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Abstract

The optimum design of a transmission line system requires a good
understanding of both the static and dynamic behaviors of the system. The
computational model should be capable of accurately representing the structure.
In comhon practice, an isolated tower with loading from conductors is analyzed
to represent an entire system of towers. It has been found that the behavior of
the tower-cable system differs from the behavior of an isolated tower, especially
for long span transmission systems. A misrepresentation of the model can lead

to serious economical and social losses.

-In this study, a latticed tower shaft is modeled using a tapered and a
‘prismatic 3D beam-column element to reduce the number of degree of freedom
of the structure. These simplified elements were specially formulated and verified
to represent detailed tower segrﬁ_ents. The elements are incorporated into an in-
house Finite Element program called Static and Dynamic Analysis Program. The
program also includes all the necessary elements required in the analysis of the
transmission line system such as a cable element, truss element, spring element,
insulator string element and conventional beam-column element. The 3D cable
element used to model guy wires and conductors are assumed to be parabolic in
shape with a modified Dischinger's modulus of elasticity. The results obtained
from the model using the simplified elements and those obtained from the

detailed tower model, for both static and free vibration analyses, are within 7%.



Free vibration analyses of an isolated tower and a transmission line
system were conducted using the developed simplified model. TDe inclusion of
cable spans in the model increases the number of mode shapes of vibration. The
increase in the number of cable spans also increases the number of mode

shapes.

Dynamic analyses of the system with different numbers of cable spans
and different boundary conditions were also performed. The wind loading was
modeled using a random, stationary and ergodic process. It was found that only
two cable spans are required for the dynamic analysis of the system for the
applied load case of wind perpendicular to the line. It was also concluded that the

spring element can be used to represent the end towers.
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1. INTRODUCTION

1.1.GENERAL

Transmission line systems play an important role in society; a failure in
these systems causing an interruption in the energy supply can cause severe
social and economic losses. To guarantee stability and low cost of maintenance,

these systems need to be well designed.

In the past, in the United States, the majority of the state laws required
that the transmission line system should be designed at a minimum to meet the
requirements of the National Electrical Safety Code (NESC), which mainly covers
electrical design of the transmission lines, however, it also contains a part of the
structural loads and overload capacity factors. Some designers felt that the
NESC code was too conservative, while others adopted procedures well above
the minimum requirement. This inconsistency led to the development of in-house
design criteria and guidelines. All this caused a large variation in the design (see
reference ASCE, 1984 for details), and led to an unreliable or costly structures. in
1984, the American Society of Civil Engineers (ASCE) published a set of
guidelines for determining the structural loads of the transmission towers.
Though it created uniformity in the design procedure, these guidelines however
were based on simplified assumptions due to the lack of computational structural
programs. Structures built with such simplifications should be reviewed for safety

now that the numerical analysis is much more advanced.



it is always of interest to engineers to design a transmission line system
with the maximum span length possiblg. With the use of advanced
computational programs, the structural analysis can be very sophisticated. This
allows a significant increase of the span size and a reduction on the transmission
system cost. Nonetheless, some precautions need to be taken in the construction

of a numerical model that closely represents a real structure.

The design of transmission line systems (Figure 1.1) has always been a
- highlighted topic in‘structural engineering. In the past, towers were designed
based on static load cases. The conductors and the tower were treated as
independent units. The load resultants from the conductors were applied directly
to the tower's members. Such simplifications could have a negative impact in
today’s economy. It was estimated that a failure of a transmission tower could
cost éne million US dollars per kilometer of line (Albermani et al., 2008) without

including economic damages due to lack of electrical power.

Figure 1.1 - Transmission line system.



Most transmission towers are constructed as steel! latticed structures. In
general, as for any tall and slender structure, the design of a transmission line
system is governed by wind loads (Shehata et al., 2005). Therefore, due to the
low natural frequencies of the system, a dynamic analysis is required. Most of
the dynamic analyses of a transmission system are usually carried out by
modeling the tower as an isolated structure as shown in Figure 1.2. This is not
accurate since it has been proven that the dynamic characteristics of the whole
system and the lateral movement of thé conductors must be taken into account in
the analysis. The dynamic effects that the conductor and insulator strings have
on the vibration of the tower cannot be simply represented as lumped masses on

the tower.

Figure 1.2 - Transmission tower.

The work in this thesis is entirely theoretical. It involves the development
of a computer program based on the direct stiffness method. The program was
validated though comparison with existing finite element (FE) programs,
published or theoretical results. Several examples are included in this thesis

3



which demonstrates the effectiveness and the accuracy of the developed

program.
-1.2.0BJECTIVES

To date, the analysis of transmission line systems has generally focused
on the analysis of isolated towers with the conductors acting as discrete loads on
the tower at the connection points. Such a mathematical model may be used for
static analysis of the system. In dynamic analysis, however, the effects that the
conductors and the adjacent towers have on the response of the system are
significant and must be considered in the analysis of the system. To obtain an
accurate prediction of the response, the whole system, including the towers and
the conductors, must be used in the analysis. Depending on the number of spans
used in the analysis, this can be limited by the capacity of the computer. The
problem can be alleviated by using an appropriate simplified element to model!

the tower. Hence, the goals of this study are

e To develop a reliable simplified tower model so that dynamic
analysis of a transmission line system which includes several spans
can be performed with limited computer capacity,

e To perform parametrical studies on the effects of the number of
towers in the model, and

e To investigate the effect of the end restrains on dynamic response

of the tower system.



1.3.OUTLINE OF THE THESIS

This thesis consists of seven chapters. In chapter 2 a literature review of
the beam-column element formulated using stability functions and the
computational models for the tower analysis used by previous researchers is

presented.

In chapter 3 the details of the element formulations (tapered and straight
tower element, insulator string, cable, and spring elements) used in the program

are discussed.

In chapter 4 the validation of the elements is performéd. A number of
examples used to verify the Finite Element Program (SADAP - Static and

Dynamic Analysis Program) are also included.

In chapter 5 the numerical models and loads used in this study are

described.

The results from the analyses for both the isolated tower and the
transmission system are discussed in chapter 6. Finally, chapter 7 includes a

number of conclusions and recommendations for future research.
1.4.SCOPES OF THE RESEARCH
The scopes of the current research are

e A non-linear static analysis of transmission tower is restricted to an
isolated tower for the purpose of verification of the proposed

simplification.



Only geometrical non-linearity is taken into account.

The dynamic analysis is limited to a linear formulation due to
computational constrains.

Buckling of an individual member is not taken into consideration in

the formulation of the simplified element.



2. LITERATURE REVIEW

2.1.BEAM-COLUMN (STABILITY FUNCTIONS)

There are several methods to derive the stiffness matrix of a beam-column
element. One of them is through the use of modified slope-deflection equations,
called Stability Functions. This method is wildly used in the analysis of steel

structures using Finite Element Analysis (FEA).

The Stability Functions Theory is more attractive than a standard energy
method, because; requires fewer elements to predict buckling loads
(Landesmann, 2007), uses only one stiffness matrix to describe the linear and

the nonlinear behavior, easy to incorporate the plastic hinge theory and etc.

There are a large humber of publications describing the use of the Stability
Functions. One in particular is by Kim et al. (2001-A). Their derivation of the
stability functions incorporated shear deformation, the tangent modulus of
elasticity to account for gradual yielding due to residual stresses, the parabolic
functions for gradual yielding due to flexure, and Orbison’s full plastification
surface of cross-section. The inelastic formulations are recommended only for
compact steel sections. Kim et al. (2001-B) extended their formulation to
incorporate the lateral torsional buckling. Later, Kim et al. (2006) performed an
inelastic dynamic analysis of the three dimensional steel frames using stability
functions. They archived good results when compared with commercial FE

program (Abaqus).



2.2. TOWER MODELING

One of the earliest studies related to the analysis of transmission line is
Bissiri and Landau in 1947. They investigated the influence of the cable rupture
on subsequent line spans of a transmission line system. The cables were
considered to have a catenary profile, the insulator strings were assumed as rigid
body elements and the towers as fixed supports. Their research focused on
calculating the cable tensile force based on static equilibrium and they presented

hand calculation procedures for the analysis.

Cohen and Perrin (1957-A) described the procedure to. calculate wind
loads as static forces on guyed towers. They presented drag and lifting
coefficients for towers of different types and shapes, as well as gust factofs and a
formulation for the change in wind speed with altitude. They extended their
research and performed a simplified non-linear static analysis of guyed towers
(Cohen and Perrin, 1957-B). Though this method was a simplified method, and
was very efficient considering the computational limitations. The tower shaft was
represented by equivalent beam-column elements and the guyed cables by non-

linear springs.

Mozer et al. (1977) developed simplified procedure to calculate
longitudinal forces due to a broken conductor wire or unbalanced ice load. They
formulated an equivalent stiffness coefficient for the insulator string assuming
small rotations. The accuracy of their procedure was verified by comparing their

numerical result with the results from several static small scale experimental



tests. They also performed small scale dynamic tests and concluded that the
dynamic characteristics of the tower-cable system are influenced from the impact

load due to a wire rupture.

Peyrot et al. (1981) used a nonlinear elastic catenary cable element to
analyze cross rope suspension transmission line structures. They performed a
nonlinear static analysis using only one cable element per conductor’s spans.
The tower mast was modeled‘ as a rigid body element. A static condensation
was applied to reduce the degrees-of-freedom (DOF) of the mast. They,

however, did not verify their analysis results.

To reduce the DOF of a transmission tower, Trainor et al. (1985) used a
beam-column element that represents both _straight and tapered tower shaft and
calculated natural frequencies of the structure. They assumed the mass of the

structure to be constant even when the tower's shaft was tapered.

Mathur et al. (1987) demonstrated that the towers, insulator strings, and
conductors must be integrated as a whole in ordef to obtain an accurate dynamic
analysis of a transmission tower system. Desai et al. (1994) analyzed galloping
of a transmission line with ice on the conductors. In their study, the tower-line
system was modeled considering multiptle spans and the cable as a three-node
isoparametric finite element. They concluded that a multi-span model is required
to estimate galloping modes; severe galloping amplitudes can lead to a

progressive failure of the towers.



Rodrigues (1999) studied the collapse of a transmission tower due to wind
load and demonstrated that, even without the rupture of the conductor wire, the
tower can fail due to dynamic wind load because of the low natural frequencies of
the structure. A system of one tower, insulator strings and two cable spans was

used in the analysis. The end towers were modeled as a linear spring element.

Lei, Y. H. and Chien, Y. L. (2005) studied the response of a fransmission
line system to seismic load, considering both material and geometric
nonlinearities. Their model consisted of 3 towers, 4 conductor spans (4 cable
elements per span) and springs to represent the end towers restrains. The
stiffness of the springs was chosen to be equal to 1.5 times the stiffness of one
tower, measured in each respective direction. No indication of modeling the
~ insulator strings was reported. They concluded the importance to consider the

conductors in the dynamic analysis of the transmission line system.

Using ANSYS, Oliveira (2006) investigated the collapse of one of the
towers studiedb by Rodrigues (1999) using a non-linear static and dynamic
analysis. He modeled the end towers using dynamic condensation available in |
ANSYS (therefore assumed that those towers have a linear behavior). He"
concluded that the tower can fail due to a wind load before a wire rupture and
that the tower-line system presented lower natural frequencies then the isolated
tower, as the initial frequencies of the tower-line were governed by the

conductors’ properties.
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Oliveira et al. (2007) analyzéd several guyed towers using three different
models to investigate which model best represented the towers. The first model
consisted only of truss elements (in this model, the use of dummy bars with low
stiffness was required to stabilize the structuré); the second model consisted of
beam elements assuming rigid connections; and the third model considered the
main elements as beams and the diagonals as trusses. In their study, the
comparison between models was done considering a static linear and non-linear
analysis, a dynamic based on free vibration, and a stability anaiysis. They
concluded that the lateral displacement of the tower due to wind loads was not a
function of the element type, but the stresses from the truss and the other two
models were considerably different. They also concluded that the model using
only beam elements can lead to a higher buckling load when compared with the
combined truss and beam model. They recommended using the model that
considered the main elements as beams and the diagonals as frusses to the

analysis of guyed towers. This recommendation is used in this study.

Junior et al. (2007) studied the effect of a cable rupture on transmission
lines using Central Finite Difference to integrate the equations of motion in the
time domain. The geometric and material nonlinearities were inciuded in the
model. They investigated a 138kV transmission line, which consisted of eight
detailed towers, nine cable spans (20 cable elements per span), and insulator
strings. All modeled only using truss elements. They concluded that the standard
cable rupture approach (equivalent static load) can be unsafe, depending on the

transmission line model.
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In the analysis of a transmission line system, the nurhber of spans is
defined by a case by case basis. It is very time consuming to run a multi-span
model, and simplifications are still required to be able to perform a parametric
study on the effects of the number and length of conductors spans. Zhang and
Rattanawangcharoen (2008), investigated the dynamic characteristics of a single
guyed tower, and a system made by three towers and four conductor's spans
using a uniform non-linear beam-column element to simulate the tower shaft. A
catenary cable element was ‘also used to simulate the conductors, the ground
wires and the guyed cables (only one cable element per span). They concluded
that the system of towers has additional modes of vibration when compared with
an isoléted tower, which depend on the span length, and can have an important
effect in the dynamic response. Therefore, multi-spans models should be

considered for a more reliable analysis.
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3. FORMULATION OF ELEMENTS

In the analysis of the transmission line system, a model consisting of one
isolated tower is not sufficient to predict the dynamic behavior of the structural
system. The consideration of the subsequent towers is necessary. However, a
model consisting of more than one tower is extremely computational time
consuming and sometimes even impossible. There are basically three different
techniques to solve this problem. In the first technique, the exiremity towers
were modeled as simple mass-spring-damper elements as it was done at
Rodrigues (1999). In this method, the spring stiffness is obtained by applying a
unit force at the end of the insulator string elements and then inverting the
resulting displacement. The second method is to use static condensation as
done by Oliveira (2006) thus reducing the DOF of the structure. Even though
these methods are very efficient, the adjacent towers can only be considered to
have a linear behavior and only natural frequencies corresponding to the
remaining DOFs were considered. The studies using these two methods were

considered only two cable spans models.

The third technique is to simulate parts of the tower as a single element
reducing the degree of freedom of the system therefore reducing the analysis
complexity, as shown in Figure 3.1. Even though the analysis is simplified, the
element is able to represent the non-linear static and dynamic behaviour of the

structure.

13



Figure 3.1 - Representation of a tower segment by a tapered beam-column

element.

3.1.TOWER ELEMENTS

3.1.1. STRAIGHT SHAFT

The tower shaft (Figure 3.2) will be modeled similarly to a regular beam-

column element with equivalent geometric properties.

A

Elevation Section 1-1

Figure 3.2 - Straight shaft segment.
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The torsion stiffness, kr, is considered to be provided exclusive by the diagonal

bars, as shown in Figure 3.3. The formulation is given by Eqn. (3.1).
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where Ap is the area of one diagonal, Fp is the force in the diagonal bar and Tis

the torsional moment.

Therefore the linear stiffness matrix, K;, considering the torsion stiffness is

given by:

0 0
0 0
12E
L!
0k
6E1
— L2y 0
0 0
0o 0
0 0
12E1
— L3 4 0
0 —k
_6EI,
LZ
0 0
A=44
_ 2
I, =41
. 2
I, = 4,0’

0o _H
L
65212 0
0 0
0 0
0 0
L
o H
L
GEI,
L2
0 0
0 0
0
28I,
L
2
b,
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A modification on the stiffness matrix (Egn. 3.2) is required to take into
account the effect of the diagonal bars. These bars are considered to resist in the

shear deformation only. The flexibility coefficient, £, , is given by:

Ll & a8
/:g 2
K| 2 2
=1 =
, c c
L3 3
b,
Elevation
Figure 3.4 - Diagonal effect.
2A4,E
FDz = LD uDz
Dz
F,=22F cos(a u,
Dz
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ky, =2 cos(ar) (3.4)
Dz
L 1
=kl =D
For =k 24,E cos’(,)
f= Ly, 1
Dz

T24,E( b,
LDz
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If the shear deformation is considered, a new stiffness matrix consists of columns
and rows 2 to 6 and 8 to 12, except 4 and 10 of the linear stiffness matrix in Eqn.
3.2 is inverted and the shear deformation is added. After this step, the matrix is
re-inverted and the remaining coefficients are calculated by equilibrium of the
element (Pinto, 2006-A; Pinto, 2006-B). The steps in this formulation are as

follows,
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_ 1 -1
k2,2 k2,6 :l — k2,2 k2,6 + [fDZ,Z O:l

_k6’2 k6’6 with shear deformation k6'2 k6’6 O 0

. -1 -1
k8,8 k8,12 ] — k8,8 k8,12 + {:fD&S O:I

_klz,g k12,12 with shear deformation k12,3 k12,12 O O

kz,s = ks,z = "kz,z

k2,12 = k12,2 = kz,z '"kz,é

ks,s = k8,6 = "'kz,s
k6,12 = k12,6 = kz,sL - ks,e
L
fD2,2 = fD8,8 = 2 2
b
254, (__]
LDz

w2

-1 -1
k3,3 k ,5 ] — k3,3 k3,5 + |:fD3,3 0}
_ks 3 k5’5 with shear deformation k5 3 kS »5 O 0
-1 ~1
9,9 k9,11 :l — I:k9,9 k9;11 :I + {fD9,9 O:l

_kl 19 kl LT yith shear deformation kl 19 kl L1 0 0
k3,9 = k9,3 = "k3,3
k3,11 = k11,3 = "k3,3L "ks,s

s

k5,9 - k9,5 = _k3,5
ks,n = k11,5 = _ka,sL - ks,s

LD
— — Y
fD3,3 - fD9,9 -

2
b
2EA| 2=
i (LD}’ ]

L, =«/b22 +I’

(3.5)

The new coefficients should substitute the ones in the previous presented linear

stiffness matrix (Egn. 3.2).
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Besides the previous matrix, it is required the addition of a non-linear
stiffness matrix, Ky, to account for geometric non-linearity. The Non-linear

stiffness matrix is given by,

o 0 0 0 0 o 0o 0o 0 o0
o £ o o o £ o 2 4 o o £
SL 10 5L 10
o o £ o _2 o o -5 P
5L 10 5L 10

o o £ o HE2 4 o o £ 4 P
10 15 10 30
o £ 9 oo o HE2 o P 0 o -IL
K = 10 15 10 30
NL.
0 0 0 0 0 0 0 0 0 0 0 0 (3.6)
o 82 0 o L o & 0 o -£
5L 10 5L 10
0 o 2 4, £ 0 o & 4 £
5L 10 5L 10

P PL P 0 2LP

0 - 60 -— 0 0 0 — 0
10 30 10 15
0 £ 0 0 0 _PL 0 _P 0 0 0 2LP
L 10 30 10 ) 15 J

The axial force P is the average axial force in the two node of the element; it is
calculated in the subroutine that calculates the elements forces, thus it is
considered equal to zero for the first load step. The axial force is defined as

positive if the element is in tension.

The mass is assumed uniformly distributed along the element length.
Therefore, the consistent mass matrix of a uniform belam-column will be used,

and is given by:
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M =AUX

where

140

0 0 0 0 0 70 0 0
156 0 0 0 2L o 54 0

0 15 0 2L 0 0 0 54

0 140/, 0 0 0 0

44,

0 -2L 0 42 0 0 0 -13L
2L 0 0 0 4 o0 13L 0

0 0 0 0 0 140 0 0
54 0 0 0 13 0 156 0

0 54 0 -13L 0 0 0 156

0 o 1L 0 0 0 0

a4,

0 13 0 -3 0 0 0o 22

-3 0 0 0 3L 0 2201 0
44 L
(4AL o+ %p— L
AUX =
420
J.=1,+1,
\/bf +1I7 +\/bj + I
D =
2
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3.1.2. TOWER TAPERED SHAFT

The tapered shaft tower, Figure 3.5, is modeled with the same
assumptions as the-straight shaft, i.e. a beam-column element with equivalent

geometric properties. The difference is that the inertias are not constant.

| b Topz |

botrons ba(x)

Elevation Section 1-1
Figure 3.5 - Tapered shaft segment.

The equivalent section properties of the tapered element representing a

lattice segment are defined as the following:
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Similar to the case of a straight shaft, the area of the diagonal bars, Ap is not

considered, as they are only assumed to resist shear.

As can be seen that the inertia is not constant along the element length, a

formulation for the stiffness matrix of a tapered beam-column is presented in the

following:

Mp

‘@._’L _
&~
R,

e,

L I

bBomm

nal D2

i Longitudinal bar

Figure 3.6 - Deformed beam-column element.
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Consider a simple supported beam in the xy-plane with varying moment of

inertia along its length subjected to end moments and a compressive force as

shown in Figure 3.6.

