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ABSTRACT

This thesis discusses the problems associated with both

Dataflow and Ruìe-Based systems and then introduces the idea

that an amalgamation of the two concepts may be expìoited to

soìve some of these problems. Furthermore, a prototype

design is discussed as weìl as the question of extensibility

to a general paral lel system.
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Chapter I

I NTRt]DUCT I t]N

1.1 DAïAFL0Id C0ilPUTERS

Th i s sect i on descr i bes the concepts beh i nd dataf ì ow

processors and reviews some of the current work being done

on dataf I ow mach i nes. The i nformat i on represents a summary

of research re I evant to th i s thes i s .

1.1.1 Concepts

Datafìow, as the name impìies, is a system in which

program execution is determined by the flow of data. Unl ike

common Von Neumann architectures, dataflow machines are free

to execute an instruction as soon as its oper_ands have been

"properly" defined (i.e. have had values assigned to them).

This means that many instructions from a single program may

be executing simultaneously. ln fact, these instructions

may be from distinct sections of the program, and thus the

existence of a location counter in a dataflow machine is

obv i ated .

ln a dataflow system there is no concept of a current

instruction. lnstead, every instruction is either rrenabledr'

or rrdisabledr'. An instruction is said to be enabled (and is
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therefore eligible for execution) once its input operands

have been def i ned. Th i s mechan i sm may be represented us i ng

a flow graph such as the one shown in Figure l. ln this

example, once 'A'and ,B,havg been assigned values the

operation r+r may be performed on them to yield the resul t

R

B

Figure l: A Flow 0iagram Node

tRr.

A dataflow program is composed of many such nodes with

each one forwarding its results to others (see Figure 2 ).

Thus, when one instruction completes and produces a result,

it may implicitly enable additional instructions. lt is

this implícit enabling of instructions that defines the

order of execution of a program's i nstruct ions and thereby

effectively el iminates the need for conventional control

structures.

There are two cr i t i ca I observat i ons to be made at th i s

point. The first is to reaffirm that instruction execution

i s affected on I y by procedura I constra i nts. An

A
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X

R

c
F igure 2: A Flow Graph to Calculate: ax2*bx*c

instruction's physical location within a dataflow program

does not affect its order of execution relative to the other

instructions. The second is that the sequence of statement

execution may be a non-deterministic process. undoubtedly,

the implementation wi I I pìace certain restrictions on the

number of concurrent operations. Therefore, at some point

i n time, there may exi st a queue of enabled but non-

executing ¡nstructions. The order of execution within this
queue (i.e. of enabìed instructions ) is not guaranteed.

From a hardware viewpoint, a dataflow system may be seen

as having the structure given in figure J. ln this diagram,

the processing elements (P.E.s) may be thought of as forming

an A.L.U. (Arithmetic/Logic Unit), the activity srore as

forming a memory, and the fetch and update units as forming

the control unit"
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F i gure J: A Dataf I ow Sys tem

The activi ty store contains current instructions that

wi I I be executed when new values are avai lable for their

operands- Each instruction may be stored in the form of a

template which contains an opcode, storage for any required

operands, and a forwarding address for the result. Figure 4

gives the structure of a template for an instruction with

opcode

operand- I

I oper and - 2

resu I t
destination

PE PE PE

PE PE PE

o o

o o

lnstruction Queue

Update

Unit

Fetch

Unit

Activity
Store

Figure 4: An lnstruction Template
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two operands and a single result

Note the indicator bit(l) associated with each operand

field. As an operand is copied into this fieìd, the

appropriate indicatoi bit is set. These bits may then be

used to determine el igibi I ity for execution. Constants

invoìved in operations are pre-ìoaded into templates with

their indicator bits set. This guarantees that a template

does not wait for a constant to become defined.

Enabled instructions, as determined by the update unit,

will have their identìfiers/addresses pìaced in the

i nstruction queue (l .q.) . The fetch uni t wi I I then select

tempìates identified within the gueue and retrieve them from

the act i v i ty store, to be executed by the systemr s

funct i ona ì un i ts (D-un i ts) .

The only special-case processing to be considered occurs

during the initiation of a dataflow program. When a program

begins execution there have been no previous instructions to

enable the mainl ine. This means that each dataflow program

must have an initial state associated with it. The desired

effect may be achieved simply by specifying a single

instruction whose identifíer is ìoaded immediately into the

instruction queue. This instruction is then used to enable

other instructions in the program.

Clearly, by applying the dataflow approach, any avai ìable

paral lel ism in an algorithm may be exploited in order to

maximize its execution speed.
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1 .1 "2 Current llorlt

Research currently being done in the fieìd of dataflow

fal ls into two basic categories:

o Des ign i ng Dataf low llach ines

o Programm i ng Dataf I ow Systems

There has been considerable progress made in the first of

these two areas. J.B. Dennis and his group at H.l.T. (among

others) have been successful i n the des i gn and

i mpl ementat i on of prototype dataf I ow processors.

The second area, however, has seen far less progress.

There are many difficulties when programming in a fully

paraì lel environment. This suggests that programming should

continue in a serial fashion, and efforts should be

concentrated on transìating serial algorithms to paral lel

ones. Unfortunately, this may also be an impractical

solution. What is required is a compromise between the two

approaches. By avoiding the need for the programmer to

specify the low-level paraì lel ism, it is possible to make

programming easier. This leaves only the higher-level

paral lel ism up to the programmer, and simpì ifies the

translation process. Thus, what wi I I eventual ly be proposed

is a rrcontrol structure free" functionaì language for the

description of paral lel aìgorithms. Before dcing this,

however, it is worthwh i 'l e to examine some of the work wh ich

has aìready been done.
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flost dataf ìow processors have been designed to execute

programs wh i ch are expressed i n terms of program f ì ow

graphs. Not onìy is this an exceedingìy difficult and

tedious way of expressing a program, but it also tends to

produce mach i nes wh i ch are restr i cted to the tempì ate

implementation. As wilì be seen later, th¡s may not be the

most eff icient implementation possible.

This is not the most serious problem with the simpl istic

dataflow architecture as discussed. The classic datafìow

machine shown in Figure I is known as a circular pipel ine.

That is, each unit is concurrently active and is thus

analogous to a stage in a pipel ine. (l t is ci rcular for

obvious reasons.) Ultimately, the level of concurrency in

such a system i s ì imi ted by the bandwidth of the

interconnections between the various components in the pipe.

Specifical ìy, the data paths to and from the activity store

are bound to be overloaded even if a high speed memory is

used.

The basic mechanism may be drastical ly improved upon by

ì inking many such units into a rtdataflow multiprocessor" as

described by Dennis []3]. This yields a group of dataflow

processing elements on what is, effectively, a packet-

or i ented network. The commun i cat i ons network prov i des the

abi I ity for any processing element to access the activity

store of any other processing element. Thus, the activity

stores together form a commonr global address space with
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access arb i trated by the commun i cat i ons network. I n th i s

scheme, the dataflor,ri program is distributed between the

various processing eìements in such a u/ay as to minimize the

more expens i ve non- I oca I memory references. The number of

functionaì units per processing element is decreased and the

number of activity stores is increased, thus el iminating

some of the bandwidth problems. Obviously, the I imiting

component is now the communications network. Whiìe it is

generally inappropriate to impìement something as elaborate

as a crossbar swi tch , a good network wh i ch supports

concurrent traffic is required.

A second arch i tecture, âì so proposed at È11T, takes a

somewhat different approach. ln the dataflow multiprocessor

architecture (above) not al ì packets are egual ly accessible

to all processing elements. This does not necessarily

degrade performance but it does compì icate the hardware by

producing a system where access times are non-uniform. ln

the I'cel ì block" archi tecture, however, al l templates are

made equal ly accessible to al I processing elements. Thus,

access times to al I templates by al I processors are

consistent. The cell block architecture would seem to imply

an activity store containing many tempìates, each of which

may then be selected by the distribution network to be

forwarded to some operation unit. This approach is obviously

impractical (once again due to bandwidth problems) . I f the

simple solution is taken, breaking up the activi ty store
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into separately addressable cel ls, then the bandwidth

problem is el iminated but a tremendous connection/packaging

problem arises. The solution is, of course, a compromise

between a single activity store containing N templates and N

activity stores each containing a single template. consider

the diagram given in figure !.

ln this scheme, the cel I blocks form the activi ty store

and each ceì I block replaces not only a number of

instruction cel ls but also the corresponding portion of the

distribution network. Resuìts are del ivered to the cel ì

o

o

o
o

o

o
o
ô --à

o

o

F igure 5: The Cel I Block Archi tecture

blocks by the distribution

produced in response to

arb i trat i on network wh i ch

network. The operat i on packets

these resu I ts are sent to an

PE
c.B.

Arb.

Net.
C.B PE

o

c

o

PE
C.B.

Arb.

Net.

PE

Distrib.

Netw

c.B.

routes them to an appropr i ate
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functional unit for execution. Note that each arbitration

network has a group of shared execution units so as to

reduce over I oad i ng and bott I enecks at the processors. Each

cell block is roughly equivalent to the traditional dataflow

processor less the functionaì units which have been factored

out. Thus, the original system has been subdivided into a

number of sma I I er subsys tems w i th the hope that

communications between the subsystems wi I I be I imi ted.

Two d i st i nct types of dataf I ow mach i nes may be

distinguished. These are the r¡staticrr and "dynamic"

approaches to dataflow. (Both the dataflow multiprocessor

and cel I block archi tectures are static.) Static machines

are those such as have already been described. Such machines

are characterized by unlabelled data tokens. This means that

only a single token may be present on each arc at any given

time. ln a dynamic datafìow machine, the data tokens are

labelled. Thus, many tokens may exist on a given arc and the

ìabel uniquely identifies the context of each token. This

provides the abil ity to support ìoops in the flow graph and

thereby ensures maximum paral ìeì ism.

ln software, the approach has been to al low specification

of algorithms in a serial fashion and then to use system

software which is capable of detecting and exploiting any

possibìe paraì ìeì ism. As it turns out, many of the

techniques used by optimizing compi lers may be appl ied to

the problem of detecting paral ìel ism. Languages such as
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VAL[2] and lD[5] are exampìes of this approach. They are

what are known as appì icative or functional languages and

are appropriateìy structured for easy transìation to flow

graphs. Such ìanguages have one advantage over conventional

programming languages: they are free from side-effects.

One of the major problems wíth translating from serial to

paralìel aìgorithms is detecting side-effects such as that

shown in figure 6.

The primary source of such side-effects is the design of

the ìanguage itself. Variables (or objects) are themseìves

addresses and as such may be inadvertently referred to. ln

functional computing, with languages such as VAL, there are

PRoCEDURE swi tch (VRn a,b: I NTEGER) ;

BEGIN
a: =xor (a, b) ;

b ! =xor (b, a) ;
a: =xor (a , b)
END;

Note: if the same variable is passed to both 'a'
and 'b' then ¡ t i s set to zero rather than
rema i n i ng unchanged. (Due to the ca I I by
address).

Figure 6: A Side-Effect

no var i ab I es per se. I nstead, operat i ons produce va I ues
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wh i ch are d i rect I y consumed by other operat i ons. Thus, there

is no place where one operation can mistakenly refer to or

unintentional ìy modify data. (VAL is then value oriented

rather than address oriented.) By enforcing the use of a

functional language, the task of identifying possible

concurrency is greatìy simpl ified. This restriction may be

implemented by simply adhering to the singìe assignment

rule. This rule states that onìy one assignment may be made

to a var iable wi thi n i ts scope. Thi s precìudes the

reassignment of variables, but should not be considered

restrictive as extensive reassignment is bad programming

pract i ce.

ln VAL, detection of parallelism occurs in two

s i tuat i ons. Compound express i ons are broken down i nto

simpìe expressions which may then be executed in paraì lel

subj ect to procedura I constra i nts. A I so, vector and array

operations are designed to al low concurrency identification.

Due to this I imited identification of paral lel ism, VAL

(unlike CLU[17] on which it is based) is restricted to the

domain of numerical mathematics.

What has yet to be attempted is the development of a

programm i ng I anguage/system i n wh i ch the programmer i s

responsibìe for some of the control of paraì lel ism. This

concept is addressed later
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1.2 RULE-BASED SYSTEMS

This section, like the first, is used to provide

necessary background i nformat i on for the thes i s.

1 "2.1 Concepts

Ruìe-based programming systems represent a relativeìy new

approach¡ to coding aìgorithms. They provide onìy a singìe

format for statements which is shown in Figure /. However,

this simple form aì lows the programmer to expl icitly direct

( conditions ) -> [ actions ]

F i gure /: Product i on Format

the machine in either a serial or parallel fashion

The "conditionsrrsection of each rule-based statement is

composed of an arbitrariìy complex logical expression which

specifies the condition(s) under which the associated

I'act i onsil sect i on i s to be executed. Each of these

statements is said to be a rule or production, and a rule-

based program consists of a series of logical ly related

rules.

r The approach is new although the idea itself is quite old.
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The logical structure of such a system is given in Figure

8. The inference engine serves as the control mechanism for

the system. lt selects enabled rules from the rule base and

Figure 8: Rule-Based System Structure

executes them, thereby mod i fy i ng va I ues i n the database (s) .

The modification of data within the database(s) may then set

a condition in another or the same ruìe to 'TRUET and

thereby enable its actions. Consider the program given in

Figure I This classic algorithm provides a good example

of serial rule-based programming. A line by line

description of the programrs activity is given in Tabìe ì

Notice that, I ike dataflow, there is no need for expl icit
control structures. The flow of control is determined

implicitìy by the order in which conditions become true. lt
should again be noted that the order of execution of enabled

statements is not guaranteed; only the con¿i tions under

which a statement will be enabled is guaranteed.

