the idea of 2-D CT to 3-D cone beam tomography. They

implemented the most efficient filtered backprojection algorithm by Feldkamp, Davis
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and Kress [23] (also called FDK or Feldkamp algorithm) for cone beam tomography

on a shared memory machine and cluster of workstations (COW) using the message

passing interface (MPI). They notice that the backprojection step of the Feldkamp

algorithm produces a load imbalance. They tackle this problem by providing two

efficient techniques that increase the processor utilization. The authors use very

small machine sizes to implement their algorithm and conduct experiments. On the

COW, with only 6 processors, they use load balancing obtain a processor utilization

of 71.7% compared to 58.2% when the algorithm is unbalanced. Implemented on the

shared memory machine with two processors, They obtain a speedup of 1.94 with

processor utilization of 95.1%.

Laurent et al. [52] study 3-D cone beam tomography using three different algo-

rithms: Feldkamp, block ART and SIRT. They provide both theoretical complexities

and experimental results for these algorithms. They also propose local and global

solutions for the parallelization of projection and backprojection algorithms. The

algorithms are implemented on five different MIMD computers: a network of work-

stations (Sparc 2 and 5 Sparc 3 machines), a farm of processors (16 AXP processors,

Giga-switch network topology), a Paragon (32 i860 processors), a T3D (128 AXP

processors, 3-D torus network topology), and an SP1 (32 RS6000 processors). All

experiments were conducted using the Parallel Virtual Machine (PVM) [27] library.

The Feldkamp algorithm yields the best performance on all machines. The T3D

machine, in general, produces better speedup than the other machines, this being

attributed to efficient communication handling on the T3D.

Recently there has been added interest in Computational Grids. Smallen et al. [81]
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studies implementation of the 3-D cone beam reconstruction algorithm on Grids. By

combining workstations and supercomputers, they run the GTOMO (Computational

Grid Parallel Tomography) application implemented with a work queue scheduling

strategy used in production at NCMIR (National Center for Microscopy and Imaging

Research). The experiments were conducted on a cluster of 7 workstations (available

at University of California San Diego) and an SP2 supercomputer (available at San

Diego Supercomputer Center with 128 nodes). This work is focused primarily on

scheduling strategies for applications running on a Grid, rather than their experiences

with the reconstruction problem.

Melvin et al. [56] use MPI on a Beowulf cluster to reconstruct a 2-D image in

parallel using iterative methods. Data partitioning is done according to projections,

each of a limited number of views (projections) being assigned to one processor in

a cluster. The speedup is minimal, presumably because the work of communication

between the processors detracts from any computational speed gains. Data dependen-

cies are noted between successive projections, and pixel values from each projection

have to be communicated to every other processor during each iteration.

The issue of communication overhead is a recurring theme in the studies men-

tioned thus far that use distributed memory architectures. Melvin’s solution was to

reimplement on a shared memory architecture [55]. This thesis reexamines the is-

sue of communication overhead by exploiting some evidence of locality in the data,

discussed in the next section.
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2.2.3 Communication Overhead in Parallel CT Reconstruc-

tion

A recurring theme in the previous section dealing with the literature on CT re-

construction in parallel, particularly on distributed memory architectures, is limited

speedup due to communication overhead. A problem with parallel CT reconstruction

is that of data dependence: an estimate of the value for any pixel may affect the value

of any other in a subsequent iteration. This data dependence can be conceptualized as

follows: choose any two pixels on a CT image slice; if there is a sufficiently large num-

ber of views, there is at least one projection ray that includes both pixels. Hence, any

estimate of one pixel affects the estimate for the other, since both contribute to the

detected sum. Because calculations involving data on one processor’s local memory

may depend on data in a different processor’s local memory, significant communi-

cation overhead may be required to move the data between processors, needed to

parallelize a CT reconstruction algorithm. Three possible solutions to this problem

are: to use a shared memory implementation to avoid communication overhead, to

find new algorithms which are more inherently parallel, or, to find and exploit some

locality to minimize communication overhead.

The shared memory solution may introduce synchronization overhead, and in-

volves hardware that is somewhat less common and more expensive than the ubiqui-

tous distributed memory hardware utilized in this thesis.

An example of the second solution is to exploit optimization algorithms. It is

possible to conceive, for example, of an iterative algorithm that is influenced by

a ‘guess’ for a starting pixel value. Each processor could work on its own image
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initiated from a different set of starting values, working in parallel until the images

were compared by some criterion to select the preferred image.

The third possible solution, used in this thesis, is to find and exploit some locality

in the data. In spite of the apparent data dependence, there is evidence of spatial

locality in the reconstructed image. Evidence for this comes from: work done with

image ‘errors’, and the success of a technique known as Local CT. Gordon [29, page

276] observes that a reconstruction may be locally manipulated with little effect on

other regions [29]. He examines the effects of feature addition or removal during re-

construction of an image with limited views (hence highly undetermined equations)

to look at the possibility of detecting features not truly present and missing features

which could be present in the limited view reconstruction. Of note is that a fea-

ture could be significantly altered but manipulations made on a localized region of a

reconstruction have only minor consequences to other regions. This somewhat unex-

pected result indicates that there is some data locality related to spatial position in

the image.

Local CT may serve as a model to demonstrate spatial locality in a CT image.

Describing the mathematical foundations of CT, Smith and Keinert [82, Figure 3 on

page 3957] propose a reconstruction of δf , differences in attenuation, rather than f ,

the actual attenuation. They note that such a reconstruction is highly local, requiring

only rays that traverse the region of interest or are very close to it to provide an

accurate reconstruction [82]. They propose coning the X-ray beam in to the region

of interest, using small detectors to get a high resolution scan of this area. This is

done using data from scans of phantom test images, with surprisingly good results in
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spite of limited views and coarse detector sampling.

This is the underlying principle of local CT. As described by Daatselaar [85,

page 361],

“Local CT is a variant of CT that aims to reduce the radiation dose to
the patient by using a narrow X-ray beam that only covers the area of
interest.”

Local CT involves the use of limited radiation projected at a particular organ or body

region of interest to minimize radiation exposure to regions which are not of interest.

Some loss of image quality occurs due to the incorrect assumption that parts of the

object outside the region of interest do not contribute to the projection values. In

spite of this, an image of reasonable quality can be obtained.

Gordon’s work with image ‘errors’ and the success of local CT demonstrate some

evidence of spatial locality: data dependence is highest between image pixels which

are spatially close to one another, but this dependence is much less between widely

separated pixels. This thesis makes use of such locality for data partitioning (Sec-

tion 3.6) in order to limit the communication overhead on a distributed memory

implementation of parallel ART.
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Materials and Methods

This chapter describes the tools used and the methods applied in order to run

the experiments of the following chapter. First there is a discussion of the choice

of programming language. A brief outline of the hardware, operating system, and

programming environment are then presented. A section on CT simulators and virtual

phantoms follows, containing an introduction to CT simulators, the available types

of virtual phantoms and CT simulators, and the CT simulator and virtual phantoms

used in this thesis. The following two sections discuss how the implementation is used

to specify the algorithm and its parameters: the first describes the choice of algorithm

and parameters for the underlying iterative algorithm, and the second describes the

choice of parameters specific to the parallel version. The final section describes the

data partitioning methods that have been tested in this thesis.

45
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3.1 Programming Language

An imperative programming language such as C or Fortran allows for convenient

and detailed specification of the reconstruction algorithm. Both C and Fortran have

libraries available to allow multiprocessing. Matlab’s facility to handle matrices and

its graphic capabilities make it an obvious choice, and this is used by Melvin [56; 55]

in a previous work with parallel ART.

