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ABSTRACT

Maximum likelihood sequence estimation (MLSE) in additive white Gaussian noise
with finite intersymbol interference has been thoroughly investigated by several
authors. Generally the Viterbi algorithm is applied for the estimation of data. Extension
to the case of infinite intersymbol interference has been developed recently using the
Sequential algorithm.

Application of these algorithms for an intersymbol interference channel with
additive colored Gaussian noise is presented in this thesis. A maximum likelihood
metric for the Viterbi algorithm is derived using a finite time whitening approach and is
referred to as a finite time metric. The receiver structure in this case consists of L
matched filters where the channel impulse response is of finite duration LT seconds. A
receiver structure for the Sequential algorithm is also obtained considering an infinite
time whitening interval. Only one matched filter is required at the receiver.

Simulations have been carried out in an attempt to acquire some knowledge as to
how these metrics perform under different noise conditions and with different channels.
The results show that the Viterbi algorithm with a finite time metric and the Sequential
algorithm give a better error performance in comparison to the Viterbi algorithm applied
with an infinite time metric particularly, when the noise is more colored. The
computational complexity of the Sequential algorithm is comparably less than that

required by the Viterbi algorithm at moderate signal to noise ratios.
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Chapter 1

Introduction

It is required in many communication systems to transmit digital data at high speed

over channels with limited bandwidth. Bandlimited channels usually produce
intersymbol interference (ISI) where the transmitted pulse overlaps with other
transmission pulses. The number of pulses that overlap with a given transmitted pulse
is known as the memory of the channel or the length of ISI. The simplest
communication system to exhibit ISI is a pulse amplitude modulation (PAM)
communication system. The input to the channel is a real number sequence drawn
from a finite alphabet which, if it passes through a linear channel whose impulse
response is longer than one transmission time interval, shall result in ISI. The presence
of ISI degrades the receiver performance.

Various techniques have been developed for combating ISI. These techniques date
back to Nyquist [12] who introduced baseband spectrum shaping for completely
eliminating ISI. Lender [9] introduced the duobinary technique which allowed one ISI
term. This was later generalized to partial response techniques by Lender [10] and
Kretzmer [7] where any number of ISI terms are allowed. Tomlinson [18] suggested a
precoding technique to eliminate ISI. The input sequence is coded according to the

inverse of the discrete channel response. Other methods for eliminating or controlling



of ISI are linear equalization [11] and decision feed back equalization (DFE) [1]. Both
reduce ISI by subtracting out the actual ISI. The decision at the receiver is taken on
symbol by symbol basis for all the methods described above. Chang and Hancock [2]
presented a method which bases the decision on L consecutive symbols.

As an alternative to forcing ISI to zero or introducing controlled ISI the problem
can be treated using decision theoretic estimation methods [6,19]. Forney [5] showed
that the Viterbi algorithm (VA), which was originally developed by Viterbi [22] for the
decoding of convolutional codes, can be applied to ISI channels for maximum
likelihood sequence estimation (MLSE). The detection problem is modelled as a graph
search which in this case can be implemented through a trellis. The receiver consists of
a whitened matched filter and a symbol rate sampler. The advantages of the VA are that
there are a fixed number of computations per decoded symbol and that its structure is
regular. However, the computational complexity of the VA grows exponentially with
the channel memory, therefore making it difficult to apply when the memory is large.

To decrease memory requirement other algorithms known as reduced state
algorithms have been developed. The common characteristic of these algorithms is that
they reduce the computational complexity by reducing the number of sequences to
which they are applied. They can be classified as variations of the VA.

The VA with decision feed back to search a reduced state sub trellis has been
introduced by Eyuboglu and Qureshi [4]. Duel and Heegard [3] applied this technique
to binary transmission and called it decision feed back sequence estimation. With some
changes, Polyduros and Kazakos [13] showed that the VA can be applied to infinite
ISI channels with rational spectrum. It is known as a modified Viterbi algorithm
(MVA). Sheshadri and Anderson [15] used the M-algorithm which keeps only best M
paths for the trellis search. A similar algorithm to the M algorithm is the T algorithm

proposed by Simmons [17] which searches paths with metrics less than an adaptive



threshold. All of the above algorithms obtain reduced complexity while retaining the
VA structure with a justifiable loss of optimality in estimation. Recently, the Sequential
algorithm (SA), another well known algorithm for the decoding of convolutional codes,
has been extended to the ISI case by Xiong [24]. The average number of computations
for the SA is variable and is independent of the channel memory. Therefore the SA can
be easily applied for cases where channel memory is very large or even infinite. A
review of the literature regarding ISI can be found in [25].

Most of the research has been concerned with the estimation of the data sequence in
the presence of additive white Gaussian noise (AWGN). Comparably little work has
been done when data is corrupted with colored noise [8,14,16,20]. The
straightforward procedure in this case is to use a whitening filter to whiten the colored
noise. Because theoretically the resulting ISI can be infinite this approach is suitable
only if the SA is used. The VA may be applied with the ISI terms truncated as
discussed by Ungerboeck [20]. To be applied without truncation a whitening filter
which does not cause infinite IST has to be found. Then the maximum likelihood metric
for the VA can be derived.

In this thesis MLSE in colored Gaussian noise is studied. Chapter 2 provides the
general background about IST and MLSE and a description of the VA and SA as they
are used in the thesis. Chapter 3 describes the theoretical procedures to develop
maximum likelihood metrics for the VA and SA. Computer simulations and results are
presented in chapter 4. The VA using the maximum likelihood metric and a sub optimal
metric are compared with the SA. Two kinds of noise models, one with a white noise
component and the other without, are considered for simulations. Chapter 5 presents

conclusions.



Chapter 2

Background

2.1 Introduction

This chapter provides a description of the application of the Viterbi algorithm to ISI
in additive white Gaussian noise as developed by Forney [5]. Then the procedure to
apply the sequential algorithm is explained for the infinite ISI case. Finally the methods

available when colored noise is present without ISI are discussed.

2.2 ISI with additive white Gaussian noise (AWGN)

Consider the PAM communication system shown in Figure 2.1 where the X|'S are
the input alphabet which initially pass through an impulse modulator before
transmission. The channel impulse response is h(t). The length of ISI present in s(t) is

determined by the length of h(t).

The received signal is
r(t)=s(t)+n(t) 2.1
= xi h(tkT)+n(0) 2.2)
k
If sampled at 1T r(lT)=z xg h(AT-kT) +n(1T) (2.3)
k
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=hOX1 + Z Xk hi.x + nj (2.4)
k=1

The term Z Xk hy - x represents the intersymbol interference.
k=1

For maximum likelihood sequence estimation(MLSE) in additive white Gaussian
noise(AWGN) the receiver structure, shown in Figure 2.2, can be used [5]. The

sampled output of the matched filter forms a set of sufficient statistics.

o

= f r(Hh(t-kT)dt (2.5)

= f > Xph(t-k' T') h(t-kt)dt + f n(H)h(t-kT)dt (2.6)
—oo K' -

oo

= Z X! R .+ n'k 2.7
X'

where Ry | represents the sampled autocorrelation function of the channel impulse
response and ny represents the noise sample at the output of the matched filter.

The above difference equation may be expressed using the delay operator -D( similar to
z'! in Z-Transform theory) as

aD)=Y a D X =x(D)R(D)+ n'(D) (2.8)
k

-R(D) is the D-transform of the discrete autocorrelation function of h(t).

The statistics of the noise samples at the output of the matched filter are given by

E{n'kn'm}=Ef n(Hh(t-kT)dt f n('c)h(’r,-mT)d'c} 2.9)
= j[ dtf h(t-kDh(t-mDE{n(H)n(t) }dt 2.10)



Since n(t) is white Gaussian noise

E{n(t)n(t)}=025(t-1) (2.11)

where o2 is the spectral strength of the noise in watts/Hz.
E{n'k n'm}=62f h(t-kT) h(t-mT)dt (2.12)
=0%Rk-m (2.13)

Therefore n'(D) is colored Gaussian noise with autocorrelation function 62R(D).
It can be shown that R(D) has the spectral factorization R(D)=f(D)f(D'1) whether h(t)
has a finite length or infinite length [26]. Since

Ry (D)=0% R(D) (2.14)

the colored noise n'(D) can be expressed as

n'(D)=n(D)f(D}) (2.15)
Thus aD)=xD)FD)FD 1) + n(D)(D} (2.16)
2(D)=2D)_ 2.17)
fO1h
= x(D)f(D) + n(D) (2.18)
= y(D) + n(D) (2.19)

where, provided it is stable, 1/f(D‘1) represents the whitening filter .

2.3 Finite ISI

The discrete model described above can be realized as a finite state machine when the

ISIis finite. Since h(t) is of finite length LT, R(D) can be expressed as

\'4
RMD)= Y. RxDEADID);v=L-1  (2.20)
k=-v
v=length of inteference



f(D)=» f;D} 2.21)
i=0

N
In the time domain V= 2, fixg.; (2.22)
i=0
Therefore the model shown in Figure 2.3 can be used to obtain yj. . The channel

symbols y are a function of the current input xy and v past inputs. ie, yj.= g(x,Sk_1)
where s). is a state uniquely determined by the previous v inputs prior to time kT. The
one to one mapping between input sequence x and channel symbol sequence y is
described by a trellis of width s=mV states,where m is the input alphabet size. There are
m branches out of each state, one per possible input symbol, and each branch has a
corresponding channel symbol yj. A four state trellis is shown in Figure 2.4 as an
example.

The maximum likelihood metric for the sequences x and y can be denoted by

I(x,y)= logp(ylx)= loge | | p(yixw) (2.23)
k
=" logep(yilxi) (2.24)
k
=" Myiexi) (225)
k

where A(yk.xy) is the branch metric.
where the probability density function p(y/x) factors into a product of terms since the
noise samples are statistically independent.
The number of states m" grow exponentially with the length of ISI. Hence the Viterbi
algorithm cannot be applied to infinite ISI. The whitening filter used in the approach
described earlier can be avoided using the proce&ure described by Viterbi and Omura

[23].
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Here one starts from the maximum likelihood metric for a signal in AWGN

A= f (Hst)dt - 1/2 f s2(t)dt (2.26)

L= -00

which can be simplified to [23, pp. 272-284]

A= 2] Cac- Y xiciRi) (2.27)
k i=1

with the notation used earlier. Therefore in this case it is sufficient to obtain the output
of the matched filter. A similar trellis search can be done in this situation as well. What

changes is the branch metric of the trellis.