EL(x) O'y(x) = M ()

ox?
62
B, ) P22 < Rox -, - Pyt
2
Elz(x)a;(zx) MMy oy —Py(x) (3.10)
X
(M,+M;)x
Py _ 1 M p
ox* EI (x) EI (x)
i (M, +My)x _ i
y(x) _ L A__PYX)

ox’ El.. (1+Bx)"  (1+px)

17
El

Botton

where p=

Solving the differential equation for displacement together with the
boundary conditions y(0)=0and y(L)=0, the slope of the beam is obtained to

be:
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Rearranging the solutions and calculating for the nodes:

; [ (—é—jb (“ % )"_b (a+b)—(—;—]a_b (L+—1ﬂ-)m (a—b)} N

6,=6(0)=|~ Y1 (1Y 1\ PL M,
’W“K“z) CROICH }
+ - bzﬁb_b - - +% M,=fM,+ f,M,;
| (e3) () (3] (3]
(3.12)
6, =6(L)=| - 25 b_,, - 5 4
SIORDICHIE
PJLB+1|L+—||=| —-|=|]|L+—
B)\B B B
Aert] @3] (2] a3 |
(Y 1Y (1) N ) 7L My = foM,+ f;M,
() (G (3 (5 o5)
For compression (P>0):
_ ,32—4,02
2p (3.13)
1
a_—_.—-
2
For tension (P<0):
poNB 40"
2p (3.14)
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Eqn. 3.12 can be written in the matrix form as:
Ol _| i S2|[M,
%) L f]\M,
M\ _[4 AT [60_[s s.]fe
MB - f:’. f; BB _‘SZ S3 68

where S, S,, andS; are stiffness coefficients obtained numerically. Similar

(3.15)

procedure is carried out for the element in the xz-plane. As well, the same

method can be used for zero axial force members.

Consider a member with ends having relative transverse displacement of

A as shown in Figure 3.7 (Chen and Lui, 1991).

Figure 3.7 - Sway effect.

The end moments can be written as:

o (g fue (]
oo oo )
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For small é:
L

A
M, =SIQA+5293“(51+52)Z

A (3.17)
My =8,0,+86; - (S, +S3)—L—
From equilibrium:
SL+PA+M +M,=0
S=_PA+MA+MB
L
S:—%[SIGA+S293—e(S,+S2)%+S26A+S3¢93—(S2+S3)—%+PA] (3.18)
g _(Sl +S2)9A _(Sl +S2-)9A +(S,+25;2 +8,, P,
L L L L
Arranging for a matrix form:
s, s, _Si+S, 0
L
M 6
4 s, s, __-S2+S3 0 4
M| _ L O (3.19)
S _5+S8,  S,+8, §+25,+S,-PL A
P L L r e
0 0 0 £4
L L ]

The torsion stiffness is calculated with the same procedure as the tower
straight shaft, assuming an average tower width. With the expansion for the z

direction, the stiffness mairix becomes:
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k, O 0 0 0 0 k; O 0 0 0 0 ]
0 k,, 0 0 0 kyg 0 kyg 0 0 0 k),
0 0 kys 0 kys 0 0 0 kyo 0 ks, 0
0 0 0 ky, 0 0 0 0 0 kyro 0 0
0 0 ks, 0 ks 0 0 0 kg 0 ks, 0
0 k., 0 0 0 kgg 0 kgg 0 0 0 ke 12

K= kb, 0 0 0 0 0 k, O 0O 0O 0 0
0 ks, 0 0 0 LA 0 kg g 0 0 0 kg s
0 0 ky, 0 kys 0 0 0 kg 0 kg 0
0 0 0 Ky, 0 0 0 0 0 ko O 0
0 0 ks 0 L 0 0 0 ks 0 Ky 0

B 0 kyy 0 0 0 kg 0 king 0 0 0 k12,12_

kl,l = k7,7 = "km = _k7,1 = 4ELAL

k2,2 = —kz,s = "ks,z = ks,s = St 2.5'22[;- Sy, ~PL

kz,s = ks,z = "ks,s =—kys= S ZSZZ

kyyy =kipy =—kgpy =—kppg = 52&%‘5"&

ks =5,

k6,12 = k12,6 =5,

k12,12 =8,

B aver + lmer | Bl sveBy aver B} aver Dz aver
k4,4 = —k4,1o = —k10,4 = klo,lo =E4, 2 \/Lz - byz 7+ yz ~ 3
WE+t.) (JE+t)

S, +28,,+5, —PL

k3,3 = _k3,9 = _k9,3 = k9,9 =

2
S, +8S

"ks,s = "ks,z = k5,9 = k9,5 = —Q"Z‘ﬂ

. S, +38S.
"ks,u = _kn,s = k9,11 = k11,9 = 'Zy—Li'y'
ks,s =5,
ks,n = kn,s =5,
kn,n =3,
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If the shear deformation analysis is used, the same procedure used in the
straight shaft element is adopted. The shear flexibility coefficients are obtained

following the formulation in Eqn. 3.22.

- -1
kyy kg _ [kz,z k2,6j| l + {ﬂexs hear, , OJ
kﬁ’z k6'6 with shear deformation kﬁ,z k6'6 O 0

—1 -1
ks,s k8,12 _ I: kz,s k8,12 :| + |:ﬂex~5'hea’é,s 0}
kizg k12,12 with shear deformation king ki -0 0

kz,s = ks,z = _kz,z
k2,12 = k12,2 = kz,zL - k2,6
ks,a = ks,s = "kz,s
: k6,12 = k12,6 = kz,sL - ke,e
L
flexshear, , = flexshear,, = Dz >
( by Bottom + by Top )
2
2EA4,| ~—rree—=
L,

z

2 2
LDZ — \/ ( b y Bolrom2+ b y Top j + LZ ( bz Bottom "~ b 2 Top )
-1

|:k3 2 ] [ 3, 5:| [j’lexshear3 3 0]

k5 3 with shear deformation 5 3 5 S O

-1
koo kg _ [kgg kgn} [ﬂexshear99 O]
k” 9 “ 11 _|with shear deformation k” 9 k“’“ O 0

3,9 _k93

301 ku,s - _k3,3L - ks,s

wa‘w
|

59 = k9,5 = _ka,s

ks,n = kn,s = _ks,sL - ks,s

Ly,

[ bz Bottom + bz Top )
2
2Bdy|

D

4 (3.22)
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The axial force P is the average axial force in the two nodes of the

element; it is considered equal to zero for the first load step. The axial force is

defined as negative if the element is in tension.

As the straight tower element, the mass is also considered to be constant

along the element length and given by,

140 o 0 0 0
0 156 0 0 0
0 0 156 0 -22L
0 0 1407,
44,
0 0 2L 0 4

0 22L 0 0 0
M =AUX

0 54 0 0 0
0 0 54 0 -13L
0 0 70J, 0
44,
0 0 13.L 0 -3
0 -13L 0 0 0
(4A,,p+4—AQiLD—pJL
AUX =
: 420
Jo=1,+1,
LD=LD’+LD’
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22L
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13L
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22L

4

4r

(3.23)



3.2.INSULATOR STRING

The insulator was modeled as a truss element as done by many
researchers such as Rodrigues (1999) and Oliveira (2006). The stiffness matrix

of a truss element is given in the Eqn. 3.24.

1 0 0 o0 0 0 -1 0 0 0 0 0
6o 0o o o0 0 0 0 0 0 0 0 0
o o o ©0 ©0 O 0 0 0 0 0 o0
0 0 0 10 0o 0o 0 0 0 0 0 0
0o 0 0 0 1° o 0 0 0 0 0 0

g EA 0 0 0 0o 0o w0* 0o 0o o o o o 324

“Li-1t 0 o o0 o0 o0 1 0 0 0 0 0
o 0o o o0 o0 0 0 0 0 0 0 0
o 0o o o0 ©0 0 0 0 0 0 0 0
o o o o0 0 0 0 0 0 10 0o o0
o 0o o0 0 0 0 o0 o0 0 0 100 o0

o 0o o o0 o0 o0 0 0 0 0 0 10

Howéver, it can be noticed that some of the diagonal terms in the above equation
are zero. This causes numerical instability in the first step of calculation. To avoid
this instability, the technique outlined by Mathur (1985) and Mathur, et al. (1987)
will be used to evaluate the initial stiffness matrix. The formulation of this initial

stiffness matrix is briefed in the followings.
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Figure 3.8 - Insulator string.

Consider an insulator string in Figure 3.8, the horizontal stiffness of the insulator
string can be formulated using the moment equilibrium about the hinge A.

Pyl =) =" W x=0
Solving for F,, yields:

PR AT AN (AYA)
Y 2L-y)  2L[1-1+cos(8)]
Foo_ YW A2W) _ x(W+20) (3.25)

W 2
2L cos|sin | = || 2L, 1I-Z
L L

where F, is the wind force, W; is the weight of the insulator string and is assumed

to be uniformly distributed along the length, . is the weight of the cable, Z; is the
length of the insulator, 6 is the rotation at the hinge and x is the horizontal

displacement of the cable. The stiffness matrix of the insulator string element for
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the first step can therefore be written in the same form as the nonlinear stiffness

matrix of an axial force member as follows:

0 0 0 0 0 0 0 0 0 0 0 0
0 L 0 0 0 0 0 £ 0 0 0 0
L L
0 0 il 0 0 0 0 0 _F 0 0 0
L L
0 0 0 0 0 0 0 0 0 0 0 0

Ky =
0 0 0 0 0 0 0 0 0 0 0 0 (3.26)
0 —£ 0 0 0 0 0 —]—J- 0 0 0 0
L L
0 0 —--}-)— 0 0 0 0 0 £ 0 0 0
L - L
0 0 0 0 0 0 0 0 0 0 0 0

The axial load P in the initial stiffness matrix, Eqn. 3.26, is represented by half of
the weight of the insulator string plus the weight of the conductor span. The axial
force is defined as positive if the element is in tension. The program recalculates
the axial load P after the first step using the average of the axial forces at the end

nodes.
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The mass matrix of the insulator string is formulated using the consistent
mass as carried out for a truss element. Eqn. 3.27 shows the mass matrix of the

insulator string used in this study.

2 0 0 0 0 0 1 0 0 0 0 0
o 2 0 0 0 0 0 1 0 0 0 0
o 0 2 0 0 0 0 0 1 0 0 0
o 0 0 10" 0o 0 0 0 0 0 0 0
—-15
0 0 0 0 10 0 0 0 0 0 0 0 (3.27)
yoAPLl O 0 0 0 0 10" o 0o o0 o 0 0
61 o0 o0 0 0 0 2 0 0 0 0 0
o 1 0 0 0 0 0 2 0 0 0 0
o 0o 1 0 0 0 0 0 2 0 0 0
o 0 0 0 0 0 0 0 0 10 o0 o0
o 0 0 0 0 0 0 0 0 0 10% o0
0o 0 o0 o0 0 0 0 0 0 0 0 10
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3.3.CABLE

A cable when subjected to distributed load along its length such as self
weight will have a catenary shape. This deformed shape can however be
approximated using parabolic function as presented in Sussekind (1982), shown
in Figure 3.9. He proved that using parabolic approximation for a horizontal cable
with sag-to-cable length ratio of 0.2 led to 6% error in an axial force and 0.5%
error in the deformed length. In this thesis, parabolic approximation will be

assumed.

b2 | b/2

Figure 3.9 - Cable element.

In the analysis, it is important to apply the pretension force and the self-weight of
the cable simultaneously in the first load step. If the self-weight is applied after
the pretension force, the predicted sag will be less than the actual value while the
resulting cable tension will be higher. Note that, the behavior of the cable is

nonlinear after the first load step.
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The linear stiffness matrix used in this study was taken from Hajdin, et al.
(2000) while the nonlinear part was assumed to be the same as that for a truss
element, Eqn. 3.26. Similarly, the mass matrix for the cable element was derived
using the consistent mass and the resulting mass matrix is the same as Eqn.

3.27 for the insulator string element. The linear stiffness matrix is given by:

1 o o0 o0 0 0 -1 0 0 0 0 o0
o 0 o o0 0 0 0 0 0 0 0 0
o 0 o0 ©0 0 0 0 0 0 0 0 o
0 0 0 10 o 0o 0 0 0 0 0 0
0 0 0 0 10° 0o 0 0 o0 0 0 0
« B4l 0 0 0o 0o o0 10° o o o o o o |B29
SR 7 I T 0 0 0 0 1 0 0 0 0 0
0o 0 0 o0 ©0 O0 0 0 o0 0 0 0
o 0 o0 0 0 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 o0 10 o 0
0o 0 o0 0 0 o0 0 0 0 0 10" o
L0 0o o0 o 06 0 0 0 0 0 0 10
e
o = tan
DX*+DZ?
2=9.81 m/s®
g, = pAgsin()
q, = pAg cos()
B - EA
EA 2 (ZP—%J
1+§ (qu) N2
[Pz _MJr(g_x_L_) ]
3 3

Similar to the case of the insulator string element, the linear stiffness matrix of
the cable contain zero coefficients on the diagonal. Therefore, the nonlinear
stiffness matrix was added in with the load P be the initial pretension in the cable

for the first load step. P is recalculated in each step.
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3.4.SPRING ELEMENT

The spring element was used at the terminations of the line representing
the cables or the extremity towers. The mass and self-weight load of the spring
element Was assumed to be applied only on the unrestrained node (the element
must be restrained at node 1 and the load must be applied at node 2). This
element is the only one in the program library that can have zero length. All of its

properties must be given in the global coordinate system.

The Stiffness matrix is given by:

KUX 0 0 0 0 0 -KUX ¢ 0 0 0 0 ]
0 KUy 0 0 0 0 0 KUY 0 0 0 0
0 0 KUZ 0 0 0 0 0 -KUZ 0 0 0
0 0 0 KRX 0 0 0 0 0 -KRX O 0
0 0 0 0 KRY 0 0 0 0 0 -KRY 0
K = 0 0 0 0 0 KRrRZ 0 0 0 0 0 -KRZ
Ell-kux 0 0 0 0 0 Kux 0 0 0 0 0 |(3.29)
0 -KUY 0 0 0 0 0 KyY 0 0 0 0
0 0 -KUZ 0 0 0 0 0 KUz 0 0 0
0 0 0 -KRX 0 0 0 0 0 KRX 0 0
0 0 0 0 -KRY 0 0 0 0 0 KRY 0
| 0 0 0 0 0 -KRZ 0 0 0 0 0 KRZ |

where KUX,KUY and KUZ are the translational stiffness coefficients in the global.
x-, y-, and z-directions, respectively, and KRX,KRY and KRZ are the rotational
stiffness parameters which generally are zero. Note that although the rotational
stiffness coefficients are theoretically equal to zero, small values should be input

for numerical stability.

Since the mass of the spring is considered applied only on node 2 as

stated, the Mass matrix, M, is given by,
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(3.30)

0

107"

10-—15

0
10—-15

0
0

0
10-15

0
10-15

0
0
0

0

0
107"

0

10 0
10-—l5

0
0

0

0
10—15

0

0

MX

M

Where MX is the mass of the spring in tons.
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4. VALIDATION OF PROGRAM

An in-house program, SADAP-Static and Dynamic Analyéis Program, was
developed using FORTRAN. All the elements described in the previous chapter
were incorporated in the program. A series of test problems was created to verify
all the elements and procedures of the program. The results were compared with
resulté from other commercial FE programs, published or theoretical resuits. Only
some of the examples are presented in this chapter. Other examples are

included in the Appendix - B.
4.1.ACCEPTANCE CRITERIA

The program was considered acceptable if the difference between the
'program results and the available results did not exceed five percent for
displacements and ten percent for internal forces. When the simplified tower
models were verified with detailed tower models, the results were acceptable if
the difference of the results did not exceed ten percent for displacements and

natural frequencies values.

The percentage diﬁerence is calculated using the following formula

(SAP2000, 2006):

4.1)

PD.=1 00( Results from program "lj%

Results from other source

The maximum percentage difference of displacement and internal forces (when

applicable) is provided in the end of each example.
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The examples were divided into eight groups. Each group division was

based on the element type. Table 4.1 summarizes all the examples.

Table 4.1 - Summary of examples.

Ansys version 11

1 Gi {load 1 !
eneral {o: Concentrated load Linear static Weaver and Gere, 1980
pages 34410 357
Weaver and Gere, 1980
2 | axi Rotati .
Local axis otation of the {ocat axis tnear static pages 344 to 357
3 Buckling of column Nonlinar analysis Nonlinear static Theoretical results
4 £ 1 ol 1 " 1 I ™ 1 Militano, 2000 pages 32
- hd ’ o to35
Eigenvalue analysis with Przemienlecki, 1985
5 Eigenvalue problem 2 Elgenvalue !
& P axial force 8 v pages 403 to 406
6 Vibration 1 Dynamic solver

Linear dynamic

Battista, 2007-C page 138

Automatic self weight

Truss

Ansys version 11

{load 3

Concentrated load

7 General load 2 tinear static Weaver and Gere, 1980
Concentrated load
pages 343 to 345
8 Buckling donll iy Nonlinear static Theoretical results
g i 1 blerm 3 " ol . | Mario Paz, 2004 page 434
N b 4 = to 437
ethiod of Verification’

Unear static

Theoretical results

Eigenvalue problem 4

Eig n lysi

Eigenvalue

Theoretical results

Vibration 2

Dynamic solver

Linear dynamic

Thearetical results

Automatic self weigth

alysts’

Verificatio

13 General load 4 Nonl! static Theoretical results
Concentrated load
14 Eigenvalue problem § £igenvalue analysis Eigenvalue Irvine, 1992 page 192
Tapered tower
Exaniple name. daturesiteste Avalysistype

Automatic self weight

A -
15 load s utomatic self weigth " static Frame and Truss element;
C ted load
d 1 t]
16 Eigenvalue problem 6 £, ) ty tig . Frame an Trussv elemen
comparation
Beam-column (stability functions)

iMathod of Verification’:

Ansys version 11

17 General load 6 Uniform distributed {oad Linear statlc Weaver and Gere, 1980
Concentrated load pages 344 to 357
18 Local axis Rotation of the local axis tinear static Ansys verston 11
19 Buckling of column Nonlinar analysis Nonl! static Theoretical resuits
2
20 Eigenvalue problem 7 Ei 1 lysi Eig I Militano, 2000 pages 3
to 35
" P— W,
21 Eigenvalue problem 8 Eigenvalue analysis with Elgenvalue Przemleniecki, 1985
axial force pages 403 to 406
22 Vibration 3 Dynamicsolver

Linear dynamic

Battista, 2007-C page 138

Automatic self weigth
C

Insulator string

eaturas fast

“Methodof Verification”

static

Th ical results

dload

Theoretical results

Vibration 4

4 y
Dynamicsolver

Linear dynamic

Theoretical results

26

Example narm

tures te
Automatic self weigth

Straigth tower

[foad 8

Concentrated load

thad of Vetification’ ]
Frame and Truss element]
comparation

27

Eigenvalue problem 8

Frame and Truss element
comparation
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4.2 . EXAMPLES

As stated, only some examples will be presented in this Chapter. The

rests are included in the Appendix - B.
Example No. 11:

This example was chosen to verify the Eigenvalue analysis of the spring
element. The results where compared with a theoretical analysis. The spring is

directly attached to a mass, m of 5 tons. The properties of the spring are

KUX =30 kN/m KUY =20kN/m KUZ=35kN/m

The natural frequencies of the system can be calculated as

2.44949

o= \/Z =<2.00000; rad/s
m

2.64575

The SADAP results:
MODE MODAL MASS FREQ[RAD} FREQ[HZ]
1 5.00000 2.00000 0.31831
2 5.00000 2.44949 0.38985
3 5.00000 2.64575 0,42108
MODAL SHAPES

MODAL SHAPE: 1
NODE DX DY DZ RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000

MODAL SHAPE: 2

NODE DX DY DZ RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000

MODAL SHAPE: 3
NODE DX DY Dz RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000

Here P.D.=0%
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Example No. 12:

This example was chosen to verify the dynamic solver. Two systems, a
SDOF and a 2DOF system, were used as shown in Figure 4.1. The results where
compared with a theoretical and numerical analyses (Battista, 2007-A). The

damping matrix is a Rayleigh type damping matrix, detailed in Chapter 5.

ya(t)
ka g ; Cq

YOI, R wel

Figure 4.1 - Example No. 12.

The properties of the system are

m,=5tons  k,=20lN/m &, =0.01(orc, =0.04 KN-s/m)
m,=0.05tons k,=0.19kN/m &, =0.0513(or ¢, =0.2 kN-s/m)

The applied force is described as
F(t) = F,sin(Qr)=1sin(2¢) kN
Theoretical vertical displacement for the SDOF in Figure 4.1(a) is

_F, 1 1 1

T T ]

44



The result from the program, shown in Figure 4.2, is identical to the theoretical

value. The results of both systems, Figure 4.2, are also compared with the
results from the time-stepping technique using MathCAD, shown in Figure 4.3.
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Example No. 13:

This example, Figure 4.4, was chosen to verify the static analysis of the

cable element. The properties of the cable and the applied force are:

L=100m E=200GPa A=1x10"m’
p=10tons/m> H,=9.81kN F=15.0kN

¢ L2 =x; v L2
T T T T T T TR R T T TR )
= ‘ AN
Y F
z Stage I (self-weight)

0 I vy Yy Yy vy iy Y 4,
< e

Kdo

Stage II (external load) w
HYV YV VvV Y vy VY vy Yyvy H
< o

Figure 4.4 - Cable element (Example 13).

