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ABSTRACT

This thesis discusses the problems associated with both
Dataflow and Rule-Based systems and then introduces the idea
that an amalgamation of the two concepts may be exploited to
solve some of these problems. Furthermore, a prototype
design is discussed as well as the question of extensibility

to a general parallel system.
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Chapter I
INTRODUCTION

1.1  DATAFLOW COMPUTERS

This section describes the concepts behind datafiow
processors and reviews some of the current work being done
on dataflow machines. The information represents a summary

of research relevant to this thesis.

1.1.1 Concepts

Dataflow, as the name implies, is:.a system in which
program execution is determined by the fiow of data. Unlike
common Von Neumann architectures, dataflow machines are free
to execute an instFuction as sooh as its operands have been
"oroperly'" defined (i.e. have had values assigned to them).
This means that many instructions from a single program may
be executing éimu]taneously. In fact, these instructions
may be from distinct sections of the program, and thus the
existence of a location counter in a dataflow machine is

obviated.

In a datafiow system there is no concept of a current
instruction. Instead, every instruction is either "enabled"

or ''disabled". An instruction is said to be enabled (and is
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therefore eligible for execution) once its input operands
have been defined. This mechanism may be represented using
a flow graph such as the one shown in Figure 1. In this
example, once 'A' and 'B' have been assigned values the

operation '+' may be performed on them to yield the result

Figure 1: A Flow Diagram Node

‘R*.

A dataflow program is composed of many such nodes with
each one forwarding its results to others (see Figure 2 ).
Thus, when one instruction completes and produces a result,
it may implicitly enable additional instructions. It is
this implicit enabling of instructions that defines the
order of execution of a program's instructions and thereby
effectively eliminates the need for conventional control

structures.

There are two critical observations to be made at this
point. The first is to reaffirm that instruction execution

is affected only by procedural constraints. An
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Figure 2: A Flow Graph to Calculate: axZ2+bx+c

instruction's physical location within a datafliow program
does not affect its order of execution relative to the other
instructions. The second is that the sequence of statement
execution may be a non-deterministic process. Undoubtedly,
the implementation will place certain restrictions on the
number of concurrent operations. Therefore, at some point
in time, there may exist a queue of enabled but non-
executing instructions. The order of execution within this

queue (i.e. of enabled instructions ) is not guaranteed.

From a Hardware viewpoint, a dataflow system may be seen
as having the structure given in figure 3. In this diagram,
the processing elements (P.E.s) may be thought of as forming
an A.L.U, (Arithmetic/Logic Unit), the activity store as
forming a memory, and the fetch and update units as forming

the control unit,



PE{°|PE| ° |PE

PE|° |PE | ¢ | PE
Update Fetch
> Instruction Queue
Unit Unit
Activity
Store

Figure 3: A Dataflow System

The activity store contains current instructions that
will be executed when new values are available for their
operands. Each instruction may be stored in the form of a
template which contains an opcode, storage for any required
operands, and a forwarding address for thevresult. Figure 4

gives the structure of a template for an instruction with

opcode

operand-1

operand-2

result
destination

Figure 4: An Instruction Template




two operands and a single result.

Note the indicator bit(l) associated with each operand
field. As an operand is copied into this field, the
appropriate indicato; bit is set. These bits may then be
used to determine eligibility for execution. Constants
involved in operations are pre-loaded into templates with
their indicator bits set. This guarantees that a template

does not wait for a constant to become defined.

Enabled instructions, as determined by the update unit,
will have their identifiers/addresses placed in the
instruction queue (1.Q.). The fetch wunit will then select
templates identified within the queue and retrieve them from
the activity store, to be executed by the system's'

functional units (D-units).

The only special-case processing to be considered occurs
during the initiation of a dataflow program. When a program
begins execufion there have been no previous instructions to
enable the mainline. This means that each dataflow program
must have an initial state associated with it. The desired
effect may be achieved simply by specifying a single
instruction whose identifier is Jloaded immediately into the
instruction queue. This instruction is then used to enable

other instructions in the program.

Clearly, by applying the dataflow approach, any available
parallelism in an algorithm may be exploited in order to

maximize its execution speed.



1.1.2  Current Work

Research currently being done in the field of datafiow
falls into two basic categories:
® Designing Dataflow Machines

® Programming Dataflow Systems

There has been considerable progress made in the first of
these two areas. J.B. Dennis and his group at M.1.T. (among
others) have been successful - in the design and

implementation of prototype dataflow processors.

The second area, however, has seen far less progress.
There are many difficulties when programming in a fully
parallel environment. This suggests that programming should
continue in a serial fashion, and efforts should be
concenfrated on translating serial algorithms to parallel
ones. Unfortunately, this may also be an impractical
solution. What is required is a compromise between the two
approaches. By avoiding the need for the programmer to
specify the low-level paralle]ism, it is possible to make
programming easier, This Jleaves only the higher-level
paré]lelism up to the programmer, and simplifies the
translation process. Thus, what will eventually be proposed
is a "control structure free" functional language for the
description of parallel algorithms. Before deing this,
however, it is Qorthwhile to examine some of the work which

. has already been done.
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Most dataflow processors have been designed to execute
programs which are expressed in terms of program fiow
graphs. Not only is this an exceedingly difficult and
tedious way of expressing a program, but it also tends to
produce machines which are restricted to the template
implementation. As will be seen later, this may not be the

most efficient implementation possible.

This is not the most serious probiem with the simplistic
dataflow afchitecture as discussed. The classic dataflow
machine shown in Figure 3 is known as a circular pipeline.
That is, each wunit 1is concurrently active and is thus
analogous to a stage in a pipeline. (it is circular for
obvious reasons.) Ultimately, the level of concurrency in
such a system is limited by the bandwidth of the
interconnections between the various components in the pipe.
Specifically, the data paths to and from the activity store
are bound to be overloaded even if a high speed memory is

used.

The basic mechanism may be drastically improved upon by
linking many such unifs into a '"dataflow multiprocessor' as
described by Dennis [13]. This yields a group of dataflow
processing elements on what is, effectively, a packet-
orientéd network. The communications network provides the
abiltity for any processing e]ement to access the activity
store of any other processing element. Thus, the activity

stores together form a common, global address space with
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access arbitrated by the communications network. In this
scheme, the dataflow program is distribufed between the
various processing elements in such a way as to minimize the
more expensive non-local memory references. The number of
functional units per processing element is decreased and the
number of activity stores is increased, thus eliminating
some of the bandwidth problems. Obviously, the limiting
component is now the communications network. While it is
generally inappropriate to implement something as elabofate
as a crossbar switch, a good network which supports

concurrent traffic is required.

A second architecture, also proposed at MIT, takes a
somewhat different approach. In the dataflow multiprocessor
architecture (above) not all packets are equally accessible
to all processing elements. This does not necessarily
degrade performance but it does complicate the hardware by
producing a system where access times are non-uniform. In
the '"cell block' architecture, however, all templates are
made equally accessible to all processing elements. Thus,
access times to all templates by all processors are
consistent. The cell block architecture would seem to imply
an activity store containing many templates, each of which
may then be selected by the distribution network to be
forwarded to some operation unit. This approach is obviously
impractical (once again due to bandwidth problems). I f the

simple solution is taken, breaking up the activity store
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into separately addressable cells, then the bandwidth
problem is eliminated but a tremendous connection/packaging
problem arises. The solution is, of course, a compromise
between a single activity store containing N templates and N
activity stores each containing a single template. Consider

the diagram given in figure 5.

In this scheme, the cell blocks form the activity store
and each cell block replaces not only a number of
instruction cells but also the corresponding portion of the

distribution network. Results are delivered to the cell

PE ||
(_l C.B.
Arb. °
‘ Net.
—> C.B. > PE{~>
DiStl’ib. o L] o
—»< ° °
Network ° °
———a{ PE[
—R C.B. '
Arb. °
Net.
S C.B. PE|» J

Figure 5: The Cell Block Architecture

blocks by the distribution network. The operation packets
produced in response to these results are sent to an

arbitration network which routes them to an appropriate

> —>
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functional unit for execution. Note that each arbitration
network has a group of shared execution units so as to
reduce overloading and bottlenecks at the processors. Each
cell block is roughly equivalent to the traditional datafliow
processor less the functional units which have been factored
out. Thus, the original system has been subdivided into a
number of smaller subsystems wi th the hope that

communications between the subsystems will be limited.

Two distinct types of dataflow ~machines may be
distinguished. These are the ''static" and ‘''dynamic"
approaches to dataflow. (Both the dataflow multiprocessor
and cell block architectures are static.) Static machines
are those such as have already been described. Such machines
are characterized by uniabelled data tokens. This means that
only a single token may be present on each arc at any given
time. 1In a dynamic dataflow machine, the data tokens are
labelled. Thus, many tokens may exist on a given arc and the
label uniquely identifies the context of each token. This
provides the ability to support loops in the flow graph and

thereby ensures maximum parallielism.

In software, the approach has been to allow specification
of algorithms in a serial fashion and then to wuse system
software which is capable of detecting and exploiting any
possible parallelism. As it turns out, many of the
technigques used by optimizing compilers may be applied to

the problem of detecting parallelism. Languages such as
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VAL[2] and ID[5] are examples of this approach. They are
what are known as applicative or functional languages and
are appropriately structured for easy translation to flow
graphs. Such languages have one advantage over conventional

programming languages: they are free from side-effects.

One of the major problems with translating from serial to
parallel algorithms 1is detecting side-effects such as that

shown in figure 6.

The primary source of such side-effects is the design of
the language itself. Variables (or objects) are themselves
addresses and as such may be inadvertently referred to. In

functional computing, with languages such as VAL, there are

PROCEDURE switch (VAR a,b: INTEGER) ;

BEGIN

a:=xor (a,b) ;
b:=xor (b, a) ;
a:=xor (a,b)
END;

Note: if the same variable is passed to both 'a'
and 'b' then it is set to zero rather than
remaining unchanged. (Due to the call by
address) .

Figure 6: A Side-Effect

no variables per se. Instead, operations produce values
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which are directly consumed by other operations. Thus, there
is no place where one operation can mistakenly refer to or
unintentionally modify data. (VAL is then value oriented
rather than address oriented.) By enforcing the use of a
functional language, the task of identifying possibie
concurrency is greatly simplified. This restriction may be
implemented by simply adhering to the single assignment
rule. This rule states that only one assignment may be made
to a variable within its scope. This precludes the
reassignment of variables, but should not be considered

restrictive as extensive reassignment is bad programming

practice.
In VAL, detection of parallelism occurs in two
situations. Compound expressions are broken "down into

simple expressions which may then be executed in parallel
subject to précedural constraints. Also, vector and array
operations are designed to allow concurrency identification.
Due to this 1limited identification of parallelism, VAL
(unlike CLU[17] on which it is based) 1is restricted to the

domain of numerical mathematics.

What has yet to be attempted is the development of a
programming language/system in which the programmer s
responsible for some of the control of parallelism. This

concept is addressed later.
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1.2 RULE-BASED SYSTEMS

This section, like the first, is used to provide

necessary background information for the thesis.

1.2.1 Concepts

Rule-based programming systems represent a relatively new
approach! to coding algorithms. They provide only a single
format for statements which is shown in Figure 7. However,

this simple form allows the programmer to explicitly direct

( conditions ) -> [ actions ]

Figure 7: Production Format

the machine in either a serial or parallel fashion.

The "conditions' section of each rule-based statement is
composed of an arbitrarily complex logical expression which
specifies the condition(s) under which the associated
"actions" section is to be executed. Each of these
statements is said to be a rule or production, and a rule-
based program consists of a series of logically related

rules.

