STATIC AND DYNAMIC ANALYSES OF A TRANSMISSION TOWER-LINE SYSTEM USING A SIMPLIFIED MODEL

by

Felipe Tabet

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Civil Engineering University of Manitoba Winnipeg

Copyright © 2009 by Felipe Tabet

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION

STATIC AND DYNAMIC ANALYSES OF A TRANSMISSION TOWER-LINE SYSTEM USING A SIMPLIFIED MODEL

By

Felipe Tabet

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

Of

MASTER OF SCIENCE

Copyright © 2009 by Felipe Tabet

Permission has been granted to the University of Manitoba Libraries to lend a copy of this thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum, and to LAC's agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

The optimum design of a transmission line system requires a good understanding of both the static and dynamic behaviors of the system. The computational model should be capable of accurately representing the structure. In common practice, an isolated tower with loading from conductors is analyzed to represent an entire system of towers. It has been found that the behavior of the tower-cable system differs from the behavior of an isolated tower, especially for long span transmission systems. A misrepresentation of the model can lead to serious economical and social losses.

In this study, a latticed tower shaft is modeled using a tapered and a prismatic 3D beam-column element to reduce the number of degree of freedom of the structure. These simplified elements were specially formulated and verified to represent detailed tower segments. The elements are incorporated into an inhouse Finite Element program called Static and Dynamic Analysis Program. The program also includes all the necessary elements required in the analysis of the transmission line system such as a cable element, truss element, spring element, insulator string element and conventional beam-column element. The 3D cable element used to model guy wires and conductors are assumed to be parabolic in shape with a modified Dischinger's modulus of elasticity. The results obtained from the model using the simplified elements and those obtained from the detailed tower model, for both static and free vibration analyses, are within 7%.

i

Free vibration analyses of an isolated tower and a transmission line system were conducted using the developed simplified model. The inclusion of cable spans in the model increases the number of mode shapes of vibration. The increase in the number of cable spans also increases the number of mode shapes.

Dynamic analyses of the system with different numbers of cable spans and different boundary conditions were also performed. The wind loading was modeled using a random, stationary and ergodic process. It was found that only two cable spans are required for the dynamic analysis of the system for the applied load case of wind perpendicular to the line. It was also concluded that the spring element can be used to represent the end towers.

Acknowledgement

I would like to express my deepest thanks to my supervisor, Dr. Nipon Rattanawangcharoen, P.Eng. for his assistance and guidance, Mr. Jon Kell, P.Eng. from Manitoba Hydro, who provided valuable advice, and the members of the committee, Dr. Dimos Polyzois, P.Eng. and Dr. Quan (Abraham) Wang, P.Eng.

I would like to express my appreciation to Mr. Paulo Sérgio Pinto for his time and advice as a professor, engineer and personal friend, and to Dr. Michèle Schubert Pfeil for her attention. I also would like to thank my friends Mr. Mostafa El-Mogy, Mr. Mohamed Mady, Mr. Cameron Ward and Mr. Yang Liu for their continuous support and encouragement.

Also thanks to my family for their support of my journey, without them this work could never have been accomplished. Finally, I would like to demonstrate my true gratitude to Ms. Juliana Rivera Alves for her scientific and personal attention during the development of the Finite Element program and my Master of Science thesis.

Aos meus pais, Luís Felipe e Lêda,

e aos meus irmãos, Guilherme e Bernardo.

ġ.

LIST OF FIGUR	RESvii
LIST OF TABLES	
LIST OF ABBR	EVIATIONSxii
LIST OF SYME	3OLSxii
1. INTRODU	JCTION
1.1.	GENERAL1
1.2.	OBJECTIVES
1.3.	OUTLINE OF THE THESIS
1.4.	SCOPES OF THE RESEARCH
2. LITERAT	URE REVIEW
2.1.	BEAM-COLUMN (STABILITY FUNCTIONS)7
2.2.	TOWER MODELING
3. Formul	ATION OF ELEMENTS
3.1.	TOWER ELEMENTS14
3.1.1.	STRAIGHT SHAFT
3.1.2.	TOWER TAPERED SHAFT
3.2.	INSULATOR STRING
3.3.	CABLE
3.4.	SPRING ELEMENT
4. VALIDAT	TION OF PROGRAM
4.1.	ACCEPTANCE CRITERIA
4.2.	EXAMPLES
5. COMPUT	TATIONAL MODELING56
5.1.	Tower Properties
5.2.	Tower System Models
5.3.	BOUNDARY CONDITIONS
5.4.	NONLINEAR STATIC ANALYSIS
5.4.1.	LOAD CASES
5.5.	DYNAMIC ANALYSIS
5.5.1.	FREE VIBRATION

CONTENTS

5.5.2.	TIME STEPPING TECHNIQUE
5.5.3.	DAMPING MATRIX
5.5.4.	WIND LOAD
5.5.4.1.	WIND SPEED70
5.5.4.1.1.	MEAN WIND SPEED
5.5.4.1.2.	TURBULENCE WIND SPEED
6. ANALYS	IS RESULTS
6.1.	ISOLATED TOWER (MODEL 1 AND MODEL 2)82
6.1.1.	STATIC DISPLACEMENTS
6.1.2.	FREE VIBRATION
6.2.	TRANSMISSION SYSTEM
6.2.1.	FREE VIBRATION
6.2.1.1.	MODEL 2 AND MODEL 3
6.2.1.2.	MODEL 3 AND MODEL 4
6.2.1.3.	Model 4 and Model 596
6.2.1.4.	Model 4 and Model 6
6.2.1.5.	MODEL 6 AND MODEL 7
6.2.1.6.	MODEL 6 AND MODEL 8
6.2.2.	DYNAMIC ANALYSIS
6.2.2.1.	COMPARISON OF MODEL 2 AND MODEL 4
6.2.2.2.	COMPARISON OF MODELS 3, 4, 5 AND 6 114
7. SUMMA	RY, CONCLUSIONS AND RECOMMENDATIONS
7.1.	CONCLUSIONS
7.2.	RECOMMENDATION FOR FUTURE WORK
REFERENCES	
APPENDIX - A	
APPENDIX – B	

List of Figures

- Figure 1.1 Transmission line system.
- Figure 1.2 Transmission tower.
- Figure 3.1 Representation of a tower segment by a tapered beam-column element.
- Figure 3.2 Straight shaft segment.
- Figure 3.3 Torsion Stiffness.
- Figure 3.4 Diagonal effect.
- Figure 3.5 Tapered shaft segment.
- Figure 3.6 Deformed beam-column element.
- Figure 3.7 Sway effect.
- Figure 3.8 Insulator string.
- Figure 3.9 Cable element.
- Figure 4.1 Example No. 12.
- Figure 4.2 Response of the systems shown in Figure 4.1 using Newmark-L option in SADAP.
- Figure 4.3 Response of the systems shown in Figure 4.1 using time-stepping technique in MathCAD.
- Figure 4.4 Cable element (Example 13).
- Figure 4.5 Results from SADAP.
- Figure 4.6 Cable element (Example 14).
- Figure 4.7 Tapered tower (example 15).
- Figure 4.8 x displacement of the tapered tower.

Figure 4.9 - y displacement of the tapered tower.

Figure 4.10 - z displacement of the tapered tower.

- Figure 4.11 The 1st flexural natural frequency and mode shape of the detailed and the simplified tapered towers.
- Figure 4.12 The 2nd flexural natural frequency and mode shape of the detailed and the simplified tapered towers.
- Figure 4.13 The 3rd flexural natural frequency and mode shape of the detailed and the simplified tapered towers.
- Figure 4.14 The 4th flexural natural frequency and mode shape of the detailed and the simplified tapered towers.
- Figure 5.1 Tower A-402M.
- Figure 5.2 A simplified model of an A-402M tower.
- Figure 5.3 Transmission system models.
- Figure 5.4 Boundary conditions in the study.
- Figure 5.5 Nomenclatures of the loading in Table 5.3.
- Figure 5.6 Controlled nodes where the loadings are applied in detailed and simplified tower models (representatively only).

Figure 5.7 - Newmark Method.

Figure 5.8 - Drag factors and areas of the tower zones.

Figure 5.9 - Wind speed.

Figure 5.10 - Variation of mean wind speed along the tower height.

Figure 5.11 - Wind spectrum versus frequency.

Figure 5.12 - Wind generation flowchart.

Figure 5.13 - Turbulence wind speed sample.

Figure 5.14 - Turbulence wind speed at a maximum time of 2 seconds.

Figure 5.15 - Top view of the transmission tower system.

Figure 5.16 - Wind speed in zones 1 and 2.

Figure 6.1 - (a) Model 1 and (b) Model 2.

Figure 6.2 - Load Case 1, x displacement of the top of the tower.

Figure 6.3 - Load Case 1, y displacement of the top of the tower.

Figure 6.4 - Load Case 1, x displacement of the left cross arm.

Figure 6.5 - Load Case 1, y displacement of the left cross arm.

Figure 6.6 - Load Case 1, x displacement of the right cross arm.

Figure 6.7 - Load Case 1, y displacement of the right cross arm.

Figure 6.8 - Load Case 2, x displacement of the top of the tower.

Figure 6.9 - Load Case 2, y displacement of the top of the tower.

Figure 6.10 - Load Case 2, z displacement of the top of the tower.

Figure 6.11 - Load Case 2, x displacement of the left cross arm.

Figure 6.12 - Load Case 2, y displacement of the left cross arm.

Figure 6.13 - Load Case 2, z displacement of the left cross arm.

Figure 6.14 - Load Case 2, x displacement of the right cross arm.

Figure 6.15 - Load Case 2, y displacement of the right cross arm.

Figure 6.16 - Load Case 2, z displacement of the right cross arm.

Figure 6.17 - (a) Model 2 and (b) Model 3.

Figure 6.18 - (a) Model 3 and (b) Model 4.

Figure 6.19 - (a) Model 4 and (b) Model 5.

Figure 6.20 - (a) Model 4 and (b) Model 6.

Figure 6.21 - (a) Model 6 and (b) Model 7.

Figure 6.22 - (a) Model 6 and (b) Model 8.

Figure 6.23 - (a) Model 2 and (b) Model 4.

Figure 6.24 - Displacement-time history at the top of the tower for Model 2.

Figure 6.25 - Displacement-time history at the top of the tower for Model 4.

Figure 6.26 - FFT of the displacement at the top of the tower for Model 2.

Figure 6.27 - FFT of the displacement at the top of the tower for Model 4.

Figure 6.28 - Computational Models.

Figure 6.29 - Displacement at the top of the tower for Model 3 (node 47).

Figure 6.30 - Displacement at the top of the tower for Model 4 (node 47).

Figure 6.31 - Displacement at the top of the tower for Model 5 (node 47).

Figure 6.32 - Displacement at the top of the tower for Model 6 (node 47).

Figure 6.33 - Displacement at the top of the tower for Models 4 and 5 (node 47).

Figure 6.34 - FFT of the tower for Model 3.

Figure 6.35 - FFT of the tower for Model 4.

Figure 6.36 - FFT of the tower for Model 5.

Figure 6.37 - FFT of the tower for Model 6.

List of Tables

Table 4.1 - Summary of examples.

Table 4.2 - Natural frequencies of the cable shown in Figure 4.6.

Table 4.3 - Applied force on the models in Figure 4.7.

Table 5.1- Properties of the conductors, ground wires and guyed cables.

Table 5.2 - Properties of the springs.

Table 5.3 - Load cases.

- Table 6.1 Percentage difference of displacements between the Models 1 and 2 for Load Case 1.
- Table 6.2 Percentage difference of displacements between the Models 1 and 2 for Load Case 2.

Table 6.3 - Comparison of mode shapes between Model 1 and Model 2.

Table 6.4 - Frequencies and mode shapes of Model 2 and Model 3.

Table 6.5 - Frequencies and mode shapes of Model 3 and Model 4.

Table 6.6 - Frequencies and mode shapes of Model 4 and Model 5.

Table 6.7 - Frequencies and mode shapes of Model 4 and Model 6.

Table 6.8 - Frequencies and mode shapes of Model 6 and Model 7.

Table 6.9 - Frequencies and mode shapes of Model 6 and Model 8.

List of abbreviations

ASCE	American Society of Civil Engineers
FE	Finite Element
FEA	Finite Element Analysis
DOF	Degree of freedom

List of symbols

Chapter 3

A	Cross-sectional area
AL	Cross-sectional area of the longitudinal bars
AUX	Auxiliary value
b _{top}	Width at the top of the tapered element
b _{bottom}	Width at the bottom of the element
b_y	Width of the element in the y-x plane
b_z	Width of the element in the z-x plane
DX,DY,DZ	Distance between nodes in the x-,y- and z-direction respectively
E	Modulus of elasticity
E_{eq}	Equivalent modulus of elasticity of the cable
е	Axial displacement
$\{F\}$	Force vector
F_{D}	Force in the diagonal bar in the axial direction
F _{D,y}	Force in the diagonal bar in the y-direction
F _{D,z}	Force in the diagonal bar in the z-direction

F_w	Wind load
f_1, f_2, f_3	Flexibility coefficients using stability functions
f_D	Flexibility coefficient due to diagonal bar effect
G	Shear modulus
g	Gravity
H'	Pretension on the cable
I_y	Moment of inertia in the y direction
I_z	Moment of inertia in the z direction
J_x	Torsional moment of inertia
[<i>K</i>]	Stiffness matrix
$[K_L]$	Linear stiffness matrix
$[K_{NL}]$	Nonlinear stiffness matrix
k_T	Torsion stiffness
KUX, KUY,	Stiffness coefficients of the spring element
KUZ, KRX,	Stiffness coefficients of the spring element
KRY, KRZ	Stiffness coefficients of the spring element
L	Length of the element (distance between nodes)
L_c	Deformed length of the cable
L_D	Length of the diagonal bars
L_i	Length of the insulator
[<i>M</i>]	Mass matrix
Р	Axial force
q_x	Dead load of the cable on the local x-direction

q_z	Dead load of the cable on the local z-direction
S ₁ , S ₂ , S ₃	Stiffness coefficients using stability functions
Т	Torsional moment
u_D	Axial displacement of the diagonal
Wi	Weight of the insulator
W _c	Weight of the cable
β	Tapered parameter or rotation due to torsion
η	Displacement due to torsion
ρ	Density or $\sqrt{P_{EI}}$
ν	Poisson's ratio
Δ	Displacement due to sway effect
•	
	Chapter 4
d_0	Chapter 4 Initial sag of the cable
d ₀ d _f	Chapter 4 Initial sag of the cable Final sag of the cable
d_0 d_f f	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz
d_0 d_f f H_0	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable
d_0 d_f f H_0 H_f	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable Final horizontal tension component of the cable
d ₀ d _f f H ₀ H _f <i>P.D.</i>	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable Final horizontal tension component of the cable Percentage of difference
d ₀ d _f f H ₀ H _f P.D. T ₀	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable Final horizontal tension component of the cable Percentage of difference Initial tension in the cable
d_0 d_f f H_0 H_f P.D. T_0 T_f	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable Final horizontal tension component of the cable Percentage of difference Initial tension in the cable
d_0 d_f f H_0 H_f P.D. T_0 T_f λ	Chapter 4 Initial sag of the cable Final sag of the cable Frequency in Hz Initial horizontal tension component of the cable Final horizontal tension component of the cable Percentage of difference Initial tension in the cable Final tension in the cable

xiv

Chapter 5

$a_0, a_1, a_2,$	Newmark constants
<i>a</i> ₃ , <i>a</i> ₄ , <i>a</i> ₅ ,	Newmark constants
a_6, a_7	Newmark constant
[<i>C</i>]	Damping matrix
$C_{\nu l,\nu 2}$	Cross covariance function
C_{df}	Drag factor
$\left\{ \stackrel{\circ}{F} \right\}$.	Effective force vector (Newmark method)
k	Kaimal constant
$\begin{bmatrix} \hat{K} \end{bmatrix}$	Effective stiffness matrix (Newmark method)
k _{g1} , k _{g2}	Stiffness of the ground wire
k _{c1} , k _{c2}	Stiffness of the conductor
NSPEC	Number of divisions of the spectrum
R_s	Ratio of the net projected area and the gross projected area
<i>Rν(τ)</i>	Autocorrelation function
$S_{\nu}(f)$	Wind spectrum
t	Time
U*	Friction Velocity
$\{u\}$	Displacement vector
$\{\dot{u}\}$	Velocity vector
<i>{ü}</i>	Acceleration vector

\overline{V}	Mean wind speed
\overline{V}_{10}	Mean wind speed at 10 meters height
$\overline{V^2}$	Mean square value
v_{I}	Wind speed in zone 1
v_2	Wind speed in zone 2
V _{rms}	Root mean square
V(t)	Wind speed
v(t)	Turbulence wind speed
α, δ	Newmark constants
α, β	Rayleigh damping parameters
$\{\Delta u\}$	Incremental displacement vector
Δf	Frequency increment
ΔS	Distance between zones
ξi	Modal damping
$\{ \varphi \}$	Mode shape vector
σ_v^2	Variance
σ_{v}	Standard deviation
τ	Time variable
$ heta_i$	Random angle with uniform distribution from 0 to 2π

xvi

1. INTRODUCTION

1.1.GENERAL

Transmission line systems play an important role in society; a failure in these systems causing an interruption in the energy supply can cause severe social and economic losses. To guarantee stability and low cost of maintenance, these systems need to be well designed.

In the past, in the United States, the majority of the state laws required that the transmission line system should be designed at a minimum to meet the requirements of the National Electrical Safety Code (NESC), which mainly covers electrical design of the transmission lines, however, it also contains a part of the structural loads and overload capacity factors. Some designers felt that the NESC code was too conservative, while others adopted procedures well above the minimum requirement. This inconsistency led to the development of in-house design criteria and guidelines. All this caused a large variation in the design (see reference ASCE, 1984 for details), and led to an unreliable or costly structures. In 1984, the American Society of Civil Engineers (ASCE) published a set of guidelines for determining the structural loads of the transmission towers. Though it created uniformity in the design procedure, these guidelines however were based on simplified assumptions due to the lack of computational structural programs. Structures built with such simplifications should be reviewed for safety now that the numerical analysis is much more advanced.

It is always of interest to engineers to design a transmission line system with the maximum span length possible. With the use of advanced computational programs, the structural analysis can be very sophisticated. This allows a significant increase of the span size and a reduction on the transmission system cost. Nonetheless, some precautions need to be taken in the construction of a numerical model that closely represents a real structure.

The design of transmission line systems (Figure 1.1) has always been a highlighted topic in structural engineering. In the past, towers were designed based on static load cases. The conductors and the tower were treated as independent units. The load resultants from the conductors were applied directly to the tower's members. Such simplifications could have a negative impact in today's economy. It was estimated that a failure of a transmission tower could cost one million US dollars per kilometer of line (Albermani et al., 2008) without including economic damages due to lack of electrical power.

Figure 1.1 - Transmission line system.

Most transmission towers are constructed as steel latticed structures. In general, as for any tall and slender structure, the design of a transmission line system is governed by wind loads (Shehata et al., 2005). Therefore, due to the low natural frequencies of the system, a dynamic analysis is required. Most of the dynamic analyses of a transmission system are usually carried out by modeling the tower as an isolated structure as shown in Figure 1.2. This is not accurate since it has been proven that the dynamic characteristics of the whole system and the lateral movement of the conductors must be taken into account in the analysis. The dynamic effects that the conductor and insulator strings have on the vibration of the tower cannot be simply represented as lumped masses on the tower.

Figure 1.2 - Transmission tower.

The work in this thesis is entirely theoretical. It involves the development of a computer program based on the direct stiffness method. The program was validated though comparison with existing finite element (FE) programs, published or theoretical results. Several examples are included in this thesis which demonstrates the effectiveness and the accuracy of the developed program.

1.2.OBJECTIVES

To date, the analysis of transmission line systems has generally focused on the analysis of isolated towers with the conductors acting as discrete loads on the tower at the connection points. Such a mathematical model may be used for static analysis of the system. In dynamic analysis, however, the effects that the conductors and the adjacent towers have on the response of the system are significant and must be considered in the analysis of the system. To obtain an accurate prediction of the response, the whole system, including the towers and the conductors, must be used in the analysis. Depending on the number of spans used in the analysis, this can be limited by the capacity of the computer. The problem can be alleviated by using an appropriate simplified element to model the tower. Hence, the goals of this study are

- To develop a reliable simplified tower model so that dynamic analysis of a transmission line system which includes several spans can be performed with limited computer capacity,
- To perform parametrical studies on the effects of the number of towers in the model, and
- To investigate the effect of the end restrains on dynamic response of the tower system.

1.3.OUTLINE OF THE THESIS

This thesis consists of seven chapters. In chapter 2 a literature review of the beam-column element formulated using stability functions and the computational models for the tower analysis used by previous researchers is presented.

In chapter 3 the details of the element formulations (tapered and straight tower element, insulator string, cable, and spring elements) used in the program are discussed.

In chapter 4 the validation of the elements is performed. A number of examples used to verify the Finite Element Program (SADAP – Static and Dynamic Analysis Program) are also included.

In chapter 5 the numerical models and loads used in this study are described.

The results from the analyses for both the isolated tower and the transmission system are discussed in chapter 6. Finally, chapter 7 includes a number of conclusions and recommendations for future research.

1.4.SCOPES OF THE RESEARCH

The scopes of the current research are

 A non-linear static analysis of transmission tower is restricted to an isolated tower for the purpose of verification of the proposed simplification.

- Only geometrical non-linearity is taken into account.
- The dynamic analysis is limited to a linear formulation due to computational constrains.
- Buckling of an individual member is not taken into consideration in the formulation of the simplified element.

2. LITERATURE REVIEW

2.1.BEAM-COLUMN (STABILITY FUNCTIONS)

There are several methods to derive the stiffness matrix of a beam-column element. One of them is through the use of modified slope-deflection equations, called Stability Functions. This method is wildly used in the analysis of steel structures using Finite Element Analysis (FEA).

The Stability Functions Theory is more attractive than a standard energy method, because; requires fewer elements to predict buckling loads (Landesmann, 2007), uses only one stiffness matrix to describe the linear and the nonlinear behavior, easy to incorporate the plastic hinge theory and etc.

There are a large number of publications describing the use of the Stability Functions. One in particular is by Kim et al. (2001-A). Their derivation of the stability functions incorporated shear deformation, the tangent modulus of elasticity to account for gradual yielding due to residual stresses, the parabolic functions for gradual yielding due to flexure, and Orbison's full plastification surface of cross-section. The inelastic formulations are recommended only for compact steel sections. Kim et al. (2001-B) extended their formulation to incorporate the lateral torsional buckling. Later, Kim et al. (2006) performed an inelastic dynamic analysis of the three dimensional steel frames using stability functions. They archived good results when compared with commercial FE program (Abaqus).

2.2. TOWER MODELING

One of the earliest studies related to the analysis of transmission line is Bissiri and Landau in 1947. They investigated the influence of the cable rupture on subsequent line spans of a transmission line system. The cables were considered to have a catenary profile, the insulator strings were assumed as rigid body elements and the towers as fixed supports. Their research focused on calculating the cable tensile force based on static equilibrium and they presented hand calculation procedures for the analysis.

Cohen and Perrin (1957-A) described the procedure to calculate wind loads as static forces on guyed towers. They presented drag and lifting coefficients for towers of different types and shapes, as well as gust factors and a formulation for the change in wind speed with altitude. They extended their research and performed a simplified non-linear static analysis of guyed towers (Cohen and Perrin, 1957-B). Though this method was a simplified method, and was very efficient considering the computational limitations. The tower shaft was represented by equivalent beam-column elements and the guyed cables by nonlinear springs.

Mozer et al. (1977) developed simplified procedure to calculate longitudinal forces due to a broken conductor wire or unbalanced ice load. They formulated an equivalent stiffness coefficient for the insulator string assuming small rotations. The accuracy of their procedure was verified by comparing their numerical result with the results from several static small scale experimental

tests. They also performed small scale dynamic tests and concluded that the dynamic characteristics of the tower-cable system are influenced from the impact load due to a wire rupture.

Peyrot et al. (1981) used a nonlinear elastic catenary cable element to analyze cross rope suspension transmission line structures. They performed a nonlinear static analysis using only one cable element per conductor's spans. The tower mast was modeled as a rigid body element. A static condensation was applied to reduce the degrees-of-freedom (DOF) of the mast. They, however, did not verify their analysis results.

To reduce the DOF of a transmission tower, Trainor et al. (1985) used a beam-column element that represents both straight and tapered tower shaft and calculated natural frequencies of the structure. They assumed the mass of the structure to be constant even when the tower's shaft was tapered.

Mathur et al. (1987) demonstrated that the towers, insulator strings, and conductors must be integrated as a whole in order to obtain an accurate dynamic analysis of a transmission tower system. Desai et al. (1994) analyzed galloping of a transmission line with ice on the conductors. In their study, the tower-line system was modeled considering multiple spans and the cable as a three-node isoparametric finite element. They concluded that a multi-span model is required to estimate galloping modes; severe galloping amplitudes can lead to a progressive failure of the towers.

Rodrigues (1999) studied the collapse of a transmission tower due to wind load and demonstrated that, even without the rupture of the conductor wire, the tower can fail due to dynamic wind load because of the low natural frequencies of the structure. A system of one tower, insulator strings and two cable spans was used in the analysis. The end towers were modeled as a linear spring element.

Lei, Y. H. and Chien, Y. L. (2005) studied the response of a transmission line system to seismic load, considering both material and geometric nonlinearities. Their model consisted of 3 towers, 4 conductor spans (4 cable elements per span) and springs to represent the end towers restrains. The stiffness of the springs was chosen to be equal to 1.5 times the stiffness of one tower, measured in each respective direction. No indication of modeling the insulator strings was reported. They concluded the importance to consider the conductors in the dynamic analysis of the transmission line system.

Using ANSYS, Oliveira (2006) investigated the collapse of one of the towers studied by Rodrigues (1999) using a non-linear static and dynamic analysis. He modeled the end towers using dynamic condensation available in ANSYS (therefore assumed that those towers have a linear behavior). He concluded that the tower can fail due to a wind load before a wire rupture and that the tower-line system presented lower natural frequencies then the isolated tower, as the initial frequencies of the tower-line were governed by the conductors' properties.

Oliveira et al. (2007) analyzed several guyed towers using three different models to investigate which model best represented the towers. The first model consisted only of truss elements (in this model, the use of dummy bars with low stiffness was required to stabilize the structure); the second model consisted of beam elements assuming rigid connections; and the third model considered the main elements as beams and the diagonals as trusses. In their study, the comparison between models was done considering a static linear and non-linear analysis, a dynamic based on free vibration, and a stability analysis. They concluded that the lateral displacement of the tower due to wind loads was not a function of the element type, but the stresses from the truss and the other two models were considerably different. They also concluded that the model using only beam elements can lead to a higher buckling load when compared with the combined truss and beam model. They recommended using the model that considered the main elements as beams and the diagonals as trusses to the analysis of guyed towers. This recommendation is used in this study.

Junior et al. (2007) studied the effect of a cable rupture on transmission lines using Central Finite Difference to integrate the equations of motion in the time domain. The geometric and material nonlinearities were included in the model. They investigated a 138kV transmission line, which consisted of eight detailed towers, nine cable spans (20 cable elements per span), and insulator strings. All modeled only using truss elements. They concluded that the standard cable rupture approach (equivalent static load) can be unsafe, depending on the transmission line model.

In the analysis of a transmission line system, the number of spans is defined by a case by case basis. It is very time consuming to run a multi-span model, and simplifications are still required to be able to perform a parametric study on the effects of the number and length of conductors spans. Zhang and Rattanawangcharoen (2008), investigated the dynamic characteristics of a single guyed tower, and a system made by three towers and four conductor's spans using a uniform non-linear beam-column element to simulate the tower shaft. A catenary cable element was also used to simulate the conductors, the ground wires and the guyed cables (only one cable element per span). They concluded that the system of towers has additional modes of vibration when compared with an isolated tower, which depend on the span length, and can have an important effect in the dynamic response. Therefore, multi-spans models should be considered for a more reliable analysis.

3. FORMULATION OF ELEMENTS

In the analysis of the transmission line system, a model consisting of one isolated tower is not sufficient to predict the dynamic behavior of the structural system. The consideration of the subsequent towers is necessary. However, a model consisting of more than one tower is extremely computational time consuming and sometimes even impossible. There are basically three different techniques to solve this problem. In the first technique, the extremity towers were modeled as simple mass-spring-damper elements as it was done at Rodrigues (1999). In this method, the spring stiffness is obtained by applying a unit force at the end of the insulator string elements and then inverting the resulting displacement. The second method is to use static condensation as done by Oliveira (2006) thus reducing the DOF of the structure. Even though these methods are very efficient, the adjacent towers can only be considered to have a linear behavior and only natural frequencies corresponding to the remaining DOFs were considered. The studies using these two methods were considered only two cable spans models.

The third technique is to simulate parts of the tower as a single element reducing the degree of freedom of the system therefore reducing the analysis complexity, as shown in Figure 3.1. Even though the analysis is simplified, the element is able to represent the non-linear static and dynamic behaviour of the structure.

Figure 3.1 - Representation of a tower segment by a tapered beam-column element.

3.1. TOWER ELEMENTS

3.1.1. STRAIGHT SHAFT

The tower shaft (Figure 3.2) will be modeled similarly to a regular beamcolumn element with equivalent geometric properties.

The torsion stiffness, k_T , is considered to be provided exclusive by the diagonal bars, as shown in Figure 3.3. The formulation is given by Eqn. (3.1).

$$\eta = \sin(\beta) \frac{\sqrt{b_y^2 + b_z^2}}{2} \approx \beta \frac{\sqrt{b_y^2 + b_z^2}}{2}$$

$$F_D = \frac{E.A_D}{L_D} \eta \cos(\alpha)$$

$$F_{D,y} = \frac{E.A_D}{L_{D_y}} \eta \cos^2(\alpha_y)$$

$$F_{D,z} = \frac{E.A_D}{L_{D_z}} \eta \cos^2(\alpha_z)$$

$$T = F_{D,z}b_y + F_{D,y}b_z$$

$$T = EA_D \beta \frac{\sqrt{b_y^2 + b_z^2}}{2} \left(\frac{b_y \cos^2(\alpha_z)}{L_{D_z}} + \frac{b_z \cos^2(\alpha_y)}{L_{D_y}} \right)$$

$$k_T = \frac{T}{\beta} = EA_D \frac{\sqrt{b_y^2 + b_z^2}}{2} \left(\frac{b_z^2 b_y}{(\sqrt{b_z^2 + L^2})^3} + \frac{b_y^2 b_z}{(\sqrt{b_y^2 + L^2})^3} \right)$$
(3.1)

where A_D is the area of one diagonal, F_D is the force in the diagonal bar and T is the torsional moment.

Therefore the linear stiffness matrix, K_L , considering the torsion stiffness is given by:

$$A = 4A_{L}$$

$$I_{y} = A_{L}b_{z}^{2}$$

$$I_{z} = A_{L}b_{y}^{2}$$

$$k_{T} = EA_{D}\frac{\sqrt{b_{y}^{2} + b_{z}^{2}}}{2} \left(\frac{b_{z}^{2}b_{y}}{\left(\sqrt{b_{z}^{2} + L^{2}}\right)^{3}} + \frac{b_{y}^{2}b_{z}}{\left(\sqrt{b_{y}^{2} + L^{2}}\right)^{3}}\right)$$
(3.3)

A modification on the stiffness matrix (Eqn. 3.2) is required to take into account the effect of the diagonal bars. These bars are considered to resist in the shear deformation only. The flexibility coefficient, f_D , is given by:

$$F_{Dz} = \frac{2A_DE}{L_{Dz}} u_{Dz}$$

$$F_z = \frac{2A_DE}{L_{Dz}} \cos^2(\alpha_z) u_z$$
Setting $u_z = 1$

$$k_{Dz} = \frac{2A_DE}{L_{Dz}} \cos^2(\alpha_z)$$

$$f_{Dz} = k_{Dz}^{-1} = \frac{L_{Dz}}{2A_DE} \frac{1}{\cos^2(\alpha_z)}$$

$$f_{Dz} = \frac{L_{Dz}}{2A_DE} \frac{1}{\left(\frac{b_z}{L_{Dz}}\right)}$$
(3.4)

If the shear deformation is considered, a new stiffness matrix consists of columns and rows 2 to 6 and 8 to 12, except 4 and 10 of the linear stiffness matrix in Eqn. 3.2 is inverted and the shear deformation is added. After this step, the matrix is re-inverted and the remaining coefficients are calculated by equilibrium of the element (Pinto, 2006-A; Pinto, 2006-B). The steps in this formulation are as follows,
$$\begin{bmatrix} k_{2,2} & k_{2,6} \\ k_{6,2} & k_{6,6} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{2,2} & k_{2,6} \\ k_{6,2} & k_{6,6} \end{bmatrix}^{-1} + \begin{bmatrix} f_{D2,2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$\begin{bmatrix} k_{8,8} & k_{8,12} \\ k_{12,8} & k_{12,12} \end{bmatrix}_{\text{with shear deformation}}} = \left(\begin{bmatrix} k_{8,8} & k_{8,12} \\ k_{12,8} & k_{12,12} \end{bmatrix}^{-1} + \begin{bmatrix} f_{D8,8} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$k_{2,8} = k_{3,2} = -k_{2,2}$$

$$k_{2,12} = k_{12,2} = k_{2,2} - k_{2,6}$$

$$k_{6,8} = k_{3,6} = -k_{2,6}$$

$$k_{6,12} = k_{12,6} = k_{2,6}L - k_{6,6}$$

$$f_{D2,2} = f_{D8,8} = \frac{L_{D_{1}}}{2EA_{D}\left(\frac{b_{2}}{L_{D_{2}}}\right)^{2}}$$

$$L_{D_{2}} = \sqrt{b_{2}^{2} + L^{2}}$$

$$\begin{bmatrix} k_{3,3} & k_{3,5} \\ k_{5,3} & k_{5,5} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{9,9} & k_{9,11} \\ k_{11,9} & k_{11,11} \end{bmatrix}_{\text{with shear deformation}} \right)^{-1}$$

$$k_{3,9} = k_{9,3} = -k_{3,3}$$

$$k_{3,11} = k_{11,5} = -k_{3,5}L - k_{5,5}$$

$$k_{5,11} = k_{11,5} = -k_{3,5}L - k_{5,5}$$

$$k_{5,12} = k_{2,2} - k_{2,2}L_{D}\left(\frac{b_{2}}{L_{D_{2}}}\right)^{2}$$

The new coefficients should substitute the ones in the previous presented linear stiffness matrix (Eqn. 3.2).

