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Abstract

The optimum design of a transmission rine system requires a good

understanding of both the static and dynamic behaviors of the system. The

computational model should be capable of accurately representing the structure.

ln common practice, an isolated tower with loading from conductors is analyzed

to represent an entire system of towers. lt has been found that the behavior of

the tower-cable system differs from the behavior of an isolated tower, especially

for long span transmission systems. A misrepresentation of the model can lead

to serious economical and social losses.

ln this study, a latticed tower shaft is modeled using a tapered and a

prismatic 3D beam-column element to reduce the number of degree of freedom

of the structure. These simplified elements were specially formulated and verified

to represent detailed tower segments. The elements are incorporated into an in-

house Finite Element program called Static and Dynamic Analysis Program. The

program also includes all the necessary elements required in the analysis of the

transmission line system such as a cable element, truss element, spring element,

insulator string element and conventional beam-column element. The 3D cable

element used to model guy wires and conductors are assumed to be parabolic in

shape with a modified Dischinger's modulus of elasticity. The results obtained

from the model using the simplified elements and those obtained from the

detailed tower model, for both static and free vibration analyses, are within Z%.



Free vibration analyses of an isolated tower and a transmission line

system were conducted using the developed simplified model. The inclusion of

cable spans in the model increases the number of mode shapes of vibration. The

increase in the number of cable spans also increases the number of mode

shapes.

Dynamic analyses of the system with different numbers of cable spans

and different boundary conditions were also performed. The wind loading was

modeled using a random, stationary and ergodic process. lt was found that only

two cable spans are required for the dynamic analysis of the system for the

applied load case of wind perpendicular to the line. lt was also concluded that the

spring element can be used to represent the end towers.
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'1. lrurnoDucrloN

1.1.Geruenel

Transmission line systems play an important role in society; a failure in

these systems causing an interruption in the energy supply can cause severe

social and economic losses. To guarantee stability and low cost of maintenance,

these systems need to be well designed.

ln the past, in the United States, the majoriÇ of the state laws required

that the transmission line system should be designed at a minimum to meet the

requirements of the National Electrical Safety Code (NESC), which mainly covers

electrical design of the transmission lines, however, it also contains a part of the

structural loads and overload capacity factors. Some designers felt that the

NESC code was too conseryative, while others adopted procedures well above

the minimum requirement. This inconsistency led to the development of in-house

design criteria and guidelines. All this caused a large variation in the design (see

reference ASCE, 1984 for details), and led to an unreliable or costly structures' ln

1984, the American Society of Civil Engineers (ASCE) published a set of

guidelines for determining the struciural loads of the transmission towers.

Though it created uniformity in the design procedure, these guidelines however

were based on simplified assumptions due to the lack of computational structural

programs. Structures built with such simplifications should be reviewed for safety

now that the numerical analysis is much more advanced'



It is always of interest to engineers to design a transmission line system

with the maximum span length possible. With the use of advanced

computational programs, the structural analysis can be very sophisticated. This

allows a significant increase of the span size and a reduction on the transmission

system cost. Nonetheless, some precautions need to be taken in the construction

of a numerical model that closely represents a real structure.

The design of transmission line systems (Figure 1.1) has always been a

highlighted topic in structural engineering. ln the past, towers were designed

based on static load cases. The conductors and the tower were treated as

independent units. The load resultants from the conductors were applied directly

to the tower's members. Such simplifications could have a negative impact in

today's economy. lt was estimated that a failure of a transmission tower could

cost one million US dollars per kilometer of line (Albermani et al., 2008) without

including economic damages due to lack of electrical power.

Figure 1.1 - Transmission line system.



Most transmission towers are constructed as steel latticed structures. ln

general, as for any tall and slender structure, the design of a transmission line

system is governed by wind loads (shehata et al., 2005). Therefore, due to the

low natural frequencies of the system, a dynamic analysis is required. Most of

the dynamic analyses of a transmission system are usually carried out by

modeling the tower as an isolated structure as shown in Figure 1.2. This is not

accurate since it has been proven that the dynamic characteristics of the whole

system and the lateral movement of the conductors must be taken into account in

the analysis. The dynamic effects that the conductor and insulator strings have

on the vibration of the tower cannot be simply represented as lumped masses on

the tower.

Figure 1.2 - Transmission tower.

The work in this thesis is entirely theoretical. lt involves the development

of a computer program based on the direct stiffness method. The program was

validated though comparison with existing finite element (FE) programs,

published or theoretical results. Several examples are included in this thesis



which demonstrates the effectiveness and the accuracy of the developed

program.

.1.2.Oe,tecnvEs

To date, the analysis of transmission line systems has generally focused

on the analysis of isolated towers with the conductors acting as discrete loads on

the tower at the connection points. Such a mathematical model may be used for

státic analysis of the system. ln dynamic analysis, however, the effects that the

conductors and the adjacent towers have on the response of the system are

significant and must be considered in the analysis of the system. To obtain an

accurate prediction of the response, the whole system, including the towers and

the conductors, must be used in the analysis. Depending on the number of spans

used in the analysis, this can be limited by the capacity of the computer. The

problem can be alleviated by using an appropriate simplified element to model

the tower. Hence, the goals of this study are

To develop a reliable simplified tower model so that dynamic

analysis of a transmission line system which includes several spans

can be performed with limited computer capacity,

To perform parametrical studies on the effects of the number of

towers in the model, and

To investigate the effect of the end restrains on dynamic response

of the tower system.



1.3.Our¡-lruE oF THE THESIS

This thesis consists of seven chapters. ln chapter 2 a literature review of

the beam-column element formulated using stability functions and the

computational models for the tower analysis used by previous researchers is

presented.

ln chapter 3 the details of the element formulations (tapered and straight

tower element, insulator string, cable, and spring elements) used in the program

are discussed.

In chapter 4 the validation of the elements is performed. A number of

examples used to verify the Finite Element Program (SADAP - Static and

Dynamic Analysis Program) are also included.

ln chapter 5 the numerical models and loads used in this study are

described.

The results from the analyses for both the isolated tower and the

transmission system are discussed in chapter 6. Finally, chapter 7 includes a

number of conclusions and recommendations for future research.

l.4.Scopes oF THE RESEARcH

The scopes of the current research are

n A non-linear static analysis of transmission tower is restricted to an

isolated tower for the purpose of verification of the proposed

simplification.



u Only geometrical non-linearity is taken into account.

, The dynamic analysis is limited to a linear formulation due to

computational constrains.

" Buckling of an individual member is not taken into consideration in

the formulation of the simplified element.



2. L¡renAT[JRE Flev¡ew

2.1 . Beeu-coLUMN (sraenrrv rurucrrorus)

There are several methods to derive the stiffness matrix of a beam-column

element. One of them is through the use of modified slope-deflection equations,

called Stability Functions. This method is wildly used in the analysis of steel

structures using Finite Element Analysis (FEA).

The Stability Functions Theory is more attractive than a standard energy

method, because; requires fewer elements to predict buckling loads

(Landesmann, 2007), uses only one stiffness matrix to describe the linear and

the nonlinear behavior, easy to incorporate the plastic hinge theory and etc.

There are a large number of publications describing the use of the Stability

Functions. One in particular is by Kim et al. (2001-A). Their derivation of the

stability functions incorporated shear deformation, the tangent modulus of

elasticity to account for gradual yielding due to residual stresses, the parabolic

functions for gradual yielding due to flexure, and Orbison's full plastification

surface of cross-section. The inelastic formulations are recommended only for

compact steel sections. Kim et al. (2001-8) extended their formulation to

incorporate the lateral torsional buckling. Later, Kim et al. (2006) performed an

inelastic dynamic analysis of the three dimensional steel frames using stability

functions. They archived good results when compared with commercial FE

program (Abaqus).



2.2.Towen MoDELtNG

One of the earliest studies related to the analysis of transmission line is

Bissiri and Landau in 1947. They investigated the influence of the cable rupture

on subsequent line spans of a transmission line system. The cables were

considered to have a catenary profile, the insulator strings were assumed as rigid

body elements and the towers as fixed supports. Their research focused on

calculating the cable tensile force based on static equilibrium and they presented

hand calculation procedures for the analysis.

Cohen and Perrin (1957-A) described the procedure to calculate wind

loads as static forces on guyed towers. They presented drag and lifting

coefficients for towers of different types and shapes, as well as gust factors and a

formulation for the change in wind speed with altitude. They extended their

research and performed a simplified non-linear static analysis of guyed towers

(cohen and Perrin, 1957-8). Though this method was a simplified method, and

was very efficient considering the computational limitations. The tower shaft was

represented by equivalent beam-column elements and the guyed cables by non-

linear springs.

Mozer et al. (1977) developed simplified procedure to calculate

longitudinal forces due to a broken conductor wire or unbalanced ice load. They

formulated an equivalent stiffness coefficient for the insulator string assuming

small rotations. The accuracy of their procedure was verified by comparing their

numerical result with the results from several static small scale experimental



tests. They also performed small scale dynamic tests and concluded that the

dynamic characteristics of the tower-cable system are influenced from the impact

load due to a wire rupture.

Peyrot et al. (1981) used a nonlinear elastic catenary cable element to

analyze cross rope suspension transmission line structures. They performed a

nonlinear static analysis using only one cable element per conductor's spans.

The tower mast was modeled as a rigid body element. A static condensation

was applied to reduce the degrees-of-freedom (DOF) of the mast. They,

however, did not verify their analysis results.

To reduce the DOF of a transmission tower, Trainor et al. (1985) used a

beam-column element that represents both straight and tapered tower shaft and

calculated natural frequencies of the structure. They assumed the mass of the

structure to be constant even when the tower's shaft was tapered.

Mathur et al. (1987) demonstrated that the towers, insulator strings, and

conductors must be integrated as a whole in order to obtain an accurate dynamic

analysis of a transmission tower system. Desai et al. (1994) analyzed galloping

of a transmission line with ice on the conductors. ln their study, the tower-line

system was modeled considering multiple spans and the cable as a three-node

isoparametric finite element. They concluded that a multi-span model is required

to estimate galloping modes; severe galloping amplitudes can lead to a

progressive failure of the towers.



Rodrigues (1999) studied the collapse of a transmission tower due to wind

load and demonstrated that, even without the rupture of the conductor wire, the

tower can fail due to dynamic wind load because of the low natural frequencies of

the structure. A system of one tower, insulator strings and two cable spans was

used in the analysis. The end towers were modeled as a linear spring element.

Lei, Y. H. and Chien, Y. L. (2005) studied the response of a transmission

Iine system to seismic load, considering both material and geometric

nonlinearities. Their model consisted of 3 towers, 4 conductor spans (4 cable

elements per span) and springs to represent the end towers restrains. The

stiffness of the springs was chosen to be equal to 1.5 times the stiffness of one

tower, measured in each respective direction. No indication of modeling the

insulator strings was reported. They concluded the importance to consider the

conductors in the dynamic analysis of the transmission line system.

Using ANSYS, Oliveira (2006) investigated the collapse of one of the

towers studied by Rodrigues (1999) using a non-linear static and dynamic

analysis. He modeled the end towers using dynamic condensation available in

ANSYS (therefore assumed that those towers have a linear behavior). He

concluded that the tower can fail due to a wind load before a wire rupture and

that the tower-line system presented lower natural frequencies then the isolated

tower, as the initial frequencies of the tower-line were governed by the

conductors' properties.

10



Oliveira et al. (2007) analyzed several guyed towers using three different

models to investigate which model best represented the towers. The first model

consisted only of truss elements (in this model, the use of dummy bars with low

stiffness was required to stabilize the structure); the second model consisted of

beam elements assuming rigid connections; and the third model considered the

main elements as beams and the diagonals as trusses. ln their study, the

comparison between models was done considering a static linear and non-linear

analysis, a dynamic based on free vibration, and a stability analysis. They

concluded that the lateral displacement of the tower due to wind loads was not a

function of the element type, but the stresses from the truss and the other two

models were considerably different. They also concluded that the model using

only beam elements can lead to a higher buckling load when compared with the

combined truss and beam model. They recommended using the model that

considered the main elements as beams and the diagonals as trusses to the

analysis of guyed towers. This recommendation is used in this study.

Junior et al. (2007) studied the effect of a cable rupture on transmission

lines using Central Finite Difference to integrate the equations of motion in the

time domain. The geometric and material nonlinearities were included in the

model. They investigated a 138kV transmission line, which consisted of eight

detailed towers, nine cable spans (20 cable elements per span), and insulator

strings. All modeled only using truss elements. They concluded that the standard

cable rupture approach (equivalent static load) can be unsafe, depending on the

transmission line model.

1.!



ln the analysis of a transmission line system, the number of spans is

defined by a case by case basis. lt is very time consuming to run a multi-span

model, and simplifications are still required to be able to perform a parametric

study on the effects of the number and length of conductors spans. Zhang and

Rattanawangcharoen (2008), investigated the dynamic characteristics of a single

guyed tower, and a system made by three towers and four conductor's spans

using a uniform non-linear beam-column element to simulate the tower shaft. A

catenary cable element was also used to simulate the conductors, the ground

wires and the guyed cables (only one cable element per span). They concluded

that the system of towers has additional modes of vibration when compared with

an isolated tower, which depend on the span length, and can have an important

effect in the dynamic response. Therefore, multi-spans models should be

considered for a more reliable analysis.
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3. FonmuLAT¡oN oF ELEMENTS

ln the analysis of the transmission line system, a model consisting of one

isolated tower is not sufficient to predict the dynamic behavior of the structural

system. The consideration of the subsequent towers is necessary. However, a

model consisting of more than one tower is extremely computational time

consuming and sometimes even impossible. There are basically three different

techniques to solve this problem. ln the first technique, the extremity towers

were modeled as simple mass-spring-damper elements as it was done at

Rodrigues (1999). ln this method, the spring stiffness is obtained byapplying a

unit force at the end of the insulator string elements and then inverting the

resulting displacement. The second method is to use static condensation as

done by Oliveira (2006) thus reducing the DOF of the structure. Even though

these methods are very efficient, the adjacent towers can only be considered to

have a linear behavior and only natural frequencies corresponding to the

remaining DOFs were considered. The studies using these two methods were

considered only two cable spans models.

The third technique is to simulate parts of the tower as a single element

reducing the degree of freedom of the system therefore reducing the analysis

complexity, as shown in Figure 3.1. Even though the analysis is simplified, the

element is able to represent the non-linear static and dynamic behaviour of the

structure.
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Figure 3.1 - Representation of a tower segment by a tapered beam-column

3.1.Towen Eren¡erurs

3.1.1. SrRelcnr Snnrr

The tower shaft (Figure 3.2) will be modeled similarly to a regular beam-

column element with equivalent geometric properties.

Elevation

Figure 3.2 - Straight shaft segment.
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The torsion stiffness, kr, is considered to be provided exclusive by the diagonal

bars, as shown in Figure 3.3. The formulation is given by Eqn. (3'1).

ç,

---+ \2''-
ion Section 1-1

Figure 3.3 - Torsion Stiffness

o, =+rcos(ø)

Fo,, = ?rcost(ør)oo,

Fo." = *, cosz (a")
l-D

T=Fo,,br+Frob"

, = 
"o^ur[u; 

*u: (u,"or'(o")* 4 cos'(4,))
t = D*DP- z-1. â 

- t" )

t-=L=*^@I . üb, =* 4u" 
=,)",-B-L^D r[@-@) (3.1)

Elevation
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where ,4p is the area of one diagonal, Fo is the force in the diagonal bar and f is

the torsional moment.

Therefore the linear stiffness matrix, K¿, considêring the torsion stiffness is

given by:

EA
0

L

o lzEI,
t

00

o 91.
L'

EA
0

L.

o _tzE!,
Ê

00
00

000

lzEly n 6EI"-T- " -r:
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6EI AEI

-.t0YTL
000

000

000
ILEI 6EI

- =t 0 .YI:T
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000

o-EAo
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6EI I2EIIt _ _--t-
Ê"Ê
000
000

6EI, ^ 1281,
-.- u 

-
rE
000
000

000
2EI, ^ 6EI,
LT

000
l2EIy n 6EIy

-- v --EI:
o-kro

6EIy o zEIy

L2-L

000

000

000
I2EIy n 6EIy

- 

u 

-
tt
okro

6EI 4EI
-t 0 Y

TL
000

0

6EI,
L2

0

0

0

zEI"

L

0

_681,
L2

0

0

0

4EI,
L

000
4EI. ^ 6EI

- 
U -----éLT

.EA0-0
L

0

0

0

0

Kr=

(3.2)

0

6EI
L2

A= 4AL

I, = Art
¡" = Ar4

(3.3)
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A modification on the stiffness matrix (Eqn. 3.2) is required to take into

account the effect of the diagonal bars. These bars are considered to resist in the

shear deformation only. The flexibility coeffícient, fo, is given by:

Figure 3.4 - Diagonal effect.

zA^E
f o, = --:-Uo,

Lot

r, =4È"osz(a")u"" Lo,

Setting u, =l

ko, =2!oE cos'(a,)
Lo,

r L-t Lo' 1

J D' = trD' = 
LALDE cos\d)

t'-Lo" 1

JD,_ zAÃG:\
lt- )

(3.4)
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lf the shear deformation is considered, a new stiffness matrix consists of columns

and rows 2 to 6 and 8 to 12, except 4 and 10 of the linear stiffness matrix in Eqn.

3.2 is inverted and the shear deformation is added. After this step, the matrix is

re-inverted and the remaining coefficients are calculated by equilibrium of the

element (Pinto, 2006-A; Pinto, 2006-8). The steps in this formulation are as

follows,
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l?,,', f,:, ]-.,.,-. derormation 

=(W,,', 
?,:,'")' 

.lt"i :]l

lï,:', f,:: ]_.,,*der.rma,i.n 
= 

[[;:: l,:",f'. ["0" :])
kz,s = ks,r: -kr,,
kz,r, : ktz,z : kr,, - kr,u

ke*: kr,u: -kr.u

kø,tz = kn,a = kz,6L - k6'

î -î 
Lo,

Jnz,z-Jot,s- , .,2

2EADI+)

Lo, = ^[4.7

lr,', f,,, ]*..,"_derorma,ion 
= 

[[f:,: 
o;,,',)'.[to', 

;]l

W,', f:;:l]-,,,,,"a¡derormaton 
= [lft f::,] .lt';' :]J

kt,g=kr,r=-kr,,

ks,r, = ktr,t = -4jL - k3,s

ks,g=kr,r=-kt,,

ks,tt : ktt,s : -k3,sL - ks,s

{ -t 
Lo,

Ju,z-Jog,g- . ,,2

zEA^t l-l
'1t,, )

Lo,=JÑ

(3.5)

The new coefficients should substitute the ones in the previous presented linear

stiffness matrix (Eqn. 3.2).
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Besides the previous matrix, it is required the addition of a non-linear

stiffness matrix, K¡y¿, to account for geometric non-linearity. The Non-linear

stiffness matrix is given by,

Kn" =

0

6P

5L

0

0

0

P
10

0

_6P
5L

0

0

0

6P

5L

0

P
-10

0

0

0

6P
-5L

0

_P
l0

0

0

0

0

0

0

0

0

0

0

_6P
5L

0

P
l0

0

0

0

0

0

6P

5L

0

P

10

0

0

0

P

10

0

0

000
D

00t
l0

D

0 -' 0
10

000

0zLP0
15

0ozLP
15

000
D00

t0
D

0'0
l0

000
DIo -'" o
30

OO_PL
30

00
-6P(.) --

5L

00

00

00
P0--
10

00

06P
5L

00

00

00
D0 -'

10

000
Door
t0

D0 -' 0
l0

000

o-PLo
30

OO_PL
30

000
D

00
10

D

0'0
10

000
2LPu-0

15

OOzLP
15

(3.6)

The axial force P is the average axial force in the two node of the element; it is

calculated in the subroutine that calculates the elements forces, thus it is

considered equal to zero for the first load step. The axial force is defined as

positive if the element is in tension.

The mass is assumed uniformly distributed along the element length.