! The approach is new although the idea itself is quite old.
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The logical structure of such a system is given in Figure
8. The inference engine serves as the control mechanism for

the system. [t selects enabled rules from the rule base and

Inference
Engine

Rule Base Data Base(s)

Figure 8: Rule-Based System Structure

executes them, thereby modifying values in the database(s).
The modification of data within the database(s) may then set

a condition in another or the same rule to 'TRUE' and

thereby enable its actions. Consider the program given in
Figure 9 . This classic algorithm provides a good example
of serial rule-based programming. A line by line

description of the program's activity is given in Table 1

Notice that, like dataflow, there is no need for explicit
control structures. The flow of control is determined
implicitly by the order in whiéh conditions become true. It
should again be noted that the order of execution of enabled

statements s not guaranteed; only the conditions under

which a statement will be enabled is guaranteed.
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(* PRIME - Boolean Vector %)
{* NPRIME - Next Prime %)
(* MULTIPLE - Composite to be removed %)
(* N - Size of Vector %)

1)  #*%XFIRST*% -> [ prime (%) <- TRUE;
nprime <- 1;
multiple <- n+1; ]

2) (nprime > SQRT(n)) -> [ PRINT,prime (%);
STOP; ]

3) (multiple>n & prime(nprime+1)=TRUE &
npr ime<=SQRT {n))
-> [ nprime <- nprime + 1;
multipie <- nprime % 2; ]
LY (multiple>n & prime(nprime+1)=FALSE &
nprime <= SQRT (n))
-> [ nprime <- nprime +1; ]
5) (multiple<=n & nprime <= SQRT(n))

-> [ prime(multiple) <- FALSE;
multiple <- multiple +nprime; ]

Figure 9: Rule-Based Program for the Sieve of Eratosthenes

The strength of a rule-based language for dataflow
programming is dependent on the base instruction set of
allowed actions. If a sufficiently extensive set is used,
much of the difficulty inherent in parallel programming may

be shifted onto the machine.

Consider matrix multiplication. At the lowest level this

is a fairly complex parallel process. | f however, vector
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line # Description

initialization (executed once)
the terminating condition

next prime found

looking for next prime

knocking out composites

Ul W N —

TABLE 1

Description of Figure 9§ .

operations are allowed as actions, then the probliem becomes
trivial. Thus, by carefully choosing the dividing line
between hardware-implicit and user-controlled parallelism,

the coding of such problems may be made considerably easier.

1.2.2  Current Work

Almost all wofk in the area of rule-based or production
systems has been done in implementing so called '"expert
systems'. This area of Artificial Intelligence (Al) deals
with knowledge engineering. Its goal is to provide a
computer system which contains the accumulated knowledge of
many experts and which may then be used as an assistant in

its particular area of expertise.

Systems have been produced which are being used in such

areas as medicine (MYCIN[9]), geological prospecting
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(PROSPECTOR[8]) and physics (DENDRAL[7]). The rule base for
an expert system consists of a series of assertion-
assumption pairs. That is, a collection of assertions which,
when shown to be true, permit certain assumptions to be

made.

Consider a system trying to ascertain whether or not a
given patient has a particular disease. Through prompting
for input (i.e. medical test results) the system may make
initial décisions. These lead to other decisions being made
which eventually lead to a resolution of the problem at

hand.

This is very much a non-deterministic process in which a
given rule may lead to many alternatives. Each of these
alternatives must in turn be examined in order to select the
'"best' one. The question at hand is: "Which is the best
one?" The answer may be found using a certainty factor
which s assocfated with each rule or production. The
certainty factor indicates how strongly the expert whose

data is stored in the system feels this rule applies.

For examplie, a given set of symptoms may suggest two or
more possible ailments. Presumably the likelihoods of the
patient having each ailment are different, given this set of
symptoms. Thus, the most likely one could be assigned a high
certainty factor while a less likely one could be assigned a

lower certainty factor. .
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Many of the existing systems simply follow the one or two
most likely paths and hope that they prove correct. This is
done mostly for reasons of efficiency. A search of all
possible paths may simply be tqQo expensive. Unfortunately,
this approach also tends to lessen the effectiveness of
expert systems. If all possible paths can be checked then
deductions which initially look unlikely but which are

subsequently supported by new evidence are not overliooked.

Consequently, the ability to check all paths will
decrease the importance placed on the order in which the
questions are asked. In most systems it is important to ask
questions in such an order as to quickly and precisely
subdivide the problem into a number of primarily independent
sub-cases. When an "all-paths' search is done, the problem
of overlooking certain paths because they do not appear
promising is avoidea. If sufficient computing power is
available to éupport such a search, the construction of the

expert system may be simplified.

The primary area of application of expert systems should
be in remote areas where a human expert is unavailable. This
means that a general practitioner could then act as the
attendant and successfully perform as if he were an expert
in some specific medical field. ldeally, an expert system
should also be marketed with a good selection of '"knowledge'

and "rule'" bases.
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Unfortunately, such an expert system with applicability

in a variety of question domains is not available. This is
due to a number of factors including:
e Lack of compact computing power

e lLack of compact storage media for maintaining the rule
and data bases

e Poor design practices (often related to the first two
points)

With the proper hardware (inciuding a special purpose

architecture) and better software, a viable general purpose

expert system may be achievable.
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PARALLEL PROGRAMMING AND DATAFLOW

A fundamental problem still to be solved before parallel
computation is widely accepted is the question of
programming in a non-VYon Neumann environment. Programmers
are taught from the very beginning to think in a serial
fashion and this leads to inefficient algorithms when coding
for a parallel machine. Some rethinking of the fundamentals
of programming must be done in order to yield a useful

parallel language.

Common serial languages fail to recognize and exploit the
available parallelism in an algorithm. Furthermore, they are
incapable of expressing truly parallel algorithms (that is,
algorithms where the programmer specifies which operations
are to take . place concurrently). At best, some languages
provide facilities to allow concurrency at the procedure
level. Unfortunately, this is far too coarse a level to be
of use in any massively paraliel system such as a dataflow

machine.

Two general approaches may be taken when programming
parallel machines:
e user-controlled parallelism

e parallelism detected by system software

- 20 =~
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Let us first divide the available paraliel machines into
two classes according to Flynn[15]. Those machines which are
typified by single instructions being performed on multiple
pieces of data at once are called SIMD (Single Instruction,
Multiple Data) machines. Falling into this category are the
vector and array processors (i.e. those processors which
operate on multiple data items. synchronoustly or in
lockstep) . The second class of machines known as MIMD
(Multiple Instruction, Multiple Data) are typified by many
instructions working on many different pieces of data

concurrently. Dataflow machines fit into this category.

Consider first the SIMD machines. Regardless of whether
or not the user does the identification of parallelism,
somewhere there must be intimate knowledge (either on the
part of the applications programmer or the systems
programmer) of the machine's internal architecture in order
to program effectively. For example, a vector processor
consists of a finite number of processing elements and
therefore the number of elements that exist must be known in
order to partition larger problems. Thus, any software

written for such a machine is not general.

The task of identifying possible parallelism via system
software is not difficult for this type of machine. Vector
and array processors are designéd for a specific class of
problems. Thus, if a high level language which allows array

operations is used as a programming environment,
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identification of simple parallelism is not only trivial but
also immediate. Consider the following example:

DCL
A,B (1000, 1000) ;

A=A+B; /* obviously a parallel operation %/
Even if such a language is not used, it is relatively easy
to identify matrix operations and optimize at least the
inner loop of such an operation. Techniques similar to those
applied in optimizing compilers may be applied to perform

the required analysis.

Programming for SIMD machines has become fairly well
established. Several high Tlevel languages have been
developed for specific machines and are working out well.
Additionally, a variety of Jlower level parallel algorithms
have been developed. Matrix multiplications in which the
innermost loop has been replaced by a parallel operation are
now commonplace on machines such as the CRAY-1 and CYBER-205
(hot to mention true array processors). Even many
inherently serial problems have been reworked for parallel
solution. A good example of this is a vector summation. In
log2n steps, all the sums of from 1 to 'n' of the elements

of a vector may be calculated.

Unfortunately, there are problems. Perhaps the most
dramatic of these is the need to partition large problems
for solution. Should the number of P.E.'s in a vector

processor be smaller than the number of vector elements, the
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vector must be subdivided and this subdivision causes many
algorithms to degenerate. (The vectqr summation algorithm
for example.} Furthermore, it is undesirable that programs
be architecturally dependent. Portability is a very
appealing concept especialliy for such special purpose
programs. For these reasons, a SIMD type architecture is

not an ideal base for a parallel system.

There is a better chance of designing a general parallel
language for the MIMD class of machines. It is irrelevant
whether the architecture at hand is a datafiow machine or a
network architecture. Both are essentially the same, the
only differences being the structure of the network, the
distance between nodes in the network, and the type of
programming currently being done on each type of machine., If
these differences are disregarded and both machines are
simply treated as a collection of processors and memories on
some sort of network, they may be considered equal. This
means that results attained using the dataflow model may be

extended to this more general class of machine.

In a MIMD system such as that just described, the goal is
not to produce calculations of a special form but rather to
produce as many single heterogenous caiculations as possible
at any given time. For this reason, such a system is
architecturally independent and therefore much better suited

to producing a general parallel programming system.
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Consider programming in such an environment. |f the
programmer is left to determine parallelism, he will
invariably code in a serial fashion and then analyze the
program to detect parallelism. A part of the analysis which
must be done is the reduction of complex expressions to
simple ones of the form:
result <- opndl oper opnd2
These simple expressions are then examined to determine
inter-statement parallelism. In addition to facilitating
the detection of parallelism, this permits the repeated
evaluation of common subexpressions within loops to be
easily factored out to a single operation. However, this
process is exceedingly tedious and as such should be
performed by the machine. Thus, a general parallel language
should allow compiex expressions which may be broken down

and analyzed at translation time2.

Such a language should also be side-effect free so as to
simplify this analysis. To be side-effect free, it would
seem that assignment should be eliminated altogether (as in
LISP). This, however, is not necessary if the single
assignment rule is followed as is done in ID[5] (the Irvine
Dataflow language). This rule permits the use of assignment
in a restricted capacity. Specifically, a single assignment
is allowed to any given variable within its current scope.

This guarantees that since only a single assignment is made,

2 These very operations are in fact commonplace in
“peephole' optimizers.
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inadvertent modification of a value 1is impossible. The
assignment is considered to be a ''naming"” of some result. It
is a non-executable operation and should not be associated
with any sort of write-to-memory function. This naming is

easily performed at compile time.

The presence of assignment affords the programmer a more
familiar environment and may therefore simplify the
translation process. When assignment is permitted the user
may, for the sake of simplicity, factor out some sub-
expressions on his own. This relieves the translator of

having to perform the removal. Consider the folilowing code

segment:
partl <- SQRT (b%%2-k%ka%c)
part2 <- 2%a
rootl <~ (-b+partl)/part2
root2 <- (-b-partl)/part2
Furthermore, the use of temporary values will not result in

additional templates (since assignment is not an executable

operation).

The high level constructs of programming languages should
clearly also be allowed. Functions and procedures are merely
logical abstractions of complex operations. They present no
difficulty as far as architectural independence is
concerned. |f necessary, each subprogram may be treated as
”inlfne” code (this is not hecessary as will be shown
shortly) . In fact, in systems where independent activity

stores are provided, the presence of subprograms provides a
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logical division point for assignment to different activity
stores. The use of these division points may improve

performance.

Presumably all operations in a subprogram are related
and, as such, should be grouped together. Values used by the
subprogram will also be local to the processor since global
variables cannot be allowed without possible side-effects.
The only exceptions to this rule are the parameters to a
subprogram. These, however, may be copied to the local
activity store and then back again in order to minimize
network traffic. A '"smart" loader will attempt to place
functions from a program into an activity store with other
related functions from the same program. This is also done

to minimize the more expensive non-local references.

The one question that does arise is how to translate
middle-ievel serial constructs to their parallel
equivalents. This is, of course, assuming that the existence

of any possible parallelism may be detected.

