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ABSTRACT

The problem of defining impedance parameters for
cylindrical dipole antennas is discussed. A review of
the one~dimensiongl formulation of the antemna model is
outlined. The elements of the reaction concept are pres-
ented and then specialized to the case of coupled cylind-
rical dlpoles. A method of improving the trial approx-
imations by the reaction method is discussed. Applic-
ation of the reaction method then leads to an approximate
expression for mutual impedance. A computer program is
then used to calculate numerical results from this form-
ula. Finally, graphs of computed numerical impedances

are presented.
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CHAPTER I

INTRODUCTION

The concept of reaction was introduced by Rumseyly{as
a fundamental QbserVable to simplify the formulation of
boundary value problems Iin electromagnetic theory. Beginning
wlth the ldea that classical analyses of electromagnetic
problems are based on the theory of fields which satisfy
Maxwell's equations, Rumsey suggests that, from the point of
view of an experimenter, the postulate of flelds may be
questioned on the grounds that any experiment designed to
megsure these flelds necessarlly consists of measuring the
effects of the fields over a small but flinite region. The
postulate 1s therefore incompatible with the process of
performing the observation. Rumsey then introduced a
physical observable which he termed "reaction" and gave it
the symbol <(a,bd .

The reasction {a,b> is a scalar, and gives a measure of
the coupling between two sources "a" and "b". While the field
quantities are implicitly included in the formulation, the
reaction method does not attempt to measure (or compute)
these filelds at a point, but rather includes the information
carried by the field quantities as an integrated effect over

the measuring or observing device.

* The numeral denotes reference number as listed in bibliography



Approximate solutions to meny problems in electromagnetic

theory may be obtained by means of the reaction technique.
Consider for example, the problem of determining the mutual
impedance between a pair of coupled dipole antennas. This
cannot be solved directly, since the current distrlibutions

on the antennas are not known. However, 1f assumed current
distributions are used, application of the reaction concept
leads directly to an approximate solution which 1s stationary
(in the sense of the Calculus of Varlations) with respect to
small variations of the assumed current distributions about
the true current dilstributions. That is, instead of attempting
to solve the actual, but more difficult problem, the reaction
method seeks to replace the correct (but unknown) current
distributions with approximate distributions which are then
adjusted so that their reactions with certain "test" sources
are correct. In essence, the pfocedure is to make the approx-
imate sources "look" the seme as the correct sources according
to the physicel tests which are inherent in the problem.

The purpose of this investigetion was to formulate by
means of the reaction method an approximation to the.mutual
impedance between a palr of coupled dipole antennas. A computer
program for the calculation of numerical results 1s derived
from this formulation, and graphs of computed mutual impedances
are presentede.

In Chapter II, a brief summary of the circuit aspects of

a dipole antemna 18 presented. The end effects and the gap




problem are discussed, and the one-dimensional formulstion

reviewed.

Chapter III outlines the elements of the reaction concept

method.

In Chapter IV, the reaction concept is applied to the
problem of a pair of coupled dipole antennas, and the mutusal
impedance approximation derived.

Curves of mutual impedance are presented in Chapter V,

along with a disoussion of the results obtained. G



CHAPTER II

DEVELOPMENT OF THE CIRCUIT MODEL

The problem of determining the impedance parameters of

an sntenna system is essentially a problem of attempting to G
vfind a solution to a set of three dimensional vector wave

equations that satisfles the specified boundary conditions.

No general method is availlable to handle this. Instead, the

usual spproach (developed by E. Hallén') is to replace the

three dimensional problem by a quasi-one dimensional problem

and sttempt to solve the latter.

The situation is further complicated by the fact that
any pratical antenna is fed from a transmission line. This
aspect of the problem must be.carefully examined in order to
gain an understanding of the operational significsnce of the
defined impedsnces. This is the so called gap problem in
antenna theory.

A discussion of this gap problem and an outline of the
one dimensional formulation is presented in this chapter.

The one dimengionsl model discussed ls that o which the

regetion method is to be applied in Chapter IV.

I THE GAP PROBLEM AND THE END EFFEGCT
Before considering the problem of coupled aentennas, it is
wWoell to examine the single, cylindrical dipole antenna shown

in figure 2 - 1. The antenna is center driven from a trans-



mission 1line with a conductor separation b = 28 + If an

attempt 1s made to define an input impedance Zo for this
antenna, 1t is found that transmission line effects cannot
be lgnored when b has a nonzero value. That is, with non-

zero separation, an impedance cannot be defined that is a

7

property of the dipole antenna alone. However, King' shous
that if the separation is made sufficlently small (i.e., the
following inequality is satisfied, namely, ﬂb << 1, where ﬁ
is the phase constant), the coupling between charges on the
antenna and those in adjacent parts of the line is reduced
sufficiently that an impedance Zg can be defined as

45 = '—I';
As 5 is made to approach zero, Zg approaches Z , and the
impedance so defined is a property of the antenna structure

alone, independent of the circult to which it is connected.

=

b= 2§

!

L

Figure 2-1l¢ Center driven dipole antemna.



The result is a hypotheticael antenna which extends unbroken

from z = -.Q,to z = +/@. In effect, the condition is equiv-
alent to replacing the scalasr potential difference Vs, across
termingls thét are separated by a finite distance by a dis-~
continulty in scelar potentiasl across terminals that are
geparasted by a vanishingly small distance. This hypothetical

driving source 1s termed a slice or belt generator,

T F

J—X

Figure 2-2. Gylindricsal Antenna Driven by a Slice Generator.

Correlation of Theory and Experiment

Experiments7 have shown that if the apparent impedance
of an antemna terminating a transmission line is measured
repeatedly as the spacing of the conductors 1s decreased
progressively, and the values so obtained are extrapolsated
to zero. line spacing, the values at zero Spacing may be

identified with those calculated from the configuration of



figure 2-2 with $= 0. In this manner, an operational

significance 1s given to the properties of antennas driven

by slice generators.

Current Source Representatlon

In a preceeding section, the antenna driving mechanism
was plctured as a hypothetical slice generator feeding current
to the antenna conductors. However, as far as application of
the reaction method is concerned, 1t is more convenient to use
the current source representation of Harringtonao In this
representation, the feeding mechanism is viewed as a short
column of lmpressed current IQ existing across the gap as shown
in figure 2-3., As Taiu.points out, thlis representation of
the gap problem leads to the same solution as the slice

generator representation.,

<)

‘mﬁ I0 (Impressed current)
B ) S

-

Figure 2-3. Antenna driven from a current source.



Coupled Antennas

If a pair of dipole antennas is consldered, the trans-
mission line effects noted previously eare further complicated
by the fact that coupling occurs not only between an antenna
and 1ts transmlssion line, but also between 1t and the trans-
mission line of the adjacent antenna. In order to arrive at
impedance parameters that are properties of the antenna
configuration alone (independent of the external circuilt),
the same technique of using slice generators may be employed.

The fundamental circuit of figure 2-l then results. Impedance

P z.ﬁveq.

@—Zc ’Q)o

U_Z=—ja.
B =
=

Figure 2-l s Coupled Dipole Antemnas,

parameters for thlis case are governed only by the physical
geometry of the system and the frequency. If all dimensions

ere expressed in wavelengths, the impedance parameters are



determined only by the quantities Y;,ﬂa,r;,.Qb and de.

Operationsgl significance 1s agaln obtained by comparing the
éomputed impedances with measured values which have been
determined by extrapolating the measured results to zero gap

spacinge.

End Effect

In the one dimensional formulsetion to follow, the
conditlon that the current is zero at the ends of the dipoles
is imposed. While this is true for an antemmsa with hemi-
spherical ends, 1t i1s not true when the antenna is composed
of a solld cylindrical conductor with flat ends or a tube
with open ends. However, for the latter two cases, King
states that the effective half length of the antenna exceeds
the physical half length by an amount that is difficult to
determine accurately, but that is of the order of magnitude

of the radius. TZ pe

-4

— ~

NN = +4
S A i

< 9

!
!
LN

|
|

1

Figure 2-5. Antemnas with Hemispherical and Plane Ends.
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The model illustrated in figure 2-5 1s a physically
unavailable cylinder of radius r aend half-length R that

has no chargesble surfaces beyond the edges at z = ¥ [.
II ONE DIMENSIONAL FORMULATION

It was mentioned in a previous sectlion that the three
dimensional coupled antenna problem was not smenable to
analysis and therefore, a one dimensional formulation would
be presented instead. In essence, this involves replacing
the volume distribution of current density in the antenna
conductors by an axlally distributed filamentary current
slong the center of the dipole. Rigorous justification of

this procedure may be found in the 1iteratur66.

Vector Potentlial Formulatlon

The electric field intensity |E may be related to the
charges and currents in a system through the potential
functions ® end A . The defining relationships are

[E §7§p 2/A
ot
and

@ _— a
v.A /ué_a%_
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When the time variations are harmonic, these reduce to

E=-Vg¢-jwA ceeseseees 2 =1
VA= —jwped

a9 PO OO0 Ce oeC 2 - 2

Solving 2 - 2 for $ and substituting into 2 - 1 yields an

expression for E entirely in terms of A . It is

=-)’-“—;’-1V(v./A)—-ij - J
where ﬁ = wVfL&- tesssseces 2 = LL

The vector potentlal A is related to the currents in the
system through the integra18

A= ﬂff[{i;{ﬁrd’i‘ coossoscses 2 - 5

Volume

where r is the distance from the point at which A is being
determined to the element of lntegration. J is the volume
distribution of current density.

It may be seen from equation 2 - 5 that A is é vector

in the same direction as J « Thus, if the current distribut-



i2

lon 1s entirely z-directed,/ﬁ will have only a zZ-component
és welle. In the one dimensional formulation, only the
z=-component of.é? is of interest. Solving equation 2 - 3
for the z-component of [ yields

- . 1 -6
Ez Jw(Az +E _55%.—) .000.-..002 6

Consider the single dipole antenna shown in figure 2-b.

dz' %

Figure 2-6. Single Dipole Antennae.

In the quasi-one dimensional formulation, the volume
distribution of current density J is replaced by a fil-

ementary z-directed current I(z'), and A, calculated according
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to the integral
£

__ﬁ_ I( \)e_sdlﬁr !
AZ— 4T L __Y C)Z ceesccscee 2 = [
-4

Note that the primed varlable refers to the axis of the
antemma.
Combining equations 2 - 6 and 2 - 7 yields an express-
ion for E, in terms of the current I(z'). It is
g .
E, = ~_,3301’5 I(a‘)(l—»_‘%z oF )_e_‘_)ﬁd z'
- £

eee tovoeee 2 "8

Y3 s

Consider the twWwo antenna system of figure 2-T.

