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ABSTRACT

This thesis is an examination of the properties of the
recapture frequency distribution obtained through the capture-
recapture method. Two models are used for the simulation of
biological population. The models are the Replacement model and
the Immigration and Death model. The recapture frequency is com-
pared with the truncated geometric distribution and the duration
frequency is compared with Holgate's distribution,

Three estimators of population size, namély, the geometric,

the negative binomial and a moment estimator based on Holgate's

distribution are evaluated.
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CHAPTER I

INTRODUCTION

In order to study certain behaviour of an animal population
on a defined area, such as its birth rate, death rate, immigration,
emigration rates into and out of the area, biologists frequently
use sampling methods combined with marking of animals. " The simplest
of these methods (called capture-recapture methods) involves taking
samples on two occasions. Assuming a closed system, (that is, not
subject to addition or depletions) animals are captured, marked
and then returned to the population. At some later stage, another
trapping experiment is conducted. The second sample contains
both marked and unmarked animals. The proportion of marked animals
in the sample may reflect the proportion of total marked animals in
the whole population truthfully. From this proportion, it is
possible to get an estimate of the population size.

This simple recapture method is of limited use. It
assumes a closed system, which in reality, may be impossible. It
cannot satisfactorily take account of birth or death, or of any

factor which may cause a change in the original population size. A

more sophisticated and informative sampling experiment for estimating




the properties of an animal population is the multiple capture-
recapture experiment.

The multiple capture-recapture method is an extension of
the simple recapture method. Several trappings are performed over
a period of time. An animal captured is marked and then released
into the population. In subsequent trappings, it has a probability
of being captured again. The number of times each animal is
captured is recorded. This can be done either by putting different
marks on the animals for different times of captures or by giving
a different mark such as a number to each animal captured. At
the end of the experiment, a record of recapture frequency is
.available in the first case, and the complete capture history of
each captured individual is available in the second case. Informa-
tion about the population can be extracted by accurate interpreta-
tion of the recapture frequency table or capture history table.

Jolly (1965) derived a general probability distribution
designed to fit capture-recapture problems for a homogeneous
population. He also derived estimators for a single population
that is subject to immigration and death. When a population is
made up of a number of discrete homogeneous strata, it may be

necessary to have seperate population estimators for each stratum.

Jolly's estimates can be adapted to this situation so long as




jndividuals do not change from one stratum to another in the course
of the experiment.

With this model, Jolly is able to estimate the number of
marked animals in the population, the total number of animals in
the population, the probability of survival for an animal released
after sampling and the number of animals joining the population
between each sample is still available for the next sampling period.
The asymptotic variance andvcovariance for the estimates
of the population size, survival rate and the number of immigra nts
can also be derived, but it is reasonable to use these estimates of
the true variance and covariance only when the number of animals
captured is sufficiently large.

Jolly makes several assumptions for his general capture-
recapture model. These are:

i) The equal survival assumption.
It is assumed that all animals, alive

at sampling period t have the same probability

of survival to time t+1, regardless of age,

capture history or location.
ii) The equal catchability assumption.
It is assumed that all animals alive at
time t have the same probability of being

captured at time t regardless of age, previous

capture history or location.
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The permanent emigration assumption.

It is assumed that if animals leave the
population, they do so permanently. They do
not leave the population, remaining absent and
so uncatchable for one or more sampling periods,
and return at some subsequent point in the
experiment.

The validity of assumption (ii) is debatable. Many
experimental data show that this assumption is not fulfilled.

Cormack (1966) suggests that the probability that a particular
individual is captured in any sample may be a property of the
individual, or the probability that an individual is caught in any
sample may depend on its previous capture history. On the other
hand, Eberhardt (1968) postulates that a population might have

equal catchability given the same exposure to trapping, but animals
appear to have different probabilities of capture owing to variations
in contact with traps.

An advantage of Jolly's method is that it gives estimates
of the variance of the estimators. There is no restriction on
sampling time, that is, there can be unequal time intervals between
samplings. It allows for a stratified population with possibly

different parameters applying to different strata. This can be




the difference in sex or different age groups. Also, Jolly's method

is the most complete and efficient estimation procedure available.
But Jolly's method has its disadvantages. For example,

the calculations can be tedious, particularly in the calculation of

~ the variances. It is difficult to combine estimates over sampling

periods to get the total population, average life time and so on.

It is also very sensitive to some failures of the assumptions. A

more convenient procedure is to use the Geometric estimators or

other simple estimators such as the one developed by Holgate (1S64).
Tanton (1965) conducted an extensive capture-recapture

experiment on wood mouse (Apodemus sylvaticus) and bank vole

(Clethrionomys glareolus). He discovered that the probability of

survival for the animals is quite uniform but that the data

obtained from the capture-recapture method for estimating population
size is unsatisfactory. There were very few animals caught in the
summer months and the number of animals captured increased during
the winter months. He attributes the difference to the fact that
food is more abundant in the summer than in the winter, and hence
fewer animals would fall into the traps. The probability of

capture was not equal throughout the population, but the probability
of capture for an individual is fairly constant during the

experiment. The recapture frequency showed that a large number of




animals were captured only once; Tanton believed that this was
probably because of the presence of a large number of wide-ranging
vagrants, and this inflated the estimates considerably.

Tanton (1969) used the stochastic model formulated by Jolly
to analyse the data he obtained through another capture-recapture
experiment. He confirms his findings published in 1965. The
estimates produced by Jolly's capture-recapture method were indeed
misleading for the summer months, but those for the winter months
were quite realistic. The assumption of equal catchability broke

. down because many of the juveniles known to be present in the
population were not caught. Males were captured more cften in the
summer months and females in the winter months. The assumption
that animals released after éapture would mingle randomly throughout
the whole population also failed. This is due to the fact that
these animals have a relatively small range within the area. The
time Interval between two capture periods was discovered to be
important. When irregular intervals were used, unreasonable
estimates were obtained. Tanton further suggested that the truncated
Negative Binomial distribution should be used to fit to the
frequency of recapture data and modified Geometric distribution
to fit to the duration of residence for the animals in the area.

Eberhardt (1968) studied the fitting of the Geometric




distribution to the observed distribution of frequency of recapture.
Since the number of animals not captured is not known, the fitting
was necessarily truncated at the zero class. Assuming equal probabi;
lity of capture and a closed population with neither losses nor
immigration taking place, he developed the geometric estimator, buf
he did not show its variance. He tested the goodness of fit of

both the poisson distribution and the geometric distribution to forty
sets of data on ten species of animals. His study showed that for
most cases, the geometric distribution represeﬁts frequency of
recapture data more closely than does the poissor distribution.

He further showed that under certain assumptions, the geometric
distribution for frequency of recapture could arise in populations
not closed to birth or death. This result is discussed in more
detail in the next chapter.

Bunham and Overton (1969) investigated the bias of the
Geometric estimators when the assumption of equal catchability was
violated. They considered a closed population and generated the
capture probability P from five distributions: P equal to a
constant, P taken from a uniform distribution on (0, 1) and
from three Beta distributions. They tested the capture statistics
on six estimators, namely the Petersen, Schnabel, Geometric, a

modified Geometric estimator and two unnamed estimators. Their




result indicted that for low capture probability, all estimators
were poor. The Geometric estimator was best only for the Beta
distribution (B(1, b), b > 1). But on the whole, it performed
poorly.

However, no study has been made of the adequacy of the
geometric estimator when Jolly's assumptions hold. The present
study is designed to investigate the bias of the geometric estimator
for a population with birth and death, Jolly's assumptions plus the
restriction of equal sampling periods. This study also investigates
the behaviour of the zero class, and of a number of estimators
based on the duration frequency distribution (Holgate's distribution;
these estimators are defined in the next chapter). This behaviour
is examined using two models for defining birth and death, and for
a number of different values for original population size, mean
life, number of sampling periods, capture probabilities, etc.

The adequacy of fit of the recapture data to the geometric
distribution and of the observed duration data to Holgate's
distribution were tested.

Three estimators of population size were evaluated; these
were the Geometric, Negative Binomial, and a moment- estimator based
on Holgate's distribution. The bias and precision of these estimators

were examined. Also, a variance estimate for the geometric estimator




was looked at.

Eberhardt shows that, given the assumptions and restric-
tions mentioned above, a geometric distribution of recapture
frequency must result in the limit as the number of sampling periods
becomes large. Ancther purpose of this study will be to study
the properties of the geometric estimator in small samples and to
determine how many samples an experimenter must take in order to

get an ddequate fit to the geometric distribution.
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CHAPTER II

MODELS, DEFINITIONS AND ESTIMATORS

We wish to examine the properties of the distribution of
recaptures and of observed duration on an area where a population
is not closed; that is it is subject to addition by birth or
immigration and to depletion by death or emigration. We wish to
impose the three assumptions of Jolly (1965) mentioned in the previous
chapter. In particular, the second assumption (equal survival)
prescribes that the life time of every individual comes from an
exponential distribution with the same mean. In addition, we also
assume that the population is stable (or in equilibrium); that is,
the distribution of the number alive on the area at any particular
time is independent of time. Moreover, this implies that the
expected number alive on the area at any time does not change.
This still allows us a certain amount of choice in simulating
the mechanism of population turn-over, and two models, which are
reasonably realistic, were used. These are the replacement model

and the immigration and death model.
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REPLACEMENT MODEL

The Replacement model assumes a stable population. When-
ever an animal dies, he is immediately replaced by a new individual
introduced from outside. This assumption is quite reasonable for
many animal populations. For an area that can support a certain
number of small animals of the same species such as rodents,
animals would come into this area and occupy some space and set up
their territorial boundary. This would go on until the area is
filled to its capacity. When a new animal now arrives, he would
sense these boundaries and be aware that there is no space for
him and he would leave the area. When a resident animal dies, a
vacuum is created and the space is taken up immediately by a migrant.
This mechanism has been suggested by Calhoun (1963).

Due to the independence properties of the déath process,
each individual alive is subject to the same risk of death, and
the length of time that an animal lives is not dependent on the
existence of other animals, or on the density of the population.
The life span of the animals thus has an exponential distribution
with the parameter 6, where 6 1is the mean life expectancy on
the area of all animals who enter the population.

A further consequence of the model is that NT, the
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number of animals alive at some time during the experiment of

length T given that there are NO animals alive at the

beginning of the experiment is distributed as

NT = N, + RT
where RT has the poisson distribution with mean NOT/e. Thus

E(NT)

N0(1+T/6)

var(NT) NOT/G
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IMMIGRATION AND DEATH MODEL

For this model, it 1s assumed that both birth and death
can occur. But the whole population size is in equilibrium. The
number of animals that die is balanced by the number of animals
entering into the population. This assumption is reasonable since
in reality, animal populations in an area do tend to be stable,
at least over short periods of time.

Death is the same as in the Replacement model. Birth is
by immigratioﬁ. This model differs from the replacement model in
that a replacement is not introduced after each resident animal
dies. Immigration is independant of the death process and is
steady. Animals enter the population randomly, according to the
poisson process. The time between the arrival of two animals is
a random variable from an exponential distribution. This model is
well known in stochastic processes and the properties of the
model are discussed in most texts on stochastic processes. (See,
for example, Cox and Miller (1968)).

If the mean inter-arrival time i1s A, mean life is 86,
initial size of the population is NO’ and population at time t
is NT, then for equilibrium to occur, (i.e. E(NT) = NOVT) we must

have N. = 6/X. The number of births in (0, T), B

0 has the poisson

T’




distribution with mean T/A and thus NT =

E(NT) = NO + T/X
= NO (1+7/6) since X
var (NT) = T/X

NOT/S

N

0

+BT

G/NO

has
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NOTATION

Live trapping is conducted every week for T consecutive
weeks. Capture probability is assumed to be constant for all

animals in the population. Let

N = original population size.

F(x)i

number of animals caught x times
at ith sampling period, where
i=1,2,3, ..., T and

1, 2, 3, ..., i.

X
Nti = total number of animals alive in
the population for some time
between (0 and time 1.
si = JF(x)i
pd
= number of different animals captured
up to time 1.
Ci = )xF(x)i
x
= number of captures made up
to time 1.

H(0)i = FP(1)i

= number of animals captured only

once up to time 1i.




number of animals captured more
than once such that the time
between the first and the last
capture is j weeks.

ZH(j)i.

2-1/6.

probability that an individual
survives at sampling period t+1,
given that it is alive at

period t. (This probability as
a consequence of the exponential
distribution of life, is
independent of t, the individual's
age and of the number or
behaviour of other individuals

in the population.)

the mean number of sampling intervals
(weeks) that an individual lives
in the area.

probability that an individual
whiéh is alive at the time of
sampling is not taken in the

sample.

16.
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the random variable that has the
uniform distribution on (0, 1)
obtained through a random number
generator.

population size estimated

by the Geometric estimator.
population size estimated

by Holgate's estimator.
population size estimated by

the Negative Binomial estimator.

C.
i

e~

N
78]
[N

17.
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GENERATION OF RANDOM VARIABLES

FROM THE EXPONENTIAL DISTRIBUTION

Pseudo-random number generators are used to generate
uniformly distributed random numbers between O and 1. The
exponential distribution has a continuous cumulative function. 1t
is possible to generate life span of animals by mapping a random
number onto the function by using the probability integral
transformation. The transformation is as follows.