Therefore, the consistent mass matrix of a uniform bdam-column will be used,

and is given by:
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M=AUX

where

140

0

0

0

0

0

70

0

0

n

0

0

00000

1s600022L

0 156 0 -22L 0

ool4oJ'oo
4At

0 -22L 0 4I: 0

22+0004L2

00000

54000t3L

0540*13¿0

ooToJ'oo
4A"

0t3Lo4L20

-13L000-3L

700000

054000

0054013¿

oooToJ'o
4A"

00-t3Lo4L2

013¿000

r400000

0 156 0 0 0

00156022L

ooor4oJ'o
44"

0022L04L2

0-22.L000

0

-t3L

0

0

0

-3L

0

12L

0

0

0

4L2

(3.7)

(3.8)

Jb:.I: .,[b', - t
2

AUX = _(on,o.u**)t
420

J,=

Lo=

Ir+1,
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3.1.2. ToweR TapeReo Snerr

The tapered shaft tower, Figure 3.5, is modeled with the same

assumptions as the straight shaft, i.e. a beam-column element with equivalent

geometric properties. The difference is that the inertias are not constant.

Figure 3.5 - Tapered shaft segment.

The equivalent section properties of the tapered element representing a

lattice segment are defined as the following:

Elevation
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A=4At

r, (*) = oln,(r, r%)f= n,lo, (*)f,

r 
" 
(*) = olu,(u, r%)'l= e,ln, (*)l'

b, (*) = b uo,,o,, (t - B r*)
b 
" 
(*) = b u",,"," (l - B "x)

(3.e)

n brouon -broo
u = ur.*J

similar to the case of a straight shaft, the area of the diagonal bars, Ao is not

considered, as they are only assumed to resist shear.

As can be seen that the inertia is not constant along the element length, a

formulation for the stiffness matrix of a tapered beam-column is presented in the

following:

I
Orl

yL),
v

T

'-""L

TIt
I br* 

--)+

Figure 3.6 - Deformed beam-column element.
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Consider a simple supported beam in the xy-plane with varying moment of

inertia along its length subjected to end moments and a compressive force as

shown in Figure 3.6.

EI"@)W=M(x)

EI"@)W=Rñ-M,E-PY(x)

Er"@)W=Y+x-Mn-Py(x) (3.10)

^ (Mn+Mu)x _nnô'y(*)= L -"'n_Py(x)
ôxz EI"(x) EI"(x)

(un+ uu)x
ô'y(r) =-t-l:t-Mn _ p'y(x)
ôx2 Elro,,on(t+ B*)' (t+ Br)'

where o=Æ,

Solving the differential equation for displacement together with the

boundary conditions y(0)=0andy(I)=0, the slope of the beam is obtained to

be:
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,?.i),",,",,..,ff8

ttJñ

?.i)'-@-tm¡
o(,.;)r'u,,",,".ff8

, Mn+M,* 
ÍL81,,,,

t-p*Jñ t-p*Jñ

(*rt),- ,^.(;)uu ,u

rJ¡to, tJpG t^[F-l-¡, I Jp,-4p,

ei)': (i)': -(i)'- ei)' þ

tpq[Ñ rp*!fi

(*f)': ,^.(i)'T ,u

(rB+t\;
[B )

t Jp'¿o' | ^[p'4p' t Jp'-+p'

(;)-: -å)':(*Ë) 
p

(3.1 1)
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For tension (P<0):

, Jp'4e'
2B

1cI=-
2

u=@
2p

I
(f=-

2

(3.13)

(3.14)
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Eqn. 3.12 can be written in the matrix form as:

{7,1=l!, !,1{T,}

{T,} 
=u, 

!,1" {7,} 
=l:" t ] ü }

where ,S,, ^S, and E are stiffness coefficients obtained

procedure is carried out for the element in the xz-plane.

method can be used for zero axial force members.

(3.15)

numerically. Similar

As well, the same

Consider a member with ends having relative transverse displacement of

.Á as shown in Figure 3.7 (Chen and Lui, 1991).

Figure 3.7 - Sway effect.

The end moments can be written as:

M n = s,l, 
^ 
- run-'(î)]. o 

[o 
- tan- (i)]

M u = s,lr^ -,^"(Ðl. o 
[o 

- ,.n-, (î)]
(3.16)



,,^
FOr Smail -:L

M n = sron + sze.- (s, . s, )î
M u = Srln + Srlu- (S, . Sr)l

(3.17)

From equilibrium:

SL+ PA'+ M n+ M, =0

cr_ Pd,+Mn+M,
--L

s=-|[s,a, +s,lu'(s,*s,)T +s,ln+s,lu-(s,*s,)f.rn] (3'18)

, = [-(t,o),, - [t*) o . (u+*. ;) ^]

Arranging for a matrix form:

,sr E -st 
+s' 

o
L

E E -'s' 
+'s' 

o
L

LLI}
oooEA

L

{î}

on)

e'l 
(3.1e)

:)

The torsion stiffness is calculated with the same procedure as the tower

straight shaft, assuming an average tower width. With the expansion tor the z

direction, the stiffness matrix becomes:
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0

0

kr,,

0
t-Ás¡
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kr,,
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ku,,

0
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0 kr,,

00
00
00
o ku,,

kr,, o

0 kr.,

00
00
00
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kr,, o

0 kr,,

00
00
00
0 k.^o,ö

kr,, o

o Ær,t

00
00
00
o krr.,

00
00

kr,, o

o È0,,0

krp o

00
00
00

kns o

o fr,0,,0

krr,n o

00

00
0 k,,,,

kr,r, o

00
kr,r, o

o ku.r,

00
0 kr,,,

kn,r, o

00
krr,r, 0

o ktr,r,

000
0 o kr.u

o kr,, o

k.. 0 0

o kr,, o

0 0 kuß

000
0 o kr,u

o kr,, o

kro,o o o

o k,,,, o

0 0 k,r,u

kr,, = kr,, = -kr;, = -kt,t =4EAL
L

kr,, = -kr,, = -kr,r= frg,e = 
S'" +25'" ! S" - PL

t
kr,u= ku,, = -ke,r= -kr,u= e*

l- _t- t- _ t.kz,tz = ktz,z -- -kr,rr. = -ktz,a = e*

ku,u = Sr"

ku,tz=kn,e=Sr"

krr,r, = St"

ko* = -ko,ro = -k,o,o = kro,ro = EAo
(3.20)

kr,, = -kr,, = -ks,z = kg,g = 
S" +25" + S" - PL

t
-kt,s = -ks,t = kr,n = kn,r= {' * S"

L

-ks,tt = -kr,, = kn,r, = krr,, = lUP
t- _crfts.s - Ò 1,

kr,rr=krr,r=Sr,
t- _c[Ir,il - d3,
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I,= A,blrooo^

I"= A¡b1,"*o

1a--
2

p 
-brTop-b"nooo^l¿Y - b,"-^^L

¡1 -bvrop-bva.r^l'z - 
br aooo^L

ir (-ro' or -þrc'). r. (ro' ", þto')
. Ê p: +ZLp, -2tn(LP, +t)(LP, +r)
tr,=@

. 2Lþ, -tn(tB, +l)(LP, +2)Lr,=W
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t 4: .. 

(!!,1, - ztn (r p, + r)
. Lp,+l Lp,+ltr'=T
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\ r o')

^_@F,u¡_ 
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b,=
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J3i

(;,)".'(r.,t)""'(,.4)-(å)'"'(r*ä)".u'(o-u,)

(3.21)

t;; t,l=[Í: ';,,)'
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lf the shear deformation analysis is used, the same procedure used in the

straight shaft element is adopted. The shear flexibility coefficients are obtained

following the formulation in Eqn.3.22.

l?,,', Í: 
:: ] _,.,',,..,","*,"" 

= 
[ [::,: ?,,,'"f' 

*In ". "0" 
o 

"'' : ] J

[t, ,, k,,,,1 
= l|- 

0,,, ¿,,,, 
l-' *l ftexshear,,, o-ll-'

L,trr,, ft,r,,rl**,heudcrmtion - 
[Lr'r,, krr,rr) L o oJJ

k'''=k'''=-k'''
kr,rr. = krr,, = kr,rL - kr,u

ku,"=kr,=-kr,o

kø,r, = krr,u = kr'L - ku,u

fl exs hearr,, = fl exs h e arr,, = 

Ê
,,^.1(oi4)'

L -.""-1[ z )-"-\ , )

l?,,:', Í, :: ] -,.,,*.","*,"" 
= 

[ [;: :; ?,;,,',f' 
*ln *' 

X" 

*" 
: ] J

W,', f:':l]_,.,,"_.cr.ru,m =[[f:, f::,] *ln*'\"*" :])
kr,n=kr,r=-kr,,

kt,r, = krr,, = -kr,rL - kr,,

kr,n=kn,r=-kr,,

kr.r, = krr., = -kr.rL - kr.,

flexs hearr,, = flexshearr,, = 

fu
"^'l-- u -)

,r=
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The axial force P is the average axial force in the two nodes of the

element; it is considered equal to zero for the first load step. The axial force is

defined as negative if the element is in tension.

As the straíght tower element, the mass is also considered to be constant

along the element length and given by,

M=AUX
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0
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00022L

156 0 -22L 0
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0004L,
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00013L

54 0 -13¿ 0

oToJ'oo
44,
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0
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-22L
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(3.23)

(+nop*aA'rL'e)t
Állx=\ " /

J,= Ir+1,

, L^+ L*
L^=4
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3.2.lrusumroR srRtNG

The insulator was modeled as a truss element as done by many

researchers such as Rodrigues (1999) and Oliveira (2006). The stiffness matrix

of a truss element is given in the Eqn.3.24.

EA

"L

100000-1 00000
000000000000
000000000000
00010-'000000000
000010-100000000
0000010-'0000000
-1 00000100000
000000000000
000000000000
00000000010-'000
000000000010-ro0
0000000000010-'0

(3.24)

However, it can be noticed that some of the diagonal terms in the above equation

are zero. This causes numerical instability in the first step of calculation. To avoid

this instability, the technique outlined by Mathur (1985) and Mathur, et al. (1987)

will be used to evaluate the initial stiffness matrix. The formulation of this initial

stiffness matrix is briefed in the followings.

33



W.
¡

\
Y
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Figure 3.8 - lnsulator string.

Consider an insulator string in Figure 3.8, the horizontal stiffness of the insulator

string can be formulated using the moment equilibrium about the hinge A.

F*(L, - !) -\ -r"* = o

Solving for F* yields:

, _x(W,+ZW") _ x(W,+2W")* 
2(L, - y) zLtltl+cos(g)]

(3.25)

where F- is the wind force, W¡is the weight of the insulator string and is assumed

to be uniformly distributed along the length, W"is the weight of the cable, Z¡ is the

length of the insulator, á is the rotation at the hinge and .r is the horizontal

displacement of the cable. The stiffness matrix of the insulator string element for
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the first step can therefore be written in the same form as the nonlinear stiffness

matrix of an axial force member as follows:

K*, =
(3.26)

The axial load P in the initial stiffness matrix, Eqn. 3.26, is represented by half of

the weight of the insulator string plus the weight of the conductor span. The axial

force is defined as positive if the element is in tension. The program recalculates

the axial load P after the first step using the average of the axial forces at the end

nodes.
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The mass matrix of the insulator string is formulated using the consistent

mass as carried out for a truss element. Eqn.3.27 shows the mass matrix of the

insulator string used in this study.

2

0

0

0

0

0

I

0

0

0

0

0

0

)
0

0

0

0

0

1

0

0

0

0

00001
00000
20000
olo-tsooo
0010-1500
00010-'s0
00002
00000
10000
00000
00000
00000

0

1

0

0

0

0

0

2

0

0

0

0

0000
0000
1000
0000
0000
0000
0000
0000
2000
0 10-t5 0 0

0 0 10-rs 0

o o o 1o-r5

(3.27)
u =42t

6
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3.3.CneLe

A cable when subjected to distributed load along its length such as self

weight will have a catenary shape. This deformed shape can however be

approximated using parabolic function as presented in Sussekind (1982), shown

in Figure 3.9. He proved that using parabolic approximation for a horizontal cable

with sag-to-cable length ratio of 0.2 led to 6% error in an axial force and 0.5%

error in the deformed length. ln this thesis, parabolic approximation will be

assumed.

--\_s

Figure 3.9 - Cable element.

ln the analysis, it is important to apply the pretension force and the self-weight of

the cable simultaneously in the first load step. lf the self-weight is applied after

the pretension force, the predicted sag will be less than the actual value while the

resulting cable tension will be higher. Note that, the behavior of the cable is

nonlinear after the first load step.

H'

H'

I
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The linear stiffness matrix used in this study was taken from Hajdin, et al.

(2000) while the nonlinear part was assumed to be the same as that for a truss

element, Eqn. 3.26. Similarly, the mass matrix for the cable element was derived

using the consistent mass and the resulting mass matrix is the same as Eqn.

3.27 tor the insulator string element. The linear stiffness matrix is given by:

100000-1 00000
000000000000
000000000000
00010-'000000000
ooooto-roooooooo

u _E*AI o o o o o 1o-ro o o o o o o"t- tl-t o o o o o 1 o o o o o

000000000000
000000000000
00000000010-1000
oooooooooolo-roo
ooooooooooolo-ro

(3.28)

( lnvl I
a=tanl --4!- |

\J¿x'+DZz )
I = 9.81 m/s2

q, = pAgsin(a)

q, = pAg cos(a)

EA

t (rr-zs,L\ 
I,.#l@,e, \ 3) 
1

I (r'-4+.(+\')'l
(. [ 3 \3)))

Similar to the case of the insulator string element, the linear stiffness matrix of

the cable contain zero coefficients on the diagonal. Therefore, the nonlinear

stiffness matrix was added in with the load P be the initial pretension in the cable

for the first load step. P is recalculated in each step.



3.4.Spnr¡¡c ELEMENT

The spring element was used at the terminations of the line representing

the cables or the extremity towers. The mass and self-weight load of the spring

element was assumed to be applied only on the unrestrained node (the element

must be restrained at node 1 and the load must be applied at node 2). This

element is the only one in the program library that can have zero length. All of its

propefties must be given in the global coordinate system.

The Stiffness matrix is given by:

Kr=

KUXOOOO
0Kw000
00KUz00
000KRx0
0000KRy
00000

-KUX0000
Ù-Kw000
00-KUz00
000-KRX0
0000-KRY
00000

O _KUX

00
00
00
00

KRZ O

O KUX

00
00
00
00

_KRZ O

00
-KW 0

O _KUZ

00
00
00
00

KW0
0 K(n
00
00
00

00
00
00

-KRX O

O _KRY

00
00
00
00

KRX O

O KRY

00

(3.2e)

0

0

0

0

0

-KRZ
0

0

0

0

0

KRZ

where KUX,KUY and KUZ are the translational stiffness coefficients in the global

x-, y-, and z-directions, respectively, and KRX,KRY and KRZ are the rotational

stiffness parameters which generally are zero. Note that although the rotational

stiffness coefficients are theoretically equal to zero, small values should be input

for numerical stability.

Since the mass of the spring is considered applied only on node 2 as

stated, the Mass matrix, M, is given by,
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M =MX

[0-t5000000
010-1500000
0010-150000
00010-ts000
000010-1500
0000010-rs0
0000001
0000000
0000000
0000000
0000000
0000000

Where MXis the mass of the spring in tons.

0

0

0

0

0

0

0

I

0

0

0

0

0000
0000
0000
0000
0000
0000
0000
0000
1000
0 10-t5 0 0

0 0 l0-r5 0

0 0 0 10-rs

(3.30)
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4. VnllpATtoN or PnocRAM

An in-house program, SADAP-Static and Dynamic Analysis Program, was

developed using FORTRAN. All the elements described in the previous chapter

were incorporated in the program. A series of test problems was created to verify

all the elements and procedures of the program. The results were compared with

results from other commercial FE programs, published or theoretical results. Only

some of the examples are presented in this chapter. Other examples are

included in the Appendix - B.

4. l .AcceprANcE GRtreRlR

The program was considered acceptable if the difference between the

program results and the available results did not exceed five percent for

displacements and ten percent for internal forces. When the simplified tower

models were verified with detailed tower models, the results were acceptable if

the difference of the results did not exceed ten percent for displacements and

natural frequencies values.

The percentage difference is calculated using the following formula

(s4P2000,2006):

p.D.=.loof' Results fromprogram 
-rlz"

\Results from other source )
(4.1)

The maximum percentage difference of displacement and internal forces (when

applicable) is provided in the end of each example.
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The examples were divided into eight groups. Each group division was

based on the element type. Table 4.1 summarizes ail the examples.

Table 4.1 - Summary of examples.

Beam-column
liExáñÞleirdñê'¡/;1.

1 GenêÊl load 1
cselfw

Unearstatlc
Ansys verslon 11

Concehtcted load Weaver and Gere, lll80

a Lo€låxls Rotâtioh ofthe lo@l åxls Uneâr5Þtlc Weaverand Gere, 1980

3 Nonllnarãnãlvs¡ Theoretlal rêsults

E¡genvålue problem 1 ElSenvaluê ehãlysls Elßenvalue Milltano, 2æO påges 32

s Elgenvàlue problem 2
Elgenvalue änelysls wlth

exlãl fôrcè
EIBênvalue Paemlenlec*1, 1985

þãees Æto4m
6 Vlbrãtion 1 Oyn¿mlc solver Uneàr dyôamic Batt¡stå, 20O7-C påge 138

spring
xlillFãiitiia-é iåifãä ;ll]€ tìâ¡iáúÈ¡iil;¿:,ì sêrh'ód ôt VCdll.âûál

10 Generãl lôâd 3
Automãtl. <êlf wêldh

Uheárstatlc

1t :¡Eênvålue brôhlêñ ElEenvalue anâlvsls Theoreùcal results
72 Theoret¡dl results

Cable
íËtÀàá: nâñe¿ it.FàÈrüiÉ<rËai;ìil i:,1: iiituiálir3¡el ,Márhdd- fù

t3 Gener¿l loãd 4 cself welfih
Concent

t4 Eleenvãlue âhâlvsls lrulne. g2 Dace ú2

Beam-column (stability f unct¡ons)
&åùblã:Náì :::ìF€ãtui¿stêst¿ä

tl General load 6
Autoñâtlc self wê¡rht

L¡nearrtãt¡cUnlfôñ dl<trlb"tÞd lôãd

18 Rotatlon of the locål ax¡5
19 Au¿kll¡r ôf.ôl'rr Nonllnãr ãnalvsls heore¡¡Gl results

20 Elgenvalue ãnalvsls E¡g€hvalue Mllltaho, 2æO pages 32
to 35

a7 EiEenvalue enâlysis with
axlãl foræ

EIEenvâlue Pnemlenleckl, 1985
ñãrÊ< ø1r^ rffi

22 V¡brållon 3 Dynemlcsolver Lineârdynam¡c 8ån¡stà,2m7-C page ßt

lnsulator string
Ei;Éátèìâñi i:feátùréitunéd ¡¡ethod'of.Vóàf¡áùon

2i Generål loãd 7 Automåt¡. <êlf wÞ¡dh
Theoretlcãl resultsconcentaàted load

a4 EIceñvâlue ãñâlv<is fheoret¡cal results
Víbr¿t¡on 4 Dynam¡csolver Lineår dvnãm¡c ThÊoretiet rè<ultç

Straigth tower
tuàÉÉÉt¡tNó ri:.;:.i:Fèátuici l€ltË.Ii; :

26 Gencrâl load I Automatic self weipth ññe end Truss elemen
Cohcentrated loâd

27 :lgenvãlue problem I E¡Eenvalue analysls Elaenvalue
iGme andlruss elemen
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4.2.Exnuples

As stated, only some examples will be presented in this Chapter. The

rests are included in the Appendix - B.

Example No. 11:

This example was chosen to verify the Eigenvalue analysis of the spring

element. The results where compared with a theoretical analysis. The spring is

directly attached to a mass, m of 5 tons. The properties of the spring are

KUX =30 klttr/m KW = 20Iòtr/m KW =35 kò{/m

The natural frequencies of the system can be calculated as

The SADAP results:

MODE MODAL MASS FREOIRAD] FREOIHZI
1 5,00000 2.00000 0.31831
2 5.00000 2.44949 0.38985
3 5.00000 2.64575 0.42108

MODAL SHAPES

MODAL SI-IAPE: I
NODE DX DY DZ RX RY R2
I 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000

MODALSITAPE: 2
NODE DX DY DZ RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000 0.00000 0_00000 0.00000

MODALSHAPE: 3
NODE DX DY OZ RX RY RZ
I 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000

Here P.D.:oy"
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Example No. 12:

This example was chosen to verify the dynamic solver. Two systems, a

SDOF and a 2DOF system, were used as shown in Figure 4.1. The results where

compared with a theoretical and numerical analyses (Battista, 2007-A). The

damping matrix is a Rayleigh type damping matrix, detailed in Chapter 5.