Consider a high level language which does not support
array operations. in this case, a loop or set of nested
loops must be used to accomplish the desired array
operation. |In most.cases, this sort of occurence is fairly
easily detected and the translation required is obvious. In
other cases however, the translation to a parallel form is

not so obvious. These cases, when exploited, may yield




27
significant performance increases. It is for this reason
that some of the parallelism will eventually have to be

specified by the user.

The conversion to a parallel language as just described
for a dataflow system is fairly straightforward. The most
difficult area is in the handling of complex loops and other
middlie level constructs. (High level parallelism may be left
to the programmer and low level paralielism 1is easily
translated.) What must be done with an array operation such
as the one shown below is not clear.

FOR i:=1 TO 2000 DO
FOR j:=1 TO 5000 DO
ali,jle=p[i,jl#**2;
This statement yields ten million independent exponentiation
operations. Each of these operations could conceptually be

executed in parallel but this is obviously going to be

impossible due to physical timitations.

Aside from the exceptionally large number of processing
elements required to support such parallelism, ten million
templates for each of 'a' and 'b' is obviously unacceptable
due to memory contraints. Either a very large memory or a
demand paged memory system would be required. Instead, 'n'
templates of a general nature acceptable for executing this
instruction méy be used to calculate the squares of all
elements of 'b'. Thus, the problém is effectively subdivided
or ‘''partitioned" into smaller problems. The number of

templates actually used will correspond directly to the
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number of available processing elements. Each set then
creates and enables the next. Furthermore, this approach
permits the situation where the range of elements to be
squared in 'b' is not known until run time. Simple static
{compile time) generation of the templates does not support

this feature.

A related problem is the guestion of program segments
such as those in a subprogram which are frequently entered.
If these subprograms afe invoked many times concurrently,
then multiple copies of some templates may result. Such a
piece of code will contain operations whose templates will
be repeatedly scheduled into an instruction queue. This
means that there may be many active versions of a template.
These templates must be physically distinct from one
another. That s, an identifiable copy of a template is

needed for each concurrent use of that template.

A typical example of such a function is a system service
routine which is being shared by many users. Since data is
effectively stored with the program (in the templates),
there is no possibility of reentrancy. In a static coﬁputer
system this would force one copy of the program for each
user. In a dataflow system, though, the duplication of the
entire function may be avoided. Only those templates which
must be duplicated will be. This is accomplished using
dynamic creation of template versions. Since they are

created, and presumably destroyed, dynamically, it s
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possible to detect when a particular template has multiple
versions concurrently active (perhaps via a usage count).
This also provides a natural basis for the solution of the
many-identical-operations problem (as typified by the ten

million element example) .

The idea of template versions 1is not unique. The
unravelling interpreter[5] wused in the Irvine dataflow
machine does exactly this. The difference is that the
analysis is performed almost exclusively at compile time and
thus cannot handle the dynamic cases effectively. By
allowing dynamic template allocation and freeing, additional
complexity is introduced into the hardware but significant
performance gains may be recognized. Additionally, this
scheme permits large problems to be solved within the

constraint of a relatively small activity store.

- What is clear from this discussion is that although much
may be done in translating serial to parallel algorithms,
existing methods <are imperfect and must remain so for
reasons of complexity. A better approach is to provide a
language in which the programmer specifies the "trickier"
parallelism but leaves the rest to be detected by the

system.



Chapter 111
A RULE-BASED DATAFLOW PROCESSOR

3.1 SYSTEM SIMILARITIES

In order for any two ideas to be successfully merged,
they must have some things in common. |t is the similarities
between systems that are exploited to permit their
combination. This is particularily true of hardware-software
combinations. By providing good architectural support for a
programming system, much effort may be saved. This is, of
course, in addition to the performance increases which may

be realized.

If the criteria for merging a rule-based system with a
dataflow machine is strictly the system similarities then it
should definitely be attempted. In gross structure the two
are quite similar., Both have a control wunit which fetches
"appropriate' operations, schedules them for execution and
then returns results which enable other operations. The
only differences between the two are purely cosmetic. (For
example, a rule-based system tends to implement two
physically distinct memories .while a dataflow system

typically implements only one.)

_30_
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In terms of functional principles, the two are identical.
Both systems have some actions executed conditionally. In
rule-based systems there is an arbitrarily complex boolean
expression determining whether or not the actions should be
taken, while in the datafiow system there are actions which
are taken when their operands are defined. These systems are
simple isomorphisms of one another as can be shown by the

following argument:

Assuming that all values initially have the wundefined
value (undef_val), a flow graph for:
A+ B
may be easily expressed as the rule-based statement:
(A<>undef_val & B<>undef_val) -> [A+B]
Perhaps worthy of note is the fact that the enabling
conditions for executing a datafiow operation as a rule
always involve the operands of that operation. In this
respect at least, it might be argued that the isomorphism is

in fact imperfect.

Equivalence in the other direction can easily be seen if
the structure of templates and the way in which they are
enabled is modified slightly. Normally, a template (and the
instruction it contains), 1is enabled when its operands are
defined. What is additionally required is an enable signal
for the template as a whole. Thaf is, a template will not be
eligible for execution until this new enable signal s

asserted and its operands are correctly defined. In most
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cases, this enable signal will be initially set (enabled).
However, in some cases it will not be set until the
successful completion of some other datafiow instruction.
Thus, a new instruction type may effectively pass an enable
token to those templates which are logically dependent on
it. This enable token could be easily replaced by the
passing of a boolean value which was subsequently discarded.
By doing this, a new template type could have been avoided
since the conditional enabling would have fit into the
existing structure. However, since the enabling values would
simply be immediately discarded, they may as well be
considered to be enables so that the user need not worry

about them.

The format for such an instruction's template is given in
Figure 10. Notice that by providing enable outputs for both
success and failure, the basis for an IF-THEN-ELSE structure
is immediately provided. From this it is clear that such a
system fits more naturally the architecture outlined for a
static dataflow machine. This is not to say that a dynamic
architecture is inappropriate but simply that a rule-based

system is conceptually closer to the static system.

The conditional expression from a rule-based instruction
may be taken and translated into a series of these
conditional templates. Each sub-condition may enable the
next sub-condition and the final one may enable the actions

of the rule. This is obviously an inefficient serial
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log. opcode

operand-}

operand-2

true
destination

false
destination

Figure 10: A Conditional Template

approach and a better mechanism should be develioped.
Regardless of the efficiency of the implementation though,
it is clear that the dataflow program and the rule~based

program are logically equivalent.

3.2 DESIGN CONSIDERATIONS

Having seen that rule-based and dataflow systems are
similar, it must now be decided whether or not the merger of
the two is viable. This s determined by considering the

efficiency of the implementation as well as its feasability.

In terms of efficiency the combination is excellent. The
primary problem with rule-based systems has been their
inefficient execution on serial processors. They. produce
many operations which may be done in parallel and as such

they are better suited to a parallel architecture.
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Furthermore, rule-based systems produce many heterogeneous
operations which make them suited to the MIMD rather than

SIMD class of paralliel machines.

0f the available MIMD type processors, static dataflow
processors most closely parallel the rule-based approach.
A1l of the operations in both the conditions and actions
sections may be performed in parallel on such a machine just
as they are intended to be. Also, the dataflow machines'
"update'" unit | is perfectly suited to the rule-based

environment.

Most of ~the questions which arise are not due to the
merger of the two systems but are due to the practicality of
dataflow machines themselves. While it is clearly an
efficient system conceptually, there are some implementation
difficulties to be overcome. Depending on implementation
strategies, there may be cost-feasability probiems or
performance inefficiencies in a dataflow system. A typical
example of this is using destination addresses in templates
as opposed to the use of CAM (Content Addressable Memory)
tags on instances of variables, In the first
implementation, there is a problem in distributing the
result to multiple destinations. To overcome this, multiple
levels of destination-extension templates (as shown in
Figure 11) may be wused. This approach introduces an
inherent inefficiency into the system in that overhead is

“incurred in fetching and decoding these templates and then
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opcode

I'| operand-]

I'| operand-2

result
destination-1

result
destination-2

result
destination-3

Figure 11: A Destination-Extension Template

re-routing the results as specified. The inefficiency
results from the fundamentally serial nature of the process.
Logic, if not economics, dictates that better performance
may be achieved by the use of CAM tags on specific instances
of wvariables. Nevertheless, most implementations have
favoured templates due to the natural mapping from flow
graphs. In contrast, the use of CAM tags is exceedingly
efficient and permits parallel broadcast of results to all
éppropriate templates. In this system, each operand field in
a template has associated with it a CAM tag field. When the
broadcast tag matches the tag field, the corresponding
operand field accepts the value being presented to it.
While this scheme is efficient it is also exceedingly
expensive and a single memory implies serialization of

broadcasts. The cost of CAM is high and the quantity



36
required is large. This makes the use of an activity store
where all templates have CAM tags impractical. What s
required is, as usual, a compromise. Some special templates
may have the desired tags and be used for operations where
this facility is required. This assumes the dynamic template

allocation/freeing system discussed earlier.

Another question of practicality arises from whether or
not a system can afford to support the number of processing
elements required to make a dataflow machine practical.
Something on the order of several hundred or more likely
thousand P.E.'s are required for a typical multi-user
system. |f a general purpose P.E. is used, then the cost of
each unit will be quite high. The use of special purpose
units will decrease this cost but this introduces the need
for a more complicated arbitration network to manage the
scheduling of operations to appropriate processing elements.
Obviously, custom SSI or MS! units will quickly price such a
machine out of normal markets and will most certainly leave
it non-portable. The use of VLS| designs avoids these
problems. Not only are they cheaper, but circuit densities
are far superior. They do generally lack in performance,
since MOS technologies are slower than ECL or TTL (in terms
of switching speed), but this is not as severe a problem as
it may appear. Since the key to a datafiow machine's
performance is not faster components but rather greater

parallelism, slower units may be tolerated. (The net
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performance increase through paralielism greatly overshadows
the performance increase attainable through the use of fast

components.)

The use of MOS VLS| designs is also suitable for the
prcduction_of activity store components. The fabrication of
static RAMs is a well documented process and the addition of
simple routing hardware onto such chips seems a simple task.
Thus, building blocks for activity stores such as Dennis'

cell blocks might be easily realized using VLSI.

Further gains may be achieved 1in this area through the
use of microprogrammed control units. Much of the contro]
function has already been relocated from the P.E.'s to the
other components in the dataflow machine and that part which
remains does not warrant a significant investment in hard-
wired logic. Instead, a small, fast microstore should be
used and the cost of the microprogramming may be amortized
over the number of units produced. This is an ideal approach
since many such units are produced even for a single

dataflow machine.

The use of microprogramming frees up chip area in VLSI
designs which may then be used for other purposes. The sort
of P.E. used in a dataflow machine is effectively a RISC[19]
(Reduced Instruction Set Computer) processor. |f the RISC
philosophy is followed for these P.E.'s, then the saved chip

area can be used to incorporate performance enhancement
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features (extra registers, pipelines, etc.). For dataflow
P.E.'s, extra registers may not be suitable but a simple

pipeline should be impiemented.

A pipelined processing element is a particularly
attractive feature for a datafiow machine. Just as for
vector and array processors such as the CYBER-205, very many
consecutive identical operations may be generated in a
dataflow system (as in the array example). Furthermore, in
a dataflow machine this is true for all operation types, and
is especially true if a set of vector operations is provided
as a programming base. Thus, the pipelining of functional
units may yield a significant performance increase in a

machine such as that being proposed.