Inference
Engine

Rule Base Data Base(s)
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(

(

(

(

)'r PR ll4t - Boolean Vector
?t NPR lt4E - Next Pr ime
)'r |4ULT I PLE - Compos i te to be
?t N - Size of Vector

removed:t

)

)

)

)

I ) *fcf | ftgf rk:t -> [ pr i me (:t)
nprime <- I

multipìe <-

<- TRUE;

n+l i l

2) (npr i me > SQRT (n) ) I PR I NT, pr ime (:t) ;
ST0P; l

3) (mult iple>n ê pr ime (npr ime+ì) =TRUE g
npr i me<=SqnT (n) )

muìtiple <- nprime * !; ]

4) (muìtiple>n E prime(nprime*l)=FALSE e
npr i me <= SQRT (n) )

Ð (muìtiple<=n E nprime (= SqRT(n))

multiple <- multiple +nprime; ]

F i gure l: Ru ì e-Based Program for the S i eve of E ratosthenes

The strength of a ru I e-based I anguage for dataf I ow

programm i ng i s dependent on the base i nstruct i on set of

al Iowed actions, lf a sufficiently extensive set is used,

much of the difficulty inherent in paraì lel programming may

be sh i fted onto the mach i ne.

Consider matrix multipl ication. At

is a fairly compìex paral lel process.

the lowest level this

I f however, vector
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TABLE I

Descr i pt i on of F i gure I

operat i ons are a I ì owed as act i ons, then the prob I em becomes

trivial. Thus, by carefuì ly choosing the dividing I ine

between hardware-impl icit and user-controlled paralìel ism,

the coding of such probìems may be made considerabìy easier.

1.2.2 Current ldonlt

Almost al ì work in the area of rule-based or production

systems has been done in implementing so caì led "expert

systemsrr. This area of Artificial lntelligence (Al) deals

v',ith knowledge engineering. lts goat is to provide a

computer system which contains the accumulated knowledge of

many experts and which may then be used as an assistant in

i ts particuìar area of expertise.

Systems have been

areas as medicine

produced which are being used in such

(ltycl¡t[9]), geological prospecring

line # Description

I

2

3
4

5

initial ization (executed once)
the terminati ng condi tion
next prime found
I ook i ng for next pr i me
knock i ng out compos i tes



(PRosPEcroRtSl) and

an expert system

assumpt i on pa i rs.

when shown to be

made.
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phys i cs (DENDRAL t7l ) . The ru ì e base for

cons i sts of a ser i es of asser t i on-

That i s, a col ìection of assertions which,

true, permit certain assumptions to be

Cons i der a system try i ng to ascer ta i n whether or not a

given patient has a particuìar disease. Through prompting

for i nput (i .e. med i cal test resul ts) the system may make

ini-uiaì decisions. These ìead to other decisions being made

which eventuaì ìy ìead to a resoìution of the problem at

hand.

This is very much a non-deterministic process in which a

given rule may ìead to many alternatives. Each of these

alternatives must in turn be examined in order to seìect the

"best" one. The quest ion at hand is: I'l,lh ich is the best

one?" The answer may be found using a certainty factor

which is associated with each rule or production. The

certainty factor indicates how strongly the expert whose

data is stored in the system feels this rule appl ies.

For example, a given set of symptoms may suggest two or

more poss i bl e ai lments. Presumabì y the ì i kel i hoods of the

patient having each ai lment are different, given this set of

symptoms. Thus, the most I ikely one couìd be assigned a high

certainty factor while a less likely ong could be assigned a

lower certainty factor.
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Itlany of the existing systems simply foììow the one or two

most I ikely paths and hope that they prove correct. This is

done mostly for reasons of efficiency. A search of al l

possible paths may simply be tqo expensive. Unfortunately,

this approach also tends to ìessen the effectiveness of

expert systems. I f al I poss i bì e paths can be checked then

deductions which initiaìly look unlikely but which are

subsequently supported by new evidence are not overlooked.

Consequently, the abiìity to check alì paths will

decrease the importance placed on the order in which the

questions are asked. ln most systems ¡t is important to ask

questions in such an order as to quickìy and precisely

subdivide the probìem into a number of primariìy independent

sub-cases. When an "al ì -pathsrr search i s done, the probl em

of over ì ook í ng certa i n paths because they do .not appear

promising is avoided. lf sufficient computing power is

avai lable to support such a search, the construction of the

expert system may be simpì ified.

The pr imary area of appl ication of expert systems should

be in remote areas where a human expert is unavailabìe. This

means that a general practitioner couìd then act as the

attendant and successfully perform as if he h/ere an expert

in some specific medicaì field. ldeal ly, an expert system

shouìd also be marketed with a good seìection of rtknowledget'

and rrru I err bases .
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Unfortunately, such an expert system with appl icabi I ity

in a variety of question domains is not avai lable. This is

due to a number of factors including:

o Lack of compact computing power

o Lack of compact storage media for maintaining the ruìe
and data bases

o Poor design practices (often reìated to the first two
po i nts)

With the proper hardware (incìuding a special

architecture) and better software, â Viable general

expert system may be ach i evabl e.

pu r pose

pu r pose



Chapter II

PARALLEL PR(]GRA]'I]IIING AND DATAFLOIT

A fundamentaì probìem sti ì I to be solved before paral lel

computation i s widely accepted i s the question of

programmi ng i n a non-Von Neumann envi ronment. Programmers

are taught from the very beginning to think in a serial

fashion and this leads to inefficient algorithms when coding

for a paral lel machine. Some rethinking of the fundamentals

of programming must be done in order to yield a useful

paral ìel language

Common serial languages fail to recognize and exploit the

avai lable paral ìel ism in an algorithm. Furthermore, they are

incapabìe of expressing truìy paral lel algorithms (that is,

algorithms where the programmer specifies which operations

are to take place concurrently) . At best, some languages

provide faci I ities to al low concurrency at the procedure

level. Unfortunateìy, this is far too coarse a level to be

of use in any massively parallel system such as a dataflow

mach i ne.

Two genera I approaches may be taken when programm i ng

paralìel machines:

o user-control led paral lel ism

o paral I el i sm detected by system software

20
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Let us first divide the avai ìable paral ìel machines into

two cìasses according to Flynntl5]. Those machines which are

typified by singìe instructions being performed on multiple

pieces of data at once are called SlllD (Singìe lnstruction,

l'lult iple Data) mach ines. Fal ì ing into th is category are the

vector and array processors (i.e. those processors which

operate on multipìe data items synchronousìy or in

l ockstep) . The second c l ass of mach i nes known as 14 l tlD

(t'tultipte lnstructìon, l'lultiple Data) are typified by many

i nstruct i ons work i ng on many d i fferent p i eces of data

concurrently. Dataflow machines fit into this category.

Cons ider f i rst the S ll'lD mach ines. Regard less of whether

or not the user does the identification of paralìeìism,

somewhere there must be i nt i mate knowì edge (e i ther on the

part of the appì i cat i ons programmer or the systems

programmer) of the mach i ners i nterna I arch i tecture i n order

to program effectively. For example, a vector processor

consists of a finite number of processing eìements and

therefore the number of elements that exist must be known in

order to partition larger probìems. Thus, any software

written for such a machine is not general.

The task of identifying possible paral lel ism via system

software is not difficult for this type of machine. Vector

and array processors are designed for a specific class of

problems. Thus, if a high level language which al lows array

operat i ons i s used as a programm i ng env i ronment,
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identification of simpìe paral lel ism is not only trivial but

also immediate. Consider the fol lowing example:

DCL

A,B(looo,l0o0);

A=A+Bi /t, obviousìy a parallel operation rr/

Even if such a language is not used, it is relatively easy

to identify matrix operations and optimize at ìeast the

inner loop of such an operation. Techniques simi ìar to those

appl ied in optimizing compi lers may be appl ied to perform

the requ i red ana I ys i s.

Programming for Sll,tD machines has become f airìy well

established. Several high level languages have been

developed for specific machines and are working out well.

Additionaì ly, a variety of lower ìeveì paraì lel algorithms

have been developed. l'latrix multiplications in which the

innermost loop has been repìaced by a paral ìel operation are

now commonplace on machines such as the CRAY-l and CYBER-205

(not to ment i on true array processors) . Even many

inherentìy serial problems have been reworked for paral ìel

solution. A good example of this is a vector summation. ln

log2n steps, ãll the sums of from I to'rì'of the elements

of a vector may be calculated.

Unfortunately, there are problems. Perhaps the most

dramatic of these is the need to partition ìarge problems

for solution. Should the number of P.E.rs in a vector

processor be smal ler than the number of vector elements, the
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vector must be subdivided and this subdivision causes many

algorithms to degenerate. (The vector summation algorithm

for example.) Furthermore, it is undesirable that programs

be architecturalìy dependent. Portability is a very

appeaìing concept especially for such speciaì purpose

programs. For these reasons, a S I t4D type arch i tecture i s

not an ideaì base for a paraì leì system.

There is a better chance of designing a general paral leì

language for the f4ll4D class of machines. lt is irrelevant

whether the architecture at hand is a datafìow machine or a

nethrork archi tecture. Both are essential ìy the same, the

onìy differences being the structure of the network, the

d i stance between nodes i n the network, and the type of

programming currently being done on each type of machine. lf

these d ì fferences are d i sregarded and both mach i nes are

simply treated as a coì lection of processors and memories on

some sor t of network, they may be cons i dered equa I . Th i s

means that results attaíned using the dataflow model may be

extended to th i s more genera I c ì ass of mach i ne.

ln a l.lll'lD system such as that just described, the goal is

not to produce calcuìations of a special form but rather to

produce as many single heterogenous calculations as possible

at any given time. For this reason, such a system is

architecturaI Iy independent and therefore much better suited

to producing a generaì paral lel programming system.
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Consider programming in such an environment. lf the

programmer i s I eft to determi ne paral I eì i sm, he wi I I

invariabìy code in a serial fashion and then anaìyze the

program to detect paralìelism. A part of the analysis which

must be done i s the reduct i on of compl ex express i ons to

simple ones of the form:

result <- opndl oper opnd2

These simpìe expressions are then examined to determine

inter-statement paral lel ism. ln addition to facil itating

the detection of paraì ìel ism, this permits the repeated

evaluation of common subexpressions wi thin loops to be

easi ly factored out to a single operation. However, this

process is exceedingly tedious and as such shouìd be

performed by the machine. Thus, a general paraììel language

should allow complex expressions which may be broken down

and ana I yzed at trans I at i on t i me2 .

Such a ìanguage shouìd also be side-effect free so as to

simpì ify this analysis. To be side-effect free, it would

seem that ass i gnment should be el imi nated al together (as i n

LISP). This, however, is not necessary if the single

assignment rule is followed as is done in lD[5] (tfre lrvine

Dataflow language). This rule permits the use of assignment

in a restricted capacity. Specifically, a single assignment

is aìlowed to any given variable within its current scope.

This guarantees that since only a single assignment is made,

2 These very operat i ons are i n fact commonpl ace i n

'¡peephole'r optimi zers.
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inadvertent modification of a vaìue is impossible. The

assignment is considered to be a "naming" of some result. lt

is a non-executable operation and should not be associated

with any sort of write-to-memory function. This naming is

easi ly performed at compi ìe time.

The presence of assignment affords the programmer a

fami ì iar envi ronment and may therefore simpì ify

translation process. When assignment is permitted the

fiây, for the sake of simpì ici ty, factor out some

expressions on his own. This relieves the translator

having to perform the removal. Consider the foì lowing

segment:

more

the

user

sub-

of

code

partl
par 12

root I

root2

S QRT (b r'<>'< I - la :k¿ rtç )
¿.té

(-b+part l) /part2
(-b-par tl) /part2

Furthermore, the use of temporary values wi I I not result in

additional templates (since assignment is not an executable

operat i on) .

The high level constructs of programming languages should

clearly also be aì ìowed. Functions and procedures are merely

logical abstractions of complex operations. They present no

dïfficulty as far as architectural independence is

concerned. lf necessary, each subprogram may be treated as

'r inl ine" cocie (tn is is not necessary as wi I ì be shown

shortly). ln fact, in systems where independent activity

stores are provided, the presence of subprograms provides a
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stores.

d iv i s i on po i nt

The use of
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for assignment to different activity

these division points may improve

performance.

Presumably all operations in a subprogram are related

and, as such, should be grouped together. Vaìues used by the

subprogram wi I I al so be local to the processor s i nce gìobal

variables cannot be al lowed without possibìe side-effects.

The only exceptions to this ruìe are the parameters to a

subprogram. These, however, may be copi ed to the local

activity store and then back again in order to minimize

network traf f ic. A rrsmartrr loader will attempt to place

functions from a program into an activity store with other

related functions from the same program. This is also done

to minimize the more expensive non-local references.

The one quest i on that does ar i se i s how to trans I ate

middle-level serial constructs to their paraìleì

equivalents. This is, of course, assuming that the existence

of any possible paralìelism may be detected.

Consider a high level language which does not support

array operations. ln this case, a loop or set of nested

I oops must be used to accompl i sh the des i red array

operation. ln most.cases, this sort of occurence is fairly

easi ly detected and the translation required is obvious. ln

other cases however, the translation to a paral lel form is

not so obvious. These cases, when exploi ted, may yield
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that some of the paraìleìism will

spec i f i ed by the user.
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It is for this reason

eventualìy have to be

The conversion to a paraì leì ìanguage as just described

for a datafìow system is fairìy straightforward. The most

difficuìt area is in the handì ing of complex loops and other

middle leveì constructs. (High level paral lel ism may be ìeft

to the programmer and low level parallelism is easily

translated.) What must be done with an array operation such

as the one shown below is not clear.