2.4 Sequential algorithm and infinite ISI
The difference between finite ISI and infinite ISI is apparent from the form of f(D).

For infinite ISI £f(D) is of the form

f0)=20) _ i (2.28)
V(D) m .
1+Z v; D!
i=1
y(D)=x(D)f(D) (2.29)
In the time domain
n m
Ye=UoXg+ ), Ui X i- D Vi Vi - i (2.30)
i=1 i=1

Based on the difference equation for yj. the system can be modelled as a feedback filter
and a tree can be developed as illustrated by Figures 2.5 and 2.6 respectively for f(D).

As shown by Xiong [24] the sequential algorithm can be applied in this case. The
algorithm searches a tree to determine the maximum likelihood path among the explored

paths of different lengths.

10
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The metric for the sequential algorithm for the IS channel with an equally likely m-ary

input sequence, is given below.

_ S roePn @) | 531
L(X1, 2) g [log =2 =3 - logm] (231)
= > L(vk, z) (2:32)
k
where
Pn (z -yx)

L(yx ,zx) = log -logm (2.33)

Pz (zx)
is the branch metric.

Here X, is the input sequence, n; is the number of input symbols, z, is the received

sequence and py(.) is the noise probability density function, i.e.

- x2

(x) = —L _ex (2.34)
Pn oo 202
In the finite case
mb 2
- (zk - by)
(zi) = L L exp ] } (2.35)
Pz ml j; V2o 2672
bJ € Yk yk= f(Xk, ..... ,Xk_v) (2.36)

For the infinite case, although the channel has infinite memory, Vi 18 a function of the

input sequence up to time k. ie,

yk=f(x1 seeses ’Xk) (2.37)
as is easily seen from equation (2.29). Thus
mk 2
1 1 ~(z- b)
Pz (z) = = exp (2.38)
’ m¥ j§ 206 207

Unlike the finite ISI case, here p,(z;) is dependent on the time index k. However,
since the impulse response of physical channels decays with time one can safely
truncate it at a length L*T. Beyond this length the terms should not have a significant

effect on ISI and also on p,(z).

12
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2.5 Colored noise

The communication system model, shown in Figure 2.7 is same as previously
discussed except that the noise is colored. As mentioned if this problem can be
transformed into a white Gaussian problem, then the methods discussed earlier can be
applied. A straightforward approach is to use a simple prewhitener to whiten the noise.
(See Figure 2.8). Since, in general, the autocorrelation function extends to infinity the
impulse response of the prewhitener can also last an infinite time leading to infinite ISL
One may use the sequential algorithm or the Viterbi algorithm if the ISI is truncated.
Ungerboeck [20] used the Viterbi algorithm where he obtained finite ISI by truncation.

An alternative approach would be to develop a prewhitener whose impulse response
is finite. Without ISI this is a well studied problem and is described in many texts. Van
Trees [21] suggested three different interpretations of the same method for obtaining a
finite impulse response prewhitener. These are shown in the block diagrams of Figures
2.9a, 2.9b and 2.9c. Here hy,(t,u) is the whitening filter over the finite time interval
[T; , T¢l, s(t) is the signal transmitted in [T} , T¢] and K (t,u) is the covariance of the

colored noise. Q(v,x) and g(z) are the solutions of the following integral equations.

Tg
O(z-v)= f Ka(x,2)Qn(v,x)dx , T; < z,v < T¢ (2.39)
Ti
Tg
g(z)= f Qn(z,v)s(v)dv , [ svsTy (2.40)
T
Tf
s(t)= } Ka(t,u)g(w)du » TisusTy 241
Ty
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Chapter 3

Theory

3.1 Introduction

In chapter 2, various options available to deal with the colored noise problem were
discussed. The procedures are different depending on whether the Viterbi algorithm or
the sequential algorithm are to be used. In this chapter a method is presented to obtain
the maximum likelihood metric for the application of the Viterbi algorithm. Also the
receiver structure to obtain sufficient statistics for the sequential algorithm is derived.
The metric in the case of the sequential algorithm is the same as that developed by

Xiong [24].

3.2 Development of the maximum likelihood metric for ISI in
colored Gaussian noise
The approach here is to whiten the colored noise. To apply the Viterbi algorithm the
intersymbol interference should be finite.Therefore a whitening filter with a finite
impulse response has to be used. A PAM communication system with additive colored
Gaussian noise introduced previously is used as shown in Figure 3.1.

The receiver is shown in Figure 3.2, where the receiver structure of Figure 2.9b,

16
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is used to whiten the noise. The whitening is achieved through g(t), and is equivalent
to passing both 1(t) and s(t) through a whitening filter. The output samples provide the
sufficient statistics for the maximum likelihood sequence estimation (MLSE).

Given the finite time whitening of the colored noise of Figure 3.2 the metric to be
evaluated is

T T
At = f r®gHde-1/2 j sOg®dt ,0<t<T 3.1)
0 0

where g(t) satisfies the integral equation

T
s(t) = f g)Ky(t,u)ydu ,0£t<T (3.2)
0

Since the time interval is [0,T] , the only part of s(t) that needs to be considered in the

equations is that within the time interval [0,T]. It is equal to

0

sT(t) = Y, ach(t-kT) (3.3)
k=-v

sT(t) is affected by the present input and previous v inputs, ie, the length of ISL.The
metric, 7"1" also is calculated over this interval.
Since at the output of the receiver the noise samples are statistically independent, one

can express the complete metric as
A=Y A1y (3.4)
k
where %Tk is the branch metric for the k! interval.
To illustrate the procedure of whitening, a model for the noise spectrum has to be
assumed. When the spectrum does not have a white noise component, it can be

expressed as

N(w?)
"D(0?)
Since there is no white noise component, the noise autocorrelation function K, (t,u)

Sp(w) = , degree N(w?) < degree D(w?) + 1 (3.5)

does not contain singularities.

18



The general solution to the integral equation (3.2) in this case is given by
e0=g..0 + ¥ aig® + 3 1bd%0 + 8- L0<i<T. 3.6
£.o(t) is the inﬁrllite time solkution and g;(t) 's are the homogeneous solutions for the
corresponding differential equation. The coefficients by's and ¢ 's associated with the
impulse function, 3, and its derivatives, 8, are determined by the end conditions.

When a white component is present in the noise spectrum it can be given by
N(w?)

3.7
D) 3.7

Sp@) =22+ 5, =

where S.(®) is the colored component. Both N(ooz) and D((x)z) are of the same degree
due to the white component .

The autocorrelation function therefore, has the form

Kp(tw) =50 8 - w) + Ko(t) (3.8)
The integral equation (3.2) now becomes
T
_No
s(t) = > g + f Ke(t,w)g(u)du (3.9)
0

with a solution of the form
8() = 2.0 + D, 2igi(t) (3.10)
i
The presence of the white component results in a solution for g(t) that does not contain

singular functions.

3.3 Examples
Derivation of the metrics for the noise models given above are presented using the
following examples. First finite time whitening is considered.

(i)Noise does not contain a white component

2ko2
w? +k?

Sy(w) = = K (t,u) = chexp(-K t-u|) (3.11)

19



The results are not dependent on the channel and all that is assumed about the channel
impulse response, h(t), is that it is of finite duration, LT seconds.

The integral equation corresponding to (3.11) is

T
s(t) = G4 j exp( - kKl t-u| )g(u)du (3.12)
0
Converting this into a differential equation, the infinite solution, g..(t), is obtained from
the differential equation
s"(t) + kK%r(t) = 2ko?e (1) ,0<t<T (3.13)
and is
1 1"
()= - " p(t) + k%) 3.14
e0=3 5 {-s"r () | (3.14)

To get the complete solution for g(t) , (3.13) is substituted back into the integral

equation, where & functions are included in the solution to satisfy the end conditions.

Therefore,
() = goo() +b,8(0) +¢,8(t - T) (3.15)
_ kst(0) - s'r(0) _ kst(T) + s'1(T)
b= T aT < (3.16)
0
sf) =Y, ajh(t-1T) , 0<t<T (3.17)
l=-v

Given g(t) and sp(t), the branch metric from equation (3.1) is

0 0
7\,’[': Z al[Rl— Z Clmam:l +

I=-v m=-v

by[r(0) - 0.5 sp(O)] + ¢ [K(T) - 0.5 s(T)]  (3.18)

T
where Ry = f [K2h(t1T) - h®(t - 1T)] r(t) dt (3.19)
0
T
Cim = 0.5 [ [K2h(t-mT) - Kt - mT)] h(t - IT) dt (3.20)
JG

20



For the simulation a raised cosine channel of impulse response

h(t) = {1 cOs(2H>t} 0<t < LT (3.21)

21T
is used.

(ii) Colored noise with a white noise component
OR(@*+V) _ .  2ko?
(@2 +Kk2) T (@2+K2)

Because of the white noise component the results are dependent on the channel impulse

Sy (@) = (3.22)

response. The response that is used here for the channel is that of the simple low pass

single pole filter ;
h()= aedt ; O0<h(t)SLT (3.23)
0
sp®= Y, ah(t-1T) , 0<t<T (3.24)
I=-v

The integral equation to be solved for g(t) is
rT

s(t) =0% g(t) + 62 J ekl t-ul gu)du (3.25)
0

From (3.24) the complete solution for g(t) is found to be

g(t) = }: aelT | (A bt +Ap T+ Aselt) (3.26)

Ll=-v
The branch metric, from equatlon 3. 1) , then is

0
AT = 2 aleUT (Rr-c¢ Z apebmT ) (3.27)
Ll=-v m=-v
T
where Rp=| 1(0) (AeDt+Aret+ Azert)dt (3.28)
Jo

and c is a known constant.

In the above two examples finite time whitening has been discussed. For

comparison consider whitening over an infinite time interval. The metric can be
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()= s"(©) + n*(©)
B

sy 21
— || H(o) S.(@)

n*(1)- white noise

s*(t)- may have infinite IS
Prewhitener () - may have infinite IS

Figure 3.3

obtained simply by finding g..(t) instead of g(t) and evaluating the following equation,

A =j r(t)g.o(H)dt - 1/2{ s(D)g.(t)dt (3.29)
_ S(w)
G () = 5.(®) (3.30)

where G.() is the Fourier transform of g_(t).
s) =X g h(t-kT) , -eo<t<eo 3.31)

Or, one may use the prewhitener in frequency domain as shown in Figure 3.3.

