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AtsSTR.ACT

Maximum likelihood sequence estimation (MLSE) in additive white Gaussian noise

with finite intersymbol interference has been thoroughly investigated by several

authors. Generally the Viterbi algorithm is applied for the estimation of data. Extension

to the case of infinite intersymbol interference has been developed recently using the

Sequentiai algorithm.

Application of these algorithms for an intersymbol interference channel with

additive colored Gaussian noise is presented in this thesis. A maximum likelihood

metric for the Viterbi algorithm is derived using a finite time whitening approach and is

referred to as a finite time metric. The receiver structure in this case consists of L

matched filters where the channel impulse response is of finite duration LT seconds. A

receiver structure for the Sequential algorithm is also obtained considering an infinite

time whitening interval. Only one matched filter is required at the receiver.

Simulations have been carried out in an attempt to acquire some knowledge as to

how these metrics perform under different noise conditions and with different channels.

The results show that the Viterbi algorithm with a finite time metric and the Sequential

algorithm give a better error performance in comparison to the Viterbi algorithm applied

with an infinite time metric particularly, when the noise is more colored. The

computational complexity of the Sequential algorithm is comparably less than that

required by the Viterbi algorithm at moderate signal to noise rarios.
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Chapter I

lratroduetion

It is required in many communication systems to transmit digital data at high speed

over channels with limited bandwidth. Bandlimited channels usually produce

intersymbol interference (ISI) where the transmitted pulse overlaps with other

transmission pulses. The number of pulses that overlap with a given transmitted pulse

is known as the memory of the channel or the length of ISI. The simplest

communication system to exhibit ISI is a pulse amplitude modulation (PAM)

communication system. The input to the channel is a real number sequence drawn

from a finite alphabet which, if it passes through a linear channel whose impulse

response is longer than one transmission time interval, shall result in ISI. The presence

of ISI degrades the receiver performance.

Various techniques have been developed for combating ISI. These techniques date

back to Nyquist [12] who introduced baseband spectrum shaping for completely

eliminating ISI. Lænder [9] introduced the duobinary technique which allowed one ISI

term. This was later generalized to partial response techniques by Lender [10] and

Kretzmer [7] where any number of ISI tenns are allowed. Tomlinson [18] suggested a

precoding technique to eliminate ISI. The input sequence is coded according ro the

inverse of the discrete channel response. Other methods for eliminating or controlling



of ISI a¡e linear equalization [1 1] and decision feed back equalization (DFE) [1]. Both

reduce ISI by subtracting out the actual ISI. The decision at the receiver is taken on

symbol by symbol basis for all the methods described above. Chang and HancockLZl

presented a mothod which bases the decision on L consecutive symbols.

As an alternative to forcing ISI to zero or introducing controlled ISI the problem

can be treated using decision theoretic estimation methods [6,19]. Fomey [5] showed

that the Viterbi algorithm (VA), which was originally developed by Viterbil22) for the

decoding of convolutional codes, can be applied to ISI channels for maximum

likelihood sequence estimation (MLSE). The detection problem is modelled as a graph

search which in this case can be implemented through a trellis. The receiver consists of

a whitened matched filter and a symbol rate sampler. The advantages of the VA are that

there are a fixed number of computations per decoded symbol and that its structure is

regular. However, the computational complexity of the VA grows exponentially with

the channel memory, therefore making it difficult to apply when the memory is large.

To decrease memory requirement other algorithms known as reduced state

algorithms have been developed. The common characteristic of these algorithms is that

they reduce the computational complexity by reducing the number of sequences to

which they are applied. They can be classified as variations of the VA.

The VA with decision feed back to search a reduced state sub trellis has been

introduced by Eyuboglu and Qureshi [4]. Duet and Heegard [3] applied this technique

to binary transmission and called it decision feed back sequence estimation. With some

changes, Polyduros and Kazakos [13] showed that the VA can be applied to infinite

ISI channels with rational spectrum. It is known as a modified Viterbi algorithm

(MVA). Sheshadri and Anderson [15] used the M-algorithm which keeps only best M

paths for the trellis search. A similar algorithm to the M algorithm is the T algorithm

proposed by Simmons [17] which searches paths with metrics less than an adaptive

2



threshold. All of the above algorithms obtain reduced complexity while retaining the

VA structure with a justifiable loss of optimality in estimation. Recently, the Sequential

algorithm (SA), another well known algorithm for the decoding of convolutional codes,

has been extended to the ISI case by Xiong [24]. The average number of computations

for the SA is variable and is independent of the channel memory. Therefore the SA can

be easily applied for cases where channel memory is very large or even infinite. A

review of the literature regarding ISI can be found :r:rl25l.

Most of the research has been concerned with the estimation of the data sequence in

the presence of additive white Gaussian noise (AWGN). Comparably little work has

been done when data is corrupted with colored noise 18,1.4,I6,20f. The

straightforward procedure in this case is to use a whitening filter to whiten the colored

noise. Because theoretically the resulting ISI can be infinite this approach is suitable

only if the SA is used. The VA may be applied with the ISI terms truncated as

discussed by Ungerboeck [20]. To be applied without truncation a whitening filter

which does not cause infinite ISI has to be found. Then the maximum likelihood metric

for the VA can be derived.

In this thesis MLSE in colored Gaussian noise is studied. Chapter 2 provides the

general background about ISI and MLSE and a description of the VA and SA as they

are used in the thesis. Chapter 3 describes the theoretical procedures to develop

maximum likelihood metrics for the VA and SA. Computer simulations and results are

presented in chapter 4. The VA using the maximum likelihood metric and a sub optimal

metric are compared with the SA. Two kinds of noise models, one with a white noise

component and the other without, are considered for simulations. Chapter 5 presents

conclusions.

3



Chapter 2

tsaakground

2"î nntnoduction

This chapter provides a description of the application of the Viterbi algorithm to ISI

in additive white Gaussian noise as developed by Forney [5]. Then the procedure ro

apply the sequential algorithm is explained for the infinite ISI case. Finally the methods

available when colored noise is present without ISI are discussed.

2.2 YSY, with additive whÍte Gaussian noise (,&WGN)

Consider the PAM communication system shown in Figure 2.l where the x¡'s are

the input alphabet which initially pass through an impulse modulator before

fransmission. The channel impulse response is h(t). The length of ISI presenr in s(t) is

determined by the length of h(t).

The received signal is

r(Ð=s(t)+n(t)

=X *r h(t-kT)+n(t)
k

If sampled at lT r(1T)=) x¡ h(lT-kT) +n(lT)
k

(2.r)

(2.2)

(2.3)

4
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=hox1+[ xrhl-k+nl (2.4)
k+l

The term ) xt hl - k represents the intersymboi interference.
k*l

For maximum likelihood sequence estimation(MlSE) in additive white Gaussian

noise(AWGN) the receiver structure, shown in Figure 2.2, can be used [5]. The

sampled output of the matched filter forms a set of sufficient statistics.

(2.s)-{: r(t)h(t-kr)dt

f* f*
=f, I xgh(r-k'T)h(t-kÐdt+ I n(t)h(t-kT)dt (2.6)
J-- k' J--

= X *k' R¡,- ¡ + n'¡ (2.7)
k'

where Rk'-k represents the sampled autocorrelation function of the channel impulse

response and n¡' represents the noise sample at the output of the matched filter.

The above difference equation may be expressed using the delay operator -D( similar to

,-7 inZ-Transform theory) as

u(D)=E ar D k =x(D)R(D)+ n'(D) (2.8)
k

-R@) is the D-transform of the discrete autocorrelation function of h(t).

The statistics of the noise samples at the output of the matched filter are given by

(r* ræ ì

E{n'¡n'-}= t{ dt- n(t)h(t-kr)dt dr n(t)rr(t-*r¡or! (z.s)

TJ-- J -* 
1

= l: 
.'f: h(t-kr)h(t-mr)E{n(t)n(r)}dr (2.10)



Since n(t) is white Gaussian noise

E{n (t)n(t)}=o2õ(t-t)

where o2 is the spectral sfrength of the noise in watts/Hz.

(2.rr\

(2.1,4)

(2.rs)

(2.16)

(2.17)

(2.18)

(2.re)

(2.r2)

=02Rk-m (2.13)

Therefore n'@) is colored Gaussian noise with autoconelation function oPn1D).

It can be shown that R@) has the spectal factonzation R(D)=f6rX(D-1) whether h(t)

has a finite length or infinite length [26]. Since

E{n'¡ n'*}=o,[ h(t-kr) h(t-mr)dt

R¡'(D)=62 B1P¡

the colored noise n'(D) can be expressed as

n'(D)=n1P¡fP-t¡

Thus a(D)=x(DX(DX(tl-1) + n@X(D-l)

z(D)= a@)

fp-1)

= x(DX(D) + n(D)

= y(D) + n(D)

where, provided it is stable, 1/fp-1¡ represents the whitening filter .

2"3 Finite lS{

The discrete model described above can be realized as a finite state machine when the

ISI is finite. Since h(t) is of finite length LT, R(D) can be expressed as

R(D)= Ð R¡ n k=rp[(D-l); v=L-l (2.20)
l- --t(=-v

v=length of inteference



f(D) fi Di (z.zl)_\'-tu
i=0

ln the time domain yk= Ð fixr-i (2.22)

(2.23)

(2.24)

(2.2s)

i=0
Therefore the model shown in Figure 2.3 can be used to obtain y¡ . The channel

symbols y¡ are a function of the curent input x¡ and v past inputs. ie, yk= g(xç,s¡_1)

where s¡ is a state uniquely determined by the previous v inputs prior to time kT. The

one to one mapping between input sequence x and channel symbol sequence y is

described by a trellis of width s=mV states,where m is the input alphabet size. There are

m branches out of each state, one per possible input symbol, and each branch has a

corresponding channel symbol yt. A four state trellis is shown in Figure 2.4 as an

example.

The maximum likelihood metric for the sequences x and y can be denoted by

f( x,y)= log"p(ylx)= loge l-l p(yrlxr)
k

= X log"p(yr.lxÐ
k

= X r(Yt,*t)
k

where l"(y¡,x¡) is the branch metric.

where the probability density function p(yix) factors into a product of terms since the

noise samples are statisticaily independent.

The number of states mv grow exponentially with the length of ISI. Hence the Viterbi

algorithm cannot be applied to infinite ISI. The whitening filter used in the approach

described earlier can be avoided using the proce&re described by Viterbi and Omura

B

1231.



n(D)

Finite State Model

Iìgue 2.3

xk-2 xk-l
00

01

10

1't

o

o

o

o

4- state trellis

Figure 2.4
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Here one starts from the maximum likelihood metric for a signal in AV/GN

À = X[ ( ur- X x¡-1Ri) x¡]

E uiDi
ftD)= u@) - i=o

V(D) E

i=1

y(D)=x(DX(D)

In the time domain
nm

yk=uo*r+Iuixk-t-Xviyr- i Q.30)
i=l i=l

Based on the difference equation for y¡ the system can be modelled as a feedback filter

and a tree can be developed as illustrated by Figures 2.5 and 2.6 respectively for f@).