Besides the previous matrix, it is required the addition of a non-linear stiffness matrix, K_{NL} , to account for geometric non-linearity. The Non-linear stiffness matrix is given by,

	0	0	0	0	0	0	0	0	0	0	0	0]	
	0	$\frac{6P}{5L}$	0	0	0	$\frac{P}{10}$	0	$-\frac{6P}{5L}$	0	0	0	$\frac{P}{10}$	
	0	0	$\frac{6P}{5L}$	0	$-\frac{P}{10}$	0	0	0	$-\frac{6P}{5L}$	0	$-\frac{P}{10}$	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	$-\frac{P}{10}$	0	$\frac{2LP}{15}$	0	0	0	$\frac{P}{10}$	0	$-\frac{PL}{30}$	0	
K.,, =	0	$\frac{P}{10}$	0	0.	0	$\frac{2LP}{15}$	0	$-\frac{P}{10}$	0	0	0	$-\frac{PL}{30}$	
NL .	0	0	0	0	0	0	0	0	0	0	0	0	(3.6)
	0	$-\frac{6P}{5L}$	0	0	0	$-\frac{P}{10}$	0	$\frac{6P}{5L}$	0	0	0	$-\frac{P}{10}$	
	0	0	$-\frac{6P}{5L}$	0	$\frac{P}{10}$	0	0	0	$\frac{6P}{5L}$	0	$\frac{P}{10}$	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	$-\frac{P}{10}$	0	$-\frac{PL}{30}$	0	0	0	$\frac{P}{10}$	0	$\frac{2LP}{15}$	0	
	0	$\frac{P}{10}$	0	0	0	$\frac{PL}{30}$	0	$-\frac{P}{10}$	0	0	0	$\frac{2LP}{15}$	

The axial force P is the average axial force in the two node of the element; it is calculated in the subroutine that calculates the elements forces, thus it is considered equal to zero for the first load step. The axial force is defined as positive if the element is in tension.

The mass is assumed uniformly distributed along the element length. Therefore, the consistent mass matrix of a uniform beam-column will be used, and is given by:

-	140	0	0	0	0	0	70	0	0	0	0	0	
	0	156	0	0	0	22 <i>L</i>	0	54	0	0	0	-13L	
	0	0	156	0	-22L	0	0	0	54	0	13 <i>L</i>	0	
	0	0	0	$\frac{140J_x}{4A_L}$	0	0	0	0	0	$\frac{70J_x}{4A_L}$	0	0	
	0	0	-22L	0	4 <i>L</i> ²	0	0	0	-13L	0	-3L ²	0	
	0	22 L	0	0	0	4 <i>L</i> ²	0	13 <i>L</i>	0	0	0	-3L	<i>(</i>)
M = A O A	70	0	0	0	0	0	140	0	0	0	0	0	(3.7)
	0	54	0	0	0	13 <i>L</i>	0	156	0	0	0	-22L	
	0	0	54	0	-13L	0	0	0	156	0	22 <i>L</i>	0	
	0	0	0	$\frac{70J_x}{4A_L}$	0	0	0	0	0	$\frac{140J_x}{4A_L}$	0	0	
	0	0	13 <i>L</i>	0	$-3L^{2}$	0	0	0	22 <i>L</i>	0	4 <i>L</i> ²	0	
	0	-13L	0	0	0	-3L	0	-22.L	0	0	0	$4L^2$	

where

$$AUX = \frac{\left(4A_{L}\rho + \frac{4A_{D}L_{D}\rho}{L}\right)L}{420}$$
$$J_{x} = I_{y} + I_{z}$$
$$L_{D} = \frac{\sqrt{b_{z}^{2} + L^{2}} + \sqrt{b_{y}^{2} + L^{2}}}{2}$$
(3.8)

3.1.2. TOWER TAPERED SHAFT

The tapered shaft tower, Figure 3.5, is modeled with the same assumptions as the straight shaft, i.e. a beam-column element with equivalent geometric properties. The difference is that the inertias are not constant.

Figure 3.5 - Tapered shaft segment.

The equivalent section properties of the tapered element representing a lattice segment are defined as the following:

$$A = 4A_{L}$$

$$I_{y}(x) = 4\left[A_{L}\begin{pmatrix}b_{z}(x)/2\\2\end{pmatrix}^{2}\right] = A_{L}\left[b_{z}(x)\right]^{2}$$

$$I_{z}(x) = 4\left[A_{L}\begin{pmatrix}b_{y}(x)/2\\2\end{pmatrix}^{2}\right] = A_{L}\left[b_{y}(x)\right]^{2}$$

$$b_{y}(x) = b_{Botton_{y}}\left(1 - \beta_{y}x\right)$$

$$b_{z}(x) = b_{Botton_{z}}\left(1 - \beta_{z}x\right)$$

$$\beta = \frac{b_{Botton_{z}} - b_{Top}}{b_{Botton_{L}}}$$
(3.9)

Similar to the case of a straight shaft, the area of the diagonal bars, A_D is not considered, as they are only assumed to resist shear.

As can be seen that the inertia is not constant along the element length, a formulation for the stiffness matrix of a tapered beam-column is presented in the following:

Consider a simple supported beam in the xy-plane with varying moment of inertia along its length subjected to end moments and a compressive force as shown in Figure 3.6.

$$EI_{z}(x)\frac{\partial^{2}y(x)}{\partial x^{2}} = M(x)$$

$$EI_{z}(x)\frac{\partial^{2}y(x)}{\partial x^{2}} = R_{A}x - M_{A} - Py(x)$$

$$EI_{z}(x)\frac{\partial^{2}y(x)}{\partial x^{2}} = \frac{M_{A} + M_{B}}{L}x - M_{A} - Py(x)$$

$$\frac{\partial^{2}y(x)}{\partial x^{2}} = \frac{\frac{(M_{A} + M_{B})x}{L} - M_{A}}{EI_{z}(x)} - \frac{Py(x)}{EI_{z}(x)}$$

$$\frac{\partial^{2}y(x)}{\partial x^{2}} = \frac{\frac{(M_{A} + M_{B})x}{L} - M_{A}}{EI_{a}(x)} - \frac{Py(x)}{EI_{z}(x)}$$
(3.10)

where
$$\rho = \sqrt{\frac{|P|}{EI_{Botton}}}$$
.

Solving the differential equation for displacement together with the boundary conditions y(0) = 0 and y(L) = 0, the slope of the beam is obtained to be:

 $+\frac{M_A+M_B}{\rho^2 LEI_{Botton}}$

Rearranging the solutions and calculating for the nodes:

$$\begin{aligned} \theta_{A} &= \theta(0) = \left[-\frac{\beta^{2} \left[\left(\frac{1}{\beta} \right)^{a+b} \left(L + \frac{1}{\beta} \right)^{a-b} \left(a+b \right) - \left(\frac{1}{\beta} \right)^{a-b} \left(L + \frac{1}{\beta} \right)^{a+b} \left(a-b \right) \right]}{P \sqrt{L\beta + 1} \left[\left(L + \frac{1}{\beta} \right)^{b} \left(\frac{1}{\beta} \right)^{-b} - \left(\frac{1}{\beta} \right)^{b} \left(L + \frac{1}{\beta} \right)^{-b} \right]} + \frac{1}{PL} \right] M_{A} \\ &+ \left[-\frac{2\beta b}{P \sqrt{L\beta + 1} \left[\left(L + \frac{1}{\beta} \right)^{b} \left(\frac{1}{\beta} \right)^{-b} - \left(\frac{1}{\beta} \right)^{b} \left(L + \frac{1}{\beta} \right)^{-b} \right]} + \frac{1}{PL} \right] M_{B} = f_{1}M_{A} + f_{2}M_{B} \\ \theta_{B} &= \theta(L) = \left[-\frac{2\beta b}{P \sqrt{L\beta + 1} \left[\left(L + \frac{1}{\beta} \right)^{b} \left(\frac{1}{\beta} \right)^{-b} - \left(\frac{1}{\beta} \right)^{b} \left(L + \frac{1}{\beta} \right)^{-b} \right]} + \frac{1}{PL} \right] M_{A} \end{aligned}$$

$$(3.12)$$

$$\theta_{B} &= \theta(L) = \left[-\frac{2\beta b}{P \sqrt{L\beta + 1} \left[\left(L + \frac{1}{\beta} \right)^{b} \left(\frac{1}{\beta} \right)^{-b} - \left(\frac{1}{\beta} \right)^{b} \left(L + \frac{1}{\beta} \right)^{-b} \right]} + \frac{1}{PL} \right] M_{A} \\ &+ \left[-\frac{\beta \left[\left(L + \frac{1}{\beta} \right)^{a+b} \left(a+b \right) \left(\frac{1}{\beta} \right)^{-b} - \left(L + \frac{1}{\beta} \right)^{a-b} \left(a-b \right) \left(\frac{1}{\beta} \right)^{a+b} \right]}{P \sqrt{L\beta + 1} \left[\left(L + \frac{1}{\beta} \right)^{b} \left(\frac{1}{\beta} \right)^{-b} - \left(\frac{1}{\beta} \right)^{b} \left(L + \frac{1}{\beta} \right)^{-b} \right]} M_{B} = f_{2}M_{A} + f_{3}M_{B} \end{aligned}$$

For compression (P>0):

$$b = \frac{\sqrt{\beta^2 - 4\rho^2}}{2\beta}$$

$$a = \frac{1}{2}$$
(3.13)

For tension (P<0):

$$b = \frac{\sqrt{\beta^2 + 4\rho^2}}{2\beta}$$
(3.14)
$$a = \frac{1}{2}$$

Eqn. 3.12 can be written in the matrix form as:

$$\begin{cases}
\theta_{A} \\
\theta_{B}
\end{cases} = \begin{bmatrix}
f_{1} & f_{2} \\
f_{2} & f_{3}
\end{bmatrix} \begin{cases}
M_{A} \\
M_{B}
\end{cases}$$

$$\begin{cases}
M_{A} \\
M_{B}
\end{cases} = \begin{bmatrix}
f_{1} & f_{2} \\
f_{2} & f_{3}
\end{bmatrix}^{-1} \begin{cases}
\theta_{A} \\
\theta_{B}
\end{cases} = \begin{bmatrix}
S_{1} & S_{2} \\
S_{2} & S_{3}
\end{bmatrix} \begin{cases}
\theta_{A} \\
\theta_{B}
\end{cases}$$
(3.15)

where S_1 , S_2 , and S_3 are stiffness coefficients obtained numerically. Similar procedure is carried out for the element in the *xz*-plane. As well, the same method can be used for zero axial force members.

Consider a member with ends having relative transverse displacement of Δ as shown in Figure 3.7 (Chen and Lui, 1991).

Figure 3.7 - Sway effect.

The end moments can be written as:

$$M_{A} = S_{1} \left[\theta_{A} - \tan^{-1} \left(\frac{\Delta}{L} \right) \right] + S_{2} \left[\theta_{B} - \tan^{-1} \left(\frac{\Delta}{L} \right) \right]$$

$$M_{B} = S_{2} \left[\theta_{A} - \tan^{-1} \left(\frac{\Delta}{L} \right) \right] + S_{3} \left[\theta_{B} - \tan^{-1} \left(\frac{\Delta}{L} \right) \right]$$
(3.16)

For small $\frac{\Delta}{L}$:

$$M_{A} = S_{1}\theta_{A} + S_{2}\theta_{B} - (S_{1} + S_{2})\frac{\Delta}{L}$$

$$M_{B} = S_{2}\theta_{A} + S_{3}\theta_{B} - (S_{2} + S_{3})\frac{\Delta}{L}$$
(3.17)

From equilibrium:

$$SL + P\Delta + M_{A} + M_{B} = 0$$

$$S = -\frac{P\Delta + M_{A} + M_{B}}{L}$$

$$S = -\frac{1}{L} \left[S_{1}\theta_{A} + S_{2}\theta_{B} - (S_{1} + S_{2})\frac{\Delta}{L} + S_{2}\theta_{A} + S_{3}\theta_{B} - (S_{2} + S_{3})\frac{\Delta}{L} + P\Delta \right]$$

$$S = \left[-\left(\frac{S_{1} + S_{2}}{L}\right)\theta_{A} - \left(\frac{S_{1} + S_{2}}{L}\right)\theta_{A} + \left(\frac{S_{1} + 2S_{2} + S_{3}}{L^{2}} + \frac{P}{L}\right)\Delta \right]$$
(3.18)

Arranging for a matrix form:

$$\begin{cases} M_A \\ M_B \\ S \\ P \end{cases} = \begin{bmatrix} S_1 & S_2 & -\frac{S_1 + S_2}{L} & 0 \\ S_2 & S_3 & -\frac{S_2 + S_3}{L} & 0 \\ -\frac{S_1 + S_2}{L} & -\frac{S_2 + S_3}{L} & \frac{S_1 + 2S_2 + S_3 - PL}{L^2} & 0 \\ 0 & 0 & 0 & \frac{EA}{L} \end{bmatrix} \begin{pmatrix} \theta_A \\ \theta_B \\ \Delta \\ e \end{pmatrix}$$
(3.19)

The torsion stiffness is calculated with the same procedure as the tower straight shaft, assuming an average tower width. With the expansion for the z direction, the stiffness matrix becomes:

$$K = \begin{bmatrix} k_{1,1} & 0 & 0 & 0 & 0 & k_{1,7} & 0 & 0 & 0 & 0 & k_{2,12} \\ 0 & k_{2,2} & 0 & 0 & 0 & k_{2,6} & 0 & k_{2,8} & 0 & 0 & 0 & k_{2,12} \\ 0 & 0 & k_{3,3} & 0 & k_{3,5} & 0 & 0 & 0 & k_{3,9} & 0 & k_{3,11} & 0 \\ 0 & 0 & 0 & k_{4,4} & 0 & 0 & 0 & 0 & 0 & k_{4,10} & 0 & 0 \\ 0 & 0 & k_{5,3} & 0 & k_{5,5} & 0 & 0 & 0 & k_{5,9} & 0 & k_{5,11} & 0 \\ 0 & k_{6,2} & 0 & 0 & 0 & k_{6,6} & 0 & k_{6,8} & 0 & 0 & 0 & k_{6,12} \\ k_{7,1} & 0 & 0 & 0 & 0 & 0 & k_{7,7} & 0 & 0 & 0 & 0 & 0 \\ 0 & k_{8,2} & 0 & 0 & 0 & k_{8,6} & 0 & k_{8,8} & 0 & 0 & k_{8,12} \\ 0 & 0 & k_{9,3} & 0 & k_{9,5} & 0 & 0 & 0 & k_{9,9} & 0 & k_{9,11} & 0 \\ 0 & 0 & 0 & k_{10,4} & 0 & 0 & 0 & 0 & k_{10,10} & 0 & 0 \\ 0 & 0 & k_{11,3} & 0 & k_{11,5} & 0 & 0 & 0 & k_{12,8} & 0 & 0 & 0 & k_{12,12} \end{bmatrix}$$

$$\begin{aligned} k_{1,1} &= k_{7,7} = -k_{1,7} = -k_{7,1} = \frac{4EA_L}{L} \\ k_{2,2} &= -k_{2,8} = -k_{8,2} = k_{8,8} = \frac{S_{1z} + 2S_{2z} + S_{3z} - PL}{L^2} \\ k_{2,6} &= k_{6,2} = -k_{6,8} = -k_{8,6} = \frac{S_{1z} + S_{2z}}{L} \\ k_{2,12} &= k_{12,2} = -k_{8,12} = -k_{12,8} = \frac{S_{2z} + S_{3z}}{L} \\ k_{6,6} &= S_{1z} \\ k_{6,12} &= k_{12,6} = S_{2z} \\ k_{12,12} &= S_{3z} \end{aligned}$$

$$k_{4,4} = -k_{4,10} = -k_{10,4} = k_{10,10} = EA_D \frac{\sqrt{b_{y\,aver}^2 + b_{z\,aver}^2}}{2} \left[\frac{b_{z\,aver}^2 b_{y\,aver}}{(\sqrt{L^2 + b_{z\,aver}^2})^3} + \frac{b_{y\,aver}^2 b_{z\,aver}}{(\sqrt{L^2 + b_{y\,aver}^2})^3} \right]$$
(3.20)

$$k_{3,3} = -k_{3,9} = -k_{9,3} = k_{9,9} = \frac{S_{1y} + 2S_{2y} + S_{3y} - PL}{L^2}$$

$$-k_{3,5} = -k_{5,3} = k_{5,9} = k_{9,5} = \frac{S_{1y} + S_{2y}}{L}$$

$$-k_{3,11} = -k_{11,3} = k_{9,11} = k_{11,9} = \frac{S_{2y} + S_{3y}}{L}$$

$$k_{5,5} = S_{1z}$$

$$k_{5,11} = k_{11,5} = S_{2z}$$

$$k_{11,11} = S_{3z}$$

Г

$$\begin{split} I_{y} &= A\beta_{x}^{2} B_{xnom} \\ I_{z} &= A\beta_{y}^{2} B_{xnom} \\ a &= \frac{1}{2} \\ \beta_{y} &= \frac{b_{x} T_{y} - b_{x} B_{xnom} L}{b_{x, B_{xnom}} L} \\ \beta_{z} &= \frac{b_{y} T_{y} - b_{x} B_{xnom} L}{b_{x, B_{xnom}} L} \\ if \left(-10^{-7} \text{ or } -\frac{EI_{xno}}{L^{2}} 10^{-3}\right) < P < \left(10^{-7} \text{ or } \frac{EI_{xno}}{L^{2}} 10^{-3}\right) \\ f_{u} &= \frac{L^{2} \beta_{x}^{2} + 2L\beta_{x} - 2\ln(L\beta_{x} + 1)(L\beta_{x} + 1)}{L^{2} EI_{x} \beta_{x}^{2}} \\ f_{u} &= \frac{2L\beta_{x} - \ln(L\beta_{x} + 1)(L\beta_{x} + 2)}{L^{2} EI_{x} \beta_{x}^{2}} \\ f_{u} &= \frac{2L\beta_{x} - \ln(L\beta_{x} + 1)(L\beta_{x} + 2)}{L^{2} EI_{x} \beta_{x}^{2}} \\ if P < \left(-10^{-7} \text{ or } -\frac{EI_{xno}}{L^{2}} 10^{-3}\right) \\ b_{i} &= \frac{\sqrt{\beta_{x}^{2} + 4\frac{|P|}{L\beta_{x}}}}{2\beta_{x}} \\ if P > \left(10^{-7} \text{ or } \frac{EI_{xno}}{L^{2}} 10^{-3}\right) \\ b_{i} &= \frac{\sqrt{\beta_{x}^{2} + 4\frac{|P|}{L\beta_{x}}}}{2\beta_{x}} \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(\frac{1}{\beta_{x}}\right)^{a+b_{x}} \left(1 + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(a+b_{x}\right) - \left(\frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{x}}\right)^{a+b_{x}} \left(a-b_{x}\right) \right] \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(\frac{1}{\beta_{x}}\right)^{a+b_{x}} \left(1 + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(a+b_{x}\right) - \left(\frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{x}}\right)^{a+b_{x}} \left(1 + \frac{1}{\beta_{x}}\right)^{a+b_{x}} \right] \\ f_{u} &= -\frac{2\beta\beta_{x}}}{P\sqrt{L\beta_{x}} + 1} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(-\frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(-\frac{1}{\beta_{x}}\right)^{b+b_{x}} + \frac{1}{PL} \right] \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(a+b_{x}\right) \left(\frac{1}{\beta_{x}}\right)^{b+b_{x}} - \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \right] \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(a+b_{x}\right) \left(\frac{1}{\beta_{x}}\right)^{b+b_{x}} - \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} + \frac{1}{PL} \right] \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(a+b_{x}\right) \left(\frac{1}{\beta_{x}}\right)^{b+b_{x}} - \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \right] \\ f_{u} &= -\frac{\beta_{x}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(1 + \frac{1}{\beta_{x}}\right)^{b+b_{x}} - \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \right] \\ f_{u} &= -\frac{\beta_{u}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} - \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \right] \\ f_{u} &= -\frac{\beta_{u}^{2} \left[\left(L + \frac{1}{\beta_{x}}\right)^{b+b_{x}} \left(L + \frac{1}{\beta_{$$

If the shear deformation analysis is used, the same procedure used in the straight shaft element is adopted. The shear flexibility coefficients are obtained following the formulation in Eqn. 3.22.

$$\begin{bmatrix} k_{2,2} & k_{2,6} \\ k_{6,2} & k_{6,6} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{2,2} & k_{2,6} \\ k_{6,2} & k_{6,6} \end{bmatrix}^{-1} + \begin{bmatrix} flexshear_{2,2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$\begin{bmatrix} k_{8,8} & k_{8,12} \\ k_{12,8} & k_{12,12} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{8,8} & k_{8,12} \\ k_{12,8} & k_{12,12} \end{bmatrix}^{-1} + \begin{bmatrix} flexshear_{8,8} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$k_{2,8} = k_{3,2} = -k_{2,2}$$

$$k_{2,12} = k_{12,2} = k_{2,2}L - k_{2,6}$$

$$k_{6,3} = k_{5,6} = -k_{2,6}$$

$$k_{6,12} = k_{12,6} = k_{2,6}L - k_{6,6}$$

$$flexshear_{2,2} = flexshear_{8,8} = -\frac{L_{D_2}}{2EA_D} \left(\underbrace{ \begin{pmatrix} b_{y, Bottom} + b_{y, Top} \\ 2 \\ L_{D_2} \end{pmatrix}^2}_{L_{D_2}} \right)^2 + L^2 + \left(\frac{b_{x, Bottom} - b_{x, Top}}{2} \right)^2$$

$$\begin{bmatrix} k_{3,9} & k_{3,1} \\ k_{1,9} & k_{1,11} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{9,9} & k_{9,11} \\ k_{11,9} & k_{1,11} \end{bmatrix}^{-1} + \begin{bmatrix} flexshear_{3,0} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$k_{3,9} = k_{3,9} = -k_{3,3}$$

$$k_{3,11} = k_{1,3} = -k_{3,3}L - k_{3,5}$$

$$flexshear_{3,3} = flexshear_{9,9} = -\frac{L_{D_2}}{2EA_D} \left(\underbrace{ \begin{pmatrix} b_{y, Bottom} + b_{y, Top} \\ k_{1,9} & k_{1,11} \end{bmatrix}_{\text{with shear deformation}} = \left(\begin{bmatrix} k_{9,9} & k_{9,11} \\ k_{1,9} & k_{1,11} \end{bmatrix}^{-1} + \begin{bmatrix} flexshear_{9,9} & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1}$$

$$k_{3,9} = k_{9,3} = -k_{3,3}$$

$$k_{3,11} = k_{1,3} = -k_{3,3}L - k_{3,5}$$

$$flexshear_{3,3} = flexshear_{9,9} = -\frac{L_{D_2}}{2EA_D} \left(\underbrace{ \begin{pmatrix} b_{y, Bottom} + b_{y, Top} \\ k_{1,9} & k_{1,11} \end{bmatrix}^{-1} + k_{1,1} = -k_{3,3}L - k_{3,5}$$

$$flexshear_{3,3} = flexshear_{9,9} = -\frac{L_{D_2}}{2EA_D} \left(\underbrace{ \begin{pmatrix} b_{y, Bottom} + b_{y, Top} \\ 2 \\ L_{D_2} \end{bmatrix}^{-1} \right)^{-1}$$

$$(3.22)$$

The axial force P is the average axial force in the two nodes of the element; it is considered equal to zero for the first load step. The axial force is defined as negative if the element is in tension.

As the straight tower element, the mass is also considered to be constant along the element length and given by,

	140	0	0	0	0	0	70	0	0	0	0	0	
	0	156	0	0	0	22 <i>L</i>	0	54	0	0	0	-13L	
	0	0	156	0	22L	0	0	0	54	0	13L	0	
-	0	0	0	$\frac{140J_x}{4A_L}$	0	0	0	0	0	$\frac{70J_x}{4A_L}$	0	0	
	0	0	-22L	0	4 <i>L</i> ²	0	0	0	-13L	0	$-3L^{2}$	0	
M. AUV	0	22L	0	0	0	4 <i>L</i> ²	0	13 <i>L</i>	0	0	0	-3L	
M = A U X	70	0	0	0	0	0	140	0	0	0	0	0	(3.23)
	0	54	0	0	0	13 <i>L</i>	0	156	0	0	0	-22L	
	0	0	54	0	-13L	0	0	0	156	0	22 <i>L</i>	0	
	0	0	0	$\frac{70J_x}{4A_L}$	0	0	0.	0	0	$\frac{140J_x}{4A_L}$	0	0	
	0	0	13 <i>.</i> L	0	$-3L^{2}$	0	0	0	22L	0	4 <i>L</i> ²	0	
	0 .	-13L	0	0	0	-3L	0	 22L	0	0	,0	4 <i>L</i> ²	
$AUX = \frac{4}{4}$	$\frac{4_{D}\rho + \frac{4_{D}}{42}}{42}$	$\left(\frac{A_D L_D \rho}{L}\right) I$	<u>-</u>									-	
$J_x = I_y + I_z$		•										•	
$L_D = \frac{L_{Dy} + 1}{2}$	L _{Dz}												

3.2.INSULATOR STRING

The insulator was modeled as a truss element as done by many researchers such as Rodrigues (1999) and Oliveira (2006). The stiffness matrix of a truss element is given in the Eqn. 3.24.

	1	0	0	0	0	0	-1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	10 ⁻¹⁰	0	0	0	0	0	0	0	0	
	0	0	0	0	10-10	0	0	0	0	0	0	0	
$\kappa = EA$	0	0	0	0	0	10 ⁻¹⁰	0	0	0	0	0	0	(3.24)
$K_L = \frac{1}{L}$	-1	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	-
	0	0	0	0	0	0	0	0	0	10 ⁻¹⁰	0	0	
	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁰	0	
	0	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁰	

However, it can be noticed that some of the diagonal terms in the above equation are zero. This causes numerical instability in the first step of calculation. To avoid this instability, the technique outlined by Mathur (1985) and Mathur, et al. (1987) will be used to evaluate the initial stiffness matrix. The formulation of this initial stiffness matrix is briefed in the followings.

Figure 3.8 - Insulator string.

Consider an insulator string in Figure 3.8, the horizontal stiffness of the insulator string can be formulated using the moment equilibrium about the hinge A.

$$F_w(L_i - y) - \frac{W_i x}{2} - W_c x = 0$$

Solving for F_w yields:

ų,

$$F_{w} = \frac{x(W_{i} + 2W_{c})}{2(L_{i} - y)} = \frac{x(W_{i} + 2W_{c})}{2L_{i}[1 - 1 + \cos(\theta)]}$$

$$F_{w} = \frac{x(W_{i} + 2W_{c})}{2L_{i}\cos\left[\sin^{-1}\left(\frac{x}{L_{i}}\right)\right]} = \frac{x(W_{i} + 2W_{c})}{2L_{i}\sqrt{1 - \frac{x^{2}}{L_{i}^{2}}}}$$
(3.25)

where F_w is the wind force, W_i is the weight of the insulator string and is assumed to be uniformly distributed along the length, W_c is the weight of the cable, L_i is the length of the insulator, θ is the rotation at the hinge and x is the horizontal displacement of the cable. The stiffness matrix of the insulator string element for the first step can therefore be written in the same form as the nonlinear stiffness matrix of an axial force member as follows:

The axial load P in the initial stiffness matrix, Eqn. 3.26, is represented by half of the weight of the insulator string plus the weight of the conductor span. The axial force is defined as positive if the element is in tension. The program recalculates the axial load P after the first step using the average of the axial forces at the end nodes.

The mass matrix of the insulator string is formulated using the consistent mass as carried out for a truss element. Eqn. 3.27 shows the mass matrix of the insulator string used in this study.

	2	0	0	0	0	0	1	0	0	0	0	0	
	0	2	0	0	0	0	0	1	0	0	0	0	
	0	0	2	0	0	0	0	0	1	0	0	0	
	0	0	0	10-15	0	0	0	0	0	0	0	0	
	0	0	0	0	10 ⁻¹⁵	0	0	0	0	0	0	0	(2.07)
$M = \frac{A\rho L}{\rho L}$	0	0	0	0	0	10 ⁻¹⁵	0	0	0	0	0	0	(3.27)
6	1	0	0	0	0	0	2	0	0	0	0	0	
	0	1	0	0	0	0	0	2	0	0	0	0	
	0	0	1	0	0	0	0	0	2	0	0	0	
	0	0	0	0	0	0	0	0	0	10 ⁻¹⁵	0	0	
	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁵	0	
	0	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁵	

3.3.CABLE

A cable when subjected to distributed load along its length such as self weight will have a catenary shape. This deformed shape can however be approximated using parabolic function as presented in Sussekind (1982), shown in Figure 3.9. He proved that using parabolic approximation for a horizontal cable with sag-to-cable length ratio of 0.2 led to 6% error in an axial force and 0.5% error in the deformed length. In this thesis, parabolic approximation will be assumed.

Figure 3.9 - Cable element.

In the analysis, it is important to apply the pretension force and the self-weight of the cable simultaneously in the first load step. If the self-weight is applied after the pretension force, the predicted sag will be less than the actual value while the resulting cable tension will be higher. Note that, the behavior of the cable is nonlinear after the first load step. The linear stiffness matrix used in this study was taken from Hajdin, et al. (2000) while the nonlinear part was assumed to be the same as that for a truss element, Eqn. 3.26. Similarly, the mass matrix for the cable element was derived using the consistent mass and the resulting mass matrix is the same as Eqn. 3.27 for the insulator string element. The linear stiffness matrix is given by:

	1	0	0	0	0	0	-1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	10-10	0	0	0	0	0	0	0	0	
	0	0	0	0	10 ⁻¹⁰	0	0	0	0	0	0	0	
$K = \frac{E_{eq}A}{E_{eq}A}$	0	0	0	0	0	10-10	.0	0	0	0	0	0	(3.28)
L^{L}	-1	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	10 ⁻¹⁰	0	0	[
	0	0	0	0	0	0	0	0	0	0	10-10	0	
	0	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁰	
$\alpha = \tan\left(\frac{1}{\sqrt{2}}\right)$	$\frac{ DY }{DX^2 + I}$	$\overline{DZ^2}$											
g = 9.81 m/	′s²												
$q_x = \rho A g \operatorname{si}$	$n(\alpha)$												
$q_z = \rho A g c d$	$\cos(\alpha)$												
$E_{eq}A =$	(<i>EA</i>	$P = \frac{2q_x l}{r}$	<u>}</u>								
$1 + \frac{1}{2}$	$\left \begin{array}{c} \frac{EA}{24} \right \left(q_z \right) \right $	$L)^2 \frac{1}{\left(P\right)^2}$	2_ <u>2q</u>	$\frac{3}{xLP} + \left(\frac{4}{3}\right)$	$\left(\frac{1}{2}\frac{q_{x}L}{3}\right)^{2}$								

Similar to the case of the insulator string element, the linear stiffness matrix of the cable contain zero coefficients on the diagonal. Therefore, the nonlinear stiffness matrix was added in with the load P be the initial pretension in the cable for the first load step. P is recalculated in each step.

3.4.SPRING ELEMENT

The spring element was used at the terminations of the line representing the cables or the extremity towers. The mass and self-weight load of the spring element was assumed to be applied only on the unrestrained node (the element must be restrained at node 1 and the load must be applied at node 2). This element is the only one in the program library that can have zero length. All of its properties must be given in the global coordinate system.

The Stiffness matrix is given by:

	KUX	0	0	0	0	0	-KUX	0	0	0	0	0	
	0	KUY	0	0	0	0	0	-KUY	0	0	0	0	
	0	0	KŲZ	0	0	0	0	0	-KUZ	• 0	0	0	
	0	0	0	KRX	0	0	0	0	0	-KRX	0	0	
	· 0	0	0	0	KRY	0	0	0	0	0	-KRY	0	
v _	0	0	0	0	0	KRZ	0	0	0	0	0	-KRZ	
<i>⊾^L</i> =	-KUX	0	0	0	0	0	KUX	0	0	0	0	0	(3.29)
	0	-KUY	0	0	0	0	0	KYY	0	0	0	0	
	0	0	-KUZ	0	0	0	0	0	KUZ	0	0	0	
	0	0	0	-KRX	0	0	0	0	0	KRX	0	0	
	0	0	0	0	-KRY	0	0	0	0	0	KRY	0	
	0	0	0	0	0	-KRZ	0	0	0	0	0	KRZ	

where *KUX,KUY* and *KUZ* are the translational stiffness coefficients in the global x-, y-, and z-directions, respectively, and *KRX,KRY* and *KRZ* are the rotational stiffness parameters which generally are zero. Note that although the rotational stiffness coefficients are theoretically equal to zero, small values should be input for numerical stability.

Since the mass of the spring is considered applied only on node 2 as stated, the Mass matrix, *M*, is given by,

	10-15	0	0	0	0	0	0	0	0	0	0	0	
	0	10-15	0	0	0	0	0	0	0	0	0	0	
	0	0	10 ⁻¹⁵	0	0	0	0	0	0	0	0	0	
	0	0	0	10 ⁻¹⁵	0	0	0	0	0	0	0	0	
	0	0	0	0	10 ⁻¹⁵	0	0	0	0	0	0	0	(2.20)
M - MY	0	0	0	0	0	10-15	0	0	0	0	0	0	(3.30)
141 - 14171	0	0	0	0	0	0	1	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	0	0	0	0	1
	0.	0	0	0	0	0	0	0	1	0	0	0	ł
	0	0	0	0.	0	0	0	0	0	10-15	0	0	
	0	0	0	0	0	0	0	0	0	0	10 ⁻¹⁵	0	
	0	0	0	0	0	0	0	0	0	0	0	10-15	

Where *MX* is the mass of the spring in tons.

4. VALIDATION OF PROGRAM

An in-house program, SADAP-Static and Dynamic Analysis Program, was developed using FORTRAN. All the elements described in the previous chapter were incorporated in the program. A series of test problems was created to verify all the elements and procedures of the program. The results were compared with results from other commercial FE programs, published or theoretical results. Only some of the examples are presented in this chapter. Other examples are included in the Appendix - B.

4.1.ACCEPTANCE CRITERIA

The program was considered acceptable if the difference between the program results and the available results did not exceed five percent for displacements and ten percent for internal forces. When the simplified tower models were verified with detailed tower models, the results were acceptable if the difference of the results did not exceed ten percent for displacements and natural frequencies values.

The percentage difference is calculated using the following formula (SAP2000, 2006):

$$P.D. = 100 \left(\frac{\text{Re sults from program}}{\text{Re sults from other source}} - 1 \right) \%$$
(4.1)

The maximum percentage difference of displacement and internal forces (when applicable) is provided in the end of each example.

The examples were divided into eight groups. Each group division was based on the element type. Table 4.1 summarizes all the examples.

