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ABSTRACT

Screening mammography is the current standard in detecting breast

cancer. However, its fundamental disadvantage is that it projects a 3D object into

a 2D image. Small lesions are difficult to detect when superimposed over layers

of normal tissue. Commercial Computed Tomography (CT) produces a true 3D

image yet has a limited role in mammography due to relatively low resolution and

contrast.

With the intent of enhancing mammography and breast CT, we have

developed an algorithm which can produce 3D electron density images using a

single projection. Imaging an object with x rays produces a characteristic

scattered photon spectrum at the detector plane. A known incident beam

spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a

theoretical scattered photon distribution to be calculated. An iterative

minimization algorithm is used to make changes to the electron density voxel

matrix to reduce regular differences between the theoretical and the

experimentally measured distributions. The object is characterized by the

converged electron density image.

This technique has been validated in simulation using data produced by

the EGSnrc Monte Carlo code system. At both mammographic and CT energies,

a scanning polychromatic pencil beam was used to image breast tissue phantoms



containing lesion-like inhomogeneities. The resulting Monte Carlo data is

processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D

matrix of electron density values. Resulting images have confirmed the ability of

the algorithm to detect various IxIxZ.5 mm3 lesions with calcification content as

low as 0.5% (p<0.005) at a dose comparable to mammography
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Overview

1.1 A Brief on Breast Cancer

Breast cancer is a cancer of breast tissue, occurring when malignant cells

in the breast grow out of control and ultimately invade the rest of the body. Large

collections of abnormal cells are called tumors, and may either be benign or

malignant depending on whether or not they spread to the rest of the body.

Although breast cancer occurs predominantly in women, it also occurs in men

with an incidence that is one percent of the total rate. In women, the tumors may

grow for several years before they are large enough to be felt in the breast. While

epidemiological risk factors and biological markers have been discovered, the

underlying cause of the majority of breast cancer remains a mystery. Thus, there

is a large focus on early detection and treatment. The single most important

factor for prognosis and outcome is lymph node involvement. Decreased survival

rates are associated with positive lymph node involvement.2 Early tumor

detection is critical as the longer the cancer is left untreated, the higher the

probability of metastasis.



Breast cancer is the most prevalent type of cancer in women. During their

lives, women living to ninety years old in industrialized countries have an

approximately one in nine chance of developing breast cancer. Currently,

approximately one million women worldwide suffer from breast cancer, and the

disease is, after lung cancer, the second most fatal form of cancer in women.

1.2 Breast Screening

As a step in increasing breast cancer survival, most industrialized

countries have introduced a program of regular breast screening with the intent of

detecting breast cancer before it is palpable. X ray mammography* is currently

standard in routine breast cancer detection. In a mammographic procedure, each

breast is compressed between two plates and exposed to a dose of low energy x

rays. The planar distribution of transmitted x rays is recorded using either analog

(film) or digital (flat panel) media. Multiple views may be taken in an effort to

improve detection of lesions which may be obscured by normal structure in a

single view. The radiologist then reads the mammograms, looking for the

presence of malignant disease. If and when the radiologist detects an abnormality,

the patient is typically referred for a diagnostic mammogram. This procedure

involves using magnification or specially angled films. Ultrasound may also be

used as a follow-up diagnostic test due to its ability to distinguish between benign

. 
In this thesis we associate the term mammography with projection imaging of the breast.



and malignant lesions. The patient may also receive a biopsy, where a small

amount of breast tissue is removed for analysis.

The use of routine mammographic screening has proven benefits, yet

remains controversial. Recognition of the limitations of mammography have led

some researchers to study the feasibility of alternative imaging modalities,

presented in the next chapter. However, these methods are currently either too

novel, too costly, or too time intensive to replace mammography as a primary

screening tool at present.

1.3 Thesis Objective and Layout

There exists another source of diagnostic information in mammography

which has not been exploited. When a mammographic procedure is performed,

scattered x rays are produced by the interaction of the primary x rays with breast

tissue. A portion of these scattered x rays go on to exit the breast, some in the

direction of the detector. As scattered x rays are seen as a contaminating factor in

conventional imaging, they are typically removed by an anti-scatter grid which is

placed downstream of the breast immediately in front of the detector plane.

However, the presence of this anti-scatter grid may introduce a dose penalty up to

a factor ofthree3.

Breast computed tomography (cr) is a promising technique under

development, offering the potential for sensitivity and specificity superior to

mammography and offers 3D imaging with a resolution of approximately 1 mm3.



A cone beam approach is often taken to breast CT where scatter is also seen as a

contaminating factor.

The hypothesis of this thesis is that the scaffered x rays that reach the

detector can be used to reconstruct a 3D electron density image of the breast. In

the case of mammography, this could be achieved without major alterations to a

mammographic imaging system, saving the cost of replacing current screening

equipment. By supplementing the traditional film or flat panel detector with a

energy sensitive semiconductor anay of detectors, this technique has the potential

to simultaneously improve sensitivity and specificity of the mammographic

screening process while reducing dose due to the removal of the previously

necessary anti-scatter grid. The ability for a radiologist to consult both a high

resolution mammogram and a CT-like image of electron density would promote a

higher detection rate, and subsequently an overall improvement to the breast

screening process.



Introduction

2.1Early Cancer Markers in the Breast

The human breast is a modified skin organ, composed of varying amounts

of adipose, connective, and glandular tissue, with the function of nurturing the

young by the production of milk. Mammary glands within the breast consist of

several lobules which produce milk. The milk is transported through 10-20

lactiferous ducts which drain from the lobules to the nipple. The proliferation

and destruction of breast tissue cells is controlled through hormonal regulatory

mechanisms. The morphology of the breast is undergoing constant change, and

for a particular woman the amount of ductal, lobular, and adipose tissue can vary

as a function of age and hormonal status. Irregularity in these mechanisms may

occasionally lead to morphological changes in the breast. These morphological

changes may either be benign (such as the dilation of ductal passages during

pregnancy) or malignant (such as the formation of a carcinoma). Cysts may occur

as a result of the accumulation of fluid, milk, calcium, collagen, fibroblasts,

inflammatory cells, or mucin.a while benign, these cysts are palpable, and may

require further diagnostic follow-up. More importantly, however, a mutation in



the epithelial cells of the ductal or lobular systems may lead to formation of

malignant breast tissue. In its very early stages, this malignant breast tissue has

very low contrast relative to healthy tissue, and is therefore undetectable.

However as the lesion grows in size, it develops certain features which distinguish

the involved duct or gland from the rest of the breast. Calcium deposits in the

lesion increase its density on a radiograph, and any increase in malignant mass

may lead to distortions in the ductal structure, which is noticeable on a

mammogram to a trained radiologist.

The circumstances surrounding malignant lesion formation are not fully

understood. A large focus in breast cancer control has been on detection of the

lesion at an early stage, before the cancer has had a chance to metastasize. To do

this, many authors have focused their efforts on identifying cancer markers. Ng et

al.s have studied malignant tumors with in-vivo neutron activation, and have

found the accumulation of several trace elements. They postulate that the

presence of these elements in growing malignant tissue provides a chemical

environment leading to the formation of small microcalcifications, a significant

feature of benign and malignant lesions. Microcalcifications are tiny deposits of

calcium, and typically occur in various shapes ranging in diameter from 0.1-1 mm

(average: 0.3 mm). calcification deposits have high contrast on mammograms

due to their high relative radio-opacity, and are signif,rcant cancer markers when

occurring in clusters of three or more within a square-centimeter region of a

mamt togta-6. Sometimes no localized deposits of calcium are visible in a

lesion, however higher calcium content contributes to an increase in physical and



electron density of the lesion over glandular tissue of up to 5%o. Following the

work of Ng, Buchbinder et al.7 found that malignant tumors contain a higher

calcium content on average than benign tumors.

Murphy et al.8 studied the correlation between carcinomas and benign

tumors, and discovered that in 31 cases where clustered microcalcifications were

apparent, 35o/o of biopsies revealed cancer while 50% were benign. They

concluded that microcalcifications were sensitive, but nonspecific cancer markers.

However, other authors who have studied the problem report findings that

indicate calcifications aÍe the best indicator of carcinoma.e Lanyir0 has

commented on the importance of calcifications as cancer markers, stating they are

"the most important leading symptom in mammographic detection of preclinical

carcinomas". Millis et al.ll found that calcif,rcations were apparent on

mammograms 49o/o of the time when carcinoma was confirmed following a

biopsy. A histological study revealed that calcification was present in carcinomas

630/o of the time. In contrast, caTcifrcations were only present in benign tumors

20%o of thetime.

Other features of malignant tissue are related to the manner in which the

lesions grow, and are often characterized by the shape of the lesion boundary.

Sickles et al.t2 closely studied 300 cases of nonpalpable breast cancer. They

concluded that the most dominant indication of malignancy was clustered

microcalcifications, which appeared in 42%o of all cases. Other signs included

rod, curvilinear, and branching shapes (23% of all cases), other structural changes



Q0% of all cases), dominant masses with smooth margins (23% of all cases), and

dominant masses with margins typical of carcinoma (16% of all cases).

2.2 Mammography

Mammography, the standard in breast screening, is the oldest modality for

breast cancer detection. Mammography is still the screening test of choice for

breast cancer since it is both cost- and time-effective, though the sensitivity and

specif,rcity of the test is highly operator dependant.13 The goal of mammography

is to detect nonpalpable breast lesions at an early stage, as several authors have

pointed out the correlation between increasing tumor size and the probability of

metastasis.la-16 There is still debate in the medical community regarding the

success of mammography as a screening tool. While some studies have failed to

find the benef,rts of mammography,rT' r8 the majority of studies have shown a

clear correlation between the use of a routine mammographic screening program

and increased surviv al.le-zs Screening mammography has shown the ability to

decrease the mortality due to breast cancer by 30%o.26 A review performed by

Zhou and. Gordon2T concluded when small cancerous tumors were found early

using mammography, the women enjoyed a five-year survival rate of 82o/o,

whereas the survival rate for women without early detection was only 60yo.

ultimately, the goal of mammography as a screening test is r00%

sensitivity and I00o/o specificity. Sensitivity is defined as the probability of a

positive test among patients with disease, while specificify is defined as the



probability of a negative test among patients without the disease. A

mammographic test lacking in either sensitivity or specificity increases the burden

on medical resources. A low sensitivity, evidenced by a low true positiv e rate* ,

implies the test is poor at identifuing early cases of cancer. The missed lesions

have a higher likelihood of metastasizing, adversely affecting both the patient and

medical resources allocated to breast cancer treatment. On the other hand, a poor

specihcity indicates a large number of false positivesf , where a healthy patient is

referred for useless time consuming follow-up tests such as cytology, biopsy, and

ultrasound. The sensitivity and specif,rcity of a diagnostic test are correlated, and

a compromise must be found between sensitivity and specificity. In the U.S., the

false positive rate for women who underwent yearly screening over a five year

period was 2.9yo, while the rate for women undergoing intermittent

mammography (more infrequent than once a year) was 4.6o/o.28 More recent

studies have indicated that the false positive rate can vary from 1.5%o to 24.I%

depending on radiologist (27,394 mammograms over 1067 radiologists).13 These

errors are costly and approximately US$100M is spent every year in the U.S. on

follow-up breast cancer testing.

CAD (computer-aided diagnosis) systems have been recently developed

to assist the radiologist in locating mammographic lesions. The CAD algorithms

have been designed to improve image quality, enhance mammographic features,

and highlight potential areas of cancer development. Their effectiveness is as yet

*_.
The true positive rate is defined as the percentage of cases where a test returned positive where

the cancer was actually present.
Ï The false positive rate is defined as the percentage of cases where the test was negative when a
cancer was actually present. Also equal to (1 - specificity)



unclear. A study performed by Destounis2e revealed that 7I%o of cancers missed

by a radiologist were detected using a CAD system. In a second study, a CAD

system outlined 6 lesions for biopsy that a radiologist did not, and all turned out to

be cancerous. Another recent study of CAD in mammography has reported

sensitivity of 0.7i-0.8 and specificity of 0.86, with no improvement through the

use of computer assisted diagnosis.3o One difficulfy in identifying lesions is the

problem inherent in mammography: a mammogram is a 2D projection image of a

3D structure. In locating calcifications, this is not necessarily a drawback, as

calcifications are rarely found in the breast in any great number, and calcifications

appear with high contrast against background structure noise. However, like

radiologists, CAD programs also try and locate strucfural abnormalities indicative

of non-calciflred lesions. However, when the complete 3D structure of the breast is

collapsed onto a 2D imaginÊ plane, structural abnormalities may be distorted and

hidden by overlapping structures. As a result, sfructural noise in the mammogram

may confuse the CAD algorithm. Destournis found that their CAD algorithm was

too sensitive, flagging twice as many non-cancerous masses as the radiologist,

which is the consequence of an overly low specif,rcity. These results indicate that

3D imaging of the breast may greatly assist the ability of both radiologists and

CAD to identiff anomalous structures in the breast.3l

Despite the successes of mammography, approximately 20o/o of v/omen

who are diagnosed with breast cancer will die of the disease in five years3'due to

metastasis of the lesion. Studies like these have fueled considerable opposition to

mammography. Firstly, the routine exposure of women with cancer to x rays
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have been shown to promote the formation of new cancers,33 though recent

studies are unable to correlate mammography with increased risk,3o or are

satisfied with the benefit/risk ratio.3s Despite good specif,rcity, one of the

limitations of mammo graphy is the large false negative rate* associated with

women with dense breasts. Several authors have investigated the factors which

limit the sensitivity and specificity of breast cancer. Since the majority of

screening cases are normal, it is difficult to track false negatives in cases where a

patient has a cancerous lesion which was missed during the mammographic test.

To do this, retrospective studies must be performed. When a patient is diagnosed

with cancer, researchers can study prior mammograms which were read as

negative. often, the signs of a lesion were present but were missed by the

radiologist. One study reports as many as l0-30o/o of cancerous lesions are

missed during routine mammographic screening.36 Birdwell3T performed a

retrospective study of 1 15 breast cancers in a attempt to determine where

mammography was failing. Specifically, their case studies were of negative

mammograms of women who were later diagnosed with malignant tumors. The

signs of cancer retrospectively visible on the negative mammograms were mass

lesions in 70o/o of cases and calcifications in 30o/o of cases. Distracting non-

malignant lesions were cited as a dominant factor in the production of false

negatives. Maxwell et a1.38 performed a similar study. They found that the largest

correlation was from microcalcifications, which was undetected due to low

radiographic density and./or masking by structure. Approximately 25o/o of cancers

" Cases where the radiologist fails to detect existing cancerous lesions in a mammogram is
referred to as a false negative (FN). Cases where the mammographic test is positive where no
cancer is present is referred to as a false positive (FP).
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exhibited microcalcifications in earlier mammograms, while T5% had either

masses or deformities. All other cases had no indications on earlier

mammograms. The authors concluded a 'striking' correlation between

microcalcif,rcations and the later development of breast cancer. Also, the authors

concluded that calcifications less than 500 ¡im are often missed (23%) in

screening mammography, and are likely to correlate with invasive ductal

carcinomas.

These studies indicate that mammography may be def,rcient when

attempting to locate small abnormalities surrounded by overlapping structures,

even if there is disagreement regarding the type of abnormality that is most often

missed. unfortunately, as previously stated, there is a significant loss of

information associated with imaging a 3D object with a 2D modality. The ability

of an x-ray screening test, such as mammography, relies upon its ability to

identify those features associated with cancer. 'When 
structural noise is not an

issue, mammography excels at detection of high contrast fine structure (such as

microcalcifications) due to the high imaging resolution (-20 lplmm). However,

larger low contrast lesions may be missed due to overlapping tissues. To illustrate

this, Figure 2.1 illustrates the difference in mammograms between women with

fatty and dense breasts. The presence of disease is clearly more difficult to detect

in the right image, where the higher radio-opacity is due to dense fibrous and

glandular tissue, and hinders the radiologist's ability to detect the presence of

lesions. Additionally, women are deterred from participating in a mammographic

screening program due to the discomfort of undergoing breast compression.3e
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Another aspect which detracts from the ability of mammography to detect

small lesions is the limitation in the dose delivered to the patient. Positive cancer

detection relies on the differences in x-ray attenuation between normal and

malignant lesions. However, these differences only become apparent at very low

x-ray energies. At these lower energies, x rays are much more readily absorbed,

increasing image noise and depositing higher doses. As diagnostic x rays have

been found to be cancer inducing, the mammographic dose is kept to a maximum

of approximately 3 -Gyoo, the dose one would receive from cosmic rays flying

from New York to Los Angeles.

In an effort to achieve detection earlier than is possible with

mammography, several cancer detection modalities have been investigated,

including clinical e*am,ot self exam,a2 ductal lavage,a3,aa microwave imaging,as

ultrasonagraphy,46 optical tomography,aT positron emission tomography (pET),a8'

ae ultrasound,to * ray CT,sl's2 and,magnetic resonance imagings3 (MRI).

However, none of these modalities have been able to replace

mammography in terms of detection performance, non-invasiveness, screening

time, and cost-effectiveness. Despite its problems, mammography is the only

widespread radiological technique in use today for breast screening.
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Figure 2.1:Fatty (left) and dense glandular (right) breast composition.

@ 2006 SunnyBrook Health Sciences Center. Used with permission.
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2.3 Past and Present Applications of Scattered X ray

Imaging

Tissue densitometry is a technique involving the accurate determination of

physical or electron density at a point within the target object. Lalesa first devised

a method of tissue densitometry based on Compton scatter. The target is

irradiated with a polyenergetic high energy pencil beam, and a collimator is

designed to accept single scatter photons originating from a small target volume

in the object (Figure 2.2). rn principle, the target could be scanned through the

beam to obtain a full 3D electron density image. In 1968, Lale55 developed a

method for patient scanning using a megavoltage system designed using the

principles of his earlier work. Despite promising results, several drawbacks

existed with the system, such as mechanical collimation problems, poor resolution

(2.5 cm x 3 mm x 3 mm), and slow scanning times.