F0R i:=l T0 2000 D0
FOR j:=l T0 5000 D0

a I i, j] :=b I i, j]:'<r<2 ;

This statement yieìds ten mi 1 ì ion independent exponentiation

operations. Each of these operations couìd conceptual ly be

executed in parallel but this is obviousìy going to be

impossible due to physical limitations.

Aside from the exceptionally ìarge number of processing

elements required to support such paraì leì ism, ten mi I I ion

templates for each ofrar and rb' is obviousìy unacceptabìe

due to memory contraints. Either a.very large memory or a

demand paged memory system would be required. lnstead, 'n'

templates of a general nature acceptable for executing this

instruction may be used to calcuìate the squares of al I

elements of 'br. Thus, the problem is effectively subdivided

or 'rpartitioned" into smal ler problems. The number of

templates actual ly used wi I I correspond di rectly to the
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number of ava i I ab ì e process i ng el ements. Each set then

creates and enab I es the next . Fur thermore, th i s approach

perm i ts the s i tuat i on where the range of eì ements to be

squared in 'b' is not known unti I run time. Simpìe static

(compi I e t ime) generat i on of the tempì ates does not support

th i s feature.

A re ì ated prob I em i s the ques t i on of program segments

such as those in a subprogram which are frequentìy entered.

lf these subprograms are invoked many times concurrently,

then multiple copies of some templates may result. Such a

pi ece of code wi I I contai n operations whose templates wi I I

be repeatedìy scheduìed into an instruction gueue. This

means that there may be many active versions of a template.

These tempìates must be physicaìly distinct from one

another. That is, an identifiabìe copy of a tempìate is

needed for each concurrent use of that tempìate.

A typical example of such a function is a system service

routine which is being shared by many users. Since data is

effect ivel y stored wi th the program (i n the templ ates) ,

there is no possibility of reentrancy. ln a static computer

system this would force one copy of the program for each

user. I n a dataf I ow system, though, the dupl i cat i on of the

entire function may be avoided. Only those templates which

must be duplicated will be. This is accomplished using

dynami c creat i on of templ ate vers i ons. S i nce they are

created, and presumably destroyed, dynamical ly, it is
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has muìtiple

usage count) .vers i ons concur rent I y act i ve (perhaps

This also provides a natural basis for

many- i dent i ca ì -operat i ons prob ì em (as

mi l l ion element exampìe).

the sol ut i on of the

typ i f i ed by the ten

vra a

The idea of template versions is not unique. The

unravelìing interpreter[5] used in the lrvine dataflow

machine does exactìy this. The difference is that the

analysis is performed aìmost exclusiveìy at compi le time and

thus cannot handìe the dynamic cases effectively. By

al ìowing dynamic template al ìocation and freeing, additional

complexity is introduced into the hardware but significant

performance gains may be recognized. Additional ly, this

scheme permi ts I arge probl ems to be solved wi th i n the

constrai nt of a reìatively smaì I activi ty store.

What is cìear from this discussion is that aìthough much

may be done in translating serial to paraìlel algorithms,

existing methods are imperfect and must remain so for

reasons of complexity. A better approach is to provide a

language in which the programmer specifies the "trickier"
para I I el i sm but I eaves the rest to be detected by the

system.
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A RULE.BASED DATAFLOIT PR(]CESSOR

3.1 SYSTEilI SI1I!ILARITIIS

I n order for any two i deas to be successfu I I y merged,

they must have some things in common. lt is the similarities

between systems that are expìoi ted to permi t thei r

combination. This is partìculari ìy true of hardware-software

combinations. By providing good architectural support for a

programm i ng system, much effort may be saved. Th i s i s, of

course, in addition to the performance increases which may

be real ized.

lf the criteria for merging a rule-based system with a

dataflow machine is strictly the system simi larities then it

should definiteìy be attempted. ln gross structure the two

are guite simi ìar. Both have a control unit which fetches

"appropriaterr operations, schedules them for execution and

then returns resu I ts wh i ch enab I e other operat i ons. The

only differences between the two are purely cosmetic. (For

exampl e, a rul e-based system tends to impl ement two

physical ly distinct memories whi le a dataflow system

typi ca I I y impì ements onl y one.)

30
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ln terms of functional principìes, the two are identical.

Both systems have some actions executed conditionally. ln

rule-based systems there is an arbitrarily complex booìean

expression determining whether or not the actions should be

taken, whiìe in the dataflow system there are actions which

are taken when their operands are defined. These systems are

simpìe isomorphisms of one another as can be shown by the

fol lowing argument:

Assuming that aìl values initially have the undefined

value (undef_val), a fìow graph for:

A+B

may be easi ly expressed as the rule-based statement:

(A<>undef_val ê B<>undef_val) -> [A+B]

Perhaps worthy of note i s the fact that the enab I i ng

condÌtions for executing a dataflow operation as a ruìe

aìways i nvoìve the operands of that operation. I n thi s

respect at least, it might be argued that the isomorphism is

in fact imperfect.

Equivalence in the other direction can easily be seen if

the structure of templates and the way in which they are

enabled is modified sl ightly. Normal ìy, a template (and the

instruction it contains), is enabled when its operands are

defined. llhat is additional ly required is an enable signaì

for the template as a whole. That is, a template will not be

el igible for execution unti I this new enable signal is

asserted and i ts operands are correctl y def i ned. I n most
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cases, this enable signaì will be initiaìly set (enabled).

However, in some cases it wilì not be set until the

successful completion of some other dataflow instruction.

Thus, a new instruction type may effectively pass an enabìe

token to those templates which are ìogical ìy dependent on

it. This enabìe token could be easi ìy repìaced by the

passing of a booìean value which was subsequently dÌscarded.

By doing this, a new template type could have been avoided

since the conditionaì enabling would have fit into the

existíng structure. However, since the enabl ing vaìues would

simpìy be immediately discarded, they may as wel I be

considered to be enabìes so that the user need not worry

about them.

The format for such an instruction's tempìate is given in

Figure .l0. Notice that by providing enable outputs for both

success and fai lure, the basis for an I F-THEN-ELSE structure

is immediately provided. From this ¡t is clear that such a

system fits more naturally the architecture outlined for a

static dataflow machine. This is not to say that a dynamic

architecture is inappropriate but simply that a rule-based

system is conceptually closer to the static system.

The conditional

may be taken and

condi tional tempìates.

next sub-condition and

of the rule. This

tach sub-condition may

i nstruct i on

of these

enab I e the

the final one may enable the actions

is obviously an inefficient serial

express i on from a rul e-based

translated into a series
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I og. opcode

I operand- ì

I operand-2

true
destination

false
destination

F igure l0: A Condi tional Template

approach and a better mechan i sm shou I d be deve I oped .

Regard I ess of the eff i c i ency of the i mpl ementat i on though,

it is cìear that the datafìow program and the rule-based

program are logical ly equivalent.

3.2 DESIGN CONSIDERATIONS

Hav i ng seen that ru I e-based and dataf I ow systems are

similar, it must now be decided whether or not the merger of

the two is viabìe. This is determined by considering the

efficiency of the implementation as wel I as its feasabi I ity.

ln terms of efficiency the combination is exceìlent. The

pr i mary prob ì em w i th ru I e-based sys tems has been the i r

inefficient execution on serial processors. They produce

many operat i ons wh i ch may be done i n para I I eì and as such

they are better su i ted to a para I ì el arch i tecture.



Furthermore, rul e-based systems produce many

operat ions wh ich make them su i ted to the tilllvlD

Slt4D class of parallel machines.

3\

he terogeneous

rather than

0f the available Hlt4D type processors, static dataflow

processors most closely paral lel the rule-based approach.

All of the operations in both the conditions and actions

sections may be performed in paraììel on such a machine just

as they are intended to be. Also, the dataflow machines'

"update" unit is perfectìy suited to the rule-based

env i ronment.

Itlost of the quest ions wh ich ar ise are not due to the

merger of the two systems but are due to the practicality of

dataflow machines themselves. Whi ìe it is clearly an

efficient system conceptual ly, there are some implementation

difficuìties to be overcome. Depending on implementation

strategies, there may be cost-feasabi I ity problems or

performance inefficiencies in a dataflow system. A typical

example of this is using destination addresses in templates

as opposed to the use of CAI'1 (Content Addressab ìe t'lemory)

tags on instances of variables. ln the first

implementation, there is a problem in distributing the

result to multiple destinations. To overcome this, muìtiple

levels of destination-extension templates (as shown in

Figure ll) may be used. This approach introduces an

inherent inefficiency into the system in that overhead is

i ncurred i n fetch i ng and decod i ng these templ ates and then
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opcode

I operand- I

operand-2

resu I t
dest i nat i on- I

resu ì t
destination-2

resu I t
destination-J

Figure ll: A Destination-Extension Template

re-routing the results as specified. The inefficiency

resuìts from the fundamental ly serial nature of the process.

Logic, if not economics, dictates that better performance

may be achieved by the use of CAl4 tags on specific instances

of variables. Nevertheless, most implementations have

favoured tempì ates due to the natural mappi ng from f low

graphs. ln contrast, the use of CAl,l tags is exceedingìy

efficient and permits paralìel broadcast of results to aìl

appropriate templates. ln this system, each operand field in

a template has associated with. it a CAll tag f ield. When the

broadcast tag matches the tag field, the corresponding

operand field accepts the value being presented to it.

Whi ìe this scheme is efficient it is aìso exceedingly

expensive and a singìe memory implies seriaìízation of

broadcasts. The cost of CAI'1 is h igh and the quant ity



36

required is ìarge. This makes the use of an activity store

where all templates have CAl,l tags impractical. What is

required is, as usuaì, a compromise. Some special templates

may have the desired tags and be used for operations where

this faci ì ity is required. This assumes the dynamic template

al ìocation/freeing system discussed earl ier.

Another guestion of practicality arises from whether or

not a system can afford to support the number of processing

eì ements requ i red to make a dataf ì ow mach i ne pract i ca I .

Something on the order of severaì hundred or more I ikeìy

thousand P.E.'s are required for a typicaì multi-user

system. lf a general purpose P.E. is used, then the cost of

each unit will be quite high. The use of special purpose

units wiìl decrease this cost but this introduces the need

for a more compl i cated arb i trat i on network to manage the

scheduì ing of operations to appropriate processing elements.

Obviously, custom SSI oi'l'1Sl units wiìl quickly price such a

machine out of normal markets and wi I ì most certainly ìeave

i t non-por tab I e. The use of VLS I des i gns avo i ds these

probìems. Not only are they cheaper, but circuit densities

are far super i or. They do general I y I ack i n performance,

s ince l'10S technologies are slower than ECL or TTL (in terms

of switching speed), but this is not as severe a problem as

it may appear. Since the key to a dataflow machiners

performance i s not faster components but rather greater

parallelism, slower units may be toìerated. (The net
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performance increase through paral lel ism greatly overshadows

the performance increase at[ainable through the use of fast

components . )

The use of l'10S VLSI designs is also suitabìe for the

product i on of act i v i ty store components. The fabr i cat i on of

static RAIç1s is a well documented process and the addition of

simple routing hardware onto such chips seems a simple task.

Thus, bui ìdi ng blocks for activi ty stores such as Denni sl

cel ì blocks might be easi ly real ized using VLSI.

Fur ther ga i ns may be ach i eved i n th i s area through the

use of m i croprogrammed contro I un i ts . l'luch of the contro ì

function has already been relocated from the P.E.'s to the

other components in the dataflow machine and that part which

remains does not vlarrant a signif icant investment in hard-

wired ìogic. lnstead, a smaì l, fast microstore should be

used and the cost of the microprogramming may be amortized

over the number of units produced. This is an ideaì approach

s i nce many such un i ts are produced even for a s i ng ì e

dataflow machine.

The use of mi croprogrammi ng frees up ch í p area i n VLS I

designs which may then be used for other purposes. The sort

of P.E. used in a dataflow machine is effectively a RISC[.l9]

(Reduced I nstruct i on Set Computer) processor. I f the R I SC

ph i ì osophy i s fol I owed for these P. E. 's, then the saved ch i p

area can be used to i ncorporate performance enhancement
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P. E . rs, extra reg i sters may not be su i tab l e but

pipel ine shouìd be implemented.
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dataf ì ow

a simple

A pipel ined processing element is a particularly

attract i ve feature for a dataf ì ow mach i ne. Just as for

vector and array processors such as the CYBER-2O5, very many

consecutive identical operations may be generated in a

dataflow system (as in the array example). Furthermore, in

a dataflow machine this is true for all operation types, and

is especially true if a set of vector operations is provided

as a programming base. Thus, the pipel ining of functional

units may yieìd a significant performance increase in a

machine such as that being proposed

The other advantage prov i ded by the use of

microprogramming is the easy adaptation of a general purpose

unit to any required P.E. type. P.E.s performing different

functíons may be implemented from the same basic P.E. simply

by rewriting the microcode. Admittedly, this is not the most

efficient approach but the reduction in both cost and space

requ i rements outwe i gh any I ost performance. Furthermore,

this approach may be taken on a larger scale if writable

control stores are used. V'/hen th is is done , a spec if ic

program may have special-purpose microcode loaded for it so

as to enhance performance. Thus, depending on the language

being used to program an appl ication, different microcode

may be ìoaded to ensure optimal executìon time. Such an



approach ì^/as taken on

A I to computer . Thus,

both the Burroughs

i ts feasabi ì i ty i s
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B ì 700 and the Xerox

assured.

Aìlowing different types of P.E.'s, whether through

microprogramming or not, is beneficiaì if not overdone. That

is, a limited number of P.E. types should be supplied so as

to minimize the compìexity of the arbitration network. A

good ba I ance between the number of P. E . types and the

number of functions per P.E. must be made. lf too few P.E.

types are chosen, in an effort to minimize arbitration

compìexity, the amount of control required in each P.E. is

i ncreased. S i nce P. E. 's are more numerous than the

arbitration networks, this wiìl resuìt in higher costs.