The results were compared with theoretical results. Theoretical results can be

evaluated as follows (Sussekind, 1982; Irvine, 1974):

2
d = wL

=125m

0

2
T, = H§+(K2L—) =10.96791 kN
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d 2
L =J{1+8(T°) ]=112.5m

H,=34.76131kN

wlL

—+F
d,=-2—=1431391m
4H,

2
T, = \/H} +(W—L+£] =36.90844 kN
2 2

The results from the program are shown in Figure 4.5. As can be seen in the

figure, the P.D,,,,, =0.92%
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LOAD STEP= 1

CABLE ELEMENTS INTERNAL FORCES: ( TENSION +)

DDA WK

ELEM. N NODE 1 N NODE2
1097 10112
10112 88883
9.6683 98140
9.8100 98863
98833 10.112
10.112 10477
10. %7 10.963

SUPPORT REACTIONS:

TO

NODE RX RY RZ X MY MZ

4
g

-8.8100 4.0030 0.0000 0.0000 0.0000

0.0000

8.8100 4.9050 0.0000 0.0000 0.0000 0.0000

DISPLACEMENTS:

NODE TRANS.X TRANSY TRANSZ ROT.X ROTY

OO B WN -

LOAD STEP= 101

CABLE ELEMENTS INTERNALFORCES: ( TENSION +)

ROT.Z

0.000000000 0.00000000C 0000000000 0000000000 0.000000000 ©.000000000
0.000000000 -5.488750000 0.000000000 ©.000000000 0.000000000 0000000000
0.000000000 -9.375000000 ©.00000C000 0.000000000 0.000000000 0000000000

0.000006000
0.000000000
0.000000000 k
0.000000000 -8 375030030 3} OCOD 00D6eq
0.000000000 -6.488760000 ©.000000000
0.000000000 0.000000000 0.000000000

ELEM. NNODE 1 NNODEZ2

WD BN

BISG

36.043 35.966
35.0686 36.043
36.186 36.410
36.947 36.813
38.756 37.247

SUPPORT REACTIONS:

NODE RX RY RZ MX MY MZ

1
g

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANSZ

1
2
3
4
5
<]
7
8
g

-0280226460

-30.055 12.400 0.0000 0.0000 0.0000 0.0000

35.058 12405 0.0000 0.00C0 0.0000

R

oTY

0.000000000 0.000000000 G.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000  0.00000C000
0.000000000 0.000000000 0000000000
G- 0.000000000 0000000000
0.000000000

0.000000000

ROT.Z

0.000000000  0.000000000 000000000 £00000000  0.000000000 0.000000000

0.443000603
0.492037631
0.289226460
0.000000000

Figure 4.5 - Results from SADAP.
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0.000000000 0.000000000 0000000000
0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0258054 000030@)00 0000000000 0000000000 0.000000000
-0.492037631 -0, 12%88955 0000000000 0.000000000  0.000000000
-0443000803 -4.345303348 0000000000 0.000000000 0.000000000
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Example No. 14:

This example, Figure 4.6, was chosen to verify the Eigenvalue analysis of
the cable element. The cable is pretensioned with a force H=981kN. The

geometry and mechanical properties of the cable are the same as in previous

example.

N

H H
4-;4;77 ,,Q,—'

Figure 4.6 - Cable element (Example 14).

The natural frequency of the cable can be calculated as (Irvine, 1992)

o =7 [ 098397570 radss

" L \Ap
The first five natural frequencies of a cable are

(0.98398)
1.96795
@ =<2.95193} rad/s
3.93590
14.91988]

The SADAP results are given in Table 4.2.

Table 4.2 - Natural frequencies of the cable shown in Figure 4.6.

Frequency [rad/s]
Mode | Exact |4 Elements| P.D. |8Elements{ P.D. |16 Elements| P.D. |32 Elements| P.D.

1 0.98398| 1.00942 | 2.59% | 0.99031 | 0.64% 0.98556 0.16%| 0.98437 |0.04%
2 1.86795| 2.16998 [10.27%| 2.01884 | 2.59% 1.98062 |0.64%| 1.97111 0.16%
3 | 285193 3.52630 |19.46%| 3.12407 | 5.83% 2.99477 | 1.45%| 2.96261 0.36%
4 3.93590 - - 4.33995 |10.27%| 4.03768 |2.59%| 3.96124 |0.64%
5 |4.91988 - - 567498 |156.35%| 511903 |4.05%| 4.96941 1.01%

It can be seen that the maximum P.D. is 1% using 32 elements.
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Example No. 15:

This example, Figure 4.7, was chosen to verify the static analysis of the
tapered element. Two models of tower were created: a simplified model using
tapered element described in Chapter 3 and a detailed model using beam and

truss elements. The properties of the models are:

For longitudinal bars:

E=210GPa v=0.3 A=1.00x10"m*> p="7.86ton/m’
I,=245x10"m* I =123x10"m* I,=123x10" m*

For diagonal and horizontal bars:

E=210GPa A=5.00x10"m> p=7.86ton/m’

Simplified

Model Complete Modal
v4 y4
AI Top nodes
=4 ap “ a2
Node 10 - T A
‘ % m <
| i
N N
i N iN 43 44
<8 ( i
N i N
i i
9% g
| \ ’ |/
£
e < |
| N AN
Pd P
<R <
N Ng
A IS N
LA P
t o A
i i |
T ' ! K. !
- ~_ x N !
eorsZa S } ol 1 21’7
%’ + A
" 2.00 m —A l<‘:.50n‘.->!
Elevatlon Section A-A
<Al

Figure 4.7 - Tapered tower (example 15).
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The applied force in Table 4.3 was chosen to be close to critical buckling
load (calculated based on a non-linear stability analysis) of the tower to verify the
behavior of the simplified element.

Table 4.3 - Applied force on the models in Figure 4.7.

| g Fx Fy Fz Mx | My Mz
Mod N
ode % T kN | kN | kN | kNm | kNm | kNm
41 20 | 400] 5 0 0 0
42 20 | 400 5 0 0 0
Complete Model
43 20 | 400 5 0 0 0
44 20 | 400 5 0 0 0
Simpl. Model 10 80 [-1600f 20 0 0 0

The comparison between the results of modeis in this example is
described in Figures 4.8 to 4.10. The maximum P.D. are 7.50% (without the

shear deformation option on) and 6.11% (with the shear deformation option on).

100%

.
.
«

T
o
.

80% -

.
a® .
-------

of Load

60% — «« — Node 41

age

- ——— Node 42

n

hed o T
84OA . = - Node 43

Per

20% -+

— AVErAEE

wsmssemon Simpl. With shear defor.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

dispacement [m]

Figure 4.8 - x displacement of the tapered tower.
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Figure 4.9 - y displacement of the tapered tower.
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Figure 4.10 - z displacement of the tapered tower.
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Example No. 16:

This example was chosen to verify the Eigenvalue analysis of a tapered
tower element. The same geometric and material properties from previous
example were used in this verification. The Figures 4.11 to 4.14 illustrate the
mode shapes of the structures. The corresponding P.D. are 4.72%, 7.19%,

3.78% and 6.83% for the first four flexural mode shapes, respectively.

<ALT><F4> EXIT

<y COMMAND MENY
<ALT><F4> EXIT HODE : 1 FREQUENCY : 12.59046(H2]
2] CONNAND REND
MODE : 1 FREQUENCY :  13.21390(H2}

_QEOBAL AXESR

Figure 4.11 - The 1% flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.
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<ILT><F4> EXIT
<y

EODE : 2 FREQUENCY :

GLORAL AXES
o

7 ™

COMMAND MENU
17.42259(B2}

<ALT><F4> IXIT
[&] CONEAND NEINU

HODE 3 T FREQUENCY : 16.17077(82Z)

GLOBAL AXES

.... BN
i ~
,l \\
y
N /
. /
W .
. .

Figure 4.12 - The 2" flexural natural frequency and mode shape of the detailed

<ALT><F4> EXXT

3] COMEIND KINU
BODE ¢

. BLOBAL A

NODE 1 3 FREQUENCY 1
4 FREQUENCY :  44.80471(H2}

and the simplified tapered towers.

<ALT><F4> EXIT
< CORMAND MENU
46,49990{H2)

GLOBAL AXES

Figure 4.13 - The 3" flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.
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<ALT><F4> EXIT
i1
KODE ¢

CONMAND #TNO

4 YREQUENCY :  S5.52431(H2)

<ALT><r4> EXIT
+ CONMAND REND
3 $1.97570{HZ]

i}
HODE : 6 FREQUENCY

GLOBAL AXES
= ~

e B -,
s N
7 5\

. IR e

Figure 4.14 - The 4" flexural natural frequency and mode shape of the detailed

and the simplified tapered towers.
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5. COMPUTATIONAL MODELING

The present chapter describes the numerical model of the research. The
analyzed tower was designated A-402M, a modification of the original A-402-0

tower. The whole A-402-0 tower shaft is tapered but the A-402M shaft is straight

with the exception of the top and the base segments of the tower.

- 5.1. TOWER PROPERTIES

The geometric properties of the A402-M tower are illustrated in Figure 5.1.
The tower includes four guy cables of a double %2 inch diameter grade 220

galvanized steel wire. All members are made of steel with E of 200 GPa, v= 0.3,

and p = 7.86 ton/m>. The properties of the cables are listed in Table 5.1 (Horr et

al., 2004, Shehata and Damatty, 2006).

Table 5.1- Properties of the conductors, ground wires and guyed cables.

Conductor |Ground wire|Guyed cable

Horizontal span (m) 480 480 24.16
Effective Diameter (mm) 40.64 9.00 11.10
Effective Area (mz) 1.2972€-03 | 6.3617E-05 | 9.6774E-05
Density {ton/m?) 2.2765 6.25 7.86
Weight (N/m) 28.97 3.90 7.46
Modulus of Elasticity {kN/m?) 6.23E+07 1.86E+08 1.86E+08
Sag (m) 20.00 13.54 0.24
Pretension per cable (kN) 41.72 8.30 13.34
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Figure 5.1 - Tower A-420M
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The simplified tower was modeled using the equivalent properties
(Chapter 3) of the detailed A-402M tower. The Figure 5.2 was extracted directly

from the program.

<ALT><F4> EXIT
<] COMMAND MENU

[ R
S

GLOBAL AXES

/ \,\ | |
e
I

Figure 5.2 - A simplified model of an A-402M tower.
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5.2. TOWER SYSTEM MODELS

The transmission system constitutes of one ground wire for lightning
protection connécting at the top of each tower, and four conductors (bundled
together aé one single equivalent conductor) connected to the insulator strings
which are 4.27 meter i;1 length. These insulator strings are connected to the
tower at the cross arms. Eight models are investigated in this study as illustrated
in Figure 5.3.

(a Modet 1

; 1 Detailed tower

Model 2
(b) 1 Simplified tower

Model 3
I N 1 Simplified tower

& 2 cables spans

Model 4

b\_) 1 Simplified tower,

(d) . 2 cables spans &
springs

©

Model 5
3 Simplified
towers, 2 cables
spans & springs

fod ~ L

Model 6
3 Simplified
towers, 4 cables
spans & springs

0 M
@ J\JJ\/\/\/
. &/\_/E\_/

Figure 5.3 - Transmission system models.

Modet 7
5 Simplified
towers, 6 cables
spans & springs

Model 8
1 Detailed tower,
2 Simplified
towers, 2 cables
spans & springs

Tt
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Model 1 (A-402M tower - Figure 5.1) and Model 2 (simplified A-402M
tower - Figure 5.2) were used to investigate if the simplified model is able to

describe with accuracy the detailed tower.

Model 3 was created to verify the effect of the conductors and ground
wires in the transmission system on the response of the tower and the tower’s

dynamic characteristics.

Models 4 and 5 were created to investigate the boundary condition at the

termination of the cables.

Models 6 and 7 were used to investigate the effect of number of cable

spans on the natural frequencies and the mode shapes of the system.

Model 8 was created to study the use of a combination of the model

containing both the detailed and the simplified towers.
5.3.BOUNDARY CONDITIONS

One of the modeling questions is the effects of the boundary conditions on
the response of the system. In this study, three boundary conditions will be

investigated:

e Conductors and ground wires at the extremity towers, as well as
the extremity towers are represented by fix supports — Figure

5.4(a);
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e Conductors and ground wires at the extremity towers, as well as
the extremity towers are represented by two linear springs — Figure
5.;1(b); and

e Conductors and ground wires at the extremity towers are

represented by a linear spring — Figure 5.4(c).

Kot a Kgz

\w Ky round Wire H

Ket 2(7
: Koz
onductor Ke anductor
2\%

(a) (b) ()

Figure 5.4 - Boundary conditions in the study

round Wire

Asuiato
string

onductor

Conductor

K1 is calculated by applying a unit load on the tip of the simplified tower
model in the three directions (x,y,z) and inverting the corresponding
displacement. Kg» is calculated based on a stiffness of a cable with the same
properties of the ground wire. K is calculated using the same technique used in
evaluating Kq1 while K¢z is obtained from the stiffness of a conductor. Note that
the load is applied at the end of the insulator string (the node connecting to the
cables) and not directly on the tower in the calculation of K¢1. The mass of the
springs are considered zero for those DOFs corresponding to the subscript 1
stiffness and half the mass of a cable span for those DOFs corresponding to the

subscript 2 stiffness. The properties of the springs are listed in Table 5.2.
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Table 5.2 - Properties of the springs.

Spring KUX KUY Kuz KRX KRY KRZ MASS
kN/m kN/m kN/m kNm kNm kNm ton
Ky | 2.0175E+02 | 1.6827E+04 | 3.4950E+02 | N/A* | N/A' | N/A' | 0.0000E+00
Ky | 6.5135E+00 | 2.6421E+02 | 6.51356+00 | N/A! | N/A' | N/A' | 0.0000E+00
K | 1.7300E-02 | 1.7300E-02 | 3.5006E+00 | N/A® | N/A® | N/A? | 9.5400E-02
Key 1.7380E-01 | 1.7380E-01 | 1.7841E+01 | N/A! | N/A' | N/A' | 1.4151E+00

(* The stiffness can be any positive value and will not affect the results because neither the
insulator string nor the cable can resist rotations; 2 The stiffness must be a very small number for
Model 5 because end towérs resist certain rotations. In this study, the value was set to 1.0E-06

kNm)
5.4.NONLINEAR STATIC ANALYSIS

The geometric nonlinear analysis was carried out for Model 1 and Model 2
to investigate the efficiency of the proposed nonlinear stiffness formulation for the
simplified tower when compared with the detailed model. Twenty one load-steps
were used in the analysis. Self-weight and pretension force were applied in the

first step. The external load cases were applied in the subsequent steps.

In each load step, Eqn (5.1) was calculated and the displacement was

evaluated using Eqn. (5.2) (Battista, 2007-B).
[K]{aw}={AF}
{u}={uj+{du}

where [K] is the nonlinear stiffness matrix, {Au,} is the incremental displacement

(5.1)

(5.2)

vector, {AF} is the force vector of the current step, and {u} is the updated

displacement vector.
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The analysis was performed using a modified Cholesky factorization

method together with a bandwidth solver.
5.4.1. LOAD CASES

Two of the seven load cases used in the original A-402 tower verification
report (Appendix 2A - Disney and Parker, 2007) are presented here. The two
selected load cases are listed in Table 5.3. The nomenclatures used in the table
are referred to in the Figure 5.5 and the node numbers where the loads are
applied are shown in Figure 5.6. For the detailed model, the load at the top of the(

tower was applied at the centre node.

Table 5.3 - Load cases.

kN kN kN

Ground Wire{ V1 | -8.3800 } L1 8.4960 T1 0.0000
Conductorlj V2 |-70.4780| L2 | 32.4360 | T2 | 0.0000
Conductor2| V3 |-70.4780} 13 | 32.4360 | T3 0.0000

kN

Ground Wire| V1 | 2.8470 L1 1.9570 T1 2.1260
Conductor1| V2 |-43.4010| L2 187710 | T2 8.2660
Conductor2} V3 |-43.4010| 13 18.7510 T3 9.2660
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L1
T2 T3
L2 / L3
B o
lV2 V3
y
X
7H

Figure 5.5 - Nomenclatures of the loading in Table 5.3.

DETAILED TOWER SIMPLIFIED TOWER
TOP SECTION NODE 47
NODE 214 NODE 235 NODE 102 NODE 103

#x 77

Figure 5.6 - Controlied nodes where the loadings are applied in detailed and

simplified tower models (representatively only).

In addition to the loads from the conductors and ground wire, a self-weight
of all elements and pretension on the guyed cables were also included in the

analysis for both models. These pretension and self-weights were not factored.
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5.5.DYNAMIC ANALYSIS

5.5.1. FREE VIBRATION

The free vibration analysis of the towers was performed to verify the mass
matrix of the structure. The analysis was carried out after static analysis of the
structures due to self-weight and pretension was done. The eigenvalue problem
is in the form of (Chopra, 1995; Clough and Penzien, 1993; Craig, 1981,

Timoshenko et al., 1974):

(K]~} [M]){4} =0 (5.3)
A nontrivial solution {4} =0 requires that the determinant of the coefficient

matirix be zero, i.e.

[&]-a? 4] =0 (5.4)
where [k] is the global non-linear stiffness matrix, [A7] is the global mass matrix, -

o, is the i"-natural circular frequency and {#.} is the i" modal shape of the

H

structure.
5.5.2. TIME STEPPING TECHNIQUE

The free vibration analysis performed in previous section was carried out
only to (a) verify the mass matrix as mentioned as well as to (b) construct the
damping matrix of the structure and (c) preliminary investigate the effects of
cables and number of span on the natural frequencies of the structures. Although
modal superposition analysis of the structure can be carried out in dynamic

analysis, time-stepping technique was chosen in this study to avoid the needs to
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parametrically study the number of mode shapes required in the modal

superposition analysis.

There are a number of numerical techniques for dynamic analysis of a
structure, the Newmark method with « = 0.25 and 5= 0.5, an average
acceleration, was chosen in this study. This is because the method is
unconditionally stable. The method is described as shown in Figure 5.7 (Bathe,

1996);

Form([K].[#]and([C] @

Calculate the
initial Factorize the
displacement, effective stiffness
initial velocity and matrix
initial acceleration.

B t=0,tmax >

Selected o, 5 andA¢ ¢
Calculate the constants . Calculate the effective load vector

e o {%}M {7}, +[M](a,, U} +a, {u} +a {i}}’]+[c](a, U} +a, {u} +a, {u})
: “ a.Atlz @ @ Alt Solve for displacements
“gar T ara ! [fc]{u},w:{%}w
a, = g— -1 as= %(—z— - 2) Calculate the velocities and accelerations
a,=AL(1-8) @ =54t ‘U}N = ({0a )5 {U} "’3 {U}

. 1], =[] v}l
Calculate the effective stiffness matrix e ! ! e
[k}:[KjHao [M+a[c]

End

Figure 5.7 - Newmark Method.
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5.5.3. DAMPING MATRIX

The damping in the structure dissipates energy, i.e. it changes kinetic or
potential energy into heat. The dissipation of energy is a very complex issue and
there are several mathematical formulations for damping force. In the field of
structural dynamics, damping force is usually assumed to be proportional to the
velocity and in opposite direction of the motion. This type of damping is called

viscous damping (Paz and Leigh, 2004).

Usually damping of a structure is defined by experimental results. When
no experimental values are given, the value of 2% damping ratio for steel bolted

structures is recommended (Battista et al., 2003; Rodrigues, 1999; Oliveira,

2006). In the Newmark method, a damping matrix, [C] is required. Commonly,

the damping matrix can be calculated using a Rayleigh damping formulation. The
method assumes damping matrix to be proportional to the mass and the stiffness
matrix of the structure. When the structure has low fundamental natural
frequencies (lower than 1 Hz), the damping matrix can assume to be proportional
to the mass matrix only. On the other hands, when the structure has high
fundamental natural frequencies (much higher than 1 Hz), the damping matrix
can assume to be proportional to the stiffness matrix only (Battista R.C, 2007-C).
In this study, the Rayleigh type damping matrix is used and the damping matrix

has the form of (Bathe, 1996; Paz and Leigh, 2004; Oliveira, 2006)

[Cl=alM]+p[K] (5.5)
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The coefficients « and g can be expressed as a function of the i* frequencies o,

and i* modal damping ratios £, by

_e  Bo
5""2a>,-+ > (5.6)

Rearranging the previous equation, it leads to:

a=250,~ Bo! (5.7)

2 2 2
a)j a)j coj @;

B (5.8)

Oliveira (2006) recommended that the frequencies @, and w; should be chosen

~ as the extremes of the design frequency range. He assumed a uniform damping

ratio. The recommendation as well as the assumption was used in this study. o,

of 119.2207 rad/s (18.9746 Hz) was used for all models, except for Model 2, in
the calculation. This is because all the models have that frequency within the
vicinity of the specified value and the change in the value does not have an effect

on the resulting damping matrix. The choice of ,, however, has the effect on the

resulting damping matrix. Therefore, specific values for individual model were

- chosen as listed.

