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ABSTRACT

A general numerical method — an isoparametric finite-element
technique —— is developed for the solution of integral equation formu-
lations of three-~dimensional boundary-value field problems. In contrast
to filling the region with three-dimensional elements as needed in the
partial differential equation approach, in the integral formulation,
elements placed on boundary surfaces only are considered. Ihe method
provides high order approximation of the unknown function over a
bounding surface described by essentially two-dimensional nonplanar
elements. In common with alternative procedures, the finite-element
method involves the formation and the solution of a system of algebraic
equations. The matrix equations are derived from the Rayleigh-Ritz
procedure. The use of an isoparametric mapping permits numérical inte-
grationé over surface elements, of arbitrary shapes, to be performed over
a simple two-dimensional simplex. This also makes possible the devel-
opment of a fully automated general algorithm applicable to arbitrary
configurations. The computer implementation is discussed. Sample test
results for both scalar and vector fields are included. The variational
approach is compared with the conventional constant approximation point-
matching méthod. Comparison is also madg between the point-matching
and the variational methods involving identical higher-order approxi-
mating function. Results obtained indicate that the variational
approach is better than the point-matching method in both cases. A

successive element iterative scheme is also described to handle problems
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of sizes demanding a core memory in excess of the available capacity.
In summary, this work has achieved the generalization of the finite-

element concept to include its application to the solution of integral

equations.
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CHAPTER I
INTRODUCTION

In solving boundary-value field problems, two distinct approaches
of solution exist: the partial differential and the boundary integral
approaches. In the differential method, the behaviour of the field
inside and on the boundary of the domain is described by partial differ-
ential equations, If the field distribution is the quantity of interest,
‘the solution is obtained directly by solving the differential equations.
ﬁowever, if the source is to be found, it is obtained indirectly by differ-
entiation of the field. Alternatively, one may assume a given field
distribution to be represented by some form of source distributions on
the boundary of the region, which are obtained as solutions of integral
egqoations [1,2,3]. The approach is known as the boundary integral equa-
tion method. It refers to the class of methods where the governing
eguation is an integral egquation relating the unknown function defined
on the boundary only to known field quantities on the boundary.

To solve, for example, the problem of finding.the potential distri-

bution governed by the Laplace equation

subject to prescribed boundary conditions, one may derive the solution
from an integral formulation. Denoting by G(p|q) the free-space Green's

function for (l.l1), in three-dimensional space, we have
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clplq) = el (1.2)

The potential at a point p may be represented by means of a single-layer

source distribution o on the boundary S in the form [4]

o(p) = I ¢(plq) o(q) dq (1.3)
S :

Suppose that a Dirichlet condition

$(q) = g(q) q€S (1.4)

is specified on the bdundary. If the source distribution o on S is
determined such that (1.4) is satisfied, the problem is solved. Applying
the boundary condition (1.4), an integral formulation of the problem is

given by the expression

(1.5)

(4]
w

f
J G(plq).o(q) dq = g(p) p
S

which is a Fredholm integral equation of the first kind.
- Refering to Fig. 1.1 which depicts an interface problem. On part
of the boundary the interface condition
e 3 _ . B0 -
19 - %2 (1.6
is to be specified. Taking into consideration the discontinuity properties

of the normal derivatives, the single-layer representation (1.3) yields

a Fredholm integral equaticn of the second kind [25]



e1tey 3G
5= (p) +<el-e2>f o(q) 3= (pla) dq =0 p e Sy (1.7)
S

for the interface condition. Equation (1.7) together with (1.5) provides
a complete integral formulation to the problem of Fig. 1.1.

In both the partial differential and the integral equation approaches,
exact solution of, for example, equations (1.1), (1.5) or (1.7) by analyti-
cal techniques is usually not possible. Approximate solution by numerical
methods is the natural choice. The numerical procedure involves the re-~
placement of the continuum equation by a set of algebraic equations.

The size of the matrix system is, in general, directly related to the
size of the region in which the continuum operator is defined. For
problems with large regions, the partial differential equation approach
suffers because the unknown function is defined over the entire region.
On the other hand, fhe integral equation method, because the problem is
formulated in terms of a function on the boundary, has the advantage of

requiring a smaller number of unknowns. This is particularly advantageous

Fig, 1.1 An interface problem



in open-region problems. However, for regions containing nonuniform
inhomogeneities, the integral equation formulation requires a special
Green's function which is as difficult to find as solving the original
problem, The method is therefore of advantage for homogeneous or uni-
formly inhomogeneous regions where free-space Green's functions are
applicable. On the other hand, the partial differential approach handles
inhomogeneities easily. Several methods have been reported for solving
open-region problems. The boundary relaxation method [5,6] assumes a
boundary condition on an artificial boundary, solves the partial differ-
ential formulation‘and updates the assumed condition iteratively through
an integral relation defined on the boundary. The picture frame methods
[7,8,9] use an integral equation formulation to define the field in the
uniform region exterior to an artificially imposed boundary. The interior
partial differential formulation and the exterior integral equation are
éoupled to yield a solution to the complete prcblem. No approximation as
to boundary conditions is involved and the solution is obtained by consid-
ering the field in all space. In [7] and [8], a complete equivalent
source representation comprising both the single and doubie layer sources
is used whereas the dipole layer contribution is neglected in [9]. More-
over, in [8], two artificial boundaries are defined thus sidestepping the
Green's function singularity. In general, for large problems with local
inhomogeneities, it is most appropriate to use both the differential and
the integral equation methods simultaneously [10].

The technology for partial differential equations is well-developed.
In addition to the somewhat classical finite-difference discretization of

differential operators, the finite-element discretization [11,12] based




on the variational method [13] has been proved a useful method of
obtaining an approximate solution to partial differential equations. The
essential idea of the method is to divide the region in which the problem
is to be solved into arbitrary size of triangular or rectangular subre-
gions (called elements), permitting a close approximation to boundary
shapes. Complicated geometry can be dealt with easily. The unknown func-
tion is uniquely specified by a discrete number of its values associated
with specified nodal points of the region. Then the stationarity (or mini-
mization in the case of positive-definite operators) of the functional
with respect to the nodal values yields a discretized system of equatiomns,
the solution of which gives an approximate solution to the problem.

It is evident that a higher-order approximation would yield a better
representation to a continuous function than would the constant approxima-
ticn. While high-order implementation plays a practical role in providing
an approximate solution to problems described by partial differential equa-
tions, flat surface elements with constant values of approximation are most
customarily used in solving integral equations. The method of moments [14]
is the most commonly used method. Except for problems involving simple
geometry and for situations where physical knowledge.may furnish a special
set of expansion fuﬁctions, general practice is to employ pulse expansion
and point-matching discretization. The procedure has been reported in the
numerical solution of integral equations érising in many different fields,
for example, in elasticity [15-17], sound radiation [18,19], electromag-
netic radiation and scattering [20-22]. The pulse approximation to a
continuous function would generally require more variables than a higher-

order approximation. The former thus demands a greater computing cost



than would the latter for a solution of comparable accuracy.

Cruse [23], in his work on three-dimensional elastic stress analysis,
improves upon the efficiency of pulse expansion approximation by allowing
a linear variation of the function over a surface modelled in a piecewise
flat sense. The discretized system of equations was derived by the point—
matching approach. Silvester and Hsieh [24] described a Galerkin procedure
for the solution of integral equations arising in‘electric and magnetic
static fields. McDonald, Friedman and Wexler [25] reported a variational
approach whereby convergence was guaranteed for operators having a positive-
definite component [13]. It has been shown that for a self-adjoint opera-
tor, the resulting discretized system of equations are identical to those
obtained from the Galerkin method. For interface problems between dissimi-
lar media, it has also been shown [26] that the Galerkin and variational
approaches correspond. For two-dimensional problems, [25] obtained the
solution by a pure variational approach with a single polynomial approxima-
tion over the entire region. The approach lends equal weight to all por-
tions of the region. For three-dimensional problems, only pulse expansion
approximation over piecewise flat surfaces was previously available.

In this work, the finite-element method is established for the solu~
tion of boundary integfal equations for three-dimensional fields. The
technique is a natural extension of the isoparametric finite-element method
commonly used for the solution of partial‘differential equations., It
permits piecewise polynomial approximations to the unknown function and
allows high-order modelling of curved surfaces with a consequent reduction
in the significant but often neglected geometrical modelling error. The

use of an isoparametric mapping, which enables all numerical integrations



to be performed over a two-dimensional simplex, facilitates the devel-
opment of a package of FORTRAN computer programs applicable to problems of
arbitrary configuration. The above-mentioned method is described in
Chapter II.

Lachat and Watson [27] described a related method for elastic analy-
sis using a parametric representation for both the function and the geome-
try. The matrix equation was derived from a point-matching discretization.
Moreover, a banded system was assumed. In the finite-element solution of
a partial differential equation, a sparse matrix results from subdivision
of the region, whereas for integral equations, because integral operators
account for mutual inﬁeraction between all pairs of elements, the result-
ing matrix is dense. For computational economy, simplifying approxima-
tions, such as neglecting the effect of distant elements and hence setting
the corresponding matrix entries to zero, may be made. However, such
approximations are ad hoc and must be justified on an individual basis.
Unfortunately, reference [27] gave no discussion to the occurence of the
banded system. A successive element iterative scheme is described in
Chapter II for the solution of large problems.

"In Chapter III, Dirichlet problems of electrostatics are formulated
as Fredholm integral equations of the first kind and are solved by the
finite-element method. In Chapter IV, the integral finite-element method
is demonstrated by solving a Fredholm integral equation of the second
kind with a magnetic scalar potential. It is shown that the single-field
formulation yields an ill-conditioned formulation in computing field

values in the region exterior to the permeable body. An integration



scheme, analogous to that used in the isoparametric finite-element
approach of Chapter II, is described for the volume integration involved
in the computation of magnetic field due to current sources.

Chapter V describes the method for vector fields. In particular,
the displacement problem of elasticity is considered. In summary, the
object of this presentation is to introduce a novel numerical method —
the boundary integral finite-element method — for the solution of bound-
ary integral equations. Its applicability is demonstrated with both
scalar and vector solutions of Fredholm integral equations of the.first
and the second kinds covering the most frequently encountered formulations

in engineering applications.




CHAPTER 11
FINITE ELEMENT SOLUTION OF INTEGRAL EQUATIONS

The essence of numerical solution of integral equations is to
transform the integral operator equations to a system of algebraic equa-
tions which can then be solved by standard procedures [301. The most
commonly used method for such a transformation is the method of moments
with pulses for the expansion functions and delta functiomns fér the
testing functions [14]. The method replaces the curved or flat boundary
by N planar subregions over each of which the unknown function is assumed
to be constant. One then constrains the integral equation to hold at N
points on the boundary, thus obtaining a set of N linear algebraic equa-
tions to solve for the N constant function values. Such approximationmns,
although fairly easy to implement, are unnecessarily crude.

In this chapter, an isoparametric finite-element method is presented
for solving boundary integral equations of three-dimensional fields.
First, a systematic approach to derive a variational formulation for
nonself-adjoint operator equations is described. The method, based on
the well-developed finite—element method for two-dimensional partial
differential equations with extension to deal with an arbitrary surface
in space, is derived. Special singularity treatment required for
the kernel of the integral operators is described. Furthermore, an
iterative scheme is presented which provides an alternative appreach to
cater for large problems. Finally, the computer implementation is

discussed.



2.1 THE FUNCTIONAL

Consider the operator equation
Ko =g (2.1)

where K is a real integral operator defined by K... = j K(sls')...ds',
Assume that there is an adjoint operator, Ka, to the operator K with the

property

< Ko,T > = < 0,K°1 > , (2.2)
where the pair of brackets is defined by [31]

< u,v > = J uv® ds ‘ (2.3)

The superscript * denotes the complex-conjugate. An operator, XK, is said

to be self-adjoint if
< KO,T > = < O,KT > (2.4)

Equation (2.4) follows directly from (2.2) if K is self-adjoint, that is,
if K = K&, It can easily be verified that the integral operator of

(2.1) is self-adjoint if the kermel, K(s|s'), satisfies the relation
K(s|s') = K(s']s) (2.5)

That is, self-adjointness of an integral operator requires the kernel be
symnetric. In general, the adjoint operator of a complex integral opera-
tor is one with the kernel being replaced by its complex-~conjugate trans-

pose.