However, if too many P.E. types are chosen, arbitration

becomes complex and design costs increase.

The two fundamental control functions of a datafìow

machine also present some implementation problems. Both the

fetching of enabled instructions and the update of templates

based on results are compl icated, highìy paraì lel functions.

The update funct i on may be performed i nd i rect I y by the

distribution network if bre assume a destination address

system. lf a CAl4 system is used, then the update function is

impl emented i n the control store i tsel f. The onl y update

hardware required is then a broadcast faci I ity.

The prob I em that rema i ns i s how to detect enab I ed

tempìates and how to efficiently schedule them for execution
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on the available functional units. VJhenever a result is

forwarded to some template, the system must check to see if

this enables the given tempìate. The checking process wi ì ì

incur some overhead, particulari ly if the result is being

forwarded to many templates. Furthermore, memory contention

prob ì ems may ar i se. A ser i es of resu I ts wh i ch are forwarded

to many templates will overrun the capabilities of a single

unit attempting to check for enabìed templates. This means

that multiple, concurrent units wi ì I be required which

i ntroduces the prob ì em of mu I t i p I e, concur rent accesses to

the activity store (a good reason for advocating many local

activity stores). Thus, the detection of enabled tempìates

must be accounted for in any design attempted.

One solution to the above probìem is the use of separate

memories (ì ike ceì I bìocks) and possibly even division of

the memories into individual ly addressable banks or bìocks.

This would most certainly al ìeviate the problem of memory

content i on.

Another approach is to use special hardware built into

the memory to test for al I operands being defined whenever

an operand field is accessed. When al I operands are defined,

the address of the template is returned to the unit which

schedules tempìates for execution. This distributes the

detect i on of enab I ed i nstruct i ons throughout the memory

thereby al leviating the contention/bandwidth problem. The

disadvantage to this approach is that the activity store may
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no ìonger be implemented using commercial ly avai labìe

memories. lnstead, special ìy designed memories wi I I have to

be used and this again results in increased costs even when

the implementation technology is t40S VLSI.

The scheduìing of instructions to available units

requires some sort of hardware queue. ln particuìar, the

system must be abìe to tolerate sudden streams of many

identical operations. This'rclustering'r phenomenon means

that, from time to time, more enabled operations wi I ì exist

than appropriate P.E.'s to service them. For this reason,

there must be some facility provided to handìe the overflow.

A rqueue' implies FlF0 service. However, this is not an

ideal structure for maintaining enabled instructions. The

goal in datafìow is to maximize the amount of concurrent

activity and a simple FlF0 queue may cause the following

undesirable result. lf there is no unit avaiìable to service

the operation at the front of the queue, issuing of

operations suspends even if there are units availabìe for

later operations in the gueue. A more flexible structure is

therefore requ i red.

A simple queue is acceptable only if a change is made to

the way it is used. The scheduler must be able to remove

activi ties, determine that they cannot currently be executed

(due to resource avai labi I ity) and return them to the far

end of the queue. This should not affect the efficiency or

T
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cor rectness of execut i on due

dataf low machine ("PC-free") .

is done freely.
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to the very nature of a

Re-order i ng of i nstruct i ons

Another alternative is to maintain separate queues for

each type of processing element. This clearly soìves the

probìem but forces the update unit to perform at least a

partial decode on the operations to determine the queue into

which they should be placed. This is not difficuìt to do and

is, in fact, probably simpìer to implement than the previous

scheme. I t does, however, i ntroduce an undes i rab I e

dependency between the update unit and the fetch unit and

the P.E.rs. lf a new type of P.E. is added, the only

component that shouìd have to be modified is the routing

portion of the fetch unit. lf multipìe queues are used, the

update unit wilì also have to be modified. Thus, the ease of

extendability is decreased when using muìtiple queues.

There are many factors to be considered before deciding

on a f i na I des i gn. The features chosen and thereby the

inefficiencies accepted wi I I depend highly on several

factors:

o Programm i ng Env i ronment

o Cost constraints

o Availability of VLSI fabrication facilities

o End use of the system
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F i na ì I y, the des ì gn of a prototype rather than a

production system affects many design choices. ln a protoype

system, such as that proposed in the folìowing chapter'

decisions will be made so as to maximize modif iability and

extendabiìity. These two features are absoìute necessities

in a prototype since it is desirabìe to gain as much

information per design dol lar as possible. Without existing

hardware, the correctness of a prototype des i gn i s not

assured. This means that every possible step should be taken

to detect errors and to correct them. Aìso, the cost of the

prototype should be low enough to al low for one or more

compl ete des i gn fa i I ures.



Chapter IV

A PR(]T(]TYPE DESIGN

4. 1 SYsTIÌl DESCRIPTI0N

This section outlines the fundamentaì design decisions

made wi th respect to the prototype rule-based dataflow

processor. The description is primari ìy that of a dataflow

processor but the structure of the processor i s d i rect I y

affected by the fact that i t i s to execute ru I e-based

programs.

Before being able to design any portion of the processor,

it is necessary to consider the types of operations to be

performed upon i t. I n the case of a ru I e-based dataf I ow

processor, this involves examining the base set of al lowed

actions within each rule. Since it is handled inherently

within the structure of the processor, the enabl ing of each

ruìe based on the conditions section need not be considered.

The update uni t i s, i n a sense, ãñ i ntegraì part of the

activity store. The actions section is executed by one or

more P.E. rs as determined by some sort of arbitration

network. Operations specified in the actions section affect

not only the structure of the P.E. rs but also the

organizalion of storage within the system.

\\
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The genera ì arch i tecture of a ru ì e-based dataf I ow

processor shouìd be static as was decided in the preceeding

chapter. Thus, the prototype design wiÌl be static in

nature. The term rrstatic" applies only in the traditional

sense of datafìow. 0perations are passed on various system

buses in a complete form along with control tokens and

theref ore no token match i ng sect i on i s requ i red . I'lany

functions of the prototype system are definitely dynamic.

I n part i cuì ar, the expand i ng (gener i c) tempì ates may be

considered to be a dynamic function since templates are

being created dynamical ly.

The base ì anguage chosen for i mp ì ementat i on i n the

prototype is a restricted version of APL. The APL language

offers a number of interesting operations that provide ample

opportuni ty for paral ìel ism and the appearance of APL should

tol erate the necessary syntact i c extens i ons to i ncorporate

ruìes. lf a programmer can face normal APL, the syntax for

specifying rules should present no problems. Aìso, the use

of APL provides at least a somewhat fami I iar environment for

the programmer. This is preferable to using flow graphs or

other unconventional approaches which are foreign to most

programmers. Final ly, APL is certainìy suitable for

impìementing expert systems in that it supports all the

requ i red operat i ons and more.

I n the prototype, on I y

therefore only the integer

i nteger va I ues are recogn i zed

operat i ons are supported. ( t n

and

APL



this means nearly aìì operators

types wiìl be defined:

o sca I ar i ntegers

. noq-sca I ar i ntegers
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are supported.) Two bas i c

Beyond this, no data typ¡ng is performed. This suits APL and

is perfectly legitimate as was shown in lD[5] (which is

totally typeless). For the prototype, l6-b¡t integer values

are used to provide not a useful processor, but one which is

cheap and still representative of the machine which is

eventual I y des i redlrequi red.

Function definition is supported in much the same way as

in normal APL with two exceptions. The exceptions are made

to ensure no side-effects and are the fol lowing:

o No global variables (local ity of effect)

o A single assignment rule is in effect.

Cìearly the presence of global variables (and VAR parameters

as wel l) wi I I jeopardize the correct functioni ng of a

program due to possible side-effects. Unfortunately, in

many languages, these features also make functions somewhat

restrictive. This restriction is due to a lack of the

abi I ity to return compìex resuìts. Fortunately, such is not

the case in APL. Since there is no restriction on the

"typerr of the value being returned, the result may be as

complex as the user desires. The sêcond exception to normal

APL syntax is also required to guarantee that the system

wi I I be side-effect free as discussed in earl ier chapters.
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Normal ly, a single assignment rule makes programming in a

conventional style d¡fficult. A simple example of where this

is true is when using a counter variable. The statement:

INDEX<- INDEX+I

is inval id within a single assignment rule. Due to the

obvious inconvenience caused, th¡s restriction has accounted

for statements such as 'rFORALLrr in VAL.

It is clear that some form of iteration is required in

any paral lel system. (goth for specific appl ications and to

provide fami I iarity within existing systems.) ln APL, such

standard iteration methods are part¡culari ly necessary since

the syntax wi I I not happi ìy tolerate the introduction of

high level looping constructs.

ln order to permit the implementation of loops in APL

within a single assignment rule, a new operator is

introduced. This operator, the "rename" operator, al lows

expl icit re-use of names. Thus, the statement:

xcf x+ t

i s va ì i d, whereas the statement:

x<-x+ ì

is not. The renaming does not

to the variable X but rather

in a second assignment

in the creation of a

other words, a new

resul t

resu I ts

new variable with

i nstánt i at i on of X

the old name. ln

i s done.
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By us i ng the renam i ng operator , a programmer i s

acknowledging the reuse of the variabìe name. ln physical

terms, this wiìl result in distinct t-empìates before and

after the renaming and hence precludes the possibiìity of

loops in the resultant flow graph. Final ly, this provides a

conven i ent and fam i I i ar env i ronment for the programmer .

Note that mu I t i pl e ass i gnments to the quad (l /0) operator

are always acceptabìe. This is necessary to faci I i tate

ser i a ì output operat i ons, and the renam i ng operator shouì d

not be used with quad.

An addition to APL is necessary in order that it may be

used in a rule-based datafìow processor. Normal ìy, a

variablers type is an unknown quantity unti I run time. This

is not possible in the prototype system. Vector and scalar

instructions have different formats. (fither an explicit or

generic template will be generated.) This means that it must

be known at compile time whether a given variable is a

vector or a scalar. ln order to do this, a simple syntax

change is made. A definition of all variables must be made

and a syntax must be provided to specify whether each one is

scalar or N-dimensional in nature.

A complete description of the language used in the

prototype is given in Appendix A. This includes the ruìe-

based syntax for APL and a I ist of those APL operations

supported. The i nstruct i ons/templ ate operators used to
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impìement these operations are shown in Appendix B.

Programming examples are given in Appendix D. (Note: the

programming examples apply to a rule-based APL such as that

in the prototype which supports INTEGERs) . The choice of

I NTEGER-on I y support for the prototype was a cost dec i s i on

not a functional one. A block diagram of the overal I system

structure is given at the start of Appendix C. This diagram

shou ì d be referred to throughout th i s sect i on whenever

clarif ication is needed.

Storage in the prototype system is divided into two

fundamentaì parts. The first, the activity store, contains

operation templates as might be expected in a dataflow

machine. The second is used for data structures which are

not easi ly placed within an instruction template (eS.

vectors, arrays, etc,) . This second memory is known as the

vector store. The idea of having more than one memory in a

dataflow machine has been explored before 15,ZZf.

lmpìementation of the vector store is a simi lar idea but is

used in a unique way.

The inclusion of an arbitrary length vector within a

template is an impractical approach. Simi ìari ìy, compi le-

time generation of individual templates for each of the

vector components is inappropriate or even impossible in

many instances. The prototype system includes templates

wh i ch wi I I spab/n other tempì ates to perform such compl ex

operat i ons. These spawned tempì ates wi I I not conta i n the
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data they operate upon but rather pointers to the data

wi th i n the vector store. Thus, vector operat i ons i n ApL wi l l

generate these generic templates which dynamically produce

templates to perform the specific element operations. This

seems to produce a problem with respect to detecting side-

effects. However, if handled correctly, i t does not. lf an

operation of rank greater than one is such that elements are

not independent of one another, then it becomes difficult to

detect possible side-effects" Spawned templates must not

enable other templates aside from the ones which spawned

them. A generic template spawns al I i ts chi ldren and then

awaits their completion (via enabling ruìes). Each child, on

completion, partially re-enables lts parent. l./hen all
chi ldren have executed, the parent (generic) template is re-

enabled and it may then enable the next loqicaì operation(s)

in the datafìow program.

This dif f ers f rom the approach taken at l,t. l.T. which uses

rrstreamsr'. When us i ng a stream as a data structure, a

suffix function G may begin operating on elements of a

stream X before a prefix function F has finished w¡th them

in a manner analogous to a pipeì ine (see below) .

X

This is possible only since a stream is a uni-dîrectional

data structure. The stream concept permi ts a high degree of

F G
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paraìlelism but onìy at the expense of generality. Element

by eìement enabl ing of templates for muìti-dimensional

operations is often not appì icable. For instance, in a

matrix multipl ¡cation, eìements are non-independent. Thus,

each vector operation is executed indivisibly as if it were

one operation and side-effects are eì iminated. Natural ly, if

the programmer specifies incorrect rules in his/her program,

side-effects may sti ì Ì occur. lf vectors, etc. are treated

as single logical items, however, this probìem will not

ar i se.

The activi ty store i s subdivided as i n the cel I block

architecture. Each block contains not only the instruction

cel ls and routing hardware but also circuitry to test for

enabl ing of instruction cel ls. This hardware wi I I decrement

an operand count on every reference to the template which

updates the correspond i ng operand. Thus, each templ ate wi I ì

be created with this field initial ized to the number of

operands it is awaiting, and every time an operand is routed

to it, the count will be decreased by one. When the count

reaches zero, the instruction is enabled and the templaters

identifier wiìl be forwarded to the appropriate unit for

execution schedul ing. Once an instruction has been enabled

in this manner, it will be queued for execution at an

appropriate P.E.. The routing of the enabled tempìate to a

P"E. is performed by an arbitration network which examines

the first few bits of the operation code within the
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temp ì ate. These b i ts determ i ne whether the operat i on i s

complex (i.e. this is a generic template which must spawn

element tempìates) and therefore destined for a

I'decomposition" P.E., oi' if not, which simple P.E. type is

required to execute the operation. lt is the additional

responsibility of the arbitration network to distribute the

workload over al I avai lable P.E.'s. This prevents

bottìenecks and therefore provides for maximum possibìe

parallelism. A queue is maintaìned in the prototype for

each P.E. type so as to ìimit unnecessary delays and to

s impl i fy the queue management hardware. I n the case of

generic operations, the template will be passed to a special

unit which handles the production of specific templates.