The metric for this method is
A= f F(Os*0dt - 1/2 f [s*() dt (3.32)
N-1
where  s*() = », af(tIT)=s(t) * how(® 5 O =h(®) * hpy (©  (3.33)
I=-N

The metric for the above examples for infinite time whitening can easily be obtained

from equations (3.31) and (3.32). Using these, the metric simplifies to

vl oo
A= Z (RI - Z aj . j fJ) 3 , R =j () (1T )dt  (3.34)
1 j=1 -

o0

fj =f fOf(t-3T)de (3.35)

where v1 is the length of interference due to f(t).
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For the first example of single pole noise

f(t) = c1.h(t) + co.h (1) (3.36)

where ¢, and ¢, are constants.
In general if the noise spectrum is all pole then (t) consists only of derivatives of h(t).
Therefore in this case the number of interference terms is equal to that obtained for the
finite solution.
For the second example f(t) = c3.h(t) + a6Vt (3.37)
where c3 and ¢4 are constants.

Because of the term ¢ 7L, f(t) lasts for an infinite time. This means that in this case if
the infinite time solution is to be used infinite intersymbol interference results.
Therefore in this case the tail of the interference terms has to be truncated to v1 which is

generally larger than the interference terms due to channel.

3.4 Comparison between finite and infinite time metrics

For the finite time solution initially the branch metric is evaluated which is directly
used by the Viterbi algorithm. Here g(t) is always dependent on the present input and

the previous v inputs which constitute the ISI. Thus the general form of g(t) is
0

g =Y afi(t) ,0<t<T (3.38)
I=-v
0 T T
Therefore AT = Z f (t) fi (t)dt—1/2f s(tg(t)dt (3.39)
l=-v Jo 0
0 T
Ar= Z aqRi-1/2 f s(t)g(t)dt (3.40)
I=-v 0
At is the branch metric which is affected only by the v interfering terms.Thus the
0
amount of ISI is independent of the whitening process. The term Z aj R indicates
I=-v

that L observed variables are necessary to calculate A. Thus L matched filters are

required at the receiver.
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For the infinite time whitening as seen from equation (3.32)
f(t)= h(t)*hpw(t)

If S, (w) contains zeros they would appear in hpw(t) as exponential terms Z p;e-ait
1
which span an infinite time. This immediately implies that unless these terms are

truncated, infinite ISI results .

The complete metric, from equation (3.33)

vl b
7\,=Z(R1— > al_jfj)al : R1=f r(t) f(t-IT ) dt
1

j=1 )
Hence only one observed variable is needed to calculate the metric requiring only one

matched filter as opposed to L required for the implementation of the finite time metric.

3.5 Application of the Sequential algorithm
To apply the sequential algorithm the approach developed by Xiong is used here.
For this approach a sufficient condition is that the noise samples at the output of the
receiver must be statistically independent. A prewhitener is used up front to whiten the
colored noise as in the previous section dealing with the infinite time interval whitening.
This, as shown in section 3.3, could lead to infinite intersymbol interference. Since the
output of the prewhitener can be considered as a signal with intersymbol interference in
additive white Gaussian noise, a whitened matched filter is followed next as shown by
Forney [5], representing the standard procedure for this kind of system. The
communication system is shown in Figure 3.4 in block diagram form.
s*(t) = s(t) * hpw(t) =x(t) * h(t) * o (® (3.41)
=x(t) * ha(t) = z Xk hr(t-kT) (3.42)
k

Now as in the usual case sufficient statistics can be obtained after passing r¥(t) through
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Ry(D)=f(D)f(D™)

n(t)

Prewhitener

X(1) s(1) ((t) (0
_ h(t) + =  hpw(t)
Rpw(D)=fpw(D)fp w(]j_1 )
RD)=fRM)frD™)
AU e /ol o Y
&

Whitened Matched Filter
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the matched filter hy(-t). At the output of hy(-t) the noise samples have to be whitened

again.

o

-=f Zxth(t-kT)hR(t-jT)dt+f w() hr(t-jT)dt  (3.43)
oo k

-0

=2 Xj i hRi + nj (3.44)
i

In D transform notation

a(D) =x(D)RD) +n(D) (3.45)
Using spectral factorization

R(D) = fp(D) fr(D) (3.46)

where R(D) is the discrete autocorrelation function of hg ().

Following Forney's approach

a(D) = x(D)fR(D) fr (D) + wD)fr (D) (3.47)
Since statistically independent samples are required, a(D) has to be passed through a

whitening filter in the discrete domain, ie, 1/ fR(D'l).

_aD) _
yD) = £DD =x(D)fr(D) + w(D) (3.48)
hy (D) =—1 _
(D) TR (3.49)

where h (D) is the whitening filter.

Since hy(t) = h(t) * hpw(t) , R(D) can be expressed as

RMD) =R, (D) *R pw(D) (3.50)
Also R, (D) = fD)(D1) and RPW(D) = pr(D)fpw(D'l) (3.51)
Therefore one can express fr(D) = f(D)fpw(D) (3.52)
Thus y(D) = x(D){(D){, pW(D) + w(D) (3.53)
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y; can be found from this and hence the sequential algorithm can be applied following

. V(D) . . .
the standard procedure. In general the form of fpw(D) is ——= which usually gives rise

ud)
to infinite ISL

V)

YD) = XD D)y

+ w(D) (3.54)
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Chapter 4
Simulation Results

4.1 Introduction

Simulations have been carried out using both the Viterbi algorithm and the
Sequential algorithm for different channels, namely the truncated single pole channel,
the Butterworth channel and the raised cosine channel. In the case of the Viterbi
algorithm, the finite time metric and infinite time metric were investigated. The

Sequential algorithm was applied using the approach described in 3.4.

4.2 Simulation : General

All the simulations were run on the IBM AMDHAL V7 mainframe computer at the
University of Manitoba. The programming language used was FORTRAN 77. The
sequential algorithm used in the simulations is a modified version of the one developed
by Dr. F.Xiong, and a listing of the program is given in appendix C. Also included is a
listing of a program for the Viterbi algorithm in appendix B.

To generate the white noise samples a random number generator subroutine was
used. By passing the white noise samples through a shaping filter in the discrete time
domain colored noise samples were generated. The discrete shaping filter must be such

that the output noise samples have the corresponding discrete autocorrelation function
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of the colored noise considered. This can usually be done by first finding the shaping
filter in the continuous time domain and then obtaining the discrete spectral factorization
of it's autocorrelation function. This procedure is described in detail in appendix A

along with an example.

4.3 The Raised Cosine Channel

The first channel studied was the raised cosine channel ; a channel commonly found
in communication systems. The noise model is single pole, zero mean colored
Gaussian noise. As shown in 3.2 the intersymbol interference in this case is finite.
Different bandwidths of the noise with respect to the signal were considered for two
different lengths of interference ; the impulse response being three symbol intervals
long and five symbol intervals long.

For an intersymbol interference channel in additive white Gaussian noise the signal
to noise ratio is defined at the output of the whitened matched filter. It cannot be defined
at the receiver input because the noise power is infinite there. However the power of
colored noise is finite, and therefore the signal to noise ratio is, for colored noise,
defined at the receiver input.

The simulation results for the finite time metric and the infinite time metric with the
Viterbi algorithm are presented in Figures 4.1-4.5. From the results it is seen that the
finite time metric performs better when the bandwidth of the colored noise is less than

that of the signal, or when the noise looks more colored.

4.4 The Truncated Single Pole Channel

This channel was used to gain more insight into the colored noise problem. The
impulse response of the channel was truncated at three symbol intervals. The noise in

this case was single pole colored noise with a white component,
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and therefore the noise spectrum has a zero and a pole. Three different mixtures of the
colored and white components of the noise spectrum were considered, with the
bandwidth of the colored component being the same as that of the signal.

Both the finite time and infinite time metrics for the Viterbi algorithm were applied
to this channel with the signal to noise ratio is defined at the receiver input here as well.
For the infinite time case, infinite intersymbol interference results due to the zero in the
noise spectrum. Thus the interference terms were truncated to five terms. The
truncation was based on the decay of the coefficients, where the coefficients smaller
than 0.1% of the leading coefficient, were neglected. For all three noise mixtures the
length of truncation was five terms. The number of the states of the trellis for the finite
time metric is four compared to thirty two required for the truncated infinite time
metric.

The Sequential algorithm was also applied for each of the noise mixtures in an
effort to compare the performances of the three approaches. The signal to noise ratio
(SNR) was defined at the output of the whitened matched filter as it is the standard way
to define the SNR. Simulation results for the algorithms are shown in Figures 4.6-4.9.
The number of computations and the CPU time taken per decoded symbol by the two

algorithms in each noise mixture are given in Tables 4.1a and 4.1b.

4.5 The Butterworth Channel

Finally the Butterworth channel, another commonly encountered channel in
communication systems was studied. Since this channel produces infinite intersymbol
interference only the Sequential algorithm was applied. For the simulation a two pole
Butterworth channel was selected. The noise in this case was Butterworth with a white
component ; i.e. having a two pole two zero spectrum. As in the single pole case three

different combinations of the colored and white components were considered. The
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Average no. of Computations /decoded symbol

SNR(dB) Sequential | Sequential | Sequential VA1 VA2
25% W.N.| 50% W.N.| 75% W. N. L=3 L=6
6 9.82 9.71 8.9 4 32
8 4.62 4.8 5.17 4 32
10 3.34 3.46 3.59 4 32
12 2.72 2.8 292 4 32
W.N.-White Noise
Single Pole Truncated Channel VAI- Viterbi finite time
VA1- Viterbi infinite time
Table 4.1a
Average CPU time / decoded symbol (seconds)
SNR(dB) Sequential | Sequential | Sequential VAl VA2
25% W.N.| 50% W.N.| 75% W.N. L=3 L=6
6 0.107 0.107 0.105 0.002 0.016
8 0.042 0.045 0.05 0.002 0.016
10 0.026 0.027 0.03 0.002 0.016
12 0.02 0.021 0.023 0.002 0.016

Single Pole Truncated Channel

Table 4.1b
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signal to noise ratio was defined at the output of the whitened matched filter.