However, because of the potential complexities of the data structures such as

weight tables and scanner geometries, an object oriented language might be more

suitable. Smalltalk is designed to allow objects to interact by message passing, but

requires a very specific operating environment and may have some performance issues

[77, Chapter 15].

The best overall choice would be one of two languages which combine imperative

and object oriented paradigms: Java and C++. Both of these languages are widely

available on a large number of platforms, and both have libraries to facilitate GUI

development and multiprocessing.

Java has two main advantages over C++. The first is the built-in libraries: it

has the same standard GUI library regardless of the platform, and has built-in multi-

threaded capabilities. This saves development time when migrating to an unfamiliar

platform. The second advantage is the ease of memory allocation, saving time in cod-

ing and saving even more time removing subtle bugs from C++ constructor methods

and correcting memory leaks.

Java does have one drawback compared to C++, however, and that is perfor-

mance. Java is usually interpreted at run time from byte codes, whereas C++ is
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(often) compiled into machine code for faster execution. The actual overall execution

time may not be as important for a theoretical prototype scanner as it would for a

production machine, since we want to demonstrate relative performance gains. How-

ever, given a large enough problem size the execution times could be large enough to

impede the progress of the thesis.

C++ is chosen because of its object oriented benefits, efficient compilation, and the

fact that a CT simulator is available in C++. Perl and Bash scripts fill a supporting

role.

3.2 Experimental Platform

Development was carried out on a Pentium 3 containing 256 MB of RAM, run-

ning Linux Fedora Core 4, kernel 2.6.11-1.1369 FC4. The Gnu compiler used was gcc

version 4.0.2 20051125 (Red Hat 4.0.2-8). For parallel programming, LAM/MPI 7.1.1

was utilized.

After initial development and some testing of multiprocessing code on the sin-

gle processor, the programs were ported to the 25 “Bird” machines, a cluster of

x86 64 machines each containing 1 GB of RAM, and running Linux Fedora Core 5,

kernel 2.6.20-1.2316.fc5. The Gnu compiler gcc version 4.1.1 20070105

(Red Hat 4.1.1-51) and LAM/MPI 7.1.2 were used to continue development.

The Boost libraries were used, primarily for directory and file handling code.
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3.3 CT Simulators and Virtual Phantoms

Projection data is required as input for the reconstruction algorithms that are

tested in this thesis. To generate this data, a CT scanner and test objects to scan are

required; the scanner scans the objects to create the projection data. A CT simulator

or virtual scanner is software that simulates the physical process of scanning an object

to a collection of projections. Many CT simulators have associated test objects, or

phantoms, to scan. Just like physical CT scanners, most CT simulators come bundled

with reconstruction software to create an image from the projections. This thesis

makes use of a CT simulator and some virtual phantoms to generate projection data,

but the reconstruction software of the scanner is not used. Instead, newly created

reconstruction software that implements parallel iterative algorithms is used.

This section looks at the reasons for using a CT simulator (virtual scanner),

discusses two major types of virtual phantom, and then introduces the specific CT

simulator and virtual phantoms used in this thesis.

3.3.1 Advantages of a CT Simulator

Experimentation with CT reconstruction algorithms requires the use of clean pro-

jection data and detailed knowledge of the object being scanned. To test or calibrate

a physical CT scanner, one may scan a physical phantom, an object whose measure-

ments and attenuation characteristics are known precisely. One could obtain scans

using a physical scanner on a physical phantom to experiment with reconstruction

algorithms, but there are several problems in doing this. Most scanners are closed

systems, with no access to the data directly; only the final product is accessible. The
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manufacturer’s target market is the end user, so there is little justification to add

features (however minimal they might be) to extract data from early stages of the

scan. Moreover, such data could be used to improve reconstruction, in competition

with the manufacturer.

Assuming raw projection data from a modern CT scanner were available, the

financial cost of the technician and run time must be considered. Several standard

physical phantoms exist, but these also accrue financial cost.

Instead, a CT simulator is utilized to scan at least one virtual phantom, an image

or mathematical description of an object. The reconstruction software can then be

tested on the resulting projections.

There are several advantages to using a virtual scanner. A major advantage is

that one can choose any desired geometry for a virtual CT scanner, varying the

distance from source to detector. Current hardware is not a limitation. For example,

to experiment with wide cone beam CT, where few physical units exist, geometric

parameters are simply adjusted to widen the beam.

When constructing and evaluating new algorithms, it is helpful to be unencum-

bered by the limitations of precision in the engineering and construction of the scan-

ner, the imperfections of physical phantoms, and noise introduced in the measuring

process. A virtual phantom allows complete mathematical knowledge of the phantom,

so that reconstruction results can be compared to the original (phantom) subject. If

so desired, we can add specific types and amounts of noise to the projections to eval-

uate the robustness of reconstruction algorithms. In the early stages of development,

as in this thesis, the problems of instrument noise are avoided as much as possible.



Chapter 3: Materials and Methods 50

A subtle problem to recognize in the use of a virtual scanner is the possibility of

systemic error. If the programming code used to project the phantom is the same

code (or similar code) to that used to backproject and reconstruct, then the possibility

exists that serious errors in the projection will be cancelled by the same errors in the

backprojection, hiding the errors.

A CT simulator scans certain types of objects, known as virtual phantoms, that

are designed specifically to work with that particular scanner. General types of virtual

phantoms and scanners are described in the following sections, as well as a description

of the CT simulator used to generate projections from virtual phantoms in this thesis.

3.3.2 Two Types of Virtual Phantom

There are two major types of virtual phantoms to scan using a CT simulator, and

hence two major types of CT simulators to scan these phantoms. One may scan a

rasterized image phantom (Figure 3.1), or scan the geometric figures which comprise

the phantom (Figure 3.2).

In order to convert the image or other mathematical construct into projection

data, the CT simulator must determine which areas of homogeneous attenuation

from the image are intersected by the beam of the detector in question. In the case of

a rasterized image, a grid of image pixels represents the uniform areas of attenuation.

These pixels are generally assumed to be square in shape (an exception using hexagons

is noted [84]). The raysum measured by the detector will be the sum of the products

of the fraction of pixel area intersected by the beam multiplied by the corresponding

attenuation value. One could calculate directly the area of intersection between the
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Figure 3.1: Scanning rasterized phantom.
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Figure 3.2: Scanning phantom of geometric curves.

areas of uniform attenuation and the beam, but this quickly becomes difficult for

anything but the simplest shapes of attenuation areas and beams. Generally, an
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approximation to the area of intersection is calculated.

One way to approximate this is to construct a grid of equally spaced points in

the image. Each point can be tested to determine on which side of a gridline or

beam line the point resides, and then, by counting the points determine which reside

inside both the beam and the cell, approximate the intersecting area (Figure 3.3).

The algorithm nests the test for location inside several loops, potentially using much

execution time (Algorithm 3.1). The same approach can be used for the phantom of

geometric curves, counting the points which are inside the figure as well as the cell

(Figure 3.4).
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Figure 3.3: Counting points to approximate area of pixel in beam.
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for all views do

for x = 0 to xmax do

for y = 0 to ymax do

for z = 0 to zmax do

for each beam bi i = 1 to beams in view do

for each figure in the image gj j = 1 to n do

if p(x, y, z) is in the beam and in the figure then

add density for figure µj to detector reading di

for each detector di i = 1 to beams in view do

divide total by density per grid point (normalize)

Algorithm 3.1: Algorithm to approximate intersection areas.
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Figure 3.4: Counting points to approximate area of intersection of beam and figures.