Results are forwarded to awaiting templates via the

distribution network in the simple case and results are

returned to the vector store and the i r enab I e tokens

forwarded when dea I i ng wi th gener i c operat i ons.

The d i str i but i on network connects the outputs of each

P.E. with aì I cel I blocks. lt must be possible for the

output of any P.E. to be routed to any ce'l I bìock since

there is no guarantee of which P.E. will execute a given

i nstruct i on . Th i s means the network must be fu I I y

connected, but i t does not impl y that i t must be an

immediate connection. Such a network impl ies a tremendous

packaging problem, increases cost dramatical ly, and is

unnecessary since a dataflow machine may tolerate some

blockages during the transmission of result packets.



53

4"2 PROCESSOR STRUCTURE

The prototype system contains eight fundamentaì P.E.

types . These types ref I ect the var i ous d i fferent sor ts of

operat i ons that may be performed . Desp i te the fact that

there are eight different P.E. types, there are only two

different P"E. organizations. These t\^/o organizations

correspond to those instructions which deal inherently with

complex data items (such as a dyadic transpose) and to those

which are primari ly scalar or which are easi ly derived from

scalar operations. The two organizations differ in the way

i n wh i ch they are des i gned w i th respect to access i ng the

vector store. Those dealing with compìex data directly

implement smal I pipel ines to speed mul tipìe consecutive

accesses to the vector store.

D i st i ngu i sh i ng between P. E. types wi th i n each

organization is a matter of examining the microcode used to

implement their functions. A more efficient impìementation

of al ì P.E.'s could be done using custom logic but the

inefficiencies of a microprogrammed P.E. are more than

acceptable for a prototype. Not only is it a cheaper

approach but it aìso provides some margin for error in

initial designs. Should a function be incorrectly

impìemented, it may be changed with relative ease in

microcode, whereas it cannot be easi ly changed in hardware.
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Each P.E. is implemented using Am2!01 bit sl ice

components. The choi ce of th i s fam i ì y was made for three

reasons:

o Hicroprogrammabi ì i ty

o Extendabiìity (Bit Stice)

o Availability of lnformation.

A block diagram for a typical processing element is given in

Appendix C. l,licrocode for the P.E.rs is (fortunately) beyond

the scope of th i s thes i s. A descr i pt i on of each of the

foì lowing eight P.E. types is incìuded later in this

sect i on

t)
2)

Addition 6 Subtraction
Itlul tipl ication 6 Division
Vector Decomposition
Hatrix Decomposition
Pipelined Addition t Subtraction
Pipel ined llultipl ication E Division
Log i ca ì and Compar i son
Special Functions

For the prototype, there are two groups of P.E.'s, each

servicing one half of the cel I bìocks. Each group consists

of an ent i re set of P. E. 's (t¡re quant i t ies of wh ich were

chosen based on expected usage) as detai led beìow:

addlsubtract P. E. 's
multiply/divide P.E. '
vector decomposit¡on
matrix decomposition
pipeì ined add/subtrac
pipel ined multiply/divide P.E
logical and comparison P.E.rs
special function P.E.

To avoi d probl ems wi th ìocal i ty, the division into halves is

This should guarantee ai n an i nter I eaved fash i on.

3
4

5
6
7
8

oJ-
o4-
o2-
ol
ol
oì
o2-
ol

P.E.rs
P.E.

S

t P.E.
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performance advantage even for programs which occupy only a

smaìl (ìocal) part of the activity store. This dirrision wilì

hopefulìy limit the contention for P.E.rs when only a single

P.E. is implemented for that operation type.

Each P.E. has associated with it a hardware queue for

incoming tempìates. The size of this queue depends on the

type of the P.E.. The more often a particular P.E. type is

expected to be subjected to sudden bursts of activity, the

more eìements it will have in its queue. Data from the

vector store may be prefetched for i nc I us i on i n the

templates from within this queue. An efficient mechanism for

routing such incoming data to the appropriate templates must

be provided. A smal I associative store may be appropriate.

The add/subtract P.E. is the simplest of aì l. I t provides

l6-b¡ t twors complement addi tion and subtraction almost

di rectly in hardware. The Am290ì processor sl ice wi I I

di rectly perform these operations and thus the microcode

should be exceedingly simple thereby providing a P.E. which

executes very quickly. This is desirable since simple

addi tion wi I I undoubtedly be the most frequently used

operat i on.

The multiply/divide P.E. is nearly identical in structure

to the add/subtract P. E . but makes use of extens i ve

microcoding to perform its functions. This P.E. type wi I I

also be used quite heavily and, as such, its turnaround time
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shouìd be.as fast as possible. Due to a microcoded

implementation, however, each unit's performance wi I I be

somewhat limited. For this reason, four such P.E.'s are

implemented within each group. By having muìtiple units, the

throughput rate on series of these operations is increased.

Furthermore, the queue size on this unit is ìarger than that

on the add/subtract P.E.. Thus, it is able to buffer a

sudden burst of mu I t i pl y/div i de operat i ons.

The pipel ined

mul ti ply/aivide) are nearly identical

implementation of a small pipeline to

for operat i ons such as reduct i ons (+/ ,

pipel ine divides the execution of each

phases:

vers i ons of these un i ts (addlsubtract and

except for the

enhance performance

-/, x/, etc.). The

operation into five

l. Operation ldentification (Phase 0)

2. Resuìt lnitial ization (Phase l)

3. Operand Fetch (ehase F)

4. Execut ion (Pfrase E)

5. Resu I t Hand I i ng (Phase R)

The possible overlap in this system is shown in the Gantt

chart of F i gure 12.

The additional pipeline hardware which enhances access to

the vector store should provide a very efficient

implementation for reduction and simi lar operations. Since

these are inherently serial operations, they are better
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performed by a p¡pel ine processor than by a more advanced

R

E

F

0

t ime

F i gure 122 Gantt Chart for P i pel i ne Over I ap

S I llD or 11l I'tD mach i ne

The ìogical and comparison P.E. ìs again a very simple

unit with an efficient and smal I microcode implementation.

Th i s P. E. i s hardware-equ i va I ent to the addlsubtract P. E. .

Its microcode is, naturalìy, entirely different.

Unexpectedly, it is also one of the most heavily used P.E.

types. This is due to the fact that the conditions section

of each rule must generate at least one comparison or

log i cal operat i on templ ate except i n the degenerate case.

Due to the number of ìogical operations that wi I I be

generated, multipìe units are again impìemented.

The matrix and vector decomposition P.E.rs perform

simpl ification (unravel I ing) operations on generic
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templ ates. 'fhe matr i x decomposer accepts templ ates referr i ng

to data i tems of rank greater than one and produces

tempìates which describe an equivaìent set of operations on

data i tems of exactly rank one. The vector decomposer

accepts data items of rank one (generated by either the

matrix decomposer or expìicitly by the programmer) and

generates operation-explicit templates to perform the

requi red operation on an element by element (i.e. scalar)

basis. This is a concept similar to the rrl-Structure

Producer " of Arv i nd [4] .

Both the matr i x and vector decomposers operate i n

conjunction with the activity store manager. This storage

manager accepts templates from both decomposers, al locates

space for them in the activity store, and copies them into

the store. lt maintains a free-space I ist for the activity

store and controls the movement of alì data both into and

out of the activi ty store. Thus, the downloads and upìoads

that occur between the prototype and i ts host are

coordinated and controì led by the activity store manager.

l/0 templates (as wi I I be discussed shortly) are stored in

low memory and the storage manager ignores them. lt begins

al locat¡ng template space above these fixed locations.

Unfortunately, once something has been dynamical ly

al located, it must also be dynamical ly freed. This

represents a s i gn i f i cant probl em for the storage manager.

Dynamic freeing is necessary since template sizes differ
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between gener i c and non-gener i c i nstruct i ons and thus a

simple list of f ree and allocated tempìate rrslots'r is

inadequate. There must be some means of tracking dynamicaì ly

al located templates sp that once they have been executed

they may be reclaimed. This may be accompl ished fairìy

easiìy by incìuding a hardware check on entry to each P.E.

(excìuding the matrix decomposer). At thìs point, if the P.E.

can determine that the template in question was dynamical ly

allocated, it aìready has the address of the template

avai lable and ît may directly inform the storage manager.

The information reguired to determine this is easily

provided by the use, of a single status bit within each

temp'l ate, which indicates whether it has been statically or

dynamical ly al located.

The storage manager must also worry about free space

amaìgamation i n an activi ty store which has the potential to

become severìy fragmented. This is a problem which does not

lend itself to a simple hardware solution and therefore, the

storage manager is microprocessor based. The relatively

complex functions required are then easi ìy implemented.

Clearly, however, the capabi I i ties of a microprocessor wi I l

be quickly exceeded in such an environment. To al leviate

this problem, special support hardware must also be

provided. The microprocessor has access to an associative

store for the free I ist. By making clever use of this store,

very fast free space amalgamation may be performed.
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Addresses of entries in the queue may be compared to aì ì

possible boundary addresses in paral leì to determine

adjacency. This saves the normal cost of free ì ist searching

which is incurred using software. This also provides a more

general, albeit more expensive, approach than therrbuddy

system" for storage management s i nce no restr i ct i ons are

placed on the size of alìocations by the impìementation.

The benef i ts of such an assoc i at i ve store are a ì so ev i dent

during allocation. lf comparison is made for greater than or

equal rather than for equality and if a field is provided

containing the size of the free areas, then the first

responder yields a sort of first-fit selection. See

Figure 13.

Finaìly,

microstore

operat i ons

the

to

which

special function P.E. uses a large

fac i I i tate the execut i on of those APL

are not easiìy or efficientìy impìemented

s i ze_entry address_entry

Figure l3: Associative Store for Al location 6 Freeing

us i ng the P. E. types a I ready d i scussed. These operat i ons

i nc I ude:
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o Grade-up and Grade-down

o Transpose and Dyadic Transpose

o Aì ì shape related operators

o Shape and Reshape

o Rave l , Lam i nate, and Catenate

o Take and Drop

The characteristic that distinguishes these operations from

all others is a high percentage of execution time spent

manipulating bytes in memory. Such storage-intensive

operations do not suit paralìeì execution any better than

they do serial. ln a singìe memory such as the vector store,

nothing is to be gained from coding the data movement in a

paraìleì f ashion. l'lany paraì lel requests to memory wiìl

simply be serial ized by the hardware. To improve this

situation, onìy a singìe such unit is provided and, as shall

be seen shortly, the vector store is interleaved.

Al I P.E. types have the abi I ity to access data from the

vector store. This is necessary since a generic template

may generate e I ement temp I ates of any operat i on type.

Unfortunately, a potential for heavy contention is created.

At any given time, all twelve P.E.'s as well as the storage

manager may be attempting to access the vector store. The

use of a high speed memory and a clever cache organization

may al leviate many of the problems but is sti I I insufficient

to guarantee freedom from contention. Thus, ãñ effort must

be made by the rule-based APL compi ler to detect compi le-



time unravel lable operations. Wherever possible

practical, the unravelling must be done at compiìe time.

compì ete descr ì pt i on of the I'tempì ate setrr see Append i x

ln an effort to avoid deìays at execution time, each P.E.

wiìì, if necessary, prefetch data from the vector store

while a tempìate is awaiting execution in the queue.

Hopeful ìy, this wi I I ensure that the data from the vector

store wi I I always be avai lable to the P.E.'s when needed.

This is important if a program contains many decomposable

veclor/ar ray operations si nce these wi ì I generate very many

element templates which refer to the vector store.

4.3 INSTRUCTION SETS AND l'lICROPROGRAIII'IABILTTY

This section describes

caì I ed that) impl emented

the instruction set (if it may be

on the prototype system.

62

and

For a

B.

The instruction set is comprised of a number of generic

and non-generic tempìates which correspond to the primitive

operations used to implement al ì of the rule-based APL

operations. Unexpectedly, this amounts to a relatively smal I

number of operat ion templates. I'lany of the more advanced

APL operat i ons are eas i I y decomposed to express i ons

involving only these primitive scalar functions.

There are templ ates requ i red to perform bas i c add i t i on,

subtraction, multipl ication and division. Additionally, the

compar i son operat i ons and the res i due funct i on must have
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primitive templates. Aside from these, however, few others

are needed. ln fact, others are provided simply for

efficiency reasons since they are derivable from these basic

operations. For example, signum may be implemented as a

series of the folìowing three parallel operations:

(x=0) ->
(x>0) -> [signum<- l]
(x<o) ->

This means that even many of the APL primitive scalar

functions may be impìemented in terms of still more

primitive functions. These most fundamentaì functions may be

referred to as the "bas i cil funct i ons.