Filgure 2«7, Geometry for two antennas,
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The vector potential at any point P outside the antemna

surfaces is obtained by summing the contributions due to

each sntennae. Thus

a 'qb
A ".F)r‘ - -J & i
Ay B g Ia(i‘;)_ﬁ’:‘.r) daza + -L&,(:r'.q,')f—’-'7 dz, E
| 1
-ﬁm ~Jh eessssnses & = 9

If the true current distributions Ia(zé) and Ib(zé)
were known, 1t would theoretically be possiﬁle to perform
the integration and obtain Aje Application of equation
2 - 6 would then yield E,. In principle, it would thus be
possible to solve the problem directlye

In view of the fact that the current distributions
I,(z,) and Ib(zé) are not known, and in fact can not be
solved for directly, some sort of approximating procedure
must be used. Iterative type solutions for the current
distribution and the impedance parameters have been pres-
ented by King and Harrison2 and by Tai?., Both these anal-
yses were limited to the case of identical antennas. The

results obtalned were quite good for thin antennas.



CHAPTER III

THE REACTION CONGCEPT

An outline of the reactlion concept is presented In
this chapter. The definition and properties of the reaction
are considered and the impedance properﬁies of & two port
network are expressed in terms of the varlous reactions
involved. A procedure for improving the trial approximat-

ions used in calculating the reactions is discussed.

Reclproclty Theorems

Consider two sets of AC sources j; and ]—5 of the
same frequency and existing in the same linear mediume
Denote the fields produced by the "a" source acting
alone a8 Fo and H, and those produced by the "b" source
acting alone as [E, and M, . These two sets of quantities
may be related in a single equation known as a reciprocity
theoreme Two forms of pure fleld reciprocity theorems
are considered below.

Cerson9 has presented a pure fleld reciprocity
theorem in the form of volume integrals Inwvolving
electric current density and electric field intensity.

N (T
(Zi b {Z]f b

It is

eed0eeR2000 3 - 1
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where volume V, includes antenna "a" and V,, ineludes
anterna "b",

A second pure field reciprocity theorem involving
electric= and magnetic-field intensities was derived by
Lorentz? in the form of the surface integral expression

belowse

f (Ba X Hy ~ EpxH,)eds

Sa
;_—g(lbefHa~Ealeb)-J$
54

te 06800000 3 - 2

Surface s, encloses antenna "a" and surface s, encloses

antennga "b n °
The steps leading to equations 3 - 1 and 3 - 2 are
outlined in Appendix A.

Definltion of Reaction

Rumsey has given the name Yreaction" to the integrals
gppearing in equations 3 - 1 and 3 - 2. By definition,

the reaction of field "a" on source "b" is

<a,b) = (f[(&ia-m)c” ceececeese 3 = 3
Vi, -
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In this notation, the reciprocity theorem becomes

<b’a> = <a’b> o‘o.ooooooc 3 - I-i-

In view of the equivalence of the two reciprocity

equations, an alternate statement of reactlion is

(a,b)> = ff(ﬂibx#{‘t ~ EaxH,). d S
Si

o900 000000 3 - 5

Useful Identitles

Let "c¢" represent a third source of the same freq-
uency as "a" and "o", and existing in the same linear
mediume. Making use of the linearity of the fleld equations,
the following useful identity is obtained

<a,(b4c)>= <q’b> -+ <Q)C.> 2ee0000000 3 - 6

Another useful ldentity is

<Aa,b>= A(Q)b>= <G,Ab> esoescevee 3 = [

where A 18 a scalgr quantitye.
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A Reciprocity Theorem of the Mixed Type

Kouyoumjianlo has developed an expression for the
voltage induced in one antenna by enother in terms of
the reaction. The physical situation is depicted in
figures 3=-1 and 3=2.

" =~
- ~
’, \
! )
Ea, H '
Qa a \ v )
\ ba /
/—_ -s\ ~ /
V4 \ \ )
/ \ /s
’ ~ o b
!

Figure 3~l. First situation: Antenna "a" transmits and
antenna "b" receives. .

As shown in figure 3-1, antenna "a" is driven by
a current source I, at 1ts terminals,vand antenns 'b" is
open circuited. Voltage Vp, 1s the open circuit voltage
at the terminels of antenna "b".

In the second situation shown in figure 3-2, antenna
"B" is driven by a current source Ib’ and voltage Vab is
the open circult voltage induced at the terminals of

antenna "a",



Figure 3-2. Second situation: Antenna "b" transmits and
antenna "a" recelves, .

In terms of the above defined quantities, Kouyoum-
Jien derived the following expressions
<8.’b>= - Vba Ib eecevoeo oo 3 - 8

<b,8.7=°vab I& .0090000003 "’9

Equations 3 - 8 and 3 = 9 relate field quantities to
terminal (eircuit) quantities, and thus, they are
reciprocity theorems of the mixed (field-circult) type.

Impedance in Terms of Reactions

To relste the sbove reciprocity theorems to the

19

usual circult theory representation of a two port network,

let the two antennas be represented (insofar as their
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terminal behaviour is concerned) by the following

matrix equation

al _ aa ab a cesecessse 3 = 10

Let the partial response vij be the voltage at port "i™"

due to source I, at port "j". Each current source sees

J

the other port open-circuited; hence

pA =
i
J I,

P60606c0000 3 - 11

In terms of the circult reactions, {j,1> = - Vij Ij;

thus

7 = . <3

1] I; I cerreienes 3 - 12

Equation 3 - 10 may now be expanded as

I, V, = -<a,a> - <a,b>

I V. = «<b,a> =~ <b,bd>
b b 200000900 3 '-13

These equations are to be applied to the analysis
of a pair of coupled dipole antennas in Chapter IV.
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A Modified Reaction Integral

Neither equation 3 - 3 nor equation 3 - 5 is suit-
able for evaluating the reaction <a,b? , since the total
fields E, and £, vanish on the perfectly conducting

surface of the antennae. Richmond11

however, presents an
alternate equation which 1s useful for computing <a,b> o
By resolving the fields into incident and scattered comp-

onents, he obtalns the following expression

<a,b% = - gﬂﬁa x H).dS
Sy

00600000 o0 3 - 1}4-

where ﬂf: is the incident electric field intehsity. Note
thaet this no longer vanishes on the antenna surface, since
the incident, rather than the total fleld is used.

The surface current ]Lb on the metal can be introduced

in place of M x W, to obtain the following result
A
<&9b> = S‘S,<{Ea_ o ];‘,)C} 5
Sk

eoo0venoec o 3 - 15
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Combining equations 3 - 12 and 3 - 15 gives

Ty g(E:'L")Ag

S
b A T 1

If the true expressions for E. eang 1&5 were known, they

could be substituted into equation 3 - 16, and (at least

in principle), the integration performed to obtain the

mutual impedance directly. However, such 1s not the case,

and some sort of approximating procedure must be employed.

Congtraints

In many cases, evaluation of <a,b> by application
of any of the defining Integrals is impossible begause
the true fields and sources are unknown. However, it is
often possible to determine approximations to the desired
reactions by assuming trial fields (or sources) to approx-
imate the true fields (or sources). To be specific,
suppose an agpproximation to the reaction <a,b> is
desired. Let the correct value of <a,b» be denoted by |
<CgsCp>s (The "¢" stands for correct). If it were

possible to adjust the approximation <a,bd» such that

(a,b) = <Ca,cb> » 6evosco00es 3 = L7
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then the impedance calculated according to equation
3 -~ 16 would be correct. Obviously, this ls too much
to expect: indeed equation 3 ~ 17 cannot be enforced

because 1t 1s not known how to calculate {cg,cp%e It i
is possible however, to utilize the reactions <cg,b>
and <a,cyy in the following menner. Let the approximation

{ a,b> be constrained according to
. <a,b> =<Ca,b> = <a,cb) ceeecos000e 3 = 18

(This is a restriced case of the more genersl constraints
imposed by equations 3 - 19 and 3 - 20). Enforcing
equation 3 - 18 makes "b" look the same to "a" as it
looks to the correct value "o "+ simultaneously, "a" is
made to look the same to "b" as it looks to '"ey'.

The reaction <a,b) constrained according to equat-
jon 3 - 18 is stationary for small verlations of "a" and
"b" gbout the correct velues "cg" and "cp,". This is
shown 1ln Appendlx B.

It was mentioned previously that equation 3 - 18
is to be regarded as a special case of a more genéral
restriction. This will now be considered in more detail.
Equation 3 - 18 suggests thaet the reaction between some

arbitrary test source "x" and the approximation "a" is
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to be made equal to the reaction between this test
source and the correct "a", namely "ca". Expressed

mathematically, the condltion is
<x,&> = <X,ca> sceescsceese 3 = 19

If in the process of enforcing 3 - 19, every available%
test source "x" is used, and the gpproximation "a'
adjusted such that 3 - 19 holds for ail "x", then "a"
and "¢" are indistinquishable from the point of view of
any measurements that can be made using the test sources

available.
Similarly for the "b" approximation, enforce the

condition

{y,b> =<y,c,> cesescccss 3 = 20

where "y" i1s any arbitrary test source available to

check against "ey"e

Avallable Test Sources

In the coupled dipole antemna pfoblem, the only

aveilable test sources ere "a" and "b". Letting "x"

¥ A test source is considered to be available if its
regction with the correct source can be calculateds
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take on these values in equation 3 - 19 yields

{a,ay = <a,c >

ecseveonnan 3 - 21
<b,a> = <by°a>

These same test sources ("a" and '"b") are available as
the "y" test source. Using them in equation 3 - 20 gives

two more relationships

{a,b?> = <a,cpd

eec0cescce0 3 - 22
¢b,bY = <b,cpy

Equations 3 - 21 and 3 - 22 are used in Chapter IV to
adjust the approximations for the coupled antenna

problem.

Trial Distribution of Linear Combinations

The above procedure implies that some means must be
available whereby the approximation can be adjusted ab
each step in the process. This may be done by including
adjustable constants (variational parameters) in the
definition of the trial distributions, and choosing
those parameters which best suit the conditions of the

problems
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A simple means to include these parameters is to
express the trial distribution as a linear combination
of functions of the form

a=Uu+Vyv ‘ . s

e Mm+ Nn ceecesscee 3 = 23
where the adjustable parameters U, V, M and N are to be
determined. (Note: If a higher order approximation is
desired, additional parsameters end functions would be
included)s The functions u, v, m and n are to be chosen
such that the expressions for "a'" and """ satisfy the
boundary conditions of the problem for any cholce of U,

V,MamNO



CHAPTER IV

APPLICATION OF THE REACTION CONCEPT TO THE
COUPLED ANTENNA PROBLEM

As mentioned in Chapter II, a direct solution for the
impedance paremeters can not be obtained since the actual
current distributions on the antennas are unknown. Thus,
some sort of approximating procedure is required.