The other advantage provided by the use of
microprogramming is the easy adaptation of a general purpose
unit to any required P.E. type. P.E.s performing different
functions may be implemented from the same basic P.E. simply
by rewriting the microcode. Admittedly, this is not the most
efficient approach but the reduction in both cost and space
requirements outweigh any lost performance. Furthermore,
this approach may be taken on a larger scale if writable
control stores are used. When this is done, a specific
program may have special-purpose microcode Jloaded for it so
as to enhance performance. Thus; depending on the language
being used to program an application, different microcode

may be loaded to ensure optimal execution time. Such an
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approach was taken on both the Burroughs B1700 and the Xerox

Alto computer. Thus, its feasability is assured.

Allowing different types of P.E.'s, whether through
microprogramming or not, is beneficial if not overdone. That
is, a limited number of P.E. types should be supplied so as
to minimize the complexity of the arbitration network. A
good balance between the number of P.E. types and the
number of functions per P.E. must be made. |f too few P.E.
types are chosen, in an effort to minimize arbitration
complexity, the amount of control required in each P.E. s
increased. Since P.E.'s are more numerous than the
arbitration networks, this will result 1in higher costs.
However, if too many P.E. types are chosen, arbitration

becomes complex and design costs increase.

The two fundamental control functions of a dataflow
machine also present some implementation problems. Both the
fetching of enabled instructions and the update of templates
based on results are complicated, highly parallel functions.
The wupdate function may be performed indirectly by the
distribution network if we assume a destination address
system. |If a CAM system is used, then the update function is
implemented in the control store itself. The only update

hardware required is then a broadcast facility.

The problem that remains is how to detect enabled

templates and how to efficiently schedule them for execution
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on the available functional units. Whenever a result is
forwarded to some template, the system must check to see if
this enables the given template. The checking process will
incur some overhead, particularily if the result is being
forwarded to many templates. Furthermore, memory contention
probiems may arise. A series of results which are forwarded
to many templates will overrun the capabilities of a single
unit attempting to check for -enabled templates. This means
that multiple, concurrent units will be required which
introduces the problem of multiple, concurrent accesses to
the activity store (a good reason for advocating many local
activity stores). Thus, the detection of enabled templates

must be accounted for in any design attempted.

One solution to the above probliem is the use of separate
memories (like cell blocks) and possibly even division of
the memories into individually addressable banks or blocks.
This would most certainly alleviate the problem of memory

contention.

Another approach is to use special hardware built into
the memory to test for all operands being defined whenever
an operand field is accessed. When all operands are defined,
the address of the template is returned to the unit which
schedules templates for execution. This distributes the
detection of enabled instructions throughout the memory
thereby alleviating the contention/bandwidth problem. The

disadvantage to this approach is that the activity store may



L1
no Jlonger be implemented using commercially available
memories. Instead, specially designed memories will have to
be used and this again results in increased costs even when

the implementation technology is MOS VLSI.

The scheduling of instructions to available wunits
requires some sort of hardware queue. In particular, the
system must be able to tolerate sudden streams of many
identical operations. This ''clustering' phenomenon means
that, from time to time, more enabled operations will exist
than appropriate P.E.'s to service them. For this reason,

there must be some facility provided to handle the overflow.

A 'queue' implies FIFO service. However, this is not an
ideal structure for maintaining enabled instructions. The
goal in dataflow is to maximize the amount of concurrent
activity and a simpfe FIFO queue may cause the following
undesirable result. If there is no unit available to service
the operation at the front of the queue, issuing of
operations suspends even if there are units available for
later operations in the queue. A more flexible structure is

therefore required.

A simple queue is acceptable only if a change is made to
the way it is used. Thé scheduler must be able to remove
activities, determine that they cannot currently be executed
(due to resource availability) and return them to the far

end of the queue. This should not affect the efficiency or
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correctness of execution due to the very nature of a
dataflow machine ("PC-free'). Re-ordering of instructions

is done freely.

Another alternative is to maintain separate queues for
each type of processing element. This clearly solves the
problem but forces the wupdate unit to perform at least a
partial decode on the operations to determine the queue into
which they should be placed. This is not difficult to do and
is, in fact, probably simpler to implement than the previous
scheme. it does, however, introduce an undesirable
dependency between the update unit and the fetch unit and
the P.E.'s. If a new type of P.E. s added, the only
component that should have to be modified is the routing
portion of the fetch unit. If multipie queues are used, the
update unit will also have to be modified. Thus, the ease of

extendability is decreased when using multiple queues.

There are many factors to be considered before deciding
on a final design. The features chosen and thereby the
inefficiencies accepted will depend highly on several
factors:

e Programming Environment

e Cost constraints

Availability of VLS! fabrication facilities

e End use of the system
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Finally, the design of a prototype rather than a
production system affects many design choices. In a protoype
system, such as that proposed in the following chapter,
decisions will be made so as to maximize modifiability and
extendability. These two features are absolute necessities
in a prototype since it 1is desirable to gain as much
information per design dollar as possible. Without existing
hardware, the correctness of a prototype design is not
assured. This means that every possible step should be taken
to detect errors and to correct them. Also, the cost of the
prototype should be low enough to aliow for one or more

complete design failures.




Chapter IV
A PROTOTYPE DESIGN

4.1  SYSTEM DESCRIPTION

This section outlines the fundamental design decisions
made with respect to the prototype rule-based datafiow
processor. The description is primarily that of a datafliow
processor but the structure of the processor is directly
affected by the fact that it is to execute rule-based

programs.

Before being able to design any portion of the processor,
it is necessary to consider the types of operations to be
performed upon it. In the case of a rule-based dataflow
processor, this involves examining the base set of allowed
actions within each rule. Since it is handled inherently
within the structure of the processor, the enabling of each
rule based on the conditions section need not be considered.
The update wunit is, in a sense, an integral part of the
activity store. The actions section is executed by one or
more P.E.'s as determined by some sort of arbitration
network. Operations specified in the actions section affect
not only the structure of the P.E.'s but also the

organization of storage within the system.
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The general architecture of a rule-based dataflow
processor shogld be static as was decided in the preceeding
chapter. Thus, the prototype design will be static in
nature. The term ‘''static' applies only in the traditional
sense of dataflow. Operations are passed on various system
buses in a complete form along with control tokens and
therefore no token matching section is required. Many
functions of the prototype system are definitely dynamic.
In particular, the expanding (generic) templiates may be
considered to be a dynamic function since templates are

being created dynamically.

The base Jlanguage chosen for implementation in the
prototype is a restricted version of APL. The APL language
offers a number of interesting operations that provide ample
opportunity for parallelism and the appearance of APL should
tolerate the necessary syntactic extensions to incorporate
rules. |f a programmer can face normal APL, the syntax for
specifying rules should present no problems. Also, the use
of APL provides at least a somewhat familiar environment for
the programmer. This is preferable to using flow graphs or
other unconventional approaches which are foreign to most
programmers. Finally, APL is certainly suitable for
implementing expert systems in that it supports all the
required operations and more.

In the prototype, only integer values are recognized and

therefore only the integer operations are supported. (in APL
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this means nearly all operators are supported.) Two basic
types will be defined:

e scalar integers

e non-scalar integers

Beyond this, no data typing is performed. This suits APL and
is perfectly legitimate as was shown in [ID[5] (which s
totally typeless). For the prototype, 16-bit integer values
are used to provide not a useful processor, but one which is
cheap and still representative of the machine which is

eventually desired/required. -

Function definition is supported in much the same way as
in normal APL with two exceptions. The exceptions are made
to ensure no side~-effects and are the foliowing:

o No global variables (Jocality of effect)

e A single assignment rule is in effect.

Clearly the presence of global variables (and VAR parameters
as well) will jeopardize the correct functioning of a
program due to possible side-effects. Unfortunately, in
many languages, these features also make functions somewhat
restrictive. This restriction is due to a lack of the
ability to return complex results. Fortunately, such is not
the case in APL. Since there is no vrestriction on the
"type'" of the value being returned, the résult may be as
complex as the user desires. The sécond exception to normal
APL syntax is also required to ‘guarantee that the systiem

will be side-effect free as discussed in earlier chapters.
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Normally, a single assignment rule makes programming in a
conventional style difficult. A simple example of where this
is true is when using a counter variable. The statement:
INDEX<-INDEX+1
is invalid within a single assignment rule. Due to the
obvious inconvenience caused, this restriction has accounted

for statements such as "FORALL" in VAL.

It is clear that some form of iteration is required in
any parallel system. (Both for specific applications and to
provide familiarity within‘existing systems.) In APL, such
standard iteration methods are particularily necessary since
the syntax will not happily tolerate the introduction of

high level looping constructs.

In order to permit the implementation of loops in APL
within a single 'assignment rule, a new operator is
introduced. This operator, the ‘'rename" operator, allows
explicit re-use of names. Thus, the statement:

X<t X+1
is valid, whereas the statement:

X<-X+1
is not. The renaming does not result in a second assignment
to the variable X but rather results in the creation of a
new variable with the old name. in other words, a new

instantiation of X is done.
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By wusing the renaming operator, a programmer is
acknowledging the reuse of the variable name. In physical
terms, this will result in distinct templates before and
after the renaming and hence precludes the possibility of
loops in the resultant flow graph. Finally, this provides a

convenient and familiar environment for the programmer.

Note that multiple assignments to the quad (1/0) operator
are always acceptable. This is necessary to facilitate
serial output operations, and the renaming operator should

not be used with quad.

An addition to APL is necessary in order that it may be
used in a rule-based dataflow processor. Normally, a
variable's type is an unknown quantity until run time. This
is not possible in the prototype system. Vector and scalar
instructions have different formats. (Either an explicit or
generic template will be generated.) This means that it must
be known at compile time whether a given variable is a
vector or a scalar. In order to do this, a simple syntax
change is made. A definition of all variables must be made
and a synta* must be provided to specify whether each one is

scalar or N-dimensional in nature.

A complete description of the language used in the
prototype is given in Appendix A. This includes the rule-
based syntax for APL and a list of those APL operations

supported. The instructions/template operators used to
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impiement these operations are shown in Appendix B.
Programming examples are given in Appendix D. (Note: the
programming examples apply to a rule-based APL such as that
in the prototype which supports INTEGERs). The choice of
INTEGER-only support for the prototype was a cost decision
not a functional one. A block diagram of the overall system
structure is given at the start of Appendix C. This diagram
should be referred +to throughout this section whenever

clarification is needed.

Storage in the prototype system is divided into two
fundamental parts. The first, the activity store, contains
operation templates as might be expected in a dataflow
machine. The second is used for data structures which are
not easily placed within an instruction template (eg.
vectors, arrays, etc,). This second memory is known as the
vector store. The idea of having more than one memory in a
datafliow machine has been explored before [5,22].
Implementatjon of the vector store is a similar idea but is

used in a unique way.

The inclusion of an arbitrary length vector within a
template is an impractical approach. Similarily, compile-
time generation of individual templates for each of the
vector components is inappropriate or even impossible in
many insﬁances. The prototypé system includes templates
which will spawn other templates to perform such complex

operations. These spawned templates will not contain the
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data they operate upon but rather pointers to the data
within the vector store. Thus, vector operations in APL will
generate these generic templates which dynamically produce
templates to perform the specific element operations. This
seems to produce a problem with respect to detecting side-
effects. However, if handled correctly, it does not. If an
operation of rank greater than one is such that elements are
not independent of one another, then it becomes difficult to
detect possible side-effects. Spawned templates must not
enable other templates aside from the ones which spawned
them. A generic template spawns all its children and then
awaits their completion (via enabling rules). Each child, on
completion, partially re-enables its parent. When all
children have executed, the parent (generic) template is re-
enabled and it may then enable the next logical operation(s)

in the datafliow prégram.

This differs from the approach taken at M.|.T. which uses
“streams'. When wusing a stream as a data structure, a
suffix function G may begin operating on elements of a
stream X before a prefix function F has finished with them

in a manner analogous to a pipeline (see below).