Let r be a continuous random variable

uniformly distributed between 0 and 1. It

has probability element such that

f(r)dr = dr, Ogr«l

i

o, otherwise.

Let y be a random variable defined by

r = H(y) where H(y) 1is monotoni-
cally increasing and

continuously differentiable.
Hence

h(y) = j—y H(y)

dr

dH(y) =1




therefore
dr = dH(y)
substituting »r = H(y)
£(H(y)) = %(IV—) dy = hiy)dy

Thus y has probability density function h(y)
and cumulative function H(y) where

H(y) =fy h(t)dt.

Let y be the life span of an animal. Let y have an
exponential distribution with the probability density function
1/6 ¢ V8,

Then

F(y) jy 176 &7V gy
0

=1 --e"y/e

If r 1is randomly distributed between O and 1,
then 1-r is also uniformly distributed between

0 and 1. Therefore, set,

l-r = 1 --e—y/e

19.




r = e~y/6
-ln r = y/0
y = -9 1n r.

and y 1is a random observation from the

required exponential distribution.

20,




GEOMETRIC ESTIMATOR

The Geometric estimator was proposed and derived by

Edwards and Eberhardt (1967).
Prob (an animal lives t weeks, and hence
is available for t samples)

= (k) kY t=0,1, 2,3, ...

Then given equally spaced sampling periods and equal

e
1}

prob (not caught)

_ (1-k)
T 1-qk

prob (caught at least once)

O
"

_ (1-q)k
T 1-gk

Prob (caught n times)

=Q" n=0,1, 2,83, ...

Hence n has the Geometric distribution with

Q/P

/p? nz0, 1, 2,3, ..

mean

tt

var.

21.




This shows that under the assumption that

1) all individuals are‘subject to the exponential
distribution of life and.

2) there i;‘fﬁdependent capture probability and
constant capture probability on all sampling
occasions and for all individuals.

3) there are equal intervals between sample periods
and sampling is carried out over a large
number of sampling periods,

then the distribution of observed capture frequency follows the
zero truncated Geometriec distribution.

The number of animals in tﬁe zero class comes from an

untruncated Geometric distribution with the same parameter (P);

then we have

Prob (captured n times ) = P Q"

n=0,1,2,3, ...

and E(S) = N . (prob. an individual is
captured at least once)

= N.Q

Chapman and Robson (1960) give an unbiased estimate

for Q using observations from the untruncated Geometric

22.
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distribution. This estimate is

and since it does not make use of the observations in the zero
class, f(0), it is also available for observations from the
truncated distribution. Thus using this estimate for g, and
solving for N, gives the "Geometric estimator for N".

Hence

_s(c - 1)
g C-5

2D

An estimate for the asymptotic variance of this estimate
can be obtained by the standard linearisation or delta technique,
making use of the variance and covariance of S and C. These

expressions are developéd in Arnason and Chan (1971) and are:

(C—S)q var Ng = (S(l—-S))2 var C
+ (C(l--C))2 var S

-2(s.C(1-8).(1-C)).

cov (CS)
2
var C = NQ/P
var S = NPQ
cov(CS) = NQ




24,
Estimating N by Ng’ and Q by (C-8)/(C-1) as above,
and substituting in var Ng ~gives an asymptotic estimate for

var Ng (valid for large C, S, C-S)

A A 2
vdr N = N .(C.S-C+8)/(C-S
Ny = Mg /( )
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HOLGATE'S DISTRIBUTION

Holgate derives the distribution of observed duration
on the area (as defined by H(j) in the section of notations)
under the same assumptions as used by Eberhardt (as given in the
previous section), except that he assumes that an individual that
lives T weeks is exposed to capture T+l times. He thus
ignores the time between entry of an animal and the first sample
to which it is exposed.

He shows that

Prob (not caught | T=t) = qt+l

Prob (caught once | T=t) = (t+l)pqt

Prob (T=t) = (1-k)Kt

Therefore

Prob (not caught) - k)

~ 1-qgk

Prob (caught once) - (k) 5
(1-qk)

Prob (caught at least once) = 1 - £%E§%g
_ Q-q)




Since E(S) = N Si:ﬂl
1-qk

using the moment estimate of N, we have

_ S(1-gk)
fh = .

Letting mean observed duration be d, Holgate

shows
4= k(-q)
(1-k)(1-qk)
and let
6 = H(0)/S

f

proportion of animals captured once

he obtained the maximum likelihood estimators

R-“-‘l—(l;e)

~ _ k-(1-8)

S CH

2

~ _ (1-k)"(1-gk)

var k S(1-q)
2

var § = (1-q)(1-qk) (1-qk)

Sk2(1-k)

26.




therefore

~

(1-q)

Hence

A

ak

k

0>

]

0

kK - (1-8)

ke - &k + (1-90)

9

ke - &+ (1-9)

ke

k8

(k-1)(8-1)

~
1~
N

(k-1)(6-1)

27.
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NEGATIVE BINOMIAL DISTRIBUTION

It is often difficult to estimate the parameters for the
truncated Negative Binomial distribution. Brass (1958) considered
simple methods of fitting the truncated Negative Binomial
distribution.

Let m and 82 be the mean and variance of the obser-
vations with the zero class excluded.

Let M be the mean with zero class included.

Let Z be the number of animals in zero class.

And Y = F(1)/S

Then Brass gives

M=m- sQY/m(laY)

but M = C/(8+Z)

S set 0= c/(s+2)

9]
+
N
H]

c/f

=z
H

S+7Z

c/M
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CHAPTER III
RESULTS

The mean life span of the animals was set to be equal to
ten sampling periods. The experiment was performed over one
hundred sampling periods with capture probability ranging from
0.05 to 0.95 in steps of 0.1. Two original population sizes were
used to investigate the properties of the estimators. They were
one hundred and two hundred animals. Each experiﬁent was repeated
fifty times. After every ten sampling periods, the statistics of
the true population, the number of animals captured and the total
number of captures were collected. The recapture frequencies were
then compared with the geometric distribution fitted using
maximum likelihood estimates for the parameters. The chi-square
test was used to test for the goodness of fit. Also the duration
frequencies were obtained and were compared with the fitted Holgate's
distribution.

There is a difficulty in using the chi-square test as a
measure of goodness of fit. For example, the geometric distribution
for recapture frequency does not hold exactly for any finite number

of sampling periods, T, but the data will tend to the geometric
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distribution as T becomes large. However, in a simulation study,
using any fixed T, it is always possible to generate a sufficiently
large number of observations that the Chi-square statistic will be |
significantly large. For all experiments, the recapture frequencies
and duration frequencies were summed over fifty simulations and the
chi-square test was applied to these pooled data. Since the number
of simulations was kept constant at fifty for all simulation sets,
the chi-square statistics can at least be used as a comparative
measure of the goodness of fit over different simulation sets.

The properties of the estimators for sampling periods
less than the mean life span of the animals were also investigated
The life span of the animals was set to be twenty sampling
periods and statistics were collected for periods from seven to
twenty over the same range of capture probabilities.

Since animals are coming into the population randomly,
the total population for each experiment is a random variable and
increases as the length of the experiment increases. It was
therefore difficult to compare the bias of the different estimators
for different lengths of experiment. A relative error was used.
The relative error was obtained by dividing the absolute value of
the difference between the true and estimated population size by

the true population size. In this way, the error was standardized.
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The mean relative error over fifty simulations for the geometric,
the Negative Binomial estimators and Holgate's distribution were
plotted against the number of sampling periods. (Figures I, II,
111, IV, V).

The greatest changes in bias and efficiency of the
estimators were at low numbers of sampling periods and capture
probabilities. Therefore, the relative absolute error, the bias
and variance of the estimates for the geometric and Holgate's
distribution over low capture intensity and short sampling periods
were collected into table form for the two different models andlfor
the different original populations sizes. (TABLES I, II, III, IV,
v, VI).

| The number of sampling periods increases across columns
and the capture probability increases down the columns. Each
entry in the table contains the relative absolute error, the
sample bias and the sample variance of the estimator for the
geometric and. Holgate's estimators. Since for different capture
probabilities, the expected population sizes are the same for the
same number of sampling periods, the bias can be compared within
the same row but the relative absolute error should be compared
along the same column.

Below is given a schematic summary of the model and
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of parameter values used in the simulation study. The statistics
collected for each estimator (and the definition of the statistics)

is also given.




& = 10 sampling periods 0

Replacement model

Immigration and death model

33.

20 sampling periods

capture probability (P) from

0.05 to 0.95 in steps of 0.1.

P = 0.05 (0.1) 0.95
i.e. P = 0.05 (0.1) 0.95
number of sampling periods from
10 to 100 in steps of 10
i.e. t = 10 (10) 100 t =7 (1) 20

mean and
variance
over fifty
simulations
of

E

B

ESTIMATES calculated for each simulation

ﬁg, VAR ﬁg; Nn; ﬁh, k, VAR k

STATISTICS collected for each estimate
over fifty simulations

= estimate
= mean bias = estimate - parameter value
= E-T
= relative E-T
.= N ,N, N
absolute bias T (for g” h> 'n

only)




PROPERTIES OF THE FREQUENCY OF RECAPTURE DISTRIBUTION

The recapture frequency seems to follow a geometric
distribution. When the capture probability is large and the
sampling period is long, some irregularity can be observed. These
irregularities only occur at the tail end of the recapture frequency
and are so slight that they can be ignored. When the capture
probability ié low, few animals are captured in the experiment
and the chi-square test does not detect any significant difference
between the recapture frequency and the maximum likelihood estimate
of the geometric distribution. For capture probability of 0.05,
after sixty sampling periods, the chi-square values are between
two and four with four or five degrees of freedom. The best value
is 2.69 with five degrees of freedom. The chi-square value becomes
very large when the capture probability increases. For example,
at forty sampling periods, for capture probability 0.35, the chi-
square value is 73 with 19 degrees of freedom, and is 93 with 26
degrees of freedom for capture probability 0.55. The maximum
likelihood estimator greatly over-estimates the ones class, f(1),
when the sampling period is short and hence gives poor chi-square
values; also at high capture probability, many animals are captured,

and any slight deviation from the geometric distribution can be
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detected by the chi-square test.

For the same capture probability, the chi-square statistics
become smaller as the length of the experiments lengthens. For
example, at capture probability 0.25, at ten sampling periods,
the chi-square value is 289 with five degrees of freedom; at
forty sampling periods, it is 51 with fourteen degrees of freedom;
at forty sampling periods, it is 18.38 with 19 degrees of freedom.

Therefore it seems to agree with Eberhardt that a geometric
distribution does occur in the limit as the number of sampling

periods becomes large.
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PROPERTIES OF THE GEOMETRIC ESTIMATOR

The geometric estimator always over-estimates the true
population size. When the capture probability is low, very few
animals are recaptured and most of the animals captured are in the
one-class. This causes the zero class to be seriously over-estimated.
When the capture probability is higher than 0.35, the majority of
the animals are captured at least once and the zero class'does not
follow a geometric distribution. It appears that the capture
probability does not affect the geometric estimators as much as
the number of sampling periods.

For the Replacement model with original population size
equal to 100, the greatest improvement in the geometric estimator
with increasing capture probability is when the number of sampling
period is small. TFor example (in table I) at ten sampling periods,
when the expected value of N 1is equal to 200, the bias is 147.86
at capture probability 0.05 and is 83.8 at capture probability 0.15,
the improvement is about 39%. At twenty sampling periods, the
expected value of N is 400, the bias is 98.36 at capture
probability 0.05 and is 60.86 at capture probability 0.15, the
improvement is 37%. But at 100 sampling periods, the improvement

in going from P = 0.05 to P = 0.15 is only 17%.
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When the capture probability is more than 0.35, the
improvement with increase in capture probability is slight even
for a small number of sampling periods. For example, at ten
sampling periods, the improvement in bias between capture
probability 0.55 and 0.75 is only 9% and at twenty sampling periods,

the improvement in bias between the same capture probabilities is

This is also true for different mean life span. When 6
is set to be twenty sampling periods, at fifteen sampling periods,
the improvement in bias between capture probability 0.15 and 0.25
is 33% and between capture probabilities 0.35 and 0.u45 is 18%. At
twenty sampling periods, the improvement in bias between capture
probabilities 0.15 and 0.25 is‘SO% and between capture probabilities
0.35 and 0.45 is 15%. (The values are in table V.)

Also, after thirty sampling periods, the bias for
different capture probabilities except 0.05, are approximately
the same. For example, (referring to table I), at forty sampling
periods, the bias for capture probabilities 0.15, 0.25, 0.55, 0.75,
0.95 are 55.72, 50,76, 45,42, 44,6, 45,24 respectively. At one
hundred sampling periods, they are 75.6, 71.8, 72.3, 73.9 and
74.1. Therefore, when the sampling periods are large, no matter

how intensively an experimenter does his sampling, the bias would
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be about the same.

The Geometric estimator imprers as the number of sampling
period increases. The greatest change is between ten and twenty
sampling periods and at low capture probabilities. For example,
at ten sampling periods, the relative error is 0.7832 at capture
probability 0.05. At twenty sampling periods, it is 0.3383.

The change is significant until capture probability is greater than
0.55, where the change is about 0.09. After forty sampling
periods, the change for any probability is minimal.