The sapproximating procedure to be applied here is
based on the reaction concept of V. H. Rumsey. It yields
the seme set of equations as obtained by Levis and Tais
using a variagtional techniqu.e?’c Formulation of the problem

in terms of the reaction concept follows.

Antenna Impedance Bquations in Terms of Reactions

The antenna configuration to be considered is shown
in figure 4~-1. From the terminals, the antenna system may
be considered as a two port network. The two port equations
are |
Vg = 2,01,(0) + ZgpT (0)
Vp = ZpgI, (0) + ZppI,(0) cecescsose L =1

The parsameters zaa’ Zab and be characterize the impedance

behaviour of the antennas. Note that Zgp = Zpge

* Levis and Tai made no numerical computations to complete
the problem (reference 20).
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Figure l-1l. Two Coupled Antennas.

In terms of the reactlons developed in Chapter III,
equation It - 1 may be written as -

IZ2(0)Zgg + I (0)I,(0)Z,) = - <a,e) - Ca,bd

I,(0)1,(0)Z, + IZ(0)Zy = - <b,ay - <b,bd

29 ®e@06360000 LL. b 2

The set of equations L - 2 are stationary with respect
to small variations of the assumed current distributions

about the true current distributions ( see Appendix B).

Thus, if trial currents are assumed which differ from the

28
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true currents by errors of the first order, the calculated
impedances will differ from the true impedances by errors

of the second order.

Cholce of Trial Functlons

The choice of trial distributions i1s to be made such
that the boundary conditions of the one dimensional model
- are satisfied, Also, since it 1s desirable to use trial
distributions which closely approximate the true current
distributions, the choice can be influenced by certain
experimental or theoretlical results which suggest what form
the approximation should teke. For example, the current
distribution along an open-ended dissipative transmission

line (with small attenuation) is of the form
I(z) = I, !Lsinﬁ’(,Q- z) - Joo (4 - z} cdsﬁ(ﬂ - z)]
Based on this, Taiu suggests a trial current of the‘form
I(z) = A sin B(f - 2) + BB (L - 2) cos (L - z)
where A and B are the adjustable parsmeters to be determinede.

Approximation Using Trial Functions

For convenience, the axial direction on antenna "a"
will be denoted by "s", and that on antemna "b" by "z'.
The primes on the variables will now be dropped. In the
event that any confusion should arise, the primes can be

reinserted at that point in the discussione.



The assumed trisl ocurrents to be used are
Ig(s) = U sin B(fa= 181) * Vﬁ(,&- Isy) cos/@(ju- 1s1)

Ip(z) = M sinﬁ(ﬂb-lzl) + N/@(,?b-l:z)) cos ﬁ(ﬂ;,- 1z} )
6000 0acece 1.[. - 3

Define the following shorthand notation for the trial

functions

]

sin/;»’(;(’,- 1s])

vis) = B(ha-1s)) cosfB (fu - 1s1)
m(z) = sin[&(jb- 1Zz1) | |
n(z) = ﬂ(ﬁb- 121) cosﬁ(ﬁb- 1z1)

u(s)

ceessseeee L =1

At the feed points

u(0) = u,
v(0) = v,
m(0) = m,
n(0) = n_

oo 0ovo0e0 e Ll- - S

Using I - L, the currents L - 3 may be expressed as

I,(8) = Uu(s) + V v(s)
Ip(2)

i

M m(z) + N n(z)

0.0.000000)—]. "6

30
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At the terminals

Ia(o) =Uu, + Vv,

Ib(O) =Mmo+Nno ooooooooo.).l."‘?

According to the reaction concept, all trisl dlstri-
butions should appear the same to the trial fields as to

the true fields; hence, enforce the following conditions

La,ay = <a,ca>
<b,by = <b,cb>

<B.9b> = <8.9 cb>

<b,a> = <b,c.>

dBoeeo0ce e 08 )-L - 8
Consider the veaction (a,b)> . Since a = U u + V v,

this may be expanded as

{a,bp = U<u,bp + V <v,b> cosesessas L =9
Similarly
<a,cb> = U<u,cb'> + V<V,Qb> cevcscccce ).{. - 10

To force equality of these reactions, impose the conditions -

{u,b? =<u,cy

Kvyb) = <v,cb>

®0600 00000 14. - 11
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", .1

Recgll that the reaction between any two sources "w

and "x" is by definition

{W,x) = g(fwcﬂ;z)clT

Vo lume

where fw is the electric field due to the source ];, .
Note that the integrand has a value only where the
current distribution Jx exlsts, namely the volume contaln-
ing the "x" antemna. Thus, the integration need be carried
out only throughout the volume containing the "x" antenna.

If the antenna is assumed to be a perfect conductor,
/?\XIEJ = 0 on the antenna surface, except at the feed.
(Note: Symbol "e¢" stands for correct). Thus

<0w,x>= - wa I sasccoseoe )4. - 12

X

for any "x", where V., i1s the voltage across the "x" antenna
terminals due to the field &, , and I, is the component of
current at the feedpoint associated with -:U} o

The result l} - 12 aspplied to the resctions in equations
L - 11 yields

<b,u> = <cb,u>= - Vap u,
{b,vp = <epsv>= = Vg v,

The remaining reactions in L4 - 8 may be treated in a



similar mammer. The results sre presented below.

<a,u> = - Voo u, ees (a)
a,v>= =~V . v, ees (b)
{a,m>= = Vp m, eeos (C)
(a,n> = - Vpg n, eoe (d)
{byud>= - V . u, eos ()
(b, vd> = = Vo v, cee (T)
(b,m> = - Vpp m, | ese (g)
¢b,ny = = V. 0 eos (h)

ose 00000 0e )4. .- 13
If (a) snd (e) are added, the result is

Ca,ud + <byud> = = u (Vo + V) = - uy V,

aa

where V, is the total voltage across the terminals of the
"a" antenmma. Since a= U u+ Vv and b =Mm+ Nn, the
left hand side of this equation may be expanded according
to the identities of Chapter III. Thus

Udu,u? + Vou, vy + M<u,my + N{u,nd> = - ug Vé

Combining (b) end (f), (c) and (g) and (d) and (h) yields
three more equations. In matrix form, the resulting four

equations are

33
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r<u,u> <u, vy <u,mp (u,n>\ FU\ (. u, VaN
Qu, vy Lv,v) {m,v) <n,v) \4 -V, Vg
{u,m) <v,m) <m,mp <m,n) M = - m, Vi,
N(u,n) {v,ny <{myn) <n,n>} LNJ \ - ng VbJ

sse0s06e000 )_}. - 1“,

Equation L - 1l may be written in a more compact form
by defining [R7] as the square matrix of reactions, [P] as
the column matrix of parameters, and [U] as the column
matrix appearing on the right hand side of } - 1. In

this notetion, I - 1l becomes

[RIPI=[V] .......,..ufls

Denote the inverse of the reaction matrix by [V ]
Solving for the parameter matrix yields the result

[P1=[T1[V] cesevesses i = 16

In expanded form, equation L - 16 is

Ul rt11 the ty3 by LA
V|_|ta taz ta3 by, - Vo V.
M 63 b3p B3y by - my V.
Y] Lt e by, wt;mU - m vb)

oo 00000000 L} = 17
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All entries in the ET] matrix are determined when [RJ is
inverted. Both the [R] and the [T] matrices are symmetrice
Using the base currents defined as I - 7 in the two

port equations I} - 1 ylelds

Vo = Zga(Ung + Vv,) + Zgp (Mm, + Nng)
Vp = Zpg(Uuy + W) + Zyp (Mm, + Nng)

eosoeo00 000 ).j. - 18

If the parameters U, V, M and N from l; - 17 are substituted

into I} - 18, the following result is obtalned

\(x z an (uj th * Auevty, + ’Uoztn) + Zap (“0 ", L3
e /n‘]o’l/d 5‘23 + U, /’7‘, Zf/4. + /?707/0 Z‘qu,) -t !f
-+ Vl g‘ZZa,(uo ﬂﬂQZQJ + 27,1 225"* Uy 77, 2;4-%,¢%4¢é 234:)

+ Zas (mzfg + A, A, Z{M» +/f7¢zf44)f = QO

This can be interpreted as a set which must hold for any
arbltrary set of driving voltages Vé and Vy. This can be
the case only if the coefficients of Va and Vb vanish
individuallye. Setting these coefficients equal to zero

allows us to solve for Zgpe The final result is
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u,m oty 3 + ugngtyy t+ ovom toy * vbnotZA

PAN

dap
600008000800 ).]. - 19

where /\ is the determinant

d d

AN = 1 2
d3 dLL
with

- 2 2
d1 = ug tll + 2 uovotl2 + vo t22

d2 = uomotlB + uonbtlu + m.ovot.23 + 1:1°vo'i;21L

37 9,

= m e 2
du mo t33 + 2 monotBL" + no tLLL]_

00600000.')-‘- _20

Equation I - 19 with suxiliary relations L - 20 forms

the basis of the computer solution for Zab
All entries in the [R] matrix are reactions between
the various trial functions, and may be integrated directly
a8 shown in Appendix G. Although the Integrations are long
and involved, all reduce to closed form, with the final
results expressed 1n terms of sine and cosine Integralse.
When gll entries have been computed, the resulting matrix is
inverted to determine the V] matrix. With all &, , known,

1]
equation i - 19 yields the numerical values for Zab for that
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particular case under consideration. The computer program

for performing the computations is shown in Appendlx D, and

the numerical results are presented in grephical form in

Chapter V.,



CHAPTER V

RESULTS AND CONGLUSIONS

Mutusl impedances between pairs of coupled dipoles
were calculated on the IBM System 360 Computer using the
progrsm shown in Appendix D. The results are presented
in graphlcal form on the following pages.

To specify the length to dliemeter ratié, the commonly
used parameter L ls employed. It is defined as

- 24
‘n"‘Z’Q"‘T)
where A= half-length of dipole
a = pradlus of dipole

Comparison with Klng's Results

Since a limited amount of experimental data was
available, most of the results were checked by comparison
with King's | date. King's data is known to be good for
short, thin antennas. It can be seen from the graphs that
the results check very nicely with King's for the conditions
stated, Note however, for thicker, longer antennas, the
results calculated according to the reaction method deviate

somewhat from King's data.