10



The well-known stationary principle [13] states that for a self-

adjoint operator ¥, if Oo is such that KGo=g, then the functional

F=<Xo,0>~-<g0,g>~-<g,0> (for complex ¢ and/or g) (2

or

F = <Ko,0 >~ 2< 0,g > (for the real case) (2.

is stationary at U=Go°

If X is nonself-adjoint and 1if % and T, are such that K00=g and

K8T0=h, then the functional

F=<ZKo,T>~-<g,T>~<0,h> (2.

is stationary at 0=0, and =T,

The proof is direct. Let G=Go+£ and T=To+n, then

.6)

7)

8)

F(o,T) = F(o +&,T +Nn)
. o) o]
= < KOO,TO >+ < KE,TO > f < KGO,n >4+ < KE,n >
- < g’TO > = < gsn > — < OO’h > - < E,h > (2-9)

Also,

F(cO,TO) = <‘ Kcro,ro > - < & T, > - < Uo,h > (2.10)
Therefore

F(o,T) - F(OO,‘L‘O) = < Kg,n > (2.11)

Since < KE,n > is second order in &,n, F(0,T) is stationary about 0=0_
A

and T=T .
o

11



By taking the approximating functions 0 and T to be

oc=00a=0ag0 (2.12)
and
T = _T_T_q = _qT_'g (2.13)

where o is a vector of interpolating functions and § and T contain the

variational parameters, the functional given by (2.8) produces
F=g <Koo >T-<g0 >T-0 <gh> (2.14)

Upon taking the variation with respect to T, (2.14) results in a system

of equations

< Ka,gT >0 =< g,a > (2.15)

which is algorithmically identical to that obtained from Galerkin's
method. It may also be noted that by taking the set of approximating

functions to be

O=00a=ag (2.16)

and

T=TB=§T, (2-l7>

the system of equations (2.15) is
< Ka,8” >0 =< g,B> (2.18)

which is the system of equations resulting from the moment method in

general.
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Expressing explicitly, the functional (2.8) for the integral

operator

Ko(s) = po(s) + j K(s|s") o(s') ds' (2.19)

is

F = I T (s) [po(s) + j K(s|s')o(s")ds'] ds - J g(s)T (s)ds - J h*(s)o(s)ds

(2.20)

If K(sls') = K(s'|s), (2.20) reduces to, for real ¢ and g,
F = J g(s) [po(s) + J.K(sls')c(s')ds'] ds - 2 j g(s)o(s) ds (2.21)

In the following section, the finite-element discretizatiomn is

described for obtaining the Rayleigh-Ritz equations.

2.2 FINITE ELEMENTS AND THE RAYLEIGH-RITZ PROCEDURE

The finite-element method using Rayleigh-Ritz procedure [32] provides
an efficient technique for finding the stationary point of the functional
(2.20). The detail of the method for partial differential operators is
given in [11,12].

The basic philosophy of the method is the division of the region of
interest into smaller regions (elements) over each of which the unknown
function is represented by an appropriate trial function. A further impor-
tant feature is that it permits one element to be considered at a time
resulting in algorithmic generality and simplicity. The variational method

in its pure form, on the other hand, represents the unknown function by a
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trial function defined over the entire region of interest.

Now, suppose the region where the unknown function is defined is
divided into triangular subregions as shown in Fig. 2.1l. Over each ele-
ment, the unknown, say f, is assumed to vary in a polynomial fashion, in
contrast‘to the pulse approximation used in [25], for example. Further-

more, this variation is expressed in terms of the M element nodal values

as

M
£ = I of . (2.22)
k=~ 4o, Lki

where the subscript k refers to the kth element, fki being the ith nodal

value of the kth element and
M= 1 (w1) (2)
T 9 (2.23)

for a degree N approximation.

Fig. 2.1 Finite-element subdivision of a region
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The ai terms are the appropriate interpolatory functions, known as the

shape functions, which by definition takes on the values

1 at node i
{ (2.24)

0 at other nodes.

For a first order approximation (N=1) in two variables, we have M = 3,
The three unknown parameters are the nodal values at the three vertices
of the triangular element. Hence along each side of the element, the
first order approximation is uniquely determined by the two ﬁodal values.
This ensures continuity of the function across the common side of two
‘adjacent elements. Similarly, for N = 2, the six nodal variables are
placed as shown in Fig. 2.2, having three values along each side to

uniquely specify a second order approximation.

Fig. 2.2
Node arrangements
in elements

=1 ' v =7

In vector notation, (2.22) is

o (2.25)



T
where the superscript T denotes the transpose, & = [al,uz,.,.,aM]
T _
and f‘k - [fkl,szgoao,ko]w
The functional contribution from element k is obtained by substi-

tuting (2.25) into (2.21), for example, we get

_ T T n T T, '
¥, =f poa(s)a(s) ds £, + I £ [1 a(s) K(sis" o (s') ds'ds] £
k =k - - =k =k - = =t

Sk t=1 Sk St

I J g(s)als) ds (2.26)
Sk
where n is the total number of elements. For a subdivided region,

(2.26) is applied to each element in turn and sum to yield the total

contribution

n
F= I F, (2.27)

The stationary point of F and, thus, the solution of the operator
equation is obtained by differentiating F with respect to each variational

parameter and setting each resulting equation to zero, icea,
oo 1=1,2,c00,n. (2.28)

From (2.26) and (2.27), (2.28) is a system of equations of the form

Sf = b (2.29)

where S is an NxN dense matrix (N being the total number of nodes), f an

Nx1 vector of the unknowns and b an Nx1 known vector. The elements of S

16
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and b are given, respectively, by

f
S,. = X o (s) a (s) ds
ij Py
iLsVij J p%i 23
: | (s) I f (s|s") (s') ds'd
+ o s K(s|s") o s s'ds (2.30)
Levy JS,Q, Pog kEVj S pkj
b, = I J g(s) o (s) ds (2.31
i fevy Jg Pos )

where Pgs is the local node number within element % of node i. Vi is the
set of elements sharing node i as one of the nodes and Vii is the set of
elements having both i and j as .its nodes.

One should note here one of the essential differences between the
finite-element discretization of partial differential formulations and
integral formulations. Since the integral operation accounts for the
mutual interaction between pairs of elements, the off-diagonal entries of
the coefficient métrix S in (2.29) are completely filled. Whereas in the
partial differential discretization, only nodes connected to elements that
are adjacent to the element under consideration contributes to non-vanish-
ing off-diagonal entries in the corresponding S matrix. A sparse matrix
therefore results from the subdivision of the region and moreover, a banded
system may be obtained by an appropriate numbering of the nodes.

For computational economy, simplifying assumptions, such as neglect-
ing the effect of distant elements and hence setting the corresponding
matrix entries to zero, may be made in the integral case. However, it is

to be emphasized that such approximations are ad hoc and must be justified



on an individual basis. A banded system was assumed in the work omn
elastic analysis by Lachat and Watson [27]. Unfortunately, no explanation

was given for the occurance of the banded matrix.

2.3 ISOPARAMETRIC INTEGRAL ELEMENTS

Consider an arbitrary surface § in space over which the integral
operator is defined. The finite-element method described in Section 2.2
enables one to divide S into subregions and to treat each subregion .
individually.

Now, in contrast to the common procedure of approximating the
region by piecewise flat surfaces in the numerical solution of integral
equations, a parametric representation is used which yields high-order
approximations.

Referring to Fig. 2.3, a local coordinate system &-n and the global
coordinate system x-y-z are defined as shown. A mapping from the local
coordinates to thé global coordinates is derived by assuming each global
coordinate to be a polynomial function of the local coordinates. Express-
ing this polynomic variation in terms of the M node-points on the surface
and restricting the elgments in the global system to correspond to the

two-dimensional simplex defined by the vertices (0,1), (0,0) and (1,0),

we have
M
X = izl ai(E,n) X,
b
y = & ui<£,n) Yy (2.32)
M
and z = .E ai(g,n) zy

i=1
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where M and o are defined as in (2.23) and (2.24), and (xi,yi,zi) are
the global coordinates of node i. Expressions (2.32) are essentially
parametric equations defining a family of surfaces in space. By taking
the o functions to be linear in & and n, the surface S is a plane tri-
angle in space. TFor piecewise linear boundary surfaces, this finite-
element model is exact and the linear mapping is sufficient. However,
the mapping provided by (2.32) allows elements in the global system to
be nonplanar. With higher—order terms in o, the global surface can
assume any reasonable curvature in order to provide a good representa-
tion of the surface.

Table 2.1 summafizes the shape functions for the first and the

second order approximations.

& =Const.
7] =Const.

(a) Local coordinates X (b) Global coordinates

Fig. 2.3 (a) The simplex element and
(b) its transformation to the three-space




TABLE 2.1

The shape functions ai(E,ﬂ)

i N=1 N=2

1 n n(2n-1)

2 1-E-n (1-E-n) (1-2E-2n)
3 g £(2&-1)

4 4n(1-&-n)

5 4E(1-&-n)

6 4&n

To integrate (2.30) and (2.31) over the simplex, one must obtain
the expression for the differential area. Differential changes in posi-
tion in xX~y-z due to changes in £-n are

t+Lar] +-%§ dE k

!
[
yt

drl(g) - ag

and (2.33)
d?(n)—ax /{+§an§+§£an
2 on on on

|

The differential area is

ds = drl X dr2 (2.34)

From (2.33) and (2.34), the transformation factor between the two-

dimensional simplex and a surface in space is

_ 7+ w2 2 )
3 ¢&31 M, %+ My, (2.35)



where the Mij terms are the minors of

[9x 3y 23z |
T 113
Ajg = | &= &y 2z (2.36)
oam on on
1 1 1

taken along the bottom row., In the special case of &-n simplex to two-
dimensional xFy plane mapping,.the above transformation reduces to the
familiar form used for two—dimensional isoparametric elements in éolving
partial differential equations. The Jacobian of transformation in this

case is

ax 9y
& 13

J = 2.37
3% By ( )
on an

Now, for the unknown function f, instead of approximatirg it by
piecewise constant or linear variation commonly used in the numerical
solution of integral equations, the finite-element method develcped here
allows f to vary in a polynomial fashion. Furthermore, analogous to the
geométric representation, the variation of f is represented in terms of
the shape functions and the nodal values of the function which are yet to
be determined. Therefore

M .
fe = 5 % B (2.38)

where the subscript k denotes the kth subregion and fki terms are the
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unknown nodal values. The elements so defined ensure continuity of the

function along the interfaces of adjacent elements.

2.4 EVALUATION OF THE MATRIX ENTRIES
To generate the S matrix of (2.29), from (2.30) a typical integral

of the form

f
Js ai(p) Js K(plq) aj(q) dsqup (2.39)
k t

is to be evaluated. It involves the evaluation of a double surface inte-
gral. The isoparametric mapping of the previous section allows the inte-
gration to be performed cver a2 simplex. To do this, the integrand of
(2.39) has to be evaluated at a specific set of points over £-n. For any
given point in the local system, the corresponding image points in the
global system are easily found with (2.32) and so, in effect,
G(E,n]&',n") a(E',n') is known.

The algorithm for performing the double integration will now be
described. Suppose the regions of integrations for the outer and the

inner integrals are S, and 52, respectively, as shown in Fig. 2.4.

1

f H(gq)dsq
X X S2

x S =2 or Hiay)

Fig: 2.4 Integration regions and sampling points
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Applying the quadrature formula [33] to evaluate the integral

(2.39), we have

513 .
: - 2.40
j81ai(p) [Jszk(plq) a5(a) ds I ds = B a) Flpy) (240

where Py and ags 2 = 1,2,4..,n are the sampling points and the weights,
respectively, of the quadrature formula used. F(pz) is the function value

at p = Py of the integrand for the outer integral, i.e.,

F(py) = a,(py) fs R(py |a) aytq) dsg (2.41)
2

If F(p) were an explicit expression in p, straightforward substitution of
P=1p gives the value of F(pg) directly. An approximate value for the
integral (2.40) is thus obtained as the sum of the product of the weight
and the function value F(pz) at each sampling point Pgs L = 1,2540esn.
However, F(PR) as given by (2.41) involves an integration over SZ’

i.2., the Integration

H(p,) =f K(pgl) ala) ds, : (2.42)
s.
2 .

which is yet to be evaluated. Once H(pz)‘is found, F(pz) is known from

F(py) = alpy) H(py) (2.43)

Now, consider K(pplq) being a function which is singular at q = Py

and is of the form
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1

K(pgla) = o, (2.44)

One then requires:the<evaluationcof

. - a{q) .‘ 2.45) -
H(p,) L _TE—?SQJ' ds_ | (2.45)

Z
In nearly all practical situations, it is not possible tc integrate
i
(2.45) analytically. Hence, numerical quadrature is needed. The integrand
of (2.45) is a well-behaved regular function if the point Py lies out-
side of the region of integration 32. In this case, & quadrature formula

can be applied to yield an approximate value to H(pg)@ that is

n
H(pg) = 2 a B(a) (2.46)

where qr is the rth sampling point for the region SZ, a. the corresponding

weight at 9. and h(qr) = a(qr)llqrupx[; From (2.40)} (2.43) and (2.46)s
| .

the integral (2039ﬂ is therefore given by

ji

1
js Oti(p) fs R(p|q) ocj(’q) dsquP " 2;2?1 'rgl aga_ o, (pg) hiq)
k t

, (2.47)

For the regions of integrations shown in Fig. 2.4, Sl and S2 are
not connected to each other. The 'point Py appearing in (2.455t§oe5 not
lie in S2° Therefore, (2947) is always applicable direct?yﬂ

When Sl overlaps SZ’ as shown in Fig. 2.5(a), Py for S1 always lies

within the region of integration 5, for the integral H(pﬁ} given by.