In 1974, Farmer and Collinst6 built upon Lale's idea. Using an energy-

discriminating Ge detector, they extended the field of view (FOV) from a point to

a line, based on the principle of angular and energy discrimination. This novel

technique improved imaging resolution and decreased scanning time. However,

they reported a low signal-to-noise ratio (SNR) as well as geometric and

mechanical problems. Some of these problems such as low SNR were attributed

to the small acceptance solid angle of a single point detector. To overcome this

issue, a plan for a multi-detector system was introduced in the paper, but no such

system was ever conshucted to my knowledge. Furthermore, the authors
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encountered a loss of contrast and resolution due to

and attenuation artifacts.

multiply-scattered photons

Figure 2.2: Single point tissue densitometry system devised by Lale measures

scattered photon fluence and reconstructs electron density in the point FOV.

In a paper published in 1977, J.J. Battista et a7.s7 investigated the effect of

multiple scatter and attenuation artifacts on a Compton scatter system. Using an

experimental system, the authors investigated the ratio of multiple-to-single

scattered photons reaching a collimated detector at an angle approximately 45'

from the incident beam. Using a dual-energy windowing technique, the multiple

scatter was estimated and corrected. To correct for attenuation, an iterative

method to estimate 3D attenuation coefficients was developed, using the

attenuation of the incident beam as the primary source of information. Imaging a

Field of View

Detector
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homogenous test object, the implementation of corrections improved the

uniformity of the resulting image significantly, where the pre-correction image

contained significant electron densify gradient artifacts. Relative to the original

cylindrical phantom, the image has a precision of better than 5o/o, however, the

corrections were limited to the aforementioned 45o scattering angle, and thus had

limited usefulness for other scattering angles.

Battista et al. published a follow-up paper in 1978s8, expanding their

model to allow scattering angles from 30o to 130". The energy of the incident

monoenergetic beam was variable, ranging from 300-2000 keV. They imaged a

0.3 cm3 volume in a 25x25x25 cm3 water phantom and obtaine d, a 0.5% electron

density accuracy. The authors made several important observations:

1) Multiple scatter reaching a collimated detector may be minimized

but never fully eliminated. This places an upper limit of the

accuÍacy of collimated Compton scatter techniques.

2) As the energy of the incident beam is increased (from 300kev to

2000 keV), the multiple-to-single scatter ratio decreased, however

the dose as a function of energy increased 400% over thìs energy

range.

3) Forward scatter imaging was optimal, where both multiple scatter

and dose decreased significantly as the scattering angle was
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reduced from 130o to 30o. The multiple-single scatter ratio

reduced from I22Yo to 27Yo, while the dose decreased from 143

mGy to 12 mGy.

These observations were all predicted, confirmed by experiment, and

reproduced by other authors.se In 1981, the authors reported good progress on the

application of their system to radiotherapy plannitrg.uo While reporting an electron

density accuracy of 4.3o/o with a spatial resolution of 0.5 cm, the conclusion of the

paper was that there was little fuither progress possible for whole body Compton

scatter imaging. However, other authors were more hopeful.6l

Brateman et a1.62 applied a scatter CT technique using a softer beam (-70

kv) to image an 8 cm cylindrical phantom containing an imhomogeneity.

Curiously, no quantitative information was reported, however this author

estimates a 0.5 cm imaging resolution.

Achmad et a1.63 devised a technique of determining the electron density at

a point within a large volume object at kilo-voltage energies. As no rotation was

involved, one could consider it a single projection technique. Using a single

collimated source and two collimated detectors, the authors devised a

mathematical method of obtaining attenuation data within the object by swapping

the source and detector, and exploiting the polychromatic nature of the beam.

Using this technique, they managed to determine the electron density of points

within the object to an uncertainty of 0.lYo-0.7%o, and the method has proven to
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be robust, performing well even with the introduction of attenuating objects of

various densities.

Several in vivo Compton scatter scanners have been proposed for various

applications. El Khettabi et al.6a proposed a 400 kV brain scanner which could

potentially produce 3D electron density brain scans with a single projection.

Testing their method with Monte Carlo N-particle Transport (MCNP)

measurements, they have obtained 3D electron density images with a voxel

resolution of 130 mm3 and uncertainty of approximately 10%o. A follow-up

method was presented by Arsenault et a1.65 The reconstruction model proposed

by Arsenault is unique in its ability to use fan beams, however no experimental or

Monte Carlo simulated results were presented.

The potential of scatter imaging specific to mammography was revealed in

1984 by Dance66 and more recently by Boone.67 Both authors investigated the

scatter-to-primary ratio (SPR) in mammography under a variety of test conditions.

For the average compressed breast thickness of 5.2 cm, the SpR proved to be in

excess of 0.5, indicating a potential to apply scatter imaging to a mammographic

geometry.

The concept of coherent scatter imaging has also been investigated.

Batchelar6s et al. devised a CT system using low angle (<10") coherent scatter x

rays for analysis of bone mineral content, an application previously investigated

by Clarke et al.6e'70 Leclair and JohnsTl' 72 investigated material analysis using

integrated Compton/coherent scattering, and suggested their model might be used

for more generalized scatter imaging.
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2.4 Compton Coherent Scatter Radiography - A Novel

Imaging Algorithm

2.4.1Rationale

In section 2.2,we reviewed the studies of many authors who have studied

the limitations of mammography. Retrospective studies have shown that small

lesions obscured by overlapping structural noise present the major challenge to

improvement in sensitivity and specificity. The problem is large enough that

many investigations have been performed via alternative imaging modalities.

However, other established modalities are unsuitable for screening in some way,

(Table 2.T) and only breast CT (including variations such as tomosynthesis)

seems suited to wide scale mammographic screening. In section 2.3, we have

reviewed the chronological progression of Compton and coherent scatter imaging,

and have seen many authors demonstrate the extraction of information from

scattered x rays.

The main impetus of this work is the hypothesis that scatter imaging can

be incorporated easily into a conventionalprimary x ray imaging system. In this

fashion all the benefits of the primary modality are retained, while the limitations

are mitigated through the proven imaging capabilities of scatter imaging.

Furthermore, the use of x ray scaffer already present in the image provides an

avenue for reducing the required dose to provide a superior screening test.
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2.4.2 Theory

Using Compton and coherent scattered photons, this thesis proposes an

algorithm which functions as a 3D imaging technique specially adapted to

mammographic purposes. Hereafter, the algorithm shall be referred to as CCSR

(Compton-coherent Scatter Radiography). We hypothesize that the distribution of

single scattered x ray radiation, differential in both energy and position, contain

sufficient information for 3D electron density reconstruction of the target object.

Moreover, we also hypothesize that in the absence of noise, a unique electron

density solution exists for each scatter distribution (see Appendix B). Using

known physics and certain assumptions (presented later), we may analytically

calculate the single scatter distribution produced by the interaction of a radiation

beam with an arbitrary object. Following the aforementioned assumption that a

unique target configuration produces a unique scatter spectrum, the algorithm

iteratively determines the target electron density configuration which minimizes

the differences between measured and calculated scatter distributions. The major

challenges associated with this technique are associated with an uncollimated

imaging geometry. since the geometry is uncollimated, single scatter and

multiple scatter will both be recorded on the detector planes. In order to

reconstruct from single scatter, multiply scattered photons (accounting for a

significant percentage of scattered photons) must be properly predicted and

subtracted from the total distribution. To allow this, our algorithm iteratively

predicts the resulting distributions of both single and multiply scattered photons.
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Furthermore, in order to effectively predict the distribution of single scattered

photons, the energy dependent attenuation (beam hardening) and scatter of the

incident polyenergetic beam must be accounted for.

Table 2.1: Some popular new candidates for breast screening: benefits and

limitations

One of the primary objectives of this thesis was to design an algorithm

which would function under the most realistic conditions possible. The early

versions of the algorithm were basic, using monoenergetic beams and unrealistic

physical and geometrical assumptions. Following a period of rigorous testing, the

Modality Benefit Limitation Current Use

MRI
3D, no dose,

higher contrast

Cost, doesn't

detect small

calcifications

Characterization of

suspicious lesions

Breast CT

3D, higher

contrast, patient

comfort

Lower resolution

compared to

mammography

Breast screening

(clinical trials)

Ultrasound No dose

Higher screening

time, low detail,

not approved by

FDA for

screening

Characterization of

suspicious lesions,

image guided

biopsy
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complexity of the algorithm was increased, subsequently removing more and

more approximations. At each major step, the algorithm was tested, using certain

criteria to define whether or not the testing phase was successful. We designed

and tested the algorithm entirely in a simulated environment. We relied upon the

EGSnrc photon transport package as discussed in section 2.5, coupled with

simulated but realistic phantoms to provide us with data similar to experiment.

2.4.3 Application

One of the unique features of CCSR is the potential ability to create 3D

breast images. Other modalities have been proposed for 3D imaging of the breast,

including microwave imaging,as ultrasound,s0 and MH,t' however none of these

are as yet suited for routine screening. In this work, we present three applications

for CCSR, two of which involve breast screening.

First, we show how CCSR may function to enhance breast CT. Recently,

Boone et al. have introduced a dedicated breast CT scanner for breast screening.sl

The imager can perforrn a scan in 17 seconds, and the authors claim it can find

tumors as small as 5 mm. For their clinical trials, which are currently underway as

of this writing, 190 women have registered. Chen et a1.s2 performed a feasibility

study and concluded that breast CT offers potential for improved low-contrast

detectability and tumor localization. CCSR may be integrated into breast CT by

introducing energy sensitive detectors in the CT detectoÍ array. CT image

reconstruction would involve processing both primary and scatter data to create
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two separate images of attenuation and electron density, respectively. The

addition of an electron density image adds atomic information not otherwise

present in the primary CT image. If breast CT does show potential for routine

high-sensitivity breast screening, CCSR may still be used to boost the sensitivity

through signal enhancement, noise reduction, and proper scatter prediction.

Secondly, as an adjunct to mammography, CCSR offers the radiographer a

means of supplementing a2D projection image with a 3D electron densify image.

As malignant lesions demonstrate higher electron density they could be detectable

using CCSR. The lesions will provide higher contrast against background

structures because attenuation values are not being integrated in the dimension

perpendicular to the imaging plane as is the case with mammography. In addition

to the potential improvement in sensitivity, tumor localization information at time

of screening could be used to estimate the probability of metastasis to axillary

lymph nodes.73

A third potential application is the Compton spectrometer, which relies on

a functional relationship between atomic composition in the target material and

scatter distributions. As such, it is possible to discriminate the scatter spectra

belonging to materials of varying atomic compositions. If a pencil beam of

photons is used to irradiate a small sample of biological material, the elemental

composition of the sample may be reconstructed from the resulting scattered

photon spectrum.

It has been demonstrated that performing a needle biopsy on some types of

cancer may provoke metastatis.Ta Normally, a forming tumor is encapsulated by
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biological boundaries, limiting its rate of growth. However, when a needle biopsy

is performed, cancer cells may spread through the needle hole and metastasize to

the rest of the body. V/hile we only examine in vitro spectroscopy of a small

tissue sample in this work, it may be possible to perform Compton spectroscopy

in vivo, eliminating the need for performing a needle biopsy.

2.5 The EGSnrc Monte Carlo Photon Transport Package

Monte Carlo methods are paft of the class of algorithms used to simulate

mathematical and physical processes. By using stochastic random number

generators, these methods aim to reproduce the physical system as accurately as

possible. Monte Carlo methods are fypically used to simulate systems with many

degrees of freedom, where large computational speed gains over purely analytical

or numerical solutions can be achieved or where analyiicallnumerical solutions

are not available.

The EGSnrcTs Monte Carlo radiation transport package is a Monte Carlo

code which specializes in simulating the transport of photons, electrons, and

positrons through matter. For each input parti cle, a history is determined by

transporting the particle in small steps, checking for matter interactions, and

following any secondary particles which are produced. Typically, the end of a

single photon history corresponds to one of three events:

- the particle leaves the active geometry
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the particle is removed as a result of certain interactions such as the

photoelectric effect or pair production.

the energy of the particle drops below a certain threshold value due to

various interactions, at which point all the energy is deposited locally.

The algorithm uses RANMAR76, a pseudo random number generator,

which produces an uncorrelated sequence of numbers associated with a particular

seed value. For each interaction, several random numbers out of the sequence are

used to determine the specifics of the interaction. For example, three random

numbers are generated during a Klein-Nishina Compton scatter interaction to

determine the photon scattering angle. The history of each individual particle is

highly stochastic. However, as the number of simulated particles increase,

deterministic trends start to occur, and the algorithm begins to approach the

results of an analytical system.

The first medical physics paper with Monte Carlo in either the title or

abstractT0 was published in 1967 by Bentley,TT' 78 and since then the use of these

algorithms in the area of medical physics has exploded. Following this

publication, the number of Monte Carlo publications in the area of medical

physics has doubled every five years up to the year 2000.77 In this period,

following Moore's Law,7e computer power per unit cost has approximately

doubled every 18 months per unit cost, and this increase is partially responsible

for the proliferation of Monte Carlo studies.
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The use of Monte Carlo in medical physics is pervasive, with applications

in brachytherapy,s0 commercial treatment planning,8l-83 diagnostic x ruy

applications,sa and radiation protection.8s Monte Carlo is a trusted method in

medical physics, especially evidenced by the drive to convert dose calculation

methods in treatment planning systems to the Monte Carlo method,77 removing

the need for conditional approximations leading to dose inaccuracy. The AAPM

(American Association of Physicists in Medicine) has recently approved a Task

Force report on the application of Monte Carlo techniques to clinical treatment

planning.86

'We have used the EGSnrc Monte Carlo transport package exclusively for

the simulation of our experimental data. Using the Fano theoremsT to simulate a

situation which can be computed analytically, EGSnrc was the only Monte Carlo

package proven to be accurate to its own cross sections to within 0.1%.88'8e The

use of Monte Carlo was mainly due to necessity, though convenience and cost-

effectiveness was certainly a factor.

During the development of this algorithm, many factors needed to be

evaluated and taken into account. Our development strategy was to start from the

ground up, designing and testing our imaging algorithm for the most basic and

trivial circumstances. At first, we completely neglected coherent and multiple

scatter processes, allowing us to evaluate results in a highly controlled simulated

environment. Once the acquired images were satisfactory, we moved on by

removing approximations or testing more complex phantoms. However, when

problems occurred, there were only a limited number of factors to consider.
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In designing the algorithm, it was critical to accurately predict the scatter

photon distributions. Systematic prediction effors at mammographic energies can

bring large variations to the ouþut, with detrimental effects to the inverse

imaging algorithm. The adjustable variables in our simulation create a parameter

space of several dimensions, all which have an effect on the scatter distribution.

These variables include, but are not limited to:

beam width

beam spectrum

phantom compositions and spatial arrangement

detector area

- detector energy resolution

- air gap size

The power of EGSnrc allows us to explore this parameter space without

experimental limitations. Ultimately, the parameters we select must be realistic,

but in the design phase, we created simplif,iing conditions which allowed us to

fully understand the physics involved and design the scatter model accordingly.

Finally, we benefit from full separation of single and multiple scatter in

EGSnrc' This has allowed us to design a multiple scatter prediction model which

operates independently from our single scatter model. After each model was

successfully tested, they were combined into a successful algorithm which images

electron density while compensating for multiple scatter contamination.
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Systematic sources of error in EGSnrc may include programming errors,

modeling elrors, and cross section inaccuracies. The EGSnrc package has been in

development for decades with numerous applications, reducing the possibilify of

large programming and modeling errors. Furthermore, the work introduced in

this thesis confirms that if we use the same cross sections as EGSnrc, we can

reconstruct the scatter distributions from first physical principles with a

systematic error less than0.Io/o.

Systematic inaccuracies are likely present in the EGSnrc cross sections.

EGSnrc uses a standalone program, PEGS4,e0 to generate cross section data. The

user creates an input for PEGS4, consisting of the relative elemental composition

of the material as well as the physical density. From this information, pEGS4

combines elemental cross sections to obtain the cross section data for the

compound, which is subsequently stored in a data file for later use. The elemental

cross sections used in PEGS4 have been obtained using experiment al data,er' e2

and errors in these data tables will propagate throughout EGSnrc. Current

versions of EGSnrc use the XCOM cross section databasee3, available online. For

this database, Hubbellea estimated the error in mass attenuation coefficients from

5 keV to a few MeV at 1-2%. The error in Compton cross sections was also

estimated at approximately 1o/o. The cross section data we used for our work has

been obtained from the same sources for the elements hydrogen, carbon, nitrogen,

oxygen, phosphorous, and calcium. In our forward model, we combine the cross

sections of these elements in an additive fashion.
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As we are using the exact same cross sections in our algorithm as those

used in producing our experimental data, we have effectively removed this source

of error. As the algorithm is in a relatively early stage of development, we did not

investigate the effects of a systematic error in cross section. However, since

electron density is proportional to the Compton scattering cross section, the theory

indicates that the error in cross section would translate to a corresponding error in

electron density of approximately I%o.
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Modeling Photon Interactions

3.1 Properties of photons

The photon is a quanta of electromagnetic radiation which has several

distinct attributes. Physical properties of the photon include:

- position

- frequency

- momentum

- zero rest mass

- lack ofelectric charge

- two possible polarization states

- two possible helicity states

In this work, we focus on the extracting information from scattered

photons related to the position and frequency only. The interactions we discuss in

this chapter relate to the absorption or scattering of photons, and our simulated

detectors measure only position and frequency (or energy) of the scattered photon.

While it may be possible to extract information from the other properties of

photons, that is outside the scope of this work.
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In sections 3.2-3.4, we will discuss the three major scattering and

absorption interactions. Section 3.5 introduces a functional relationship between

electron density of sample of breast tissue and mass attenuation coefficient, an

important relation used throughout the rest of this project.

3.2 Photoelectric Interactions

The photoelectric effect occurs when a photon interacts with a bound

atomic electron. The photon transfers all its energy to the electron and the

electron is ejected from the atom with a kinetic energy equal to the energy

transferred from the photon minus the electronic binding energy. Below 100 keV,

the electron rapidly loses its energy through Coulomb interactions with other

atoms, effectively depositing its energy locally.