A less computationally intensive, though less accurate approach, is to examine a

ray from the source to the centre of the detector in question, and measure the length

of the ray segment which traverses the region (Figure 3.5). A similar approach can be

used with the geometric figures, using the ray segment length in the specified region

as a proxy for the area. (Figure 3.6).
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Figure 3.5: Ray segment length as a proxy for area of pixel intersected by beam.
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Figure 3.6: Ray segment length as a proxy for area of geometric curves intersected
by beam.
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To improve accuracy, several ray segments can be measured. (Figure 3.7). The

same approach can be done using geometric figures and also yields a more accurate

estimate than a single ray segment. (Figure 3.8).
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Figure 3.7: Multiple ray segment lengths as a proxy for area of intersection between
beam and pixels.

Scanning the images, either rasterized or geometric, using discrete detector arrays

results in a discrete data set. Reconstruction results in a rasterized image. Note that

in order to compare the reconstructed result to the original phantom image, we must

first rasterize the geometric phantom (Figure 3.9).
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Figure 3.8: Multiple ray segment lengths as a proxy for area of intersection between
beam and geometric curves.
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Figure 3.9: The scan, reconstruct, compare cycle for rasterized and geometric scans.
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3.3.3 CT Sim

CT Sim [76] is an open source CT simulator written by Kevin Rosenberg. Using

CT Sim provides a convenient way to scan images. Because it is open source, the

internal structure of image files and other structures are open to inspection and

modification, so that compatible code to reconstruct the projections resulting from

CT Sim can be written. CT Sim was written in C and subsequently ported to C++.

It is described in Table 3.1.

Features of CT Sim

Feature Description

phantom images geometric curves: ellipses,

rectangles, sectors

backprojection centre of pixel projected

reconstruction filtered backprojection

language C++

libraries used Wx Widgets

MPI

libpng

FFT

installation multi-platform

automated

Table 3.1: Features of CT Sim

The scanner from CT Sim scans geometric phantoms, using the length of ray

segment within a geometric region as a proxy for the area of intersection between
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the beam and the region. Multiple ray segment lengths can be used to improve this

estimate as in Figure 3.8. The default is two rays, but a higher number of rays can

be specified.

Many tools included in the suite were also used, and these are listed in Table 3.2.

CT Sim Programs Used

Program Purpose

ifinfo image information

if2 binary functions on two input IF image files

ifexport export images in viewable form (png)

phm2pj scan phantom

phm2if rasterize phantom

pj2if projections in image form

pjinfo projection information

pjrec reconstruct image from projections

CT Sim most of above with GUI interface

Table 3.2: Programs in CT Sim suite
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3.3.4 Virtual Phantoms

CT Sim provides built-in phantoms: the standard Herman and Shepp-Logan phan-

toms, and the unit pulse phantom which is not a phantom to be scanned, but rather

a specific set of detector readings. With the exception of the unit pulse phantom, all

CT Sim phantoms are geometric phantoms. CT Sim also provides the capability to

create user defined geometric phantoms from a number of shapes.

Unit Pulse Phantom

The unit pulse ‘phantom’ is not an object or image to be scanned, but rather

a condition where the centre detector is turned on, seeing a raysum of 1, while all

other detectors are 0. If there are an odd number of detectors, this is the same as a

phantom having a narrow spike at the centre of the image; using an even number of

detectors makes the resulting projections somewhat discordant. This phantom was

used during development to provide a small (7×7 pixels) rasterized image having a

centre pixel with value 1 and all others 0 (Figure 3.10).
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5 5 0 0 0 0 0 0 0

6 6 0 0 0 0 0 0 0

Figure 3.10: Unit Pulse Phantom, rasterized to 7×7.
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Phantom ‘Phm01’

The phantom ‘phm01’ was created to CT Sim specifications (Figure 3.11). It

consists of two circles, and its description is given in Table 3.3. Phm01 was created to

have a single non-centre pixel turned on in a 7×7 pixel rasterized image (Figure 3.12).

Figure 3.11: Design of Phm01.

From this point forward, all rasterized phantom images or reconstructed images

which are 7×7 pixels or smaller will be shown in their rotated form, as in Figure 3.13.

CT Sim has followed the usual algebraic convention of listing the x-coordinate of a

Cartesian pair before the y-coordinate. Unfortunately, it has also followed the C lan-

guage convention that the leftmost subscript represents rows (vertical displacement)

and the right subscript represents columns (horizontal). This results in the unhappy

situation that x is displayed vertically, and y is displayed horizontally in the images.
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3 3 0 0 0 0 0 0 0
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6 6 0 0 0 0 0 0 0

Figure 3.12: Phm01, rasterized to 7×7 as produced by CT Sim.

Hence, some of the CT Sim backprojection code has the sin function in an expression

where one would normally expect cos. This thesis rotates the small test images that

have labelled coordinates ninety degrees clockwise to correct for this and restore the

axes to their customary Cartesian positions. Built-in phantoms such as the Shepp-

Logan have this rotation already taken into account, so these images are not rotated

from their expected orientation.

Shepp-Logan Phantom

The standard Shepp-Logan phantom (Figure 3.14) is comprised of a number of

ellipses, listed in Table 3.3. A rasterized version is seen in Figure 3.15.
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Figure 3.13: Phm01, rotated to match Cartesian axes.

Figure 3.14: Elements of Shepp-Logan.
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CT Sim Phantom Elements

element cx cy dx dy r a

ellipse centre coordinates major minor rotation attenuation

(x,y) axis length deg c.c. µ

Phantom 01

ellipse 0 0 1 1 0 0

ellipse 0.5 0.5 0.1 0.1 0 4

Shepp-Logan

ellipse 0.5538 -0.3858 0.033 0.206 -18 0.03

ellipse 0.06 -0.605 0.023 0.023 0 0.01

ellipse 0 -0.605 0.023 0.023 0 0.01

ellipse -0.08 -0.605 0.046 0.023 0 0.01

ellipse 0 -0.1 0.046 0.046 0 0.01

ellipse 0 0.1 0.046 0.046 0 0.01

ellipse 0 0.35 0.21 0.25 0 0.01

ellipse -0.22 0 0.16 0.41 18 -0.02

ellipse 0.22 0 0.11 0.31 -18 -0.02

ellipse 0 -0.0184 0.6624 0.874 0 -0.98

ellipse 0 0 0.69 0.92 0 1

Table 3.3: The geometric composition of phantoms used.
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Figure 3.15: Shepp-Logan Phantom, rasterized to 128×128 pixels.
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3.4 Specification of Sequential Algorithm

There are many variations of the original iterative algorithm, the Algebraic Re-

construction Technique (see Section 2.1.2, page 28). The basic ART algorithm is

presented, followed by some variations. All of the discussed variations will be im-

plemented, to allow flexibility during trial runs, and to avoid the pitfalls of poor

performance due to a poorly chosen specific algorithm.

ART is our basic choice because it is the forerunner of the iterative methods. It

serves as a starting point to discuss related algorithms. A pseudo-code synopsis of the

(sequential) ART algorithm is given in Algorithm 2.2. The pseudo-code algorithm

iterates over a sparse matrix of weights in the loops specified at steps 3, 5, and 6. The

algorithm that is implemented in this thesis represents the rays of the weight table

as a data structure containing three arrays: two arrays to store the row and column

indices of the pixels having non-zero weight contributions to the ray, and one array to

store the weights themselves. The implemented weight table is much smaller, since

the many zero weights are not stored. Complexity is reduced when iterating over the

weight table, because rather than iterating over n2 pixels for a n× n pixel image for

each ray, we iterate over n2 pixels for each view (there are an average of n pixels with

non-zero weight per ray and n rays per view).