> G

X
This is possible only since a stream is a uni-directional

data structure. The stream concept permits a high degree of
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parallelism but only at the expense of generality. Element
by element enabling of templates for multi-dimensional
operations is often not applicable. For instance, in a
matrix multiplication, elements are non-independent. Thus,
each vector operation is executed indivisibly as if it were
one operation and side-effects are eliminated. Naturally, if

the programmer specifies incorrect rules in his/her program,

side-effects may still occur. |If vectors, etc. are treated
as single logical items, however, this problem will not
arise.

The activity store is subdivided as in the cell block
architecture. Each block contains not only the instruction
cells and routing hardware but also circuitry to test for
enabling of instruction cells. This hardware will decrement
an operand count on every reference to the template which
updates the corresponding operand. Thus, each template will
be created with this field initialized to the number of
operands it is awaiting, and every time an operand is routed
to it, the count will be decreased by one. When the count
reaches zero, the instruction is enabled and the template's
identifier will be forwarded to the appropriate unit for
execution scheduling. Once an instruction has been enabled
in this manner, it will be queued for execution at an
appropriate P.E.. The routing of the enabled template to a
P.E. is performed by an arbitration network which examines

the first few bits of the operation code within the




52
template. These bits determine whether the operation s
complex (i.e. this 1is a generic template which must spawn
element templates) and therefore destined for a
""decomposition' P.E., or if not, which simpie P.E. type is
required to execute the operation. It 1is the additional
responsibility of the arbitration network to distribute the
workload over all available P.E.'s. This pfevents
bottienecks and therefore provides for maximum possible
parallielism, A queue is maintained in the prototype for
each P.E. type so as to limit unnecessary delays and to
simplify the gqueue management hardware. In the case of
generic operations, the template will be passed to a special
unit which handlies the production of specific templates.
Results are forwarded to awaiting templates via the
distribution network in the simple case and results are
returned to the véctor store and their enable tokens

forwarded when dealing with generic operations.

The distribution network connects the outputs of each
P.E. with all cell blocks. |t must be possible for the
output of any P.E. to be routed to any cell block since
there is no guarantee of which P.E. will execute a given
instruction. This means the network must be fully .
connected, but it does not imply that it must be an
immediate connection. Such a network implies a tremendous
packaging problem, increases cost dramatically, and is
unnecessary since a dataflow machine may tolerate some

blockages during the transmission of result packets.
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4.2  PROCESSOR STRUCTURE

The prototype system contains eight fundamental P.E.
types. These types reflect the various different sorts of
operations that may be performed. Despite the fact that
there are eight different P.E. types, there are only two
different P.E. organizations. These two organizations
correspond to those instructions which deal inherently with
complex data items (such as a dyadic transpose) and to those
which are primarily scalar or which are easily derived from
scalar operations. The two organizations.  differ in the way
in which they are designed with respect to accessing the
vector store. Those dealing with complex data directly
implement small pipelines to speed mulitiple consecutive

accesses to the vector store.

Distinguishing between P.E. types within each
organization is a matter of examining the microcode used to
implement their functions. A more efficient implementation
of all P.E.'s could be done using custom logic but the
inefficiencies of a microprogrammed P.E. are more than
acceptable for a prototype. Not only is it a cheaper
approach but it also provides some margin for error in
initial designs. Should a function be incorrectly
implemented, it may be changed with relative ease in

microcode, whereas it cannot be easily changed in hardware.
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Each P.E. is implemented using Am2901 bit slice
components. The choice of this family was made for three
reasons:
e Microprogrammability
e Extendability (Bit Slice)
e Availability of Information.
A block diagram fof a typical processing element is given in
Appendix C. Microcode for the P.E.'s is (fortunately) beyond
the scope of this thesis. A description of each of the
following eight P.E. types is included later in this
section.
Addition & Subtraction
Multiplication & Division
Vector Decomposition
Matrix Decomposition
Pipelined Addition & Subtraction
) Pipelined Multiplication & Division

7) Logical and Comparison
8) Special Functions

cnERD

For the prototype, there are two groups of P.E.'s, each
servicing one half of the <cell blocks. Each group consists
of an entire set of P.E.'s (the quantities of which were
chosen based on expected usage) as detailed below:

- add/subtract P.E.'s

- multiply/divide P.E.'s

vector decomposition P.E.'s

- matrix decomposition P.E.

- pipelined add/subtract P.E.

- pipelined multipty/divide P.E.
- logical and comparison P.E.'s
- special function P.E.

EEEEEREX
_N = == N W
1

To avoid problems with locality, the division into halves is

in an interleaved fashion. This should guarantee a
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performance advantage even for programs which occupy only a
small (local) part of the activity store. This division will
hopefully‘limit the contention for P.E.'s when only a single

P.E. is implemented for that operation type.

Each P.E. has associated with it a hardware queue for
incoming templates. The size of this queue depends on the
type of the P.E.. The more often a particular P.E. type is
expected to bé subjected to sudden bursts of activity, the
more elements it will have in its queue. Data from the
vector store may be prefetched for inclusion 1in the
templates from within this queue. An efficient mechanism for
routing such incoming data to the appropriate templates must

be provided. A small associative store may be appropriate.

The add/subtract P.E. is the simpiest of all. It provides
16-bit two's complément addition and subtraction alimost
directly in hardware. The Am2901 processor slice will
directly perform these operations and thus the microcode
should be exceedingly simple thereby providing a P.E. which
executes very quickly. This is desirable since simple
addition will undoubtedly be the most frequently used

operation.

The multiply/divide P.E. is nearly identical in structure
to the add/subtract P.E. but makes use of extensive
microcoding to perform its functions. This P.E. type will

also be used quite heavily and, as such, its turnaround time
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should be as fast as possible. Due to a microcoded
implementation, however, each unit's performance will be
somewhat limited. For this reason, four such P.E.'s are

implemented within each group. By having multipie units, the
throughput rate on series of these operations is increased.
Furthermore, the queue size on this unit is larger than that
on the add/subtract P.E.. Thus, it is able to buffer a

sudden burst of multiply/divide operations.

The pipelined versions of these units (add/subtract and
multiply/divide) are nearly identical except for the
implementation of a small pipeline to enhance performance
for operations such as reductions (+/, -/, x/, etc.). The
pipeline divides the execution of each operation into five

phases:

1. Operation ldentification (Phase 0)
2. Result Initialization (Phase 1)

3. Operand Fetch (Phase F)

L, Execution (Phase E)

5. Result Handling (Phase R)

The possible overlap in this system is shown in the Gantt

chart of Figure 12.

The additional pipeline hardware which enhances access to
the vector store should pfovide a very efficient
impiementation for reduction and similar operations. Since

these are inherently serial operations, they are better

)
|
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a pipeline processor
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than by a more advanced

LR A Y

/7777

Figure 12: Gantt Chart for Pipeline Overlap

SIMD or MIMD machine.

The logical and comparison P.E. is again a very simple

unit with an efficient and small microcode implementation.

to the add/subtract P.E..

This P.E. is hardware-equivalent

lts microcode is, naturally, entirely different.

Unexpectedly, it is also one of the most heavily used P.E.

types. This is due to the fact that the conditions section

of each rule must generate at least one comparison or

logical operation template except in the degenerate case.

Due to the number of logical operations that will be

generated, multiple units are again implemented.

The matrix and vector decomposition P.E.'s perform

simplification (unraveliing) operations on generic
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templates. The matrix decomposer accepts templates referring
to data items of rank greater than one and produces
templates which describe an equivalent set of operations on
data items of exactly rank one. The vector decomposer
accepts data items of rank one (generated by either the
matrix decomposer or explicitly by the programmer) and
generates operation-explicit templates to perform the
required operation on an element by eiement (i.e. scalar)
basis, This is a concept similar to the '"|-Structure

Producer" of Arvind[4].

Both the matrix and vector decomposers operate in
conjunction with the activity store manager. This storage
manager accepts templates from both decomposers, allocates
space for them in the activity store, and copies them into
the store. It maintains a free—~space list for the activity
store and controls the movement of all data both into and
out of the activity store. Thus, the downloads and uploads
that occur between the prototype and its host are
coordinated and controlled by the activity store manager.
I/0 templates (as will be discussed shortly) are stored in
low memory and the storage manager ignores them. |t begins

allocating template space above these fixed locations.

Unfortunately, once something has been dynamically
allocated, it must also be dynamically freed. This
represents a significant problem for the storage manager.

Dynamic freeing is necessary since template sizes differ
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between generic and non-generic instructions and thus a
simple list of free and allocatedb template 'slots' s
inadequate. There must be some means of tracking dynamically
allocated templafes sp that once they have been executed
they may be reclaimed. This may be accomplished fairly
easily by including a hardware check on entry to each P.E.
(excluding the matrix decomposer). At this point,if the P.E.
can determine that the template in question was dynamically
allocated, it already has the address of the templiate
available and it may directly inform the storage manager.
The information required to determine this is easily
provided by the use, of a single status bit within each

template, which indicates whether it has been statically or

dynamically allocated.

The storage manager must also worry about free space
amalgamation in an activity store which has the potential to
become severly fragmented. This is a problem which does not
lend itself to a simple hardware solution and therefore, the
storage manager is microprocessor based. The relatively
complex functions required are then easily implemented.
Clearly, however, the capabilities of a microprocessor will
be quickly exceeded in such an environment. To alleviate
this problem, special support hardware must also be
provided. The microprocessor has access to an associative
store for the free list. By making clever use of this store,

very fast free space amalgamation may be performed.
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Addresses of entries in the queue may be compared to all
possible boundary addresses in paraliel to determine
adjacency. This saves the normal cost of free list searching
which is incurred using software. This also provides a more
general, albeit more expensive, approach than the "buddy
system'" for storage management since no restrictions are
placed on the size of allocations by the implementation.
The benefits of such an associative store are alsc evident
during allocation. |f comparison is made for greater than or
equal rather than for equality and if a field is provided
containing the size of the free areas, then the first
responder vyields a sort of first-fit selection. See

Figure 13.

"Finally, the special function P.E. uses a large
microstore to facilitate the execution of those APL

operations which are not easily or efficiently implemented

size_entry address_entry

Figure 13: Associative Store for Allocation & fFreeing

using the P.E. types already discussed. These operations

include:
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® Grade-up and Grade-down
® Transpose and Dyadic Transpose
o All shape related operators
e Shape and Reshape

® Ravel, lLaminate, and Catenate

Take and Drop

The characteristic that distinguishes these operations from
all others is a high percentage of execution time spent
manipulating bytes in memory. Such storage-intensive
operations do not suit parallel execution any better than
they do serial. In a single memory such as the vector store,
nothing is to be gained from coding the data movement in a
parallel fashion. Many parallel requests to memory will
simply be serialized by the hardware. To improve this
situation, only a single such unit is provided and, as shall

be seen shortly, the vector store is interieaved.

A1l P.E. types have the ability to access data from the
vector store. This is necessary since a generic template
may generate element templates of any operation type.
Unfortunately, a potential for heavy contention is created.
At any given time, all twelve P.E.'s as well as the storage
manager may be attempting to access the vector store. The
use of a2 high speed memory and a <clever cache organization
may alleviate many of the problems but is still insufficient
to guarantee freedbm from contention. Thus, an effort must

be made by the rule-based APL compiler to detect compile-
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time unravellable operations. Wherever possible and

practical, the unravelling must be done at compile time.

In an effort to avoid delays at execution time, each P.E.
will, if necessary, prefetch data from the vector store
while a template 1is awaiting execution in the queue.
Hopefully, this will ensure that the data from the vector
store will always be available to the P.E.'s when needed.
This is important if a program contains many decomposable
vector/array operations since these will generate very many

element templates which refer to the vector store.

4.3 INSTRUCTION SETS AND MICROPROGRAMMABILITY

This section describes the instruction set (if it may be
called that) impiemented on the prototype system. For a

complete description'of the '"'template set' see Appendix B.