The photoelectric interaction may be considered the most important

photon interaction at low energies as it is both the primary source of deposited

dose and the means in which the majority of diagnostic x ray imaging techniques

derive their information. At mammographic energies, most photons interact

through photoelectric absorption. For energies below 100 keV, the approximate

photoelectric cross section is given by the following relationes:

-24
L = n--:'

hv'
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where Ë is a const ant, Z is the atomic number of the atom, and hu is the energy of

the incident photon. Units are cm'per unit volume.

It is important to note that the mass attenuation coefficient of the

photoelectric effect is strongly dependent on the atomic number Z.This allows for

the discrimination of different tissues in diagnostic transmission radiology. For

example, consider breast tissue and calcified breast tissue, two types of tissue very

similar in density and mean atomic number. For this example, let breast tissue be

a mixture of 50/50 adipose/glandular tissues, while letting carcinoma be the same

breast tissue impregnated with lo/o calcium Hydroxyapatite (ca16(poa)o(oH)Ð

by weight. The mass attenuation coefficients are plotted as a function of energy

in Figure 3.1. The small difference in mean atomic number (Zgandurar:7.5 versus.

Z"u,"ino^u:7.7)e6 results in a percentage difference between the two mass

attenuation curves that is larger at lower energies due to the photoelectric effect.

Johns and Yaffeee6 concluded that the mass-attenuation coefficients of f,rbrous and

malignant tissue are experimentally indistinguishable at energies higher than 31

keV. Thus, mammography operates at low energies in order to provide contrast

between these similar tissues. Relative attenuation differences between tissues

will be taken into account for Compton scatter imaging as well, and will be

explained in more detail in section 3.4.
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Figure 3.1: (a) Mass attenuation coefficients of normal breast tissue (solid line)

and carcinoma (dashed line) as a function of energy. (b) Percentage difference

between the two curves of panel (a).
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3.3 Compton Scatter

A Compton interaction occurs when an incident photon scatters

inelastically off a bound or free electron, transferring a pafüal amount of kinetic

energy. After interacting with an electron, a secondary photon is produced with

reduced energy and a scattering angle related to the reduction in energy. The

electron is ejected from the atom at an angle that obeys conservation of

momentum, and at low energies, it deposits its energy locally. Since a secondary

photon is produced, the volume of interaction between the primary beam and the

material can be considered a secondary radiation source.

3.3.1 Klein-Nishina Cross Section

The majority of scattering algorithms employ Klein-Nishina (KN)

scattering physics, which applies Dirac's relativistic theory of the electron to the

Compton effect to obtain improved cross sections. However, KN physics carries

two simplifiTing approximations regarding the scattering electron: (1) they are

unbound electrons and (2) the electrons are at rest. Under these approximations,

the kinematic relationship between the incident photon energy K¿, scattered

photon energy K and scattering angle 0 is given by:
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KoK_
1+,Kr(1- cosd)

where the energies are given in units of the electron's rest energy moc2. The

Klein-Nishina differential cross section in cm2 per electron per unit angle

differential in scattering angle á is given by:

(3.2)

(3.3)

where ro is the classical electron radius.

3.3.2 Doppler Broadened Cross Section

When the approximations of section 3.3.i are removed, a significant

energy broadening occurs around the scattered photon energy. Accounting for this

process is critical to energy sensitive single scatter distribution prediction like

CCSR.

The broadened Compton scatter cross section describes the probability of

a photon scattering from an initial energy K through a solid angle o into a

d6*, =-r(+)'l+.f -,in, el,i,ae
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scattered energy K', and is given in cm2 per steradian for a single atom under the

impulse approximation*e7 by:

where

n=lto-'q=@ (3.5)

is the scattering vector of the photon, and

^ _ p.d _KoK(l-cos0)-(Ko-K)P,=-= - (3.6)qq

is the projection of the initial momentum of the electron on the scattering

vectorQ - Ko -¡f . tne functionXis given by:

d2o : ':KdadK ;r;(wxr(p') 1: +;

x(K*K)=#.#.,(* *).[*-å)' (3 7)

where

- 
The impulse approxirnation assumes a non-relativistic interaction where bound electrons are

scattered into plane-wave states and electron binding energy is considered negligibte in
comparison to the interaction energy transfer.

5t



n=rftt *p'")''' +(Ko -Kcos Øp"lq)

and

R'=R-KoK(l-cosd)

J(p") is the Compton profile, and can be analytically calculatedeT as:

J(p,) =zn tnc@)dn
lp,l

J(p,) = Zz,J,(p ")@(Ko - K - u,)
i

where p(p)is the momentum distribution of the scatterer andp is the momentum.

Following Brusa et â1.e8, contributions from different electron shells aÍe

considered separately. Binding effects are taken into accountby a step factor @

which rejects interactions in which insufficient energy is transferred*:

(3 .8)

(3.e)

(3.10)

(3.11)

Z¡ is the occupation number of shell i and (J¡ is the binding energy of electrons in

shell i.

' @ ("): I ifx à0, o otherwise.
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It can be seen from Equation 3.4 that the single atomic Compton cross

section is determined by the incident energy, scattered energy, angle, and details

of the atomic structure of the scattering atom through the form factor -rþ,). Since

Doppler broadening is sensitive to atomic structure, the distribution of electron

density of the target is not sufficient information for predicting x ray scatter. This

presents both a challenge and an opportunity. If no assumptions are made

regarding the target material, the number of convergence variables in the system

is increased due to the elemental degeneracy of the voxel electron density. That

is, many combinations of elements in the voxel may have the same electron

density. Instead of one variable per voxel (electron density), we potentially have

n variables (electron density * relative elemental composition), where z is equal

to the total number of elements potentially present in the voxel. The opportunity

lies in the ability to potentially resolve the elemental composition of a sample

material, and preliminary experiments performed in simulation appear to

corroborate this hypothesis. (see Chapter 8)

3.4 Coherent Scatter

Coherent scatter is a cooperative process, where an incident photon

interacts with matter to scatter through an angle d while retaining its incident

energy. The scattering cross section increases with increasing atomic number Z or

decreasing incident energy K, and is a significant interaction at mammographic

energies.
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In this work, the coherent scattering cross

independent atom approximation. The differential

are for individual atoms, and is given by:

d noc

section is calculated using the

cross sections calculated here

= !g-r rl¿,

Flql=ln,Flø,2,J
i

da
(3.12)

where

dnõ,

da
+ cos' d¡ (3. 13)

is the Thompson differential cross section. This differential cross section

represents a theory where the electron is assumed to be free to oscillate under the

influence of the incident electromagnetic wave. However, it neglects the fact that

atomic electrons are bound and subject to the electromagnetic forces of other

intra-atomic particles. Thus, we introduce the unitless form facto, Flql, which

can be interpreted as the effective charge that scatters a given photon, and is the

Fourier transform of the atomic charge distribution. Under the independent atom

approximation where interactions between atoms is neglected, this factor can be

expressed as a weighted sum of elemental contributions:

2

=Lfi2'
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where

Q=K (3. 15)

is the factor that contains the dependence ofthe coherent cross section on energy

K and scattering angle 0, and p¡ is the fraction of the ith element in the mixture or

compound, where Zp, = 1. Recent studiesee have shown that there are problems
i

with the independent atom approximation, and more accurate experimental form

factors are being integrated into EGSnrc as new data becomes available. In this

work, we use the individual form factors Flq,Z,] haue been obtained by Hubbell

andØverbø.100

3.5 Relation between Atomic Composition, Electron

Densities, and Attenuation Coeffïcients

CCSR is a method of electron density distribution prediction. When Klein-

Nishina Compton physics is used and coherent scatter is ignored, electron density

is the only piece of information required to predict the distribution of scatter for a

particular phantom configuration. However, proper prediction of coherent and

Doppler broadened cross sections requires some more extensive knowledge of the

material in question, namely the atomic composition. A problem arises: how do

1-cosá
2
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we image the electron density of a material without knowing its atomic

composition? Forhrnately, in breast imaging, there are a limited number of

possible tissues present in the breast. Thus, it is possible to approximate a

functional relationship between the atomic composition and electron density of

each voxel. While the elemental composition of glandular and adipose tissue is

knownrOl, the elemental composition of calcified tissue is not available in the

literature. It is however possible to calculate it based on the percentage of

calcification present and the chemical formula of the calcification.

Using this information, we can calculate mass-attenuation coefficients

based on atomic composition, allowing the calculation of a new functional

relationship between mass-attenuation coefficient and electron density. Figure

3.2 illustrates this functional relationship using the materials outlined in Table 3.1.

Normal tissues are assumed to range between 0/100 and 100/0 adipose/glandular

tissue, and abnormal tissues are assumed to be glandular tissue with calcification

content between 0o/o and 50Yo. Malignant tissues have been shown to have

densities -l%o larger and linear attenuation coefficients -5%o larger than normal

.oK
tissues'", indicating a higher effective atomic number. In our model, malignant

tissues are modeled by glandular tissue with 0.5-13.8% Calcium Hydroxyapatite

calcif,rcation content by weight. Any ratio of glandular and adipose not present in

the table can be obtained through a process of linear interpolation between the

tissues presented in Table 3.1. See Appendix A.
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Table 3.1: Density and elemental composition of standard breast tissues and

Calcium Hydroxyapatite

Material
Physical

Densiry
HCNOPCa

Adipose Tissue (0/100) 0.9301 0.112 0.619 0.017 0.251 0.001

Standard Breast Tissue
0.9819 0.107 0.401 0.025 0.464 0.003

(s0/s0)

Glandular

Tissue (100/0)

Calcium Hydroxyapatite

Cals(POa)6(OH)2
3.t6 0.0839 0.313 0.019s 0.4s3 0.043 0.0878

| .04 0 .t02 0. 1 84 0.032 0.677 0.00s

43



_ìl
3250 3500 3750

Figure 3.2: Functional relationship between linear attenuation coefficient and

electron density for 3 select mammographic energies. Percentage calcification is

by volume.
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Discrete Scatter Fluence Prediction

4.1 Required A priori Information

Any scatter prediction model must make initial assumptions or

approximations about the material being imaged, since the information needed to

analytically calculate scattering distributions (i.e. the electron density distribution,

atomic structure) is the object of the imaging procedure. As such, certain

approximations andlor assumptions were made during the development of the

algorithm. The following list details the relevant approximations.

1. Exterior Dimensions of the Breast

In order to successfully calculate the attenuation of scattered x rays, the

radiological path length from the point of scatter to the detector is required. There

are two major geometries considered in this work, pendulant breast and

compressed breast. The determination of the exterior dimensions of the breast is

difficult for pendulant forms; however we may overcome this by placing the

breast in a water 'sleeve' of known dimensions. This is described in greater detail
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in Chapter 7. In the case of compressed breast geometry, the exterior dimensions

are easier to obtain, because the breast is compressed into a slab-like geometry

where the thickness of the slab can easily be obtained through paddle width

measurements. Pliable solid water equivalent material may be used to fill any air

gaps left between the compression paddles. This is more fully explained in

section 7 .2 when dealing with multiple scatter.

Knowing the scatter path length allows for accurate electron density

imaging and is considered a necessary a priori parameter in this algorithm.

2. Average Breast Composition

Breast structure and composition may vary greatly between women. The

most important vañation by far is the relative amount of adipose and glandular

tissue. Generally, older women have breasts with more adipose tissue than

younger women. The percent difference in density between adipose and

glandular tissue is approximately I}Yo, and this difference can account for

signif,rcant differences in their x ray attenuation properties.

For this project, we have consistently worked with breast material that

reflects a 50/50 ratio of adipose and glandular tissue. In the algorithm, we assume

a 50/50 ratio when calculating the attenuation of scattered x rays, and thus we

assume we know the average breast composition a priori. However, the

information provided by the primary mammogram can be used to approximate

this ratio prior to scatter reconstruction. Although compositional information as a
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function of Z would not be known, the mixture of glandular and adipose tissue is

reasonably isotropic throughout the breast. r02

3. Mass-attenuation Coefficients at all Energies for Adipose, Glandular, and

Calcified tissue

These coefficients are required to calculate photon attenuation of both

primary and scattered x rays. For any energy, the coefficients may be calculated

using the elemental composition of the material of interest. Recall from section

3.4 that the electron density of a voxel may be used to obtain its elemental

composition. Using this information, the mass attenuation coefficient in cmzlg is

obtained using an additive relation of the component elements:

i=1-,(î), (4.1)

where w¡ the percentage of element i present in the mixture by weight. The

elemental mass attenuation coefficients lnl *. obtained using the cross sections
\p ),

of Storm and Israel.l03 Every iteration, this calculation is performed for each

voxei.
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4.2 Geometry

One of the unique aspects of CCSR is its ability to enable 3D imaging

using only a single projection. The basic geometry for the system is shown in

Figure 4.1. A hnite width pencil beam is used to irradiate the object of interest.

Two area detectors are placed upstream and downstream of the object, and

capture scattered photons originating inside the object. This technique allows the

irradiated volume to be imaged with finite resolution. As illustrated in Figure 4.1,

the flreld of view (FOV) is composed of a column of voxels with resolution

defined by the beam dimensions and a user-selectable z value, occurring inline

with the beam. To obtain a full 3D imaging capability, the beam may be scanned

in x and y directions perpendicular to the beam axis. Two basic variations of the

geometry are used:

In Chapter 6, the phantom is simulated as a cylinder 8 cm in diameter (in

the xy direction) and 8 cm thick (in the z direction). All experiments are

performed using a central beam position.

In Chapter 7,the phantom is simulated as a 5x5x5 cm3 cube. A scanning

beam is used to image slices of the phantom.
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Pencil Beam--------->

Figure 4.r: PIan view of the phantom, showing pencil beam and imaging Fov

(Field of view). The voxel shape is cylindrical for scatter CT (Chapter 6), and

cubic for scatter mammography (Chapter 7).

4.3 Detector

A detector which was able to record both position and energy of

impinging photons was simulated with adjustable binning (i.e. resolution)

parameters. To complement the cylindrically symmetric simulation geometry

inherent in the Compton scatter cross section, the simulated detector affay was
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configured as a ring array, instead of the more usual square pixel array (Figure

4.2). The square pixels of a traditional x ray imaging detector are replaced with a

series of detector rings, where a ring is defined by boundaries Ã and R+/4. All

photons impinging within this radial range constitute one signal. In practice, a

square pixel array may also be used, though an extra conversion between

Cartesian and cylindrical data spaces is necessary.

The simulated detector parameters are outlined in Table 4.1. We used

lR :l mm spatial resolution for all simulations. Depending on the application,

we chose energy resolutions of /E:500 eV at CT energies and /E:200 eV at

mammographic energies.

Table 4.1: Simulated scatter detector parameters.*

Minimum Maximum Resolution

CT Mammo

Position (cm)

Energy (kev)

0

0

10

100

0.1

0.5

0.1

0.2

The 1 mm spatial resolution is well within the

panel detectors, while a 200-500 eV energy resolution

state of the art microcalorimeters. Chow et al.lOa

capabilities of typical flat

has been achieved using

have demonstrated that

* 
Not to be confused with the primary detector, which may have higher resolution.
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superconducting tunnel junction (STJ) detectors can resolve 60 keV x rays with a

resolution of 0.07 keV.

Figure 4.2: Phanlom and detector configuration.

However, one disadvantage of STJ detectors is that they require cryogenic

cooling, limiting their convenience. Semiconductor detectors do not require

cooling, and their energy resolution has been steadily improving over the past 15

years. These detectors would be a good choice for this work, as their freedom

from cooling and low cost would allow an easier and more cost-effective

implementation of CCSR. Table 4.2 shows the chronological progression of

RËAR DETECTOR

NING

PHANTOM

FRONT DETF'CTOR
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semiconductor detector resolution over the past several years. If this trend

continues, semiconductors would be the material of choice for experimental

implementation of this project, though currently not achieving a resolution

superior to 200 eV.

The theoretical limit for semiconductor detectors is energy dependent, and

is given by the statistical variation in the number of produced electrons which are

read out. The average energy required to produce ionization is 2.95 eV in

Germanium, 3.62 eV in Silicon, and 4.43 eV in CdTe. The production of

electron-hole pairs is a statistical process. Each interaction will produce an

ion/hole pair with energies that follow a Poisson distribution, and the fractional

energy resolution is given by the following formulal0s'106:

M,,o,
= 2.35 (4.2)

where .F is the statistical Fano factor,toT ô is the mean energy to produce an

electron-hole pair, 2.35 is the FWHM factor of the distribution, and E is the

photon energy. At mammographic energies (<20 keV), Equation 4.2 yields a

statistically limiting resolution of approximately 200 eV. This value drives our

choice of energy resolution for that energy range.

Using these simulated detector parameters, the recorded photon

distributions are parsed into a two-dimensional 'detector space' with the limits

and resolution described in Table 4.1. We use the formalism (R, K) to refer to the

area of detector space bounded from radii Rto R+/R and energies Kto K +/K.

E

F6
E
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Table 4.2: Chronological progression of energy resolution for various

semiconductor detectors.

Year
Energy

Resolution
Author

Detector

Type

Fano

Factor

Statistical

Limit

Resolution.

(kev)

r992

1999

200 1

7 keV @60

keV

1.1 keV @

60 keV

0.83 keV @

59.5 keV

- 0.425 keV

@ 60keY

- 0.463 keV

@ 60keY

Hasegawa 0.1510s

Cook CdTe 0.11r08

Tak. CdTe

Gehrke HPGe 0.1510s

Si-PIN 0. 1510s

0.1 1

0.383 @

60

0.402 @

60

0.402 @

60

0.383 @

60

0.424keY

@ 60 keV
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4.4 Generalized, Calculation of Scattered Fhoton

Distributions

A MATLAB algorithm was written to calculate from first principles the

number of singly-scattered photons that would be detected in each discrete 2D

bin, given the incident photon spectrum, incident beam shape, number of incident

photons, and electron density distribution throughout the phantom.

