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ABSTRACT

Microchannel heat sinks, using various flow arrangements, were considered in this thesis,
with the goal of exploring the possibility of using multiple rows of channels, instead of
the conventional single-row designs. This possibility has not been studied extensively up
to this point. The various arrangements examined included two single-row designs, and
two two-row arrangements. The two-row anangements were the parallel-flow
arrangement, where the flow in both channels was in the same direction, and the counter-
flow arrangement, where the flow in both channels was in opposite directions. The
analyses were performed using both the fully-developed inlet velocity assumption, and
the more realistic uniform inlet velocity assumption, to assess the impact of making the
fully-developed inlet velocity assumption on the solution accuracy. Both high and low
Reynolds numbers, with the laminar flow regime, were considered.

The arrangernents were compared on the basis of two thermal parameters, and the
pumping power. The thermal parameters were the thermal resistance, with a lower value
being more desirable, and the maximum temperature difference along the heated surface,
which is a measure of the uniformity of temperature along the heated surface. A
temperature distribution that is as uniform as possible along the heated surface is
desirable.

It was found that making the assumption of fully-developed flow in the inlet has a
negligible impact on the prediction of the thermal resistance (at low and high Reynolds
numbers). However, predicting the other two parameters to reasonable accuracy requires
uniform inlet velocity assumption. This is particularly true at high Reynolds numbers.

In terms of thermal parameters, it was found that both two-row designs offer
significant improvement over the conventional single-row design. Among the two-row
designs, the counter-flow ar:rangement offers a lower thermal resistance than the parallel-
flow arrangement, but, the difference is not overwhelming. In terms of the temperature
variation along the heated surface, the counter-flow arrangement offers significant
improvements over all other cases considered. However, in terms of heat dissipation per
unit pumping power, for fixed mass flowrate and overall temperature difference across
the heat sink, the single-channel arrangement is better.

Detailed descriptions of the fluid flow and heat transfer phenomena occurring in
the various design altematives were also performed, in order to obtain a good
understanding of the physics occurring during the fluid flow and heat transfer processes.
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T temperature, [K]
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CHAPTER 1

INTRODUCTION

1.1 Background

The topic under consideration in this thesis is that of microchannel heat sinks. A

generic microchannel heat sink arrangement is shown in Figure 1.1 in a three-

dimensional view, and in Figure I.2 in a cross-sectional view. Some heat-producing

component (typically a computer chip) generates an appreciable amount of heat, which is

to be dissipated. To remove this heat, a heat sink is placed above this heat producing

component. This heat sink consists of a block made of a highly conductive solid

material, into which several holes, or channels, are located. Some coolant fluid flows

through these channels. The heat generated by the heat-producing component is

absorbed by the fluid flowing in the channels. Because the dimensions of the channels

are usually small (on the order of micrometers or smaller), they are referred to as

microchannels. Miclochannels are effective because, with their small sizes, the ratio of

surface area to volume is quite large, enabling large heat transfer coefficient values to be

obtained.

Heat-Producing
Component

Sink

^
,*)'/

Z

Cooling Fluid Enters Channels

Figure 1 .1 : Schematic Representation of a Generic Microchannel Heat Sink, Three-
Dimensional View
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For the purposes of analysis, the heat-producing component is assumed to

produce a uniform heat flux, q", ovet the bottom surface of the heat sink. The sides and

top of the solid material are usually assumed to be insulated. The overall width, height

and length of the heat sink are 87, H and Z, respectively. The channels have a width of

28, and height of H", and are separated by a distance of 28 in the horizontal (.ll direction.

The coolant enters the channels with an average velocity ll/¡,,.

Insulated

Figure 1.2: Schematic Representation of a Generic Microchannel Heat Sink, Two-
Dimensional View

Because of the symmetry in the geometry and

to simplify the analysis by considering only one typical section, which i, ;! the size of'2N

the total domain, where N is the number of channels.

It should be noted that a number of characteristics of the heat sink arrangement

YÏ
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c)
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shown in Figures 1.1 and L2 can be varied. For example, while three channels are shown

in these figures, any number of channels, within the limits of manufacturability, is

possible. Furthermore, while rectangular channels are shown, other shapes are possible

(for example, circular chan:rels). Theoretically, the channels do not even need to be of

the same size and shape. The arrangement of the channels can also be varied. For

example, instead of positioning the channels in a single row, it is possible to use two or

more rows of channels.

1.2 Purpose and Scope

To the best knowledge of the author, few studies have considered the possibility

of using multiple rows of channels (these studies will be discussed in greater detail in

Chapter 2). Therefore, exploring the possibility of using multiple rows of channels is the

main purpose of this thesis. This work will be limited in scope to considering two-row

affangements only. That is, multi-row designs with three or more rows will be excluded

frorn study in this work. This would be a possible topic for further study.

1.3 Layout of Thesis

A review of existing literature in the area of microchannel heat sinks is presented

in Chapter 2. The following chapter, Chapter 3, presents the solution approach. This

includes a description of the cases to be considered, the assumptions made in the analysis,

a few definitions, the governing equations, and a description of the software used to

perfotm the analysis. Chapter 4 presents various validations and mesh independence

tests, used to ensure that the present model is reliable. Results and discussions are

presented in Chapter 5, with emphasis on understanding the physical phenomena

occurring. Finally, a few closing remarks are presented in Chapter 6.

a
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CHAPTER 2

LITERATURE REVIEW

Microchannel heat sinks are an important technological means of removing large amounts of

heat from small spaces. They are effective because, with the channels being so small, a large

surface-area-to-fluid-volume ratio is possible, which allows large heat transfer coefficients to be

obtained. With the trend that computer chips are needing to dissipate increasing amounts of

heat, and the simultaneous trend that these chips are getting smaller and smaller, the importance

of microchannel heat sinks has increased in recent years. As a result, much research has been

devoted to the topic of rnicrochannel heat sinks. This chapter presents a sampling of some of

these studies, with an emphasis on numerical studies.

2.1 Previous Work

Weisberg et aI. (1992) examined microchannels of rectangular cross-section. They

employed a two-dimensional numerical approach that consisted of simultaneously solving for the

temperature distributions in the heat sink material and in the fluid (that is, they solved the

conjugate heat transfer problem). They also presented a design algorithm that can be used to

select the optimum dimensions of the heat exchanger.

Adams et al. (1998) performed an experimental investigation that examined the turbulent,

forced-convection flow of water in circular microchannels. Using their own data, as well as

other data available at the time, Adams et al. (1998) developed a correlation giving the Nusselt

number for turbulent, single-phase forced convection in circular microchannels. Their

correlation was based on the following ranges of data: diameters ranging from 0.102 [mm] to

1.09 [mm], Reynolds numbers ranging from 2.6xi03 and 2.3xI0a, and Prandtl numbers ranging

from 1.53 to 6.43. They obtained Nusselt numbers that are higher than those that would be

predicted with conventional large charrnel correlations.

Fedorov and Viskanta (2000) developed a three-dimensional theoretical model that used

the laminar incompressible Navier-Stokes equations to investigate the fluid flow and heat

transfer in heat sinks with rectangular microchannels used for electronic packaging. They then

validated their model by comparing their results (thermal resistance and friction coefficient) with

-4-



experimental data. They presented and discussed detailed temperature and heat flux

distributions.

Tunc and Bayazitoglu (2002) also investi gatedheat transfer in rectangular

microchannels. Their analysis was simplified by assuming that the flow is fully-developed, both

hydrodynamically and thermally. However, they account for the so-called velocity slip that

occurs for low channel sizes, resulting from the non-applicability of the continuum assumption

for sufficiently small channels. Nusselt numbers for varying aspect ratios were reported.

Qu and Mudawar (2002) performed a three-dimensional numerical study of fluid flow

and heat transfer in rectangular channels. They used a computer code based on the finite

difference method and the SIMPLE algorithm. They validated their model by comparing tlieir

results with both analylical solutions a4d experimental data. It was found that the temperature

rise of the heat sink can be approximated as linear along its length.

Owhaib and Palm (2004) performed experiments on circular microchannels with inner

diameters of 0.8 [mm], 1.2 [mm] and I.7 [rrun]. The fluid was Rl34a. They compared their data

with correlations suggested for microscale geometries, and classical (macroscale) correlations.

Interestingly, the large scale correlations performed well, while none of the small scale

correlations agreed well with their data. It was also found that, in the laminar regime, the heat

transfer coefficients for all three diameters were nearly identical.

Kroeker et al. (200$ perfonned a three-dimensional numerical analysis of microchannel

heat sinks with circular channels. The pressure drop and thermal characteristics of the heat sinks

were investigated. Good agreement was obtained by Kroeker et al. (2004) between their results

and existing experimental data. The effects of various geometrical parameters, material

properties, and Reynolds number on the thermal performance of the heat sink were investigated.

Kroeker et al. (2004) also compared circular channels to rectangular channels, finding that at the

same Reynolds number and hydraulic diameter, rectangular channels have a lower thermal

resistance. However, circular channels dissipate more heat per unit pumping power.

Li and Peterson (2007) have developed a full three-dimensional conjugate heat transfer

model to study the heat transfer performance of silicon-based microchannel heat sinks. A

simplified three-dimensional model, which they called the "semi-normalized 3-dimensional heat

transfer model", was also developed. This simplified model was validated using the full three-

-5-



dimensional model. Using the simplif,red model, the geometric structure of the microchannel

heat sink was optimized, and the optimized geometric parameters were presented.

The studies discussed so far have dealt with channels of rectangular and circular

geometry, and have been performed experimentally and using analyses of varying degrees of

complexity. However, none of them explored the design altemative of "stacking" more than one

row of channels.

To the best knowledge of the present author, the first study to begin exploring this

possibility of employing more than one row of channels in the design of microchannel heat sinks

was conducted by Vafai and Zhu (1999). They selected one geometry and a set of operuting

conditions, and solved for the temperature distributions, assuming fully-developed inlet velocity

conditions in their analysis. They presented the temperature distributions thus-obtained.

Furthermore, they presented a technique to determine the optimal set of geometric design

parameters. They found that the two-layered design is a substantial improvement, in terms of

thermal resistance and uniformity of temperatures over the heated surface, over the conventional

one-layered design. Their study only considered counter-flow (that is, the flow in the upper

layer is in the opposite direction to the flow in the lower layer).

Ng and Poh (2001) developed a code, using the finite volume method, to simultaneously

solve for the temperature distributions in the solid and fluid regions of a double-layer

microchannel heat sink with rectangular channels. Fully-developed velocity conditions were

assumed in the inlet. When accounting for the electric double layer effects, there was a source

term in the momentum equation. It was found that the electric double layer effects were

significant, pafticularly for hydraulic diameters of 40 [pm] or less. Ng and Poh (2001) found

lower thermal resistances when using the double-layer configuration as compared to the single-

layer configuration.

Clrong et al. (2002) performed optimizations on a single-layer counter-flow microchannel

heat exchanger with rectangular charurels, and on a double-layer counter-flow heat exchanger

with rectangular channels (similar to the one presented by Vafai and Zhu(1999)). Their analysis

was somewhat rudimentary, using a thermal resistance network to analyze the heat transfer.

They performed some calculations using the FLUENT computer program, and used these to

validate their simplified approach based on the thermal resistance network. Their optimization



results showed that, for both types of heat exchangers analyzed, operation in the laminar flow

regime outperforms operation in the turbulent flow regime, in terms of both heat transfer and

fluid flow considerations.

Wei and Joshi (2004) numerically studied microchannel heat sinks with multiple rows of

rectangular channels. They performed their analysis using both a simplified thermal resistance

network method, and by writing a FORTRAN program which made use of the symmetrically

coupled Gauss-Seidel (SCGS) multigrid method. They studied the effect of channel aspect ratio,

and the number of layers (up to 5 layers). They found that for a given pumping power and heat

removal, the necessary overall mass flow rate was lower for cases of multiple rows of channels.

Skandakumaran et al. (z}}4)performed an experimental investigation of multi-layered

SiC rnicrochannel heat sinks, fabricated using an extrusion freeform fabrication (EFF) technique.

Their experimental data, which were gathered for cases of one, two and four rows of channels,

were compared to the results of closed-form analytical solutions, derived based on thermal

tesistance network analyses. They found that multi-layered heat sinks have lower thermal

resistances than single-row heat sinks, and that, for the same overall flow rate, the overall

pressure drop was reduced for greater number of layers.

Cheng (2007) presented a three-dimensional numerical investigation of a two-layered

microchannel heat sink with counter-flow, similar to that studied by Vafai and Zhu (1999), but

with one important difference: the inclusion, along the length of the channels, of several

rectangular embedded structures, designed to promote mixing of the flow within the channels.

The ratio of the height of these embedded structures over the total microchannel height was

varied from 0.13 to 0.26. Only one Reynolds number was considered, namely I4.8. It was

found that the thermal resistance obtained using the embedded structures was lower than that

obtained without using these embedded structures.

2.2 Contributions of this Thesis

There have been relatively few studies that examined the possibility of employing more

than one row of channels in microchannel heat sink designs. The work of Vafai andZhu (1999)

was, to the best knowledge of the author, the first work to explore this possibility. While it was

indeed an important contribution to the field of microchannel heat sinks, their work was
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somewhat limited in scope. The analysis made the assumption of fully-developed flow

conditions throughout the channels. In the present work, the computations were performed using

the more realistic condition of having a uniform velocity in the inlet, and allowing the flow to

develop. Vafai and, Zhu (Iggg) used only one, low value of Reynolds number. In this thesis,

high and low Reynolds numbers, within the laminar flow regime, were investigated. The

purpose performing the present computations for both high and low Reynolds number was to

explore the validity of the assumption of fully-developed inlet velocity. It was thought that this

assumption may be valid only at low Reynolds numbers where the developing length occupies a

small portion of the total flow channel. In terms of two-row designs, Vafai andZhu (1999) only

considered the case of counter-flow, while this work examined both the counter-flow and

parallel-flow designs. Finally, in the work of Vafai and Zhu (1999), a comparison was made

between the single-row design and the two-row design whereby their two-row design was

compared to a single-row design that had half the mass flowrate and occupied half the space as

this two-row design. In the present work, a more interesting comparison was made, whereby the

two-row design was compared to a single-row design that used the same overall mass flowrate

and occupied the sarne overall dimensions as the two-row design.

In this work, the rnain thennal criteria used to judge the various heat sink designs were

that the temperature on the heated surface be as low as possible, and as uniform as possible.

Electronics perform better at lower temperatures, and a temperature distribution on the heated

surface that is as unifom as possible was imporlant because this avoids complications due to

thermal stresses that can occur due to mis-matches in the coefficient of thermal expansion.
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CHAPTER 3

SOLUTION APPROACH

In order to explore two-row microchannels, especially in relation to their single-row

counterparts, a number of cases were examined in this work. These cases are presented

and described next.

3.1 Cases Considered

Each case examined in this work can be characterrzedby a set of three

specifications: the flow arrangement (including the geometry, and the direction of fluid

flow), the inlet velocity profile assumption (uniform or fully-developed), and the

Reynolds number (high or low). More details on these specifications, and the reasons for

their choice, follow.

Vafai and Zhu's (1999) arrangement (termed, in this work, the counter-flow

arangement) is shown schematically, in cross-section view, in Figure 3.1 . The bottom

surface receives a uniform heat flux, q". The top and left surfaces are insulated, while the

right surface is a symmetry plane. The overall height is fl, and the width of this repeat-

unit is,B. The length, perpendicular to the plane of this cross-section, is Z. The two

channels, which have their vertical mid-planes aligned to the right hand side of the

domain, each have a height of H, and a width of 2 B,(the portion of the channels within

the typical section is only half of this, however). The bottom of the bottom channel is

located a distance of H¡above the bottom of the domain, and, the bottom of the top

channel is located a distance of H¡above the top of the bottom channel. The flow in the

top channel occurs in the positive Z-direction, while that in the bottom channel is in the

negative Z-direction The values of the geometric parameters are as follows:

H :240 [pm], B : 60 [pm], ¿ : 8000 lpml, H,: 100 [pm], B":30 [pm], and

Hf :20 lpml.

It should be noted that Vafai and Zhu ( 1 999) set up their Z axis in the opposite

direction as is done in the present work. But, in order to obtain a right-handed coordinate

system, it was necessary to reverse the direction of the Z axis. This is mentioned for the

benefit of the reader who is consulting both this work and Vafai and, Zhu (1999).
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Figure 3.1: Schernatic Representation of One Typical Section for the Counter-Flow
Arrangement

The second arrangemen| the parallel-flow arrangement, is shown in Figure 3.2.

It is identical to the counter-flow arrangement in all respects but one: whereas in the

counter-flow arrangement, the flow in the bottom channel is in the negative Z-direction,

in the parallel-flow affangement, it is in the positive Z-direcfion Thus, for this

arrangement, the flow in both channels is in the same direction, which explains the name.

The geometry itself is identical to that of the counter-flow arrangement.

A typical section for the third anangement, the single channel (arge)

anangement, is shown schematically, in cross-section view, in Figure 3.3. This case can

be thought of as a parallel-flow case, but where the solid between the top of the bottom

channel, and bottom of the channel (that is, the shaded portion in Figure 3.3), is removed.

X
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Figure 3.2: Schematic Representation of One Typical Section for the Parallel-Flow
Arrangement

This results in a channel with a width of 2 B" (only B" inside the typical section) and a

lreight of (2 H" * ,t). While many choices were possible, the choice that was made in the

present work was to put, in the channel, the total of what flowed in the parallel-flow

anangement in both channels. Thus, this single channel (large) arrangement is exactly

like a parallel-flow arrangement, where the solid has been removed.

The foulth and final arrangement to be considered isthe single channel (small)

arrangement. It is shown, in cross-section view, in Figure 3.4. Here, there is only one

single channel, of dimensions2 B"by H", which has the same dimensions as the

individual channels on the two-row amangements (counter-flow and parallel-flow). The

mass flow rate in this channel is the same as what is in each individual channel in the
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two-row cases.