Comparison with Experlment

Two sets of experimental data are presented by Kinge.
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Figure 5-2 shows the results for identical, half-wave
dipoles of moderate thickness (S = 9.3). For this case, i%
may be seen that both King's and the newly computed results
- agree quite well with experiment, with the results calculated
by the reasction method agreeing somewhat better than King's.

Experimental results for ldentical, full-wave length
dipoles are shown as figure 5-3. Although King compared
his calculated results with the data shown, this compsarison
is not reslly valid, since the calculated results are for
the case = 10.0 and Fil = 3,157, whereas, the experimental
results are for the case L = 10,7 and ﬂw =N , Data computed
from the reaction formulation is shown for both cases for
comparison. As may be seen, neither King's results nor the
reaction method results sgree very well with experiment.

The fallure of both methods at antiresonance can be
attributed to the inadequacy of the current representation
for this particular lengthe. At this length, the terminal
current 1s very small, but the current at other points on
the antemna can be very large. Figure 5-1 (a) illustrates
the general nature of the problem. Two possible distributions
are shown, each having the same terminal current, but quite
different values at other points on the dipole. Since the
field quantities depend on the current over the whole length
of the antenna, quite different results will be obtained in
each cases This problem is not unique to the fuli-wavelength

case, but 1s less serious for other lengths (see figure 5-1(b)).
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|| P
(a) (b)

Figure 5-1, Possible approximate current distributions.

An improvement in the reactlon method solution could
likely be obtalned by adding additional terms to the current
approximgstion. An analytic solution to closed form for this
case wWould represent a formidable task. This suggests that
any further attempts at Improving the solution should be

made using the techniques of numerical integration.

Conclusions

The mutual impedance expression derived in Chapter IV
represents a useful approximation for determining mutual
impedance between coupled dipole antennas of moderate
length and thickness. With a six second solution time per
answer, the program in Appendix D is useful to quickly
obtain approximate numerical data for coupled dipoles.
While the results appear to be better than King's, no
conclusion can be drawn in this regard until further

experimental data is avallable.
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APPENDIX A

RECIPROCITY AND THE REACTION CONCEPT

In this appendix, various forms of the reciprocity
theorem are considered and related to the reaction theorem.
The development is essentially that of R:i.clf:anond11’12 and

Harringtonr8 .

Reciprocity

In most equations, all quantities involved are
understood to relate to a common situatlone. A reciprocity
theorem on the other hand, brings together quantities from
two different situations into a single equation.

Consider for example, the situation depicted by
figures 3-1 and 3-2. The reciprocity theorems of equation
3 ~1aeand 3 -2 relate the quantities [, , H, and Ja
when entenna "a" 18 transmitting and antenna "b" is
receliving to the quantities Ei ,IHb and :YL when
antenna "b" is transmitting end antenna "a" is receiving.
Furthermore, the field quantities may be related to the
circuit quantities by means of the "mixed" reciprocity

theorems of equations 3 = 8 and 3 - 9,

Lorentz Reciprocity Theorem

For the following discussion, it is convenient to
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divide space into regions as shown in figure A-l.

.
]

-~ )

// Z\\
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d \
/ \
/ \

, - T \\\
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| - ‘ / \
i Ve Source - ‘

, /
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AN ,,_—aﬂ s /
\ /

\ /
~ 7/

N ad
~ -
~ -~

Figure A-l1. Division of space into regions.

Surface 8, encloses all sources, and 85 is chosen as
the surface of a large sphere.

Let antenma "a" transmit into the enviroment which
is free space everywhere outside the regions bounded by
Sg and Sp as shown in figure A-2. The region bounded
by sy, is occupied by the open circuited receiving antenna.

Denote the fields produced by antenna "a" in this

enviroment as EE& and H*a o External to thé éource
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/
/ ) jAntenna "b? P
{ M J ~ o - -
& /
e

Flgure A-2., Transmission between two antennas.

region bounded by 81 the field equations are

~VxE, = z%lH.,,

VX}H¢=§‘E.¢1

0 000006000 A - 1

where the free space parameters 2 and % are given by
£ :=C)wrt
A .w
) = we
eede00000 00 A "’2
when the flelds veary harmonically with time.

Now let antenna "b" radiate in the enviroment

which is free spacs everywhere outside 85, and sye
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Within s, is located the open circuited receiving antennae

External to the source region, the "b" fields are related
by
~vxEy = ;Z\’lHl,

V)’\‘Hb‘—"— %Eb

ssescesese A - 3

Sealarly multiplying the second of equations A - 1
by Eib and the first of A - 3 by W, end adding yields

, ""V’ <bema)= %Em’EL -+ % Ha‘%Hb

‘6 0000 00 09 A - )4-

where the left hand side has been simplified by the
identity

V. (AxB) = B.vxA) = A.(vxB)

ccecesccse A = 5

A similar development in terms of the other two of equat-

ions A - 1 and A - 3 ylelds

-—-Va(EaxH’lb): ,‘5 Ea'Eb -+ 2 !.Ha."Hb

060000000809 A. - 6
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Subtracting A = 6 from A - L results in

va(JEa_ leb "be}Ha) =0

eeoo 0 s oe0o0 A - 7

Equation A - 7 is valid in the source free region
bounded by 87 and 8,. By introducing suitable cuts, the
region of interest can be made simply connected. Then,
applying the divergence theorem and integrating through-'

out this source free reglon yields

UEQ_ X]Hb '“IE\,X]HG\) ° &S = O
S\ +S, cesssscece A - 8

In view of the radistion conditions, the contribution
to this integral venishes over the surface S5 when the
radius of the large sphere 1s allowed to increase to

infinity. BEquation A - 8 then reduces to

([Eax}Hb"' ‘Eb"H‘\AoclS = QO

S\ ooooooooeeA"g

This is the generaligzed Lorentz reciprocity theorem as

presented by Richmond.
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The Regction Integral

Since eQuation A =7 1s valid at all points outside

of 8g and 8p, equation A - 9 can be reduced to

(E.xH,-EvxH,).ds ~+ | [(EaxH, -FE,xH).d$ = O

Sa Sy
Finally

(EOXHB—E\;XH&)’AS = ([be IHm—de'Hb)oéS

Sa Sb
© a0 e 00 0000 A - 10

Rumsey has given the name "reaction" to each of the

integrals appearing in equation A ~ 10. Thus, by definition

<a,b> = g (E,xHe =EaxlH,).d 8

Sb © % e 0e e 0000 A - 11

In this notation, the reciprocity theorem becomes

<b’a> = <a,b> ) ooocoooooolA - 12

Sources of the Flelds

The enviroment under consideration is free space
everywhere outside of the two small subregions bounded

by sg and sp respectively. The constants of free space
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are denoted by ,A- and <« , ard the characteristics of
the antenna materials are described by 6, , Ja and &g
for antemma "a", and by &, , M, and €, for antenna "b",
Let antenna "a" transmit into the enviroment which is
free space everywhere outside of 8,5 except for the region
bounded by 8p which encloses the open circuited receiving
entenna. Denote the fields in this enviroment as [F, and
Ha. <« The primary source of the fields is the source
current m_i within sgz. Scattering from the antenna
structures can be considered to have as its sources the
conductlon currents within sy, and sp.

Within 84, the field equations are

—-vx Ea‘ = %a HQ

vae\, = %aEﬁ- +:]]-;_A
eeooeco0o00 00 A"'13
where A . |
S

fl

%d-

Conslder the second of equations A - 13. Adding and

oz =+ gwéﬁ)

subtracting C&Ea yields

VxHe = 4 Ea + (?3,-'3)1& "':BZ;‘

--:’jfE.,_-a—:ﬂ;_
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where J& = (%a —3)Ea ”*‘:D;.*

Similarly

.._VXIEQ‘ = 2]Ha -+ .Mm
where My = (2a -2)Ha

Since €, = € and /44 = M for non-magnetic conductors,

the effective "current" densities reduce to
< .
:U:L = GLIEG. +]};. ooooooooooA"lL{.

Mo =0

Thus
- VX ‘E‘k = 2 ’H“ within sg
VX Hm = /‘5 Eao + :H-a.
and
- VX [E&

in free space

2 Ha
E.

VxH, =

[N~ 4

eeoecsease A = 15

It must be noted however, that the total fields
EQ and Ha. cannot be determined from equations A - 15
alone, since the contribution from the induced currents

within sy have not yet been accounted for. This will
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now be considered. Within 84,9 the field equations are

~_VXEG. = nga

A

VxHa = ‘ijE

Li}

Noting that P A oend €, = € , these can be written

as

—.VXE@: Q‘Ha

VXH& =/‘3Ea_+ ;B;s ,

eee0e600000 A-lé

where

il

s
J; —5)&:’61;&« oeouooooooA“l?
Insofar as determining the "a" fields is concerned,
the effective currents glven by eqx.iations A - 1L and
A = 17 can be thought of as source currents™ in an

otherwise homogeneous regione.

* Note that since ;D-a. and Jr are functions of )Ea s

they are not known until [E, 1s obtained. On the cther
hand, [Ea camnot be found unless Ja and I,° are knoun.
Thus, one ls led to an integral equation problem. Unless
sultable approximations can be made, the problem is virt-
ually en intractable one. Nonetheless, it i1s useful at
this stage to treat the current densitles T, and J? as
if they were knowne
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Resction Expressed as s Volume Integral

Maxwell'!s equations within the reglon bounded by

.Sb are

~vxEq = 2 H,

il

Vv X Ho« = 3\, [EQ.
_;VXE.b = 25 }Hb

a A
VX‘H}, = (J\’ [E.L +J)—L
@060 e000040 A"18

By saspplication of the divergence theorem, the surface
integral in equation A - 11 becomes a volume integrsl

of

Vo ([be }'Hq - ’EQ'X }'H.b}

Using the vector identity of equation A - 5 along with
equations A - 18 yields

. (Ey x Hy - Eo xH,) = Eq - I}
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Thus

(Eyx My~ Eox ). dS = gjaa T AT
"~

This then results in the following alternate form of

Sp

the reaction integral

carny = g (E..7) 4T
A)b

Reaction in Terms of the Incldent Fields

ssesesscoo A = 19

While equations A - 11 and A - 19 are expressions
for the reaction <a,b> , they are difficult to apply
since the total filelds E,. and M, involve contributions
from both effective currents ( J, of equation A - 1l
and J," of equation A - 17). An alternate form derived
by Rlchmond eircumvents this difficulty. The development
is outlined below,

The envirommentunder consideration is as follows-
antenna "a" enclosed within sy and radiating in the
presence of antenna "b" (open-circuited) within Sy,o The
total fields in this environment can be considered as the

superposition of two components

(1) That due to the volume distribution of cleciric
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current :JL radiating into free space.
(2) That due to the volume dlstribution of electric

3
current 30. radlating into free space.