A step-by-step procedure was developed to calculate the number of

photons that scatter into the radius-energy (R, K) bin for each voxel along the

beam line. The formula presented in this section is generalized and applies to

either Compton or coherent scatter. The total is calculated as the sum of the

number of photons scattered from each respective voxel. The procedure for

calculating the number of photons scattered into each (R, K) bin is as follows.

L In order to approximate the realistic case of infinite scattering centers

(photons may scatter at any point along the beam line) in a computationally

feasible manner the following approach was used. Each voxel is populatedwith m

equally spaced 'scattering centers' along the z axis (Figure 4.3). These scattering

centers approximate the scatter originating from a subvoxel of space of thickness

lz with the scatter center at the middle. The number of photons originating from

- 
Why not increase the voxel resolution? We wanted alarger number of scattering centers without

a larger amount of convergence variables. In this way, the voxel electron density 'drives' the
scattering from all centers within the voxel.
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each scattering center is calculated separately using the electron density of the

voxel containing the scatter center.

Subvoxel(j,k)

Scattering center [,k)

lnteraction volume

Detector plane

a, .1

Annular Segment

Figure 4.3: A voxel containing 4 scattering centers and 4 subvoxels. zj,k and v are

defined in Figure 4.1. A distance between scattering centers of 0.125 cm is

considered sufficient to approximate a line source. Az is defined as the distance

between two scattering centers. The angular ring spanning from R to R+dR is

def,rned by the index R in the bracket (R, K). The quantity A?to'o is the angle

subtended by the annular strip (R, R+AR) measured from the scattering center

ú,k).
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2. The number of primary photons that reach the TOP of each subvoxel

defined by the scattering center is calculated using the number of incident

photons, the electron densities, and the attenuation coefficients of all voxels. The

number of primary photons Nl'o(Ko) of energy Ko incident on the top of

scattering center Æ of voxel j is determined by calculating the attenuation of the

No(Ko) photons from the top of the slab:

(4.3)

where -ðy'' (Ko ) is the mean number of incident primary photons between energies

of Ks andKo +AK' ,l+l are the mass attenuation coefficients, p¡ is physical
\P)x"

density of the;tl'voxel, z,,r is the distance from the top of the phantom to the

scattering center k of voxel j, and v is the voxel thickness (Figure 4.3). Since the

physical density for each voxel is not known, an estimated value is calculated

from the electron densities using the following equation:

¡/j'o (Ko ) = 1/o (Ko ) x

*'[[} - 
E)i .,0,.)-(Ð, r 

"

' Lz '-l))lP¡(z¡.t- Z-r"(i 
I

Oo
p, =!ïx0.985 

o¡
Peo,i cm-

s6

(4.4)



where p",, is the electron density of the itt'voxel, p"o,,is the electron density of

50/50 breast tissue. The physical density of 50/50 breast tissue is 0.985 glcm3

Physical densities are calculated dynamically during the convergence process.

The scattering angle is defined by R and 2.,,r , the detector position, and the

scattering center, respectively. The angle A?rn'¿ is calculated for each scattering

center from the radial size of the detector bin as follows:

L'i,o = urr"or(' - t'rl - ur..orl 
t - t,*)

" [R+dR, l. À )
(4.5)

where l-z¡, r, is the length along the beam axis from scatter point (7, þ to the

forward detector plane, and R defines the inner radius of the detector ring

location.

3. In addition to the aforementioned dependencies, the number of photons

scattered into bin (R, K) is dependent on the spectral distribution of the incident

beam. This is because the incident and scattered photon energies for Compton and

coherent cross sections are correlated. Typically this correlation is described

using kinematic equations. As the correlations are different for each cross

section, they will be presented in the next section. It is suffîcient to introduce a

parameter Nl'o (Ko) here. This parameter effectively states the number of

photons of energy Kothat are available to scatter into (R, K).
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4. The total number N,",(R,K) of photons scattering into (R, K) is given by

the product of the number of available incident primary photons of correct energy,

the probability of scatter into bin (R, K), and the scattered photon attenuation

factor:

Kor il

N,",(R, K)= Ë Ë f * *",(i, j,k, R) x
í=Ko. j=t k=l

(4.6)

where Ko, is the lower bound energy of incident spectrum, Ko, is the upper

bound energ"y, n is number of voxels, m is the number of scattering centers per

/\
voxel, [4tl is the mass-attenuation coeff,rcient of normal breast tissue at energy'\ 

P ),

i'Pt,isthedensityof50/50breasttissue,u"a@isthe

distance traveled by the scattered photon in breast tissue from the scattering point

to the lower slab boundary.

The factor N*^(i, j,k,R) is the number of photons scattering inside the

subvoxel of length Az belonging to scattering center Æ of voxel T into (R, K).

The number of photons reaching the top of this segment is ¡/d'k(K0). If the total

linear cross section in Lz is given aspi'k, the number of primary photons

reaching the bottom of the subvoxel is:
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N;"t*t (Ko ) = N to (K o) 
* exp(- pj az)

The number of photons which interacted in the subvoxel is:

Ní',0 = Nto (Ko)- N'o'."(Ko) = Nlrt (Ko)(-expç-pj u)

Finally, the number of photons scattering in the direction of bin (R, K) is:

(4.7)

(4.8)

(4.e)

(4.10)

N,"o,(i, j,k,R)= Nli* 
OotiL 

=p'
¡rí'- t;l(r - exp(- ¡t 

i Lz)^j-

LoI'o^
where

Itt

scattered into bin (R, K), and may be defined as:

n o t^',0, = (o o t^',ou),",,,, *(n.tr',ou),",,

where (orl',rr),o,,,0 und (ort;.rr),o,, aÍe the Compton and coherent cross sections

per unit volume, respectively. The derivation of the coherent, Compton Klein-

Nishina, and Compton Doppler broadened cross sections is presented in section

4.6.
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The factor (1-."p(-,r'Ar) Ir computationally intensive to calculate for

large anays due to the presence of the exponential. The following approximation

can be made* when Az << 1 I l, 
j 

, which is satisfied when x:0.25 cm:

[t - r*o(- t" 
^')]= 

pi 
^z

(4.11)

and this is the approximation we use in the algorithm.t

5. The derivation of the backscatter space is similar, with the geometric

variables modified for backscatter geometry.

4.5 Calculation of No(Ko)

This section deals with deriving the general formula for the number of

photons of energies between Ks and Ks+/Ke, which we designatel/o(Ko). We

need to calculate the percentage of total incident photons which f,rt into the energy

range (Ks, Ks+ ¿Ko). This value multiplied by No will yield the total number of

incident photons No (Ko ,Ko * ÂKo) neglecting attenuation. A typical spectrum

used in this project is shown in Figure 4.4, where K, = Ko and K , = Ko + AKo .

* 
e'' = 1+x forsmallx

I This approximation substantially improves computation time by removing the inefficient
exponential operation.



Amplitude

A2

A1

A3

Energy

Kf

Figure 4.4: Diagram for calculation of the average

between energies K¡and K¡.

number of photons occurring

Given that the spectrum is normalized to 1, we wish to calculate the fraction of

photons f falling between K¡ and K¡. The calculation is performed using the

simple linear interpolation* :

Ki

" K"-K," ..Kf-Ko "i = 

- 

Jt-iz r-:-:- /r" K,-Kb"' "" K.-Ko"'
(4.r2)

where, f1,f2, andfs are the fractions of photons in bins 1,2, and 3, respectively.

The number of photons of corect incident energy is:

* 
Analytic integration or Lagrange interpolation could be substituted for this formula, however as a

small number of bins was involved (< 3), this method requires less computational time.
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¡/o(Ko) =.f *No (4.13)

where À/p is the total number of incident photons.

4.6 Calculation of Cross Sections in a Discrete Geometry

4.6.1 Coherent Scattering Cross Section

The discrete calculation of the coherent cross section, in cm2 per unit

volume per steradian per unit volume, takes the form:

wherep, is the number of atoms of element i per unit volume, and the summation

occurs over all elements present in the volume. The formula is composed of two

major componentr 
[#) ,=Írr+cos'Li*'o¡ 

is the Thomson difrerential

cross section in units of cm2 per steradian per electron, and Fl*, p"(j,k,Ðf is the

unitless form factor. The variable:r is defined as
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where åc is Planck's constant multiplied by the speed of light. All other factors

have been previously defined. Calculation of coherent scatter into (Ã,K) is

simplified by the factthat the scattered photon energies are identical to the initial

energies. The boundary values (K, K+/K) are used in Equation 4.12 of section

4.5.

4.6.2 Klein-lt{ishina Compton Cross Section

The partial Klein-Nishina cross-section Lot*',0* predicts the probability of

an interaction producing a scattered photon with scattering angle L?lÌ (see

Figure 4.3), per unit angle and per unit volume, and is dependent on the position

of j and k the radius R, and the energy K:

m^c -- ?t"'r
* =; no s1¡ ---::-

(o'';rr),.,0 =, 
" +(ffiJ' lffi. .g#- sin 

2 (ri'- )] .

þn sin(l¡'k >be';r

(4.15)

(4.16)
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where p" is the electron density per unit volume, ro is the classical electron

radius, (Xr)t;!-is the incident photon energy calculated using K,0¡,t and Compton

kinematics and L?l'k is the angular range subtended by,R and R+dR at the point

(t,k).

As a consequence of the kinematics of Klein-Nishina physics, only a

fraction of incident primary photons are allowed to scatter from scattering center A

and incident energy boundaries (Ks, Ks+ /Ko) through an angle ?toÌ into bin (R,

K). The energy of a Compton scattered photon K is related to the incident photon

energy (f, )i,? and the scattering angle 7l'k viathe following equation:

(t<,)';!, =

f *þ"'a;'' -1)
(4.r7)

Calculation of the incident

obtained using this equation.

energy boundaries required in section 4.5 can be

4.6.3 Doppler Broadened Compton Cross Section

Unlike previous cross section calculations, the discrete Doppler broadened

Compton cross section into (R, K) can not be calculated using the method of

section 4.5.
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With Doppler broadening, a photon with any incident energy is eligible for

scatter into (R, K) with a probability defined indirectly by Equation 3.4. The

CCSR calculation of the total Doppler Broadened Cross section is based on

calculating the cross sections for all combinations of incident and scattered

energies, and is expressed per unit angle per unit volume by the following

formula:

(ot';,rr)"o,,, = ,u
KT

Zwtr (Ko,Ko + aKo )Loltr x
Eo=K¡

,:K
2 K oq (K r, K, e to'o 

)(t + o'" (K o, K, e tor ))'''
x (K o, K, e.,o.o ) J (p 

" 
(K o, K, 0 Å,0 ))

(4.18)

where Nlr (Ko,Ko t AKo), j,

resolution we have used for

sufficient to approximate a

reasonable computation time.

k, and\?l'o are defined above. The summation

all cases is 20 eV, which we have found to be

continuous integration while still retaining a

The discrete value of q is:

whilep, is:

K.K(I-cos?l* )-Ko +K
q(Ko,K,7l'k)

(4.re)

p, =u=
q
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Xis defined as in section 3.3.2:

where the discrete values of R and.R' are:

x=L*{* 2( !_ll*r1_rl'
.R' R \R R',) [,R R',)

, Ko-Kcos?i*'k* 
nf453'5

p,(Kr,U,ri,'r))

(4.2r)

(4.22)

and

R'= R - KoK(l - cos g1'* )

and J@,) is the Compton profile for the electron, which

atomic binding. Tabular values of JQt,) for the elements

were obtained from Biggsloe.

(4.23)

represent the effects of

H, C, N, O, P, and Ca
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Data Acquisition and Algorithm Design

5.1 EGSnrc Data Acquisitions and Post Processing

As discussed in section 2.5, we have used the EGSnrc Monte Carlo

package to simulate both CT and mammographic imaging systems. For our CT

experiments in Chapter 6 we have simulated a cylindrical phantom, and we have

modified the DOSRZNRC user code to allow us to output scatter distributions in

a data file. We have simulated non-cylindrical phantoms in our mammographic

experiments of Chapter 7 , and for this purpose we have used the Cartesian greater

user code, DOSXYZNRC.

Both user codes have been modified to ouþut the same format data file,

including headers containing all relevant simulation parameters. Each first order

scatter distribution is stored in its own array, while all second order and higher

scatter distributions, regardless of type, are stored in their respective arrays.

Separate alrays are used for forward scattered and back scattered photons. A

PERL script is used to modify the ouþut data into a format readable in

MATLAB.
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5.2 A.lgorithm Design in M.dTLAB

We coded two major functions in MATLAB. The first function is

primarily dedicated to parameter initialization and loading of relevant data files.

The second function is dedicated to evaluation of the objective function, accepting

the current distribution of electron density as input.

MATLAB is optimized for array operations. Despite being a high level

programming language, we have found little improvement in computational speed

when compiling the code into C++ using the compilation toolbox provided from

MathWorks, noticing a speed gain of only approximately 5%. To help improve

the computational speed, the algorithm has been vectorized to the maximum

extent possible in MATLAB.

With the exception of the simulated annealing code, native MATLAB

optimization algorithms v/ere used. For simulated annealing, we used the

ASAMIN MATLAB code*.

A Graphical User Interface (GUI) has been constructed for monitoring of

output. After each iteration, several plots are displayed, including the old and new

electron density distributions, simulated and predicted scatter distributions, and

associated residues.

- 
http://www.econ.ubc.calssakata/public_html/software
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5.3 Optimization Algorithms

The reconstruction of the image is an iterative process of optimization,

which involves the minimization of an objective functionf(x). The formula for

the objective function is as follows:

f (x) =ZÏ'=-,1j,'!=, rlr,t<¡' (5.1)

where x is the input vector representing the influence of the voxel electron

densities on the scattered photon distribution. The functionF(r,K) is defined as:

Fçr,E¡=s(¡,F) -Fçr,R¡ (s.2)

S1",^f¡ and Fçr,R) represent the simulated Monte Carlo results and predicted

data spaces, respectively. The least squares difference is obtained for each

element and summed over the whole data space from K¡ to K¡ and r¡to r¡.

There is a large selection of optimization algorithms which can be used to

optimizef(x). Three major classes of optimization algorithms were tested, and are

presented in the following sub-sections.
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5.3.1 Trust Region

This form of optimization is based upon approximating the objective

function in a limited neighborhood, called a trust region.rrO The objective

function inside the trust region is approximated by a polynomial, typically the

first two terms of the Taylor approximation of f(x) at x, which lead to a spheroid

or ellipsoid space. If minima are found inside the trust region, the trust region is

considered to be an accurate representation of the local objective finctionf(x).

The current search point is then moved to the new minima and the trust region is

expanded. Finally, when no improvement is found inside the trust region, the

trust region is contracted in an attempt to better approximate the local objective

function. Contractions continue until either a new promising search direction

arises, or the function converges. If a new direction arises, the search point is

moved to the new minima, and the trust region is expanded again.

5.3.2 Simulated Annealing

Simulated annealingl" is an optimization algorithm that is inspired by the

way a metal cools and freezes into a minimum energy crystalline structure. The

atoms in the metal 'bounce' around, and randomly wander through states of

various energy. As the temperature is gradually reduced, the atoms f,rnd

appropriate states of minimum energy, though they may still occasionally explore

higher energy states during the cooling.

70



Similarly, the algorithm strives to find the global minimum in a multi-

dimensional problem by allowin g a great deal of random direction at first, even if

the direction sometimes leads to a higher value of the objective functionf(x). As

the algorithmic 'temperature' is reduced, the search direction gradually becomes

one of descent, where unfavorable directions (higher f(x)) are less tolerated. The

major advantage of simulated annealing over other techniques is its ability to

avoid becoming trapped in local minima, though there is a large computational

cost associated with the algorithm.

We tested ASAMIN, a third-party simulated annealing code for

MATLAB. We found the algorithm was robust in achieving a good solution (<l%

error) using a variety of starting points, with little (<I%) difference between

converged solutions. We have found this algorithm to be effective in locating

minima in our objective function. However, in the latter stages of the project, we

have been improving the resolution in the z-axis of our imaging system. As such,

we introduce a continuously increasing number of dimensions in the optimization

function. The computational requirements were prohibitive for the highest

resolution we used. With 32 imaging voxels, the time required to search the

solution space for a global minimum was prohibitive (several thousand

evaluations over several days), prompting the search for a faster optimization

method.
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5.3.3 Gradient Methods

Algorithms that fall under this category include steepest descent, Gauss-

Newton,ll0' t12 and Levenberg-Marquardtl13 methods. The simplest of these

methods is the steepest descent. For each iteration, the search direction is

calculated as the negative of the gradient vectorYf (x). The length of the iterative

line step is chosen to minimize the objective function f(x) along the line. An

unfavorable characteristic of this approach is that the search steps tend to zigzag

towards the final solution. The method is computationally inefficient when, for

example, the function to be minimized contains long narrow valleys. The Gauss-

Newton algorithm is more sophisticated than steepest descent, and calculates

search directions based on the solution of a linear system of equations containing

the Jacobian J(x) of the input vector .r. The Levenberg-Marquardt algorithm is a

hybrid of Gauss-Newton and steepest descent in that the calculated search

direction is a cross between the Gauss-Newton and steepest descent search

directions.

While gradient algorithms are more prone to falling into local minima than

algorithms such as simulated annealing, they do function with an objective

function that can be discontinuous in its first and second derivatives. As the first

derivative of the objective function produced by our algorithm is discontinuous

and the Gauss-Newton function is computationally more efficient than simulated

annealing or trust region, we have selected the Gauss-Newton optimization

method for the final version of our algorithm. A Gauss-Newton algorithm is
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generally more efficient than a Levengerg-Marquardt algorithm when the residual

is at zero. However, using an efficient algorithm such the Gauss-Newton method,

the problem of converging to local minima must be addressed.

5.3.4 Strategies for Avoiding Local Minima

We observed that all the gradient method algorithms we used were prone to

falling into local minima far from the correct solution, and we employed several

strategies to minimize this problem.