Figure 4.1 - Example No. 12.

The properties of the system are

mo=5tons ko=20 klr{/m áo =0.01(or co=0.0a kN*/m)

mo = 0.05 tons ko =0.I9 klr{/m 4" =0.0513(or c, :0.2 kN-s/m)

The applied force is described as

r(r) : d sin(or) : tsin(2r) tòI

Theoretical vertical displacement for the SDOF in Figure 4.1(a) is

SDOF 2DOF
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The result from the program, shown in Figure 4.2, is identical to the theoretical

value. The results of both systems, Figure 4.2, are also compared with the

results from the time-stepping technique using MathCAD, shown in Figure 4.3.

The P.D.-* =1.03%o.

Y,(t)

y(,\

v"(')

250

t [s]

Figure 4.2 - Response of the systems shown in Figure 4.1 using Newmark-L

option in SADAP.

Y,(t)

y(t)

v,(,)

250
¡ [s]

Figure 4.3 - Response of the systems shown in Figure 4.1 using time-stepping

technique in MathCAD.
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Example No. 13:

This example, Figure 4.4, was chosen to verify the static analysis of the

cable element. The properties of the cable and the applied force are:

Z = 100 m E =200 GPa A=1x!0-3 m2

p =L0tons/m3 110 =9.81 lo¡ F =15.0 1ò{

. L/2: x, U2

w

-)>

+I',Ð1.
fz Staeel(self-weight)

H¡

Stage II (external load) w

¡v7 øa

Figure 4.4 - Cable element (Example 13).

The results were compared with theoretical results. Theoretical results can be

evaluated as follows (Sussekind, 1982; lrvine, 1974):

¡2

d^ =t" =12-5m' 8F1o

fr-
r0 - Fg =10.96791ll'}i
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,"=rlr*'[+)'] =!r25m

("#)' .(, . #)("#)' * 
[, 

* #)(t#).
+lêl (Ð'l(*)['.(#)]='

H ¡ =34.76131 kN

wL

-+þd, =1+ = 14.3r3e1m

)"-

The results from the program are shown in

figure, the P.D.r* : 0.92%o

Figure 4.5. As can be seen in the
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LOAD STEP= I

CABLE ELEMENTS INTERNALFORcES:(TENSION + )

ELEM. N NODE 1 N NODE2

3
4
5
I
7

1

10.477
19.18
sa8€3
sÊ1Ð
sÊ8eß
10.18
10.47/
10.eæ

10.112
s.€æ3
s.8100
s.8æ3
10-112
10-47

SUPPORT B EACTIONS:

NODE RX RY IríY'

I -8.81æ 4.eOæ O.OoCO
s e.8lo0 4.æ50 0.ææ

0.00æ 0.ææ o.00m
0.m0 0.ú00 0.æo0

DISPL-AC EMEN TS:

NODE TRÁNS.X TRANS.Y TRA}ISZ ROT.X

1

2

4
5
0
7

s

0.cf¡o0æ0æ 0.0æ0m000
0.æ00tD0ftr -5.¿88750æ0
0.m00m0m -s.g75momû
0.æ00æ0æ

0.æ00800æ -1
0.æ00m0m -s.r/5m0m0
0.æ00æ0æ -6.¿88760æ0
0.æ00æ0æ 0.0æ0m000

0.00æ0æ00 0000æ0æ0
0.0æ0ffi1æ o.wæü100
o,ûæormæ o.oææmoû
0.æ0æ00æ 0.0æ0000æ

0.0mûco0m
0.0m0ql0co
0.@æco00

o.oæ0æoæ
o.o0m0ü0û

R OT.Y R OT.Z

0.m0coo0æ 0.0æ0q)000
0.00m0u100 0000cfloæ0
0.00m0m00 0000m0æo
0.00æ0æ00 0.o0æ00m0
o.00m0æ00 0,o0æ00m0
o.00æ0co00 0.o0m00co0
o.00m0m00 0000æ0mo
o.00æoæ00 0000c00æo
o.fnomoom o.0m0co000

R OT.Y R OT.Z

0.m0m00m 0.0m0æ000

LOAD STEP= l0l

CABLE ELEMENTS INTERNALFORËES: ( TENSION + )

ELEM. NNODEI NNODE2

MZ

1)
3
4
5
I
7

1

s

30.410
36.043
35.8ÊB
36.186
34.q7
36.75e

30.1S
35.Sæ
38.04t
3e.410
36.81Í¡
37.2q

SUPPORT REACTIONS:

NODE RX RY

TOTAL DISPT-AÐ EMENTS:

NODE TRANS.X TRANS.Y

I 0.æ00æ0æ 0.0æ0m000
2 0.4tgcæ8æ -4.346æ334A
3 0.€209¡63t -a.l2asBs55
4 0.æ92ûffi -1
50
6 .028828¿tì0 -
7 -O.4€æ37€S1 -9.1269æ55
I -0.443SO08O3 -4.3¿ttr03Gq8
s 0.æ00m0m 0.0m0m000

FZ þrx ùrîf'

0.00æ 0.ææ o.00co
0.m0 0.m00 0.m00

TRAI*I SZ R O

.3õ.0s
35.05ts

1?.Æ O.OoCÐ
12.Æ5 0.m00

0.0æææ00 0.00æ0æ00 0000c00æo
o.@ææ00 0.00æ0qlo0 0000æoæt)
0.0q10æ0!o o.o0cÐ0æ00 0.o0m00ú0

0.æ0m00æ 0.0Ð0m0æ 0.00æ0c000 0.00æ00æ0
0.00æ0æ00 00æmm o.ffimooæ o.0æ0m000
0Ð0æ00m0 0.æ0æ0m 0.0æ0€00æ 0.0æ00æ00
000800æ0 0.e000w o-0!o0æ0æ 0.0æ00æ00
0.00m0úûo oo00m0æ0 0.fn0ün0m 8.0m0m000

Figure 4.5 - Results from SADAP.
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Example No. 14:

This example, Figure 4.6, was chosen to verify the Eigenvalue analysis of

the cable element. The cable is pretensioned with a force -F1=9.811ò{. The

geometry and mechanical properties of the cable are the same as in previous

example.

Figure 4.6 - Cable element (Example 14).

The natural frequency of the cable can be calculated as (lrvine, 1gg2)

,, =T 
ffi=o.el3e757n 

rad/s

The first five natural frequencies of a cable are

0.98398

1.9679s

2.95t93

3.93590

4.91988

radls

The SADAP results are given in Table 4.2.

Table 4.2 - Natural frequencies of the cable shown in Figure 4.6.

It can be seen that the maximum p.D. is 1% using 32 elements.

Frequency [rad/s]
t\fode Exact 4 Elements P.D. I Elements P.D. 16 Elements P.D. 32 Elements P.D.

1 0.98398 1.OO942 2.59o/o 0.99031 Q.640/o 0.98556 o.16% o.98437 O.OAV.

2 1.96795 2.16998 10.27% 2.O188/, 2.59V" 1.98062 o.æ% 1.97111 o.16%

3 2.95193 3.52630 19.460/o 3.12407 5.83% 2.99477 1.45V. 2.96261 0.36%

4 3.93590 4.33995 14.27o/o 4.03768 2.59% 3.96124 O.Mo/o

5 4.91988 5.67498 15.35o/o 5.1 1903 4.O5% 4.96941 1.O1%

49



Example No. 15:

This example, Figure 4.7, was chosen to verify the static analysis of the

tapered element. Two models of tower were created: a simplified model using

tapered element described in Chapter 3 and a detailed model using beam and

truss elements. The properties of the models are:

For longitudinal bars:

E =210 GPa l=1.00x10-' m2 p=7.86ton/m3

I" =1.23xI0-{6 m4

v=0.3
I,=2.45x10-{6 m4 I, =l.Z3xlo*' mo

For diagonal and horizontal bars:

Slmpllfled
Mod6l

E:210GPa 14=5.00x1044 m2 p=7.86tor/m3

Complete Mod€l

v

AI

Elevation

<4¡

Section A-A

Figure 4.7 -Tapered tower (example 15).



The applied force in Table 4.3 was chosen to be close to critical buckling

load (calculated based on a non-linear stability analysis) of the tower to verify the

behavior of the simplified element.

Table 4.3 - Applied force on the models in Figure 4.7.

Model Node
Fx Fy Fz Mx My Mz

KN KN KN kNm kNm kNm

Complete Model

41 20 -400 5 0 0 0

42 20 -400 5 0 0 o

43 20 -400 5 0 0 0

44 20 -400 5 0 0 o

Simpl. Model 10 80 -1600 20 0 0 0

The comparison between the results of models in this example is

described in Figures 4.8 to 4.10. The maximum P.D. are7.50o/o (without the

shear deformation option on) and 6.11Vo (with the shear deformation option on).

:

-f,v¿¡¿gs 

i

I

"r*xt**,..., Simpl.W¡th shear defor. i

0.01 0.03 0.04 0.05

dispacement [m]

Figure 4.8 - x displacement of the tapered tower.

0.02 0.08o.o7
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-0.02 -0.015 -0.01

dispacement Iml

Figure 4.9 - y displacement of the tapered tower.

0.015 0.02 0.025 0.03 0.035 0.04

dispacement Iml

Figure 4.10 - z displacement of the tapered tower.

0.005 0.045

14'À æ

-{--

.4Ø
'*

....... Simpl.

--.-Node41

---Node42

-.-.Node43
---- Node44

.:- Average

@ simpl. with shear defor.

*# ,ffi

# W

f
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Example No. 16:

This example was chosen to verify the Eigenvalue analysis of a tapered

tower element. The same geometric and material properties from previous

example were used in this verification. The Figures 4.11 to 4.14 illustrate the

mode shapes of the structures. The corresponding P.D. are 4.72o/o,7.19o/o,

3.78o/o and 6.83% for the first four flexural mode shapes, respectively.

fcl cor'm !n!
loDl¡ tt*oøcY: r3.2t390f3zl

<¡LD<!t> f,X¡t
fcl coÈruD tBu

!oD!: 1tÙQ@Cl . 12.59Ot6[!Z]

ct_ö6at- 4xÊrì
----l:ìiF--* Yi:--

i.! \.¡
t! ':iii
ii
i\, ./i:". .' ;

i- 
ri-îJ3s:.f..I1

ii \ii1
l\. .Jl

i \. ,'li'-.1

Figure 4.11 - The 1't flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.

53



lc) cñN Eu
roDE: 2rEOqÃCf : t?.t2259fr2)

tc) corñ im
!o!¡ ¡ ¿rEQ¡dcY¡ 16.¡?0??[12l

Lì!..()/J,l! 
^XEfì|-.;7.*--..=-.]l/\. 1l/ \iii \iftli

ll;\ ìi
|", ..'i
I ''..-.- -..<' l

Figure 4.12 - The 2nd flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.

(cì coEñ mú
toDt¡ 4'REQûHCY¡ ra.8or?lf¡Zl

fcl coEuD Hu
xoD¡t 3fuouâct: t6,a9996fH2l

Figure 4.13 - The 3'd flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.
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tcl coiND lffi
IODEr ttÈomcY: 55.s?431(AZ)

Figure 4.14 - The 4th flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.
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5. GompurATroNal MooEL!NG

The present chapter describes the numerical model of the research. The

analyzed tower was designated A-402M, a modification of the original A-402-0

tower. The whole A-402-0 tower shaft is tapered but the A-402M shaft is straight

with the exception of the top and the base segments of the tower.

5.1.ToweR PRopeRnes

The geometric properties of the 4402-M tower are illustrated in Figure 5.1.

The tower includes four guy cables of a double /, inch diameter grade 220

galvanized steel wire. All members are made of steel with ,E of 200 GPa, v = 0.3,

and p = 7.86 ton/m3. The properties of the cables are listed in Table 5.1 (Horr et

al-., 2004; Shehata and Damatty, 2006).

Table 5.1- Properties of the conductors, ground wires and guyed cables.

Conductor Ground wíre Guyed cable

Horizontal span (m) 480 480 24.a6

Effective Diameter (mm) 40.64 9.00 11.10

Effective Area (m2) 1.29728-03 6.3617E-05 9.67748-05

Density (ton/m3) 2.2765 6.25 7.86

Weieht (N/m) 28.97 3.90 7.46

Modulus of Elasticity (kru/m'z) 6.23E+O7 1.86E+08 1.86E+O8

Sag (m) 20.00 13.54 o.24

Pretension per cable (kN) 41.72 8.30 13.34
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SECTION B-B

ELEVATION
(X-Y PLANE)

å

SECTION A-A
(Z-Y PLANE)

Figure 5.1 - Tower A-420M
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The simplified tower was modeled using the equivalent properties

(Chapter 3) of the detailed A-402M tower. The Figure 5.2 was extracted directly

from the program.

<ILÞ<F4> EXIT
TC] COTtrIND ÍENU

Figure 5.2 - A simplified model of an A-402M tower.

i.
t:
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ri

i
i

ìr
¡i
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t
I
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ii

iÌ
;l

1Z',
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5.2.Towen Svsrem Mooeus

The transmission system constitutes of one ground wire for lightning

protection connecting at the top of each tower, and four conductors (bundled

together as one single equivalent conductor) connected to the insulator strings

which are 4.27 meter in tengtn. These insulator strings are connected to the

tower at the cross arms. Eight models are investigated in this study as illustrated

in Figure 5.3.

(f)

(s)

Figure 5.3 - Transmission system models.

(a)

(b)

(c)

(d)

(e)

å

Jw
w

I

ffi

Model 1

I Detailed tower

Model 2
1 Simplifìed tower

Model 3
1 S¡mplified tower
& 2 cables spans

Model 4
I Simplifìed tower,
2 cables spans &

springs

Model 5
3 Simplified

towers, 2 cables
spans & springs

Model 6

3 Simpl¡fÌed
towers,4 cables
spans & springs

Model 7
5 S¡mplified

towers, 6 cables
spans & springs

Model I
1 Deta¡led tower,

2 Simplifìed
towers, 2 cables
spans & springs

(h)
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Model 1 (A-402M tower - Figure 5.1) and Model 2 (simplified A-402M

tower - Figure 5.2) were used to investigate if the simplified model is able to

describe with accuracy the detailed tower.

Model 3 was created to verify the effect of the conductors and ground

wires in the transmission system on the response of the tower and the tower's

dynamic characteristics.

Models 4 and 5 were created to investigate the boundary condition at the

termination of the cables.

Models 6 and 7 were used to investigate the effect of number of cable

spans on the natural frequencies and the mode shapes of the system.

Model 8 was created to study the use of a combination of the model

containing both the detailed and the simplified towers.

5.3. BouruoARY coNDtloNs

One of the modeling questions is the effects of the boundary conditions on

the response of the system. ln this study, three boundary conditions will be

investigated:

. Conductors and ground wires at the extremity towers, as well as

the extremity towers are represented by fix supports - Figure

5.4(a);
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Conductors and ground wires at the extremity towers, as well as

the extremity towers are represented by two linear springs - Figure

5.4(b); and

Conductors and ground wires at the extremity towers are

represented by a linear spring - Figure 5.4(c).

(b) (c)

Figure 5.4 - Boundary conditions in the study

Ksr is calculated by applying a unit load on the tip of the simplified tower

model in the three directions (x,y,z) and inverting the corresponding

displacement. Kgz is calculated based on a stiffness of a cable with the same

properties of the ground wire. K.1 is calculated using the same technique used in

evaluating Ksr while Kç2 is obtained from the stiffness of a conductor. Note that

the load is applied at the end of the insulator string (the node connecting to the

cables) and not directly on the tower in the calculation of Kcr. The mass of the

springs are considered zero for those DOFs corresponding to the subscript 1

stiffness and half the mass of a cable span for those DOFs corresponding to the

subscript 2 stiffness. The properties of the springs are listed in Table 5.2.

(a)
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Table 5.2 - Properties of the springs.

Spring
KUX KUY KUZ KRX KRY KRZ MASS

kN/m kN/m kN/m kNm kNm kNm ton

Kcr 2.Ot75E+O2 L.68278+U 3.4950E+O2 N/A1 N/A' N/A' 0.0000E+00

Kcr 6.51358+00 2.642LE+Ð2 6.51358+00 N/A1 N/A' N/A1 0.0000E+00

K", 1_.7300E-02 1.7300E-02 3.50068+00 N/A, N/A2 N/A2 9.5400E-02

K.z 1.7380E-01 1.7380E-01 1.7ULE+OL N/A' N/A' N/A' 1.4151E+00

(1 The stiffness can be any positive value and will not affect the results because neither the

insulator string nor the cable can resist rotations; 2 The stiffness must be a very small number for

Model 5 because end towers resist certain rotations. ln this study, the value was set to 1.0E-06

kNm)

5.4. Norul¡ruEAR srATtc ANALYSIS

The geometric nonlinear analysis was carried out for Model 1 and Model 2

to investigate the efficiency of the proposed nonlinear stiffness formulation for the

simplified tower when compared with the detailed model. Twenty one load-steps

were used in the analysis. Self-weight and pretension force were applied in the

first step. The external load cases were applied in the Subsequent steps.

ln each load step, Eqn (5.1) was calculated and the displacement was

evaluated using Eqn. (5.2) (Battista, 2007-8).

[r]{¡",}: {¡C}

{u,\:{u,-,}+{nu,}

(5.1)

(5.2)

where [r] is the nonlinear stiffness matrix, þr,] is the incremental displacement

vector, {¡n} ir the force vector of the current step, and {r,} is the updated

displacement vector.
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The analysis was performed using a modified Cholesky factorization

method together with a bandwidth solver.

5.4.1. Loao cASES

Two of the seven load cases used in the original A-402 tower verifìcation

report (Appendix 2A - Disney and Parker, 2007) are presented here. The two

selected load cases are listed in Table 5.3. The nomenclatures used in the table

are referred.to in the Figure 5.5 and the node numbers where the loads are

applied are shown in Figure 5.6. For the detailed model, the load at the top of the

tower was applied at the centre node.

Table 5.3 - Load cases.

.\:

KN KN KN

Ground Wire V1 -8.3800 L1 8.4960 T1 0.0000

Conductor 1 v2 -70.4740 L2 32.4360 12 0.0000

Conductor 2 V3 -70.474O L3 32.4360 T3 0.0000

KN KN KN

Ground Wire V1 2.8470 L1 1.9570 T1 2.!260

Conductor 1 V2 -43.ÆLO L2 La.77LO f2 9.2660

Conductor 2 V3 -43.21o10 L3 L8.77rO T3 9.2650
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v1l r)
t/----->

L1

T3_y'ts

lu, t;

Figure 5.5 - Nomenclatures of the loading in Table 5.3.

L2_.>
T2,,
Í

DETAILED TOWER

TOP SECftON

SIMPLIFIED TOWER

NOoE 47

Figure 5.6 - Controlled nodes where the loadings are applied in detailed and

si mplified tower models (representatively on ly).

ln addition to the loads from the conductors and ground wire, a self-weight

of all elements and pretension on the guyed cables were also included in the

analysis for both models. These pretension and self-weights were not factored.
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5.5.Dvruaurc A¡¡nuvsls

5.5.1. FRee V¡eRATloN

The free vibration analysis of the towers was performed to verify the mass

matrix of the structure. The analysis was carried out after static analysis of the

structures due to self-weight and pretension was done. The eigenvalue problem

is in the form of (Chopra, 1995; Clough and Penzien, 1993; Craig, 1981;

Timoshenko et al., 1974):

[x1-Clul){ø,\=o (5.3)

A nontrivial solution {ó,\ *0 requires that the determinant of the coefficient

matrix be zero, i.e.

llxl-ClMll=o (b 4)

where [r] is tne global non-linear stiffness matrix, [az] is the global mass matrix,

ø, is the lú-natural circular frequency anO {d} is the iú modal shape of the

structure.