		Beam-column	1	
Example No.	Example name	Features tested	Analysis type	Method of Verification
1	General load 1	Automatic self weight Concentrated load	Unear static	Ansys version 11 Weaver and Gere, 1980
2	Local axis	Botation of the local axis	Linear static	pages 344 to 357 Weaver and Gere, 1980
	Buckling of column	Montingeneralis		pages 344 to 357
4	Figenvalue problem 1	Floorintar analysis	Nonimear static	Militano, 2000 pages 32
	cigenvalue problem 1	Eigenvalue analysis	. Ligenvalue	to 35
5	Eigenvalue problem 2	axial force	Eigenvalue	Przemieniecki, 1985 pages 403 to 406
6	Vibration 1	Dynamic solver	Linear dynamic	Battista, 2007-C page 138
		Truce		
Example No.	Example name	Featurestested	Analysic type	Mathed of Verification
		Automatic self weight		Ansys version 11
7	General load 2	Concentrated load	Linear static	Weaver and Gere, 1980 pages 343 to 345
8	Buckling	Nonlinear analysis	Nonlinear static	Theoretical results
9	Eigenvalue problem 3	Elgenvalue analysis	Eigenvalue	Mario Paz, 2004 page 434 to 437
		funda -	i	
Evample No.	Evample name	Spring		And the design of the local state of the second state of the secon
to to	Canadian	Automatic self weigth	Analysis type	Method of Verification
10	General load 3	Concentrated load	Linear static	Theoretical results
11	Eigenvalue problem 4	Eigenvalue analysis	Eigenvalue	Theoretical results
<u> </u>	Vibration 2	Dynamic solver	Linear dynamic	Theoretical results
		Cable	<u></u>	
Example No.	Example name	Features tested	Analusichung	
13	General load 4	Automatic self weigth	Nonlinear static	Theoretical results
14	Eigenvalue problem S	Eigenvalue analysis	Eigenvalue	Irvine, 1992 page 192
		Tanered towe	r	
Example No.	Example name	Features tested	Analysis type	Method of Verification
15	General load 5	Automatic self weigth	Nonlinear static	Frame and Truss element
16	Eigenvalue problem 6	Eigenvalue analysis	Eigenvalue	Frame and Truss element
]			
	Bea	m-column (stability	functions)	
Example No.	Example name	Features tested	Analysis type	Method of Verification
17	General load 6	Uniform distributed load	Linear static	Ansys version 11 Weaver and Gere, 1980
18	Local axis	Rotation of the local axis	Linear static	Ansys version 11
19	Buckling of column	Nonlinar analysis	Nonlinear static	Theoretical results
20	Eigenvalue problem 7	Eigenvalue analysis	Eigenvalue	Militano, 2000 pages 32 to 35
21	Eigenvalue problem 8	Eigenvalue analysis with axial force	Elgenvalue	Przemieniecki, 1985 pages 403 to 406
22	Vibration 3	Dynamic solver	Linear dynamic	Battista, 2007-C page 138
	<u> </u>	Inculates at 1		
Example No.	Example name	Insulator string		
	General load 7	Automatic self weigth	Analysis type	wethod of Verification
	General load /	Concentrated load	Nonlinear static	Theoretical results
24	Eigenvalue problem 9	Eigenvalue analysis	Eigenvalue	Theoretical results
25	vipratión 4	Dynamic solver	Linear dynamic	Theoretical results
	·	Straigth tower	····	
Example No.	Example name	Features tested	Analysistema	Method of Varidiant
26	General land 2	Automatic self weigth	Analysis type	Frame and Truss element
20	General 10a0 8	Concentrated load	Nonlinear static	comparation
27	Eigenvalue problem 8	Eigenvalue analysis	Eigenvalue	Frame and Truss element

Table 4.1 - Summary of examples.

4.2. EXAMPLES

As stated, only some examples will be presented in this Chapter. The rests are included in the Appendix - B.

Example No. 11:

This example was chosen to verify the Eigenvalue analysis of the spring element. The results where compared with a theoretical analysis. The spring is directly attached to a mass, m of 5 tons. The properties of the spring are

KUX = 30 kN/m KUY = 20 kN/m KUZ = 35 kN/m

The natural frequencies of the system can be calculated as

$$\omega = \sqrt{\frac{k}{m}} = \begin{cases} 2.44949\\ 2.00000\\ 2.64575 \end{cases}$$
 rad/s

The SADAP results:

MOD8 1 2 3	E MODAL MA 5.00000 5.00000 5.00000	SS FRE 2.00 2.44 2.64	Q[RAD] 1000 1949 1575	FREQ[HZ] 0.31831 0.38985 0.42108		
MODA	AL SHAPES					
MODA NODE 1 2	L SHAPE: 1 E DX 0.00000 0.00000	DY 0.00000 1.00000	DZ 0.00000 0.00000	RX 0.00000 0.00000	RY RZ 0.00000 0.00000	0.00000 0.00000
MODA NODE 1 2	L SHAPE: 2 DX 0.00000 1.00000	DY 0.00000 0.00000	DZ 0.00000 0.00000	RX 0.00000 0.00000	RY RZ 0.00000 0.00000	0.00000 0.00000
MODA NODE 1	L SHAPE: 3 E DX 0.00000	DY 0.00000	DZ 0.00000 1.00000	RX 0.00000	RY RZ 0.00000	0.00000

Here P.D. = 0%

Example No. 12:

This example was chosen to verify the dynamic solver. Two systems, a SDOF and a 2DOF system, were used as shown in Figure 4.1. The results where compared with a theoretical and numerical analyses (Battista, 2007-A). The damping matrix is a Rayleigh type damping matrix, detailed in Chapter 5.

Figure 4.1 - Example No. 12.

The properties of the system are

$$m_p = 5 \text{ tons}$$
 $k_p = 20 \text{ kN/m}$ $\xi_p = 0.01 \text{ (or } c_p = 0.04 \text{ kN-s/m} \text{)}$
 $m_a = 0.05 \text{ tons}$ $k_a = 0.19 \text{ kN/m}$ $\xi_a = 0.0513 \text{ (or } c_a = 0.2 \text{ kN-s/m} \text{)}$

The applied force is described as

$$F(t) = F_0 \sin(\Omega t) = 1\sin(2t) \text{ kN}$$

Theoretical vertical displacement for the SDOF in Figure 4.1(a) is

$$y_{\max} = \frac{F_0}{k_p} \frac{1}{\sqrt{\left[1 - \left(\frac{\Omega}{w}\right)^2\right]^2 + \left(2\xi\frac{\Omega}{w}\right)^2}} = \frac{1}{20} \frac{1}{\sqrt{\left[1 - \left(\frac{2}{2}\right)^2\right]^2 + \left(2(0.01)\left(\frac{2}{2}\right)\right)^2}} = 2.5 \text{ m}$$

The result from the program, shown in Figure 4.2, is identical to the theoretical value. The results of both systems, Figure 4.2, are also compared with the results from the time-stepping technique using MathCAD, shown in Figure 4.3. The $P.D_{\text{max}} = 1.03\%$.

Figure 4.2 - Response of the systems shown in Figure 4.1 using Newmark-L

option in SADAP.

Figure 4.3 - Response of the systems shown in Figure 4.1 using time-stepping

technique in MathCAD.

Example No. 13:

This example, Figure 4.4, was chosen to verify the static analysis of the cable element. The properties of the cable and the applied force are:

L = 100 m E = 200 GPa $A = 1 \times 10^{-3} \text{ m}^2$ $\rho = 10 \text{ tons/m}^3$ $H_0 = 9.81 \text{ kN}$ F = 15.0 kN

Figure 4.4 - Cable element (Example 13).

The results were compared with theoretical results. Theoretical results can be evaluated as follows (Sussekind, 1982; Irvine, 1974):

$$d_0 = \frac{wL^2}{8H_0} = 12.5 \text{ m}$$
$$T_0 = \sqrt{H_0^2 + \left(\frac{wL}{2}\right)^2} = 10.96791 \text{ kN}$$

$$L_c = L \left[1 + 8 \left(\frac{d_0}{L} \right)^2 \right] = 112.5 \text{ m}$$

$$\lambda = \sqrt{\frac{\left(\frac{w.H_0}{L}\right)^2 L}{\frac{H_0 L_c}{EA}}} = 134.618$$

$$\left(\frac{H_f - H_0}{H_0}\right)^3 + \left(2 + \frac{\lambda^2}{24}\right) \left(\frac{H_f - H_0}{H_0}\right)^2 + \left(1 + \frac{\lambda^2}{12}\right) \left(\frac{H_f - H_0}{H_0}\right) + \frac{\lambda^2}{2} \left[\left(\frac{x_1}{L}\right) - \left(\frac{x_1}{L}\right)^2\right] \left(\frac{F}{wL}\right) \left[1 + \left(\frac{F}{wL}\right)\right] = 0$$

 $H_f = 34.76131 \,\mathrm{kN}$

$$d_f = \frac{\frac{wL}{2} + F}{4H_f} = 14.31391 \,\mathrm{m}$$

$$T_f = \sqrt{H_f^2 + \left(\frac{wL}{2} + \frac{F}{2}\right)^2} = 36.90844 \text{ kN}$$

The results from the program are shown in Figure 4.5. As can be seen in the figure, the $P.D_{MAX} = 0.92\%$

LOAD STEP= 1

CABLE ELEMENTS IN TERNAL FOR CES: (TENSION +)

ELE	M. NNODE 1	NNODE 2
4	(10,039)	40.477
-	10.000	10.477
2	10.477	10.112
3	10.112	9,8863
4	9.8863	9.8100
5	9.8100	9,8863
6	9.8863	10.112
7	10.112	10.477
8	10.477	10.963

SUPPORT REACTIONS:

NC	DE	RX	RY	RZ	MX	MY	MZ	
1	-0.8	100	4.9050	0.0000	0.0000	0.0000	0.0000	
9	9.81	100	4.9050	0.0000	0.0000	0.0000	0.0000	

DISPLACEMENTS:

NODE	TRANS.X	TRANS.Y	TRANSZ	ROT.X	ROT.Y	ROT.Z	

---- T_o

 $-d_{o}$

1	0.000000000	0.000000000	0.000000000	0.0000000000	0.0000000000	0.000000000
2	0.000000000	-5.468750000	0.000000000	0.000000000	0.0000000000	0.0000000000
3	0.0000000000	-9.375000000	0.000000000	0.000000000	0.000000000	0.000000000
4	0.000000000	-11718750000	0.0000000000	0.000000000	0.0000000000	0.000000000
5	0.00000000000	(12.50000000)	~0.000000000	0.000000000	0.000000000	0.000000000
6	0.0000000000	-11.718750000	0.00900000	0.000000000	0.000000000	0.000000000
7	0.000000000	-9.375000000	0.000000090	0.000000000	0.0000000000	0.000000000
8	0.000000000	-5.468750000	0.000000000	6.000000000	0.000000000	0.000000000
8	0.000000000	0.000000000	0.000000000	0000600000	0.0000000000	0.000000000

LOAD STEP= 101

CABLE ELEMENTS IN TERNAL FORCES: (TENSION +)

ELEM. NNODE1 NNODE2

1	(37.247)-	36.758		
2	36.813	36.447		
3	36.410	36.185		
4	36.043	35.966	Γ_{f}	
5	35,966	36.043	1	
6	36.185	36.410		
7	36.447	36.813		
8	36,756	37.247		

SUPPORT REACTIONS:

NOC	Ε	RX	RY	RZ	MX	MY	MZ	d
1	-35.0)58	12.405	0.0000	0.0000	0.0000	0.0000	. ^u ;
9	35.0	56	12.405	0.0000	0.0000	0.0000	0.0000	

TOTAL DISPLACEMENTS:

NC	DE	TRANS.	TRANS.Y	TRANSZ	ROLX	ROT.Y F	ROT.Z
1	0.0	00000000	0.00000000000000000000000000000000000	0.000000000	000000000000000	0.0000000000	0.000000000
2	0.4	43900603	-4.345603348	0.000000000	0.0000000000	0.000000000	0.000000000
Э	0.4	92037631	-8.126588955	0,00000000	0.000000000	0.000000000	0.000000000
4	0.2	39226460	-11.409258954	0.00000000	0.000000000	0.000000000	0.000000000
5	0.0	00000000	(1424016806)	0.000000000000	0.000000000	0.000000000	0.0000000000
6	-0.2	89226460	-11.409258954	0.0000000000	0.000000000	0.000000000	0.000000000
7	-0.4	92037631	-8.126588955	0.0000000000	0.0000000000	0.000000000	0.000000000
8	-0.4	43900603	-4.345803348	0.000000000	0.0000000000	0.000000000	0.000000000
9	0.0	0000000	0.000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000

Figure 4.5 - Results from SADAP.

Example No. 14:

This example, Figure 4.6, was chosen to verify the Eigenvalue analysis of the cable element. The cable is pretensioned with a force H = 9.81 kN. The geometry and mechanical properties of the cable are the same as in previous example.

Figure 4.6 - Cable element (Example 14).

The natural frequency of the cable can be calculated as (Irvine, 1992)

$$\omega_n = \frac{n.\pi}{L} \sqrt{\frac{H}{A\rho}} = 0.9839757n \text{ rad/s}$$

The first five natural frequencies of a cable are

$$\omega = \begin{cases} 0.98398\\ 1.96795\\ 2.95193\\ 3.93590\\ 4.91988 \end{cases} \text{ rad/s}$$

The SADAP results are given in Table 4.2.

Table 4.2 - Natural frequencies of the cable shown in Figure 4.6.

	Frequency [rad/s]										
Mode	Exact	4 Elements	P.D.	8 Elements	<i>P.D</i> .	16 Elements	<i>P.D.</i>	32 Elements	<i>P.D.</i>		
1	0.98398	1.00942	2.59%	0.99031	0.64%	0.98556	0.16%	0.98437	0.04%		
2	1.96795	2.16998	10.27%	2.01884	2.59%	1.98062	0.64%	1.97111	0.16%		
3	2.95193	3.52630	19.46%	3.12407	5.83%	2.99477	1.45%	2.96261	0.36%		
4	3.93590	-	-	4.33995	10.27%	4.03768	2.59%	3.96124	0.64%		
5	4.91988	-	-	5.67498	15.35%	5.11903	4.05%	4.96941	1.01%		

It can be seen that the maximum *P.D.* is 1% using 32 elements.

Example No. 15:

This example, Figure 4.7, was chosen to verify the static analysis of the tapered element. Two models of tower were created: a simplified model using tapered element described in Chapter 3 and a detailed model using beam and truss elements. The properties of the models are:

For longitudinal bars:

$$E = 210 \text{ GPa} \qquad v = 0.3 \qquad A = 1.00 \times 10^{-03} \text{ m}^2 \qquad \rho = 7.86 \text{ ton/m}^3$$

$$I_x = 2.45 \times 10^{-06} \text{ m}^4 \qquad I_y = 1.23 \times 10^{-06} \text{ m}^4 \qquad I_z = 1.23 \times 10^{-06} \text{ m}^4$$

For diagonal and horizontal bars:

$$E = 210 \text{ GPa}$$
 $A = 5.00 \times 10^{-04} \text{ m}^2$ $\rho = 7.86 \text{ ton/m}^3$

Figure 4.7 - Tapered tower (example 15).

The applied force in Table 4.3 was chosen to be close to critical buckling load (calculated based on a non-linear stability analysis) of the tower to verify the behavior of the simplified element.

		Fx	Fy	Fz	Мx	Му	Mz
Model	Node	kN	kN	kN	kNm	kNm	kNm
	41	20	-400	5	0	0	0
Comulate Madel	42	20	-400	5	0	0	0
	43	20	-400	5	0	0	0
	44	20	-400	5	0	0	0
Simpl. Model	10	80	-1600	20	0	0	0

Table 4.3 - Applied force on the models in Figure 4.7.

The comparison between the results of models in this example is described in Figures 4.8 to 4.10. The maximum P.D are 7.50% (without the shear deformation option on) and 6.11% (with the shear deformation option on).

Figure 4.8 - x displacement of the tapered tower.

Figure 4.9 - y displacement of the tapered tower.

Figure 4.10 - z displacement of the tapered tower.

Example No. 16:

This example was chosen to verify the Eigenvalue analysis of a tapered tower element. The same geometric and material properties from previous example were used in this verification. The Figures 4.11 to 4.14 illustrate the mode shapes of the structures. The corresponding *P.D.* are 4.72%, 7.19%, 3.78% and 6.83% for the first four flexural mode shapes, respectively.

Figure 4.11 - The 1st flexural natural frequency and mode shape of the detailed and the simplified tapered towers.

Figure 4.12 - The 2nd flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.

Figure 4.13 - The 3rd flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.

Figure 4.14 - The 4th flexural natural frequency and mode shape of the detailed and the simplified tapered towers.

5. COMPUTATIONAL MODELING

The present chapter describes the numerical model of the research. The analyzed tower was designated A-402M, a modification of the original A-402-0 tower. The whole A-402-0 tower shaft is tapered but the A-402M shaft is straight with the exception of the top and the base segments of the tower.

5.1.TOWER PROPERTIES

Effective Area (m²)

Modulus of Elasticity (kN/m²)

Pretension per cable (kN)

Density (ton/m³)

Weight (N/m)

Sag (m)

The geometric properties of the A402-M tower are illustrated in Figure 5.1. The tower includes four guy cables of a double $\frac{1}{2}$ inch diameter grade 220 galvanized steel wire. All members are made of steel with *E* of 200 GPa, $\nu = 0.3$, and $\rho = 7.86$ ton/m³. The properties of the cables are listed in Table 5.1 (Horr et al., 2004; Shehata and Damatty, 2006).

	Conductor	Ground wire	Guyed cable
Horizontal span (m)	480	480	24.16
Effective Diameter (mm)	40.64	9.00	11.10

1.2972E-03

2.2765

28.97

6.23E+07

20.00

41.72

9.6774E-05

7.86

7.46

1.86E+08

0.24

13.34

6.3617E-05

6.25

3.90

1.86E+08

13.54

8.30

Table 5.1- Properties of the conductors, ground wires and guyed cables.

The simplified tower was modeled using the equivalent properties (Chapter 3) of the detailed A-402M tower. The Figure 5.2 was extracted directly from the program.

Figure 5.2 - A simplified model of an A-402M tower.

5.2. TOWER SYSTEM MODELS

The transmission system constitutes of one ground wire for lightning protection connecting at the top of each tower, and four conductors (bundled together as one single equivalent conductor) connected to the insulator strings which are 4.27 meter in length. These insulator strings are connected to the tower at the cross arms. Eight models are investigated in this study as illustrated in Figure 5.3.

Figure 5.3 - Transmission system models.

59

Model 1 (A-402M tower - Figure 5.1) and Model 2 (simplified A-402M tower - Figure 5.2) were used to investigate if the simplified model is able to describe with accuracy the detailed tower.

Model 3 was created to verify the effect of the conductors and ground wires in the transmission system on the response of the tower and the tower's dynamic characteristics.

Models 4 and 5 were created to investigate the boundary condition at the termination of the cables.

Models 6 and 7 were used to investigate the effect of number of cable spans on the natural frequencies and the mode shapes of the system.

Model 8 was created to study the use of a combination of the model containing both the detailed and the simplified towers.

5.3.BOUNDARY CONDITIONS

One of the modeling questions is the effects of the boundary conditions on the response of the system. In this study, three boundary conditions will be investigated:

> Conductors and ground wires at the extremity towers, as well as the extremity towers are represented by fix supports – Figure 5.4(a);

> > 60

- Conductors and ground wires at the extremity towers, as well as the extremity towers are represented by two linear springs – Figure 5.4(b); and
- Conductors and ground wires at the extremity towers are represented by a linear spring – Figure 5.4(c).

Figure 5.4 - Boundary conditions in the study

 K_{g1} is calculated by applying a unit load on the tip of the simplified tower model in the three directions (x,y,z) and inverting the corresponding displacement. K_{g2} is calculated based on a stiffness of a cable with the same properties of the ground wire. K_{c1} is calculated using the same technique used in evaluating K_{g1} while K_{c2} is obtained from the stiffness of a conductor. Note that the load is applied at the end of the insulator string (the node connecting to the cables) and not directly on the tower in the calculation of K_{c1} . The mass of the springs are considered zero for those DOFs corresponding to the subscript 1 stiffness and half the mass of a cable span for those DOFs corresponding to the subscript 2 stiffness. The properties of the springs are listed in Table 5.2.

Coning	KUX	KUY	KUZ	KRX	KRY	KRZ	MASS
Spring	kN/m	kN/m	kN/m	kNm	kNm	kNm	ton
K _{g1}	2.0175E+02	1.6827E+04	3.4950E+02	N/A ¹	N/A ¹	N/A ¹	0.0000E+00
K _{c1}	6.5135E+00	2.6421E+02	6.5135E+00	N/A ¹	N/A ¹	N/A ¹	0.0000E+00
K _{g2}	1.7300E-02	1.7300E-02	3.5006E+00	N/A ²	N/A ²	N/A ²	9.5400E-02
K _{c2}	1.7380E-01	1.7380E-01	1.7841E+01	N/A ¹	N/A ¹	N/A ¹	1.4151E+00

Table 5.2 - Properties of the springs.

(¹ The stiffness can be any positive value and will not affect the results because neither the insulator string nor the cable can resist rotations; ² The stiffness must be a very small number for Model 5 because end towers resist certain rotations. In this study, the value was set to 1.0E-06 kNm)

5.4. NONLINEAR STATIC ANALYSIS

The geometric nonlinear analysis was carried out for Model 1 and Model 2 to investigate the efficiency of the proposed nonlinear stiffness formulation for the simplified tower when compared with the detailed model. Twenty one load-steps were used in the analysis. Self-weight and pretension force were applied in the first step. The external load cases were applied in the subsequent steps.

In each load step, Eqn (5.1) was calculated and the displacement was evaluated using Eqn. (5.2) (Battista, 2007-B).

 $[K]\{\Delta u_i\} = \{\Delta F_i\} \tag{5.1}$

$$\{u_i\} = \{u_{i-1}\} + \{\Delta u_i\}$$
(5.2)

where [K] is the nonlinear stiffness matrix, $\{\Delta u_i\}$ is the incremental displacement vector, $\{\Delta F_i\}$ is the force vector of the current step, and $\{u_i\}$ is the updated displacement vector.

The analysis was performed using a modified Cholesky factorization method together with a bandwidth solver.

5.4.1. LOAD CASES

Two of the seven load cases used in the original A-402 tower verification report (Appendix 2A - Disney and Parker, 2007) are presented here. The two selected load cases are listed in Table 5.3. The nomenclatures used in the table are referred to in the Figure 5.5 and the node numbers where the loads are applied are shown in Figure 5.6. For the detailed model, the load at the top of the tower was applied at the centre node.

LOAD CASE 1									
		kN		kN		kN			
Ground Wire	V1	-8.3800	L1	8.4960	T1	0.0000			
Conductor 1	V2	-70.4780	L2	32.4360	T2	0.0000			
Conductor 2	V3	-70.4780	L3	32.4360	Т3	0.0000			
LOAD CASE 2									
		kN		kN		kN			
Ground Wire	V1	2.8470	L1	1.9570	T1	2.1260			
Conductor 1	V2	-43.4010	L2	18.7710	T2	9.2660			
Conductor 2	٧3	-43.4010	L3	18.7710	T3	9.2660			

T	ab	le	5	.3	-	L	bac	t I	cas	es	
---	----	----	---	----	---	---	-----	-----	-----	----	--

Figure 5.5 - Nomenclatures of the loading in Table 5.3.

Figure 5.6 - Controlled nodes where the loadings are applied in detailed and simplified tower models (representatively only).

In addition to the loads from the conductors and ground wire, a self-weight of all elements and pretension on the guyed cables were also included in the analysis for both models. These pretension and self-weights were not factored.

5.5. DYNAMIC ANALYSIS

5.5.1. FREE VIBRATION

The free vibration analysis of the towers was performed to verify the mass matrix of the structure. The analysis was carried out after static analysis of the structures due to self-weight and pretension was done. The eigenvalue problem is in the form of (Chopra, 1995; Clough and Penzien, 1993; Craig, 1981; Timoshenko et al., 1974):

$$\left(\left[K\right] - \omega_i^2 \left[M\right]\right) \left\{\phi_i\right\} = 0 \tag{5.3}$$

A nontrivial solution $\{\phi_i\} \neq 0$ requires that the determinant of the coefficient matrix be zero, i.e.

$$\begin{bmatrix} K \end{bmatrix} - \omega_i^2 \begin{bmatrix} M \end{bmatrix} = 0 \tag{5.4}$$

where [K] is the global non-linear stiffness matrix, [M] is the global mass matrix, ω_i is the i^{th} -natural circular frequency and $\{\phi_i\}$ is the i^{th} modal shape of the structure.

5.5.2. TIME STEPPING TECHNIQUE

The free vibration analysis performed in previous section was carried out only to (a) verify the mass matrix as mentioned as well as to (b) construct the damping matrix of the structure and (c) preliminary investigate the effects of cables and number of span on the natural frequencies of the structures. Although modal superposition analysis of the structure can be carried out in dynamic analysis, time-stepping technique was chosen in this study to avoid the needs to parametrically study the number of mode shapes required in the modal superposition analysis.

There are a number of numerical techniques for dynamic analysis of a structure, the Newmark method with $\alpha = 0.25$ and $\delta = 0.5$, an average acceleration, was chosen in this study. This is because the method is unconditionally stable. The method is described as shown in Figure 5.7 (Bathe, 1996):

5.5.3. DAMPING MATRIX

The damping in the structure dissipates energy, i.e. it changes kinetic or potential energy into heat. The dissipation of energy is a very complex issue and there are several mathematical formulations for damping force. In the field of structural dynamics, damping force is usually assumed to be proportional to the velocity and in opposite direction of the motion. This type of damping is called viscous damping (Paz and Leigh, 2004).

Usually damping of a structure is defined by experimental results. When no experimental values are given, the value of 2% damping ratio for steel bolted structures is recommended (Battista et al., 2003; Rodrigues, 1999; Oliveira, 2006). In the Newmark method, a damping matrix, [C], is required. Commonly, the damping matrix can be calculated using a Rayleigh damping formulation. The method assumes damping matrix to be proportional to the mass and the stiffness matrix of the structure. When the structure has low fundamental natural frequencies (lower than 1 Hz), the damping matrix can assume to be proportional to the mass matrix only. On the other hands, when the structure has high fundamental natural frequencies (much higher than 1 Hz), the damping matrix can assume to be proportional to the stiffness matrix only (Battista R.C, 2007-C). In this study, the Rayleigh type damping matrix is used and the damping matrix has the form of (Bathe, 1996; Paz and Leigh, 2004; Oliveira, 2006)

$$[C] = \alpha[M] + \beta[K] \tag{5.5}$$

67

The coefficients α and β can be expressed as a function of the i^{th} frequencies ω_i and i^{th} modal damping ratios ξ_i by

$$\xi_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2} \tag{5.6}$$

Rearranging the previous equation, it leads to:

$$\alpha = 2\xi_i \omega_i - \beta \omega_i^2 \tag{5.7}$$

$$\beta = \frac{2\xi_j}{\omega_j} - \frac{\alpha}{\omega_j^2} = \frac{2(\xi_j\omega_j - \xi_i\omega_i)}{\omega_i^2 - \omega_i^2}$$
(5.8)

Oliveira (2006) recommended that the frequencies ω_i and ω_j should be chosen as the extremes of the design frequency range. He assumed a uniform damping ratio. The recommendation as well as the assumption was used in this study. ω_j of 119.2207 rad/s (18.9746 Hz) was used for all models, except for Model 2, in the calculation. This is because all the models have that frequency within the vicinity of the specified value and the change in the value does not have an effect on the resulting damping matrix. The choice of ω_i , however, has the effect on the resulting damping matrix. Therefore, specific values for individual model were chosen as listed.

> $\omega_{iModel 3} = 0.7414 \text{ rad/s}(0.1180 \text{ Hz})$ $\omega_{iModel 4} = 0.7212 \text{ rad/s}(0.1148 \text{ Hz})$ $\omega_{iModel 5} = 0.7207 \text{ rad/s}(0.1147 \text{ Hz})$ $\omega_{iModel 6} = 0.7106 \text{ rad/s}(0.1131 \text{ Hz})$

The Rayleigh damping parameters for Model 3, 4, 5 and 6 are respectively:

$\beta_{Model 3} = 3.33 \times 10^{-4}$,	$\alpha_{Model3} = 0.029473$
$\beta_{Model 4} = 3.33 \times 10^{-4}$,	$\alpha_{_{Model 4}} = 0.028676$
$\beta_{Model5}=3.33\times10^{-4}$,	$\alpha_{Model 5} = 0.028642$
$\beta_{Model6} = 3.34 \times 10^{-4}$,	$\alpha_{Model6} = 0.028259$

For Model 2 which does not have conductors, $\mathit{\omega}_{i}$ and $\mathit{\omega}_{j}$ were chosen to

be

 $\omega_i = 9.5186 \text{ rad/s}(1.5149 \text{ Hz})$ $\omega_j = 115.0535 \text{ rad/s}(18.3113 \text{ Hz})$

The Rayleigh damping parameters for Model 2 are:

$$\beta = 3.210 \times 10^{-4}$$
 , $\alpha = 0.35165$

5.5.4. WIND LOAD

In this study, dynamic effects of wind load will be considered, this is mainly because wind load is harmful for structures with low natural frequency such as transmission tower system (lower that 1 Hz). The wind pressure can be calculated by the following formula (Blessmann, 2005):

$$p(t) = \frac{\rho}{2} \left[V(t) \right]^2 C_{df}$$
 (5.9)

where p(t) is the wind pressure in N/m², ρ is the specific density of the air (can be assumed equal to 1.226 kg/m³), V(t) is the wind speed in m/s, and C_{df} is the drag factor. According to the CSA S37-01 (2001) standard, the drag factor for latticed square towers can be defined by the following equation:

$$C_{df} = 4.0 \left(R_s\right)^2 + 5.9 \left(R_s\right) + 4.0 \tag{5.10}$$

where R_s is defined as the ratio of the net projected area of a surface of the structure facing the wind and the gross area of that surface. In calculation of R_s , the tower was divided into seven zones as illustrated in Figure 5.8.

Figure 5.8 - Drag factors and areas of the tower zones.

The drag factors for the conductors and ground wires were used as 1.10 and 1.25 respectively as adopted by Rodrigues (1999).

5.5.4.1. WIND SPEED

The wind speed V(t) can be separated into two parts, one due to an average or mean wind speed \overline{V} and the other due to turbulence v(t) as illustrated in Figure 5.9.

Figure 5.9 - Wind speed.

$$V(t) = \overline{V} + v(t) \tag{5.11}$$

5.5.4.1.1. MEAN WIND SPEED

The static wind pressure for Winnipeg, Manitoba, class A terrain is 450 Pa (Ochonski, 2008) at 10 meters height. Therefore a mean wind speed at 10 m height \vec{V}_{10} to generate this pressure is equal to 27.09 m/s. This speed value was used to generate the turbulence speed. The mean wind speed is not constant with the height as illustrated in the Figure 5.10. Most standards recommend a mean wind speed that follows a logarithmic or an exponential rule. In this study, the exponential formulation was used.

Figure 5.10 - Variation of mean wind speed along the tower height.

$$\overline{V}(z) = V_{10} \left(\frac{z}{10}\right)^p \tag{5.12}$$

where z is the height above the ground and p usually depends on the shape of the terrain (the value of 0.2 was used in the study).

5.5.4.1.2. TURBULENCE WIND SPEED

Even though the turbulence wind speed is a random process, it has a degree of regularity and can be treated as stationary and ergodic process (Rodrigues, 1999) in statistical point of view. It is stationary because the statistical parameters are time invariants. It is ergodic because these parameters when calculated for any sample with respect to time will be the same across the

total collection of samples (Paz and Leigh, 2004). Some of the important statistical parameters in the wind engineering are (Blessmann, 2005 and Oliveira, 2006):

Mean value:

$$\overline{V} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} V(t) dx$$
(5.13)

Mean square value:

$$\overline{V^{2}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (V(t))^{2} dx$$
 (5.14)

Root mean square:

$$V_{rms} = \sqrt{V^2} \tag{5.15}$$

Variance:

$$\sigma_{\nu}^{2} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left(V(t) - \overline{V} \right)^{2} dx$$
 (5.16)

Standard deviation:

$$\sigma_{\nu} = \sqrt{\sigma_{\nu}^2} \tag{5.17}$$

In the present study, the turbulent wind speed v(t) was generated with a zero mean. Therefore, \overline{V} equals to zero, $\overline{V^2}$ equals to σ_v^2 and V_{rms} equals to σ_v .

In case of a random phenomenon, the fluctuations consist of a random process with a continuum distribution over the frequencies f. This continuum spectrum, also called spectral density of the variance $S_{\nu}(f)$ and is defined as:

$$\sigma_{\nu}^{2} = \int_{0}^{\infty} S_{\nu}(f) df$$
 (5.18)

There are a large number of mathematical formulations for this spectrum, with different parameters, but none of them represent the totality of the samples (Blessmann, 2005). The spectrum used in this study is the Kaimal spectrum and was chosen because it is also a function of height (Blessmann, 1995 and Oliveira, 2006).

$$S_{v}(f) = \frac{200u_{*}^{2}Y_{1}(z, f)}{\left(1 + 50Y_{1}(z, f)\right)^{5/3} f}$$

$$Y_{1}(z, f) = z \frac{f}{\overline{V}(z)}$$
(5.19)

where $\overline{\nu}_{(z)}$ is an hourly average wind speed at a height of z; u_* is the friction velocity. $\overline{\nu}_{(z)}$ and u_* are given in m/s. Those two parameters are described by

$$\overline{V}(z) = V_{10} \left(\frac{z}{10}\right)^{p}$$

$$u_{\star} = k \frac{\overline{V}(z)}{\ln\left(\frac{z}{z_{0}}\right)}$$
(5.20)

The parameter k is the Karman constant and is equal to 0.4; z_0 is a direct function of the height of the obstacles. B.J. Vickery suggested a value of 1/20 times the average height of the obstacles to be used for z_0 (Blessmann, 1995). In urban areas, the value of z_0 can range from 0.2 m to 4 m. In this study, the value of 0.07 m was used to be conservative. The plot of wind spectrum with frequency, Eqn. (5.19), is shown in Figure 5.11.

Figure 5.11 - Wind spectrum versus frequency.

It can be seen from the figure that the wind spectrum has very low values for frequencies higher than 1 Hz.

The autocorrelation function is also a very important statistical parameter since it defines the dependence of a fluctuation value at time *t* and a fluctuation value at time $t+\tau$ for the same sample (Blessmann, 1995; Blessmann, 2005; Oliveira, 2006). Mathematically it is defined as:

$$R_{\nu}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \nu(t) \nu(t+\tau) dt$$
(5.21)

The complete spectral density $\dot{S}_{\nu}(f)$ of the fluctuations of the wind speed is the Fourier transformer of the autocorrelation $R_{\nu}(\tau)$, and can be given by:

$$\overset{*}{S_{\nu}}(f) = \int_{-\infty}^{+\infty} R_{\nu}(\tau) e^{-i2\pi f\tau} d\tau$$
(5.22)

where $S_{\nu}(f) = 2\dot{S}_{\nu}(f)$. This function can also be related with the spectral density by the inverse Fourier transformer formula:

$$R_{\nu}(\tau) = \int_{-\infty}^{\infty} S_{\nu}(f) e^{i2\pi f\tau} df = 2 \int_{0}^{\infty} S_{\nu}(f) e^{i2\pi f\tau} df$$

$$R_{\nu}(\tau) = 2 \int_{0}^{\infty} S_{\nu}(f) \cos(2\pi f\tau) df \qquad (5.23)$$

This can be rearranged as

$$R_{\nu}(\tau) = \int_{0}^{\infty} S_{\nu}(f) \cos\left(2\pi f \tau\right) df \qquad (5.24)$$

The last statistical parameter used in this study to generate wind turbulence is the cross covariance which is a function that relates a sample v_1 measured at time *t* with another sample v_2 measured at time $t+\tau$ at a fixed distance. It is given by

$$C_{v_1,v_2}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T v_1(t) v_2(t+\tau) dt$$
 (5.25)

The cross covariance can also be expressed as a Fourier transformer. In the present work, the wind load was applied at the same time for all loaded nodes, therefore $\tau = 0$. This simplification, according to Oliveira (2006), leads to

$$C_{\nu 1,\nu 2}(0) = \int_{-\infty}^{+\infty} S_{\nu}(f) e^{-f^{C}} df$$
 (5.26)

According to Simiu (1986) the parameter C can be found from

$$C = \frac{\sqrt{\left[C_{y}^{2}\left(y_{2}-y_{1}\right)^{2}+C_{z}^{2}\left(z_{2}-z_{1}\right)^{2}\right]}}{V_{10}}$$
(5.27)

where $y_2 - y_1$ is the horizontal distance between samples, $z_2 - z_1$ is the vertical distance between samples, and C_y and C_z are exponential decay coefficients that are determined experimentally. Conservative values of 16 and 10 for C_y and C_z , respectively, were used as suggested by Simiu (1986).