1. Primary photon constraint

To include the primary photon count as a new constraint on our solution,

we introduce a new residue:

g(x)=(¡¿, - Nr)', (5.3)

where ¡/, is the number of simulated primaries, and N"

predicted primaries. The simplest case of incorporating g(x)

function is through addition:

h(x)=As@)+f(x)

is the number of

into our objective
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Care needs to be taken in selecting the constant A, as the introduction of

this constraint complicates the solution space. That is, if the first term of the

equation dominates then the algorithm might converge on incorrect solutions

which minimize the first term but not the second, effectively creating new local

minima where none existed before. Figure 5.1 illustrates one example. The

original objective functionl(x) is shown in black. The dashed line shows example

alterations that could occur due to the introduction of the primary constraint (and

have been observed in practice). When g(x) is introduced, a local minimum on the

left side is eliminated by the new constraint term. However, a new local minimum

has appeared on the right side of the figure, where g(x) is minimized despite a

large f (x). Consequently, if a starting point of large x is chosen in this example,

convergence rnay occur in the local minima where it would have correctly

identified the global minima beforehand. Thus, care is warranted in selecting I

and the parameters of the minimization function.

In a noiseless environment, g(x) would not be necessary as we have

established that a global minimum exists and corresponds to the correct solution

(Appendix B). However, the contribution of certain voxels can be very small, and

could lead to large variations in electron density as the algorithm attempts a fit to

a noisy data space. However, these variations are heavily penalized by g(x), and

are thus eliminated. These local minima are the sort that we aim to eliminate

through the use of g(x). We have experimented with the value of A, and have

found that a value of A=3x10-5 xy'y'o allows superior convergence of the
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algorithm compared to before, where No is the number of incident primary

photons. However, further investigation is required to test the optimal value of

this parameter.

r(x)

Global
minima

Figure 5.1: Effect of primary constraint on the objective functionfx) for arbitrary

x. The solid line represents the initial objective function. The dashed line

represents the modified objective function showing the effects of introducing a

primary constraint, including the elimination (left) and introduction (right) of

local minima.
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2. Grid Refinement A

When an optimization problem contains large numbers of variables*, orre

approach is to solve the problem using a smaller number of variables. The

solution to the lower order problem is then interpolated and used as a starting

point for higher order problems. We have employed this approach here, by

starting our imaging process by using I cm voxels. The resulting image is then

interpolated to a 0.5 cm voxel resolution and the process is repeated. Finally, an

image with a 0.25 cm resolution is produced. Consider imaging a 5 cm thick

segment of breast tissue voxels where a lesion has been placed at

5-5.25 cm. Figure 5.2 shows the converged electron density distributions in cases

where the grid refinement algorithm is applied. In panel (a), the phantom is

imaged using no grid refinement technique. In this case, the optimization process

appears to have encountered a local minimum as the converged solution is far

from the expected solution. Two lesions were imaged, both false negatives as they

are not at the location of the actual lesion. Panels (b)-(d) illustrate the progression

of the grid refinement technique. As the resolution is progressively increase, the

contrast of the imaged lesion (a true positive) increases with respect to the

surrounding breast tissue. At the highest resolution, the electron density of the

lesion voxel is 100.6% of the expected electron density.

* 
Each voxel is considered as a separate variable.
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3. Grid Refinement B

We also tested a second grid refinement approach devised from an

analysis of each individual voxel contribution to each single forward and back

scattered photon distribution. Figure 5.3 shows an analysis of the photon

contribution to both detectors as a function of voxel position for a homogenous

breast tissue phantom of thickness 5 cm. We note in this case that the voxel

closest to the backscatter detector has the largest contribution. A gradient-based

optimization algorithm will tend to optimize the electron density value of this

voxel before other voxels with lower gradients. As a result, the converged value

for this dominant voxel will likely be more accurate than other voxels, and less

prone to local minima. In Chapter 6, we discuss using a weighting method to take

this effect into account. In Chapter 7, we introduce a modification to improve

results.

Implementation of grid refTnement B involves the following series of

steps. First, by converging in the parameter space that includes all voxels, a

solution is found. Following this, the voxel value with the highest photon

contribution is made constant, and solution reconvergence is repeated using the

previous image as a starting point. That can be visualized by removing a

dimension from the voxel parameter space that corresponds to the fixed voxel

value. Figure 5.4 illustrates the improvement this technique brings when the

phantom described in the previous section is imaged. Panel (a) illustrates the
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results with no grid refinement enhancement, while panel (b) shows significant

improvement when the technique is used.
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(a)

Figure 5.2: (a) Converged electron density distribution when no grid refinement

technique is applied. Two false positives have occumed, neither indicating the

location of the lesion. (b) First stage of the grid refînement approach. (1 cm

resolution) A true positive occurs atthe location of the calcification. (continued)

(b)
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Figure 5.2: (continued) (c) Second stage of the grid reflnement approach. (0.5 cm

resolution) The true positive value is approximately 96%o of the electron density

of the lesion (d) Final stage of the grid refinement approach. (0.25 cm resolution)

The true positive is 100.6% the electron density of the lesion.
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Figure 5.3: Integrated photon contributions to forward and rear detectors as a

function of contributing voxel depth.

Figure 5.4: (a) Converged electron density distribution when no grid ref,rnement

technique is applied.(same as 5.3(a)). (b): using grid refinement B technique, the

lesion is detected, though a broadening is visible.
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Application to Compton CT

6.1 Introduction

In this chapter, we adapt the ccsR algorithm to the spectral and

geometric conditions present in CT. That is, we simulate a beam with mean

energy similar to CT, and a phantom which is representative of the uncompressed,

thicker, breast imaged using CT.

In this proposal, CT image reconstruction involves processing both

ptimary and scatter data to qeate two separate images of attenuation and electron

density, respectively. The addition of an electron density image adds atomic

information not otherwise present in the primary CT image. The major benefits

to the inclusion of CCSR with breast CT include a reduction of dose due to the

removal of any anti-scatter grids, increase in sensitivity due to the additional

electron density image being produced, and atomic structure information being

supplied that is not otherwise available in the CT image, which only reflects

attenuation properties.
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6.2 Materials and Methods

As mentioned in section 4.2, we chose to simulate a phantom cylinder of 8

cm thickness and 8 cm diameter, consisting of a homogenous mixture of 50/50

adipose-glandular breast tissue. Air gaps of thickness 2 cm were placed in front

of and behind the cylinder, yielding a field of view (Fov) thickness of 12 cm

(l:I2 cm from Figure 4.I). Lesions were simulated by inserting simulated

0.5x0.5x0.5 mm3 calcifìcations inside 7xlx2.5 mm3 voxels of breast tissue.

Lesions were placed along the central z-axis with centers placed at3.I25

cm and 7.625 cm from the top of the phantom. PEGS (preprocessor to EGS)

material data files were created for 50/50 breast tissue using published elemental

data.lta Calcihed breast tissue hles were generated by combining 50/50 breast

tissue and calcium hydroxyapatite (Ca¡6(Poa)o(oH)z) in a 0.9510.05 ratio by

weight.

6.2.1Beam spectrum

we simulated a cylindrical 1 mm2 non-diverging polyenergetic pencil

beam of x rays perpendicularly incident on the cylinder and in line with the

inhomogeneities. The optimal x ray energy for application of this approach to

breast cr has not yet been established. However, it has been shownlrs that
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KERMA. is at a minimum in the 50-70 keV energy range. For the purposes of

this study an x ray photon spectrum produced by a 80 kVp electron beam,

incident on a Tungsten target, and with 2 mm of Tungsten filtration was used.l

The incident beam spectrum (Figure 6.1), which may be produced using a

conventional Tungsten target/filter x ray tube, was chosen to minimize dose while

maximizing electron density contrast.

Tungsten target and heavy Tungsten filtration produce the following

characteristics in the spectrum:

The unfiltered bremsstrahlung spectrum is heavily attenuated at

lower energies, due to the effects of beam hardening.

X ray energies slightly higher than the Tungsten K edge (69.4

keV) are heavily attenuated due to the discontinuous increase in

x ray absorption at that energy. This effect is due to the fact

that for energies lower than the K-edge, K shell electrons do

not participate in the photoelectric effect due to insufflrcient

energy to eject the electron, whereas for photon energies

slightly higher than the K shell energy, the electrons are

available to undergo the photoelectric effect. This creates a

discontinuity in the attenuation curve. 2 mm of filtration has

the effect in this case of almost completely removing spectrum

components higher than the K edge.

1.

2.

KERMA: Kinetic Energy released in material
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3. There are 10 K shell x ruy fluorescence energies in Tungsten

between 65 keV and 70 keV (Attixes, page 206). Using 500

eV binning, these photopeaks resolve as two peaks in the

resulting spectrum.

The benefits include faster imaging time due to a narrow spectral range of

detected photons. and the superior performance which has been demonstrated for

quasí-monochromatic beams in a mammographic setting.l16

6.2.2 Approximations

several approximations have been made in the simulation and

development of this algorithm for Compton CT. These include:

I. Klein-Nishina approximation for the Compton scatter cross sections.

Computation time was a factor for the thicker uncompressed breast presented in

this section. The implementation of Doppler broadening increases the algorithmic

computational time by a factor of 10. 'We 
address the inclusion of doppler

broadening in Chapter 7.

2. No coherent scatter. The photon backscatter, a valuable source of information,

is predominantly compton scatter, and thus a good approximation for the

. 
Imaging time is inversely proportional to spectral range.
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Figure 6.1: The incident beam spectrum for an 80 kvp electron beam impinging

on a Tungsten target with 2 mm of Tungsten filtration.l Spectrum sampling

resolution is 500 eV.
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backscatter. Coherently scattered photons can provide an additional source of

atomic information,"'" b:rt in this section we report on the application of our

algorithm to Compton scatter imaging. Coherent scatter theory is implemented in

Chapter 7.

3. No multiple scatter. The relatively homogenous nature of the breast, compared

to, say, tissue containing bone or air, makes it possible to take advantage of a

predictable multiple scatter background and use a subtraction technique to

eliminate it. The application of this is addressed in Chapter 7.

4. Constant mass attenuation cofficíent throughout the simulated breast. As a

first approximation the mass attenuation coefficient of 50/50 breast tissue is used

for all voxels. While valid when averaged over large regions of the breast, this

approximation is invalid for small local areas such as in the viciniry of

calcifications. The small size of the calcifications has however allowed this

approximation to be implemented with minimal impact to the reconstructed

image.

5. Correct radiological path length of scattered photons known a priori. For the

purposes of determining attenuation from the scatter point to the detector, the

correct post-scatter radiological path length for all photons is assumed to be

known. The determination of the breaslair interface which may be obtained by

CT reconstruction of the primary photons is critical to this assumption.

Two electron density distributions were imaged; the forward scatter data

was used to generate the first distribution while the backscatter data were used to
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generate the second distribution.

calculated from the forward- and

using the following equation:

Pt" =

The final electron density values were

back-scattered electron density distribution

wt¡ Pt",t + wl Pr",u
;;

w't + wi
(6.i)

where pt",¡and pt,u are the electron density distributions calculated using the

forward and back scatter, respectively.. The weights for the jth voxel

calculated using the following equations:

NI
wJ, - ---!-
' N,

and wl =# (6.2)

where Nrand No arc the total number of photons that strike the forward and

backscatter detectors respectively, while Nj and N/ are the number of photons

originating from voxel j that strike the forward and backscatter detectors,

respectively. The weighting factors are calculated based on the forward and back

scattered electron density distributions after convergence. When the forward

scaffered and back scattered electron density distributions are combined, the

distribution processed from forward scatter will have a higher weights for voxels

on the distal side of the phantom while distribution processed from the backscatter

* 
Simultaneous optimization was considered and implemented in Chapter 7.
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will having higher weight for voxels on the proximal side of the phantom. The

final converged electron density distribution characterizes the phantom.

Three studies were performed to explore the dependence on dose as well

as detector energy coverage. The first sfudy used 108 incident photons, a dose

consistent with breast CT, while for the second study 107 incident photons we

used to investigate the effect of increasing statistical noise. The reduced dose

associated with 107 incident photons would allow CCSR to be combined with

tomographic reconstruction using 10 projections. The f,rnal study also used 107

photons while the radius of each detector was reduced to

10 cm, keeping the detector resolution the same. This allowed the effects of

restricting our detector space to be evaluated.

Each study was repeated 5 times with different random number seeds rn

order to evaluate the uncertainty due to statistical noise while retaining the same

geometry and calcifi cation locations.

6.2.3 Production of Receiver Operating Characteristic (ROC)

curves

To explore the suitability of CCSR in detecting calcifications in a

phantom, we generated ROC curves to test the relative overlap between two

converged electron density sets. These are the sets containing:

l) normal breast tissue voxels
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2) calcified breast tissue voxels

Five separate simulations were performed per study, producing 10 electron

density values associated with calcifications and 190 values associated with

normal breast tissue. For each simulation, the location of both calcifications was

randomized, to eliminate any possible positional bias.

An ROC analysis was performed on all five images, and the true positive

fraction (TPF) was def,ined as the number of calcified electron density values

higher than a threshold electron density value. Conversely, the false positive

fraction (FPF) related to the number of calcified electron density values less than

the threshold value. The ROC curve was generated using threshold values from

2.5 to 4.5 x 1023 electrons/cm3.

6.3 Results

6.3.1 2D Scatter Distributions

The forward scattered and back scattered detector data for the

polyenergetic beam are shown in Figure 6.2. These detector spaces represent the

solutions of Equation 4.6 for all R and K with the converged simulation electron

density and attenuation values. The data space range shown in Figure 6.3 contains
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Figure 6.2: The forward scattered photon distribution resulting from a

polyenergetic beam incident on an 8 cm thick breast phantom containing

inhomogeneities. Note the two fan-shaped distributions, resulting from the two

fluorescent peaks in the incident spectrum.
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Figure 6.3: The back scattered photon distribution resulting from a

polyenergetic beam incident on an 8 cm thick breast phantom with calcification

inhomogeneities. Note the two fan-shaped distributions, resulting from the two

fluorescent peaks in the incident spectrum.
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81% of all detected forward scattered photons, while the data space shown in

Figure 6.4 contains 82o/o of all detected backscattered photons. The forward

scattered data set for all data points in the 63.0-68.0 keV energy range and the

back scattered data set for all data points in the 53.0-58.0 keV energy range were

used in all studies. Radial ranges were 0-20 cm for the first two studies and 0-10

cm for the third study.

6.3.2 Convergence Results

Figure 6.a@) shows lD images of the phantom (I), initial estimate (II),

and converged electron density values for all 3 studies (III-V), each displayed as a

column of arbitrary width. Figure 6.4(b) shows electron density histograms for

cases labeled (III)-(V). Image (I) shows a lD cross section of the phantom

material in the field of view defined in Figure 4.L. Predicted electron density of

normal breast tissue is 3.28x1023 elçm3. Predicted electron density of lesions is

3.59x1023 elcm3. This phantom was used for all studies. Image (II) shows the

iterative starting point of the algorithm, where all voxels in the 1D voxel line were

assigned values of normal breast tissue.

Figure 6.5 is a plot of photon count vs. radius for a single 500 eV energy

slice representing energies 5l-57.5 keV, calculated for the first study using the

iterative starting point shown in Figure 6.a@). The experimental EGSnrc

simulation data is shown as well as the pre- and post-convergence predicted
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distributions. The reconstructed images shown in Figure 6.4have been obtained

from a single reconstruction, as would be the case in a typical imaging scenario.

Image (III) of Figure 6.4 shows the converged electron density distribution

for 108 photons. Average voxel dose reported by EGSnrc was 3 mGy. The

average standard deviation obtained from 5 trials was 27 x 1020 electrons per

voxel, while the average imaged electron densities deviated from actual values by

16 x 1020 electrons per voxel, corresponding to an average deviation of 0.49%

from the phantom values. No electron density broadening occurs around the

imaged inhomogeneities; however the reconstructed values of the two

inhomogeneous voxels are systematically below the expected values by 2.2o/o and

r.9%. (Table 6.1)

If this algorithm were to be used in conjunction with a CT reconstruction

technique a number of projections would be required and therefore the second

sfudy was performed using the same data subspace while using 107 primary

photons, corresponding to an average voxel dose of 0.3 mGy (allowing 10

projections). For this lower dose sfudy, the converged electron density distribution

is shown in image (IV). As expected with a iO-fold reduction in the number of

detected photons, the average standard deviation increases to 62 x 1020 electrons

per voxel, while the mean electron density of the imaged voxels deviates from

expected by 15.1 x 1020 electrons per voxel, corresponding to a variation of

0.46% from expected values. The reconstructed values of the two

inhomogeneous voxels are now 4.2o/o and 3.7%o lower than expected.
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In the third study, the number of photons contained in the 10 cm radius

limited detector space account for 9l%o of all scattered photons in the larger 0-20

cm radial range.
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Figure 6.4: (a) Grayscale lD electron density images. (I) the simulated

phantom, (II) the iterative starting point of the algorithm, (III) the

reconstruction of the fîrst study corresponding to 108 photons, (IV) the

reconstruction of the second study corresponding to 107 photons, (v) the

reconstruction of the third study corresponding to 107 photons and a

limited radial subspace of 0-10 cm. (b) Histograms of electron density

values for the resulting images (IID-ry). The solid horizontal line refers to

the electron density of 50/50 breast tissue while the dashed horizontal line

refers to the electron density of calcified tissue.
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Figure 6.5: A 500 ev energy slice of the data space of energy range 57 -57 .5

keV. The simulated distributions represent the experimental simulated data

while the predicted cules correspond to the calculated distributions using

the iterative starting point (pre-convergence) and after converging (post-

convergence). The labels (f) and (b) refer to forward- and back-scattered

data, respectively.
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The results are shown in Figure 6.4, rmage (v). The full width at half

maximum of the lesion peaks corresponded to approximately 0.5 cm. The

statistical erïor was 82 x 1020 electrons per voxel while imaged voxels deviate

from expected by 56 x 1020 electrons per voxel, or I.7Yo. The electron density

values are 6.2%o and 5.0Yo lower than expected, and the difference in peak

electron densities of the first inhomogeneity (3361 elcm3 at 5.5-5.25 cm) is less

than lo/o, potentially a false positive error.