Figure 4.10 gives the results for the channel in each case. The number of
computations and the CPU time per decoded symbol are also given as shown in Tables
4.2a and 4.2b. The computational complexity of the Sequential algorithm is compared
with that of the Viterbi algorithm, which would be required had a simulation been done
obtaining a reasonable length of truncation for the interference terms using the
procedure described in 4.4. The Sequential algorithm seems to be following the general

trend of giving a better error performance when the noise mixture is more colored.

4.6 Summary and Discussion
4.61Summary
(a) The Viterbi Algorithm

(i) The Raised Cosine Channel Results : Single Pole Noise

For the raised cosine channel the finite time metric performs better when the noise
bandwidth decreases relative to signal bandwidth. The computational complexity of
both metrics with the Viterbi algorithm is the same for this case. Generally, in the case
of all pole colored noise model the prewhitener consists of differentiators, which do not
produce more interference terms. Thus the amount of interference present is
determined by the channel. The solutions for the finite time metric and the infinite time
metric are different in this situation because of the samplers present in the finite solution
due to the singular functions added to satisfy the end conditions of the integral

equation. Therefore the Viterbi algorithm behaves differently for each metric.
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No. of Computations / decoded symbol

SNREB) | psw.n, | SOBWoN. | B woN. | 1ot
4 17.35 17.35 17.39 512
6 54 5.64 6.14 512
8 1.77 1.9 2.1 512
10 1.42 1.47 1.58 512
1 1.31 1.37 1.44 512
W.N.-White Noise
Butterworth Channel
Table 4.2a
Average CPU time / decoded symbol (seconds)
SNREE) | p5wen, | S0BWoN. | AW | e
4 0.184 0.185 0.189 0.303
6 0.055 0.056 0.064 0.303
8 0.013 0.014 0.016 0.303
10 0.011 0.011 0.012 0.303
12 0.01 0.01 0.011 0.303

W.N.-White Noise

Butterworth Channel

Table 4.2b
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(i) The Truncated Single Pole Channel Results : Pole Zero Noise

In the case of the truncated single pole channel where the noise has a pole zero
spectrum the error performance of the finite and infinite metrics with the Viterbi
algorithm are quite close though the finite time metric is the better one.

(iii) Discussion of Metrics

Generally, the simulations indicate that the finite time metric gives a better error
performance than the infinite time metric. The main advantage of the finite time metric
is that no truncation is required if the channel intersymbol interference is finite.
Therefore the number of computations and the CPU time is mainly determined by the
channel.

For the infinite time metric the effective intersymbol interference is determined by
the convolution of the channel impulse response and the prewhitener impulse response.
When there is a zero in the noise spectrum giving rise to an exponential term in the
impulse response for the prewhitener, the effective impulse response increases giving
rise to a large number of interference terms. Since these should be truncated to apply
the Viterbi algorithm, the length of truncation determines the computational complexity
for the infinite time metric.

(b) The Sequential Algorithm

The metric for the Sequential algorithm can be considered as an infinite metric
without truncation. First consider the single pole channel. The error performance of the
Sequential algorithm is better when the noise is more colored. It is difficult to compare
the error performances of the Sequential and Viterbi algorithms since the signal to noise
ratios have been defined at different points. When the computational complexities are

compared, one can easily see that as expected, if the signal to noise ratio is sufficiently
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high the number of computations required for the Sequential algorithm is much less
than that required by the Viterbi algorithm .

For the Butterworth channel a Viterbi simulation was not carried out. The
computational requirements are compared based on a truncated model. As in the
previous case the computational complexity of the Sequential algorithm is much less
justifying its use in the colored noise problem.

4.62 Discussion

In general, from the simulation results one can conclude that the algorithms
especially the Viterbi algorithm with the finite time metric and the Sequential algorithm
perform better when the noise is more colored, either compared to the signal or to the
noise itself when it contains a white component.

This result may be explained in the following way. When the noise samples are
correlated the receiver can extract more information about the transmitted sequence
rather than when the noise samples are statistically independent. The metric for the
colored noise represents this information contained in the correlation of the received
samples. Therefore, the metric gives a better performance when the noise is more
colored. For the extreme case in the context of the colored noise, the noise spectrum
becomes a delta function in the frequency domain or alternatively noise can be treated as
an unknown constant in the time domain. Thus one can obtain virtually an error free

channel since the noise amplitude does not change with time.
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Chapter 5

Conclusions

The problem of the maximum likelihood sequence estimation (MLSE) of data in the
presence of the additive colored Gaussian noise has been studied in this thesis.
Application of both the Viterbi and the Sequential algorithms have been discussed. The
approach is based on the whitening of the colored noise using a prewhitener at the
receiver. In general , prewhitening results in infinite intersymbol interference.

Thus, to apply the Viterbi algorithm one should obtain a whitening filter with a
finite impulse response. This is achieved by solving an integral equation derived using
the noise autocorrelation function as shown in [21]. The time interval selected for
whitening is one symbol interval over which the branch metric is evaluated in the
algorithm. Basically two types of noise models have been considered ; one which
contains a white component and the other does not. For the latter case singular
functions appear in the solution for the corresponding integral equation to satisfy the
end conditions. The receiver in this finite time metric case needs L matched filters at the
receiver where the duration of the impulse response of the channel is LT seconds. The
amount of intersymbol interference for the calculation of the metric is determined by the

channel, independent of whitening for this procedure.

46



If one considers an infinite time interval for whitening, exponential terms are
present in the prewhitener impulse response when the noise spectrum contains zeros.
The total amount of interference terms that need to be considered increases due to this
reason. Therefore, these terms have to be truncated in order to apply the Viterbi
algorithm. The Sequential algorithm, on the other hand, does not require any truncation
as it can be applied to the infinite intersymbol interference case. The procedure for the
Sequential algorithm has been developed based on the Xiong' s work [24]. The
receiver requires only one matched filter with the metric being the same as that derived
by Xiong.

Simulation results have been obtained for both the Viterbi and the Sequential
algorithms considering several channels and noise types. The error performance and the
computational complexity have been analyzed. The results are compared to those
obtained using an infinite time metric with the Viterbi algorithm. From the simulation,
one can see that the finite time metric and the Sequential algorithm give a better error
performance, when the noise looks more colored. Also at relatively high signal to noise
ratios, the computational complexity of the Sequential algorithm is comparatively less
than that for the Viterbi algorithm.

Performance of the Sequential algorithm needs further investigation to determine
whether it in fact gives a better error performance when the noise is more colored and
also to gain more knowledge about the algorithm since it has only been recently applied
to the intersymbol interference problem. Establishment of the equivalence of the Viterbi
and Sequential receivers is required to properly compare the error performances of the
two algorithms. Also the application of the reduced state algorithms, such as the M

algorithm and the T algorithm is a possible extension to the work presented here.
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APPENDIX A

Generation of Colored Noise :

The procedure can be given by following steps.
1. Find the impulse response of the shaping filter for noise.
2. Obtain the discrete spectral factorization of the autocorrelation function of the
shaping filter.
3. Obtain the difference equation to generate the noise samples.
Step 3 is described for a general channel in [26].
Consider the example given below.

Ex : Power density spectrum of noise
2kc}
(0% +k?)

where K,(1) is the autocorrelation function

Sp(w) = & Ky(1) = % e~ ki1l (1)

A stable filter to generate this spectrum using white noise of strength 6% is

H(jo) = 12K @)

jo+k
The impulse response is

h(t) = v2k e-Kiy(t) 3)
As a verification, the autocorrelation function of h(t) can be found. The autocorrelation

function is defined as

R(1) = f h(t) h(t+1) dt 4)
=2kf e-kKek(H+t)dr >0 (35)
0

A-1



=2ke -kff e- 2kt gt (6)
0

1e., R(t)= ekt @)
From symmetry R(t)=R(- 1) = e-kl7l 8)

Now using the D- Transform theory

RD)= Y, RuD™ ©)
m=-oco
=1 Y [exm]®pmily ¥ [e-k]mpm (10)
2 m=1 2 m=1
=g 1) +g(D) (1
gD =L+ 3 [e-k]"Dm.1 (12)
m=1

=y [e-kr]mDm-% (13)
m=1
=—1 .1 14
l1-e-kTp 2 (19
Therefore,
R(D) = 1 1 1 _1 15
®) 1-e-kTD 2+1—e'kTD'1 2 (15
- 1-¢2KT - fD)D! 16
(- ¥D 1 -o-¥1D) D)D) (16)

This is the spectral factorization. Using f(D) as the discrete transfer function, the

difference equation to generate noise samples can easily be obtained.

=N(D)___V1_e-2kT
P W0 (i —o-xp) o

where N(D) and W(D) are the colored and white noise in discrete domain.

A-2



Hence the difference equation ;
n(m) = V1-¢2kT w(m) +e T n(m-1) (18)
To check the result, the autocorrelation function can be found using equation (18)
E(n(m) n(m-)} = V1 - ¢ 2T E{w(m) n(m-)} + X1 E{n(m-1) n(m))  (19)

Using the stationarity of noise,

R; =E{n(m) n(m-j)} , R; 1 =E{n(m-1) n(m-j)} (20)
Rj =0 + C_kT Rj-l Q2D
Rj = kT Rj—l (22)

E{n2(m)} =Ro= {1 - e 2KT} E{w?(m)} +

211-e2KT kT E(wmn@-1} + o 2T E{n’(m-1)}  (23)

Ro={l-¢ 2T}k + 0 + e 2%Tg, (24)
R, = o3 (25)
Thus the difference equation, in this case, generates noise samples according to the

statistics desired.