(a) (b)

Fig. 2.5 (a) Overlapping elements
(b) Adjacent elements

(2.45), The integrand in (2.45) is singular at Pge In this case, numeri-
cal quadrature formulas expressed by (2.47), do not yield acceptable
results. As a matter of fact, using the variational procedure, p, may
coincide with one of the sampling points fox 32. In this case, (2.47)
failslaltogether due to division by zero. However, even if Py: tﬂe singu-
lar point; does not coincide with any of the sampling point, a situation
frequently encountered in the point-matching approach where the matching
point may be arranged so that division by zero does not occur, numerical
results obtained directly from (2.47) willinot be acceptable. The addi-
tion and subtraction technique [25] to be described in the following
section is needed to handle the singular integrand of 32.

In the case where S, and 52 have a common side L (Fig. 2.5(b)), for

1
any p, lying on L, the integral (2.45) over 82 has a singular integrand.

The technique of subtracticn and addition which subtracts off the singuiar

function from the integrand would then be needed for (2.45). The
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integrated function H(p) of (2.45), however, is regular. The integral
over Sl therefore involves the integration of a well-behaved function.
Hence, for the outer integral, numerical quadrature expressed by (2.40)

always holds.

2,5 HANDLING OF KERNEL SINGULARITY
To illustrate the approach in handling the kernel singularity, con-
sider a kernel containing a singular function of the form given by

(2.44)., To remove the singularity at q = P> the integral (2.42)

H(p,) = I K(pgla) o(q) ds

q
Sy

is expressed - as

fSZ[K<pllq> () - alpg) K (pgla)] ds_ + alpy) jsz

K (pgla) ds,

(2.48)

where Ks is the singular portion of the kernel and the closed-form expres-
sion for the last integral in (2.48) is assumed to exist. The first inte-
gral in (2.48) has a regular integrand and thus can be easily evaluated
numerically whereas the second integral is computed analytically.

Referring to Fig. 2.6, an orthogonal coordinate system t—-u-v is
defined as shown. The t-u plane is in the plane of the element and the
normal direction, fi, is in the +v direction.

The direction cosines of fi are given by
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n = [(y -y ) (z-2,) - (ya-yb)(zc-zb)]/ZA
ny = [(xa—xb)(zc~zb) - (xc~xb)(zawzb)]/2A (2.49)
n = [(xc-xb)'(ya-yb) - (xa-xb)ﬁ(yc-yb)]/2A

where A i1s the area of the triangle abc.

zZ A

>y

Fig. 2.6 Coordinate system for direct integration

The integral of (2.44)

o

I=| == ds - (2.50)
s |r-1,|

p

over the triangular element can therefore be written in the t-u-v

coordinate system as
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t, f.(t) . t, £,(1)

1
, dudt + dudt (2.51)
£,(t) Yt 2+u? e, £, (1) /-t2+u2

%

where fa(t), fb(t) and fc(t) are the equations of the lines bc, ac and ab,
respectively, in the t-u~v coordinates. Each of the integrals in (2.51)
is to be evaluated analytically. Let £(t) = mt + n. An integral of the

form

dudt (2.52)

is obtained as

- 1
I' =T sinh - &+ w) + S nl|/Z 1 1 [(@® + 1) T + 2mT + n’]?
m< + 1

+ (m2 + 1T + m]| - n|vVp2 4+ 1 ln] + m} (2.53)

Equation (2.51) can therefore be computed using the expression given by
(2.53)-

It is relevant to remark that the’applicability of (2.48) depends
completely on whether the closed-form expression for the singular integral
can be found. The élosed-form expressions for the integral (2.50) over
nonplanar doﬁains are not readily available. In this case, the curved
region of integration is approximated by a planar region and the element

is defined by the three vertex nodes a, b, ¢ (Fig. 2.6) as




x =a_(&,n) x + ab(E,n) x * aC(E,n) X,
y = o, En y, + o (Em) vy +a (En) y, (2.54)
z =0, (&n) z + ub(é,n) z, + uc(i,n) z,

where Oys O and R being the shape functions corresponding to the first
order approximation as given in Table 2.1. This introduces an error
which is a function of the closeness of the planar representation to the
curved region involved in the second integral of (2.48). To obtain a
reasonable representation, in evaluating the second integral, quadratic
regions of integration are approximated by four planar subregions defined
by the six nodes of an element as shown in Fig. 2.7. This is a convenient
and systematic scheme as the subdivision is obtained with existing element
nodes and, hence, no extra data is required and can be easily programmed.
The approximation has been found to give adequate results. However,

should a better approximation be needed, a finer subdivision may be used.

Z A |

=y

X

Fig. 2.7 Subregions for direct integration
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2,6 SUCCESSIVE ELEMENT ITERATIVE SOLUTION

The integral finite-element discretization, in general results in a
dense system of equations which is unfavourable in terms of both storage
and computation. To handle economically problems of considerable size, an
element~iterative scheme, which does not impose additional constraints and
assumptions, is presented to supplement the finige-element integral tech-
nique. The method is derived from a method given by Shoamanesh and Shafai
[34] used for solving loop current arrays. However, an essential differ-
ence in the two approaches is that, in [34], the iﬁteractions of variables
which are not directly interconnected are not catered for. Hence the
method may fail, for example, for cases where the effects 'of distant -
sources are dominant due to focusing effects. This constraint need not be
imposed in the method described here. The approach is analogous, in the
iterative sense, to the successive iterative procedures for the finite-
difference mesh of a partial differential operator. As far as the matrix
construction is céncerned, the method is extended from the finite-—element
partial differential approach of treating each element individually in
turn, although the procedure is much more complicated in the integral
operator case.

Suppose the boundary is formed by n subregions each consisting of p
elements with q total no. of nodes. The successive iterative scheme can

be expressed implicitly as

-1 f
J k(s|s") ot (s") ds' = g(s) - T | Gsls) ot g1y gg
S : i=1 Jg
K i
- % { K(s|s") O(t)(s') ds' (2.55)
S,

i=k+1
. i
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where the bracketed superscript t denotes the iteration number and Sk
refers to the kth subregion. The iterative process is initiated by
assigning arbitrary values to all the unknowns. The Rayleigh-Ritz matrix

equation corresponding to a single subregion is generated with the socurces

on all other subregions assumed to be known. The matrix equation is of

the form
ar b g 1
[ (t+1)
all a12 oo alq 01 b1
. . = . (2.56)
a o & o o (t+1) b
ql q || 9 | q

1 1 T 10 (e+1) | [ ()]
by 8 bip Byg eee byglihy c31 S12 °** %1 lfl
R
S R : e :
(t+1) | e (D)
qu gq bql e o e qu h,Q, E qu e & @ quv ‘ fr
! L ! il J L It J
(2.57)

where h is the vector of 2 nodal values for the first (k-1) subregions
and f is a vector of r nodal values for the remaining subregions (exclud-
ing the kth subregion) at the (t+1)th iteration. Equation (2.56) is a
system of q equations to solwve for the q unknown nodal values associated
with the kth subregion. For each subregion solved, the current updated
values are used immediately for subsequent computaticns. These "known"

sources hence contributes to the right-hand side of the equaticn as if
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one is solving a new problem with an augmented boundary condition. The
process therefore involves solving a system of the size corresponds to
the total number of unknowns within a single subregion. Large problems

can therefore be handled at ease.

2.7 COMPUTER IMPLEMENTATION

The availability of efficient computing software plays an important
role in the dévelopment and the subseduéﬁt applications of any numerical
method. A FORTRAN program is coded for the above technique. It is
general purpose in nature and is applicable to both scalar and vector
fields.

The problem geometry and element identification, through vertex
numbering, are specified by the input data. Only the vertices need to be
numbered, but they may be numbered in any order. The appropriate number
of nodes required for a degree N approximation is generated and numbered

automatically from the scheme shown in Fig. 2.8 and Fig. 2.9

2 3 2 3

=] =2 N=3

Fig. 2.8 Local numbering



33

O specified vertices

X generated node numbering

It

3)

Fig. 2.9 Global numbering (N
element 1: 1-4-3
element 2: 2-3-4

In addition to the high~order approximation of the geomet?y, an algorith-
mically important property is also provided by the parametric representa~-
tion of the geometry described in Section 2.3. Since global elements are
referenced to the local system, the integration over each and every arbi-
'trarily shaped surface elements in the global system is performed over
the two~dimensionél simplex. This contributes to an essential algorithmic
simplicity. Furthermore, only the set of Gaussian points associated with
the simplex need to be generated — and this is done but once for all
elements.,

Insofar as the linear equation-solver is concerned, since the matrix
S in equation (2.29), resulting from the discretization, is dense, stan-
dard Gaussian elimination [35] is used to solve the system of linear equa-
tions. With the computer zero at approximately 10-8O and infinity at
approximately 1080, a 40x40 matrix having elements with numerical values

-2, . . e .
of the order 10 is likely to yield a vanishing determinant and hence
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leads to a faulty termination of the solution process. Since multiplying
each element of a NxN matrix [A] by a factor B results in the determinant
being BN times the determinant of [A], multiplying the elements of the
matrix by an appropriate scaling factor will obviate the errors due to

zero and/or infinity determinant.

2.8 CONCLUSION

In this chapter, a new, efficient and general algorithm — a gener-
alization of the finite-element method for applicaﬁion to integral equa-
tions — has been presented for the solution of Fredholm equations arising
in the boundary integfal formulations of three-dimensional fields. This
is a novel departure as the finite-element approximation method has tradi-
tionally been employed for partial differential equations.

The surface is modelled by triangular elements generated from an
isoparametric mapping and the unknown function is approximated by polyno-
mials. Analogous to the technique for partial differential equatiomns,
elements may be placed where desired for best representation. The high-
order representation is expected to yield improved results as compared to
the constant pulse approximation for the same number of variables. The
matrix is constructed fy considering one element at a time, in a fashion
analogous to the partial differential finite-element technique. However,
the procedure is more complicated here than for the partial differential
equation case.

The matrix equation is dense which is characteristic of integral
equation formulations. This is unfavourable as compared to the sparse

equations of the partial differential approach. However, the integral



equation formulation having unknowns on the boundary only involves much
fewer unknowns., The successive element iterative scheme described provides
one way to obviate solving a large and dense matrix equation. Other
approaches such as the frontal solution [47] may also be coupled to the

integral finite-element method developed.



CHAPTER III

SOLUTION OF THREE-DIMENSIONAL ELECTROSTATIC

FIELDS IN OPEN REGIONS

The need to solve a class of open-region electrostatic problems

governed by the Laplace equation

-v% =0
arises frequently in, for example, the determination of parameters for
open—-wire transmission lines, microstrip discontinuities ;nd certain
antenna problems. For problems having locally homogeneous regions,
boundary integral formulations, by which the unknown functions are defined
only on the boundary and at interfaces rather than over the entire region,
provides an efficient method of solution. The method has a clear advan-
tage when the reéion is of infinite extent. In such cases, a problem
involving an infinite region is replaced by one having a finite region of
dimension one less than the original.

In this chapter, the finite-element integral approach described in
Chapter II is presented to solve electrostatic field problems. Conducting
boundaries having prescribed potentials are replaced with charge distribu-
tions in free space having the same potentials. Interfaces between
regions of differing media are replaced by polarization charges. The
equivalent source distribution formulation thus removes the requirement

of finding special problem-dependent Green's functions and one needs to
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be concerned only with the free-space Greeﬁ's function.

The integral equation is discretized using the isoparametric finite
element scheme previously described. The T-shaped conductor problem of
Section 3.2, which is representative of a microstrip line discontinuity,
demonstrates the improvement in convergence of the present scheme. The
results are.compared with those reported by McDonald, Friedman and Wexler
[25] using pulse approximations. The prolate spheroid of Section 3.3
serves as an example of problems with arbitrary curved surfaces. Using
a simple geometry, exact solution is available for comparison. Agreement
was found with an accuracy far in excess of that which would be required

in practical applications.