A distinction is made between vector/array and scalar

operations. Vector and array operations generate generic

templ ates wh i ch have a d i fferent format from thei r non-

gener i c counterparts. A gener i c templ ate must spec i fy not

onìy the non-generic (element) form of the template but also

the extent to wh i ch i t appì i es. Th i s amounts to the

spec i f i cat i on of i ndex ranges for wh i ch the el ement

operat i on

r ange

r educed
r ank

operat i on

Figure l4: Format of a Generic Tempìate



6\

operat i on i s to be generated. See F i gure ì 4. Thus,

template sizes wi I ì be directìy proportional to the rank of

the data item the operation is referring to. For each rank

greater than one, both an i ndex range spec i f i cat i on and a

reduced-rank form must be specif ied. l'latrix addition, for

instance, will generate a generic matrix template which

specifies a generic vector template as its element template

and which generates the range of al I possible rows as its

extent. Each of these templates in turn wi I I generate a

non-gener i c el ement tempì ate and as i ts extent the col umn

subscript within the row aìready establ ished for the vector

addition. Similarily, many other non-scalar operations may

be decomposed into scalar operations. ln general, an n-

dimensional generic template generates sufficient n-l

dimensional generic or non-generic templates to cover the

nth dimension.

This scheme does yieìd a large number of tempìates (one

for each scalar element operation plus those for the generic

operat i ons) but s i nce the vast maj or i ty of them are

temporary, the cost may be i gnored. An act i v i ty store wh i ch

may accomodate all templates at once is not required. Since

many templates wi I I exist only for a short period of time,

the activity store may be much smal ler. ln fact, it may be

quite small Ìndeed if an intelìigent storage manager is

used. When this is the case, the storage manager may simply

suspend production of new reduced-rank templates unti I older

ones have executed and been freed.
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Al I of these basic operations may be trivial ly

implemented either in hardware or via microcode. lt is the

more complex operations which are questionabìe. þJhat is

clear, however, is that should there be any difficulty, it

wiìl undoubtedly be easier to impìement the operations in

microcode than hardware. Thus, a microprogrammed

impìementation is a good choice, but as with any mìcrocoded

appl ication, performance is exchanged for simpl icity. High

speed performance of these operations is not going to be

achieved without a significant investment in custom

hardware.

4.4 TTE COMPILATTON PROCESS

The statement that APL is the base 'l anguage for the ruìe-

based dataf I ow processor i s not an ent i re truth. The

language used for programming is ruìe-based APL. lt should

be clear from the preceeding section that the base ìanguage

is in fact a compiled version of APL. The hardware does not

recognize APL directly but rather accepts a tempìate

oriented version which is easi ly derived from rule-based

APL .

The end performance of the prototype will depend quite

heavily on the quality of the translation done by the

compi ler. Since some of the paraì lel ism is being detected by

the compi ìer, it is necessary that the compi ìer be able to

detect and exploit as much paral ìel ism as possible. But,
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more importantly, it is necessary'that the compi ler be âbìe

to deal with detected paral leì ism "inteì ì igently". There are

instances in which taking the simple route to paraìlelism

wi I I produce an inefficientìy compi led form (for exampìe:

when compi le time unravel I ing is postponed unti I run time).

The comp i I at i on of APL (as opposed to i nterpretat i on) i s

a feasible but non-trivial problem. The structure of the

language is such that it is difficult to compi ìe using

simple techniques. This relates to both the syntax and

operation of the language.

As far as syntax goes, APL is geared towards interactive

execut i on. Th i s means that there i s no concept of a

mainline. The mainline is simply whatever is typed in by the

user. This is not a distinct problem, since many

interpretive languages (such as LISP) have compi ìed versions

which run well in a batch environment. By omitting

statements which directly violate compi lation (such as the

EVAL statement in LISP), ârr interpretive language may be

rewritten as a compi ìed one. ln APL this means that the

rrexecute" operation must be el iminated. Having omitted

execute, âS is done in rule-based APL, âìì other language

constructs are cìose to compi lable. (The remaining problems

will be discussed shortly.)

By defining a ruìe-based APL program to be a series of

function specifications fol lowed by a series of grouped APL
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statements which use the functions, an unpleasant but

acceptable syntax is provided. The series of trai I ing

statements forms the mainl ine of the program. A faciì ity is

also included for grouping mainline statements. By enclosing

such statements within '[' and ']', the programmer may

specify that the enclosed operations may occur in paralleì.

This provides the abi ì i ty to specify procedure-level

paral lel ism.

The argument may be made that the user should sti I I be

permitted to interact with the functions provided. This

argument i s i ncorrect s i nce the construct i on of a

supercomputer, such as the rule-based dataflow processor, is

done to provide the abi I ity to solve ìarge and complex

problems. Having user interaction with the program directly

confl icts with the theory behind such a machine. Either the

user wíll sìow the machine down due to heavy interaction or,

if the problem is suitably complex, the user wi I I be left

waiting during the solution of intermediate problems. Thus,

it makes more sense to include the function invocations as a

part of the program (i.e. as a mainì ine) .

Two operational features of APL also make its compi lation

difficult. Firstly, the type of a variable is undefined

unti I run time. Fortunately, this is not a problem in ruìe-

based APL. Due to the support of only integers, the partial

typing (as to rank) of variables and the single assignment

rule, the compi ler need not worry about a variablers type
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changing during the execution of a program. Declaration of

variables also solves a probìem of parseabi ì ity. (lne

statement rA+Br may be ambiguous. lts two possible

interpretations are dyadic '*', and monadicr+'where A is a

function with a single argument.) The second feature of APL

which causes difficulty is that the shape of a data item of

rank greater than one is not fixed. The size of a data item

i s not stat i c and may change as execut i on proceeds. Th i s

means that the compi ì er must generate spec i al run-t ime

information which is to be stored with each data item. The

net resuìt is increased code size due to the addition of

code for both run-t i me checks and code to ca ì cu I ate

information at run-time. Additional ìy, a reìatively

substantial package of runtime routines must be supported.

I n part i cuì ar, both a good garbage col I ector and/or space

al locator must be provided. There is some guestion, however,

as to whether these should be implemented in software or in

hardware.

ln general, the translation of a rule-based APL statement

wi I I be as fol lows: Each statement consists of two portions,

a conditions section and an actions section. Statements from

the conditions section wiìl be translated to a series of

cond i t i ona I templ ates as appropr i ate and necessary. The

output of the last tempìate in this series will serve to

enable the templates corresponding to the actions section of

the rule. Each action wi thin the actions section wi I I
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nìore ìikeìy

completion

other ru ì es
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w i ì ì generate a sequence of temp I ates .

of these act i ons wi I ì then i nd i rect I y

and the i r assoc i ated tempì ates.
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4.5 [lElllORY STRUCTURES

The system memory is divided into two parts:

o Activity Store

o Vector Store

parts

and

serve d i fferent

their organizations

The activity store is a simple memory, being no different

in organization from a singìe bank of memory in any

microprocessor. There is only one unit which fetches enabìed

templates from the activity store and the fetches are in no

way rel ated. Th i s means that the use of mu I t i pl e memory

banks and/or a cache has no affect on performance. Due to

the nature of a dataflow machine, local ity of reference is

low.

The vector store on the other hand i s exact I y the

opposite. lt wiìì contain vectors and arrays organized in

conveniently adjacent locations. These vectors are accessed

more or less as a whole (albeit by many different templates)

and thus local ity of reference is high. A prefetch buffer

functions (as already

d i ffer great I y due to
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may be loaded with data from the vectors with assurance that

the data wi I I soon be regui red. Despi te the fact that

different templates are accessing the data, references

shouìd be fairìy uniform. Aìl such eìement templates wilì be

enabled at the same time and therefore wi I ì ì ikely begin to

execute at approximately the same time. This means that much

may be gained by using conventional memory enhancement

approaches. ln the prototype, this impìies fetching four

consecutive words from the vector store at a time and the

use of a ìarge high speed buffer. These additions should

provide a significant increase in performance whiìe the

machine is executing vector operations. Their use, however,

is not as straightforward as it may seem.

Prefetchi ng mul tiple bytes per access i s no problem.

t'lultipìe banks are used and a f etch f rom some location

resuìts in the fetch of corresponding locations in other

banks. A cache, however, presents a somewhat d i fferent

problem. Al though the basic strategy i s the same, a dataflow

machine forces the deveìopment of a new cache replacement

algorithm. ln a dataflow machine, ¡t is quite conceivable

that a required block may go unaccessed in the cache for

some time. A vector operation may be started which creates

templates to perform the desired operation on each vector

e I ement. These e I ement temp I ates are then queued for

execution by the P.E.'s just as any other templates are.

Thus, a vector may be fetched into the cache as the first
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few eìement templates are executed. After thi s, al I

available P.E.'s may be occupied executing different

templates and it may be some time before another access to

the vector occurs. This does not present a problem if no

other vectors within the cache are being accessed. However,

if they are (i.e. if the other templates being executed are

for generic vector instructions), then a normal cache

replacement aìgorithm might replace blocks which are soon to

be needed

ln both memories, there is the possibility of overflow

occurring. ln a practical system, this possibi I ity would

have to be deaìt with by some sort of automatic data

migration. This migration wouìd take the form of paging

hardware and software in a conventional computer system. ln

a datafìow system, this approach is not feasibìe due to the

lack of execution locality. A swapping system may be more

appropriate within certain loading restrictions.

Fortunately, this problem is not addressed in the prototype

system. Should an overflow situation arise, it wi I I be

detected and the system wi ì l shut down graceful ly.

4. 6 ßOIIIINÊ NETITORKS

The type of routing network employed in this design is

known as a Benes network: Although it is a blocking network

(i.e. some delays in routing may occur due to channeì

activi ty) , i t does offe. u g"n"r"t connection between n
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inputs and n outputs. This network ideal ly meets the needs

of a dataflow machine. lt is cheap yet permits direct

connection from input to output and, due to the nature of a

dataflow machine, its inherent inefficiencies may be

to I era ted .

The construction of such a network is trivial when given

a simple 2x2 routing element as a bui lding bìock. Figure 15

g ives a descr i pt i on of an 8x8 Benes network and F i gure ì 6

describes the 2x2 router on which ¡t is based. A simplified

circuit diagram for the router may be found in Appendix c.

Note that the REQ and ACK handshak i ng s i gna I s shown i n

Appendix c are required due to the asynchronous nature of

Figure 15: An 8x8 Benes Routing Network

the network.

because such

that a more

and, shou I d

extrapolated

The choice of an 8xB router is

a router is VLSI implementable. lt
advanced 6l+x6l+ version might also be

th i s be the case, i ts des i gn may

from the 8x8 network shown.

primariìy

is likely

fabr i cated

be easi ly
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The Benes network was chosen as the cheapest form of

network that met al I the requirements. A basel ine network is

cheaper and does meet the genera I N: N connect i on cr i ter i a

but suffers a higher probabi I ity of blockage. lf a sti I ì

simpler network were to be used, recirculation would be

necessary and th i s wou I d add to the hardware comp I ex i ty. 0n

the other hand, a Clos or s¡milar network would provide the

required connectivi ty but i ts design makes it cost-

prohibitive. ln a Clos nutruork .o.t is incurred for the

unnecessary feature of non-blockage.
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Each 2x2 router accepts a packet which has the form:

des t da ta

The router examines the ìeftmost bit to determine on which

of its output I ines it should pìace the packet. Before

forwarding the packet, it does a rotate one bit position to

the left. After passing through the entire routine newtork,

the result is a packet which has the form:

da ta des t

This approach also guarantees that, at every stage, the bit
to be used in routing is in the leftmost position (t¡ris is
conven i ent for i mpl ementat i on purposes) . G i ven an 8x8 Benes

network constructed of these 2x2 routing elementsr ân

eff i c i ent network for dataf ì ow mach i nes may be constructed.

There are five leveìs in each 8xB network but only eight

possible outputs. At first, this seems to present a probìem.

Five levels of 2x2 routers requires five bits of destination

address for routing but only three are required to select an

output. Consider Table 2. From this table it is clear that

the destination (output I ine) may be selected using only the

I ast three b i ts of the f i ve. For tunate I y, due to the

structure of the Benes network, the f i rst two dest i nat i on

bits are'rdon't caresrr. This means that they may be chosen

so as to maximize efficiency. By dynamical ly choosing from
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0u tpu t Dest i nat i on Address

0
I

2

3
I+

5
6

7

xx000
xx00 I

xxOl0
xxOl I

xxì00
xxl0l
xxl l0
xxl I I

TABLE 2

Choice of Destination Bits

the four possibie paths, the I ikel ihood

reduced and so i s network congest i on.

output/dest i nat i on addresses for an 8x8

of collisions is

code set ofThe

network at some

0utput Dest i nat i on Address

0
I

2

3
4

5
6

7

00000
I l00t
0r010
l00l I

t0t00
0l ì0t
I I I t0
00t I I

TABLE 3

0utput Address Code Set
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using this network,

i ncurred (caus i ng

rel at ive eff i c i ency

be that shown in Table

the overhead of extra
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3. Thus, by

address bits is

simpl icity andbuses to be wider)

are ma i nta i ned.

but

4.7 ru Il0 SUBSYSTEil

A fundamenta ì guest i on i n any dataf I ow system and one

which has not yet been addressed in this thesis is that of

how l/0 is accompì ished. lf the dataflow machine is treated

s impì y as a h i gh speed attached processor for

computational ly complex probìems, then l/O is non-cri tical.

ln this case, ãñy data may be downloaded with the dataflow

program to be executed. This effectively eì iminates the need

for an l/0 system since data can be downloaded, and results

may be uploaded at program completion. lf a general purpose

datafìow machine is to be impìemented, however, a truly

sophisticated l/0 subsystem must be incorporated. Users must

certainly have direct access to the machine via a terminaì

or other peripheral device and there wi ì I doubtlessly have

to be support for a fi le system and I ikely for a demand-

paged operati ng system as wel I . The I /0 subsystem i s

normally seen as fitting into a dataflow system in the

manner shown in Figure 17,

I t is not immediately clear how an l/0 subsystem should

physically f¡t into a dataflow architecture. Consider,

part¡culari ly, such advanced devices as Dt4A disks and bit-



77

Data
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F i gure l7 z The Dataf low I /0 Subsystem

mapped disprays. r t would seem that these devices are
partial ly incompatibre with the datafrow moder and that
special considerations must be made in order to provide
support for them- rf ail r/0 devices are divided into two

c I as ses based on whether or not they per f orm 0r,rA then the
classes may be dealt with separately and more simply.

consider first the non-Dr'rA devices such as terminars and

printers. These peripherals are controlled in one of two

ways' They are ei ther interrupt-driven or por red. This
distinction may disappear in a datafrow machine depending on

the choice of imprementation. Each device may be thought of
as producing a byte of rnformation asynchronously which is
then to be used in one or more templates (in the sense of
input at least). Before data has actual ly been input, the
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templates making use of that data wi I I be disabìed. Once it

is input, those tempìates should be enabled. This enabl ing

is accompl ished at the time of template update just as it

would be if the data had been produced by the execution of

an operation frorn another template. The connection between

an l/0-produced result and a template-produced result may be

made if a new template type is considered.