APPENDIX B

Viterbi algorithm program listing

C
C
C FILENAME :COLORED,SIMULATION OF VITERBI ALGORITHM
C FOR DETECTION OF A BINARY SIGNAL SEQUENCE IN
C COLORED NOISE
C INFINITE METRIC : TRUNCATED SINGLE POLE IMPULSE RESPONSE
C
INTEGER NR,X(2060),XF(300),IA(2),V,MLP(300),V1,
* ER,TER,TTER,TAIL JFIN
REAL Z(2060),N1(2060),N2(2060),N3(2060),NF1(300),NF2(300),
* K1,L1,11,NF3(300),F(0:10),FM(0:10),G(0: 10),H(0: 10),
* P(2),WK(2),R1(300),R2(300),R3(300),R(300),CN(0:2060),
* HM(0:10),FF(0:10),ND1(3),ND2(3),ND3(6)
DIMENSION DSEEDA(12)
DOUBLE PRECISION DSEED,DSEEDA
C
PARAMETER(L=3,SNR=12.,MKM=1,MDM=1,MAM=8,K 1=1.0,T=1, GM=2.,
* A=2.074,B=0.5 PI=3.1416, MG=6,WC=0.6667)
DATA DSEEDA/0.1594574556D+10,0.1208465533D+10,0.1200323639D+10),
* 0.7875096350D+09,0.1993410604D+10,0.1836865622D-+10,
* 0.1173313865D+10,0.1735559417D+10,0.1314304831D+10,
* 0.2525285650D+09,0.5706309100D+08,0.5196523400D+09/
DATA ND1/54.6,7.389,1.0/
DATA ND2/1.649,1.0,0.606/
DATA ND3/22038.8,2982.25,403.57,54.6,7.39,1.0/
CALL $TRTM(TIME)
c
C CALCULATION OF SOME CONSTANTS
C
V=L-1
V1=MG-1
JFIN=MKM*MDM*MAM



17
16

31

32

L1=FLOAT(L)
AA=(K1##2-GM**2)/(2 *GM*(B-GM))
CC=(K1#%2-B**2)/(GM**2-B**2)

Al=A*AA*EXP((GM-B)*L)

A2=A*CC

A3=A*AA*(1.0-EXP((GM-B)*L))

DO 6 I=0,V
F(D)=A*EXP(B*1)*(EXP(-(GM+B)*T)-EXP(-(GM+B)*L))/(GM+B)
G(D=A*EXP(B*1)*(EXP(-2.*B*I)-EXP(-2.*B*L))/(2.*B)
IR(LEQ.0) GOTO 6
FM(D)=A*EXP(-B*I)*(1.0-EXP(-(GM+B)*(L-1)))/(GM+B)
HM@D=FM(I)

CONTINUE

DO 16 I=0,V1

IF(I.GE.(MG-L)) GOTO 17
H(D=A*EXP(B*1)*(EXP(-(GM+B)*I)-EXP(-(GM+B)*(L+1)))/(GM+B)
GOTO 16

H(D)=A*EXP(B*I)* EXP(-(GM+B)*I)-EXP(-(GM+B)*MG))/(GM+B)
CONTINUE

FF(0)= (A1*F(0)+A2*G(0)+A3*H(0))/2.

DO 31 I=1,V

FE(D=0.5* A1*(F()+EM(D)+A2*G(I)+0.5* A3* (H(I)+HM(D))
CONTINUE

DO 32 I=L,V1

FF(I)=0.5* A3*H(I)

CONTINUE

SGM=((A**2)/(2.*B))*(1.0-EXP(-2.¥B*L))
SGN=SGM/((1.0+(2./WC*K1))*(10.0%*(0.1*SNR)))

C
C GENERATION OF SIGNAL & NOISE SEQUENCES
C

P(1)=0.5

P(2)=0.5

NR=256

NDMP=2

IA(1)=-1

TTER =0

DGC=0

DDGC=0

DO 999 MK=1,MKM

DSEED = DSEEDA(MK)

TER =0

DO 140 MD=1,MDM



42

52

53

54

DGC=DGC+1
NR1=2060
NR2=2060
CALL GGDA(DSEED,NR1,NDMP,P,IA,WK,X)
DO 1 K=1NR1
IF(X(K).EQ.2) THEN
X(K)=1
ELSE
X(K)=-1
ENDIF
CONTINUE
CALL GGNML(DSEED,NR2.7)
DO 2 I=1,NR2
Z(D=SQRT(SGN)*Z(1)
C
C FORMING COLORED NOISE COMPONENT
C
LF1=1
LL1=8*NR
CN(0)=0.0
DO 42 I=LF1,LL1
CN(D)=-1.489*Z(I+EXP(-K1)*CN(I-1)
IF(I .EQ.1) GOTO 42
CN(D)=CN(D)+0.245*Z(I-1)
CONTINUE
DO 51 I=LF1LL1
N1(D)=0.0
N2(D=0.0
N3(D)=0.0
DO 52 J=1,3
IF((-J+1).LE.0) GOTO 52
N1(D)=N1{I)+CN({-J+1)*ND1(J)
CONTINUE
N1(I)=SQRT((0.4495E-02)*(0.0183))*N1(I)
DO 53 J=1,3
IF(@-J+1).LE.0) GOTO 53
N2(D)=N2(I)}+CN(I-J+1)*ND2(J)
CONTINUE
DO 54 J=1,6
IF((I-J+1).LE.0) GOTO 54
N3(D=N3(D)+CN({-J+1)*ND3(J)
CONTINUE
N3(D=SQRT((0.1114E-04)*(4.53E-05))*N3(I)



51 CONTINUE
C
C
DO 141 M=1,MAM
DO 41 I=1 NR+V1
NFL(D=N1(NR*(M-1)+])
NF2(D=N2(NR*(M-1)+I)
NE3(D=N3(NR*(M-1)+])
XFD)=X(NR*(M-1)+I)
41 CONTINUE
DO 441 K=NR+1 NR+V1
441 XE(K)=0
C
C FORMING MATCHED FILTER O/P
C
DO 7 LL=1,NR+V1
RI(LL)=0.0
R2(LL)=0.0
R3(LL)=0.0
DO 81 J=0,V
R1(LL)=R1(LL)+XE(LL+J)*E(J)
81 CONTINUE
DO 82 J=1,V
IF((LL-J).LE.0) GOTO 83
R1(LL)=R1(LL)+XF(LL-J)*FM(J)
82 CONTINUE
83 RI(LL)=RI(LL)+NF1(LL)
DO 84 J=0,V
R2(LL)=R2(LL)}+XF(LL+)*G()
84 CONTINUE
DO 85 J=1,V
IF((LL-J).LE.0) GOTO 86
R2(LL)=R2(LL)+XF(LL-1)*G(J)
85 CONTINUE
86 R2(LL)=A*R2(LL)+NF2(LL)
DO 87 J=0,V1
R3(LL)=R3(LL)+XF(LL+J)*H(J)
87 CONTINUE
DO 88 J=1,V
IF((LL-T).LE.0) GOTO 89
R3(LL)=R3(LL}+XF(LL-J)*HM()
88 CONTINUE
89 R3(LL)=R3(LL}+NF3(LL)



R(LL)=A1*R1(LL)+A2*R2(LL)/A+A3*R3(LL)
7 CONTINUE
C
C ESTIMATION OF THE SEQUENCE
C
CALL VA(R,FF,V1,NR,MLP)
ER=0
MC5=NR
DO 514 I=1,MC5
ER=ER+IABS(MLP(D)-X(NR*(M-1)+1))
WRITE(6,*)’MLP(’,1,")=",MLP(D),"X (", NR*(M-1)+I,")=" X (NR*(M-1)+I)
514 CONTINUE
TER=TER+ER
141 CONTINUE
140 CONTINUE
TTER=TTER+TER
999 CONTINUE
PRE=FLOAT(TTER)/(2*NR*JFIN)
WRITE(6,*)’OVERALL ERROR’, TTER/2,’PR(E)=",PRE
WRITE(6,*)’ ALOG10(PR(E))=",ALOG10(PRE)
WRITE(6,*)’TOTAL NO.OF BITS TXED’ NR*JFIN, K1=" K1
WRITE(6,*)’SGN=",SGN,’SNR=",SNR,’SGM=",SGM
CALL $TPTM(TIME)
WRITE(6,727) TIME
727 FORMAT(’,’CPU TIME:’ F10.3,”’,’SECONDS")
STOP
END

SUBROUTINE VA(R,FF,V1,NR MLP)
REAL M(0:65),MT(0:65),R(300),MM(300,0:65),5(0:65),
* QQ,M0,M1,MAX,FF(0:10)
INTEGER TAIL,P(0:65,300), MLP(300),PT(0:65,300),PP(0:65,30),
* PTT(0:65,300),RC,NR,V1,MLJ
C
C INITIALIZATION
C
DO 70 1=0,2#*V1-1
DO 70 J=1,V1
K=1/(2**(J-1))
PT(1,J)=MOD(K,2)
IF(PT(.J) .EQ.0) THEN
PTI))=-1



ENDIF
70 CONTINUE
DO 75 [=0,2%%V1-1
DO 75 J=1,V1
P(I,V1-J+1)=PT(L,])
75 CONTINUE
DO 80 J=0,2**V1-1
M(@0)=0.0
DO 80 K=1,V1
QQ=0.0
DO 85 I=1X
QQ=QQ+FF(I-1)*P(J K-1+1)
85 CONTINUE
M@)=M@+RK)-QQ)*P(J K)
80 CONTINUE
DO 90 J=0,2%*V1-1
S()=0.0
DO 95 I=1,V1
S()=S)+FEID)*P{,V1-I1+1)
95 CONTINUE
90 CONTINUE

C
C VITERBI ALGORITHM
C
LF1=V1+1
LN1=NR
DO 100 K=LF1,LN1
DO 951 J=0,2%*V1-1
IF (MOD(J,2) EQ. 0) THEN
J0=J/2
J1=(+2%%V1)/2
P(J.K)=-1
ELSE
J0=(-1)/2
T1=(J-142%%V1)/2
P K)=1
ENDIF
MO=M(J0)+ (R(K)-SF0)-FF(0)*P(J,K))*P(J K)
M1=M{1)+ R(K)-SF1)-FF0)*P(J,K))*P(J.K)
IF (MO .GT. M1) THEN
MT(J)=M0
DO 110 I=1,K-1



110 PTT(Y,D=P{J0,D)
ELSE
MT()=M1
DO 120 I=1,K-1
120 PTT(,H=P(1.)
ENDIF
951 CONTINUE
DO 130 J=0,2%+V1-1
M(T)=MT()
MM(K,D=M()
DO 135 I=1,K-1
PJ.)=PTT{.D)
135 CONTINUE
130 CONTINUE
100 CONTINUE
C
C DECISION MAKING: ML PATH
C
NR1=NR
CALL MAXM(MM,V1,NR1,MAX,MLJ)
DO 781 I=1,NR
781 MLP(I) =P(MLJ,)
RETURN
END

FIND THE MAXIMUM METRIC VALUE

oNoNe!