@, 1003 = 0-7414 1ad/s(0.1180 Hz)
By i 4 = 0.7212 12d/5(0.1148 Hz)

O o0 s = 0.7207 rad/s(0.1147 Hz)
Opproder s = 0-7106 rad/s(0.1131 Hz)

t

The Rayleigh damping parameters for Model 3, 4, 5 and 6 are respectively:
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Briogers = 333107, @05 =0.029473
Briodara =3-33%x107" | ... =0.028676
Briaas =3-33x10™ | @, ., =0.028642
Broars = 334107 | a6 =0.028259

For Model 2 which does not have conductors, o, and », were chosen to
be

®, =9.5186 rad/s(1.5149 Hz)
®; =115.0535rad/s(18.3113 Hz)

The Rayleigh damping parameters for Model 2 are:
£=3210x10" , «a=0.35165
5.5.4. WIND LOAD

In this study, dynamic effects of wind load will be considered, this is mainly
because wind load is harmful for structures with low natural frequency such as
transmission tower system (lower that 1 Hz). The wind pressure can be

calculated by the following formula (Blessmann, 2005):

p(t):iz’_[rf(t)]2 C, (5.9)
where p(¢) is the wind pressure in N/m?, pis the specific density of the air (can
be assumed equal to 1.226 kg/m®), V(¢)is the wind speed in m/s, and c,ls the

drag factor. According to the CSA S37-01 (2001) standard, the drag factor for

latticed square towers can be defined by the following equation:

Cy =40(R) +59(R)+4.0 (5.10)
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where R is defined as the ratio of the net projected area of a surface of the
structure facing the wind and the gross area of that surface. In calculation of R_,

the tower was divided into seven zones as illustrated in Figure 5.8.

————————————— A =3I A/ M T T T
Zone 7 An=0.6895m% e

Cq=2929 1 A =3821m?
Zone 6 K3

A, =0.6101 m?
—— T T Cur=3.162
Ag=BATT M e _ .
Zone 5 Ay = 1.757 m?

Cur= 2,949

A, = 14006 m?
An=3.483 m?
Cyr= 2.9492

Ag=14.687 m®
A,=3492m°
Cd(= 2.822

Ag=14.942m?

A, =3.306 m?
Zone 2 Cur=2.890

A, =5.108 m?
Ap= 1452 m?
Zone 1 Cur= 2.647

Figure 5.8 - Drag factors and areas of the tower zones.

The drag factors for the conductors and ground wires were used as 1.10

and 1.25 respectively as adopted by Rodrigues (1999).
5.5.4.1. WIND SPEED

The wind speed V() can be separated into two parts, one due to an

average or mean wind speed 7 and the other due to turbulence (1) as illustrated

in Figure 5.9.
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Figure 5.9 - Wind speed.

Wind Speed {m/s]

Wind Speed [m/s)
Wind Speed [m/s]

=

V)=V +v(@) | (5.11)

5.5.4.1.1. MEAN WIND SPEED

The static wind pressure for Winnipeg, Manitoba, class A terrain is 450 Pa
(Ochonski, 2008) at 10 meters height. Therefore a mean wind speed at 10 m
height 7, to genérate this pressure is equal to 27.09 m/s. This speed value was
used to generate the turbulence speed. The mean wind speed is not constant
with the height as illustrated in the Figure 5.10. Most standards recommend a

mean wind speed that follows a logarithmic or an exponential rule. In this study,

the exponential formulation was used.
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V(2)

A A A A A

Figure 5.10 - Variation of mean wind speed along the tower height.

V(2)=V, (1‘6) (5.12)

where z is the height above the ground and p usually depends on the shape of

the terrain (the value of 0.2 was used in the study).
5.5.4.1.2.  TURBULENCE WIND SPEED

Even though the turbulence wind speed is a random process, it has a
degree of regularity and can be treated as stationary and ergodic process
(Rodrigues, 1999) in statistical point of view. It is stationary because the
statistical parameters are time invariants. It is ergodic because these parameters

when calculated for any sample with respect to time will be the same across the
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total collection of samples (Paz and Leigh, 2004). Some of the important
statistical parameters in the wind engineering are (Blessmann, 2005 and Oliveira,

2006):

= Mean value:

=lim — jV(t)dx (5.13)

T-——)u::

= Mean square value:

2_ .
Ve =lim,_,

(V@) dx (5.14)

SN

1
T

= Root mean square:

V. =V (5.15)
s Variance:
o2 = lim lTj(V(z)—?)zdx (5.16)
v T—)aoTo .

= Standard deviation:

o, =o? (5.17)

In the present study, the turbulent wind speed v(f) was generated with a zero

mean. Therefore, ¥ equals to zero, V? equals to 2 and V. equals to o,
v rms

In case of a random phenomenon, the fluctuations consist of a random

process with a continuum distribution over the frequencies f. This continuum

spectrum, also called spectral density of the variance S, (/) and is defined as:
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oF = [S,Fuf (5.18)

There are a large number of mathematical formulations for this spectrum, with
different parameters, but none of them represent the totality of the samples
(Blessmann, 2005). The spectrum used in this study is the Kaimal spectrum and
was chosen because it is also a function of height (Blessmann, 1995 and

Oliveira, 2006).

200u2Y,(z, f)

S,(f)=

(145052, N))" f (5.19)
_f
KD =r7—

where 7 (z) is an hourly average wind speed at a height of z - u. is the friction

velocity. 7(z) and u, are given in m/s. Those two parameters are described by

V(2)=V, (E)
—I;(Z) (5.20)

The parameter & is the Karman constant and is equal to 0.4; z, is a direct

u. =k

function of the height of the obstacles. B.J. Vickery suggested a value of 1/20

times the average height of the obstacles to be used for z; (Blessmann, 1995). In
urban areas, the value of z, can range from 0.2 m.to 4 m. In this study, the value

of 0.07 m was used to be conservative. The plot of wind spectrum with

frequency, Eqn. (5.19), is shown in Figure 5.11.
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Figure 5.11 - Wind spectrum versus frequency.

It can be seen from the figure that the wind spectrum has very low values for

frequencies higher than 1 Hz.

The autocorrelation function is also a very important statistical parameter
since it defines the dependence of a fluctuation value at time ¢ and a fluctuation
value at time r+z for the same sample (Blessmann, 1995; Blessmann, 2005;

Oliveira, 2006). Mathematically it is defined as:

R (D)= ;15)130—17: f v(v(t +7)dt | (5.21)

The complete spectral density S (f) of the fluctuations of the wind speed is the

Fourier transformer of the autocorrelation R (z), and can be given by:
S,(N) = [R,(@)edr (5.22)
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where S, (/)= 2§v( /) . This function can also be related with the spectral density

by the inverse Fourier transformer formula:

R(2)= [S,(Ne™df =2 [S,())e™ df

R,(0)=2 [S,(f)cos (2 f7)df (5.23)
This can be rearranged as
R(r)= [S,(f)cos(27 f2)df (5.24)

The last statistical parameter used in this study to generate wind

turbulence is the cross covariance which is a function that relates a sample v,
measured at time : with another sample v, measured at time 7+7 at a fixed

distance. It is given by
.
Copa(?) = lim— [ (@, ¢+ )t (5.25)

The cross covariance can also be expressed as a Fourier transformer. In the
present work, the wind load was applied at the same time for all loaded nodes,

therefore = = 0. This simplification, according to Oliveira (2006), leads to
Copa(0) = [S,()edf (5.26)

According to Simiu (1986) the parameter ¢ can be found from

\/l:Cj (J’2 _.V1)2 +C22 (Zz _21)2]

Vo

C=

(5.27)
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where y, -y, is the horizontal distance between samples, z, —z is the vertical
distance between samples, and C, and C, are exponential decay coefficients that
are determined experimentally. Conservative values of 16 and 10 for C and C_,

respectively, were used as suggested by Simiu (1986).

There are several methods to generate the wind speed. In this study, the
formulation adopted by Oliveira (2006) was used. Only one wind speed is

generated in this method and is given by a summation of harmonic functions as:

NSPEC

V()= Y, J25,(/)Af cos(2z £t +6,) (5.28)

where Afis the frequency increment, 6, is a random angle from 0 to 27, and

NSPEC is the number of division of the spectrurﬁ. The formulation is calculated in
FORTRAN. The flowchart of the calculation is shown in Figure 5.12. Figure 5.13
shows the wind profile generated by the code and Figure 5.;I4 shows the zoom of
the wind profile for the first two seconds. Figure 5.14 shows that the wind profile
constructed is actually a smooth continuous curve and not a piecewise curve.
The wind profile obtained was only at a single location. To determin'e the loads
on nodes along the cable, autocorrelation (Eqn. 5.24) and cross covariance (Eqn.
5.26) were used (Oliveira, 2006). Noté that the cross covariance relates two
different samples at different locations while the autocorfelation relates the same
sample at different time. Therefore, in order to determine the wind profile at a
different location from the known wind profile, the cross covariance is first

calculated using the distance between the two locations. Then the time required
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to produce the autocorrelation to have the same value as that of the cross

covariance is determined. This time represents the lag in the arrival time of the

same sample at the second location.

Wind properties
Exponential coefficient [P}
Height for the generation [Z]
Parameter [Z0]
Height of the zero plan [ZD]
Hourly average wind speed at 10 meter height [V10]

V=0.0D0
T=0.0D0

|

Generation properties
Number of time samples [NTIME] .
Final time [TIMEEND}
Number of spectrum samples [NSPEC]

Inferior cutoff frequency [FREQINF]
Superior cutoff frequency [FREQSUP}

}

VZ=V10*((Z/10.000)"P)
VFRIC=0.40D0*VZ/LOG(Z/Z0)
CALCSTD=DSQRT(6.000*VFRIC*2.000)
GUSTINT=CALCSTDNVZ
TIMEINC=TIMEENDINTIME
FREQINC=(FREQSUP-FREQINF)/DIVSPEC
F=FREQINF

RANDNUM(I)=RAND(0)

B> K=1,NTIME

SUM=0.0D0
F=FREQINF

RANDANG=RANDNUM(1)*2.0D0*PI
X=F*(Z-ZD)VZ
AUX=F*((1.0D0+50.0D0*X)**(5.0D0/3.0D0))
$11V=200.0D0*X*(VFRIC**2.0D0)/AUX
A=DSQRT(2.0D0*S11V*FREQINC)
SUM=SUM+A"DCOS(2.0D0*PI*F*T+RANDANG)
F=FREQINF+FREQINC®|

v
V=8UM

T=T+TIMEINC

Figure 5.12 - Wind generation flowchart.
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Figure 5.14 - Turbulence wind speed at a maximum time of 2 seconds.

In this study, a transmission line span is 480 meters long and is divided
into seventeen equal spaced distances (45) of 60 meters. Note that there are

eight cable elements per span, as illustrated in Figure 5.15. As previously stated,
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the wind profile in Figure 5.13 or 5.14 is assumed to be at the boundary nodes
(zone 1 in Figure 5.15). To obtain the time lag of the wind profile in zone 2, 45

apart, the cross covariance is calculated to be, Eqn. (5.26):

1—‘Nlo'>|<rlml<o|:\|oo‘m|2|:‘ﬁ‘glil“‘zle"\:
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Figure 5.15 - Top view of the transmission tower system.
+c0
Cpn(60m) = [S,(f)e ™ df =10.27 [m?/s” ] (5.29)

The time required to provide the autocorrelation to have the same value as this

calculated cross covariance is determined using Eqn. (5.24), i.e.

R, (4.895)= ijv (f)cos(27 fz)df =10.28 [m2/52] (5.30)
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This means that the wind profile in zone 2 is 4.89 seconds behind the wind profile
in zone 1. The plots of the wind profiles in zone 1 and zone 2 are shown in Figure

5.16.
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Figure 5.16 - Wind speed in zones 1 and 2.
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6. ANALYSIS RESULTS

6.1.ISOLATED TOWER (MODEL 1 AND MODEL 2)

The comparison of the displacements from the static analyses was made
at the controlled nodes shown in Figure 5.6 for Models 1 — a detailed model and
2 — a simplified model (Figure 6.1a, and 6.1b, respectively). For the detailed
model, Figure 6.1a, the average displacement of all the nodes on the top of the
tower was used. In the dynamic analysis, only the natural frequencies of the main
structure were compared. All the frequencies corresponding to the members in

detailed model were not included in the comparison..

(a) Model 1
1 Detailed tower

(b) Model 2
1 Simplified tower

Figure 6.1 - (a) Model 1 and (b) Model 2.
6.1.1. STATIC DISPLACEMENTS

Figures 6.12 to 6.16 illustrate the displacements at the observed locations.
Tables 6.1 and 6.2 summarize the differences between the maximum
displacements of the detailed and the simplified models for load cases 1 and 2,
respectively. Note that although there was no load in the z-direction for load case
1, there was some small z-displacement for the detailed model (3x10E-4m in

comparison to 0.4m) because of the asymmetrical configuration of the diagonals.
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Table 6.1 - Percentage difference of displacements between the Models 1 and 2

for Load Case 1.

P.D. (Final displacement)
NODE (simplified model) X Y
47 -1.09% -7.18%
102 - =2.79% 3.43%
103 0.15% -0.09%
e lLoad Case 2 results:
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ke el
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e} e
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o 0% r* -------- - Detailed model average top displacement |
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Figure 6.8 - Load Case 2, x displacement of the top of the tower.
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Figure 6.9 - Load Case 2, y displacement of the top of the tower.
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Table 6.2 - Percentage difference of displacements between the Models 1 and 2

for Load Case 2.

(Final displacement)

P.D.
NODE (simplified model) X Y Z
47 ~0.98% | -3.80% | -0.69%
102 -3.03% | 6.66% | -2.60%
103 0.44% | 0.32% | -2.35%

Figures 6.2 to 6.16 show that the simplified model gives 7% error of the

displacements of the detailed model. Tables 6.1 to 6.2 illustrate that the P.D.

between the two results for final displacements are within 10%. This clearly

indicates that the simplified model can represent the detailed model in the non-

linear analysis.

6.1.2. FREE VIBRATION

For the free vibration analysis, the computational runtime of Model 1 was

1 hour and 6 minutes and that of Model 2 was 2 minutes and 28 seconds. In this

study, only the first forty modes were investigated. Several of them correspond to
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the vibration of guy wires only and would not be of interest in this thesis. The first
fourteen mode shapes relating to the tower mast are presented in a graphic form
in the Appendix - A. The mode shapes are normalized to have the maximum

value of unity.

Table 6.3 summarizes the mode shapes of both models. The symbols LB,
TB, T, and X represent the lateral bending, transverse bending, torsion, and no
movement of the tower mast (the magnitudes of the mode shape at the top are
less than 0.001 for translation and 0.00015 for rotation), respectively. The plus
sign indicates that the amplitudes of the mode shape at the top are greater than
0.1 for translations and 0.015 for rotations. When there is no plus sign and no X
sign, the amplitudes of the mode shape at the top for translation are in between
0.01 and 0.1 with those associating with the rotation are in between 0.015 and
0.0015. When there is an X sign in front of the symbol, the magnitudes of the
mode shapes at the top are between 0.01 and 0.001 for translation and 0.0015
and 0.00015 for rotation. The darker color of the shade indicates the higher
amplitude of the mode shape. Only LB, TB and T modes were compared

between the two models.
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Table 6.3 - Comparison of mode shapes between Model 1-and Model 2.

Detailed Tower (Model 1)
MODE| FREQ[HZ] [Lateral | Transversal

Simplified Tower (Model 2)
MODE|FREQ[HZ] | Lateral] Transversal |Torsion

b1 L 304877 0 X -

12 .08061 X X/TB X 12 3.10586 X X/T8B X
13 3.08070 X X X 13 3.10601 X X X
14 3.08093 X X X 14 3.10617 X X X
15 3.08095 X X X 15 3.10617 X X X
16 3.08095 X X X 16 3.10619 X X X

4.76743 X X X
23 4.76766 X X X 23 4.80670 X X X
24 4.76810 X X X 24 | 4.80715 | X/LB X X
25 4.76813 X X X/T 25 4.80717 X X X/T

40

8.65970

39

310
8.73088

30 6.62264 X X X 30 6.67706 X X X
31 6.62274 X X/TB X 31 6.67725 X X/TB X
32 6.62320 X X X 32 6.67746 X X X
33 6.62320 X X X 33 6.67746 X X X
34 6.62323 X X X 34 6.67746 X X X

Table 6.3 shows that both models have similar frequencies and the
corresponding mode shapes. This demonstrates that the simplified model can

represent the detailed model in the dynamic analysis if chosen to.
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6.2.TRANSMISSION SYSTEM

An accurate dynamic analysis of a transmission system cannot be
attained without considering the effects of the insulator strings, the conductors
and the ground wires. The best and simplest technique is to include the insulator
strings, the conductors and the ground wires in the model. According to Oliveira
(2006), the addition of the insulator strings, the conductors and the ground wires
would réduce natural frequencies of the tower because these structures have
very low stiffness compared to the mass. According to past Iiterature, a required
number of tower spans in the model depends on the system characteristics, load
type and the direction of the load. A cascade failure analysis for example,
requires a large number of spans. On the other hand, a wind load analysis may
require lesser number of spans. In this study, in order to appreciate the effects of
the insulator strings, conductors, and the ground wires, as well as the number of
the spans, on the dynamic characteristics of the transmission system, free

vibration of the system with different number of spans is investigated.

6.2.1. FREE VIBRATION

6.2.1.1. MODEL 2 AND MODEL 3

The objective for this comparison is to investigate the effects of the
insulator strings, the conductors and the ground wire cables on the dynamic
properties of the transmission system. Figure 6.17 illustrates the models used in

this part of study.
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Model 2
1 Simplified tower

i\—‘/\_/f Model 3
(b) 1 Simplified tower

& 2 cables spans

Figure 6.17 - (a) Model 2 and (b) Model 3.

Table 6.4 shows a comparison between the natural frequencies and mode
shapes of models 2 and 3. It can be seen from the table that there are mode
shapes associating to lower frequencies present for model 3. These frequencies
are the direct effects of the addition to the system of the cables and insulators

that have low stiffness to mass ratio.

92



Table 6.4 - Frequencies and mode shapes of Model 2 and Model 3.

1simplified tower without cables (Model 2)

1 simplified tower with cables (Model 3)

MODE

FREQ[HZ]

LATERAL

TRANSVERSAL

TORSION

MODE | FREQ[HZ]| LATERAL | TRANSVERSAL| TORSION

1 0.11800 X/LB X X

[ 6 Joasszs| x | xm | x|

27 ]0.39259 X X

31 ]0.47733 X/LB X
33 | 0.49941 X X/T8

0.86708

61 1§ 0.86922 X X/T8 X

79 ]11.07766 X/LB X X
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6.2.1.2. MoODEL 3 AND MODEL 4

As mentioned in Section 5.3, different boundary conditions will be
investigated. In this section, the use of spring or fixed supports, Figure 6.18, to
represent the boundary conditions is studied here. The processing time of Model
3 and Model 4 are practically the same (7 minutes and 41 seconds). Table 6.5
shows the free vibration analysis of the two models. It can be seen that some of
the frequencies and the corresponding mode shapes are the same. However, it
is expected that Model 4 should represent a more realistic environment of the
system than Model 3 since Model 3 assumes that the end towers have infinity
stiffness. Therefore, the use of Model 3 not only does not save computational
time but also does not represent an actual situation. This type of supports should
be avoided in the analysis as, depending on the load, might not predict the actual

response of the structure.

3\—/\’/@ Model 3
(a) 1 Simplified tower

& 2 cables spans

Model 4
(b) K_/\'/‘S,g 1 Simplified tower,
2 cables spans &
springs

Figure 6.18 - (a) Model 3 and (b) Model 4.
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Table 6.5 - Frequencies and mode shapes of Model 3 and Model 4.

1simplified tower with cables {Model 3) 1simplified tower with cables and springs (Model 4)
MODE _|FREQ[HZ]] LATERAL [ TRANSVERSAL| TORSION MODE_|FREQ{HZ}] LATERAL | TRANSVERSAL| TORSION

19 0.30850 X/LB X X 21 0.30847 x/L8 X X

67,
0.3567
27 0.39259 X X S X/T

31 0.47733 X/1B - X X
a3 0.49941 X X/18 X

41.0.54300
47 0.54591 X

X X/T
48 0.54593 X X/18 X
47 0.66310 X/LB X X 53 0.66303 X/L8 X X

&4
| 59|
85

0.86708

E

03 .08

117 4.63062 X/LB X/T8 X 127 4.63043 X/LB X/T8 X
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6.2.1.3. WMODEL 4 AND MODEL 5

in this section, the investigation is carried out to verify if the end towers
are needed in the model to provide a more realistic system (Figure 6.19b). The
results of the inclusion of the end towers in comparison to the use of spring

representing end towers will be discussed.