As shown by Xiong l24l the sequential algorithm can be applied in this case. The

algorithm searches a tree to determine the maximum ükeiihood path among the explored

-^¿L^ ^f -7:CC^-^-- 1^- JL^
p¿1rrrs ur Lrlrr9rçilr lçilBtIIS.

(2.26)

(2.28)

(2.29)

^ 
= 
{: 

r(t)s(t)dt ,, 
l:s2(t)dt

which can be simplified to 123,pp.272-2841
v

(2.27)
k i=l

with the notation used earlier. Therefore in this case it is sufficient to obtain the ouçut

of the matched filter. A similar rellis search can be done in this situation as well. What

changes is the branch metric of the trellis.

2"4 Sequential algonithrn and infiníte TSI

The difference between finite ISI and infinite ISI is apparent from the form of f(D).

For infinite ISI f(D) is of the form
n

10



X(D)

Figure 2.5: Feed Back Filter ; f(D) = Hï3

X=0

y2= Y(0,0,y1)

Yi =Y(0,0)

Y(1,0,y1)

Y(0,1,y1)

Y(1,0)

Y(1,1,y1)

Figure 2.6: Tree y¡= Y(xu,x¡_1,y¡_1)

Y(1,0,y2)

Y(0.1

Y(l,1,y2)

Y(0,

Y(1,0,y2)

Y(0.1

Y(1,1,

u0 u1

y3 =Y(0,0,y2)
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The metric for the sequential algorithm for the ISI channel with an equally likely m-ary

input sequence, is given below.

L(xr , ,) = Ë t roe h*5{ù - log ml (2.31)
t. 1 Pz@ù
^- r

= X L(yr, ,Ð (2.32)
k

where

L(yr,zÐ = toe 49P - log m (2.33)
P'(zù

is the branch metric.

Here Xr is the input sequence, nr is the number of input symbols, zn is the received

sequence and pn(.) is the noise probability density function, i.e.

pn(x) =+".pf=41 es4)f '\ / tfzno '-'\zor 
l

In the finite case

P.e,ò=#,ä ffi*{+#} ,,,,,
bj . yt y¡= f(x¡,.....,xk_v) (2.36)

For the infinite case, although the channel has infinite memory, y¡ is a function of the

input sequence up to time k. ie,

y¡=f(x1,.....,x¡)

as is easily seen from equation (2.29). Thus

(2.37)

(2.38)

Uniike the finite ISI case, here pr(z¡) is dependent on the time ind.ex k. However,

since the impulse response of physical channels decays with time one can safely

truncate it at a iength L*T. Beyond this length the terms should not have a significant

effect on ISI and also on p"(z¡).

mk

P.@ù=#å#*'{+#}

12



Kr,(t-r)e - j<rr(t-t) d(t-r)

prewhitener s*(t) - may have infinite lSl

Figure 2.8

E{n(t),n(t)}= K,.,(t-t) ; S.,(co) : Ít-
J-*

Figure2.7

r(Ð

-=ÞÞ

r*1t¡= s*(t) + n*1t¡

n*(t)- white noise
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2"5 Colored noise

The communication system model, shown in Figure 2.7 is same as previously

discussed except that the noise is colored. As mentioned if this problem can be

transformed into a white Gaussian problem, then the methods discussed earlier can be

applied. A straightforward approach is to use a simple prewhitener to whiten the noise.

(See Figure 2.8). Since, in general, the autocorrelation function extends to infinity the

impulse response of the prewhitener can also last an infinite time leading to infinite ISI.

One may use the sequential algorithm or the Viterbi algorithm if the ISI is truncated.

Ungerboeck t20l used the Viterbi algorithm where he obtained finite ISI by truncation.

An alternative approach would be to develop a prewhitener whose impulse response

is finite. V/ithout ISI this is a well studied problem and is described in many texts. Van

Trees [21] suggested three different interpretations of the same method for obtaining a

finite impulse response prewhitener. These are shown in the block diagrams of Figures

2.9a,2.9b and2.9c. Here h*(t,u) is the whitening filter over the finite time interval

[T1 , T¡ì, s(t) is the signal transmitted in [Ti , T¡J and Krr(t,u) is the covariance of the

colored noise. Qn(v,x) and g(z) are the solutions of the following integral equations.

K"(x,z)Qr,(v,x)dx ,Ti I z,v 1T1 (2.3e)

Q''(z,v)s(v)dv ,Tilt<Tf (2.40)

' Ti (ulT¡

14

ð(,")=fr'

,çr>=d '
Jtt

{"t,r=L K"(t,u)g(u)du (2.41)



h*(t,u)

h*(t,u)

Figure2.9a

%ç)--
I srtl

Figure 2.9b

Figure 29c
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K'&?e@K'y

3.tr- ïntroduction

In chapter 2, various options available to deal with the colored noise problem were

discussed. The procedures are different depending on whether the Viterbi algorithm or

the sequential algorithm are to be used. In this chapter a method is presented to obtain

the maximum likelihood metric for the application of the Viterbi algorithm. Also the

receiver structure to obtain sufficient statistics for the sequential algorithm is derived.

The metric in the case of the sequential algorithm is the same as that developed by

Xiongl24l.

3.2 Ðeveloprnent of the rnaximuxn likelÍhood xnetníc for ISI in
coloned Gaussian noise

The approach here is to whiten the colored noise. To apply the Viterbi algorithm the

intersymbol interference should be finite.Therefore a whitening filter with a finite

impulse response has to be used. A PAM communication system with additive colored.

Gaussian noise introduced previously is used as shown in Figure 3.1.

The receiver is shown in Figure 3.2, wherc the receiver structure of Figure 2.9b,

16



Iigure3.1

Figure 3.2

FKT R¡

--+/', 
)dt
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is used to whiten the noise. The whitening is achieved through g(t), and is equivalent

to passing both r(t) and s(t) through a whitening filter. The output samples provide the

sufficient statistics for the maximum likelihood sequence esrimarion (MLSE).

Given the finite time whitening of the colored noise of Figure 3.2 the metric to be

evaluated is

rt ['Ir=Í r(t)g(t)dt_1/2 fl s(t)g(t)dt,0(r<T (3.1)Jo Jo

where g(t) satisfies the integral equation

¡r
s(Ð = I g(u)K,,(t,u)du, 0 < t< T\"./ 

J0 
Þ\*/^^n\"ezLru rvèL: r (3.2)

Since the time interval is [0,T] , the only part of s(t) that needs to be considered in rhe

equations is that within the time interval [0,I. It is equal to

0

s1(t)=f, a¡h(t-kT) (3.3)
k=-v

s1(t) is affected by the present input and previous v inputs, ie, the length of ISI.The

metric, \, also is calculated over this interval.

Since at the output of the receiver the noise samples are statistically independent, one

can express the complete metric as

f,=Ð ltu G.4)
k

where hu tr the branch metric for the kth interval.

To illustrate the procedure of whitening, a model for the noise spectrum has to be

assumed. When the spectrum does not have a white noise component, it can be

expressed as

. N(ro2)
Sn(co) = ;Ëú , degree N(o2) < degree D(co2) + t (3.5)

Since there is no white noise component, the noise autocorrelation function Kn(t,u)

does not contain singularities.

1B



The general solution to the integral equation (3.2) inthis case is given by

s(t)=s..(t) +[ a1g1(t) +X lona(n)(Ð *.oa(k)qt- r¡] ,0 <t<T. (3.6)
ik

g-(t) is the infinite time solution and g1(t) 's are the homogeneous solutions for the

corresponding differential equation. The coefficients b¡'s and c¡'s associated with the

impulse function, ô, and its derivatives, ð(rc), are determined by the end cond.itions.

'When 
a white component is present in the noise spectrum it can be given by

sn(cÐ)=++s"(or)=I!t?
L D(o2) 

Q.7)

where Sc(o) is the colored component. Both N(co2) and D(co2) are of rhe same degree

due to the white component.

The autocorrelation function therefore, has the form

Kn(t,u) =yð(t - u) +K"(r,u) (3.8)

The integral equation (3.2) now becomes

,(t) = T s(,) .l K"(r,u)s(u)du (3.e)

with a solution of the form

s(t)=s-(t)+Ð utrt(Ð (3.10)

The presence of the white .orrlno.,"n, results in a solution for g(t) that does not contain

singular functions.

3.3 ÐxampÍes

Derivation of the metrics for the noise models given above are presented using the

following examples. First finite time whitening is considered.

(i)lVoise does not contain a white component

tt-å
Sn(o) =;ffþ + Kn(t,u) = o'SexpCklt-ul ) (3.11)

19



The results are not dependent on the channel and all that is assumed about the channel

impulse response, h(t), is that it is of fînite duration, LT seconds.

The integral equation corresponding to (3.11) is

¡r
sr(t) = o2, f, exp( - ( t-ul )g(u)du (3.12)

Jo

Converting this into a differential equation, the infinite solution, g-(t), is obtained from

the differential equation

s"r(t)+t<%r(Ð=Zko?g-(t) ,0<t<T (3.13)

and is

s-(r) =r*ã {- r"r(Ð + r<%r(t) ) fl.r+l

To get the complete solution for g(t) , (3.13) is substituted back inro rhe integral

equation, where õ functions are included in the solution to satisfy the end conditions.

Therefore,

g(t) = g""(t) + b,ô(Ð + crõ(t - T) (3.15)

o,= þd9j@ ^ - ksr(r) + s'r(r) 
(3.16)"t- to? "t - to?

sr(t)=X a1h(r-lT) , O<tcT (3.17)
l=-v

Given g(t) and sr(t), the branch merric from equarion (3.1) is

olol

^, 
=, F, tl*t ,,Þ u 

.* u*_j *

b,[r(O) - 0.5 sr(O)J + c,[r(T) - 0.5 sr(T)J (3.18)

¡r
whereRr= I lt2t(t-tr)-h(2)(r-tr)]r(t)dt (3.19)

Jn

¡r
cm = 0.5 f, lt2rtlt-."T) - r¡{z)1¡ - *r)]h(t - tT) dt (3.20)

T^¿w
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For the simulation a raísed cosine channel of impulse response

h(Ð:#lr-cos{ff)t) ,o<t<Lr (3.21)

is used.

(ii) Colored noise with a rvhite noise component

sn(o) ="i?':r) = ú* 2!o7 

^ Q.22)(az+kz) " (coz+k2¡

Because of the white noise component the results are dependent on the channel impulse

response. The response that is used here for the channel is that of the simple low pass

single pole filter ;

In the above two examples finite time whitening has been discussed. For

comparison consider whitening over an infinite time interval. The metric can be

h(t¡= ae-bt ; Oth(t)<LT (3.23)

0

s1(r)= :, a1h(r-lT) ,O<t<T (3.24)
l=-v

The integral equation to be solved for g(t) is

¡r
s1(t) =6fr g(Ð + o3 fl e-kl t - ul g(u)du (3.25)

Jo

From (3.24) the complete solution for g($ is found to be

[0 I
g(Ð=l X atebm l(n,.-*+Ap-Tr+Aprr¡ e.z6)

Ll=-v J
The branch metric, from equation (3.1) , then is

t'=[,å'r,"*] (Rr-.å,amebrir ) (3.27)

fr
where Rf = I r(t) ( A1e-b r- ¡[rs-"{t + A3ert )dt (3.28)

Jo

and c is a known constant.
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n*(Ð- white noise

prewhitener s.(Ð - may have infinite lSl

Figure 3.3

obtained simply by finding g""(t) instead of g(t) and evaluating the following equation,

fæ foo

^ 
=,1__ r(t)g-(t)dt - t,, j_*s(Ðe-(Ðdt

G-(co)=#
where G-(co) is the Fourier transform of g-(t).

s(t) = ¡ a¡ h(t - kT) , -æ( t( æ (3.31)

Or, one may use the prewhitener in frequency domain as shown in Figure 3.3.