There are several methods to generate the wind speed. In this study, the formulation adopted by Oliveira (2006) was used. Only one wind speed is generated in this method and is given by a summation of harmonic functions as:

$$v(t) = \sum_{i=1}^{NSPEC} \sqrt{2S_v(f_i)\Delta f} \cos\left(2\pi f_i t + \theta_i\right)$$
(5.28)

where Δf is the frequency increment, θ_i is a random angle from 0 to 2π , and *NSPEC* is the number of division of the spectrum. The formulation is calculated in FORTRAN. The flowchart of the calculation is shown in Figure 5.12. Figure 5.13 shows the wind profile generated by the code and Figure 5.14 shows the zoom of the wind profile for the first two seconds. Figure 5.14 shows that the wind profile constructed is actually a smooth continuous curve and not a piecewise curve. The wind profile obtained was only at a single location. To determine the loads on nodes along the cable, autocorrelation (Eqn. 5.24) and cross covariance (Eqn. 5.26) were used (Oliveira, 2006). Note that the cross covariance relates two different samples at different locations while the autocorrelation relates the same sample at different time. Therefore, in order to determine the wind profile at a different location from the known wind profile, the cross covariance is first calculated using the distance between the two locations. Then the time required

to produce the autocorrelation to have the same value as that of the cross covariance is determined. This time represents the lag in the arrival time of the same sample at the second location.

Figure 5.12 - Wind generation flowchart.

In this study, a transmission line span is 480 meters long and is divided into seventeen equal spaced distances (ΔS) of 60 meters. Note that there are eight cable elements per span, as illustrated in Figure 5.15. As previously stated,

the wind profile in Figure 5.13 or 5.14 is assumed to be at the boundary nodes (zone 1 in Figure 5.15). To obtain the time lag of the wind profile in zone 2, ΔS apart, the cross covariance is calculated to be, Eqn. (5.26):

Figure 5.15 - Top view of the transmission tower system.

$$C_{\nu_1,\nu_2}(60 \text{ m}) = \int_{-\infty}^{+\infty} S_{\nu}(f) e^{-fC} df = 10.27 \left[\text{m}^2/\text{s}^2 \right]$$
(5.29)

The time required to provide the autocorrelation to have the same value as this calculated cross covariance is determined using Eqn. (5.24), i.e.

$$R_{\nu}(4.89 \,\mathrm{s}) = \int_{0}^{\infty} S_{\nu}(f) \cos\left(2\pi f \tau\right) df = 10.28 \left[\mathrm{m}^{2}/\mathrm{s}^{2}\right]$$
(5.30)

This means that the wind profile in zone 2 is 4.89 seconds behind the wind profile in zone 1. The plots of the wind profiles in zone 1 and zone 2 are shown in Figure 5.16.

6. ANALYSIS RESULTS

6.1. ISOLATED TOWER (MODEL 1 AND MODEL 2)

The comparison of the displacements from the static analyses was made at the controlled nodes shown in Figure 5.6 for Models 1 - a detailed model and 2 - a simplified model (Figure 6.1a, and 6.1b, respectively). For the detailed model, Figure 6.1a, the average displacement of all the nodes on the top of the tower was used. In the dynamic analysis, only the natural frequencies of the main structure were compared. All the frequencies corresponding to the members in detailed model were not included in the comparison.

Figure 6.1 - (a) Model 1 and (b) Model 2.

6.1.1. STATIC DISPLACEMENTS

Figures 6.12 to 6.16 illustrate the displacements at the observed locations. Tables 6.1 and 6.2 summarize the differences between the maximum displacements of the detailed and the simplified models for load cases 1 and 2, respectively. Note that although there was no load in the z-direction for load case 1, there was some small z-displacement for the detailed model (3x10E-4m in comparison to 0.4m) because of the asymmetrical configuration of the diagonals.

Figure 6.2 - Load Case 1, x displacement of the top of the tower.

Figure 6.4 - Load Case 1, x displacement of the left cross arm.

83

Figure 6.6 - Load Case 1, x displacement of the right cross arm.

Figure 6.7 - Load Case 1, y displacement of the right cross arm.

Table 6.1 - Percentage difference of displacements between the Models 1 and 2

P.D. (Final displacement)							
NODE (simplified model) X Y							
47	-1.09%	-7.18%					
102	-2.79%	3.43%					
103	0.15%	-0.09%					

for Load Case 1.

• Load Case 2 results:

Figure 6.9 - Load Case 2, y displacement of the top of the tower.

Figure 6.10 - Load Case 2, z displacement of the top of the tower.

Figure 6.11 - Load Case 2, x displacement of the left cross arm.

Figure 6.12 - Load Case 2, y displacement of the left cross arm.

Figure 6.14 - Load Case 2, x displacement of the right cross arm.

Figure 6.15 - Load Case 2, y displacement of the right cross arm.

Figure 6.16 - Load Case 2, z displacement of the right cross arm.

Table 6.2 - Percentage difference of displacements between the Models 1 and 2

P.D. (Final displacement)								
NODE (simplified model) X Y Z								
47	-0.98%	-3.80%	-0.69%					
102	-3.03%	6.66%	-2.60%					
103	0.44%	0.32%	-2.35%					

for Load Case 2.

Figures 6.2 to 6.16 show that the simplified model gives 7% error of the displacements of the detailed model. Tables 6.1 to 6.2 illustrate that the *P.D.* between the two results for final displacements are within 10%. This clearly indicates that the simplified model can represent the detailed model in the non-linear analysis.

6.1.2. FREE VIBRATION

For the free vibration analysis, the computational runtime of Model 1 was 1 hour and 6 minutes and that of Model 2 was 2 minutes and 28 seconds. In this study, only the first forty modes were investigated. Several of them correspond to the vibration of guy wires only and would not be of interest in this thesis. The first fourteen mode shapes relating to the tower mast are presented in a graphic form in the Appendix - A. The mode shapes are normalized to have the maximum value of unity.

Table 6.3 summarizes the mode shapes of both models. The symbols LB, TB, T, and X represent the lateral bending, transverse bending, torsion, and no movement of the tower mast (the magnitudes of the mode shape at the top are less than 0.001 for translation and 0.00015 for rotation), respectively. The plus sign indicates that the amplitudes of the mode shape at the top are greater than 0.1 for translations and 0.015 for rotations. When there is no plus sign and no X sign, the amplitudes of the mode shape at the top for translation are in between 0.01 and 0.1 with those associating with the rotation are in between 0.015 and 0.0015. When there is an X sign in front of the symbol, the magnitudes of the mode shapes at the top are between 0.01 and 0.0015 for rotation. The darker color of the shade indicates the higher amplitude of the mode shape. Only LB, TB and T modes were compared between the two models.

Detailed Tower (Model 1)						Simplified Tower (Model 2)					
MODE	FREQ[HZ]	Lateral	Transversal	Torsion		MODE	FREQ[HZ]	Lateral	Transversal	Torsion	
1	1.50257	LB	Х	X		1	1.51493	LB	Х	X	
2	1.50382	X	ТВ	X		2	1.51619	Х	ТВ	X	
3	1.50579	Х	Х	Т		3	1.51813	X	Х	Т	
4	1.51131	Х	х	х		4	1.52369	Х	х	Х	
5	1.51689	Х	ТВ	X		5	1.52964	X	ТВ	X	
6	1.52002	LB	Х	Х		6	1.53251	LB	X	X	
7	1.52155	Х	Х	Т		7	1.53400	Х	X	Т	
8	1.52577	Х	X	Х		8	1.53847	Х	X	Х	
9	2:30032	X/LB	TB+	X		9	2.31917	Х.	TB+	X	
10	2.42060	LB+,	X	γX^{-1}		10	2,45239	LB+	X	X ,	
11	3.04877	X	X	. T+ .		11	3.07444	Х	X	T+·	
12	3.08061	X	X/TB	х		12	3.10586	Х	X/TB	х	
13	3.08070	X	x	Х		13	3.10601	X	X	X	
14	3.08093	X	х	Х		14	3.10617	X	X	Х	
15	3.08095	X	X	Х		15	3.10617	X	X	X	
16	3.08095	X	X	X		16	3.10619	X	X	X	
17	3.09350	X/LB	ТВ	X		17	3.11851	X	ТВ	X	
18	3.09400	LB	X	Х		18	3.12040	LB	X	X	
19	3.55151	LB+	X	Х/Т		20	3.65619	∴LB+	X	- X	
20 -	3.57424	X/LB	X	* T+		19	3.63406	X	X	• T+	
21	4.44293	X	TB+	X		21 -	4.56100	Х	T8+	X	
22	4.76743	X	Х	Х		22	4.80668	X	X	Х	
23	4.76766	X	X	X		23	4.80670	X	X	X	
24	4.76810	Х	Х	Х		24	4.80715	X/LB	X	X	
25	4.76813	X	· X	х/т		25	4.80717	X	X	Х/Т	
26	4.76950	X	ТВ	X		26	4.80927	X	Х/ТВ	X	
27	4.77091	LB	X	Х		27	4.81025	LB	X	X	
28	4.77356	X	ТВ	Х		28	4.81381	Х	ТВ	X	
29	4.77998	X	X	Т		29	4.82022	X	X	Т	
30	6.62264	X	X	Х		30	6.67706	X	X	X	
31	6.62274	X	х/тв	X		31	6.67725	X	Х/ТВ	Х	
32	6.62320	X	Х	Х		32	6.67746	X	X	X	
33	6.62320	X	Х	Х		33	6.67746	X	X	X	
34	6.62323	X	Х	X		34	6.67746	X	x	X	
35	6.62458	LB	X	Х		35	6.67927	LB	X	X	
36	6.62518	X	ТВ	Х		36	6.67959	X	ТВ	X	
37	6.62926	X	Х	Т		37	6.68426	X	X	<u> </u>	
38	8.65794	X	ТВ	X		38	8.72986	X	ТВ	X	
39	8.65920	LB	X	X		40	8.73102	LB	X	X	
40	8.65970	Х	Х	Х		39	8.73088	х	x	Х	

Table 6.3 - Comparison of mode shapes between Model 1 and Model 2.

Table 6.3 shows that both models have similar frequencies and the corresponding mode shapes. This demonstrates that the simplified model can represent the detailed model in the dynamic analysis if chosen to.
6.2. TRANSMISSION SYSTEM

An accurate dynamic analysis of a transmission system cannot be attained without considering the effects of the insulator strings, the conductors and the ground wires. The best and simplest technique is to include the insulator strings, the conductors and the ground wires in the model. According to Oliveira (2006), the addition of the insulator strings, the conductors and the ground wires would reduce natural frequencies of the tower because these structures have very low stiffness compared to the mass. According to past literature, a required number of tower spans in the model depends on the system characteristics, load type and the direction of the load. A cascade failure analysis for example, requires a large number of spans. On the other hand, a wind load analysis may require lesser number of spans. In this study, in order to appreciate the effects of the insulator strings, conductors, and the ground wires, as well as the number of the spans, on the dynamic characteristics of the transmission system, free vibration of the system with different number of spans is investigated.

6.2.1. FREE VIBRATION

6.2.1.1. MODEL 2 AND MODEL 3

The objective for this comparison is to investigate the effects of the insulator strings, the conductors and the ground wire cables on the dynamic properties of the transmission system. Figure 6.17 illustrates the models used in this part of study.

Figure 6.17 - (a) Model 2 and (b) Model 3.

Table 6.4 shows a comparison between the natural frequencies and mode shapes of models 2 and 3. It can be seen from the table that there are mode shapes associating to lower frequencies present for model 3. These frequencies are the direct effects of the addition to the system of the cables and insulators that have low stiffness to mass ratio.

MODE FREQ[HZ] LATERAL TRANSVERSAL TORSION 1 0.11800 X/L8 X X 1 0.13280 X/L8 X X 1 0.13280 X/L8 X X 1 0.25152 X/L8 X X 1 0.25152 X/L8 X X 1 0.47733 X/L8 X X 1 1 1.47733 X/L8 X X 1 1.4770 0.66310 X/L8		1 simplifie	ed tower with	out cables (Mod	del 2)		1 simpli	fied tower wit	th cables (Mode	13)
Image: state of the s	MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION	MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION
Image: state of the s						1	0.11800	X/LB	x	x
Image: state in the s						5	0.13260	x	X	· · T
Image: space of the s						6	0.13328	х	Х/ТВ	х
Image: state in the s						9	0.24016	18	X	X
19 0.30850 X/L8 X 11 121 0.34674 X TB X 122 0.35670 X/L8 X X X 11 1.22 0.35670 X/L8 X X 11 1.47733 X/L8 X X/T 11 1.47733 X/L8 X X/T 11 1.47733 X/L8 X X 11 1.37 0.51266 L8 X X 11 1.01278 X X X X 11 1.01278 X X X X 11 1.01278 X X X X 11 1.01321 L8 X X X 11 1.51493						11	0.25152	X/LB	×	x
21 0.35670 X/LB X 22 0.35670 X/LB X X 25 0.37400 LB X X 27 0.39259 X X X/LB X 31 0.47733 X/LB X X X 33 0.49941 X X/LB X X 33 0.49941 X X/LB X X 33 0.49941 X X/LB X X 34 0.51026 LB X X X 39 0.54369 LB X X X 31 0.71278 X X X X 31 0.71278 X X X X 31 0.71278 X X X X 31 0.71649 LB X X X 31 0.71649 X/LB X X X						19	0.30850	X/LB	х	х
22 0.3570 X/LB X 25 0.37140 LB X X 27 0.39259 X X X/T 31 0.47733 X/LB X X/T 33 0.49941 X X/TB X 33 0.49941 X X/TB X 34 0.50009 LB X X 37 0.51626 LB X X 39 0.54369 LB X X 39 0.67737 LB X X 39 0.66703 X/LB X X 39 0.86708 X/LB X X 39 0.86708 X/LB X X 31 0.36708 X/LB X X 39 0.86708 X/LB X X 31 1.3135 LB X X X 31 513 X						21	0.34674	X	ТВ	Х
25 0.37140 LB X X 27 0.39259 X X X/LB X 31 0.47733 X/LB X X X 33 0.49941 X X/TB X X 33 0.49941 X X/TB X 34 0.50009 LB X X 37 0.51626 LB X X 39 0.54369 LB X X 49 0.67137 LB X X 50 0.71634 LB X X 51 0.71649 LB X X 51 0.71649 LB X X 53 0.76649 LB X X 54 0.7669 K/LB X X 55 0.71649 LB X X 51 0.38708 K/LB X X 52<						22	0.35670	X/LB	x	x
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						25	0.37140	LB	×	X
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						27	0.39259	x	x	·х/т
33 0.49941 X X/TB X 34 0.50009 LB X X 39 0.54369 LB X X 39 0.54369 KLB X X 39 0.5737 LB X X 30 0.71278 X X X 31 0.7169 LB X X 31 0.86708 X/LB X X 31 0.13313 LB X X 31 1.51433 X X T 891 1.47363 X						31	0.47733	X/LB	x	x
34 0.50009 LB X X 37 0.51656 LB X X 37 0.56369 LB X X 37 0.56399 LB X X 38 0.54399 LB X X 39 0.54399 LB X X 31 0.5737 LB X X 31 0.5708 X/LB X X 32 0.66922 X X/LB X 33 1.51313 LB X X 34 1.51433 X T 88 1.46103 X 34 1.51813 X X T 89 1.42494 X X 34 1.51813 X X <td></td> <td></td> <td></td> <td></td> <td></td> <td>33</td> <td>0.49941</td> <td>x</td> <td>Х/ТВ</td> <td>x</td>						33	0.49941	x	Х/ТВ	x
Image: state						34	0.50009	LB	x	X
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						37	0.51626	LB	x	X
47 0.66310 X/LB X X 49 0.67737 LB X X 51 0.71278 X X X/T 55 0.71649 LB X X 1 1 55 0.71649 LB X X 1 1 59 0.86708 X/LB X X 1 1 1 1 1 X X X 1 1 1 1 1 X X X 1 1 1 0.3135 LB X X 1 1.51493 LB X X X X 1 1.51619 X TB X 88 1.46103 X TB 3 1.51813 X X T 89 1.45249 X X 2 1.51619 X T 89 1.45249 X <						39	0.54369	LB	X	X
49 0.67737 1B X X 51 0.71278 X X X/T 55 0.71649 1B X X 57 0.85100 1B X X 61 0.86708 X/LB X X 61 0.86922 X X/TB X 63 0.82449 1B X X 71 1.03135 1B X X 1 1.51413 X X 81 1.23918 B X X 1 1.51619 X TB X 88 1.46103 X TB X 1 1.5264 X TB X 92 1.4756						47	0.66310	X/LB	x	x
S1 0.71278 X X X/T S5 0.71649 LB X X S7 0.85100 LB X X S7 0.85100 LB X X S9 0.86708 X/LB X X S1 0.3211 LB X X S1 1.51493 LB X X X S1 1.51493 LB X X X S1 1.51493 LB X X T 88 S1 1.51493 LB X X T S S S S S1 1.52964 X TB X T S						49	0.67737	18	x	x
State State <th< td=""><td>· · · ·</td><td></td><td></td><td></td><td></td><td>51</td><td>0.71278</td><td>x</td><td>x</td><td>х/т</td></th<>	· · · ·					51	0.71278	x	x	х/т
S7 0.85100 LB X X S9 0.86708 X/LB X X S9 0.86708 X/LB X X S1 0.86708 X/LB X X S1 0.86708 X/LB X X S1 0.86708 X/LB X X S3 0.88449 LB X X S1 1.03135 LB X X S1 1.51493 LB X X S1 1.51813 X X T B S1 1.51813 X X T B X S1 1.51813 X X T B 1.46249 X X S1 1.52964 X TB X B 1.47365 X TB S1 52964 X X T B 1.47365 X TE S2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>55</td> <td>0 71649</td> <td>IB</td> <td>×</td> <td>×</td>						55	0 71649	IB	×	×
Sp 0.36708 X/LB X X 61 0.86922 X X/TB X 63 0.86494 LB X X 65 1.01321 LB X X 71 1.03135 LB X X 7 1.51619 X TB X 83 1.4503 X TB 3 1.51813 X X T 89 1.46249 X X 5 1.52964 X TB X 92 1.47760 X X 7 1.53400 X X 95 2.3027 X/LB TH 9						57	0.85100	18	X	×
Image: Second state of the state o						59	0.86708	X/IB	x	x
Image: Construct of the system of t						61	0.86922	X	X/TB	×
Image: Second						63	0.88449	18	N/10	Ŷ
Image: Constraint of the system of						69	1 01321	18	x	Ŷ
Image: Constraint of the system of	 					71	1 03135	18	y v	<u> </u>
Image: constraint of the system of	<u> </u>					79	1 07766	X/IB	Y	x Y
1 1.51493 1.6 X						81	1 73018	18	v	× ×
1 131733 12 1 1461733 12 1		1 51/02		Ŷ	Y	87	1 45979	18	Y Y	Y Y
3 1.5103 X X T 89 1.46249 X X T 3 1.51813 X X T 89 1.46249 X X T 5 1.52964 X TB X 91 1.47363 X TB X 6 1.53251 LB X X T 93 1.47760 X X T 9 2.31917 X TB+ X 95 2.33027 X/LB TB+ X T 9 2.31917 X TB+ X 95 2.33027 X/LB TB+ X T 9 2.31917 X TB+ X 95 2.33027 X/LB TB+ X 10 2.45239 16+ X X 96 2.44590 1B+ X T 11 3.07444 X X T+ 99 2.99021 X X/TB T+ 12 3.10586 X X/TB X 100 <t< td=""><td></td><td>1.51619</td><td>v v</td><td>TB</td><td>y X</td><td>88</td><td>1 46103</td><td>Y</td><td>TB</td><td>Y</td></t<>		1.51619	v v	TB	y X	88	1 46103	Y	TB	Y
5 1.52964 X TB X 91 1.47363 X TB X 6 1.53251 LB X X 92 1.47363 X TB X 7 1.53400 X X T 93 1.47363 X T 9 2.31917 X TB+ X 93 1.47760 X X T 9 2.31917 X TB+ X 95 2.33027 X/LB TB+ X T 9 2.31917 X TB+ X 95 2.33027 X/LB T T 9 2.34690 LB+ X T 97 2.46023 L6+ X/TB T 9 3.0586 X X/TB X 100 2.99021 X X/TB X 17 3.10586 X X/TB X 100 3.00298 LB X X 16 3.0240 LB X X 1005 3.00297 X X	2	1 51813	Y	Y Y	<u></u> Т	89	1 46249	Ŷ	x	T
6 1.3203 A 10 X 92 1.47503 A 10 X 6 1.53251 LB X X 12 1.47587 LB X X 7 1.53400 X X T 93 1.47587 LB X X T 9 2.31917 X TB+ X 93 1.47760 X X T 9 2.31917 X TB+ X 95 2.3027 X/LB TH+ X 10 2.45239 LB+ X X 95 2.3027 X/LB TH+ X 9 2.46023 LB+ X T 97 2.46023 LB+ X T 11 3.07444 X X T+ 99 2.97109 X X T+ 12 3.10586 X X/TB X 100 2.99021 X X/TB X 17 3.11851 X TB X 106 3.00371 X	5	1.52964	× ×	TB	Y	91	1 47363	×	TB	Y
1.03101 1.03 1.1 1.03 1.1	6	1 53251	18	10 V	. <u>x</u>		1 17587	18	X X	N V
7 1.03300 X X 10 2.31917 X TB+ X 95 2.33027 X/16 TB+ X 10 2.45539 16+ X X 96 2.445500 16+ X T 10 2.45539 16+ X X 96 2.445500 16+ X T 11 3.07444 X X 97 2.46023 16+ X/TB T+ 12 3.10586 X X/TB X 100 2.99021 X X/TB X 13 3.10586 X X/TB X 100 2.99021 X X/TB X 13 3.12040 LB X X 106 3.00371 X TB X 20 3.65619 164 X X 106 3.00371 X X X 19 3.5406 X X T+ 108 3.74297 X X T+ 21 4:56100 X X T+	7	1.53400	 	N N	<u>л</u>	93	1.47760	Y	× ×	<u>т</u>
10 2.43307 A/10 10 A 93 2.43307 A/10 10 A 10 2.45239 18+ X 36 2.44590 18+ X T 97 2.4623 16+ X/16 T+ 97 2.4623 16+ X/16 T+ 11 3.07444 X X T+ 99 2.97109 X X 1+ 12 3.10586 X X/TB X 100 2.99021 X X/TB X 13 3.11851 X TB X 100 2.99021 X X/TB X 18 3.12040 LB X X 106 3.00371 X TB X 19 3.63406 X X X 107 3.21603 11B+ X X X 19 3.63406 X X T+ 108 3.74297 X X T+ 21 4.56100 X TB+ X 109 4.11614 X	0	2.33400	a station y station	TOL	New York Visit Autom	05	2.47700	V/i e	TPA	States V. States
10 7.45235 117 7.45235 117 7.45235 117 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.45235 118 7.456232 118 7.456232 7.454411 118 7.456135 7.45235 7.45335	10	7 46920	1.8+	101 - 1 V	N N N	06	7 44500	7104	(D)	117
37 2.46621 CONStruction Construction <t< td=""><td></td><td>2490233</td><td>LUT</td><td>and a second second</td><td></td><td>07</td><td>2.44550</td><td>10</td><td>V/TP</td><td>T.</td></t<>		2490233	LUT	and a second		07	2.44550	10	V/TP	T.
11 3.07444 X X T+ 50 Z.97109 X X T+ 12 3.10586 X X/TB X 100 2.99021 X X/TB X 14 12 3.10586 X X/TB X 100 2.99021 X X/TB X 13 3.12040 LB X X 106 3.00371 X TB X 13 3.12040 LB X X 106 3.00371 X TB X 19 3.63406 X X T+ 108 3.74297 X X T+ 21 4:56100 X TB+ X 109 4:11614 X TB+ X 114 4.62867 X X/TB X 115 4.62892 X TB X/T 115 4.628057 X/LB X/TB X 117 4.63062 X/LB X/T							2.40023	1.9	TB	т Т
12 3.10586 X X/TB X 100 2.99021 X X/TB X 17 3.11851 X TB X 100 2.99021 X X/TB X 17 3.11851 X TB X 105 3.00298 LB X X 18 3.12040 LB X X 106 3.00371 X TB X 20 3.65619 LB+. X X 107 3.21603 1.B+. X X 19 3.63406 X X T+ 108 3.74297 X X T+ 21 456100 X TB+ X 109 4.11614 X T+ X 114 4.62867 X X/TB X X X 115 4.62892 X TB X X X X 115 4.628057 X/LB X/TB	1969 8 8	3 07444	V.	y	Τż	20	7'97100	ED CO	Y States	1
17 3.10580 X TB X 17 3.11851 X TB X 105 3.00298 LB X X 18 3.12040 LB X X 106 3.00298 LB X X 18 3.12040 LB X X 106 3.00298 LB X X 18 3.12040 LB X X 106 3.00371 X TB X 20 3.65619 LB+, X X 107 3.21603 118+, X Z 19 3.63406 X X' T+ 108 3.74297 X X Z 21 4:56100 X TB+ X 109 4.1614 X TB+ X 21 4:56100 X TB+ X 109 4.1614 X TB+ X 21 4:56100 X TB+ X 109 4.1614 X TB+ X 21 4:56100 X TB+ X 115 4.62867 X X/TB 21 116 4.63057 X/LB X/TB X	12	2 10596	× · · ·	<u>у/те</u>	×	100	2 00021	v v	V/TB	Y
11 <	17	2 1 1 9 5 1	× v		A V	105	3 00208	18	<u> </u>	Ŷ
100 100 <td>18</td> <td>3 12040</td> <td>18</td> <td>10 V</td> <td>X</td> <td>105</td> <td>3.00230</td> <td>Y .</td> <td>TR</td> <td>×</td>	18	3 12040	18	10 V	X	105	3.00230	Y .	TR	×
19 3.63406 X X T+ 21 4:56100 X TB+ X 108 3.74297 X X T+ 21 4:56100 X TB+ X 109 4.11614 X TB+ X 1 1 4.62867 X X/TB X 1 115 4.62867 X TB X/T 116 4.63057 X/LB X/TB X 29 4.82022 X X T 118 4.64375 X X	20	3 65610	() P.4	A STATE	A LAND	107	3 21602	1 R.	Y Y	Y Y Y
Z1 4:56100 X TB+ X 109 411614 X TB+ X 114 4:62867 X X/TB X 114 4:62867 X X/TB X 115 4:62892 X TB X/T 116 4:63057 X/LB X/TB X 116 4:63057 X/LB X/TB X 117 4:63062 X/LB X/TB X 29 4:82022 X X T 118 4:64375 X X T	10	3 62406			T_ SALE	302	3 74003	V V V	V V	Υ <u>γ</u>
Image: constraint of the state of		1.56100	v v	TP-	v	100	A 11614	Ŷ	TOL	v
114 4.02007 A A/TB A 115 4.62892 X TB X/T 116 4.63057 X/LB X/TB X 117 4.63062 X/LB X/TB X 117 4.63062 X/LB X/TB X 118 4.64375 X X T	<u> </u>			ιυτ		114	4 67867	v	V/TB	A second
113 4.62022 A IB X/I 116 4.63057 X/LB X/TB X 117 4.63062 X/LB X/TB X 29 4.82022 X X T 118 4.64375 X X T						110	1 67007			ý/r
110 4.63057 X/Lb X/lb X 29 4.82022 X X T 118 4.64375 X X T 118 4.64375 X X T 118 4.64375 X X T	<u> </u>					116	4 62057	×/i ¤	χ/το	
29 4,82022 X X T 111 4,64375 X X T 118 4,64375 X X T 118 4,64375 X X T	J					117	4.62067			
	20	1 02022		v			A 6427E			
	23	4,02022	<u>^</u>	A		110	A 70045	101	~ */	V

Table 6.4 - Frequencies and mode shapes of Model 2 and Model 3.

6.2.1.2. MODEL 3 AND MODEL 4

As mentioned in Section 5.3, different boundary conditions will be investigated. In this section, the use of spring or fixed supports, Figure 6.18, to represent the boundary conditions is studied here. The processing time of Model 3 and Model 4 are practically the same (7 minutes and 41 seconds). Table 6.5 shows the free vibration analysis of the two models. It can be seen that some of the frequencies and the corresponding mode shapes are the same. However, it is expected that Model 4 should represent a more realistic environment of the system than Model 3 since Model 3 and only does not save computational time but also does not represent an actual situation. This type of supports should be avoided in the analysis as, depending on the load, might not predict the actual response of the structure.

Figure 6.18 - (a) Model 3 and (b) Model 4.

15	implified t	ower with	cables (Model	3)		1 simpli	fied tower	with cable	s and springs (N	Nodel 4)
MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION		MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION
1	0.11800	X/LB	x	х		1	0.11479	X/LB	x	Х
5	0.13260	<u>x</u>	X	T		5	0,13209	Х	X	T
6	0.13328	X	Х/ТВ	X		6	0.13266	<u>X</u>	х/тв	X
11	0.25152	X/LB	X	X		9	0.17643	X/LB	X	X
9	0.24016	LB	<u> </u>	X		11	0.22976	LB	<u>X</u>	X
						15	0.25074	X	<u>x</u>	X/I
10	0 20950	V/ID	~~~~~	v		21	0.25148		<u>x</u>	X
19	0.30850			 		21	0.30647		<u>^</u>	Ŷ
25	0.37140	Y Y		<u> </u>		23	0.32302	<u> </u>	TB	A Y
21	0.34074	X/18	Y X	X		Contract Contract	~0,0 4 030	Α	i D	N
27	0.39259	x X	× ×	<u>х/т</u>						
	0.002.00					29	0.39087	×	x	T
					······	30	0.39114	X	X/TB	X
						31	0.39279	LB	x	X
						33	0.39953	LB	X	X
						35	0.40776	X	X	т
						36	0.40926	X	ТВ	X
31	0.47733	X/LB ·	x	х		39	0.47730	X/LB	х	X
33	0.49941	X	X/TB	X		41	0.49752	X	х/тв	x
34	0.50009	LB	X	<u> </u>						
- 37	0.51626	LB	Χ.	X	ļ	43	0.52730	LB	X	X
39	0.54369	LB	X	<u> </u>		45	0.54300	LB	Х	X
						47	0.54591	X	X	x/r
						48	0.54593	X	Х/ТВ	X
47	0.66310	X/LB	X	<u>X</u>	ļ	53	0.66303	X/LB	<u> </u>	X
49	0.67737	LB	X	<u> </u>		55	0.68389	LB	<u>X</u>	X
55	0.71649	LB V	X	<u>х</u>	Į	5/	0.71084	LB	X	<u>л</u> У/т
51	0.71278	<u>X</u>	~	<u></u>		29	0.71240	10	<u> </u>	×/1
50	0.96709	V/IR	×	v		65	0.86700	Y/IB	× ×	V V
61	0.86922	X	×/TB	x		67	0.86909	X	X/TB	x
63	0.88449	18	x	X		69	0.88389	IB	X	x
		CARGARY CONTRACTOR			1	71	0.88550	X	X	х/т
69	1.01321	18	ý.	X		75	1.01463	LB	x	X
71	1.03135	LB	x	x		77	1.03091	LB	X	X
79	1.07766	X/LB	x	X	1	85	1.07758	X/LB	×	x
81	1.23918	LB	Х	×	1	87	1.23917	LB	X	X
87	1.45979	LB	X	X		93	1.45953	LB	X	X
88	1.46103	X	ТВ	X		94	1.46090	X	ТВ	X
89	1.46249	X	. х	Ť		95	1.46243	X	X	Т
91	1.47363	× X	ТВ	X		97	1.47349	X	ТВ	X
92	1,47587	LB	X	Х		98	1.47570	LB	X	Х
93	1.47760	<u>. Х</u>	X	T.		99	1,47754	<u>×</u>	<u> </u>	T
						101 %	1.66845	LB+ +	X	
<u> </u>						103	2.09114	<u> </u>	X	T.
						104	2.09114	X	Х/ТВ	X
and a second		200 A 10 A	-	and the second		105	2.11617	100 W4	X	<u>۸</u>
95	2.33027	X/LB	186			100	2.52845	10.	16+	
90	2.44350	101	Y/TD	2.00010951		00000	2.40105	Inter LOT 2		
02	2 46417	18	TP	7 T	1	 				
00,00	2.90411		NU V	Tar		109	7 97070	x I	x	and the second
100	2 99021	X	X/TB	X	1	110	2,99005	X	х/тв	X
106	3.00371	Ŷ	TB	x		115	3.00345	x	ТВ	x
105	3.00298	LB	x	x I	1	116	3.00455	LB	x	x
107.4	3.21603	LBH S	X		*****	117.	3,30127	· · LB+ · i	. χ	× X ···
108	3.74297	TKX IS	States X and a set	THE		118	3.56804	X	X	• T+
					1	119	3.57596	X	ТВ	X
			1		1	120	3,74983	× X	X .	T+
. 109	4.11614	X	TB+	X		121	4.00869	a x	TB+	X
]	125	4.62800	X/LB	X/TB	Х/Т
114	4.62867	x	Х/ТВ	X]					
115	4.62892	x	ТВ	Х/Т						
116	4.63057	X/LB	X/TB	X		126	4.62824	X	X/TB	X
117	4.63062	X/LB	X/TB	x		127	4.63043	X/LB	X/TB	X
]	128	4.63061	LB	x	х/т
118	4.64375	x	x	ि न		129	4.64314	<u> </u>	X X	T
119	4,79046	LBł	x	I ^{(at} ain X ata)		132	5.43560	· L8+	X	X

Table 6.5 - Frequencies and mode shapes of Model 3 and Model 4.

6.2.1.3. MODEL 4 AND MODEL 5

In this section, the investigation is carried out to verify if the end towers are needed in the model to provide a more realistic system (Figure 6.19b). The results of the inclusion of the end towers in comparison to the use of spring representing end towers will be discussed.

The processing times to analyze Models 4 and 5 are 7 minutes and 41 seconds and 1 hour and 50 minutes, respectively. Table 6.6 illustrates the natural frequencies and the mode shapes of each model. It can be noticed the appearance of new mode shapes for frequencies above 1.2 Hz. With only a free vibration analysis, it is expected the dynamic response of the system can be different depending on the loading. The dynamic analyses of the two systems will be carried out in the later part of this thesis.