The field quantities are resolved into components

according to

E.-FE* 4 E°
Ho = HY + 1S

© 0000008060 A - 20

The fields E: and H: sre defined as those components

of the total filelds which are due to the currents within
Sg alone. Similarly, E: and }Hi are those components of
the total fields which are due to currents within sy, alone.
That is, the source of the incident fields ( Ei and Mo )

is the current distribution

3); = (%a""j){Ea*‘:—Ur (within s,)

..QQ.OOOGO‘A-21

s .S
end the source of the scattered fields ( £, ana M, ) is

the current distribution

]
J. = (G, -4)Ea (within s,)

oooeeooooo‘A bt 22



Maxwell's equations for the incident components

=V X EE* = 2 }Ha.L

a

within 8y

wmﬁq{&iwx,

_VXE:'.—_/Z\.}H:
in free spsace
i

meaz 'SEL

&

P

£ Ak
_VXIEQ:ZI'H;

within sb

I
Y X }Ha. = ‘J Ea
ceevo0oBOO9G A- - 23

Maxwell's equations for the scattered components are

S A 3
_.VX[Ea.z z,Ha

within Sg

i

¥V x }Hos ?JEa

s A 5

_VxXES=2H,
' in free space

$ o o5

VXHQ:"!’J u""&



_VxE =2 M

within s
5 S
v X H’= 9 E2 +J,

000000 ere A - ZLL

Now consider the reasction <a,b)> »

<a,b>

g(EbX}Ha*‘E@X}HL)-c‘S

[ eoxni ~EFm)  ds

Sy

-+ ((E‘,XHQS - Ea.sx H‘l‘,)c d S

)
b
009 09 6000 A e 25

It may now be shown with the aid of equations
A-24, A -3, A -5 and the divergence theorem that the
last integral in A - 25 vanishes. Thus, the reaction

{a,b» reduces to

< a,by = g(beH‘LJ_ E'xH).ds
By ,

Qo000 ES O A had 26 *

68
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Equavion A - 26 may be converted to a volume integral
by following the same steps used to convert A - 11 to
A - 19. The final result is

{a,b> =§g(‘ﬁi-3ﬂ,)3’f' Y G

Yy
where Jl is the volume distribution of electric current

given by
]Tb =(%L”%)EL +3}1;£ e o0 vc00000 A-28

within sb.

Approximations for Good Conductors

In practice, a cylindrical dipole wlll be made from
material which is a good conductor. In this case, the
currents will tend to concentrate as a thin layer near
the surface, and quickly go to zero as one progresses
inward from the surface.

From a mathematlcal point of view, it 1s convenient
to approximate the behaviour of a practical conductor by
that of a perfect conductor. In this case, the fields
within the conductor sre zero and the tangential comp-
onent of the total electric field vanishes at the surface,

The currents are then concentrated as a sheet of current
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over the surface., The conduction currents are no longer
obtained from ¢ IE , but rather from ~Mxi . Thus, the
current density J& of equation A - 27 becomes, in the limit,

the surface current density:m% given by

J-BSSAX‘HL, ‘ ee00 090000 A—29

The volume integration now becomes a surface integration
over the surface where the currentiﬁ& exists. Equation

A - 27 then reduces to

<a,by = Sg(fEi-]B,s)dS ceeevreess A = 30

when antenna "b" is composed of perfect conductors.

Now consider equation A - 19. The integrand vanishes
everywhere except across the gap. Integrating over the
cross-section of the gap ylelds the total driving current
Ib' The current I, is assumed to be constant across the

length of the gap. Thus, equation A -~ 19 reduces to

<a,b) = fEaz Ib dz

n
Ll

(=3

—

&3

©

N

o,
N
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Finally,

<8.,b7= -VbaI oooeoeéaooA-Bl

b
where Vba is the voltage at the terminals of antenna "b"
due to the filelds of antenna "a", and I is the driving

b
current of entemna "b" when it transmitse.

Approximating the Reactiqng

In all previous discussions, the current densities
were treated as if they were known - in reality, they are
not. However, since the medium 1s homogeneous except for
two small islands of matter, it is possible o assume
current distributions in these subreglons, and from these,
obtain approximate expressions for J© and W elsewhere.

Consider for example, the situation when anterma "a¥
is transmittings The filelds produced by the current
distributions within s, were denoted by E. and “4i‘0

Outside of s the flelds may be calculated by the vector

a?
potential method as outlined in Chapter II, using as the
source, the assumed current distribution within s .

To simplify the formulation of the problem, tThe

fields outside of S, are often approximated by replacing
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the surface current density by a z-directed filamentary
current concentrated on the axis of the dipole and calc-
ulating the fields produced by this. The vector potential
is then found from application of equation 2 - 7, and the
z-component of the electric field from equation 2 - 8.
Considering ]Rs to be z-directed, the dot product

in equation A - 30 becomes simply the product of the z-
component of IE: and the z-component of JES o Integrating
around the circumference of antenna '"b" yields the total

current Ib(z) at any point z. BEquation A - 30 then reduces

to /eb

{a,b? = Eiz Ib(z) dz
-4,

Substituting from equation 2 - 8 gives

<a,b? = = jBOF(f z')I (z) G(zv,z) dz? dz

""OL -‘?“ 99000009006 A-32

cevecveosee A = 33



APPENDIX B

STATIONARY FORMULAS FOR IMPEDANCE

Stationary Integrals

Consider the integral shown as equation B -~ 1.

b
N=‘(FMJJde esessesccs B - 1

o~

If the substitution
¥y = y(x) + «7(x) cesessevee B = 2

is made, the integral becomes a function of o« o That is

b
N(O() = fF(x,—j',i') dx 6e0o0ocevee D = 3
O
The integral N(x) is sald to be stationary for
small < if the following condition is satisfied

AN (ex)

d°< =O oeooooeoooB'L}.

¢ =0
Enfording the condition of equation B - L leads to
Euler's equation (which is a first necessary condition)
for determining the extremal function y(x) which minimizes

or maximizes the integral.
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In some cases, it 1s not possible to solve for
y(x) by this procedure., However, if it can be shown
that the integral N is stationary, then an approximate
solution may be obtained by assuming a trigl function

¥(x), and evaluating the integrsl B - 3 with this choice.

This of course does not yield the correct value N(O)
which would be obtained if the true y(x) were used, but

for small o , the error will be small. This is shown

pictorially in figure B - lo.

N¢ <) NG

/ Net,) ~l__ '
\// / ! Neoy
N¢o)

|

|

|

]

|

i
(o] O<\ [~24
(a) (v)

Figure B = 1o N(x) versus ot for (a) stationary formula
and (b) non=-stationary formula.

For a given error 5% = OU?(X) in the approximation, the
corresponding error in N(xt) is, in general, much smaller
for a stationary integral than for a non-stationary

integrale.
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The Ritz Procedure

The Ritz method is a procedure for obtaining approx-
imate solutions of problems which have a stationary char-
acter. The procedure consists essentlally in assuming
that the desired extremal can be approximated by a linear

combination of ™" sultably chosen functions of the form
~ + +  see +
¥ = oqf; (x) + opf 5(x) Cnﬁﬁ(x)
.OOQQ.QOOOB—S

where the "oc's" are constants to be determined. Usually
the functions ﬁk(x) are chosen in such a manner that this
expression satisfies the specified boundary conditions
for any choice of the "¢'s". In physical problems, the
general nature of the solution is often known, and a set
of J's is chosen in such a way that some linear combination
of them may be expected to satisfactorally approximate

the solutione

Statiohéry Charascter of the Reactions

If two variational parameters ¢, and ™, are involved,

the condition for a stationary integral 1s

INCx,, o) = DN (e, ) = O
Q g o,

Q0 ® o909 0000 B o 6
HKa® Xy = © ofy w oty = O S
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Applying thls ldea, it is easily shown that the
reactions of Chapter III are stationary. For example,
consider <a,b> o It is desired to show that the reaction
{a,b> is stationary for small variations of "a" and "b"
about the correct values "ca" and "c,". To show this,
let

a= cg t X8y
b = ¢ t X8
Expanding <a,b> yields
<a,b> = (°a9°b> + ““<eé’°b> + “Sca’eb> + °<°'°‘b<ea9eb>
The constralnts
<ayby = <e,,b? = <a,cp,
leads to two more relations
<a,b> = <Cg,epdt X <eg, 0y

<a;b? = {cgyCp)+xS0g,01>

Substituting these into the above equations yields
<a’b> = <ca,Cb>- daqsea,6b> vecoecovee D = 7

Since <cg,cp?is not dependent upon either «, or X, 5, it
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is easily seen that B - 6 is satisfied for <a,b), thus

proving its stationary character.

Stationary Formulas for Impedance

With the ald of equation A - 32, the set of simult-

aneous equations l - 2 may be written as

aa a

+ G . I + G I
N (PR

.0.0..0009B"8

=
Ii(o) Zyo * 2 1,00 Ib(O) Zop * Ig(O)Z%:Jan G I

where the specific arguments of the integrsals have been
omitted for convenience. That is, the following short

hand notation has been used

Lo Lo
YX/Im amn I, = - j3ofif< j/.lm(z) Gon(2s2") In(Zf) dz'dz
- ﬂm - IM

Let the currents Ia and Ib be varied about their
true values. Now, as shown by Levis and Tais9 the set of
equations obtained from B - 8 by means of the variational

calculus shows that

§Zaa=52ab=ézbb=0 A - I



78

Thus, the simultaneous equations L - 2 represent a set
for which the impedances are stationary with respect to
small varlations of the assumed current distributions

about the true current distributions. S



APFENDIX C

INTEGRATING THE REACTIONS

Because of the reciprocal nature of the reactions,
the matrix [R] is symmetrical about the principal diag-
onal, and consequently only ten of the sixteen reactions
are distinct. Furthermore, all ten of these reactions
nagy be obtained from four general integrals. The four
general integrals represent the reactions <u,mp , <{u,nd> ,
{vym) and (v,nd>. By replacing X, by 4 in these integrals,
one obtalns the three reactions <u,u) , u,v} and <v,v) .
Alternatively, if &,is replaced by'ilin the above general
integrals, the reactions <{m,my , (m,n> and {n,n) are
obtainedes These ten reactions completely specify the
reaction matrixe

Integration of the reaction Integrals is long and

involved, and only the main steps are outlined below.