The processing times to analyze Models 4 and 5 are 7 minutes and 41
seconds and 1 hour and 50 minutes, respectively. Table 6.6 illustrates the natural
frequencies and the mode shapes of each model. It can be noticed the
appearance of new mode shapes for frequencies above 1.2 Hz. With only a free
vibration analysis, it is expected the dynamic response of the system can be
different depending on the loading. The dynamic analyses of the two systems will

be carried out in the later part of this thesis.

Model 4

b\j 1 Simplified tower,

(a)

2 cables spans &
springs

Model 5
3 Simplified
towers, 2 cables
spans & springs

(b)

Figure 6.19 - (a) Model 4 and (b) Model 5.
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Table 6.6 - Freque'ncies and mode shapes of Model 4 and Model 5.

0.11465

1 simplified tower with 2 cables spans { Mode! 4) 3 simp(iﬁed towers with 2 cables spans (Model 5)
MODE FREQ[HZ] | LATERAL|TRANSVERSAL] TORSION MODE | FREQHZ) |LATERAL|TRANSVERSAL|TORSION
1 0.11479 X/LB X X 1 X/LB X X

3
6 0.13266 X X/18 X 6 0.13269 X X/18 X
9 0.17643 X/LB X X 9 017513 X/LB X X
2! 12290¢ o
15 0.25074 X X X/T 15 0.25064 X X X/t
17 0.25148 X/L8 X X 17 0.25141 X/L8 X X
21 0.30847 X/LB X X 21 0.30847 X/LB X X

0.47730

41

47

0.49752

0.54591

0.54566

48

0.54593

0.54607

53

' 0.66303

0.86700

0.66302

0.86908 .

85 | 1o7ss |

1.45669

1.45699

1.47816

147878

9114

2.51648
1
2.52982

B

X/18
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Table 6.6 (cont'd) - Frequencies and mode shapes of Model 4 and Model 5.

1 simptified tower with 2 cables spans ( Model 4) 3 simplified towers with 2 cables spans (Model 5)
MODE FREQ[HZ] |LATERAL{TRANSVERSAL|TORSION MODE FREQ[HZ] |LATERAL|TRANSVERSAL|TORSION
127 2.55731 X X/T8 X

76
2.98845 X/T
135 2.98997 X/i8 X/T
110 2.99005 X X/T8 X 136 2.99018 X X
137 2.99026 X X/18 X/T
138 2.9903 X X/18 X/T
139 2.99032 X X/T8 X/T
142 2.99042 X X X/T
143 2.98043 X/L8 X X/T
144 2.99046 X/L8 X/18 X/T
145 2.9905 X/L8 X/T8 X
146 2.9907 X/LB X/18 X

3.00673

171 4.62792 X/18 X X

126 4.62824 X X/T8 X 172 4.628 X X/T8 X
125 4.62800 X/LB X/T8 X/T 173 4.62808 X/LB X/T8 X/T
4.62824

127 4.63043 X/L8 X/T8 X

402824
4.62994
4.63021

63(

4.6329
185 4.63322 X/T8 X/T




6.2.1.4. MODEL 4 AND MODEL 6

This section investigates the influence of using more than two conductors’

spans in the analysis of the transmission system as shown in Figure 6.20.

The processing time for Model 6 isv 2 hours and 37 minutes, which is
twenty times greater that Model 4. Table 6.7 shows the natural frequencies and
the mode shapes of the two models. The increase in the number of cable spans
increases the number of frequencies and mode shapes as expected. Similar to
the previous section, the inclusion of more spans might affect the dynamic
response of the system. However, the effects will depend of the nature of the

loading.

Model 4
(a) bd 1 Simplified tower,

2 cables spans &
springs

”mr

Model 6
(b) 3 Simpliﬁed
towers, 4 cables
- spans & springs

Figure 6.20 - (a) Model 4 and (b) Model 6.
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Table 6.7 - Frequencies and mode shapes of Model 4 and Model 6.

1 simplified tower with 2 cable spans (Model 4) 3simplified towers with 4 cable spans (Model 6}
MODE | FREQ[HZ]| LATERAL | TRANSVERSAL| TORSION MODE]|FREQ[HZ]] LATERAL | TRANSVERSAL TORSION
1 0.11479 X/LB X X 1 0.11311 X/LB X X
5 0.11981 X/LB X X
] 0.13024 X X T
10 0.13063 X X/TB X
11 0.13232 X/LB X X

6 0.13266 X X/T8 X 14 | 0.14231 X X/TB X
9 0.17643 X/LB X X

15 | 0.25074 X X X/T 29 | 0.24981 X X X/T
30 | 0.24989 X X/T8 X
17 | 0.25148 X/LB X X 31 | 025122 | X/L8 X X
21 | 0.30847 X/L8 X X 35 0.2523 X/LB X X
41 | 0.30846 X/L8 X X
0.32919

52 | 0.35054 X X/18 X
0.35322

61 | 0.39255 X X X/T
63 | 0.39325 X/LB X X
65 | 0.39375 X X X/T
67 | 0.40888 X X
0A4773 71 | 0.47727 X X
73 | 0.47738 X X

0.49752

0.54593

87 1 0.54382 X/LB X X
89 0.54482 X/LB X X
47 0.54591 X X X/T 91 X X X/T

155
53 | 0.66303 X/LB X X 101 | 0.66299 X/L8
103 | 0.66315 X/LB

59 0.7124 X X X/T 111 ] .0.71111 X X X/T

115 | 0.71275 X X X/T

0.8669
0.86714 X/LB X
0.86903 X X/T8

67 | 0.86909 X X/78 X

¢ > o< | |
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Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Mode! 6.

1simplified tower with 2 cable spans {Mode! 4) 3 simplified towers with 4 cable spans{Model 6)
MODE|FREQ[HZ]}| LATERAL | TRANSVERSAL| TORSION MODE | FREQ{HZ]{ LATERAL | TRANSVERSAL|{ TORSION

147 | 1.02802 X/LB X X

149 | 1.03054 X/LB X X

153 | 1.03139 X/LB X X

1.07758 163 | 1.07747 X/LB X X

164 | 1.07757 X/LB X X

165 | 1.07761 X/LB X X

1.08311 LB+ X X

X
188 | 1.46374 X X/TB X/T
189 | 1.46385 X X/18 X/T
180 | 1.46418 X X X/T
191 | 1.46471 X X X/T

197

1.47506 X/LB

X/T8

X/T

202

1.47772 X

X/T

2.98824

228 | 2,98985
229 .| 2.99002

110 | 2.99005 X X/T8 X

232

2,99008

2.99018

X/T

233

2.99022 X

X/T
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Table 6.7 (cont'd) - Frequencies and mode shapes of Model 4 and Model 6.

1simplified tower with 2 cable spans (Model 4)

3 simplified towers with 4 cable spans {Model 6)

MODE| FREQ[HZ]| LATERAL | TRANSVERSAL| TORSION MODE| FREQ[HZ]| LATERAL | TRANSVERSAL| TORSION
234 | 2.99029 X X/1B X
235 | 2.9904 X X/T8 X
237 | 2.99208 X/LB X/18 X/T

X/TB

265 | 4.62633 X X/T

266 | 4.6267 X/LB X/TB X

267 | 4.62715 | X/L8 X/T8 X/T

125 | 4.628 X/LB X/T8 X/T 269 | 4.62802 | X/LB X/T8 X
126 | 4.62824 X X/T8 X

270 | 462833} X/i8 X/TB X/T

271 | 4.62853 X/T8 X/T
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6.2.1.5. MODEL 6 AND MODEL 7

An additional cable spans (Figure 6.21) is investigated in-this section. The
processing time for the analysis of Model 7 is 18 hours and 4 :ﬁinutes,
approximately seven times of that required for Model 6. The comparison of
natural frequencies and mode shapes of the two models is shown in Table 6.8. It
can be seen the increase in the number of cable spans generates new
frequencies and mode shapes. These new mode shapes will affect the dynamic
response of the system. However, the effects might depend on the nature of the

loading.

Model 6
3 Simplified
towers, 4 cables
spans & springs

Model 7
®) N N 5 Simplified
. towers, 6 cables
- - - spans & springs

Figure 6.21 - (a) Model 6 and (b) Model 7.

(a)
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Table 6.8 - Frequencies and mode shapes of Model 6 and Model 7.

3 simplified towers with 4 cable spans (Model 6} S simplified towers with 6 cable spans {Model 7)
‘MODE | FREQ[HZ} [ LATERAL| TRANSVERSAL|{TORSION MODE | FREQ[HZ] | LATERAL| TRANSVERSAL | TORSION
1 0.11311 X/L8 X X 1 0.11262 X/18 X X
5 0.11981 X/LB X X 5 0.11654 X/LB X X

g 0.12195 X/LB X X

13 0.13008 X X X/T
10 0.13063 X X/T8 X 14 0.13038 X X/TB X
11 0.13232 X/LB X X 15 0.13083 X/LB X X

39 | 0.24682 | X/LB X X

40 | 0.24693 X X X
29 [ 024981 ] X X X/T 41 | 0.24504 X X X/T
30 | 0.24989 X X/18 X
31 025122 | x/8 X X 43 | 025117 X X
35 | 02523 | x/18 X X 46 | 0.25161 X X

53 | 0.25352 X X
41 | 030846 | x/18 X X 61 30846 X X
45 | 032913 | x/8 X X ?

0.32! X/L8 X

52 | 0.35054 X X/T8 X 73 1 0.34013 X X/T8 X/
53 | 0.35322 X X/T8 X 75 | 0.34695 X X/18 X
77 0.3556 X X/18 X

)

61 | 0.39255 X X X/T 83 | 0.39176 X

X X/T
91 | 039235 | X/1B X X
65 | 0.39375 X X X/T 93 | 0.39277 X X X/T
63 | 0.39325 | X/t X X 95 | 039342 | X/18 X X
67 | 0.40888 | X/iB X X 99 | 0.40976 | X/LB X X
71 | 0.47727 | X/i\B X X 103 | 0.47727 | X/L8 X X
73 | 047738 | X/i8 X X 105 | 0.47734 | X/L8 X X
75 0.4967 X X/T8 X
111 | 0.45719 X X/18 X/T
113 | 0.49954 X X/T8 X
79 | 0.50086 X X/18 X 115 | 0.50252 X X/T8 X
117 | 0.50489 X X X/T

119 { 0.51923 B X X

0.71275
0.71047

.
i [ i 169 | 07125 | x/i8 | X X
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Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.

3 simplified towers with 4 cable spans {(Model 6)

5 simplified towers with 6 cable spans {Model 7}

539;

123 | 0.8669 X/i8 X X 183 | 0.86705 | X/1B X X
125 | 0.86714 | X/i8 X X 185 | 0.86719 | X/L8 X X
127 | 0.86903 X X/T8 X 188 | 0.86907 X X/18 X
129 | 0.86932 X X/T8 X 190 | 0.86921 X X/T8 X
137 | 0.88467 | X/1B X X 197 | 0.88326 | X/1B X X

149 | 1.03054 | X/1B X X 3 3
225 11.03109 | X/LB X X
1.03139 | X/LB X X 230 | 103157 | X/LB X X
1.07747 { X/LB X X 243 | 1.07752 | X/i8 X X
1.07757 | X/LB X X 245 | 1.07763 | X/18 X X
1.07761 | X/LB X

274 | 1.4603 X/L8 X X
275 | 1.46103 | X/18 X X/T
276 | 1.46148 X X/T8 X/T

3.
1.46282 X 1.46386 X
188 | 1.46374 X X/TB X/T 280 | 1.46451 X X/T8 X/T
189 | 1.46385 X X/TB X/T 281 | 1.46473 X X/T8 X/T
190 | 1.46418 X X X/T 283 1,4655 X X X/T
191 | 1.46471 X X X/T

| 147
756

296 1.476 X/LB X/T8 X/T
297 | 1.47606 X X/T8 X/T
208 1.4763 X/LB X/T8 X/T
299 | 1.47633 | X/LB X X/T
300 | 1.47644 X X/T8 X/T
301 | 1.47769 X X/T8 X/T
302 | 1.47793 X X X/T
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Table 6.8 (cont'd) - Frequencies and mode shapes of Mode! 6 and Model 7.

3 simplified towers with 4 cable spans (Model 6) S S|mphf|ed towers wuth 6 cable spans (Model 7)

:9830; /1B .

2.98822

225 | 2.98722 | X/L8 X/T8 X/T 340 | 2.98993 | X/iB X/18 X/T
227 | 298824 | X/18 X/T8 X/T 341 | 2.99001 | X/tB X/1B X/T
228 | 2.98985 | X/L8 X X/T 342 | 2,99031 | X/iB X X/T
229 | 2.99002 | X/iB X X 343 { 2.99035 | X/i8 X X
344 | 2.99036 X X/7B X
345 | 2.99037 X X X/T
346 | 2.95042 | X/IB X X/T
347 | 2.99042 X X/18 . X
230 | 2.99009 | X/18 X/T8 X/T 348 | 2.99043 | X/I1B X/T8 X/T
349 | 2.99043 | X/LB X/18 X/T
350 | 2.95043 | X/LB X X/T
351 | 2.95048 | X/LB X/18 X/T
352 | 2.98056 X X/T8 X/T
353 | 2.99058 | X/1B X X
354 | 2.99066 | X/LB X X/T
355 | 2.99066 | X/1B X/T8 X/T
356 | 2.99115 | X/i8 X X
357 | 2.99129 | X/i8 X X/T
358 | 2.99141 § X/LB X/18 X/T
189
232 | 2.99018 | X/LB X/1B X/T 361 | 2.99348 | X/LB X/T8 X/T
219 | 2.83602 LB+ T8 T 362 | 2.98471 LB+ T8 T
233 | 2.99022 X X X/T 363 | 2.99777 | X/1B X X/T
234 | 2.99029 X X/TB X
235 | 2.9904 X X/18 X




Table 6.8 (cont'd) - Frequencies and mode shapes of Model 6 and Model 7.

4.62633

4.6267

4.62715
399 | 4.6272 X X/T8 X/T
400 | 4.62739 X X X/T
401 | 4.62767 X X/18 X/T

269 | 4.62802 | X/LB X/18 X 4.62786 | X/18 X/T X/T
4.62794
4.62814

4.62823 X X/18 X/T

4.62825 | X/LB X/18 X/T

270 | 4.62833 | X/1B X/18 X/T 4.62825 | X/LB X/T8 X/T
4.62853 4.62835

L8
X/LB




6.2.1.6. MoDEL 6 AND MODEL 8

. The use of detailed tower modeling is investigated in three spans
transmission system as shown in Figure 6.22(b). The objective is to study the
difference between using a detailed tower modeling and simplified tower
modeling. The processing time for the free vibration analysis of Model 8 is 12
hours and 45 minutes while that of Model 6 is 2 hours and 37 minutes. Table 6.9
shows the natural frequencies and the mode shapes of the two models. It is
evident that both of the systems have almost the same natural frequencies and

mode shapes (1.05% error for the first 200 modes).

(a) M

Model 6
3 Simplified
towers, 4 cables
spans & springs

Model 8

1 Detailed tower,
0 ] M

”

2 Simplified
towers, 2 cables
spans & springs

1

Figure 6.22 - (a) Model 6 and (b) Model 8.
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Table 6.9 - Frequencies and mode shapes of Model 6 and Model 8.

0.13063

3 simplified tower with 4 cable spans (Model 6) 1detailed and 2 simplified towers with 4 cable spans (Model 8)
MODE | FREQ[HZ] | LATERAL | TRANSVERSE |TORSION MODE FREQ[HZ] LATERAL | TRANSVERSE TORSION
1 0.11311 X/LB X X 1 0.11311 X/LB X X
5 0.11981 X/L8 X X 5 0.11981 X/LB X X

0.13232

05:3455
0.35054

.2407 :2407. %S
29 0.24981 X X X/T 29 0.24982 X X X/T
30 0.24989 X X/T8 X 30 0.24989 X X/18 X
31 0.25122 X/LB X X 31 0.25121 X/L8 X X
35 0.2523 X/LB X X 35 0.2523 X/L8 X X
41 0.30846 X/LB X X 41 0.30846 X/LB X X
45 (.32919 X/LB X X 45 0.32519 X/LB X X
0.33821

23

: 56

61 0.39255 X X X/T 61 0.39256 X X/T
63 0.39325 X/LB X X 63 0.39325 X X
65 0.39375 X X X/T 65 0.39376 X X/T
67 0.40888 X/L8 X X 67 0.40888 X X
71 0.47727 X/L8 X X 71 0.47727 X X
73 0.47738 X/LB X X 73 0.47738 X X

0.4967 X

S
87 0.54382 X/LB X X 87 0.54381 X X
89 0.54482 X/LB X X 89 0.54482 X X
91 0.54597 X X X/T 91 0.54597 X X/T

0.662939

0.546
65

0.66293

0.66315

0.66315

0.86714

0.86713

0.88466

0.88588

1.02802

1.07761

3573

X X
148 1.03054 1.03053 X/L8 X X
153 1.03139 1.03138 X/L8 X X
163 1.07747 1.07746 X/L8 X X
164 1.07757 164 1.07754 X/L8 X X
X X

1.23946




Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Model 8.

I 3 simplified tower with 4 cable spans {Madel 6)

1detailed and 2 simplified towers with 4 cable spans (Model 8)[

{"moDE | Frealnz]

LATERAL

TRANSVERSE | TORSION

876
227 2.98824

1.46385 X
180 1.46418 X X X/T
191 1.46471 X X X/T
185 1.46053 X X/T8 X/T 198 1.47506 X X/T8 X
187 1.46282 X X X/T 202 1.47618 X/LB X/18 X
197 1.47506 X/L8 X/T8 X,

2.96046

97

242

2.99244

X/LB

X/L8 X/T8 X/T 2.98196 X/L8 X/18 X
228 2.98985 X/LB X X/T 231 2.98198 X/LB X/18 X
230 2.98009 X/LB X/18 X/T 232 2.9832 X/LB "~ X/T8 X
229 2.95002 X/LB8 X X 233 2.98738 X/LB X X
232 2.93018 X/LB X/18 X/T 234 2.98838 X/LB X X/T
237 2.99208 X/LB X/T8 XT 235 2.98861 x/L8 X X
233 2.99022 X X X/T 237 2.95019 X/LB X X/T
244 3.02001 X/LB X/18 X/T 240 2.9%03 X/LB X X
241 2.99144 X/L8 X/18 X
X/T

X/T8

3.0049

3.01127
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Table 6.9 (cont'd) - Frequencies and mode shapes of Model 6 and Model 8.

3simplified tower with 4 cable spans (Model 6) ldetailed and 2simplified towers with 4 cable spans (Model 8)
MODE ' FREQ[HZ] I LATERAL | TRANSVERSE ITORSION MODE FREQ{HZ] {7 LATERAL |TRANSVERSE TORSION
258 4.58255 X/LB X/1B X

1527, 624/
6263, X/T 266 4.62535 X
266 4.6267 X/LB X
267 4.62715 X/LB X/T 267 4.627 X/t8 X/18 X/T
268 4.62739 X X/TB X
269 4.62802 X/LB X 269 4.62754 X/L8 X/T8 X/T
270 4.62785 X X/T8 X

4.62736

16281¢
273 4.62838
274 4.62854 X/L8 - X/T8 X/T

4.62861

6.2.2. DYNAMIC ANALYSIS

It can be seen from the previous sections that the addition of number of
towers and cables spans introduces new frequencies and mode shapes to the
system. The scope of this research is focused on if there is a change in the
response caused by the use of different number cable spans and boundary
conditions. Due to computational restrain the analysis will be limited only on

Models 2, 3, 4, 5 and 6. Only transverse wind load is considered in this study.

The dynamic analysis is performed with a time increment equal to 0.001
seconds from 0 seconds to 600 seconds (10 minutes). The initial 2 minutes will

not be analyzed to avoid any kind of unwanted vibration due to fast application of
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the load. The processing time for Model 2 is 11 hours 57 minutes, Model 3 and
Model 4 - 25 hours 38 minutes, and Model 5 - 4 days 21 hours and 21 minutes.
“For Model 6, the analysis was carried out on the civil engineering department

server — Minerva, which required approximately 5 days to run.
6.2.2.1. COMPARISON OF MODEL 2 AND MODEL 4

Model 2 contains only a single tower while Model 4 includes cables in the
system (Figure 6.23). In order to compare the results, the same loading is
applied only on the tower. Figures 6.24 and 6.25 show the displacement-time
histories of node 47 (the top of the tower) for Models 2 and 4, respectively. It can
be seen that the maximum displacements at the top of the tower for Models 2
and 4 are 0.113 and 0.156 meters, respectively. The difference is approximately
28%. Here, even the loads on the cables were not considered, Model 4 provides

higher displacement.

(a) Model 2
1 Simplified tower

Model 4

b\) 1 Simplified tower,

(b) ' 2 cables spans &
springs

Figure 6.23 - (a) Model 2 and (b) Model 4.
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Top displacement [m]

time [s]

Figure 6.24 - Displacement-time history at the top of the tower for Model 2.
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Figure 6.25 - Displacement-time history at the top of the tower for Model 4.
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Figure 6.26 - FFT of the displacement at the top of the tower for Model 2.
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Figure 6.27 - FFT of the displacement at the top of the tower for Model 4.