Through observing different original population sizes
and life span of the animal, the absolute error seems to be
relative to both the capture probability and the length of the
sampling periods. For low capture probabilities, the number of
samplings has to be large and vice versa. To get an acceptable
bias and error for a minimum effort, it is best to perform the-
experiment between two and three times the mean life span of the
animal or at least twenty sampling periods and to capture about one
quarter to one third of the animals in the population at each
sampling occasion.

The variance of the estimator follows the same general
trend except when the sampling period becomes very large. This is

due to the fact that the number of animals increases considerably




when the time of the experiment increases and hence the bias and
the variance also increase.

The greatest improvement in variance is also between twenty
and thirty sampling periods and between capture probability 0.23
and 0.35. For example, for the replacement model, with mean life
span equal to ten sampling periods, (Table I) at thirty sampling
periods, when expected mean population size is 400, the variance is
783.17 at capture probability 0.25 and 440.25 at capture probability
0.55 and 391.45 at capture probability 0.75.

At forty sampling periods, the mean population size is
about 500, the variance is 764,80 at capturé probability 0.25,
571.77 at capture probability 0.55 and 580.96 at capture probability
0.75.

The variance estimate over-estimates the variance of N
when capture probability was 0.05 and under-estimates it for other
capture probabilities. The variance estimate is quite close to the
variance for most of the time except for long sampling periods. It
then greatly under-estimates the variance. The best results are
between capture probabilities 0.05 and 0.55, and sampling periods
less than thirty. The mean of var ﬁg over fifty simulations is
plotted along with the values of the sample variance var N in

figures VI to XI.
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PROPERTIES OF THE OBSERVED DURATION DISTRIBUTION

AND HOLGATE'S ESTIMATOR

The adequacy of fit of the observed duration data to
Holgate's distribution is very much like the fit of recapture
data to the geometric distribution. The irregularities are more
obvious but are also confined to the tail end of the distribution.
The Holgate's distribution has a very long tail and the fit is
poor when the number of sampling period is small. The fit improves
as the number of sampling periods increases.

Except at capture probability 0.05, the Holgate's
estimator always under-estimates the true population size.
Increase in capture probability does not improve the accuracy of
the estimator. For a fixed number of sampling periods, the bias
for each different capture probability is about the same, but the
variance of the estimator becomes smaller with the increase in
capture probability.

The lengtheniné of the sampling periods does improve
the estimator for all capture probabilities. For example, (table I)
with capture probability 0.05, and sampling periods 10, 20, 30,
40, 100, the relative absolute bias are 0.119, 0,083, 0.062, 0.0u49,
For capture probability higher than 0.55, there seems to be an

increase in relative absolute error when sampling period is greater




I'&l.

than 70. It appears that at around 80 sampling periods, negative
errors are produced, and the absolute value increased the relative
absolute error.

The maximum likelihood estimate for k is very close to
the true value of k as the number of sampling periods or the
capture probability increases. When capture probability reaches
0.25, after twenty sampling periods, the two values are exactly
the same to four places of decimal. Since the value of k is
less than 1, the variance of k 1is a very small number, therefore
the standard deviation, s, is used instead.

The estimate 5 given by Holgate always under-estimates
the true s. The two values become quite close as the sampling
periods lengthened.

The values for true k, estimate of k, its standard

deviation, and § are listed in table VII.
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PROPERTIES OF NEGATIVE BINOMIAL ESTIMATOR

The Negative Binomial estimator gives fairly good
estimates when the number of sampling period is small and sampling
intensity is low. When capture probability increases or sampling
time lengthens, the estimator becomes bad. The bias does not
improve with increase in capture probability. It improves up to
capture probability about 0.25 and gets worse from then on. It
is also poor when capture probability is 0.05. The relative
absolute error is best when sampling period is about twenty, it
then gets worse and levels off at about sixty sampling periods.
The variance improves as the sampling periods lengthened, and
capture probability increases, but as a whole, it is quite poor.

The estimator is only acceptable as regards bias, variance,
and relative error when sampling periods are about ten to twenty

and capture probability between 0.15 and 0.25.
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COMPARISON

From every point of view, Holgate's estimator is better
than the geometric estimator. The bias of Holgate's estimator at
every sampling intensity is less than that of the geometric
estimator and the same is true of the absolute relative error for
all sampling periods. Also, the variance of Holgate's estimator
is much smaller.

The bias and relative error of the negative binomial
estimator lies between the geometric and Holgate's estimator for
short sampling periods, but given that the number of sampling
periods becomes large, (see figures I to V), the geometric
estimator would definitely become better than the negative binomial
estimator. The variance of the negative binomial estimator is
much larger than that of thg geometric estimator for all numbers
of sampling periods and for all capture probabilities. The estimator
Nn was thus considered to be of little value.

The result obtained from the Immigration and Death model
is very similar to that of the Replacement model. When capture
probability is 0.05, the bias, relative error and variance of both
the geometric and Holgate's estimators in the Immigration model
is slightly higher than that of the Replacement model. Whereas

when capture probability is greater than 0.15, the bias, relative
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error and variance of the geometric estimator is lower in the Immigra-
tion and Death model than in the Replacement model. The Holgate's
estimator is about the same for both of the two models. These
differences may be entirely due to sample variability.

When the original population size is doubled, the bias
and variance of both the geometric and Holgate's estimator increase.
This is understandable since the true population size is also
increased. The relative absolute error for both of the estimators
decreased, giving more accurate estimates of the true population
size.

The Immigration and Death model is more readily influenced
by the increase in original population size than the Replacement
model. The bias, absolute relative error and variance for the
geometric and Holgate's estimators become greater in the
Immigration and Death model than in the Replacement model.

When the mean lifevspan of the animal was set to be twenty
sampling periods, the simulations were only performed for twenty
sampling periods. The purpose was to examine more closely the
behaviour of the estimators when the number of samplings were
less than the mean life span of the animal. From the data obtained
in these simulations, the change in mean life span of the animals

does not have much effect on the models, distributions or estimators.
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CHAPTER 1V

TABLES AND GRAPHS

Tables I to VI are tables of the relative absolute error,
bias, and variance for the geometric and Holgate's estimators.

Table VII indicates the k value estimated by Holgate's
distribution, the value of true k, the standard deviation for the
estimate of k and the s of k.

v

Figures I to V are the graphs for the relative absolute
error of the geometric, the negative binomial and Holgate's
estimators.

Figures VI to XI are comparisons of the var ﬁg and Var ﬁg'

The vertical lines indicate 95% confidence intervals of the values.




TABLE I

= 100

Q
MEAN AND VARIANCE OVER 50 SIMULATIONS
P E(N)
.05 .25 (+ 2 s.d. (N)
G H G H G H

R | .7832 L1126 L4713 .1190 .3907 .1021 200
10 B | 147.86 30.06 89.8 -5.50 75.02 -15.62 (+ 20)

vV | 22078.93 11763.4 1220.23 932.99 741.13 454,73 -

R | .3383 .2095 .2990 .0890 .1770 .0639 300
20 B | 98.36 11.71 60. 86 -15.8 51.u48 -13.12 (+ 28.3)

V | 6853.65 6239.1 806.52 594,15 805.43 554,25 -7

R | .1867 . 1448 . 14u7 .0619 .12u6 .0559 400
30 B | 72.9 -12.65 56.74 -13.72 48.58 ~-16.38 (+ 34.6)

vV | 4517.73 4397.17 1274.24 902.79 783.17 639.47 -

R | .1605 .12u3 .1136 .0672 .1039 .0530 500
40 B | 78.88 -14.59 55.72 -19.14 50.76 -20.52 (+ 40)

vV | 5130.8 5709.42 2064 ,47 1554.88 764.80 £99.43 -

i

R | .0835 .0833 .0688 .ougy .0658 L0469 1100 |
100 B | 91.86 -60.68 75.68 ~46,23 71.8 -49,73 (+ 63.2)

V | 108026.67 11284,52 3524,40 2658.51 2013.8 1735.0 -7




TABLE I continued
P
E(N)
T .55 .75 .95 (i? s.d. (N))
G H G H G H

R .2489 .1022 .2238 .0855 .2021 .0800 200

10 B B7.04 -19.25 . 42.5 -18.15 38.78 ~15.37 (+ 20)
\ 221.75 138.30 150.59 82.34 210.88 107.71 -
R .1418 . 0435 .1320 .0500 .1281 .ouy2 300

20 B 40,96 -13.10 38.16 ~-14.32 37.46 -12.41 (+ 28.3)
V | 262.28 262.26 267.98 218.06 456.94 235.24 -— :
R .1091 .0470 .1060 0420 .1032 .0336 400

30 B 42.26 -16.26 41.32 -16.17 40.68 -15.48 (+ 34.6)
v 440,25 416,27 381.45 302.25 5338.62 336.08 —_ )
R .0930 LOobul .0910 .0392 .0916 .0378 500

Lo B 45,42 -20.64 4.6 -19.12 45,24 -18.10 (+ 40.0)
\Y 571.77 474,93 580.96 517.86 547.48 381.98 —_ '
R .0661 L0u62 ,0678 .0413 .0680 .0u35 1100

100 B 72.26 ~-50, 44 73.92 -45,03 74,12 -47.,41 (+ 63.2)
v 1688.79 1297.56 1087.74 9119.09 1281.11 853.67 — '

|




Q 10

= 200

n
MEANS AND VARTANCE OVER 50 SIMULATIONS
P E(N)
T .05 .15 .25 (+ 2 s.d. (N))
G H G H G H
R | .5647 .2123 L4793 .0878 . 3740 .0889 400
10 B | 214.1 12.16 182,76 -8.28 141.52 -28.60 (+ 28.3)
vV | 21592.06 11253.2 2147.86 1423.53 1155.38 736.25 = =
R |.2777 L1267 . 2080 .0631 .1707 ,0564 600
20 B |161.u46 2.921 120.34 -21.02 98.6 -28.95 (+ 50)
v |10185.47 10848.02 1984.58 2114,04 300.17 794,69 —
R |.1690 .0967 L1314 .0588 L1236 .0L92 800
30 B |131.98 -28.79 102.16 -35.64 36,04 -32.85 (+ 48.9)
v |9830.u42 7206.25 2021.85 2637.15 1399.6 1490.77 LIS
R |.1409 .0876 .1080 .0521 .0996 .0459 1000
40 B |137.58 -31.46 105.2 -42.61 97.28 -43.18 (56.4)
VvV |9634.57 9014.30 1833.61 2260.83 1882.11 1788.35 :
R |.0758 . 0649 ,0697 .0u8Y L0663 L0471 2900
100 B |166.06 -100.62 151.64 -102.93 144,32 -101.71 (+ 89.5)
VvV {17370.60 23280.41 4565.53 4308.72 3434 ,55 3834,58 - 07




TABLE III

IMMIGRATION AND DEATH MODEL
10 A=
MEAN AND VARIANCE

100
OVER 50 SIMULATIONS

P E(N)
T .05 .25 (+ 2 s.d. (V)
G H G H G H
R .7959 LU501 L4185 L1278 .3284 .1170 200
10 B 138.34 20.07 78.64 -13.82 61.92 -18.21 (+ 20)
A 31959.52 14544,63 1594,20 708.14 411,75 340,48 —
R .3037 .2002 .1783 L0814 . 1449 .0763 300
20 B 84,06 4,23 439,52 -14,51 42,16 -19.71 (+ 28.3)
\Y 6884, 30 5322.22 1493.65 1074.,32 557.25 402.85 — y
R .2110 .1523 .1253 .0760 .0996 L0665 400
30 B 65.7 -13.45 45,46 -18.08 38.6 -24.,44 (+ 34.6)
\Y 6192.32 5404,31 1752.36 1382.76 543,72 452.68 — ‘
R . 1509 .1232 .0880 .0721 .08u40 0647 500
40 B 52.48 -25.77 40,32 -28.84 40.5 ~-28.78 (+ 40)
\Y 6195.98 6040.15 1831.42 1425.21 720.27 725.82 —
R .0834 .0837 L0545 .0616 L0603 .0587 1100
100 B 65.7 -54,37 54,82 -64,82 65.58 ~-61.u45 (+ 63.2)
\'s 9874, 64 11278.48 3278.68 2714.91 2144 ,27 1846.19 _




T .05 .15 .25 E(N) j.(Z s.d.)
G H G H G H
R .6357 .2281 . 3813 .1192 .2883 .1364 400
10 B 239.28 35.06 44,2 -34.92 108.52 -51.54 (+ 28.3)
\ 19161.80 11178.61 2020.9 1378.11 1013.22 683.07 -
R .2761 .1hUS .1740 .0870 .13385 .0923 600
20 B 158.04 3.2123 100.6 44,04 80.82 -53.05 (+ 50)
\ 10171.80 9972.76 1823.67 2251.36 1011.13 803.34 —
R .1651 .10u8 L1147 .08 .0368 .0778 800
30 B 128.32 -22.76 89.L44 -53.92 75.7 -60.81 (+ 48.9)
v 11135.92 - 11571.31 2375.13 2802.88 1280.52 1177.75 -
R 1271 .0868 .0913 0681 .08u48 .0665 lOOO
40 B 123.78 -37.26 89.6 -65.,898 83.08 -64.68 (+ 56.4)
\Y 9871.33 10014.43 2723.96 2673.14 1432.14 1350.57 -7
R .0692 .0675 .0637 .0573 .0599 .0549 2900
100 B 150.28 -112.63 138.48 -122,13 130,34 -119.55 (+ 89.5)
v 17265.8 17200,97 5610.44 6505.65 2596.29 3678.23 -




continued

P
T
G H
R L2231 L1473
10 B 85.22 -56.21
v 539.10 317.51
R .1192 .0816
20 B | 68.98 ~-46.67
\' 890.57 543.03
R .0879 .07
30 B 68.10 ~-54.53
V' 770.43 602.02
R .0758 .0636
40 B 74.12 -62.18
v 843.64 781.21
R .0613 .0521
100 B 133.16 -133.40
\' 3189.43 2591.01




TABLE V

E(N) + 2 s.d.