3.1 THE INTEGRAL APPROACH

Consider the scalar problem of finding the electrostatic field

distribution governed by the Laplace equation

v2¢(§) =0 reR (3.1)
and having prescribed potential on the boundary
d(s) = g(s) s €S . (3.2)

It is well-known that solution to the problem is unique [38]. As far as
the resulting field distribution is concefned, one is free to replace the
boundary having prescribed potential by a source layer in free space
which produces the given potential on the boundary and hence, on the
whole, the réquired field distribution everywhere. The Dirichlet problem

may then be posed in the form of an integral equation of the first kind
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[ G(s|s") o(s") ds' = g(=) (3.3)

L
€o
where G is the free-space Green's function

eGlry = —2— (3.4)

The Green's function given by (3.4) is symmetricél, that is,

G(;l;') = G(;'!;), the integral operator in (3.3) is therefore self-
adjoint. The unknown function 0(s) is the equivalent single-layer source
distribution to be determined. It is obvious that, for any charge dis-

tribution o(s), the potential given by

o(3) = -1_J 6(Els) o(s) ds (3.5)
€
0"°’S
satisfies the Laplace equation at all points due to the nature of the
Green's function. However, (3.3) has a unique solution [39] and the
required field distribution is produced by the set of charge distribution
which satisfies the prescribed boundary potential.
From (2.7), the functional for the integral equation (3.3) is

therefore

¢ v

F =-§; J o(s) J G(sls') o(s') ds'ds - 2 j o(s) g(s) ds (3.6)
o0 "’S S S

Approximating o(s) by a linear combination of the basis functions g(s),

i.e., 0(s) = d(s)Tg, substituting into (3.6) and setting the first deriva-

tives of F with respect to the variational parameters g to zero yields
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the system of equations

;L~J a(s) j G(s|s") al(s®) ds'ds ¢ = J a(s) g(s) ds (3.7)
€ =Y - = =

o °“’S S S

Alternatively, the Galerkin method is to multiply both sides of

(3:.3) by the basis functions and integrating over S, i.e.,

[
J a(s) [éL=J G(s|s") o(s*) ds'] ds = f a(s) g(s) ds (3.8)
S 0 °S 5

Substituting o(s) = gT(s)'g, the system of equations given by (3.8) is

L I a.(s) f G(s|s") aT(s') ds'ds 0 = [ a(s) g(s) ds (3.9)
€ = - - - .
o ‘S S S
Comparing (3.7) and (3.9), the system of equations derived from
the variational approach is identical to that obtained by the Galerkin

method.

3.2 THE T-SHAPED CONDUCTOR

We now consider a specific problem of finding the electrostatic
field distribution of two parallel T-shaped conductors kept at constant
potentials. The problem has been solved by McDonald, Friedman and Wexler

[25] using a variational approach with pulse expansion functions.

The problem. Fig.3.1 shows two T=shaped conductors with the upper and
the lower plates lying in the z = 1 and z = -1 planes, respectively.

The potentials ¢ of the plates are kept at +1 and -1 welg, respectively.



Symmetry consideration allows the charge distribution to be sought

in the positive quadrant, i.e., in the region x > 0, ¥y > 0 and z = 1.
From (3.3), the equation to be solved is
1
'E“YJSG(X,}',:LIX',Y',I) o(xf,y"';1) ds = 1 (3.10)
o}

where S is the portion of the plate in the positive quadrant at z = 1

shown in Fig. 3.2. G(x,y¥,z|x',y",2z") is the modified Green's function

Z)

Fig. 3.1 The T-shaped conductor problem
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given by

i 1 1
G(XSYszlxw sy'szv)v == { +
4m v/(x°X')2+(y-=y')2+(z-2')2 v/(X°x')2+(y+y';2+(z-z’)2

1 1
- - —F }
/{xGx')2+(ymy')%+(z+z')2 /kx@x')2+(y+y‘)2+(z+z')2

(3.11)

Finite-element discretization. The region is first divided into triangular

subregions. Fig. 3.2 shows the finite—-element model used. There are seven
elements and eight vertex nodes. With a first-order approximation, the
eight nodal values of o(s) are to be found. For a second-order aéproxi—
mation over each element, an additional node is placgd at the midpoint of

each and every side. There are a total number of 22 nodes in this case.

Fig. 3.2 A finite-element model of Fig. 3.1



The eight vertices are numbered in any order from 1 to 8 as shown in
Fig. 3.2. These are the global nodal numbers. Elements are located by
the global numbers of the three vertices;, for example, element 5 is
referred to by the sequence 4~5-8.

For the purpose of illustration, the case N = 1 is considered.
From (3.7), the discretized system of equations for (3.10) pertaining

to the model of Fig., 3.2 is given by

A = b | (3.12)

=

where A is a 8x8 matrix with the entry, aij’ corresponding to the ith
row and jth column given by
a .= ¢ j a (s I j G(sls') o (s") ds'ds (3.12a)
ij meVi S pmi ner S pﬂj

m n
g is the vector of unknown nodal values, g = [61,02,.00,68]T and the ith
entry of the 8xl vector b is given by 4

b, = X j a, (s) ds
* omwevy Jg Pmi

In (3.12a), Vk’ k= l,é,ca.,S, is the set of elements sharing node k as
one of the vertices and Pmi is the local node number within element m of .
node i. Referring to Fig. 3.2, v, = {1},4V2 = {1,2,3,7}, v, = {6,7},
etc.. Equation (3.12) ié a system of 8 equations in the 8 unknown Oy
The coefficient matrix is dense which is characteristic of integral
equation formulations°

The finite-element technique allows the matrix generating process
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to be carried out one element at a time., A contrast between the partial
differential discretization and the integral discretization is that in
the partial differential case; for each element, a MxM square matrix
corresponding to the M nodal values of a singlé element is to be con-
structed. In the case of integral elements, because of the integral
operation, all elements contribute to the entries of each and every row
in generating the matrix equations for each individual element. These
contributions from all other elements except the one under consideration
can be included in the form of an augmented source term. Assuming, for
the moment, the 0y terms of all other elements are known, the 3x3 matrix

equation for the kth element is thus

3
3 ¥ v =
jzldkj JSkai(s) JSkG(sls ) aj(s ) ds'ds

(s") ds'ds

r r 3
= . ds = . T L g,. j G ) a
JS a,(s) ds J a, (s) ] (s|s »

9k j=1 ¥
k %k e d 2

i=1,2,3 (3.13)

Now, since the sources are indeed not known, putting the unknown terms to

the left- hand side of the equations, we have

(s') ds'ds 0, = I o, (s) ds
. i g 1

9 23 k

il 00

f
a,(s) .Z G(s|s") a
i=1 [Sk + ZEVj JS ‘ P

i=1,2,3 (3.14)

Since G is symmetric, interchanging the order of integration, (3.14) mayv
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be rewritten as

8
r z J o (s) j G(sls') ai(s') dsfds o, = I ai(s) ds
i=1 fevy s, Pig S, J 8

i=1,2,3 (3.15)

Therefore; for each element a set of three equations in 8 unknowns
is constructed. These equations are constructed for each element in turn
and are assembled to yield the global system of (3.12).

The matrix entries of (3.14) involve the evaluation of the integral
f
J a (s) | G(s|s') o (s") ds'ds ‘ (3.16)
s P s 1

From (2.48), the integral (3.16) is computed by first rewriting it as

L=1,+1 (3.17)

1 2

where

=
]

Jsap(s) JS[G(SIS )ozq(s ) - cs(sls )aq(_s)] ds'ds (3.18)

and

=t
li

fsap(s),aq(s) JSGS(SIS.) ds'ds (3.19)

44



Gs contains the singular function

) 1
/(x-=X')T+(Y'-y')2+(z-Z')2

Gs(sls') = (3.20)
The first term of (3.17) is regular and is computed numerically by a
double application of Gaussian quadrature [33] over the simplex as

detailed in Section 2.5. The integrated value is

n n
Il = iEl jzl aiaj ap(si) h(si,sj) ,(3,21)
where v
h(s,,s,) = [c(si]sj) a (s - Gs(silsj) o (s;)] '(§f22);f

The closed-form expression for the inner integral of I2 is given.by
(2.53). The outer integral is then computed directly using Gaussian

quadrature.

Numerical results. The results obtained are summarized in Table 3.1.

For ease of comparison, the pulse-function variational solution is alsb
included.

The pulse solution was obtained with the unknown function being
approximated by constants over rectangles shown in Fig. 3.3 for the
positive-quadrant plate. With‘;he pulse solution using 24 variables,
the computed capacitance is 125.6 pf whereas the finite-element model
using first-order approximation with 8 unknown variables, a comparaﬁle

value of 124.23 pf is obtained. Roughly, 24 and 54 pulse variables
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Fig. 3.3 Constant-pulse approximation for the T-plate problem

appear to correspond to the accuracy obtained by 8 and 22 variables,
respectively, the latter involving smooth polynomials. The comparison
made here is slightly in favour of the finite-element approach due to
the fact that a‘higher capacitance value in the pulse case is compargd
to that of the finite-element case. In a subsequent example, the
finite-element solution is compared to the exact solution.

| As far as the amount of computation involved is concerned, in
generating the matrix equations, the pulse solution using 24 variables
requires the evaluation of 300 double surface integrals having taken
into consideration the symmetries of the matrix. On the other hand, by
a close examination of (3.15), the column entries in each row corre-
sponding to one element can be generated by performing a double inte-

gration but once. A considerable saving results in not having to compute
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" TABLE 3.1

The T-plate Problem

Constant pulse over

47

Triangular finite element
with higher order approximations

rectangle
No. of Capacitance Potential |Degree of No. of |Capacitance |Potential
pulses (vf) ¢ (2,3,2) approxima-| nodes (pf) Q (2,3,2)
) . tion '
6 119.4 .1968
24 125.6 2064 1 8 124,23 .20564%
54 127.8 - «2102 2 22 127.43 .21138

the double integrals of (3.15) term by term. This is the algorithm used

for constructing the matrix equation in the integral finite-element

package developed.

Therefore, for a solution of comparable accuracy, the

finite-element model with 7 elements and 8 variables requires the evalu-

ation of 147 double surface integrals. The finite-element approach is,

therefore, superior to the pulse approximation in terms of computing

effort.

Notice also that by means of boundary integral formulations, simply

by solving a system of 8 equations, the sclution to the three-dimensional
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problem is obtained. Moreover, the solution is obtained in an infinite

space by performing the integration (3.5).

3.3 AN ELLIPSOID

As an example of problems with arbitrary curved surfaces; the
integral finite-element method is applied to the determination of the
capacitance and the field distribution of a prolate spheroid. For this
problem, exact solution, derived from the method of separation of vari-

ables to the partial differential formulation, is available for compari-

son and serves to justify the validity of the technique and the computer

implementation.

The problem. Consider a three—-dimensional ellipscidal conducting body
with principal semi-axes a = 2, b = c¢ = 1 and kept at a constant potential
¢ = 1, Fig. 3.4 shows the configuration.

Makiﬁg use of symmetry, the source distribution is sought over
one-sixteenth of the ellipsoidal surface. From (3.3), the equation to be

solved is

éL-J G(x,ysz|x",y",2") o(x',y",2") ds =1 = (3.23)
0 ~°S :

where the domain of integration S is over one-sixteenth of the total

surface and G is the modified free-space Green's function given by

1 1 1 \
G(x,y,z|x',y',2z') = = { = + ST -
" /(Xix')2+(ny')2+(ZiZ')2 VQth')2+(Yiz')2+(th'\2

(3.24)
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Fig. 3.4 The ellipsoid

Each term on the right-hand side of (3.24) consists of eight terms formed
from the eight possible combinations of the plus and minus signs associ-

ated with the x', y*® and z'.

Finite-element solution. The finite-element model used is shown by the

dotted lines in Fig, 3.4. Seven elements were used over one-sixteenth

of the surface. It is'wellmrecognised that an accurate definition of
boundary shapes is one of the essential factors in obtaining accurate
solutions. In contrast to the common procedure of using a large number

of piecewise flat surfaces to model curved surfaces, the ellipsoidal sur-
face is approximated by curved surfaces generated from the isoparametric
mapping described in Section 2.4. Table 3.2 gives a measure of the close-

ness of the generated surface to the actual surface. For an exact mapping,
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the column r takes the value 0.8992, being the radius of the cross—
section of the ellipsoid at x = 0.875. The reduction in the modelling
error from the linear model to the curved surface model is obvious.