The metric for this method is

(3.2e)

(3.30)

(3.32)
Í*

l,=l r*(Ðs*(Ðdt-
J-*

N-1

trf:[s.(t)]2¿t

where s*(t) = f a1f( t-lT ) = s(t) * hnw(t) ; f(t) = h(Ð * hpw(t) (3.33)
l=-N

where vl is the length of interference due to f(t).

The metric for the above examples for infinite time whitening can easily be obtained

from equations (3.31) and (3.32). Using these, the metric simplifies to

l. = X (*, å 
q-: ,:)q , R, = 

{: 
r.(Ð r( t-rr ) dt (3.34)

f*
t= I f(t)f(t-jr)dt

J_*
(3.3s)
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For the fìrst example of single pole noise

f(t) = st.¡1t) + c2.h'(t) (3.36)

where c1 and c2ara constants.

In general if the noise spectrum is all pole then f(t) consists only of derivatives of h(t).

Therefore in this case the number of interference terms is equal to that obtained for the

fi.nite solution.

For the second example f(t) = sr.¡1,) + ca.e-Tt (3.37)

where ca and c4àte constants.

Because of the term e-Yt, f(t) lasts for an infinite time. This means that in this case if

the infinite time solution is to be used infinite intersymbol interference results.

Therefore in this case the tail of the interference terms has to be truncated to v1 which is

generally larger than the interference terms due to channel.

3"4 Comparison between finite and Ínfinite time metrÍcs

For the finite time solution initially the branch metric is evaluated which is directly

used by the Viterbi algorithm. Here g(t) is always dependent on rhe present input and

the previous v inputs which constitute the ISI. Thus the general form of g(t) is

Therefore

(3.38)

(3.3e)

(3.40)

À1 is the branch metric which is affected only by the v interfering terms.Thus the
0

amount of ISI is independent of the whitening process. The term ) a1R1 indicates
l=-v

that L observed variables are necessary to calculate Àa. Thus L matched filters are

required at the receiver.

0

g(t)= Ð a1f1(t) ,0<t<T
l=-v
0¡r¡r

It=I f '(O\ft)dt-L/2fl s(t)e(t)dt
l=-uJo Jo

oft
Àt=I a1R1-1/2 [ s(t)g(r)dt

l=-v Jo
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For the infinite time whitening as seen ftom equation (3.32)

f(t)= ¡19*¡pw(Ð

If Sn(o) contains zeros they would appeff in hnw(t) as exponential terms E n, 
"- 

ut,

I
which span an infinite time. This immediately implies that unless these terms are

truncated, infinite ISI results .

The complete metric, from equation (3.33)

t=Ð(-,,ä q ¡r:)q, Rr=l-*rr(tJr)dt

Hence only one observed variable is needed to calculate the metric requiring only one

matched filter as opposed to L required for the implementation of the finite time metric.

3.5 Application of the Sequenúial algorithm
To apply the sequential algorithm the approach developed by Xiong is used here.

For this approach a sufficient condition is that the noise samples at the outpur of the

receiver must be statistically independent. A prewhitener is used up front to whiten the

coiored noise as in the previous section dealing with the infinite time interval whitening.

This, as shown in section 3.3, could lead to infinite intersymbol interference. Since the

oufput of the prewhitener can be considered as a signal with intersymbol interference in

additive white Gaussian noise, a whitened matched filter is followed next as shown by

Forney [5], representing the standard procedure for this kind of system. The

communication system is shown in Figure 3.4inblock diagram form.

s*(t) = s(t) * ho*(t) = x(t) * h(t) * he*(t)

= x(r) * hR(r) = X *rhn(t-kT)
k

Now as in the usual case sufficient statistics can be obtained after passing r*(t) through

(3.41)

(3.42)
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Rr,(D)=f(DXP-t¡ Prewhitener

Rp*{D)=fp*(DXp*(D1)

R(D)=fn(DXn@-1)

Whitened Matched Filter

Figure 3.4
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the matched filter hR(-Ð. At the oufput of h¡Ct) the noise samples have ro be whitened.

again.

w(t) hn( t - jT ) dr (3.43)

(3.44)

In D transform notation

a(D)=x(D)R(D)+n(D)

Using spectral factorization

(3.4s)

R(D) = fR(D) fR(D-l)

^,=l:? *o n^( r-kr ) hn( t- jr ) dt . 
{_

:Ixj-¡hp'+n¡
I

Following u"r".r,rilil::'tt 
the discrete autocorrelation function of hp(t)'

a@) = x(D)fp(D) fR(D-1) + w@)f*(D-l) (3.41)

Since statistically independent samples are required, a(D) has to be passed through a

whitening filter in the discrete domain, ie, 17 f*(D-1).

(3.46)

(3.48)

(3.4e)

(3.s0)

(3.s 1)

(3.52)

Y(D) =ffi = x@)fB(D) + w@)

h*(D) =#,)
where h*@) is the whitening filter.

Since hp(t) = h(t) * \*(t) ,R(D) can be expressed as

Also

R(D)=Rh(D)*Rp*(D)

Rh(D) = f@X(D-l) and \*(D) = fn*(D)fo*(D-1)

Therefore one can express fR(D) = f(D)fn*(D)

y(D) = x(D)f@)fn*@) + w(D)

26
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Y¡ can be found from this and hence the sequential atgorithm can be applied following

the standard procedure. In general the form of fo*(D) i* ffi which usually gives rise

to infinite ISI.

y(D) = *@)(D)ffi + w(D) (3.s4)
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Chapter 4

Sírmutratíora Results

4.î {ntroductåon

Simulations have been carried out using both the Viterbi algorithm and the

Sequential algorithm for different channels, namely the truncated single pole channel,

the Butterworth channel and the raised cosine channel. In the case of the Viterbi

algorithm, the finite time metric and infinite time mefric were investigated. The

sequential algorithm was applied using the approach described ín3.4.

4.2 Sinnutratiorn : Genenal

All the simulations were run on the IBM AMDHAL V7 mainframe computer at the

University of Manitoba. The programming language used was FORTRAN 77. The

sequential algorithm used in the simulations is a modified version of the one developed

by Dr. F.Xiong, and a listing of the program is given in appendix C. Also included is a

listing of a program for the Viterbi algorithm in appendix B.

To generate the white noise samples a random number generator subroutine was

used. By passing the white noise samples through a shaping filter in the discrete time

domain colored noise samples were generated. The discrete shaping filter must be such

that the output noise samples have the corresponding discrete autocorrelation function
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of the colored noise considered. This can usually be done by first finding the shaping

filter in the continuous time domain and then obtaining the discrete spectrâl factorization

of it's autocorrelation function. This procedure is described in detail in appendix A

along with an example.

4"3 T'he R.aised Cosine Chanr¡el

The first channel studied was the raised cosine channel ; a channel commonly found

in communication systems. The noise model is single pole, zero mean colored

Gaussian noise. As shown in3.2 the intersymbol interference in this case is finite.

Different bandwidths of the noise with respect to the signal were considered for two

different lengths of interference ; the impulse response being three symbol intervals

long and five symbol intervals long.

For an intersymbol interference channel in additive white Gaussian noise the signal

to noise ratio is defined at the output of the whitened matched filter. It cannot be defïned

at the receiver input because the noise power is infinite there. However the power of

colored noise is finite, and therefore the signal to noise ratio is, for colored noise,

defined at the receiver input.

The simulation results for the finite time metric and the infinite time metric with the

Viterbi algorithm are presented in Figures 4.1-4.5. From the results it is seen that the

finite time metric performs better when the bandwidth of the colored noise is less than

that of the signal, or when the noise looks more colored.

4"4 The T'nuncated Single Fole Channetr

This channel was used to gain more insight into the colored noise problem. The

impulse response of the channel was truncated at three symbol intervals. The noise in

this case was single pole colored noise with a white component,
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VA (f,rnite time metric)

Raised Cosine Channel

Noise BW: Signal BW

2 interference terms

VA - Viterbi algorithm

VA (infinite time metric)
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savR(dE)

Figure 4.2
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and therefore the noise spectrum has a zeÍo and a pole. Three different mixtures of the

colored and white components of the noise spectrum were considered, with the

bandwidth of the colored component being the same as that of the signal.

Both the finite time and infinite time metrics for the Viterbi algorithm were applied

to this channel with the signal to noise ratio is defîned at the receiver input here as well.

For the infinite time case, infinite intersymbol interference results due to the zero in the

noise spectrum. Thus the interference terÌns were truncated to five terms. The

truncation was based on the decay of the coefficients, where the coefficients smaller

than 0.I7o of the leading coefficient, were neglected. For all three noise mixtures the

length of truncation was five terms. The number of the states of the trellis for the finite

time metric is four compared to thirty two required for the ffuncated. infinite time

metric.

The Sequential algorithm was also applied for each of the noise mixtures in an

effort to compare the performances of the three approaches. The signal to noise ratio

(SNR) was defined at the output of the whitened matched filter as it is the standard, way

to define the SNR. Simulation results for the algorithms are shown in Figures 4.6-4.9.

The number of computations and the CPU time taken per decoded. symbol by the two

algorithms in each noise mixture are given in Tables A.la and.4.Ib.

4.5 The Euttenworth Channel

Finally the Butterworth channel, another commonly encountered channel in

communication systems was studied. Since this channel produces infinite intersymbol

interference only the Sequential algorithm was applied. For the simulation a two pole

Butterworth channel was selected. The noise in this case was Butterworth with a white

component ; i.e. having a two pole two zero spectrum. As in the single pole case three

different combinations of the colored and white components were consid.ered. The
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Average no. of Computations / decoded symbol

sNR(dB) Sequential
25Vo W. N.

Sequential
507o V/. N.

Sequential
757o W. N.

VA1
L=3

vA2
L=6

6 9.82 9.7 r 8.9 4 32

8 4.62 4.8 5.rt 4 32

10 3.34 3.46 3.59 4 32

t2 2.72 2.8 2.92 4 32

Single Pole Truncated Channel

Table 4.1a

V/.N.-White Noise

VAl- Viterbi finite time
VA1- Viterbi infinite time

W.N.-White Noise

VAl- Viterbi finite time
VA1- Viterbi infinite time

Single Pole Truncated Channel

Table 4.1b

40

Average CPU time / decoded symbol (seconds)

sNR(dB) Sequential
25Vo W . N.

Sequential
507o W. N.