SUBROUTINE MAXM(MM,V1,K,MAX,MLJ)
REAL MM(300,0:65),MAX
INTEGER V1,K.MLJ
MAX=MM(K,0)
MLJ=0
DO 940 J=0,2*¥V1-1
IF(MAX .GT. MM(K,J)) GOTO 940
MAX=MM(.]))
MLJ=]

940 CONTINUE
RETURN
END



APPENDIX C

Sequential algorithm program listing

C FILENAME:SIMULATION OF SEQUENTIAL DETECTION OF BINARY

C SIGNAL SEQUENCE IN THE PRESENCE OF INFINITE ISI AND

C COLORED GAUSSIAN NOISE

C BUTTERWORTH CHANNEL

C
INTEGER NR,NDMP,X(2048),XF(280),XEF(256),IA(2),V,ER, TER,CL,TCL
REAL P(2),P0(200),WK(2),Z(2160),ZF(280),Y (280),

* F(2),G(10),AA(2),AAA(2)

DIMENSION DSEEDA(25)

DOUBLE PRECISION DSEED,DSEEDA
C

DATA DSEEDA/0.1594574556D+10, 0.1208465533D+10, 0.1200323639D+10,
* 0.7875096350D+09, 0.1993410604D+10, 0.1836865622D+10,
* 0.1173313865D+10, 0.1735559417D+10, 0.1314304831D+10,
* 0.2525285650D+09, 0.5706309100D+08, 0.5196523400D+09,
* 0.2827359430D+09, 0.1943029728D+10, 0.4351107100D+08,
* 0.1910901950D+10, 0.1893766405D+10, 0.4715504610D+09,
* 0.2134076531D+10, 0.1814803971D+10, 0.1970428848D+10,
* 0.4805104160D+09, 0.2093775370D+10, 0.3952421830D+09,
* 0.2092423249D+10/

DATA F/0.1385,0.5355/
DATA AAA/0.3474,-0.1222/
CALL $STRTM(TIME)
C
C ** READING IN P0(Z)
C
READ(8,150) L,SNR,SGN
150 FORMAT(3X I2,5% F6.3,5X F8.3)
READ(8,200) (PO(I),I=1,200)
WRITE(6,200) (PO(T),I=1,200)
200 FORMAT(1X,5E15.6)
C



C ** CALCULATING OF SOME CONSTANTS
C
L.D=256
LD1=LD+1
LE=LD+L
V=L-1
L1=2
Vi1=L1-1
DO 113 I=1.2
AA(D=AAA()
113 CONTINUE
DO 117 I=1,L1
117 G)=F(I)
WRITE(6,250)L,SNR,SGN,LD
250 FORMAT(1X,’L=",12/1X,’SNR="F10.6/
* 1X,’SGN=",F10.6/1X,’LD=",13))
C
C ** GENERATION OF SIGNAL AND NOISE SEQUENCES
C
DSEED=DSEEDA(1)
WRITE(6,115) DSEED
P(1)=0.5
P(2)=0.5
NR=2048
NDMP=2
IA(D)=-1
TER=0
NFE=NR/LD
TCL=0
MDM=25
DO 140 MD=1,MDM
CALL GGDA(DSEED,NR,NDMP,P,]A,WK,X)
DO 1 K=1NR
1 XK)=X(K)-1
CALL GGNML(DSEED,2160,7)
WRITE(6,115) DSEED
115 FORMAT(1X/1X,’DSEED=",D20.12)
DO 13 1=1,2160
13 Z(=SQRT(SCN)*Z(I)
C



C
C FORMING { Z } SEQUENCE(THE OUTPUT OF THE WHITENING MATCHED FILTER)
C
C (1) FORMING INFORMATION AND NOISE FRAMES
C
MFE=8
DO 3 M=1,MF
WRITE(6,300) M
300 FORMAT(1X//1X,"M="12/)
DO 4 1=11D
XF(D)=XLD*(M-1)+])
4 ZEM)=Z@LD*(M-1)+I)
DO 5 I=LD1,LF
XF(I)=0
5  ZRID)=Z(LD*M-1)+])
C
C FORMING OUTPUT OF THE WHITENED MATCHED FILTER
C
DO 301 K=1,LF
Y(K)=0.0
DO 302 I=1,L1
IF((K-I+1).LE.0) GOTO 302
Y(K)=Y(K)+F(I)*XF(K-1+1)
302 CONTINUE
DO 303 I=1,2
IF((K-I) .LE.0) GOTO 303
Y(K)=Y(K)+AAAD*Y(K-)
303 CONTINUE
301 CONTINUE
DO 10 K=1LF
10 ZFK)=ZF(K)+Y(K)
DO 312 K=1,LD
312 XEF(K)=0
C
C
C ESTIMATION OF THE SEQUENCE
C
CALL MSA(ZF,XEF,G,AA,L.LD,LF,SGN,P0,CL)
K1=(M-1)*LD+1
K2=M*LD



WRITE(6,130) (X(I),[=K1,K2)
130 FORMAT(/1X,"TRANSMMITED SEQUENCE:/(1X,10011))
WRITE(6,110) XEF
110 FORMAT(/1X,’ESTIMATED ~SEQUENCE:’/(1X,100I1))
C
C CALCULATE THE ERROR
C
ER=0
DO 14 I=1LD
14 ER=ER+IABS(XEF()-X(K1-1+I))
WRITE(6,125) ER
125 FORMAT(1X/1X, ERRO="13)
TER=TER+ER
TCL=TCL+CL
3 CONTINUE
140 CONTINUE
WRITE(6,120) TER,TCL
120 FORMAT(1X/1X," TOTAL ERROR="16,5X,' TOTAL COMPUTATIONS="16)
WRITE(6,*) *PRE=",FLOAT(TER)/(LD*MF*MDM)
WRITE(6,*) "LOG(PRE)=",ALOG10(FLOAT(TER)/(LD*MF*MDM))
CALL $TPTM(TIME)
WRITE(6,727) TIME
727 FORMAT(”,"CPU TIME:"F10.3,””,"SECONDS")
STOP
END

C
C
SUBROUTINE MSA(ZF,XEF,G,AA,L LD,LF,SGN ,PO,CL)
INTEGER*2 §(3000,284),S 1(100,284),52(100,284),53(100,284),
* 54(100,284),
* 85(100,284),56( 100,284),57(100,284),58(100,284),59(100,284),
* $10(100,284),511(100,284),512(100,284),S13( 100,284),514(100,284),
* S15(100,284)
REAL ZF(LF),G(10),AA(2),P0(200),5S(3000,5),AM,MO,M1 ,ME,
* SS1(100,5),SS2(100,5),SS3(100,5),SS4(100,5),SSS(100,5),
* §587(100,5),558(100,5),5S9(100,5),8510(100,5),5S 1 1(100,5),
* §S13(100,5),5514(100,5),5515(100,5),SS 12(100,5),SS6(100,5)
INTEGER*2 LPP(5000),A(282)
INTEGER CL,T,V,SH(16)



INTEGER XEF(LD)
C
C DEFINING METRIC FUNCTION
C
ME(Z,Y,SGN,P0Z)=(-1.442695%(0.9189385+0.5* ALOG(SGN)+
* ((Z-Y)**2)/(2*SGN)+ALOG(P0Z))-1.0)
C
C INITIALIZATION
C
AM=-10000.0
DO 4 K=1,16
4 SH(K)=K-1
DO 7444 J=1,5
DO 7442 1=1,3000
7442 SS(I,N)=0.0
DO 7444 1=1,100
SS1(I,))=0.0
SS2(L,N)=0.0
SS3(L,N)=0.0
SS4(1,1)=0.0
SS5(1,1)=0.0
SS6(I1)=0.0
SS7(L1)=0.0
SS8(L1)=0.0
SS9(I,1)=0.0
SS10(1,J)=0.0
SS11(1,1)=0.0
SS12(1,7)=0.0
SS13(1,1)=0.0
$S14(@,7)=0.0
7444 SS15@,7)=0.0
DO 7 J=1,284
DO 2 1=1,3000
2 SAN=0
DO 7 1=1,100
S1(,7)=0
S2(1,7)=0
S3(1,7)=0
S4(1,1)=0
S5(1,7)=0



30

S6(1,1)=0
S7(N)=0

S8(,1)=0

S9(,7)=0

S10(1,3)=0

S11(1,3)=0

S12(1)=0

S13(1,J)=0

S14(1,3)=0

S15(1,7)=0

Y0=0.

Y1=G(1)

S(1,281)=1

S(2,281)=1
ZK=10*(ZF(1)+4.1)
KZ1=INT(ZK)

KZ2=KZ1+1
POZ=(PO(KZ2)-PO(KZ1))*(ZK-KZ1)+PO(KZ1)
MO=ME(ZF(1),Y0,SGN,P0Z)
M1=ME(ZF(1),Y1,SGN,P0Z)
IFQMO-M1) 1,1,3

S(1,1)=1

SS(1,1)=M1

SS(1,2)=Y1

S(2,1)=0

SS(2,1)=M0

SS(2,2)=Y0

GOTO 30

S(1,1)=0

SS(1,1)=M0

SS(1,2)=Y0

S(2,1)=1

SS(2,1)=M1

SS(2,2)=Y1

METRICS OF SUCCESSORS OF TOP PATH
NS=2

LPP(1)=1
V=L-1



M=100
T=3
CL=1
10 ASSIGN 40 TO KS
CALL HOS(ZF.S.SS,G,AA,LPP,T,3000,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(1))
IF(NC) 115,115,118
C
118 DO 100 I=1,T
DO 6100 J=1,5
6100 SS1(L,T)=SS(LJ)
DO 100 J=1,284
100 S1(J))=S(J)
NS=T
11  ASSIGN 41 TO KS
CALL HOS(ZF,$1,5S1,G,AA LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(2))
IF(NC) 115,115,218
C
218 DO 200 I=1,T
DO 6200 J=1,5
6200 SS2(L,1)=SS1(L))
DO 200 J=1,284
200 S2(LN)=S1(L))
NS=T
12 ASSIGN 42 TO KS
CALL HOS(ZF,$2,852,G,AA,LPP,TM,L.LD,LE,V,SGN,P0,CL.NS,NC,SH(3))
IF(NC) 115,115,318
C
318 DO 300 I=1,T
DO 6300 J=1,5
6300 SS3(I,1)=SS2(LJ)
DO 300 J=1,284
300 S3(I,T)=S2(L))
NS=T
13 ASSIGN 43 TO KS
CALL HOS(ZF,$3,583,G,AA,LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(4))
IR(NC) 115,115,418
C
418 DO 400 I=1,T
DO 6400 J=1,5
6400 SS4(IT)=SS3(LJ)