B ---JI Insulated

Solid Piece
"Removed"

Figure 3.3: Schematic Represerfation of One Typical Section for the Single Channel
(Large) Arrangement

This case is included for two reasons. First, Vafai andZhu (1999) used this, and so, for

comparison and consistency, it is examined here as well. The other reason is that this

affangement gives a good comparison with the two-row cases. it allows an answer to the

question: given a single row of channels, what is the effect of adding another identical

low, or "stack", on top of the first one?

The arrangements listed and described above are one of the characteristics that are

necessary to specify the cases examined in this thesis. The other two characteristics to be

specified are the Reynolds number and the inlet assumption.

Two different Reynolds numbers are examined in this thesis. The first,
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designated in this work the "low Reynolds number", or "low Re", is the same Reynolds
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Figure 3.4: Schematic Representation of One Typical Section for the Single Channel
(Small) Anangement

number used by Vafai andZhu (1999). This Reynolds number has a value of 115.96.

Vafai and Zhu (1999) quoted this Reynolds number as 143.6. This is not incorrect per se,

but, they arrived at this Reynolds nurnber by employing a different definition for the

hydraulic diameter. If one employs the standard hydraulic diameter definition, one

arrives at a Reynolds of II5.96. But, to be clear, the low Re case in this case corresponds

exactly to the velocity conditions used by Vafai andZhu (1999). The second Reynolds

number to be studied, called the "high Reynolds number", or "high Re" is 1159.6, or ten

times the low Re. For the low Re cases, a heat fllux, q", of 3 x 105 [W/m2] was used, to

match what was used by Vafai and Zhu (1999). For the cases using a high Re, the heat

flux was increased tenfold to 3 x 106 [W/m2]. This was done to avoid small temperature

differences, which can be problematic in the numerical computations.

The final characteristic that needs to be specified is the inlet velocity assumption.

Two cases were explored. The first is a uniform inlet velocity assumption, where it is

assumed that the flow enters the channel(s) uniformly in the Z-direction (or the negative
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Z-direction, as applicable). The other case, which was the case studied by Vafai andZhu

(1999), is the fully-developed inlet velocity assumption. Here, the known fully-

developed inlet velocity profile was fed into the inlets as a boundary condition, which

simplified the analysis considerably.

In summary, the cases that will be examined in this thesis can be specified by

three characteristics: the arrangement (counter-flow, parallel-flow, single channel (large)

or single channel (sma11)), the Reynolds number (high (1159.6) or low (115.96)), and the

inlet prof,rle assumption (uniform, or fully-developed). Table 3.i gives a summary of the

cases examined in this thesis, as well as the numbering scheme used to designate the

various cases. It should be noted that the case that matches Vafai and Zhu's (1999) work

is Case number 2.

Table 3. 1 : Summary of Cases Examined in this Work

What follows is the rationale for the choice of test cases.

Case2 was chosen as a stafting point, since, it matches the work of Vafai andZhu

(1999). Whereas Vafai and Zht¡ (1999) claimed, on the basis of a simple calculation, that

.I: JUInInATY OI UASCS ,UXAIn n o

Case Number Arrangement Reynolds Number lnlet Assumption

1 Counter-Flow Low Uniform

2 Courter-Flow Low Fully-Developed
aJ Counter-Flow High Uniform

4 Counter-Flow High Fully-Developed

5 Parallel-Flow Low Uniform

6 Parallel-Flow Low Fully-Developed

7 Parallel-Flow High Uniform

8 Parallel-Flow High Fully-Developed

9 Single Channel (large) Low Uniform

10 Single Channel (large) Low Fully-Developed

11 Single Channel (large) High Uniform

t2 Single Channel (large) High Fully-Developed

13 Single Channel (small) Low Uniform

14 Single Channel (small) High Uniform
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the fully-developed inlet velocity profile assumption would be adequate, it was desired to

confirm (or possibly deny) this. Thus, Case 1 was chosen to see the effect of this

assumption. Similarly, the remaining cases that employ the fully-developed inlet velocity

assumption (that is, Cases 4, 6,8, 10 and 12) were chosen for the same purpose: to see if
the fully-developed inlet velocity assumption has any impact on the accuracy of the

solution.

The decision to use two different Reynolds numbers was made to assess how the

impact of making the fully-developed inlet velocity assumption on the solution accuracy

might vary with Reynolds number. For example, even if it tums out that the fully-

developed inlet velocity assumption can be made in certain cases, it was desired to find

out if this assumption can be made generally, or only in certain conditions (for example,

only at lower Reynolds number).

An irnportant point should be mentioned. The discussion above implicitly

assumes that the uniform inlet assumption is the "correct" inlet velocity assumption. This

is necessarily the case. In reality, determining the velocity in the inlet requires a precise

knowledge of the header arrangement. Since this arrangement is not specified in this

work, it is not possible to know exactly what the inlet velocity will be. However, it is

deerned on physical grounds that the uniform inlet velocity assumption, while not exact,

is closer to reality than the fully-developed inlet flow assumption.

The choice of the four anangements (counter-flow, parallel-flow, single channel

(large) and single channel (small)) was made for a variety of reasons. The cases using

the counter-flow arrangement were chosen simply because that is the arrangement that

Vafai andZhu (1999) chose. But, Vafai andZhu (i999) simply used the counter-flow

alrangement, claiming frorn the outset that this would be superior to the parallel-flow

anangernent. Thus, it was desired in the present work to investigate to see if this holds

true, and if so, to what extent. It should also be mentioned that the parallel-flow

arrangement is much sirnpler to construct. If the performance is only slightly inferior to

the counter-flow affangement (assuming that it even is inferior in the first place), then,

the parallel-flow arangement might still be a better design. Additionally, it was desired

to observe what differences exist, in terms of numerical soiution requirements, between

the parallel-fl ow and counter-fl ow arangements.
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Now, in order to assess the merits of two-row designs as compared to the single-

row designs, it is necessary to explore single-row designs. That is why the single channel

(large) and single channel (small) cases are included. The single channel (large)

arrangement seems to be the more logical type to compare with the two-row designs,

when the heat sink has the same overall dimensions and the same total mass flow rates as

the two-row arrangements. This is because the single channel (large) arangement, when

compared to the two-row affangements, addresses the question: which is better: one row

of deep channels, or two rows of shallow channels? The single channel (small)

affangement, on the other hand, allows for an ans\per to the question: given a single-row

of channels, if another identical row is added to the top (with, for the counter-flow

arrangement, the flow in the opposite direction, and, for the parallel-flow, flow in the

same direction), what is the effect? While this is not an ideal comparison, it is included

for cornpleteness, and to compare to what Vafai andZhu (1999) studied. It should be

noted that, for the single channel (small) arangement, the runs were performed with

uniform inlet assumption only. This is because these runs are of lesser importance, and,

by the time these runs were to be performed, it was already known that the fully-

developed inlet assumption would give excellent agreement with the uniform inlet.

With all of these runs, it is desired not only to assess the relative merits of each of

the arrangements, but, it is also desired to obtain a detailed qualitative understanding of

the heat transfer and fluid flow phenomena taking place.

3.2 Assumptions

In order to bring the analysis to a manageable level, a number of assumptions

were made in this work. These are:

¡ Properties of the fluid and solid are constant and uniform.

o The flow is laminar (valid because only Reynolds numbers below 2300 are

considered).

o Buoyancy effects are negligible (valid because the ratio of the Grashof number

over the square of the Reynolds number is always significantly inferior to unity; a

simple calculation reveals that this quantity is always of the order of 10-6 or

smaller for every case examined in this work).
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o The fluid flow and heat transfer processes are steady-state.

. Classical fluid mechanics are valid. That is, the continuum assumption remains

valid.

o The fluid is incompressible, and behaves as a Newtonian fluid.

3.3 Governing Equations

The physical phenomena (heat transfer and fluid flow) taking place within the

microchannel heat sinks obey a small set of well-established differential equations.

Solving the problem consists of solving a fluid flow problem (in the fluid region(s) only),

and a heat transfer problem (solved in the fluid region(s) and the solid region

simultaneously). In the fluid region(s), the flow is governed by the conservation of mass

equation, and, the momentum balance (Navier-Stokes) equation. The conservation of
mass equation is, for steady-state conditions with constant properties,

ôU ôV AW

ax* N* t:' (3'1)

where U, V and W are the X-, Y- and Z-components of the fluid's velocity, respectively,

and where X, Y and Z arethe coordinate directions. The momentum equation is one

vector equation in three components. For steady-state conditions and constant properties,

in the absence of any body forces (such as gravity), the three components of the

momentum equation are:

p,uy+ prvy. p,wy=-ô! * u,(u'V^.Ï!.ryì (3.2a),1- ôX ,r' ôy 
, ,r.. AZ ôX ' *t ('aX, ôy2 ' AZ, )

p,u%+p,v{;+prw+=-ô' *r,(lI.*.*) (3.2b),t- õx ,r' ôY ' ,t" ôz ôY ' *.t [ax, aYz ' ôz' )

-. aw -- ôw --- ôw ôP ( a'w aTw a=w\p,U-+e,V 
-+O,WL=-: 

+p,l " * " + " | (3.2c),t ôX ,r ôy ,-.r ôZ ôZ,_t[aX, ôy2 ôZr)

where p¡is the fluid's density, P is the fluid's pressure, and p¡is the fluid's dynamic

viscosity.

Together, Eqs. (3.1) and (3.2), along with appropriate boundary conditions

(discussed later), form the set of equations that needs to be solved to obtain the velocity

field. Once this velocity field is obtained, it can be used to solve the heat transfer
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problem.

In the solid region, the heat transfer is govemed by the well-known Laplace

equation:

where Z, is the temperature field in the solid, and V' is the Laplacian operator. In the

fluid region, for steady-state conditions with constant properties, and neglecting viscous

dissipation, the temperature distribution is governed by

ôT. ôT. ôT. ( a'r. õ'7. a'r.luå-*rãî*rã;=",1#* ur,. ,;) (3.4)

where Qis the temperature of the fluid, and ø¡is the thermal diffusivity of the fluid,

which is defined as

y'T =+*õ'!r*u'r-,:o" ôx' ôY' õz'

kr
a.=-' prc r.,

(3.3)

(3.s)

where lc¡isthe thermal conductivity of the fluid, and Co¡is the constant pressure specific

heat of the fluid.

Thus, to obtain the temperature distributions in the fluid and the solid (T¡and 7,,

respectively), it is necessary to execute the following steps:

. Solve Eqs. (3.1) and (3.2), to obtain the pressure field, P, as well as the three

components of the velocity freld, U, V and W.

. Using the U, V and W ftelds obtained in the previous step, solve Eqs. (3.3) and

(3.4) to yield the temperature fields T¡and 7,.

It should be noted that T¡and Z, cannot be calculated separately; they must be

calculated simultaneously. Because of this, it is said that the heat transfer problem is a

conjugate heat transfer problem. The details of how the two fields are "connected"

together are presented below.

It should also be noted that the heat transfer and fluid flow problems are de-

coupled. This means that it is possible to solve the fluid flow problem independently of
the heat transfer problem, and then, to simply use the resulting velocity field as input to

the heat transfer problem. This is a desirable feature, which arises in part because the

effect of temperature on the properties, as well as buoyancy effects, are neglected.
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The governing equations themselves are the same for every arrangement

considered in this thesis (counter-flow, parallel-flow, single charurel (large) and single

channel (small)). However, the problems differ, for each of the arrangements, by the

regions over which the governing equations are to be solved (which are specified by the

sizes and shapes of the domains), and by the boundary conditions. V/hat follows is a

detailed listing, for each arrangement, of the regions over which the governing equations

are to be solved, the boundary conditions, and mathematical expressions of the equations

used to "connect" the temperature field in the solid region to that in the fluid region(s).

For the counter-flow affangement, Eqs. (3.1), (3.2) and (3.4) are to be solved in

the following regions: (n - n,)<x < B, H, < Y <@, * H,), 0 < Z < L (thebottom

channel), and on (a - n,)< x < n , ÞH , * H ,)< Y < H , 0 < z < L (the top channel).

Eq. (3.3) is to be solved at every point in the solid region, which is given by the sum of

thefollowingthreesub-regions: the sub-region O<X <(A-8,),0<Y < H ,0<Z < L,

tlre sub-region (A - B,)< X < B, 0 < Y s H t,. 0 < Z < L and.the sub-region

(n - a,)< x < n, (H, * H,)<Y <Þu, * H"), 0 < z <2. Forrhe solidregion, forthe

counter-flow arrangement, the relevant boundary conditions are as follows:

aT,l
2)lr=op=r=(n-a,).0<r<n: - 0
" " I z =0,\B - B, )<.Y < 8,03Y < H ¡ ;

z=0,(B-8,.)<x<8,\H ,+H, þY<\zu ,+u, )

(3.6)

(3.7)

(3 .8)

(3.e)

(3. 10)

(3.1 1)

ôrl'l -0
ô z l:,=! i ; ! ;:9,-,'à,';{;!i,,,

z = t.la - ri,\<.v < n.(n, * u',þr s(z H ¡ + H,.)

õrl'l -0
ôX lr=o,orr.=rr,osz<L

ôrl'l -0AY LY=B.o<Y<H,.O<Z<L:
"" t.v 

= ø.(n t * u',þr <(z n, * a,.\.0<z<t

ôrl"l -0
ôY l, = r .or, 

=(B- 
B,),o<z<L

arl_k,+l = q,,'' ôY lr=r,or*<B,o<zsL
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where Æ, is the thermal conductivity of the solid.

For the bottom channel, again looking at the counter-flow arrangement, the

hydrodynamic boundary conditions are as follows:

Ul r=r.qu- u,¡tx <a,u,svs(u,*rr,, ) 
= 0

Vl, 
=r.¡ u - u, ¡..u <n.u., <Y <(rr.,*r. ) 

= 0

Wl, 
= r,1u - o,¡rx <n, n.,sv <(u, * u,) = -W i,

Fl , -oIz=0,(B-B,)s.Y<B.H rsy<\H |+H, )

Ul*4u-o,¡., 
,<Y<(u,*u,).0=r., 

= O

Vl * =1u- u,¡, o, <Y <(u, * a,),0<, =, 
= 0

Wl * =g- u"¡.r,<r <(a, * a,).orr=, = O

Ulr=o 
,,1u-u,¡.xro.o.zrt 

= 0

Vl,=o 
,1u-o,7r*=o.orrr, 

= 0

wl -o
t Y = H r,\B - B, )<.Y s 8,0<Z < L

Ul, =6,. r,¡,1n- a,)<x <n,o<z r, = 0

Vl, =6,. o,¡,1a - n,)<x <n,o<z r, = 0

Wl, 
=6, * o,),(n- n,)<x < n,o<z--., = 0

ul , \ -0t.Y=B,H rsY<\H r+H, ),O<Z<L

ôvl- | -0
AX 

I r = u.r,t <(u,* u,),0<z<L

ôwl- | -0
ôX 1., =o.r, tr' <(u, * u,.).0<z<t

(3.12a)

(3.12b)

(3.12c)

(3.13)

Q.Iaa)

(3.14b)

Q.Iac)

(3.1 sa)

(3. l sb)

(3. 1 sc)

(3.r6a)

(3.16b)

(3.1 6c)

(3.17 a)

(3.17b)

(3. 1 7c)

where Ll/¡, is the magnitude of the inlet velocity and Plr=,.1n_n,¡=x<n,rt 
,<r<(u ,*ø ¡ 

is the

average pressure at the bottom channel outlet. Eqs. (3.14) - (3.16) are called the no-slip

boundary conditions, while Eqs. (3.17) express a symmetry boundary condition. It should

-20-



be noted that, since the bottom channel has six boundaries, it has six hydrodynamic

boundary conditions. The thermal boundary conditions of the bottom channel are as

follows:

where T¡,, is the uniform inlet temperature of the channels. It should be noted that Eq.

(3. 19) is an approximation, since, the slope of the temperature profile at the outlet is not

known. It should be noted that there are only three thermal boundary conditions

presented above, because the remaining three boundaries do not have thermal boundary

conditions per se. They have, instead, equations that "connect" the temperature field in

the bottom chamel to that in the solid. Mathematically, these conditions can be

expressed as follows:

T t 
1 ., =(u - o,), r, <y <Q t, * p,).0<, 

=, 
= T,l * =(n - n,), a, <v <(n, + n,),0<z < t

-tT t l, = r.(u- u,)<x <n.u, <r <(u., * u,) = Ti',

ôr,l
ôZ l, =0.1u - u,)<x <n.u, <v <(u., * n,.)