Sequential
75Vo W.N.

VA1
L=3

vAc
L=6

6 0.107 0.107 0.105 0.002 0.016

8 0.042 0.045 0.05 0.002 0.016

10 0.026 0.021 0.03 0.002 0.016

T2 0.02 0.021 0.023 0.002 0.016



signal to noise ratio was defined at the output of the whitened matched. filter.

Figure 4.10 gives the results for the channel in each case. The number of

computations and the CPU time per decoded symbol are also given as shown in Tables

4.2aand4.Zb.The computational complexity of the Sequential algorithm is compared

with that of the Viterbi algorithm, which would be required had a simulation been done

obtaining a reasonable length of truncation for the interference terms using the

procedure described :r:,4.4. The Sequential algorithm seems to be following the general

trend of giving a better error performance when the noise mixture is more colored.

4"6 Sunamary and Ðiscussion

4.6lSummary

(a) The Viterbi Atgorithm

(i) The Raised Cosine Channel Results : Single Fole Noise

For the raised cosine channel the finite time metric performs better when the noise

bandwidth decreases relative to signal bandwidth. The computational complexity of

both metrics with the Viterbi algorithm is the same for this case. Generally, in the case

of all pole colored noise model the prewhitener consists of differentiators, which do not

produce more interference terms. Thus the amount of interference present is

determined by the channel. The solutions for the f,rnite time metric and the inhnite time

metric are different in this situation because of the samplers present in the finite solution

due to the singular functions added to satisfy the end conditions of the integral

equation. Therefore the Viterbi algorithm behaves differently for each metric.
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sNR(dB) Sequential
25Vo W. N.

Sequenfial
507o W. N.

sequentlal
757o W . N.

Viterbi
L=10

4 t7.35 17.35 77.39 512

6 5.4 5.64 6.r4 5t2

I 1.77 t.9 2.t 5t2

10 r.42 1.47 1.58 572

12 1.31 t.37 t.44 512

No. of Computations / decoded sSrmbol

Average CPU time / decoded symbol (seconds)

W.N.-White Noise

Butterworth Channei

Table 4.2a

V/.N.-V/hite Noise

Butterworth Channel

Table 4.2b
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sNR(dB) Sequenlal
257oW.N.

sequentlal
507o V/. N.

SequentlaI
75% V/. N.

Viterbi
L=10

4 0.184 0.185 0.189 0.303

6 0.055 0.056 0.064 0.303

I 0.013 0.014 0.016 0.303

i0 0.0i 1 0.011 0.012 0.303

L2 0.01 0.01 0.011 0.303



(ii) T'he Tnuncated single Fote channel Results : Fore zero ldoise

In the case of the truncated single pole channel where the noise has a pole zero

spectrum the error performance of the finite and infinite metrics with the Viterbi

algorithm are quite close though the finite time metric is the better one.

(iii) Ðiscussior¡ of Metrics

Generally, the simulations indicate that the finite time metric gives a better effor

performance than the infinite time metric. The main advantage of the finite time metric

is that no truncation is required if the channel intersymbol interference is finite.

Therefore the number of computations and the CPU time is mainly determined by the

channel.

For the infinite time metric the effective intersymbol interference is determined. by

the convolution of the channel impulse response and the prewhitener impulse response.

'When there is a zero in the noise spectrum giving rise to an exponential term in the

impulse response for the prewhitener, the effective impulse response increases giving

rise to a large number of interference terms. Since these should be truncated to apply

the Viterbi algorithm, the length of truncation determines the computational complexity

for the infinite time metric.

(b) The Sequential Algorithm

The metric for the Sequential algorithm can be considered as an infinite metric

without truncation. First consider the single pole channel. The error perforrnance of the

Sequential algorithm is better when the noise is more colored. It is difficult to compare

the error performances of the Sequential and Viterbi algorithms since the signal to noise

ratios have been defined at different points. V/hen the compurational complexities are

compared, one can easily see that as expected, if the signal to noise ratio is sufficiently

44



high the number of computations required for the Sequential algorithm is much

than that required by the Viterbi algorithm .

For the Butterworth channel a Viterbi simulation was not carried out.

computâtional requirements are compared based on a truncated model. As in

previous case the computational complexity of the Sequential algorithm is much

justifying its use in the colored noise problem.

4.62 Ðiscussion

In general, from the simulation results one can conclude that the algorithms

especially the Viterbi algorithm with the finite time metric and the Sequential algorithm

perform better when the noise is more colored, either compared to the signal or to the

noise itself when it contains a white componenl

This result may be explained in the following way. 'When the noise samples are

correlated the receiver can extract more information about the transmitted sequence

rather than when the noise samples are statistically independent. The metric for the

colored noise represents this information contained in the correlation of the received

samples. Therefore, the metric gives a better performance when the noise is more

colored. For the extreme case in the context of the colored noise, the noise spectrum

becomes a delta function in the frequency domain or alternatively noise can be treated as

an unknown constant in the time domain. Thus one can obtain virtually an error free

channel since the noise amplitude does not change with time.

less

The

the

less
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Chapten 5

ConcXusioms

The problem of the maximum likelihood sequence estimation (MLSE) of data in the

presence of the additive colored Gaussian noise has been studied in this thesis.

Application of both the Viterbi and the Sequential algorithms have been discussed. The

approach is based on the whitening of the colored noise using a prewhitener at rhe

receiver. In general , prewhitening results in infinite intersymbol interference.

Thus, to apply the Viterbi algorithm one should obtain a whitening filter with a

finite impulse response. This is achieved by solving an integral equation derived using

the noise autocorrelation function as shown in [21]. The time interval selected for

whitening is one symbol interval over which the branch metric is evaluated. in the

algorithm. Basically two types of noise models have been considered ; one which

contains a white component and the other does not. For the latter case singular

functions appeil in the solution for the corresponding integral equation to satisfy the

end conditions. The receiver in this finite time metric case needs L matched filters at the

receiver where the duration of the impulse response of the channel is LT seconds. The

amount of intersymbol interference for the calculation of the metric is determined by the

channel, independent of whitening for this procedure.
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If one considers an infinite time interval for whitening, exponential terms are

present in the prewhitener impulse response when the noise spectrum contains zeros.

The total amount of interference terms that need to be considered increases due to this

reason. Therefore, these terms have to be truncated in order to apply the Viterbi

algorithm. The Sequential algorithm, on the other hand, does not require any truncation

as it can be applied to the infinite intersymbol interference case. The procedure for the

Sequential algorithm has been developed based on the Xiong' s work 1241.'Ihe

receiver requires only one matched filter with the metric being the same as that derived

by Xiong.

Simulation results have been obtained for both the Viterbi and the Sequential

algorithms considering several channels and noise types. The error performance and. the

computational complexity have been analyzed. The results are compared to those

obtained using an infinite time metric with the Viterbi algorithm. From the simulation,

one can see that the finite time metric and the Sequential algorithm give a better error

performance, when the noise looks more colored. Also at relatively high signal to noise

ratios, the computational complexity of the Sequential algorithm is comparatively less

than that for the Viterbi algorithm.

Performance of the Sequential algorithm needs further investigation to determine

whether it in fact gives a better error perforrnance when the noise is more colored and

also to gain more knowledge about the algorithm since it has only been recently applied

to the intersymbol interference problem. Establishment of the equivalence of the Viterbi

and Sequential receivers is required to properly compare the error performances of the

two algorithms. Also the application of the reduced state algorithms, such as the M

algorithm and the T algorithm is a possible extension to the work presented here.
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,AFPENÐTX .4

Genenation of Coåoned NoÍse :

The procedure can be given by following steps.

1. Find the impulse response of the shaping filter for noise.

2. Obtain the discrete spectral factorization of the autocorrelation function of the

shaping filter.

3. Obtain the difference equation to generate the noise samples.

Step 3 is described for a general channel inL26l.

Consider the example given below.

Ex : Power density spectrum of noise

sn(o) =t'!&\r. <+Kn(t)=6frs-kltl (1)
(co¿+k/)

where Ç(r) is the autocorrelation function

A stable filter to generate this spectrum using white noise of sfrengrh o'A is

HÛco) = ,W, (2)v ' jro+k
The impulse response is

h(t) =,[N e-ktu(t) (3)

As a verification, the autocorrelation function of h(t) can be found. The autocorrelation

function is defined as

(s)

R(t) = 
l_ 

t,O h(t+r) dt

=ro 
f 

e-k e-k(t+t) ¿¡, r > o

(4)
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(6)

(t)

(8)

(e)

f*_or-^-krf, 
"-2kt 

¿1- LN v 
Jo 

ç ---- LIL

i.e., R(t)= s-kt

From symmetry R(t) = R(- r) : s - kltl

Now using the D- Transform theory

æ

R(D) = E R*D.
m=-æ

= ++ t [" *]* D-* * L* Ë f"-rrlm nm
'L m=l tTr=I

1

= g(D-') + g(D)

(10)

(1 1)

(r2)

(13)

(1s)

e(D)=i.p,[" ml*D^-1

l" KltD*- 1

2

æ
E-tu

m=1

= 1 _1
i-"-Kþ 2

R(D)= i -1+
i - e-krD 2

(14)

Therefore,

: l-"-'ot 
=_ ' =f(DX(D-1) (16)(r-.-tcrD-1X1 -e-kTD) - ^\Y/r\Y

This is the spectral factonzation. Using f(D) as the discrete transfer function, the

difference equation to generate noise samples can easily be obtained.

f(D)=P=,fi-#Iw(D) (r-r-r.t¡)
where N(D) and v/(D) are rhe colored and white noise in discrere domain.

1 _1
1-e-l{Ð-1 2
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Hence the difference equation ;

n(m)=ü-e¿kr w(m)+e-Hn(m-l) (18)

To check the result , the autocorrelation function can be found using equation (18)

E{n(m) n(m-j)} = fl - e ¿kr E{w(m) n(m-j)} * 
"-kr 

E{n(m-1) n(m-j)} (19)

Using the stationarity of noise,

R¡ = E{n(m) n(m-j)} ,

Rj= o + .-krR¡-t

Rj = "-kr 
R¡-t

Ro={t-"-zkT¡62 + 0

Ro=ofr

Thus the difference equation, in this case, generates

statistics desired.