The ART algorithm is implemented with a number of parameters to be specified,

allowing flexible choices for a variety of features of algorithm. Such features as the

basic updating mechanism (ART, MART, or WART), the frequency of updating, the

termination conditions, the seed image, clipping of values, and various parallel options

can be specified. These features are discussed so that the results of the thesis project
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can be viewed in a proper context.

The correction term to be applied can be modified from the basic ART algorithm

to yield other algorithms. In ART (Algorithm 2.2) the correction term Pθd−Pcalc

denominator
is

added to the update array, and subsequently added to the pixel attenuation estimate.

When the correction is made, the same term is applied to each pixel that contributes

to the raysum. A novel modification to this scheme that we will call Weighted ART

(WART) first weights this correction factor according to the proportion of the pixel’s

weight compared to the total weight of all contributing pixels in the raysum, then

applies this weighted correction factor to the pixel. Multiplicative ART (MART) is a

well known refinement to ART using multiplied, rather than added, correction terms.

This allows pixels in the periphery which are ‘zeroed’ to remain zero, which speeds

convergence of the remaining pixels.

The timing of updates in the algorithm must also be specified. From Algo-

rithm 2.2, the q superscript of Sq
ij in the updating equation indicates that Sq

ij is

updated every view. This is standard for ART, and hence this is the updating sched-

ule shown in the pseudocode. Rather than update the pixel directly, however, the

corrections to pixels are added to a separate ‘update’ image array. The time that the

updates are added to the actual image pixels is specified by a parameter. This up-

dating can take place after each ray (though instability may result), after each view,

or ‘simultaneously’ after each cycle as in the Simultaneous Iterative Reconstruction

Technique (SIRT). Exactly one of these schedules is chosen. After the update ar-

ray element is added to the pixel estimate (or multiplied, in the case of MART) the

update array element is set to zero (or to one, in the case of MART).
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The denominator for the correction factor, identified in Algorithm 2.2 as

‘denominator’, is also specified. The denominator may be specified as: the total

number of relevant pixels; the total weight of relevant pixels; or the constant value 1.

If the latter is chosen, then a low relaxation factor should be chosen to avoid excessive

oscillations. The option to specify a ray’s length within the image as the denominator

is not implemented at the time of this writing.

The termination conditions are to be specified by the user. The ART example

iterates K times. This maximum number of iterations is specified. Error is calculated

as the sum of the magnitudes of the difference between the calculated error and the

measured error, |Pθd − Pcalc|, for the entire iteration. If updating takes place more

frequently than once every iteration, the total error changes as the calculation is

taking place. The option is available to do a separate iteration specifically for error

calculation. The implementation allows for specification of an error tolerance, below

which iterations cease, and also specification of a maximum number of ‘non-converging

iterations’. This number could be specified as 1, meaning that termination occurs as

soon as one iteration has a total error greater than or equal to the previous iteration’s

error. However, it is possible that after several iterations without convergence the

program might ‘back out’ of a local minimum and resume convergence toward a

new, more global error minimum. For this reason a higher maximum number of

non-converging iterations may be specified.

One must be able to specify the starting ‘seed’ image. This can be specified as

a number, to which every pixel in the image will be set (0 is a good choice for non-

multiplicative algorithms), or to random numbers between 0 and 1, or to a specified
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image file. The original seed image is destroyed as the algorithm modifies the image

with new estimates.

Guan and Gordon [37] show that the order in which views are accessed in an

iterative algorithm can have a dramatic impact on the rate of convergence. Multi-

level Sequencing (MLS),as described in their paper, may be specified in place of

sequential ordering. An algorithm to carry out this sequencing is created in the work

of this thesis.

Other choices include an option to clip values below a certain bound and a choice

of relaxation factor (α). If clipping is specified, a lower bound is selected and any

attenuation estimate less than that bound is set to the value of the bound. Typically,

zero is chosen in order to eliminate negative attenuation estimates. A relaxation

factor (α) less than 1.0, such as 0.8 or 0.6, may be chosen to dampen oscillations that

might be present.

A flexible implementation has been created that allows selection from a number

of options. These options are not only parameters that affect some aspects of the

algorithm’s behaviour, but also specify the actual algorithm to be used.

3.5 Specification of Parallel Algorithm

The architecture on which we implement the algorithm is a cluster of worksta-

tions, an example of a distributed memory system, classified as a MIMD (Multiple

Instruction stream Multiple Data stream) system in Flynn’s classification [25, section

1.2]. The approach taken in this thesis is that of a Single Program Multiple Data

(SPMD) model [25, section 2.1]. Each processor executes (approximately) the same
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program simultaneously. This model is also known as data parallelism because a

separate partition of the data flows to each of the processors in parallel.

Require: Distribution of the projection data and seed image to each of p processors

1: Each processor Pi reads its own portion of the weight table, or reads the entire

table, filtering it to keep what is relevant. Each Pi will be assigned a weight table

which is approximately w = W
p

(in cases of non-overlapping weight tables)

2: repeat

3: repeat

4: Each processor Pi performs the CT reconstruction algorithm on its own image

but iterating over weight table w

5: until x iterations or until local convergence criteria are met (for example,

further iterations produce no change within a specified tolerance)

6: barrier

7: Each processor Pi communicates its image data to the root processor

8: The root processor combines the image solutions, and communicates the com-

bined image data to each processor Pi

9: until a global convergence criterion is met

Algorithm 3.2: Parallel Iterative Algorithm.

Algorithm 3.2 is a pseudo-code synopsis of the parallel iterative algorithms for a

2-D image. Iterations for any iterative CT reconstruction could be used in step 4 of

Algorithm 3.2. In general, this algorithm is synchronous, meaning the processors are

executing the same code at the same time. This is ensured by the barrier at step 6

(processes must block until they all reach the barrier). The number of iterations of the
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global outside loop (step 2) is the same for each processor, and is dictated by a decision

within the root process at step 9. The inner loop (step 3) however, may be executed

a different number of times from one processor to the next (asynchronous). Since all

communication between processors takes place in the global loop, the algorithm is

synchronous.

If the step 4 algorithm is updated at the end of the iteration (simultaneously)

and the image from each processor is combined by adding, then the same results are

obtained as if the algorithm were done sequentially on a single processor. In general,

however, this is not the case and the sequential algorithm yields different results from

the parallel algorithm. It cannot be emphasized strongly enough that the parallel

algorithm is not the same algorithm as the sequential algorithm, and results differ

depending on the number of processors used.

The implementation allows specification of several parameters for termination of

the parallel algorithm (Algorithm 3.2). The exit conditions for step 3 of the par-

allel algorithm are exactly as specified for termination of the sequential algorithm

in section 3.4. The termination conditions for the outer loop, step 2 of the parallel

algorithm, are specified separately but are analogous to the termination conditions

for step 3. An error tolerance, below which iterations cease, may be specified for the

outer loop of the parallel algorithm. Also similar to the sequential algorithm is the

specification of a maximum number of iterations, and a maximum number of ‘non-

converging iterations’. The algorithm iterates through the loop starting at step 3

until a convergence criterion in step 5 is met. Synchronization then takes place, and

the processes communicate their image data to the root and receive back an updated
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global image. Because this communication updates the image, the variables deter-

mining the loop exit conditions for step 3 may have changed. If the program is not

terminated by the outer loop at step 9, then the inner loop is entered again at step 3

and the exit criteria is reevaluated. The specification of global criteria as well as local

criteria allows for a more exact manipulation of the algorithm.