The instruction set is comprised of a number of generic
and non-generic templates which correspond to the primitive
operations used to implement all of the rule-based APL
operations. Unexpectedly, this amounts to a relatively small
number of operation templates. Many of the more advanced
APL operations are easily decomposed to expressions

involving only these primitive scalar functions.

There are templates required to perform basic addition,
subtraction, multiplication and division. Additionally, the

comparison operations and the residue function must have
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primitive templates. Aside from these, however, few others
are needed. In fact, others are provided simply for
efficiency reasons since they are derivable from these basic
operations. For example, signum may be implemented as a
series of the following three parallel operations:

(x=0) -> [signum<- 0]

(x>0) -> [signum<- 1]

(x<0) -> [signum<- -1]
This means that even many of the APL primitive scalar
functions may be implemented in terms of still more

primitive functions. These most fundamental functions may be

referred to as the '"basic' functions.

A distinction is made between vector/array and scalar
operations. Vector and array operations generate generic
templates which have a different format from their non-
generic counterparts. A generic template must specify not
only the non-generic (element) form of the template but also
the extent to which it applies. This amounts to the

specification of index ranges for which the element

operation

range

reduced
rank
operation

Figure 1h: Format of a Generic Template
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operation is to be generated. See Figure 1h4. Thus,
template sizes will be directly proportional to the rank of

the data item the operation is referring to. For each rank

greater than one, both an index range specification and a
reduced-rank form must be specified. Matrix addition, for
instance, will generate a generic matrix template which

specifies a generic vector template as its element template
and which generates the range of all possible rows as its
extent. Each of these templates in turn will generate a
non-generic element template and as its extent the column
subscript within the row already established for the vector
addition. Similarily, many other non-scalar operations may
be decomposed into scalar operations. In general, an n-
dimensional generic template generates sufficient n-1
dimensional generic or non-generic templates to cover the

nth dimension.

This scheme does yield a large number of templates (one
for each scalar element operation plus those for the generic
operations) but since the vast majority of them are
temporary, the cost may be ignored. An activity store which
may accomodate all templates at once is not required. Since
many templates will exist only for a short period of time,
the activity store may be much smaller. |In fact, it may be
guite small indeed if an intelligent storage manager is
used. When this is the case, the storage manager may simply
suspend production of new reduced-rank templates until older

ones have executed and been freed.



65

ATl of these basic operations may be trivially
implemented either in hardware or via microcode. It is the
more complex operations which are gquestionable. What is
clear, however, is that should there be any difficulty, it
will undoubtedly be easier to implement the operations in
microcode than hardware. Thus, a microprogrammed
implementation is a good choice, but as with any microcoded
application, performance is exchanged for simplicity. High
speed performance of these operations is not going to be
achieved without a significant investment in custom

hardware.

4.4 THE COMPILATION PROCESS

The statement that APL is the base language for the rule-
based dataflow processor is not an entire truth. The
language used for programming is rule-based APL. It should
be clear from the preceeding section that the base language
is in fact a compiled version of APL. The hardware does not
recognize APL directly but rather accepts a template
oriented version which 1is easily derived from rule-based

APL.

The end performance of the prototype will depend quite
heavily ‘on the quality of the translation done -by the
compiler. Since some of the para]le]ism is being detected by
the compiler, it is necessary that the compiler be able to

detect and exploit as much parallelism as possible. But,
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more importantly, it is necessary that the compiler be able
to deal with detected paralielism "intelligently'. There are
instances in which taking the simple route to parallelism
will produce an inefficiently compiled form (for example:

when compile time unravelling is postponed until run time).

The compilation of APL (as opposed to interpretation) s
a feasible but non-trivial probliem. The structure of the
language is such that it is difficult to compile wusing
simple techniques. This relates to both the syntax and

operation of the language.

As far as syntax goes, APL is geared towards interactive
execution, This means that there is no concept of a
mainline. The mainline is simply whatever is typed in by the
user. This s not a distinct probiem, since many
interpretive languages (such as LISP) have compiled versions
which run well in a batch environment. By omitting
statements which directly violate compilation (such as the
EVAL statement in LISP), an interpretive language may be
rewritten as a compiled one. In APL this means that the
"'execute" operation must be eliminated. Having omitted
execute, as is done in rule-based APL, all other language
constructs are close to compilable. (The remaining problems

will be discussed shortly.)

By defining a rule-based APL program to be a series of

function specifications followed by a series of grouped APL
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statements which use the functions, an unpleasant but
acceptable syntax is provided. The series of trailing
statements forms the mainline of the program. A facility is
also included for grouping mainline statements. By enclosing
such statements within '[' and ']', the programmer may
specify that the enclosed operations may occur in parallel.
This provides the ability to specify procedure-level

parallelism.

The argument may be made that the user should still be
permitted to interact with the functions - provided. This
argument is incorrect since the construction of a

supercomputer, such as the rule-based dataflow processor, is
done to provide the ability to solve tlarge and complex
problems. Having user interaction with the program directly
conflicts with the theory behind such a machine. Either the
user will slow the machine down due to heavy interaction or,
if the problem is suitably complex, the user will be left
waiting during the solution of intermediate problems. Thus,
it makes more sense to include the function invocations as a

part of the program (i.e. as a mainline).

Two operational features of APL also make its compilation
difficult. Firstly, the type of a variable. is undefined
until run time. Fortunately, this is not a problem in rule-
based APL. Due to the support of only integers, the partial
typing’(as to rank) of variables and the single assignment

rule, the compiler need not worry about a variable's type
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changing during the execution of a program. Declaration of
variables also solves a problem of parseability. (The
statement 'A+B' may be ambiguous. Its two possible
interpretations are dyadic '+', and monadic '+' where A is a
function with a single argument.) The second feature of APL
which causes difficulty is that the shape of a data item of
rank greater than one is not fixed. The size‘of a data item
is not static and may change as execution proceeds. This
means that the compiler must generate special run-time
information which is to be stored with each data item. The
net result is increased code size due to the addition of
code for both run-time checks and code to calculate
information at run-time. Additionally, a relatively
substantial package of runtime routines must be supported.
tn particular, both a good garbage collector and/or space
allocator must be proVided. There is some question, however,
as to whether these should be implemented in software or in

hardware.

In general, the translation of a rule-based APL statement
will be as follows: Each statement consists of two portions,
a conditions section and an actions section. Statements from
the conditions section will be translated to a series of
conditional templates as appropriate and necessary. The
output of the last template in this series will serve to
enable the templates corresponding to the actions section of

the rule. Each action within the actions section will

|
1
|
|
5
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generate at least one generic or non-generic template and
more likely will generate a sequence of templates. The
completion of these actions will then indirectly enable

other rules and their associated templates.

4.5 MEMORY STRUCTURES

The system memory is divided into two parts:
® Activity Store |
® Vector Store
These two parts serve different functions (as already
described) and their organizations differ greatly due to

function.

The activity store is a simple memory, being no different
in organization from a single bank of memory in any
microprocessor. There is only one unit which fetches enabled
templates from the activity store and the fetches are in no
way related. This means that the use of multiple memory
banks and/or a cache has no affect on performance. Due to
the nature of a dataflow machine, locality of reference is

low.

The vector store on the other hand is exactly the
opposite. |t will <contain vectors and arrays organized in
conveniently adjacent locations. These vectors are accessed
more or less as a whole (albeit by many different templates)

and thus locality of reference is high. A prefetch buffer
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may be loaded with data from the vectors with assurance that
the data will soon be required. Despite the fact that
different templates are accessing the data, references
should be fairly uniform. Al1l such element templiates will be
enabled at the same time and therefore will likely begin to
execute at approximately the same time. This means that much
may be gained by using conventional memory enhancement
approaches. In the prototype, this implies fetching four
consecutive words from the vector store at a time and the
use of a large high speed buffer. These additions should
provide a significant increase in performance while the
machine is executing vector operations. Their use, however,

is not as straightforward as it may seem.

Prefetching multiple bytes per access is no problem.
Multiple banks are used and a fetch from some location
results in the fetch of corresponding locations in other
banks. A cache, however, presents a somewhat different
problem. Although the basic strategy is the same, a dataflow
machine forces the development of a new cache replacement
algorithm. In a datafliow machine, it is quite conceivable
that a required block may go unaccessed in the cache for
some time. A vector operation may be started which creates

templates to perform the desired operation on each vector

element. These element templates are then queued for
execution by the P.E.'s just as any other templates are.

Thus, a vector may be fetched into the cache as the first
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few element templates are executed. After this, all
available P.E.'s may be occupied executing different
templates and it may be some time before another access to
the vector occurs. This does not present a problem if no
other vectors within the cache are being accessed. However,
if they are (i.e. if the other templates being executed are
for generic vector instructions), then a normal cache
replacement algorithm might replace blocks which are soon to

be needed.

In both.memories, there is the possibility of overflow
occurring. In a practical system, this possibility wouid
have to be dealt with by some sort of automatic data
migration. This migration would take the form of paging
hardware and software in a conventional computer system. In
a dataflow system, this approach is not feasible due to the
lack of execution locality. A swapping system may be more
appropriate within certain loading restrictions.
Fortunately, this problem is not addressed in the prototype
system. Should an overflow situation arise, it will be

detected and the system will shut down gracefully.

4.6 ROUTING NETWORKS

The type of routing network employed in this design is
known as a Benes network. Althohgh it is a blocking network
(i.e. some delays in routing may occur due to channel

activity), it does offer a general connection between n
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inputs and n outputs. This network ideally meets the needs
of a datafiow machine. It is cheap yet permits direct
connection from input to output and, due to the nature of a
dataflow machine, its inherent inefficiencies may be

tolerated.

The construction of such a network is trivial when given
a simple 2x2 routing element as a building block. Figure 15
gives a description of an 8x8 Benes network and Figure 16
describes the 2x2 router on which it is based. A simplified
circuit diagram for the router may be found in Appendix C.
Note that the REQ and ACK handshaking signals shown in

Appendix C are required due to the asynchronous nature of

Figure 15: An 8x8 Benes Routing Network

the network. The choice of an 8x8 router is primarily
because such a router is VLSl implementable. It is likely
that a more advanced 6Lx6h version might also be fabricated
and, should this be the case, its design may be easily

extrapolated from the 8x8 network shown.
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Figure 16: Actions of a 2x2 Routing Element

The Benes network was chosen as the cheapest form of
network that met all the requirements. A baseline network is
cheaper and does meet the general N:N connection criteria
but suffers a higher probability of blockage. If a still
simpler network were to be used, recirculation would be
necessary and this would add to the hardware complexity. On
the other hand, a Clos or siﬁilar network would provide the
required connectivity but its design makes it cost-

prohibitive. In a Clos network cost is incurred for the

unnecessary feature of non-blockage.
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Each 2x2 router accepts a packet which has the form:

dest. data

The router examines the leftmost bit to determine on which
of its output lines it should place the packet. Before
forwarding the packet, it does a rotate one bit position to
the left. After passing through the entire routine newtork,

the result is a packet which has the form:

data dest.

This approach also guarantees that, at every stage, the bit
to be used in routing is in the leftmost position (this is
convenient for implementation purposes). Given an 8x8 Benes
network constructed of these 2x2 routing elements, an

efficient network for datafiow machines may be constructed.

There are five levels in each 8x8 network but only eight
possible outputs. At first, this seems to present a problem.
Five levels of 2x2 routers requires five bits of destination
address for routing but only three are required to select an
output. Consider Table 2. From this table it is clear that
the destination (output line) may be selected using only the
last three bits of the five. Fortunately, due to the
structure of the Benes network,. the first two destination
bits are ''don't cares'. This means that they may be chosen

so as to maximize efficiency. By dynamically choosing from
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Output Destination Address

xx000
xx001
xx010
xx011
xx100
xx101
xx110
xx111

~NosmiieEwn - O

TABLE 2

Choice of Destination Bits

the four possibie paths, the likelihood of <collisions is
reduced and so is network congestion. The code set of

output/destination addresses for an 8x8 network at some

Output Destination Address

00000
11001
01010
10011
10100
61101
11110
00111

NN N O

TABLE 3

Output Address Code Set
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arbitrary time might be that shown in Table 3. Thus, by
using this network, the overhead of extra address bits is
incurred (causing buses to be wider) but simplicity and

relative efficiency are maintained.