Rj-t = E{n(m-l) n(m-j)} (20)

(2t)

(22)

(24)

(2s)

+ 
"- 

2kT gO

noise samples according to the

p{nz(m)} = R0 = {1 - e- zkr¡ B1w2(m)} +

z{t - -zwr "-kr 
p{*(m)n(m-1)} + e- 2kr n1n2qm-t; } (23)
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,&PPENÐTX B

Viterbi algorithm program tisting

C

C

C FILENAME :COLORED,SIMULATION OF VITERBI ALGORITHM
C FOR DETECTION OF A BINARY SIGNAL SEQUENCE IN
C COLORED NOiSE
C INFINTTE METRIC : TRUNCATED SINGLE POLE IMPULSE RESPONSE
C

TNTEGER NR,X(2060),Xr(300),rA(2),v,MLp(300),v1,
* ER,TER,TTER,TAIL,JFIN

REAL 2(2060)N1(2060),N2(2060),N3(2060),NF1(300),NF2(300),
* K 1,L 1,I 1,NF3 (300),F(0: I 0),FM(O: 1 0),G(0: 10),H(0: I 0),* P(2),wK(2)Ri(300),R2(300),R3(300),R(300),cN(0:2060),
x HM(0: 10),FF(0: 10),ND 1(3)ND2(3),ND3(6)

DTMENSTON DSEEDA(I2)
DOUBLE PRECISION DSEED,DSEEDA

C

PARAMETER(I-3,SNR-12.,MKM=I,MDM= 1,MAM=B,K 1=1.0,T= 1.,GM=2.,* k;.J.074,8=0.5,pI=3.1416,MG=6,WC=0.6667)
DATA DSEEDA/0. I 59457 4556D+10,0. 1208465533D+10,0. r200323639D+10,* 0.7875096350D+09,0.1993410604D+10,0.r836865622D+10,
x 0.1173313865D+10,0.1735559417D+10,0.1314304g31D+10,
* 0.2525285650D+09,0.5706309100D+08,0.5196523400D+09/

DATA ND 1/54.6,7.3 gg,t.0 /
DATA NDz/ t.649,r.0,0.606/
DATA ND3i2203 8.8,2982.25,403.51,5 4.6,7 .39,1.0 I
CALL $TRTM(TIME)

C

C CALCIILATION OF SOME CONSTANTS
C

V=L-i
V1=MG-1

JFIN=MKM*MDM*MAM
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L1=FLOAT(L)
AA=(K I * * 2 -cÌ|j4* ¿< 2) / (2.t cMx(B _cN4))

cc=(K 1 
* x 2-B * * 2)/(GM* x 2_B-+ 

-* 2)
A | ={xA,A'xBXP((GM-B)xL)
A2=A*CC
AJ=4*64x I 1.0-EXP(GM-B)*L)
DO 6 I=O,V

F(I)=d*s¡p(B * 
Ð 

* (EXP(- (GM+B ) 
*t¡ -EXp(- (GM+B ) 

*L))/(GM+B 
)

G(t)=A*EXP(B*Ð* @>P(-2.x8 xi)-EXP(-2.*B *L)/(2. *B)

rF(r.EQ.O) coro 6

FM(I)=AxEXP(-B *I)x (1.0-EXp((GM+B)x(r_J)))/(cM+B)
HM(f=r¡41¡¡

6 CONTINTTE

DO 16I=0,V1
iF(r.cE.(MG-L) GOTO 17

H(Ð =AxEXp(B xi) * (EXp(- (GM+e ¡ 
* g -EXp( (GM+B ) 

* (r_+i)))/(GM+B)
GOTO 16

17 H(I)=4xs¡p(B*i)*(EXP(-(GM+e¡*¡-E)p((GM+B)*MG)/(GM+B)
76 CONTINL]E

FF(0)= (41 *F(0)+42*G(0)+43 *H(0))/2.

DO 31 I=l,V
FF(Ð=0.5*A 1 

x@(I)+FM(I))+42*G(i)+0.5*A3 *(H(r)+rIÀ¡r(r)

31 CONTINUE
DO 32I=L,VI
FF(I)=0.5*43*H(I)

32 CONTINUE

S GM=((A* x2)/(2.*B)* ( 1.0-E)G(-2. *B*L)
SGN=SGW((1.0+(2./TVC*K1))*(10.0*'.(0. r *SNR)))

C

C GENERATION OF SIGNAL & NOISE SEQIJENCES
C

P(1)=0.5

P(2)=0.5

NR=256

NDMP=2
IA(1)=-1

TTER =0
DGC=0

DDGC=0

DO 999 MK=I,MKM
DSEED = DSEEDA(MK)
TER =0
DO 140 MD=I,MDM
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42

DGC=DGC+1

NR1=2060

NR2=2060

CALL GGDA(DSEEDNR 1,NDMP,P,IA,WK,X)
DO I K=l,NRl
rF(x6).8Q.2) rrrEN
x(K)=l
ELSE

x(K)=-1
ENDIF

CONTIN{JE
CALL GGNML(DSEED,NR2Z)
DO 2I=1,NR2
Z(I)=$qP1lSGN)*ZG)

C

C FORMING COLORED NOISE COMPONENT
C

LFl=1
LLl=8xNR
cN(0)=0.0
DO 42I=LFiJ-Ll
CN(I)=- 1.469*Z(I)+E)G(K 1)*CN(I- 1)

rF(r .EQ.l) GOTO 42

CN(I)=CN(D +0.245*ZG- L)

CONTINUE
DO 51 I=LFI-I Ll
N1(I)=0.0

N2O=6.6
N3(I)=0.0
DO 52 J=l,3
IF((-J+I).LE.0) GOTO 52

N 1 O=¡¡ 1 1i¡*CN(I-J+ 1 )*ND i (J)

CONTINLiE

Nl Q)=$qp1((0.449 sE-02)x(0.01 83))*N I (I)
DO 53 J=1,3

IF(Q-J+1).LE.0) coro s3

N2(I)=¡211;*CN(I-J+ 1 )*ND2(J)
CONTINIJE
DO 54 J=1,6

IF(Q-J+1).LE.0) GOTO s4
N3 Q)=¡3 1i¡*CN(I-J+ 1 )*ND3(J)
CONTINIIE
N3 O=$QB1(0. I I 14E-04)*(4. 538-05))*N3 (Ð

52

54
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51 CONTINTJE

C

C

DO i41 M=I,MAM
DO 41 I=l,NR+Vl
NFi (D=NI1 OIR* (M- 1)+I)

NF2(D=¡26{R*(M-1)+I)
NF3(f =¡3 ç¡¡s* (M- i)+i)
xF(I)=¡ç¡qs*(M-1)+I)

41 CONTINUE
DO 44I K=NR+INR+VI

441 XF(K)=O

C

C FORMING MATCI{ED FILTER OIP
C

DO 7 LL=I,NR+VI
R1(LL)=O.0

R2(LL)=0.0

R3(I-L)=0.0
DO 81 J=O,V

R 1 (I-L)=R 1 GL)+)G(LL+J)*F(J)
81 CONTINUE

DO 82 J=l,V
rF((LL-J).LE.0) cOrO 83

R I (LL)=R 1 (LL)+XF(I-L-J)*FM(J)

82 CONTINIJE
83 R1(LL)=RlGL)+NFI(r-L)

DO 84 J=0,V

R2(LL)=R2(LL)+XF(LL+J) xG(J)

84 CONTINL]E
DO 85 J=l,V
rF((LL-J).L8.0) cOrO 86
R2(LL)=R2(I-L)+XF(LL-J) * G (J)

85 CONTINUE
86 R2@L¡=4*R2(I-L)+NF2(-L)

DO 87 J=0,V1

R3 (LL)=R3 &L) +XF(LL+J) * H(J)
87 CONTINUE

DO 88 J=l,V
rF((r_L-J).LE.0) cOrO 89

R3 (I-L)=R3 (LL)+XF(I-L-J) * HM(J)
88 CONTiNLIE
89 R3(I-L)=R3(I-L)+NF3(LL)
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R(LL)=A i *R 
1 (LL) +42*R2G,L) / A+ AZ*R 3 (LL)

7 CONTINUE
C

C ESTIMATION OF TI{E SEQIIENCE
C

CALL VAG.,FF,V I,NR,MLP)
ER=0

MC5=NR

DO 514 I=1,MC5
ER=ER+rABS (MLp(r)_X(NrR*(M_ I )+Ð)
IVRITE(6,*)'MLP(',I,')=',MLP(I),'X(',NR*(h4- 1)+I,')=',XO[R*(M- i)+I)

514 CONTINUE

TER=TER+ER

141 CONTINTIE
140 CONTINUE

TTER=TTER+TER

999 CONTINUE
PRE=FLO AT(TTER)/(2* NR4' JFII9
WRITE(6,*)',OVERALL ERROR 

"TTER/2,'pR@)="pREWRITE(6,*)'ALOG l0eRG))="ALOG 1O(PRE)

WRITE(6, *)' TOTAL NO.OF BITS TXED 

"NRx 

JFIN,'K l ="K I
WRITE(6,*)'SGN=',SGN,'SNR=',SNR,'SGM=',SGM
CALL $TPTM(TIME)
'WRITE(6,727) TIME

727 FORMAT(",' CPU TIME:',F 10. 3, ",'SECONDS')
STOP

END

C

C

suBRourINE VA(R,FF,V I NR,Ntr_P)
REAL M(0: 65),MT(O: 65),R(300),MM(300,0:65),S (0: 65),* QQ,MO,MI,MAX,FF(0:10)
INTEGER TAIL,P(0:65,300),MLP(300),pT(0:65,300),pp(O:65,30),

* PTT(0:65,300)ßCNR,Vi,MLJ
C

C IMTIALZATION
C

DO 70 I=0,2**V1-1
DO 70 J=1,V1

K=I/(2t*(J-1))
PT(IJ)=MOD(K,2)
rF(PT(r,J) .EQ.O) TrÌEN
PT(IJ)= -1
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ENDIF

10 CONTINUE
Do 75I=0,2**V1-1
DO 75 J=1,V1

P(I,V1-J+1)=PT(I,Ð

15 CONTINT]E

DO 80 J=0,2*xV1-1

M(J)=0.0

DO 80 K=1,V1

QQ=0.0
DO 85 I=l,K
QQ=QQ+FF(I- 1)*p(J,K-I+t)

85 CONTINUE
M(J)=tr41¡¡.. g¡ (K) -QQ) *P(J,K)

80 CONTINUE
Do 90 J=0,2**V1-1
S(J)=6.6

DO 95I=1,V1
S (J)=5 1¡¡*P¡'(f *P(J,V 

1 -I+ 1 )
95 CONTINUE
90 CONTiNUE

C

C VITERBI ALGORITHM
C

LFl=V1+1
LN1=NR

DO 100 K=LFIJ-NI
Do 95i J=0,2x*v1-1
rF (MOD(J,2) .EQ.0) TrrEN
J}=I/2
Jt=(I+2**Yl)12
P(J,K)=-1

ELSE

J0=(J_t)12

II=(I-l+2**Yt)12
P(J,K)=1

ENDIF
M0=M(J0)+ ß(K)-S (J0)-FF(O)*P(J,K))*p(J,K)

M1=M(Ji)+ (R(K)-S(J1)-FF(0)*P(J,K))*p(J,K)

rF (M0 .cT. Ml) TIIEN
MT(J)=M0

DO 110I=1,K-1
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110 PTT(J,Ð=P(J0,I)