For all studies the converged electron density of both inhomogeneities is

reported in Table 6.1. Percentage differences are calculated relative to calcified

tissue and normal breast tissue electron densities and vary from -I.6%o for the first

study to -7.}Yo for the low dose, small detector study. The statistical uncertainty

of the calcifications is shown in the final column and ranges from a low of 0.52%

to 2.2%o.In all studies the phantom boundary was resolved to 0.25 cm resolution,

illustrating that CCSR is capable of performing lD boundary delineation with a

single projection.

The results from the ROC analysis (Figure 6.6) for study 1 (A,:0.999)

indicate a qualitatively3 'excellent' ability to resolve calcified tissue from normal

breast tissue, as were the results of the second study (Az:0.996). While the

electron density results of the third study deviated quite significantly from those

that were expected and were clearly inferior to those obtained using the wider

detector geometry it is still possible to detect the presence of the inhomogeneity,

with the Roc analysis classifying this (4,:0.961) in the 'very good, category.
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Table 6.1: Converged electron density values of the calcified voxels relative to

normal breast tissue (3.360x1023 e/cm3) and calcified tissue (3.5g6x1023 e/cm3¡.

The fourth and fifth columns are the systematic error and statistical uncertainty,

respectively.

Measured Difference Statistical

electron from expected uncertainty
Study Inhomogeneity

density (x1023 electron (%)

e/cm3) densiry (%)

#l
#T

#2

#T

#2

#1

#2

3.s 1 -2.2 0.52

3.52 -1.9 0.71

3.44 -4.2 1.7

3.46 -3.7 1 .5

3.38 -6.2 2.6

3.41 -5.0 2.2

#2

L'-t+J
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Figure 6.6: Roc curves for each of the three study conditions, indicating

that the simulation conditions of studies 1 and 2 have an excellent ability

to resolve the inhomogeneities. Note that due to the quality of the results,

the Roc plot has been magnified to the upper left hand corner area.

6.4 Discussion

The ROC results indicate that our imaging algorithm is a suitable test for

the presence of lesions in all three imaging studies. However, while the average

deviation from phantom values was less than the uncertainty; the average

deviation of the inhomogeneities was greater than the uncertainty, indicating
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systematic effors related specifîcally to quantifying the electron density of the

inhomogeneities. Errors are also noticeable at the upstream edge of the phantom,

where an overshoot is present.

The second experiment was designed to explore the effects of detecting

fewer photons and with an order of magnitude reduction in the number of photons

produced an average error of 0 .42% in comparison to the 0.28o/o eror of the first

experiment, while the measured electron densities of the inhomogeneities were

approximately 2Yo lower than those of the first study. In the third study, the

reduced detector space results in only 9%o fewer photons being detected but these

photons appear to play a significant role in correctly imaging the electron density

distribution, particularly with low photon counts.

6.4.1 Scope of Results

We use the Klein-Nishina approximation in both our EGSnrc simulation

and our reconstruction algorithm. While the Klein-Nishina model is valid when

the energy of detected photons is integrated by the detector,eT our reconstruction

technique is subject to the effects of Doppler broadening. However, for the

results included in this chapter we have neglected Doppler broadening for the

following reasons:

1. chronologically, the algorithm was still in development. Klein-

Nishina physics offers the simplest and most computationally

effective form of Compton scatter implementation.
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Many of the authors cited in section 2.3 have used Klein-

Nishina physics for their work, including applications involving

energy discrimination, such as the implementation of Achmad.63

Doppler broadening is more of a concern at low energies (<20

keV), where cross section gradients are larger, and energy bins

are smaller (200 eV vs. 500 eV used here).

Multiple scatter has also been neglected during the production of these

results. In chapter 7, we present a model of multiple scatter prediction that has

proven to be robust under harsher conditions than the ones used here. These

conditions include beam position closer to edges and higher detector space

gradients.

Coherent scatter has also been ignored, but the inclusion of coherent

scatter prediction would theoretically increase the amount of available

information, not limit it.

2.

a

Following the completion and publication

the work detailed in this chapterlrT, w€ decided

algorithm, moving to a mammographic geometry.

6.4.2 Extension of the results to three dimensions

Our studies involved

along an arbitrary axis, in this

peer-reviewed journal of

change of focus for the

one dimensional distributions of electron density

case the z-axis defined in Figure 4.1. The process

ina

ona

r02



of extending our technique to three dimensions involves scanning the pencil beam

along the x- and y-axes of the phantom. The scanned area would then be imaged

in 3D, each voxel being defined by the (xy) position of the scanning beam, and

the z position of the imaged voxel distribution for the (xy) beam position.

Through the use of a scanning pencil beam, only one projection in any direction is

needed for 3D electron density imaging if the boundaries of the object are known

a priori through other imaging techniques, such as breast cr, photography, or

laser delineation.

We propose that CCSR may be combined with breast CT to increase the

information content of the resulting image. CCSR may be integrated into breast

CT by introducing energy sensitive detectors in a CT detector array (Figure 6.7).

CT image reconstruction would involve processing both primary and scatter data

to create a fused image or two separate images of attenuation and electron density,

respectively. The addition of an electron density image adds atomic information

not otherwise present in the primary CT image.

Our results indicate that with the advent of state-of-the-art energy sensitive

imaging detectors, it is feasible to reconstruct an electron density image of a

phantom using only the Compton scattered photon information due to the

interaction of the primary beam with the phantom. 'We 
expect the inclusion of

coherently scattered photons to increase signal-to-noise ratio. The ability of this

approach to generate 3D images from a single projection may allow CCSR to

improve the sensitivity and specificity of breast imaging, while retaining

comparable dose.

103



Chest Wall

lncident Beam

Detector
Array

Figure 6.7: Proposed implementation of ccsR into breast cr. The geometry is

that proposed by Boone for breast CT. The CT detector array is replaced by a

matrix of energy discriminating detectors. The surrounding cylinder is a tissue

equivalent sleeve, designed to allow accurate multiple scatter subtraction (see

discussion).
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Compton Coherent Scatter Radiography

7.1 Introduction

As discussed in Chapter 2, one of the factors reducing the sensitivity of

traditional mammography is the obscuring of lesions by overlapping structural

noise. Though breast compression is used to alleviate this problem, structure

noise has proven to be one the largest contributors to sub-optimal sensitivity.lls

CCSR may be used as an adjunct to mammography to provide coarse 3D electron

density information which may be used to help identifu and charucterize lesions.

Although ccsR does not boast a resolution comparable to mammography, (1 mm

theoretical vs. 0.05 mm measured, respectively) it does assist with the crucial

problem of overcoming 3D structure noise.

In this chapter, we further develop the ccSR algorithm and apply it to a

low energy single projection mammographic geometry. As the simulated breast is

compressed, the overall thickness of the phantom is reduced from the phantom

introduced in the previous chapter. Klein-Nishina physics approximations are

removed, and cylindrical symmetry is no longer assumed as we switch to a more

generalized Cartesian geometry. The experiments are divided into two major
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sections. The flrrst part deals with multiple scatter correction and the geometry

devised to test it. The second part deals with imaging of a simulated accreditation

phantom.

7.2 Materials and Methods

Several simulation elements are common to both sections. A parallel

polyenergetic beam with a 1 mm2 cross section was simulated incident on a 5x5x5

cm3 cubic phantom, representative of a compressed breast. For each beam

position, i08 photons were simulated. We used the beam spectrum shown in

Figure 7.1, which was obtained by using a molybdenum target and niobium (0.1

mm)/molybdenum (0.15 mm) filtration. The filtrations were selected based on

the observations of Calicchiarle, where the molybdenum filtration is

supplemented with niobium filtration to remove the molybdenum Kp line.

Calicchia observed increased contrast in mammography with very little increase

in glandular dose. Furthermore, a quasi-monochromatic beam dramatically

increases the reconstruction speed of CCSR, which is one of the limiting factors

of our technique. A quasi-monoenergetic beam of this sort may also be obtained

in practice by using either heavy filtration or a crystal to select energies via

diffraction, and typically involves attaching a module to a standard

mammographic x ray tube.
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Figure 7.1: X ray spectrum of the incident pencil beam, which would be

produced using a standard x ray tube with molybdenum target and

niobium/molybdenum fi ltrationr .

7 .2.1 Multiple Scatter Correction

Currently, the extraction of atomic structure information from both

Compton and coherent scattering is limited to first-order scatter only. To prevent

contamination from second order scatter and higher, many scatter techniques

implement imaging systems that rely on collimationsT. Investigation of multiple
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scatter typically involves measuring the multiple scatter component in advance for

a wide range of collimated geometriesl2o. CCSR uses an uncollimated scatter

geometry, where the detector system records both the single and multiple scatter

signals, the latter component being as large as 40Yo of the total scatter signal at

some locations, based on EGSnrc simulations. The presence of uncorrected

multiple scatter introduces large imaging errors in CCSR as the input to the

algorithm is assumed to be the single scatter signal. This section describes a

method of multiple scatter prediction based on Monte Carlo, allowing accurate

subtraction of multiple scatter from the total detector distribution prior to CCSR

imaging. The following two subsections examine two solutions which we have

considered during the course of this work.

Parameter Based Model

In a well defined scattering geometry, it is possible to predict the photon

scatter distribution based on a limited number of defining parameters. That is, we

would be able to obtain a full scatter spectrum scatter distribution given certain

key parameters, such as incident beam spectrum, object location and dimensions,

average material composition, and detector position. The distribution could

either be calculated analytically (not feasible for multiple scatter), measured

through iterative experiment (time-consuming), or simulated using a Monte Carlo

technique. For our work, the last technique seems most appropriate.
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Using Monte Carlo, an r¿-dimensional parameter space may be simulated

iteratively and used as a lookup table. The multiple scatter distribution is

especially sensitive to position and in a CT-like geometry, the dimensions of a

hanging pendulant breast are difficult to parameterize easily. To solve this, we

hypothesized using a water sleeve as shown in Figure 7.2(a) may be used to

simplify the shape of the object. The addition of the sleeve effectively creates a

cylinder of water equivalent material (water + tissue) which only has three

parameters affecting the multiple scatter distribution: diameter, length, and beam

position. The situation is of course much simpler in the case of a mammographic

geometry, as the breast shape can be parameterized based on paddle separation.

There may however still be a need to include a water sleeve, as illustrated in

Figure 7.2(b).

Figure 7.2: Proposed geometries to enable multiple scatter prediction and

correction - (a) Pendulum (CT-like) (b) Compressed (mammographic).
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Direct Prediction Using Monte Carlo Simulation

Using high-performance computing, limited real-time Monte Carlo

multiple scatter prediction is now possible during image processing. Instead of a

parameter based model, we opted to use an iterative Monte Carlo method of

multiple scatter prediction, taking advantage of the simple geometry involved in

mammography. The initial multiple scatter distribution is predicted using a

homogenous breast phantom, with subsequent iterative imaging, phantom

modification, and multiple scatter reprediction. While it is possible to simply use

the multiple scatter distribution obtained using a homogenous phantom, we have

found that calcifications in the beam line (Figure 7.3) may perturb the multiple

scatter signal up to 5o/o at some positions. These perlurbations are of the same

order of magnitude as the single scatter perlurbations resulting from lesions, and

thus we developed this iterative technique to attempt to eliminate them.

While our iterative technique requires a significant amount of

computational power, variance reduction techniques can be exploited to decrease

the simulation time drastically. In our simulations, electrons are immediately

discarded as soon as they are produced. Doing this dramatically speeds up

simulation time. The cost of this speed is the accurate reporting of dose.

However this is generally not necessary for routine use of the algorithm. We have

found that using this approach allows simulations involving 108 primary histories

to be performed in 5 minutes or less on a personal computer. This makes it
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feasible to dynamically predict multiple scatter by running Monte Carlo

simulations during image reconstruction.

As is the case with the parameter based model, several parameters are

required to accurately reconstruct the image. However, as we are simulating

using Monte Carlo instead of using a lookup system, the situation is a little

simpler. For example we do not need to force a simple shape to simulate using a

water sleeve; we simply need to know the external dimensions of the object.

In the case of a mammographic geometry, the primary image only

provides a limited description of the material distribution. The exterior boundaries

can be obtained easily enough from the thickness of the compression paddles,

though it may be necessary to include the water sleeve to f,rll in the air gaps near

the distant volume proximal to the nipple.

As a first approximation, the breast is considered to be composed of an

average mixture of 50/50 breast tissue. This can be considered to be a robust

approximation except when there are inhomogeneities occurring in the object

along the beamline (Figure 7.3).
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Figure 7.3: High density inhomogeneities in the beam line disrupt accurate

multiple scatter prediction using a heterogeneous phantom.

As we demonstrate in section 7.3, the presence of a calcification disturbs

the scattered photon distribution significantly. At first, it is difficult to incorporate

the effect of the inhomogeneify in simulation due to the lack of z axis information

from the primary image.

The details of our iterative technique are outlined in Figure 7 .4, and, are as

follows. As input, CCSR requires single scatter photon distributions, collected

using a wide-area energy sensitive detector using no collimation, leading to a

three dimensional detector space (one for energy and two for position). The

predicted multiple scatter signal is simulated and subtracted from the total

experimental signal and the difference is input into CCSR. Variations between

the predicted and actual multiple scatter distributions are presumed, and thus the

preliminary image is reconstructed using a subset of available scatter data with
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multiple scatter components of < 1% (based o EGSnrc simulations). We have

found that backscatter with R < 2 cm to conform to this arbitrary restriction. The

image is reconstructed using a 1 cm resolution to compensate for the relatively

limited (-5%) amount of data being used for reconstruction. Following

reconstruction, the image data is used to create a new Monte Carlo phantom, and

Monte Carlo multiple scatter prediction is performed again using the new

phantom. The new multiple scatter distribution is subtracted from the total

distribution and CCSR reconstruction is performed again with a coarse resolution.

The results are compared to previous results and if a significant change is present

the iterative process continues. When there is no longer significant change

between iterations (<0.I% change), we assume that the multiple scatter has been

approximated with sufficient accuracy and reconstruct the image using all

available scatter data at a higher resolution.

We examined the scatter components resulting from the interaction with

the radiation beam described above and a 5x5x5 cm3 phantom. Two beam

positions were simulated and compared (Figure 7.5). The first beam position was

simulated incident on the center of the top face of the phantom, and is hereafter

referred to as the central beam position. Another beam position was chosen

incident on the top of the phantom 1.41 cm from the lower left corner of the plan

view as defined in Figure 7.5, and is referred to as the edge beam position. In each

case, a lesion was placed in the beam Line2.T25 cm in depth from the top of the

phantom. The lesion corresponds to the inserlion of a 0.5x0.5x0.5 mm'

calcification in a IxIx2.5 mm3 voxel (defined as a type A lesion in the following
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Figure 7 .4: Logic diagram of the iterative process of multiple scatter prediction.
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section). Following comparison of the scatter properties of these two situations,

the edge beam is then chosen to test multiple scatter correction, as the asymmetric

photon distribution inherent in the edge beam position is more challenging to

correct.

7.2.2Imaging of an Accreditation Phantom

Using a digital stereotactic mammographic accreditation phantom* as a

template, we have constructed a simulated 5x5x5 cm3 breast phantom containing

inhomogeneities of various sizes and electron densities. 'We 
chose to simulate a

phantom with a simulation resolutiont of 0.5x0.5x0.5 mm3, allowing us to image

small lesions and large calcifications. Our imaging resolution of ix1x2.5 mm3 is

suitable for imaging small low contrast lesions. The strengths of our system lie in

imaging low contrast lesions, and thus we focus on imaging an accreditation

phantom embedded with lesions of various calcification content. 'We 
have

selected the dimensions of our lesions to correspond to one voxel in our imaging

system, lxlx2.5 mm3. To obtain the physical properties of the lesions, we have

produced IxIxZS mm3 voxels of breast tissue with calcium hydroxyapatite

(CaroPO+)o(OH)Ð content of 5yo, 3.2yo, 2.4% and 1.6% by volume,

corresponding to inserting a single calcification of size 0.5, 0.43, 0.39,0.34 mm in

a lxIxZ.S mm3 voxel of glandular tissue (Table 7.1). We have defined these

* 
A standard phantom used for testing steoreotactic mammographic equipment.

I This is the resolution used to construct the phantom in DOSXYZNRC, which is different from
the resolution used to image the phantom.
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lesions as types A-D, respectively. These calcifications sizes are typical of those

used in an accreditation phantom.l2l The averaged physical and electron density

were obtained using the derivation provided in Appendix A. Each

imhomogeneity was replicated five times and ordered in rows of the phantom at

various depths. The inhomogeneity centers were placed at 0.375, 1.375, 2.315,

3.375,4.375 cm from the top of the phantom.

Two larger type D lesions simulating larger tumors of size 4x4x5 mm3

were placed in the phantom with centers at depths 1.5 and 3.5 cm from the top of

the slab. Two calcifications of calcium hydroxyapatite of size 0.5x0.5x0.5 mm3

were placed in the phantom with centers at depths 1.275 cm and 3.5 cm, to

investigate partial volume effects, as the imaging resolution is greater than the

size of the calcifications.

Table 7. i : Summary of lesion types used in the accreditation phantom.

Lesion

Classif,rcation

Percentage

Calcification

by Volume

Percentage

Calcification by

Weight

Corresponding

Calcification Size

(mm)

A 0.05 13.8% 0.5

B 0.032 9.1% 0.43

C 0.024 t.7% 0.39

D 0.016 05% 0.34
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A plan view of the phantom is shown in Figure 7.6,wherc the pixel values

represent the integrated electron density along the z-axis. Figure 7.7 is a simulated

radiograph of the phantom, simulated with EGSnrc, with pixel values representing

the number of transmitted primaries. Figure 7.8 illustrates a slice of the phantom

obtained at y : 3.05 cm, showing how type A lesions were placed at various

depths. Figure 7.9 illustrates another slice at a depth of 3.55 cm, where the large

tumors and the calcifications are visible.

The matrix of the phantom is composed of glandular and adipose tissue.