I THE REACTION <u,m)
The reaction {u,m) may be expressed as

A, 4,
dum) = = 30/3'J/}/—Iu(s) ;m(z) G(s,z) ds dz

oS * 9080900 900 C -l
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where G(s,z) = (l + —a — )_.@_.
Y

® 0 0000 290006 C - 2

Inserting the expressions for I,(s) and I, (z) yields

Sa 4,
<ugm) = = j 30ﬂ'fsin/3(,¢a-lsl)[ (sinf(ﬂb-lzl) G(s,z) dz] ds
~A A,
Define the inner integral as A. Thus
A
A= (sin/@(jb -izl) G(s,z) dz cevessnnes C = 3
-4, s,

[¢] .
= fsin/&(ﬂﬁ z) G(s,z) dz + sinﬁ(ﬂb- z) G(s,z) dg
A e

o
=M ot oA,

Consider Al ®

g

= i o+ ) "j/gr d
A; fs nﬁ(ﬂ" Z § Z
L,
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Ai’ = gsin(%(ﬂb'* Z)SD;' (.g_-jpr) dz

Integrating by parts twice ylelds

Zi-:o
A{: sinﬁ]b%(@'jﬁr) _ﬁ’cosﬁ(ﬂb+ z) _e_'jﬁr
r T
2=0 2"_’0""
o
- inB+ z) o PT 4
/g [s *1/;( Ltz S 2
4

. ,

When this expression 1s divided by /B, 1t is seen that the
' v

last term is equal to - Aj+s After cancellation, A__l reduces

to

Ay = g.z sinﬁﬂb%(%-jﬁr)

2=0 2=0

A similer development yields the following expression

for A2w



r
Z=0

Recall that A = Al + Aaa Thus,

z:ﬂb Z2=0

- “JpPr
A=—L{cos(3(,ob- z)gj/sr - cosﬁ(,@h+ z)_g‘]ﬁ _?
& T T
z=0 Z= -y

Rl Rg RO
Qe 0000 000 C had ).{,

“pfetfm e TPz p PR 2

where R = s + 4

Ry =/(,gh- s)2 + a&°

Rp =/‘9»* 52+ &

Substituting this in’co the expression for {u,m) gives

&

-if% R R,
u,m) = =, 30 f sin{ﬁ(ﬂa-lsl)(%\lp '+ %JF’ —Rcas/ﬁ&%JP ]a‘-s

)

A
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Finally
LA

- R\ - Kz _ R,
{upmy = - j 60(sin/3(1¢ - s)[.%?) +.§.L)/s- Rcaspﬂb%(a J:]AS

\ o

o

coceesseno G "5

The remaining integration required to reduce equation

C -~ 5 to closed form will be postponed until section V.

II THE REACTION <v,m}

The reaction <{v,m7 is given by
4,

. jg
{v,m) = = j BOF[ﬂ(ﬁ,-IS‘)GOS/i(A -tsi)}i sin/ﬁ(,?b -1z1)

—Ia - A

G(s,z)»dz} ds

The inner integral is recogniz‘ed as A in equation ¢ -~ 3,
The result C - 4 may be inserted directly to give
L

{vym) = = j 60[% (L = 8) cosﬁ(ﬂa - s)[ ..@__-_jﬁRl
o ' Ri

- R -
+ e JP 2 .2 cosﬁ,?b & JFRO ds
R2 . Ro

©00OCP2H00 90 C d 6




III THE REACTION <{v,n)

yA
{v,nd = = j 30Fffﬂ (£, =181) cosﬁ (4, -1si) B(s) és
&, ' -
Ay
where B(s) = (ﬁ (A, -lzi) cos/Z(,Q -1izl) G(s,z) 4z
_—QL ‘ ;ocoo-‘ooeo'c - 7

Let B(s) = By + By

0
By =§ﬁ(ﬂb+ z) cosp(l\,*’ z) G(s,z) dz
4 o 4

A
B, = y(j’ (R, -~ z) cosﬁ(,qb - z) G(s,z) 4z

0
It is convenient to further subdivide these integrals.

example, B, may be expressed sas

W
H
{

—-—

‘ o B
) "gﬁ(,?b-f z) cos/?,(fb-*- z) g'jﬁr dz
1 -
b

o, | |
Bi'= (@(,Qb'*;z) cos{é(ﬂb-l' 2) 2 g'jﬁr dz
¢ oZ*\ T

8l

For
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Consider Bi' Integrating by parts twice yields

.‘:O
Y IR
= j Cos j;, ._;. (__e_.J > ﬂCaS /’65'/'2)
ﬂ b ﬁ PEANAS ﬁ 2l
0 ﬂ ﬁ’br
aﬁ gSmﬁ(jb-P?)@ dz —+ ﬁ ./6, 5"‘%/‘/% 425'0
b

L

_/3 g/j’(,&—#z)wsﬁ(,&vbz)e

.
When this expression 1s divided by /6 s 1t 1s seen that

the last term is equal to -~ Bi. After cancellation, Bl

reduces to

By = ﬁ g , cos 30, 2 (-)ﬂ );Lo + f%_z.

~)PRe

-+ (ﬁ«qb sin B4, — C"S(&Vb)%

b4 | -
b. ’ e~3/3r 1o
2 (snpttong
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where R, and R2 are the same as defined in section I,

and * is given by

F=J(z +8)% + a2
A similar development ylelds the following expression for
Bp
- Y — { F)R{
- 1
B, = _L ._jbCOsﬁgb_‘l £ + =
2 @ oz \ Y K‘

Z2=0

__‘(Sﬁo
. (ﬁ,?bsih(sjb —_ COS/Q/QbB__eé_J

5 e
— aﬁ(Sl'n ﬂ(jb—-:‘?)% dz
o

Make the following definition

-j B7

F(s,z) = _e_'j pr +
r

=i

With this definition, B1 and B‘2 may be added to obtain

B(s), which, aftex cancellation is
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A
— ap [SM p(ﬂb-zl F(s,z)dz §
o .

'90'900.090 C"8

This may now be substituted into the expression for J{v,nd .
When this 1s done, it is seen that a group of terms combines

vo form <v,md» « The final result for {v,n) is

g/
3K
J(é ds

<vgn> = <V,‘W\> — /J \20 ﬁ/pb 5(-hﬁ/eb fﬁ(ﬂa’s)COSﬂ(ﬂafS)—%
i
[+

yZ 4
+0 )ZOF f/&(]a-S)Cosﬁ(ﬂa—s)[ (Sl}\ [5(,,&-2) F(slzf)ca)ﬁ]ds

0

CICIC I - IR N2 C had 9

The fingl evaluation df this expression is postponed

to Section Ve
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IV THE REACTION <u,n>
L
{uynd = - 3o/jf<s\'nﬁ(fa.—ls\) Bes) ds
A

4,
where B(s) = fﬂ(ﬂb—~ 121 cos/3CQb lzz G(s 2) c§ =

o9 @ O® QO 0 9 @09 9 C-}.O

This integral hes already been shown to reduce %o equation
C - 8. If the result C ~ 8 is substituted into the sbove

expression for <u,ny , the following is obtained
Lo

<u,n> = (ymy - j 120@@3 sin B4, {smﬁ(ﬂéa

%,

+ j 120 [Smﬂ(ﬂa-s){ [511"/5(}(, z)}'—(s)z)a-?—/cj's

0

giﬁa ds

<@

LI I - -3 C—ll

Evaluation of this expression is considered in the next

. Section.

V EVALUATION OF THE INTEGRALS

All reactions considered in the previous sections

can be expressed in terms of the following six intégrals




3Ry _BRRz
jsw\[ﬁ(fa—S} )F _%___JF ],_;S

Nl =
.......... c - 12
Ja.
. Ro
N, = (S\'v\ ﬁ(ﬂa-s) _@.JF) ds
o Re ¢ - 13
‘0((‘
3R '3@2"] a
= (fo-8)cos (,Qq""s[ -y a5
Ny 0((5 s)c [:S ) =
.......... ¢ - 1l
Ha
N, = (ﬂ(fa—s)cosﬁ(ﬂws} G;SPROAS
L ],
o 7 esescesvsos ¢ - 15
[N 4,
Ny = {5(52“-5) Cosﬁ(ﬂa-S)[ fsin ‘6(& Z) | Cs,z)dz_iés
° i ¢ - 16
A A, _
Né = gﬁ\;\P(VQa-—S)[ fS\.V\ F)(reb-2> F(S,%} AZJ &5

° °©  iiieeeesee C - 17

89



In terms of

mey be expressed

(u;m) = - J6O(Ny
vym) = = j6O(N3
{vynd> = =~ jéo(NB
{u,ny = = jéo(Nl

90

the above defined integrals, the reacvions

as

2 cos ﬁ’Qb N,)

2 cosBh, )

+ 2(ph,sinpl, - COSP’Q)NL; - 2/BN5)

+

2(ph,sinfh, - cos BLIN, - 2fH,)

© 00 00 ¢0 800 C hd 18

Function Subroutines

In order to

systemlze the evalustion of equations

C =12 to C - 17, the following function subroutinses are

defined
| X '3(5(?-4()
E(XI,XZ) = f % O\‘X
X\
X _}[ﬁ’(K-—-X)
H(xlgxz,x_a) = (X=+Xx5)e dx
Xe ;B (R=X)
] z _~ {
W(.Xng.a,XB) = (X 4+X%3) % a ¥

X,
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where R =\)x2 “+ d2

Evaluation of E(xj,%p) 1s stralghtforward. Define

a change of variables as

7z = F3(R - x)
Then dz — AR _ 1\ = { —
dz = (R - V=g

= - B(R=X) = — Z
(2R 2

Thus dx = _ d=z
R z

Substituting into the integral defining E(zngz) yields

| e ; 2 = 1 Z
E(xy,xp) = = f _E—_’:Q dz = (%J dz
Z, 2,
2, z

= yCOSZc\az —_— (63‘»/\2 az
ceszds - | sz

Z, 2.

- [cic-cicl =j[si@y - Sic]

®PCABO6O OO O C - 19
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whers

2= B(/x*+d® — X))
Z:.T-F(V‘Xzz_%‘éz - Xz)

In a similar manner, the expression for H(xlgx29x3)

is shown %o be

H(%y,X0%s) = (x3 + § BAZVE(x7,%,) +j_*__(e"’$22
122223 3 = 1s%p 20
—AZ 4 _-2 7
_ )—i-p_f_é_(_e_w_ i
2 ZZ. Zl

@ e QPQOQGOQOC I QO C-eo

where z7 and Zp are the same as defined gbove.