ELSE

MT(J)=Mi
DO 120I=l,K-i

120 PTT(J,I)=P(Jl,r)
ENDIF

951 CONTINL]E
Do 130 J=0,2**v1-1
M(j)=l'a11¡¡

MM(K,J)=M(J)
DO 135 I=1,K-1
P(J,I)=P111¡,9

135 CONTiNL]E
130 CONTINUE
iOO CONTINIIE

C

C DECISION MAKING: ML PATH
C

NRl=NR
CALL MAXM(MM,VI,NRl,MAX,MLJ)
DO 781 I=I,NR

781 MLP(I) =PO{LJ,Ð
RETI]RN
END

c
C FIND TTIE MAXIMUM METRIC VALUE
C

SLIBROUTINE MAXM(MM,V I,K,MAX,MLI)
REAL MM(300,0:65),MAX
INTEGER VI,K,MLI
MAX=MM(K,0)
MIJ=0
DO 940 J=0,2**V1-1
rF(MAX.cT. MM(KJ)) GOTO 940
MAX=MM(K,J)
MLI=J

940 CONTINITE
RETI'RN
END
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APPÐNÐTX C

Sequential algorithm prograrn tisting

C FILENAME:SIMTILATION OF SEQIIENTIAL DETECTION OF BINARY
C SIGNAL SEQT]ENCE IN TT{E PRESENCE OF INFIMTE ISI AND
C COLORED GAUSSIAN NOISE

C BUTTERWORTH CHANNEL

C

INTEGER NR,NDMP,X(2048),XF(280),XEF(256),rA(2),V,ER,TER,CL,TCL

REALp(2),p0(200),WK(z),2(2160),zF(280),y(280),
* F(2),G( 10),AA(2),AAA(2)

DTMENSiON DSEEDA(25)

DOUBLE PRECIS ION DSEED,DSEEDA

C

DATA DSEEDA/0. 1 59 457 4 5 5 6D+ 1 0, 0. 1 20846553 3D+ 1 0, 0. t200323639D+ 1 0,
* 0.7875096350D+09,0.t9934i0604D+10,0.1836865622D+10,
* 0.1173313865D+10,0.173555941iD+t0,0.1314304831D+10,
* 0.2525285650D+09, 0.5706309100D+08, 0.5t96523400D+09,
* 0.2827359430D+09,0.1943029728D+t0,0.4351107100D+0g,
* 0.1910901950D+10, 0.i893766405D+10, 0.4it5504610D+09,
* 0.2134016537D+i0, 0.1814803971D+10, 0.I9704ZBB4SD+10,

'r' 0.4805104160D+09,0.2093775370D+10, 0.395242r830D+09,
* 0.2092423249D+10/

DATA Fi0.138s,0.53ss/

DATA AAN0.347 4,-0.1222 I
CALL $TRTM(TIME)

C

c x* READTNG IN Po(Z)

C

READ(8,150) L,SNR,ScN
I 50 FORMAT(3X,I2,5X,F6.3,5X,F9. 3)

READ(8,200) (P0(!,I= 1,200)

WRITE(6,200) (PO(f ,i=1,200)
200 FORMAT(1X,sEi5.6)

C
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C "* CAI CULATING OF SOME CONSTANTS

C

LD=256

LD1=LD+l

LF=LD+L

V=L-1

Ll=2
Vl=L1-1

DO 113 I=i,2
AA(I)=Art41¡

113 CONTINUE

DO 117I=1,L1

117 G(I)=F(r)

WRrTE(6,250)L,SNR,S GNJ-D
250 FORMAT (lX,' I.-',12/ 1 X,' SNR=',F I 0.6/

* lX,'SGN=',F 10.6/1X,'LD=',I3l)

C

C ** GENERATON OF SIGNAL AND NOISE SEQUENCES
C

DSEED=DSEEDA(1)

\\iRITE(6,115) DSEED

P(1)=0.5

P(2)=9.5

NR=2048

NDMP=2

IA(1)=-1

TER=0

NF=NR/LD

TCL=0

MDM=25

DO i40 MD=I,MDM
CALL GGDA(DSEED,NR,NDMP,P,IA,WK,X)

DO I K=I,NR
i x(K)=x(K)-i

CALL GGNML(DSEED,2160,Z)

wRrrE(6,115) DSEED

1 1 5 FORMAT(ix/lX,'DSEED=',¡29. 12¡

DO 13 I=1,2160

13 Z(I)=SQRT(SGIÐ*Z(I)

C
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C

C FORMING { Z ] SEQUENCE(TITE OUTPUT OF TT]E WHITENING MATCIIED FILTER)
C

C (1) FORMING INFORMATION AND NOISE FRAMES
C

MF=8

DO 3 M=I,MF
wRrTE(6,300) M

3 0 0 FORMAT (tX / / tx,', M="rz t)
DO 4 I=IJ-D
xF(I)=X(LD*(M-1)+I)

4 Zß(I)=Z(-D*Qvl-1)+I)
DO 5 I=LD1,LF

x¡(I)=0
5 ÆG)=Z(I-D*(M-1)+I)

C

C FORMING OUTPUT OF TFIE WHITENED MATCHED FILTER
C

DO 30i K=I,LF
Y(K)=0.0

DO 302I=1,L1
IF((K-I+1).LE.0) GOTO 302

Y(K)=Y(K)+F(I) * )G(K-I+ 1 )
3O2CONTINLIE

DO 303 I=1,2

IF'(K-Ð.L8.0) GOrO 303

Y(K)=Y11ç¡aAAA(I)* Y(K-Ð
303 CONTiNUE

3Ol CONTINUE

DO l0 K=IJ-F
r0 ZF(K)-.ZF(K)+Y(K)

DO 312 K=I,LD
312)(EF(K)=0

C

C

C ESTIMATION OF TI{E SEQI-IENCE

C

CALL MS A(ZF,)GF,G,AA J- J.D,LF,SGN,PO,CL)
K1=(M-1)*LD+1

K2=MxLD
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WRITE(6, i 30) (XG),i=K 1,K2)

i 3 0 FORMAT(/I X,' TRANS MMTTED S EeUENCE :'/( 1 X, I 00i I )
wRrTE(6,1i0) XEF

1 10 FORMAT(/iX,'ESTIMATED SEeITENCE:'/(1 X,100r t))
C

C CALCL]LATE TITE ERROR

C

ER=0

DO 14I=I,LD
14 ER=ER+IABSQGF(I)-X(K1 - 1+Ð)

\ryRITE(6,125) ER

1 25 FORMAT( 1Xll X,'ERRO=',13)
TER=TER+ER

TCL=TCL+CL

3 CONTINTIE

I4OCONTiNUE

\ryRITE(6,120) TER,TCL
1 20 FORMAT( 1 x/l x,' TorAL ERROR=',16,5x,' TorAL coMpurATIoNS =',16)

WRITE(6,*)'PRE=',FLOAT(TER)/(LD*MF*MDÌvÐ

WRITE(6,*)'LOG(PRE)=',ALOG 10(FLOAT(TER)/G_D*MF*MDÀiÐ)
CALL $TPTM(TIME)
wRrTE(6,727) TrME

727 FORMAT(",'CPU TIME:',Fi 0.3,,',,SECONDS,)
STOP

END

C

C

SUBROUTINE MSA(ZF,)GF,G,AA!TD,LF,S GN,PO,CL)
TNTEGER*2 S(3000,284),S 1(100,284),S2(100,284),S3(100,284),
* s4(100,284),
* s5(100,284),S6(100,284),S7(100,284),S8( I 00,284),S9( 100,284),
* s 10(100,284),S 11(100,284),S l2(100,284),5 13(100,284),S 14(10 0,284),
* si5(100,294)

REAL ZF(LÐ,c(10),AA(2),p0(200),ss(3000,s),AM,M0,M1,ME,
x ss 1(100,5),SS2(100,5),ss3(100,5),SS4(100,5),SS5(100,5),
* ss7(100,5),ss8(i00,5),ss9(i00,5),ss 10(100,5),ss 1 I (100,5),
* ss I 3(100,5),S S 14(100,5),S S 15( 100,5),SS 12(100,5),SS6(100,5)
INTEGER*2 LPP(5000),A(282)

INTEGER CL,T,V,SH(16)
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TNTEGER )GF(I_D)

C

C DEFINING METRIC FUNCTION

C

ME(Z,Y,SGN,P0Z)=(-1.442695*(0.9 189385+0.5*ALOG(SGI.Ð+
* ((z-v¡* * rrl(2* S GÐ+ALOG (P0Z)) - 1. 0)

C

C INITIALTZATION

C

AM=-i0000.0
DO 4 K=1,16

4 SH(K)=K-l
DO 1444 J=1,5

DO 7442I=1,3000

7442 SS(I,J)=0.0

DO 1444I=1,100

ss 1(i,J)=0.0

ss2(I,J)=0.0

ss3(I,J)=0.0

ss4(I,J)=0.0

ss5(I,J)=0.0

ss6(I,J)=0.0

ss7(I,J)=0.0

SS8(I,J)=0.0

ss9(I,J)=0.0

SS 10(I,J)=0.0

ss I 1(I,J)=0.0

SSi2(I,J)=0.0

SS 13(I,J)=0.0

ss 14(I,J)=0.0

7444 SSi5(I,J)=0.0

DO 7 J=1,284

DO 2I=1,3000

2 S(I,Ð=0

DO 7 I=1,100

s1(I,J)=O

s2(I,J)=0

s3(I,J)=0

s4(I,J)=0

s5(I,J)=0
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C

c
C

30

s6G,J)=0

s7(i,J)=0

s8(I,J)=0

s9(i,J)=0

s 10(i,J)=0

s11(I,i)=O

s 12(I,J)=0

s I 3(i,J)=O

s14(I,J)=0

S15(I,J)=Q

YG=0.

Y1=G(1)

s(1,281)=1

s(2,281)=1

ZK=10*(ZF(1)+4.1)

KZ1=INT(ZK)

I{ZZ=KZ|+l
P0Z=P0(I<22)-P0(I<ZL))*(ZK-I{zI)+p0(Kzt)

M0=ME(ZF( 1),Y0,S GN,P0Z)

Mi=ME(ZF( 1),Y i,S GN,POZ)

IFMO-MI) 1,1,3

s(1,1)=1

SS(1,1)=l¿t

ss(1,2)=Y1

s(2,1)=0

ss(2,1)=M0

ss(2,2)=Y0

GOTO 30

s(1,1)=0

ss(1,1)=M0

ss(1,2)=Y0

s(2,1)=1

ss(2,1)=M1

ss(2,2)=Yi

METRICS OF SUCCESSORS OF TOP PATH

NS=2

LPP(1)=1

V=L-1
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M=l00
T=3

CL=1

10 ASSIGN 40 TO KS

CALL HOS(ZF,S,SS,c,AA,Lpp,T,3000J_,LD,LF,V,SGNPO,CLÀIS,NC,SH( i))
FO{C) 115,115,118

c
ii8 DO l00I=1,7

DO 6100 J=l,5
6100 SSl(I,J)=SS(I,J)

DO 100 I=1,284

100 s1(IÐ=s(rJ)
NS=T

11 ASSIGN 41 TO KS

CALL HOS(ZF,S 1,SS 1,c,AA,Lpp,T,MJ-,LD,LF,V,SGNPO,CL,NS NC,SH(2))
F(NC) 115,115,218

C

218 DO 200I=1,7

DO 6200 J=l,5
6200 ss2(I,J)=SS i(r,J)