5.5.2. Tln¡e srepptNc TEcHNIQUE

The free vibration analysis performed in previous section was carried out

only to (a) verify the mass matrix as mentioned as well as to (b) construct the

damping matrix of the structure and (c) preliminary investigate the effects of

cables and number of span on the natural frequencies of the structures. Although

modal superposition analysis of the structure can be carried out in dynamic

analysis, time-stepping technique was chosen in this study to avoid the needs to



parametr¡cally study the number of mode shapes required in the modal

superposition analysis.

There are a number of numerical techniques for dynamic analysis of a

structure, the Newmark method with a = 0.25 and á = 0.5, an average

acceleration, was chosen in this study. This is because the method is

unconditionally stable. The method is described as shown in Figure 5.7 (Bathe,

1ee6):

Factorize the
effect¡ve st¡ffness

matrix

. Calculate the effective load vector

{.},." = {.t,." . t l("" {ut, -,,, 
{u1, 

.,, 
{u}, ). t.tþ, tr}, .". {ú}, 

.', 
{ü}, )

Solve for d¡splacements

iilr"r* ={Ê},."

Calculate the velocit¡es and accelerat¡ons

{ü},." 
= * (tul, ." - tu\,)- ",1ù}, -o 

{u},

{ri,." = {r},.o {u},.* {u},.,

End

Figure 5.7 - Newmark Method.

rorm [r],[ø]ano Ic]

Calculate the
¡nitial

displacement,
initial velocity and
initial accelerat¡on.

Calculate the constants

l¿
ã^=- a. = 

-

" a.Lt' ' d.Lt

o-= | o. = 1 
-l' d.^t ' 2.a

o. = 9-- t ,. = !!( !-- z\' a 2 \a )
au= u.(l-6) at=6.Lt

Calculate the effective stiffiess makix

rc l=[x]+a"[v]+a,[cl
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5.5.3. Dnnplrue MATRtx

The damping in the structure dissipates energy, i.e. it changes kinetic or

potential energy into heat. The dissipation of energy is a very complex issue and

there are several mathematical formulations for damping force. ln the field of

structural dynamics, damping force is usually assumed to be proportional to the

velocity and in opposite direction of the motion. This type of damping is called

viscous damping (Paz and Leigh, 2004).

Usually damping of a structure is defined by experimental results. When

no experimental values are given, the value of 2o/o damping ratio for steel bolted

structures is recommended (Battista et al., 2003; Rodrigues, 1999; Oliveira,

2006). ln the Newmark method, a damping matrix, [C], is required. Commonly,

the damping matrix can be calculated using a Rayleigh damping formulation. The

method assumes damping matrix to be proportional to the mass and the stiffness

matrix of the structure. When the structure has low fundamental natural

frequencies (lower than 1 Hz), the damping matrix can assume to be proportional

to the mass matrix only. On the other hands, when the structure has high

fundamental natural frequencies (much higher than 1 Hz), the damping matrix

can assume to be proportional to the stiffness matrix only (Battista R.C, 2007-C).

ln this study, the Rayleigh type damping matrix is used and the damping matrix

has the form of (Bathe, 1996; Paz and Leigh, 2004; Oliveira, 2006)

lcl:ø[ttl+ P[K]
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The coefficients ø and B can be expressed as a function of the ;ù frequencies

and itr modal damping ratios ( by

d ,þa,
2a, 2

>¡ (5.6)

Rearranging the previous equation, it leads to:

a =2(,at, - pr,t

o _2€, a 2(4¡a¡ -Ë,ø,)
u = 

"\ 
- ,4 --4:4-

(5.7)

(5.8)

oliveira (2006) recommended that the frequencies ø, and a., should be chosen

as the extremes of the design frequency range. He assumed a uniform damping

ratio. The recommendation as well as the assumption was used in this study. aj

of 119.2207 radls (18.9746 Hz) was used for all models, except for Model 2, in

the calculation. This is because all the models have that frequency within the

vicinity of the specified value and the change in the value does not have an effect

on the resulting damping matrix. The choice of a,, however, has the effect on the

resulting damping matrix. Therefore, specific values for individual model were

chosen as listed.

@, Modut 3 = 0 .7 414 radls(O. I I 80 Hz)

a 
¡ Mod"t 4 = 0'7 2I2 rad/s(O' 1 148 Hz)

o¡Moduts =0.7207 radls(O.i 147 Hz)

a,Mod"t6 = 0.7106 radls(O.1131H2)

The Rayleigh damping parameters for Model 3,4,5 and 6 are respectively:

68



be

þroorr:3.33x10r, dMod"r3=0.029473

þrooro =3.33x10-4, dMod"r4 :0.028676

þroor, :3.33x 10{ , dMod"rs :0.028642

þrooru =3.34x10+, dMod"r6 =0.028259

For Model 2 which does not have conductors, oi and Øj wete chosen to

a¡ =9.5186 radls(l.5149 IIz)
0¡ = 115.0535 radls(l8.3113 Hz)

The Rayleigh damping parameters for Model 2 are:

ß=3.210x104 , d:0.35165

5.5.4. Wr¡¡o Lono

ln this study, dynamic effects of wind load will be considered, this is mainly

because wind load is harmful for structures w¡th low natural frequency such as

transmission tower system (lower that 1 Hz). The wind pressure can be

calculated by the following formula (Blessmann, 2005):

p(t)=llv<t't7'c,r (5.e)

where p(Ð is the wind pressure in N/m2, p is the specific density of the air (can

be assumed equal to 1.226 kg/m3), I/(r)is the wind speed in m/s, and c,ris the

drag factor. According to the CSA 537-01 (2001) standard, the drag factorfor

latticed square towers can be defined by the following equation:

cor = 4.0(R")' + 5.9(() + a.o
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where ,( is defined as the ratio of the net projected area of a surface

structure facing the wind and the gross area of that surface. ln calculation

the tower was divided into seven zones as illustrated in Figure 5.8.

þq=a.477n2 t---------
A^= 1.757 mz

of the

of R",

ZoneT

¿one o

Ca= 2.9492

Ac = 14.687 m2
A" = 3.492 m2

Cu=2-822

As = 14.942 q'?
A. = 3.306 m'

Cø= 2.890

& = 5.108 m2
A" = 1.452 m'

Ca= 2.647

Figure 5.8 - Drag factors and areas of the tower zones.

The drag factors for the conductors and ground wires were used as 1.10

and 1 .25 respectively as adopted by Rodrigues (1999).

5.5.4.1. Wrno sPEED

The wind speed V(t) can be separated into two parts, one due to an

average or mean w¡nd speed t¡ and the other due to turbulence v(l) as illustrated

in Figure 5.9.

Zone 5

4
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5.5.4.',1.1.

Figure 5.9 - Wind speed.

V(t¡ =V +v(t)

Meeru wtND sPEED

The static wind pressure for Winnipeg, Manitoba, class A terrain is 450 Pa

(Ochonski, 2008) at 10 meters height. Therefore a mean wind speed at 10 m

height 4o to generate this pressure is equal to 27.09 m/s. This speed value was

used to generate the turbulence speed. The mean wind speed is not constant

with the height as illustrated in the Figure 5.10. Most standards recommend a

mean wind speed that follows a logarithmic or an exponential rule. ln this study,

the exponential formulation was used.

Time lsl

(5.1 1)
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v(z)

Vlr¡=u (zY
= 4'[toj (5'12)

where z is the height above the ground and p usually depends on the shape of

the terrain (the value of 0.2 was used in the study).

Figure 5.10 - Variation of mean wind speed along the tower height.

5.5.4.1.2. TuReuLeNcE wrND sPEED

Even though the turbulence wind speed is a random process, it has a

degree of regularity and can be treated as stationary and ergodic process

(Rodrigues, 1999) in statistical point of view. lt is stationary because the

statistical parameters are time invariants. lt is ergodic because these parameters

when calculated for any sample with respect to time will be the same across the
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total collection of samples (Paz and Leigh, 2004). Some of the important

statistical parameters in the wind engineering are (Blessmann, 2005 and Oliveira,

2006):

" Mean value:

(5.13)

' Mean square value:

x. =tim,-*I'l4c>), ¿*
tõ

" Root mean square:

-v-,,:t!v'

. Variance:

. Standard deviation:

o"=Jd

ln the present study, the turbulent wind speed v(l) was

mean. Therefore, 7 equals to zero, ø equals to o3 and

tT-
Y =!im=' ltr<r>a*I+@ I ¿

oi = tim, -- ï' [(, u, -v)' *

(5.14)

(5.15)

(5.16)

(5.17)

generated with a zero

(," equals to ø'.

ln case of a random phenomenon, the fluctuations consist of a random

process with a continuum distribution over the frequencies /. This continuum

spectrum, also called spectral density of the variance Sr(f) and is defined as:
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(5.18)

There are a large number of mathematical formulations for this spectrum, with

different parameters, but none of them represent the totality of the samples

(Blessmann, 2005). The spectrum used in this study is the Kaimal spectrum and

was chosen because it is also a function of height (Blessmann, 1995 and

Oliveira,2006).

s"(,f) =
\.,"".|\")J',1 , (5.19)

\(r,f) = "J-v(r)

where Vç"¡ is an hourly average wind speed at a height of z- z. is the friction

velocity. Vç"¡ and u* ârê given in m/s. Those two parameters are described by

oj = [s,ç¡p¡

/ \p
v(z) = 4, IrJ

, v(t)
u. = n--T-

t'l ;l
\oo )

(5.20)

The parameter k is the Karman constant and is equal to 0.4; zo is a direct

function of the height of the obstacles. B.J. Vickery suggested a value of 1l2O

times the average height of the obstacles to be used for zo(Blessmann, 1995). ln

urban areas, the value of zo can range from 0.2 m.to 4 m. ln this study, the value

of 0.07 m was used to be conservative. The plot of wind spectrum with

frequency, Eqn. (5.19), is shown in Figure 5.11.

200u?\(z,f)

(t+sov,ç2,¡ù% f
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s,(,f)

[{'r')'rc]

lxlf) -

Figure 5.11 - Wind spectrum versus frequency.

It can be seen from the figure that the wind spectrum has very low values for

frequencies higher than 1 Hz.

The autocorrelation function is also a very important statistical parameter

since it defines the dependence of a fluctuation value at time r and a fluctuation

value at time t+r fot the same sample (Blessmann, 1995; Blessmann,2005;

Oliveira, 2006). Mathematically it is defined as:

4,(r):F1g+ (v@v(t+r)dt (5.21)

The complete spectral density .s,(,f) of the fluctuations of the wind speed is the

Fourier transformer of the autocorrelation R,(z), and can be given by:

++f
s"(/) = ) n,(r)e-i21ttt dr
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where sr7)=zs"(-f). This function can also be related with the spectral density

by the inverse Fourier transformer formula:

& (r) = T 
i"rtr"'*t" ¿f = z-li,(f¡ei2'r' d¡

--t

4,(r) = 2Js"{/)co' (2ftfrVf
0

(5.23)

This can be rearranged as

The last statistical parameter used in this study to generate wind

turbulence is the cross covariance which is a function that relates a sample v,

measured at time r with another sample v, mêâsurêd at time t+r at a fixed

distance. lt is given bY

1¡
Cr.",(t)=ltSF f,v,Q)v,(t+t)dt (5.25)

The cross covariance can also be expressed as a Fourier transformer. ln the

present work, the wind load was applied at the same time for all loaded nodes,

therefore t : O. This simplification, according to Oliveira (2006), leads to

B (r) = js" Cfl *, 1 
zn f tþf

C",,"r(0) = I S,ç¡"-t' a¡

According to Simiu (1986) the parame,"] t .un be found from

(5.24)

(5.26)
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where !z-h is the horizontal distance between samples, zz-zt is the vertical

distance between samples, and Crand C,are exponential decay coefficients that

are determined experimentally. Conservative values of 16 and 10 for Cyand C,,

respectively, were used as suggested by Simiu (1986).

There are several methods to generate the wind speed. ln this study, the

formulation adopted by Oliveira (2006) was used. Only one wind speed is

generated in this method and is given by a summation of harmonic functions as:

JVSPEC

v(r) = Z Jrqn(lfi cos(znf,t +0,) (5.28)

where Â/is the frequency increment, 0, is a random angle from 0 1o Ztr, and

NSPEC is the number of division of the spectrum. The formulation is calculated in

FORTRAN. The flowchart of the calculation is shown in Figure 5.12. Figure 5.13

shows the wind profile generated by the code and Figure 5.14 shows the zoom of

the wind profile for the first two seconds. Figure 5.14 shows that the wind profile

constructed is actually a smooth continuous curve and not a piecewise curve.

The wind profile obtained was only at a single location. To determine the loads

on nodes along the cable, autocorrelation (Eqn. 5.24) and cross covariance (Eqn.

5.26) were used (Oliveira, 2006). Note that the cross covariance relates two

different samples at different locations while the autocorrelation relates the same

sample at different time. Therefore, in order to determine the wind profile at a

different location from the known wind profile, the cross covariance is first

calculated using the distance between the two locations. Then the time required
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to produce the autocorrelation to have the same value as that of the cross

covariance is determined. This time represents the lag in the arrival time of the

same sample at the second location.

Figure 5.12 - Wind generation flowchart.

W¡nd propertles
Exponent¡al coefficient [P¡

He¡ght for the generation fzl
Paramoter [Z0l

Height of the zero plan [ZDl
Hourly average wind speed at l0 meter height [Vl0]

/ 
Gene¡atlon propert¡es

Number of time samples [NTlMEl
F¡nal time FIMEENDI

Number of spectrum samples [NSPEC]
lnferior cutofl frequency IFREQINFI

Superior cutoff frequency [FREQSUPI

Vz=V10'((210.0D0)*P)
vFRrc{.40D0'1/zLoc(ztzol

CALCSTo=DSQRT(6.0D01/FRIC*2.0D0)
GUSTINT=CALCSTDA/Z

TIMEINC=TIMEEND/NTIME
FREOINC=(FREOSUP-FREQINFyDIVSPEC

F=FREOINF

-*<j,l-

ln¡r.¡or'ru¡¿

rseec )

=
,l)=RAND(o)

'l

RANDANG=RANDNUM(l).2.0D0.P1
x=F'(z-zDlNz

AUX=F'((1.0D0+50.0D0'X).'(5.0D0/3.0D0))
Sl 1V=200.0D0.X'(VFRIC-2.0D0yAUX

A=OSQRT(2.0D0'Sr 1V'FREQINC)
SUM=SUM+A'DCOS(2.ODO'PI'F-T+RAÑDANG)

F=FREQINF+FREQINC'I
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Figure 5.13 - Turbulence wind speed sample.
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Figure 5.14 - Turbulence wind speed at a max¡mum time of 2 seconds.

ln this study, a transmission line span is 480 meters long and is divided

into seventeen equal spaced distances (/S) of 60 meters. Note that there are

eight cable elements per span, as illustrated in Figure 5.15. As previously stated,

E
E
o
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the wind profile in Figure 5.13 or 5.14 is assumed to be at the boundary nodes

(zone 1 in Figure 5.15). To obtain the time lag of the wind profile in zone 2, ÁS

apart, the cross covariance is calculated to be, Eqn. (5.26):

ô¡
q)
coN

(')

d)

oN

$
o)

o
N

F-

c)co
N

(o

()co
N

ro

o
o
N

The time required to provide the autocorrelation to have the same value as this

calculated cross covariance is determined using Eqn. (5.24), i.e.

Figure 5.15 - Top view of the transmission tower system.

C"t,z(60-i = js"U¡e-rcd¡ =1.0.27 [*'A']

&(4.s9 rl = Is"C¡i cos(znf rþf =10.28[rn'ls']

(5.2e)

Transmission line span

(5.30)



This means that the wind profile in zone 2 is 4.89 seconds behind the wind profile

in zone 1. The plots of the wind profiles in zone 1 and zone 2 are shown in Figure

5.16.
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Figure 5.16 - Wind speed in zones 1 and 2.
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6. Arue¡-ysls Resulrs

6.l.lsomrED rowER (Mooel 1 Rr.¡o Mooeu 2)

The comparison of the displacements from the static analyses was made

at the controlled nodes shown in Figure 5.6 for Models 1 - a detailed model and

2 - a simplified model (Figure 6.1a, and 6.1b, respectively). For the detailed

model, Figure 6.1a, the average displacement of all the nodes on the top of the

tower was used. ln the dynamic analysis, only the natural frequencies of the main

structure were compared. All the frequencies corresponding to the members in

detailed modelwere not included in the comparison.

(a) Model 1

1 Detailed tower

Model2
1 Simplified tower

Figure 6.1 - (a) Model 1 and (b) Model 2.

6.1 .1 . SrRlc Dtspreceu¡rrurs

Figures 6.12to 6.16 illustrate the displacements at the observed locations.

Ïables 6.1 and 6.2 summarize the differences between the maximum

displacements of the detailed and the simplified models for load cases 1 and 2,

respectively. Note that although there was no load in the z-direction for load case

1, there was some small z-displacement for the detailed model (3x10E-4m in

comparison to 0.4m) because of the asymmetrical configuration of the diagonals.
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o Load Case 1 Results:
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Figure 6.2 - Load Case 1, x displacement of the top of the tower.
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y displacement [m]

Figure 6.3 - Load Case 1, y displacement of the top of the tower.
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Figure 6.4 - Load Case 1, x displacement of the left cross arm.
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Figure 6.5 - Load Case 1, y displacement of the left cross arm.
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Figure 6.7 - Load Case 1, y displacement of the right cross arm.
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Table 6.1 - Percentage difference of displacements between the Models 1 and 2

for Load Case 1.

P.D. (Final displacement)
NODE lsimolified model) X

47 -1.O9o/o -7.18Vo
102 -2.79Vo 3.43o/"
103 O.15o/o -0.09%

o Load Case 2 results:

t20%

too%

80%

60%

40%

20%

o%

0 0.03 0.06 0.09 0.72 0.15 0.18

x displacement [m]

Figure 6.8 - Load Case 2, x displacement of the top of the tower.
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Figure 6.9 - Load Case 2, y displacement of the top of the tower.
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Figure 6.10 - Load Case 2, z displacement of the top of the tower.
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Figure 6.11 - Load Case 2, x displacement of the left cross arm.
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Figure 6.12 - Load Case 2, y displacement of the left cross arm.
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Figure 6.16 - Load Case 2, z displacement of the right cross arm.

Table 6.2 - Percentage difference of displacements between the Models 1 and 2

for Load Case 2.

P.D. (Final displacement)

NODE (simolified model) X Y z
47 -0.98% -3.80% -0.69%
102 -3.03% 6.66% -2.600/o

103 O.44o/o O.32o/o -2.35o/o

Figures 6.2 to 6.16 show that the simplified model gives 7Yo error of the

displacements of the detailed model. Tables 6.1 to 6.2 illustrate that the P.D.

between the two results for final displacements are within 10%. This clearly

indicates that the simplified model can represent the detailed model in the non-

linear analysis.

6.1.2. FRee vreRnr¡oi¡

For the free vibration analysis, the computat¡onal runtime of Model 1 was

t hour and 6 minutes and that of Model 2 was 2 minutes and 28 seconds. fn this

study, only the first forty modes were investigated. Several of them correspond to



the vibration of guy wires only and would not be of interest in this thesis. The first

fourteen mode shapes relating to the tower mast are presented in a graphic form

in the Appendix - A. The mode shapes are normalized to have the maximum

value of unity.

Table 6.3 summarizes the mode shapes of both models. The symbols LB,

TB, T, and X represent the lateral bending, transverse bending, torsion, and no

movement of the tower mast (the magnitudes of the mode shape at the top are

less than 0.001 for translation and 0.00015 for rotation), respectively. The plus

sign indicates that the amplitudes of the mode shape at the top are greater than

0.1 fortranslations and 0.015 for rotations. When there is no plus sign and no X

sign, the amplitudes of the mode shape at the top for translation are in between

0.01 and 0.1 with those associating with the rotation are in between 0.015 and

0.0015. When there is an X sign in front of the symbol, the magnitudes of the

mode shapes at the top are between 0.01 and 0.001 for translation and 0.0015

and 0.00015 for rotation. The darker color of the shade indicates the higher

amplitude of the mode shape. Only LB, TB and T modes were compared

between the two models.
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Table 6.3 - Comparison of mode shapes between Model 1 and Model 2.