ôT,l'| -0
ôX 

| * = r.r, =r 
s(a, * a,).0<z <t

-, ôT,
-'uJ ^--

.Y=(B-8, ),H r <v<(u ,*u,).0<z<t OÅ

Trlr=, 
, ,(u-o,)<.y <B.o<z<L = T,lr=n 

, ,(u-n,)<x <a,o<z<r

= k 9!ol
r=ø,,(n-n.)<x<B,o<z<L' ôY lr=r,.(u-a")<.v<o,o<z<t

T ,l,=(n ,.,r,).(n-t, )<x <n.o<rr, = T,l,=(r 
,+u,).(n-s,)<.usB.o<z<L

(3. 18)

(3.1e)

(3.20)

aT,t- .l

", ax

ôT,
l- .l

"t ôy

x =(n - a,),n, <y <(a, * n,),orz.r

(3.2r)

(3.22)

(3.23)

(3.24)

(3.2s)

(3.26)

These conditions enforce the physical requirements that no discontinuity in temperature,

and no discontinuity in heat flux, occur across any of the solid-fluid interfaces of the

bottom channel and the solid region.
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(3.27a)

(3.27b)

(3.27c)

(3.28)

(3.29a)

(3.zeb)

(3.zec)

(3.30a)

(3.30b)

(3.30c)

(3.31a)

(3.31b)

(3.31c)

(3.32a)

(3.32b)

For the top charurel (still looking at the counter-flow arrangement), the

hydrodynamic boundary conditions are

awl- | -0
õX Lr = r,(t r, + a,þv <u .o<z <t

and the thermal boundary conditions are

Ul r=,1u - o,¡=x < a,(z u, * a,þr t, : 0

Vl 
z =0.1a- n, ¡<x <a.(z n, * a "þr=ø 

= 0

W 
l r=o,1u- u,yx <a,(z a, * a,þr., = W r,

Pl -o
I z= L.( B - B, )<.y s B,\z H | + H, Fy <a

Ul * =10- u, ¡,(, o, + n,þv *r,o<z-., = 0

Vl x4a-a,¡,(rn ,+u,þY<a.o<zr, 
= O

Wl x 7n- n,¡,(, n, + n,þv <a,o<, =, 
= 0

Ul, 
=¡r r, * r,).(n - n, )< x < n,o<2., = 0

Vl,=1rr 
,*r,¡.@-e,)<x=n.os,=, 

= 0

W l, =1r r,. n, ¡.(B - B,)<x <B.o<r r, = 0

ul -o- lY =H .(B- 8,. )<,Y <8,o<Z<L

Vlr=r¡o-u,¡r* ro,o.r=, 
: O

Wlr=r,10- 
o,¡=* =o,orr=, 

= 0

Ul.r=n,1to 
,*r,þr=r.orr=, = 0

url -0
ôX 1., = u.(r r, + u,þv < u .o<z < t

(3.32c)

(3.33)

(3.34)

-l7' t l,=0.(, - u,)=.v <n.(z u, * a,þr.,, = 7,,

ar.l'l -0ôzl t"' I z=t,(a- s,¡<x <n,\z u, * u,þv <u

.,.\



Because the top channel has no solid material above it, it has four proper boundary

conditions, and only two fluid-solid interfaces with the solid region. The conditions

imposed on these solid-fluid interfaces can be expressed as

ôT,l't -0axl / \
t x=4.\zn r+ H,. FY<H,O<Z<L

ôr,l'l -0
ôY l, = r,1r- u")<x <n.o<z <t

T t I * 7u - r,,),(, a, + n,þr < n,o<r r, = T'l 
* =(a - a, ),(z u, o u,þy < H,osz < L

k YLI :k 9!ol
^ t ôx 

1., -(o - a),(z u, * n,þv < H .o<z <L 
- "' ôx 

I r -(a - a, ),(z a, * a,þy <H,osz <L

T rlr=þ r, * o,),@- n, )<x <n,orr., = T,l, 
=þ r, *r,¡¡n-a¡<x <n,o<z<t

k.9Ir-l = k gLl
' õY lr=p,,,+u,).@-n,)<.u<B.o<zsL' ôY lr=(rrr*u,),(a-a,.)<x<a,o<z<t

(3.35)

(3.36)

(3.37)

(3.38)

(3.3e)

(3.40)

Thus, the goveming equations expressed by Eqs. (3.1) - (3.4), solved on the

appropriate regions (identified above), subject to the boundary conditions and interface

conditions expressed by Eqs. (3.6) - (3.40), comprise the complete mathematical

formulation for the counter-flow arrangement.

Now, attention is focused on the parallel-flow affangement. For the parallel-flow

affangement, Eqs. (3.1), (3.2) and (3.4) are to be solved on the following regions:

(a-g,)<x< B, H ¡ <Y <@, * H,), 0< z < L (thebottom charurel), and on

(n-n,)<x< g, ÞH, *H,)<Y <H,0<z <L (thetop channel). Eq. (3.3) isrobe

solved at every point in the solid region, which is given by the sum of the following three

sub-regions: thesub-region 0<X <(,B - B,),0<Y < H ,0<Z < L,thesub-region

(a - n,) < x < B, O < y . H r, 0 < Z < L and.the sub-region (; - B,) < X < B,

(ø, * H")<v <þH, * H,), 0 < Z < Z. For the solid region, for the parallel-flow

arrangement, the relevant boundary conditions are

-23-



^^ I

ol.rl
27 lz=o.o.x.(a-a"\,0<t'<n; - 0
u L 

I z =0.( a- a -\<-v èÉ.0<y < u .'
z =o.( o - d,\< x <a.(n, * n',þv <(z u, * u.)

's(a-a,).0<Y<u, = 0
B.l<X<8.0<Y<H .:
ai, þx sn,(u, * n',þv <(z a, * u,)

ôT,l

azE
z

,qs.Y
,(B-ì
,(n-t

rl
4,

=1,9s.
=1,(B-
=1,(B-

ôT_

AX
-0

(3.41)

(3.42)

(3.43)

(3.44)

(3.4s)

(3.46)

(3.47a)

(3.47b)

Q.a7c)

(3.48)

Q.a9a)

(3.4eb)

Q.a9c)

(3.s0a)

(3.s0b)

(3.50c)

ôTl
ôX l-Y = B,g<Y <H,,ocZ <L;"" t.v 

= a.(n r * niþ.r.(z u, + u,).0<z <t

x=0,0<Y<H,0<z<L

ôrl
ôY l, = o,r.*.(o- a,),0<z <t

ôrl-/r"=l =q"' ôY lr=o.or.r<B.osz<L

For the bottom channel, for the parallel-flow arrangement, the hydrodynamic

boundary conditions are as follows:

Ul r=0.¡o- o,¡rx <a.u, <v <(u,*", ) 
= 0

Vlr=o,qo- o,¡r*=u ,, ,rr.(o , * r,) = 0

Wl, 
=0,10- u, ¡=x < n, n, <r <(u,*r" ) 

: 0

Fl ,-0
I z = L.(B - B, )<.Y < B. H | <Y s\H t + H, )

Ul 
x =p - u, ¡,o, <v <(a, * n,),0s, =, 

= 0

Vl.r 4r- u,¡.n, <r<(n, * rt,),0<2., = 0

Wl * =g- u,¡,o, <v<(u,* a 
"),0<2., 

= 0

Ul, 
= r,.1u - u,¡r* tu.o=, =, 

= 0

Vl 
r= r,.1u- o, ¡= * ru,o=, =, 

= 0

wl. _ _ -otY= H r ,lB- B, EX <B.ÙsZ<L

-24



Eqs. (3.a9) - (3.51) are the no-slip boundary conditions, while Eqs. (3.52) express a

symmetry boundary condition. The thermal boundary conditions of the bottom channel,

for the parallel-flow affangement, are as follows:

Ul, 7r,., ),1t- t,)<.v < a.o<z', = O

Vlr=6,. r,¡,1a-a, )<x<n.o<z=. = 0

Wl, =6,. r,),(a - n,)<x < n,o<z r, = O

Ul * =u,o, rr t(r, * u,),'=z' = 0

avl| -0
ôX l.r=u.n ,t <(n ,*n,.),osz<t

ôwl| -0
AX 1." = u.r, 

=, 
<(u, * u,),0<z <L

-lT ¡ l, =0,(o - o,)<.v sn. u, <y <(u, * u,) = T 
"'

ôr.l,l _0
ôZ l, = r,10 - o,)<x <0.u, <r s(u ., 

* u,.)

ar.l'l -0
ôX 

| * =u,n r., <(u, * u,).0<zst

T rlr=@ ,. r,),(B-8, )<x sB.o<rr, = T"l, 
=(, r+ H ,),(B-8, )<.y <B,o<z<L

-25 -

As was the case in the counter-flow affangement, Eq. (3.54) is an approximation. The

mathematical expressions ensuring continuity of temperature and heat flux at the solid-

fluid interfaces befween the solid region and the bottorn channel are as follows:

T ll.r 4u-0, ),r, , sv <(u , *u.),0=rr, = T,l *7u-u.¡,, ,<r<(n, *a,),0<z<t

(3.sla)

(3.s 1b)

(3.s 1c)

(3.s2a)

(3.szb)

(3.szc)

(3.s3)

(3.s4)

(3.ss)

(3.s6)

(3.s7)

(3.s8)

(3.se)

(3.60)

k.YLl :k 9!ol
' ôX l.r-(u-n,),n,<v<(u,*n,).0<z<t' ôX l*4u-u,).u,<v<(n,*n,),0<z<t

T I =Tlt / ly=u,,(n-a,)<x<B,o<z<L sty=H r.\B-8,)<x<B,o<z<L

.ôT
-k "

r=ar,(a-n,)<x<B,o<z<L' ôY v= a , ,(a-a,.)<x <B,o<z<L

ôT,

ôY
kl



Looking now at the top channel, for the parallel-flow case, the hydrodynamic

boundary conditions are

¡tl
U 

I z =0.1n - a,¡tx sa,(z u, * n,þ, =n 
= 0

¡rl
Vl 

z=0.1n- n,¡rx <a.(z u, * u,þv =n 
= 0

Wlr=0.1u-u,¡rx 
<n.(zu, * u,!r." = 0

Pl -o
I z = L,(B - B, )<x <8,\2 H r + H, Fy sH

Ul , ., ' =0t.Y=\ß-4).\2H t+H,.FY<H.o<z<L 
-

vl -o' l.v=1a-a).(za,+u,þv<n.o<z<L - u

Wl * 4o- o,¡,(, u, + n,þvsu .os, =, 
= 0

Ulr=1rn 
,.n,),(a-4 )<.v<r.o< ,', = O

Vl, 
=1r r, * o,).( a - a.)<x <a.o<, =, 

= 0

Wlr=1t, 
,. o ,¡,(a-r. )<.v<a,o< ,=, = 0

ul -otY=H ,\B- B" EX<B.0<Z<L

vl -otY= H ,lB- B" )<X<8.0<Z<L

wl -olv= t-t ,lB- B")<.Y s B ,o<z<L

ul , \ -0|.Y=8.\2H r+ H,. FY<H,o<ZsL

ôvl- I :0
ôX 1., = u.(r r, * n,þv sa .o<z <t

k.YLl =k 
g!,1

' ôY lr=6,+u,),@-a,)<.v<B,o<zsL' ôYlr=@,*r,),1ø-ø,)<x<n.o<z<t

ôwl- | -0
ôX 1., = u.(, n, + n,þv su .o<z <t

and the themal boundary conditions are

'r.l -r- r lz=o.(s-s,)<x<a.(zn,*a,þvsa - in

(3.61)

(3.62a)

(3.62b)

(3.62c)

(3.63)

Q.6aa)

(3.64b)

Q.6ac)

(3.6sa)

(3.65b)

(3.6sc)

(3.66a)

(3.66b)

(3.66c)

(3.67a)

(3.67b)

(3.67c)

-26-
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arrl
ôzl

arrl
ôxl

The mathematical expressions ensuring continuity of temperature and heat flux at the

solid-fluid interfaces between the solid region and the top channel are as follows:

ôT,l

ôYt
tY= H .lB- 8,. )<X <B,ÙsZsL

T tI*4u-u,,),(,H r+n,Èy<H,o<rr, 
= T"l*=(n-e 

,),(za ,*a,þysH,o<z<L

k,gILl =k 
g!,1

' ôX l.r-(u-n,)!zn,+u,þvsu.o<z<r'' ôX l.r=ta-p),(za,*u,þy<u,o<z<t

T rlr=þ, ,* r,),qn-n,)<x <n,o=rr, = T,lr=þo 
, *r,)¡n-n,)sx <n,o<z<t

. ôT,l , ar,lk, ;:l : Æ.,;;l Q.75)ur lv=(zu,*u,),(n- n,)<x<n.o<z<t or lv=(za,*u,).(a-n,)<x<n.o<z<t

Thus, the governing equations expressed by Eqs. (3.1) - (3.4), solved on the

appropriate regions (identified above), subject to the boundary conditions and interface

conditions expressed by Eqs. (3.4I) - (3.75), comprise the complete rnathematical

formulation for the p arall el-fl ow arran gem ent.

Next, the single channel (large) affangement is considered. For the single channel

(large) arrangement, Eqs. (3.1), (3.2) and (3.4) are to be solved on only one region,

narnely, inside the channel, oron (n - n,)< X < B, H t <Y < H, O < Z < L. Eq,.(3.3) is

to be solved on the solid region, which is the sum of the following two sub-regions: the

sub-region 0<X <(f - B"), O<Y < H ,0< Z <L and.thesub-region

(A - n")< X <8, 0 < Y . H r, 0 < Z < Z. For the solid region, for the single channel

(large) arrangement, the relevant boundary conditions are

arl
8/ lz=o.o<x <(n- n.).0<y <u :

I Z=0.\B- B. FX <B,o<Y <H I

(3.6e)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

-0
z = t,(a - a, )< x s a,(z a, * n, þr < a

-0
x = a,(z n, * n,þy <H,o<z <L

-27 -



ôrl'l -0
Q/ lz=t.osx <(ø- ø,),0<r <n :

I z = L,\B- B, )<X <B,DsY sH I

ôrlrl _n

ñl.r =o,orrrti ,o<z<L

ur"l 
- 0

ôX 1."=u,o.r.H r.o<z<L

ôT,l

ôYlr=o,0.*.1u-u,¡,'.r., 
o

- o"+l = q"
ôY lr=o.or."=u'tr'

For the channel region, for the single channel (large) arrangement, the

hydrodynamic boundary conditions are as follows:

(3.77)

(3.78)

(3.7e)

(3.80)

(3.8 1)

(3.82a)

(3.82b)

(3.82c)

(3.83)

(3.8aa)

(3.84b)

(3.8ac)

(3.8sa)

(3.8sb)

(3.8sc)

(3.86a)

(3.86b)

(3.86c)
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where Lliu, rn,su is the inlet velocity to the large channel. It is calculated in such away

that, for the single channel (large) arrangement, the mass flow rate is the same as what

flows in both rows of channels in the parallel-flow arrangement.

For the channel, again in the single channel (large) arrangement, the thermal

boundary conditions are

rrlul.r=u.n 
,rr=r.otrt, = o

ôvl- | -0
ôX 1., = u,r,,., <H .o<z < L

ôwl- | -0
õX l.r=u.r,tr<H.o<z<L

TI :T- r lz=0,(n-a,)<.y<B.Ht<y<H -itt

ôT,l'| -0ôzt
I Z= L.\B- B, )<X <B.H r<Y< H

aT,l,l _0
ôxt

tX=B,H r<Y<H,O<Z<L

ôr.l,l _0
ôYt

tr'= H.lB- 8,. l<.Y < B,OsZ<L

(3.87a)

(3.87b)

(3.87c)

(3.88)

(3.8e)

The mathematical expressions ensuring continuity of temperature and heat flux at the

solid-fluid interfaces between the solid region and the channel for the single channel

(large) arrangement are as follows:

r.l =T I.t lX=(B-8,.),H tsy<H.osz<L i t.Y=\B-Bc).H r<Y<H.0<z<L

(3.e0)

(3.e 1 )

(3.e2)

(3.e3)

(3.e4)

,- ôT,l
- "' ôx l.r-(o-a").u,<v<u.o<z<t

T I :Tlt f ly=n r.@-a,)<x<B.o<z<L 
- t'ly=u,.(n- 

a,)<x<a.o<z<t

o,+l =0,+l (3es)
' ôY lr=n,.(n-0.)<*<n.o<z<t' ôY lr=o,.(u-8,)<x<B.osz<L

Thus, the goveming equations expressed by Eqs. (3.1) - (3.4), solved on the
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appropriate regions (identified above), subject to the boundary conditions and interface

conditions expressed by Eqs. (3.76) - (3.95), comprise the complete mathematical

formulation for the single channel (large) arrangement.

Finally, the single channel (small) affangement is considered. For the single

channel (small) anangement, Eqs. (3.1), (3.2) and (3.4) are to be solved on only one

region, namely, inside the charurel, orin (g - A,)< X < B, H, <Y <!, O < Z < L. Eq,.r 2'
(3.3) is to be solved on the solid region, which is the sum of the following two sub-

regions: thesub-region 0 <X<(A-n,), O< Y<+,0<Z<L and,thesub-region2'
(g - n")< x < B, o <Y 3 H r, o < z < L.

For the solid region, for the single channel (small) arrangement, the boundary

conditions are

õr"l'l -0fi/ lz =o,o< x <(a - a, ),0<v <(a r z):
I Z =0,18- 8,. )<X <8,0<Y <H r

ôT,l
j)lr=r.'.*=(n-a").o<r<(u r=), 

= 0
I Z = L,\B- B, l<X <8,0<Y 4r r

ur,l 
- 0

õX 1,, =o.o=, 
=(r 

r r z),0<z < t

ôrl
f | 

^

ñlr=u.o.r.H 
t.o<z<L

ur"l 
- 0

õY l, =1n, r¡,o<.v <(a - a, ).ocz < t

-0,+l = q,,
ôY lr=o.o=r=o.orr'

For the channel region, for the single channel (small) arrangement, the

hydrodynamic boundary conditions are as follows:

Ulr=0,1n-u,¡txrn,a,rvr1n rz¡ = 0

trlr=o,qu-u,¡r*=a,n,=rr1n rz¡ = 0

(3.e6)

(3.e7)

(3.e8)

(3.ee)

(3.1 00)

(3.101)

(3.r02a)

(3.102b)
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It should be noted that W¡,, here has the same value as it did for the counter-flow and

p arallel-fl ow arrangements.