Assuming the memory mapped l/0 scheme used in most micro

and mini-processors, \^re may def ine special input tempìates

at the locations in the activity store corresponding to the

l/0 ports of various devices. IVhen a byte is input, it is

placed into the data portion of the input template and the

enable bit for that template is set. The setting of this bit

is analogous to the setting of a 'rregister-f ull¡' bit in the

status register of a peripheral device (or to the generation

of an l/0 completion interrupt). When this template is

enabled, it functions as a destination-extension tempìate.

ln other words, the data value wilì be distr¡buted to one or

more h/ai ting tempìates. These templates wi ì I be those that

were awaiting the input of the data value.

So far, this description has dealt with the handl ing of

input operations only. Output operations may be handled in

a similar manner. ln the case of output, however, the

dataflow program must wait only until the desired output

device is avai lable. Thus, the template which copies data

into the output-template should be enabled when that device
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is ready to accept another datum for output. This is only

sl ightly different from the input scheme and is no different

from standard computer systems. For exampl e, the f46850

ser ial asynchronous interf ace f or the t'10T0R0LA 6800 f ami ly

of mi crocomputers provi des a TDRE (Transmi t Data Reg i ster

Empty) flag in its status register. This flag indicates when

i t i s prepared to accept more output.

The format of input and output tempìates is shown in

Figure 18. tne input tempìate is very straightforward having

a data field and three (an arbitrary number) destination

address fields. The output template contains a data fieìd

and a singìe destination address. However, this destination

address is used in a different way for output templates.

lnstead of routing data produced to the given destination,

it accepts data from it when enabled. This may also be

thought of as passing an enable token to the template

I'INPUTI'

Da ta

Dest- I

Des t- 2

Des t- J

IIOUTPUTI'

Da ta

Dest.

Figure l8: lnput and 0utput Template Formats

producing the data to be output.
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The cìass of devices which support Dl4A must be handìed in

a very d i fferent manner . The techn i que of us i ng status

information returned by the device/peripheral to enable

appropriate templates is still valid except that data

receipt/transmission must be handled differently. Normal ly,

data is seen as being an integraì part of the templates in a

dataf low machine. This is easily maintained in the non-Dl,lA

devices through the use of destination-extension templates.

It is, however, not feasibìe for Dl'14 transfers. This implies

that D¡{A must be performed to various scattered addresses

within the activity store which correspond to template

ìocations. The situation may be improved upon slightly if

the DtlA transfer is made to a fixed set of addresses which

then broadcast the data to appropriate templates (much as

was done in the non-Dl4A case). From a physical viewpoint,

however, this is exceedingìy restrictive and d¡fficult to

implement. Furthermore, it presents a difficult programming

envi ronment. A better solution i s to permi t data and

templates to be isolated from one another such that the

templates simply contain pointers to data areas within the

separate vector store (j ust as uras cons i dered ear I i er for

vector operations). The instruction which initiates the

operation may then partially enabIe an instruction which

wi I I await the l/0 completion interrupt in order to provide

the balance of its enabl ing requirements. (fne part¡aì

enabling is exactly analagous to passing only one value to a

tempìate which requires two for enabl ing.) ffris template
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that has been input. Again there

may be taken for output.

8i

to continue with the data

is a simiìar approach which

l/0, as usuaìly envisioned on a serial machine, is

inappropriate on a dataf low computer. l'lost algorithms tend

to run l/0 ìoops (with data processing within the loop) on a

single group of input data. This is clearly inefficient in a

case in which sufficient processing elements exist to allow

more than one set of data to be processed concurrently. lt

would be far better if multipìe data items could be read and

processed at the same time. Exactly how this should be

accompl ished is not clear. Should data be stored on multipìe

voìumes so that more than one datum may be loaded for

processing? Should data simply be prefetched in sufficient

quantities from a single device or should some other foreign

approach be taken? The multi-volume approach is unl ikeìy.

Firstly, the complexity of maintaining a dynamic database on

multiple volumes makes this approach much ìess than

desirable. Secondly, it is impossible to use on systems

where only a few storage voìumes are avai lable.

The rrbufferingrr technique is a far more likely candidate.

Not only is it a concept w¡th which programmers are

fami I iar, but also one which is easi ìy implemented. lt is,

of course, inappropriate for any interactive appl ications

where storage i s not i nvolved (i .e. where vaì ues are

directly consumed/produced by a running program) but so are



all other schemes. Although a datafìow machine is

as being an ideal interactive architecture, if

paged activ¡ ty store and vector store are

i nteract i ve appl i cat i ons may be performed

efficiently than on current archi tectures.
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not seen

a demand

prov i ded,

no I ess

The prototype system currently being described does not

supporL l/0 operations of a general nature. lnstead, it

s i mp I y prov i des the more common up I oad and down I oad

f ac i ì i t ies and support f or non-Dl'lA devices. These

capabi ì i ties are sufficient to permi t testing of the data

driven mechanism. lf a second prototype were to be designed

fol ìowi ng the success of the f i rst, a major area of

concentration should be the l/0 subsystem.



Chapter V

c0NcLusr0Ns

Both the ru I e-based and dataf I ow systems are qu i te

similar. This thesis has shown that they are, in fact,

i somorph i sms of one another . The dataf I ow mode I prov i des an

eff icient system on which to implement a rule base, whi le

the ru I e-based mode ì prov i des an i mproved programm i ng

environment for dataflow machines. These two systems do, in

fact, suit one another very wel I and when merged, provide a

foundation for a viabìe paral ìel system.

5.1 FEASABILITY

The question of feasabi I ity is intimately tied to the

implementation of the data dr iven mechani sm. Since the

software model seems sound (particuìari ly in certain

appl ication areas), it should not present any overly complex

problems. The I imititations on implementation wi I I

undoubtedly be imposed by the hardware. ln particuìar,

bandwidth problems wi I I I ikely I imit the size of feasible

impìementations.

Never the I ess, successf u'l prototype dataflow systems have

support to the bel ief that theI endsbeen built and this

system is feasibìe. This success, coupled with the advances

8t
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being made in VLSI, shouìd make the rule-based dataflow

processor not only feasibìe but also economicaì ly viable

within a few years. As the cost of VLSI designs comes down,

it wi I I be possible to efficiently fabricate the various

system components of the rule-based dataflow processor.

A I I th i s specu I at i on about future trends and system

efficiency is encouraging. However, very little accurate

i nformat i on may be g I eaned w i thout the use of extens i ve

simulations and a running prototype. Real izing this,

further conjecture on feasibi I ity is inappropriate.

5.2 APPLICATIONS

Clearìy, there is a wide range of appl ications for any

paral lel system and the ruìe-based datafìow machine is no

except i on. Wi th a su i tab I e base I anguage, the system

provides a very usable parallel environment. lf, for

instance, the base language were chosen to be ApL (as in the

prototype but with added support for both real numbers and

characters) , i t would be useful i n many areas such as

graphics and simuìations.

The rule-based dataflow processor does not represent a

general appì ications programming system (after al l, FORTRAN

is not supported). Rather, it is oriented towards the

construction of expert systems. Nevertheless, the

applications domain which is addressabl,e may be changed
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quite drasticaì ìy (within the rule-based format) by a change

in the base ìanguage (trris change might even be accompl ished

via a microcode load). Possible alternate language

cand i dates are PROLOG lZsf , L I Sp and olher funct i ona ì

languages. Aìso, some research has advocated the use of a

dataflow machine in database appì icationsIlO]. Consequently,

some sort of reìationaì caìcuìus or aìgebra may also form a

base I anguage.

I f the f i fth generat i on push takes hoì d, and the new

directions in programming (PROL0G, etc.) are accepted, then

the ru ì e-based dataf I ow concept may yet prove to be a

generaì app'l ications system. lf not, by varying the base

language and providing some hardware support, it wi I I sti I ì

be a useful system for many probìems. Also, if a programmer

is wi I I ing to sacrifice the benefit of middle-level

parallelism, he may code in a more familiar language

(APt,tlSP,etc.) and sti I I enjoy a significant performance

benef i t "



Appendix A

RULE-BASED APL

This appendix serves to provide a detai led description of

the prototype

documents the

the syntax of the language used

ru I e-based dataf I ow processor . The

to program

fol lowi ng

APL operators supported for the prototype:

î

v

:

+
+

;
x
?

?

€
p
p
ì

compar i son for
compar i son for
compar i son for
compar i son for
compar i son for
compar i son for
logicat 0R
logicat AND
logical NOR

logical NAND
nega t i on
subtract i on
i dent i ry
addition
division
s i gnum
multipl ication
roll
dea I

membersh i p
shape
r eshape
logicat NOT
take
drop
i ndex generator

I ess than
greater than
equa I s
greater or equal
less or equal
not equa I

f
+

1

1

0
0
a
a
¡t

I
L

A

I
I

e
e

i ndex of (rank i ng)
reversa I

rota te
transpose
dyad i c transpose
power
max i mum
minimum
grade up
grade down
factor i a I
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J-

T

I

I

combinations
i ndex i ng
decode
encode
absol ute va I ue
res i due
rave I

ca tena te
laminate
reduc t i on
scan
compress i on
expans i on
outer product
i nner product
i nput/output
ass i gnment
renam i ng
impl ication (rule-based)

f/,fl
f\, f\
/,1
\,\
o.f
f.g

:
.+

These operations appear within a general syntax for
based programs. The syntax of a rule_based ApL statement

(APL conditional expr.) ->

rule

is:

Where: 'APL statementsr is a series of ApL statements

separated by d i amond characters (,O,) .

This means that a typ¡cal rule_based ApL program wi I I

consist of a number of these statements assembred as rure-
based APL funct i ons. The structure of such a funct i on i s

given below:

VR+ OP7 NAME Op2 ;

I <TUNTAL_CLAIJSE>

VAR-DECLS

l

BODY OF FUNCTTON

V



88

The format for "VAR-DECLS" is as would be expected for any

APL local variable declaration. The only exception is in the

case of multi-dimensional (rank greater than one) variables.

They are suffixed by a subscript specification which gives

their rank" For instance, a declaration of I'FLANGE[2]" would

give the variabìe FLANGE a rank of two. Being consistent

with APL, the exact size of each variable may change within

this rank. Variable declarations are separated by

semicolons.

The <initial_clause> is

i ni ti al izalrion statements.

of a <mainìine> as will be

opt i ona I and conta i ns a ser i es of

The syntax is identical to that

discussed shortly.

The point of interest in this syntax is the specification

of variables as being either scalar or N-dimensional array.

This must be done for ALL variables in a ruìe-based APL

program. Other important differences between APL and rule-

based APL are the single assignment rule, lack of global

variables and the i I legal ity of modifying input parameters

to a functions. Al l of these ilrestrictionsil are made to

ensure that no side affects will exist in the compiled

prog r am .

ln actual ity, modification of input parameters
syntactical ly incorrect. Rather, the assumption
val ues wi I I be propogated back i s. Note that
consistent with the use of the renaming operator.

is not
that the
this is



The s truc ture of

fol lowing:

<program> ::= vv

8g

a rule-based ApL program is the

<funct ion defs>

<progname> lS i <function defs>
<maintinei Ì vv

::= <function_def> 
I<funct i on_def> ifunct i on_defs>

:= ¡trt a function def ínition as
prev ious I y descr ¡bed. ,rr

<funct i on def>

<mainl ine>

<mainl ine

::= <mainline stmts>

stmts> : := <ma i nl i ne stmt>
<mainl ine_stmt> <mai nl ne_s tmts>

<mainl ine stmt> : : = [ <ap l_s tmts> ]
<apl_stmt> 

I<apl_stmt> <ap l_stmts>

<apl_stmts> ::=

<ap l_s tmt> rtrc ¿¡y leg it imate ApL statement
w i th i n the cons tra i nts of therule based implementa¡ie¡ rrrt

There is a strict decraration-before-use rure which accounts
for the decraration of functions at the start of the
program' The grouping of statements in the maínr ine using
"f" "nd "1.', permits the specif icatíon of paraterism within
the mainrine. This simplif ied syntax for parar rerism wi'
al low inexperienced paral lel programmers to make effective
use of the system via the invocation of pre-wr i tten parar rel
funct i ons.



Appendix B

INSTRUCTION SET

This appendix describes the instruction formats

the prototype system. They correspond directly to

operations supported and the special functions (i.e.

templates) provided.

used i n

the APL

gener i c

The various rule-based APL statements are divided into

groups based on their implementation. This subdivision is

based on their fundamentaì functions and how they relate to

the P.E. types discussed earlier.