10

15

20

< W o < W™

< W

G

1.2144
150.48
22968.2

. 9450
127.3
14726.93

. 6436
99.64
2732.09

L4223
73.3
1495.20

H

. 6202
43.22
11087.42

L4676
45.67
6796.95

.2915
36.93
1744,07

.1991
21.60
114.5

G

. 7979
98.7
1089.77

. 5506
T4.T74
701.05

.3663
57.52
391.8

. 2603
L6, 34
364.6

H

.1529
5.22
696.97

.1092
1.53
406.24

.08289

.56

322.8

.0676

- -.8163

274,62

G

.6037
74 .34
199.31

L4073
54,85
184.6

. 2492
38.38
146.283

.1787
31.42
153.66

.1210
-13.68
106.14

.0930
-10.31
156.49

L0799
-11.5
106.13

.0553
~-8.1201
142.6

135
(+ 62)

150
(18)

175
(16.15)

200
(20)




continued

TABLE V
P
.35 .45
G H G H
R | .5042 .1423 4003 .1699
7 B | 62.68 -17.62 50.14 -21.28
v | 140.52 95.36 106.61 67.55
R | .3233 .1088 .2583 .1178
11 B | 143.92 -14.5 35.5 -16.20
v |98.28 68.77 103.22 67.92
R |.2016 .0695 .1627 .07289
15 B | 31.32 -10.01 25.48 -11.09
v | 13464 114.62 96.76 74,32
R |.1423 .0UB6 .1176 .0Lg7
20 B |25.1 ~7.63 20.86 -8.50
v |154.88 110.08 116.10 103.55




REPLACEMENT AND DEATH MODEL
20 n

T E(N) + 2 s.d.
G H G H G H
.9488 . 3548 .7583 .100 6406 .0826 270
7 234,54 52.93 187.66 . 7247 159.98 -17.23 (16.1)
17821.26 1364.58 1351.62 91%8.1¢8 752.69 4gL .61 y
. 7853 . 2439 .5217 .0660 L4148 .0758 300
10 212.1 54,62 141.12 . 4986 113.62 -18.57 (20)
11354.48 4980.7 874,76 584.56 432.83 305.22
L5743 . 2050 . 3565 .0584 .2610 .0573 300
15 178.28 52.61 110.3 -2.99 81.76 -15.94 (24.2)
4804, 2 3013.34 606.72 543,28 286.29 288.98 ‘
R . 3953 .1385 . 2533 .0503 .1808 . 04386 400
20 B 138.9 34.25 89.18 -5.90 64,12 -15.21 (28.1)
\ 3551.94 2449,78 670,48 513.93 391.80 355.63 *




REPLACEMENT MODEL

TABLE VII 6=10 ny =100
P
T .05 .15 .25
KH 6793 . 7207 . 7435
10 K .6810 L7249 L7451
S .080k .0316 .0206
S .0122 .0062 . 0045
KH .8136 .8299 .8451
20 K .8192 .8311 . 8463
S .039 .0162 .0110
$ .0088 .0048 .0036
KH . 8542 .8612 .8689
20 K .8556 .8621 .8691
s .0019 .0127 .0079
S .0099 .0041 .0031
KH .8682 .8743 .8961
%0 K .8707 . 8749 .8961
S .0196 .0097 L0042
S .0065 .0031 .0027
KH .8932 . 894l .8791
100 K .8939 . 8946 .8791
S .0089 .0056 .0061
5 .0042 .00214 .0027
|
|
|
|
|




TABLE VII

continued

P
T .55 .75 .95
KH . 7866 L7949 .8026
10 K . 7866 .7950 .8026
S .0123 L0111 .0107
S .0029 .0025 .0022
KH . 8539 . 8560 .8570
20 K . 8540 .8560 .8570
S .0065 .0063 .0092
§ .0024 .0020 .0018
KH .8729 .8732 .8730
20 K . 8730 .8732 . 8730
S .0061 .0058 .0015
8 .0021 .0017 L0015
KH .8813 .8818 .8813
40 K .8813 .8818 .8813
S .0053 L0047 .0050
§ .0018 .0016 .0013
KH . 8956 .8959 .8357
100 K . 8956 . 8959 .8957
S .0035 .0028 .0031
8 .0012 .0011 .0009
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The two programs were written in PL/1 and run on IBM 360/65
computer. The compile time for each of the two programs was about 30
seconds and the execution time was about 20 minutes for fifty simu-

lations with capture probability from 0.05 to 0.95 in steps of 0.1
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PROGRAM FOR THE REPLACEMENT MODEL




LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

0930000 1 CSECTY

2 ENTRY RANDOM
000060 3 USING *,15
020000 $C25 DO1C 0001C 4 RANDCM ST™ 2+¢5928(13)
00C0C4 9823 1060 00000 5 LM 2+43,01(1)
00CCC8 5850 FO30 ) 00030 ) L 54A
00000C 5C42 0000 00000 7 M 490(2)
030010 5D40 FO34 00034 8 D 44P
000014 5042 0000 00000 S ST 440(2)
00CCLl8 &€£40 COCT - 00007 10 SRL 447
00001C 5A40 FO2C 0002¢C 11 A 4 CHAR
000020 5C43 0000 00000 12 ST 4,0(3)
000024 S825 DO1C 0001C 13 LM 2+5428{13)
000028 O7FE 14 BR 14
00002A CCOO
00002C 4CCaC000 15 CHAR DC Fr1073741824"
000030 CCO041LAT 16 A bC Frié680m
000034 T1FFFFFFF 17 P 38 F'2147483647"




RN o~y —

N O O ® =2

SIM:

PRUOCEDURE OPTIONS (MAIN)3

SIM:

PROCEBURE OPTIONS (MAIN)3S
DCL (SAMPLE 4N,PUPSIZEPERsTIME,TIMLyJy INT,PSPAN,JP)

BINARY FIXED (31},

{TSPAN,MEANL yCAPROByCAPSTyCAPEN,CAPIN K KKsREAL)

BINARY FLOAT (31);
DCL RANDOM ENTRY {BINARY FIXED (31),BINARY FLOAT {31));
GET EDIT (NySAMPLE.PER,FCOPSIZE)JP,CAPST+CAPEN,CAPIN,MEANL, INT)

(SIFU5))4(F(843) ) FLT));

PUT SKIP(4) EDIT ('POP SIZE = tyPOPSIZE) {X(20)4AL13)4F(5));
TIME=(SAMPLE-JP}/PER+];
TIM1=TIME+1;
MEANL=—MEANL 3
K=EXP({1/MEANL);
KK=1-K3
BEGIN;

DCL (ANS,FSCAP,FNCAP,PHO) (N,TIME) BINARY FIXED (31),
PTR (TIM1) BINARY FIXED (31),
(TLEN,NGyNS,CyS,ZERU)} BINARY FIXED (31),
(TME,TVE+MB) (N, TIME) BINARY FLOAT (31),
(ADARyKAR,AVN,SDAASAAXP) (N) BINARY FLOAT {31),

{ MU, VAR MUD,VAROyKM, CM, PM,TEPK) BINARY FLOAT (31);

PTR{1}=03

PTR(2)=4P;3

ZERO=JP3;

DO J=3 TO TIM13

ZERC=(J-2)*PER+ZERO+JP;
PTR{J)=ZERD;

END3

TLEN=PTR(TIME)+SAMPLE

BEGIN;

DCL (TGCAP,TSTAY,GCAP,ESTAY) (TLEN) BINARY FIXED (31},
{SCAP,NCAP) {SAMPLE) BINARY FIXED (31),
AEXP (SAMPLE) BINARY FLOAT (31),
{MCAR,NDAR,ySCARsDARSVNG) (N) BINARY FIXED (31),
{M¢NL1yJLsGoLAST,ESTZ,LLEN,J2) BINARY FIXED (31),
{SPAN,P+QsCHIV,STU,T1,TZ,AIN,PP,QQ) BINARY FLOAT (31)3
CA: DO CAPROB=CAPST TO CAPEN BY CAPIN;
ANS 3 FSCAP, FNCAP=03
TGCAP,TSTAY=03
SIAM: DO NSIM=1 TO N3
GCAP,ESTAY=03
SCAPyNCAP=03
PSZ: DO NAN=1 TO POPSIZE;
TSPAN=13
PSPAN=03
AGAIN: CALL RANDOM{INT,REAL)3:
SPAN=MEANL*LOG(REAL) S
IF PSPAN < JP THEN J=13
ELSE J=(PSPAN-JP+PER)/PER+1;
ANSINSIN,J)=ANS(NSIV,J)+13
TSPAN=TSPAN+SPAN;
IF TSPAN-PSPAN < 1 ThHEN GO TO AGAIN;
IF TSPAN > SAMPLE ThEN TSPAN = SAMPLE;
CALL DCNE(PSPAN, TSPAN,CAPRUB,SCAP+NCAPyGCAPJESTAY,
INT,PER,TIME,PTR,JP)3
IF TSPAN -~= SAMPLE THEN
(M4 H




SIM: PROCEDURE OPTIUNS (MAIN);

46 , PSPAN=FLOOR(TSPAN); |
47 GO TO AGAIN; o
43 END; _ {
49 END PSZ3 f
50 TGCAP=TGCAP+GCAP; .
51 TSTAY=TSTAY+ESTAY; E
52 MyN1=03
€ DO J=1 TQ TIME;

54 IF J =1 THEN C=13; ELSE C={(J~2)*PER+1+JP;
57 S=PERX(J-1)+JP;

58 DG J1=C TO S3

59 M=SCAP(J1)+M3

693 N1=NCAP{J1)+N13

&l END;

62 FSCAPINSIM,J)=M;

63 FNCAP{NSIMyJ)=N13

&4 MUG=FLOAT(M)/NL3

65 C=PTR(J);

66 . S=PTR(J+1)}
61 : PHO(NS IM,J)=GCAP(C+1);

68 VAR, CQ=03

69 DO G=C+1 7O S

70 MU=(G-C)~-MUC;

71 VAR=VAR+MURMUXGCAP(G)

72 QQ=QQ+({6—C~1)*ESTAY(G)3

73 END3}

14 TME(NSIM,J) =MUO;

75 TVEINSIM,J)=VAR/NL;

76 MBINSIN,J)=QC/NL}

77 END

78 END SIAM3

19 MDAR=03

80 DO J=1 TO TIME;

81 CALL PRTR(J,CAPROB,PER,N,JP);

82 PUT SKIP(5) EDIT (*TOTAL?',*MEAN','VAR.")

: (X(T1) A(5)42UX{L4) AL4))) 3

83 NS, ZER(C,S,C=03 :
84 DC J1 =1 TG N;

85 : MDAR{JLI=MDARIJLI+ANS(J1,4J)3

86 NS=NS+MCAR(J1)3

&7 NCAR(JLI=FENCAP(JL,d);

88 S=S+NDAR{J1) ;

89 SCAR(JL)=FSCAP(J1,J);

90 C=C+SDAR(JL);

91 CAR(JL)=MDAR(J1)-NDAR(J1};

92 : ZERC=ZERC+DAR(JL);

93 END;

94 CALL MV(MDAR,NsMU,VAR);

95 PUT SKIP({2) EDIT (*POPUL. { TRUE )*yNS,MU,VAR)

{X(20) g AL15)4X{29),F{12)42(X1{6)+F(12+4)))3

96 - CALL MV(DAR,N,MU,VAR);

57 PUT SKIP(2) EDIT (*ZERQ { TRUE )*,ZERQ,MU,VAR)

(X{20) sAL13) ¢ X(31)sF(12)+2{X(6)4F(1294)));

58 CALL MV (NCARyN4MU,VAR);

99 PUT SKIP{2) EDIT (®*INDIVIDUALS',SsMUsVAR)

(X{20) s ACLL) s X{33),F(12),2{X(6),F(12:4))1})3
100 CALL MV(SDAR,NyMU,VAR);




101

102
103

104
105
106
1C17
108
110
itl

112
113

115
116

SIM: PROCEDURE OPTIONS (MAIN);