4.7 IHE 1/0 SUBSYSTEM

A fundamental question in any datafiow system and one
which has not vyet been addressed in this thesis is that of
how 1/0 is accomplished. |f the dataflow machine is treated
simply as a high speed attached processor for
computationally complex problems, then [/0 is non-critical.
in this case, any data may be downloaded with the dataflow
program to be executed. This effectively eliminates the need
for an 1/0 system since data can be downloaded, and results
may be uploaded at program completion. |f a general purpose
dataflow machine is to be implemented, however, a truly
sophisticated 1/0 subsystem must be incorporated. Users must

certainly have direct access to the machine via a terminal

or other peripheral device and there will doubtliessly have
to be support for a file system and likely for a demand-
paged operating system as well. The 1/0 subsystem s

normally seen as fitting into a dataflow system in the

manner shown in Figure 17.

ft is not immediately clear.how an |/0 subsystem should
physically fit into a datafiow architecture. Consider,

particularily, such advanced devices as DMA disks and bit-
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Figure 17: The Dataflow 1/0 Subsystem
mapped displays. It would seem that these devices are

partially incompatible with the dataflow model and that
special considerations must be made in order to provide
support for them. If all 1/0 devices are divided into two
classes based on whether or not they perform DMA then the

classes may be dealt with separately and more simply.

Consider first the non-DMA devices such as terminals and
printers. These peripherals are controlled in one of two
ways. They are either interrupt-driven or polled. This
distinction may disappear in a dataflow machine depending on
the choice of implementation. E;ch device may be thought of
as producing a byte of information asynchronously which is
then to be wused in one or more templates (in the sense of

input at least). Before data has actually been input, the

]
|
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templates making use of that data will be disabled. Once it
is input, those templates should be enabled. This enabling
is accomplished at the time of template update just as it
would be if the data had been produced by the execution of
an operation from another template. The connection between
an |/0~produced result and a template-produced result may be

made if a new template type is considered.

Assuming the memory mapped 1/0 scheme used in most micro
and mini-processors, we may define special input templates
at the locations in the activity store corresponding to the
I/0 ports of various devices. When a byte is input, it is
placed into the data portion of the input template and the
enable bit for that template is set. The setting of this bit
is analogous to the setting of a ''register-full' bit in the
status register of a peripheral device (or to the generation
of an I/0 completion interrupt). When this template is
enabled, it functions as a destination-extension template.
in other words, the data value will be distributed to one or
more waiting templates. These templates will be those that

were awaiting the input of the data value.

So far, this description has dealt with the handiing of
input operations only. Output operations may be handled in
a similar manner. |In the case of output, however, the
dataflow program must wait only'until the desired output
device is available. Thus, the template which copies data

into the output-template should be enabled when that device
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is ready to accept another datum for output. This is only
slightly different from the input scheme and is no different
from standard computer systems. For example, the M6850
serial asynchronous interface for the MOTOROLA 6800 family
of microcomputers provides a TDRE (Transmit Data Register
Empty) flag in its status register. This flag indicates when

it is prepared to accept more output.

The format of input and output templates is shown in
Figure 18. The input template is very straightforward having
a data field and three (an arbitrary number) destination
address fields, The output template contains a data field
and a single destination address. However, this destination
address is used in a different way for output templates.
Instead of routing data produced to the giveﬁ destination,
it accepts data from it when enabled. This may also be

thought of as passing an enable token to the template

"INPUT" "ouTPUT™
Data Data
Dest-1 Dest.

Dest-2

Dest-3

Figure 18: Input and Output Template Formats

producing the data to be output.
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The class of devices which support DMA must be handled in

a very different manner. The technigue of using status
information returned by the device/peripheral to enable
appropriate templates is still valid except that data
receipt/transmission must be handled differently. Normally,
data is seen as being an integral part of the templates in a
dataflow machine. This is easily maintained in the non-DMA
devfces through the use of destination-extension templates.
It is, however, not feasible for DMA transfers. This implies
that DMA must be performed to various scattered addresses
within the activity store which correspond to template
locations. The situation may be improved upon slightly if
the DMA transfer is made to a fixed set of addresses which
then broadcast the data to appropriate templates (much as
was done in the non-DMA case). From a physical viewpoint,
however, this s exéeedingly restrictive and difficult to
implement. Furthermore, it presents a difficult programming
environment. A better solution is to permit data and
templates to be isolated from one another such that the
templates simply contain pointers to data areas within the
separate vector store (just as was considered earlier for
vector operations). The instruction which initiates the
operation may then partially enable an instruction which
will await the 1/0 completion interrupt in order to provide
the balance of its enabling réquirements. (The partial
enabling is exactly analagous to passing only one value to a

template which requires two for enabling.) This template

|
v
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may then enable other templates to continue with the data
that has been input. Again there is a similar approach which

may be taken for output.

1/0, as usually envisioned on a serial machine, is
inappropriate on a dataflow computer. Most algorithms tend
to run /0 loops (with data processing within the loop) on a
single group of input data. This is clearly inefficient in a
case in which sufficient processing elements exist to allow
more than one set of data to be processed concurrently. It
would be far better if multiple data items could be read énd
processed at the same time. Exactly how this should be
accomplished is not clear. Should data be stored on multiple
volumes so that more than one datum may be loaded for
processing? Should data simply be prefetched in sufficient
quantities from a single device or should some other foreign
approach be taken? The multi-volume approach is unlikely.
Firstly, the complexity of maintaining a dynamic database on
multiple volumes makes this approach much less than
desirable. Secondly, it is impossible to use on systems

where only a few storage volumes are available.

The "buffering" technique is a far more likely candidate.
Not only is it a concept with which programmers are
familiar, but also one which is easily implemented. It is,
of course, inappropriate for ahy interactive applications

where storage is not involved (i.e. where values are

directly consumed/produced by a running program) but so are
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all other schemes. Although a datafiow machine is not seen
as being an ideal interactive architecture, if a demand
paged activity store and vector store are provided,
interactive applications may be per formed no less

efficiently than on current architectures.

The prototype system currently being described does not
support |/0 operations of a general nature. Instead, it
simply provides the more common upload and download
facilities and support for non-DMA devices. These
capabilities are sufficient to permit testing of the data
driven mechanism. |f a second prototype were to be designed
following the success of the first, a major area of

concentration should be the |/0 subsystem.



Chapter V
CONCLUSIONS

Both the rule-based and dataflow systems are quite
similar. This thesis has shown that they are, in fact,
isomorphisms of ohe another. The dataflow model provides an
efficient system on which to implement a rule base, while
the rule-based model provides an improved programming
environment for dataflow machines. These two systems do, in
fact, suit one another very well and when merged, provide a

foundation for a viable paraliel system.

5.1 EEASABILITY

The question of feasability 1is intimately tied to the
impiementation of the data driven mechanism. Since the
software model seems sound (particularily in certain
application areas), it should not present any overly complex
probiems. The limititations on implementation will
undoubtedly be imposed by the hardware. In particular,
bandwidth problems will likely limit the size of feasible

implementations.

Nevertheless, successful prototype dataflow systems have
been built and this lends support to the belief that the

system is feasible. This success, coupled with the advances
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being made in VLS|, should make the rule-based dataflow
processor not only feasible but also economically viable
within a few years. As the cost of VLS| designs comes down,
it will be possible to efficiently fabricate the various

system components of the rule-based dataflow processor.

A1l this speculation about future trends and system
efficiency is encouraging. However, very little accurate
information may be gleaned without the use of extensive
simulations and a running prototype. Realizing this,

further conjecture on feasibility is inappropriate.

5.2 APPLICATIONS

Clearly, there is a wide range of applications for any
parallel system and the rule-based dataflow machine is no
exception. With a suitable base language, the system
provides a very wusable paralilel environment. If, for
instance, the base language were chosen to be APL (as in the
prototype but with added support for both real numbers and
characters), it would be wuseful in many areas such as

graphics and simulations.

The rule-based dataflow processor does not represent a
general applications programming system (after all, FORTRAN
is not supported). Rather, it is oriented towards the
construction of expert systems. Nevertheless, the

applications domain which is addressablke may be changed
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quite drastically (within the rule-based format) by a change
in the base language (this change might even be accomplished
via a microcode load). Possible alternate Jlanguage
candidates are PROLOG[25], LISP and ofher functional
languages. Also, some research has advocated the use of a
dataflow machine in database applications[10]. Consequently,
some sort of relational calculus or algebra may also form a

base language.

If the fifth generation push takes hold, and the new
directions in programming (PROLOG, etc.) are accepted, then
the rule-based dataflow concept may vyet prove to be a
general applications system. If not, by varying the base
language and providing some hardware support, it will still
be a useful system for many problems. Also, if a programmer
is willing to sacrifice the benefit of middle~level
parallelism, he may code in a more familiar language
(APL,LISP,etc.) and still enjoy a significant performance

benefit.



Appendix A
RULE-BASED APL

This appendix serves to provide a detailed description of
the syntax of the language used to program the prototype
rule-based dataflow processor. The following documents the
APL operators supported for the prototype:

comparison for less than
comparison for greater than
comparison for equals
comparison for greater or equal
comparison for less or equal
comparison for not equal
logical OR

logical AND

logical NOR

logical NAND

negation

subtraction

identity

addition

division

signum

multiplication

roil

deal

membership

shape

reshape

logical NOT

take

drop

index generator

index of (ranking)

reversal

rotate

transpose

dyadic transpose

power

max i mum

minimum .
grade up

grade down

factorial
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! combinations

(] indexing

1 decode

T encode

| absolute value

| residue

, ravel .
, catenate

, laminate

f/.f# reduction

f\,f% scan

/£ compression

X\ expansion

.f outer product

g inner product
input/output

assignment

<t renaming

-> implication (rule-based)

These operations appear within a general syntax for rule

based programs. The syntax of a rule-based APL statement is:

(APL conditional expr.) -> [APL statements]

Where: 'APL statements' is a series of APL statements

separated by diamond characters (&) .

This means that a typical rule-based APL program will
consist of a number of these statements assembled as rule-
based APL functions. The structure of such a function is

given below:

VR« OP1 NAME OP2 ; VAR-DECLS
[ <INITIAL-CLAUSE> ]

BODY OF FUNCTION

°
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The format for !'"VAR-DECLS" is as would be expected for any
APL local variable declaration. The only exception is in the
case of multi-dimensional (rank greater than one) variables.
They are suffixed by a subscript specification which gives
their rank. For instance, a declaration of "FLANGE[2]" would
give the variable FLANGE a rank of two. Being consistent
with APL, the exact size of each variable may change within
this rank. Variable declarations are separated by

semicolons.

The <initial_clause> is optional and contains a series of
initialization statements. The syntax is identical to that

of a <mainline> as will be discussed shortly.

The point of interest in this syntax is the specification
of variables as being either scalar or N-dimensional array.
This must be done for ALL variables in a rule-based APL
program. Other important differences between APL and rulg—

based APL are the single assignment rule, lack of global

variables and the illegality of modifying input parameters
to a function?. A1l of these ''restrictions" are made to
ensure that no side affects will exist in the compiled
program.