The results presented in Table 3.3 give a clear indication of the
improvement in the accuracy of the solution obtained by using second-order
elements as compared to first-order elements. Here, by solving a system
of 22 equations corresponding to the second-order approximation, the
field at any point in an infinite space may be computed directly from
the integral (3.5). The exact value of the capacitance in Table 3.3 is

evaluated from the expression [40]

1 2_ 2.5
c = {8re_(a”b)) % /1og{-aﬂ—a—2-—b—)—}

1
am(a eb )'2 (3025)
and the potential ¢ at (x,y,z) is given by
1 1
e (a2+w)? + (a?p%)
¢ = 2 2L log 5 L 2 2.5 (3.26)
8me_(a”~b") (8"+u)™ - (a“-b%)

where e is the charge on the ellipsoid and u is the ellipsoidal coordinate

defined by

"
=1 (=c“<u, a>b>c). (3.27)

An iterative approach. We have also solved the problem using the element

iterative scheme described in Section 2.7. The same model shown in
Fig. 3.4 used in the direct selutien approach is used here. The region

.is divided into seven subregions each consisting of a single element.
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TABLE 3.2

Mapping at x = 0.875 for
the ellipsoid x2/4+y2+22 =1

Exact r© = ¢ 2 = 0.8992
1-x"/4

y z ¥ = ¢y2L22 )
0.8990 0.0000 0.8990
0.8670 0.2343 0.8981
0.8075 - 0.3954 0.8991
0.7509 0.4957 0.8998
0.6779 0.5906 0.8990

TABLE 3.3

Ellipsoid = using linear triangular and curved elements

Capacitance Potential $(0,2,0)
(exact = 146.33pf) (exact = 0.5948¢%)
Linear : Linear
No. of Degree of No. of triangular | Isoparametric| triangular|Isoparz=zetric
elemants |approximation| nodes elerents elexents elements elemsnts
7 1 9 138.80 138.80 0.56505 0.56505
7 2 22 139.13 145.72 0.57021 0.58255




The iterative process is initiated by suppressing the sources on all

subregions except subregion 1.

For this subregion, a set of M equations,

with M being related to the degree of approximation N by M = (N+1) (N+2)/2,

may now be constructed as

Ial(s)IG(sIs')al(s')ds'ds coe

S S

1 1

4
[
[

In (3.28), the entries to the right-hand side vector b are due to

i

al(s)

1

JaM(s)jG(s‘s')al(s')ds'ds cee JGM(S)
S

1

JG(sls')uM(s')ds'ds
51

jG(sEs')aM(s')ds'ds
S

1

)
911

(1
91m

-

al(s)ds

n—"

JuM(s)ds
S

b

(3928)

"sources on subregion 1 only, since all other sources are assumed to be

ZeY¥Oo

Equation (3.28) is solved for the nodal values of subregion 1.

These updated approximations are used immediately in the form of augmented

sources in obtaining solutions for other subregions.

Therefore, for the

kth subregion, a system of equations analogous to (3.28) but with the

vector b amended as

—

0. (o) 3
SOLl(s)ds - jal(s) 151

k k

4

.
°o

r

f

}G(sls')
S,

0(1)(3') ds'ds

1

(D

G(s%s') o}

(s") ds'ds |

JaM(s)ds

Sk

- )

S

k
aM(S)

1
k

N—-—

(3.29)
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is constructed. In (3.29), the second summation is up to the (k-1) sub-
region as the sources on remaining subregions are not computed yet.

Each time, an updating approximation is obtained for the subregion under
consideration. The iterative process of (2.55) is repeated until the
difference in solution between two successive iterations is smaller than
some prespecified tolerance.

Table 3.4 shows the convergence characteristic for the first-order
approximate solution. A monotone convergence to the solution is observed.
A value of 138.43 pf for the capacitance is obtained in 6 iterations as
compared to 138.80 pf from the direct solution scheme, the former involving

"solution of matrix equations only of order 3.

Point-matching and variaticnal comparison. Instead of generating the

discretized equations from the energy functional together with the
Rayleigh-Ritz procedure, the continuum problem may be discretized by
writing équation (3.23) directly at the n nodal points to obtain a system
of n equations, while retaining the high-order approximations of the
function and the geometry as in the finite-element method. This discre-
tization procedure of cpnstraining the equation at points is known as the
point-matching method. It is a special case of the moment method [14]
with delta function testing.

Constraining the equation at n nodal points, the point-matching

equations for (3.23) is therefore given by



r - . .
f . I r
T i i
1ev, fG(slls)ail(s)ds iévn JG(slls)ain(s)ds oy | 1
H
Sy S5y ,
= Eo‘
| |
igv IG(Snls)ail(s)ds iév jc(sn,s)ain(s)ds o 1
5 lg ng Ji 4 I
i i
(3.30)

where Sys Sps eees s, are the node points where equality is imposed on
the continuum equation. The right-hand side vector of (3.30) is simply a
vector of coﬁstant 1 times the scalar €4 because the surface is kept at
unit potential. Note that (3.30) is not a symmetric systen.

Fig. 3.5 shows a comparison of solution errors using the point-
matching and the variational methods. The variational approach requires
a smaller number of variables than would the point-~matching method for
the same accuracy. However, the variational approach involves the expen-
sive double integrations as compared tc single integrations required by
the point-matching method in the evaluation of matrix entries, Moreover,
the variational matrix is generated on an element basis. The amount of
computation involved therefore is also a function of the subdivision of
the structure. A rigorous comparison of the conmputation cost would not
be representative. Nevertheless, it is undoubtly that for a given number

of variables, the variational approach is more expensive than the point-
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TABLE 3.4

Successive element iterative solution --
The ellipsoid with N=1.

Direct solution value = 138.80pF

55

iteration No. 1 2 3 4 5 6
_ Capacitance 168.80 153.91 145.70 141.32 139.24 138.43
3
%n .
g -
(e
o
Lil
C
o~
|
Point matching
Variational
I ! l | |
4 8 12 6 20 24

NUMBER OF VARIABLES

Fig. 3.5 Variational and point-matching comparison



nabching method. On the other hand, for the same variables, the vari-
aticnal approach yields bettexr result. Moreover, with the former. one

is puaranteed of counvergeuce [132] whereas such convergence proof lacks

.
]

the ?@intwmatching method., There is, therefore, a trade-off between

the relative merits as mentioned of the twe approaches.
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CHAPTER IV
SOLUTTON OF MAGNETOSTATIC FIELDS

The technigue described in Chapter 11 provides an efficient,
algorithmically simple and practical method of =olving three-dimensional
problems with arbitgary geometries. In this chapter, the method is
illustrated to the solution of magnetostatic fields.

Various integral equation methods for the calculation of magnetic
fields have been reported by Trowbridge [41]. As pointed out in [41],
the magnetization integral eguation method involves the vector magneti-
~zation as the unknown guantity defined over the eutire volume of perme-—
abie materials. Thus, nqmerical discretization involving three compo-
nents of a vector quantity is performed over the entire region. The
scalar formulation, on the other hand, overccomes the disadvantage of
solving three components of a vecter quantity. Furthermore, with
boundary formulations, only boundaries of regiouns of different permea-
bilitics have to be divided into elements. A boundary integral formu-
lation in magnetic scalar potential is presented in [41], in which both
the potential ¢ and its normal derivative on bouandery surfaces only are
treated as independent variables and are interpolated independently.
This formulation of having both ¢ and its normal derivative as uunknowns

is parallel to the generally referred to two-field formulation in
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elasticity where both the displacement and stress fields are taken &s

1
1

variables [427. Alternatively, by combining the interface constraint

-ceral eguation derived from the Creen's

equations and the go  2rming
theorem, a boundary integral eguation in the magpetic scalar potential

¢ alone is derived. This single-~field formulation reduces the number

of variables and results in computational saving. The equation is

derived in Section 4.2. An integration scheme is described in Section

4.3 to compute the free-space field due tc current sources in conductors
of arbitrary configuraticns. In Section 4.4, the finite-element method

is applied to cobtain an approximate solution cf the boundary integral
équation for the problem of a permeable preclate spheroid in an uniform
applied field. The field at any point in space is then calculated from
the boundary solution. It will be shown that the cxpression feor cemputing
¢ values in the region exterior to the permeable body is numerically
unstable. Nevertheless, the single-field formulation reduces the number
of variables and is a preferable formulation if only the field in the
permeable region is of interest. In Section 4.5, a magnet problem is

solved.

4,1 RASIC FIELD EQUATICNS
The fundamental expressions which govern the magnetostatic field

distribution are

VxH=1J ' (4.1)

VeB =20 (4.2)
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where H is the magnetic field intensity, J the current density and B is

the magnetic flux density. In a linear media, B and H are related by

A3

o]
il
ol
jan] ]
r

where Y is the permeability of the magnetic materisi.

Expressing the field H at any point as the sum of two field compo-

nents, H and #l
: c m
H=H +H (4.4

with ﬁc being the field due to current sources J and'ﬁm the field due to

polarization effecty [41)}. Equation (4.1) therefore yields

VxzH =13 (4,5}
c
and
= /
v x H 0 (4.0)
Using the Biot-Savart law, the field ﬁc is given by
- S et :
i = TlTTJ X r) gy 4.7
R P

where the integration is performed over the entire region where current

source exists.

From (4.6), the magnetization component ﬁm can therefore be

expressed as the gradient of a scalar function



T (4:.8)

) and {4.2) into- (4.2), Uho polsson @%ugti@ﬁ«.gr

Ve (uVgy = Ve(uH 3 . ' 4.9y
.

At the interface bhetween regions of differing materials, the flux conti-

nuity condition holds, i.e.,

¥ = : Lo
Jnl an (4.10)

where n is the normal at the interface and subscriptes 1 and 2 dencte

U

1

vy
i
fols
y

regions i and 2, vespectively. Prom {(4.3), (4.4) and (4.8}, (4.

terms of scalar potential ¢ — is

3¢(s)y _ . 8d(s)y _
Y1 o T Mg o,

~~
£~
-
-t
-

~

Giy=iy) 3 (s)

where Hrn denotes the normal component of the source field ﬁ_ at S.

If the permeability of the region is constant, the governing differ-

ential equation reduces to the Laplace equation

Vg =0 (4.12)

since V.H = O,
c




4.7 DERIVATION OF THE BOUNDARY INTEGRAL LEQUATION
Consider the @foblem depicted in Fig. 4.1. The magnetic {ield in
the presence of a permeable body placed in an external field ﬁc due to

current sources of density J is to be determined.

Region 2

o

Fig, 4.1 An interface problem
Dencting by Y and ¢ two functions continuous in R together with
first and second derivatives, the Green's second theorem is stated as
L 2, ,- - 2, ,~
[W(x) V7o) - ¢(x) VPp(r)] df
R

on /

SLICE ELICE R (4.13)
S

where n is the outward normal at the surface S.



YYo= - §(E-T1) | | (4.14)

B

for a harmonic ¢, the first term of the left~hand side integral vanishes

and (4.13) vields

- - L (s -
jwuwvcuhwd9=(muh>ﬁ¥i~¢@y;<ﬂ@]@
R JS on n
(4.15)
In three~-dimensional space, G(;i;') is given by
il ) 1 . FN
G(r‘r ) - ...b_._._._____.*._._.l* M_—- (4016)
brir-r'|
In [41], both the potential ¢ and its normal derivatives-%§~on S are

treated as independent variables. Thus, at the interface between regions

e . 3 e .y
of differing permeabilities, both ¢ and o, are tnknovns., The discretized
system of equations derived from (4.15) is therefore underdetermined.
Additional set of equations are introduced from interface conditions.

Now, consider an observation point v in RZ' Applying Green's
thecrem to RZ’ we have
3¢2<S) oG

- r. -
$,(r) = - j [G(x|s) S = 0y (8) 5;‘(rls)] ds (4.17)
S

The minus sign associated with the right-hand side integral in (4.17) is
introduced due to the normal being defined as the inward normal to RQ.

The surface integral 1s performed over the interface between R, and R2°
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The integral for the boundary at infinity vanishes [4].