Model 4 1 Simplified tower, 2 cables spans & springs

Figure 6.19 - (a) Model 4 and (b) Model 5.

4 . 1	116 and \$4	h 7 a- 11		1.4)	·····	3 ele	lifted towner	h 7 cabl	c chance (Mard	1 51
1 51m	sinied tower wit	n z cable	s spans (Mod	514) TODC:		3 simp	sinced towers with	LATEON	TO ANEL/COCK	TOPCON
MUDE	FREQ[HZ]	LATERAL	TRANSVERSAL	TURSION		MUDE	FREQ[HZ]		V V	VIORATOR
1	0.11479	X/LB	<u> </u>	X		1	0.12201	X/LB	<u>^</u>	<u></u>
5	0.13209	X	X				0.13204	~	V/TD	
0	0.13266	×// D	×/18	×			0.13209	×/1 R		_
9	0.17643		× ×	X			0.1/513			Ŷ
11	0.22976	LB V	×	× 7		15	0.25064	<u>من</u> ۷	<u>v</u>	Y/T
15	0.250/4	X	×	~//		17	0.25004	× ¥/i¤		×/1
17	0.25148	X/LB	X	- <u>`</u>			0.25141	7/LD		
21	0.30847	x/LB	<u>۸</u>	×		21	0.30847	10	÷	Ŷ
23	0.32562	LB V	X	<u>×</u>		23	0.34057	 	TO	Y Y
2/	0.34038	×		<u>۸</u> ۲		- 2/	0,20027	Ŷ	10 V	<u>л</u> Т
29	0.39087	×	A	v l		30	0.35010	- A	X/TR	y
50	0.39114	× 10	x/18 V	۸ ب		21	0.39104			Ŷ
22	0.39279	10	<u>х</u>	A V		32	0.3320		X	- Y
23	0.02775		∧ √	^ 			0.00004	 	y v	Ť
35	0.40778	~	۸ ۲۵			35	0.40254	y .	TR	Ý
30	0,40926	V/ID	18 V	×	*****	20	0,40730	Y/IB	Y Y	¥
39	0.47730	X/LB	X /// D			39	0.47/3	7/LD Y		Ŷ
41	0.49752	^ 10		- Â		41	0.45755	^ [B	<u>y</u>	- Ŷ
43	0.52/30	10	<u>х</u>	<u> </u>		43	0.52094		^ 	л У
45	0.54300		X	×/T		43	0.54282	υ γ	× V	х <i>/</i> т
4/	0.54591	- ÷ -	×	~		4/	0.54500		<u>^</u> х/тя	
48	0.54593	×/10	VIB	- `	 	48	0.54007	X/IR	V ID V	x x
53	0.66303	x/LB				33	0.00302	10	A V	^ y
	0.02389		<u> </u>	×		55	0.00376	10	× V	y .
5/	0.71084	LB V				57	0.71055	v	×	<u>х/т</u>
<u>59</u>	0.71240		<u> </u>			22	0.71213	 	Ŷ	Y '
65	0.85482				 	65	0.85478	Y/IR	A Y	×
05	0.86700			 	ł	67	0.86000	×/10	<u>х/тв</u>	- Ŷ
0/	0.88360		×/18			60	0.00909	19		ý.
	0.88550		<u>^</u>	VH	ł	71	0.0650	v	v	γ/τ
1 /1	0.88550		×			71	1.01/61	^ 0	Ŷ	- ^/ 1
/5	1.01463		×			1- 15	1.01401	10	<u>^</u>	Ŷ
	1.03091		× ×	<u> </u>			1,030/0	LD V/ID	<u> </u>	
85	1.07758	x/UB	×	X		55	1.07/55	1.0	<u> </u>	
8/	1.2391/	<u>в</u>	×	×	1	- <u>67</u>	1 42 220		~	
		<u> </u>		+	l	93	1.45609		× ×	
					 	94	1.45699		×/18	L Û
93	1.45953	LB	X	<u> </u>		35	1,45955			
94	1,46090	<u>×</u>	18	X		90	1.46085		V/TD	V/T
No. of Contraction				and the second	 	1 3/	1.401/		v v	/ι
95	1.46243	⊢ × _	× ×	1.000		38	1.40240	~		γ/τ
-			1			99	1.40301			<u></u>
97	1.4/349	<u>x</u>	18	X		105	1.47308	V/10		<u>ү</u> лт
 		 	 		4	105	1.4/352	10		1 N/1
		l	 			107	1,47425		× × ×	- ~/ ·
						108	1.4/462	10	1	<u> </u>
98	1.47570	LB	X	X .		110	1,4/5/1		×	- ^/I T
99	1.47754	<u> ×</u>	····×		.	- 111	1.4/75/		V ATD	
ļ			l		-	112	1.4/816	X	×/18	V/T
·		<u> </u>	l	<u> </u>	-	113	1.4/8/8	1 ×/LB	× // 10	- <u>//</u> -
1000000000-returator		and the second	2200			116	1.48249		×/18	
101	1:66845	LB+	Leners X and	<u> X</u>	§	117	1.60801	100+	A/18	V ~~
L	 	l	· · · · ·		4	118	1.6/296	x/LB	×/1B	
	ļ	 	l	·	4	119	1.7253	×	X/18	X
						120	-1./5116	150 CB+	X/18	×
103	2.09114	<u> x</u>	<u> </u>	<u> T</u>	4					
104	2.09114	×	<u> </u>	· X	.			ļ		
105	2.11617	. LB+.	X	<u>x</u> .]		1	!		
107	2.32845	<u> x-</u>	.TB+	X/T	I		<u> </u>	-	-	
		ļ		<u> </u>	_	121	2,33072	1 : LB+	TB+	<u> X</u>
			1			122	2.36068	<u>LB</u>	ТВ	<u> т</u>
108	2.46103	LB+	<u> </u>	X -		123	2.45848	1.8+	ТВ	1 X 3
						124	2.51648	X/LB	X/TB	х/т
						125	2.51715	LB	Х/ТВ	<u> </u>
					1	126	2.52982	X/LB	Х/ТВ	X

Table 6.6 - Frequencies and mode shapes of Model 4 and Model 5.

1 cimn	lified tower with	12 cables	spans (Mode	4)	Ţ	3 simpl	ified towers with	th 2 cable	s spans (Mod	el 5)
MODEL	EREOIH71	I ATERAI	TRANSVERSAL	TORSION		AODE	FREQIHZI	LATERAL	TRANSVERSAL	TORSION
	FACU[D2]		IIOUID VEIIDAL			127	2.55731	X	Х/ТВ	x
						178	2,68401	LB	ТВ	T
ł				<u> </u> -		129	2.91021	LB	Х/ТВ	Х/Т
						130	2.96855	X/LB	X/TB	T
109	2 97079		X	Transfer of					and a second	
- CUA		10101010101	A 10 19 19 19	menutive in the life of the life		131	2,9737	X/LB	Х/ТВ	T
		۱				132	2.97566	X/LB	Х/ТВ	т
	ł	└────╂				133	2,98476	X/LB	Х/ТВ	Т
		└}	⊳−−−−−−			134	2.98845	X/LB	х/тв	х/т
······			⊦ ∤			135	2.98997	X/LB	Х/ТВ	Х/Т
110	2.99005	⊢ _× −1	Х/ТВ	- <u>x</u> -1		136	2.99018	x	Х/ТВ	X
		<u> </u>				137	2.99026	х	Х/ТВ	х/т
ł		1		["		138	2.9903	x	Х/ТВ	Х/Т
		i				139	2.99032	X	Х/ТВ	Х/Т
	i	II		t		142	2.99042	x	X	Х/Т
		11			T I	143	2.99043	X/LB	x	Х/Т
		1'i				144	2.99046	X/LB	X/TB	Х/Т
	•	ri				145	2.9905	X/LB	х/тв	X
	······					146	2.9907	X/LB	X/TB	X
						147	3.00159	LB	X/TB	<u>x/</u> T
	r ····		i			148	3.00326	LB	ТВ	<u>x/T</u>
115	3.00345	X	ТВ	x	Г					
116	3.00455	LB	X	x		149	3.00423	LB	<u>x</u>	<u>х/т</u>
10000000000000000000000000000000000000	1				Γ	150	3.00473	×	Х/ТВ	х/т
	1					151	3.00499	LB	Х/ТВ	<u>х/т</u>
	1		i			152	3.00673	X/LB	Х/ТВ	x/r
117	3.30127	L8+	X	X		153	3.30233	L8+	тв	L X
118	3.56804	X	<u>. x</u>	T4		154	3,55604		18	17 1 +
119	3.57596	X	<u>тв</u>	X		155	3.58193	<u> </u>	TB	<u>х/т</u>
	1					156	3.74954	<u> X [</u>	Х/ТВ	1 T+ V
120	3.74983	<u> </u>	<u>x</u>	T+		157	3.83988	X/18	Τβ+	<u> T </u>
						158	4.0916	X/L8	ТВ	X/T
121	4.00869	X		<u>×</u>		159	4.19418	LB	T8+	<u> 70</u>
						160	4.24228	<u>[(8</u>	TB+	1 × *
			L			161	4,508	X/IB.	TB+	1997 F
					1	162	4.51347	X/LB	TB	X
		1				163	4.53014	LB.	184	
128	4.63061	LB	<u> </u>	<u></u> х/т	۱	164	4,59302	LB	1B	
	L	1		ļ]	الله ال	165	4.62179	<u> </u>	18	
				ļ]	<u>ال</u>	166	4.62285			× • • • •
	L	ļ				167	4.62533	+ <u>×</u>	X/18	1 X/1
	ļ	ļ	<u></u>	<u> </u>	۱ ا	168	4.62709		18	+ 1/1
	L			Įl	إ	169	4.62723	+ <u>x</u>	18	1 VH
L		4	 	<u> </u>	<u> </u> ⊠	170	4.62726		18	<u>4</u>
					ιL	171	4.62792	X/LB	× ×	+ *
126	4.62824	<u> </u>	Х/ТВ	X	ļļ	172	4.628	+ X	X/18	+ ×
125	4.62800	X/LB	Х/ТВ	Х/Т	<u> </u>	173	4.62808		X/18	+ x/r
	ļ	1		<u> </u>	ļ	174	4.62824	X	X/18	1 ×
	L		<u> </u>		ιβ	175	4,62829		18	- <u> </u>
127	4.63043	X/LB	Х/ТВ	X	∖	176	4.62837	X/LB	x/18	×
	ļ	+			 Å	177	4.62874	X/LB	1B	+ <u>x/1</u> + x/1
	<u> </u>	+		+	ĮĮ≙	178	4,62924		18 V/TO	
ļ				4	I	179	4.62994	+ X		- <u>^/</u>
			_ _		 ≂	180	4.63021	x/LB		
ļ	_			4	 −−−− <u>₿</u>	181	4.63043		18	
ļ	·	4			 &	182	4.0306/	1 1/18	TD	V/+
		4			Į₽	183	4.6309	<u> x/18</u>	ID V MP	
L					1 L	184	4.63291	×/LB	×/10	
And the State of Long	1		The Conference Character of the	Statement and a statement	<u>↓</u>	185	4.65322			
129	4.64314	<u> </u>	<u> </u>	<u> 166 1688</u>	1			-		the second secon
		-			(186	4.64331	+ <u>×</u>	X/18	
	1		+		↓	187	4.64637		18	+ x/1 + y/r
			100	The specific bases the	Į	188	5.2937		18	X/1
132	5,43560	LB+	<u> </u>	<u> </u>	<u>1 (1</u>	<u> </u>	5.40686	LB+	1000018000	X/1

Table 6.6 (cont'd) - Frequencies and mode shapes of Model 4 and Model 5.

6.2.1.4. MODEL 4 AND MODEL 6

This section investigates the influence of using more than two conductors' spans in the analysis of the transmission system as shown in Figure 6.20.

The processing time for Model 6 is 2 hours and 37 minutes, which is twenty times greater that Model 4. Table 6.7 shows the natural frequencies and the mode shapes of the two models. The increase in the number of cable spans increases the number of frequencies and mode shapes as expected. Similar to the previous section, the inclusion of more spans might affect the dynamic response of the system. However, the effects will depend of the nature of the loading.

Figure 6.20 - (a) Model 4 and (b) Model 6.

					1	<u> </u>	1.0. 14		anhla spans (N	lodal 6)
1 sin	nplified to	wer with 2	cable spans (Mo	odel 4)		3 sin	plified tow	ers with 4	Cable spans (IV	TOPSION
MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION		MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION
1	0.11479	X/LB	X	X		1	0.11311	X/LB	X	<u>×</u>
						5	0.11981	X/LB	<u> </u>	×
						9	0.13024	<u> </u>	<u> </u>	
						10	0.13063	<u> </u>	Х/ТВ	X
						11	0.13232	X/LB	X	X
5	0.13209	X	X	Т		13	0,14095	X	X	Т
6	0 13266	X	X/TB	X		14	0.14231	Х	X/TB	X
	0.17643	X/IB	X	X	1					
	0.17045	7,00			1	19	0.20561	LB	X	X
	0.07076	10		v		21	0 22879	LB	x	X
11	0.22976	LD	~	A 199	<u> </u>	75	0.74078	18	x	X
		<u> </u>	X		-	70	0.24081	Y	x	Х/Т
15	0.25074	×	<u>x</u>			23	0.24501	- <u>v</u>	X/TB	X
					-	30	0.24989	 	×/10	<u> −≎</u>
17	0.25148	X/LB	X	<u> </u>	4	31	0.25122	X/LD		$-\hat{\mathbf{v}}$
21	0.30847	X/LB	X	X	4	35	0.2523	X/LB	×	<u>├</u>
					_	41	0.30846	X/LB	X	<u> </u>
23	0.32562	LB	X	X						
						45	0.32919	X/LB	X	X
27	0 34038	X	ТВ	Х		49	0.33759	×x	ТВ	X
2007 -						51	0.34935	X	ТВ	т
					-	52	0.35054	X	X/TB	X
	0.20114		V/TP	v	-	53	0 35322	X	Х/ТВ	X
30	0.39114					55	0.3617	IB	x	X
31	0.392/9	LB	<u> </u>		š. 1	55	0.3017	1.9	X	x
33	0.39953	LB	X	<u> </u>			0.55135			
	0.39087	<u> </u>	X	100	<u></u>					V/T
L				<u> </u>	_	61	0.39255	×	<u> </u>	<u></u>
						63	0.39325	X/LB	×	- <u>×</u>
						65	0.39375	X	X	<u> </u>
35	0.40776	X	x	• T						
Constant of the loss						67	0.40888	X/LB	X	X
36	0 40926	X	ТВ	X				×		
20	0.4773	Y/18	x	X		71	0.47727	X/LB	X	X
- 33	0.4/75			+	-	73	0.47738	X/LB	x	X
	0.40752		V/TP			75	0.4967	X	х/тв	X
41	0.49752	^		Ŷ	 200	77	0.4993	IB.	x	X
43	0.5273	<u>LB</u>	× (TD)			70	0.50086	X	х/тв	x
48	0.54593	X	<u> </u>			13	0.50000		X	X
45	0.543	LB	<u> </u>	<u> </u>	08) 	03	0.54250		V V	T x
						8/	0.54382		- 	$-\frac{\hat{v}}{\hat{v}}$
						89	0.54482	X/LB	<u></u>	
47	0.54591	<u> </u>	X	<u>X/T</u>	_	91	0.54597	<u> ×</u>	<u> </u>	
		<u> </u>				95	0,65514	LB	×	
53	0.66303	X/LB	X	<u> </u>		101	0.66299	X/LB	X	<u> </u>
	1					103	0.66315	X/LB	<u> </u>	<u> X</u>
55	0.68389	B	X	X		107	0.70659	LB	<u> </u>	<u> </u>
57	0 71084	1 18	X	X		109	0.70964	LB	X	<u> </u>
50	0 7174	X	x	Х/Т		111	0.71111	X	X	X/T
- 39	0.7124	- <u>^</u>	+		-1-	113	0.71208	LB	X	<u>x</u>
			+	-1	╉	115	0.71275	X	x	Х/Т
						110	0 82681	IB	x	X
63	0.8548				<u>.</u> 	122	0.02001	Y/IP	x	x
65	0.867		- X				0.0009	V/10	- 	Y Y
				_		12	0.86/14		- V/TD	-
67	0.8690	9 X	Х/ТВ	<u> </u>	_	127	0.86903	X	×/18	-+
						129	0.86932	<u> X</u>	X/18	<u> </u>
						13	L 0.87812	LB	_ <u> X</u>	<u> </u>
69	0.8838	9 LB	X	X		13:	0.88344	LB	<u> </u>	<u> </u>
		-1			T	13	0.8846	/ X/LB	X	X
71	0.8855	x	x	Х/Т		139	0.88588	3 X	X	X/T
74	1 01/26	3 18	x x	X		14	3 0.99679	B	X	<u> </u>
12,332,000	NUMBER OF STREET, STREE	27 1 4 4 5 10 C C C C C C C C C C C C C C C C C C	and a construction of the second states of the seco							

Table 6.7 - Frequencies and mode shapes of Model 4 and Model 6.

1 cin	anlified to	wor with 7	cable spaps (M	del (I)	and to be	3 sim	nlified to	vers with 4	cable spans/M	Indel 6)
1 510	rprocuzi	Ver with 2	TRANSVERSAL	TOPSION		MODE	EDEO[H7]	IATERAL	TRANSVERSAL	TORSION
MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	IUKSIUN		147	1 02002	VID	V	v
					******	147	1.02002		×	
						149	1.03034		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ^ V
		10		v		122	1.03139	N/LD	^	
_1/	1.03091		<u> </u>	<u>х</u>	·•••••	100	1.07747	V/ID	v	v
85	1.07758	X/LB	X	<u> </u>		103	1.07747		^	- Û
						164	1.07757	X/LB	<u>`</u>	
						105	1.07761		<u>×</u>	
	and the second	505445525627559553A			<i></i>	167	1.08311	LB+	<u> </u>	
87	1.23917	LB	X	X		169	1.23571	LB	X/18	<u>л</u>
						1/0	1.23931	X/LB	X/18	<u> </u>
						1/1	1.24343	LB	<u>×</u>	<u>X</u>
93	1.45953	LB	<u> </u>	<u> </u>		183	1.45967	LB	X	X/1
						184	1.45979	<u></u>	X/18	X
	and the set of the other set of	Canada an				185	1,46053	X	X/18	X/I
94	1.4609	<u> </u>	ТВ	<u> </u>			2.0000000000000000000000000000000000000	Salatasianter (Jacartosita		
95	1.46243	X	<u>x</u>	Т		186	1.46191	X	X/TB	
						187	1.46282	<u> </u>	<u>X</u>	X/T
						188	1.46374	X	X/TB	<u>X/T</u>
						189	1.46385	<u>x</u>	х/тв	X/T
					Į	190	1.46418	<u>x</u>	<u>x</u>	X/T
					 	191	1.46471	<u> </u>	X	X/T
97	1.47349	X	ТВ	X	_	195	1.47394	X/LB	TB	X/T
					<u> </u>	197	1.47506	X/LB	х/тв	<u> </u>
98	1.4757	LB	X	X	<u> </u>	198	1.47577	LB	X	X
						200	1.47584	ĹB	X	X
99 -	1.47754	X	Х	T		201	1.47754	X	X/TB	T
					<u> </u>	202	1.47772	X	x	X/T
101	1.66845	LB+	X	X						
	<u> </u>	1				207	1.90072	X/LB	TB	T+
	1		·		1	208	1.96226	X/LB	ТВ	<u>т.</u>
					1	209	2.09231	LB	X/TB	X/T
103	2.09114	X	X	T			1			
104	2.09114	X	Х/ТВ	X	1					
105	2 11617	LB+	X	X				·		
					1	211	2.12153	X/LB	TB	Т
	1					212	2.14258	X/LB	ТВ	X/T
107	-2 32845	X	TB+	X/T						
abatter at 10.000					1	213	2.41159	LB+	TB	T+
108	2 46103	BAT	X	X * •		214	2.4181	LB+	ТВ	T
			·		Ĩ	215	2,44534	LB+c+	ТВ+	T+ Sc
					-	216	2 45347	IB+	TB+	T
					1	217	2 47328	18	TB+	- T+
					-	218	2 74288	X/LB	ТВ	Х/Т
	+				1	210	2 83602	1B4	TR	
<u> </u>	+		+		-	220	2 96512	IR	X/TB	Х/т
100	107070			T		- Harrison	1	a processing the GASAST		
1 TOA	2.3/0/9		A MARKED AND A MAR	er sie staat die	-	021	2 08303	X/IR	X/TB	T
					-	222	2.0000	Y Y	X/TR	l T
L	+				-	242	2.00431	v v	X/TR	
<u> </u>					-	223	7 00574	V/ID	y/m	<u>,</u>
<u> </u>	.l					224	2,303/4	V/LD	<u>у/тв</u>	<u>у/т</u>
						225	2.38/22			1 <u>v</u> /r
				1		220	2.98/0/			
ļ	<u> </u>					22/	2.98824		1	
L						228	2.98985	X/LB	+ \}	
	1					229	2.99002	X/LB	× ×	<u>*</u>
110	2.99005	X	X/TB	<u> </u>	-					+
L			_ _	<u> </u>		230	2.99009	X/LB	<u> X/ТВ</u>	X/T
					4	231	2.99015	<u> X</u>	х/тв	
	L				_	232	2.99018	X/LB	<u>Х/ТВ</u>	<u> </u>
			<u> </u>			233	2.99022	X	X	<u> </u>

Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Model 6.

1 sin	nplified to	wer with 2	cable spans (Me	odel 4)		3 sin	plified to	vers with 4	4 cable spans (N	lodel 6)
MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION		MODE	FREQ[HZ]	LATERAL	TRANSVERSAL	TORSION
						234	2.99029	х	X/TB	Х
						235	2.9904	х	X/TB	х
		,								
						237	2.99208	X/LB	Х/ТВ	X/T
						238	2.99859	LB	ТВ	Т
						239	2,99984	X/LB	ТВ	т
115	3.00345	. X	TB	X						
						240	3.0046	LB	ТВ	Х
						241	3.00744	LB	х/тв	Х/Т
116	3.00455	LB	Х	X		242	3.00934	LB	X	X/T
						243	3.01098	LB	Х/ТВ	Х/Т
					1	244	3.02001	X/LB	х/тв	X/T
						245	3,31602	LB+	тв	5.5 T
117	3.30127	LB+	X	X.		-246	3.31947	L8+	X/TB	T
			-		1	247	3.45039	LB+-	ТВ	
118	3.56804	X	X	Тњ						
119	3.57596	X	ТВ	X						
120	3.74983	Х.	X	T+ .						
						248	3,88121	LB .	TB	T+
					1	249	3.90759	X/LB	TB+	T+
-121	4.00869	X	ТВ+	· X		1	I			
		-				250.	4.0574	X/LB	X/TB	T+
					1	251	4.1187	LB	TB+	T+
					1	252	4,15369	X/LB		Ťŧ
						253	4.2482	X/LB	TB+	Tł
					1	254	4.53041	X/LB	ТВ	Т
					1	255	4.54471	X/LB	TB+	T+
						256	4.57044	X/LB	ТВ	Si T+
						257	4,58462	X/LB	тв	- Т +
					1	258	4,59225	X/LB	ТВ	
					1	259	4,60443	X/LB	ТВ	Т
					-	260	4.6104	x	ТВ	Т
<u> </u>					-	261	4,61633	x	ТВ	т
					1	262	4,61749	X/LB	- тв	Т
					-	263	4.61996	X/LB	Х/ТВ	Т
					1	264	4.62414	X/LB	X/TB	T+ -
					1	265	4.62633	X	Х/ТВ	Х/Т
					1	266	4.6267	X/LB	Х/ТВ	X
				<u> </u>	-	267	4.62715	X/LB	Х/ТВ	Х/Т
			1	· · · ·	1	268	4.62781	X/LB	x	Т
125	4 628	X/1B	Х/ТВ	Х/Т	1	269	4.62802	X/LB	х/тв	X
126	4 62824	x	Х/ТВ	X	1					
					-	270	4.62833	X/LB	Х/ТВ	X/T
						271	4.62853	X/LB	X/TB	X/T
<u> </u>		1			1	272	4.62855	X/LB	ТВ	Т
<u> </u>					1	273	4.62861	X/LB	X/TB	T
					-	274	4 62906	X/IB	Х/ТВ	Т
	+	1		1	1	275	4,6297	X	Х/ТВ	Т
<u> </u>					1	276	4,63016	X/IB	TB	X/T
127	4 63043	X/IB	<u>х/т</u> я	x	-					
120	4 62061	1 IR		<u>х/т</u>	8			1	1	1
	4.05001	LD	1			777	4 63093	X/IB	TB	ХЛ
300	A 64014					279	4 62112	X/IR	Y Y	<u>т</u>
- 129	4,04514	1	^	a ang san di Shiri di	<u></u>	270	4 82112	X/IR	X/TR	T
			+		-	2/3	A 90077	Y/10	78	Ta
┣	+	1		+		200	5 00000	101	TRL	т. Т.
	C Antres	100				201	0502030	LOT		
1::::2	1 3.4330	l	\mathbf{x}	1	3Ê		1	1		

Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Model 6.

6.2.1.5. MODEL 6 AND MODEL 7

An additional cable spans (Figure 6.21) is investigated in this section. The processing time for the analysis of Model 7 is 18 hours and 4 minutes, approximately seven times of that required for Model 6. The comparison of natural frequencies and mode shapes of the two models is shown in Table 6.8. It can be seen the increase in the number of cable spans generates new frequencies and mode shapes. These new mode shapes will affect the dynamic response of the system. However, the effects might depend on the nature of the loading.

Figure 6.21 - (a) Model 6 and (b) Model 7.

3 sim	plified toy	vers with	4 cable spans (N	lodel 6)		5 sim	plified tov	vers with	6 cable spans (N	(odel 7)
MODE	FREO[HZ]	LATERAL	TRANSVERSAL	TORSION		MODE	FRFO[H7]	LATERAL	TRANSVERSAL	TORSION
1	0 11311	X/18	X	x		1	0 11262	X/18	X	X
	0 11981	X/IB	x	x		- î	0 11654	Y/18	× ×	$-\hat{\mathbf{v}}$
	0.11501	1,720					0.12105	X/18	×	
					·····	12	0.12009	- 7/10 V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10	0 12062	v	V/T0	v	· ····	14	0.12020		×/170	~/'
10	0.13003	×// P	×/15		~~~~	10	0.12002	×/10	X/16	- ÷
	0.13232		<u>^</u>	<u>^</u>		12	0.13063	N/LD		
30.9.00	0.13024	<u> </u>	<u> </u>			17	0.13259	<u>X</u>	X/18	
14	0.14231	X	X/1B	X		18	0.13303	X	X/18	<u> </u>
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					19	0.13698	X/LB	X	X
13	0.14095	<u> </u>	X	<u> </u>		27	0,15171	<u> </u>	X	
						28	0.15352	Х	X/TB	X
19	0.20561	LB	X	· X		29	0.22454	LB	· X	· · X
21	0.22879	LB	X	X		31	0.22848	LB	X	X
25	0.24078	LB	×	X		35	0.23479	LB	X	X
						39	0.24682	X/LB	х	х
			·			40	0.24693	X	X	Х
29	0.24981	x	x	Х/Т		41	0.24904	X	X	Х/Т
30	0 24989	x	X/T8	X						
21	0.25122	VIID				12	0.25117	V/IP	v	v
	0.25122	N/LD	^ 	Ŷ		43	0.23117			
35	0.2523	X/LB	×	×		40	0.25161	X/LB	× ×	×
						53	0.25352	X/L8	<u>X</u>	X
41	0.30846	X/LB	X	X		61	0.30846	X/LB	X	X
45	0.32919	X/LB	X	X		67	0.32631	X	х/тв	T
49	0.33759	X	ТВ	X		68	0.32874	X	TB	X/T
						69	0.32946	X/LB	x	х
51	0.34935	X	ТВ	Т						
52	0,35054	x	Х/ТВ	Х		73	0.34013	х	Х/ТВ	Х/Т
53	0.35322	x	Х/ТВ	х		75	0.34695	х	X/TB	X
						77	0.3556	X	X/TB	x
55	0 3617	18	Y	V V		78	0.356	18	Y	Y
			A			02	0.330	10	~ ~	
-	0 20450				-#1 44.0	07	0.5700	LD.	A	<u> </u>
28	0.39159	LB	X			8/	0.39026	18	<u> </u>	A
61	0.39255	<u> </u>	X	X/T		89	0.39176	X	X	X/1
						91	0.39235	X/LB	X	X
65	0.39375	<u>x</u>	X	X/T		93	0.39277	х	X	Х/Т
63	0.39325	X/LB	x	X		95	0.39342	X/LB	X	Х
67	0,40888	X/LB	х	х		99	0.40976	X/LB	X	Х
71	0.47727	X/LB	x	Х		103	0.47727	X/LB	X	X
73	0.47738	X/LB	X	Х		105	0.47734	X/LB	X	Х
75	0.4967	X	Х/ТВ	х						
77	0.4993	18	x	X		109	0.49371	ĽB	x	X
4040-0-0004		and the second second second	CORD-DOLARD BURGER DURING	nepüisien einerzeite		111	0.49719	Y	Y/TB	У/Т
						112	0.40054	Î v	¥/TB	
70	0.50000		V/T0		·	115	0.50252	 	V/T0	⊢ ,
- <u>/</u> 9	0.50080	<u> ^</u>	<u></u>	<u> </u>		115	0.50252	<u> </u>		
 					ļ	11/	0.50489	<u> </u>	×	- //
	Sectory of the sectory of the	Repts Street States and				119	0.51923	LB	X	X
83	0.54256	LB	<u> </u>	<u> </u>		123	0.54248	LB	<u> </u>	<u> </u>
		L				124	0.5429	X	<u> </u>	Х/Т
					.	125	0.54328	LB	X	X
87	0.54382	X/LB	x	х		131	0.54404	X/LB	х	X
91	0.54597	X	X	X/T		133	0.546	X	x	X/T
89	0.54482	X/LB	x	x	[135	0.54798	X/LB	x	X
95	0.65514	LR.	l x	x	l	139	0.64872	LR	l x	x X
101	0.66200	X/IR	Y	Y		148	0.663	X/IR	Y Y	Y
102	0.00233	V/10		├ ─ Û	1	150	0.000	X/10	<u>├──</u>	├ ──Û
1 103	0.00313			<u>^</u>		1 120	0.00000		<u> </u>	
10/	0.70659	LB	X	×		155	0.6794	LB.	<u>x</u>	
111	0.71111	<u> </u>	<u> </u>	X/T		157	0.69684	<u> </u>	<u> </u>	X/1
109	0.70964	LB	<u> </u>	<u> </u>		159	0.70749	LB	<u> </u>	<u> </u>
115	0.71275	X	X ¹	X/T		161	0.71054	X/LB	x	х/т
110	0.71047	x	X	х		162	0.71125	X/LB	x	Х
113	0.71208	LB	X	X		163	0.71125	LB	x	X
						164	0.7115	X/LB	X	x
	1			1	1	169	0.7125	X/LB	x	X

Table 6.8 - Frequencies and mode shapes of Model 6 and Model 7.

3 sin	nplified to	vers with	4 cable snaps (N	Model 6)	T	5 sin	anlified to	vore with	6 coblo coone (A	Andal 7)
119	0 82681	IB	v v			175				
			Constant of the Constant of the			177	0.02007			N A
├	+					1//	0.05452	<u> </u>		X/1
	<u> </u>					1/9	0.85224	LB	<u> </u>	X
122	0.0000	×45			~~~~	181	0.85393	LB	X/TB	<u> </u>
123	0.8669	X/LB	X	<u>X</u>		183	0.86705	X/LB	<u> </u>	X
125	0.86714	X/LB	X	<u>x</u>		185	0.86719	X/LB	X	X
127	0.86903	X	х/тв	X		188	0.86907	X	X/TB	X
129	0.86932	X	X/TB	x		190	0.86921	X	Х/ТВ	x
137	0.88467	X/LB	X	X		197	0.88326	X/LB	x	X
131	0.87812	LB	X	X	Anna) 400	198	0.88335	18	x	×
139	0.88588	X	x	X/T		200	0.88374	v	v	v/T
123	0 88344	18	i v	- <u>v</u>		200	0.00374		l ô	
394.J.J.	10.00.14		^	<u> </u>		201	0.00420		<u> </u>	<u> </u>
		NAMON COLOR				211	0.88789	LB	X	<u> </u>
143	0.99679	LB	<u> </u>	X		213	0.9924	LB	X	<u> </u>
L						217	1.01369	LB	· X	X
						219	1.0238	X	x	Х/Т
147	1.02802	X/LB	X	X		221	1.03065	X/IB	x	X
149	1 03054	X/IB	× ·	Y	*****	222	1 0200	10	, V	Ŷ
<u> </u>		<u>-</u>	<u> </u>	<u> </u>		775	1 02100			
152	1 00100	×/12	,.			225	1.03109	X/LB	×	×
153	1.03139	X/LB	X	X		230	1.03157	X/LB	X	<u> </u>
163	1.07747	X/LB	<u> </u>	X		243	1.07752	X/LB	X	<u>X</u>
164	1.07757	X/LB	<u> </u>	X		245	1.07763	X/LB	x	X
165	1.07761	X/LB	х	X			[
167	1.08311	LB+	X	y -				· · · ·		
	1					240	1 32540	10	v	VЛ
					· · · · ·	250	1.2.3.43		<u> </u>	<u></u>
	1 24242	10				250	1.23//1	LB	<u> </u>	X/1
1/1	1.24343	LB	X	<u> </u>		251	1.23957	LB	<u> </u>	<u>X/T</u>
170	1.23931	X/L8	X/TB	X	۰.	252	1.24273	X/LB	X/TB	х/т
169	1.23571	LB	Х/ТВ	X		253	1.24436	LB	Х/ТВ	. X · · ·
						271	1.42351	LB	ТВ	т
183	1,45967	LB	X	Х/Т						
184	1.45979	LB	Х/ТВ	X .		272	1 45977	IB	y y	Y
185	1 46053	x	X/TB	У/Т		773	1 45002	v	V/TP	V
	1.40035	<u> </u>		~/1		273	1.45995		×/18	<u> </u>
						2/4	1.4603	X/LB	× ×	X
 					••••••	275	1.46109	X/LB	X	X/T
	·					276	1.46148	X	Х/ТВ	Х/Т
						277	1.46154	X/LB	тв -	T
186	1.46191	X	Х/ТВ	т		278	1,46232	X I	X/TB	T
187	1.46282	Х	х	X/T		279	1.46386	x	X/TB	X
188	1 46374	X	X/TB	<u>х/т</u>		280	1 46451	y v	V/TP	V/T
190	1 46395	- Ŷ	V/TP	V/T		200	1 46472		×/15	×/1
100	1.40305	$\frac{1}{\sqrt{2}}$		~/1		201	1.40475	<u> </u>	X/18	X/1
130	1.40418	<u>^</u>	<u>^</u>	x/I		283	1.4655	<u>×</u>	X	х/т
191	1.46471	X	X	X/T			C/22/10.08-90-9-			
195	1.47394	X/LB	ТВ	X/T		293	1.47505	X/LB	ТВ	Х/Т
197	1.47506	X/L8	X/TB	X/T		294	1.47534	X/LB	Х/ТВ	х
198	1.47577	LB	Х	X		295	1,47569	LB	X/TB	X/T
200	1.47584	LB	Х	X						and the state of the
	1		-		••••••	206	1 476	¥/10	<u>ү/тр</u>	у/ т
						200	1 47000			
						297	1.47606	X	x/18	X/I
			L			298	1.4763	X/LB	X/TB	X/T
	ļ		<u> </u>			299	1.47633	X/LB	x	х/т
l						300	1.47644	Х	X/TB	X/T
						301	1.47769	х	Х/ТВ	X/T
						302	1.47793	х	х	X/T
201	1.47754	×	X/TB	т		303	1.47847	X	X/TB	т
202	1.47772	X	×	χ/т	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	304	1 49009	Y	v	γ/т
202	1 00070	N N N N	<u></u>	- // I 			1.40000	. ^	^^	~/1
		WIT	18							
208	1.96226	X/LB	TB	ſ				100 AN 1845 A		
						313	2:00235	(H.LB+	->:-: ⊺ 8.+	Т
209	2.09231	LB	Х/ТВ	Х/Т		314	2.03963	LB	Х/ТВ	X
						315	2.09349	X	X/TB	T
						316	2 00543	v	V/тр	v/ 1
211	2 12152	Y/10	TP	T			2.03343		~/10	
222	2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/LD	10							
212	2.14258	X/LB	ТВ	X/T						

Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.