The expression for W(xy,xp,%5) is

2 2,14
W(x13x2,x3) = <X3z —+ é +‘ﬁ8‘A JEO{\) X2>

+2x3H(x.,xz,o)__l_z {:(Hj'fz)eo
-2 z - )22 ~\Z
_(|+3'2.)8J ] ~ ﬁcﬁ[(_ﬁizj - <) )

. ~jz7‘2 _‘Z)
| = - <= C -21
Zz. Z‘ L4 LI - '
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Reduction of the Integrals to Closed Form

Consider Nl o

%

= sy -9 &
N, = gs\w(éfﬁa 53[ =

¢}

. AR )
i \-x- _e:b.ﬁgz] ds
Ra

. C,QQ—S) —_ («Qa-s)
But s{np(fa-S): QTL[ 60(3 - = J‘ﬁ ]
, f

Substituting this into the expression for N and

rearranging ylelds

Ja
. ) - 4
Ny = A e/JPU)“ ) (é"jP(Rﬂ‘S b)és
z4 R,
B (Lo -4 _B(Ry=5 A A(La ) PRz s A,
. e—{)p( b)fé_oﬁ ds =+ eg[5 [.@.Jﬁ | ds
° Rl 0 RZ

A
. . B(R,— 5 —Hb)
) ‘e_j(auw!b) (_5_3:0 B(R ;S
Rz

Consider the first integral in this expression.
Define x = /Qg,- 8

Then dx = = ds



oL

Ri= V(Jposy ad® = Jx*2d® = R

Substituting ylelds
L,

Lo -
-2 V
(eO‘FCR\-»s b)as: y _J\.}FCR )
R
© Ay

— E.("Qb)-’eb—’ga)

[

All other integrals in Ny mey be treated in a similar

manner. The final result is
A (uQa."be)
N, = 0.51}: ?QOF E(«Qb,ﬂe—d&)

: @(,Qa-’r\_ﬂb)

- B/
e A WA

+ et E("jh)“ a"jb)

y 2«14]
e—jﬁ( b) E(ﬂb, /?a—i—jlo);
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Since N, N3 and NQ may be reduced in exactly the

same mammer, only the results are presented below.

N « A .«ao.
,}O.‘S{e‘)ﬂ( E(0,-4) = e_éﬂ E(o,/@a)—)i

=
|

P(,@o. j;,

=
i

H('Qb) /&,_Ja, ﬂa—i—.ﬂg)

5 = o S.F{e_ﬁ

4 ejﬁ(fa-&«qb) H (_1‘” _‘ﬂ“_’gb) -ﬂa "‘jb\}

_ 4 B(fa-Ay)
4 & ﬁ? }‘\u (—«Qb,ja-«@, jb—»@)

-~

- iBUUs
e 0(3( +jb) H(.,()g,) J?a.+lb,-—1a.—-/{7c’) g

. Al
N, = —0.5 eJ@ja H(G,-ﬂa Ay ~e \)/' H(O, AOQ)"“I?Q)
L F ) A

The integral N5 is
e 4,

= (}(/é’(ﬂwﬂ c.osﬁ(ﬁa-s) Sin /6(1(, -z) Fes,2) dzds

Now cosﬁ(ﬂa- s) and sinl@(ﬂb- z) may be expressed in
exponentiallform. Meaking use of the definition of

F(s,z), the integral N. may be expanded as follows
| 5
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Cﬁa'bqo) ~+ 2
0'25F§ if (f(ohs)@"‘@(" o ><§-2<§s

ﬂa_ J?z ( )
Lo, -»Qb Y A+5+=Z
. eﬁP< N )gy (,Qa-s)e if dzds

o o

b 4,

vo“ vgb) - "‘2
‘ﬁp(+(f(as)e’5(3(r c%;?.c&s

ﬂa L,

_; B(faA) (v=5-2)
_.eﬁﬁ bf(ja. S)u.sﬁ cia’és

: (»Qa--'eb) V-‘S'"f
__ejp (j(ﬂo. s) . {}@( zds

r
ﬂa ﬂ«'

jp(ﬂa j&f[(-’@a 3) e ‘)F)CT-{VS E)C!ZCiS

Jo By

- ja‘-’(] S 4
{J/&( b)fj(ﬂa S) e)@(r Z><§2c§s

'_S{B(Jzaw(’.b) i N GEREES
-4 2 (,(]a—S)é’_J c!zcls}
/¥ |

© o
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At this point, 1t is convenlent to define two funciions

as follows

245S - (3(‘('-6— 2-%)
Q(A;B) = ({5(/0\ 5>e— P {( ) dz
_ o

A

B (v 2=—5)
G(4,B) = (ﬁ(A-S) { 3_%_ P ZE ds

0

f4s

J

By making sppropriate changes of varigble, all integrals

in 15 can be expressed in terms these two functions. The

final resul: is

i‘-_—....‘ 025 (54

~] {3(10. + L)

jﬁ(ﬂa‘(«ﬁb\) [ Q(«Qa)ﬂb) o G‘C—-ﬁa) «Qb)]

4 < [Q(—VQ&; ~Lp) + @Cz()o,, -—v?b)]

P [ Qa0 4 ety -]

- ﬂa**g) |
it [ (-4, 8+ @(ﬂa,,\m]g

Evaluation of Q(a, B) and G(A B) ls postponed until

Né has been consideredo



ATter expansion, Né may be expressed as

(fa~4,) i plr—s—23)
Ng = = O- ZS{ it [ (( JP Az ds

2o 4,

SR(F+s5—7)
-+ 5-%—‘)[5 o 3235]
Y

Jo 4,

[4 »b
\ ‘ —iB(Tas+z)
_-eé(g(ja-%&.)[g(_@:\)ﬁ(\’*sﬁ‘i\zés +§jﬁ_§_j‘ V=53 C!‘%Cgs]
v r

g ¢

jaﬂ;,
- plAa-d) ~iplr—s+32) ~iB(r-s+z)
.{_83{3 b[(_ﬁ_‘)ﬁ ’ dads -’-(f i clzcl]
o0 e
A

o o

L L

~JFUZ“"JZ" ((-JP(“S‘EQS 4({ )P““S-z) s}?

Define

- z)
" P(4,B) = (( _bﬁcv ° dzds

B

A

. . < _ -2>

ge‘ﬁﬁs}_’(_@:ﬁr s ds
'e

non

Q(4,B)
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In this notation, Ng becomes

\ ﬂa-—*Qb
N = O.ZS{QJF’( ‘ [P(--fa)—-!b) - T(/@a)—'*pb)]

4 («Qa“ﬂb)
~- & J{& [P(ﬂa,j&,) — T(“ja)/gb)—z

LB Toe o p) - Tea, 4]

E“‘jﬁ(ﬂq+ﬂb)[ P(ﬂa, —«Qb) - T(—«&> -—j@)] E

Consider the function P(4,B).

- (r~5+:") 1
P(A,B) = g [( ‘){3 ész/cls-

o)

Define w:/é’(r—5+2)

-pg ) = Al )

=ﬁ(v‘—s+z)
Y

]

slg



Thus dg — _é__"_\{_
r w

Upon substitution, thers results

[A Wg
~.W
P(4,B) = ) [ (%1 Aw] css
o W,
where W, = P(Ko-_s)

Wg:ﬁ(Ra-—s"" B)

Vst d®

R, =
Ry= V (s-8)* o 4™

In order to integrate by parts, make the following

definitions

Wg

W
W = _e_J dw
w
W, ‘
cl/\) = |

as

- Then Y]

i
w

100




, differentiate under the integral.

i~ a . W
To determine <=
The integrand is not a function of s, but the limits

are. Therefore

-3V 5%
cu - € dwg e dw,
ds Wg ds Wo as

'B(Ro— ) A(Ru— 5 + B)
_@:JF‘ ’ - e.‘JF)( ® ’

Ro KB
Substituting ylelds
VJB . s,:: A /3‘ :F(Ko—'s)
-JW\ ] v
P(A,B) = S €. aw — E R ds
w ! Ré
) S=o0 1]
A
.ﬁ(RB_s -+ B)
- S e S
0 FKB
Finally

p(a,B) = A E(AB,A) — H(0o,A,0) + H(-8,AB,B)

AB= A-B

where
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A similar development yields the following formulsae,.

T(AsB) = ZAE ieijPA E(ABaA) - E(‘Byo) + E(Op‘A)

- e~J2pB E(Bg-ABXE

fl

Q(4,B) %'—ﬁ{e'ﬁ/m 5(4,48) + (1 - j2g4) E(-B,0)
+ (- gzn ] VFP m(3,mum) - 500,

tjep [7(0,-4,0) - o~ 3205 H(BQ--AB,-BEJZ

 G(A,;B) =[3’{_§;2 E(AB,A) + A[H(OgAgO) + :rar(-Bgzx.B,,B)J7

+ O.S[W(O,Ago) - W(»—ByAB,B)jj?




APPENDIX D

"THE GOMPUTER PROGRAM

The program was coded in FORTRAN for operation on
the IBM System 360 computer. Although lengthy, the
progrem is rather simple, with very 1ittle branching.
Liberal use was made of function subprograms to simplify
the programming. All arithmetic is performed in single
precislon, with the exception of the matrix inversion
routine which is done in double precision. Evaluation
of the sine integrals and cosine integrals is performed
by means of & series expansion for arguments less than
one, and by a Hasting's appfoximation for arguments
greater thean one. Total running time per impedance
calculation is agbout six seconds.