400

14

C
518

DO 400 J=1,284
S4(1,1)=S3(,1)

NS=T

ASSIGN 44 TO KS

CALL HOS(ZF,$4,554,G,AA,LPP,T,M,L,.LD,LF,V,SGN,P0,CL,NS,NC,SH(5))
IF(NC) 115,115,518

DO 500 I=1,T
DO 6500 J=1,5

6500 SS5(1.N)=SS4(1.))

500

15

C
618

DO 500 J=1,284
S5(L1)=S4(J)

NS=T

ASSIGN 45 TO KS

CALL HOS(ZF,S5,885,G,AA,LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(6))
IF(NC) 115,115,618

DO 600 I=1,T
DO 6600 J=1,5

6600 SS6(1.J)=SS5(1.J)

600

16

C
718

DO 600 J=1,284

S6(LN=S5.1)

NS=T

ASSIGN 46 TO KS

CALL HOS(ZF,$6,556,G,AA,LPP,T,M,L,LD,LF,V,SGN,P0,CL NS NC,SH(7))
IF(NC) 115,115,718

DO 700 I=1,T
DO 6700 J=1,5

6700 SS7(LT)=SS6(1,])

700

17

C
818

DO 700 J=1,284

S7AN=S60.))

NS=T

ASSIGN 47 TO KS

CALL HOS(ZF,S7,SS7,G,AA,LPP,T,M,L,LD,LF,V,SGN,PO,CL,NS,NC,SH(S))
IF(NC) 115,115,818

DO 800 I=1,T
DO 6800 J=1,5

6800 SS8(1,J)=SS7(L))



DO 800 J=1,284
800 S8(L1)=S7(LJ)
NS=T
18 ASSIGN 48 TO KS
CALL HOS(ZF,S8,858,G,AA,LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(9))
IF(NC) 115,115,918
C
918 DO 900 I=1,T
DO 6900 J=1,5
6900 SS9(I])=SS8(L))
DO 900 J=1,284
900 S9(IT)=S8(LJ)
NS=T
19  ASSIGN 49 TO KS
CALL HOS(ZF,59,559,G,AA,LPP,TM.L.LD,LF,V,SGN,P0,CL.NS,NC,SH(10))
IF(NC) 115,115,1018
C
1018 DO 1000 I=1,T
DO 7000 J=1,5
7000 SS10(L,1)=SS9(LJ)
DO 1000 J=1,284
1000 S10(LJ)=S9(LJ)
NS=T
20  ASSIGN 50 TO KS
CALL HOS(ZF,$10,S510,G,AA,LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(11))
IF(NC) 115,115,1118
C
1118 DO 1100 I=1,T
DO 7100 J=1,5
7100 SS11(I,1)=SS10(L,))
DO 1100 J=1,284
1100 S11(I,J)=S10(L))
NS=T
21  ASSIGN 51 TO KS
CALL HOS(ZF,511,8511,G,AA,LPP,T,M,L.LD,LE,V SGN,P0,CL,NS,NC,SH(12))
IF(NC) 115,115,1218
C
1218 DO 1200 I=1,T
DO 7200 J=1,5
7200 SS12,1)=SS11(LJ)



DO 1200 J=1,284
1200 S12(LN)=S11(LJ)
NS=T
22 ASSIGN 52 TO KS
CALL HOS(ZF,$12,5512,G,AA,LPP,T,M,L,LD,LF,V,SGN P0,CL,NS,NC SH(13))
IF(NC) 115,115,1318
C
1318 DO 1300 I=1,T
DO 7300 J=1,5
7300 SS13(,1)=SS12(L))
DO 1300 J=1,284
1300 S13(I,1)=S12(L,})
NS=T
23 ASSIGN 53 TO KS
CALL HOS(ZF,$13,8513,G,AA LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(14))
IF(NC) 115,115,1418
C
1418 DO 1400 I=1,T
DO 7400 J=1,5
7400 SS14Q,1)=SS13(L])
DO 1400 J=1,284
1400 S14(I,))=S13(L,))
NS=T
24  ASSIGN 54 TO KS
CALL HOS(ZF,S14,8514,G,AA LPP,T,M,L,LD,LF,V SGN,P0,CL NS,NC,SH(15))
IF(NC) 115,115,1518
C
1518 DO 1500 I=1,T
DO 7500 J=1,5
7500 SS15(,T)=SS14(L))
DO 1500 J=1,284
1500 S15(1,7)=S14(L,))
NS=T
25 ASSIGN 55 TO KS
CALL HOS(ZF,S15,8515,G,AA LPP,T,M,L,LD,LF,V,SGN,P0,CL,NS,NC,SH(16))
IF(NC) 115,115,1618

HAS COME OUT FROM A STACK. EXAME WHICH STACK IT HAS COME OUT
FROM AND GO TO FINAL DECISION IF THE STACK IS THE FIRST STACK,
OR MAKE A TENTATIVE DECISION AND RETURN TO PREVIOUS STACK TO

O 00N



C CONTINUE SEARCHING.,

C
C

1618 IF(AM.GT.-10000.0) GOTO 116

9

92

115

40

401

C

41

411

412

WRITE(6,9) AM

FORMAT(1X/1X,STACKS OVERFLOW’/1X,’ AM="_F20.8)

DO 92 J=1,282

AD)=S15(1.))
=8S15(1,1)

GOTO 116

IF(CL.EQ.5000) GOTO 116
GOTO KS, (40,41,42,43,44,45,46,47 48,49,50,51,52,53,54,55)
IF(AM.GT.SS(1,1)) GOTO 116

DO 401 J=1,282

AQ)=S(L,D)

AM=SS(1,1)

GOTO 116

IF(AM.GT.SS1(1,1)) GOTO 412
DO 411 J=1,282

AQ)=S1(1,0)

AM=SS1(1,1)

DO 413 1=1,100

DO 4413 J=1,5

4413 SS1(1.J) =0.0

413

415

414

DO 413 J=1,284
S1(I,1)=0.0

DO 414 J=1,284

DO 415 1=1,2997
SILN=SI+T.))

DO 414 1=2998,3000
S(I.=0.0

DO 4414 J=1,5

DO 4415 1=1,2997

4415 SS(IN=SSI+T,))

DO 4414 1=2998,3000

4414 SS(1.,J)=0.0

NS=2997
GOTO 10



C

42 IF(AM.GT.SS2(1,1)) GOTO 422

DO 421 J=1,282
421 AQ)=S2(1))
AM=SS2(1,1)
422 DO 423 1=1,100
DO 4423 J=1,5
4423 SS2(1,7) =0.0
DO 423 J=1,284
423 S2(LD=0.0
DO 424 J=1,284
DO 425 I=1,97
425 SI(IT)=S1(I+T,))

DO 424 1=98,100

424 S1(1,1)=0.0
DO 4424 J=1,5
DO 4425 1=1,97

4425 SS1(L,N)=SS1(I+T.])
DO 4424 1=98,100

4424 SS1(1,))=0.0
NS=97
GOTO 11

C

43  TF(AM.GT.SS3(1,1)) GOTO 432

DO 431 J=1,282
431 AQ)=S3(1))

AM=SS3(1,1)
432 DO 433 1=1,100

DO 4433 J=1,5
4433 SS3(1,1)=0.0

DO 433 J=1,284
433 S3(1.J)=0.0

DO 434 J=1,284

DO 435 1=1,97
435 S2(LT)=S2(I+T,))

DO 434 1=98,100
434 S2(13)=0.0

DO 4434 J=1,5

DO 4435 1=1,97

4435 SS2(LI)=SS2(1+T.))



DO 4434 1=98,100
4434 $S2(1,7)=0.0
NS=97
GOTO 12
C
44 TR(AM.GT.SS4(1,1)) GOTO 442
DO 441 J=1,282
441 AQ)=S4(1,))
AM=SS4(1,1)
442 DO 443 1=1,100
DO 4443 J=15
4443 $S4(1,7)=0.0
DO 443 J=1,284
443 S4(1J)=0.0
DO 444 J=1,284
DO 445 1=1,97
445 S3(LY)=S3(+T.J)
DO 444 1=98,100
444  S3(I,N=0.0
DO 4444 J=1,5
DO 4445 1=1,97
4445 SS3(IT)=SS3(1+T.J)
DO 4444 1=98,100
4444 SS3(1,1)=0.0
NS=97
GOTO 13
C
45 IF(AM.GT.SS5(1,1)) GOTO 452
DO 451 J=1,282
451 AQ)=S5(1,))
AM=SS5(1,1)
452 DO 453 1=1,100
DO 4453 J=1,5
4453 SS5(1,1)=0.0
DO 453 J=1,284
453 S5(1,7)=0.0
DO 454 J=1,284
DO 455 I=1,97
455  S4(LN)=S4(I+T.J)
DO 454 1=98,100

C-13



454 S4(1.3)=0.0
DO 4454 J=1,5
DO 4455 1=1,97
4455 SS4(LI)=SS4(1+T.J)
DO 4454 1=98,100
4454 SS4(1,1)=0.0
NS=97
GOTO 14
C
46 IF(AM.GT.SS6(1,1)) GOTO 462
DO 461 J=1,282
461 A)=S6(1.))
AM=S8S6(1,1)
462 DO 463 1=1,100
DO 4463 J=1,5
4463 SS6(1,1)=0.0
DO 463 J=1,284
463 S6(1,3)=0.0
DO 464 J=1,284
DO 465 1=1,97
465 SSAN)=S5(+T.J)
DO 464 1=98,100
464 S5(1.3)=0.0
DO 4464 j=1,5
DO 4465 1=1,97
4465 SS5(11)=SS5(+T.J)
DO 4464 1=98,100
4464 SS5(1,1)=0.0
NS=97
GOTO 15
C
47 IF(AM.GT.SS7(1,1)) GOTO 472
DO 471 J=1,282
471 A@G)=S7(1,3)
AM=SS7(1,1)
472 DO 473 1=1,100
DO 4473 J=1,5
4473 SST(L.1)=0.0
DO 473 J=1,284
473 S7(IN)=0.0