For the charurel, for the single channel (small) arrangement, the thermal boundary

conditions are

wl . -otz =o,lB- 8,. )sx sB.H | 3Y s\H / 2 )

Pl -o
I z = L.(B - B,)<x <B.H I sY s(H / 2)

rrlUl.r=1n-ø,¡.nr=v=1a rz¡.orzrr = 0

Vl 
." =1u- u, ¡.o , <v tln r z¡otztL = 0

wl -ot.Y=lB-8, ),H t<Ys\H t2),0<Z<L

ul -o
t Y = H r,l B - 8,. )s.Y <B.o<Z <L

vl -o
I v = tt t.\B- 8,. )<X <8,0<Z <L

wl -otY = H t .lB- B 
" 

)<X <8.O<Z<L

ul -o
I Y =\H t 2 ),\B - B, E.Y <B,o<Z < L

Vlr=@ tz),(n-u,¡r*=u,orrr, = O

Wlv=1n rr¡,1r-n.¡=*=o,r=r=, = 0

rrl -0" l.Y=B.H r<Y<(n tz).0<z<t

ôvl

-r -0
ôX l.r = u. o, 

=, 
<(a r z).0<z <t

ôwl- | -0
ôX 1., = o, n, 

=, 
<( n r z).0<z < t

rl -.r' .f lz=0,(n-a,)<x<a.n,<r<(u rz) - a iu

ar,l,l _0
ôzt"" lz=1.(n-ø,)<x so,a, <r <(n r z)

(3.r02c)

(3.103)

(3.1Oaa)

(3.104b)

(3. 1 Oac)

(3. i 0sa)

(3.1Osb)

(3.1 Osc)

(3.106a)

(3.1 o6b)

(3.1 06c)

(3.107a)

(3.1 07b)

(3.1 07c)

(3.1 08)

(3.10e)
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õT,

ôX
-0

x=n,n r<v<(n tz).osz<L

(3.1 10)

(3.1 1 1)

(3.rr2)

(3.1 13)

(3.1 14)

(3.1 1s)

The mathematical expressions ensuring continuity of temperature and heat flux at the

solid-fluid interfaces between the solid region and the channel for the single channel

(small) arrangement are as follows:

T I l, 4n - o,), u, <r <Qt r z).0<z <, = T 
"l * =@ - a,), u r sv s(a t z),0<z <t

ar,l'| -0
ôY l, 4r, rl.(a - a,)< x s a,osz <t

x =(n - n,.), a, <r <(n r z),0<z < t

-tL.t
't lv =H r,@-8,)<x <ß,o<zsL

ôrl
-L 

sl

OÃ lx4n-a,),u ,<v<(u rz).0<z<t

- q-l
^' I v = u,,(a- n,)s.v < a,o<z 

= 
t

k,YLl =k 
g!,1

' ôY lr=r,.(a-n")<x<a,oszst 
' õY lr=n,'(u-a")<x<a.o<z<t

Thus, the governing equations expressed by Eqs. (3.1) - (3.4), solved on the

appropriate regions (identified above), subject to the boundary conditions and interface

conditions expressed by Eqs. (3.96) - (3.115), comprise the complete mathematical

formulation for the single channel (small) arrangement.

It should be noted that, in the above formulations for the boundary conditions, the

equations were written for the cases of the uniform inlet velocity profile assumption. For

the fully-developed case(s), one would need to replace lV¡¡ oÍ Wi,,, tn,.se by the appropriate

fully-developed inlet velocity profiles. An analytical expression, in terms of a

converging infinite series, giving the fully-developed velocity profile for rectangular

channels can be found in Shah and London (1978). It is not quoted here, since, in this

work, a different technique was employed to obtain the fully-developed velocity profile.

This technique is discussed in more detail later.

The governing equations presented above for the four arrangements were not

solved analylically. Instead, they were solved numerically, making use of a proprietary

code. This is described later in Section 3.5.
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3.4 Non-Dimensionalization

The mathematical problems presented in the previous section, as well as the

solutions, can be non-dimensionalized. This is the purpose of this section.

Before non-dimensionalizing the goveming equations and boundary conditions, a

few definitions are required. The coordinate directions can be non-dimensionalized as

X
B

Y
v --.B

Z

B

(3.rr7a)

(3.tt7b)

(3.rI1c)

(3.117d)

(3.1 17e)

(3.i 18a)

(3. 1 18b)

(3.1 16a)

(3.116b)

(3.1 16c)

where x, y and z are the non-dimensional coordinate directions. The various length

parameters can be non-dimensionalized as follows, by dividing the dimensional values by

,8. Thus,

lt=L
B

H.
h, =J'B
-Hh - ----c,B

B
b - ___!_,B

.L
B

It should be noted that, in Eqs. (3 . 1 1 5) and (3. I 1 6), the choice of dividing the lengths and

coordinated directions by.B is somewhat arbitrary. The dimensional velocity components

can be non-dimensionalized by dividing them by L7'¡¡, ãs follows

U

W,,,

V
V=-

W,,,
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Ww=- (3.119c)

where u, v and w àïe the dirnensionless velocity components in the x-, y- and z-directions,

respectively. The velocity LTí,, tn,s" can be non-dimensionalized by expressing it as a

fraction of W¡n, as follows

wi" - -w'"n"u,t*ge:tñ (3.119)

Because of the way the single channel (large) arrangement was defined, the following

relation must hold

Ihtnrgu =ù,o, *ùoo,,o^ Q'120)

where iroo,,o,, is the mass flowrate of fluid flowing in the bottom channel for the parallel-

flow arrangement, rit,o,, is the mass flowrate of fluid flowing in the top channel for this

same arrangement, and it,n,ru is the mass flowrate of fluid flowing in the single large

clrannel. Thus, by applying basic relations and simplifying, it can be shown that w¡,, ¡n,.ru

can be expressed as

wi,t,,,,= ^=2h, - (3.121)arse 
2h, + h,

The dimensionless pressure,p, is given by

o= r" (3.rzz)

iP¡wi
It should be noted that, even when considering dimensionless pressures in the single

clrannel (large) anangement, the definition given by Eq. (3.12I) still uses W¡¡7, Írot

V[/iu, tnrs", in the denominator. However, the appropriate W¡¡7, eorrasponding to the correct

Repolds number, must still be used. The Prandtl number of the fluíd, Pr¡ which is a

dimensionless property representing the ratio of the viscous diffusion rate to the thermal

diffusion rate, is defined as

pr, =9!t (3.123)t k,

The hydraulic diameter, Dl,,which is used as a length scale for the Reynolds number,
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defined below, is defined as

Á

þ. -4 "cn
tt Df wetletl

n I _ 48"H,
uhlvaftiaild zh, BJ q

(3.124)

wlrere A"¡, is the cross-sectional àreà of a channel, àfld Py,¿¡¡¿¿ is the wetted perimeter of a

channel. For the counter-flow, parallel-flow and single channel (small) arrangements, the

hydraulic diameter becomes

D,, = 48,H" 
(3.r25a)

28" + H,

and, for the single channel (large) arrangement, the hydraulic diameter becomes

Dn=
48"þ.H, * H ,) (3.12sb)

28,+Q.n"+ur)

It should be noted that, in arriving at Eqs. (3.125), one must be careful to do one of the

following: 1) remernber that the portion of the channel(s) within the respective repeat-

units is only half the width of the acttal channels, due to symmetry; that is, take the area

of the whole channel (not just the portion in the repeat-unit) and take the perimeter of the

wlrole channel when applying Eq. (3.I25a); or 2) consider only the portion of the

channel(s) that are within the repeat-units; that is, for A,¡,, take only the area of the

channel within the repeat-unit (which will be half of the total area), but, for the wetted

perimeter, ignore the side at the right-most of the domain (the symmetry side), since, it is

not parl of the wetted perimeter. Using either of these approaches will yield the correct,

"standard" value for the hydraulic diameter. However, Vafai andZhu (1999) used a

different definition for the hydraulic diameter, which, when it is translated into the

notation used in this work, becomes:

(3.125c)

Thus, they only considered half of the domain when calculating the area, but, they

neglected to realize that the wetted perimeter does not include the side of the halÊchannel

that falls on the symmetry line. in this work, care was taken to use the proper, normal

definition for the hydraulic diameter, as found, for example, in Fox and McDonald

(1 ee8).

The Reynolds number, which represents the ratio of inertial forces to viscous
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forces, is defined as

R"o, = 
P¡íl,,Dn (3.r26a),, p,

for the counter-flow, parallel-flow and single channel (small) affangements, and

R"o,. = 
Pfwr,tn,ruDn (3.r26b),, F¡

for the single channel (large) anangement. The hydraulic diameter is different in the

single channel (large) affangement, and so, for this arrangement, it is necessary for the

inlet velocity to be different in order to maintain the same Reynolds numbers as the other

arrangements.

It should be noted that the above definitions vse W¡,, ( or W¡, rn,gu) às a velocity

scale. In cases where the uniform inlet profile assumption is made, this choice is easy to

interpret. In cases where the fully-developed inlet profile assumption is made, however,

tlre value of ll'¡u can be thought of as either the value of the uniform inlet velocity of the

conesponding uniform.case, or, the average velocity of the fully-developed profile that is

supplied as boundary condition.

The non-dimensional temperatures in the solid and fluid, d, and 0¡, respectively,

are defined as

o, =W (3.r27a)

\
and

,,=ØP (3.r27b)

\
With these definitions in place, it is possible to non-dimensionalize the governing

equations and the boundary and interface conditions. The non-dimensional counter-parts

to Eq. (3.1) - (3.4) becorne, respectively

ôu Av ôw

-+-*_ =0 (3.128)ôxùôz
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ôu ôu ôu | ôo I ( Atu ô2u ô'alu-+v-+w-=ôx ù õz 2 ôx Reo,,\ôx' ôy' ô"' )

ðv ôv Av I ôn | ( ôtv ôtv ô'vl
lt 

-+ 
l'- + 11'- =ôx ôy ôz 2 ôy Reo,,\õx' ù' ô"' )

ôw Aw Aw 1 ôo 1 ( ôtw ôtw ô'wl
tt-!rt-I

ôx ôy ôz 2 ôz Rer,,\ôx' ôy' ôt' )

ô2e ô20 ô2e
-----lr- 

-î,----l=^
^ ) ^ 1 ^1Ox- 0y- ôz'

(3.129a)

(3.rzeb)

(3.129c)

(3.1 30)

ô0, ô0, ô0, D,. t ( õ'0, ô'0, ô'0,\
+VJIU, '-" ôx 4, ôz B PrrReo,,l ôx2 õy' ôt' )

It should be noted in passing that Eq. (3 . 1 3 1) contains the ratio ? , which is not theB'
same for every arangement (it has the same value for the counter-flow, parallel-flow and

single channel (small) arrangements, but, this value is different from that in the single

channel (large) alrangement). Thus, Eq. (3.131) expresses a different equation for the

single channel (large) alrangement as it does for the remaining anangements. This would

appear to suggest that, by non-dimensionalizing Eq. (3.4), which is identical for every

arrangement, obtained Eq.(3.131) was obtained, which differs for some arrangements. It

miglrt appear, then, that the mere act of non-dimensionahzingthe goveming equations

has somehow resulted in the undesirable outcome that the different arangements obey

different physical laws (since the governing equations are different for the various

anangements). This is not the case, however. It should be remembered that the complete

formulation of a problem consists of the governing equations, the regions(s) on which the

governing equations are to be solved, and the boundary conditions (and possibly also the

interface conditions). The problem is not merely the governing equation itself. Thus,

even in the dimensional cases, the problem formulations do differ for the different

affangements, even though the goveming equations themselves are identical.

Nonetheless, the various affangements are all subject to the same physical "laws". This is

easier to see in the dimensional formulations, since, the differences in the physical

problems can be seen only in the ranges in which the equations are to be solved, and in
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the boundary conditions. It is unfortunate that, in the dimensionless formulation, the

differences in the problem formulation is not confined to the boundary conditions and

ranges, but also in the governing equation itself. But, it would be a fallacy to think that

the mere act of non-dimensionalising the equations has somehow changed the fact that all

arrangements follow the same basic physical principles.

What follows is, for each arrangement, a list the regions(s) over which the

equations are to be solved and the boundary conditions and interface conditions that

apply.

For the counter-flow anangernent, Eqs. (3 .128), (3 .129) and (3 . 1 3 1) are to be

solved on the following two ranges: the bottom channel, which is located in

(t-ø,)<x.-l , h, 3 y <Ø, *h,), 0 < z <1, and the top channel, which is located in

(l-U,)<x <1, Qh, * h,)< y < h, 0 < z < t . Eq.(3.130) is to be solved on the solid

region, which is given as the surn of the following three sub-regions: the sub-region

0 <x < (t-t,),0<y < lt,01z 1l,the sub-region (t -b,)<x11, 0< y <ht, 0121l

and the sub-region (r-¿,) < x <1, Ut, *h,)< y 
=Þh, * h,), 0 < z < I .

For the solid region, for the counter-flo\¡/ affangement, the dimensionless

boundary conditions are as follows

ôel'l =0
ôt l,=o

ut'l 
- o

õt l,=,

u?,l 
- 0

ô" l,=o

ut"l 
- o

ô* l,=,

(3.t32)

(3.1 33)

(3.r34)

(3.13s)

(3.136)
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It should be noted that, for simplicity, the boundary conditions in Eqs. (3.I32) - (3.I37)

are expressed in a somewhat simpler form than the form used above when presenting

their dimensional countetparts. For example, Eq. (3.132), instead of being written out in

full as *l=*r=,=(r-r.).0<y<n: = 0, it is simply written ^ +l = 0 . That is, it is
uz l==0,(t-6.\a.r<ó,0<)<rr; oZ lr=o

==0.(r-4. )<.r<1,,(n ,+n, þ¡'<(zn , +n, )

simply stated that the derivative ! nuvalue of zero at z:0, without mentioning
oz

explicitly the regions, within the z :0 plane, to which the boundary.condition applies.

This is done for the sake of avoiding overly cumbersome notation, and because a

complete formulation has already been presented above. Furthermore, there should be no

ambiguity as to which regions in the z: 0 plane are being referred to, as it was already

specified that the boundary condition applies to the solid region. This simplified notation

will be used in the remainder of this section.

For the bottom channel, for the counter-flow arrangement, the dimensionless

hydrodlmamic boundary conditions are as follows:

'l'=, = o

ul"=, = o

wl --1
_tnl =0r l--=0

ul . .-o
I.r=(l-¿'. )

ul..=(,-r, 
) = o

wl".=1,-r.; = o

ul , -o

vl -oIy=hf

wl -o

ulr=çn,*n.¡= o

(3.138a)

(3.i38b)

(3.138c)

(3.13e)

(3.1aOa)

(3.140b)

(3.1 aOc)

Q.rata)

(3.14lb)

(3.141c)

(3.142a)
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where pl"=o ,t the average dimensionless pressure at the bottom channel outlet.

For the bottom channel, for the counter-flow arrangement, the non-dimensional

thermal boundary conditions are

ul,,=1n,*n,¡ = o

*lr=1nr*n,¡ = o

ul -ol.r=l

Avl

-l -0
ôrl.=,

^t.hul_l =o
ô*l,o

o.l -o
ae ,l.r l _lì

-¡ 

-1,ôt 
l==o

9!"1 - o
ô" l.=,

The conditions that relate the bottom channel to the solid region are, in

dimensionless fonn for the counter-flow case

o.,l,4ro,)= o,l*1,u")

kr ae fl ae,l
tr ã1.=,,_r., 

= 
ô" l,=(,-r.)

o.l =olJ l).=hr .'ly=ltÍ

kr ôe ll ae,l
,, url,=,,,= ù1,,=,,,

o'l 
r=ø,.n,) = o'l 

r=(n, * n,)

kt a0 tl ae,l
,, ø lr=t,,+r,.) 6lr=(,,,.n,)

(3.r42b)

(3.1,42c)

Q.Ia3a)

(3.143b)

Q.ra3c)

(3.144)

(3.r4s)

(3.146)

(3.r47)

(3.148)

(3.r4e)

(3.1 s0)

(3.1s 1)

(3.rsz)
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For the top channel, for the counter-flo\¡/ arrangement, the dimensionless

hydrodynamic boundary conditions are

and the thermal boundary conditions are

o ,1"=o = o

ae.l'l -0ôt l,=,

ul -ol:=0

vl -ol:=0

'1"=o 
=l

Pl,=, = o

ul . .-o
r.r=(l _¿. )

ul*=¡-r.¡ = o

wl . -ol.Ì=(t_á.. )

ul 
r=çr,*n,¡ = o

'l r=1rrr*n,¡ = o

*lr=çn,*n,¡= o

ul -o
l Y=h

vl -o

wl -o

,1,=, :0
^tdvl

-t -0
ôrl*=,,

^ld'vl

-t -0
ô" l*=,

(3.1 53a)

(3. 1s3b)

(3.1 53c)

(3.r54)

(3.1 ssa)

(3.15sb)

(3. 1 ssc)

(3.1 s6a)

(3.1 s6b)

(3. is6c)

(3.1s7 a)

(3.157b)

(3. 1 s7c)

(3.1 s8a)

(3.1 s8b)

(3.1s8c)

(3. 15e)

(3.1 60)
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ôe.l
"-l - 0 (3.161)
oxt

I r=l

ôe,l'l -0 (3.162)
ù l,=n

The conditions that relate the top channel to the solid region are, in dimensionless

form for the counter-flow case

orl.,7.o,)=o,l'<ro,) (3'163)

k, ôe,l ag I_!__=._l = +l (3.164)k, ô* l,=o-0,,) ôx l,--¡,-r,,¡

o 

'l r=þn,*n") 
= o'l r=('n,*n"¡ (3 ' 1 65)

lc, ô0,1 ae I

_L_:.Ll = _-_rl (3.166)lt' Ø lr=çn,*n,7 fu lr=çn,*r,¡

Thus, the dimensionless goveming equations expressed by Eqs. (3.t28) - (3.131),

solved on the appropriate regions (identified above), subject to the dimensionless

boundary conditions and interface conditions expressed by Eqs. (3.132) - (3.166),

comprise the complete dimensionless mathematical formulation for the counter-flow

arrangement.