The Fast Fourier Transforms (FFT) of the responses are shown in Figures
6.26 and 6.27, for Models 2 and 4, respectively. It can be seen that lower
frequencies that appear in Model 4 (Table 6.5) do not contribute much to the

response of the tower. As stated, the loadings are applied only on the tower.
6.2.2.2. COMPARISON OF MODELS 3, 4, 5 AND 6

For convenience, Figure 6.28 shows models 3, 4, 5 and 6. Here the wind
load is applied on the central two cables spans and on the central tower. Figures
6.29 to 6.32 present the displacement at the top of the central tower of the four
models. It can be seen that the maximum displacements of all the models are not
much different (0.424, 0.419, 0.421 and 0.429 meters for models 3, 4, 5 and 6,
respectively). Figure 6.33 compares the displacements at the top of the central
tower of models 4 and 5. The figure shows that the results from the two models
are almost identical (maximum difference is 0.5%). This means that the end

springs can be used to represent end towers in this case.
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Top displacement [m]

(a

(b)

(©

(d)

0.45
0.40
0.35
0.30
0.25
0.20

0.15 |7

0.10
0.05
0.00

v u Model 3
1 Simplified tower
& 2 cables spans
Model 4
bd 1 Simpilified tower,
2 cables spans &
r Springs
Model 5
¢ N N 3 Simplified
towers, 2 cables
> na 4 spans & springs
Model 6
&_/\_/\_/\_) 3 Simplified
: towers, 4 cables
”r nr mr spans & Springs
Figure 6.28 - Computational Models.
{4
ly Iy L )
il 1 “! [
I ' ! f
540 600

120 180 240 300 360 420

time [s]

Figure 6.29 - Displacement at the top of the tower for Model 3 (node 47).
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Figure 6.30 - Displacement at the top of the tower for Model 4 (node 47).
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Figure 6.31 - Displacement at the top of the tower for Model 5 (node 47).
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Figure 6.32 - Displacement at the top of the tower for Model 6 (node 47).

116



0.45

. 040

AN

0.35

fi

I

f
0.30
[

A

¥

01l )

‘AM\H‘;‘; Model 4

0.25 T

i)

PR
ALk
Y

A
AV TN
kLT

Model 5

0.20

0.15

0.10

Top displacement [m

0.05

0.00
180

185

190

time [s)

200

Figure 6.33 - Displacement at the top of the tower for Models 4 and 5 (node 47).
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Figure 6.34 - FFT of the tower for Model 3.
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Figure 6.35 - FFT of the tower for Model 4.
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Figure 6.36 - FFT of the tower for Model 5.
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Figure 6.37 - FFT of the tower for Model 6.

The FFTs of all the responses are presented in Figures 6.34 to 6.37. The
FFTs confirm the frequencies of the tower calculated in the free vibration
reported previously (Section 6.2.1). Similar main frequencies are observed in all

the models.
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1.CONCLUSIONS

A finite element program called SADAP was developed for the analysis of
a transmission tower line system. The program is capable of carrying out both
geometric non-linear static and dynamic analyses and it was validated using the
available theoretical and numerical results. This program contains linear and
non-linear commonly used and simplified beam-column elements, cable element,
truss element and spring element. The simplified beam-column elements were
specially formulated here to represent a tower mast, both straight and tapered.
These simplified elements include a torsional stiffness provided by diagonal

bracings.
In this study, the developed program was used to:

a) Evaluate the differences of modeling full detailed towers and the
proposed simplified elements in the analyses;

b) Investigate the importance df the boundary conditions on both free
vibration and wind induced dynamic responses of the transmission
system; and,

c) Examine the importance of the number of cable spans on the

dynamic behaviour of a transmission line system;
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The study showed that:

a)

b)

d)

g)

The proposed simplified element can be effectively used to model a
tower in linear static, non-linear static and dynamic analyses of a
transmission line system;

The results from using the simplified model in the non-linear static
analysis of an isolated tower are within 7% of the results obtained
using a detailed model;

The first forty natural frequencies of an isolated tower modeling
using the simplified model are within 3% of fhose of a tower
modeling in detail:

The increase in the number of cable spans introduces new mode
shapes, which will have dynamic effects on the response of the
tower system depending on the nature of the loading. For the wind
loading used in this study, i.e. wind perpendicular to the line, these
modes do not appear to have any effect on the dynamic response
of the system;

In conducting the dynamic analysis of the tower, the conductor
spans must be incorporated in the model as it affects the dynamic
properties of the system;

End spring elements can be used to replace the end towers for a
linear dynamic analysis with the wind load in this study; and, |

For the wind load considered, two cable spans are sufficient to

represent the response of the transmission line system.
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7.2.RECOMMENDATION FOR FUTURE WORK

The author recommends the following for future research:

a)

b)

d)

Evaluate if intermediate towers can also be replaced by sbring
elements; |

Perform a non-linear interactive dynamic analysis considering the
orthogonal wind load. Nonetheless, in such sophisticated analysis,
a high efficient cluster would be needed;

Investigate the number of cable spans considering both a linear
and a non-linear dynamic analysis applying wind loadings in

different directions;

'Consider the buckling of one tower leg in the simplified element for

post-buckling analysis, such as in the cascade failure analysis; and,
Investigate the possibility of reducing the vibration of the
transmission tower line by adding a control mass-spring-damper

(as in example 12) or a pendulum system to the tower.
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APPENDIX - A

The fundamental model shapes of the detailed (Model 1) and simplified (Model 2)
isolated towers (excluding the mode shapes corresponding to only cable

movements)
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Figure A.2 - 1% Mode shape of Model 2 (frequency=1.51 Hz) (magnification: x10).
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Figure A.6 - 3" Mode shape of Model 2 (frequency=1.52 Hz) (magnification: x10).
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Figure A.7 - 5" Mode shape of Model 1 (frequency=1.52 Hz) (magnification: x10).
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Figure A.11 - 7" Mode shape of Model 1 (frequency
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Figure A.12 - 7" Mode shape of Model 2 (frequency=1.53 Hz) (magnification:

141

x10).



Lateral view
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Transversal view
Figure A.13 - 9" Mode shape of Model 1 (frequency=2.30 Hz) (magnification: x1 0).
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Figure A.14 - 9" Mode shape of Model 2 (frequency=2.32 Hz) (magnification: x10).
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Figure A.16 - 10" Mode shape Model 2 (frequency=2.45 Hz) (magnification: x10)
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Figure A.17 - 11" Mode shape of Model 1 (frequency
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Figure A.19 - 17" Mode shape of Model! 1 (frequency
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Figure A.21 - 18" Mode shape of Model 1 (frequency=3.09 Hz) (magnification: x10).
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Top view

Transversal view

Figure A;22 - 18" Mode shape of Model 2 (frequency=3.12 Hz) (magnification: x10).
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Figure A.23 - 19" Mode shape of Model 1 (frequency=3.55 Hz) (magnification: x5).
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Figure A.25 - 20" Mode shape of Model 1 (frequency
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APPENDIX - B

Extra examples in the validation of the elements and verification of the program

procedures
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Table B.1 — Summary of examples

Automatic self weight

Beam-column
atiires teste,

alvels 6y

Method of Verification

Ansys version 11

Automatic self weigth

1 { 1 L i
General load Concentrated toad near static Weaver and Gere, 1980
pages 344 to 357
Weaver and Gere, 1980
2 Local axis Rotation of the local axis Lnear static ‘
@ onotthe . pages 344 to 357
3 Buckling of column Nonlinar analysis Nonfinear static Theoretical results
4 Eigenvalue problem 1 Eigenvalue analysis Eigenvalue Mllltano,tzogg pages 32
0
s Eigenvalue problem 2 Elgenvalue analysis with Eigenvalue Przemieniecki, 1985
axial force pages 403 to 406
6 Vibration 1 Dynamic solver Linear dynamic | Battista, 2007-C page 138
‘Example No Xample'n lysistype ethod of Verification .
Automatic self weight Ansys version 11
7 General load 2 Linear static Weaver and Gere, 1980
Concentrated load
pages 343 to 345
8 Buckling Nonlinear analysis Nonlinear static Theoretical results
Mario Paz, 2
9 Eigenvalue problem 3 Eigenvalue analysis Eigenvalue ario azm 22; page 434
Spring
Ty o 1yslsty ethod of Verification |

10 General load 3 Linear static Theoretical results
Concentrated load

11 Eigenvalue problem 4 Eigenvalue analysis Eigenvalue Theoretical resuits

12 Vibration 2 Dynamic solver

Linear dynamic

Theoretical resuits

Cable

_Exampl| Xample nam ste iod of Verification.
13 General load 4 Automatic self weigth Nonlinear static Theoretical results
Concentrated load
14 Eigenvalue problem S Eigenvalue analysis Eigenvalue

Irvine, 1992 page 192

15

amples

Generalload §

Tapered tower
Fe; st
Automatic self weigth

alvsis typ

Concentrated load

Nonfi static

ethod of Verifieatio
Frame and Truss element
comparation

16

Eigenvalue problem 6

Eigenvalue analysis

Eigenvalue

Frame and Truss element
comparation

Bea

|Featuresitested

m-column (stability functions)

Ayl tyne

Method of Verification:

Automatic self weight

Ansys version 11

17 General load 6 Uniform distributed {oad Linear static Weaver and Gere, 1980
Concentrated lead pages 344 to 357
18 Local axis Rotation of the local axis Linear static Ansys version 11
18 Buckling of column Nonlinar analysis Nonlinear static Theoretical results
20 Eigenvalue problem 7 Eigenvalue analysis Eigenvalue Mnhtanu,tZO(axS) pages 32
0
21 Eigenvalue problem 8 Elgenvaluve analysis with Eigenvalue Przemieniecki, 1985
axial force pages 403 to 406
22 Vibration 3 Dynamicsolver Linear dynamic | Battista, 2007-C page 138
Insulator string
Examplename asted {“Analysisitype Methad of Verification

Automatic self weigth

23 General load 7 Nonlinear static Theoretical results
Concentrated load
24 Eigenvalue problem 9 Eigenvalue analysis Eigenvalue Theoretical results
25 Vibration 4 Dynamicsaolver Linear dynamic Theoretical resuits
Straigth tower
xarmple name’ Featy ted Analysistype . | Method of Verification.

26

Automatic self weigth

General load 8

Concentrated load

Nonli

static

Frame and Truss element
comparation

27

Eigenvalue problem 8

Eigenvalue analysis

Eigenvalue

Frame and Truss element
comparation
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Example No. 1:

This 3D beam-column example (Figure B.1) is presented to verify the
frame elément behavior under self weight and also response under only external
load (not including the self weight) thought a linear static analysis. The Finite
Element program ANSYS is used to verify the automatic self-weight analysis,
and Weaver and Gere (1980) to verify the external load. The model properties
are

E =2.00x10""® kKN/m I.=2.00x10%"m* p="7.86¢n/m’

v=0.25 1,=1.00x10" m* g =-9.81m/s*
A=0.01m? I,=1.00x10%® m*

240k

y lGOkN
120kN 14 @ 5 @ 2
<

13 \
E 180kN.m /
1 1

3m

®

(L4

xV

___________________________________________

Figure B.1 - Beam-column element (example 1).
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Results from ANSYS (self weight linear static analysis only):

PRINT ELEMENT TABLE ITEMS PER ELEMENT
***** POST1 ELEMENT TABLE LISTING *****

STAT CURRENT
ELEM SAXL

1 -197.37

2 -556.46

3 -224.23

4 -197.37

PRINTU NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING ****=*

LOAD STEP= 1{ SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE  UX uy Uz USuM
1 0.12826E-04-0.66119E-05-0.46335E-04 0.48530E-04
2 0.69051E-05-0.17625E-03-0.16786E-03 0.24349E-03
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.98657E-05-0.11817E-03-0.11901E-03 0.16801E-03

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1

TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1-0.26877E-04 0.20171E-04-0.23354E-04 0.40922E-04
2-0.63969E-04 0.42854E-05-0.50480E-05 0.64311E-04
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000

5 -0.45423E-04 0.24268E-04-0.35309E-04 0.62441E-04
PRINTF REACTION SOLUTIONS PER NODE

***** POST1 TOTAL REACTION SOLUTION LISTING *****
LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOADCASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX FY FzZ
3 19737 55646 0.53509
4 -1.9737 5.3816 -0.53509

PRINTM SUMMED NODAL LOADS

e+ POST1 SUMMED TOTAL NODAL LOADS LISTING *****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOADCASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE MX MY Mz
3 -2.5944 10758  1.4037
4 -7.5406 -2.1811  3.1024
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SADAP results (automatic self weight analysis):

EXAMPLE_1_P.357-MATR

NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTURES

NODAL POINTS:
NODE X Y z
1 0.0000 3.0000 0.0000
2 6.0000 3.0000 0.0000
3 0.0000 0.0000 0.0000
4 9.0000 0.0000 3.0000
5 3.0000 3.0000 0.0000
RESTRAINTS:

NODE TRANS.X TRANS.Y TRANS.Z ROTX ROTY ROT.Z

3 1 1 1 1 1 1
4 1 1 1 1 1 1

AUTOMATIC SELF-WEIGHT ANALYSIS

FRAME ELEMENTS:

ELEM. NODE1 NODEZ2 E \ A IX Y

BN -

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:

ELEM. NODE N Qy Qz T
1 1 19737

5 -1.9737

3.2514
-0.93816

0.53509
-0.53509

0.98913
-0.98913

5.5646
-3.2514

-1.9737
1.9737

0.53509
-0.53509

-1.0758
1.0758

pry

22423
-4.5555

-0.98496E-01
3.3699

-1.0173
1.0173

-1.3032
1.3032

1.9737
-1.9737

0.93816
1.3750

0.53509
-0.53509

0.98913
-0.98913

Ne Py

SUPPORT REACTIONS:

NODE RX RY RZ MX MY

3 19737
4 -1.9737

5.5646
5.3816

0.53509
-0.53509

2.5944
7.5406

TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X

0.000012826 -0.000006612

0.98913

3.5927

-1.0758
2.1811

-0.000046335 -0.000026877

Z FP X Q

1 5 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
3 1 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
-2 4 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
S 2 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00

My Mz

-1.0758
-0.52951

-2.5944
-4.5175

1.6931
-7.5257

0.52951

-2.1348 11116

MZ

-1.4037
-3.1024

ROTY

0.000020171

0.000006905
0.000000000
0.000000000
0.000009866

(610 SN/ N PN

-0.000176252
0.000000000
0.000000000

-0.000118173

-0.000167861
0.000000000
0.000000000
-0.000119012

-0.000063969
0.000000000
0.000000000
-0.000045423

162

0.000004285
0.000000000
0.000000000
0.000024268

Y

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

4.5175
1.7668
-1.4037

-1.4854

-1.7668

ROT.Z

-0.000023354
-0.000005048
0.0600000000
0.000000000
-0.000035309

0.00
0.00
0.00
0.00

QZ ESP.MASS FLANG

7.86
7.86
7.86
7.86
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Results from Weaver and Gere, 1980 (only external load):

Jofn Displaz;ement

SADAP resuits (only external load):

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:
ELEM. NODE N Qy Qz T My Mz

1 1 105.55 -38.509 -126.01 29.464 86.569 -67.100
5 -105.55 38.509 126.01 -29.464 291.47 -48.427

2 3 -38.509 14.452 -126.01 86.569 348.58 -23.744
1 38509 -14.452 126.01 -86.569 29.464 67.100

3 2 183.62 5.1924 5.9674 -21.404 46.703 -32,181
4 -183.62 -9.1924 -5.9674 21.404 -77.711 79.946

4 5 10555 -38.509 113.99 29.464 -291.47 48.427
2 -105.55 38.509 -113.99 -29.464 -50.491 -163.95
SUPPORT REACTIONS:
NODE RX RY RZ MX MY Mz

3 -14.452 -38.509 -126.01 -348.58 86.569 -23.744
4 -105.55 98.509 -113.99 -75.898 -75.808 37.163
TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z
1 -0.000859410 0.000057764 0.005007645 0.002393332 -0.001623169  0.000681331
2 -0.001176053 0.003253162 0.005255517 0.001288428 0.001720936 '-0.000771469
0.000000000  0.000000000 0.000000000 0.000000000 0.000000000  0.000000000

3
4 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000  0.000000000
5 -0.001017731 0.002745063 0.008989659  0.001840880 -0.000086410 0.000821384

Verification:

P.D.=0.00%for all the displacements, internal forces and support reactions.
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Example No. 2:

The purpose of this example is to verify the local axis rotation of the 3D
beam-column element. SADAP results were compared with Weaver and Gere
(1980) and the commercial program ANSYS. The model properties are

E=10000ksi I =64in*

v=025 I =28in*
4=9in> I =80in*

The third node of the element 2, 3 and 5 is located at: 128,96,0

"
128in 128in
481in
48in
48in
48in
—b-
X

Figure B.2 - Beam-column element (example 2).

Results from Weaver and Gere (1980):

:Join Displacement ;
Join Ux Uy Uz Rx Ry . Rz
1 -2.176E-04 -4.062E-03 -1.674E-02 -5.202E-03 1.870E-04 | -4.495E-03
2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 ;| 0.000E+00
___________ 3 0.000E+00 : O0.000E+00 : 0.000E+00 | O.000E+00 | 0.000E+00 . 0.000E+00
4 G.000E+00 : ©0.000E+00 : 0.000E+00 . 0.000E+00 0.000E+00 :  0.000E+00

Member End-Actions -

M
R T R -84.001
2 -134.638
........ 3 |.27.616
...... 1
3 e
A

Support Reactions

Node x_ . Fy 2z i My Mz
2 -0406 | 208 7.014 -134.638 |  14.599 9343
33899 1 2610 1505 ..cB177 . 38387 . .3.624
4 3293 L ..5372 ¢ 1480 | 63937 ligass ' omand




ANSYS results:

PRINT U NODAL SOLUTION PER NODE
***%% POST1 NODAL DEGREE OF FREEDOM LISTING *¥x%%

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE Ux uy uz usuM
1 -0.21807E-03-0.40618E-02-0.16737E~01 0.17224E-01
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
S 0.52151E-01-0,75051E-01-0.10739 0.14102
6 -0.28168 -0.45366 0.899395E~01 0.54153

SADAP results:

LOAD STEP= 1

FRAME ELEMENTS INTERNAL FORCES:
ELEM. NODE N Qy Qz T MY MZ

1 1 3.5945 0.17801 0.40605 6.0732 -32.492 -84.001
5 -3.5045 017801  -0.40605 -6.0732 8.1294 94.681
2 3 47447 0.48480  -0.13109 8.0797 7.6099 27.616
1 -4.7447  -0.48480 0.13109 -8.0797 15.380 57.444

3.2136 0.17766 1.6785 -2.9952 -50.178 -24.964
-3.2136  -0.17766 -1.6785 2.9952 -97.068 40.550

1
]
4 5 6.5945 -3.8220 0.40605 6.0732 -8.1294 -94,681
2 -6.5945 3.8220  -0.40605 -6.0732 -16.233 -134.64

5 6 59494 ~1.0534 -2.3215 -2.9952 97.068 -40.550
4 -59494 1.0534 23215 2.9952 106.59 -51.864

SUPPORT REACTIONS:

NODE RX RY RZ MX My MZ

2 -0.40605 -2.9824 7.0143 -134.64 -14.599 -9.3428

3 3.6992 2.6106 1.5050 -8.1767 28,387 -3.6240

4 -3.2032 5.3718 1.4808 -63.927 -16.885 -98.434
TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

1 -0.000218067 -0.004061807 -0.016736808 -0.005202205 0.000187037 -0.004495317

2 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000  0.000000000

3 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000  0.000000000
4 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000  0.000000000
5
6

0052151438 -0.075050749 -0.107394865 0:001498383 01001659697 -0.000159420
-0.281675223 -0.453662190 0.089995388 0.000113304 0.000690493 0.001781987

Verification:

Even though there is a small difference on the x translation of node 1
when compared with Weaver and Gere (1980), the values were matching with
ANSYS. This is due to a round off error in Weaver and Gere (1980). The

P.D.=0.00%for all the displacements, internal forces and support reactions.
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Example No. 3:

The purpose of this example is to verify the critical buckling load of the 3D
beam-column element; the program is expected to stop at the buckling load.