3 sim	nlified to	vers with	A cable spans in	Andal 6)	5 cirr	unlified tou	vors with	6 cable spans (N	(Todal 7)
3 311			4 cable spans (iv	nouer of	2317	10 10100	1Dc	v cro	
·					210	2,10100	V/IP	×7 10	×/T
77.0	3 44014	10	10		210	2.1/309		^	
214	2,4101	LDT .	TO	and a state of the	519	2.43067	101	10	<u> </u>
213	2.41.09	LOT	. 10	A CONTRACTOR	020	2.303328	Lot		Sec. 1. 4
- 21/-	-2,4/3/8	-GelB	18+ 2-e			2,51309	- L8	·18+	14
215	2,44534	LB+	age of TB+1.5	T+T+	322	2,5367	LB+	TB+	T+
216	2.45347	: LB+	Intel TB+	T. St.					
					-323	2,62919	: UB, -	Х/ТВ	
					324	2.63776	LB 🗇	TB	1-T+
					325	2.6451	ĹB	TB	- T+ -
					326	2.68475	LB	TB	T
					377	2 80199	18	TB	т
210	2 74202	V/I B	ТР	V/T			2012000 0000 0000000		340040948 . 00000840
			10			2 02527	10	v/m	T
					220	2.33327		X	
					529	2,94636	X/LB	Χ	1
Japantacha-Switte	1622 W. 102 W			2013 140400 20-000000	330	2.94855	LB .	X	
220	2.96513	LB	Х/ТВ	<u> </u>	331	2.97616	LB	X	<u>X/T</u>
221	2.98303	X/LB	Х/ТВ	T .	-332	2.97727	X	Х/ТВ	<u> </u>
					333	2.97791	LB	ТВ	×/T
222	2.98431	X	X/TB	Т	334	2,98303	X/LB	х/тв	T
					335	2.98451	X/LB	Х/ТВ	X/T
223	2.98547	x .	X/TB	T	336	2.98544	X/IB	X/TB	т
				994994999 999 9999999999999999999999999	227	2 98605	18	¥/TB	, т
224	2 09574	N/ID	V/TD	Ŧ	337	2.30003	VID	X/10 X/T0	
224	2.98574	· A/LO	X/1B	2003.200 ACC 100	338	2.98000	X/L8	X/18	
046000000000000000000000000000000000000	a deserver en				339	2.98822	X	X/18	X/T
226	2.98767	LB	Х/ТВ	Х/Т					
225	2.98722	X/LB	X/TB	х/т	340	2.98993	X/LB	Х/ТВ	X/T
227	2.98824	X/LB	X/TB	Х/Т	341	2.99001	X/LB	х/тв	X/T
228	2.98985	X/LB	Х	Х/Т	342	2,99031	X/LB	х	х/т
229	2.99002	X/LB	x	X	343	2.99035	X/LB	х	х
					344	2,99036	X	X/TB	x
					3/5	2 99037	- Y	X	У/Т
					216	2.00047	VID	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×/T
					247	2.55042			
					347	2.99042	X	X/1B	×
230	2.99009	X/LB	X/18	X/1	348	2.99043	X/LB	X/18	X/1
					349	2.99043	X/LB	X/TB	Х/Т
					350	2.99043	X/LB	X	X/T
					351	2.99048	X/LB	X/TB	Х/Т
					352	2.99056	Х	Х/ТВ	X/T
					353	2,99058	X/LB	x	x
					354	2 99066	X/IB	Y	х/т
					200	2.00066	V/LD	<u>х</u> У/тр	×/T
		 	<u> </u>		300	2.99000			
		<u> </u>	i		350	5.99112	A/LB	····· ^	<u> </u>
	 				357	2.99129	X/LB	X	<u> </u>
	ļ	<u> </u>		[358	2.99141	X/LB	X/TB	<u>x/T</u>
	<u> </u>				359	2.99189	X/LB	Х/ТВ	<u> </u>
231	2.99015	X	Х/ТВ	Τ	360	2.99202	X/LB	X	Т
232	2.99018	X/LB	х/тв	X/Т	361	2.99348	X/LB	Х/ТВ	х/т
219	2.83602	LB+	ТВ	Т	362	2.99471	LB+	ТВ	т
233	2,99022	x	x	Х/Т	363	2,99777	X/LB	x	х/т
220	2 99029	v v	<u>х/тв</u>			1		·····	
234	2.00029	\uparrow	V/TD						
255	2.3304	- .				<u> </u>		<u> </u>	
236	2.99045	X	×	×					
237	2.99208	X/LB	Х/ТВ	<u> </u>	364	2.99964	X/LB	<u> </u>	<u>x/</u> T
241	3.00744	LB	X/TB	X/T	365	3.0045	LB	X/TB	X/T
239	2.99984	X/LB	ТВ	Т	366	3.00479	X/LB	Х/ТВ	т
242	3.00934	LB	X	Х/Т	367	3.00642	LB	X	Т
243	3.01098	LB.	X/TB	Х/Т	368	3.00926	LB	X/TB	Т
1		1	1		260	3 06744	1 R+	X/TR	Т
	1	1	1	ļ		3.00/-++		// 10	<u> </u>
		1	1	1 1	270	2 07751	1 104	1 70	
					370	3.07231	1.8+	TB	123/2012/2012/0
238	2.99859	LB	ТВ	Т	370	3.07231 3.11405	LB+	TB TB	T
238 240	2.99859 3.0046	LB LB	TB TB	T X	370	3.07231 3.11405	LB+ LB	TB	Ť
238 240 244	2.99859 3.0046 3.02001	LB LB X/LB	TB TB X/TB	Т Х Х/Т	370	3.07231	LB+ LB	TB	

Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.

3 sim	plified to	vers with	4 cable spans (N	Aodel 6)	5 sin	plified to	vers with	6 cable spans (N	(odel 7)
246	3.31947	LB+	Х/ТВ	ALC: TABLE					
247	3.45039	LB+	TB	- T+	372	3.42938	LB+	TB -	T+
					373	3,52462	LB	Х/ТВ	Х/Т
					374	3.58762	LB	TB	CET 1
					375	3,58975	<u>18+</u>	<u>T8</u>	(T)
249	3,90759	X/LB	TB+	STA S	377	3.65214	184	TB+	1+ T4
248	3,88121	LB	TB	T+.	378	3.864	LB	TB+	T+
-250	4.0574	X/LB	Х/ТВ	Σ. Τ+			·		000000000000000000000000000000000000000
251	4 1187	LB -	TB+	1117 +111					
252	4.15369	X/L8 :	TB+	T+ 55					A
255	<u>8,2982</u>	X/LB	18+ises	- 1+	379	4.27499	X/LB-	78+	T+
255	a 54471	X/IB	TR+	STATE -	381	4,30225	⊞1B 	TP ₁	1+
	1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	200 75) L.C.			382	4.33252	X/LB	TB	T
254	4.53041	X/LB	ТВ	т	383	4.55354	X/LB	ТВ	T
256-	4.57044	X/LB	ТВ	Sa T+255	384	4.55648	X/LB	ТВ	Ť+ 🕫
257-	4.58462	X/LB	TB	- T+ - *	385	4.58788	LB	Х/ТВ	. T+
258	4.59225	×X/LB	ТВ	T+ *		Succession	Salar and a second		
					386	4.61386	X/LB	X/TB	<u> </u>
261	4 61633		тв	т	387	4.61769			<u> </u>
259	4.60443	X/LB	ТВ	Т	389	4.61797	18	TB	T
260	4.6104	X	ТВ	т	390	4.6186	x	ТВ	T
					391	4.62303	X/LB	Х/ТВ	X/T
263	4.61996	X/LB	Х/ТВ	т	392	4.62348	X/LB	Х/ТВ	Т
					393	4.62511	<u> </u>	Х/ТВ	T
264	4.62414	X/LB		ा कि नि र्म म		4.0257.0	N/U D		
265	4.61749	X/LB	Y/TB	і У/т	394	4.62559	X/L8		X/1 V/T
266	4.6267	X/LB	Х/ТВ	X	396	4.62684	X	X/TB	Y1X
267	4.62715	X/LB	Х/ТВ	X/T	397	4.62691	X/LB	X/TB	<u>7</u>
268	4.62781	X/LB	X	T	398	4.62692	Х	Х/ТВ	т
					399	4.6272	X	Х/ТВ	Х/Т
					400	4.62739	<u> </u>	<u> </u>	Х/Т
					401	4.62707			X/1
269	4.62802	X/LB	Х/ТВ	x	403	4.62786	X/IB	X/TB	х/т
					404	4.62794	X	х/тв	Х/Т
					405	4.62797	Х	X	T
					406	4.62814	х	Х/ТВ	Х/Т
					407	4.62823	X	Х/ТВ	х/т
270	1 62922	V/IP	V/T0	V/T	408	4.62825	X/LB	X/TB	X/T
270	4.62853	X/18	<u>х/тв</u>	X/T	409	4.62835		X/18 X/T8	X/1 X/T
274	4.62906	X/LB	Х/ТВ	 T	411	4.62836	<u>X</u>	х/тв	T
272	4.62855	X/LB	ТВ	Т	412	4.62858	X/LB	ТВ	T
273	4.62861	X/LB	Х/ТВ	Т	413	4.62871	X/LB	Х/ТВ	T
275	4.6297	X	Х/ТВ	Т	414	4.62875	X	Х/ТВ	т
			••		415	4.62879	X/LB	<u> </u>	x/t
2/8	4.63113	X/LB	X	<u>I`</u>	415	4.62909	X/LB	<u> </u>	<u>Г</u>
276	4,63016	X/I.B	TB	Х/Т	417	4.02927	X/IB		T
277	4.63093	X/LB	ТВ	X/T	419	4.62934	X/LB	TB	T
					420	4.62956	X/LB	х/тв	X
279	4.82113	X/LB	Х/ТВ	Т	421	4.62957	X/LB	Х/ТВ	Т
					422	4.62984	X/LB	Х/ТВ	Х/Т
					423	4.63552	X/LB	ТВ	T
					424	4.75234	LB	TB	T
280	4,89977	X/IR	TR	T+	×423	4,77214	LD	18	x/1
nation of the Second		and the second second			426	4.91953	18	TR+	74
-281	5,09098	LB+	TB+		427	4.96511	LB+	TB+	- T+

Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.

6.2.1.6. MODEL 6 AND MODEL 8

The use of detailed tower modeling is investigated in three spans transmission system as shown in Figure 6.22(b). The objective is to study the difference between using a detailed tower modeling and simplified tower modeling. The processing time for the free vibration analysis of Model 8 is 12 hours and 45 minutes while that of Model 6 is 2 hours and 37 minutes. Table 6.9 shows the natural frequencies and the mode shapes of the two models. It is evident that both of the systems have almost the same natural frequencies and mode shapes (1.05% error for the first 200 modes).

Figure 6.22 - (a) Model 6 and (b) Model 8.

Model 6 3 Simplified towers, 4 cables spans & springs

Model 8 1 Detailed tower, 2 Simplified towers, 2 cables spans & springs

3 si	mplified tov	ver with 4 c	able spans (Mo	del 6)	1	1 detailed	and 2 simpli	fied towers w	ith 4 cable so	ans (Model 8)
MODE	FREQ[HZ]	LATERAL	TRANSVERSE	TORSION		MODE	FREQ[HZ]	LATERAL	TRANSVERSE	TORSION
1	0.11311	X/LB	x	х		1	0.11311	X/LB	x	x
5	0.11981	X/LB	х	X		5	0.11981	X/LB	x	X
9	0.13024	X	X	Т		9	0.13024	x	x	Т
10	0.13063	X	Х/ТВ	х		10	0.13064	×	Х/ТВ	x
11	0.13232	X/LB	<u>x</u>	X		11	0.13234	X/LB	X	X
13	0.14095	<u>x</u>	X	Т		13	0.14096	X	<u>x</u>	<u>т</u>
14	0.14231	<u>X</u>	Х/ТВ	X		14	0.14232	<u> </u>	X/TB	X
19	0.20561	LB	<u> </u>	<u> </u>		19	0.20562	LB	X	<u> </u>
21	0.22879	10	<u> </u>	<u> </u>		21	0.22879	LB	X	<u> </u>
29	0.24078	1.D V	X	×/7		25	0.24078	LB	X	X
30	0.24981	x	<u>х/тв</u>			29	0.24982	÷	×///	<u> </u>
31	0.25122	X/IB	× 15	Ŷ		30	0.24585	×/18	~~~~	
35	0.2523	X/LB	x	x		35	0.2523	X/LB	×	× ×
41	0.30846	X/LB	x	x		41	0.30846	X/LB	x	×
45	0.32919	X/LB	x	x		45	0.32919	X/LB	x	x
49	0.33759	x	TB	x			·			
						49	0.33821	x	X/TB	x
51	0.34935	X	ТВ	Т		51	0.34956	X	TB	Т.
52	0.35054	x	Х/ТВ	х		52	0.35054	x	X/TB	X/T
53	0.35322	Х	Х/ТВ	X		53	0.35323	х	Х/ТВ	x
55	0.3617	LB	Х	X		55	0.3617	LB	x	X
59	0.39159	LB	x	<u> </u>		59	0.39156	LB	x	Х
61	0.39255	X	x	X/Т		61	0.39256	x	X	Х/Т
63	0.39325	X/LB	x	x		63	0.39325	X/LB	x	x
65	0.39375	X	X	Х/Т		65	0.39376	×	x	<u> </u>
6/	0.40888	X/LB	<u> </u>	X		67	0.40888	X/LB	<u>×</u>	<u>x</u>
71	0.47727	X/LB	<u> </u>	<u> </u>		71	0.47727	X/LB	<u> </u>	<u>x</u>
75	0.47738	X/LB	X /// X	X		75	0.47738	X/LB	X X	<u>×</u>
77	0.4907	<u>^</u>	N/16 V	Ŷ		73	0.49083	10	<u></u>	X
79	0 50086	Y	Y/TR	Y		70	0.4999	v		Ň
83	0.54256	LB	×	Ŷ		83	0.54254	18		Ŷ
87	0.54382	X/LB ·	x	x		87	0.54381	X/LB	x	X
89	0.54482	X/LB	x	x		89	0.54482	X/LB	x	x
91	0.54597	X	x	X/T	*******	91	0.54597	x	x	X/T
						92	0.546	х	Х/ТВ	x
	0.65514	- LB	x	x		95	0,65513	LB	x	x
101	0.66299	X/LB	x	х		101	0.66299	X/LB	x	х
103	0.66315	X/LB	x	х		103	0.66315	X/LB	X	x
107	0.70659	LB	X	X		107	0.70659	LB	x	X
109	0.70964	LB	X	X		109	0.70962	LB	X	X
111	0.71111	X	x	<u>X/T</u>		111	0.71111	x	X	Х/Т
113	0.71208	LB	X	X		113	0.71207	LB	<u> </u>	X
115	0.71275	X	<u> </u>	Х/Т		115	0.71275	X	<u> </u>	х/т
119	0.82681	LB	<u>x</u>	<u>x</u>		119	0,8268	LB	<u> </u>	<u> </u>
125	0.8669	X/LB	<u> </u>	X		123	0.8669	X/LB	X	×
125	0.86003		X X X X X X X X X X X X X X X X X X X	×		125	0.86713		X	<u> </u>
120	0.86932	- ^	X/18 X/TB			170	0.86904	÷	×/18	×
131	0.87812	LB	<u> </u>	Ŷ	~~~~~	129	0.80952	^ R		- ^ y
133	0.88344	LB	x	x		133	0.8834	LR	×	- A
137	0.88467	X/LB	X	X		137	0.88466	X/LB	x	x
139	0.88588	X	x	Х/Т		139	0.88588	X	x	Х/т
143	0.99679	LB	x	X	14, Martin Carton	143	0.99678	LB	x	X
147	1.02802	X/LB	x	х		147	1.02802	X/LB	X	x
149	1.03054	X/LB	X	x		149	1.03053	X/LB	X	x
153	1.03139	X/LB	x	X.		153	1.03138	X/LB	x	x
163	1.07747	X/LB	x	X		163	1.07746	X/LB	x	x
164	1.07757	X/LB	x	x		164	1.07754	X/LB	x	x
165	1.07761	X/LB	X	X		165	1.07761	X	×	x
167	1.08311	LB+	Χ.	. x		167	1.08253	LB	X	X
-	States and the second second					168	1.11625	X/LB	x	x
169	1.23571	LB	X/TB	X		169	1.23573	LB	X	x
170	1.23931	X/LB	X/TB	X						
00000000000	Start and Starts and some	manufactory and the latent		Conversion autority in the		170	1.23946	<u> </u>	X	X/T
171	1.24343	LB	X	<u> </u>		171	1.24354	LB	X	X
183	1.45967	LB	<u> </u>	X/T		183	1,44538	LB	Х/ТВ	<u>x</u>
						184	1.4464	X/LB	TB	X

Table 6.9 - Frequencies and mode shapes of Model 6 and Model 8.

3 s1	mplified tov	ver with 4 c	able spans (Mo	del 6)	1 detailed	and 2 simpli	fied towers y	with 4 cable sn	ans (Model 8)
MODE	FREQIHZI	LATERAL	TRANSVERSE	TORSION	MODE	EREO(HZ)	LATERAL	TRANSVERSE	TOPSION
186	1.46191	X	X/TB	Т	185	1.44797	X	X	
195	1.47394	X/LB	ТВ	Х/Т	187	1.45863	×	TB	Y
188	1.46374	x	Х/ТВ	X/T	188	1.46006	X/LB	x	Х/Т
184 -	1.45979	LB	X/TB	X	189	1.46118	LB	X	Х/Т
189	1.46385	x	X/TB	X/T	190	1,46149	X/LB	X	т
190	1.46418	X	x	X/T	191	1.46196	X/LB	X	т.
191	1.46471	X	x	X/T					
185	1.46053	x	Х/ТВ	X/T	199	1.47506	x	X/TB	x
187	1.46282	X	X	X/T	202	1.47618	X/LB	X/TB	x
197	1.47506	X/LB	Х/ТВ	X/T					
198	1.47577	LB	Х	X					
200	1.47584	LB	X	X					
201	1.47754	X	Х/ТВ	Т					
202	1.47772	X	X	X/T	out an and the second descent d				
207	1.90072	X/LB	Read TB ready	THT+	207	1.90821	X/LB	T TB.	T+
208	1.96226	X/LB	IB V/TO		208	1.96215	X	ТВ	X/T .
209	2.09231	LB	X/1B	X/1	209	2.09212	LB+	X	<u> </u>
211	2.12155	X/LB	1B	VIT	211	2.12096	X	X/TB	T
212	2.14258	N/LB	18	<u> </u>	212	2.14253	X	. (8	<u> </u>
213	2.94107	TP-	P Start	The second second	213	2:31055	LB	1-1-1-18+ V(70	X
215	7 44594	IR4	TP1	Tree	715	2 17110	10	70	
216	2:45347	18+12	TRe	Sector Taxas	215	2.4/118	10	TP	Ť
217.1	2.47378	218	TR+	T4	210	2.43332		10	
218	2,74288	X/18	TB	X/T	217	2 72093	V/I 8	τo	v/ 1
219	2,83602	LB+	ТВ	T	218	2,81769	18.4	X/TR	
223	2.98547	x	X/TB	T	219	2 90248	X/I.8	×	T
221	2.98303	X/LB	х/тв	T	220	2 91087	X/18	X/TB	T T
222	2.98431	x	Х/ТВ	Т	221	2.9215	X/LB	X/TB	т
220 -	2,96513	LB	Х/ТВ	X/T	222	2.92781	LB	x	х/т
240	3.0046	LB	тв	×	223	2.94323	LB	тв	X/T
225	2.98722	X/LB	Х/ТВ	X/T	224	2.94924	x	Х/ТВ	x
224	2.98574	X/LB	х/тв	Т	225	2.95624	X/LB	X/TB	т
231	2.99015	х	Х/ТВ	Т	226	2.95967	x	Х/ТВ	т
234	2.99029	х	Х/ТВ	X	227	2.96046	X	X/TB	x
238	2.99859	LB	ТВ	Т	228	2.97361	LB	TB	Х/Т
226	2.98767	LB	X/TB	X/T	229	2.97764	LB	Х/ТВ	. X
227	2.98824	X/LB	Х/ТВ	Х/Т	230	2.98196	X/LB	Х/ТВ	x
228	2.98985	X/LB	x	Х/Т	231	2.98198	X/LB	X/TB	x
230	2.99009	X/LB	Х/ТВ	X/T	232	2.9832	X/LB	Х/ТВ	X
229	2.99002	X/LB	<u> </u>	X	233	2.98738	X/LB	X	X
232	2.99018	X/LB	X/TB	X/T	234	2.98898	X/LB	×	X/T
237	2.99208	X/LB	<u>X/TB</u>	<u>X/T</u>	235	2.98961	X/LB	×	×
233	2.99022	X	X (77)	X/1 X/T	237	2.99019	X/LB	×	<u>x/</u> T
244	3.02001	NLB		×/1	240	2.9903	X/LB	X	<u>×</u>
				-	241	2.99144			X V/T
239	2,99984	X/I.B	TR	T	242	2.33244		1 N 18	~ ~!
		100/0X			243	3,0049	X/IB	X/TB	х/т
235	2.9904	x	X/TB	x	244	3.01127	x	X/TB	X
241	3,00744	LB	X/TB	X/T				1	
242	3.00934	LB	X	Х/Т					
243	3,01098	LB	X/TB	X/T					
245	3.31602	LB+	TB	T	247	3.39438	. LB+	ТВ	Time
246	3.31947	LB+	Х/ТВ	ANX TON	245	3.32917	LB+	ТВ	Te
247	3.45039	L8+	- TB	\$\$.	246	3.3424	۸. L B	ТВ	T# *
248	3.88121	LB	TB Lead	T+	248	3.68182	X/LB	Tθ	Tr
249	3.90759	X/LB	TB4	T+	249	3,85162	Y is a	T8+ (1)	<u>а</u> т+
250	4.0574	X/LB	X/TB	T+					
	Service States and Services				250	4.08873	LB	TB+	5 T
251	4.1187	LB	TB+	StaTe .	251	4.11836	LB.	TB+	T+
252	4:15369	X/18	IB+	s + T+µ a	. 252	4:16673	an In LB	T8+	T+
255	4.2482	- X/tB	184	5 (H)	253	4.38103	X/LB	TB+	Title
254	4.53041	X/LB	18	Toologian and the second se	254	4.51686	X/LB	ТВ	T
255	4.544/1	- X/LB	18+	1+					
10000 M		STATES ST		-38631:1-22265			VII.2		
├ ──┤					255	4.5/4/2	x/LB	IB IB	<u>x/T</u>
inger a	1 59452	VIIO	and the second	and the second	256	4.58077	X	X	<u>x/</u> T
Same familiant	Contract Off October	HTHE ALL CONTRACTOR	Des Contraction of the second second	STORES A STORE STORE	1 20 40 40	4.3818	N AVLB	Personal Brank Cit	1800亿美国。中国省中国的图

Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Model 8.

3 simplified tower with 4 cable spans (Model 6)				1 detailed and 2 simplified towers with 4 cable spans (Model					
MODE	FREQ[HZ]	LATERAL	TRANSVERSE	TORSION	MODE	FREQ[HZ]	C LATERAL	TRANSVERSE	TORSIO
					258	4.58255	X/LB	X/TB	х
258	4.59225	X/LB	TB - 19	- T + −		1			
259	4.60443	X/LB	ТВ	Т	259	4.58344	X/LB	ТВ	Т
263	4.61996	X/LB	Х/ТВ	Т	260	4.58381	X/LB	X/TB	т
					261	4.58513	X/LB	X/TB	Т
260	4.6104	X	тв	Т	262	4.59667	X/LB	ТВ	τ
264	4.62414	X/LB	X/TB	T+					
261	4.61633	X	ТВ	τ	263	4,5993	X/LB	ТВ	т
262	4.61749	X/LB	ТВ	·Τ	264	4.61731	X/LB	ТВ	т
268	4.62781	X/LB	X	т	265	4.62464	X	Х/ТВ	т
265	4.62633	x	X/TB	X/T	266	4.62535	x	Х/ТВ	Х/Т
266	4.6267	X/LB	Х/ТВ	X					
267	4.62715	X/LB	X/TB	X/T	267	4.627	X/LB	X/TB	X/T
					268	4.62739	x	X/TB	X
269	4.62802	X/LB	X/TB	x	269	4.62754	X/LB	Х/ТВ	X/T
270	4.62833	X/LB	Х/ТВ	X/T	270	4.62785	X	Х/ТВ	x
277	4.63093	X/LB	ТВ	X/T	271	4.62796	x	X/TB	Х
273	4.62861	X/LB	X/TB	т					
276	4.63016	X/LB	ТВ	Х/Т	272	4.62816	X/LB	• ТВ	Х/Т
					273	4.62838	x	X/TB	X/T
271	4.62853	X/LB	Х/ТВ	X/T	274	4.62854	X/LB	X/TB	X/T
274	4.62906	X/LB	X/TB	T					
					275	4.62861	x	X/TB	Х/Т
					276	4.6291	X/L8	X/TB	Х/Т
275	4.6297	X	Х/ТВ	Т	277	4.62955	X	Х/ТВ	Ť
278	4.63113	X/LB	<u>x</u>	T					
272	4.62855	X/LB	ТВ	т	278	4.65223	X/LB	ТВ	T
279	4.82113	X/LB	Х/ТВ	Ť					
280	4:89927	X/LB	TB.						
					279	4,90296	X/LB	ТВ	Х/Т
					280	5.05534	LB-	ТВ	Х/Т
281	5.09098	LB+	TB+	T+	281	5.07832	18+	ТВ	A DOM T

Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Model 8.

6.2.2. DYNAMIC ANALYSIS

It can be seen from the previous sections that the addition of number of towers and cables spans introduces new frequencies and mode shapes to the system. The scope of this research is focused on if there is a change in the response caused by the use of different number cable spans and boundary conditions. Due to computational restrain the analysis will be limited only on Models 2, 3, 4, 5 and 6. Only transverse wind load is considered in this study.

The dynamic analysis is performed with a time increment equal to 0.001 seconds from 0 seconds to 600 seconds (10 minutes). The initial 2 minutes will not be analyzed to avoid any kind of unwanted vibration due to fast application of

the load. The processing time for Model 2 is 11 hours 57 minutes, Model 3 and Model 4 - 25 hours 38 minutes, and Model 5 - 4 days 21 hours and 21 minutes. For Model 6, the analysis was carried out on the civil engineering department server – Minerva, which required approximately 5 days to run.

6.2.2.1. COMPARISON OF MODEL 2 AND MODEL 4

Model 2 contains only a single tower while Model 4 includes cables in the system (Figure 6.23). In order to compare the results, the same loading is applied only on the tower. Figures 6.24 and 6.25 show the displacement-time histories of node 47 (the top of the tower) for Models 2 and 4, respectively. It can be seen that the maximum displacements at the top of the tower for Models 2 and 4 are 0.113 and 0.156 meters, respectively. The difference is approximately 28%. Here, even the loads on the cables were not considered, Model 4 provides higher displacement.

Figure 6.23 - (a) Model 2 and (b) Model 4.

Figure 6.24 - Displacement-time history at the top of the tower for Model 2.

time [s]

Figure 6.25 - Displacement-time history at the top of the tower for Model 4.

Figure 6.27 - FFT of the displacement at the top of the tower for Model 4.

The Fast Fourier Transforms (FFT) of the responses are shown in Figures 6.26 and 6.27, for Models 2 and 4, respectively. It can be seen that lower frequencies that appear in Model 4 (Table 6.5) do not contribute much to the response of the tower. As stated, the loadings are applied only on the tower.

6.2.2.2. COMPARISON OF MODELS 3, 4, 5 AND 6

For convenience, Figure 6.28 shows models 3, 4, 5 and 6. Here the wind load is applied on the central two cables spans and on the central tower. Figures 6.29 to 6.32 present the displacement at the top of the central tower of the four models. It can be seen that the maximum displacements of all the models are not much different (0.424, 0.419, 0.421 and 0.429 meters for models 3, 4, 5 and 6, respectively). Figure 6.33 compares the displacements at the top of the central tower of the central tower of models 4 and 5. The figure shows that the results from the two models are almost identical (maximum difference is 0.5%). This means that the end springs can be used to represent end towers in this case.

0.15 0.10 0.05 0.00

time [s]

Figure 6.29 - Displacement at the top of the tower for Model 3 (node 47).

Figure 6.30 - Displacement at the top of the tower for Model 4 (node 47).

Figure 6.31 - Displacement at the top of the tower for Model 5 (node 47).

Figure 6.32 - Displacement at the top of the tower for Model 6 (node 47).

Figure 6.33 - Displacement at the top of the tower for Models 4 and 5 (node 47).

Figure 6.37 - FFT of the tower for Model 6.

The FFTs of all the responses are presented in Figures 6.34 to 6.37. The FFTs confirm the frequencies of the tower calculated in the free vibration reported previously (Section 6.2.1). Similar main frequencies are observed in all the models.

7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1.CONCLUSIONS

A finite element program called SADAP was developed for the analysis of a transmission tower line system. The program is capable of carrying out both geometric non-linear static and dynamic analyses and it was validated using the available theoretical and numerical results. This program contains linear and non-linear commonly used and simplified beam-column elements, cable element, truss element and spring element. The simplified beam-column elements were specially formulated here to represent a tower mast, both straight and tapered. These simplified elements include a torsional stiffness provided by diagonal bracings.

In this study, the developed program was used to:

- a) Evaluate the differences of modeling full detailed towers and the proposed simplified elements in the analyses;
- b) Investigate the importance of the boundary conditions on both free vibration and wind induced dynamic responses of the transmission system; and,
- c) Examine the importance of the number of cable spans on the dynamic behaviour of a transmission line system;

The study showed that:

- a) The proposed simplified element can be effectively used to model a tower in linear static, non-linear static and dynamic analyses of a transmission line system;
- b) The results from using the simplified model in the non-linear static analysis of an isolated tower are within 7% of the results obtained using a detailed model;
- c) The first forty natural frequencies of an isolated tower modeling using the simplified model are within 3% of those of a tower modeling in detail;
- d) The increase in the number of cable spans introduces new mode shapes, which will have dynamic effects on the response of the tower system depending on the nature of the loading. For the wind loading used in this study, i.e. wind perpendicular to the line, these modes do not appear to have any effect on the dynamic response of the system;
- e) In conducting the dynamic analysis of the tower, the conductor spans must be incorporated in the model as it affects the dynamic properties of the system;
- f) End spring elements can be used to replace the end towers for a linear dynamic analysis with the wind load in this study; and,
- g) For the wind load considered, two cable spans are sufficient to represent the response of the transmission line system.

7.2. RECOMMENDATION FOR FUTURE WORK

The author recommends the following for future research:

- a) Evaluate if intermediate towers can also be replaced by spring elements;
- b) Perform a non-linear interactive dynamic analysis considering the orthogonal wind load. Nonetheless, in such sophisticated analysis, a high efficient cluster would be needed;
- c) Investigate the number of cable spans considering both a linear and a non-linear dynamic analysis applying wind loadings in different directions;
- d) Consider the buckling of one tower leg in the simplified element for post-buckling analysis, such as in the cascade failure analysis; and,
- e) Investigate the possibility of reducing the vibration of the transmission tower line by adding a control mass-spring-damper (as in example 12) or a pendulum system to the tower.

REFERENCES

Albermani F., Kitipornchai S., and Chan R.W.K. 2008. "Failure analysis of transmission towers". Engineering Failure Analysis. 1-7.

American Society of Civil Engineering. 1984. "Guidelines for Transmission Line Structural Loading". New York.

ANSYS. 2004. "Theory Reference". Release 9.0, Ansys Inc.

Bathe K.J. 1996. "Finite Element Procedures". New Jersey: Prentice Hall.

Battista R.C. 2007. Class notes "Reduction and Control of Vibration in Structures" (in Portuguese). Federal University of the State of Rio de Janeiro.

Battista R.C. 2007. Class notes "Structural Analysis I" (in Portuguese). Federal University of the State of Rio de Janeiro.

Battista R.C. 2007. Class notes "Structural Dynamics" (in Portuguese). Federal University of the State of Rio de Janeiro.

Battista R.C., Rodrigues R.S., and Pfeil M.S. 2003. "Dynamic behavior and stability of transmission line towers under wind forces". Wind Engineering. 1051-1067.

Bissiri A. and Landau M. 1947. "Broken Conductor Effect on Sags in Suspension Spans". AIEE. 66: 1181-1188.

Blessmann J. 1995. "The wind in the Structural Engineering" (in Portuguese). Editora da Universidade/UFRGS.

Blessmann J. 2005. "Introduction of the studies of dynamic wind actions" (in Portuguese). Editora da Universidade/UFRGS.

Chen W.F, and Lui E.M. 1991. "Stability Design of Steel Frames". Library of Congress Cataloging-in-Publication Data.

Chopra A.K. 1995. "Dynamics of Structures – Theory and Application to Earthquake Engineering". Prentice-Hall Inc.

Clough R.W. and Penzien J. 1993. "Dynamics of Structures". McGraw-Hill Inc.

Cohen E and Perrin H. 1957. "Design of Multi-level Guyed Towers: Wind Load". Journal of the Structural Division, ASCE. 83: 1-29.

Cohen E and Perrin H. 1957. "Design of Multi-level Guyed Towers: Structural Analysis". Journal of the Structural Division, ASCE. 83: 1-29.

Craig R.R. 1981. "Structural Dynamics". New York: John J. S.