Similarly, applying Green's theorem to R, and considering an obser-—

1

vation point r in Rl yields

' - - 204 (8) -
¢0,(r) = f [G(rls) ——%n - ¢(s) —g-g (xls)1 ds (4.18)
S

We now examine tﬁe integrals in (4.17) and (4.18). The first
integral of (4.17) énd (4.18) has the form of the single layer potential
which is continuous as r crosses the boundary surface $ [4}. The second
integral, resembiing the double layer potential, is discontinuous at S,
Letting

|

£(r) = ZL‘J (S)'~f CT“'"T) ds (4.19

lreg

w

the discontinuity as r approaches p from either side cf the surface

(Fig. 4.2) is given by [4]

£, = 2in 2D = ERL 4 ZI‘J B(e) 3 (g A5 (4.20)
Tp p-
£ = 03 N o B(p) 1 __3__ 1
R R b f Be) 2 (php s (62D
n

Fig. 4.2

Notation for boundary
‘ limits of eqns. (4.20)
[S and (4.21)

(s}
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Substituting (4.20) into the second integral of (4.17) and rearranging

terms, we have

d) (o) f . 3@’)2(8‘) . i’ . oG PoTe 1 1 (' 5
2 = - }SG(S s') 48 - JS¢2(S ) 55'(355 ) ds 4.42)

Similarly, from (4.21), as r approaches S, (4.18) yields

"j) ( () S' ral
,_:1‘__:i2.. - G(SIS‘) ¢]( __)_ ds' - { ¢ (S') _E_).S (S‘S‘) ds’® (4'23)
2 o on Ig 1777 On

1 ; 0, (") 90, (s")
-;f (ulf¢1(8> (g)\ B } G(glg ) (U i&n - én ) ds'

”

- f [ 9,(s") = ¢,(s™ %ﬁ— (s|s™

(&4.24)
Tmposing the continuity conditions
6,() = b,(s)
[ ”
3¢l(s) 3¢2(s) | (4.25)
ur on - on - (Hr"1> ch(s) ’
(4.24) yields
U+l 3c
=00+ (D) | oG B2 (sl ast
2 3 on
{
= (ur*l) J G(s|s*®) ch(g') ds’ (4.26)

S



The

Fquation (4.26) is an integral equation of the second kind in ¢
- H from the current sources, i.e., the imposed field,

field component
¢
ight-hand side term.

enters into the expression as the known v

.Now, for an observation point.r in Kl, the Green's theoren

to region RZ gives the relation

applied
-, 9%y 3G -y .\
fstc(r]s) T by (s) 5 (r|s)] ds = 0 (4.27)
From (4.18) and (4.27) together with the continuity conditions (4.25),
the field at an observation point r in Rl due to the polarization effect
is given by
- (pp~1) - -
o, (r) = f ( [G(rls) & (s) - o.(s) gg-(r!s)] ds (4.28)
RS pr J g Ch L (3321

Similarly, for an observation point r in R,,, equation (4.17) to-

gether with the continuity conditions and the relation obtained by

applying ﬁhe Green's theorem to Rl
- 3¢, (s) s -1 .
JS[G(rlS) T ¢l(8)‘§H:(IIS)J ds = 0 (4.29)
give
| \ (4.30)

[G(r}s) H n(s) - ¢2(s) gg-(?ls)] ds

¢, (x) = (u_-1) js
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b gives the magnetization component Hm. The resultant
field is then obtained as the vector sum of the two field compouents,

H and B .,
C in

4,3 VOLUME INTEGRATICN FCR SOURCE FIELD
The ﬁc field in the right-hand side of (4.26) due to curient source

of deneity J is obtained from the Biot-Savart law

"'3*—- dv (4.31)

where the incegratioun is to be performed vver the entive region where

purrent exists. As noted from (4.28), the normzl componente of H  are
- [

to be determined at quadrature points in the region of integration.

The integration of (4.31) is to be carried out nwrerically whenever the

closed-form expression is not possible.

An integration scheme is described to evaluzte the volume integra—
tion (4.31). Analogous to the algorithm described in Chapter II for
computing the surfacé integrals in the finite-element method, the volume
integration is performed in local coordinates. This provides algorithmic
generality of the entire proceduré and also facilitates a full automation
of the algorithm,

Two types of volume elements are described, the cube and the prism.
Consider first the cube element with the local coordinate system u-v-w as

shown 1o Fig. 4.3,
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Fig. 4.3 The cube element

The local and global coordinates are therefore related by

= - T ey -4 T e \T T e —_ ) 7 - } =
w= {Gemx) Go-x ) + (y-y ) (v -y ) + (zmz ) (2, -2 ) Mg

v {(x~xa)(xc-xa) + (y=y )y -y) + (z—za)(zc-"za)}/vC

w = 1(x—xa)(xd*Xa) + (y—ya)(yd~ya) + \Z~za)(zd~za)}/wd

The volume integral

I = ( f(x,y,z) dv
1 ./V 3 Ys

is therefore given by

, v, V. u
rd c b
Il = j [ j f(u,v,w) dudvdw
’ v, v u

a a a

(4.32)

(4.33)

(4. 34)



By the simple transformation
u=u + (u-udu'
a ( b a’
v=v + {v-v)v' ;
ot ) . (4.35)

W o= + -w v’
Ya (wd a)

~ the integral (4.34) is obtained as’
I
I, = J j J £(u,v,w) |J| du'dv'dw' (4.36)
0

where J is the Jacobian of transformation given by
= - R N G ’
J (ub ua)(‘.C v vy wa) (4.37)

A triple application of numerical quadratures in one variable,

1 n
[ f(x) dax = Z] aif(xi) {(4.38)

fl Jl Jl | l tdv'dw' g g p I | £Cul,vi,w)
f VW J| du'dv'd = Y a.a.,a J| flu,v,.w
0 (:v5) ¢ v i=1l j=1 k=1 1 J k i i3k

(4.39)

v

.where the coefficients a; are the weights at u, and (u]',L,v:l

,wﬁ) are
quadrature points in the unit cube. These points need be generated but

once for all volume integrations to be evaluated.

Consider now the prism element which provides a basic element for
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integration over avbitrary regiong having uniiorm cross-gection. A
local coordinate system u-v-w is defined as shown in Fig. 4.4. The u-v

plane is iu the plane of the cross-gection.

W
&
: |
N
vd /’
e
R
e g Y
Ve a -
. S e
{ &
s
s
U

I

Fig. 4.4 The prism element

The volume integral

2p
J f(x,y,2z) dxdydz ' (4. 40)
S v

I, =1 f(x,y,2) dv =
2
\Y
a “xy

z

K

is to be evaluated. Analogous to the planar triangular surface finite

elements, the surface Sa{y is represented by the parametric expressien
o«

(4.41)



The surface

integral over S is therefore performed cveyr £he simplex
€« Xy &

in the u-v plane. The integral (4.40) is thus

where J. is

and 0 J

Ny

As an

1 A/m? in a

12

{1 1 Al-v
= J f i £(u,v,w) J.J, dvdvdw

0 J0

the Jacobian

| x 3y
ou Ju
| ov C v

(4.42)

(4.43)

exaupie, the magnetic field due o a curveng densiity of

square conductor of Fig. 4.5 is calculated using the

Fig. 4.5 ZElement configuration of a square conductor
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integration schenme described. The conductor is divided into 8 cube and
8 prism elements. The field at a point r is obtaived by summing the
contributions due Lo each and every element. Fig. 4.6 shows the computed

field at y = 0. The accuracy of the computation is examined from the

relationship

I

(4.45)

e
fi
O
=i
o
bt

Table 4.1 summarizes values of the contour integral (4.45) evaluated

. . . . 1 .
along the paths a, b and ¢ shown in Fig. 4.5 using Simpson's §~rule.
The agreement is satisfactory. However, it is appropriate to point out
that experience in computing the socurce field for the magnet problem of
Section 4.5 indicates that at points close to the conducter higher order

Gaussian gquadrature formula is needed.

TABLE 4.1

Values of contour integral (4.45)

I (computed) I(theorectical)
Path a 1.02475 1.00000
Path b 1.00226 1.00000

Path c 0.99930 1.00000

~i

-
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4.4 PERMEABLE PROLATE SPUEROID IN UNIFORM FTELD

We will now illustrate the finite-element boundary integral
appreach by coasidering the problem of finding the field diétribution
resulting from a magnetic body immersed in a uniform impressed field.
In this case, since the source field Hc nas no circulation, it may be

expressed as the gradient of a scalar function
H o= - WY (4.46)

From (4.4) and (4.8), the resultant field in the presence of a permeable

body may therefore be expressed in terms of a scalar potential as

He= - V9 (4.47)
where
¢=y+¢ (4.48)

Thus, in the special case of a uniform impressed field, the integral
equation (4.26) may be written in terms of ¢.

Since Y is harmonic inside the body, from Green's theorem, we have

J G(s
S

sl

4 .
s 22 (o0 ast = )y szs') 8 (s]sty as' (4.49)

From (4.48) and (4.49), (4.26) therefore yields

Bt ~ 3G
. d(s) + (ur-l) L(b(s) B (s]s') ds' = Y(s) (4.50)

the solution of which gives directly the resultant field (in terms of &)

due to the introduction of a permeable body in a uniform impressed field.
p v

~Jd

Lo



~Once $ is known, from (4.28) and (4.30), the exterior and interior

values of ¢ are computed by

¢(ry = W(E) - G -1) [ b (s) :3% ds ‘ (4.51)
S L
and
> = R S PPN 1c y
b = d’l(lr) e St & (s) O—E ds (4.52)
r ur Js
respectively.

Fig. 4.7 depicts the problem of a prolate spheroid of principal
semi-axis a = b =1, ¢ = 2 and of relative permeability o placed in a

uniform field of un’t¢ intensity parallel to the x-y plane.

H

B

Flg. 4.7 A permeable prolate spheroid in uniform field.



With symmetry about the z = 0 plane and antisymmetry about the y = 0
plane, the problem ig solved in the positive quadrant only, i.e., over
one~-aighth of the surface. The positive quadrant sucvface is divided

inte triangular elements. Y¥ig. 4.8 shows the finite-element model

having 14 elements.

F N

Fig. 4.8 A finite-element model of the problem of Fig. 4.7



To generate the matrix systewm for {4.50), the algorithm described
in detail in Chapter 17 is applied. From (2.31), the matrix equation

for the kth element is

p +1 . - t ~
.2 j a(s)a](s) ds ¢k + (u —l){ als) = J QT(S) gg‘(s s') ds'ds ¢,
s~ - ST P S I P *3
'k I 3
= f a(s) Y(s) ds (4.53)
S

“k

where t is the total number of elements. The system of equations
(4.53) is generated for sach element in turn and is accumulated tc pro-
duce the global system for the complete structure. The singular inte-

o
. . . - dG
gral in this case corresponding to the kernel §;>(S]s') has the form

(x-x)
I f—~—P‘~3“ds (4.54)
R |[T- rp|

which is evaluated in the t-u-v coordinate system of Fig. 2.6 as

ty rfc(::) t, f (t)
1= ( J (Bt + yu) ;dudt + (Bt;—r::)z dudt  (4.55)
J f(f)(/t“-i*u) t f(t)(‘\/ +u\

where B and Y are the components of the vector (x—xp) in the t and u

directions, respectively. Let f(t) = mt + n. The integral

T m, t+c

2 2 2
T = J J —K—BLL:'ZQ:—{:): .‘(]Udt (4. 56)
T

1 mlt+c (Vé + u }

76



has

-+

The

the closed-form expression given by

n 2 . . N
Py - v -1 (mZ +1)F2 + comy -Bml Yo g (mf-%L)FZ + cqing
‘7*2—1‘*1: sinh ! + —7'=2‘==‘——~‘ sivh
LA iczl my" -+ 1 ]cll
2c
T2 AN o 2 .
£ Log [ T (Vémz .l)fl + 2L2m2Tl + ¢y + mzfl + cz)]
2¢
P 2 2 2, , 2 . L
B feg LTZ (/émz +1)T2 + chmzlz + <, + AZTZ + c2)]
2¢c
1,/ 2 2 - 2 .
B fog [T1 (v(ml Fl)Tl + 2c1m111 + cq - ml']_‘1 + cl)]
2c 7
S S N 2 .
B Rog [’To (v(ml +l);2 ; chmliz + ¢y + msz + Ll)]
-Bm,, + v (u12+])T 4+ c.m Bm. - v (mz-!-l)T + c.m
2 o, -1 2 771 22 1 . -1 1 1 11
-:7:32::~ sinh == 4+ ijf—*” sinh
?nz +1 ](:2| my o 1 Icl]
(4.57)

integral of (4.55) are computed directly from (4.57).

Fig. 4.9 shows contours of constant ¢ at x = 0 in the presence

of the prolate spheroidal body with relative permeability ur = 19 using

second-order approximation with 39 nodes. As expected, a uniform field

of reduced intensity is observed inside the magnetic body.
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To show the instability of the exterior ¢ expression, the problem
is also»solved using equation (4.26) for the scalar potential due to
polarization. Frow the boundary seslutien, the values of ¢ in the vagions
intericr and exterior to the magﬁetic material are then gomputed fron
(4.28) and (4.30). Tebles 4.2 and 4.3 sumerize the computed values of ¢
at a set of observation points (x,y,z).

It is obvious from the wvglues of Table 4.2 +hat fer the high perme—
ability case of y = 1000, a swall deviation in phe solution could lead to
a large change in the computed values of ¢. ¥For ewawmple, the field at

an observation point x = z = 0, y = 1.1 is to pe computed. Using the

solution of (4.26), equation (4.30); that is

o~ . e . . ., oG ,—y . .
¢(x) = (Ur”i) [JAG(I‘S} ch(S) ds = (ﬂ@ks)'ig (vle) ds]  (4.60)
s ‘3
has the numeric wvalues
d(x) = 999 x (.320085 - .219562)
= 522477 (4.61)

The boundary solution of (4.26) appears in the second integral of the
right-hand side of (4.60). Note that with 1% deviation in the second

integral of {(4.60), the computed value of (4.60) is

i

¢€r) = 999 x (.320085 - .316360)

3.71493 (4.62)

]
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TABLE 4.2

Analysis of exterior ¢ values

. 320085

.278831

.245938

R

-
L218745

.195849

.176332

.159542

<144560

A =

B =
¢

i

SGH,y ds

8G
o ag
/¢ on

(u-1) (A-B)

¢d: (u~1) (A-.99B)
Deviation (%) = 100(l¢d—¢§}/¢

.319562

.278317

< 245456

PR
L21830

+195440

.175957

.159199

. 144674

.132003

.120886

[~

l',;‘ ( ey 3 /\"‘».l
CE8UY 34U

A-B

.23001x10™%
-4
.14001x10

.81993x10™%

4

.08992x10™%
.75003x10™%
.43010x10™4
.16009x10™%
.90990x10™%

.67997x10~4%

0,y,0) (u=1C0C)

.522477
.513487
481511
444548
.408583
.374628

342667

.267729

w

&3]

by

L71493

.29388

.93364

o
N
(9%}
O

Ll

. 36104

13244

.93307

. 76100

.00941

.47538

464.