The ìogical and comparison P.E. has by far the largest

instruction set which consists of twelve primitive

operat i ons. These operat i ons support s i xteen fundamenta I APL

operat i ons . The twe ì ve operat i ons are the fol I ow i ng:

LT
LE

GT

GE

EQ

NE

OR

AND

NOT

NOR

NAND

0pcode=00
0pcode=0 I

0pcode=02
0Pcode=0J
0pcode=04
0pcode=0!
0pcode=06
0pcode=0/
0pcode=08
0pcode=01
0pcode=04

Less Than
Less Than or Equal
Greater Than
Greater Than or Equal
EQua I

Not Equal
logical 0R
og ical

icaì
ical
ical

AND

NOT

NOR

NAN D

og
og
og

The compar i son

templ ates wh i ch

operat i ons generate dyad i c compar i son

produce general true and false enabìe

90



signaìs.

for NOT.

t4AX I t4uf4,

9r

All logicaì operations are dyadic except of course

These primitives also directly support the l'1lNlt'lUH,

S lGNUl4, l,lEllBER and INDEX operat ions.

The addition and subtraction P.E.'s support five basic

operations. They are the fol lowing:

The

three

0pcod e= I 0
0pcode=l ì

0pcode= ì 2
0pcode= I l
0pcode=ì 4

0pcode=20
0pcode=2 I

0pcode=2 2

NEG

ABS
ADD

SUB

SHP

arithmetic NEGation
ABSoì ute val ue
2rs compl ement ADD i t i on
2's compl ement SUBtract i on
APL SHaPe operation

2's complement l'luLtipì i cation
2rs complement DlVision
2rs complement RESidue

The f i rst four operat i ons are very stra i ghtforward and as

one might expect. SHP (shape) is incìuded with the addition

and subtraction P.E. primarily as a convenience. The

execution of a shape operation amounts to a simple memory

access to retr i eve the shape i nformat i on pref i xed to each

data structure. Both ADD and SUB are also impìemented in the

vector add i t i on and subtract i on P. E. .

P.E.'s which support multiplication and dìvision have

operations to perform:

I4UL

DIV
RES

Al I of these operations are aìso implemented in the

pipel ined version of this P.E.. The non-pipel ined

multiplication/division P.E. is also solely responsible for

the execution of APL's FACTORIAL, C0t4BlNATl0N and POWER

operat i ons .
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Al I storage intensive operations are handìed by the so-

caì led special P.E.. The operations supported by this P.E.

support the execution of the foì lowing APL operations:

r es hape
take
d rop
comp r es s
expand
rave I

ca tena te
I am i nate
transpose
dyad i c transpose
rota te
reversaì
i ndex generator

ln order to perform these operations, the foìlowing storage

management pr imitives are provided

TFR Opcode=J0
ALL 0pcode=J I

FREE 0pcode=32

TransFeR bytes in memory
ALLocate memory
FREE memory

These operat i ons provi de the bas i s for the storage

manipulation required to perform many basic APL functions.

ALL and FREE make the i r requests d i rect ì y to the storage

manager.

Certain APL operations must be implemented in software.

There is no means of implementing their functions in

hardware without going to great expense. For the amount of

use many of the more esoteric functions (such as ROLL and

DEAL) 9et, it is not worthwhile to attempt an efficient

hardware i mpì ementat i on. I nstead, these operat i ons are

implemented as a series (or hopeful ly a col lection) of
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tempìates which together accompl ish the required funct¡on.

For example, the ROLL operation might be implemented using a

simple congruential random number generator. The only thing

that these operations have in common is that they aìì make

use of the basic machine operations to accomplish their

funetions. The functions which are implemented in this way

are:

roll
dea I

subscripting
grade up
grade down
encode
decode

Finally, the decomposition P.E.'s offer an alternative

approach to use of the pipel ined units. They are made use of

i n those c i rcums tanc.es where the comp i I er cannot determ i ne

that a pipelined unit can be safely used or when it

determines that a non-pipel ined approach is more efficient.

These uni ts are envi s ioned as handì i ng a major part of the

work I oad for operat i ons on compl ex data structures. The

i nstruct i ons they support are exact ì y those wh i ch are

supported by the other element P.E.'s. The template formats

consist of an opcode and references to the base addresses of

the data structures involved. The high order three bits of

each opcode del imit up to eight levels of complexity

(although only two are reaììy needed). A pattern of 'llll
might represent a seven dimensional data structure. I t may
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then be reduced to a col lection of six dimensional

operations dynamicaì ly by the matrix decomposer and so on

unti I only element operations remain. The reduction consists

of reproduc i ng the templ ate wi th the top three opcode bi ts

decremented by one and with new base addresses calculated.

Some genera I comments may a I so be made about th i s

instruction set. Firstly, l/a (tne QUAD operator) is

implemented using l/0 tempìates at fixed locations as

described earlier. Therefore, they were not included in this

d i scuss i on. Second ì y, the upper nybb l e of the byte-wi de

opcode determines the P.E. type required to execute the

instruction. This simpl ifies decoding greatly. Finaì ly, the

use of the reshape operator is I imited. This is due to the

restriction in ruìe-based APL which disal lows changing the

rank of a data item dynamically. Thus, reshape may aìter the

extents of a data i tem but not i ts rank.



Appendix C

CIRCUIT DESCRIPTI(]NS

This appendix contains a coì lection of block-level

d i agrams descr i b i ng the var i ous components of the rul e-based

dataf ì ow processor.. The thes i s does not d i scuss the gate-

ì eve I i mp I ementat i on of the prototype processor .
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Processins Element St¡ucture

.q'CK
Queue

from
Arb.Net. to

Dist.Net.

REQ

,<
q)

o
q)

ß¡r

¿,
t<

to
!

Output

Section

Micro

Store

c.c.R.

A.L.U.

Micro
encer

¡tt

Fetcher

Input

Secti on

To Vector Store



Bit Slice Processor Desim

Do-D¡ D¿ Dz DsD ll Du Drs

R
Ql 5

Me.-ln
A l5

V

z

470 ohm

Vcc

l.O
æ

Cn Am290l

RA

F=0

v

Qo
RAMO

G
P

Cn+4Cn 4m2901

P
G

F=0

3
Q3

RAM
Qo
RAMO

t PFz PjG

Am2902
G

Cn+4 Cn+8

Fo PrG

P
Cn+I2

Q3
RAM3

G
P

Am290l

MO

F=0

Qo

Cn Am290l

G
P

F=0

Q3
RAM3

Q0
RAÀIO
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Internal Bi t Slice zation

CI,OCK

'A' (read)
Address

tB'
( read/v¡l ¡s )
Address

Direct
Data In

Carry In

Output
Enable

8 7 6 sl4 3 2[t 0
AIU

Funct.
ALU

Source

'Deet.
ro

RÄH

SEIET

a
SEIFT

a
REGISTER

RATT

Addressable
Regis Èers

tl0lt

ALU Data Source
Selector

8 Punction
ALU

G
P
Cn+4
N
OVFL
F=0000

Output Data Selector



Storage M r

Size Entry Addr. Entry
To Vector Store

Allocation eueue

Requests

Template.s

Free Queue

Requests

oo

uP

À{emory



A 2x2 ll.ot¡tin E lìlcment l0t

Din

Dout

¡çgK REQ

REQ ACK

CLK
RB

RB

Din
Dout

ÃõR
ACK

l¡¡
r¡

I l¡¡
lo t¡¡ lrr¡-¡ lo

D

a

M

3lä l¡¡
lf¡¡
lo

D

J

K

REQ

CLK

nãscr
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Appendix D

PROGRA]'|]'|ING EXA]ì|PLES

This appendix gives three exampìes of ruìe based APL

programs . They are:

I . A paral lel sort

2" A solution to the convolution problem

3. A ì ine enhancement process

102 -
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A

A

A

Â

A

A

A

A

A

R

A

R

Ê

lEVT<-2xrL.5xpXJ
loDr*EVr - TùEV 2<-- r + ODr )
I 0 D 2<-7 * 0 DIAD) N EL<-DO NE 2<-O úO 2<_O ëGO 7<-t f
(GOtno=+ / VECIODT)>VECLEV|I) _>tDONEI < + 1 l
( GO 2 ns = ¡ ¡ VECIOD2 l>VECI EV2) ) +, ¡ pg ¡¡¿z < +7 )
( G0 7 

^ 
O t + / VE Cf 0 D7 l> VE C r EV 7 l ) - ri Cø t. I oc1 t r s r n < +vE cro D7 l > V ECr EV 7 l ç

PLAC ES < +V EC I O D 7 )XB I T S TR Ö
PLACES < + (PLACESIo ) / PLACES a
?MP<+VECIPLACESfO
VE CIP LACES I < +VECIPLACES +7 ) a

(Go2¡o*+/,ECLoD2t>vECtEVzt)-,¿!ril'+!r\g::r;tt:ii#iT8!r3;:t]rrEV2)ç
PLACE S < +V EC I O D 2 )XB TT S ?R O

( DO N EI ¡DO N E2 ) - >LR<-VEC I

PLACES < + ( PLACES,O ) / PLACES ç
TMP<+VECIPLACESI O
VE C IP LAC E S ] < IV E CIP LAC ES +7 I O
VECIPLACES +7 l< +TMPaGOT < +7 l

R

a lt4Af NLf NE.
R

tX*[]
ItçSoRr X)
VV

A

A NOTE THAT THIS ENA]IPLE TS RATHER UNLTKELY AS SUCH SOR?TNCA IùOULD NORMALLY BE DONE USTNG THE GRADE_UP OPERATOR (A).
R

VVSOR?ERPROG TS
e R<-S ORT VECI r I : EV rl r I ; EV2l I ) ; 0 D rl r I ; 0 D 2l r I ; B US TRI r I ; 

pLACES I r I ;TMpl I f ; GOt ; G0 2 ;D)ngI ; D0 NE 2

THTS FUNC?TON SORTS AN TNTEGER VEC?OR INTO ASCENDTNG ORDER.THE ALOGRTTHM USED IS GUARANTEED O(N) IF NO PARTTTIONTNG OFTHE PROBLEM TS DONE AND IS AS FOLLOWS:

REPEAT UNTTL SORTED...
7) COMPARE ALL PATRS OF ADJACENT NUMBERS BEGINNTNG

AT EVEN TNDEXES AND SWAP ALL ?HOSE T,HTCH ARE OUTOF ORDER.
2) COMPARE ALL PATRS OF ADJACENT NUMBERS BEGINNTNG

AT ODD TNDEXES AND Sï'IAP ALL ?HOSE WHICH ARE OI]TOF ORDER.
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R

A THrs EXAM.LE DEM1,TRATES H1w E-ASrLy s,ME ,THERt4ÌrsE coMpLExe PR2BLEMS MAy BE S7LVED USLNG RULE BASED-¿þL.""
R

R

R

A

A

A

A

A

A

A

A

R

A

R

Ê

A

t
t
t
fro

VVCONWROG rS
VR<.X CONVOLU?TON H;N

THTS ROUTTNE SOLWS THE CON VOLUTTON PROBLEM FOR ?HE GTVENLNPU? DATA.

GIVEN: (H7 ,H2, . . . ,t/K) WEIGHIS AND(X7,X2... .,XN) rNPI]TS,

CALCULATE: (It,I2,. . .,I(N+I_K)) OUT1ATS

Y=-l w 
tx irw 2x i+ 1 

r ' . . *Økxi*t- 
t

R+W + " xQ( 0, -ü- 1 ) + ( -1 + r/i/)0( ( /y<_( pX ) _ ( p ti ) _ I ), pX ) pX
V

MATNLTNE

x<f l
H1Ð l
T+XCONVOLUTT)N W]

IIHERE:
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A

A THTS EXAMPLE STMPLY SHOW HOW A PROGRAM MAY CONTAIN TI,IO OR MORE
A FUNCTIONS WHICH TNTERACT I"IITH ONE ANOTHER. THE OBJECT OF THE
A PROGRAM IS ABSURD.
A

VVENHANCERPROG IS
Y R<.COORDS ENHANCEPOTNT MTX ;VERMAJ ;HORMAJ ;X ;T ;DONEV ;DONEH
A

A THTS FUNCTION ACCEPTS A MATRIX AND ENHANCES VERTICAL AND
A HORIZONTAL LINES WTTHTN THE THREE BY THREE BLOCK GIVEN BY
A ICOORDSI. NO ATTEMPT IS MADE AT ERROR CHECKTNG. A MATRTX OF
E''THE CORRECT FORM TS ASSUMED.
R

I X<-7 T CO O RD S QT <.7 + C O OR D SQDO N EV<.OO DO N EH<-O I
IVERMAJ<-+ / MTXIX ;-1 + r 3+T-1 )aHORMAJ*+ / MTXI- 7+r 3+X- 1 ; Il l
(WRMAJ>I) ->lMTXlX; -1+r 3+T-1 f<IrcnOUnV<+rf
( H)RMAJ > 1. ) +> IMT Xl"1 + r 3 +X- 1 ; I ) < I tonO N EH < + 7 f
( DO NEV IDON EH ) _ >[ R<.¡|TX ]
V

YR<-ENHANCEMTX MTX ;X ;T ; XBOUND ;TBOIJND
R

A THTS FUNCTION REPEATEDLEY INVOKES IENHANCEPOTNTI TO ENHANCE
E VERTICAL AND HORIZONTAL LTNES WITHIN A TWO DTMENSTONAL MATRIX
A OF APPROPRIATE DIMENSION. (THIS MATRIX SUPPOSEDLEY CONTAINS
e A BITMAP IMAGE.)
n

IX<-Y<-reXBoUND*( pMTX)IrlayBoUND<-(pMTX ) t 2I l
(X.X39,,0¡T <TBOUND ) ->I (X,Y ) ENHANCEP7INT MTXay<IT+1 ]
( x <xBoU N D ny =I B)UND ) - > [ X< fX+1+y< +1 ]
( X =XB)U ND ) - >lR*-I4TX I
V

Ê

a MAfNLfNE
A

lMrX:Ð)
IJ*SUNAUCEMTX MTX)
VV

:]

.rì

.a

'r.

:

a'

,,a

..:

1.

..1.

:tl

:;

ìl
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