CSA-S37-01. 2001. "Antennas, Towers and Antenna-Supporting Structures", Canadian Standard Association.

Desai Y.M., Yu P., Popplewell N., and Shah A.H. 1994. "Finite Element Modeling of Transmission Line Galloping". Computer & Structures. 57(3): 407-420.

Disney P., and Parker G. 2005. "The Appraisal of Manitoba Hydro A-402 Guyed Suspension Towers Under High Intensity Winds". Manitoba Hydro technical report, appendix 2A.

Hajdin N., Michaltsos G.T. and Konstantakopoulos T.G. 2000. "About the equivalent modulus of elasticity of cables of cables-stayed bridges". The scientific journal FACTA UNIVERSITATIS. 569-575.

Horr A.M., Yibulayin A., and Disney P. 2004. "Nonlinear spectral dynamic analysis of guyed towers. Part II: Manitoba towers case study". Canadian Journal of Civil Engineering. 31: 1061-1076.

Irvine M. 1992. "Cable Structures". New York: Dover Publication Inc.

Irvine M. 1974. "Studies in the Static and Dynamics of Simple Cable Systems". Pasadena, California.

Junior J.K, Miguel L.F.F, Menezes R.C.R., Miguel L.F.F. and Alva G.M.S. 2007. "Analysis of the behavior of towers of a segment of TL subjected to a dynamic load due to cable rupture" (in Portuguese). Mecanica Computacional. XXVI: 247-257.

Kim S.E., Ngo-Huu C., and Lee D.H. 2005. "Second-order inelastic dynamic analysis of 3-D steel frames". Solids and Structures. 43: 1693-1709.

Kim S.E., Lee J. and Park J.S. 2001. "3-D second-order plastic-hinge analysis accounting for lateral torsional buckling". Solids and Structures. 39: 2109-2128.

Kim S.E., Park M.H. and Choi S.H. 2001. "Direct design of three-dimensional frames using practical advanced analysis". Engineering Structures. 23: 1491-1502.

Landesmann A. 2007. Class notes "Steel Structures" (in Portuguese). Federal University of the State of Rio de Janeiro.

Lei Y.H. and Chien Y.L. 2005. "Seismic Analysis of Transmission Towers Considering both Geometric and Material Nonlinearities". Tamkang Journal of Science and Engineering. 1(8): 29-42.

Levy R. and Spillers W.R. 2003. "Analysis of Geometrically Nonlinear Structures". Kluwer Academic Publishers.

Mathur R.K. 1985. "Structural Dynamic Characteristics of Transmission Systems". Master of Science Thesis – University of Manitoba.

Mathur R.K., Shah A.H., Trainor P.G.S., and Popplewell N. 1987. "Dynamics of a Guyed Transmission Tower System". IEEE Transactions of Power Delivery. PWRD-2(3): 908-916.

Militano G. 2000. "Computer-Aided Free Vibration Analysis of Guyed Towers". Master of Science thesis, University of Manitoba.

Mozer J.D., Pohlman J.C., and Fleming J.F. 1977. "Longitudinal Load Analysis of Transmission Line Systems". IEEE Transactions of Power Delivery. PWRD-96(5): 1657-1665.

Ochonski, A. 2008. "Development of Latticed Towers Using Advanced Composite Materials". Doctor of Philosophy thesis, University of Manitoba.

Oliveira M.I.R. 2006. "Structural Analysis of Energy Transmission Towers Subjected to Dynamic Effects Induced by Wind" (in Portuguese). Master of Science thesis, University of the State of Rio de Janeiro.

Oliveira M.I.R, Silva J.G.S., Vellasco P.C.G.S., Andrade S.A.L. and Lima L.R.O. 2007. "Structural Analysis of Guyed Steel Telecommunication Towers for Radio Antennas". Journal of the Brazilian Society of Mechanical Sciences and Engineering. 29(2): 185-195.

Paz M. and Leigh W. 2004. "Structural Dynamics – Theory and Computation". Springer Science+Business Media Inc.

Peyrot A.H., Lee J.W., Jensen G.H. and Osteraas J.D. 1981. "Application of cable elements concept to a transmission line with cross rope suspension structures". IEEE Transactions on Power Apparatus and Systems. PAS-100(7): 3254-3262.

Pinto P.S. 2006. Class notes "Structural Analysis I" (in Portuguese). University of the State of Rio de Janeiro.

Pinto P.S. 2006. Class notes "Structural Analysis II" (in Portuguese). University of the State of Rio de Janeiro.

Przemieniecki J.S. 1985. "Theory of Matrix Structural Analysis". New York: Dover Publications Inc.
Rodrigues R.S. 1999. "Collapse of TEE Towers under Action of Wind" (in Portuguese). Master of Science Thesis – COPPE/Federal University of the State of Rio de Janeiro.

SAP2000, 2008. "Analysis Verification Examples", Computer and Structures Inc.

Shehata A.Y., and El Damatty A.A. 2006. "Assessment of the Failure of an Electrical Transmission Line Due to a Downburst Event". Electrical Transmission Line. 27-38.

Shehata A.Y., El Damatty A.A., and Savory E. 2005. "Finite element modeling of transmission line under downburst wind loading". Finite Element in Analysis and Design. 42: 71-89.

Simiu E. 1986. "Wind Effect on Structures". John Wiley & Sons.

Sussekind J.C. 1982. "Structural Analysis Course – Volume III". Porto Alegre: Globo.

Tainor P.G.S, Popplewell N., Shah A.H.W and Wong C.K. 1985. "Estimation of Fundamental Dynamic Characteristics of Transmission Towers". IEEE Transactions on Power Apparatus and Systems. PAS-104(3): 681-689.

Timoshenko S., Young D.H. and Weaver W.JR. 1974. "Vibration Problems in Engineering". John J.S.

Weaver W.JR. and Gere J.M. 1980. "Matrix Analysis of Framed Structures". D. Van Nostrand Company.

Zhang Qi W., and Rattanawangcharoen N. 2008. "The Analysis of a Transmission Guyed Tower Line System Subjected to Downburst Wind". Manitoba Hydro final report.

APPENDIX - A

The fundamental model shapes of the detailed (Model 1) and simplified (Model 2) isolated towers (excluding the mode shapes corresponding to only cable

movements)

APPENDIX - B

Extra examples in the validation of the elements and verification of the program

procedures

		Beam-colum	in	
Example No	. Example name	Features tested	Analysis tune	Mathed Ave. 10. 11
		Automatic self weight		Answering of Verificati
1 General loa		Concentrated load	Linear static	Weaver and Gere, 19
2	Local axis	Rotation of the local axis	unear static	Weaver and Gere, 19 Dages 344 to 357
3	Buckling of column	Nonlinar analysis	Nonlinear stati	Theoretical results
4	Eigenvalue problem	1 Eigenvalue analysis	Eigenvalue	Militano, 2000 pages 3
5	Eigenvalue problem	2 Eigenvalue analysis with axial force	Eigenvalue	Przemieniecki, 1985
6	Vibration 1	Dynamic solver	Linear dynamic	Battista, 2007-C page 1
		Truce		
Example No	Evample name	11055	-	
- in pic ito	- completiane	Features tested	Analysis type	Method of Verificatio
7	General load 2	Concentrated load	Linear static	Ansys version 11 Weaver and Gere, 198
8	Buckling	Nonlingarenskusta		pages 343 to 345
9	Eigenvalue problem :	Eigenvalue analysis	Eigenvalue	Theoretical results Mario Paz, 2004 page 4
		-		to 437
		Casine		
xample No.	Evamploname	spring		
	chample name	Features tested	Analysis type	Method of Verificatio
10	General load 3	Automatic self weigth	Linear static	Theoretical results
11	Figenvalue problem 4	Concentrated load		
12	Vibration 2	Dynamic solver	Ligenvalue	Theoretical results
		oynamic solver	unear dynamic	Theoretical results
		Cabla		
vomelo Ale	the second s	Capie		
vernhie wo.	Example name	Features tested	Analysis type	Method of Verificatio
13	General load 4	Automatic self weigth	Nonlinear static	Theoretical results
14	Eigenvalue problem 5	Eigenvalue analysis	Financial	
		Ciberraide analysis	Ligenvalue	Irvine, 1992 page 192
		Tanorod town		
vamnie No	Evanuela	Tapered towe	r Filmen and the second	
in a second second	example Hame	Features tested	Analysis type	Method of Verification
15	General load 5	Concentrated lead	Nonlinear static	Frame and Truss element
10	F illing 1	concentrated load		comparation
10	Eigenvalue problem 6	Eigenvalue analysis	Eigenvalue	frame and truss element
				comparation
	Bea	m-column (stability	functions)	<u> </u>
cample No.	Example name	Featuresteed	A set of the	
		Automatic self weight	Analysis type	Method of Verification
17	General load 6	Uniform distributed load	Linear static	Ansys version 11
		Concentrated load		weaver and Gere, 1980
18	Local axis	Rotation of the local axis	Linear static	Ansys version 11
19	Buckling of column	Nonlinar analysis	Nonlinear static	Theoretical results
20	Eigenvalue problem 7	Eigenvalue analysis	Eigenvalue	Militano, 2000 pages 32
21	Eigenvalue problem 8	Eigenvalue analysis with axial force	Eigenvalue	Przemieniecki, 1985
22	Vibration 3	Dynamic solver	Linear dynamic	Battista, 2007-C page 138
		Insulator string		
ample No.	Example name	Featurestested	Analysis tune	Mathedatt
23	General load 7	Automatic self weigth	Nonlinear static	Theoretical results
24	Eigenvalue problem 9	Eigenvalue analysis	Figonustur	
25	Vibration 4	Dynamic solver	Linear dynamia	
			unear oynamic	ineoretical results
		Ctuninth A		
		Straigth tower		
mpie NO.	EXample name	Features tested	Analysis type	Method of Verification
26	General load 8	Automatic self weigth	Nonlinear static	Frame and Truss element
		Loncentrated load		comparation
27 8	Eigenvalue problem 8	Eigenvalue analysis	Eigenvalue	Frame and Truss element
				comparation

Table B.1 – Summary of examples

Example No. 1:

This 3D beam-column example (Figure B.1) is presented to verify the frame element behavior under self weight and also response under only external load (not including the self weight) thought a linear static analysis. The Finite Element program ANSYS is used to verify the automatic self-weight analysis, and Weaver and Gere (1980) to verify the external load. The model properties are

$$\begin{split} E &= 2.00 \times 10^{+08} \text{ kN/m} \quad I_x = 2.00 \times 10^{-03} \text{ m}^4 \quad \rho = 7.86 \text{ ton / m}^3 \\ \nu &= 0.25 \qquad I_y = 1.00 \times 10^{-03} \text{ m}^4 \qquad g_y = -9.81 \text{ m/s}^2 \\ A &= 0.01 \text{ m}^2 \qquad I_z = 1.00 \times 10^{-03} \text{ m}^4 \end{split}$$

Figure B.1 - Beam-column element (example 1).

Results from ANSYS (self weight linear static analysis only):

PRINT ELEMENT TABLE ITEMS PER ELEMENT

***** POST1 ELEMENT TABLE LISTING *****

STAT CURRENT ELEM SAXL 1 -197.37 2 -556.46 3 -224.23 4 -197.37

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

 NODE
 UX
 UY
 UZ
 USUM

 1
 0.12826E-04-0.66119E-05-0.46335E-04
 0.48530E-04

 2
 0.69051E-05-0.17625E-03-0.16786E-03
 0.24349E-03

 3
 0.0000
 0.0000
 0.0000

 4
 0.0000
 0.0000
 0.0000

 5
 0.98657E-05-0.11817E-03-0.11901E-03
 0.16801E-03

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

 NODE
 ROTX
 ROTY
 ROTZ
 RSUM

 1-0.26877E-04 0.20171E-04-0.23354E-04 0.40922E-04
 2
 -0.63969E-04 0.42854E-05-0.50480E-05 0.64311E-04
 3
 0.0000 0.0000
 -0.0000
 -0.0000
 4
 -0.0000 0.0000
 0.0000
 5
 -0.45423E-04 0.24268E-04-0.35309E-04 0.62441E-04

PRINT F REACTION SOLUTIONS PER NODE

***** POST1 TOTAL REACTION SOLUTION LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	FX	FY	FZ
3 1.9	737	5.5646	0.53509
4 -1.9	737	5.3816	-0.53509

PRINT M SUMMED NODAL LOADS

***** POST1 SUMMED TOTAL NODAL LOADS LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	MX	MY	MZ
3 -2.5	944	1.0758	1.4037
4 -7:5	406	-2.1811	3.1024

SADAP results (automatic self weight analysis):

EXAMPLE_1_P.357-MATR NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTURES

NODAL POINTS:

NODE	EX	Y	z
1 (0.0000	3.0000	0.0000
2 6	6.0000	3.0000	0.0000
3 (0.0000	0.0000	0.0000
4 9	0.0000	0.0000	3.0000
5 3	6.0000	3.0000	0.0000

RESTRAINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

3 4 1 1 1 1 1 1 1 1 1 1

AUTOMATIC SELF-WEIGHT ANALYSIS

FRAME ELEMENTS:

ELEM.	NOD	E1 NODE2	E V	A	IX	IY	IZ	FP	QX	QY	QZI	ESP.M	ASS FL	ANG	
1 2 3 2 4 5	1 5 3 1 2 4 5 2	0.200E+09 0.200E+09 0.200E+09 0.200E+09	0.25E+00 0.25E+00 0.25E+00 0.25E+00	0.100E-01 0.100E-01 0.100E-01 0.100E-01	0.200E 0.200E 0.200E 0.200E	-02 0.1 -02 0.1 -02 0.1 -02 0.1	00E-02 00E-02 00E-02 00E-02	0.1 0.1 0.1 0.1	00E-02 00E-02 00E-02 00E-02	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	7.86 7.86 7.86 7.86	0. 0. 0. 0.

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:

ELEM	•	NODE	N QY	′ QZ	т	MY	MZ
1	1	1.9737	3.2514	0.53509	0.98913	-1.0758	4.5175
	5	-1.9737	-0.93816	-0.53509	-0.98913	-0.52951	1.7668
2	3	5.5646	-1.9737	0.53509	-1.0758	-2.5944	-1.4037
	1	-3.2514	1.9737	-0.53509	1.0758	0.98913	-4.5175
3	2	2.2423	-0.98496E	-01 -1.0173	-1.3032	1.6931	-1.4854
	4	-4.5555	3.3699	1.0173	1.3032	3.5927	-7.5257
4	5	1.9737	0.93816	0.53509	0.98913	0.52951	-1.7668
	2	-1.9737	1.3750	-0.53509	-0.98913	-2.1348	1.1115

SUPPORT REACTIONS:

NO	DE RX	RY	RZ	MX	MY	MZ	
3	1.9737	5.5646	0.53509	2.5944	-1.0758	-1.4037	
4	-1.9737	5.3816	-0.53509	7.5406	2.1811	-3.1024	

TOTAL DISPLACEMENTS:

NO	DE TRANS.>	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1	0.000012826	-0.000006612	-0.000046335	-0.000026877	0.000020171	-0.000023354
2	0.000006905	-0.000176252	-0.000167861	-0.000063969	0.000004285	-0.000005048
3	0.000000000	0.00000000	0.00000000	0.000000000	0.000000000	0.000000000
4	0.000000000	0.00000000	0.000000000	0.000000000	0.000000000	0.000000000
5	0.000009866	-0.000118173	-0.000119012	-0.000045423	0.000024268	-0.000035309
Results from Weaver and Gere, 1980 (only external load):

Join Displa	cement						
Join	Ux	Uv	11-				
1	-8.594E-04	5 776F-05	5 0005 or	Rx	Ry	Rz	
2	-1.176E-03	2 3535 03	5.008E-03	2.393E-03	-1.623E-03	6.813E-04	
3	0.0005+00	3.2356-03	5.256E-03	1.288E-03	1.721E-03	-7.715E-04	1
4	0.0005100	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.0005+00	
	0.0002+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Member En	d-Actions					0.0002.000	
Member	Node	Fx	E				
1	1	105 549	<u>гу</u>	Fz	Mx	My	M7
	2	105.540	-38.509	-126.013	29.464	86.569	-67 100
2	3	-105.548	38.509	-113.987	-29.464	-50.491	-162.054
	1	-38.509	14.452	-126.013	86.569	348 575	-103.334
3	4	38.509	-14.452	126.013	-86.569	29 464	~23.744
	<u> </u>	183.623	9.192	5.967	-21 404	46 702	67.100
	4	-183.623	-9.192	-5.967	21 404	40.703	-32.181
l					~1.404	-//./11	79.946
upport Rea	ctions			1			
ode	Fx	Fy	F7	M			
<u> </u>	-14.452	-38.509	-126 013	240 575	IVIY	Mz	
4	-105.548	98.509	-113 007	-348.575	86.569	-23.744	
	in a state of the		-113.987	- /5.898	-75.808	37.163	

SADAP results (only external load):

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:

ELE	м.	NODE	N QY	QZ	т	MY	MZ
1	1	105.55	-38.509	-126.01	29.464	86.569	-67.100
	5	-105.55	38.509	126.01	-29.464	291.47	-48.427
2	3	-38.509	14.452	-126.01	86.569	348.58	-23.744
	1	38.509	-14.452	126.01	-86.569	29.464	67.100
3	2	183.62	9.1924	5.9674	-21.404	46.703	-32.181
	4	-183.62	-9.1924	-5.9674	21.404	-77.711	79.946
4	5 2	105.55 -105.55	-38.509 38.509	113.99 -113.99	29.464 -29.464	-291.47 -50.491	48.427

SUPPORT REACTIONS:

NODE RX	RY	RZ	MX	MY	MZ	
3 -14.452	-38.509	-126.01	-348.58	86.569	-23.744	
4 -105.55	98.509	-113.99	-75.898	-75.808	37 163	

TOTAL DISPLACEMENTS:

NODE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 -0. 2 -0. 3 0. 4 0. 5 -0.	000859410 001176053 000000000 000000000 000000000 001017731	0.000057764 0.003253162 0.000000000 0.000000000 0.002745063	0.005007645 0.005255517 0.000000000 0.000000000 0.008989659	0.002393332 0.001288428 0.000000000 0.000000000 0.001840880	-0.001623169 0.001720936 0.000000000 0.000000000 -0.000086410	0.000681331 -0.000771469 0.000000000 0.000000000 0.000821384

Verification:

P.D. = 0.00% for all the displacements, internal forces and support reactions.

Example No. 2:

The purpose of this example is to verify the local axis rotation of the 3D beam-column element. SADAP results were compared with Weaver and Gere (1980) and the commercial program ANSYS. The model properties are

$$E = 10000 \text{ ksi} \quad I_x = 64 \text{ in}^4$$

$$v = 0.25 \qquad I_y = 28 \text{ in}^4$$

$$A = 9 \text{ in}^2 \qquad I_z = 80 \text{ in}^4$$

The third node of the element 2, 3 and 5 is located at: 128,96,0

Results from Weaver and Gere (1980):

Join Displa	cement				1		
Join	Ux	Uy	Uz	Rx	Rv	D٦	
1	-2.176E-04	-4.062E-03	-1.674E-02	-5.202E-03	1 870F-04	-4 4055 02	
2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	-4.4552-05	<u> </u>
3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.0005+00	0.0002+00	
4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Member Ei	nd-Actions						
Member	Node	Fx	Fy	Fz	Mx	My	N/1-7
1	1	3.594	0.178	0.406	6.073	-32 492	94 001
	2	-6.594	3.822	-0.406	-6.073	-16 233	-04.001
2	3 i	4.744	0.485	-0.131	8.080	7 610	-134.038
	1	-4.744	-0.485	0.131	-8.080	15 390	57 444
3	1	3.214	0.178	1.678	-2.995	-50 178	74.064
	4	-5.950	1.054	2.322	2.995	106.594	-24.964
upport Re	actions					·····	
Node	Fx	Fv	Fz	Ndv			
2	-0.406	-2.982	7.014	-134 638	14 500		
3	3.699	2.610	1.505	-8 177	14.555	-9.343	
4	-3.293	5.372	1.480	-63 977	16 995	-3.624	

ANSYS results:

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE 2 3 4 5 6	UX -0.21807E-0 0.0000 0.0000 0.52151E-0 -0.28168	UY 3-0.40618E-02 0.0000 0.0000 0.0000 1-0.75051E-01 -0.45366	U2 2-0.16737E-01 0.0000 0.0000 0.0000 .~0.10739 0.89995E-01	USUM 0.17224E-01 0.0000 0.0000 0.0000 0.14102 0.54153
-------------------------------	---	--	---	---

SADAP results:

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:

ELE	М.	NODE	N QY	′ QZ	т	MY	MZ
1	1	3.5945	0.17801	0.40605	6.0732	-32.492	-84.001
	5	-3.5945	-0.17801	-0.40605	-6.0732	8.1294	94.681
2	3	4.7447	0.48480	-0.13109	8.0797	7.6099	27.616
	1	-4.7447	-0.48480	0.13109	-8.0797	15.390	57.444
3	1	3.2136	0.17766	1.6785	-2.9952	-50.178	-24.964
	6	-3.2136	-0.17766	-1.6785	2.9952	-97.068	40.550
4	5	6.5945	-3.8220	0.40605	6.0732	-8.1294	-94.681
	2	-6.5945	3.8220	-0.40605	-6.0732	-16.233	-134.64
5	6	5.9494	-1.0534	-2.3215	-2.9952	97.068	-40.550
	4	-5.9494	1.0534	2.3215	2.9952	106.59	-51.864

SUPPORT REACTIONS:

NC	DE RX	RY	RZ	MX	MY	MZ
2	-0.40605	-2.9824	7.0143	-134.64	-14,599	-9.3428
3	3.6992	2.6106	1.5050	-8.1767	28.387	-3.6240
4	-3.2932	5.3718	1.4808	-63.927	-16.885	-98.434

TOTAL DISPLACEMENTS:

NODE TRANS.)	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 -0.000218067 2 0.000000000 3 0.000000000 4 0.000000000 5 0.052151438 6 -0.281675223	-0.004061807 0.000000000 0.000000000 0.000000000 -0.075050749 -0.453662190	-0.016736808 0.00000000 0.00000000 0.00000000 -0.107394865 0.089995388	-0.005202205 0.000000000 0.00000000 0.00000000 0.001498383 0.000113304	0.00018703 0.000000000 0.000000000 0.000000000 0.00165969 0.000690493	7 -0.004495317 0 0.000000000 0 0.000000000 0 0.000000000 0 0.000000000 7 -0.000159420 3 0.001781987

Verification:

Even though there is a small difference on the x translation of node 1 when compared with Weaver and Gere (1980), the values were matching with ANSYS. This is due to a round off error in Weaver and Gere (1980). The P.D. = 0.00% for all the displacements, internal forces and support reactions.

165

Example No. 3:

The purpose of this example is to verify the critical buckling load of the 3D beam-column element; the program is expected to stop at the buckling load. Theoretical values are used as comparison, the model properties are

$$E = 2.00 \times 10^{+08} \text{ kN/m}^2 \quad I_x = 2.00 \times 10^{-03} \text{ m}^4 \qquad P_{crLinear} = \frac{\pi^2 EI}{(2L)^2} = 13707.784 \text{ kN}$$

$$v = 0.25 \qquad I_y = 1.00 \times 10^{-03} \text{ m}^4 \qquad P_{crNonlinear} = \frac{\pi^2 EI}{\left[2\left(L - \frac{P_{crNonlinear}L}{EA}\right)\right]^2} = 13900.332 \text{ kN}$$

$$A = 0.01 \text{ m}^2 \qquad I_z = 1.00 \times 10^{-03} \text{ m}^4$$

Figure B.3 - Beam-column element (example 3).

SADAP results:

LOAD STEP= 9128

FRAME ELEMENTS INTERNAL FORCES:

ELEM.	NODE	N	QY	QZ	т	MY	147
1	1 2	13901. -13901.	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000
2	2 3	13901. -13901.	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000
3	3 4	13901. -13901.	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000

SUPPORT REACTIONS:

NODE	RX	RY	RZ	МХ	MV	
4	0 0000	12001			111	MZ
	0.0000	13901.	0.0000	0.0000	0.0000	0.0000

Displacement of node 1:

Verification:

 $P.D. = 4.808 \times 10^{-5}\%$

Example No. 4:

The purpose of this example is to verify the torsion, bending and axial natural frequencies of a circular cantilever using 3D beam-column elements. The model properties are

$$\begin{split} E &= 2.00 \times 10^{+08} \, \text{kN/m}^2 & I_x = 4.97 \times 10^{-05} \, \text{m}^4 \qquad \rho = 8 \, \text{ton/m}^3 \\ \nu &= 0.30 & I_y = 2.485 \times 10^{-05} \, \text{m}^4 \\ A &= 0.01 \, \text{m}^2 & I_z = 2.485 \times 10^{-05} \, \text{m}^4 \end{split}$$

Figure B.4 - Beam-column element (example 4).

Theoretical results (Militano, 2000):

$$w_{n,bending} = \left(\beta_n L\right)^2 \sqrt{\frac{EI}{A\rho L^4}}$$
$$w_{n,torsion} = \frac{2n-1}{2L} \pi \sqrt{\frac{G}{\rho}}$$
$$w_{n,axial} = \frac{2n-1}{2L} \pi \sqrt{\frac{E}{\rho}}$$
$$\beta_n L = 1.875, 4.694, 7.854, 10.998$$

Militano (2000) results:

1												
	r	r		Nati	ual circula	r frequen	cy [rad/s]					
Mode Shape	Bending	Bending	Bending	Bending	Torsion	Avial	T		T	r		
Exact Solution	10.30	64.55	180.72	254.26		Axiai	lorsion	Axial	Torsion	Torsion	Axial	Avial
1 Element	10.25		100.72	354.36	608.85	981.75	1826.56	2945.24	3044.27	4261.98	4000 74	
4.51	10.35		-	-	671.00	1082.53	-				4908.74	6872.23
4 clements	10.30	64.63	182.16	359.36	613.00	000.07				-	-	-
8 Elements	10.30	64.56	190.07			966.07	1933.00	3116.99	3511.00	5078.00	5662.13	8187.92
16 Elements	10.20		100.07	355.01	610.00	983.32	1853.00	2987.99	3167.00	4599.00	5407	
	10.30	64.56	180.77	354.27	609.00	982.14	1833.00	2055.00		4333.00	5107.44	7416.40
				<u>-</u> .				2955.90	3075.00	4346.00	4958.16	7008.14

SADAP results and verification:

				Nati	al circula	r fro au						
Mode Shape	Bendin	e en	Reading			Treque	ncy [rad/s]]				
Exact Solution	10.20		Benain	g P.D.	Bendin	g P.D.	Bendin	g P.D.	Torsion	P.D.	Avial	
	10.30		64.55		180.72		354.36		609.95			P.D.
1 Element	10.35	0.49%	- 16	-		+			008.85	ļ	981.75	5 -
4 Elements	10.30	0.01%	6 64.63	0 120	102.45	+			671.36	10.279	6 1082.5	3 10.27
8 Elements	10.30	0.010	/	0.127	182.15	0.79%	359.35	1.41%	612.77	0.64%	988.07	0.64%
16 Elemente		0.01%	64.56	0.01%	180.86	0.08%	355.00	0.18%	609.83	0.16%	092.22	0.047
10 crements	10.30	0.01%	64.55	0.00%	180.76	0.02%	354.26	-0.03%	600.40	0.1076	903.33	0.16%
					1	<u> </u>		-0.03%	609.10	0.04%	982.14	0.04%
				Natus	1	<u> </u>						
Mode Shane	Torsion		T	T		requen	cy [rad/s]					<u> </u>
	10131011	P.D.	Axial	P.D.	Torsion	P.D.	Torsion	P.D.	Avial		<u> </u>	
xact Solution	1826.56	-	2945.24	-	3044.27		4761.00		TOTAL	P.D.	Axial	P.D.
1 Element	-		-				4201.98		4908.74	-	6872.23	-
4 Elements	1933.08	5 820/	2117.00			-	-	-	-	-	-	
8 Flamonta		5.65%	3117.00	5.83%	3511.50	15.35%	5077.94	19.15%	5662.13	15 35%	9197.02	
Lienients	1853.07	1.45%	2987.99	1.45%	3167.50	4.05%	4599.45	7 0 7 0/	5107.44		0107.93	19.15%
6 Elements	1833.17	0.36%	2955.90	0.36%	3074 92	1.010/		1.3270	5107.44	4.05%	7416.40	7.92%
			L]	- 57 4.52	1.01%	4346.26	1.98%	4958.16	1.01%	7008.14	1.98%

Example No. 5:

The purpose of this example is to verify the variation of frequency with axial force in a column with both ends pinned (3D beam-column element).

The program results were compared with Przemieniecki (1985). A nonlinear free vibration analysis was performed.

Figure B.5 - Example solution (example 5).

Where:

$$\Theta = w^2 \rho \frac{AL^4}{EI}$$
$$\mu = \frac{PL^2}{EI}$$

Verification:

 $P.D._{MAX} = -0.65\%$

Example No. 6:

The purpose of this example is to verify the dynamic solver. Model., properties, dynamic force, and displacement solution were taken from Battista (2007-C) and are given by

$$E = 2.10 \times 10^{+08} \text{ kN/m}^2 \qquad I_x = 2.716 \times 10^{-04} \text{ m}^4 \qquad \rho = 7.85 \text{ ton / m}^3$$
$$\nu = 0.30 \qquad I_y = 1.858 \times 10^{-04} \text{ m}^4 \qquad \xi = 0.01$$
$$A = 8.06 \times 10^{-03} \text{ m}^2 \qquad I_z = 1.858 \times 10^{-04} \text{ m}^4$$

Figure A.6 - Beam-column element (example 6).

Theoretical solution:

 $w_n = n^2 \pi^2 \sqrt{\frac{EI}{\rho AL^4}} = 53.82 \text{ rad/s}, 215.29 \text{ rad/s}, 484.41 \text{ rad/s}$

Battista (2007-C) solution (displacements where the load is applied):

 $u_y(0.15 s) = 0.00643 m$ $u_{yMAXIMUM} = 0.00849 m$

SADAP solution and verification (using 30 elements):

Figure B.7 - Example solution (example 6).

 $w_1 = 53.82 \text{ rad/s} \therefore P.D. = 0.00\%$ $w_2 = 215.29 \text{ rad/s} \therefore P.D. = 0.00\%$ $w_3 = 484.41 \text{ rad/s} \therefore P.D. = 0.00\%$

Modal Superposition (Δt =0.0001 s and 50 modes):

 $u_y(0.15 \text{ s}) = 0.00650 \text{ m} \therefore P.D. = 1.09\%$ $u_{yMAXIMUM} = 0.00854 \text{ m} \therefore P.D. = 0.59\%$

Newmark-Linear (Δt =0.0001 s):

 $u_y(0.15 \text{ s}) = 0.00649 \text{ m}$ \therefore *P.D.* = 0.93% $u_{yMAXIMUM} = 0.00854 \text{ m}$ \therefore *P.D.* = 0.59%

Newmark-Nonlinear (∆t=0.0001 s):

 $u_y(0.15 \text{ s}) = 0.00648 \text{ m}$ \therefore *P.D.* = 0.78% $u_{yMAXIMM} = 0.00852 \text{ m}$ \therefore *P.D.* = 0.35% Example No. 7:

This example is presented to verify the 3D truss element. Two analyses were performed: self-weight and only external loads. The results from the former were compared with the commercial Finite Element program ANSYS, while the results from the latter were compared with theoretical results from Weaver and Gere (1980). The model properties are

 $E = 8.00 \times 10^{+07} \text{ kN/m}^2$ $A = 0.01 \text{ m}^2$ $\rho = 25 \text{ ton/m}^3$

Results from ANSYS for self-weight:

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

 NODE
 UX
 UY
 UZ
 USUM

 1 -0.32390E-03-0.20706E-02-0.31303E-03 0.21190E-02
 2 -0.32390E-03-0.20706E-02 0.31303E-03 0.21190E-02
 3 -0.15656E-02-0.26094E-02-0.32526E-18 0.30431E-02

 3 -0.15656E-02-0.26094E-02-0.32526E-18 0.30431E-02
 4 0.0000
 0.0000
 0.0000

 5 0.0000
 0.0000
 0.0000
 0.0000
 6 0.0000
 0.0000

PRINT ELEMENT TABLE ITEMS PER ELEMENT

***** POST1 ELEMENT TABLE LISTING *****

STAT	CURRENT		AREA FORCE
ELEM	SAXL		
1	-8347.4	0.01	-83.474
2	3010.1	0.01	30.101
3	3010.1	0.01	30.101
4	-5182.4	0.02	-103.648
5	1.82E-12	0.02	3.6308E-14
6	6796.7	0.02	135.934
7	6796.7	0.02	135.934
8	-5182.4	0.02	-103.648
9	-1.82E-12	0.02	-3.6308E-14

PRINT F SUMMED NODAL LOADS

***** POST1 SUMMED TOTAL NODAL LOADS LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	FΧ	FY	FZ
1		-0.28	422E-13
2		-0.28	422E-13
3		0.47	433E-13
4 -103	.65	-28.345	-0.16611E-13
5 207	.30	-156.54	0.42633E-13
6 -103	.65	-28.345	-0.16611E-13

SADAP solution (automatic self-weight analysis):

TRUSS ELEMENTS INTERNAL FORCES: (TENSION +)

1 -83.474 -83.474 2 33.780 26.422 3 26.422 33.780 4 -103.65 -103.65 5 7.3575 -7.3575 6 143.29 128.58 7 143.29 128.58 8 103.65 55	ELEM.	N NODE	1 NNODE 2
9 7 2575 7 0575	1 2 3 4 5 6 7 8 9	-83.474 33.780 26.422 -103.65 7.3575 143.29 143.29 -103.65 7 2525	-83.474 26.422 33.780 -103.65 -7.3575 128.58 128.58 -103.65

SUPPORT REACTIONS:

NO	DE RX	RY	RZ	MX	MY	MZ
1 2 3 4 5 6	0.0000 0.0000 103.65 -207.30 103.65	0.0000 0.0000 28.345 156.54 28.345	0.0000 0.0000 -0.29907E-13 -0.35527E-14 0.26937E-13	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TOTAL DISPLACEMENTS:

NC	DE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 2 3 4 5 6	-0.00 -0.00 -0.00 0.00 0.00	00323903 00323903 01565637 00000000 00000000	-0.002070609 -0.002070609 -0.002609394 0.000000000 0.000000000 0.000000000	-0.000313027 0.000313027 0.000000000 0.000000000 0.000000000 0.000000	0.000000000 0.000000000 0.00000000 0.000000	0.000000000 0.000000000 0.000000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000

Results from Weaver and Gere (1980) for external loads only:

Join Displ	acement			
Join Ux		Uy	Uz	
1 3.031E-01		2.088E-02	4.436E-03	
2	3.344E-03	1.794E-02	2.059E-04	
3	1.346E-02	2.102E-02	4.112E-03	
4	0.000E+00	0.000E+00	0.000E+00	
5	0.000E+00	0.000E+00	0.000E+00	
6	0.000E+00	0.000E+00	0.000E+00	
Member E	nd-Actions			
Member	N1	N2		
1	-564.000	564.000		
2	-25.456	25.456		
3	-110.309	110.309		
4	-970.000	970.000		
5	301.642	-301.642		
6	1272.143	-1272.143		
7	1403.292	-1403.292		
8	-1070.000	1070.000		
9	-616.399	616.399		
Support Re	actions			
Node	Fx	Fy	Fz	
2	-740.000	-18.000	-138.000	
3	2040.000	-1224.000	-60.000	
4	-1540.000	282.000	-282.000	

. .