PUT SKIP(2) EDIT {(*CAPTURES*,CsMU,VAR}
(X(20) sA(B) o X{36)sF{12),2(X(6)sF(1244)));
PUT PAGE;
PUT SKIP(5) EDIT (*OBSERVED RECAPTURE FQ.*)
(X{5) 4A(24));
N=PTR{J)+1;
NL=PTR(J+1);
LLEN=N1-M+1;
DG J1=M TQ N1;
IF TGCAP(JL) > O THEN LAST=J1l3
END;
PUT SKIP{3} EDIT (¢(*,ZERG,*)")
(X(4) 3ACL) sF(8) 9 X{L),A(L)});
PUT SKIP(2) EDIT ((TGCAP(J1) DU Jl=M TO LAST))
(10{X{4),F(8)));
STU=FLOAT{S);
NG=STU*(C-1)/7{C~-STU);
P=STU/C:
Q=1-P;
ESTZ=NG-S3;
MUC=C/STU3
VARQO=03
DO J1=1 TO LAST-M+1;
AIN=J1—-MUO3
VARO=VARC+AIN*AIN*TGCAP(M+Jl—-1)
END;
VARC=VARG/STU;
PUT SKIP{(4) EDIT (*MEAN','VAR.*}) (X{70),2{(X(10),A(4)))s
PUT SKIP(2) EDIT {('ZERQ CLASS EXCLUDED?,MUO, VARO)
{X{30)2A(19) X (2L} 42{X(6)+F(8+4))1)3
CALL MVO (TGCAP,MyN1,C,,ESTZ,MUDsMU,VAR)
PUT SKIP{2) EDIT (*ZERO CLASS INCLUDED',MU,VAR)
(X{30) 3A{19) 4 X{21)42(X(6)4F{Bs4))
PUT SKIP{4) EDIT (*MAXIMUM LKD. FIT®) (X(5),A(17))
PUT SKIP(3) EDIT (*{',ESTZ,")")
(X{4a)gA(1) 4F(8) oX{1)4A(1) )3

¥3
i

LAST=LLENS;
AIN=P%NG;
DO J2=1 TGO LLEN3
AIN=AIN%Q;
IF AIN >= 1.0 THEN AEXP(J2)=AIN;

ELSE

bo;
LAST=J2-13
GO TO MUM;

END3

END;

MUM: PUT SKIP(2) EDIT ((AEXP{J1) DO J1=1 TO LAST))

(10{X{4),F(8s1)));
CALL CHITEST (TGCAP,AEXP,LASTCHIVeN1sMsG)3
PUT SKIP(2) EDIT (P = '4P) (X(5),A(6)4+X(8)sF(8,2))
PUT SKIP(2) EDIT ('Q = *,Q) (X{(5),A(6),X{8),F(8,2))
PUT SKIP(4) EDIT ('*CHI VALUE IS *,CHIV+G)
(X(5),A014),F(8,2)X(10),F(3))3
PUT SKIP{4) EDIT (*MEAN','VAR.'} (X(60),2{X{14)4AL4)));
DO J1=1 TO N3
J2=SO0AR(J1);

.
*
5
*
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150 STU=FLOAT{NDARI(J1))

151 : ) DAR{JLY=STU*(J2~-1)/(J2-STU);

152 VNG(J1}=DAR(JLI X (STURJ2-J2+STUN/(J2-STUI**23;

153 SCAR(JL)I=CAR(J1II-MCAR(JIL);

154 AAXP(J1)=FLOAT(SDAR(JL))I/MEARLJL);

155 END

156 Q=1-CAPROB}

1517 PP=KK/(1-G*K) 3

158 QR={1-Q)*K/{1-Q*K) 3

159 CALL MV {DARsyNsMU,VAR) S

160 PUT SKIP(2) EDIT (*NG',MU,VAR)
{X038) yAL2) 9X(20)42{XL6)F(1244)}))3

161 CALL MV (SCARyNyMU,VAR}

162 PUT SKIP{2) EDIT {'NG—N',MU,VAR])
(X(38):A(4),X(18),2(X(6).F(12'4))).

163 CALL MV {VNGyNsMU,VAR};

164 PUT SKIP{2) EDIT {?VAR. NG',MU,VAR)
(X{38),AlT)sX{15)92(X{6),F{1254)))3;

165 CALL MIV (AAXP,N,MU,VAR)};

166 PUT SKIP({2) EDIT (*(NG~N)/N',MU,VAR)
[X{38),A(8)sX{14),2(X{6),F(1294))1}3

167 , CALL THEQ (AEXP,S+PP+QQsLLEN,LAST )3

168 PUT SKIP(4) EDIT (*THEORETICAL FIT') (X{(5),A(16))3

169 PUT SKIP(2) EDIT ((AEXP(J1) DO Jl=1 TO LAST))

) {10(X{4),F(8+s1)))3
170 CALL CHITEST{TGCAP,AEXP,LAST,CHIV,N1,M,G)}3
171 PUT SKIP({2) EDIT ('CHI VALUE IS '4CHIV,G) (X(5)sA(14),
FL892)eX(10),F(3))3

172 : PUT PAGE;

173 LAST=M+13;

174 D0 Ji=M TGO N13

1715 IF TSTAY(J1) > O THEN LAST=J1l3

177 END3

178 TZ=FLOAT{TGCAP(M))/S;

179 Ti=1-T13

180 VAR, AIN=03

181 D0 J1l=M+1 TO LAST;

182 AIN=AIN+ (J1-M)RTSTAY(J1)3

183 . END;

184 AIN=AIN/S3S

185 DO Jl=M TO LAST;

186 MU={J1-M)—-AIN;

187 VAR=VAR+MU*MU*TSTAY(J1) 3

188 END3

189 VAR=VAR/S3

190 . PUT SKIP(S) EDIT (*OBSERVED DURATION FREQUENCY *,

¢ (TCTAL) ',*MEAN = ',AINy'VAR. = !,VAR)
: (X(5)gAL{29) s ALLC) o X{5) 4 2UX(5) yALT) 2 X(2) 4F(9,6)))3
191 PUT SKIP(3) EDIT ((TSTAY(J1) DO J1=M TO LAST})
(LO(X{4)F(8)) )3

192 KM=1-{T1/AIN)}3

193 QM=(KM=TL )/ (KMXT 1}

194 PM={(1-KM) /{ 1-QM%=KM} 5

195 CALL HOL (AEXP,QMsKM, PM,LLENpLAST'S).
1¢6 PUT SKIP(4) EDIT (*MAXIMUM LKD FIT?)

(X{5),A(15});
157 PUT SKIP{2) EDIT (*'Q = 'H,QM) (X{12),A(5),F(8,6))3
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168 PUT SKIP{2) EDIT ('K = *,KM) (X(12),A(5)4F(8,6));
199 PUT SKIP(3) EDIT ((AEXP(JLl) DO J1l=1 TO LAST))
(LOUX(4) ,F(8,1)));
200 TEPK=03;
201 DO Jl=1 TC LAST;
202 TEPK=TEPK+AEXP(J1}3
203 - END;
204 IF S > TEPK THEN TEPK=S~TEPK3;
206 ELSE TEPK=03;
2C1 ] PUT SKIP{2) EDIT ('REMAINDER?,TEPK)
{X{10) sAL19) 4X{5),F{8,1));
208 CALL CHITEST(TSTAY, AEXP,LAST,CHIV,N1,M,G)3
209 PUT SKIP(2) EDIT ('CHI VALUE IS ',CHIV,G) (X(5),A(14},
210 G=03
211 D0 Ji=1 TC N3
212 STU=NDAR{J1);
213 TZ=PHO(J1,3)/STU;
214 T1=1-7Z3
215 AINSTME(JLyJ)=(TVELJIL2JIRTZYI/ITME(JL,J)%TL);
216 IF AIN <= 0.0 THEN DOj
218 G=G+13
219 AVN(J1)=03
220 END;
221 ’ ELSE AVN(J1)=FSCAP(J1,J)/AINS
222 TEPK=1-(T1/MB(J1lsd) )35
223 ADAR{JL)=STU/TL*TEPK;
224 SDAA(J1}=ADAR(J1)-MDAR(JL)}
225 . AAXP(J1)=SCAA{JL)/MDAR(JL)
226 KAR{JL)=TEPK3
227 END3
228 PUT SKIP(4) EDIT (*MEAN','VAR.',*S.D.")
(X{60)+3({X{14),Al4)) )3
229 CALL MIV (ADAR,N,MU,VAR);
230 PUT SKIP{2) EDIT (*NH®,MU,VAR)
(X(38)9A(2)3X(20)2{X(6),F(1244)));
231 CALL MIV {SDAAsNyMU,VAR); :
232 PUT SKIP(2) EDIT (*NH-N*,MU,VAR)
{X{38)3A{4) 4 X{18),2{X(6),F(12,4))});
233 CALL MIV {AAXP,Ny,MU,VAR);
234 PUT SKIP(2) EDIT (*(NH-N)/NT',MU,VAR)
: (X038) yAlB) 4 X{14)42(X(6),F{12+4)));
235 ~ DO Jl=1 TO N3
236 ACDAR(J1)=AVN{JL)=MCAR{JL);
237 AAXP{J1)=ADAR(J1)/MDAR(JL):
238 : END;
239 CALL MIV (AVNyNyMU,VAR);
240 PUT SKIP({2) EDIT (*NB',MUyVAR, "REJECT*,G,*/* 4N}
(X(38)98{2)9X(20)142(X{6)sF(1244)),
X{5) g AL6) o X (1) o F(3)4X{2)4AL1)4X (L) ,F(3))3
241 CALL MIV (ADARsN,MUsVAR) 3
242 _ PUT SKIP(2) EDIT (*NB-N',MU,VAR)
: (X({38) sA04) 4 X{18),2(X(6)4F(12:4)));
243 ' CALL MIV {(AAXP4N,MU,VAR);
244 PUT SKIP(2) EDIT (*(NB-N)/N*,MU,VAR)

(X138)sA(8) 4 X{14)2{X{6)4F(1244)));

245 , MU=KK*KK*PP3;
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246 DG J1=1 TO N3

247 ADAR{JL) =KAR(J1)=K3

248 AAXP(J1)=ADAR(JL) /K3

249 SCAA(J1)=SQRT(MU/NDAR{JL));

250 END;

251 CALL MIVI{KAR,N,MU,VAR};

252 MUC=SQRT(VAR);

253 PUT SKIP(2) EDIT (*KH',NU,VAR,MUQ)
(X{38) yAL2) 4 X(20)43(X(6),F(12,4)))5

254 CALL MIV (ADAR,N,MU,VAR);

255 MUO=SQRT(VAR)}

256 PUT SKIP(2) EDIT {*KH=-K®,MU,VAR,MUO)
(X(38),A14),X(18),3{X{6)sFL12,4)));

2517 CALL MIV {AAXP,N,MU,VAR};

258 MUQ=SQRT(VAR) ;

259 PUT SKIP(2) EDIT (*{KH-K/K)",MU,VAR,MUO}
(X(38) 1A(8) ,XI14),3(X(6),F(12,4)))3

260 CALL MIV (SCAA,NsMU,VAR) ;

261 PUT SKIP(2) EDIT (*S. D. QF K',MU,VAR)

v (X{38) gA(L10) 4X{12)43(X(6) 4F(12,9)))3

262 CALL HOL(AEXP,QsKyPP,LLEN,LAST,S)3

2¢3 PUT PAGE; v

264 PUT SKIP(10) EDIT (*THEORETICAL FIT?)
(X(5),A(15))3

265 PUT SKIP{2) EDIT ('K = *,K) (X(L2),A(5),F(8,6));

266 PUT SKIP(3) EDIT ((AEXP({JL) DO Jl=1 TGO LAST))
(10(X{4),F(8,12))3

267 TEPK=03

268 DG J1=1 TO LAST;

269 TEPK=TEPK+AEXP(JI1);

270 END;

271 IF S > TEPK THEN TEPK=S—TEPK3

273 ELSE TEPK=0;

274 PUT SKIP(2) EDIT ('REMAINDER' ,TEPK}

: (X(10)4A09),X(5),F(8,1))3
275 CALL CHITEST{TSTAY,AEXP,LAST,CHIVsNL,M,G)3
276 PUT SKIP(2) EDIT ('CHI VALUE IS *,CHIV,G) (X(5),A{14),
FU8,2),X(10),F(3))3

211 'END;

278 ‘ END3

218 END;

280 END;

281 DONE: PROCEDURE {(INI,SPAN,CAPROB,SCAP,NCAP,GCAP,ESTAY,INT,PER,PERI,

PTR,JP);
282 DCL (SCAP(%) NCAP(%) ,GCAP(#) ,ESTAY (%) ,MARK, INT,LCAP,FCAP,

PERsINISJPERI My dJd e JKyIBI »dMePTR(%) odedZ»JdP)
BINARY FIXED (31},
(REAL,CAPRCB,SPAN) BINARY FLOAT (31)3

283 DCL RANDCM ENTRY (BINARY FIXED (31),BINARY FLOAT (31)});
284 - MARK=03

285 DO J=INI+1 TO SPAN3

286 : CALL RANDCM (INT,REAL};

281 IF REAL < CAPROB THEN

288 DO;

289 IF MARK=0 THEN

290 DO;

291 NCAP{J)=NCAP(J)+1;




332

334
335
336
337
338
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340
341
342
343
344

345
346
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FCAP=J;
IF J <= JP THEN JJ=13
ELSE JJ=(J=JP+PER-1)/PER+13
END;
ELSE
DC;3
IF J <= JP THEN JK=13
ELSE JK=(J-JP+PER-1)/PER+13
IF JK > JJ THEN
Do;
M=LCAP—FCAP+13
00 JZ=JJ TO JK-13
JV=PTRIJZ);
GCAP ( M+ MARK)=GCAP ( JM+MARK) +13
ESTAY(JM+M)=ESTAY(JM+M) +13
END;
JI=JK3
END;
END;
MARK=MARK+ 13
SCAP(J)=SCAP(J)+13