DO 200 J=1,284

200 s2(IÐ=sl(r,J)
NS=T

L2 ASSIGN 42 TO KS

CALL HOS(ZF,S2,S52,G,AA,LPP,T,MTJ-DJ.F,V,SGN,PO,CL,NS NC,SH(3))
F(NC) 115,115,318

C

318 DO 300I=1,7
DO 6300 J=l,5

6300 ss3(I,J)=SS2(I,J)

DO 300 I=1,284

300 s3(IJ)=$/ç1,¡;

NS=T

13 ASSIGN 43 TO KS

CALL HOS(ZF,S3,SS3,G,AA,Lpp,T,M,L,LD,LF,V,SGN,PO,CL,NS,NC,SH(4))

FO{C) i15,115,418

C

418 DO 400 I=i,T
DO 6400 J--1,5

e00 ss4(r,J)=SS3(rJ)
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DO 400 I=1,284

400 s4(IJ)=s3(r,J)

NS=T

14 ASSIGN 44 TO KS

CALL HOS(æ,54,SS4,G,AA,Lpp,T,MJ-,LDJ-F,V,SGN,PO,CL,NS,NC,SH(5))

F(NC) 1ls,i15,s18
C

518 DO 500I=1,7
DO 6500 J=l,5

6s00 sss(r,J)=SS4(iJ)

DO 500 J=1,284

500 s5(IÐ=S4(r,J)

NS=T

15 ASSIGN 45 TO KS

CALL HOS(ZF,S5,SS5,c,AA,LPP,T,MJ-,LDJ-F,V,SGN,PO,CL,NS NC,SH(6))
rF(NC) 11s,11s,618

C

618 DO 600 i=i,T
DO 6600 J=l,5

6600 SS6(I,J)=SS5(I,J)

DO 600 J=L,284

600 s6(rfl=55¡1,¡¡

NS=T

T6 ASSIGN 46 TO KS

CALL HOS(ZF,S6,5S6,G,AA,Lpp,T,M,LJ_D,LF,V,SGN,P0,CL,NS NC,SH(7))
F(NC) 115,115,718

c
718 DO 700 I=l,T

DO 6700 J=l,5
6700 ss7(r,J)=SS6(r,J)

DO 700 J=1,284

700 s7(I)=56ç¡,¡¡
NS=T

I7 ASSIGN 47 TO KS

CALL HOS (ZF,S7,SS7,G,AA,LPP,T,MJ-J-DJ-F,V,SGN"PO,CL,NS,NC,SH(8)

FO[C) 115,115,919

c
818 DO 800I=1,7

DO 6800 J=l,5
6800 SS8(i,J)=SS7(I,J)
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DO 800 I=1,284

800 s8(r,J)=s7(r,J)

NS=T

18 ASSIGN 48 TO KS

CALL HOS(ZF,Sg,SS g,G,AA,Lpp,T,M,L,LD,LF,V,SGN,PO,CL,NS,NC,SH(g))

IF(I.{C) 115,115,918

c
918 DO 900I=1,7

DO 6900 J=1,5

6900 SSg(I,J)=SS8(i,J)

DO 900 J=1,284

900 s9(IÐ=S8(r,J)

NS=T

19 ASSIGN 49 TO KS

CALL HOS(æ,S9,SSg,c,AA,Lpp,T,M,L,LDJ-F,V,SGN,PO,CL,NS NC,SH(10)
rF(NC) 115,115,1018

C

1018 DO 1000I=1,7
DO 7000 J=l,5

7000 ss10G,J)=SS9(iJ)

DO 1000 J=1,284

1000 s10(r,J)=S9(rJ)

NS=T

20 ASSIGN 50 TO KS

CALL HOS (ZF,S 10,SS 10,G,AA,LPP,T,MJ-,LD,LF,V,ScN,pO,CLNS,NC,SH(1 1))
IF'O{C) 1ls,11s,11i8

C

1118 DO 1100I=1,7
DO 7100 J=1,5

7100 ss 1 1(r,J)=SS 1O(i,J)

DO 1100 J=7,284

1 100 s I l(r,J)=S1O(r,J)

NS=T

2I ASSIGN 51 TO KS

CALL HOS(ZF,S 1 1,SS 1 i,G,AA,LPP,T,M,L,LD,LF,V,SGN,PO,CLNS,NC,SH(12)
F(I.IC) 115,115,1218

C

i218 DO 1200I=1,7
DO 7200 J=l,5

7200 ss i2(i,J)=sSi 1(r,J)
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DO 1200 J=1,284

1200 s 12(r,J)=S I 1(r,J)

NS=T

22 ASSIGN 52 TO KS

CALL HOS(ZF,S 12,SS 12,c,AA,Lpp,T,MJ-,LD,LF,V,ScN,p0,CLNS,NC,SH(13))
FO{C) 115,115,i318

C

1318 DO 1300I=i,t
DO 7300 J=1,5

7300 ss 13(r,J)=ss i2(r,J)

DO 1300 I=1,284

1300 s13(I,J)=S 12(r,J)

NS=T

23 ASSIGN 53 TO KS

CALL HOS(ZF,S 13,SS 1 3,G,AAIPP,T,MLLD,LF,V,SGN"P0,CL,NS,NC,SH(14))
F(t{c) 115,115,1418

C

14i8 DO 1400I=1,7
DO 7400 J=l,5

7400 ss 14(r,Ð=ss 13(r,J)

DO 1400 J=1,284

1400 S 14(I,J)=S 13(r,J)

NS=T

24 ASSIGN 54 TO KS

CALL HOS(ZF,S 14,SS 14,G,AA,LPP,T,MJ,,LD,LF,V,SGN,PO,cL,NS,NC,SH(1 5)
F(NC) 115,115,15i8

C

1518 DO 1500I=1,7
DO 7500 J=1,5

7500 ss 15(r,J)=SS 14(r,J)

DO 1500 J=1,284

1s00 sls(r,J)=S1aGJ)

NS=T

25 ASSIGN 55 TO KS

CALL HOS(ZF,S 15,SS 1 5,G,AA,LPP,T,M,L,LD,LF,V,SGNPO,CL.}{S,NC,SH( 16)
F(NC) 115,i15,1618

C

C HAS COME OUT FROM A STACK. EXAME WHICH STACK iT HAS COME OUT
C FROM AND GO TO FINAL DECISION IF TI{E STACK iS TI{E FIRST STACK,
C OR MAKE A TENTATIVE DECISION AND RETURN TO PREVIOUS STACK TO
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C CONTiNLIE SEARCHING.

C

C

1618 rF(AM.cT.-10000.0) coro 1i6
WRITE(6,9) AM

9 FORMAT(lxllX,'STACKS OVERFLOW'/1X,'AM='JÐ0.8)
DO 92 J=1,282

92 A(J)=$1511,¡¡

AM=SSlJ(1,1)

GOTO 116

C

1ls rF(CL.EQ.5000) coro 116

GOTO KS, (40,4 1,4 2,43 A 4,4 5,4 6,41,48,49,50,5 r,52,53,5 4,5 5)

40 iF(AM.GT.SS(1,1) GOTO 116

DO 401 J=L,282

401 A(J)=$(1,¡¡

AM=SS(1,i)

GOTO 1i6
c
4L iF(AM,cT.SSl(i,i) C.OTO 4T2

DO 4i1 J=I,282
47I A(J)=S1(l,J)

AM=SS1(1,1)

412 DO 413 I=1,100

DO 4413 J=1,5

4413 SSl(I,J) =0.0
DO 413 J=1,284

413 S1(IÐ=0.0

DO 4741=L,284

DO 415 I=7,2997

415 S(I,J)=$(t41,¡¡

DO 414I=2998,3000

414 S(I,J)=0.0

DO 44141=1,5

DO 4415I=1,2997

4415 SS(i,J)=SS(I+T,J)

DO 44t4I=2998,3000

4414 SS(I,J)=0.0

NS=2997

GOTO 10
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C

42 rF(AM.GT.SS2(1,1)) GOTO 422

DO 421J=1,282

421 A(J)=S2(i,J)

AM=SS2(1,1)

422 DO 423I=1,100

DO 44231=I,5

4423 SS2(I,J) =0.0
DO 423 J=1,284

423 S2(r,J)=0.0

DO 424 J=1,284

DO 4251=1,97

425 S1(I"f=$1ç¡''.1,¡¡

DO 424I=98,100

424 S1(IJ)=0.0

DO 4424 J=7,5

DO 4425I=L,97

4425 SS l(I,J)=SS l(I+TJ)
DO 4424I=98,100

4424 SS1(I,J)=0.0

NS=97

GOTO 11

C

43 rF(AM.GT.SS3(1,1) GOTO 432

DO 431 J=1,282

43r A(J)=$311,¡¡

AM=SS3(1,1)

432 DO 433 I=1,100

DO 4433 J=1,5

4433 SS3(I,J)=0.0

DO 433 I=1,284
433 S3(rJ)=O.0

DO 434 J=I,284

DO 435 I=1,97

435 S2(IJ)=$l(.'1,¡¡
DO 434I=98,100

434 S2(iÐ=0.0

DO 4434 J=l,5
DO 44351=1,97

4435 SS2(I,J)=SS2(I+T,J)
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DO 4434I=98,100

4434 SS2(I,J)=0.0

NS=97

GOTO 12

C

44 rF(AM.GT.SS4(1,1)) GOTO M2
DO 441 J=7,282

441 A(J)=$411,¡¡

AM=S5411,1¡

442 DO M3I=1,100
DO 44431=1,5

4443 SS4(r,J)=0.0

DO 443 J=1,284

443 54(r,J)=0.0

DO 444 J=I,284
DO 445I=1,97

445 S3(IJ)=$l¡1-,'1,¡¡

DO 444I=98,100

444 S3(I,J)=0.0

DO 4444 J=L,5

DO 4445I=I,97
4445 SS3(I,J)=SS3(I+TJ)

DO 4444I=98,100

4444 SS3(I,J)=0.0

NS=97

GOTO i3
C

45 rF(AM.GT.SS5(1,1) GO-ïO 4s2
DO 451 J=1,282

45r A(J)=$51i,¡¡

AM=SS5(1,1)

452 DO 453 I=1,100

DO 4453 J=i,5
4453 SS5(r,J)=0.0

DO 453 I=1,284

453 S5(i,J)=0.0

DO 454 J=1,284

DO 455 I=1,97

455 S4(I,J)=${ç1ç1,¡¡

DO 454I=98,100
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454 S4(IÐ=0.0

DO 4454 J=1,5

DO 44551=1,97

4455 SS4(I,J)=SS4(I+TJ)

DO 4454I=98,100

4454 S54(i,J)=O.0

NS=97

GOTO 14

c
46 iF(AM.GT.SS6(1,1)) 3OTO 462

DO 461 I=1,282

46t A(J)--S6(1,J)

AM=S56(1,1)

462 DO 463 I=1,100

DO 4463 J=I,5

4463 SS6(I,J)=0.0

DO 463 J=1,284

463 S6(rÐ=0.0

DO 4& J=1,284

DO 465 I=I,97
465 S5(I,J)=SS(I+TJ)