Table 6.3 shows that both models have similar frequencies and the

corresponding mode shapes. This demonstrates that the simplified model can

represent the detailed model in the dynamic analysis if chosen to.



6.2.TnnrusMtsstoN SYSTEM

An accurate dynamic analysis of a transmission system cannot be..

attained without considering the effects of the insulator strings, the conductors

and the ground wires. The best and simplest technique is to include the insulator

strings, the conductors and the ground wires in the model. According to Oliveira

(2006), the addition of the insulator strings, the conductors and the ground wires

would reduce natural frequencies of the tower because these structures have

very low stiffness compared to the mass. According to past literature, a required

number of tower spans in the model depends on the system characteristics, load

type and the direction of the load. A cascade failure analysis for example,

requires a large number of spans. On the other hand, a wind load analysis may

require lesser number of spans. ln this study, in order to appreciate the effects of

the insulator strings, conductors, and the ground wires, as well as the number of

the spans, on the dynamic characteristics of the transmission system, free

vibration of the system with different number of spans is investigated.

6.2.1. FRee vrsRnr¡o¡r

6.2.1.1. Moor¡- 2 nruo Mooel3

The objective for this comparison is to investigate the effects of the

insulator strings, the conductors and the ground wire cables on the dynamic

properties of the transmission system. Figure 6.17 illustrates the models used in

this part of study.
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Iw(b)

Figure 6.17 - (a) Model 2and (b) Model 3.

Table 6.4 shows a comparison between the natural frequencies and mode

shapes of models 2 and 3. lt can be seen from the table that there are mode

shapes associating to lower frequencies present for model 3. These frequencies

are the direct effects of the addition to the system of the cables and insulators

that have low stiffness to mass ratio.

(a) Model 2
1 Simplified tower

Model 3
1 Simplified tower
& 2 cables spans
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Table 6.4 - Frequencies and mode shapes of Model 2 and Model 3.
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6.2.1.2. Mooel 3 Rruo Mooel 4

As mentioned in Section 5.3, different boundary conditions will be

investigated. ln this section, the use of spring or fixed supports, Figure 6.18, to

represent the boundary conditions is studied here. The processing time of Model

3 and Model 4 are practically the same (7 minutes and 41 seconds). Table 6.5

shows the free vibration analysis of the two models. lt can be seen that some of

the frequencies and the corresponding mode shapes are the same. However, it

is expected that Model 4 should represent a more realistic environment of the

system than Model 3 since Model 3 assumes that the end towers have infinity

stiffness. Therefore, the use of Model 3 not only does not save computational

time but also does not represent an actual situation. This type of supports should

be avoided in the analysis as, depending on the load, might not predict the actual

response of the structure.

(a)Y

Figure 6.18 - (a) Model 3 and (b) Model4.

(b)

Model 3
1 Simplified tower
& 2 cables spans

Model 4
1 Simplified tower,
2 cables spans &

springs
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Table 6.5 - Frequencies and mode shapes of Model 3 and Model4.
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6.2.1.3. Mooel4 R¡¡o Mooeu 5

ln this section, the investigation is carried out to verify if the end towers

are needed in the model to provide a more realistic system (Figure 6.19b). The

results of the inclusion of the end towers in comparison to the use of spring

representing end towers will be discussed.

The processing times to analyze Models 4 and 5 are 7 minutes and 41

seconds and t hour and 50 minutes, respectively. Table 6.6 illustrates the natural

frequencies and the mode shapes of each model. lt can be noticed the

appearance of new mode shapes for frequencies above 1.2 Hz. With only a free

vibration analysis, it is expected the dynamic response of the system can be

different depending on the loading. The dynamic analyses of the two systems will

be carried out in the later part of this thesis.

Model 4
1 Simplified tower,
2 cables spans &

springs

Model 5
3 Simplified

towers, 2 cables
spans & springs

(a)

(b)

Figure 6.19 - (a) Model 4 and (b) Model 5.
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Table 6.6 - Frequencies and mode shapes of Model 4 and Model 5.
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Table 6.6 (cont'd) - Frequencies and mode shapes of Model4 and Model 5.



6.2.1.4. Mooel4 e¡¡o Mooel6

This section investigates the influence of using more than two conductors'

spans in the analysis of the transmission system as shown in Figure 6.20.

The processing time for Model 6 is 2 hours and 37 minutes, which is

twenty times greater that Model 4. Table 6.7 shows the natural frequencies and

the mode shapes of the two models. The increase in the number of cable spans

increases the number of frequencies and mode shapes as expected. Similar to

the previous section, the inclusion of more spans might affect the dynamic

response of the system. However, the effects will depend of the nature of the

loading.

Model 4
1 Simplifìed tower,
2 cables spans &

springs

Model6
3 Simplified

towers,4 cables
spans & springs

Figure 6.20 - (a) Model 4 and (b) Model 6.

(a)

(b)
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Table 6.7 - Frequencies and mode shapes of Model 4 and Model 6.
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Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Model 6.



Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Model 6.



6.2.1.5. Mooel6 aruo Mooel T

An additional cable spans (Figure 6.21) is investigated in.dhis section. The

processing time for the analysis of Model 7 is 18 hours and 4 minutes,

approximately seven times of that required for Model 6. The comparison of

natural frequencies and mode shapes of the two models is shown in Table 6.8. lt

can be seen the increase in the number of cable spans generates new

frequencies and mode shapes. These new mode shapes will affect the dynamic

response of the system. However, the effects might depend on the nature of the

loading.

(a)

Model 6
3 Simplified

towers,4 cables
spans & springs

Model 7
5 Simplifed

towers, 6 cables
spans & springs

Figure 6.21 - (a) Model 6 and (b) Model 7.
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Table 6.8 - Frequencies and mode shapes of Model 6 and Model 7.
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Table 6.8 (cont'd) - Frequencies and mode shapes of Moder 6 and Model 7.



Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.



Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.
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6.2.1.6. Mooe¡_ 6 Rr,¡o Mooel B

- The use of detailed tower modeling is investigated in three spans

transmission system as shown in Figure 6.22(b). The objective is to study the

difference between using a detailed tower modeling and simplified tower

modeling. The processing time for the free vibration analysis of Model I is 12

hours and 45 minutes while that of Model 6 is 2 hours and 37 minutes. Table 6.9

shows the natural frequencies and the mode shapes of the two models. lt is

evident that both of the systems have almost the same natural frequencies and

mode shapes (1 .O5o/" error for the first 200 modes).

Model6
3 Simplified

towers,4 cables
spans & springs

ModelS
1 Detailed tower,

2 Simplified
towers,2 cables
spans & springs

Figure 6.22 - (a) Model 6 and (b) Model 8.

(a)

(b)
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Table 6.9 - Frequencies and mode shapes of Model 6 and Model 8.



Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Moder B.
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Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Model g.

6.2.2. DynRn¡ lc A¡¡n¡_vsls

It can be seen from the previous sections that the addition of number of

towers and cables spans introduces new frequencies and mode shapes to the

system. The scope of this research is focused on if there is a change in the

response caused by the use of different number cable spans and boundary

conditions. Due to computational restrain the analysis will be limited only on

Models 2,3,4,5 and 6. Only transverse wind load is considered in this study.

The dynamic analysis is performed with a time increment equal to 0.001

seconds from 0 seconds to 600 seconds (10 minutes). The initial 2 minutes will

not be analyzed to avoid any kind of unwanted vibration due to fast application of
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the load. The processing time for Model 2 is 11 hours 57 minutes, Model 3 and

Model 4 - 25 hours 38 minutes, and Model 5 - 4 days 21 hours and 21 minutes.

For Model 6, the analysis was carried out on the civil engineering department

seryer - Minerva, which required approximately 5 days to run.

6.2.2.1. Gorr¡pantsoN oF Moo¡l 2 n¡lo Mooel4

Model 2 contains only a single tower while Model 4 includes cables in the

system (Figure 6.23). ln order to compare the results, the same loading is

applied only on the tower. Figures 6.24 and 6.25 show the displacement-time

histories of node 47 (the top of the tower) for Models 2 and 4, respectively. lt can

be seen that the maximum displacements at the top of the tower for Models 2

and 4 are 0.113 and 0.156 meters, respectively. The difference is approximately

28Yo. Here, even the loads on the cables were not considered, Model 4 provides

higher displacement.

(a) Model 2
1 Simplified tower

Model4
1 Simplified tower,
2 cables spans &

springs
(b)

Figure 6.23 - (a) Model 2 and (b) Modet 4.
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Figure 6.24 - Displacement-time history at the top of the tower for Model 2.
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Figure 6.25 - Displacement-time history at the top of the tower for Model 4.
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Figure 6.26 - FFT of the displacement at the top of the tower for Model 2.
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Figure 6.27 - FFT of the displacement at the top of the tower for Model 4.

The Fast Fourier Transforms (FFT) of the responses are shown in Figures

6.26 and 6.27, for Models 2 and 4, respectively. lt can be seen that lower

frequencies that appear in Model 4 (Table 6.5) do not contr¡bute much to the

response of the tower. As stated, the loadings are applied only on the tower.

6.2.2.2. CorupaRlsoN oF Mooels 3,4,5 AND 6

For convenience, Figure 6.28 shows models 3, 4, 5 and 6. Here the wind

load is applied on the central two cables spans and on the central tower. Figures

6.29 to 6.32 present the displacement at the top of the central tower of the four

models. lt can be seen that the maximum displacements of all the models are not

much different (0.424,0.419,0.421 and 0.429 meters for models 3, 4, 5 and 6,

respectively). Figure 6.33 compares the displacements at the top of the central

tower of models 4 and 5. The figure shows that the results from the two models

are almost identical (maximum difference is 0.5%). This means that the end

springs can be used to represent end towers in this case.
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ww(a)

Model3
1 Simplified tower
& 2 cables spans

Model4
I Simplified tower,
2 cables spans &

springs

Model5
3 Simplified

towers, 2 cables
spans & springs

Model6
3 Simplified

towers, 4 cables
spans & springs

(b)

(c)

(d)

H
Figure 6.28 - Computational Models.
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Figure 6.29 - Displacement at the top of the tower for Model 3 (node 47).
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Figure 6.30 - Displacement at the top of the tower for Moder 4 (node 47).
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Figure 6.31 - Displacement at the top of the tower for Moder 5 (node 47).
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Figure 6.32 - Displacement at the top of the tower for Model 6 (node 47).
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Figure 6.33 - Displacement at the top of the tower for Models 4 and 5 (node 47).
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Figure 6.34 - FFT of the tower for Model 3.
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Figure 6.35 - FFT of the tower for Model 4.
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Figure 6.36 - FFT of the tower for Model S.
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Figure 6.37 - FFT of the tower for Model 6.

The FFTs of all the responses are presented in Figures 6.34 to 6.37. The

FFTs confirm the frequencies of the tower calculated in the free vibration

reported previously (Section 6.2.1). Similar main frequenc¡es are observed in all

the models.

413.9ó-I3.53.1to2.7
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7. S urvluARy, coNcLustoNs Ah¡ D REcoM MENDATToNS

7.l.Got¡cr-ustoNS

A finite element program called SADAP was developed for the analysis of

a transmission tower line system. The program is capable of carrying out both

geometric non-linear static and dynamic analyses and it was validated using the

available theoretical and numerical results. This program contains linear and

non-linear commonly used and simplified beam-column elements, cable element,

truss element and spring element. The simplified beam-column elements were

specially formulated here to represent a tower mast, both straight and tapered.

These simplified elements include a torsional stiffness provided by diagonal

bracings.

ln this study, the developed program was used to:

Evaluate the differences of modeling full detaired towers and the

proposed simplified elements in the analyses;

lnvestigate the importance of the boundary conditions on both free

vibration and wind induced dynamic responses of the transmission

system; and,

Examine the importance of the number of cable spans on the

dynamic behaviour of a transmission line system;

a)

b)

c)

tlg



The study showed that:

a) The proposed simplified element can be effectively used to model a

tower in linear static, non-linear static and dynamic analyses of a

transmission line system;

b) The results from using the simplified model in the non-linear static

analysis of an isolated tower are within 7Yo of the results obtained

using a detailed model;

c) The first forty naturar frequencies of an isorated tower modering

using the simplified model are within 3o/o of those of a tower

modeling in detail;

d) The increase in the number of cable spans introduces new mode

shapes, which will have dynamic effects on the response of the

tower system depending on the nature of the loading. For the wind

loading used in this study, i.e. wind perpendicular to the line, these

modes do not appear to have any effect on the dynamic response

of the system;

e) ln conducting the dynamic analysis of the tower, the conductor

spans must be incorporated in the model as it affects the dynamic

properties of the system;

Ð End spring elements can be used to replace the end towers for a

linear dynamic analysis with the wind load in this study; and,

g) For the wind load considered, two cable spans are sufficient to

represent the response of the transmission line system.



7.2. RecoUIMENDATIoN FoR FUTURE woRK

The author recommends the following for future research:

a) Evaluate if intermediate towers can also be replaced by spring

elements;

b) Perform a non-linear interactive dynamic analysis considering the

orthogonal wind load. Nonetheless, in such sophisticated analysis,

a high efficient cluster would be needed;

c) lnvestigate the number of cable spans considering both a linear

and a non-linear dynamic analysis applying wind loadings in

different directions;

d) Consider the buckling of one tower leg in the simplified element for

post-buckling analysis, such as in the cascade failure analysis; and,

e) lnvestigate the possibility of reducing the vibration of the

transmission tower line by adding a control mass-spring-damper

(as in example 12) or a pendulum system to the tower.
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Apperuo¡x - A

The fundamental model shapes of the detailed (Model 1) and simplified (Model 2)

isolated towers (excluding the mode shapes corresponding to only cable

rirovements)

129



i

1

Three dimensional view Top view

Lateral view Transversal view

Figure 4.1 - 1't Mode shape of Model 1(frequency=1.50 Hz) (magnification: xl0).
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Figure 4.2 - 1't Mode shape of Model 2 (frequency=1.S1Hz) (magnificarion: x10).
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Figure A.4 - 2nd Mode shape of Model 2 (frequen cy=1.52 Hz) (magnificarion: x10).
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Figure 4.5 - 3'd Mode shape of Model 1 (frequency=1.S1Hz) (magnificatíon: x10),
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Figure 4.6 - 3'd Mode shape of Model2 (frequency=1.52 Hz) (masnif¡cation: x10).
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Figure A.7 - 5th Mode shape of Model 1 (frequency=1.52 Hz) (magnification: x10).
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Figure A.8 - 5th Mode shape of Model 2 (frequency=1.53 Hz) (magnification: x10).
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Figure 4.10 - 6th Mode shape of Model 2 (frequency=1 .S3 Hz) (magnification: x10).
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Figure 4.11 - 7th Mode shape of Model I (frequency=1.52H2) (magnificarion: x10).
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Three dimensíonal view

\

Top view

Lateral view Transversal view

Figure 4.13 - gth Mode shape of Model 1 (frequency=2.30 Hz) (magnificarion: x10).
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Figure A.14 - gth Mode shape of Model 2 (frequency=2.32 Hz) (magnification: x10).
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Figure 4.15 - 1Oth Mode shape of Model 1 (frequency=2.42H2) (magnification: x10).
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Figure A.17 - 11th Mode shape of Model 1 (frequency=3.05 Hz) (magnification: x10).

\
\ì,

'1

\¡
\

\'.\

ì.\
\"\\\\\

146



i
t
i
1

t-'

.- -l'ttt=-_-: .*'. 
-I ì> ---- -,

', li
! ii'-.
\ ^r.'.

' .r;\. \ \!
i\'{. l\)'',: :

J/\

_r l-*,.,..,__1,

a/
I,/:

./' i

Ì
tt 

t..
\

(
I

I

Three dimensionalview Top view

i
{

Lateral view Transversal view

Figure A.18 - 11th Mode shape 11 of Model 2 (frequency=3.07 HZ) lmasniRcation: x10).
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Figure A.20 - 17th Mode shape of Model2 (frequency=3.1 2Hz)(masnification: x10).
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Figure A.21 - 18th Mode shape of Model 1 (frequency=3.09 Hz) (masnification: x10).
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Three dimensional view Top view

Lateralview Transversal view

Figure A23 - 1gth Mode shape of Model 1 (frequency=3.55 Hz) (magnification: x5).
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Figure A.24 - 20th Mode shape of Model 2 (frequency=3.66 Hz) (masnif¡cation: x5).
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Figure A.25 - 20th Mode shape of Model 1 (frequency=3.57 Hz) (magnif¡cation: xs).
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Figure A.26 - 1gth Mode shape of Model 2 (frequency=3.63 Hz)(masnifìcation: xS).
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Figure A.27 - 21't Mode shape of Model 1 (frequency=4.44 Hz) (masnificarion: x5).
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Apperuolx - B

Extra examples in the validation of the elements and verification of the program

procedures
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Table 8.1 - Summary of examples

Rotat¡on of the lo@l ãx¡s

Milltaño,2O0Opages 32
to 35

Spring
;':ErãÉitlÁ:iri;; ìi'i:Fêiluiê!'ri;Ëíáã r: :i Málhãd i{v;?rf,Èl¡:;

10 General load 3 Automatic self we¡stl
Llnear stãt¡c Theoret¡cãl resultsConcentrated load

11 :¡Eeñvâlue orôhlêñ ¿ E¡genvãlue analvsls Elgenvalue Theoret¡cal results
a2 Vibretlon 2 Dynamic solveÌ Theoret¡@l results

Beam-column (stabílitv f unctionsì
À,ñÈ ):.Erämbl¿ n .¡êàtúlästtásiêd ysfs tvÈe Method qf vêr¡ftéilòn

77 Geoeral load 6
Automal¡c self

[¡near stat¡c
Añsys vers¡on 11

Un¡form distributed load We¿vea ànd Gere, 1980
oã€es 3&tô 357Concent¡âted lôâ.1

18 b€f âxls Rotation of the loGl ãrt< Linear stãt¡c
19 Euckl¡nq of column Nonl¡nar anelvs¡q arstãt¡.
20 Eigenvalue problem 7 Elgenvalue analysls E¡genvalue Mil¡taho, 2OOO pages 32

to 35
2l Eigenvalue probleh €

Elgenvalue analVs¡s with
ex¡al for¡e Eigehvalue PEem¡en¡eck¡,1985

peges 4O3 to 406
22 Vibrâtion 3 Dynamic solver Uneãr dynamlc Battistã, 2007-C page 13€

lnsulator string
i'ilô: Exani¡lÈ nårire tÂrt¡rrc.'t¡¡r;ì Mêthodiof Và¡{fldr¡À;

23 Generâl load 7 Nonl¡near stat¡c Theo¡et¡cal.resultsconcentrâted loãd
24 :ißenvalue Drobleñ g Eisenvalue analvs¡s Eiqenvãlue
z5 Vibrat¡on 4 Lrhear cfvnamic fheoreti€l results

StraiEth tower
F¿ãti¡ià;è;tÉá ì jMethôd rif vêi¡f í¿i¡;.