LCAP=J;
END;
END3
IF MARK > O THEN
D03

IF LCAP <= JP THEN JK=13
ELSE JK={LCAP-JP+PER~1}/PER+];
M=LCAP-FCAP+1;
D0 JZ=JK TC PERI;
JM=PTR(JZ);
GCAP{JM+MARK }=GCAP( JM#MARK) +13
ESTAY(JM+M)=ESTAY(JM+M) +13
END3
END3
END DCNE;
MVO: PROCEDURE (ARA,STyLENySsZ,MU,MUQ,VAR);
DCL (ARA(*)4ST,LEN,Z,SyJ) BINARY FIXED (31),
{MUyMUCy VAR, VAL, INI, AIN) BINARY FLOAT (31)3
INI=S+Z3
MUB=MU*S/INI;
VAR=MUC*MYO* Z3
AIN=0;
DO J=ST TG LEN3
AIN=AIN+13
VAL=AIN-MUO;
VAR=VAR+VAL*VAL*ARA(J);
END;
VAR=VAR/INI;
END MVO3 .
CHITEST: PROCEDURE {OBS,EXPECT,LAST,VALUE,SAMI,FST M) 3
DCL (OBS(*),LAST,SAMI4FSTyJsJJsMsPT,FT) BINARY FIXED
(EXPECY(*),VALUE, IDIF, INT) BINARY FLOAT (31}
FT=FST-1;
M=LAST;
DO J=1 TO LAST;
IF EXPECT(J) < 5 THEN

(31),




: PROCEDURE OPTIONS (MAIN);

D03
M=Jd; INT=03
DC JJ=M TO LAST3
INT=INT+EXPECT{JJ) §

ENC;
IF INT < 5 THEN
003
M=M-13
EXPECT (M)=EXPECT(M)+INT;
END;
ELSE EXPECT(M)=INT;
GG TO BG;
END$
END;
BG: PT=M+FT;
INT=03

DO JJ=PT TO SANMI;
INT=INT+0BS{JJ) 3

END;
AG: IF INT < 5 THEN
DO;
PT=PT-13
INT=INT+0BS(PT);
M=M-13
EXPECT(MY=EXPECT(M)+EXPECT(M+L) 3
GC TO AG;
END;
OBS(PT)=INT;
VALUE=0;

DO J=1 TO M3
IDIF=CBS{J+FTI—-EXPECT(J) S
IF IDIF~= 0 THEN VALUE=VALUE+(IDIF*IDIF)/EXPECT(J)3
END3
END CHITEST;
THEQ: PROCEDURE (ARY,NUM,PP,CQ,LEN,N);
DGL (ARY(%)4PP,QQ,VAL) BINARY FLOAT (31},
(NUNM,LEN,NsJ) BINARY FIXED (31)}3
ARY(1) s VAL=NUMXPP}
N=LEN;
DO J=2 TC LENS
VAL=VAL*QQ3
IF VAL < 1.0 THEN
DO
N=J-13
GO TO FINI;
END3
ARY(J)=VAL}
END3;
FINI: END THEO;
HOL: PROCEDURE (ARY;QeKsKKoLEN,LAST,N)3
DCL (ARY{*),G,KsKKyAIN} BINARY FLOAT (31),
(J,LEN,LAST,N} BINARY FIXED (31)3
LAST=LEN;
ARY (1) =KK*N;
ARY(2)=ARY (1} *{1-Q)*K3
DO J=3 TO LEN;
AIN=ARY (J-1)%*K3
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406 IF AIN < 1.0 THEN

407 bC;s

4C8 LAST=J-13

4CS GO TO FINE3

410 END3

411 ARY(J)=AIN3

412 © END;

413 FINE: END HOL:

414 MV: PROCENURE (ARY,LEN,MEAN,VAR);

415 DCL (ARY(*),LEN,J) BINARY FIXED (31},

AY2 (LEN) BINARY FIXED {(31),
{MEAN,VAR,TEM, TM} BINARY FLOAT (31);

416 MEAN,VAR=03

417 TEM=ARY(1)}3;

418 DO J=1 TC LEN;

419 THM=ARY (J)—-TEM;

420 AY2(J)=TM3

421 MEAN=MEAN+TM;

422 END3

423 MEAN=MEAN/LEN;

424 DO J=1 TO LEN;

425 THM=AY2(J)-MEAN];

426 VAR=VAR+TMXTM;

427 END;

428 MEAN=MEAN+TEM;

429 VAR=VAR/LEN;

430 : END MV;

431 MIV: PROCEDURE (ARY,LEN,MU,VAR)};
432 DCL (ARY(*),AINyVAR,MU,TM, TEM} BINARY FLOAT (31},

YY (LEN} BINARY FLOAT (31),
{J,LEN) BINARY FIXED (31);

433 AIN,VAR=03;
434 TEM=ARY(1};
435 DO J=1 TO LEN3
436 TM=ARY(J)-TEM;
437 YY(J)=TM3
438 AIN=AIN+TM3
439 END;
440 MU=AIN/LEN;
441 DO J=1 T4 LEN;
442 AIN=YY(J)-MU3
443 VAR=VAR+AIN*AIN;S
444 END;
445 MU=MU+TEN;
4406 VAR=VAR/LEN;
447 " END MIv;
448 PRTR: PROCEDURE (I,CA9SAMyNyJP}3
449 . DCL {(IyNUVNM,SAMeN,JP) BINARY FIXED (31},
CA BINARY FLOAT (31)3
450 NUM={I—-1)%SAM+JP;
451 PUT PAGE;
452 . PUT LINE (10) EDIT ('MODEL') (X{64),A(5));
453 PUT SKIP(C) EDIT {*'____*) (X{64),A(5)]);
454 PUT SKIP(3) EDIT (° REPLACEMENT ') {(X(58),A{17));
455 ) PUT SKIP(3) EDIT (*PARAMETERS') (X(62),A(10}));
456 PUT SKIP{(O} EDIT (*__ ) (X(62),A(10))3

457 PUT SKIP{3) EDIT ('NO. OF SAMPLING PERIODS 3 *,NUM)
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(X{SL)4A(27),FL4) )3

458 PUT SKIP(2) EDIT (*NO. OF SIMULATIONS $ "4N)
(X{51) 4 AL27) +F(4) )3
459 PUT SKIP(2) EDIT ('CAPTURE PROBABILITY : *,CA)

{X{51) 9 A(2T)4Fl442))3
460 END PRTR3
461 END3;




PROGRAM FOR THE IMMIGRATION

AND DEATH MODEL




LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

000000 1 CSECT

2 ENTRY RANDOM
000000 3 USING %415
090000 9625 DOLC 0001C 4 RANDCM STM 2¢5928(13)
000004 $823 10C0 00000 5 LM 243,0(1)
00C0C8 5850 FO30 - 00030 6 L 5+A
00000C 5C42 0000 00000 7 M 4,0(2)
030010 5D40 FO34 00034 8 D 44P
000014 5042 0000 00000 S ST 4,002)
00CCl8 E&40 COCT - 00007 10 SRL 497
00001C 5A40 FO2C 0002C 11 A 4 9 CHAR
000020 5C43 0000 00000 12 ST 4,01(3)
000024 <s825 DO1C 0001C 13 LM 245,28(13)
000028 O7FE 14 BR 14
00002A ccCaO
00002C 4CC3C000 15 CHAR DC Ff1073741824!*
000030 0CO041A7 16 A bC Fr168CT?
000G34 TFFFFFFF 17 P DC F121474E36417"




MUS 2

PROCEDURE OGPTIONS (MAIN);

MUS:

PROCEDURE OPTIONS (MAIN);
DCL (NySAMPLE,POPSIZE, INT,POPUL,PERIODINI,TIME,TIMI,NSIMyJ,J31,JP)
BINARY FIXED (31),
{CAPROB,CAPST,CAPENSCAPINyMEANL yARRIV K yKK,REAL', VALUE, TEPK)
BINARY FLOAT (31}3
DCL RANCOM FENTRY (BINARY FIXED (31),BINARY FLOAY (31)}};
GET EDIT (NySAMPLEPOPSIZE,JP,PERICD,INI,MEANL,ARRIV,CAPST,CAPEN,
CAPIN,INT) (6(F(5))s5(F(8:3)),F(T));
PUT SKIP(4) EDIT (*POP SIZE = *yPCPSIZE) (X(20),A{13),F{5)};
TIME={SAMPLE-JP)/PERIOD+1;
TIMI=TIME+1;
MEANL=-MEANL 3
ARRIV=-1/ARRIV;
K=EXP{1/MEANL};
KK=1-K3
BEGIN;
DCL (ANS,FSCAP,FNCAP,PHC) (N,TIME) BINARY FIXED (31),
(TME,TVE,MB) (N,TIME) BINARY FLOAT (31},
PTR (TIM1) BINARY FIXED (21),
{TLENJNG4NS4Cy»S,ZERC) BINARY FIXED (31},
(ADARJKARJAVN,SDAA,AAXP) (N) BINARY FLOAT {31),
(MUyVARyMUC,VARO KM, QMo PM) BINARY FLOAT (31);
PTR{1)=0;
PTR(2)=JP3
ZERO=JP3
DO J=3 T3 TIM1;
ZERC={(J-2)*PERIOD+ZERQ+JP 3
PTR{J)=LERO;
END 3
TLEN=PTR{TIME)+SAMPLE
BEGIN;
DCL {(TGCAP,TSTAY,GCAP,ESTAY) (TLEN) BINARY FIXED (31),
(SCAP,NCAP) (SAMPLE) BINARY FIXED (31),
AEXP (SAMPLE) BINARY FLOAT (31),
{MCARSNDAR » SCAR 3DAR,VNG) (N) BINARY FIXED (31),
{(MyNLyM1,GsLAST,ESTZ,LLEN,ITD,11T0,42) BINARY FIXED (31),
(SPAN,P,QsCHIV,STU,T1,TZ,SAM,AIN,PP,QQ) BINARY FLOAT (31)3
CA: DO CAPROB=CAPST TO CAPEN BY CAPIN3
ANS yFSCAP, FNCAP=03
TGCAP,TSTAY=0;3
SIAM: DO NSIM=1 TO Nj
GCAP,ESTAY=03
SCAP4NCAP=03
ORI: DU NAN=1 TO POPSIZE;
ANS(NSTM,1)=ANSINSIMs1)+1;
CALL RANDOM (INT,REAL)S
SPAN = MEANL*LOG(REAL};
IF SPAN >= 1 THEN
DO
IF SPAN > SAMPLE ThEN SPAN = SAMPLE;
CALL DCNE (INIoSPANsCAPRCBySCAP,NCAP,GCAP, ESTAY,
INT,PERIGDTINE,PTR,JP);

END3;
END CRI3
1T0=13 TZ=13
AGAIN: CALL RANDCM (INT,REAL);
T1=ARRIV*LOG (REAL);
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. 45 TI=T2+T}3
46 IF TZ > SAMPLE THEN GO TO FINI3
48 IF (TZ-1T0) > 1 THEN ITO=FLCOR(TZ);
50 IF ITO = SAMPLE THEN J=TIMES
52 ELSE IF ITO < JP THEN J=13%
54 ELSE J=(ITG-JP+PERICC)/PERIOD+1s
55 ANS{NSIM,J)=ANSINSIM,Jd)+1;
56 CALL RANDOM (INT,REAL);
57 SPAN =MEANL*LOG (REAL);
58 SAM=SPAN+TZ;
59 IF {SAM=ITO) < 1 THEN GO TGO AGAIN3
61 [ITC=ITO+13
62 IF SAM > SAMPLE THEN SAM = SAMPLE;
€4 CALL DCNE {1I1TO,SAM,CAPROB,SCAP,NCAP,GCAPyESTAY,
INTPERICDsTIME+PTRyJP)3
65 GO TO AGAIN;
66 FINI: TGCAP=TGCAP+GCAP;
617 TSTAY=TSTAY+ESTAY;
68 M,N1=03
69 Do J=1 70O TIME:
70 ’ IF J =1 THEN C=13 ELSE C=(J-2)%PERIOD+1+JP;
73 S=PERICD®(J=1)+JP;
14 DO J1=C TG S;
15 M=SCAP(J1l)#M;
16 N1=NCAP{JL)+N1l3;
17 _ END3;
78 FSCAP(NSIMyJ)=M3
79 FNCAP{NS IM,J)=Nl3;
80 MUC=FLOAT{M)/N1;
81 C=PTR(J};
82 S=PTR{J+1)3
83 PHO(NSIM,J)=GCAP(C+1)3
84 VAR, QQ=03
85 DO G=C+1 TG S3
86 MU={G~C)-MUO};
87 VAR=VAR+MU*MU%GCAP(G);
88 QQ=CG+(G~C~1)*ESTAY(G);
89 END3
90 : TME(NS IM,J)=MUD
9] TVE{NSIMyJ)=VAR/NL
g2 MBINSIM,J}=QQ/N13
93 END;
94 END SIAM;
95 M1=13
56 MCAR=03
<s7 : DO J=1 YO TINME;
98 CALL PRTRUJyCAPROB,.PERIGDyN,JP)3
99 i PUT SKIP(S) EDIT (*TOTAL',*MEAN®,*VAR,. ")
{(X(T1)5A1(5),2(X{14),Al4)) )3
100 NSyZERO,S,C=03
101 DG J1 =1 TC N3
102 MOAR{J1)=MDAR(JL}I+ANS(JLsJ)3
103 , NS=NS+MDAR{J1) 3
104 NDAR{J11=FNCAP(JLl,Jd})3
105 S=S+NDAR{J1} ;
106 SCAR(JL)I=FSCAP{J1lyJ};
1Cc? C=C+SDAR(JL);