457.

453

451,

Deviation

(%)

[FS]

h

.6



1.2
1.3
1.4
1.5

1.6

1.8

1.9

2.0

Analysis of exterior ¢ values at (0,y,0) {u=1i

A

.320685
.278831
.245938
<218746
.195849
.176332
.159542
. 144990
.132294

.121154

TABLYE 4.3

i
A= JGlap ds
b=J¢ o ds
$d = (u~1) (A-B)

$4= (1-1){A-.99B)

Deviation (%) = 100(i®d—¢!)/¢

;251910
.219510
.1532639
W172236
.154217

.138836

.0953765

A-B

068175

059321

.052296

.04651

.041632

037496

.033930

.030840

.028144

.025777

+533889

< 470691

.418590

374688

.337464

.305370

.231998

¢d
636247
.553645
.488119
«434091
.388568
. 349959
»316675
.287834
.262669

.240581

Deviation

3.

w

)

69

.70

.70

.70

.70

.70

.70

.70

.70

61
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The changekin ¢ from (4.61) to (4.62) amounts to 611%Z. The 111-
conditioned hehaviour of the system is thus evident from (4.61) and
(4.62). Because of the factor (p-1) in (4.60), the extent of il1-
Zconditioning increases with increased permeability. For the particu-
lar example of uniform impressed field considered, the scalar potential
Y is known, the total field & is therefore readily obtainable from the
expression

~

d=0¢+ ¢ (4.63)

With (4.51), the extericr ¢ valuss czn also be computed by

O(F) = ~(u -1 | §(s) %> ds o (h6t)
It then appears that (4.64) would be a more stable method for computing

exterior fields. However, unfortunately this is not always true.

~

£ A

Expression (4.64) yields a satisfactory result only if ¢ is obtained
directly as the solution of the integral equation (4.50) (because, in
this case, the error in computing the ¢ values is compatible to the
error of the solution é). On the other haud, for 5 obtained from the
solution ¢ by (4.63), the error in computing ¢ using (4.64) will be
magnified implicitly as seen below.

Applying Green's theorem, we have

[S[G(zls) W yee) £ Gfs)1 as = 0



Equation {4.64) can therefore be expressed as

- N R TR
d{r) = (u -1) [~ G(ris) = ds - ¢(s) = —(r{s) ds ] (4.65)
T an . on ’
S S
which is mathematically as well as numerically identical to (4.60).
The ill-conditioned behaviour therefore remains with {4.64).

However, the unstable behaviour does not occur in computing
irterior ¢ values as is evident from Tables 4.4 and 4.5. The interior
expression is numerically stable and results obtained are satisfactory.

In the following, an alternate expression in place of (4.60) is
derived.

From (4.60), we have

——-9——« - 4 ; o [ —8'(—;' 38
) ‘SG B, ds JSQ) iy 48 (4.66)

3

Since ¢ is harmonic, consider an observation point extexrior to the

permeable body, we have

N SR ORI
¢ = ”JSG 5n 95 1 [ ¢ 5q 98 (4.67)

S

where n is the outward normal to the body as previously defined.

Combining (4.66) and (4.67) yields

_pl I
¢ = Eﬁ-[JSG ch ds - fSG ﬁg‘dsj | , (4.68)




6.1

0.2

0.4
0.5

0.6

TABLE 4.4

Aralysis of interior'é values at (0,y,0) (u=1000)
A = J”GHCn ds
56
BE=S¢ 5 ds
¢ = (u-1) (A-B)/u
¢4~ (n-1) (A-.99B) /u

Deviation (%) = 100(2¢d—¢1)/¢

A B A-B ¢ ¢d Deviation

041512  -.058373 .099885 .0997851  .099202
.083029-. ~.116742 .199771 .199571 .198465
124551 -,175108 .299659 .29935% .297610
.16606C ~.2334%90 .39955 +399150 .396818
.207477  -.291968 499445 458946 496029
.248593 -.350758 .599351 .598752 .595248
.288931  -.410344 .699275 .698576 694476
0327478  -.471753 .799231 .798432 .793719

,361851 -.537260 .899151 . 898252 .852884

%

.584

.585

.585

.597

84



TABLE 4.5

Analysis of dinterior ¢ values at {0,y ,0) =100
: 4 A : ;

3

A = fGH., ds
B = [¢ %% ds

¢ = (-13(A~B)/u

¢4 (W-1)(4-.998) /u
Deviation (%) = lOO(!¢d—¢I)/¢

vy A B A-B 0] | ¢d Deviation
&)
0.1 .0415120 -.0460583 .087570 .078813 .078399 .526
0.2 .0830289 -.0921119 .175141 .157627 .156798 .526
0.3. .124551 -.138160 .262711 . 23644 .2351%6 .526
0.4 .166060 ~.184216 .350276 .315248 .313590 .526
0.5 207477  ~.230340 437817 . 394035 .391962 .526
0.6 .248593 -.276693 .525286 472757 470267 527
0.7 .288931  -.323637 .612568 .551311 .548398 .528
0.8 .327478  -.371938 .695416 629474 .626127 .532

0.9 .361891  ~.423309 . 785200  .706680 .702870 .539

o0

(W]
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The factor (U~1)/u in (4.68) tends to unity with increasing perme-

ability whereas in (4.6C), the factor (u-1) increases with U. Therefeore,

the difficulty associated with the subtraction of two almost identical

numbers does not arise with (4.68) as is the case with (4.60) for large

Y. Thug equation (4.68) is a more stable formulation than that given

by (4.60).. However, (4.68) involves the 5, term. This suggests that.
. . _ 3¢ . . 1

a two-field formulation soliving both ¢ and o directly would be pre-

ferable, i.e., equation (4.15) i1s applied to solve for both ¢ and o

In the following section, a magnet problem is solved in which the airgap

"
. . . c . .. ,
field is derived from the'§% solution. The numerical data obtained further

justifies the above analysis.

4.5 A MAGNET

The integral finite-element method will now be applied to a more
complicated structure. Fig. 4.10 shows a c-shaped magnet with circular
cross~section tapered poles. Two cylindrical conducters each carrying
a curreat of demsity 3 A/m? are placed coaxial with the top énd bottom
poles. For this problem, the solution procedures consisﬁ of two parts.
first, the free space source field HC (that is, the field in the absence
of the magnet) is to be computed. Equation (4.26) with the right-hand
side containing the known source term is then solvea for‘the magnetic
potential due to polarization. In this case, since VXHc # 0, the re-
’sultant field can not be represented by the scalar function 5 as for the

case of the uniform impressed field of Section 4.4.
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To compute HC, the prism element described in Section 4.3 is used.
By symmetry, only one-quarter of the problem is considered. Fig. 4.11

shows the cross-sectional view of the element arrangement in one quarter

Fig. 4.11 Cross-sectional view of the prism elements for the coil.

of the coil. Fig. 4.12 shows the finite~element model used for the mag-

net of Fig. 4.10. The algorithm for evaluating the wolume integral-

= 1 {J3x (z-x") ' _
HC = g fm dv . (4.58)"

is described in Section 4.3. From (4.26), values of ﬁc are to be obtained
at the Gaussian points of each magnet element. Gaussian quadrature of
order 11 was used in the evaluation of (4.58). For points at a greater
distance away from the coil, lower-order quadrature formula has been

proved satisfactory. However, higher~order formula is generally needed
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in cemputing values of ﬁc at points undexrneath the coil. Fig. 4.13
shows the convergence cf the intcgratéd value with increased quadrature
order at an arbitrary Gaussian point (33., -36.3, QZ.&);

For the finite-element model shown in Fig. 4.12, there are 73 ele-
ments and 49 vertex nodes. From (2.31), the matrix equation, corre-
sponding to the integral equation (4.26), for a single element, say, the

kth element is

v+l
r T, | N e \ :
5~ J a(s)a (s} ds Qk + (ur~l)f o(s) ‘il J o (s") §E~(sls ) ds'ds ¢,
S S J S 3
k k j
= (pn -1 as) G(s]s ;b H (s7) ds'ds (4.59)
g 2 g e

k

Equations (4.59) are generated for each element in turn as in all pre-

‘vious analysis. They are then assembled to yield the global system.

Fig. 4.14 shows a sketch of the contours of ¢ in the interior region.

To obtain the field in the airgap, the two-field formulation (4.15) involving
3 . ing s .

¢ and 5n 1S applied. Values of ¢ having same order of accuracy as that

derived from the single-field expression is obtained. Figure 4.15 shows

a plot of the z-component of the magnetic field intensity in a plane in the

airgap midway between the poles.



Fig. 4.12 Finite—-element model of the magnet

90
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i X,

Fig. 4.12 (continued)



Fig. 4.13 Characteristic of ch as a function of quadrature order

at a point on the magnet pole face.
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Fig. 4.14 Contours of Constant ¢ at x = O



Fig, 4.15 Magnetic field intensity in the alirgap along z=(

Lor

W6
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CHAPTER V

DISPLACEMENT PROBLEMS IN THREE-DIMENSTONAL

ELASTOSTATICS — A VECTOR FIELD

‘The method developed in Chapter II is by no means limited to thg
solution of scalar fields., Extension to vector fields is fairly direct.
To iilustrate the application of the technigue to vector fields, the.
displacement problem in three-dimensional elastostatics is considered.
For three-dimensional vector formulations, three degrees of freedom are
associated with ecach finite-element nodz resulting in three times the

number of equations of that required in the scalar case.

5.1 BASIC FIELD EQUATIONS
The partial differential equation which governs the elastostatic

field distribution within an elastic body R is given by

W25 + (M) VYT + pb = 0 (5.1)

- T . . . .
where u = [ul’uZ’u3] is the displacement vector with u u, and u,
<

1> 72
being the Xqs x2 and Xq components, respectively. A, U are Lame's

constants, p is the mass density and b = [bl,b ,b3]rl are the body forces

2

in the three directions. For three-dimensional problems, (5.1) is formed

from three equations which can be expressed more explicitly as



- 96

P U, ¢
duy  du,  Qug

’
WVou, 4+ (GF - - + + Y + pi .
BV uy () 5% (éX' AL pby 0
l .i_ Z 3
WWay o+ (M) = (= ko=t =) 4 pby, = 0 (5.2
sz oxy exz 3% )

3 2u- 2u ou-
w0l + ) — (k4 2t =2 4 b, =
X3  OXy axo 3x3

!
Q

Here, the Dirichlet boundary-value problem will be considered where the
displacement couporents are prescribed on the boundary. The complete

problem is therefore posed in the partial differential formulation as

o
[
™
P

UWESLE) + () V7:u(E) + pb(r) =
| (5.3)

aq ¢

u(s) = gls) c e g

where S is the boundary of R. When there are no body forces, we have

WPPR(E) + OHDUV-a(E) = 0 T e R
. B (5.4)
u(s) = g(s) s €S

5.2 BOUNDARY INTEGRAL EQUATION FORMULATION

The Green's function to the operator of (5.1), i.e., the solution
to (5.1) with the source being a unit force applied in each direction at
a point, say r', is [44]

1 A+3u A-Hl
8mi(A+21) |T-T' | |T-1! |

=l

C(r|TY) = 5 R) (5.5)



where T = 4,0,
i 4
and R = (x,-x,%)(x.-x.")i.4,
( 1%y ) ( 7% AtH :
with summation i,j = 1,2,3 over the coordinates understood, ﬁi and ﬁj are

unit vectors. From the definition of the Green's function, the displace-

ments due to a source density b(r) are therefore given by

() = J G(T|T?) +b(T') 4n (5.6)
R

where the integration is perfofmed over the entire region where sources

are present.

Ahalogous to the theory of electrostatic potential, the Dirichlét
problem (5.4) maf be formulated in terms of an equivalent source distri-
bution on the boundary. Instead of solving for the displacements directly,
one finds the equivalent force distribution by imposing the constraint
that the displacements produced by the force satisfy prescribed boundary
values.