A complete listing of the program follows,



A —_
ERY -
3=
DD
GU
o=
D)
GO
A=

>




= [lil{uvesi)

U:o s =)

{(Jes—A

= Uel X - R FDOY = San 0 - i

= Uel W 4 3 PR = DA £y )

= Ueh % - O G DA A

Oeth % i S RO SN I I

= JeH % i3

= Y3 e~AKs A

= YY (5s=AKs AK)

= Y {=0s =AM A

= YY A=A s Adbi)

= Y (—=5sAKs—AK)

= YY{=usAks—AK)

= Y (s Acis—=At)

=YY (e Adte =004

= Y({UesAs—A)

= YY{lUasAs—A)

Y{Oes=MsA)

= YY (e s—~AsA)

= EoR (OHALR (-G ~CAL HEE Sy SS 7

= O Y N S O S B G N CHE{LFDHET+5A )

= o (DA R-F )~ O NP

= E % {SAPR(FL-T I - CAP R

= GlAsB) + Gi=Asil)

= GulAsY + GGI~=As)

= =gl{=As-13) ~ G{As=D)

= =G =As=l) - \KJ\/.;(/A\"‘Ix)

= =Gl As=D) — Gl=Ae—iu)

= —QulA=3) ~ GGl=As—00)

= Gl=Asl) + OOAD)

= GUl=AslE) + QGLAsE)
5 o= 425 F (CALR®(IH-LUY — A AR RO
B35 = o250 % (CAL®(UE-—wG) - ~ AN (Y \

TlAs =0

PCo= P(A

/ {
PD = PRLASE) — TT(=Asi)
o :

|
-4

( —-As i)
TTUASHY = PRI=Nyi)
PG o= Tl=As—t3) —~ P{As=L)
o= TT{=As=03) — PP{As=D
AG = o205 % (CAL®{PA+PC) — SALH(

¢
i
6 = W25 ¥ (CAL¥(PH4PDY ¢ SALXIPA-PC) =

3 g -
Ul = GUe % (31 = A2 % 32)
UAN = = 630 % (A1 = AZ X A2)

VN = 6Je = A )
vV 5 = — OJe WAL - 'A, X % A )
U = Gue o2 o= AKX TG

Ui = = Guoe AR = AN R OAL)

22
<&

J
-

-

PRIy BN RS R S
o~~~
NO AT
9 »
NP N2
— o — —
1i
e



M

[

Y

25

45

(N

(&) 0

70

o
i
<
o

K{oslZ
00

C
-
W

KO1+3) = Uil
R05e3) = UA
REOL1s4) = UN
RUSe4)y = U
RUZ93) = Vi
R{EGe3) = VA
RiZs4) = VN
Ribet) = ¥
Gu TO 22U

RE3s3) = UM
R = UA

G~
>
(WS}

L

~i

-

o~

—
- = =

PV
~
-
o~

I
-
~

3 73
o
At 3
=
11
—

s
H
<

e
-
i

i

WO 45 I = 1, 4
DO 45 = Is 4
L o= 1 + 4
Moo= ood o+ 4
R{EJs1) = R(OI4U)
REMsI) = RIOLsJ)

HosEod o+ g
RETsM) = — R{LsJ)
RELsM) = ROIsJ)

OEOIN INVERSICOHN CF ROACTIUN SATRIX

DU 55 K = 24 9
(

“3 A

—_

—

»
ENe

1

—

®

—

o

oK) = RIS

NI
yEAVER (]
e

n

A= H5ARP % (SAWRIR 1
B3 = SARR{SAORRK (T
1P SAPR (SAP
D1IPP = S\P”(UAP9
D2 = SAQ#{SAP#
D2PP = SAQR(SAP:
3P A

D3PP = B

D4P = SAUR(SAGRRL 39 73) +2 o W KAV RR (2
D4pPP = SAGHISGAURRIT7y3 )+

C = D1IP*D4P - Der“Dwrr - UZPRD3

w

t

)
g
R
)
)

t

B " NI
2 e XAV

s 7))

i

\

Il

’ + 2

Y s 2) 4N
YAEANEAY TR (2.0
Sel ) ) EAYNAYRRIL .2
PNELSAPRR s T3 A
AN FROZ 9104
JYFAVEANER (4 )
G) )R ANV EANV S ‘:'\ Ry

B 2 P i/

AV
RS

106

SAY

LN

S0%
/
3




(&

75

/FTC

10V
105

110
115

/FETC

/FTC

/FTC

/FTC

/FTC

D o= DIPPEDAD b DIDELGPP ~ DD
RAD = (A%C + DED)Y/(CxC + D%
AR = (2RC = AEDI/LCHC + DY)

s
1

BETA % HA

B o= 260 ALOG (2eu HA/RA
WRITE (392) A B

S ALOG (Z2ew H3 /)
WMITL (393) AQs

o= GETA % DI

WRITITE (2940

WIRITE (395) XA

A s
I NY TE lus 75
(ALL X1
END

)
T

FUNCTION Z{X)
COMMON BETAs D DD
IF (X)) 10Us 1ufHs 11w

Z = RETA (SQRT (XxX % DD*DD)
RETL Ja\l\'

Z = BETA % DD

RETURN

\

IF {DD/X = Ueu9) 115s 119
DD/ X
Z = U05 *
RFETURN
END

SUNCTION E(X19X2)

L= CIOZ0X1)) = CI{Z(X2))
RETURN

END

FUNCTION EiL(X1sX2)
o= SICZIX2)Y) - S1I(Z
RETURN

END

(X1))

FURNCTION (X1 X2

COMMON MFTHS Ds DD

Y = UeBHDDF((SIN |
COS (Z{X1y)y/Z2 (X1

RETURN

END

X3)

ZIX2)V)y=5In |
PYFDFOE (X1 s X7

FUNCTTION YY(X1ls X2s X3
COMMON BETAs s DD

L

)

YY=U~"ﬂD ((COS (Z(X2))=-CO5 (Z
SIN (XI)V)/2(X1))=DHE(XT X2

RTTURN
FIND

FUNCTICN BBIX1)

COMMON BLETAs Ds DD

B3 = 1.0/(0%D) = D¥D/ (2448
RETURN

END

UNCTION AA(X1)

BETA 3 X038 (Pl — (g 253 sy

2R )

<;\l 1) ) )/;}»;ﬂr/\,.x_

+ Y M

AV

) ) /D=0
X3%EL

x1)

Wy D
R

{CO5

(X1sX2)

(5TH

(X1sK2)

(Z (X



COMHON RETAs Ds DD , 108
AA = ZUXT)/(D¥D) + DED/(2.0%2(X1))

RETURN

END

FUNCTION W{X1ls X2s X3)

COMMON BETAs D DD

W= Ue25%DDRDDNHILLIXTIRCOS (Z(X 1YY +AA XIS TN (2041

1 =B iX2)= u.)\) (Z{X2))=ANEX2 ) .!]H (ZIX2Y )= (2040000
2 + XB3WXBAREAXToX2) 4 26 X3AY(XTsX2+D)

RETURN

END

/ETC ‘
FUNCTION WalX1eX29X3)
COMMON BETAs s DD

W = \)./“ﬂ<L>D“UD’?<‘(/»\/\(X]) FCOH (20X
1 ~AACX2)HCOL (Z1X2) ) +33 X2y *OIN yEEELXT e X j
2 + XB3RXZFLLIXLoX2) + 20X 3%YY (X

/FTC
FUNCTION G(As8)
COMMON BETAs Ds DD
AB = A ~ 03
G = BETA* FLUGSHANFE (AR s A=Y (Do s As D )+ Y {=RsANR D))
1 + 005"(.(U.9f\9\/o)-}1'( ~D e A e ) ) )
RETURN
END
/FTC
FUNCTION GOGUAs2)
COHMON GETAs Os DD

AB = A - §

GG = BETA® (AKX UeBHARTECAD s A=Y Y (Dus Aol ¥ Y (=1 ALl )
1 4+ 0B (WW(UasAsUa)=4W(=3sA85)))

RETURN

END

FUNCTION Q(As3)
COMM ON EETAs e DD
AP 2eU % BETA

AB = A - 8 ‘

AN = AP % A

A= AP

XL = E(By=AB)YFAPKIARER (D s =AY +YY {0y —AL o ~13) )

X2 = LE(Ds—ADB) —APR (A% DALY +Y J-*\Ha—ﬁ))

Q = Ue25% (COS (ANIHE(ASAB)I+STN (AN T (ALAL) + CU5 (A %01
1 +FOSIN (AM)RX24+E(-0s0a Y+ANS(TE( =00 e )~ =A ) ) =5 (D n—4)

2 —“APXYY (Oos—AsCe) ) /LITA
RETURN
END
/FTC
FUNCTION QUiAs3)
COMMON BETAs s DO
AP = 2eu % BETA
A = A = 0
AN = AP % A
AM = AP % Q

X1 = E(Bs—AB)+APK Se=AD)EYY e =AT s =130 )

X2 = EE(Qs—AL) -APx L-‘ s =AY HY (e =Ale=i2))

QR = 0e25%{COS (ANIXICLASALY=STIN (A A AW +CCH LAY RX2
1 =SIN (AM)H¥XT=EFE(Ces=A)+L0 (-0 (Cos=A)1=T(=1sD,u0)




/FI1C

/FTC

/FTC

/FTC

i
—

o

RS Y {as

~Asie

FUNCTIUN
/\ij = A

P A

— f‘)

o= ARTLADSA) - Y(U
RETURN
END

FUNCTION PP (AsG)
AB = A - B

PP = AREE(AGsA)
RETURN

-~ Y

END

FUNCTION T({Asi)
COMMON 3ETAS s DD
X1 = 2.0 3% BETA # A
X2 = 20 3% BETA * B

AB = A - 3

K2 = X*X

AN=3861024Y5/X+X% (33"

157610542 +X2%
AN/DG

DR =
PPP =
RETURN
FND

FUNCTIOM QGQIX)

X2 = X#X
AN= 21.3218%9/X2+3

DB = 449.690233+X2%
GGER = AN/DD
RETURN

END

FUNCTION ST(X)

X2 = XX

Xt o= X

bR = X

AN = 340

IF{X=10) 515 L]ja
DB = =X2%DB/ (AN®AN
XBo= X3 o+ DB

220
{57062

52
(1

YIi/ZoiETA

e 8/ i), )+

T (UesAoil,)

T = (SIN (X1)*FE(ABsA)
+ COS (X2)*IE(Bs—~AD)

RETURN

END

FUNCTION (AsD)

COMMON BETAs Ds DD

X1 = 260 BETA * A

X2 = 2.0 BETA = D

AR = A - B

TT = (SIN (X]) EECARSA) + COS
- COS (X2)* Q9~AM) - GIN (X

- RETURN
END
UNCTION PPP(X)

67732
2362

V185+X2%

fe B o
525

A“\l—l 0 i) )

.I_

+X 2% (
GHX2% (322062491 +X2% (4]

° (3U2e75737+X2%
114.9730+X2

Y= Alsi3)

Y

SENLS

— A
D% rs

2050 LOTO3IHK2H

())u\)

1\/'

(['( °L'/.
432 04 85084X2%

(/1ua

72
02

1

109




ul
(o]
<

Ul
C
Ul

U
—
[

/DATA

Di = AN¥ODB
AN = AN+ 240

[FCABS (DB) = 4eUE=U9) 520 5205 8515
SI = XB

Zon

RETURN

|
—
i

FUNCTION CI(X)

X2 = X % X

DL = -X2/2.u

X3 = Du/2ey

AN = 340

IF(X=1a) 500 50Us 510

DB = =X24DU/ (AN% (AR+140)%%2)
XB = Xy + DB

D = (AN + 14U) % DO

IFIABS (DB) = 4«0E-L9) 505, 505, 500
CI = XB + Ue57721566 + ALOG(X)
RETURN '

Cl = PPPIXIXSIN (X) = QUIIX)*C0s (X)
RETURN

END

15707963 — PPPIX)*CO5 (X)) = GUL(A)e5TH

110
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