For the parallel-flow arrangement, Eqs. (3.128), (3.I29) and (3.131) are to be

solved on the following two ranges: the bottom channel, which is located in

(t-U,)<"< | , ht < y<Ø¡ *h"),0< z<l,andthetop channel, whichis locatedin

(-ø")<"< t , Qhr*h,)<ySlt, O< z<1. Eq. (3.130) is to be solvedonthe solid

region, which is given as the sum of the following three sub-regions: the sub-region

0lx< Q-U,), 0 < y < h,01 z 1l,the sub-region (1 -b")< x 1I, 0<y < hJ., 0 < z < I

and the sub-region 0-u,)= x 1T, Ø, * h,)< y <Qh¡ * h"), 0 < z < L

For the solid region, for the parallel-flow affangement, the dimensionless

boundary conditions are as follows

ut,l 
- 0

ô" l"=n
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ôel"l -0
ô" l,=,

u?,l 
- 0

ôt l.=o

ô0 I'l =o
ô* l,=,

ut'l 
- o

ù l,=n

ôe"l t ,
ar l,,=,= 

- t\

(3.168)

(3. i 6e)

(3.170)

(3.r7 r)

(3.r72)

(3.173a)

(3.r73b)

(3.173c)

(3.r74)

(3.17sa)

(3.175b)

(3.1 7sc)

(3.t76a)

(3.r76b)

(3.17 6c)

(3.r77 a)

(3.r77b)

(3.177 c)

For the bottom channel, for the parallel-flow arrangement, the dimensionless

hydrodynamic boundary conditions are as follows

ul -ol--=0

ul -ol:=0

*l -1
I z=O

Pl"=, = o

ul . .-o
t.t=(l-á, )

vl -o
I r=(l_Õ. )

'1.,=(,-r.) 
: o

ul -0

,l -o

u,l -0

ulr=1n,*n,¡ = o

vlr=1,7*r.¡ = o

wlr=1nr*r"¡: o
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ul -0
I ¡=l

^tÒvlI - tì| - \,
&1,=,

¡l*l -o
ôrl,=,

and the non-dimensional thermal boundary conditions are

e.l -ot lz=0

ôe,lt | -0ôt l,=,

9!tl - o
ô, l*=,

The conditions that relate the bottom channel to the solid region are, in

dimensionless form for the parallel-flow case

o,l,<,-o"r: 4 1..=(,-r.)

lc, ô0,1 ae,l
,, ã1,=,,-o"t ãl-=u-o,t

. o,lr=n,=o,lr=n,

kf ôe tl ae,l
,\ ur l,,=,,,= Ø1,=,,

o rl r=(n,.n,) 
= 0,1,=Q,, *,,,)

tc, ô0,1 ae,l
k' fu lr7r,.n,¡- ôY lr=(n,*r.)

For the top channel, for the parallel-flow arrangement, the dimensionless

hydrodyramic boundary conditions are

ul -o
I z=0

ul"=o = o

wl -il:=0

-44-

(3.178a)

(3.178b)

(3.1 78c)

(3.r7e)

(3.1 80)

(3.181)

(3.1 82)

(3.1 83)

(3.1 84)

(3. I 85)

(3.1 86)

(3.187)

(3.1 88a)

(3.1 88b)

(3. I 88c)



Pl"o =o

ul . .-o
t.r=(l_ó" )

ul,.=1,-r.¡ : o

'1.,=(,-o ) 
= o

'lr=1rn,*n,7= 
o

ulr=pr,*n,¡: o

wl 
,=¡rn,*r,7 = o

ul -olt'=h

vl -o
I Y=l'

*l -o

,1,=, = o

Avl

-t -0
ô"1,=,

^tdwl| -0
ô*lr=,

(3. 1 8e)

(3.1eOa)

(3. 1eOb)

(3.1 90c)

(3.1 9 I a)

(3.1e1b)

(3.191c)

(3.r92a)

(3.tezb)

(3.192c)

(3. 1 93a)

(3. 1e3b)

(3. 1 93c)

(3.re4)

(3.1e5)

(3.1e6)

(3.re7)

and the thermal boundary conditions are

o.l -oJ l:=0

ôe,l't -0ôt l,=,

ô0,1'| -0õxl
l-r=l

ô0,1't -0
Avl

The conditions that relate the top channel to the solid region are, in dimensionless

form for the parallel-flow case
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Thus, the dimensionless governing equations expressed by Eqs. (3.128) - (3.131),

solved on the appropriate regions (identified above), subject to the dimensionless

boundary conditions and interface conditions expressed by Eqs. (3.167) - (3.201),

comprise the complete dimensionless mathematical formulation for the parallel-flow

arrangement.

Attention is now focused on the single channel (large) arangement. ln this

arrangement, for the solid, the dimensionless boundary conditions are

ut,l 
- 0ôt l,=o

ôel'l -0
ôt l,=,

u?,l 
- 0

ô" l,=o

o .,1,7,r") = o,l,=Q-0,,)

tr, ô0,1 ae,l
,r ã1,^,-0,, ô" l.=,,-,.,

o,l 
r=þ,,, *r,) 

= o'l 
r=þn, * n,)

lc, ô0 ,l ae,l
lr, ù lr=ah,+t,,) ôt lr=1rr,.n,¡

ae,l t,
ù l,*- k,

For the channel region, for the single channel (large) arrangement, the

dimensionless hydrodynamic boundary conditions are

(3.1 e8)

(3.ree)

(3.200)

(3.20t)

(3.202)

(3.203)

(3.204)

(3.20s)

(3.206)

(3.207)

ul -ol:=o
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vl -0l:=0

'1"=o: 
wi,tn,g"

Pl"=, =o

ul'=ç-',¡: o

vl . -0l.r=(l -å. J

wl . .-0
l.t=(l-l'" )

ul -0

vl -o

wl . -0

ul -0
t l=h

vl -0

wl -0
I Y=h

,) -0lr=l

õvl 
-Q

ôrl,=,

al*l -o
ôrl,o

(3.208b)

(3.208c)

(3.20e)

(3.210a)

(3.210b)

(3.210c)

(3.zIIa)

(3.zrrb)

(3.zIIc)

(3.212a)

(3.2t2b)

(3.2r2c)

(3.213a)

(3.213b)

(3.213c)

(3.2r4)

(3.2r5)

(3.216)

and the thermal boundary conditions are

e.l -oI l:=0

,rrl _o
ô, l,=,

ôe.l'l -0ôxl
l-t=l

ô0.l,l _0
ôvl
' t¡=h
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The conditions that relate the channel region to the solid region are, in

dimensionless form for the single channel (large) arrangement

0.1 =01" / l.'=(t-¡. ) "s l¡=(t-ð. )

lc, ô0rl ae,l
,rã1,=,,-o,t ã1,=r,-o.t

o rlro,, = o,lr=,,,

(3.2r8)

(3.2re)

(3.220)

(3.22r)

(3.222)

(3.223)

(3.224)

(3.22s)

(3.226)

kf ô0í

k, ôy

Thus, the dimensionless governing equations expressed by Eqs. (3. 128) - (3. 1 3 1),

solved on the appropriate regions (identified above), subject to the dimensionless

boundary conditions and interface conditions expressed by Eqs. (3.202) - (3.221),

comprise the complete dimensionless mathematical formulation for the single channel

(large) arrangement.

Finally, the single channel (small) arrangement is considered. In this

affangement, for the solid, the dimensionless boundary conditions are

ut,l 
- 0ôt l,=o

ut,l 
- 0

ôt l,=,

ut,l 
- 0

ôt l.=o

ô0 I'l =0
ô" l.=,

ae,l k r
ôr l,=,= 

- t\

For the channel region, for the single channel (small) anangement, the

dirnensionless hydrodynamic boundary conditions are

ut,l 
- 0

ôy l,=n,,
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t_ul -0l:=0

vl -0
I z=O

wl -1
I z=O

t_

Pl,=,:0

ul.,=1r-0¡ = o

ul,=(,-4 
) = o

'1..=(,-r.) 
= o

ul -0

vl -o

*lr=,,, =o

ul -0
t ),=h l2

vl -0tt'=htz

wl -0I l'=h tz

ul,=, = o

Avl| =0
ô"1,=,

^tdwl_t -0
õrl,=,

(3.228a)

(3.228b)

(3.228c)

(3.22e)

(3.230a)

(3.230b)

(3.230c)

(3.231a)

(3.23rb)

(3.23rc)

(3.232a)

(3.232b)

(3.232c)

(3.233a)

(3.233b)

(3.233c)

(3.234)

(3.23s)

(3.236)

and the thermal boundary conditions are

e,l -oJ l--=0

ôe,l
õt l,=,

ô0,1'l -0ôxl
l.r=l
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ôe ,l.t | _n

-| 
-\,

^lo! ly=ntz

The conditions that relate the channel region to the solid region are, in

dimensionless foÍn for the single charurel (small) arrangement

0 ., 1,4* o, ) 
= o 

"1,4, 0,,)

lc, ô0,1 ae,l

[ã1.=,, -u.t ã1,=o-0,,)

o ,lr=n, = o.,lr=,,,

k r ae ll ae,l
,t, Url,.=,,,= rylr=,,,

Thus, the dimensionless goveming equations expressed by Eqs. (3.128) - (3.131),

solved on the appropriate regions (identified above), subject to the dimensionless

boundary conditions and interface conditions expressed by Eqs. (3.222) - (3.241),

comprise the complete dimensionless mathematical formulation for the single channel

(small) arrangement.

A close examination of the dimensionless governing equations, the dimensionless

ranges on which these dirnensionless governing equations are to be solved, the

dimensionless boundary conditions, and the dimensionless interface conditions (in short,

the entire dimensionless mathematical formulation) for the four arrangements reveals that

the problems for u, v, w, p, 0, and 9¡can be formulated entirely in terms of: the

dimensionless co-ordinate directions (x, y and, z), h, hr, h¡ l, b", R€D,, , Prrt 
+ and the

t.

ratio '! (it should be noted that w¡,, ra,ge isnot included, since, it can be expressed in
k,

tetms of other parameters). Thus, it can be said that the dimensionless problems depend

on geometry, Reynolds number, Prandtl number, and on the ratio of thermal

. lc,
conductrvrtres '

k,

(3.237)

(3.238)

(3.23e)

(3.240)

(3.24r)
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3.5 Software Used

The mathematical formulations shown in the previous section, whether in

dimensional or dimensionless forms, are quite complex. Thus, in order to solve them, it

was decided to make use of a few CFD (computational fluid d1'namics) software

packages. The two software packages used are called ANSYS ICEM CFD version i0.0

and ANSYS CFX version 10.0. Over the course of this work, ANSYS released version

1 1 .0 of these software packages. Thus, some of the work in this thesis used version 10.0,

while later parts used version 1 1.0.

Running a case consisted of the following steps:

. Using ANSYS ICEM CFD, generate the meshes for the solid region, as well as

the channel region(s) for the case being run. These meshes were saved in separate

files.

. Open ANSYS CFX-pre (one of three sub-programs of ANSYS CFX), and, one-

by-one, load the meshes generated earlier in ANSYS ICEM CFD.

. Define two or three (as the case may be) domains: one for the solid region, and

one for each chamel region. This step occurred once again in ANSYS CFX-pre.

¡ Create what ANSYS CFX-pre calls "Domain lnterfaces" at every two-

dimensional region where the solid is in contact with the channel (or one of the

channels). For all cases in this thesis, the " 1 :1" option was selected as the way

that ANSYS CFX would connect the nodes at the interfaces. This required that

the meshes generated in ANSYS ICEM CFD has matching nodes at

corresponding interfaces in the solid and the channel(s).

. Specify the boundary conditions on any solid and channel surfaces not already

parl of the above-defined Domain Interfaces. These boundary conditions did not

need to be expressed mathematically. Instead, the software allowed the user to

select from among a set of possible boundary condition types (inlet, outlet, wall,

symmetry, opening). Then, depending on the type, a few necessary parameters

were specified. For example, for an inlet, it was necessary to specify the inlet

velocity (or the profile) and the inlet temperature.

. Specify a few numerical parameters (such as convergence criteria), and, write the

definition file. The definition file (or a .def file) is a file, written by ANSYS
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CFX-pre, which is read by ANSYS CFX-solver. It contains all the information

needed by ANSYS CFX-solver to actually run the simulation.

o Start ANSYS CFX-solver and ask it to run the simulation. While running, it is

possible to monitor the progress of the simulation, and to stop the run, or modify

the run in progress. When ANSYS CFX-solver finishes the simulation, it writes

out the results to the results file (a .res file).

o Open the results file in ANSYS CFX-post. This program is a utility that allows

one to post-process the results file. This program allow the generation of plots,

the calculation various quantities, and the exporting of certain data for fuither

plotting or calculations (in other software).

These steps were performed for every case presented in this thesis.

All of the runs were performed on SPARC-based Solaris machines, or on a Linux-

based machine.

When running a simulation, it is necessary to specify a convergence criterion,

which is the criterion that determines when the iterations performed by ANSYS CFX will

stop. The convergence criterion is based on the residuals, which represent the imbalance

in the algebraic analogues of the governing equations at a node. These residuals are

calculated at every node. The exact definition of the residuals used by ANSYS CFX is

not known to the general public. However, it is known that the residuals are somehow

normalized. One can specify that ANSYS CFX stop the calculations when the root mean

square (RMS) of the residuals, for every equation, drops below a certain value, or when

the maxirnum residual, for every equation, drops below a certain value. In this work,

unless otherwise specified, the convergence criterion was to stop when the maximum

value of the residuals of all equations dropped below 10-5. This is considerably more

conservative than the default behavior of ANSYS CFX, which stops the simulation as

soon as the RMS of the residuals drops below 10-4 (at which point, some nodes will have

residuals larger than this value, except in the unlikely event that all residuals for every

equation arc exactly equal to 10-a ateverynode).

It should be noted that for fully-developed inlet conditions, the problems are

greatly simplified. The mass conservation equation, and the momentum equations, do

not need to be solved. This removes all the complexity of the pressure-velocity coupling,
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that must be resolved in order to solve the problem. With the velocity f,reld specified,

there remains only to solve the temperature equations in the solid and channel(s). This is

substantially more straightforward than solving all the equations. That is, if one were to

write one's own code, making the fully-developed inlet assumption reduces the

pro gramming effort greatly.

However, in this work, with the use of ANSYS CFX, making the fully-developed

inlet flow assumption does not simplify the calculations, and, in fact, adds extra steps in

the process. To run a case with fully-developed inlet flow conditions, the following

procedure was employed. First, the corresponding case with uniform inlet assumption

was flln. In all cases, the length of the channels (Z) was sufficiently long so that the

fully-developed region was attained before the outlet of the channels. Then, the outlet

profile for the channel(s) in these cases was exported, and, was imported into another

simulation and specified as the inlet hydrodynamic boundary condition. If the channel

length would not have been long enough to attain fully-developed hydrodynamics, it

would have been necessary to execute several passes of the above procedure, until the

total length of all the sirnulations combined was long enough to attain fully-developed

conditions. However, this was not necessary. It should be noted that the procedure used

does not involve any simpliñcation or reduction in the number of steps to run a fully-

developed inlet assumption case. Furthermore, the run-time of the program was not

reduced. Thus, the fully-developed inlet assumption cases were run strictly to see what

effect this assumption has on the solution's accuracy.
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CHAPTER 4

VALIDATION

As mentioned in the preceding chapter, the simulations performed in this work were

solved with the use of CFD packages distributed by ANSYS. Even though these

programs were not written by the author, it was still necessary to be sure that the results

were valid. Therefore, it was necessary to make sure that these programs were working

as expected, and that no errors arose because of errors within the programs, or because, in

some way, the simulations were not being set up correctly.

Furthermore, in any CFD work, it is necessary to ensure that the results obtained

are mesh-independent. That is, the results obtained must not depend significantly on the

choice of mesh. This means that the mesh must be fine enough, so that every physical

feature of the problem is captured, and that no non-physical features are introduced solely

because the mesh is too coarse. Even assuming that no effors were present in the

software, and that the simulations were correctly implemented, the results cannot be

expected to be correct if the mesh used was inadequate.

Thus, this chapter consists of a series of checks, designed to make sure that the

results are mesh-independent and physically correct. These checks come in two varieties.

The first is the standard grid refinernent studies, where, starting with a coarse grid, grid

refinements are made until there is no significant difference in the solution between two

successive refinements. The second is the comparisons of obtained results with known

results. These known results can either be exact analytical results for simplified

geometries, other numerical studies, experimental results, or combinations thereof.

Rather than tackling the exact geometries under consideration in this work right

from the start, it was decided to first consider just a case of simple channel flow,

considering only the hydrodynamics. The reason for this choice was that channel flow is

a simple, well-understood problem, and so, comparisons with known results are possible.

Then, channel flow with heat transfer was studied. Finally, grid refinement tests were

performed on the problems under study in this thesis, particularly the counter-flow

anangement (which is the most difficult problem), and, where possible, comparisons

were made to the results of Vafai andZhu (1999).

-54



4.1 Channel Flow: Hydrodynamics

The problem under consideration in this section is shown in Figure 4.I. A
channel of length Lhas, at one end, flow entering with a uniform velocity Iil¡,,. The fluid

flows through the channel and eventually achieves fully-developed conditions. The

Synrmetry Plane

X

Figure 4.1 : Schematic of the Fluid-Flow Channel-Only Problem

,)

cross-sectional dimensions of the channel arc28" (in the x-direction) and H" (in they-

direction). Because of symmetry, only one half the flow domain is solved. While it

would have been possible to fuither reduce the problem by considering only one quarter

of the channel, it was decided to consider half the problem, since, in the microchannel

heat sink amangements, the channels have only one symmetry plane.

In this section, the following values were used: B":0.5 [mm], Hr:2.0 [mm],I:
80.0 [mm], W¡,,:0.033a717 lmlsl. The abnormal number of decimal places inW¡,,is

explained by the fact that its value was chosen so that a Reynolds number of exactly 50.0

was obtained. This choice was somewhat arbitrary, but, a low Reynolds number was

desired, so as to start out with a problem that is as simple as possible. The Reynolds

No Slip Boundary
Outlet
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number chosen by Vafai and Zhu (1999) is greater than this value, by a factor slightly

greater than2. The fluid that was used is water, with properties taken at25 "C.

The nomenclature used for the various grids studied in this section is illustrated in

Figures 4.2a (for a cross-section) and 4.2b (inthe Z-direction). The grids were

orthogonal and non-uniform. In the X-direction, a small spacing, AX1 was placed near the

wall, and, the X-spacings expanded geometrically, up until the last spacing, LXn,, which

was located adjacent to the plane of symmetry. A geometric expansion of the spacings

means that the ratio of successive spacings is a constant, as follows

where r¡is theX-direction expansion factor andnx is the number ofX-direction spacings.

Additionally, the sum of all the spacings equals the halÊwidth of the channel:

LX, + LX, + LX., +. . .+ 
^X,,.,_r 

+ LX ,,, = B, (4.2)

In the I-direction, the spacings again followed a geometric progression, except that here,

there were two geometric progressions. Starting at the bottom, with a spacing of AI¡, the

spacings increased geometrically until the spacing just below the vertical mid-plane,

which had a length of L,Y,r12, where ny (which must be an even number) is the total

number of I-direction spacings including those above and below the vertical mid-plane.