Gene.èl load 8 Automâtic self wê¡Þrh ànd
Concentrâted lôã.1

27 Eigenvalue problem t E¡genvalue analys¡s E¡gehvalue
:reme and Truts element

compðrãtion
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Example No. 1:

This 3D beam-column example (Figure 8.1) is presented to verify the

frame element behavior under self weight and also response under only external

load (not including the self weight) thought a linear static analysis. The Finite

Element program ANSYS is used to verify the automatic self-weight analysis,

and Weaver and Gere (1980) to verify the external load. The model properties

are

E =2.00x10*t kLVm

v =0.25
A=0.0lmz

1" =2.00x10*' m4 p=7.86tonl m3

Iy = 1.00x 10{3 mo g, = -9.81 m/s2

1, = 1.00x10{3 mo

Figure 8.1 - Beam-column element (example 1).
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Results from ANSYS (self weight linear static analysis only):

PRINT ELEMENT TABLE ITEMS PER ELEMENT

ELEMENT TABLE LtSTtNG hii*

STAT CURRENT
ELEM SAXL

1 -197.37
2 -556.46
3 -224.23
4 -197.37

PRINT U NODAL SOLUTION PER NODE

**. POSTI NODAL DEGREE OF FREEDOM LISTING ***

LOAD STEP= 1 SUBSTEp= 1

TIME= 1.0000 LOAD CASE= o

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.128268-04-0.661 19E_05_0.463358{4 0.48530E-04
2 0.69051E-05-0.17625E_03{.16786E_03 0.24349E_033 0.0000 0.0000 0.0000 o.0ooo
4 0.0000 0.0000 0.oo0o 0.0000
5 0.98657E-05-0.11817E_03_0.11901E_03 o.l6801E_03

PRINT ROT NODAL SOLUTION PER NODE

NODAL DEGREE OF FREEDOM LISTING **'

LOAD STEP= 1 SUBSTEp= 1

TIME= 1.0000 LOAD CASE= o

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1 4.26877E44 0.201718_04-0.233548-04 0.40922E44
2 {.63969E-04.0.428s48_05-0.50480E-05 0.6431 1 E_043 0.0000 0.0000 0.0000 o.0ooo
4 0.0000 0.0000 0.0000 o.o00o
5 -0.45423E-04 0 .242698-04-0.3S3O9E-04 0.62.t41 E_04

PRINT F REACTION SOLUTIONS PER NODE

---* POSTI TOTAL REACTION SOLUTION LISTING -*--

LOAD STEP= 1 SUBSTEp= 1

TIME= 1.0000 LOAD CASE= O

THE FOLLOWNG X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX FY FZ
3 1.9737 5.5646 0.53509
4 -1.9737 5.3816 -0.53509

PRINT M SUMMED NODAL LOADS

**- POST1 SUMMED TOTAL NODAL LOADS LISTING *-*

LOAD STEP= 1 SUBSTEp= 1

TIME= 1.0000 LOAD CASE= O

THE FOLLOWNG X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE MX MY MZ
3 -2.5944 1.0758 1.4037
4 -7:5406 -2.1811 3.1024
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SADAP results (automatic self weight analysis):

EXAMPLE-1-P.357-MATR
NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTIJRES

NODAL POINTS:

NODE X Y

1 0.0000 3.OO0o
2 6.0000 3.00003 0.0000 0.oooo
4 9.0000 0.oo0o
5 3.0000 3.0000

z

0.0000
0.0000
0.0000
3.0000
0.0000

RESTRAINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT,Z

3111111
4111111

AUTOMATIC SELF-WEIGHT ANALYSIS

FMME ELEMENTS:

ELEM. NODEI NODE2 E V A IX IY IZ FP OX QY

1 1 S 0.200E+090.2SE+00 0.100E{1 O.2OOE_02 0.100E_02 O.l00E_O2O.0O2_ B I 0.200E+090.25E+oo 0.1ooE_01 o.ãooÈ_õã õ.rooE_oz 0.100E_020.003 2 4 0.200E+oso.25E+00 0.100E-01 o.zooÊ-óã o.rooe-oz 0.rooE-020.004 5 2 0.200E+090.25E+oo o.1o0E{1 o.ãõoÈ_õã õ.rooe_oz 0.l0oE_o2o.0o

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:

ELEM, NODE N QY az

QZ ESP.MASS FLANG

0.00 0.00 0.oo 7.86
0.00 0.00 0.00 7.86
0.00 0.00 0.00 7.86
0.00 0.00 0.00 7.86

0.
0.
0.
0.

1

5

J
1

2
4

5
2

1.9737 3.2514 0.53509
-1 .9737 4.33816 _0.53509

5.5646 -1.9737 0.53503
-3.2514 1.9737 -0.53509

2.2423 4.98496E-01 _1.0173
-4.5555 3.3699 1.0173

1 .9737 0.93816 0.53509
-1.9737 1.3750 _0.53509

MY MZ

-1.0758 4.5175
-0.52951 1.7668

-2.5944 -1.4037
0.98913 4.5175

1.6931 _1.4854
3.5927 -7.5257

0.52951 -1.7668
-2.1348 1.1 I 15

T

0.98913
-0.9891 3

-1.0758
1.0758

-1.3032
1.3032

0.98913
-0.98913

SUPPORT REACTIONS:

NODE RX RY RZ

3 1.9737 5.5646 0.535094 -1.9737 5.3816 _0.53509

ÏOTAL DISPLACEMENTS:

NODE TRANS,X TRANS.Y

1 0.000012826 -0.000006612
2 0.000006905 _0.000176252
3 0.000000000 0.000000000
4 0.000000000 0.000000000
5 0.000009866 _O.OO01l8l73

MX MY MZ

2.5944 -1.0758 _1.4037
7.5406 2.1811 _3.1024

TRANS.Z

-0.000046335
4.000167861
0.000000000
0.000000000
-0.0001 19012

ROT.X ROT.Y ROT.Z

-0.000026877 0.000020171 -0.000023354
-0.000063969 0.000004285 -0.000005048
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 o.ooo0oo0o0
-0.000045423 0.000024268 _0.000035309
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Results from Weaver and Gere, 1gg0 (only external load):

SADAP results (only external load):

LOAD STEP= f

FRAME ELEMENTS INTERNAL FORCES:

ELEM. NODE N QY AZ

1 1 105.55 _38.509 _126.01
5 -105.55 38.509 126.01

2 : :._8:5qs 14.452 _126.0l.l 38.509 _14.452 126.01

? 1g?.62 s.1s24 s.s6744 _183.62 _9.1924 -5.9674

4 5 .1^0_5.55 _38.509 113.992 -105.55 38.509 _113.99

TMYMZ

.::;:; i,11i î{l::

"i:,'.i å1i;T ;1".i:,r

':li:î .ütü ;11J#

29.464 -291-47 4A Ãr7-2s.464 -50.49r -t6å.;

SUPPORT REACTfONS:

NODE RX RY RZ

3 _'14.452 -38.509¿.rosãs õ;õõ :;î33J .-#?få .i3:åBi tii¿!
TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z ROÏ.X ROT.Y ROT.Z

I :3.33??13áJ3 3.333i3Í1:: 
o.oosoo764s 0.0023e3332 .o.o0r623r6e 0.ooo68r33rs o.ooooooõõõ õ.õöfu#:"t 0.oos2sssiz o.oorzae¿ãs o.oolz2oe36 _o.ooo77l46e

¿ o.oooooóóõð õ:öõffi#l 0.000000000 o.0oooooo0o o.ooooooóõõ õ..;õ,;,;ód;rïs ¡ooiõìiiäì ö:ö;;;;BB3 B:BBBBBBBBB BBBîB?BBBB i.iüig:?is s:sffiHH

Verification:

p'D':o'oov'for ail the dispracements, internarforces and support reactions.

-23.744

37.163
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Example No.2:

The purpose of this example is to verify the local axis rotation of the 3D

beam-column erement. sADAp resurts were compared with weaver and Gere

(1980) and the commercial program ANSys. The model properties are

Æ = 10000 ksi I, =64ino
v =0.25
A =9 inz

=28ino
= 80 ina

---** " ':- " "' -
'.'.'.-- .-'''' t..... . ................ .

My i ¡uz
-32-492 : -8/-æL
-16.233 : -134.638

...7..9,r9 . . :....?7.:ç7:6

15.390 : 57.444

-5-0.17i9. :..:?7|?eA
106.594 , -sr.sos

ry

r"

The third node of the erement 2, 3 and 5 is rocated at: 12g,g6,0

Figure 8.2 - Beam-column element (example 2).

Results from Weaver and Gere (1gg0):

iMember End-Act¡ons
: Member: Node
:1:l':':2
- ....1... .. r
;ì1
:3:L; -'t '''--" -¡i4):

f. j l-"¡
o,lp6 .. 1.. 6,Q73
-0.406 ' -6.073

:9'131.. . j .q,qgq

. -o-,-uì-1.. ......,. .'-9,0s-o-
1.6/-8 j -2.995

2.322 : Z.Sgs

.' ti
3,594
-6.594

1,7y..
:.1,.7!4

1,?!1
-5.950

¡Y
q,l7q
3.422

.-o.€Þ,

:9-,49.
.9,779.
1.054

;!_¡1pq_o_¡1.!-e.9ct!ons

i"-l!.gd--e-.: -- lr "., "-fy._,
-?,?P?

?,9+g
5.372

:. ..7-.,oI!
! 1.505

i 1.480

--1i1,Þ-3_g

...-.8,17-7-..

-63.927

MxI ? ¡ :9'1!-6.

i t i ),9?^t .1 ... ì... :L?91_



ANSYS results:

PRINT U NODÀI SOLUTION PER NODE

*'*** POST1 NODÀI DEGREE OF FREEDOM LJSTJNG +****

LOÃD STEP= 1 sUBsrEp= 1TIME= 1.0000 LO.AÐ CASE: O

THE FOLLOWING DEGREE OF FREEDOM RESULTS ÀRE IN THE GLOBÀL COORDINÀTE SYSTEM

NODE UX UY UZ USUM1 -0.2180?E_03_0.406188_02_0.16?378_01 0.712248_0I2 0 . 0000 0. oooo 0. o0oo o . oooo3 0. 0000 0 . o0o0 0. o0o0 o . oooo4 o . oooo o. oooo o. oooo o . õooos 0.s21s18_01_0.?sosrE_01_0.r0?39 o.i¿roz6 -0.28168 _0.d5366 0.8999s8_01 o.i¿rsg

SADAP results:

LOADSTEP= I

FRAME ELEMENTS INTERNAL FORCES:

ELEM. NODE N QV AZ T

1 _l 3.594s 0.17801 0.40605 6.0732s -3.594s o.l7go1 _o.4o6os s.ozái

2 3 4.7447 0.48480 -0.13109 8.O7s71 4.7447 4.4B4Bo o.r31o9 _e.oisJ

3 . I 3?13ô 0.17766 1.678s _2.ss526 -3.2136 -0.17766 _r.6zs5 z.sgst

4 -5 6.5345 _3.8220 0.40605 6.07322 -6,5945 3.A220 {,40605 -O.OZSi

5 6 5.9494 -1.0534 _2.321s -2.ss524 _5.9494 1.0534 2.3215 Z.SSS2

MY ¡Jl¿

-32.492 -84.001
8.1294 94.681

7.6099 27.616'15.390 57.444

-50.178 -24.964
-97.068 40.550

€.1294 -94.681
-16.233 :tu.Ê4

97.068 -40.550
106.59 -51.864

SUPPORT REACTIONS:

NODE RX RY PZ

2 {.40605 -2.9824 7.01433 3.6992 2.6106 .t.5050
4 -3.2932 5.3718 1.4808

MX MY MZ

-134.64 -11.599 _9.342S.8.1767 28.387 _3.6210
63.927 -16.885 _98.43¿

TOTAL OISPLACEMENfS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

1 {gw?]806¡ _0.00406.1807 _0.-oJ-61-3-6-808 -O.00s2o22os o.oo0l87037 _0.0044s5317? 9 ry9q0000 0.000o0oooo o.gryqqo o.ooo-o-rilooï oliäxbiräo 0.0oooooooo? 9qqeSoo 0.oooo0o0oo ogpggryg 0.oooo0oooõ õ.ooööõõò o.ooooooooo1 9.99qtr000 0.oooooooo0 0 gggqeg o.oooo0oooõ õ:oooõööö 0.oooooooo0! 99!?1q1!B -o.orsoso74s 4lgll9jgq o.oo,¡éßBã ã.ädäËöää .o.ooo1se42o6 4281675223 4.4536621s0 o.o8ssss388 õ.000iìãão¡ õ.0006õäðå 0.001781s87

Verification:

Even though there is a small difference on the x translation of node 1

when compared with weaver and Gere (1gg0), the varues were matching with

ANSYS. This is due to a round off error in weaver and Gere (19s0). The

P.D.: o-ooo/ofor all the displacements, internal forces and support reactions.
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Example No.3:

The purpose of this example is to verify the critical buckling load of the 3D

beam-column element; the program is expected to stop at the buckling load.

Theoretical values are used as comparison, the model properties are

E =2.00x10*tkN/m2 I, =2.00x10{3 ma

Figure 8.3 - Beam-column element (example 3).

/, = 1.00x l0{3 ma ptNontinear = = 
-, o'EI . 

=. = i3900.332 kN

| 2( ¡.-\,**,,*,L)l'L"(" EA )l
1, =1.00x10{3 mo

I,nn* = :tu'!, = 13707.784 kN
\2Lf

v =0.25

A=0.01m2
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SADAP results:

LOAD STEP= 9t2B

FR.AME ELEMENTS INTERN.AT FORCES:

ELEM. NODE N

1 1 13901.
2 _13901.

2 2 13901.
3 _13901.

3 3 13901.
4 _13901.

SUPPORT REÀCTIONS:

NODE RX

4 0. 0000

OY

0.0000
0.0000

0.0000
0.0000

0.0000
0. 0000

QZ

0.0000
0.0000

0 .0000
0 .0000

0. 0000
0 .0000

T

0 . 0000
0.0000

0.0000
0.0000

0.0000
0.0000

MY

0 . 0000
0.0000

0 .0000
0.0000

0. 0000
0.0000

MZ

0. 0000
0 . 0000

0.0000
0. 0000

0. 0000
0.0000

MY

0.0000

Displacenent of node 1:

0'0000000000 -0.0415590660 o.0o0ooo0ooo o.ooo00ooo00 o.0oooo0ooo0 0.00oooo0ooo
],o-AD STEP= 9129

Verification:

P.D.= 4.808x |O-syo

RY

13901. 0. 0000

¡Ð(

0. 0000

MZ

0 . 0000
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Example No.4:

The purpose of this example is to verify the torsion, bending and axial

natural frequencies of a circular cantilever using 3D beam-column elements. The

model properties are

E =2.00x10*08kNl/m2 I,=4.97x10-0s m4 p=gtonJm3
v:0.30 I, =2.485x10{s ma

A=0.01m2 I, =2.4g5x1O-os ma

Discretization:

ModelA: L element

Model B: 4 elements

ModelC: 8 elements

Model D: 16 elements

Figure 8.4 - Beam_column element (example 4).

Theoretical results (Militano, 2000):

wn,bendins =(PrL)' ffi
2n-\ tG

wn,torsior= 
n "1,

2n-r tEwn,uiat= 
U "lO

þn.L = 1.87 5, 4.694,7 .854, I 0.998
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Militano (2000) resutts:

SADAP results and verification:

---- Natual
Mode Shape

-

Bend¡ng Bendin Bending l;""r* T Axia I Tos i on
T-------.--r-
I Axiat I Tors¡onExa ct Sol uti oh 10.30 64.5s tao.7z 3s4.36 608.85

Toß¡on I Axiaf Ax¡al

1Êlement 10.35
-75 2945.24 3044.27 4267.98 490A.74

671.00 1082.53
6A72.23

4 Elements

1933-Oo

10.30 64.63 182.16 359.36 613.00 98a.o7I Elements 10.30 64.56
3116.99 3511.00 5078.00 5662.13180.87 Ï=

354.27

610.o0

609.00

983.32

982.14

1853.00

1833.00

8187.93

16 Ele ments 10-30 54.56 7AO.77
2987.99 3167.00 4599.00 5707.44 7476.40

2955.90 3075.00 4346.00 4958.16 7008.14

:..-l----r-- I Natual clrcularfrequency [¡adÀ
pe 

I Bending P.D. Bend P.D. Be ndinE P.D. F"*'* T--
Exa ct Sol ut¡ on 10.30

o.49%

64.55
P.D. fors¡on P.D. Ax¡al P.D.

rao.7? 354.36
1Ef ement 10.3s

608.85 981.75

1.47%

4 Elements 10.30 ly
o.o7%

671.36 70.27% 1082.53 ro.27%64.63 o.72% 182.1s o.79% 359.3sI Elements 10.30
612.77 o.64% 988.07

983.33

o.64%64.56 o.o7% 180.86 o.08% 355.o0 o.!8% 609.83 o.76%16 Elements 10.30 o.o7% 64.55 o.o0%
o.76%

180.76 o.02% 354.26 -o.o3% 609.10 o.o4% 982.74 o.04%

Natual circr¡larr .-
Mode Sha pe Torsion P.D l- *" ];; 1;"",-' t'- Tors i on

T---
Exa ct Sol uti o n 1826.56

P.D Axia f P.D. Axial P.D.2945.24 3044.27 4267.98l Element 4908.74 687?,.23

3117.00
4 Elements 1933.o8 5.83% 5.83% 3511.50 L5.35% 5077.94I Elements 1853.O7

19.r5% 5662.13 15.35% 8187.93 79.L5%1,.45% 29A7.99 7.45% 3167.50 4.05% 4599.45
16 Elements 1833.17 o.36%

7.92% 5707.44 4.O5% 7476-40 7.92%
o.36% 3074.92 L.OL% 4346.26 1.98% 4958.16 7.OL% 7008.74 7.98%
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Example No.5:

The purpose of this exampre is to verify the variation of frequency with
axiarforce in a corumn with both ends pinned (3D beam_corumn erement).

The program resurts were compared with przemieniecki (1gg5). A non_
linear free vibration analysís was performed.

ii
-74 -13 _12 _11 _10 _9 _8 _7 -6

f_r .-i_*n__[__, ]-._, L._,0 l: ., *[_., ] , i I j j

s-4-3-2-10t234i
pj

Fisure e.s:I;G;trtr;ú;rpb 5t. --- -"-i

Where:

@ =.'oALo'EI
PEU=-'EI

Verification:

P.D.,r¿x =-0.65%o

Variation of the natural frequency with axial force

-- 
Ð(ACT

- 

ONE- ELEMENT

IDEATIZATÌON

-'.8- SADAPlELEMENT

-.9- SADAP40EI.EMENTS

170



Example No. 6:

The purpose of this example is to
properties, dynamic force, and displacement

(2007-C) and are given by

verify the dynamic solver. Model

solution were taken from Battista

,, = nro, 
ffi =53.g2rad/s,2r5.29 rad/s,4g4.4rrad/s

Battista (2007 _C) sotution

ur(0.15 s) = 0.00643 m
uyMAilMuM = 0'00849 m

I' =2.716x10-o mo p=7.g¡ton/m3
1, =l.85gxl0-omo f =0.01
1, = 1.858x104 ma

- Beam-column element (example 6).

(displacements where the load is applied):

E =2.10xl0'{8kN/m2
v _- 0.30

A=8.06x10a3 mz

Frt)|. 
¿'f _

,--- V Z
Figure A.6

Theoretical solution:
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SADAP solution and verification (using 30 elements):

0.009

0.008

0.007

0.006

0.005

0.004

0.003

Figure 8.7 - Example solution (example 6).

wt = 53.ï2rad./s ... p.D. = g.ggyo
wz =215.29 radls... p.D.=g.ggyo
wt = 484.4lradls ... p.D.= 0.00%o

Modal Superposit¡on (Át=0.0001 s and
50 modes):

ur(0.15 s) = 0.00650 m... p.D. 
=1.09%o

uy MAXTL,uM = 0.00854 m... p.D. = 0.59%o

Newmark-Línear (^t=0.000 j. s):

ur(0.15 s) = 0.00649 m ... p.D. 
= 0.93%o

uyMlxrMW = 0.00854 m.'. P.D.=0.59%o

Newmark-Nonlinear (At=0.0001 s):

%,(0.15 s) = 0.00648 m ... p.D. 
= 0.78%o

uyÀaA.nntuìa = 0.00852 m.'. P.D.=0.35yo

E

¡

0.8 1 L2 1.4 1.6 1.8 2

t tsl

i u i'-l-*-ì
Iioo.
I

I
I

l.__.___._*____-_-

----. Modal Superposition

lS0 modes)

... c. Newmark_Linear

*-*- 
Newmark-Nonlinear

- - Static analysis
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Example No.7:

This example is presented to verify the 3D truss element. Two analyses

were performed: self-weight and only external loads. The results from the former

were compared with the commercial Finite Element program ANSyS, while the

results from the latter were compared with theoretical results from Weaver and

Gere (1980). The model properties are

E =8.00x10*7 kN/m,

A=0.01m2

P =25 ton/m3

Figure 8.8 - Truss element (example 7).