NUS: PROCEDURE OPTIONS (MAIN);

168 DAR(JL)=FCAR{JIL)-NCAR(JL)
109 ZERO=ZERC+CAR(J1};
110 END;
111 CALL MVIMDAR,N,MU,VAR)};
112 ) PUT SKIP{2) EDIT {('POPUL. ( TRUE )',NS,MU,VAR)
(X(20)9AL15) 9 X{129),F(12),2(X{6),F(12,4)))3
113 B CALL MV(DAR,AN,MU,VAR);
114 PUT SKIP{2) EDIT ('ZERO { TRUE }1',ZERQ,MU,VAR) )
{(X{20)4A{13),X{31),F(12),2(X{6),F(12,4)));
115 CALL MV(NDAR N,MU,VAR);
116 PUT SKIP(2) EDIT {('INDIVIDUALS',S,MU,VAR)
. (X{20),A01L) 4 X(33),F{12),2(X(6),F{12,4)))3
117 CALL MV{SDAR,N,MU,VAR);
118 PUT SKIP(2) EDIT ('CAPTURES',C+MU,VAR)
(X{20) s AL8) 4 X{36)sF(12)42(X(6),F(12,4)))3
119 PUT PAGE;S
120 PUT SKIP(5) EDIT (*OBSERVED RECAPTURE FQ.')
{(X{5),A{24));
121 M=PTR(J)+13;
122 N1=PTR{J+1)}
123 . LLEN=N1-M+1;
124 DO Jl=M TO N13
125 IF TGCAP{JLl) > O TEEN LAST=J1;
127 END3
128 PUT SKIP(3) EDIT ('(',ZERG,"}*)
{(XT4)A(1),F(B8)X(1L),A(1});
129 PUT SKIP(2) EDIT ((TGCAP(J1l) DO Ji=M TO LAST))
{10{X{4),F(8B)))3
130 . STU=FLOAT(S);
131 NG=STUX{C~1)/{C~-STU) }
132 P=STU/C3
133 Q=1-P3;
134 ESTZ=NG-S;
135 MUC=C/STU3;
135 VARO=0;
137 DO Jl=1 TO LAST-M+1;
138 AIN=J1-MUOS
139 VARO=VARC+AIN*AIN*TGCAP(M+J1-1)3;
- 1407 END3S
lal - VARC=VARQ/STU;
142 ) PUT SKIP(4) EDIT ('MEAN' 4*VAR,') (X(70),2(X{10),A(4))});
143 ’ PUT SKIP{2) EDIT ('ZERUO CLASS EXCLUDED®,MUQ,VARQO)
- o i (X{30),A{19),X(21),2(X(6)+F(8By4)))3
144 CALL MVO (TGCAPyM,N1,C,ESTZ,MUGQ,MU,VAR)}
145 ~PUT SK1P(2) EDIT ('ZERO CLASS INCLUDED?',MU,VAR)
] (X{30) 98 (19)+X(21}+2(X(6)+F(8,4)))3
146 PUT SKIP(4) EDIT ('MAXIMUM LKD., FIT') (X{5),A(17))3
147 PUT SKIP(3) EDIT (*(',ESTZ,*)*)
(X{4) yA{L),F{8)4X(1},AlL1))S
148 LAST=LLEN;S
149 AIN=P%*NG;
150 DG J2=1 TG LLENS
151 ’ ) AIN=AIN%Q;
152 IF AIN >= 1.0 THEN AEXP{J2)=AIN}
154 ELSE
154 DO .
155 LAST=J2-13
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156 GO TO MUM;

157 END3

158 END3

159 MUM: PUT SKIP(2) EDIT ({AEXP(J1} DO Jl=1 TO LAST))
- (L0{X{4)4F(8,1)))3

160 CALL CHITEST (TGCAP,AEXP,LAST,CHIV,N1,MsG);

161 PUT SKIP(2) EDIT ('P = 1,P) (X{5),A(6):X(8),F(8,2))3

162 PUT SKIP(2) EDIT ('Q = *,G) (X{5),A(6):,X(8),F(842]))3

163 PUT SKIP(4) EDIT (*CHI VALUE IS *,CHIV,:G)

(X{5) s ALL4) 4FLB2),X{10),F(3))3

164 PUT SKIP(4) EDIT ('MEAN®,'VAR. ')} {X(60),42{X{14),Al4)))3

165 G=03

166 DC Jl=1 TC N3

167 J2=SDAR(J1)3

168 STU=FLOAT(NDAR(JL) )3}

169 ITC=J2-STU;

170 If ITO <= 0 THEN

171 0O}

172 DAR{J1)=03;

173 . VNG{J1)=03

174 G=G+1;

175 END3

176 ELSE

176 00;

177 DAR({J1)=STU*{J2-1)71703%

178 VNGIJ1)=DAR{JLI*{STUXJ2~J2+STU)/(J2-STU}*#*23

179 END;

180 SDAR(JL)=0CAR{JL)-MCAR{JL);

181 AAXP(JL1)=FLOAT{ABS{SDAR(J1))}/MDAR{JIL)}

182 END;

183 G=1-CAPRCB;

184 PP=KK/{1-Q*K) 3

185 CC=(1-Q)*K/ (1-Q*K) 3}

186 CALL MV (DAR,N,MU,VAR);

187 PUT SKIP(2) EDIT ('NG'yMU, VAR, *REJECT? 4G,'/%+N)

{X(38)9A(2)4X(20),2(X(6)sFl12+4)),
X(5) g AL6) $ XEL) 2F(3) 43X {1} ALL) s X(1),F(3))3

188 CALL MV (SDARyNyMU,VAR);
189 ) PUT SKIP{2) EDIT (*NG—=N*,MU,VAR)
‘ {X(38)9Al4) s X(18)42(X{6)F{12:4)))3
190 CALL MV (VNGsNyMU,VAR) 3
191 PUT SKIP{2) EDIT (*VAR. NG!',MU,VAR)
(X(38)sALT) o XU15)42(X(6)F(12+4)))3
192 CALL MIV (AAXP4+N,MU,VAR};
193 PUT SKIP(2) EDIT {(*{NG-N)/N®*,MU,VAR)
. (X(38)vA(B)yX(lQ),?(X(b)tF(lZ'4))’v
194 CALL THEQ (AEXP,S+PP,QQ,LLEN,LAST)S
195 PUT SKIP{4&) EDIT (*THECRETICAL FIT*') (X{5)9A(16))3
196 ) PUT SKIP(2) EDIT ({AEXP{Jl) DO J1=1 TO LAST))
: (10{X({4),F(8y1)))3
187 . CALL CHITEST{TGCAP, AEXP'LASTsCHIV1NIvM'G)9
168 ) PUT SKIP{2) EDIT (*CHI VALUE IS ",CHIV,+G) (X{5),Al14),
‘ F(By2) e X(10),F(3))3
199 PUT PAGE;
200 DO J1=M TO N13;
201 IF TSTAY{J1} > O THEN LAST=Jl:

203 END3
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204 TZ=FLOAT(TGCAP{M})/S;

205 Ti=1-TZ3

206 VAR, AIN=03

207 DO Jl=M+1 TO LAST;

2C8 : AIN=AIN+(J1-MIXTSTAY(JL);
209 END3

210 : AIN=AIN/SS

211 DO J1=M TG LAST3

212 MU=(J1-M)-AIN;3

213 VAR=VAR+MUSMUXTSTAY(J1) 3
Z2l4 END3

215 VAR=VAR/S3

216 PUT SKIP(5) EDIT ('OBSERVED DURATION FREQUENCY ',

' (TOTAL) *,"MEAN = ',AIN,'VAR. = *,VAR)
[X(5) 3AL29) yALLC) s XU5),20XI5) yALT) 4X(2) +F(946)) )3

217 PUT SKIP(3) EDIT {(TSTAY(J1) DC J1=M TO LAST))
(LO(X(4),F(8}))3

218 KM=1-(T1/AIN} 3

219 GV=(KM-T1 )/ (KMXTZ)3

220 PM=(1-KM) /{1-QM=KM) 3

221 CALL HOL (AEXPsQM,KMyPM,LLEN,LAST,S) 3

222 PUT SKIP(4) EDIT (*MAXIMUM LKD FIT*)

{(X{5),A(15));

223 PUT SKIP(2) EDIT (*'Q = ',QM) (X{12),A(5)sF(846));

224 PUT SKIP(2) EDIT (*K = *,KM) (X{12),A{5)+4F(856)1};

225 PUT SKIP(3) EDIT {((AEXP(Jl) DO Jl=1 TO LAST))
(10(X{4),F(8,1)))3

226 TEPK=03

227 DO Ji=1 TO LAST;

228 TEPK=TEPK+AEXP(J1)3

229 END3

230 IF S > TEPK THEN TEPK=S~TEPKS

232 ’ ELSE TEPK=03;

233 PUT SKIP(2) EDIT (*REMAINCER' ,TEPK)

(X{10)yA{9) s X(5},F(8+1))3
234 CALL CHITEST{TSTAY,AEXP4LAST,CHIV,NLsMyG)3
235 PUT SKIP(2) EDIT ('CHI VALUE IS *,CHIV,G) (X(5),A(14),
F(852)¢X{10),F(3});

236 6=C3

237 DO Jl=1 TO N3

238 STU=NDAR{J1) 3

239 TZ=PHO(J1,J)/STU3

240 T1=1-TZ3

241 AINSTME(JLJI=(TVE(JIL, JIXTZI/{TME(J L J)%TL);

242 IF AIN <=0.0 THEN D03

244 : 6=G+13;

245 AVN{J11)1=03

246 END3

247 ELSE AVN{J1)=FSCAP{J1,J) /AINS

248 TEPK=1-(TL/MB(J1,yJ} )3

249 ADAR(J1)=STU/TLI*TEPK}

250 . SDAA{J1)=ACAR(J1)}-MDAR(JL)}}

251 AAXP(J1) =ABS(SDAA(JL) }/MDARIJIL) S

252 KAR(J1)I=TEPKS

253 : END3

254 PUT SKIP(4) EDIT (*MEAN',*VAR.'4'S.0.")

(X601 93(X(14),A(4)))5
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255 CALL MIV (ADAR,N,MU,VAR};
256 PUT SKIP(2) EDIT (*NH*¢MUsVAR)
' {X{38),4(2)4%(20),2(X(6),F(12,4)))3
257 CALL MIV {SDAA,N,MU,VAR};
258 PUT SKIP(2) EBIT ("NF—=N'*,MU,VAR)
(X{38) 2 AL4) X (18)22(X(6),F(12:4)))3
259 CALL MIV (AAXP,N,MU,VAR);
260 PUT SKIP(2) EDIT (*(NH-N)/N®,MU,VAR)
(X{38) 4 AL8) yX(14),2(X(6),F(1254)))3
261 Do J1=1 TO N;
262 ACAR(JLI=AVN(J1)=-MCAR(J1);
263 AAXP{J1)=ABS{ADAR(JL) ) /MCAR(ILYS
264 END;
265 CALL MIV (AVN,N,MU,VARD;
266 PUT SKIP{2) EDIT (*NB',MU,VARs*REJECT?yGy*/"sN)
(X038 9AL2) ¢ X{20)92(X(6) sF(1244)) s
, X (509 A6)yXTIL)aFI3),X{L),ALLYsXI1),F(3))3
267 CALL MIV (ADAR,N,MU,VAR);
268 PUT SKIP(2) EDIT ('NB-N',MU,VAR)
: (X(38) ,A(4) X (18),2(X16)4F(12,4)1))3
269 CALL MIV (AAXP,N,MUsVAR);
270 PUT SKIP{2) EDIT (*{NB-N}/N',MUsVAR)
(X{38),A{B) X (14),2(X(6),F(12,4)))3
27 MU=KK#KK%PP 3
212 CC J1=1 TO N3
273 ADAR(J1)=KAR{JL)-K3
214 AAXP(J1)=ABS (ACAR(J1)) /K3
215 SDAA{JL)I=SQRT(MU/NCAR(I1I);
276 END 3
277 CALL MIV(KAR,NyMU,VAR} 3
278 MUC=SQRT(VAR) 3 :
279 PUT SKIP(2) EDIT (*KH',MU,VAR,MUQ)
(X{38),A12),X(20)43(XU6),FL12+4)))3
280 CALL MIV (ADAR.N,MU,VAR);
281 MUO=SQRTIVAR) ;
282 PUT SKIP{2) EDIT (*KH=KT,MUsVAR,MUO)
(X(38),A04) 9X(1B)s3(X(6),FL12,4)))3
283 CALL MIV (AAXP,N,MU,VAR};
284 _ MUC=SQRT(VAR)
285 PUT SKIP(2) EDIT (* (KH=K/K)'yMU,VAR,MUO)
(X(38) ,A08) 9 X{14) 43UX{6) 4F(1242)))3
286 CALL MIV{SDAAyN,MU,VAR);
287 PUT SKIP{2) EDIT (*'S. D. GF K',MU,VAR)
{X{38)sA{10)4X(12)53{X(6),F(12+9)))3
288 CALL HCLUAEXP,QyKsPPyLLEN,LAST»S)3
289 . PUT PAGES
290 PUT SKIP(10) EDIT (*THEORETICAL FIT')
(X(5),A(15))3
291 PUT SKIP(2) EDIT ('K = *,K) (X(12),A(5),F(8,6))3
292 PUT SKIP(3) EDIT ((AEXP(J1) DO J1=1 TO LAST))
(LO(X(4) F(Bs1)))5
293 TEPK=03
294 DO Jl=1 TG LAST;
295 TEPK=TEPK+AEXP{J1) 3
296 END;
257 IF S > TEPK THEN TEPK=S-TEPK3
299 ELSE TEPK=03