Then, the spacings above the vertical mid-plane were a minor image of those below it.

The following relations must hold

LY,rz

LX2 
-LX3 -Mo -...- 

M,,r 
=r.LXt AX, LX3 M,._r ^

," _LY, _AYI. _LYo _' AY, LY, LY..

A{ + AY, + LY, +..'+ LY,y/z-t + AY,yrz : H'
2

LY,yrz-t

LZ U'

(4.1)

(4.3)

(4.4)

where ry is the f-direction expansion factor. In the Z-direction, a fine spacing (LZ) was

placed near the inlet, and, along the Z-axis, the spacings increased geometrically in length

by a ratio of r2, defrned as

_. LZr. AZ3 AZo
t7 --' LZ, AZ2 LZ3
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+

1

LYt

Vertical Mid-Plane; Y-

direction mesh is
symmetric with respect
to this plane

Y

1*

LYnytz

LYrytz

+- AXt

Figure 4.2a: GtidNomenclature Used for Channel-Only Problem: Cross-Section

wlrere nz is the number of Z-direction spacings. The following relation must hold in the

Z-direction:

LZ, + LZ, + Mr r...r LZ,,_ = [ (4.6)

It should be noted that the nodes at which the solution variables were solved are located

at the intersections of all the lines that define the various spacings mentioned above.

That is, the nodes are vertex-centered, not cell-centered. More discussion on this

terminology can be found in Patankar (1980).

The reason for these choices regarding the non-uniform spacings in the X- and Y-

directions is that, in a cross-section, a fine mesh is desired near the walls, where gradients

of the solution variables are known to be high, and, near symmetry planes, where

gradients are known to be small, there is no need for extra refinements. The reason for

X
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LZz
.e

a- LZn -)

Figure 4.2b: GridNomenclatwe Used for Channel-Only Problem: Axial Spacings

the refinement in the Z-direction is as follows. Near the inlet, it is known that the

velocity field is developing. Thus, in order to accurately capture the fluid flow

phenomena occurring in the developing region, it is necessary to have a finer mesh in that

region. In the fully-developed region, axial variations are known to be non-existent.

Thus, the axial spacings can be, theoretically, arbitrarily large, since, nothing is changing

in the Z-dfuection, and the problem becomes two-dimensional. Thus, in summary, the

strategy employed here was that more nodes were placed in regions of the flow where it

was known that a finer mesh was desired, at the expense of placing less nodes in regions

where they were not needed.

Three meshes were examined in solving the problem of this section (more grids

were looked at, but only three are presented here). They are denoted the coarse, medium

andfine meshes. Their dehnitions are presented in Table 4.I. It should be noted that,

given the number of spacings along a given axis, and the first spacing, the corresponding

expansion factor is automatically specified, as is the final spacing. In this case, as shown

in Table 4.I, alI of the "initial" spacings (LX1, LY1, and LZt ) had the same value, namely

0.01 [mm]. This choice was somewhat arbitrary, and was made based on experience and

some simple calculations, as a starting point.

LZt---+

'1
I.lZ
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Table 4.1 : Definitions of the Various Grids Used in Solving the Hydrodynamic Problem

Mesh nx tly nz AX1 [mm] AI1 [mm] LZl lmml

Coarse 10 20 100 0.01 0.01 0.01

Medium 15 30 200 0.01 0.01 0.01

Fine 20 40 400 0.01 0.01 0.01

In determining the success or failure of the grid refinement study, the following

definitions, from Shah and London (1978), were relevant

-+Z
ReDn

f0\=!!-Ø- . t n,, -¿P(z) D,, 
.r ' dZ | ,yr 4 dZ 2prwr',

'PtYY 

i"

(4.7)

(4.8)

f",,(z)- 
nu PØ)-P(o), l- =

I
(4.e)

tot'':
zzprwl

where D,, and Re (previously denoteO Reot,; the subscript D¡, is dropped for

convenience) are the hydraulic diameter and the Reynolds number based on this

lrydraulic diameter, respectively, as defined earlier, Z* is anon-dimensional coordinate,

F(Z) is the cross-section average pressure, which is a function of only Z, and P(O) is ttre

average pressure in the inlet (that is, at Z: 0). The non-dimensional Z coordinate given

by Eq. (a.7) is different from the one used earlier when non-dimensionalizing the

governing equations. It is used here only because it will serve to compare with data in

Shah and London (1978), and because, later on, it will be used to set a criteria for

calculating A,21.

In order to perform the grid-refinement tests, three comparisons were made. The

first was to compare, for the various meshes, the values of fnroRe, which are plotted
'-+'-.against Z' rnFigare 4.3. The second was to compare the values o(/Re, which are plotted,
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Figure 4.3: Channel-Only Hydrodynamic Problem Grid Refinement for f"ooRe
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Figure 4.5: Channel-Only Hydrodynamic Problem Grid Refinement for I4/,u,t

. -,+agaiî against T, in Figure 4.4. The third means was to compare the centerline velocity

profiles (Wruut) for the various meshes. The velocity comparisons are made in Figure 4.5.

By a visual inspection of Figure 4.3, it appears that the coarse, medium and fine

meshes give close predictions for f"ooR.e, since all three curves appear to more or less

overlap. The values of f"ooRe predicted using the coarse and medium meshes are always

within I.56 % of each other, while those predicted by the medium and fine meshes are

always within 0.46 % of each other. Thus, based on this information as well as the plot

in Figure 4.3, it appears that grid-independent results have been obtained, as far as

predictingf"ooR-e is concerned. That is, refining the mesh from the coarse to the medium

mesh produced a significant change, but refining from the medium to the fine did not

improve the solution considerably (less than 0.5 o/o), as far asfnrrR¿ is concemed. The

0.46 % discrepancy between the rnedium and fine meshes may seem large, but, since it is

only desired, in this section, to obtain general ideas about what is needed in a mesh, and

to see that the problem was coffectly setup, the 0.46 o/o discrepancy is small enough for

the purposes of this section.
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Looking atthe/Re predictions, now, the plot in Figure 4.4 shows that visually, the

curyes for the coarse, medium and fine meshes appear to more or less overlap. TheJRe

curve generated by the coarse mesh and that generated by the medium mesh are always

within 2.25 % of each other, while the/Re curve generated by the medium mesh is

always within 0.64 % of the/Re curve generated from the solution using the fine mesh.

It should be kept in mind thatbothf"rrR.e andfRe, while they are important

quantities with which to compare the current solutions to known results from the

literature, are cross-section averaged quantities. As such, it is possible, theoretically, that

they somehow "smear-out" differences that exist within a cross-section. That is, the

value of JRe in a given cross-section may be the same for two different meshes, even

though the meshes have different pressure distributions within the cross-section.

Therefore, it is also desired to base the grid-independence test on non-averaged

quantities. This was accomplished by looking at the centerline velocity, denoted as W,u,¡.

Because the problem was solved by making use of symmetry, and hence only half the

domain was modeled, the centerline velocity is the velocity on the line located at the left

of thedomain, atavertical())height of H"l2,going ftomZ:0to Z:L.
Figure 4.5 shows the prediction of Vlru,¡ for the coarse, medium and fine meshes.

It should be noted that, at Z:0, all three curves start at the value of W¡,,, which for this

case is 0.03347I1 [m/s]. The W,u,,¡ solution obtained from the coarse mesh and the one

obtained from the medium mesh are within 0.7I % of each other, while the W,",,¡

solutions from the medium mesh and the one from the fine mesh are within 0.20 o/o of
each other. This indicated that the solution is mesh-independent as far as W"u,,¡ is

concerned.

So, since grid-independent behavior was obtained forf.ooR.e,fRe and W,uu¡,

confidence was gained that the current solutions are, indeed, grid independent. That is,

the medium mesh should be good enough, since refining the mesh fuither produced only

small changes f"orR.e, fRe and Wruu¡.

In addition to performing grid-independence tests, it was desired to assess the

quality of the solution by making comparisons to known results. Here, Shah and London

(1978) provided datathat enables such comparisons to be made. In particular, they
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provided data that can be used to checkf"rrRe inthe developing region, as well asJRe and

W,u,¡ in the fully-developed region.

Shah and London (1978) provided an analytical solution that can be used to

calculate the fully-developed velocity at any value ofXand I. This solution, which

involves the evaluation of two infinite series, was applied by truncating the infinite series

after a sufficient number of terms. In every case when an infinite series was evaluated in

applying this solution, the series was truncated after no less than 801 terms (of which at

least 400 were non-zero). While this choice was somewhat arbitrary, it ensured that the

truncation effor was well below a reasonable cutoff value. Applying this solution with

the relevant parameter values for this case, the fully-developed value of the centerline

velocity, Wcent,ftr, was calculated to be 0.06666874 [m/s]. The coarse, medium and fine

meshes predicted this value with absolute relative percent errors of 1.0 yo,0.32 o/o and

0.I3 yo, respectively. Thus, it can be said that the current velocity predictions are not

only grid-independent; they are also in agreement with known values.

The fully-developed value of JRe given in Shan and London (1978), for the aspect

ratio used in this case, is 15.54806. The coarse, medium and fine meshes predicted this

value with absolute relative percent errors of 0.96 o/o,0.29 %o and 0.084 o/o, respectively.

Thus, the prediction of JRe was grid-independent, and the predicted fully-developed value

of /Re compared well with the known value.

It should be kept in rnind that, while encouraging, the preceding tests only test for

the correctness of fully-developed values. Obtaining good predictions in the fully-

developed region is an indication that the grid within a cross-section is adequate.

However, in order to ensure that the axial grid is also adequate, it is necessary to compare

the solution against known values in the developing region. Fortunately, Shah and

London (1978) also provided values of f,,rrRe in the developing region.

ThefnooRe values provided by Shan and London (1978), along with the values

predicted by the fine mesh, are plotted in Figure 4.6. It is clear from this figure that the

values predicted by the fine mesh are not in agreement with the values provided by Shah

and London (i978). The disagreement is greater for lower values of /. At the smallest

Z* value for which Shah and London (1978) report a value of fnooRe,namely / :0.00I,
the discrepancy is greater than 50 %. Atthe highest value of Z* for which Shah and
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Figure 4.6: Channel-Only Hydrodl,namic Problem Comparisons with Known
Results for f,ooRe

London (1978) report a value of fnroRe,namely / : O.I, the discrepancy is

approxirnately 13 %. This non-agreement definitely needed to be addressed before

proceeding.

In an attempt to resolve this discrepancy, it was decided to re-run the current case

with what another mesh, termed the very fine mesh, to see if, in spite of earlier,

apparently-successful grid-refinement tests, the results were still somehow not mesh-

independent. The specifications of the very fine mesh are as follows: nx : 40, ny : 80, nz

:400; LXt :0.01 fmml, LYt:0.01 [mm], LZt:5x10-5 lmml. The most significant

difference between the fine and very fine meshes is that the value of LZ t is 5x 10-s [mm]

in the very finemesh, and 0.01 [mm] in the fine mesh. Thus, LZ¡ has been reduced by a

factor of 200. The choice for the value of LZt for the very fine mesh was made by

selecting A,Zt sùchthat LZi < 10-6. It was hoped that this refinement in LZ¡ would solve

the problem of the large errors in predicting.fnppRe, particularly at near the inlet.

Figure 4.7 shows the predictions of the fine and very fine meshes, along with the

data presented in Shah and London (1978). It is clear from this figure that the very fine

100.01
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mesh does not change thefnrrRe prediction materially, except at lower values of 2",

where slight discrepancies between the fine and very fine meshes are observed. This

140
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foppRt.oo

0
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ù

Figure 4.7: Charnel-Only Hydrodynamic Problem Comparisons with Known
Results for fnorR.e: Second Pass

suggests that earlier results were indeed mesh independent. However, the problem

remains: none of the meshes produced results agreeing with known results.

Therefore, it was attempted to determine the cause of this non-agreement between

the present model and known results. This required much thought, a careful review of
the procedure being used, a re-reading of the ANSYS CFX and ANSYS ICEM CFD

documentation, and a re-reading of the relevant sections of Shah and London (1978). It

was during this re-reading of Shah and London (1978) that the cause of the problem was

discovered. It tums out that the data presented in Shah and London (1978) were obtained

by a marching technique, one which must therefore ignore certain terms in the governing

equations. This was done because, at the time when these data were generated, the

limited computing resources would have rendered the solution to the full governing

equations infeasible. It can be reasoned on physical and mathematical grounds that

180

160

fine grid
very fine

Shah and London (1978) Data
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employing the marching technique will produce greater error for lower Reynolds

numbers, in the developing region. At higher Relmolds numbers, the error introduced by

the marching procedure becomes smaller. Thus, even though there is no explicit mention

in Shah and London (1978) of any Reynolds number dependence of the f"oÅ" results

presented, it can be reasoned that these results are valid only for ceúain Reynolds

numbers. The Reynolds number must be large enough to avoid the errors associated with

the marching technique, but small enough so that the flow is still laminar. This provides

a plausible explanation as to why none of the simulations produced good predictions of

fnooRe: at the currently chosen Reynolds number of 50, the terms neglected in arriving at

the data in Shah and London (1978) are large in the developing region, and, because

ANSYS CFX does not ignore these terms, the current results differ significantly from the

"known" results.

Thus, to obtain agreement withthef"pÅ.e datain Shah and London (1978), it

would be necessary to either repeat the calculations by omitting the terms that were

neglected (which is not possible in ANSYS CFX, to the best knowledge of the author),

or, repeat the calculations with a greater Re1'nolds number. Figure 4.8 shows the

predictions of fnooRe obtained, for various Reynolds numbers, using the very fine mesh

for all cases (the value of LZ, was modified in each case, to give the same AZi as was

used in the Re: 50 case). From a visual inspection of this figure, it is clear that, for low

Reynolds number, the data in Shah and London (1978) agrees poorly with the data

generated in this work, but, as the Reynolds number increases, agreement between the

data of Shah and London (1978) and the results of the present computations using

ANSYS CFX improves. For Reynolds numbers of Re :500, Re : 1000 and Re: 2000

(the "D¡," subscript on the Reynolds number is again omitted for convenience), the

maximum absolute relative percent differences to the Shah and London (1978) data are,

13.2 yo,8.62 o/o, and3.7I oZ, respectively. Even though the 3.71olo discrepancy for the

Re :2000 case is not as small as would have been desired, the progressive reduction of
errors as the Relmolds number is increased is undeniable. It is suspected that running a

case with a higher Reynolds number, and instructing ANSYS CFX to use laminar flow

comelations even the flow would be known to be turbulent (or in the laminar-turbulent

transition), would yield an even smaller discrepancy inthef,roRe values in the developing
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region. However, this was not done, since, this would not be "correct" (using laminar

goveming equations to a non-laminar problem) and because it was felt that there was
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Figure 4.8: Channel-Only Hydrodlnamic Problem Comparisons with Known

Results for fnrrRe: Effect of Reynolds Number

sufficient evidence to confirm that the available data was being matched, when the

assumptions made to obtain this data were preserved. It should be mentioned in passing

that, since the purpose of this section is simply to confirm that everything was being done

correctly in setting up the simulations, and to obtain some idea of the grid necessary to

solve the microchannel problems of this thesis, grid-refinement tests were not repeated on

the higher Reynolds number cases.

Thus, having obtained grid-independent behavior, and having obtained solutions

that match available data in the developing and fully-developed regions, it is possible to

proceed to fufther comparisons. Before examining the complete microchannel problems,

the analysis presented in this section will be extended to include heat transfer. This is the

subject of the following section.

0.10.01
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4.2 Channel Flow: Heat Transfer

The problem under consideration in this section is shown schematically in Figure

4.9. Flow enters at Z :0 with a uniform velocity and uniform temperature of W¡n and T¡,,,

respectively. The channel has a width of 28,, a height of H, and a length Z. Unlike the

Symmetry
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1_,
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Ll,,
7,,

i/B"

No-Slip
Boundaries No Slip Boundary

T: T,,ottT: T,,ott

,J
Figure 4.9: Schematic of the Heat Transfer Channel-Only Problem

hydrodynamic problem of the previous section, where only one plane of symmetry was

used, here two planes of symmetry are used. Thus, the width and height of the solution

domain are B" unA \, respectively. The sides of the channel are held at a uniform
¿

temperature T,ya¡. Because of symmetry, only two sides (the left and bottom sides of a

cross-section of the solution domain, when viewed towards the negative Z direction) have

a uniform-temperature boundary condition, while the remaining two sides of the solution

domain have a symmetry boundary condition. At the channel outlet, ANSYS CFX

imposes a zero-axial-gradient boundary condition. While this boundary condition is not

strictly speaking correct, it is expected that the impact of making this approximation is

Outlet

Y
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negligible (if this is not coruect, it will be seen later in the comparisons with known

results).

The grid used for this problem is similar to that used in the previous section. It is

identical in the X and Z directions, and almost identical in the Idirection. The only

difference in the X direction is that, since there is now a vertical symmetry plane, the

spacings continually expand with height, unlike in the preceding section, where they

expanded and then contracted. The I-direction grid is illustrated in Figure 4.10. The

 lYz +

Figure 4.10: Schematic of I-Direction Grid for the Heat Transfer Channel-Only Problem

rnathematical relations given in Eqs. (4.1) - (4.2), as well as Eqs. (4.5) - (4.6) are still

valid in this section. However, the relations given by Eqs. (4.4) - (4.5) no longer apply.

Their counterpafts in the problem being solved in this section are:

Y

1I
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-. LY" AY' AYo LY,
Iv 

--' aY, aY., aY.. aYr_t
(4.10)

(4.tr)

(4.r2)

Three different grids were considered in this section, and their definitions are presented in

Table 4.2. It should be remembered that the nodes arc atthe intersecriozs of the lines

that delimit the various spacings. The values of L,Zt were chosen to ensure that

LZi <rc-6 .