Theoretical values are used as comparison, the model properties are

2
E=2.00x10""kN/m* I =2.00x10" m* P = (ﬁilz =13707.784 kN
2
v=025 I,=1.00x10%m* P, . = 7 El ~ =13900.332 kN
2| L— PcrNonlinearL
EA
A=0.01m’ I,=1.00x10"" m*
15230.871 kN
A
1
2m
2
2m
3
2m
4
777277

Figure B.3 - Beam-column element (example 3).
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SADAP results:

LOAD STEP= 9128

FRAME ELEMENTS INTERNAL FORCES:

ELEM, NODE N QY Qz T MY Mz
1 1 13901. 0.0000 0.0000 0.0000 0.0000 0.0000
2 -13901. 0.0000 0.0000 0.0000 0.0000 0.0000
2 2 13901, 0.0000 0.0000 0.0000 0.0000 0.0000
3 -13901. 0.0000 0.0000 0.0000 0.0000 0.0000
3 3 13901. 0.0000 0.0000 0.0000 0.0000 0.0000
4 -13901. 0.0000 0.0000 0.0000 0.0000 0.0000

SUPPORT REACTIONS:
NODE RX RY RZ M MY M2

4 0.0000 13901. 0.0000 0.0000 0.0000 0.0000

Displacement of node 1:

0.0000000000 ~0.0415590660 0.0000000000 0.0000000000 0.0000000000 0.0000000000

LOAD STEP= 9129
Verification:

P.D.=4.808x107°%
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Example No. 4:
The purpose of this example is to verify the torsion, bending and axial
natural frequencies of a circular cantilever using 3D beam-column elements. The

model properties are

E=2.00x10""KN/m* I =497x10%m* p=8ton/m’
v=0.30 I,=2485x10% m*
A=0.01m? I, =2485%x10"" m*

Discretization:
Model A: 1 element
Model B: 4 elements

Model C: 8 elements

Model D: 16 elements

Figure B.4 - Beam-column element (example 4).

Theoretical results (Militano, 2000):

' ’ EI
wn,bending = (ﬁnL)z ApL4
\/E
yo,

B,-L =1.875,4.694,7.854,10.998

168



Militano (2000) results:

SADAP results and verification:

—

Natual circularfrequency [rad/s]
e
Mode Shape Bending Bending Bending Bending| Torsion Axiai Torsion | Axial Torsion
Exact Solution 10.30 64.55 180.72 354.36 608.85 981.75 | 182656 25845.24 | 3044.27
1Element i10.35 - - - 671.00 | 1082.53 - - - -
b ] ] N
4 Elements 182.16 359.36 613.00 988.07 | 1933.00 3116.99 | 3511.00
— ] —
8 Elements 180.87 355.01 610.00 983.32 | 1853.00 2987.99 | 3167.00
— ]
16 Elements 180.77 354.27 609.00 982.14 | 1833.00 2855.90 | 3075.00

4261.98

5078.00
4599.00

43808.74

5662.13

5107.44
4346.00

8187.93
7416.40

4958.16 | 7008.14

6872.23
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Natual circularfrequency[rad/s]

Mode Shape Bending W Bending]| p.D. Bending! P.D. Bending| P.p. Torsion| P.D. Axial P.D.
m 10.30 f 64.55 - 180.72 - 354.36 - 608.85 - m‘-ﬁ
— ] ]

1Eleme nt} 10.35 |0.49% - - - - - - 671.36 | 10.27% 1082.531 10.27%

4 Elements 10.30 |0.01% 64.63 0.12% | 182.15 0.79% | 358.35 1.41% | 612,77 0.64% | 988.07 0.64%

8 Elements 10.30 j0.01% 64.56 [ 0.01% 180.86 | 0.08% 355.00 | 0.18% 609.83 | 0.16% 983.33 | 0.16%

16 Elements | 10.30 ) 0.01%; 64.55 1 0.00% 180.76 | 0.02% 354.26 |-0.03% : 609.10 | 0.04% : 982.14 | 0.04% |
" Natual circularfrequency [rad/s]

Mode Shape Torsion | P.D. Axial P.D. Torsipn P.D. | Torsion P.D. Axial P.D. Axial P.D.
Exact Solution 1826.56 - 2945.24 - 3044.27 - 4261.98 - 4908.74 - 6872.23 -

1Element - - - - - - - - - - - -

4 Elements 1933.08 {5.83% 3117.00 | 5.83% 3511.50 |15.35% 5077.94 |19.15% 5662.13115.35% 8187.93 19.15%

8 Elements 1853.07 | 1.45% 2987.99 | 1.45% 3167.50 | 4.05% 4599.45 | 7.929 5107.441 4.05% 7416.40{ 7.92%

16 Elements 1833.17 | 0.36% 2955.90 | 0.36% 3074.92 | 1.01% 4346.26 | 1.98% 4@] 1.01% | 7008.14 1.98%




Example No. 5:

The purpose of this example is to verify the variation of frequency with

axial force in a column with both ends pinned (3D beam-column element).

The program results were compared with Przemieniecki (1985). A non-

linear free vibration analysis was performed.