Denoting by f(s) the equivalent source on the boundary, from (5.6),

the displacements due to this source are given by

I
u(r) = J G(rls).f(s) ds (5.7)
R

Since, on the boundary, the condition u(s) = g(s) is to hold, (5.7) is

therefore
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{ a(s]sv)°?(s‘) ds' = g(s) (5.8)

™o 3~ s N da oA 4 .= -1 v 4 ER n 1ra o
Eguation {5.8) is ar integral equation in the unknown f.

5.3 INTEGRAIL FINITE-ELEMENTS FOR VECTOR FIELDS

The integral finite-element approach of previous chapters ls des-~
cribed heve for vector fields. The extension from the scalar to the
vector case is fairly straightforward and obvioﬁs, although the procedure
is more invclved and complicated than for the scalar case.

The functional for the vector problem (5.8) is

¥ o= J F(s) e [ G(s|s")-F(s?) ds'ds - 2 f f(s)-g(s) ds (5.9)
R /R ) /R

Expression (5.9) is obtained by application of (2.7). Following the same
line of approximation as for the scalar case, the unknown force function
is expressed in terms of its values, yet unknown, associated with speci-
fied nodal points. To conveniently describe the procedure of discretiza-
tion, consider, for the moment, all elements to be disjoint. Consider

also that all nodes and interpolating polynomials of this disjoint struc-
ture are uniquely numbered, even including nodes that are to be coalesced

when the structure is reassembled. Thus

Fs) = o' () T = Fra(s) (5.10)

-

where o and f are column vectors of order equal to M times the total

umber of elements with M related to the degree of polynomial approximation




©
%)

N by

(N+1) (N+2)

N =

Moreover, for this vector case, each entry to £, say the kth entry fkf is

a vector of the three components of f at the kth nodal point.
The E terms are to take on values such that the functional (5.9) is
- rendered stationary. To accomplish this, substitute (5.10) into (5.9).

Thus

=2 e J G(s]s") a'(s") ds'dseF - ZET»J a(s) g(s) ds
Jx R - R

(5.11)

PR SE SURT RN B S BRIt SR S
7 is obtained Ly drilcvientiating-

o

The stationarit

od 3 r ¢ ala
the functional (5.11) wirh

.

=

respect to each variational parameter in turn with each resulting equation

set to zero. This is conveniently represented by
2E (5.12)
of :

which results in

) |
JRS‘SJ

E(sls') gT(s') ds‘ds~§ = J a(s) g(s) ds (5.13)

R R

Separating the vector quantities into their individual components,

(5.13) is a matrix equation of the form

Sf = b (5.14)
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congsisting of scaler entries but the order is three times that of the
analogous scalar problem. In generating S and b, matrix entries corres-—
ponding to individual nodes that coalesce, when the structure is reassem-
bled, are accumulated into row and column numbers that correspond to the
global numbering scheme. The construction of (5.14) is accomplished on
an elementwbywélement basis.

The numerical integration scheme for generating the S and b matrices
is described in Section 2.5. The singular integrals in this case, related

to the dyadic Green's function (5.5), are

I - J 1 s (5.15)
R |r-T I
and
- f (g 2 » 167
2 = 1 - — :4»_...__. 8 (5&4.6;
2 JR !r"rplg

The expression for the integral (5.15) is given in (2.61). The integral

(5.16) is written, in the t-u-v coordinate system of Fig. 2.6, as

t_ £ () t, £ (0

arc o N2 c 2
1, = j [ e O BEL Y0 quar (5.17)
&y o ¢t + uy’ t, /0 (/t° + u?®

where B and Yy are the components cf the vector (x—xp) in the t and u
directions, respectively. Let f£(t) = mt + n. The integrals (5.17) are

of the form

2
1 = K-B—t-..—i—_-l&% , dudt (5.18)
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which has the closed-form expression given by

¢

2 2 )
7 2 w Y -1i
1= (Vn21) 14 uTin® ~ [o]) (e 2BYmmy B ooy
' m2+1 Y nl41

—1'(m2+l)T + mn

__mn 2 2 . . ,.~1 mn
- %/5511 (mB"-28y-my")] [sinh ] sinh Hﬂ
-] ' z 2.4
+ T sinh (%~+ m) + —~%:2 {Rnl/;2+l [(m2+1)T2 4 2mnT + n” 17
m-+1
e
+ (m2+l)T +mn| - o] T+l |n| + mn |} (5.,19)

Eauation (5.19) is the basic expression used to compute the integral

(5.17).

5.4 AN EXAMPLE — A SPHERICAL CAVITY
Consider the problem of finding the displacement field for a spheri-
cal cavity centred at the origin with prescribed displacements ups U, and

uy at the surface r = 1 given by [45]

u, = C x Xq a=1,2
(5.20)
M3 2
uy = Gl * %30

where, for copper (which 1is the case considered here), A = 11.82 x 106 psi

6 ,
and 4 = 5.6 x 10 psi are the Lam@ constants and

A+
Bru(A+21)

C =



1627

From (5.8), the equation to be solved is

[ G(s|s")+T(s") ds' = u(s) ' (5.21)
‘R
From symmetry, the problem is solved over one-eighth of the spheri-
cal surface., Fig. 5.1 shows the finite-element model USqu With N = 1,
.there are seven nodes each bhaving three components of f as the unknown
variables, This results in a total number of 21 unknowns'which is three

times that of an analogous scalar problem. For quadratic approximation,

" Fig. 5.1 The finite-element model of the spherical cavity
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TABLE 5.1

The sphere — displacement at x=z=0, y=2
in units of 1078 inches

Order of No. of Integral equation solution Exact
approximation | variables |Planar elements Isoperanetric solution
[ 0. ] (0. ] .
1 21 10-19 | 10-19 0. |
10.39615] 10.359615] 0.
r - - e L4168
; . 0. 0. 0. .AL(:CJ
2 57 10-19 10-19
10.39872] 10.43847

six nodes are associated with each element. This results in a total
number of 19 nodes or 57 variables for the model used.

The exact solution of the displacements is given by [45]

Pk -
ua —' C T o = 1,2 ‘
.2 (5.22)
M3 1, T3,
Uz © C(A+u T + r3)

2 2 2.5
= e ¥ I | R | 2 . Vo Ty T
where r [(Xl ) Y o+ (x2 X, < o+ (x3 N )71 with x; =x, =Xy 0. The
displacements at an arbitrary point xl=x3=0 and x2=2 are calculated and
given in Table 5.1. Considerable improvement in accuracy is observed
by using the second order elements as compared to the first order

approximation.



CHAPTER VI

CONCLUSION
A new numerical method — a generalization of the isoparametric
finite-element method — has been presented for the solution of bound-

ary integral equation fermulation.of three-dimensional fields. The
formulation of boundary-value problems in terms of integral equations
defined on boundary surfaces effectively reduces the dimension of the
problem by one. Tﬁus, in solving a three-dimensional problem, the

numerical discretization is to be performed only on the bounding sur-

obtained for a number of illustrative examples in various fields justify
the technique. Its applicability is demonstrated to both the scalar

and vector fields formulated in terms of Fredholm integral equations of
the first and the second kinds.

The finite-element method is flexible and convenient. Boundary
surfaces may be taken as a single element or may conveniently be divided
into elements of arbitrary sizes. One is thus able to concentrate on
regidns of particular interest. The two—parameter,'nonplanar elemént'
prcvides a high~order modelling of curved surfaces with a consequent
réduction in the significant but often neglected.geometrical modelling

- error. These curved elements generated from the isoparametric mapping

reduce the number of elements required for a given degree of approximatios.

104
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This means smaller matrix size as compared ge current methods which
invelve planar rectangular subareas and which reduce the geometyical

modelling error by increasing the number of subarveas. lMoveover, the

(2]

use of tho iscparametric mapping allews all numerical Integrations
over three-dimensional surface elements to be pexrformed over a simple
two~dimensional sirplex and facilitates the development of a fully
automated general algorithm. A computer program, coded in FORTRAN,

has been developed. The entire procedure is of general purpose in

nature. Problems with arbitrary configurations can be handied with

The polynomial approximation over each finite element has been
shown, using the eliactrostatic T-plate example, to produce an accuracy
vhich would be produced by a constant-pulse pocint-matching solution
using twice as many vatriables. Furthermore, results indicate that,
using identical polynomial trial functions, the variational approcach
requires a smaller system of linear equations than would the point-
matching method for the same accuracy. It has also been shown that,
analogous to the self-adjoint operator case, for nonself-adjoint
0peratofs, the system of equations derived from the Rayleigh-Ritz
procedure is identical to those that would be obtained by the Galerkin
method. The.elements developed ensure continuity of the function

between elements. If continulties of derivatives are regquired, elements
such as the Hermitian element (e.g. [49]) may be constructed.

The matrix system resulting from the discretization of the inte-
gral equation is dense. This 1s unfavourable as compared to the sparse
system of the partial differential equation approach. Depending on the

individual situations considered, approximations such as neglecting
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the contribution of distant elements may be made to yield a simplified
system. Since the size of the problems considered is relatively small, ,
2 direct method of solution by Gaussian triangularization was used to |

solve the linear equations. Depending on the order of magnitudes of

the matrix entries and the size of the system, préconditionings of thes

matrix system such as normalizing and scaling, may be needed to avoid

é faulty termination of the equation*sdlving protess. Tor large systems,

the dense matrix equations may be handled by, for example, a banded

matrix iterative solution methed [37] which decomposes a matrix S into

the sum of three components as

=L +B+U

w

where B is a banded matrix and U and L are the

lar matrices, respectively. The matrix equation

Sx = E

can then be written as

B§‘+l =b - (L+U):_~_:i

Thus a banded system is solved at each iterative stage. The method

has been reported to be more efficient than the Gaussian elimination
method. To accomodate situations where the core-memory requirement
exceeds the available capacity, an iterative procedure which solves
iteratively one subregion at a time of the entire structure is described

in Chapter II. For each subregion under consideration, the unknowns

4




“associated with the remaining subregions are assumed to be known. In

this case, one is solving, in terms of core-memory requirement, a

Ui

problem of size corresponding to that of a siugle subregion (which may
‘consist of one or more elements).

The generation of the matrix entries involves the evaluation of
double surface integrals which is an expensive operation. To economize
computation, for distant elements, a quadrature formula of lower order
may be used. Alternatively, instead of performing integrations numeri-
celly, Csendes [46} derived an approximate closed-form expression for
the functional corresponding to the integral constraint on the boundary
of a two-dimensional exterior region satisfying Laplace's equation.

As a result, the required integraticn is replaced by the evaluation of
a few logarithms and a few simple matrix operations. The saving in
computation is significant.

Analogous to the isoparvametric integral finite elements, two
types of vclume elements, the cube and the prism, were described for
computing the free-space magnetic field due to current sources. All
integrations were done in local coordinates. The algorithm is thus
applicable to conductors of any configurations and is of use“whenever
analytical integrations are not possible. Gaussian quadrature of order
11 is observed adequate in all computation. For points distant from
the coil, lower-order quadrature formulas can be used. It has been
Bfought to the author's attention recently that an algorithm described
in [48] for computing the demagnetization tensor, using a semi-closed

form expression, is applicable and would probably be more efficient...

than performing all integrations numerically.




The coupling of partial differential equations and integral equa-
tions is an effective formulation for broblems involving open regions
with local inhomogeneities. Reference [7] reperted an approach where
the constraint equations resulting from a point-matching discretization
pf an integral equation is coupled to the variational discretized system
of the partial differential equation; It is pointed out in [10] thaf
the mutual constraint of the partial differentizl and the-integrai formu-
lations both in a variational form is felt likely to produce better
results. In view of the finite-element integral approach developed,
partial differential equation and integral equation formulations may be
constrained in a variational fashion and solution with high accuracy is
expected. This bears further investigation.

For nonlinear problems, one may obtain a solution through an
iterative procedure baéed on the algorithm developed in this work. The
effect of saturation may be included as a source field and the volume
integration scheme of Section 4.3 is applicable directly. The approach
therefore does not involve discretization over a volumetric regionm and
the essential property of boundary integral formulations is preserved.

The single~field formulation of Chapter IV, in which the interface
constraint equations and the governing integral equation derived from the
Green's theorem are combined to yield a single equation in the magnetic
scalar potential ¢, results in a smaller gystem and is a preferable fbrmu~
lation 1f only the field in the interior region is of interest. It is

concluded that whenever exterior fields are to be found, a two-£field
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’formulation in which both the potential and its normal derivatives
are interpolated independently must be used. Alternatively, a boundary

formulation in vector potential may, perhaps, also prove promising.

This needs further investigation.

The object of this thesis has been ﬁo achieve 2 generaliiation
of the finite-element concept to include ité apéliéation to the'sdlution
of integral equatidns.‘ In view of this workg,the.term "finite elementsé,
which has been generally understood to mean‘the applicationvof that
technique to the solution of partial differential equations exclusively,
is to be understood in a more general context. It covers the applica-
tion of ihe technique to both partial differential and integral

equations.
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