The values of the various parameters defining the problem of this section are as

follows: B,:0.5 [mm], H":2.0 [mm], L:300 [mm], l/¡,,:23.17721rn/s],T¡,,:300

lK), T*m:400 [K]. The fluid was constant-property air, but where the value of the

thermal conductivity has been modified, slightly, to the value needed to yield a Prandtl

number of exactly 0.72. This was done because the results available in Shah and London

(1978) are for a Prandtl number of 0.72. The value of W¡, was chosen to give a Reynolds

number of 2000.

In order the perform both the grid refinement test and the comparisons to known

results, it is necessary to def,rne a variable that characterizes the heat transfer problem.

First, the local Nusselt number is defined as follows:

LY, + LY, + LY, +'-. + LYrt + AY,), - 
H'

2

wu(z)=T

where h2 is the axially local (but averaged over the perimeter of the channel) heat transfer

coefficient, given by

t^ - 
q';

,rz _ ,r*_7ffi

Table 4.2: Definitions of the Various Grids Used in Solving the Heat Transfer Problem

Mesh nx ny n.z AX1 [mm] AI/¡ [mm] LZl lmml

Coarse 10 20 100 0.01 0.01 0.002

Medium 20 40 200 0.01 0.01 0.002

Fine 40 80 400 0.00i 0.001 0.002
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where q') is axially local (but averaged over the perimeter of the channel) heat flux, and

Tt¿t(4 is the bulk temperature in the channel atthe given Z coordinate. This bulk

temperature represents some sort of "average" temperature, except that, in the averaging

process, the temperature is weighted with the mass flow rate. It should be noted that,

from the solution field, it is possible to have ANSYS CFX calculate q') and 76,,¡¡(Q at

any desired Zlocation. Once the local Nusselt number has been calculated for a variety

of values of Z, the "mean" Nusselt number can be calculated from

(4.r4)

Thus, the mean Nusselt number is a quantity that varies with Z, and represents an axial

averaging of the local Nusselt number from the inlet, up to the Zlocationwhere the mean

Nusselt number is to be determined.

It should be noted that the determination of the mean Nusselt number involves the

evaluation of an integral. This was done, in the present work, by applying the trapezoidal

rule between each successive values of the local Nusselt number. Thus, the accuracy of

the mean Nusselt number depends on the choice of sampling points at which values of

the local Nusselt number are calculated. If the sampling of points is not adequate,

particularly at low values of Z, where the values of Nu(Q are larger and the absolute

value of its axial gradient is largest, then poor predictions of Nu,,, will result. This will be

the case even ifthe solution fields obtained by ANSYS CFX are arbitrarily close to the

"exact" answer. Through a series of tests that are not presented here, it was found that

using a sampling distribution that consisted of evaluating the local number at each Z

location where nodes are located was sufficient.

To allow comparisons of the mean Nusselt number data obtained in this work

with that presented in Shah and London (i978), it is necessary to define a new

dimensionless Z coordinate, called Z*, since Shah and London (1978) presented the

variation of Nu,,, with this variable. The definition of Z* is

_*zz = D,ß"Pry (4'15)

where once again the subscript D7, is dropped on Re for convenience, and where Pr¡is the

Prandtl number of the fluid.

Nu,,, = ï'lJ"rt )¿z

7I



A Reynolds number of 2000 was chosen in the current case because the mean

Nusselt data in Shah and London (1978) is only valid at higher Reynolds number within

the laminar flow regime. This is because the model used to generate the data in Shah and

London (1978) neglected the effect of axial momentum diffusion. Furthermore, this

model was based on the assumption that the transverse components of velocity ((l and.t)

weÍe zero. This is only true in the fully-developed region. Thus, even if the current

solution is completely correct, agreement between the predicted mean Nusselt numbers

and those presented by Shah and London (1978) is only expected in the fully-developed

region. It is further expected that the discrepancy should be largest near the inlet, and

monotonically decrease with Z* .

The following point should be mentioned in passing. ANSYS CFX uses a

solution procedure whereby two values are calculated at each node that is located on the

boundaries of the domain. One value is termed the "conservative" value, which comes

from the solution of the conseruation equation at the control volume around the boundary

node. The other is called the "hybrid" value, which is the value at the boundary node

when the value is specified as a boundary condition. More details on this can be found in

the ANSYS CFX documentation (2007). ANSYS CFX gives the user the choice, when

determining various values, such as Ttutt(4, to use either conservative values or hybrid

values. It was discovered thlough tests not documented here that the proper values to use

are the conservative values. By default, if the user does nothing explicit, hybrid values

will be used by ANSYS CFX.

Figure 4.1 I shows the Nu,,, profiles obtained using the coarse, medium and fine

grids, along with the data from Shah and London (1978). From a visual inspection of the

profiles generated using the three different meshes, it is clear that gnd-independent

behavior was obtained. Qualitatively, the predictions given by the coarse and medium

meshes in Fig. 4.11 were within 0.85 % of each other, while those given by the medium

and fine meshes were within0.32 %o of each other. Thus, grid independent behavior was

observed. As expected, none of the grids closely predict the data presented in Shah and

London (1978), except for higher values of Z*. At the highest Z* value for which Shah

and London (1978) report a value fot Nu,,,, namely Z* :0.1, the coarse, medium and fine

meshes predict the value of Nu,,, within absolute relative percent errors of 1.2 o/o,0.37 yo
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and 0.36 o/o, respectively. At the lowest value for which Shah and London (1975) report

a value, namely Z. : 11220, the discrepancy between the data presented in Shah and

London (1978) and the data obtained here, for all three grids, are approximately 22 %.

Thus, even in the worst case scenario, the present data matched that of Shah and London

(1978) to within engineering accvracy. This is surprising, given that the current model

does not neglect transverse velocity components, while that used in arriving at the data

presented in Shah and London (1978) does.

100
corase 

-
medium - - -

fine ---
Shah and London (1978) Data x

*""ìì
x x x

0.001

kio

1

0.01 0.1*T
.¿-

Figure 4.1 1: Mean Nusselt Number Predictions for the Heat Transfer Problem

Thus, having performed a number of tests on a single-channel hydrodynamic and

a single-channel thermodynamic problem, it is possible to proceed with the examination

of full microchannel problems. This is considered in the next section.

4.3 Counter-Flow: First Pass

The tests that have been perfotmed in the previous two sections, on both the

hydrodynamics and thermodynamics of channel flow, have been done as an intermediate

- tJ -



step before analyzing a full microchannel problem. The purpose of this section is to

apply the knowledge and experience gained in the process to solve a microchannel

problem. The problem examined in this section is the counter-flow arrangement, with a

low Reynolds number assuming developing flow. The choice of the counter-flow

ariangement was made because it matched the case run by Yafai andZhu (1999) and

because it was thought that this would be the toughest case (where, by the "toughest

case", it is meant that this case would be the most demanding on the grid, such that a gnd

that solves this arrangement will also solve the other arrangements, but the converse is

not necessarily true).

Using the experience gained in the preceding fwo sections, it was.decided to make

a first attempt at a grid on the counter-flow affangement. The nomenclature for this grid

is shown in Figs. 4.12a and 4.12b. It should be noted that, while for convenience, Fig.

4.12a contains the cross-sectional grids for the upper channel, the lower charurel and the

solid region all on the same sketch, the cross-sections in which there are nodes in the

three regions are not the same (except at the faces Z: 0 and Z: L). In a cross-section,

the node spacings in the Xdirection in both channels followed a geometric progression,

with the finest spacing, LX",¡,located next to the solid region, and the spacings increased

geometrically by a ratio r¡". Thus, the following must hold:

M r,z M 
",t 

M r.o M 
",,,"

where r¡, rs the X-direction expansion factor in the channels and nxc is the number of X-

direction spacings in the channels. Additionally,

M 
".t 

t M r,z * M 
",t 

r'..+ LX r,,,rr--, * M,.,r" = B"

(4.16)

(4.r7)

ln a cross-section in the channels, the l/-direction spacings followed two geometric

progressions: the finest I-spacing, LYr,t was located at the bottom of the channel; from

there, the spacings increased geometrically with increasing height in the channel, up to

tlre channel's middle height, directly below which there was a spacing of A,Yr,,r,¡2. Then,
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Figure 4.12a: Cross-Sectional Grid Nomenclature for the First Attempt at the
Counter-Flow Arrangement Problem

the top half of each of the channels was a minor image of its lower half. The following

must hold:

Y

1_
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Figure 4.I2b: Axial Grid Nomenclature for the First Attempt at the Counter-Flow
Arrangement Problem

LY,,, 
=LY,,, - LY"j 

=.!.= 
LY,.us,,tz 

--LY,.t LY,,z LY".z AY,.,v,t2_, - "'
(4.18)

(4.1e)

wlrere ry" is the I-direction expansion factor in the channels and nyc is the number of )'-

direction spacings in the channels. Additionally, the sum of all the spacings equals the

half-width of the channel:

A.Y,,, + AY,,, + AY,,, + ...+ LY,.,y,_, + LY".r," -H"
2

where nyc is the number of l/-direction spacings. The X-direction spacing was chosen

such that there was an integral number of spacings in the "fin" regions, and an integral

number of spacings in the region to the left of the channels. In the )'-direction, there was

an integral number of spacings in each of the following regions: in the area below the
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bottom chan-nel, in the areato the left of the lower charurel, the area in between the two

channels, and in the area to the left of the upper channel.

Axially, the Z-direction spacings were as shown in Fig. 4.I2b. It should be

remembered that, in this view, which looks towards the negative X-direction, there was

some solid material "behind" each of the two channels. ln the channels, there was a

geometric progression, with the smallest spacing of LZr.¡,located at each channel's

respective inlet, and, the spacings increased geometrically with ratio 17" along each

channel's direction of flow. Because the direction of flow was different, each channel

had its smallest spacing at opposite ends. Mathematically, it can be written that

L2,,, 
- 

LZ r,, 
= 

LZ 
",0 = . .. = 

Ot 
",,." - ,r" (4.22)L2,,, AZ ",2 LZ ",, LZ ".,""_t 

L(

and

AZ",r+ L2",, + M"'r'.'+ A2,,,,,"_, + L2",,,,, = L (4.23)

In tlre solid, in the Z-direction, the spacings followed two geometric progressions:

starting from one end, the spacings increased from A,Zr,l by a ratio rz,, \p to the middle, at

which point the spacings decreased towards the other end, by the same ratio, such that the

second half was a tnirror image of the first. Here, the following relations were

applicable:

LZr.z 
=AZrl:LZr.o =r..: 

AZr,r=rtz 
-r-- Ø.24\

M r.t A2,., M r,s M s,n,s/2_1

and

AZr., + A2,., + LZ r,, +...r L2,,,,,r¡r-t + LZ ",^,, = 
L= 

(4.23)s,Izs t ! 
2

The values of the parameters that specify the grid were as follows (parameters not listed

can be calculated from listed values): AX": 2.0lpml, AI,: 2.0lpm], LZ,,t:1.0l¡tnfi,
nzs : 400, AXr,¡ : 0.5 lpnt], LY",t :0.5 f¡tm), nxc:20, nyc : 40, L,Zr,¡: 0.05 llrml,
nzc: 400.

However, this grid did not yield realistic results. This is shown in Fig. 4.13, where

the temperature profiles, at X:0, are plotted against Z for various values of )¿ Those

fluctuations in the temperature profile are not realistic, and furthermore, Vafai and
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Figure 4. 13: Temperature Profiles Along Z, for Various )z Values, at X :0, for the Grid
Used in Section 4.3

Zhu (1999) obtained no oscillations when drawing these profiles. Thus, the current

attempt at a grid is not adequate. It was suspected that, while ANSYS CFX can

theoretically handle grids where the nodes do not line up 1:1 at the interfaces, the

interpolation scheme used was causing problems, perhaps exacerbated by other factors

such as the aspect ratio of the control volumes. Thus, it was decided to avoid the non-

matching nodes at the interface, by using only 1:1 nodal connections at interfaces, and, as

a first step, using only uniform spacings. This is explored in the next section.

4.4 Counter-Flow: Uniform Grids

In order to solve the problem of the nonphysical results obtained in the previous

section, it was decided to perform the calculations using uniform gnds. This would

eliminate the effect of the non-1:1 nodal connections at the interfaces, and hopefully,

produce physically realistic results. The problem examined in this section is that of the

counter-flow arrangement, with a low Reynolds number, and using the uniform inlet

velocity assumption (Case i).
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The nomenclature of the grids used in this section is shown in Fig. 4.l4afor a

cross-section and in Fig. 4.I4b for the axial distribution. In a cross-section, the nodes

were spaced a length of A,X, in the X-direction, and a length of AI in the I-direction. The

X- and )z-spacings were chosen such that there was an integral number of X-spacings in

each of B. anO (f - B"), and an integral number of Y-spacings in each of H, andll¡. This

ensured that every "control volume" was located entirely within one of the following

three regions: the bottom channel, the top channel, the solid region. Axially, the nodes

were spaced a distance LZ. With nx, ny and nz being, respectively, the number of X-, Y-

and Z-direction spacings, the following relations must hold:

nxLX = B

nyLY = H

nzLZ = L

(4.24)

(4.2s)

(4.26)

Once again, it should be kept in mind that the nodes were located at the intersections of

tlre lines that define the various spacings.

Table 4.3 summarizes the parameters of the grids used in this section. The

corresponding values of A,X, LY, LZ can be calculated from Eqs. (4.24) - (4.26), and are

hence not listed.

Table 4.3: Definitions of the Various Uniform Grids Used in Solving the Counter-Flow
Problem

Mesh t'tx ny nz

Coarse 10 36 100

Medium 20 60 200

Fine 40 t20 400

While solving the counter-flow arrangement problem using these grids,

convergence problems were encountered. After searching to determine the cause of this

problem, it was discovered that, for the values of the parameters used in Vafai andZhu

(1999), it was necessary to use double precision in the solution. The reason for this is

that, with the relatively small heat flux supplied, the temperature f,reld, particularly in the

solid, contained gradients that were too small to capture with single precision (while this
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{- lz

Figure 4.14b: Axial Grid Nomenclature for the Counter-Flow Arrangement Problem
Using Uniform Grids

may seem to suggest that the problem studied is not of practical importance, it should be

remembered that the results can be non-dimensionalized, and, when scaled up, the results

have practical si gnificance).

In order to assess the grid-independence of the solution, and to later compare the

current solutions with those of Vafai and Zhu (1999), it is necessary to define a few lines

at this point, along which the temperature will be plotted. Figure 4.15 shows the various

lines, defined in a cross-section. These lines are valid for the counter-flow and parallel-

flow arrangements (for the other arrangements, other definitions, presented later, are

defined). As shown, there are four veftical lines and four horizontal lines in a cross-

section, whose descriptions are as follows:

o Line "a": vertical line passing along the left hand side of the domain (X: 0; from

Y- 0to Y: ÍÐ

Z
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o Line "b": vertical line passing along the vertical interface planes between the

channels and the solid (X: B - B"; from I:0 to Y: ÊÐ

o Line "c": vertical line passing one quarter of the channels'width (or one half of

the portion of the channels'width located within one repeat unit) to the right of

the vertical channel-solid interfaces (X: B -+; from l: 0 to Y: IÐ' 2'
. Line "d": vertical line passing along the symmetry planes of both channels, which

is at the right side of the repeat unit (X: B ; from I: 0 to Y: IÐ
. Line "4": horizontal line passing along the bottom of the domain (I:0; from

X:0 to X: B)

o Line "8": horizontal line passing along the vertical middle of the bottom channel

ff
(Y: H¡+!:; from X:OtoX: B)2'

. Line "C": horizontal line passing midway between the top of the bottom channel,

and the bottom of the top channel (f : 1 U, * H 
" 
; lrom X : O to X : B )' 2 r ,'

. Line "D": horizontal line passing along the vertical middle of the top channel

j
(Y: 2H, *;r,; from X:0 to X: B)

In order to completely specify the above-described lines, it is necessary to specify in

which axial cross-section they are located. Five axial cross-sections were considered in

this work. They are:

o Cross-section " 1 " : cross-section in which are located the inlet of the top chamel,

and the outlet of the bottom channel (Z: 0)

o Cross-section "2": cross-section located 5 o/o of the channels' length away from the

top channel inlet, or 95 o/o of the channels' length away from the bottom channel

inlet (Z: 0.05 Z)

o Cross-section "3": cross-section passing along the axial middle

. Cross-section "4": cross-section located 95 o/o of the channels'length away from

the top channel inlet, or 5 %o of the channels'length away from the bottom

channel inlet (Z:0.95 L)
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Cross-section "5":

and the inlet of the

cross-section in which are located

bottom channel (Z: L)

YÏ

Line "d"

Line "c"

Line "b"

Line "at'

X

,t/

Figure 4.15: Schematic Representation of the Various Cross-Sectional Lines Along
V/hich Solution Fields can be Plotted

Thus, a line is completely specified by giving its letter designation, along with the

number corresponding the cross-section in which it is located. For example, line "c", in

cross-section "4" would be designated as "line c4" (without the quotes), or simply "c4"

(without the quotes), and it would have as its extremities the points (X: B -+, Y:0, Z
2

: 0.95 L) and (X: B -+ , Y: H, Z: 0.g5¿). With the 8 lines within a cross-section,2'
and the 5 cross-sections, atotal of 40 lines have been defined thus far.

the outlet of the top channel,

Line "C"

Line "8"

Line "A"

->
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In addition to the 40 lines defined so far, the following 4 lines are also defined:

. Line "AX": a line parallel to the direction of flow in the channels, having as its

extremities the points (X : 0, Y : 0, Z : 0) and (X : 0, Y : 0, Z : L)

. Line "BX": a line parallel to the direction of flow in the channels, having as its

extremities the points (X: 0, Y : H, . +, Z : 0) and, (X: 0, Y : U, * ?,
Z: L)

. Line "CX": a line parallel to the direction of flow in the channels, having as its

extremities the points (X : 0, t : 1 U, * H 
", 

Z : 0) and (X : O, Y : 1 O, * U 
",2'2

Z: L)

. Line "DX": a line parallel to the direction of flow in the channels, having as its

extremities the points (X: 0, Y : 2H r *1 n 
", 

Z : O)and (X: 0,'2
3Y:2Hr*;r",2:L)

A word of caution is in order for readers who might be comparing this work to

that of Vafai andZhu (1999). As much as possible, the current work used the same'

nomenclature as that used by Vafai andZht¿. (1999) in defining the lines above. The eight

letter-designations of lines in a cross-section are the same as Vafai and Zhu ( 1 999) used.