3.6 Data Partitioning

Using the SPMD approach, a major design task is deciding how to partition the

data. In this case, the data to consider is the large series of tables of weights, the

weighting factor for each image pixel on the final raysum. In general, efficiency

is maximized by dividing the data equally among p (identical) processors. Each

processor is labelled Pi, where i = [0..p−1]. The weight table, containing W weights,

is divided among each of p processors so that each processor has a weight table of

approximately w = W
p

weights in its local memory. If it takes time T for a processor

to iterate through the weight table of W weights, then the same processor will iterate

through the table of w weights in time t = T
p
.

This thesis also investigates some strategies of overlapping data among the pro-

cessors so that w > W
p

and t > T
p
. The immediate increase in t is not desirable, but

in some situations this is balanced by a decreased work of communication of data

between processors.

The main differences between this and Melvin’s work [56] are that a number of

iterations is done on the data within a processor’s memory so that data is not commu-

nicated between processors at every iteration; and the weight tables are partitioned
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by image pixels (tiling) in addition to by projection. Four partitioning methods are

studied in this thesis:

view by sequence: V views are distributed to p processors so that each processor

receives V
p

consecutive views in its local weight table;

view by round robin: Views are distributed to each processor in turn until all are

distributed, so that each processor receives V
p

widely separated views in its local

weight table;

local tile: Individual rays are assigned to the weight tables of each tile, and these

rays are modified to refer only to pixels within the tile;

ray by tile: Individual rays are assigned to the weight tables of each tile, and these

rays may access pixels outside of the tile.

The design decision of how to partition the data is crucial. This thesis examines

more than one scheme to partition the weight tables. The simplest and most direct

method is to partition according to view. Since iterative algorithms typically iterate

through views, rays within views, and finally contributing pixels within rays, the sim-

plest way to structure the weight table is to create an array of views, each containing

an array of rays, each ray being a structure that contains the pixels and their weights

for that raysum. The views, then, are the root of the weight table structure, and

distributing the weights by assigning views to specific processors is straight forward.

Evidence of spatial locality in the final image (discussed on page 43), indicates a

possible method of partitioning according to spatial location in the image. An entire

image is divided into a grid, each part of the grid being computed as a separate ‘region
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of interest’. There are a variety of issues to consider with this tiling approach. Hexag-

onal tiling or overlapping circular tiling might provide improved locality. However,

the scope of this paper is limited to a particular rectangular tiling, the rectangles

being made as square as the image geometry and number of processors allow.

The underlying assumption is that two pixels within a given tile are more closely

related to each other than two pixels chosen from two different tiles. This is less true

of pixels at the boundaries between tiles. Overlapping tiles might provide a way to

deal with border pixels, so I also examine overlapping tiles.

The input data is the collection of projection data. This data can be partitioned,

but it is not necessary given the small size of the data relative to the weight tables;

the entire projection data can be distributed to each processor. The data that needs

to be partitioned is the weight table. Every view from the weight table includes a

given tile, hence all views are represented in a given processor’s weight table. Within

each view, rays that do not intersect the processor’s tile are discarded. Rays that

intersect the tile are handled differently, depending on the specific tiling method.

Two main methods of tiling are implemented. Using the first method, rays that

intersect the tile are ‘broken’. The piece of the ray that has pixels only inside the tile

is retained. The remaining piece, containing references to pixels outside of the tile, is

discarded.

An obvious question arises about what to do with the projection data. Even if

the pixel values from the retained piece of a ray exactly match the corresponding

pixels of a rasterized phantom, the calculated raysum may be very different from

the measured raysum due to missing contributions from pixels in other tiles. An
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adjustment could be made to either the measured or calculated raysum based on

the proportion of the length, number of pixels, or sum of pixel weights compared to

the complete ray. Further adjustments could be made depending on the average pixel

values of the contributing tiles, which could be calculated prior to partitioning. There

are assumptions about all of these adjustments that may not hold true, and so this

method makes no adjustments to the raysum. This first method of tiling makes a

strong assumption regarding spatial locality. and is referred to in this thesis as local

tiling.

An example of this method using small sized 7×7 pixel test images is shown in

Figure 3.16. All of the small images presented in this chapter are reconstructions

of the phantom Phm01 (Figure 3.13 on page 65), taken from projection data that

contains 60 evenly spaced views 3 degrees apart in one half of a rotation, using a

line of 7 detectors and parallel geometry. Reconstructions were done using ART and

a seed image of all zeroes. Figure 3.16 shows that all modifications made to the

image, i.e. all non-zero pixels, are local to the tile. For example, tile (0, 0) in the

top left corner of the figure includes pixels having (x, y) coordinates (0–2, 0–2). The

only pixels changed from the zero background are pixel (1, 1) and pixel (2, 2), pixels

within the tile. Likewise, tile (0, 1) (coordinates (0–2, 3–6)), tile (1, 0) (coordinates

(3–6, 0–2)), and tile (1, 1) (coordinates (3–6, 3–6)) modify only pixels within their

respective tiles, using image pixel values from only within their tiles.

The final result is achieved by simply ‘stitching together’ the tiles, shown in Fig-

ure 3.17. It is similar to the sequential solution shown in Figure 3.18, but contains

greater error.



Chapter 3: Materials and Methods 78

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0.00856 0 0 0 0 0

2 0 0 0.024 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

0 1 2 3 4 5 6

0 0 0 0 0.00627 0.01486 0 0

1 0 0 0 0.01129 0.00529 0 0

2 0 0 0 0 0.04359 0 0.00922

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0.01197 0.01197 0 0 0 0 0

4 0.02685 0.03564 0.056 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0.00385 0.00184 0

4 0 0 0 0.01533 0.03093 0 0

5 0 0 0 0.01376 0 0.17966 0

6 0 0 0 0 0 0 0

Figure 3.16: Local images produced by each partition, local tile method.
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0 1 2 3 4 5 6

0 0 0 0 0.00627 0.01486 0 0

1 0 0.0085 0 0.01129 0.00529 0 0

2 0 0 0.02414 0 0.04359 0 0.00922

3 0.01197 0.01197 0 0 0.00385 0.00184 0

4 0.02685 0.03564 0.056 0.01533 0.03093 0 0

5 0 0 0 0.01376 0 0.17966 0

6 0 0 0 0 0 0 0

Figure 3.17: Final image, local tile method, 4 processors.
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0 1 2 3 4 5 6

0 0 0 0 0.00351 0.01045 0 0

1 0 0 0 0.006 0.00117 0 0

2 0 0 0 0 0.00198 0 0

3 0 0 0 0 0 0.00109 0

4 0.01506 0.01022 0.00947 0.00672 0.03138 0 0

5 0 0 0 0.01023 0 0.17856 0

6 0 0 0 0 0 0 0

Figure 3.18: Final image, sequential version.
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A second method of tiling is examined in which rays are not ‘broken’ during the

weight table partitioning. If a ray intersects t tiles, then the ray is represented in its

entirety in the weight table of each of the t tiles. This ‘softens’ the assumption of

spatial locality, as each tile now references data (pixels) outside of itself. This second

tiling method, in which entire rays are distributed this thesis refers to as ray by tile.

There are two concerns with regard to this partitioning method. The first is

that a ray that intersects t tiles is represented t times, creating duplication from a

global perspective of the reconstruction. Such rays may be overweighted in the final

reconstruction. A second concern is that this duplication of information increases the

size of the weight tables for each processor (and hence the time to iterate through

them).