DO 4& I=98,100

464 S5(I,J)=0.0

DO 4464 J=I,S

DO 4465I=1,97

4465 SS5(I,J)=SSS(I+T,J)

DO 4464I=98,100

4464 SS5(I,J)=0.0

NS=97

coTo 15

C

47 rF(AM.GT.SS7(1,1)) GOTO 472

DO 471I=1,282

47r A(J)=$711,¡1

AM=SS7(1,1)

472 DO 473I=1,100

DO 4473 J=1,5

4473 SS7(r,J)=0.0

DO 413 J=1,284

473 S7(rJ)=0.0
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C

48

DO 474 J=1,284

DO 4751=1,91

475 S6(IJ)=$S¡141,¡¡

DO 414I=98,100

474 56(rÐ=9.9

DO 4414 J=I,S

DO 44751=1,91

4475 SS6(I,J)=SS6(i+TJ)

DO 4474I=98,100

4474 SS6(I,J)=0.0

NS=97

GOTO 16

DO 481 J=1,282

48t A(Ð=S8(1,J)

AM=SS8(1,1)

482 DO 483 I=1,100

DO 4483 J=1,5

4483 SS8(r,J)=0.0

DO 483 J=1,284

483 S8(rÐ=0.0

DO 484 I=1,284

DO 485 I=1,97

485 S7(Ifl=$7ç¡a1¡¡
DO 484 I=98,100

484 S7(rÐ=0.0

DO 4484 J=l,5
DO 4485 I=1,9J

4485 SS7(I,J)=SS7(I+TJ)

DO 4484I=98,100

4484 SS7(r,i)=0.0

NS=97

GOTO i7
C

49

IF(AM.GT.SS8(1,1)) GOTO 482

49r

rF(AM.GT.SS9(1,1) GOrO 492

DO 49i J=I,282
A(J)=S911,¡¡

AM=SS9(1,1)

DO 493I=1,i00492
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DO 4493 J=I,5

4493 SS9(r,J)=0.0

DO 493 I=I,284
493 S9(IJ)=0.0

DO 494 J=I,284
DO 495 I=1,97

495 S8(I,J)=$$ç¡a1J¡

DO 494 I=98,100

494 S8(r,J)=0.0

DO 4494 J=1,5

DO 4495I=1,97

4495 SS8(I,J)=SS8(I+TJ)

DO 4494I=98,100

4494 SS8(i,J)=0.0

NS=97

GOTO 18

C

50 rF(AM.cr.ss10(1,1) coro s02
DO 501 J=1,282

501 A(J)=51911¡¡

AM=SS10(1,1)

502 DO 503 I=1,100

DO 4503 J=l,5
4503 SS10(r,J)=0.0

DO 503 J=I,284
503 Si0(I,J)=0.0

DO 504 J=I,284
DO 505 I=I,97

505 S9(IJ)=$Sç1".1,¡¡

DO 504 I=98,100

504 S9(rÐ=O.O

DO 45M J=1,5

DO 4505 É1,97
4505 SS9(I,J)=SS9(I+TJ)

DO 45M I=98,100

4504 SS9(I,J)=0.0

NS=97

GOTO 19

c
51 rF(AM.GT.SSi1(1,1) GOTO 512
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DO 511 J=1,282

511 A(J)=S1111¡;

AM=SSli(1,1)

512 DO 513 I=1,100

DO 4513 J=1,5

4513 SSii(i,J)=0.0
DO 5i3 J=1,284

513 S11(I,J)=0.0

DO 514 J=I,284
DO 515 I=T,97

515 S10(I,J)=S10(I+T,J)

DO 514 I=98,100

5r4 S10(r,J)=0.0

DO 4514 J=1,5

DO 4515 I=1,9J

45 15 SS 10G,J)=SS 10(I+T,J)

DO 4514 I=98,100

4514 SS10G,J)=0.0

NS=97

coTo 20

c
52 rF(AM.GT.SS12(1,1) G.OTO 522

DO 521J=1,282

52t A(J)=$l/(1¡¡
AM=SS12(1,1)

522 DO 523I=1,100

DO 4523 J=1,5

4523 SS12(r,J)=0.0

DO 523 J=1,284

523 S12(I,J)=0.0

DO 524 J=1,284

DO 525 I=I,97
525 Sl l(i,J)=S1l(I+T,J)

DO 524I=98,100

524 S11(I,J)=0.0

DO 4524 J=1,5

DO 4525I=L,97

4525 SSl 1G,J)=SS I 1(I+T,J)

DO 4524I=98,100

4524 SS11(r,J)=0.0
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NS=97

GOTO 21

C

53 rF(AM.GT.SS13(1,1)) GOTO 532

DO 531 J=I,282
531 A(J)=S1311¡¡

AM=551311,1¡

532 DO 533 I=1,100

DO 4533 J=l,5
4533 SSi3(I,J)=0.0

DO 533 J=1,284

533 Si3(i,J)=0.0

DO 534 I=1,284

DO 535 I=1,91

535 S12(I,J)=S12(I+T,J)

DO 534 I=98,100

534 S12(I,J)=0.0

DO 4534 J=l,5
DO 4535 I=1,97

4535 Sl2(I,J)=SS12(I+TJ)

DO 4534 i=98,100

4534 SS12(I,J)=0.0

NS=97

GOTO 22

C

54 rF(AM.GT.SS14(1,1) GOTO s42

DO 541 I=7,282

541 A(J)=$1411,¡¡

AM=SS14(1,1)

542 DO 543 I=1,100

DO 5543 J=l,5
5543 SS14(I,J)=0.0

DO 543 I=1,284

543 S1 4(I,J)=0.0

DO 544 J=L,284

DO 545 I=7,97

545 S13(I,J)=S13(I+T,J)

DO 544I=98,100

544 S13(I,J)=0.0

DO 4544 J=1,5
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DO 45451=1,97

4545 SS 13(I,J)=SS 13(I+TJ)

DO 4544I=98,100

4544 SS13(I,J)=0.0

NS=97

GOTO 23

C

55 rF(AM.GT.SS1s(1,1)) GOTO 552

DO 551 J=I,282

551 A(J)=Si51i,¡¡

AM=SS15(1,1)

552 DO 553 I=1,i00
DO 5553 J=1,5

5553 SS15(i,J)=0.0

DO 553 I=1,284

553 S15(I,J)=0.0

DO 554 J=7,284

DO 555 Þ1,97

555 S14(I,J)=S14(I+T,J)

DO 554 I=98,100

554 S14(I,J)=0.0

DO 4554 J=1,5

DO 4555 Ér,97
4555 SS i4(I,J)=SS 14(I+TJ)

DO 4554I=98,100

4554 SS14(I,J)=0.0

NS=97

GOTO 24

116 DO 170 J=IJ-D
170 XEF(J)=A(J)

wRrTE(6,999) CL,A(28 1),AM

999 FORMAT(1 X,' CL=',I4, 1X,'LP=',I4, 1 X,'METRIC=',F20.8)
RETURN

END

c
C

SUBROUTINE HOS(ZF,S,SS,G,AA,LPP,T,MJ-,LD,LF,V,SGNPO,CL,NS,NC,SÐ

DTMENSTON ZF(LÐ,P0(200)

iNTEGER T,CL,V,CL0,NS l,XEF(256),SH

INTEGER*2 S (M,284) J-pp(5000),S 127 1
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REAL c(10),AA(2),SS(M,5),ME,M0,M1,SGN

ME(Z,Y,S GN B0Z)=(-r.44269 5* (0.9 1893 85+0. S*ALOG(SGlrf +
* ({z-v ¡* * 2rl(2* S Glg+ALOc eOZ)) - 1. 0)

C

t20

t25

130

140

L7=2

Vl=L1-1

s 1281=S(1,281)

CL0=CL

rF(s(1,28l).EQ.LÐ cOrO 11s

NSl=NS+1

DO 110 K=NS1,3000

LP=S11,231¡*t

Y0=AA(1)*SS(1,2)+AA(2)*SS( 1,3)

rF(r-P.GT.Vl) GOTO 125

DO 120 J-.2,LP

LI=LP-J+1

Y0=YG¡G(J)*S(1,LJ)

Y1=Y0+G(1)

GOTO 140

DO 130 J--zLr
LJ=LP-J+1

Y0=YGIG(J)*S(1,LJ)

Y1=Y6¡6ç1;

ZK=t0*(ZF0-P)+4.1)

KZl=INT(ZK)
I(Z2=KZ|+L

P JZF e 0 G<22) - P0 (KZ I )) * (ZK- I{Z t) +P O e<ZI)
M0=ME(ZF(LP),Y0,SGN,P0Z)+S S (1, 1 )
Ml=ME(ZF(LP),Y1,SGN,POZ)+SS (1, 1)

C

C PLACING TV/O NEWEST PATHES INTO STACK, ONE REPLACES TI{E ENTRY 1,

C TI{E OTTIER ENTERS ENTRY NS+l, REODERING IS To BE DONE LATTER
C

C ADDING THE NEWEST ESTIMATED BIT AND CHANGING TI# 2 PARAMETERS
C (I.ENGTH AND METRiC OF TFIE PATH) oF ENTRY i AND NS+i oF TI{E STACK
C

s(l,LP)=O

s(1,281)=LP

ss(1,1)=M0

ss(1,3)=ss(1,2)
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ss(1,2)=Y0

rF(r_P.cT.256) GOTO 145

NS=NS+1

DO 160 J=1,LP-1

160 S(NS,J)=S(t,J)

s(NS,281)=LP

s(NsJ-P)=1

ss(NS,i)=M1

ss(Ns,3)=ss(1,2)

sso{s,2)=Y1

C

C REORDERING TIIE STACK BY COMPARING TI{EIR METRiCS AND PLACING TI{E
C LARGEST T ENTRIES IN TI{E TOP OF TIIE STACK
C

145 CALL REODR(S,T,M,NS,SS)

C

CL=CL+1

LPP(CL)=S(1,281)

rF(LPP(CL).EQ.LF.OR.CL.EQ.5000) coTo I 1 s
rF(Àts.EQ.M) coTO 112

110 CONTINLJE

Il2 NC=l
GOTO 113

115 NC={
LPP(CL)=S(1,281)

113 IF(CL-CL0).GT.20) CLO=CL-19

RETURN

END

C

C

C

SUBROUTINE REODR(S,T,M,NS,S S)

INTEGER T,T1

INTEGER*2 S(M,294),C(294)

REAL SS(M,5),CC(iO),AM

T1=T+1

IFCII.GT.NS) T1=NS

DO 10 K=1,T1

AM=-10000.0

DO 2I=KNS
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IF(S S(I, 1).cT.AlyÐ AM=S S(I, 1)

CONTTNUE

DO 3 i=K,NS

IF(S S (I, 1 ).EQ.Atf) NM=I
CONTINIIE

rF(I{M.EQ.K) GOTO 10

DO 5 J=1,5

cc(J)=ss(KJ)
ss(K,J)=ss(NIM,J)

ss(NM,J)=CC(J)

DO 4 J=1,284

c(J)--s(K,J)

S(K,J)=$Qr¡¡a,¡;

s(l\M,J)=c(J)

CONTINI.IE

RETI.]RN

END
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