DO 474 J=1,284
DO 475 1=1,97
475 S6(LN)=S6(1+T.J)
DO 474 1=98,100
474 S6(1.1)=0.0
DO 4474 J=1,5
DO 4475 1=1,97
4475 SS6(1,))=SS6(1+T.,J)
DO 4474 1=98,100
4474 SS6(1,))=0.0
NS=97
GOTO 16
C
48 IF(AM.GT.SS8(1,1)) GOTO 482
DO 481 J=1,282
481 A@)=S8(1.))
AM=SS8(1,1)
482 DO 483 1=1,100
DO 4483 J=1,5
4483 SS8(LN)=0.0
DO 483 J=1,284
483 S8(1.J)=0.0
DO 484 J=1,284
DO 485 1=1,97
485 STAN=S7A+T.))
DO 484 1=98,100
484 S7(1N)=0.0
DO 4484 J=1,5
DO 4485 1=1,97
4485 SST(IN=SS7(I+T,1)
DO 4484 1=98,100
4484 SS7(L1)=0.0
NS§=97
GOTO 17
C
49  TF(AM.GT.SS9(1,1)) GOTO 492
DO 491 J=1,282
491 AT)=S9(1.))
AM=SS89(1,1)
492 DO 493 1=1,100

C-15



DO 4493 J=1,5
4493 SS9(1,1)=0.0
DO 493 J=1,284
493 S9(IN)=0.0
DO 494 J=1,284
DO 495 1=1,97
495 S8(LJ)=S8(+T,))
DO 494 1=98,100
494  S8(I,N)=0.0
DO 4494 J=1,5
DO 4495 1=1,97
4495 SS8(LT)=SS8(I+T.J)
DO 4494 1=98,100
4494 SS8(1,1)=0.0
NS=97
GOTO 18
C
50 IF(AM.GT.SS10(1,1)) GOTO 502
DO 501 J=1,282
501 AQ)=S10(1J)
AM=S510(1,1)
502 DO 503 I=1,100
DO 4503 J=1,5
4503 $S10(1,7)=0.0
DO 503 J=1,284
503 S10(1)=0.0
DO 504 J=1,284
DO 505 1=1,97
505 S9(IT)=S9+T,])
DO 504 1=98,100
504 S9(LT)=0.0
DO 4504 J=1,5
DO 4505 1=1,97
4505 SS9(IJ)=SSO(I+T.J)
DO 4504 1=98,100
4504 SS9(L,)=0.0
NS=97
GOTO 19
C
51 IF(AM.GT.SS11(1,1)) GOTO 512



DO 511 J=1,282
511 AQ)=S11(1)
AM=SS11(1,1)
512 DO 513 I=1,100
DO 4513 J=1,5
4513 SS11(L,1)=0.0
DO 513 J=1,284
513 S11(1,1)=0.0
DO 514 J=1,284
DO 515 1=1,97
515 S10(L1)=S10(I+T.})
DO 514 1=98,100
514 S10(1,3)=0.0
DO 4514 J=15
DO 4515 I=1,97
4515 SS10(I,T)=SS10(I+T,J)
DO 4514 1=98,100
4514 SS10(L,7)=0.0
NS=97
GOTO 20
C
52 IF(AM.GT.SS12(1,1)) GOTO 522
DO 521 J=1,282
521 AQ)=S12(1,))
AM=SS12(1,1)
522 DO 523 I=1,100
DO 4523 J=1,5
4523 SS12(1,1)=0.0
DO 523 J=1,284
523 S12(1,)=0.0
DO 524 J=1,284
DO 525 1=1,97
525 SII1(LJ)=S11(I+T,])
DO 524 298,100
524 S11(L,J)=0.0
DO 4524 J=1,5
DO 4525 I=1,97
4525 SS11(1,T)=SS11(I+T.))
DO 4524 1=98,100
4524 SS11(1,7)=0.0



NS=97
GOTO 21
C
53 IF(AM.GT.SS13(1,1)) GOTO 532
DO 531 J=1,282
531 AQ)=S13(1J)
AM=SS13(1,1)
532 DO 533 I=1,100
DO 4533 J=1,5
4533 SS13(@,7)=0.0
DO 533 J=1,284
533 S13(L1)=0.0
DO 534 J=1,284
DO 535 I=1,97
535 S12(L1)=S12(L+T,)
DO 534 1=98,100
534 S12(L))=0.0
DO 4534 J=1,5
DO 4535 I=1,97
4535 S12(IJ)=SS12(I+T.J)
DO 4534 1=98,100
4534 SS12(1,J)=0.0
NS=97
GOTO 22
C
54 IF(AM.GT.SS14(1,1)) GOTO 542
DO 541 J=1,282
541 AQ)=S14(1,))
AM=SS14(1,1)
542 DO 543 1=1,100
DO 5543 J=1,5
5543 SS14(1,1)=0.0
DO 543 J=1,284
543 S1 4(1J)=0.0
DO 544 J=1,284
DO 545 =1,97
545  S13(LT)=S13(L+T,))
DO 544 1=98,100
544 S13(L1)=0.0
DO 4544 J=1,5

C-18



DO 4545 1=1,97
4545 SS13(1N=SS13(I+T.)
DO 4544 1=98,100
4544 SS13(1.1)=0.0
NS=97
GOTO 23
Cc
55 IF(AM.GT.SS15(1,1)) GOTO 552
DO 551 J=1,282
551 A@)=S15(1.])
AM=S515(1,1)
552 DO 553 I=1,100
DO 5553 J=1,5
5553 §§153,))=0.0
DO 553 J=1,284
553 S15(1)=0.0
DO 554 J=1,284
DO 555 1=1,97
555 S14(LI)=S14(I+T,])
DO 554 1=98,100
554 S14(1,5)=0.0
DO 4554 J=1,5
DO 4555 I=1,97
4555 SS514(1.7)=SS14(I+T.J)
DO 4554 1=98,100
4554 S514(1,7)=0.0
NS=97
GOTO 24
116 DO 170 J=1,LD
170 XEF@)=AQ)
WRITE(6,999) CL,A(281),AM
999 FORMAT(1X,’CL=",]J4,1X,"LP=",14,1X,"METRIC=",F20.8)
RETURN
END

SUBROUTINE HOS(ZF,S,S8S,G,AA,LPP,T,M,L,.LD,LF,V,SGN,P0,CL,NS,NC,SH)
DIMENSION ZF(LF),P0(200)

INTEGER T.,CL,V,CLO,NS1,XEF(256),SH

INTEGER*2 S(M,284),LPP(5000),51271



REAL G(10),AA(2),SS(M,5),ME . M0,M1,SGN
ME(Z,Y ,SGN,P0Z)=(-1.442695%(0.9189385+0.5* ALOG(SGN)+
* ((Z-Y)**2)/(2*SGN)+ALOG(P0Z))-1.0)
C
Li=2
Vi=L1-1
S$1281=8(1,281)
CLO=CL
IF(S(1,281).EQ.LF) GOTO 115
NS1=NS+1
DO 110 K=NS1,3000
LP=S(1,281)+1
YO0=AA(1)*SS(1,2)+AA(2)*SS(1,3)
IF(LP .GT.V1) GOTO 125
DO 120 J=2,LP
LI=LP-J+1
120 YO=YO+G(@)*S(1,LD)
Y1=Y0+G(1)
GOTO 140
125 DO 130 J=21.1
Li=LP-J+1
130 YO=YO0+G(I)*S(1,L])
Y1=Y0+G(1)
140 ZK=10*(ZF(LP)+4.1)
KZ1=INT(ZK)
KZ2=K7Z1+1
POZ=(PO(KZ2)- PO(KZ1))*(ZK- KZ1)+PO(KZ1)
MO=ME(ZF(LP),Y0,SGN,P0Z)+SS(1,1)
M1=ME(ZF(LP),Y1,SGN,P0Z)+SS(1,1)
C
C PLACING TWO NEWEST PATHES INTO STACK, ONE REPLACES THE ENTRY 1,
C THE OTHER ENTERS ENTRY NS+1, REODERING IS TO BE DONE LATTER
C
C ADDING THE NEWEST ESTIMATED BIT AND CHANGING THE 2 PARAMETERS
C (LENGTH AND METRIC OF THE PATH) OF ENTRY 1 AND NS+1 OF THE STACK
C
S(1,LP)=0
S(1,281)=LP
S8(1,1)=M0
S$5(1,3)=85(1,2)



S8(1,2)=Y0
IFILP.GT.256) GOTO 145
NS=NS+1
DO 160 J=1,LP-1
160 S(NS,D=S(1.,))
S(NS,281)=LP
S(NS,LP)=1
SS(NS,1)=M1
SS(NS,3)=88(1,2)
SS(NS,2)=Y1
C
C REORDERING THE STACK BY COMPARING THEIR METRICS AND PLACING THE
C LARGEST T ENTRIES IN THE TOP OF THE STACK
C
145 CALIL REODR(S,T,M,NS,SS)
C
CL=CL+1
LPP(CL)=S(1,281)
IF(LPP(CL).EQ.LF.OR.CL.EQ.5000) GOTO 115
IF(NS.EQ.M) GOTO 112
110 CONTINUE
112 NC=1
GOTO 113
115 NC=0
LPP(CL)=S(1,281)
113 IF((CL-CL0).GT.20) CLO=CL-19
RETURN
END

SUBROUTINE REODR(S,T,M,NS,SS)
INTEGER T,T1
INTEGER*2 S(M,284),C(284)
REAL SS(M,5),CC(10),AM
Ti=T+1
IF(T1.GT.NS) T1=NS
DO 10 K=1,T1
AM=-10000.0
DO 2 I=K,NS



10

IF(SS(L,1).GT.AM) AM=SS(I,1)
CONTINUE
DO 3 I=K,NS
IF(SS(1,1).EQ.AM) NM=I
CONTINUE
[F(NM.EQ.K) GOTO 10
DO 5J=15
CCI)=SSK.J)
SS(K.J)=SS(NM.J)
SSNM,J)=CC(J)
DO 4 J=1,284
CO=SK.7)
S(KJ)=SMNM.J)
S(NM,J)=C(J)
CONTINUE
RETURN
END