300

301
302

303
304
3¢5
3C6
3017

3cs
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PUT SKIP{2) EDIT (*REMAINCER',TEPK)
(X{10)+AL9) 4 XI5) 4F(B41))3
CALL CHITEST(TSTAY,AEXP4LASTyCHIV,N1sMs6)3
PUT SKIP(2) EDIT ("CHI VALUE IS ',CHIV,G) (X(5),A(14]),
FU842) s X{10)4F(3)}3
END;
END;
END3
END3
DONE: PROCEDURE (INI,SFAN,CAPROB,SCAP,NCAP,GCAP,ESTAY,INT,PER,PERI,
PTRyJP);
DCL {SCAP{%) NCAP(*),GCAP(%),ESTAY{#),MARK, INT,LCAP,FCAP,
PERYyINI yPERI MyJdyIKsIBI g IMyPTRI%) yJ»JZ2JP)
BINARY FIXED (31}
(REAL,CAPRCB,SPAN) BINARY FLOAT {31};
DCL RANDOM ENTRY (BINARY FIXED (31),BINARY FLOAT (31));
MARK=03
D3 J=INI TO SPAN;
CALL RANDOM (INT,REAL)};
IF REAL < CAPROB THEN
DO3
IF MARK=0 THEN
InH
NCAP(J)=NCAP{J)+1;
FCAP=J3 :
{F J <= JP THEN J4J=13;
ELSE JJ={J—JP+PER-1}/PER+1;
END3
ELSE
D03
IF J <= JP THEN JK=13
ELSE JK=(J-JP+PER-1}/PER+1;
IF JK > JJ THEN
DO
M=LCAP-FCAP+13
DO JZ=4J TO JK-13
JV=PTR(JZ); )
GCAP{JM+MARK)=GCAP{JM+MARK) +13;
ESTAY{JIM+M)=ESTAY{JM+M)+13
END3;
JJ=JK3
END3
END3
MARK=MARK+1;
SCAP(J)=SCAP{J)+13;

LCAP=J3
END3
END3
IF MARK > O THEN
DO3s

IF LCAP <= JP THEN JK=13
ELSE JK=(LCAP-JP+PER-1)/PER+]1;
M=LCAP-FCAP+13
DC JZ=JK TG PERI;
JM=PTR{JZ);
GCAP (JM+MARK)=GCAP( JM+MARK) #1
ESTAY{JM+M)=ESTAY(JM+M) +13
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END3
END;
END CONE;
TMV: PROCECURE {DUM,TCLyMU,VAR,LEN,STA}S
DCL (DUM{#*) ,TOL,LEN,STA,J) BINARY FIXEC (31),
{MUyVAR,AIN) BINARY FLOAT (31);
VAR, TGL=03;
DO J=STA TO LEN;
TOL=TOL+DUM{J]) 3
END;
MU=FLOAT(TOL) /LEN;
PO J=STA TO LEN;
AIN=DUN(J)—MU;
VAR=VAR+AIN*ALN;
END3
VAR=VAR/LEN;
END THV;
MVC: PROCEDURE (ARA,STsLEN,S,ZsMUsMUT,VAR);
DCL (ARA(%}2ST,LEN,Z,SyJ) BINARY FIXED (31),
(MU,MUO, VAR, VAL, INI,AIN) BINARY FLOAT (31)3
INI=S+Z3
MUO=MU%S/7INI
VAR=MUO%MUQ*2 3
AIN=0;
DO J=ST TO LEN;
AIN=AIN+13
VAL=AIN-MUD;
VAR=VAR+VAL*VAL*ARA(J) 3
END; ,
VAR=VAR/INI;
END MVO3
CHITEST: PROCEDURE (OBS,EXPECT,LAST,VALUE,SAMI,FST,M)}3
DCL (OBS(%) yLASTSAMI 2FSTodsJJsMsPT,FT) BINARY FIXED
(EXPECT (%) 4VALUE, IDIF,INT) BINARY FLOAT (31)3;
FT=FST-13
M=LAST;
DO J=1 TO LAST;
IF EXPECT(J) < 5 THEN
DO
M=J; INT=0;
DO JJ=M TO LAST;
INT=INT+EXPECT(JJI) 3

END3
IF INT < 5 THEN
D03
M=M-13
EXPECT{MI=EXPECT(M)+INT;
END3
ELSE EXPECT{M)=INT;
GO YO 8G3
END;
END3
BG: PT=M+FT3
INT=03

DO JJ=PT YC SAMI;:
INT=INT+0BS{JJ) ¥
END3

{31}y
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408 AG: IF INT < 5 THEN

4C9 DO;

410 PT=PT~13

411 INT=INT+0BS(PT);

412 M=M-13

413 ) EXPECTI(M)=EXPECT{M)+EXPECT(M+1);

414 GO TO AG:

415 END;

416 OBS(PT)=INT;

417 VALUE=03

418 DO J=1 TG M;

419 IDIF=0BS{J+FT)-EXPECT(J)};

420 IF IDIF~= O THEN VALUE=VALUE+{IDIF*IDIF)/EXPECTL(J);

422 END3

423 ENE CHITEST;

424 THEC: PROCEDURE (ARY ,NUM,PP,QQ,LEN,N);

425 DCL {ARY{%*),PP,0G,VAL) BINARY FLCAT (31},
{NUM,LENsN,J) BINARY FIXED (31)3

426 ARY (1) s VAL=NUM%PP;

421 . N=LEN;

428 PO J=2 TO LEN;

429 VAL=VAL*QQ;

430 IF VAL < 1.0 THEN

4131 Do;

432 N=J-13

433 GO TO FINI;

434 END3

435 ARY{J)=VAL;

436 END;

437 FINI: END THEO;

438 HOL: PROCEDURE (ARY,QsKyKKsLENJLAST4N};

439 DCL (ARY(%),Q,K,KK,AIN) BINARY FLOAT (31),
(JyLEN,LAST,N) BINARY FIXED (31);

440 LAST=LEN;

441 ARY(1)=KK%N3

442 ARY {2)1=ARY(1)%{1-Q)*K;

443 DO J=3 TO LEN;

444 AIN=ARY{(J-1)%K;

445 IF AIN < 1.0 THEN

446 DGCs

441 LAST=J-13

448 GO TO FINE;

449 END;

450 ARY{(J)=AIN;

451 . END;

452 FINE: END HOL;

453 MV: PROCEDURE (ARY,LEN,MEAN,VAR);

454 DCL (ARY(%),LEN,J) BINARY FIXED (31},

AY2 (LEN) BINARY FIXED (31),
(MEAN VAR, TEM,TM) BINARY FLOAT (31):

455 MEAN,VAR=C}

456 : TEM=ARY(1);

457 DO J=1 TO LEN:
458 TM=ARY (J)-TEM;
459 AY2{J)=TM;

460 MEAN=MEAN+TM;

461 END3




462
463
464
465
466
467
468

471

489

497
498

499
500

MUS: PROCEDURE OPTIONS (MAIN)3:

MEAN=MEAN/LEN;
DO J=1 TO LEN3

TM=AY2(J)—-MEAN;
VAR=VAR+TM%TM3

END;
MEAN=MEAN+TEM;
VAR=VAR/LEN;

END MV3
PROCEDURE {(ARY,LEN,MU,VAR}}
DCL (ARY(*)yAINyVARs MU, TM, TEM) BINARY FLOAT(31),

MIV:

PRTR:

END3

YY(LEN) BINARY FLOAT (31},
(JyLEN) BINARY FIXED (31)3
TEM=ARY({1)3
AIN,VAR=03
DO J=1 TO LENS3
TM=ARY{J)-TEM3
YY{J)y=TM;
AIN=AIN+TM;
END3
MU=ATIN/LEN;
DO J=1 TO LEN;S
AIN=YY({J)}-MU;
VAR=VAR+AIN*AINS
END3
MU=MU+TEM;
VAR=VAR/LENS

END MIV3
PROCEDURE (I4CA,SAMyN,JP)3

DCL (TI,NUMySAMyN,JP} BINARY FIXED (31
CA RINARY FLNAY {(31);

NUM={TI-1)*SAM+JP3

PUT PAGE;

PUT LINE (10) EDIT {*MODEL') (X{64),A

PUT SKIP{O) EDIT (' _____ ) (XU64),AL5

PUT SKIP({3) EDIT ('IMMIGRATION AND

PUT SKIP{3} EDIT (*PARAMETERS') (X{(62

PUT SKIP{O} EDIT {*_____ ') (Xté2

| X3

(5)):
1
DEATH®*)
)AL 10}

PUT SKIP(3)
PUT SKIP(2)
PUT SKIP{(2)

END PRTR3

EDIT

EDIT

EDIT

(*NO, OF SAMPLING PERIODS
(X{5L),A027),Fl4) )3

(*NO. OF SIMULATICNS
(XI51)4A(27),Fl4) )35
(*CAPTURE PROBABILITY
(X{(5L)+AL2T)sFl442) )3

)
}9»A{10))

"

X{55),A(23))3

{
:
H

* » NUM)

*yN}
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SAMPLE OUTPUT FROM THE

IMMIGRATION AND DEATH MODEL




poPUL. ( TRUE )
ZERO ( TRUE )
INDIVIDUALS

CAPTURES

MODEL

IMMIGRATION AND DEATH

PARAMEIERS

NO. OF SAMPLING PERIODS

NO. OF STIMULATIONS

CAPTURE PROBABILITY

TOTAL
44905
31013
13892

19630

80

50

0.05

MEAN
898.1000
620.2600
277.8400

392.6000

VAR.
916.3300
634.9924
260.6144

602.9200




OBSERVED RECAPTURE FQ.

{ 31013 )
9808 2899 842 243
ZERO CLASS EXCLUDED
ZERO CLASS INCLUDED
MAXIMUM LKD. FIT
(33630 )
9830.6 2873.6 84040 245.5
P = O.71
Q = 0.29
CHI VALUE IS 1.90 6
NG
NG-N
VAR. NG
{NG=N) /N
THEORETICAL FIT
9415.6 3034.0 977.6 315.0
CHI VALUE IS 13,44 6

T7 20
71.8 21.0
MEAN
955.0600
56.9600
8216.9200
0.0923
101.5 32.7

MEAN
1.4130

0.5208

10.5

VAR,
0.5704

0.5277

VAR.

9194.2564 REJECT
7314.1584
4819107.1136

0.0042

07/

50




DURATION FREQUENCY

0BSERVED
9808 439 398
161 132 114
39 44 48
15 12 11
1 4 5
1 3 1
0 0 0
MAXIMUM LKD FIT
Q = 0.948800
K = 0.890504
9808.0 447.2 398.2
157.5 140.2 124.9
49.4 4% .0 39.2
15.5 13.8 12.3
49 4.3 3.9
1.5 1.4 1.2
REMA INDER 8.7
CHI VALUE IS 55.96

(TOTAL)
342
131
38
9
2
1
0
354.6
111.2
34.9
10.9
3.4
l.1
41
NH
NH-N
(NH-N}/N
NB
NB~N
{NB-N)/N
KH
KH—-K
(KH-K/K}
Se D. OF K

315.8
99.0
31.1

9.7
3.1

2.684855 VAR. = 38.602526
277 270 243
63 68 78
22 21 20
6 15 4

2 2 1
3 0 0

0 0 1
281.2 250.4 223.0
88.2 78.5 69.9
27.7 24.6 21.9
8.7 7.7 6.9
2.7 2.4 2.2
MEAN VAR.
848.3024 10571.6125
~49.7976 8723.7810
0.0933 0.0050
991.9154 145984.9566
93.8154 140135.0937
0.2988 0.0883
0.8898 0.0001
-0.0151 0.0001
0.0168 0.0001
0.004706139 0.000000019

211
66
26

198.6
62.3
19.5

6.1
1.9

REJECT

o/

0.0102
0.0102

G.0110

17
5

186
54
33

6.8
5.5

17.4

50

55
1.7




K = (418

9415.6
173.2
63.7
23.4
8.6
3.2
1.2

REMAINDER

CHI VALUE IS

THEORETICAL FIT

304837

261.67

385.4
141.8
52.2
19.2
7.1
246

10.0

47

348.8
128.3
47.2
17.4
6.4
2.3

315.6
116.1
4247
15.7
5.8
2.1

285.5
105.0
38.6
14.2

1.9

258.4 233.8 211.5 191.4
95.0 8640 77.8 70.4
35.0 31.6 28.6 25.9
12.9 il.6 10.5 ) 9.5

4.7 4.3 3.9 3.5
1.7 1.6 le4 1.3
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