Simulating structure noise, each simulation voxel value (with the exception of

inhomogeneities) was randomly assigned either adipose or glandular tissue,

creating a binary structure background with 0.5 mm resolution similar to the

structure background used by Bliznakova et al.t02 in their modeling of a simulated

breast. Figures 7.10 and Figures 7.11 were produced in a similar fashion to

f,rgures 7 .6 and 7.7, representing integrated electron density and simulated

radiographic plan views. The structure noise has obscured most of the simulated

lesions, though larger type A lesions are still visible. Figures 7.12 and 7.73 are

analogous to Figures 7.8 and 7.9, showing the inhomogeneities in the presence of

structure noise. In Figure 7.I3,the electron density of the large type D lesions is

3o/o higher than glandular structure noise. Please note that the noiseless phantoms

are shown here to indicate the locations of the inhomogeneities. The structure

noise phantoms were used for actual simulation and image reconstruction.

For each row of inhomogeneities, the beam was scanned through 30

positions, allowing us to produce 30x48 slice images of the phantom. Five scans
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were performed, one for each row of lesions and one for the extended

lesions/calcifi cations row.

In addition to imaging the phantom of Figure 7.6, two separate geometries

were devised to explore the ability of the algorithm to accurately detect and

localize two lesions superimposed on one another along the z-axis. In the first

case, we placed two type A 1x1x2.5 mm3 lesions in an otherwise homogenous

-?5x5x5 cm' phantom, centered in the phantom along the x- and y-axis and with

centers 0.375 cm in depth from the top and bottom of the phantom along the

z-axis. This experiment was to investigate the ability of the algorithm to image

dual inhomogeneities very close to the skin boundary. Ithas been demonstratedT3

that lesions occurring within a depth of 1,4 mm of the breast surface are much

more likely to be malignant that deeper lesions. The second experiment we

devised involved placing two 1x1x2.5 mm3 lesions centered in the phantom along

the x- and y-axes at I.875 and 2.375 cm in depth along the z-axis, and tested the

ability of the algorithm to resolve two closely spaced lesions.
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Figure 7.6: Top view of the accreditation phantom, where the pixel values

indicate integrated electron density. The first row shows 4x4x5 mm3 lesions of

type D and two 0.5x0.5x0.5 mm3 point calcifications. The second row contains

7xIx2.5 ,nm' type A lesions. The third, fourth, and fifth rows indicate

calcification content of type B, type C, and type D, respectively.
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Figure 7.7: Simulated radiograph of the accreditation phantom.
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Figure 7.8: Slice taken in the (x,z) plane of the row containing type A lesions.

Lesions are spaced 5 mm in the x direction and 1 cm in the z dftection.
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Figure 7.9: Slice in the (x,z) plane of the row containing two large type D

inhomogeneities of size 4x4x5 mm3 and two 0.5x0.5x0.5 mm3 calcifications,

spaced 2 cm apart in the z-direction and 0.5 cm in the x-direction.
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Figure 7.10: Top view of the integrated phantom after the introduction of 50/50

adipose glandular structure noise, where pixel values indicate integrated electron

density. Abnormal features of the phantom are washed out.
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Figure 7.1 1: Simulated radiograph of the accreditation phantom after the

introduction of structure noise. Type A lesions are visible due to the non-linear

properties of photon attenuation.
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Figure 7.12: Slice taken in the xz plane of the row containing type A lesions in the

presence of structure noise. Lesions are spaced 5 mm in the x direction and 1 cm

in they direction. Structure noise resolution is lx1x2.5 mm3.

t26



Figure 7. 13: Slice in the xz plane of the row containing two type D lesions (4x4x5

mm3) and lwo 0.5x0.5x0.5 mm3 calcif,rcations, spaced 2 cm apart in the z-

direction and 0.5 cm in the x-direction.
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For each slice scan of the accreditation phantom, several image quality

parameters were calculated. Mean and standard deviation of electron density is

presented for each image, and are calculated for the normal and abnormal voxel

groups. Three image quality parameters were calculated. Contrast-to-noise ratio

(CNR) is a good test of the visibility of the lesions over the background of normal

tissue, and is calculated using the following equation3:

CNR =
(7.1)

The first term in the numerator is the average of M abnormal voxels and

the second terin is the average of ly'normal voxels. o is the standard deviation of

the normal voxels, which is approximately equal to the standard deviation of the

abnormal voxels.

Reconstruction fidelity can be assessed using a root mean square

difference between the electron density image and the original phantom:

#ä,,'

t = 
l(#)å tlr':*"r',i)- 

p:""'""'(,,i)f'l

-*ä,,

(7.2)

where m and n are the matrix dimensions of the reconstructed image, and

pT"ot" and p[t'o"to"' are the electron densities of the imaged and original phantom,

respectively.
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A Mann-Whitney unpaired non-parameteúzed test was performed on each

slice image to test the null hypothesis that the distribution of voxels containing

lesions did not vary significantly from the distribution of normal tissue voxels.

The results of this test determine if CCSR can separate the distributions of normal

and malignant image voxels.

Finally, a receiver operating characteristic (ROC) curve was generated to

test the relative quality of the test to predict the presence of cancer. The area

under the ROC curve was calculated and used to evaluate the test.

7.3 Results

7.3.1Multiple Scatter

Scatter distributions when the beam is incident on the center of the

phantom are shown in Figure 7.14. Table 7.2 gives the number of scattered

photons belonging to first, second, and third or more orders, as well as

percentages of the total forward or back-scatter.

Multiple scatter distributions when the beam is incident on the edge of the

phantom are shown in Figure 7.15. The results for the edge beam position are

given in table 7.3.

We note that multiple scatter can account

total scatter signal, in the case of forward scatter

for as

of the

much as 32.9%o of the

center beam position.

129



Also, the magnitude and distribution of scatter signal is a function of beam

position (central or edge). In the case of forward scaffer, we note differences in

Table 7.2: Distribution of first, second, and third or higher order scatter for a

central beam position.

Scatter Order Forward Backward

First

Second

Third or more

1035559 (67.r%)

373349 (24.2%)

134s97 (8.7%)

39202rr (79.0%)

8r428s (16.4%)

228967 (4.6%)

Table 7.3: Distribution of first, second, and third or more order scatter for an edge

beam position.

Scatter Order Forward Backward

First

Second

Third or more

2237199 (73.0%)

6sr678 (2r.3%)

r73s92 (s.7%)

44068s0 (18.7%)

9s2826 (r7.0%)

240146 (4.3%)

the edge beam position relative to a central beam position. The single order scatter

signal increases 5.9yo, the second order scatter signal decreases 2.9yo, and the

third order and more scatter decreases by 3%. The changes in backscatter are

smaller, with < 1% difference occurring over all orders of scatter. Furthermore,

the total scattered photon fluence of the edge beam position is 33o/o higher than

for the central beam position, due to the decrease in attenuation of scattered

photons near the edge relative to a central beam position. When only 2nd order
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scatter and higher is considered, the increase in edge beam fluence is L4o/o,

demonstrating that multiple scatter for a central beam position would be

insufficient for edge beam correction, as the effor is higher than the

aforementi oned 1%o tolerance.

Due to an asymmetric geometry, the single and multiple scatter for an

edge beam position is more challenging to predict, and thus we focus on this case

when presenting results. The total spatial photon distribution at the detector plane

is shown in Figure 7 .16. The distribution is asymmetric, with an increased amount

of scatter for negative values of x and y, as expected due to generally shorter

radiation path length, integrated over all scattering centers. The multiple scatter

signal is shown in Figure 7.I7 for both Compton and coherent components. The

mean value of the image is 21 counts/pixel, with a standard deviation of 11

counts/pixel. The breakdown of the multiple scatter into Compton and coherent

components is shown in Figure 7.18.

Figure 7.19 shows a plot of the difference between actual and predicted

multiple scatter distributions. The mean value of the plot is 0.1 counts/pixel,

indicating a systematic error of less than 0.I%o. The background is mainly

dominated by statistical enor with standard deviation of 6.6 counts/pixel.

Figure 7.20 (a) represents the converged electron density distribution,

obtained from using the total scatter distributions with no multiple scatter

correction. voxels associated with breast tissue vary from 3.r4 to 3.58x1023

e-lcm3, and the value of the voxel associated with calcification (arrow) is

3.50x1023 e-lcm3, 6.7%o lower than expected. Furthermore, despite a true positive
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in the abnormal region, the detection is masked by four false positives with higher

electron density values. Following correction of multiple scatter (Figure 7.20 (b)),

breast tissue voxels fall within the narrower range of 3.17-3.41x1023 e-lcm3, and

the voxel associated with calcification has an electron density of 3.7 4xI023 e- /cm3 ,

deviating 0.2%o from the expected value and 9.7%o above the highest value

(3.41x1023

e-lcm3) of the normal range. No false positives exist in the abnormal region,

indicating a successful detection with a ROC score of 1.
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Figure 7 .17 Spatial distribution of multiple scatter (2nd order and higher scatter)
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Figure 7.18: Spatial distribution of 2nd order and higher (a) compton and (b)

coherent scatter.

Figure 7.19: Conected multiple scatter distribution.
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7.3.2 Accreditation Phantom

Figures 7.2I-7.24(a) show the electron density images produced as the

beam was scanned across each row of inhomogeneities of the phantom. For each

image, a histogram of electron density values is shown, in l.2I-7.24(b). Image

quality parameters were calculated, and are summarized inTable I .4.

As illustrated in FigureT.2I(a), type A are readily visible (according to the

Rose criterion.), with a difference of 503x1020 e-lcm3 between mean normal and

abnormal tissues. Standard deviation of both normal and abnormal distributions is

less than 100x1020 e-lcm3. There is no overlap between distributions (Figure

7.2I(b)), and the CNR is within the range of 5-8 specifîed by the Rose criterion

for easy visibility.

For type B lesions (Figure 7.22(a)), the gap between means reduced to

385x1020 e-lcm3, while the error of the abnormal distribution increased to

146x1020 e-lcm3. As can be seen on Figure 7.22(b), an overlap occurs between the

two distributions. The CNR is 4.2, falling outside of the Rose criterion range.

However, most lesions are still identifiable on the image.

The results of type C lesions are similar to those of type B, with a small

decrease in the standard deviation of the abnormal distribution and a drop in

lesion visibility (Figure L23(a)). Three lesions fall inside the overlap range, and

the CNR has fallen to 3.04 (Figure 7.23(b)).

- 
Small lesions are clearly visible when CNR > 5.
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Finally, type D lesions are no longer readily visible on the electron density

image (Figure 7.2a @\. Four of the five lesions fall within the overlap zone

(Figure 7.24 (b)).

Figure 7.25 shows the electron density image of the extended lesion and

the calcif,rcations.

For the idealized case of a perfect image, the electron density histogram is

shown in Figure 7.26. For the purposes of determining statistical significance and

generating ROC curves, the voxels of adipose and glandular tissue were combined

to form a population of 'normal' voxels. In Figures 7.2I-l.24, the distribution of

'normal' voxels is non-Gaussian, thus we decided to use the non-parametrized

Mann-Whitney statistical significance test.t2z The results of the test indicate that

the lesion groups in each image are different from the population of normal

voxels to a significant degree. ROC curves were generated for Figures 7.2I-7.24.

The ROC results are shown in Figure 7 .27 . As expected, the results worsen as the

lesion calcification content is reduced. Type A ROC results indicate a perfect

test. For type D lesions, the ROC area drops to 0.958, still indicative of an

excellent test, and one point on the ROC curve indicates a sensitivity of 80% and

a specificity of 82Yo, on par with mammography.

The ROC curve corresponding to the image of extended lesions and point

calcifications (Figure 7 .25) is shown in Figure 7.28. The ROC area of the lesions

is 0.879 (very good), while the ROC area of the calcifications is 1. The CNR of

the lesions was 2.13, while the CNR for the calcifications is 4.09, both below the

Rose criterion.
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We were interested to determine if imaged normal tissue voxels were

correlated with the phantom counterparts. The phantom was converted to a

resolution matching the image. The phantom electron densities were then

subtracted from the image to yield Figure7.29. A histogram of electron density

values belonging to the difference image is shown in Figure 7.30. To check

correlation, a new phantom was created with the same lesions but with a new

randomly generated strucfure pattern. The subtraction was repeated. A Wilcoxon

signed-rank testl23 was performed to determine if the actual subtraction image

(Figure 7.29) differed significantly from a subtraction image generated using the

fake phantom. The resulting Spearman correlation coeff,r cientt2a was 0.092,

indicating a significant paired correlation between the real subtraction image and

the fake one. Since the correlation between the image and both real and fake

phantoms is the same, we conclude that as far as the normal tissue image values

are concerned, no correlation exists between the phantom values and the image

values.

The results of the overlapping lesion experiments are shown in Figure 7.31

andFigure7.32. In each case, the expected lesion electron density is 3.75x1020

electrons/ctn3, indi.ated by the upper boundary of the abnormal range. While

normal tissue values image in the proper lange, there appears to be a systematic

undershoot of lesion electron density values. In Figure 7.30, the undershoot is

20x7 020 electrons/cm3 and 90x 1 020 electrons/cm', or 0.5%o and, 2.5yo, respectively.

In Figure 7.3I, the undershoot is 100x1020 electrons/cm3 and 140x1020

electrons/cm3, o, 2.7 o/o and 3 .go/o, respectively.
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However, in each image, both lesions correctly register as true positives,

with no other voxel values in the abnormal range. In both cases the ROC score is

1, considered excellent.
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Table 7.4: Summary of mean and standard deviations of electron density as a function of calcification level and image

quality tests.

Electron density (x1 020

Lesion Type electrons/cm3). Error is 1't

standard deviation.

À
bJ

A

Normal

3286+94

3284t91

3280+86

3218+85

B

Expected

Normal

Electron

Density

C

Abnormal

3789+80

3669+t46

3542+I17

3501+109D

Expected

Abnormal

Electron

Density

3275

3215

327s

3215

Statistically

significant?
CNR

(Mann-

Whitney)

3747

3638

3590

3542

p:0.000i
5.37

(extremely)

p:0.0001
4.20

(extremely)

p:0.0002
3.04

(extremely)

p:0.0005
2.63

(very)

RMS (x1020 ROC

electrons/cm3) Area

55.0

s6.9

55.9

55.4

1

0.999

0.982

0.9s8
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Figure 7.21: (a) Image of the row of type A lesions. (b) Distribution of electron

densities.
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Figure 7.25: Image

calcifications.

Figure 7.26: Ideal electron density histogram.

x (cm)

of extended type D masses and 0.5x0.5x0.5

3400

Electron Dens¡ty (1020 e7cm3¡

mm

EAdipose
WEclandular- 

- tS%calc
i --- ..ot ^^t^
'L 

tZ.+% calc
f__l'1.6% catc

t47



I
I
I

-t- -

¡
I
I
I
':-t
!i
:l
+l
:l
:l

1

7

o.

o.

o.

o.

o.

o.

o.

o.

- 
5o/o calcif¡cat¡on

'- 3.2V" calc¡f¡cation
.... 2.4o/o catc¡f¡cation
-.-1-60/0 catcil

o.l5
1-specific¡ty

Figure 7 .27: P.OC curves for lesions ranging in calcification from 5%o to I.6%.

0

o

0

o.

'>ø u.

þ

o.

0.

o.

0.

Figure 7:28: ROC curves for

calcifications.

extended fype D lesions and 0.5x0.5x0.5 mm3 point

o.5
1 - specificity

o.2 0
- 

Lesions
----- Calcificatioñs

t48



;:::
w'* å

W"rv:n E

[,] ,.. #

l].""

l].""

Figure 7.29: Difference image generated by subtracting the Figure 7.20(a) from

the corresponding phantom slice.

30

-c 25
f
oo
õ
9zo

10Ê,-,------,,

Figure 7.30: Electron density distribution of Figure 7.28.

;I 300 400

t49



Converoed Data
5O/5O Brêast t¡ssu€
Adipose-slandular Rans€ 

i

3200

31 00

3000 r
o I 10
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7.4 DÍscussion

Variance reduction techniques offer the potential to use Monte Carlo

simulations in our reconstruction algorithms. The high tolerances required by

CCSR have required the development of an algorithm for accurate prediction of

multiple scatter, iteratively using the image information generated using CCSR to

reconstruct and repredict multiple scatter distributions. The use of this technique

offers the potential for CCSR to be implemented clinically in a mammographic

setting.

Modeling a scanning pencil beam and an asymmetric inhomogeneous

phantom in a Cartesian geometry, we have demonstrated an imaging algorithm

capable of generating 3D images with a single projection. The suitability of

CCSR as a lesion detection modality was validated using a simulated

accreditation phantom. ROC scores ranging from 0.958 to 1 indicate the ability

of the algorithm to image lesions of varying calcification content at various

depths. Using a Mann-Whitney correlation test, these results have been

confirmed.

We have also explored the ability of the imaging algorithm to resolve two

overlapping lesions. While the lesions v/ere successfully identified, a systematic

underestimate of the electron density values are apparent. So far, these

underestimates cannot be explained. The influence of many parameters remains a

topic for future work, discussed more fully in Chapter 9.
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Limitations of the test include remaining approximations, idealized

geometry and detector, and a narrow scanning beam. V/hile the narrow pencil

beam approach is inherent to the technique presented in this chapter, converting to

a fan beam is theoretically possible with the assumption of a unique solution.

However, we feel we have achieved a sufficient degree of realism to warrant

experimental development of the imaging system.
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Compton Spectrometry

8.1 Introduction

We mentioned in Chapter 7 that elemental composition data was limited or

lacking for mixtures such as calcified tissue. This fact prompted us to investigate

whether our imaging system could be used for spectroscopic purposes. The

physical model of Doppler broadening indicates that the elemental composition of

each voxel of tissue had a direct effect on the resulting scattered photon

distribution. In fact, the Doppler profile of each element is uniquely characteristic

of the element in question.

A brief summary of some spectroscopic methods used to analyze

samples in organic chemistry and their limitations are as follows:

Infrared (IR) spectroscopy measures the bond vibration frequencies in a

molecule and is used to determine the functional group.

optical absorption or emission spectrometry: this technique converts

atoms of a material into in a state which will either absorb or transmit
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characteristic light. It is insensitive to the major organic elements such as

carbon, hydrogen, oxygen, and nitrogen.