240 kN
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2 3010.1
3 3010.1
4 -5182.4

6 6796.7
7 6796.7
I -5182.4

Results from ANSYS for self-weight:

PRINT U NODAL SOLUTION PER NODE

**- POSTI NODAL DEGREE OF FREEDOM LÍSTING *-*-

LOAD STEP= 1 SUBSTEp= 1

TIME= 1.0000 LOAD CASE= O

THE FOLLOWNG DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 -0.32390E-03-0.20706E-02_0.31 3o3E_03 0.21 1 90E_02
2 -0.32390E-03-0.207068_02 0.31 303E-03 0.21 lgOE-12
3 -0.156568-02-0.26094E-02_O .325268_18 0.30431 E_024 0.0000 0.0000 0.0000 0.00005 0.0000 0.0000 0.0000 0.0ooo6 0.0000 0.0000 0.0000 o.oooo

PRINT ELEMENT TABLE ITEMS PER ELEMENT

ELEMENT TABLE LISTING'*--

STAT CURRENT AREA FORCE
ELEM SAXL
1 -8347.4 0.01 -83.474

0.01 30.101
0.01 30.101
0.o2 -103.648

5 1.828-12 0.02 3.6308E_14
0.02 't35.934
0.02 135.934
0.02 -103.6489 -1.828-12 0.02 -3.6308E-14

PRINT F SUMMED NODAL LOADS

***** POSTI SUMMED TOTAL NODAL. LOADS LISTING *****

LOAD STEP= 1 SUBSTEp= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX FY FZ1 -0.28422E-13
2 -0.284228-13
3 0.47433E-13
4 -103.65 -28.345 -0.16611E_13
5 207.30 -156.54 0.42633E_13
6 -103.65 -28.345 -0.16611E_13
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SADAP solut¡on (automatic self_weight analysis):

TRUSS ELEMENTS TNTERNAL FORCES: ( TENSTON + )

ELEM, NNODE,I . NNODEz

1 -83.474 _83.474
2 33.780 26.422
3 26.422 33.780
4 -103.65 _103.65
5 7.3s75 -7.3575
6 143.29 128.58
7 143.29 128.58
I -103.65 _.103.65
9 7.3575 -7.3s75

SUPPORT REACTIONS:

NODE RX RY MZ

1 g.ggg0 o.oooo o.oooo o.oooo o.oooo o.oooo? 9.9999 o.oooo o.oooo o.oooó õ:oõõõ õ.äòoo9 9.-0-099 0.ooo0 o.oooo o.óõõo õ:õõõõ ð.ððooI 199.6s 28.34s _o.2seozE-13 o.oooo 
- -õääoo -."ð.oooo

! -?91.99 rs6.s4 -o.3sszz:_14 o.óooó ó:öõoó ö.oooo6 'r03.6s za.34s o.zossze-ri ò.b-õõõ õö0"ð õ.oooo

I 4.000323903 _0.002070609 
1.gggg!gg27 O.OOOOoOooo o.ooooooooo o.oooooooo02 -0'000323s03 -o.oo2o7o60e g gggglãõãi õõoõõooõõö o.ooooooooo o.ooooooooo3 4.001s6s637 -o.oo26oe3e^4 o.oooooóóõo ó:oõõõõoõoõ o.ooooooooo o.ooooooooo4 0.000000000 o.ooooooooo g gggg{gorir; õ¡-õo-õõõo-õ0" o.oooooo0oo o.ooooooooos 0.000000000 o.ooooo0ooo o oooooooõo õ:õõõõoõooõ ò.ooooooooo o.ooooooooo6 0.000000000 o.0oooooo0o o.oooooóõõõ o:õõõõõõõõõ ò.ooooooooo o.ooooooooo

Results from weaver and Gere (1gg0) for externar roads onry:

TOTAL DISPLACEMENTS:

NODE TRANS.X TFANS.Y TRANS.Z

iJoÌn Displacement

ROT.X ROT.Y ROT.Z

Join j Ux

1 i 3.031E-01

2 : 3.3zt4E-O3

3 i 1.346E-oz

4 i 0.000E+Oo

5 ì 0.000E+00 ì

6 i o.OOoE+OO l

-vY ; 9r
2.088E-02 r 4.436E-03
7.7948-02; Z.OSge-o¿
2JrO2E-O2: ¿.rtZe-OS
0.000E+Oo: o.OoOE+oo

0.000E+00: o.oooE+oo

-oiooo^E:tgg : 9,gggE@
'i:;
¡MemberEnd-Aci;;;;- - - -:
id.ü;':''''''''Ñi---i'''''.''N''
: 1 .-564.000,564.000:
' :- ; - ' - ---i_'''' .

:Zi-25.4_56'i5.4S6i
i I : r11o,1os.' jlo.¡oe 

i

; 4 ,-gzo.ooo;sió.000,
j i i soi.ä; -soi..uz-: --
i ø i r272.L43 : -izii.tÁa-'

. 8 :-1070.009. 1O7O.OOO

; s ;,e-l,g,as9.o|o,e9s, 
I

jsupportReactions i : '

'""qe: Fx Fy , 172 i :7€.ggg :1g,ge _ua.ooo
, 3 j zo4o:g0o , -izzi ooo _eo.ooo

í a i ---1gf_o,goo i ¡sr,ooo. i-,iaz.ooo ;
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SADAP results for external loads only:

LOAD STEP= I

TRUSS ELEMENTS TNTERNAL FORCES: ( TENSTON + )
ELEM. NNODEI NNODE2

I s64.00 564.00
2 25.456 25.456
3 110.31 110.31
4 970.00 97O.OO
5 -301.64 _301.64
6 -1272.1 _1272.1
7 -1403.3 -1403.3
I 1070.0 lo7o.o
I 616.40 616.40

SUPPORT REACTIONS:

NODE RX

1 0.0000 o.oooo o.oooo o.oooo2 o.oooo o.oooo o.oooo o.õõõõa o.oooo o.oooo o.oooo ó.0õõõ4 -z4o.oo _rs.ooo _.r3o.oo o.óõóós_ 2o4o.o _1zz4.o _60.000 õ.òòõõ6 -1540.0 2A2.OO -282.00 o.oooo

TOTAL DISPLACEMENTS:

NODE TRANS,X TRANS.Y TRANS.Z

1 0.003031250 0.020884223 0.0044358s8
? 9.9093437s0 o.o1zs3o2ls o.oooeosaãa3 0.0i34s6r21 o.0210171o2 o.oo¿rrzooó4 0.000000000 o.ooooooooo o.ooooooooõs 0.000000000 0.ooooooooo o.ooooooóoõ6 0.000000000 o.oo0ooooo0 o.oooooooõõ

Verification:

0.0000 o.oooo
0.0000 o.o0oo0.0000 o.oooo
0.0000 0.oooo0.0000 0.oo0o0.0000 o.oooo

ROT.X ROT.Y ROT.Z

9.9gggggg00 o.ooooooo0o o.oooo0oooo
9999999999 o.oooooooo0 o.óoooooooo
0.000000000 0.oooo0o0oo o.o0ooooooo
g.ggggggggq o.0ooooo0oo o.ooooo0ooo
0000000000 0.oo0oooooo o.ooooooooo
0.000000000 0.ooooo0o0o o.oooo0oo00

P.D-:o-ooo/ofor ail the displacements, internalforces and support reactions.
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Example No.8:

The purpose of this example is to verify the critical buckling load of the 3D

truss element; a non-rinear buckring anarysis was performed. Resurts were

compared with theoretical formulation from Timoshenko (Levy and Spillers, 2003)

and the model properties are

E=2.00x10{t kN/mt

I = 0.001m2

4 = 0.0005 m'?

q=45" F <<1,
L=2m F= 100 kN

Ir=Ji^ p=20000kN

D- EAr",=-=16092.5768Id\.¡

",*çals.ffi)

Figure 8.9 - Truss element (example g).
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SADAP results:

LOAD STEP= 8080

TRUSS ELEMENTS TNTERNAL FORCES: ( TENSTON + )

ELEM. NNODEl NNODE2

I -16875. -16875.
2 -16875. -16875.
3 -14685. -14685.
4 1107.5 1107.5
5 -1158.3 -1158.3
6 -1158.3 -1158.3
7 1107 .5 1107.5

SUPPORT REACTIONS:

NODE RX RY

1 16158. -40.395
2 0.0000 0.0000
3 0.0000 0.0000
4 0.0000 0.0000
5 0.0000 -40.395

LOAD STEP= 80s1

Verification:

P.D.:O.4Io/o

0.0000 0.0000 0.0000 0.oooo0.0000 0.0000 0.0000 o.0ooo0.0000 0.0000 0.0000 0.00000.0000 0.0000 o.ooo0 o.oooo0.0000 0.0000 0.0000 0.0ooo

MY
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Example No. g:

The purpose of this example is to verify the natural frequencies of the 3D

truss element. A free vibration analysis was carried out; model properties and

theoretical results were taken from (paz and Leigh, 2003) and are given by

.E=3.00x10{' lb/in, l=0.00Iin2 L:60in m=o.llbxs2/in2

Figure 8.10 - Truss element (example 9).

Results from Paz and Leigh (2003):

( qts\
, =l to¡+ lru¿¡,

It rruj

Ir.ooo 0.182

enomati:ed =l0.216 l.ooo

lo.zta -0.72s

-o.osol
o.uru I

t.ooo j

.L-
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SADAP results:

MODE MODAL MASS FREOTRAD] FREOTHZII 6.19486 41s.42320 oo.tioos2 7.17003 1033.70420 164.519133 7.11610 1526.03014 242.A7523
MODAL SHAPES

MODALSHAPE: 1

NODE DX DY OZ RX RY RZI 0.00000 o.ooooo o.ooooo o.ooo0o 0.0oooo o.oooo02 1.00000 o.21607 o.ooooo o.ooooó o.õoõoo o.oooooi 0.27464 o.ooooo o.ooooo o.ooooo õ.0õooo o.ooooo

MODALSHAPE: 2
NODE DX DY DZ RX RY RZ1 0.00000 0.ooooo o.ooooo o.ooooo o.ooo0o o.ooooo2 018222 Looooo o.ooooo o.ooooo ó.õõõòo o.ooo003 i.72762 o.ooooo o.o0oo0 o.ooooo ó.0óõòo o.ooooo

MODALSHAPE: 3
NODE DX DY OZ RX RY RZI 0.00000 0.ooo0o o.ooooo o.oooo0 o.ooooo o.ooooo2 {.6s607 0.653s8 o.ooooo o.ooooo ó:óóoòo o.ooooo3 r.00000 o.ooo0o o.oooo0 o.ooooo õ¡õõò0 o.oooo0

Verification:

P.D.n * =0.30%o
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Example No. 10:

This exampre was chosen to verify the static anarysis of the

element. The model properties are

KtlX = 30 kl.I/m KRX =100 kìtrm m = S ton
KW = 20kN/m KRy =l20kNm
KUZ =351ù{/m KRZ =g0kl.{m

Figure 8.11 - Spring element (example 10).

Automatic self-weight (always loaded at node 2): u,=# =2.4525m

SADAP self weight results:

spnng

LOAD STEP= 1

SUPPORT REACTIONS:

NODE RX RY RZ MX

1 0.0000 49.050 o.oo0o o.oo0o

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z

I 0.000ô00000 o.o0o00oo00 o.o0o0o0o0o2 0.000000000 _2.4s2s00000 o.oooooooóó

MY MZ

0.0000 0.0000

ROT,X ROT.Y ROT.Z

0.000000000 o.00oo00oo0 0.000000000
0.000000000 0.000000000 0.000000000

The external load vector was chosen to produce a

degrees of freedom (DOF) of the element.

unit displacement ¡n all
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F_

30 kN
20 kN
35 kN

100 kN.m

120 kN.m

80 kN.m

SADAP external load results:

LOAD STEp= I

SUPPORT REACTIONS:

NODE RX RY RZ MX MY MZ

1 -30.000 _2O.OOO -35.OOO -l0o.oo -l2o.oo _8O.OOO

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z
1 0 000000000 0'0oooooooo o.ooooooooo 0.ooooooooo o.ooooooo0o o.o00ooo0oo2 r.000000000 r.oo0ooooo0 r.òóoõoõõõo ;.;ðöðäoo r.oooooo00o r.o0ooooo0o

Verification:

P.D.=0.00% for both types of loading.

The exampres 1 1 to r 6 are described in the chapter 4 (item 4.2).
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Example No. 17:

This 3D beam-corumn exampre (FigureB.12) is presented to verify the

frame element behavior using stability functions under self weight and also

response under only external load (not including the self weight) thought a linear

static analysis' ANSYS is used to verify the automatic self-weight analysis, and

weaver and Gere (19s0) to verify the externar road. The moder properties are

E =2.00x10*0t kÀym 1, = 2.00x l0a3 ma p =7.g6 ton / m3
v = 0.25 1, = 1.00x 10{, mo g, = _9.glrn/s,

A=0.0lmz 1, =1.00x10{, mo

Figure 8.12 - Beam-column element (example 17).
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Results from ANSys (serf weight rinear static anarysis onry):

PRINT ELEMENT TABLE ITEMS PER ELEMENT

**- posrl EieMe¡¡r rnele LtslNG **.
STAT CURRENT
ELEM SAXL

1-197.37
2 -556.46
3 -224.23
4 -197.37

PRINT U NODAL SOLUTION PER NODE

NODAL DEGREE OF FREEDOM

LOAD STEP= I SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE UX UY UZ USUM

1 0.128268_04_0.661 19E_05_0.46335E_04 0.485308{42 0.6e0si E_0s_0. 1 7625E_03_0.1 67soe_os o.za3aéËai3 0.0000 0.0000 o.0ooo 0.00004 0.0000 0.0000 o.0o0o o.o0oo
5 0.98657E-05_0.11817E-03_o.l190lE-03 0.16801E-03

PRINT ROT NODAL SOLUTION PER NODE
**I POSTI NODAL DEGREE OF FREEDOM LISTING -**
LOAD STEP= I SUBSTEP= 1

TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE ROTX ROTY ROTZ RSUM

1 4.26877E_O4 0.2017 1E_04_O.233SCe_Oq O.qogzze_oc
2 {.63s6e8-04 0.428s4E_0s{.so¿eoE_os o.o+ãi iÈ_óa3 0.0000 0.0000 o.o0oo o.00oo4 0.0000 0.0000 o.0ooo o.ooo0
5 -0.454238_04 0.24268E_04_0.353ogE_04 0.62441E_O4

PRINT F REACTION SOLUTIONS PER NODE

*** POSTI TOTAL REACTION SOLUTION LISTING --*-

LOAD STEP= I SUBSTEp= 1

TIME= 1.0000 LOAD CASE= 0

THE FOLLOWNG X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX FY FZ
31.9737 5.5646 0.53509
4 -1.9737 5.3816 _0.53509

PRINT M SUMMED NODAL LOADS

**- POSTI SUMMED TOTAL NODAL LOADS LISTING **-

LOAD STEP= 1 SUBSTEp= 1
TIME= 1.0000 LOAD CASE= O

THE FOLLOWNG X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE MX MY MZ
3 -2.5944 1.0758 1.4037
4 -7.5406 -2.1811 3.1024

184



SADAP results (only self-weight):

EXAMPLE-1 7-P.357-MATR
NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTURES

NODAL POINTS:

NODEXYZ
1 0.0000 3.0000 0.0ooo2 6.0000 3.OOO0 0.00003 0.0000 o.ooo0 o.o0oo4 9.0000 o.ooo0 3.O0oo5 3.0000 3.0000 0.oooo

RESTMINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT,Y ROT.Z

3111111
4111111

AUTOMATIC SELF.WEIGHT ANALYSIS

FRAME ELEMENTS (STABtLtTy FUNCTtoNS):

ELEM. NODEI NODE2 E V A IX IY IZ

1 1 s 0.2008+090.25E+OO g..1ggE_or o.2oo1-02 o.1o0E_02 0.100E_020.00z 3 I o.2o0c+0s0.25E+00 o.róoeõi ð,'.;oó:{-oi ò..,ooe_oz o.lo0E_o20.oo3 2 4 0.200E+oso.2sc+oo o.looe-õì õ:ãõõE_õi o.loor_0, o.1ooE_o2o.o04 s 2 0.2ooE+0so.2sE+oo o.loõÈ_oì õ.tõõE_oi õ.,|oos_o, 0.l0oE-o20.oo
LOAD STEP= 1

FRAME ELEMENTS (STABtLtTy FUNCTtONs) TNTERNAL FORCES:

FP QX QY QZ ESP.MASS FLANG

0.00 0.00 0.oo 7.86
0.00 0.00 0.00 7.86
0.00 0.00 o.o0 7.86
0.00 0.00 o.oo 7.86

0.
0.
0.
0.

ELEM. NODE N

1.9737
-1.9737

5.5646
-3.2514

2.2423
-4.5555

1.9737
-1.9737

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y

1 0.000012826 -0.0000066122 0.000006905 4.0001762523 0.000000000 0.ooo0000oo4 0.000000000 0.oooo0ooo05 0.000009866 _O.OOO1l8l73

QYAZTMYMZ

^3:??11 0.53509 0.98913 _1.0758 4.5175-0.s0816 -o.s3soe _0.s8e1s _o.szõõr 'i:téðB

-1.^rlll o.53s0e _1.0758 _2.5s44 -1.4037
1 .s737 -0.53s0s 1.0758 oãÀõii j.Åi;;

4.98496E-01 _1.0173 _1.3032 1.6931 -1.48543.s6se 1.017s 1.aos2 3.ssrt- 
- _,.s:;s;""

9 91916 0.53s0s 0.e8s13 0.52s51 _1.76681.37s0 -0.s3s0e _o.sas13 _2.1¿¡B r.ììi,i"

1

5

J
1

2
4

5
t

SUPPORT REACTIONS:

NODE RX RY RZ

3 1.9737 5.5646 0.535094 -1.9737 5.3816 _0.53509

MX MY MZ

2.5544 -1.0758 _1.4037
7.5406 2.1811 _3.1024

TRANS.Z ROT.X ROT.Y ROT.Z

! gggg1gg35 _o.oooo26s77 o.oooo2o171 _o.o0oo233s4
-90-0019J86r _o.oooo6os6e 0.000004285 _õ.0õõõo;üö
0.000000000 o.00o0o0ooo o.0o00o0o0o o.òäooäî"ö0.000000000 0.o0ooo00o0 0.000000000 õ.õõ00õõõõõ-0.0001rs012 _0.000045423 0.000024268 _ô¡¡ããä;ää
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Results from Weaver and Gere (1gg0), only external loads:

SADAP results (only external loads):

LOAD STEP= I

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:

ELEM. NODE N QY AZ T MY

105.55 -38.509 _126.01
-105.55 38.509 126.01

-38.509 14.452 _126.01
38.509 -14.452 126.01

183.62 9.1924 5.9674
-183.62 -9.1924 _5.9674

10s.55
-105.55

-38.509 1 13.99
38.509 -113.99

SUPPORT REACTIONS:

NODE RX RY

MZ

1

5

1

2
4

5
2

29.464 86.569 _67.100
-29.464 291.47 48.427

86.569 348.58 _23.744
-86.569 29.464 67.100

-21.404 46.703 _s2.181
21.404 _77.711 79.946

29.464 -291.47 48.427-29.464 -50.491 _163.9s

RZ

3
4

-1!._a2? -38.sos -126.01 _348.58 86.s6e _2s.744-105.ss ss.soe -r r3.ss -zs.Bso -tã.ãõã ärug

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y

I {.000859410 o.oooo577642 {.001176053 0.0032531623 0.000000000 o.ooooooooo4 0.000000000 o.o0ooooooo5 -0.001017731 0.002745063

Verification:

IRANS.Z ROT.X ROT.Y . ROT.Z

0.005007645 0.002393332 _0.001623169 o.oo068l33l0.00s2sssrz o.oo12aeø.2a o.oorz2oe36 _o.oóoiiìãoé
9.999999900 o.o0ooo0ooo o.ooooo0ooo ojrjooòòdotii
9999999990 o.0ooooo0oo o.oooo0oooo o.ooóõoooðõ0.00BeBe6ss o.oolo4oBBo _o.oooo864lo o.óóóáãìää¿

p-D-:o-oovofor ail the dispracements, internar forces and support reactions.