SADAP results for external loads only:

LOAD STEP= 1

TRUSS ELEMENTS INTERNAL FORCES: (TENSION +)

ELEM. N NODE 1 N NODE 2

1	564.00	564.00
2	25.456	25.456
3	110.31	110.31
4	970.00	970.00
5	-301.64	-301.64
6	-1272.1	-1272.1
7	-1403.3	-1403.3
8	1070.0	1070.0
9	616.40	616.40

SUPPORT REACTIONS:

ŅC	DE	RX	RY	RZ	MX	MY	MZ
1 2 3 4 5 6	0.0 0.0 -740 204 -154	000 000 000 000 0.00 0.0	0.0000 0.0000 -18.000 -1224.0 282.00	0.0000 0.0000 -138.00 -60.000 -282.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TOTAL DISPLACEMENTS:

NO	DE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 2 3 4 5 6	0.00 0.01 0.00 0.00 0.00	3031250 3343750 3456171 0000000 0000000 0000000 0000000	0.020884223 0.017938215 0.021017102 0.00000000 0.00000000 0.00000000	0.004435858 0.000205858 0.004112060 0.00000000 0.00000000 0.00000000	0.000000000 0.000000000 0.000000000 0.000000	0.000000000 0.000000000 0.000000000 0.000000	0.00000000 0.000000000 0.000000000 0.000000

Verification:

P.D. = 0.00% for all the displacements, internal forces and support reactions.

Example No. 8:

The purpose of this example is to verify the critical buckling load of the 3D truss element; a non-linear buckling analysis was performed. Results were compared with theoretical formulation from Timoshenko (Levy and Spillers, 2003) and the model properties are

$$E = 2.00 \times 10^{+08} \text{ kN/m}^2 \qquad \alpha = 45^\circ \qquad F << P_{cr}$$

$$A = 0.001 \text{ m}^2 \qquad L = 2 \text{ m} \qquad F = 100 \text{ kN}$$

$$A_1 = 0.0005 \text{ m}^2 \qquad L_1 = \sqrt{2} \text{ m} \qquad P = 20000 \text{ kN}$$

$$P_{cr} = \frac{EA}{\cot^2(\alpha) \left(3 + \frac{2L_1A}{LA_1 \cos^2(\alpha)}\right)} = 16092.5768 \text{ kN}$$

Figure B.9 - Truss element (example 8).

SADAP results:

LOAD STEP= 8080

TRUSS ELEMENTS INTERNAL FORCES: (TENSION +)

-

ELEM. N NODE 1 N NODE 2

1	-16875.	-16875.
2	-16875.	-16875.
3	-14685.	-14685.
4	1107.5	1107.5
5	-1158.3	-1158.3
6	-1158.3	-1158.3
7	1107.5	1107.5

SUPPORT REACTIONS:

NO	DE	RX	RY	RZ	MX	MY	MZ
1	161	58.	-40.395	0.0000	0.0000	0.0000	0.0000
2	0.00	100	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.00	100	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.00	100	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.00	100	-40.395	0.0000	0.0000	0.0000	0.0000

LOAD STEP= 8081

Verification:

P.D. = 0.41%

Example No. 9:

The purpose of this example is to verify the natural frequencies of the 3D truss element. A free vibration analysis was carried out; model properties and theoretical results were taken from (Paz and Leigh, 2003) and are given by

 $E = 3.00 \times 10^{+07} \text{ lb/in}^2$ $A = 0.001 \text{ in}^2$ L = 60 in $m = 0.1 \text{ lb} \times \text{s}^2/\text{in}^2$

Figure B.10 - Truss element (example 9).

Results from Paz and Leigh (2003):

SADAP results:

 MODE
 MODAL
 MASS
 FREQ[RAD]
 FREQ[HZ]

 1
 6.19486
 415.42320
 66.11665

 2
 7.17003
 1033.70420
 164.51913

 3
 7.11610
 1526.03014
 242.87523

 MODAL
 SHAPES
 1
 1

MODAL SHAPE: NODE DX 1 0.00000 2 1.00000 3 0.27464	1 DY 0.00000 0.21607 0.00000	DZ 0.00000 0.00000 0.00000	RX 0.00000 0.00000 0.00000	RY RZ 0.00000 0 0.00000 0 0.00000 0	.00000 .00000 .00000
MODAL SHAPE: NODE DX 1 0.00000 2 0.18222 3 -0.72762	2 DY 0.00000 1.00000 0.00000	DZ 0.00000 0.00000 0.00000	RX 0.00000 0.00000 0.00000	RY RZ 0.00000 0. 0.00000 0. 0.00000 0.	.00000 .00000 .00000
MODAL SHAPE: NODE DX 1 0.00000 2 -0.65607 3 1.00000	3 DY 0.00000 0.65398 0.00000	DZ 0.00000 0.00000 0.00000	RX 0.00000 0.00000 0.00000	RY RZ 0.00000 0. 0.00000 0. 0.00000 0.	00000 00000 00000

Verification:

 $P.D._{MAX} = 0.30\%$

Example No. 10:

This example was chosen to verify the static analysis of the spring element. The model properties are

Figure B.11 - Spring element (example 10).

Automatic self-weight (always loaded at node 2): $U_y = \frac{5 \times 9.81}{20} = 2.4525 m$

SADAP self weight results:

LOAD STEP= 1

SUPPORT REACTIONS:

NOI 1	DE 0.00	RX 000	RY 49.050	RZ 0.000	MX 0.0000	MY 0.0000	MZ 0.0000	
TOTAL	DIS	PLACEN	IENTS:					
NOE	DE	TRANS.	X TRA	NS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 2	0.00 0.00	0000000 0000000) 0.00000) -2.45250	0000 0000	0.000000000 0.000000000	0.000000000 0.000000000	0.000000000 0.000000000	0.000000000 0.000000000

The external load vector was chosen to produce a unit displacement in all degrees of freedom (DOF) of the element.

	[30 kN])
	20 kN	
F	35 kN	
1 - 1	100 kN.m	>
	120 kN.m	
l	80 kN.m	

SADAP external load results:

LOAD STEP= 1

SUPPORT REACTIONS:

NC	DDE	RX	RY	RZ	MX	MY	MZ	
1	-30	.000	-20.000	-35.00	90 -100.00	-120.00	-80.000	
τοτα	L DIS	PLACE	MENTS:					
NC	DE	TRANS	.X TRA	NS.Y	TRANS.Z	ROT.X	ROT.Y F	ROT.Z
1	0.00	0000000	0 0.00000	00000 (0.000000000	0.000000000	0.000000000	0.000000000
2	1.00		0 1.00000	00000 1	1.000000000	1.000000000	1.000000000	1.000000000

Verification:

P.D.=0.00% for both types of loading.

The examples 11 to 16 are described in the chapter 4 (item 4.2).

Example No. 17:

This 3D beam-column example (FigureB.12) is presented to verify the frame element behavior using stability functions under self weight and also response under only external load (not including the self weight) thought a linear static analysis. ANSYS is used to verify the automatic self-weight analysis, and Weaver and Gere (1980) to verify the external load. The model properties are

$$E = 2.00 \times 10^{+08} \text{ kN/m} \quad I_x = 2.00 \times 10^{-03} \text{ m}^4 \quad \rho = 7.86 \text{ ton / m}^3$$

$$v = 0.25 \qquad I_y = 1.00 \times 10^{-03} \text{ m}^4 \qquad g_y = -9.81 \text{ m/s}^2$$

$$A = 0.01 \text{ m}^2 \qquad I_z = 1.00 \times 10^{-03} \text{ m}^4$$

Figure B.12 - Beam-column element (example 17).

Results from ANSYS (self weight linear static analysis only):

PRINT ELEMENT TABLE ITEMS PER ELEMENT

***** POST1 ELEMENT TABLE LISTING *****

STAT CURRENT ELEM SAXL 1 -197.37 2 -556.46 3 -224.23 4 -197.37

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

 NODE
 UX
 UY
 UZ
 USUM

 1
 0.12826E-04-0.66119E-05-0.46335E-04
 0.48530E-04

 2
 0.69051E-05-0.17625E-03-0.16786E-03
 0.24349E-03

 3
 0.0000
 0.0000
 0.0000

 4
 0.0000
 0.0000
 0.0000

 5
 0.98657E-05-0.11817E-03-0.11901E-03
 0.16801E-03

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

 NODE
 ROTX
 ROTY
 ROTZ
 RSUM

 1 -0.26877E-04 0.20171E-04-0.23354E-04 0.40922E-04
 2
 -0.63969E-04 0.42854E-05-0.50480E-05 0.64311E-04
 3
 0.0000
 0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 5
 -0.45423E-04 0.24268E-04-0.35309E-04 0.62441E-04
 -0.62441E-04
 <td

PRINT F REACTION SOLUTIONS PER NODE

***** POST1 TOTAL REACTION SOLUTION LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX	FY	FZ
3 1.9737	5.5646	0.53509
4 -1.9737	5.3816	-0.53509

PRINT M SUMMED NODAL LOADS

***** POST1 SUMMED TOTAL NODAL LOADS LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	MX	MY	MZ
3 -2.5	944	1.0758	1.4037
4 -7.5	406	-2.1811	3.1024

SADAP results (only self-weight):

EXAMPLE_17_P.357-MATR NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTURES

NODAL POINTS:

NODE	х	Y	Z
1 0.	0000	3.0000	0.0000
2 6.	0000	3.0000	0.0000
3 0.	0000	0.0000	0.0000
4 9.	0000	0.0000	3.0000
5 3.	0000	3.0000	0.0000

RESTRAINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

3 1 1 1 1 1 1 1 1 1 1 4 1 1

AUTOMATIC SELF-WEIGHT ANALYSIS

FRAME ELEMENTS (STABILITY FUNCTIONS):

ELEM. NODE1 NODE2 E V А IX IY IZ FP QX QY QZ ESP.MASS FLANG

 1
 5
 0.200E+09
 0.25E+00
 0.100E-01
 0.200E+02
 0.100E-02
 0.100E-02
 0.00
 0.00
 0.00
 7.86
 0.

 3
 1
 0.200E+09
 0.25E+00
 0.100E-01
 0.200E+02
 0.100E-02
 0.100E-02
 0.00
 0.00
 0.00
 7.86
 0.

 2
 4
 0.200E+09
 0.25E+00
 0.100E-01
 0.200E+02
 0.100E-02
 0.100E-02
 0.00
 0.00
 0.00
 7.86
 0.

 5
 2
 0.200E+09
 0.25E+00
 0.100E-01
 0.200E+02
 0.100E-02
 0.100E-02
 0.00
 0.00
 7.86
 0.

 1 2 3 4 LOAD STEP= 1

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:

ELEN	Л.	NODE	Ν	QY	QZ	Т	MY	MZ
1	1	1.9737	3	.2514	0.53509	0.98913	-1.0758	4.5175
	5	-1.9737	-0.9	93816	-0.53509	-0.98913	-0.52951	1.7668
2	3	5.5646	-1	.9737	0.53509	-1.0758	-2.5944	-1.4037
	1	-3.2514	1.	9737	-0.53509	1.0758	0.98913	-4.5175
3	2	2.2423	-0.	98496E-	01 -1.0173	-1.3032	1.6931	-1.4854
	4	-4.5555	3.	3699	1.0173	1.3032	3.5927	-7.5257
4	5	1.9737	0.9	93816	0.53509	0.98913	0.52951	-1.7668
	2	-1.9737	1.3	3750	-0.53509	-0.98913	-2.1348	1.1115

SUPPORT REACTIONS:

NC	DE RX	RY	RZ	MX	MY	MZ
3	1.9737	5.5646	0.53509	2.5944	-1.0758	-1.4037
4	-1.9737	5.3816	-0.53509	7.5406	2.1811	-3.1024

TOTAL DISPLACEMENTS:

NO	DE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1	0.00	00012826	-0.00006612	-0.000046335	-0.000026877	0.000020171	-0.000023354
2	0.00	00006905	-0.000176252	-0.000167861	-0.000063969	0.000004285	-0.000005048
3	0.00	0000000	0.00000000	0.00000000	0.000000000	0.000000000	0.000000000
4	0.00	0000000	0.000000000	0.00000000	0.000000000	0.000000000	0.000000000
5	0.00	00009866	-0.000118173	-0.000119012	-0.000045423	0.000024268	-0.000035309

Results from Weaver and Gere (1980), only external loads:

Join Displa	cement						
Join	Ux	Uv		0.1			
1	-8.594E-04	5 776F-05	E 0095 02		Ry	Rz	
2	-1.176E-03	3 3525 02	5.0062-03	2.393E-03	-1.623E-03	6.813E-04	
3	0,0005+00	0.0005.00	5.256E-03	1.288E-03	1.721E-03	-7.715E-04	
4	0.00001100	0.0002+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Member En	d-Actions						
Member	Node	Fx	Fγ	F7	My		
1	1	105.548	-38.509	-126.013	29 464	My 96 5 CO	Mz
	2	-105.548	38.509	-113.987	-29 464	50.309	-67.100
2	3	-38.509	14.452	-126 013	96 560	-50.491	-163.954
	1	38.509	-14 452	176.013	00.569	348.575	-23.744
3	2	183.623	9 192	E 007	-86.569	29.464	67.100
	4	-183 623	0.102	5.967	-21.404	46.703	-32.181
1		103.023	-9.192	-5.967	21.404	-77.711	79.946
upport Rea	ctions	1			·		
lode	Fx	Fy	Fz	Mx	NAV		
3	-14.452	-38.509	-126.013	-348 575	PE ECO	IVIZ	,
4	-105.548	98.509	-113 987	75 900	00.569	-23.744	
			.110.301	-/5.898	-75.808	37.163	

SADAP results (only external loads):

LOAD STEP= 1

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:

ELEN	Λ.	NODE	N QY	QZ	т	MY	MZ
1	1	105.55	-38.509	-126.01	29.464	86.569	-67.100
	5	-105.55	38.509	126.01	-29.464	291.47	-48.427
2	3	-38.509	14.452	-126.01	86.569	348.58	-23.744
	1	38.509	-14.452	126.01	-86.569	29.464	67.100
3	2	183.62	9.1924	5.9674	-21.404	46.703	-32.181
	4	-183.62	-9.1924	-5.9674	21.404	-77.711	79.946
4	5	105.55	-38.509	113.99	29.464	-291.47	48.427
	2	-105.55	38.509	-113.99	-29.464	-50.491	-163.95

SUPPORT REACTIONS:

NODE	RX	RY	RZ	MX	MY	MZ	
3 -14.	452	-38.509	-126.01	-348.58	86.569	-23.744	
4 -105	5.55	98.509	-113.99	-75.898	-75.808	37.163	

TOTAL DISPLACEMENTS:

NC	DE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y	ROT.Z
1 2 3 4 5	-0.00 -0.00 0.00 0.00	00859410 01176053 0000000 0000000 0000000 01017731	0.000057764 0.003253162 0.000000000 0.000000000 0.002745063	0.005007645 0.005255517 0.00000000 0.00000000 0.008989659	0.002393332 0.001288428 0.000000000 0.000000000 0.001840880	-0.001623169 0.001720936 0.000000000 0.0000000000 -0.000086410	0.000681331 -0.000771469 0.000000000 0.000000000 0.000000000 0.000821384

Verification:

P.D. = 0.00% for all the displacements, internal forces and support reactions.

Example No. 18:

The purpose of this example is to verify the local axis rotation of the 3D beam-column element using stability functions. SADAP results were compared with Weaver and Gere (1980) and the commercial program ANSYS. The model properties are

$$E = 10000 \text{ ksi} \quad I_x = 64 \text{ in}^4$$

$$v = 0.25 \qquad I_y = 28 \text{ in}^4$$

$$A = 9 \text{ in}^2 \qquad I_z = 80 \text{ in}^4$$

The third node of the element 2, 3 and 5 is located at: 128,96,0

Figure B.13 - Beam-column element (example 18).

Results from Weaver and Gere (1980):

Join Displa	cement		1		1		· · · · · · · · · · · · · · · · · · ·
Join	Úх	Ûy	Uz	Ry	Ru	0-	
1	-2.176E-04	-4.062E-03	-1.674E-02	-5.202E-03	1 870F-04	-4 4955 02	
2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0,0005+00	
3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.0005+00	0.0002+00	
4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.0002+00	
Member E	nd-Actions						
Member	Node	Fx	Fy	Fz	Mx	Mız	N 47
1	1	3.594	0.178	0.406	6.073	-37 /07	-04 001
	2	-6.594	3.822	-0.406	-6.073	-16 232	-04.001
2	3	4.744	0.485	-0.131	8,080	7 610	-134.030
	1	-4.744	-0.485	0.131	-8 080	15 200	27.010
3	1	3.214	0.178	1.678	-7 995	-50 179	37.444
	4	-5.950	1.054	2.322	2.995	106.594	-24.964
Support Re	actions						
Node	Fx	Fy	Fz	My	۸ <i>۴</i> ,	N 4	
2	-0.406	-2.982	7.014	-134 638	34 500	0.242	
3	3.699	2.610	1,505	-8.177	78 397	-3.345	
4	-3.293	5.372	1.480	-63.927	-16 885	-3.024	·····
					10.000	-30.434	

ANSYS results:

300

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

SADAP results:

LOAD STEP= 1

FRAME EL	EMENTS	(STABILITY FUNCTIONS) INTERNAL FORCES:
C		

ELEN	1.	NODE	N	QY	QZ	т	MY	MZ
1	1	3.5945	0	.17801	0.40605	6.0732	-32.492	-84.001
	5	-3.5945	-0.	17801	-0.40605	-6.0732	8.1294	94.681
2	3	4.7447	0	.48480	-0.13109	8.0797	7.6099	27.616
	1	-4.7447	-0.	48480	0.13109	-8.0797	15.390	57.444
3	1	3.2136	0	.17766	1.6785	-2.9952	-50.178	-24.964
	6	-3.2136	-0.	17766	-1.6785	2.9952	-97.068	40.550
4	5 2	6.5945 -6.5945	-3	8.8220 8220	0.40605 -0.40605	6.0732 -6.0732	-8.1294 -16.233	-94.681 -134.64
5	6	5.9494	-1	.0534	-2.3215	-2.9952	97.068	-40.550
	4	-5.9494	1.	.0534	2.3215	2.9952	106.59	-51.864

SUPPORT REACTIONS:

NC	DE RX	RY	RZ	MX	MY	MZ
2	-0.40605	-2.9824	7.0143	-134.64	-14.599	-9.3428
3	3.6992	2.6106	1.5050	-8.1767	28.387	-3.6240
4	-3.2932	5.3718	1.4808	-63.927	-16.885	-98.434

TOTAL DISPLACEMENTS:

NODE	TRANS.X	TRANS.Y	TRANS.Z	ROT.X	ROT.Y F	ROT.Z
1 -0.	000218067	-0.004061807	-0.016736808	-0.005202205	0.000187037	-0.004495317
2 0.	000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
3 0.	000000000	0.000000000	0.00000000	0.000000000	0.000000000	0.000000000
4 0.	000000000	0.000000000	0.00000000	0.000000000	0.000000000	0.000000000
5 0.	052151438	-0.075050749	-0.107394865	0.001498383	0.001659697	-0.000159420
6 -0.	281675223	-0.453662190	0.089995388	0.000113304	0.000690493	0.001781987

Verification:

Even though there is a small difference on the x translation of node 1 when compared with Weaver and Gere (1980), the values were matching with ANSYS. This is due to a round off error in Weaver and Gere (1980). The P.D. = 0.00% for all the displacements, internal forces and support reactions.

Example No. 19:

The purpose of this example is to verify the critical buckling load of the 3D beam-column element using stability functions; the program is expected to stop at the buckling load. Theoretical values are used as comparison, the model properties are

$$E = 2.00 \times 10^{+08} \text{ kN/m}^2 \quad I_x = 2.00 \times 10^{-03} \text{ m}^4 \qquad P_{crLinear} = \frac{\pi^2 EI}{(2L)^2} = 13707.784 \text{ kN}$$

$$v = 0.25 \qquad I_y = 1.00 \times 10^{-03} \text{ m}^4 \quad P_{crNonlinear} = \frac{\pi^2 EI}{\left[2\left(L - \frac{P_{crNonlinear}L}{EA}\right)\right]^2} = 13900.332 \text{ kN}$$

$$A = 0.01 \text{ m}^2 \qquad I_z = 1.00 \times 10^{-03} \text{ m}^4$$

Figure B.14 - Beam-column element (example 19).

SADAP results:

LOAD STEP= 9127

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:

ELEN	Λ.	NODE	Ν	QY	QZ	т	MY	MZ
1	1 2	13900. -13900.		0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
2	2 3	13900. -13900.		0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
3	3 4	13900. -13900.		0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000

SUPPORT REACTIONS:

NO	DE RX	RY	RZ	MX	MY	MZ
4	0.0000	13900.	0.0000	0.0000	0.0000	0.0000
LOAD	STEP= 9128					

Verification:

P.D. = 0.00%

Example No. 20:

The purpose of this example is to verify the torsion, bending and axial natural frequencies of a circular cantilever using 3D beam-column elements using stability functions. The model properties are

 $E = 2.00 \times 10^{+08} \text{ kN/m}^2 \qquad I_x = 4.97 \times 10^{-05} \text{ m}^4 \qquad \rho = 8 \text{ ton/m}^3$ $v = 0.30 \qquad I_y = 2.485 \times 10^{-05} \text{ m}^4$ $A = 0.01 \text{ m}^2 \qquad I_z = 2.485 \times 10^{-05} \text{ m}^4$

Figure B.15 - Beam-column element (example 20).

Theoretical results (Militano, 2000):

$$W_{n,bending} = (\beta_n . L)^2 . \sqrt{\frac{E.I}{A.\rho.L^4}}$$
$$W_{n,torsion} = \frac{2.n - 1}{2.L} . \pi . \sqrt{\frac{G}{\rho}}$$
$$W_{n,axial} = \frac{2.n - 1}{2.L} . \pi . \sqrt{\frac{E}{\rho}}$$
$$\beta_n . L = 1.875, 4.694, 7.854, 10.998$$

Militano (2000) results:

				Nati	al circula	r frequen	Cy [rod/a]					
Mode Shape	Bending	Bending	Bending	Bending	Torrise			1	T			
Exact Solution	10.30	64 55	100 70	B	TOISTON	Axial	Torsion	Axial	Torsion	Torsion	Axial	Axial
1 Element			180.72	354.36	608.85	981.75	1826.56	2945.24	3044.27	4761.98	4000 74	
Liement	10.35		-	-	671.00	1082.53	-				4308.74	6872.23
4 Elements	10.30	64.63	182.16	359.36	613.00	000.07				-	-	-
8 Elements	10.30	64.56	100.07			988.07	1933.00	3116.99	3511.00	5078.00	5662.13	8187,93
16 Flamonta			100.87	355.01	610.00	983.32	1853.00	2987.99	3167.00	4599.00	5107.44	
to crements	10.30	64.56	180.77	354.27	609.00 982.14		1833.00	2055.00			5107.44	/416.40
								2555.90	3075.00	4346.00	4958.16	7008.14

SADAP results and verifications:

				Natu	al circula							
Mode Shape	Bandt		1			freque	ncy [rad/s]					
mode shape	Bendin	g P.D.	Bendin	g P.D.	Bendin	g P.D.	Bendin	g P.D.	Torsion	P D		
Exact Solution	10.30	-	64.55	-	180.72	-	354 36				Axiai	P.D.
1 Element	10.35	0.49%	6 -	<u> </u>		+			608.85		981.75	-
4 Elements	10.30	0.019			+			· ·	671.36	10.279	6 1082.53	10.27%
8 Floments		0.01%	64.63	0.12%	182.15	0.79%	359.35	1.41%	612.77	0.64%	988.07	0.64%
ociements	10.30	0.01%	64.56	0.01%	180.86	0.08%	355.00	0.18%	609.83	0.169/		0.04%
16 Elements	10.30	0.01%	64.55	0.00%	180.76	0.02%	354.26	0.000	005.05	0.10%	983.33	0.16%
		1		1	<u> </u>	1 0.0270	554.26	-0.03%	609.10	0.04%	982.14	0.04%
	, <u> </u>	1		1								
				Natua	l circular f	requent	y [rad/s]					
Mode Shape	Torsion	P.D.	Axial	P.D.	Torsion	P.D.	Torsion	80	T T		T	
Exact Solution	1826.56	-	2945.24		3044.27		10131011	F.D.	Axial	P.D.	Axial	P.D.
1 Element					3044.27		4261.98	-	4908.74	-	6872.23	-
4 Elomente			-		-	•	-	-	-	-	_	
4 crements	1933.08	5.83%	3117.00	5.83%	3511.50	15.35%	5077.94	19.15%	5662 13	15 2504		
8 Elements	1853.07	1.45%	2987.99	1.45%	3167.50	4.05%	4500.45	7.0001	5002.15		8187.93	19.15%
16 Elements	1833.17	0.36%	2955 90	0.269/	2074.00		4359.45	7.92%	5107.44	4.05%	7416.40	7.92%
				0.30%	3074.92	1.01%	4346.26	1.98%	4958.16	1.01%	7008.14	1.98%

Example No. 21:

The purpose of this example is to verify the variation of frequency with axial force in a column with both ends pinned (3D beam-column element using stability functions).

The program results were compared with the results from Przemieniecki (1985). A non-linear free vibration analysis was performed.

Figure B.16 - Example solution (example 21).

Where:

$$\Theta = w^2 \rho \frac{AL^4}{EI}$$
$$\mu = \frac{PL^2}{EI}$$

Verification:

 $P.D._{MAX} = -0.65\%$

Example No. 22:

The purpose of this example is to verify the dynamic solver using the 3D beam-column element (using stability functions). Model properties, dynamic force, and displacement solution were taken from Battista (2007-C) and are given by

$$\begin{split} E &= 2.10 \times 10^{+08} \, \mathrm{kN/m^2} & I_x = 2.716 \times 10^{-04} \, \mathrm{m^4} & \rho = 7.85 \, \mathrm{ton} \, / \, \mathrm{m^3} \\ \nu &= 0.30 & I_y = 1.858 \times 10^{-04} \, \mathrm{m^4} & \xi = 0.01 \\ A &= 8.06 \times 10^{-03} \, \mathrm{m^2} & I_z = 1.858 \times 10^{-04} \, \mathrm{m^4} \end{split}$$

Theoretical solution:

$$w_n = n^2 \pi^2 \sqrt{\frac{EI}{\rho AL^4}} = 53.82 \text{ rad/s}, 215.29 \text{ rad/s}, 484.41 \text{ rad/s}$$

Battista (2007-C) solution (displacements where the load is applied):

 $u_y (0.15 s) = 0.00643 m$ $u_{y MAXIMUM} = 0.00849 m$

SADAP solution and verification (using 30 elements):

 $w_{1} = 53.82 \ rad / s \therefore P.D. = 0.00\%$ $w_{2} = 215.29 \ rad / s \therefore P.D. = 0.00\%$ $w_{3} = 484.41 \ rad / s \therefore P.D. = 0.00\%$ Modal Superposition (Δt =0.0001 s and 50 modes): $u_{y}(0.15 \ s) = 0.00650 \ m \therefore P.D. = 1.09\%$ $u_{y MAXIMUM} = 0.00854 \ m \therefore P.D. = 0.59\%$ Newmark-Linear (Δt =0.0001 s): $u_{y}(0.15 \ s) = 0.00649 \ m \therefore P.D. = 0.93\%$ $u_{y MAXIMUM} = 0.00854 \ m \therefore P.D. = 0.59\%$ Newmark-Nonlinear (Δt =0.0001 s): $u_{y}(0.15 \ s) = 0.00649 \ m \therefore P.D. = 0.93\%$ Newmark-Nonlinear (Δt =0.0001 s): $u_{y}(0.15 \ s) = 0.00649 \ m \therefore P.D. = 0.93\%$

Example No. 23:

The purpose of this example is to verify the nonlinear static analysis of the insulator string elements. The results where compared with theoretical analyses. Model properties are (the insulator string element is mass less)

 $L = 1.50 \text{ m} \qquad A = 1.00 \times 10^{-03} \text{ m}^2 \qquad Fx = 9.81 \text{ kN}$ $E = 2.00 \times 10^{+08} \text{ kN/m}^2 \qquad Conductor \ weight = 9.81 \text{ kN}$

Theoretical results

Self weight analysis: $u_{y} = -\frac{L}{EA} conductor weight = 0.00007358 m$ Tension i = 9.81 kNTension j = 9.81 kN

External load and self weight analysis:

$$u_x \approx \frac{L}{\sqrt{2}} = 1.06066 \text{ m}$$
$$u_y \approx L \left(1 - \frac{1}{\sqrt{2}} \right) = 0.43934 \text{ m}$$
Tension i = 12.8724133

Tension i = 13.8734 kN Tension j = 13.8734 kN

SADAP results:

NODAL POINTS:

NC	DE	х	Y	z
1	0.0	000	0.0000	0.0000
2	0.0	000	-1.5000	0.0000
3	0.0	000	-1.5000	0.0000

RESTRAINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

1 1 1 1 1 1 1

NODAL FORCES:

NODE FX FY FZ MX MY ΜZ 2 9.81000 0.00000 0.00000 0.00000 0.00000 0.00000 AUTOMATIC SELF-WEIGHT ANALYSIS

SPRING ELEMENTS:

ELEM. NODE1 NODE2 KUX KUY KUZ KRX KRY KRZ MASS ALFA BETA 2 3 2 0.10000E+07 0.10000E+07 0.10000E+07 0.10000E+07 0.10000E+07 0.10000E+07 1.0000 0.0000 0.0000 INSULATOR ELEMENTS:

Self weight

Self weight and external load

ELEM. NODE 1 NODE 2 E А WC TOTAL MASS 1 1 2 0.20000E+09 0.10000E-02 0.10000E-01 0.0000 LOAD STEP= 1

INSULATOR ELEMENTS INTERNAL FORCES: (TENSION +)

ELEM. N NODE1 N NODE2

1 9.8100 9.8100

SUPPORT REACTIONS:

NODE RX RY RZ MX MY ΜZ

1 0.0000 9.8100 0.0000 0.0000 0.0000 0.0000

```
LOAD STEP= 101
```

INSULATOR ELEMENTS INTERNAL FORCES: (TENSION +)

ELEM. N NODE1 N NODE2

1 13.881 13.881

SUPPORT REACTIONS:

N(1	-9.8100	RY 9.8100 0.	RZ 0000	MX 0.0000	MY 0.0000	MZ 0.0000					
TOTAL DISPLACEMENTS:											
NO	DE TRANS.>	TRANS.	′ TR.	ANS.Z	ROT.X	ROT.Y F	ROT.Z				
1 2 3	0.000000000 1.066243283 1.066243283	0.000000000 0.437919529 0.437919529	0.0000 0.0000 0.0000	000000 000000 000000	0.000000000 0.000000000 0.000000000	0.000000000 0.000000000 0.000000000	0.000000000 0.000000000 0.000000000				

Verification:

 $P.D._{MAX} = 0.06\%$
Example No. 24:

The purpose of this example is to verify the Free Vibration analysis of the insulator string element. The results where compared with a theoretical analysis. Model properties are (the insulator string element is mass less)

$$L = 1.50 \text{ m}$$
 $A = 1.00 \times 10^{-03} \text{ m}^2$
 $E = 2.00 \times 10^{+08} \text{ kN/m}^2$ Conductor weight = 9.81 kN

Figure B.20 - Insulator string element (example 24).

Theoretical results:

$$w = \sqrt{\frac{g}{L}} = \sqrt{\frac{9.81}{1.5}} = 2.55734 \text{ rad/s}$$

SADAP results:

MOD	DE MODAL MASS	FREQIRADI	EREO[H7]
1	1.00000	2.55728	0.40700

Verification:

P.D. = 0.00%

Example No. 25:

The purpose of this example is to verify the linear dynamic solver using the insulator string element. Model properties are (the insulator string element is mass less)

Theoretical results:

Static displacement = $\frac{F_x L}{Conductor \ weight}$ = 0.5 m

SADAP results:

Figure B.22 - Example results (example 25).

Verification:

P.D. = -0.10%

Example No. 26:

The purpose of this example is to verify the non-linear static analysis of the straight tower element. The results of the model with straight tower elements were compared with a model using the 3D beam-column (vertical bars) and truss (diagonal and horizontal bars) elements. The model properties are

Figure B.23 - Straight tower element (example 26).

The applied force in the following table was chosen to be close to the critical buckling load of the tower (calculated based on a non-linear stability analysis) to verify the behavior of the simplified element.

7

Sector Se		and the second se					
Model	Node	Fx	Fy	Fz	Mx	My	Mz
Model		kN	kN	kN	kNm	kNm	kNm
	41	10	-350	10	0	0	0
Complete	42	10	-350	10	0	0	0
Model	43	10	-350	10	0	0	0
	44	10	-350	10	0	0	0
Simpl. Model	10	40	-1400	40	0	0	0

The effect on the non-linear static analysis result in considering the diagonal bars to resist shear deformation was also investigated.

SADAP results:

Figure B.24 - Example results for x displacement (example 26).

Figure B.25 - Example results for y displacement (example 26).

Figure B.26 - Example results for z displacement (example 26).

Verification:

 $P.D._{MAX, without shear deformation} = 16.33\%$

 $P.D._{MAX, with shear deformation} = 0.52\%$

Example No. 27:

The purpose of this example is to verify the Free Vibration analysis of the straight tower element. The results of the model with straight tower elements were compared with a model using the 3D beam-column (vertical bars) and truss (diagonal and horizontal bars) elements. The model properties are

Longitudinal barsDiagonals and Horizontal bars
$$E = 2.10 \times 10^{+08} \text{ kN/m}^2$$
 $I_x = 2.45 \times 10^{-06} \text{ m}^4$ $E = 2.10 \times 10^{+08} \text{ kN/m}^2$ $v = 0.3$ $I_y = 1.23 \times 10^{-06} \text{ m}^4$ $E = 2.10 \times 10^{+08} \text{ kN/m}^2$ $A = 1.00 \times 10^{-03} \text{ m}^2$ $I_z = 1.23 \times 10^{-06} \text{ m}^4$ $A = 5.00 \times 10^{-04} \text{ m}^2$ $\rho = 7.86 \text{ ton/m}^3$ $\rho = 7.86 \text{ ton/m}^3$ $\rho = 7.86 \text{ ton/m}^3$

Figure B.27 - Straight tower element (example 27).

SADAP results:

۰.

Figure B.28 (cont'd) - Mode shapes and frequencies results (example 27).

Verification:

 $P.D._{w1} = 0.86\%, P.D._{w2} = 1.38\% P.D._{w3} = 2.07\%, P.D._{w4} = -8.85\%$