Variation of the natural frequency with axial force
i N ——— - [ ey B L e e S .160 ....... e ey
R I T T T T T T
+ - i
o SWENENy
e ONE- ELEMENT , S ! ﬁL
IDEALIZATION Wl e | NL
&~ SADAP 1 ELEMENT 2o // i Il
LT é Lo
o5 - SADAP 40 ELEMENTS oo s S NS SN R R / ..... " 00..::;,4::: I f
ol 1 [ et R S Y S
] o ||
] ] - , ‘
/4 el o]
| /]// ot
T 1
~~~~~ _— ) /.{: _.~,.._.L_..4 ] __4_~L L ST IR W N SUPI WP B b
3.2 o a0 8 g ;6 4% 2 a4 0 1 2 3,
1

Verification:

P.D.,,. =-0.65%
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Example No. 6

properties, dynamic force, and displacement solution were taken from Battista
(2007-C) and are given by

E=210x 10+°8kN/m2
v=0.30
A=8.06x10"% p?

I, =2716x10™
1, =1.858x107% mp*
I, =1.858x10™ mp*

m*  p=785t0n /m?
£=0.0]

Fy

12m

Figure A.6 - Beam-column element (example 6).

Theoretical solution:

w, =n’z? f% =33.82 radfs, 215.29 rad/s, 484.41 rad/s
P

Battista (2007-C) solution (displacements where the load is applied):

,(0.15 5) = 0.00643 m

Uy vaasaons = 0.00849 m
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SADAP solution and verification (using 30 elements):

0.009 ; [

0.008

0.007 -

T
[l
i
e
oo
QNTTND
e
:
o]
@f"! A
e
E@/ ”
|
:
|

0.006

Jowes

----- Modal Superposition
(S0 modes)

¢ e e2 Newmark-Linear

0.005

Uy(t) [m]

0.004

0.003 = Newmark-Nonlinear

|
i
|

| | i
i 0.002 ! : S SO
' i = == Static analysis

Figure B.7 - Example solution (example 6).

W, =53.82rad/s .. P.D.=0.00%
W, =215.29 rad/s . P.D.=0.00%
W; =484.41rad/s . P.D. = 0.00%

Modal Superposition (At=0.0001 s and
50 modes):

#,(0.155) =0.00650 m . P.D, =1.09%
Uy wany = 0.00854m - P.D, = 0,599,

Newmark-Linear (At=0.0001 s):

#,(0.155) =0.00649 m .. P.D. = 0.93%
Uy voumang = 0.00854m -, P.D, = 0599

Newmark-Nonlinear (At=0.00015): -

%,(0.155)=0.00648 m .. P.D, = 0.78%
Uy umnans =0.00852m -, P.D, = 0.35%
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Example No. 7:

This example is presented to verify the 3D truss element. Two analyses
were performed: self-weight and only external loads. The results from the former
were compared with the commercial Finite Element program ANSYS, while the
results from the latter were compared with theoretical results from Weaver and

Gere (1980). The model properties are

E =8.00x10"" kN/m?2
A=0.01m?
£ =25 ton/m®

Figure B.8 - Truss element (example 7).
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Results from ANSYS for self-weight;

PRINTU NODAL SOLUTION PER NODE
***** POST1 NODAL DEGREE OF FREEDOM LISTING ****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX Uy Uz USuMm
1-0.32390E-03-0.20706E-02-0.31303E-03 0.21190E-02
2 -0.32390E-03-0.20706E-02 0.31303E-03 0.21190E-02
3 -0.15656E-02-0.26094E-02-0.32526E-18 0.30431E-02
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000

PRINT ELEMENT TABLE ITEMS PER ELEMENT
**** POST1 ELEMENT TABLE LISTING ***+

STAT CURRENT AREA FORCE
ELEM SAXL

1 -8347.4 0.01 -83.474

2 3010.1 0.01  30.101

3 3010.1 0.01 30.101

4 -5182.4 0.02 -103.648

5 1.82E-12 0.02 3.6308E-14
6 6796.7 0.02 135.934

7 6796.7 0.02 135.934

8 -5182.4 0.02 -103.648

9 -1.82E-12 0.02 -3.6308E-14

PRINT F SUMMED NODAL LOADS
e POST1 SUMMED TOTAL NODAL LOADS LISTING ****+

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= ¢

* THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE FX FY FZ

1 -0.28422E-13
2 -0.28422E-13
3 0.47433E-13

4 -103.65 -28.345 -0.16611E-13
5 20730 -156.54 0.42633E-13
6 -103.65 -28.345 -0.16611E-13
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SADAP solution (automatic self-weight analysis):

TRUSS ELEMENTS INTERNAL FORCES: ( TENSION +)

ELEM. NNODE1 N NODE 2
1 -83.474 -83.474
2 33.780 26.422
3 26.422 33.780
4 -103.65 -103.65
5 7.3575 -7.3575
6 143.29 128.58
7 143.29 128.58
8 -103.65 -103.65
9 7.3575 -7.3575
‘SUPPORT REACTIONS:
NODE RX RY RZ MX MY MZ

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 103.65 28345  -0.29907E-13  0.0000 0.0000 0.0000
5 -207.30 156.54  -0.35527E-14 0.0000 0.0000 0.0000
6 103.65 28.345 0.26937E-13  0.0000 0.0000 0.0000

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

-0.000323903 -0.002070609 -0.000313027 0.000000000 0.000000000 0.000000000
-0.000323903 -0.002070609 0.000313027 0.000000000 0.000000000 0.000000000
-0.001565637 -0.002609394 0.000000000 0.000000000 0.000000000 0.000000000
0.000000000, 0.000000000 0.000000000 0.000000000  0.000000000 0.000000000
0.000000000  0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.000000000  0.000000000 0.000000000 0.000000000  0.000000000 0.000000000

DNDWN -

Results from Weaver and Gere (1980) for external loads only:

Join Displacement
doin  : .Ux Y

3.031E-01 © 2.088E-02 |
3.344E-03 | 1.794E-02
1.346E-02 : 2.102E-02
E+00 | 0.000E+00
.000E+00 | 0.000E+00
0.000E+00 | 0.000E+00

Member End-Actions 3

 Member N1 N2

1 -564.000 ' 564.000
-25.456 25.456
-110.309 | 110.309
-970.000
301.642

1272.143
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SADAP results for external loads only:

LOAD STEP= 1

TRUSS ELEMENTS INTERNAL FORCES: ( TENSION +)

ELEM. N NODE 1 N NODE 2
1 564.00 564.00
2 25.456 25.456
3 110.31 110.31
4 970.00 970.00
5 -301.64 -301.64
6 -1272.1 -1272.1
7 -1403.3 -1403.3
8 1070.0 1070.0
9 616.40 616.40

SUPPORT REACTIONS:

NODE RX RY RZ MX MY Mz
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 -740.00 -18.000 -138.00 0.0000 0.0000 0.0000
5 2040.0 ~1224.0 -60.000 0.0000 0.0000 0.0000
6 -1540.0 282.00 -282.00 0.0000 0.0000 0.0000

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

0.003031250 0.020884223 0.004435858  0.006000000 0.000000000 0.006000000
0.003343750 0.017938215 0.000205858  0.000000000 0.000000000 0.000000000
0.013456171  0.021017102 0.004112060 0.000000000 0.000000000  0.000000000
0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 ©.060000000 0.000000000  0.000000000 0.000000000
0.000000000  0.000000000 0.000000000 0.000000600 0.000000000 0.000000000

(204 I N R

Verification:

. £.D.=0.00%for all the displacements, internal forces and support reactions.
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Example No. 8:

The purpose of this example is to verify the critical buckling load of the 3D
truss element; a non-linear 'buckling analysis was performed. Results were
compared with theoretical formulation from Timoshenko (Levy and Spillers, 2003)
and the model properties are

E=2.00x10*"" kN/m? a=45° F<<P,
A=0.001m? L=2m F=100kN

4=00005m*> L =\2m P=20000kN

P = 4 ] =16092.5768 kN

cr

2L A
2 3 |
cot’ () ( +LA1 cos? (e)

Figure B.9 - Truss element (example 8).
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SADAP resulis:

LOAD STEP= 8080 -

TRUSS ELEMENTS INTERNAL FORCES: ( TENSION + )

ELEM.

1
2
3
4
5
6
7

-16875.
-16875.
-14685.

1107.5
-1158.3
-1158.3

1107.5

N NODE 1

-16875.
-16875.
-14685.
1107.5
-1158.3
-1158.3
1107.5

SUPPORT REACTIONS:

NODE RX

[5) B NL N NN

LOAD STEP= 8081

16158.
0.0000
0.0000
0.0000
0.0000

Verification:

P.D.=0.41%

RY

-40.395
0.0000
0.0000
0.0000

-40.395

N NODE 2

0.0000
0.0000
0.0000
0.0000
0.0000

MX
0.0000
0.0000
0.0000

0.0000
0.0000

MY

0.0000
0.0000
0.0000
0.0000
0.0000
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Mz

0.0000
0.0000
0.0000
0.0000
0.0000



Example No. 9:

The purpose of this example is to verify the natural frequencies of the 3D

truss element. A free vibration analysis was carried out; model properties and

theoretical results were taken from (Paz and Leigh, 2003) and are given by

E=3.00x10"" Ib/in? 4=0.001in> L=60in m=0.11lbxs?/in?

i

Figure B.10 - Truss element (example 9).

Results from Paz and Leigh (2003):

415
o =1{1034 |rad/s
1526

1.000 0.182 -0.656
¢nomalized= 0216 1.000 0656

0.274 -0.729 1.000

179



SADAP results:

MODE MODAL MASS FREQ[RAD] FREQ[HZ]
1 6.19486  415.42320 66.11665
2 7.17003  1033.70420  164.51913
3 7.11610 1526.03014 242.87523

MODAL SHAPES

MODAL SHAPE: 1

NODE DX DYy (274 RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1.00000 0.21607 0.00000 0.00000 0.00000 0.00000
3 0.27464 0.00000 0.00000 0.00000 0.00000 0.00000

MODAL SHAPE: 2
NODE DX DYy Dz RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.18222 1.00000 0.00000 0.00000 0.00000 0.00000
3 -0.72762 0.00000 0.00000 0.00000 0.00000 0.00000

MODAL SHAPE: 3

NODE DX DY (374 RX RY RZ
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 -0.65607 0.65398 0.00000 0.00000 0.00000 0.00000
3 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Verification:

P.D.,. =0.30%

180



Example No. 10:

This example was chosen to verify the static analysis of the spring
element. The model properties are
KUX =30kN/m KRX =100 kNm m=>5ton

KUY =20kN/m KRY =120kNm
KUZ =35kN/m KRZ =80 kNm

Figure B.11 - Spring element (example 10).

Automatic self-weight (always loaded at node 2): v, :inﬁ =2.4525m

SADAP self weight results:

LOAD STEP= 1
SUPPORT REACTIONS:
NODE RX RY RZ MX MY Mz

1 0.0000 49.050 0.0000 0.0000 0.0000 0.0000

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

1 0.000000000 0.000000000 0.000000000 0.000000000  0.000000000  0.000000000
2 0.000000000 -2.452500000 0.000000000 0.000000000  0.000000000 0.000000000

The external load vector was chosen to produce a unit displacement in all

degrees of freedom (DOF) of the element.
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[ 304N )
20 kN
35N
1100 kN.m
120 kN.m
(80 k. |

SADAP external load results:

LOAD STEP= 1
SUPPORT REACTIONS:
NODE RX . Ry RZ MX MY Mz

1 -30.000 -20.000 -35.000 -100.00 -120.00 -80.000

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

1 0.000000000 0.000000000 0.000000000 ©.000000000 0.000000000 0.000000000
2 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

Verification:
P.D.=0.00% for both types of loading.

The examples 11 to 16 are described in the chapter 4 (item 4.2).
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Example No. 17:

This 3D beam-column example (FigureB.12) is presented to verify the
frame element behavior using stability functions under self weight and also
response under only external load (not including the self weight) thought a linear
static analysis. ANSYS is used to verify the automatic self-weight analysis, and

Weaver and Gere (1980) to verify the external load. The model properties are

E=200x10"" kN/m I, =2.00x10% m* 5 =7.860n/m®
v=0.25 I,=1.00x10"" m* g, =—9.81m/s?
A=0.01m? I =1.00x10 m?*

3m

Figure B.12 - Beam-column element (example 17).
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Results from ANSYS (self weight linear static analysis only):

PRINT ELEMENT TABLE [TEMS PER ELEMENT
e POST1 EI:EMENT TABLE LISTING **+**

STAT CURRENT
ELEM  SAXL

1 -197.37

2 -556.46

3 -224.23

4 -197.37

PRINTU NODAL SOLUTION PER NODE

**** POST1 NODAL DEGREE OF FREEDOM LISTING ****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX uy uz USUM

1 0.12826E-04-0.66119E-05-0.46335E-04 0.48530E-04
2 0.69051E-05-0.17625E-03-0.16786E-03 0.24349E-03
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000

§ 0.98657E-05-0.11817E-03-0.11901E-03 0.16801 E-03

PRINT ROT NODAL SOLUTION PER NODE

" POST1 NODAL DEGREE OF FREEDOM LISTING ****

LOAD STEP= 1 SUBSTEP= 1 -
TIME= 1.0000 LOAD CASE= ¢

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1-0.26877E-04 0.20171E-04-0.23354E-04 0.40922E-04
2 -0.63969E-04 0.42854E-05-0.50480E-05 0.6431 1E-04
3 00000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
§ -0.45423E-04 0.24268E-04-0.35309E-04 0.62441 E-04

PRINT F REACTION SOLUTIONS PER NODE

*** POST1 TOTAL REACTION SOLUTION LISTING ****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE FX FY FzZ
3 19737 55646 0.53509
4 -1.9737 5.3816 -0.53509

PRINTM SUMMED NODAL LOADS

**** POST1 SUMMED TOTAL NODAL LOADS LISTING ****+

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOADCASE= 0

THE FOLLOWING X,Y.Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE MX My Mz
3 -2.5944 1.0758 1.4037
4 -7.5406 -2.1811  3.1024
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SADAP results (only self-weight):

EXAMPLE_17_P.357-MATR
NONLINEAR STATIC AND DYNAMIC ANALYSIS OF STRUCTURES

NODAL POINTS:
NODE X Y Z
1 0.0000 3.0000 0.0000
2 6.0000 3.0000 0.0000
3 0.0000 0.0000  0.0000
4 9.0000 0.0000 3.0000
5 3.0000 3.0000 0.0000

RESTRAINTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROTY ROT.Z

3 1 1 1 1 1 1
4 1 1 1 1 1 1

AUTOMATIC SELF-WEIGHT ANALYSIS

FRAME ELEMENTS (STABILITY FUNCTIONS):
ELEM. NODE1 NODE2 E \ A X Y Iz FP Qx ay

1 5 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
3 1 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
2 4 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00
$ 2 0.200E+09 0.25E+00 0.100E-01 0.200E-02 0.100E-02 0.100E-02 0.00

LOAD STEP= 1

BN -

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:
ELEM. NODE N Qy QZ T MY MZ

1 1 1.9737 3.2514 0.53509 0.98913 -1.0758 4.5175
5 -1.9737 -0.93816 -0.53509 -0.98913 -0.52951 1.7668

2 3 5.5646 -1.9737 0.53509 -1.0758 -2.5944 -1.4037
1 -3.2514 1.9737 -0.53509 1.0758 0.98913 -4.5175

3 2 22423 -0.98496E-01 * -1.0173 -1.3032 1.6931 -1.4854
4 -4.5555 3.3699 1.0173 1.3032 3.5927 -7.5257
4 5 19737 0.93816 0.53509 0.98913 0.52951 -1.7668
2 -1.9737 1.3750 -0.53509 -0.98913 -2.1348 1.1115
SUPPORT REACTIONS:
NODE RX RY RZ MX MY Mz

3 19737 5.5646 0.53509 2.5944 -1.0758 -1.4037
4 -1.9737 5.3816 -0.53509 7.5406 2.1811 -3.1024

TOTAL DISPLACEMENTS:

QZ ESP.MASS FLANG

0.00
0.00
0.00
0.00

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROTY ROT.Z

Qb WN -

185

0.00
0.00
0.00
0.00

0.000012826 -0.000006612 -0.000046335 -0.000026877 0.0000201 71 -0.000023354
0.000006905 -0.000176252 -0.0001 67861 -0.000063969 0.000004285 -0.000005048
0.000000000  0.000000000 0.000000000 0.000000000 0.000000000  0.000000000
0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.000009866 -0.000118173 -0.0001 19012 -0.000045423 0.000024268 -0.000035309

0.00
0.00
0.00
0.00

7.86
7.86
7.86
7.86
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Results from Weaver and Gere (1980), only external loads:

Join

2.393€-03
1.288E-03

-113.
-126.013

3 5.967 -21.404 46.703
....... -5.967
Support Re.
Node  :.

4 -113.987 g

SADAP results (only external loads):

LOAD STEP= 1

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORGES:
ELEM. NODE N Qy Qz T MY MZ
1

-

1056.55 ~38.509 -126.01 29.464 86.569 -67.100
5 -105.55 38.509 126.01 -29.464 291.47 -48.427

2 3 -38.509 14.452 ~126.01 86.569 348.58 -23.744
38.509 -14.452 126.01 -86.569 29.464 67.100

-

3 2 183.62 9.1924 5.9674 -21.404 46.703 -32.181
4 -183.62 -9.1924 -5.9674 21.404 ~77.711 79.946
4 5 105.55 -38.509 113.99 29.464 -291.47 48.427
2 -105.55 38.509 -113.99 -29.464 -50.491 -163.95
SUPPORT REACTIONS:
NODE RX RY RZ MX My Mz

3 -14.452 -38.509 -126.01 -348.58 86.569 -23.744
4 -105.55 98.509 -113.99 -75.898 -75.808 37.163

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y -ROT.Z

-0.000859410 0.000057764 0.005007645 0.002393332 -0.001 623169 0.000681331
-0.001176053 0.003253162 0.005255517 0001288428 0.001720936 -0.000771469
0.060000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
-0.001017731  0.002745063 0.008989659  0.001840880 -0.000086410 0.000821384

CId N -

Verification:

P.D.=0.00%for all the displacements, internal forces and support reactions.
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Example No. 18:

The purpose of this example is to verify the local axis rotation of the 3D
beam-column element using stability functions. SADAP results were compared
with Weaver and Gere (1980) and the commercial program ANSYS. The model

properties are

E=10000ksi 7, =64 in*
v=025 I =28in’
A=9in> I, =80in"

The third node of the element2, 3and 5is located at: 128,96,0

Y

Figure B.13 - Beam-column element (example 18).
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Results from Weaver and Gere (1980):

:Join Displacement H
Join : Ux Uy Uz : Rx Ry ! Rz
1 ~2.176E-04 -4.062E-03 -1.674E-02 @ -5202E-03 1.870E-04 | -4.495E-03
2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00
3 0.000E+00 0.000E+00 0.000E+00 ; 0.000E€+00 ! 0.000E+00 | 0.000E+00
4 0.000E+00 0.000E+00 0.000E+00 | O.000E+00 | 0.000E+00 | 0.000E+00
Member End-Actions
Member Node Fx Fy Fz Mx My Mz
i 1 3.594 0.178 : 0.406 6.073 -32.452 -84.001
2 -6.594 3.822 : -0.406 -6.073 -16.233 -134.638
2 .3 4744 0485 ' -0131 8.080 7.610 27.616
1 -4.744 -0.485 ! 0,131 -8.080 15.350 57.444 |
3 1 3.214 0178 . 1678 -2.995 -50.178  : -24.964
4 -5.950 1054 ¢ 239 2995 106594 : -51.865
§uppoﬁReactions :
_Node Fx Fy Fz Mx My Mz
2 -0.406 -2.982 7.014 ;..~134.638 14.599 -9.343
3 3.699 | 2,610 1505 : -8177 28387 . -3.624 |
4 1..=3293 ' 537 1.480 -63.927 -16.885 . -98.434

ANSYS results:

PRINT U NODAL SOLUTION PER NODE
****% POST1 NODAL DEGREE OF FREEDOM LISTING ***+%

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE Ux Uy uz UsuM
1 -0.21807E-03-0.40618E~02~0.16737E~01 0.17224E-01
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.52151E-01~0.75051E-01-0.10739 0.14102
6 -0.28168 ~0.45366 0.89995E-01 0.54153
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SADAP results:

LOAD STEP= 1

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:
ELEM. NODE N Qv Qz T MY MZ

1 1 3.5945 0.17801 0.40605 6.0732 -32.492 -84.001
§ -35945 -0.17801  -0.40605 -6.0732 81294 94.681

2 3 4.7447 048480  -0.13109 8.0797 7.6099 27.616
1 47447  -0.48480 0.13109 -8.0797 15.390 57.444

3 1 32136 0.17766 1.6785 ~2.9952 -50.178 -24.964
6 -32136 -0.17766 -1.6785 29952 -97.068 40.550

4 S5 8.5945 -3.8220 0.40605 6.0732  -8.1294 -94.681
2 -65945 | 3.8220  -0.40605 -6.0732 -16.233 -134.64

5 6 5.9494 -1.0534 -2.3215 -2.9952 97.068 -40.550
4 -5.9494 1.0534 23215 2.8952 106,59 -51.864

SUPPORT REACTIONS:
NODE RX RY RZ MX MY Mz

2 -0.40605 -2.9824 7.0143 -134.64 -14.599 -8.3428
3 3.6992 2.6108 1.5050 -8.1767 28.387 -3.6240
4 -3.2932 5.3718 1.4808 -63.927 -16.885 -08.434

TOTAL DISPLACEMENTS:
NODE TRANS.X TRANSYY  TRANS.Z ROT.X ROT.Y ROT.Z

1 -0.000218067 -0.004061807 -0.016736808 -0.005202205 0.000187037 -0.004495317
0.000000000  0.000000000 0.000000000 0.000000000 0.000000000  0.000000000
0.000000000 0.000000000 0000000000 0.000000000 0.000000000 0.000000000
0.600000000  0.000000000 0.000000000  0,000000000 0.000000000  0.000000000
0052151438 -0,075050749 -0.107394865 0.001498383 0.001650697 -0.000159420
6 -0.281675223 -0.453662190 0.089995388 0.000113304 0.000690493 0.001781987

(SR AN N]

Verification:;

Even though there is a small difference on the x translation of node 1
when compared with Weaver and Gere (1980), the values were matching with
ANSYS. This is due to a round off error in Weaver and Gere (1980). The

P.D.=0.00%for all the displacements, internal forces and support reactions.
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Example No. 19:;

The purpose of this example is to verify the critical buckling load of the 3D
beam-column element using stability functions; the program is expected to stop
at the buckling load. Theoretical values are used as comparison, the model

properties are

2
E=2.00x10""kN/m* I, =2.00x10"" m* Pt = % =13707.784 kN
2L
2
v=0.25 1,=1.00x10%m* p, - 7 E - =13900.332 kN
21 I~ ‘PcrNonlinearL
E4
A4=0.01m? I, =1.00x107" m*
15230.871 kiN
Y
1
2m
2
2m
3
2m
77

Figure B.14 - Beam-column element (example 19).

180



SADAP results:

LOAD STEP= 9127

FRAME ELEMENTS (STABILITY FUNCTIONS) INTERNAL FORCES:
ELEM. NODE N Qy Qz T MY MZ

1 1 13900. 0.0000 0.0000 0.0000 0.0000 0.0000
2 -13900. 0.0000 0.0000 0.0000 0.0000 0.0000

2 2 13900. 0.0000 0.0000 0.0000 0.0000 0.0000
3 -13900. 0.0000 0.0000 0.0000 0.0000 0.0000

3 3 13900. 0.0000 0.0000 0.0000 0.0000 0.0000
4 -13900. 0.0000 0.0000 0.0000 0.0000 0.0000

Displacement of node 1;
0.0000000000 -0.0415545284 0.0000000000 0.0000000000 0.0000000000 0.0000000000

SUPPORT REACTIONS:

NODE RX RY RZ MX MY MZ

4 0.0000 13900. 0.0000 0.0000 0.0000 0.0000
LOAD STEP= 9128

Verification:

P.D.=0.00%
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Example No. 20:

The purpose of this example is to verify the torsion, bending and axial
natural frequencies of g circular cantilever using 3D beam-column elements

using stability functions. The model properties are

E=2.00x10""KN/m® I =4.97%x10" p P =8 ton/m®
v=030 1, =2485x10"" m*
A=0.01m? I, =2.485x107% m*

Discretization:

Model A: 1 element
Model B: 4 elements
Model C: 8 elements

Model D: 16 elements

X
|

Figure B.15 - Beam-column element (example 20).

Theoretical results (Militano, 2000):

/ ETI
wn,bending = (ﬁn L)Z - ApL4

2n~1 G
wn torsion = T [—
’ 2.L Yo
2n-1 E
T f—

n,axial = ZL p
B,.L= 1.875,4.694,7.854,10.998
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Militano (2000) resuits:

Natual circular frequency [ra d/s]

Mode Shape Bending Bending Bending Bending| Torsion Axial | Torsion Axial | Torsion Torsion |  Axial Axial

ExactSolution] 10.30 64.55 180.72 | 354.36 608.85 981.75 | 1826.56 2945.24 | 3044.27 4261.98 | 4908.74 6872.23

1Element 10.35 - - - 671.00 | 1082.53 - - - - - -

4 Elements 10.30 64.63 182.16 | 359.36 613.00 | 988.07 1933.00 { 3116.99 3511.00 | 5078.00 5662.13 | 8187.93

8 Elements 10.30 64.56 180.87 | 3ss.01 610.00 | 983.32 1853.00 | 2987.99 3167.00 | 4593.00 5107.44 | 7416.40

16 Elements 10.30 64.56 180.77 | 354.27 609.00 | 982.14 | 1833.00 2955.90 | 3075.00 4346.00 | 4958.16 7008.14

SADAP resuits and verifications:

Natual circular frequency [ra d/s]

Mode Shape Bending| p.D. Bending{ P.D. Bending| p.D. Bending| P.D. Torsion| P.D. Axial P.D.

Exact Solution| 10.30 - 64.55 - 180.72 - 354.36 - 608.85 - 981.75 -

1Element 10.35- 1 0.49% - - - - - - 671.36 | 10.27% | 1082.53 10.27%

4 Elements 1030 |0.01%] 64.63 0.12% | 182.15 | 0.799% 359.35 ) 1.41% | 612.77 0.64% | 988.07 | 0.64%

8 Elements 10.30 10.01%| 6456 0.01% | 180.86 | 0.08% 355.00 | 0.18% | 603.83 0.16% | 983.33 | 0.16%

16 Elements 1030 [0.01%| 6455 0.00% | 180.76 | 0.02% 354.26 -0.03% | 609.10 0.04% | 982.14 | 0.04%

Natual circu!arfrequency [rad/s)

Mode Shape | Torsion P.D. Axial P.D. | Torsion | p.D. Torsion | p.D. Axial P.D. Axial P.D.

Exact Solution 1826.56 - 294524 - 3044.27 - 4261.98 - 4908.74 - 6872.23 -

1 Element - - - - - N - - . - - -

4 Elements 1933.08 {5.83% | 3117.00 5.83% | 3511.50 {15.35% 5077.94 |19.15% | 5662.13 15.35% | 8187.93] 19.15%

8 Elements 1853.07 | 1.45% | 2987.99 1.45% | 3167.50 | 4.05% 4599.45 | 7.92% | 5107.44 4.05% | 7416.40) 7.92%

16 Elements | 1833.17 0.36% | 2955.90 | 0.36% 3074.92 | 1.01% | 4346.26 1.98% | 4958.16 | 1.01% 7008.14} 1.98%
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Example No. 21:

The purpose of this example is to verify the variation of frequency with
axial force in a column with both ends pinned (3D beam-column element using

stability functions).

The program results were compared with the results from Przemieniecki

(1985). A non-linear free vibration analysis was performed.

ONE- ELEMENT
IDEALIZATION
' SADAP 1 ELEMENT

~ SADAP 40 ELEMENTS

Figure B.16 - Example solution (example 21).

Where:

4
O=w'p
P Er

_ P’
EI

Verification:

PD.,,. =-0.65%
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Example No. 22:

The purpose of this example is to verify the dynamic solver using the 3D
beam-column element (using stability functions). Model properties, dynamic

force, and displacement solution were taken from Battista (2007-C) and are given
by

E=210x10""KN/m> I =2.716x10"% p=185ton/m?

v=0.30 1,=1858x10m*  £_g0
A=8.06x107" m?2 . =1858x107 m*

12m

Figure B.17 - Beam-column element (example 22).

Theoretical solution:

w, =n’z? % =53.82 rad/s, 215.29 rad/s, 484 .41 rad/s
Vo

Battista (2007-C) solution (displacements where the load is applied):

u,(0.15 5) = 0.00643

Uy v =0.00849
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SADAP solution and verification ('using 30 elements):

""" Modal Superposition

£ ] {50 modes) l i
;i' 0.004 ,] ; ‘ { """"" Newmark-Linear {
i i
i i
0'003 1 T
o2
0002 oy
¢ i i ] ! i
é i i i
0.001 ¢ ! i
0 | .! ] i j :
I

Figure B.18 - Example solution (example 22).

_ rad/ . = "
W, =53.82744/ - p.p = 0.00%
W, =215.29749/" - P.D. = 0.00%
- rad/ . =
Wy =484.41799/ - pp = 0.00%

Modal Superposition (At=0.0001 s and
50 modes):

#,(0.155) = 0.00650 m .-. P.D. = 1.09%
Uy sans = 0.00854 m . P.D. = 0.599

Newmark-Linear (At=0.0001 s):

#,(0.155)=0.00649 m . P.D, = 0.93%
Uy wwmine =0.00854 m . P.D. = 0.59%

Newmark-Nonlinear (At=0.0001 s):

%,(0.155)=0.00649 m . P.D, = 0.93%
Uy ssmans =0.00851m - P.D, = 0.24%
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Example No. 23:

The purpose of this example is to verify the nonlinear static analysis of the

insulator string elements. The results where Compared with theoretical analyses.
Model properties are (the insulator string element is mass less)

L=150m A=1.00x10"% my?

Fx=981kN
E=2.00x10""

kN/'m*  Conductor weight =9.81 kN

/4f4

Conductor

Figure B.19 - Insulator string element (example 23).

Theoretical results

u, = _L conductor weight = 0.00007358 m
. ) ¥ EA
Self weight analysis:

Tensioni =9.81kN
Tension j=9.81kN

u, = L =1.06066 m
V2

1
u, %L 1~— |=0.43934 1
g ( Ji}

Tensioni=13.8734 kKN
Tension j=13.8734 kN

Q

External load and self weight analysis:
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SADAP results:

NODAL POINTS:
NODE X Y Z
1 0.0000 0.0000 0.0000
2 0.0000 -1.5000 0.0000
3 0.0000 -1.5000 0.0000
RESTRAINTS:
NODE TRANSX TRANS.Y TRANS.Z ROTX ROTY ROT.2
1 1 1 1 1 1 1

NODAL FORCES:

NODE FX FY FZ MX MY MZ

2 9.81000 0.00000 0.00000 0.00000 0.00000 0.00000
AUTOMATIC SELF-WEIGHT ANALYSIS

SPRING ELEMENTS:
ELEM. NODE1 NODE2 KUX KUy KUz KRX KRY KRZ MASS ALFA  BETA
2 3 2 0.10000E+07 0.10000E+07 0.10000E+07  0.10000E+07 0.10000E+07  0.10000E+07 1.0000  0.0000 0.0000

INSULATOR ELEMENTS:
ELEM. NODE 1 NODE 2 E A we TOTAL MASS
1 12 0.20000E+09 0.10000E-02 0.10000E-01  0.0000
LOAD STEP= 1

INSULATOR ELEMENTS INTERNAL FORCES: ( TENSION + )

ELEM. N NODE1 N NODE2
1 9.8100 8.8100
Disptacemento of node 2: Self weight
0.0000000000 -0.0000735750 0.0000000000 0.0000000000 0.0000000000 0.0000000000
SUPPORT REACTIONS:
NODE RX RY RZ MX My MZ

1 0.0000 9.8100 0.0000 0.0000 0.0000 0.0000
LOAD STEP= 101

INSULATOR ELEMENTS INTERNAL FORCES: { TENSION +)

ELEM. N NODE{ N NODE2
1 13881 13.881
SUPPORT REACTIONS: ]
NODE RX RY RZ MX My . Self weight and
t 08100 98100 00000 00000 00000 00000 external load
TOTAL DISPLACEMENTS:

NODE TRANS.X TRANS.Y TRANS.Z ROT.X ROT.Y ROT.Z

10.000000000 0.000000000 0.000000000  0.000000000 0.000000000  0.000000000
2 1.066243283 0.437919529 0.000000000  0.000000000 0.000000000 0.000000000
3 1.066243283 0.437919529 0.000000000  0.000000000 0.000000000 0.000000000

Verification:

P.D.,,, =0.06x
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Example No. 24:

The purpose of this example is to verify the Free Vibration analysis of the
insulator string element. The results where compared with a theoretical analysis.

Model properties are (the insulator string element is mass less)

L=150m A=1.00x10"% m?
E=2.00x10"" kN/m* Conductor weight = 9.81 KN

“g<

‘\Conductor

Figure B.20 - Insulator string element (example 24).

Theoretical results:

w=\/§—= & =2.55734 rad/s
L \1 1.5

SADAP results:

MODE MODAL MASS FREQ[RAD] FREQ[HZ)
1 1.00000 2.55728 0.40700

Verification:

P.D.=0.00%
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Example No. 25:

The purpose of this example is to verify the linear dynamic solver using

the insulator string element. Model properties are (the insulator string element is

mass less)

L=1.50m A=1.00x10" m? F, =9.81kN

E=2.00x10° kN/m* Conductor weight =29.43kN C=4.00 KNxs/m

T

Fx
— h‘\
Conductor

Figure B.21 - Insulator string element (example 25).

Theoretical results:

Static displacement = AL =0.5m

Conductor weight

SADAP results:

Horizontal displacement

e
o

o
«

/\{"\/“\ —
AV G

i
f
/
]
/

9
>

o
w

xdisplacement [m)

e
)

e
&

o

©
"
~
w
IS

s 6 7 8 9 10
Time (5]

Figure B.22 - Example results (example 25).

Verification;
P.D.=-0.10%
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Example No. 26:

The purpose of this example is to verify the non-linear static analysis of
the straight tower element. The results of the model with straight tower elements
were compared with a model using the 3D beam-column (vertical bars) and truss

(diagonal and horizontal bars) elements. The model properties are

Longitudinal bars Diagonals and Horizontal bars
— 2 0+08 2 =2, ~06 4
E 10x103 KN/m® I, ‘:‘;jxllg% M E=210x10" KN/m?
O A=5.00x10" m?
A=1.00x10"" m I =123x10" m 3
R z p="7.86 ton/m
p ="7.86 ton/m
Simplified Mode! v Complete Model vA Top nodes
<;| 41 42
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.
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Figure B.23 - Straight tower element (example 26).
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The applied force in the following table was chosen to be close to the

critical buckling load of the tower (calculated based on a non-linear stability

analysis) to verify the behavior of the simplified element.

Fx Fy Fz Mx | My Mz
Model Node
kN kN kKN | kKNm | kNm | kNm
41 10 | -350 10 0 0 0
Complete 42 10 { -350 10 0 0 0
Model 43 10 |-350| 10| o 0 0
44 10 -350 10 0 0 0
Simpl.
0 0 |-1400 0 0 0
Model 1 4 1 4 0

diagonal bars to resist shear deformation was also investigated.

SADAP results:

The effect on the non-linear static analysis result in considering the

Percentage of Load

seceee Simpl.

- Node 41

- Node 42

- e Node 43

~ Node 44

— = — Average

Simpl. With shear defor.

-0.02

0.02

dispacement [m]

0.04
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Figure B.24 - Example results for x displacement (example 26).
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Figure B.25 - Example results for y displacement (example 26).
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Figure B.26 - Example results for z displacement (example 26).
Verification:



P.D
P.D

= 0
*MAX ,withoutsheardeformation — 16'33 %

= 0,
*MAX ,with sheardeformatiat ™ 0'52 A)
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Example No. 27:

The purpose of this exampie is to verify the Free Vibration analysis of the
straight tower element. The results of the model with straight tower elements
were compared with a model using the 3D beam-column (vertical bars) and truss

(diagonal and horizontal bars) elements. The model properties are

Longitudinal bars Diagonals and Horizontal bars

=2.10x10"® kKN/m? I =2.45x10"% m*
E=2.10x m° I, X M E=2.10x10% KN/m>

v=023 I, =123%x10"% m* Y
B P ’_ 06 4 A=5.00x10""m
A=1.00x10""m I, =123x10"" m 3
1 =7.86 ton/n® p=7.86 ton/m

Complete Model vh

Simplified Model v A
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N
e
™~
.
/
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100m t— 1560 m
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Figure B.27 - Straight tower element {example 27).
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SADAP results:

<1 " covagun veve
EODZ 1 FREQUENSY @ 1C.038311EZ}

<ART>CPe> EXIT
52 TQORID HENU
MORZ 1z PREQUZNCY i 14.10222{M2}

Figure B.28 - Mode shapes and frequencies results (example 27).
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Figure B.28 (cont'd) - Mode shapes and frequencies results (example 27).

Verification:

P.D., =086%, PD.,,=138% PD.,,=207% P.D.,=-885%
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