Mass spectrometry (MS) fragments the molecule and measures the masses

of the fragments. The fragment masses are used to search a database of

known fragments for a match. Routine use of the technique is limited by

the contents of the fragment database as well as by time and cost.

Xray fluorescence (XRF): X ray fluorescence spectroscopy uses a method

of exciting a sample with electrons, and subsequently measuring the flux

of characteristic photons which are emitted. However, this method suffers

limitations, the most important being an inability to properly determine the

fractional composition of elements with atomic numbers below that of

carbon. The determination of the fluorescence yield of elements lighter

than sodium (Z:ll) is experimentally diff,rcult due to low yields.r25

Nuclear magnetic resonance (NMR) spectroscopy detects signals from

hydrogen atoms and can be used to distinguish isomers. However, it is

insensitive to other organic atoms.

Ultraviolet (UV) spectroscopy uses electron transitions to determine

bonding patterns. It is however difficult to identifu the elemental

composition from this information.

Secondary Ion Mass Spectroscopy (SIMS) involves bombarding the

surface to the tested with a stream of ions. Secondary ions are released by

the material and measured. Sensitive to organic ions, but destructive, and

only records information from the surface of a target material.
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These methods are limited in their ability to universally determine elemental

composition due to their dependence on atomic and molecular configurations.

The usage of Compton scatter for spectroscopy is not new, though it

typically involves the determination of effective atomic number or electron

densityl26 as opposed to a full breakdown of elemental composition. While the

application presented by Hazan et al. was not spectroscopic in nature, the authors

did suggest that the Doppler profiles of various elements are characteristic of the

elements in question, and can be adequately measured using a germanium energy

sensitive point detector. Naydenov et al.127 proposed a multi-energy radiographic

approach to perform elemental spectroscopy, theorizing that the relative

composition of elements from carbon (Z:6) to uranium (Z:92) could be

determined.

8.2 Materials and Methods

In previous chapters, we argued that is was necessary to link the electron

density of a voxel with the complete elemental composition. This approximation

was necessary as it was impossible to reconstruct the image otherwise. Normally,

the algorithm reconstructs a 1D matrix of electron density values. Uncoupling the

elemental composition matrix would increase the number of convergence

variables by a factor equal to the number of potential elements. At present, the

algorithm is not able to handle such a large number of variables.
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Now, consider the geometry illustrated in Figure 8.1, where the usual large

volume of tissue has been replaced with a small single voxel sample. Since only

one voxel contains material (this is known beforehand), the electron density plus

the uncoupled elemental composition can be reduced to 7 variables, the electron

density and the elements hydrogen, carbon, nitrogen, oxygen, phosphorous, and

calcium, in the case of breast imaging. The volume of the sample needs to be

known to correct scatter attenuation. The imaging algorithm can then be adapted

to 'image' the elemental composition using the same iterative convergence

technique.

l**u*

Detector

I 
sampte

Figure 8.1: Proposed geometry for Compton spectrometry.
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8.3 Results and DÍscussion

Several tissue samples were tested, including, normal (50/50) breast tissue,

glandular tissue, adipose tissue, calcified (5o/o calcification by volume) tissue, and

a pure calcification. The results are shown in Table 8.1.

The percent difference was calculated for each of the 30 elemental results

(5 sets of 6 elements). The average of this percent difference 1s 48.35o/o. While

this demonstrates a large uncertainty, we note that the largest uncertainty is

confined to trace elements, defined in this case as being less than 5Yo of the total

material by weight. If we neglect trace elements, the percent difference is

calculated as 3.39o/o. The percent difference if only the trace elements are

considered ]s 116.4%o.

Both a paired Student's /-test and a paired Wilcoxon were used to test for

correlation. The first test, assuming Gaussian distributions, returned a correlation

coefficient of 0.9998, indicating an extremely significant correlation. The second

test, which does not make the assumption of Gaussian distributions, returned a

correlation coefficient of 0.9429, considered very signif,rcant.

Compton spectroscopy may be useful as a fast and cost effîcient means of

obtaining elemental composition and electron density of a small sample.

Compton spectroscopy may become a potentially useful system for

determining the elemental composition of organic molecules as it is sensitive to

the organic elements, and requires only the equipment used in CCSR imaging.
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Table 8. i: Results of Compton spectrometry for various tissues. First number is experimental results, second number is actual

value.

s0%
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Summary and Future Work

9.1 Summary

This thesis work studies the hypothesis that x ray scatter distributions

present in mammographic and breast CT primary imaging modalities allow the

imaging of 3D electron density distributions, and that these distributions may be

used to enhance the sensitivity and specificity of the associated primary imaging

modality. Fufthermore, the suitability of using x ray scatter distributions to

perform spectroscopy of organic tissue is examined. The experiments testing the

hypothesis were performed entirely within a simulated environment. The major

experiments and findings of this work are, as follows:

Compton Computed Tomography (Chapter 6)

- A naffow polyenergetic beam (60-70 keV) was used to image a small

pencil-like field of view contained within a cylindrical phantom 8 cm

thick and 8 cm in diameter. A dose similar to mammography was used.
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- The field of view contained two superimposed lesions of size IxIx2.5

--3 .

- Images were produced for a full mammographic dose and 1/10th of a

mammographic dose, to allow for 10 CT projections. The detector area

was also reduced to tA the previous value, to investigate the importance of

detector size.

- The lesions were clearly visible on all images.

- An ROC study was performed, where the two lesions were placed in

random voxels of the phantom over a total of 15 trials. The qualitative

results of the ROC study ranged from very good to excellent.

Compton Mammography (Chapter 7)

- A narrow polyenergetic beam (15-20 keV) was used to image several

slices of a 5x5x5 cm3 simulated accreditation phantom containing 4 fypes

of lesions ranging in calcification content from 1.6%o to 5%o.

- Images of electron density were produced for each lesion for 5 depths,

producing a total of 4 images. Electron density histograms were also

produced for two special cases.

- Contrast-to-noise ratio met the Rose criterion for 5o/o calcifications.

Images of 3.2o/o and 2.4o/o calcification presented reasonably visible

lesions but below the CNR level of the Rose criterion. Extended lesions

and calcifications were both visible on an electron density image.
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Compton spectrometry (Chapter 8)

- Small samples of adipose, 50/50, glandular, calcification,

were analyzed using CCSR spectroscopy

- Neglecting trace elements, the accuracy of the technique

relative elemental composition was 4o/o.

and 5Yo lesion

in determining

9.2 Future Work

One major challenge in the development of CCSR was finding the global

minimum in an ¡¿-dimensional data space, where n was as high as 32. Using

limited computational resources, we sampled a small handful of optimization

algorithms, selecting a Gauss-Newton algorithm in the end for its computational

efficiency and performance in our geometries. A Gauss-Newton algorithm may

become unsuitable in future experiments of CCSR, and much work remains to

investigate the suitability of other optimization techniques, including simulated

annealing, genetic optimization, and neural networks. We have developed

techniques to assist our Gauss-Newton algorithm in selecting a global minimum;

however some of these techniques are dependent on the breast imaging geometry

we have presented in this work. 'We have also not investigated any manipulation

of the data space which may assist in eliminating local minima.
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There are alarge number of variables involved in the simulation. In some

cases, we chose values for these variables which we felt were realistic. However,

it is unknown what effect these variables have on the overall imaging process. In

effect, we have only explored a limited volume in parameter space. Investigation

of the parameter space may allow further optimization of the overall convergence

process.

The multiple scatter prediction model assumes a 50150 glandular

adipose/glandular content. However, in some cases the breast composition might

be overly glandular (p:I.04) or fatty (p:0.93), which could lead to a 4-lo/o

density difference between the sleeve and the breast. Also, molecular differences

between water and breast tissue may negatively affect the Doppler-broadened and

coherent multiple scatter. Further investigation of these issues is recommended.

We have invested much effort in removing what we felt were the largest

simplifying approximations. However, some approximations were retained which

we felt were lower priority. For example, we used a non-diverging beam in

simulation, while all x ray beams have some level of divergence. In furure work,

these approximations will need to be addressed.

Compton scatter offers potential for quantitative 3D breast imaging and

preliminary results indicate that the information content in Compton scatter is

sufficient to detect small simulated calcifications to within 0.25 cm in 5 cm and 8

cm breast phantoms. Our results illustrate that with the advent of state-of-the-art

energy sensitive imaging detectors, it is feasible to reconstruct an electron density
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image of a phantom using only the Compton scattered photon information due to

the interaction of the primary beam with the phantom.

Much of the future work involves the fuither development of CCSR in an

experimental setting. We feel we have shown the robustness of the technique in a

simulated environment, however, there are many experimental challenges which

need to be addressed when the algorithm is applied in an experimental setting. To

begin, a simple experimental geometry may be devised (Figure 9.1). A quasi-

monoenergetic pencil beam produced by a filtered mammographic x ray tube is

used to irradiate a small water equivalent target. Since dose deposition is no

concern in the early stages, a scanning point detector may be used in lieu of an

extended area fTat panel detector. As mammographic energies are used on a small

target, the influence of multiple scatter is limited.

Many applications of CCSR remain to be investigated. Theoretically, the

algorithm could be applied to any x ray imaging technique, including CT,

radiography, portal dose imaging, or tomosynthesis. In clinical practice, a

standard mammography " ray cone beam may be adapted to a scanning

monochromatic pencil by installing a scanning monochromator downstream of

the x ray tube. We also envisage a scanning energy sensitive ring detector

installed upstream of the standard mammography detector system, whether it be

film or digital.
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Figure 9.1: Proposed experimental geometry.
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There is still a great deal of work to be done before CCSR can move to

clinical trial. However, the ability of this approach to generate 3D images from a

single projection may allow CCSR to improve the sensitivity and specificity of

breast imaging, while retaining comparable dose. when combined with the

primary and coherently scattered photons even better results are envisioned.

However, we believe that CCSR may signifîcantly improve select x ray

modalities such as breast CT and mammography, allowing an increase in

sensitivity and specificity. Ultimately, we hope this work will reduce the cost

burden in mammography and improve the quality of life in human society.
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Properties of Breast Tissue

The purpose of this appendix is to provide useful data and formulae for the

calculation of quantities relating to tissues present in the breast. From the

elemental composition by weight and the physical densities of two or more

materials, we desire to calculate the electron density and the linear attenuation

coefficients of the mixture at various energies.

Let us assume a mixture of at least 2 materials. If we combine the

materials in a proportion by volume, the physical density of the resulting mixture

is:

P =lP,P, (A.1)

where p¡ is the density and pi is the proportion by volume of material i. The

summation is over the total number of materials. The proportion by volume is

converted to the proportion by weight through the following formula:
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Electron densities by

following formula:

p!' = 
P¡P¡

p

pí = pì'N nl p
Ai

volume of each element i are then calculated using the

(A.2)

(A.3)

The total electron density per unit volume is thus given by:

(A.4)

where N¡ is Avogadro's number, Z¡ is the atomic number of the ith element, and

A¡ is the atomic mass number.

Now that we have the total density and the proportion by weight, we can

determine the elemental composition of the mixture. The percentage of any

element E by weight in the mixture is given by:

N

lyoll,,,o =Zly"nl, p;" (4.5)

o/oE represents the percentage of element E existing in material i.

Finally, given the elemental composition and density of our mixture, and

," =lní
i
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elemental mass attenuation values, the mass attenuation coefficient of the mixture

at enetgy E can be calculated using simple addition:

(A.6)

Table 4.1 provides a summary of the breast tissues used in this project. The

physical densities and elemental compositions were obtained from

Hammersteinl0l, while the electron density was calculated using Equation 4.3.

The mass attenuation coeff,rcients of all tissues were also calculated for energies

ranging from 10-70 keV using equation 4.6, and are presented in Table 4.2.

p 
- $ l\o\l,,,* -( ,\p î roo ^lp 

),
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Table 4.1: Elemental composition of materials used in this work

Tissue Type

0% (Adipose)
10%
20%
30%
40%

50% (Normal)
60%
t0%
80%
90%

100% (Glan.)
Carc.SYo

Carc. 3.2o/o

Carc.2.4%o
Carc. 1.6%n

o\\o

Physical
Densiry
0.9301
0.9399
0.9s01
0.9605
0.9711
0.9819
0.9930
1.0044
1.0160
r.0278
1.0400
1.146
r.0676
1.052
t.0432
3.t6

Electron
Density
3.r08
3.t42
3.176
3.209
3.243
3.277
3.311
3.344
3.378
3.4t2
3.446
3.741
3.524
3.479
3.455
9.41r0carô(Po¿)6(oH

0.112
0.111
0.110
0.1 09
0.r08
0.101
0.1 06
0.1 05
0.1 04
0.1 03
0.1 02
0.088
0.092
0.09s
0.097
0.002

0.619
0.576
0.532
0.488
0.445
0.401
0.358
0.315
0.271
0.221
0.1 84
0.1 59
0.167
0.171
0.1 75

0

0.017
0.019
0.020
0.022
0.023
0.025
0.026
0.028
0.029
0.030
0.032
0.028

0.029s
0.030

0.030s
0

0.251
0.294
0.336
0.379
0.421
0.464
0.507
0.s49
0.s92
0.634
0.617
0.64t
0.655
0.66

0.66s
0.414

0.001
0.001
0.002
0.002
0.003
0.003
0.003
0.004
0.004
0.005
0.005
0.030

0.02 i 5
0.017s

0.01341
0.1 85

Ca

o.oss
0.03721

0.028
0.01879

0.399



Table 4.2: Mass attenuation coefficients in the mammographic range of materials used in this work.

Adipose

Normal

Glandular

Carcinoma

(s%)

Carcinoma

(3.2%)

Carcinonra

(2-4%)

Carcinoma

(1.6%)

Calcifìcation

\ì
O

2

3.7622

4.839

1.222s 0.6271

1.s39 0.7648

I1.90 3.784

9.35s 2.91s6

8.2259 2.6t63

0.346'7

0.4 r 56

0.4899

1.003

0.8181

1.360

0.6540

10.75

1.748

I -394

t.231

1.079

20.43

7.097

0.2787

0.3228

0.3700

0.6153

0.5654

0.51 65

0.4677

6.48146.0 46.44

Energy

0.2422

0.2735

0.3066

0.5062

0.4343

0.4024

0.3705

4.30

40

0.2201

0.2448

0.2702

0.4 r 01

0.3591

0.3373

0.3149

3.069

0.2335

0.2547

0.3606

0.322s

0.3055

0.3225

2.3731

50

0.201 3

0.2193

0.2374

55

0. I 930

0.2090

0.2249

0.3 198

0.2901

0.2769

0.290r

1.8842

60

0. 1 865

0.2009

0.2153

0.2910

0.2672

0.2566

0.2672

1.5464

65

0. l8l I

0. I 945

0.2078

0.2700

0.2503

0.24t6

0.2503

1.3092

70

0.t766

0. I 890

0.2014

0.2544

0.2376

0.2301

0.2376

l.l39r

0.2418

0.2272

0.2208

0.2272

1.0083



The Question of Unique Solutions

In order for our technique of Compton imaging to be an effective

technique for imaging, it is necessary to demonstrate that the inverse technique

we use provides unique electron density solutions given the distributions of

photon scatter. That is, only one global minimum exists in the objective function

f(x), and it is the correct solution. This is not to be confused with the completely

different problem of local minima. In this case we answer the question: is there

more than one electron density pattern which can provide the scattered photon

distribution?

Consider a column of voxels situated in the irradiation zone. Given a

particular object geometry, each voxel can be considered to be a 'source' of

scattered photons, and likened with a vector of scattered intensity as a function of

solid angle and energy. To prove a unique solution exists, consider the properties

of a basis B spanning a vector space V:

B is a minimal generating set of V.
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B is a maximal set of linearly independent vectors, i.e., it is a

linearly independent set while no other linearly independent set

contains it as a proper subset.

Every vector in V can be expressed as a linear combination of

vectors in B in a untque way. For a given vector, the corresponding

coefficients in the linear combination are the coordinates of the

vector relative to the basis.

If we consider the cumulative scatter photon distribution to be a vector in

vector space V, then the electron density distribution producing V would be

considered a basis B if we can prove assertion 2, that the vectors are linearly

independent. However, there is great difficulty in attempting to generalize the

problem, as the vector space V and basis B is a function of:

electron density distribution

detector distance

attenuation properties of the object

As such, it is impossible to verify the basis for all possible combinations

of the above parameters. However, a small function has been integrated into the

algorithm which checks the linear independence of all voxel scatter vectors during

each iteration. Using this algorithm, we have checked all the geometries presented
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in this thesis, as well as all estimated iterative geometries tried by the algorithm

during convergence.

To examine the effect of noise, Poisson noise was added to each geometry

presented in this thesis, and linear independence was verif,red. Each case was

repeated 10,000 times. As of yet, we have yet to discover a single case where we

have found the voxels to be linearly dependent.

For a practical example, a simulation was performed using a 5x5x5 cm3

phantom with 3 cm air gaps and a central beam position. For clarity, a

monoenergetic beam of 17.5 keV, the mean energy of our mammographic

spectrum was used. Figure 8.1 shows the geometry, with three highlighted

voxels, (a), (b), and (c). These voxels correspond to the z ranges of 3-3.25 cm,

5.5-5.75 cm, and 7.75-8 cm, respectively. Each voxel produces its own basis

photon distribution at the detector plane. Simulating 108 photon histories, we

obtain the results of Figure B.2.Each photon distribution is characteristic, with

differences occurring due to simple geometric differences (positions) as well as

attenuation effects. The three distributions shown in Figure 8.2 were verified to

be unique, as well as the distributions for all intermediary voxels.

Based on the evidence presented here, the possibilify of a linearly

dependent configuration of voxels is extremely unlikely. All the cases we have

explored have demonstrated a unique solution.
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Figure 8.1: The scattered photon distribution of each voxel (a), (b), and (c), acts ls

a basis function in the vector space V, defined here as the total scattered photon

distribution.
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