An example using small sized test images is shown in Figure 3.19. Estimates for

pixel values of pixels outside of the tile occur in all partitions, and this is where the

error tends to be maximal, i.e., the estimate made for pixel (6,6) by the partition

containing tile (0,0), the tile on the top left of the figure. The error within the tile

may be lower than for the local tile method. The pixel value estimates for the 9 pixels

of tile (0,0) are 100% accurate in this case.
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0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0.24382 0

6 0 0 0 0 0 0 0.11576

0 1 2 3 4 5 6

0 0.00024 0 0 0.00421 0.01264 0 0

1 0 0 0 0.0065 0.00324 0 0

2 0 0 0 0 0.00694 0 0

3 0 0 0 0 0.01216 0.00275 0

4 0 0 0 0 0.02479 0.01216 0

5 0 0 0 0 0 0.1038 0.01154

6 0 0 0 0 0 0.06776 0.01154

0 1 2 3 4 5 6

0 0.005 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0.01595 0.01664 0.0157 0.02582 0.04043 0 0

5 0 0 0 0.02312 0.00221 0.09209 0.06286

6 0 0 0 0 0 0 0.01605

0 1 2 3 4 5 6

0 0.00713 0 0 0.0077 0.04524 0 0

1 0 0 0 0.00606 0.01497 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0.04693 0.01927 0.00179 0.00425 0.02855 0 0

5 0 0 0 0.01132 0 0.17118 0

6 0 0 0 0 0 0 0

Figure 3.19: Local images produced by each partition, ray by tile method.
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Because the assumption of locality is not as valid at tile borders, increased error

along the borders between tiles is anticipated. This is confirmed in some test images.

By overlapping the tiles, the area for pixel modification is extended by at least one

pixel, and the error accumulates in the new extended border region. Only the original

area of the tile contributes to the reconstruction, and the less accurate pixels in the

overlapped area are discarded. The overall error rate is thus improved.

To specify overlapping, an ‘overlap’ parameter ω from 0 to 100 is specified for

the tiling methods, to indicate an overlap of between 0% and 100%. The tile is

expanded ω/2 % of its width in each direction that does not border the boundary

of the image. Hence, a square tile which is not on the image boundary has its area

expanded to 4 times the previous area. Iterations and pixel updates (local to the

processor) occur over the larger area, but only the original tile’s non-overlapping

pixels are communicated to the root.

Four main partitioning methods are implemented, a single method being chosen

at run time. The four basic methods to choose from are view by sequence, view by

round robin, local tile, and ray by tile. In addition, the previously described overlap

parameter is specified for the two tiling methods.
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Results

Projections of the Shepp-Logan phantom are taken using the default settings of

CT Sim’s phm2pj tool. All projection datasets are comprised of 180 evenly spaced

views in a half rotation. Each view consists of parallel rays striking a line of evenly

spaced detectors. Attenuation values are clipped at zero, updates are applied after

each view, the denominator of the correction factor is the sum of weights of all pixels

on the ray, and the relaxation factor is 1. Runs are performed to reconstruct the

Shepp-Logan phantom using sequential ART, and parallel ART using 1, 4, 8, 9, 16,

and 25 processors. Some images produced by MART and WART are also viewed.

Partitioning methods included: view by sequence; view by round robin; local tile

with no overlap; local tile with 50% overlap; ray by tile with no overlap; and ray by

tile with 50% overlap.

Images of size 64×64 pixels, 128×128 pixels, and 256×256 pixels were recon-

structed using projections taken from 64, 128, and 256 detectors respectively. Results

for reconstructions of size 64×64 pixels are shown in Appendix A and results for re-

84
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constructions of size 256×256 pixels are shown in Appendix B. The results of runs

shown in this chapter, unless otherwise indicated, are performed on 128×128 pixel

images.

Results are shown using a maximum of 2 iterations between interprocess communi-

cations, and an overall maximum of 8 iterations of the parallel cycle (hence an overall

maximum of 16 iterations of the inner loop). The exception to this is Figure 4.5,

that shows 10 iterations between communications. Iterations cease when there is no

longer convergence (the sum of errors for the entire iteration does not decrease from

the previous iteration).

The results, shown in the remainder of this chapter, are organized by image quality,

speed and scalability to the number of processors, and scalability to the problem

size. A summary follows, to indicate which partitioning methods show best overall

performance.

4.1 Image Quality

Reconstructed images are compared to a rasterized version of the original phantom

as in Figure 3.9. A visual inspection of the reconstructed images is important to

evaluate the reconstruction algorithms, and perhaps to gain insights into the failings

of certain algorithms. However, we also need a more objective measure to compare

reconstruction results from various algorithms and parameter choices.

In the case of production CT, we want to replicate even some of the more subtle

structures. A number of trained examiners could evaluate various reconstructions of

phantoms or actual clinical scans for the presence or absence of diagnostic features,
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and aggregate scores could be utilized to reduce the effect of observer bias. Another

objective means of evaluating the structure would involve the use of intelligent com-

puter programs to detect the preservation of structures in the reconstructed image.

Both of these methods are resource intensive, and beyond the scope of this thesis.

In general, the reconstructed images from this thesis lack the quality to be used

in a production scanner. Production quality, however, was not the intent of this

thesis. The intent of this thesis is to demonstrate that the algorithms are actually

reconstructing the phantom, and to show that the parallel algorithm reconstructions

are of similar quality to the sequential reconstruction.

Distance measures between corresponding pixels of two images (in this case the

reconstruction of a phantom and the rasterized image of the same phantom) are

sensitive to changes in scaling, translation, or rotation, though these transformations

should not occur in reconstruction.

Some of these measurements are sensitive to differences in the scale of image in-

tensity or image size, e.g. a Euclidean distance is larger for non-identical images if the

range of intensity values is larger. These measures do not provide a consistent scale

to compare images intuitively. To eliminate these two problems, this thesis computes

the image correlation coefficient between the reconstruction and the rasterized phan-

tom images. The image correlation coefficient for an image f(x, y) and a sub-image

w(x, y) is given by Gonzalez and Woods [28] as:

γ(x, y) =

∑
s

∑

t

[f(s, t)− f(s, t)][w(x + s, y + t)− w]

√∑
s

∑

t

[f(s, t)− f(s, t)]2
∑
s

∑

t

[w(x + s, y + t)− w]2
(4.1)

This formula is used to find the best match for sub-image w within the image f .
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The sub-image w is placed with its origin over position (x, y) in the image, then each

pixel (x+ s, y + t) of the sub-image is correlated to the underlying pixel in the image.

The resulting correlation coefficient γ at point (x, y) is normalized to range between

-1 and +1 so that the actual scale of the image intensity is not important, only the

corresponding differences in value. Coefficients are found for each possible position of

the sub-image within the image, and the maximum of the resulting γ(x, y) indicates

the best match.

This thesis compares two identically sized images (the reconstruction and an

equally sized rasterized phantom), iterating over x and y once only, producing a

single correlation coefficient:

γ =

∑
x

∑
y

[f(x, y)− f(x, y)][w(x, y)− w]

√∑
x

∑
y

[f(x, y)− f(x, y)]2
∑
x

∑
y

[w(x, y)− w]2
(4.2)

This coefficient is a value between 0 (indicating no correlation) and ±1 indicating

a perfect (positive or negative) correlation. The coefficient γ is equivalent to r,

the Pearson Product Moment Coefficient of Correlation[57, page 433]. The Pearson

correlation is the primary measurement of reconstruction quality used in this thesis.

When referring to the ‘Pearson correlation’ or ‘Pearson coefficient’ as a measure of

a reconstructed image’s quality, it should be understood that we are referring to the

reconstructed image’s correlation with the corresponding rasterized phantom.