® In actuality, modification of input parameters is not
syntactically incorrect. Rather, the assumption that the
values will be propogated back 1is. Note that this s
consistent with the use of the renaming operator.

|
!
z
l
x
!
i
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The structure of a rule-based APL  program is the
following:

<program> ;::= VV <prognhame> S { <function_defs>
<mainline>} vy

<function_defs> ::= <function_def>
<function_def> <function_defs>

<function_def> ::= %% a function definition as
previously described. ##%

<mainiine> ::= <mainline_stmts>

<mainline_stmts> ::= <mainline_stmt>
<mainline_stmt> <mainline_stmts>

<mainline_stmt> ::= [ <apl_stmts> ]

<apl_stmts> ::= <apl_stmt>
<apl_stmt> <apl_stmts>

<apl_stmt> ::= %% any legitimate APL statement

within the constraints of the
rule based implementation %%

There is a strict &eclaration—befcre-use rule which accounts
for the declaration of functions at the start of the
program. The grouping of statements in the mainline using
"[" and "]", permits the specification of parallelism within
the mainline. This simplified syntax for parallelism will
allow inexperienced parallel programmers to ﬁake effective
use éf the system via the invocation of pre-written parallel

“functions.



Appendix B
INSTRUCTION SET

This appendix describes the instruction formats wused in
the prototype system. They correspond directly to the APL
operations supported and the special functions (i.e. generic

templates) provided.

The various rule-based APL statements are divided into
groups based on their implementation. This subdivision is
based on their fundamental functions and how they relate to

the P.E. types discussed earlier.

The logical and comparison P.E. has by far the largest
instruction set which consists of 1twelve primitive
operations. These operations support sixteen fundamental APL
operations, The twelve operations are the following:

LT Opcode=00 Less Than

LE Opcode=01 Less Than or Equal

GT Opcode=02 Greater Than

GE Opcode=03 Greater Than or Equal
EQ Opcode=04 EQual

NE Opcode=05 Not Equal

OR  Opcode=06 logical OR
AND Opcode=07 logical AND
NOT Opcode=08 logical NOT
NOR Opcode=09 logical NOR

NAND Opcode=0A logical NAND

The comparison operations generate dyadic comparison

templates which produce general true and false enable
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signals. All logical operations are dyadic except of course
for NOT. These primitives also directly support the MINIMUM,

MAX1TMUM, SIGNUM, MEMBER and INDEX operations.

The addition and subtraction P.E.'s support five basic

operations. They are the following:

NEG Opcode=i0 arithmetic NEGation

ABS Opcode=11 ABSolute value

ADD QOpcode=12 2's complement ADDition

-SUB  Opcode=13 2's complement SUBtraction

SHP Opcode=1k APL SHaPe operation
The first four operations are very straightforward and as
one might expect. SHP (shape) is included with the addition
and subtraction P.E. primarily as a convenience. The
execution of a shape operation amounts to a simple memory
access to retrieve the shape information prefixed to each

data structure. Both ADD and SUB are also implemented in the

vector addition and subtraction P.E..

The P.E.'s which support multiplication and division have

three operations to perform:

MUL  Opcode=20 2's complement MULtiplication

DIV Opcode=21 2's complement DIVision

RES Opcode=22 2's complement RESidue
All of these operations are also implemented in the
pipelined version of this P.E.. The non-pipelined
multiplication/division P.E. is also solely responsible for

the execution of APL's FACTURIAL, COMBINATION and POWER

operations.
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All storage intensive operations are handled by the so-
called special P.E.. The operations supported by this P.E.
support the execution of the following APL operations:
reshape
take
drop
compress
expand
ravel
catenate
laminate
transpose
dyadic transpose
rotate
reversal
index generator
In order to perform these operations, the following storage
management primitives are provided.
TFR Opcode=30 TransFeR bytes in memory
ALL Opcode=31 AlLocate memory
FREE Opcode=32 FREE memory
These operations p}ovide the basis for the storage
manipulation required to perform many basic APL functions.

ALL and FREE make their requests directly to the storage

manager .

Certain APL operations must be implemented in software.
There is no means of implementing their functions in
hardware without going to great expense. For the amount of
use many of the more esoteric functions (such as ROLL and
DEAL) get, it is not worthwhile to attempt an efficient

hardware implementation. Instead, these operations are

implemented as a series (or hopefully a collection) of
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templates which together accomplish the required function.
For example, the ROLL operation might be implemented using a
simple congruential random number generator. The only thing
that these operations have in common is that they all make
use of the basic machine operations to accomplish their
functions. The functions which are implemented in this way
are;

roll

deal
subscripting
grade up
grade down

encode
decode

Finally, the decomposition P.E.'s offer an alternative
approach to use of the pipelined units. They are made use of
in those circumstances where the compiler cannot determine
that a pipelined unit can be safely used or when it
determines that a non-pipelined approach is more efficient.
These units are envisioned as handling a major part of the
w0ﬁkload for operations on complex data structures. The
instrucfions they support are exactly those which are
supported by the other element P.E.'s. The template formats
consist of an opcode and references to the base addresses of
the data structures involved. The high order three bits of
each opcode delimit up to eight levels of complexity

although only two are really needed). pattern o
(alth h ] 1 ded) A fram!

might represent a seven dimensional data structure. |t may
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then be reduced to a collection of six dimensional
operations dynamically by the matrix decomposer and so on
until only element operations remain. The reduction consists
of reproducing the template with the top three opcode bits

decremented by one and with new base addresses calculated.

Some general comments may also be made about this
instruction set. Firstly, 1/0 (the QUAD operator) is
implemented wusing 1/0 templates at fixed locations as
described earlier. Therefore, they were not included in this
discussion. Secondly, the upper nybble of the byte-wide
opcode determines the P.E. type required to execute the
instruction. This simplifies decoding greatly. Finally, the
use of the reshape operator is limited. This is due to the
restriction in rule-based APL which disallows changing the
rank of a data item dynamically. Thus, reshape may alter the

extents of a data item but not its rank.




Appendix C
CIRCUIT DESCRIPTIONS

This appendix contains a collection of block-level
diagrams describing the various components of the rule-based
datafiow processor. The thesis does not discuss the gate-

level implementation of the prototype processor.
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Overall System Structure
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Internal Bit Slice Organization
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Appendix D
PROGRAMMING EXAMPLES

This appendix gives three examples of rule based APL

programs. They are:

1. A paraliel sort
2. A solution to the convolution probiem

3. A line enhancement process
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A

A NOTE THAT THIS EXAMPLE IS RATHER UNLI. KELY AS SUCH SORTING

A WOULD NORMALLY BE DONE USING THE GRADE -UP OPERATOR (4).

A

VVSORTERPROG IS

VReSORT VEC[11;EV1[11;EV2[1] 30D1[11;0D2[11;BITSTR[ 1] sPLACES[11];
TMP[11;G01;G02 ;DONE1 ; DONE?2

THIS FUNCTION SORTS AN INTEGER VECTOR INTO ASCENDING ORDER.
THE ALOGRITHM USED IS GUARANTEED O(N) IF NO PARTITIONING OF
THE PROBLEM IS DONE AND IS AS FOLLOWS:

REPEAT UNTIL SORTED...
1) COMPARE ALL PAIRS OF ADJACENT NUMBERS BEGINNING
AT EVEN INDEXES AND SWAP ALL THOSE WHICH ARE OUT
OF ORDER.
2) COMPARE ALL PAIRS OF ADJACENT NUMBERS BEGINNING
AT ODD INDEXES AND SWAP ALL THOSE WHICH ARE OUT
OF ORDER.

DD:D:D:DZDDD;DDD:DIJ

LEVI<2x1l.5%pX]
LOD1<EV1-10EV 2« 140D1]
[OD214+0D1@DONE1+DONE 2<06G0 2«0 0G0 1«1]

(GO1A0=+/VECLOD1 1>VECLEVL]) ->[DONE1<41]

(GO2An0=+/VECLOD2 1>VECLEV2] ) <> [DONE2<41]

(GO1A0=+/VECLOD1 1>VECLEV1]) ~>[ GO1<409BITSTR<+VECTOD11>VEC[EV1] <
PLACES<4VEC[0OD1 ]xBITSTR &
PLACES<+(PLACES=0)/PLACES ¢
TMP<{VEC[PLACES 1%
VECLPLACES 1<+VEC[ PLACES+1 ]9
VECLPLACES+11<+TMP6GO2<+41 ]

(GO2A0=+/VECLOD2 1>VECLEV2]) ~> LGO2<}00BITSTR<{VECLOD2]>VECLEV2 1o
PLACES<+{VECLOD2 IxBITSTR ©
PLACES<4(PLACES#0)/PLACES &
TMP<+VECLPLACES 1 ¢
VECUPLACES 1<+VEC[ PLACES+1] &
VECLPLACES +1 1< }TMPQGO1<41 ]

(DONELADONE? ) ->[ R<VEC ]

v

]

A MAINLINE.

a
Lx<{]
LO«SOoRT X1
LAY
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THIS EXAMPLE DEMOSTRATES HOW EASILY SOME OTHERWISE COMPLEX
PROBLEMS MAY BE SOLVED USING RULE BASED API,,

> >® >

A
VVCONVPROG IS

VR<X CONVOLUTION W3N

a

A THIS ROUTINE SOLVES THE CONVOLUTION PROBLEM FOR THE GIVEN
INPUT DATA.

GIVEN: (W1,W2,...,WK) WEIGHTS AND
(X1,X2,...,XN) INPUTS,

CALCULATE: (Y1,Y2,... »Z(N+1-K)) OUTPUTS

WHERE : Yi= WX, +W X, LK

19140t K i+k-1

P D>DD3DD®12D 0D

ReW+.xQ(0, -N-1)4 (T1+10) ¢( (F<(pX)-(pW)-1),pX)pX
v

MAINLINE

> D

]
] :
X CONVOLUTION W ]

¥

[ X<]
[ g
L
v
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fa
A THIS EXAMPLE SIMPLY SHOW HOW A PROGRAM MAY CONTAIN TWO OR MORE
A FUNCTIONS WHICH INTERACT WITH ONE ANOTHER. THE OBJECT OF THE

A PROGRAM IS ABSURD.

VVENHANCERPROG IS
VR«COORDS ENHANCEPOINT MTX ; VERMAJ ; HORMAJ ;X ;Y ; DONEV ; DONEH

=]

A THIS FUNCTION ACCEPTS A MATRIX AND ENHANCES VERTICAL AND

A HORIZONTAL LINES WITHIN THE THREE BY THREE BLOCK GIVEN BY

A '"COORDS'. NO ATTEMPT IS MADE AT ERROR CHECKING. A MATRIX OF
Aa°THE CORRECT FORM IS ASSUMED.

A

[ X<1+COORDS&Y+1+COORDSODONEV<+00DONEH<0 ]

LVERMAJ«+/MTX[X; 1+13+Y-11QHORMAT«+/MTX[ " 1+13+X-1:;Y 1]

(VERMAJ>1)r>[MTX[{;_1+13+Y—1]<+1°DONEV<+1J
(HORMAJ>1)+>[MTX[ 1+13+X-1;Y 1<}1¢DONEH<+1]
(DONEVADONEH ) ->[ R«MTX ]

v

VR«ENHANCEMTX MTX;X;Y;XBOUND ; YBOUND

A

A THIS FUNCTION REPEATEDLEY INVOKES ‘ENHANCEPOINT' TO ENHANCE

A VERTICAL AND HORIZONTAL LINES WITHIN A TWO DIMENSIONAL MATRIX
A OF APPROPRIATE DIMENSION. (THIS MATRIX SUPPOSEDLEY CONTAINS

A A BITMAP IMAGE.)

a .
[X<Y<1QXBOUND<( pMTX )[ 1 JOYBOUND+«( oMTX)[ 211

(X<XBOUNDAY<YBOUND)->[(X,Y) ENHANCEPOINT MTX4Y<}Y+1 ]
(X<XBOUNDAY=YBOUND ) ->[ X<+X+10Y<41]
(X=XBOUND ) ->[ R«MTX ]

v

A

A  MAINLINE

A

(MTx<(1]
(O<ENHANCEMTX MTX]
'A%
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