Fz

-126.013

-113.987
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Example No. 1g:

The purpose of this example is to verify the local axis rotation of the 3D
beam-corumn erement using stabírity functions. sADAp resurts were compared
with weaver and Gere (1980) and the commercial program ANsys. ïhe model
properties are

E=10000ksi I, =64ina
v =0.25 I, =2gino
A=9 inz 1" = g0 ino

The third node of the erement 2, 3 and 5 is rocated at: 12g,g6,0

Figure 8.13 - Beam-column element (example 1g).
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Results from Weaver and Gere (1gg0):

i ...............i...... ........

¿9-u-Ppg-f Bç.u,çt!g1.:

: l!,gdç .; it ..

, I , :q'¡Qç
i 3 : 3.699

4 | -3.293

".-* i M" J 'i J

..... -1-31'-q39... 
....-..14,9_s_9 ..... . .... :9,#9...... .

-8.771 28.387 -3.624 .ä,s1z -ie.ess -ôä.¿sa ,

Îv.
:.2,.2-e,?.

.?.._6J9.
5.312

!Fz
! t.ou
i- trr_og

| 1¿$0

ANSYS results:

PRINT U NODÄI SOLUTION PER NODE

'T*** POST1 NODAL DEGREE OF FREEDOM LISTING r+***

LOAÐ STEP= 1 SUBSTEp= I
TIME= 1.0000 LoÀD cÀsE= O

THE FOLLOWING DEGREE OF FREEDOM RESULTS .ARE TN THE GLOBAI COORDIN,A,TE SYSTEM

NODE UX ÛY UZ USUMr -0. 21B0rE_03_0. 4 o51BE_02_0. r673?E_01 o. n zzÀs_ot2 o.oooo o.oooo o.oooo o.oóoo3 0. 0000 o . 0000 0. o0oo o . 0oo04 0.0000 0.0000 0.0000 0.00005 0.521518-0r_0.?50srE_or_0.10?39 o.tsiói6 -0.28L68 _0.As366 o.agggsn_or o.sa1i3
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SADAP results:

LOAD STEP= 't

FRAME ELEMENTS (STA8ILIry FUNCTIONS) INTERNAL FORCES:

ELEM. NODE N QY QZ T MY

r r 3.5945 o.l78oí 0.406055 -3.5945 -0.f780.t .0.40605

2 3 4.7417 0.48480 -0.131091 4.7147 {.48480 O.13lO9

3 I 3.2136 0.17766 1.67856 ¡.2í36 _0.17766 _1.6785

4 5 6.59its -3.8220 0.406052 6.5945 3.8220 {.40605

5 6 5.9494 _1.0534 _2.3215
4 -5.9494 1.0534 23215

6.0732 -32.492
6.0732 a1294

8.0797 7.6099
-8.0797 1s.390

-2.9 2 -50.178
2.9952 -97.068

6.0732 -8.1294
4.0732 -16.233

-2.9952 97.068
2.9952 106.59

MZ

€4.001
94.681

27.616
57.414

-24.964
40.550

-s4.681
-134.64

-40.550
-51.864

SUPPORT REACTIONS:

NODE RX RY R2 MX MY MZ

? -0.10605 -2.9824 7.0143 _134.64 _14.s99 _9.3428
9 19S? 2.6i06 1.sttso 4.1767 zit.ial _¡.ôãiã"4 -32s32 5.371s r.4BoB -63.s27 -¡ó.séi -és:;å;

TOTAL DISPLACEMÊNTS:

NODE TRANS.X TRANS.Y TRANS,Z ROT.X ROT,Y ROT.Z

1 -gryg?]q067 -0.004061807 _0.-0^1-61-3-6:8-09 _o.oo52o22}s 0.000187037 _0.00149s317
? 9 990000000 0.o00oooooo o gqrypooo o.ooo-oo-ñã oìbTäriioioo o.ooooo0ooo1 99p000000 0.0o00ooooo oggooggryg o.oooæoooõ õ.ooõõoõõ0o o.oo0o0o0oo1 9990090000 o.o0oo0ooo0 o.gqryæqqq ó.oo0oooooõ o.00ööõbo o.ooooo00ooI 9q!?M438 4.o7soso74e -otg1l91gtr o.ooi¡éãããã ó.ooìäËöä'sz _o.0oo1ss42o6 -o.2a167s223 _o.4s3662reo o.oassss¡88 o:oooiiããü õ.ooosõõi$ o.oolTBrsBI

Verification:

Even though there is a small difference on the x translation of node 1

when compared with weaver and Gere (1gg0), the values were matching with

ANSYS. This is due to a round off error in weaver and Gere (1gg0). The

P.D-: o.oo%"for all the displacements, internal forces and support reactions.
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Example No. 19:

The purpose of this example is to verify the critical buckling load of the 3D

beam-column element using stability functions; the program is expected to stop

at the buckling load. Theoreticar varues are used as comparison, the moder

properties are

E =2.00x10.{8kN/m2 I"

v =0.25

A=0.01m2

=2.00x10{3 ma

=1.00x10{3 mo p ..- q Nonlincor

^ tt'EI
lrL¡neq =;--ì; = 13707.784 kN

(21)"

_ n'E[=ld;Ñ=13eoo'332'<N
L\ EA ))

Iv

1, =1.00x10{3 ma

Figure 8.14 - Beam-column element (example 1g).
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SADAP results:

LOAD STEP= 9127

FRAME ELÊMENTS (STABILIry FUNCTIONS) INTERNAL FORCES:

ELEM. NODE N QY QZ T MY MZ

1 1 13900. o.o_000 0.oo0o 0.0000 0.0000 0.00002 _13900. 0.0000 o.o00o o.oooo o.oooo o.oooo

2 2 13900. 0.0-000 0.oo0o o.ooo0 0.0000 0.00003 _13300. 0.0000 o.0ooo o.oooo 0.0000 0.ooo0

3 3 13900. o._0_0-0g o.o00o o.o00o 0.0000 0.00004 _1se00. o.o0oo o.0oo0 o.obìô 0.0ooo o.0ooo

D¡splacement of node 1:
0.0000000000 -0.0415545284 0.0000000000 0.0000000000 0.0o000oo0oo 0.oooo0000o0

SUPPORT REACTIONS:

NODE RX RY RZ MX MY MZ

4 0.0000 13900. 0,0000 0.ooo0 0.0000 0.0000

LOAD STEP= 9l2B

Verification:

P.D.: O.OOo/"
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Example No.20:

The purpose of

natural frequencies of

using stability functions.

this example is to verify the torsion, bending

a circular cantilever using 3D beam_column

The model properties are

and axial

elements

E =2.00xl0*o8lòl/m2
v = 0.30

A = 0.0I m2

I,=4.97x10{5 *+
I, =2.485x10{s -+
I, =2.485x10{t ma

p =8 tonlm3

Discretization:

ModelA: L element

Model B: 4 elements

ModelC:8 elements

ModelD: L6 elements

Figure B.1S _ Beam_column element (example 20).

Theoretical results (Militano, 2000):

I

w n,bendins = (P,,.L)' .-l U''
' ,tlA.p.Lo

2.n-t E
n,torsion= 

n 
,l 

p
2.n-1 lFw .- "' ^ * l"n'dxtot 2.L -''l o

Þ n.L = 1.87 5,4.694,7 .BS 4,l0.ggg
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Militano (2000) results:

SADAP results and verifications:

-

Natual circularfre
Mode Shape Bending Bend¡ng Bending Bendi t--.-_-r-

Exa ct Sol ufloh 10.30 54.55 180-72 354.36 608.85

Aria I Torsion Toß¡on Axia I Axial

6872.231 Él e ment 10.35
981.7s 1826.56 2945.24 3044.27 426L.98 490a.74

67!.oo

613.00

1082.53

988.07

4 Elements 10.30 64.63 182.16 359.36
8 Elemeñts 10.30 54.56

1933.00 3116.99

2987.99

3511.00 5078.0O s662.13 8187.93180.87 355.01 610.00 983.32 1853.00

1833.OO

16 Elements 10.30
3167.00 4599.00 5707.4464.56 L80-77 354.27 609.00 952-74

7416.40

2955.90 3075.00 4346.00 4958.16 7008.74

Natual circul frequency [rad/s]
Mode Sha pe Bend¡ nlI'- E"r* P.D Bendin¡ P.D. BendinÉ P.D Torsíor P.D-Exact Solution 10.30 64.sc 780.72

Axiâ I P.D.

354.36
1 Element 1.0.35.- o.49%

608.85

LO.27%

981.75

677.36
4 Elements 10.30 1082.53 10.27%o.ot% 64.63 o.120Á 182.15 o.79% 359.3s L.470/0
8 Elements 10.30 o.or% 64 o.o7%

o.64% 988.07 o.64%
180.86 o.08% 355.00 o.!8% 609.83

16 Elements | 10.30

l
I ofston I

o.o7%
o.16% 983.33 o.t6%

64.5s o.00% 180.76 o.o?% 354.26 -o.o3%

ilil-l ;t

609.10 o.04% o.o4%

;;¡
Na tua f;;t ;rc"*-

:--- -rtofs¡on I

equenc

P.D.

y [ra d/s.)

T;;;I

ìi
:!

-ê
e.o. lnxiar lr.o IExa ct Sol uti on 1826.56 2945.24

P.D.
3044.27 4267.98 4908.74

1 Element 6872.23

4 Ef ements

5662.13
r933.08 5.A3% 3777.OO 5.83% 3511.50 !5.35% 5077.94 19.75%

7.92%

8 Elements 1853.07 L.45%
75.35% 8187.93 19.75%

2987.99 L.45% 167.50 4.056À 4599.45
16 Elements

5IO7.44 4.O5% 741.6.40 7.92%1833-17 0.36% 29s5.90 o.36% 3074.92 7.O!% 4346.26 1.9A% 4958.16 LOl% 700a.74 1.98%
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Example No.21:

The purpose of this exampre is to verify the variation of frequency with
axiar force in a corumn with both ends pinned (3D beam-corumn erement using
stability functions).

The program results were compared with the results from przemieniecki
(r 985)' A non-rinear free vibration anarysis was performed.

variationof the natural rr.ou.n"y*il 
"ñflil

I

rrj
-]---'l
ii-i---i

---.:
I

I

I-."--1
I

34

Figure B.l6 - Example solution (example 21).

-___J

i
--i

-3

Where:

@ =r'o Æo
'EI

PL2U=-'ET

Verification:

P.D.^^, =-0.65%o
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Example No.22:

The purpose of this exampte is to verify the dynamic sorver using the 3D
beam-corumn erement (using stabirity functions). Moder properties, dynamic
force' and dispracement sorution were taken from Battis ta (2007-c) and are given
by

E =2.10xI0*8ld.\I/m2
v = 0.30

I = 8.06x10{3 m2

I, = 2.716x10*o mo
1, = 1.858x 104 mo
1, = 1.858 x I0*o mo

p=7.85ton/m3

€ =0.01

Figure B.1T _ Beam_column element (example 22).

Theoretical sotution:

wn = n2 782 = 53 .82 rad/ s ,21 5 .29 rad/ s , 4g4 .41 rad/ s

rEît_-
\'lp¿t'

Battista (2007 -C) sotution

ur(0.15 s) =0.00643 m

uyM.4.ilMW =0.00849 m

(displacements where the load is applied):
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SADAP solution and verification (using 30 elements):

0.009 ¡---
0.008

o.oo7 i
'0.006

f, o.oos

] o.ooa

0.003

0.002

0.001

0

0.8 7 1't <'¡.{ 1.6 l.B

t tsl

Figure 8.18 - Example solution (example 22).

wl

w2

= 53.82 ro% 
... p.D. 

= 0.00%o

= 215.29 ,o% ...p.D.= g.ggyo

w3 = 4B4.4l ro% ... p.D. 
= g.ggyo

Modal Superposition (Ât=0.000i. s and
50 modes):

ur(0.15 s) = 0.00650 m... p.D.=1.09%o

UyMAXTMUM = 0.00854 m ... p.D.= 0.59%o

Newma rk-Linear (Ât=0.0001 s):

ur(0.15 s) = 0.00649 m... p.D.=0.93o/o

uy MAxrMuM = 0.00854 m .'. P.D.=0.59o/o

Newmark-Nonlinear (^t=0.0001 s):

u),(0.15 s) = 0.00649 m... p.D.=0.93%o

uyìLaÆ,rura = 0.00851 m... p.D.=0.24%o

----. Modal Superposítion

(50 modes)

"""".Newmark-Linear

.----- 
Newmark.Nonlinear

- - Static analysis
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Example No.23:

The purpose of this example is to verify the nonrinear static analysis of the
insulator string elements' The results where compared with theoretical analyses.
Moder properties are (the insurator string erement is mass ress)

Z=1.50m I=1.00xl0{3m2 .F.x=9.glkN
E =2.00x10ût kN/m, Conductor weight= 9.gl kN

Figure B.l g _ lnsulator string element (example 23).

ïheoretical results

Self weight analysis:

Lu, = - 
¿conductor weight =0.0000735g m

Tensioni = 9.81kN
Tensionj = 9.8l kN

L,,=õ=1.06066m

Externat toad and setf weighr anatysis: u, = t(t 
å) =0.43934 m

Tensioni = 13.8734 kN
Tension¡ =13.8734kN
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SADAP results:

NODAL POINTS:

NODE X Y

I 0.0000 0_00002 0.0000 -.t.50003 0.0000 _l.50oo

RESTRAINTSi

NODE TRANS.X TRANS.Y TRANS.Z RO]'.X ROT.Y ROT.Z
1111,t11

NODAL FORCES;

NODE FX FY FZ MX MY MZ
2 9.81000 0.00000 0.00000 0.00000 0.0oo0o 0.00000

AUTOMATIC SELF-WEIGHT ANALYSIS

SPRING ELEMENTS:

ELEM. NODEI NODE2 KUX KUY RUZ KRX KRY KRZ MASS2 3 2 O.IOOOOE+o7 O..tOOOOE+o7 O.IOOOOE+o7 O.lOOOOE+o7 O.IOOOOE+o7 O.lOOOOE+o7

INSULATOR ELEMENTS:

ELEM. NODE1 NODÊ2 E A WC TOTALMASS
1 1 2 0.20000E+0g o.1o0ooE-02 0.10000E-01 o.oo00

LOADSTEP= 1

INSULAToR ELEMENTS INTERML FoRcEs: ( TENSIoN + )
ELEM. NNODEI NNODE2

1 9.8100 9.81 O0

Dlsplac€mento of node 2:
0.0000000000 _0.0000735750 0.0000000000 o.0ooooo0ooo o.0o0o00oo00 0.o0o0o0o00o
SUPPORT REAC'TìONS:

NODE RX RY RZ MX MY MZ
1 0.0000 9.8100 0.ooo0 0.0000 o.0ooo o.0oo0

LOAD STEP= .toi

INSULATOR ELEMENTS TNTERNAL FORCES: ( TENSTON + )
ELEM- NNODEI NNODE2

I .t3.881 
13.881

SUPPORT REACTIONS:

NODE RX RY RZ MX MY MZ
I -9,8100 9.8.t00 0.0000 0.0000 0_0000 o.0oo0

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRÁNS.Z ROT.X ROI.Y ROIZ
1 0.000000000 0.000000000

3 isssrs's: id's#åä $åtrffitr $trtrtrtri $itris#å ïtrtråtrtr

Verification:

P.D.** =0.06y.

z

0.0000
0.0000
0.0000

ALFA BEIA

1.0000 0.oooo

Self weight

Self weight and

external load
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Example No.24:

The purpose of this example is to verify the Free Vibration analysis of the

insulator string element. The results where compared with a theoretical analysis.

Model properties are (the insurator string erement is mass ress)

Z=1.50m l=1.00x10{3 m2
E = 2.00x10Ðt kN/m, Conductor weight = 9.Sl kN

Figure 8.20 _ lnsulator string element (example 24).

Theoretical results:

SADAP results:

MODEMODALMASS FREOTRADI FREOÍHZI l.ooooo z.sszÞe o.¿ozo'o 
-'

Verification:

P.D.:0.0U:.

ll:
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Example No.25:

The purpose of this example is to verify the linear dynamic solver using

the insulator string element. Model properties are (the insulator string element is

mass less)

Z=1.50m l=1.00x10-3 m2 4 =9.glklt
E =2.00x108 kN/m2 Conductor weight =29.431ù:i. C = 4.00kì.Ixs/m

Figure 8.21 - lnsulator string element (example 25).

Theoretical results:

Static displacement =
FL

Conductor weight
=0.5m

SADAP results:

o.6

o.s
Ë
É

5 ".¡aÉ
€ o.2

o.¡

Figure 8.22 - Example results (example 25).

Verification:

P-D.=4-10v.
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Example No.26:

The purpose of this example is to verify the non-linear static analysis of

the straight tower element. The results of the model with straight tower elements

were compared with a model using the 3D beam-column (vertical bars) and truss

(diagonal and horizontal bars) erements. The model properties are

Longitudinal bars

E=2.10x10{t kN/m' I,=2.45x104 ma

Iy=1.23x104 ma

Diagonals and Horizontal ba¡s

E= 2.l0xl0{t kN/mt

A= 5.00x104 m2

P=7.86 ton/m3

v=0.3
l=1.00x10{3 m2 I"=l.23xl0a ma

P =7.86 ton/m3

Simplified Modet Complete

al
Top nodes

Elevat¡on Section A-A

+l
- Straight tower element (example 26).

Section A-A

Figure 8.23
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The applied force in the following table was chosen

critical buckling load of the tower (calculated based on a

analysis) to verify the behavior of the simplified element.

to be close to the

non-linear stability

Model Node
Fx Fy Fz Mx My Mz

KN KN KN kNm kNm kNm

Complete
Model

4I 10 -350 10 0 0 o

42 10 -350 10 0 0 0

43 10 -350 10 0 o o

M 10 -350 10 o 0 0

Simpl.
Model

L0 40 -1400 40 0 0 o

The effect on the non-linear static analysis result in considering

diagonal bars to resist shear deformation was also investigated.

SADAP results:

...... Simpl.

- - - Node41

- .-. Node4z

- - 
Node43

*..-Node44

- - - Average

- 

Simpl. With shear defor.

0.04

dispacement [m]

the

?t
.u
o
Jþo
(u
bo
{u

Ê
o,u
€J
ô-

0.02 0.06
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Figure 8.24 - Exampre resurts for x dispracement (exampre 26).

...... Simpl. ' \
ll
(o
o

o
o)
b,0
a!

ou
0,
o-

- 

Simpl. W¡th shear defor.

-0.02 -0.015

dispacement [m]

-0.01

Figure 8.25 - Exampre resurts for y dispracement (exampre 26).

0.005 0.01 0.015 0.02 0.025 0.03 o.o3s
dispacement Im]

Figure 8.26 - Exampre resurts for z dispracement (exampre 26).

Verification:

Ef!
o

o
0,
bo
(uTcou
LoÀ

0.04
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P' D' ¡'t¿x,t, ¡ t t o u r s h ea r d eJl-o r ü a t i ø : I 6.3 3yo

P'D' *,*,,r thea r deJlo rma ûø = O'52%o
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Example No.27:

The purpose of this example is to verify the Free Vibration analysis of the

straight tower element. The results of the model with straight tower elements

were compared with a model using the 3D beam-column (vertical bars) and truss

(diagonal and horizontal bars)elements. The model properties are

Longitudinal bars

E=2.10x10{t kN/m' /, =2.45x10{ ma

v=0.3 Iy =1.23x104 ma

l=l.ooxlo{3 m2 1, =1.23x104 ma

p =7.86 tonJm3

T-
I

I

Ë

I

I

I

l-
t^
v;

Elevat¡on Sectíon A-A

+l
8.27 - Straight tower element (example 27).

Diagonals and Horizontal bars

fi- 2.10x10'{8 kN/m2

l=5.00x104 m2

P =7.86 ton/m3

S¡mplified Model Complete

ar

Sectíon A-A

Figure
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SADAP results:

t.t cæw
s::: :rutEÍ¡ :c,cr15:1E¿t

Figure 8.28 - Mode shapes and frequencies results (example 27).
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Figure 8.28 (cont'd) - Mode shapes and frequencies results (example 27).

Verification:

P.D.*, =0.86o/o, P.D-,,, =I.38%ó P.D',, =2'07Yo, P.D.*o: -8'85%o
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