As seen in Figure 4.1, image quality, by the primary measure of Pearson correla-

tion between the reconstruction and the phantom rasterized to the same granularity,

declines with increasing numbers of processors. This is to be expected when the

problem solution is initiated without communication. In the extreme case, when a



Chapter 4: Results 88

processor can iterate over only one view (in the case of view partitioning) or one pixel

(in the case of tile partitioning), no reasonable solution can be found.

Figure 4.1: Image quality vs. number of processors.

The Pearson coefficient between an unfiltered backprojection, shown in Figure 4.2,

and the rasterized Shepp-Logan phantom, shown in Figure 3.15 of Section 3.3.4, is

approximately 0.6 and is marked on the Y axis of Figure 4.1. Let us agree that any

reconstructions that achieve a Pearson correlation less than this do not demonstrate

a functioning reconstruction algorithm.
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Figure 4.2: Unfiltered backprojection, 128×128 pixels.
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In the cases of view partitioning by sequence and local tiling without overlap,

image quality deteriorates quickly as processors are added. Using 4 processors, the

Pearson coefficient between these images and the phantom is less than that of the

unfiltered backprojection. Most observers would agree that the quality of images

for view by sequence partitioning (Figure 4.3) and for local tiling without overlap

(Figure 4.4) is unacceptable.

Figure 4.3: Reconstruction by sequential views, 4 processes.
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Figure 4.4: Reconstruction by local tile, no overlap, 4 processes.

One might expect that a partitioning method such as local tiling, designed to func-

tion without interprocess communication, would perform better than other methods

when communication is less frequent. Measurements were taken using a maximum

of 10 iterations between interprocess communications, and an overall maximum of 6

iterations of the parallel cycle (generally there was convergence after 1 parallel cycle).

Surprisingly (see Figure 4.5), the view by round robin partitioning method showed
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the best improvement and best overall performance.

Figure 4.5: Image quality vs. number of processors, minimal communication.

Although the sequential view partitioning does not produce suitable images, view

by round robin partitioning produces more reasonable, though not ideal, images.

An example of reconstruction using view by round robin partitioning, using parallel

MART at a resolution of 256×256 pixels, is shown in Figure 4.6.

In general, the ray by tile partitioning methods, both without explicit overlap

(result shown in Figure 4.7) and with 50% overlap produce images of reasonable

quality. This quality remained constant as more processors were added.
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Figure 4.6: Reconstruction using view by round robin, MART at 256×256 pixels, 4
processes.
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Figure 4.7: Reconstruction using ray by tile, no overlap, 16 processes.
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In addition to the subjective impression of preservation of structure, the more

objective measurement of Pearson correlation between the reconstruction and its as-

sociated rasterized phantom is used in this thesis to measure image quality. Applying

this measurement, it can be seen that some deterioration in image quality may occur

with increasing numbers of processors. The ray by tile partitioning methods appear to

provide good quality reconstructions. The local tile with 50% overlap method and the

view by round robin methods may provide acceptable quality. The local tile without

overlap method and the view by sequence method are unacceptable in their present

forms, due to poor performance as judged by the primary image quality measure as

well as by the subjective appearance of the images.

4.2 Speed and Scalability to the Number of Pro-

cessors

Many iterative algorithms, including the ones examined in this thesis, run in two

steps: the first step calculates the weight tables, and the second step uses these tables

repeatedly while iterating through successive approximations. In the first step, the

weight tables are calculated from the scanner’s geometric configuration and the size

of the image to be reconstructed,using backprojection. This implementation stores

these tables for use in the future for any reconstruction of the same size, made from

projections using the same scanner geometry.

The second step, applying the tables during iterations, must be done at the time

of each individual reconstruction. This second step affects the turnaround time for
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the scan results, and is therefor time critical. Only this second step is made parallel in

this thesis. At the beginning of this second step, the weight tables must be read into

main memory from disk storage, a process that could be eliminated in a commercial

application by having weights stored in read-only memory (ROM) on each processor.

The ‘critical section’ for the purpose of this thesis starts immediately after the root

process has read its local weight table, and ends with completion of the reconstructed

image.

Execution times shown in the results are for this critical section of the algorithm.

The timings for this thesis are done by calling the system clock before and after the

critical section. Timings are done for at least 3 trials for each number of processors

selected. There is some small variation between trials, as expected due to varying

processor loads. Trials were done late at night or early in the morning when system

loads were presumably minimal. Rather than the usual practice of taking a median

or average measurement from a number of trials, the best (minimum) time is chosen

since it most accurately reflects the performance of the algorithm. Times in excess

of the minimum are assumed to be due to system loads that are unrelated to the

algorithm.

The reason for doing the reconstruction in parallel is to gain performance in speed

as more processors are used. A parallel algorithm might provide an adequate quality

of result, but if performance is not increased by using a number of processors, then

there is no advantage over a corresponding sequential algorithm.

Speedup of an algorithm (Sp(N)) is defined as follows:

Sp(N) = Ts(N)/Tp(N) (4.3)
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Where:

Ts(N) = time required by best sequential algorithm to solve a problem of size N

Tp(N) = time required by parallel algorithm using p processors to solve a problem

of size N

Linear speedup is ideal: for p processors, we get a speedup of p for various par-

titioning sizes. This indicates that a suitable problem has been appropriately imple-

mented in parallel. Superlinear speedup is possible as the result of cache effects.

Using a parallel iterative method on a distributed memory system, Melvin [56]

achieved a maximum speedup of 20% going from 2 processors to 6 to reconstruct a

128×128 pixel image. Direct comparisons of execution time would not be valid given

the different implementations and possibly different platforms. However, speedup,

being relative, is a reasonable indicator of the success of parallelization.

Scalability indicates that the same speedup occurs with larger values of p. In prac-

tical terms, this scalability is often limited by the increased work of communication

between processors as their number is increased.

As noted in the previous section, the ray by tile methods provide good quality

reconstruction results. Unfortunately, this image quality comes with a significant

performance cost. As seen in Figure 4.8, neither of the ray by tile methods match

single processor performance as the number of processors is increased. There is no

speedup.

Other methods improve on the single processor ‘parallel’ performance, but the

local tile methods scale poorly after 8 processors. The view partitioning methods

scale quite well, as demonstrated in Figure 4.9.
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Figure 4.8: Execution time vs. number of processors.

Figure 4.9: Execution time vs. number of processors (log-log).
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The execution time of the sequential method is shown on the Y axis as a reference

only. It is not valid to compare other timings to the sequential method, because it

completes the inner iterations only to the specified maximum, and does not iterate

through the outer ‘parallel’ loop to repeat these iterations again. In spite of this, the

view partitioning methods improve on the execution time of the sequential method

for 4 processors and greater.

The reason for the poor performance of the ray by tile methods is easily seen from

Figure 4.10 and from the log plot of Figure 4.11. The local weight tables for the ray

by tile methods are much larger than the local weight tables for other partitioning

methods. This is because the pixel weights for a single ray, if it intersects multiple

tiles, are distributed to multiple processors. This duplication causes the local weight

table for a partition of the ray by tile method without any explicit overlap to be

larger than the local tile tables have an explicit 50% overlap. Since an individual

process must iterate over a local weight table that is close to the size of the global

weight table, processing times will be only slightly smaller than for the sequential

process. Any additional iterations that might be required or any significant work

of communication could then cause poorer performance of the parallel algorithm

compared to the sequential.
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Figure 4.10: Weight table size vs. number of processors.

Figure 4.11: Weight table size vs. number of processors (log-log).
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The only partitioning methods that yield reasonable quality images and show

some speedup are the local tile with 50% overlap method and the view by round

robin method. Relative speedup and efficiency are plotted for these two methods.

Relative speedup of an algorithm (Srelative(N)) is defined as follows:

Srelative(N) = T1(N)/Tp(N) (4.4)

Where:

T1(N) = time required by single processor parallel algorithm to solve a problem of

size N

Tp(N) = time required by parallel algorithm using p processors to solve a problem

of size N

This does not indicate the value of parallelization (a high value does not necessarily

translate to better performance than the sequential algorithm) but it is useful to

gain some understanding of how performance varies as a function of the number of

processors. This is plotted for the two best candidate methods in Figure 4.12.

Relative efficiency of an algorithm (Erelative(N)) is defined as follows:

Erelative(N) = T1(N)/(pTp(N)) (4.5)

This is plotted for the two best candidate methods in Figure 4.13. These plots

show some scalability for number of processors for the view by round robin method,

and efficiency which drops off very slowly.

Using problem sizes shown, a reconstruction that takes several seconds can be

reduced to a fraction of a second using parallel ART with view by round robin par-

titioning. The view by round robin method of partitioning is quite scalable, and it
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Figure 4.12: Relative speedup vs. number of processors.

Figure 4.13: Relative efficiency vs. number of processors.
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appears possible to reduce the execution time even further by adding more than 25

processors, an option not available to the experimenter at present.

4.3 Scalability to Problem Size

All of the methods scale with increasing problem size, as seen in Figures 4.14

and 4.15.

Figure 4.14: Scalability with increasing problem size.

Unfortunately, this only holds true up to a 256×256 pixel image when projections

from 180 views are reconstructed. The weight tables are constructed by a sequential

process, since this does not belong to the time-critical part of the reconstruction.

At a resolution of 512×512 pixels, the weight tables cannot be entirely contained in

the 1 gigabyte memory of the processors, so thrashing occurs during weight table
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Figure 4.15: Scalability with increasing problem size (log-log).

construction. A similar problem is noted by Mueller [62, page 547]: CPU speeds

increase faster as technology progresses than do memory speeds. The result is that

memory limitations may form more of a bottleneck than do the processor speeds.

This problem could be easily solved. In fact, a parallel approach offers one solution:

using a partitioning method that allows minimal overlap, and a large enough number

of processors, the local data set can be small enough to fit local memory.

We do in fact want to work with much larger problem sizes. If the number of

views is kept constant, then a weight table for a 512×512 pixel 2-D image would

approximate the size of a weight table for a 64×64×64 voxel 3-D image. Such a large

problem could serve as a proxy for work in 3-D. Aside from the memory limitation,

there is no reason to doubt that the algorithm should continue to scale well with
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larger problem sizes.



Chapter 5

Conclusions and Future Work

This thesis has demonstrated significant speedup for iterative algorithms by a par-

allel approach which limits interprocessor communication among distributed memory

processors. One method of partitioning the data by view demonstrated that the data

dependence between various sets of views can be reduced, obviating the need for com-

munication at every iteration. A novel approach to partitioning the data by image

tiling shows some promise for the future.

Successful methods for data partitioning allow us to keep communication over-

head a minimum, and therefor gain performance for an iterative CT reconstruction

algorithm implemented in parallel on a distributed memory system.

Of the six partitioning methods discussed, two of them yield poor quality im-

ages (view by sequence and local tile without overlap, Figure 4.1), and two show

no speedup (ray by tile with and without overlap, Figures 4.8 and 4.9). The two

remaining methods, local tile with 50% overlap and view by round robin, show both

reasonable preservation of image quality (Figure 4.1), and speedup with paralleliza-

106
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tion (Figure 4.8). Of the two, the view by round robin method offers more visually

appealing reconstructions and is very scalable (Figure 4.12).

The success of the partitioning suggests some data locality of individual views,

that may not have been previously recognized. Local CT provides a model to suggest

possible success for tiling; limited view CT (using only a fraction of the views that

would typically be used) may provide a model for view partitioning.

Improvements can be made to both the view and the tiling partitioning methods.

The ray by tile methods produced good image quality, but with no speedup. The

local tile methods had some degree of speedup, but image quality was not as good

as for the ray by tile methods. The local processes using local tile partitioning could

not make use of updated values for pixels outside of the tile. The ray by tile methods

could make use of these updated values, but at the expense of iterating over these

out-of-tile pixels, even when they hadn’t been updated. A method can be conceived

that combines the best features of both of these tiling methods, achieving the ability

of ray by tile methods to update images based on global values, while creating a local

weight table only slightly larger than that for local tiling.

Some variations of the view partitioning methods could be attempted. While

the view by round robin method (views in equally spaced intervals) give reasonable

results, image quality could be improved. Guan and Gordon [37] showed benefits to

ordering views to maximize orthogonality between pairs. It might be worthwhile to

maximize orthogonality of views within a partition.

At first glance, the algorithm as implemented in this thesis appears to scale well

to the problem size. Relative speed up for a 128×128 pixel image (Figure 4.12) is



Chapter 5: Conclusions and Future Work 108

higher than for a 64×64 pixel image (Figure A.6) and speed up for a 256×256 pixel

image (Figure B.6) is higher still. In fact, using view by round robin partitioning, the

speedup for a 256×256 pixel image is superlinear.

This superlinear speedup suggests cache effect. Inspection of the relative speedup

(Figure B.6) and relative efficiency (Figure B.7) of the view by round robin method

show a marked increase in performance going from 1 to 4 processors. Relative perfor-

mance then decreases slowly as more processors are added. It seems likely that this

impressive performance is a decrease in the single processor performance, creating a

large relative speedup in comparison for trials using higher numbers of processors.

The size of the local weight table approaches 0.4 GB when using a single processor

(Figure B.4), a significant portion of memory for a processor that has a total memory

of 1 GB. This may have caused some slowdown, and perhaps even some swapfile use.

The limitation of scalability to problem size caused by the large size of the weight

tables could be managed in one of at least three ways. Care could be taken to partition

the data set over enough processors so that any individual process can contain its

entire partition of the set in memory. Another solution is to find and exploit repeating

patterns within the weight tables in order to compress them. A more straightforward

method is to trade memory use for processing speed, and recalculate the weights every

time they are needed, i.e., eliminate actual tables entirely. This is reasonable given

that CPU speeds increase faster than do memory speeds as technology progresses,

creating a bottleneck in memory size. A similar problem is noted by Mueller [62,

page 547].

Potential applications for a rapid iterative reconstruction are abundant. As recon-



Chapter 5: Conclusions and Future Work 109

struction times for an entire volume approach fractions of a second, CT fluoroscopy

using limited views might be possible, as just one example. Combined with other

technologies, these algorithms may allow a reduction in the X-ray dose for CT.



Appendix A

Results – 64×64 Pixel Resolution

The view by sequence method was not tested at the 64×64 pixel or 256×256 pixel

resolutions.

Figure A.1: Image quality vs. number of processors.
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Figure A.2: Execution time vs. number of processors.

Figure A.3: Execution time vs. number of processors (log-log).
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Figure A.4: Weight table size vs. number of processors.

Figure A.5: Weight table size vs. number of processors (log-log).
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Figure A.6: Relative speedup vs. number of processors.

Figure A.7: Relative efficiency vs. number of processors.



Appendix B

Results – 256×256 Pixel Resolution

The view by sequence method was not tested at the 64×64 pixel or 256×256 pixel

resolutions.

Figure B.1: Image quality vs. number of processors.
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Figure B.2: Execution time vs. number of processors.

Figure B.3: Execution time vs. number of processors (log-log).
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Figure B.4: Weight table size vs. number of processors.

Figure B.5: Weight table size vs. number of processors (log-log).
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Figure B.6: Relative speedup vs. number of processors.

Figure B.7: Relative efficiency vs. number of processors.
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