However, they did not employ a numbering scheme; instead, they simply quoted the Z

value where the line was located. Furthermore, they only studied temperature profiles at

three axial cross-sections, instead of five. The most significant difference is that their Z

axis is in the opposite direction as the one used in this work. Thus, what they refer to as

"Z: L", is referred to as "Z: 0" in this work. This choice was made to avoid the use a

left-handed coordinate system. Furthermore, what is refer¡ed to as "AX" in this work,

they refer to as "4". Here, the deviation from their notation was done to avoid

ambiguous notation.

Figure 4.16 shows the temperature prof,rles along the various axial lines, using the

results obtained from the coarse mesh. It is analogous to Figure 4.I3 inthe previous

section, except that the coarse uniform mesh of this section is used. It is encouraging to

note that oscillatory, non-physical temperature profiles are no longer obtained. Instead,
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physically realistic results, which qualitatively agree with the results of Vafai and Zhu

(1999), are obtained. Furthermore, while not documented here, similar plots using the

medium and fine meshes produce the same result. Therefore, a grid-refinement test of
the grids used in this section can now be performed.

Figure 4.17 shows the temperature profiles along line AX, using the coarse,

medium and fine grids. A visual examination of this plot shows that the three grids give

temperature predictions, along line AX, that are close together, with the maximum

deviations occurring at the two extremities, namely Z:0 and Z: L. Qualitatively, the

temperature predictions of the coarse and medium grids are within 0.052 o/o of each other,

while the predictions of the medium and fine grids are within 0.020 %o of each other. In

both cases, the maximum discrepancies occur at Z: L.
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Figure 4.16: Temperature Prohles Along Axial Lines Using Coarse Uniform Grid for
the Case I Problem

While the results shown in Figure 4.I7 are encouraging, it should be remembered

that the temperature profiles therein are taken along a line located entirely within the
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solid. It was decided, then, to also perform a grid-refinement test on a line that passes

through the fluid.regions. The reason for this is that the heat transfer phenomenon in the

304.5
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303.5

303

T [K] soz.s

302

301.5

301

300.5

Coarse Grid 

-
MediumGrid - - -

FineGrid ---

0.006 0.007 0.0080 0.001 0.002 0.003 0.004 0.005

zlml
Figure 4.17: Temperature Profiles Along Line AX Using the Various Uniform Grids for

the Case 1 Problem

fluid is more complicated than that in the solid, and, it is quite possible that the

temperature profiles obtained by the three meshes differ more significantly from each

other in other regions of the domain, particularly in the fluid. Thus, it was decided to

perform a grid-refinement test along line c2. This is shown in Figure 4.18. This figure

reveals aneaÍ overlap of the temperature predictions for the coarse, medium and fine

grids, except in a few locations, such as Y: H. Quantitatively, the predictions of the

temperature along line c2 of the coarse and medium grids are within 0.043 Yo of each

other, while those of the medium and fine grids are within 0.018 o/o of each other. kt

both cases, the maximum discrepancy occurs in the region of steep gradient, located near

Ï: 0.00015 [m], which corresponds to a location within the top channel, close to the

bottom of this upper channel.
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Figure 4.18: Temperature Profile Along Line c2 Using the Various Uniform Grids for
the Case 1 Problem

The following point should be kept in mind. Along line AX, the temperature

predictions of the medium and fine grids were within 0.020 o/o of each other, and, along

Iine c2, they were within 0.018 o/o of each other. While this is indeed what is desired in a

grid-refinement study, since it shows that the ref,rnement from the medium grid to the fine

grid has produced no noticeable change in the solution, the amount by which the grrd-

refinement test is successful can appear, at first glance, more than it is in reality. The

temperatures in Figures 4.17 and 4.18 hover near 300 [K]. Thus, a difference as large 1.5

[K] still comesponds to only about 0.5 %. However, given that the range of temperature

values in Figures 4.I7 and 4.18 is less than 5 [K], a discrepancy of 1.5 [K] would be quite

considerable, even though it would only correspond to a 0.5 o/o discrepancy between two

temperature profiles. Thus, the relatively high magnitudes of the temperatures, combined

with the comparatively small range of temperatures in the solutions, gives the impression

that the grid-refinement test is more successful than it is. It is still successful, but not as

much as one might believe judging only from the low discrepancies between the medium

and fine meshes.
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The problem under consideration so far in this section is the counter-flow

problem, with a low Reynolds number, using the uniform inlet assumption. That is, Case

1 (Table 3.1 contains the definitions of this case, as well as the other cases examined in

this work). Even though the grids of this section passed the grid-refinement test, when

used on Case 1, it was decided to test the grids on the corresponding high Reynolds

number case, namely Case 3. This is done because, with the higher mass flow rates, the

grids of this section may not be adequate on Case 3, particularly in regions of steep

gradients, even though the gdd-refinement of Case 1 was successful. Since the goal is

ultimately to find of a grid that will work for all problems considered in this thesis, it is

necessary to achieve grid-independent behavior for Case 3 as well. ln theory, Case 3

could have been examined directly, without worrying about Case 1, but, since Case I

corresponds to the same Reynolds number as used by Vafai and Zhtt (1999), it was

decided to first consider Case I . It should be mentioned in passin g that, since the

supplied heat flux is greater in Case 3 than it is in Case 1, by a factor of 10, the

temperature f,reld in Case 3 will span a larger Íange, which will partially alleviate the

problem described in the preceding paragraph.

Figure 4.19 shows the ternperature predictions along line AX for Case 3, for the

uniform grids examined in this section. Here, it cannot be said that the curves nearly

overlap. The typical grid-refinement pattern is observed: the difference between the

predictions of the coarse mesh and the medium mesh is relatively large, and the

difference between the medium mesh and the fine mesh is comparatively smaller.

Nonetheless, none of the temperature profiles is visually identical to another.

Quantitatively, the temperature profiles obtained using the coarse and medium grids are

within 0.96 % of each other, while those using the medium and fine mesh are within

0.53 % of each other. Thus, while the correct trend is observed with successive grid

refinements, the discrepancy between the predictions oithe medium and fine meshes is

still too great (especially, as discussed earlier, that the range of temperature data is small

compared to the magnitude of the temperatures). Thus, the solution to Case 3 cannot be

considered mesh-independent.
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The temperature profiles along line c2, for the uniform grids of this section, are

shown in Figure 4.20. The temperature predictions of the coarse and medium meshes are

within 0.74 % of each other, while those of the medium and fine meshes are within

0.25 % of each other. Even though the maximum discrepancies occur in the solid, it

becomes apparent upon further reasoning that it is not the grid in the solid that is

inadequate. Every grid predicts the same basic trend (slope) of the temperature profile in

the solid. The only difference is at what height the temperature in the solid is placed.

This actually depends on how well the gradient is captured in the fluids. If the gradient is

not correct, it skews the location of the solid temperature profile, but, the "shape" of the

profiles are nevertheless correct. Thus, what is missing is refinement in the fluids, near

the walls.

Thus, some success was encountered in this section, particularly in the Case 1

problem. For Case 3, however, it turns out that the results are not mesh-independent.

However, since it was not feasible, due to computing resource issues, to further refine

Coarse Grid
Medium Grid

Fine Grid
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Figure 4.20: Temperature Profiles Along Line c2 Using the Various Uniform Grids for
the Case 3 Problem

the grids, it was necessary to keep the same number of nodes, and redistribute them,

placing rnore nodes where they are most needed, namely in regions of high gradients.

Thus, the next section will re-explore non-uniform grids. Nodes will be packed more

densely in regions near walls, and at the axial extremities of the domain. However, the

lessons learned from the Section 4.3 will be followed, and it will be ensured that there is

a 1:1 matching of nodes at the interfaces between the fluid regions and the solid.

4.5 Counter-Flow: Final Pass

The nomenclature for the grid spacings of the grids to be examined in this section

is illustrated schematically in Figures 4.2Ia (in a cross-section) and 4.2Ib (axially). In a

cross-section, the grid spacings were as follows. Inside the channels, as well as in the

portions of the solid that are below the bottom channel, and in between the top and

bottom channel, in the X-direction, a spacing of AXrr,1 was located next to the solid-

channel interface, and the spacings increased geometrically, by a factor of ry"r, up to the

channels' symmetry plane, next to which the X-spacing was Axrr,,,rrr. The subscript "cs"

3.t6

314

310

7 tKl
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denotes that the value applies in both the channel and solid regions. Mathematically, it

can be written

Mn:z 
-

AXcs,l

M,,,t
Mn,z

=M"r,o =..,
M"r,z

AXcs,nJcs

LX r..ru*, 
- '*" (4.27)

(4.30)

and

M 
"r,t 

* M rr,, * M.r,¡ +. .'+ M"r,r.r"r_l * M 
"r,rr", 

= B" (4.28)

In the X-direction, in the portion located entirely to the left of the channels, the spacings

were simply uniform, with a width of AX". Thus

nxs\Xs-B-8, (4.2e)

where nxs is the number ofX-direction spacings in the region of the solid located entirely

to the left of the channels. The spacing size AX, was chosen so that nxs is an integer.

The total number ofX-direction spacings was thus zxs * nxcs.

In the l/-direction, the spacings were as follows. Inside the top channel, the top-

most spacing had a length of AI"r,1. Then, proceeding downwards, the spacings

increased geometrically, by aratio /yr5, such that the spacing whose bottom node was

exactly on the top channel's vertical mid-plane has a length of LY",,,,r."72. Then, in the

bottom half of the top channel, the spacings were a mirror image of the top half. The I-
direction spacings in the bottom channel were the same as they are in the top channel:

that is, the spacing adjacent to its top and bottom were A16",1, and the spacings increased

in length by a ratio of ry,,, such that the spacings directly above and below the channel's

verlical mid-plane had a length of LYrr,,,1,r,1z. In the portion of the solid region directly to

the left of the channels, the l/-direction spacings were the same as they were inside the

channels themselves. The following relations were applicable:

and

AYu,, 
-AY"r.s -AY"r,o =...= 

LY"r,uy"r/z 
-r..AYu,t AY,,,z LYn,t LY",,,y,,rz-r rcr

+...+ LYrr,r¡.rrz-t + LY"r.,yrrrz = +
AI/_,,+LY",,,*AY,,'
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Figure 4.2Ib: Schematic Representation of the Axial Grid Nomenclature Used in the
Final Pass of the Grid-Refinement Studies

Inthe f-direction ranges 0 <f < H., and, (U, * H,)<y <ÞH, * H,),the spacings in

tlre I/-direction were simply uniform, with a length of AI", as shown in Figure 4.2Ia.

Thus,

nysLY- = H,

where nys represents the number of r-direction spacings in each of the ranges

0 <y< H, and (U, * H,)<y <ÞH,.* H,).Thus, the total number of I-direction

spacings was then 2(nys + nycs).

As shown in Figure 4.2Ib, the Z-spacings in the solid, the top channel and the

bottom channel are all identical. The spacing adjacent to Z:0 had a length of L2",,1.

Then, with increasing Z, the spacings increased in length by a ratio rzcs,Lrþ to the middle
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of the length of the heat sink (that is, up to Z: L/2). Then, the spacings in the range

L / 2< Z < L were a mirror image ofthe spacings in the range 0 < Z < L I 2 . Thts,

mathematically,

LZrr,z 
-M"r,t -Mrr,4LZ"r,, M"r.z M"r,t

and

A,Z rr,, + M 
",,2 

I M rr,t+ 
. . . + M cs,,,", / 2-t + M 

"r,,",, 
r, = f,

(4.32)

(4.33)

where nzcs is the number of Z-direction spacings in half the length of the heat sink. The

total number of Z-direction spacings was thts2nzcs.

Once again, it should be kept in mind that the nodes (that is, the points at which

ANSYS CFX applied the relevant, discretized versions of the governing equations) were

located at the intersections of the lines that define the various grid spacings.

While trying to set up the simulations using the grids of this section, it was

discovered that ANSYS CFX has a limitation, whereby the value of r2", cannot be too

large. It was found that, when the value of r7n was too large (or, equivalently, when

/2,,,t was too small), ANSYS CFX could not start the simulation, complaining of an

error having to do with a "ff]atal overflow in linear solver". It is not known whether this

was the result of a bug in ANSYS CFX, or an inherent flaw with the current grid with

values of r7r, that are too large. Numerous tests, not documented here, were performed to

investigate this issue, and find a possible workaround. It was found in the course of these

tests that the problem lies in having fine grid spacings (or a contraction that is too

pronounced) near Z: L. That is, there is no problem having a fine spacing near Z: O,

nor with a relatively quick expansion away from this face. However, since counter-flow

was being investigated, and since it was desired to have a 1:1 matching of nodes at the

domain interfaces, it was necessary to limit the value oî r2rr; that is, it was not possible,

given these constraints, to have one value in the first half of each channel, and a different

one in the second. It was desired to meet the criterion M!,,, < 10-6 (recall the definition

given by Eq. (4.7)). However, the limitation found with ANSYS CFX required that a

compromise be made, whereby a value of AZ!,,, * 2xl0-a had to be accepted.
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The definitions of the various grids used in this section are presentedtnTable 4.4.

The grid parameters not presented in this table can be determined from the values given

in the table, the problem parameters, as well as the various relations presented above

when describing the grid nomenclature.

Table 4.4:Deñnitions of the Various Grids Used in the Final Pass of the Counter-Flow
Arrangement Grid-Refinement Test

Mesh nxcs nycs NZCS nxs nys lnxcs fYcs LZ,,,t

Ipm]

Coarse 5 14 50 5 -) 1.2 t.2 1.55387

Medium r0 26 100 10 5 r.2 t.2 1.55387

Fine 20 50 200 20 10 1,.2 t.2 1.55387

In the process of analyzing the results obtained by solving the Case 1 problem (Case

definitions are presented in Table 3.1) using the grids listed in Table 4.4, anomalous

results were obtained (for all grids) whereby, when asked to generate temperature profiles

along lines in cross-section 5, ANSYS CFX-post produced temperature profiles that

contained non-physical spikes. As an example, the temperature profiles along the

horizontal lines iri cross-section 5, using the results of the medium gnd, are plotted in

Figure 4.22. The plot was generated by asking ANSYS CFX-post to generate plots along

the appropriate lines, and, the data of this plot were exported, and the plot was generated

using other software, to allow for greater customization of the plot, and because of a

personal preference of the author. Clearly, the temperature profiles, as shown, are not

correct. The spikes are definitely non-physical. It appears that, when the spikes are

removed, the resulting temperature profiles are otherwise plausible. Normally, when

plots were taken right at domain boundaries, the ANSYS CFX documentation suggested

that, if necessary, the line definitions be moved slightly inward, to avoid problems with

interpolations near boundaries. For example, rather than defining the Z coordinate of the

lines to be z: L, the lines should be defined with az coordinate of, say, Z : 0.9999 L.

However, in this case, even when this trick was used, non-physical spikes still occurred.
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Spikes in the Z: L Cross-Section

It was suspected that it was probably the grid-refinement near the Z: Z plane that

caused these problems with spikes. That the corresponding problem was not observed

near Z: 0 can be explained by the fact that, relative to the current Z coordinate, the

spacings are too small near Z: Z, but this is not the case near Z:0. To confirm this, the

following test was performed. Using a case of parallel-flo*, the problem was solved

using two distinct grids. The first, denoted here as the original grid, was the exact grid

as defined in Figures 4.2I and Table 4.4,where, for this problem, non-necessary gnd

refinements occurred in the channels (and the solid) near Z: Z. The second grid, the

ntodified grid, was the same as the original grid, with one modif,rcation: inthe Z-

direction, the same total number of spacings were used, exceptthat, instead of having

them expand and contract, they expanded only, with increasing Z. Because this was

applied on a parallel-flow problem, no loss in solution accuracy should have resulted,

since the coarse Z-spacings were all located in regions known to be in the fully-developed

region. It was found that, in all cross-sections except cross-section 5, the temperature

predictions of both the original and modified grids were identical. In cross-section 5, the
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predictions of the original and modified grids were mostly similar, except for the spikes.

That is, in regions where the code did not "predict" a spike, the original gnd predicted the

same temperature as the modified grid. This revealed that the original grid did not pose a

problem in the actual intemal solution of the discretized governing equations, when they

were solved by ANSYS CFX-solver. That is, the spikes arose in the post-processing

phase, due to some sorl of glitch in the interpolation process. Thus, fortunately, the

output given by ANSYS CFX-post when asked for temperature profiles in other cross-

section can be trusted. Nevertheless, this bug (or inherent numerical instability) did limit,

and in some cases prevented, the analysis of temperature profiles near Z: L.

The grid-refinement test was performed next. Since it was found, in the previous

section, that the temperature predictions along the various axial lines achieves grid-

independent behavior more easily than does the temperature distribution along other

lines, particularly those that pass through the channel regions, this section will not focus

on demonstrating grid-independent behavior on these lines. Rather, the focus will be on

the temperature predictions along line c2.

Figure 4.23 shows the temperature predictions, for the various grids examined in

this section, along line c2, for the Case 1 problem (that is, the low Reynolds number,

counter-flow problem). Visually, this plot seems to suggest grid-independent behavior.

Qualitatively, the temperature predictions given by the coarse and medium grids were

within 0.019 o/o of each other, while those given by the medium and fine grids were

within 0.0089 o/o of each other. Thus, grid-independent behavior was achieved.

Figure 4.24 shows the temperature predictions, for the various grids examined in

this section, along line c2, for the Case 3 problem (that is, the high Reynolds number

counter-flow problem). Visually, this plot seems to suggest grid-independent behavior.

Qualitatively, the temperature predictions given by the coarse and medium grids were

within 0.28 % of each other, while those given by the medium and fine grids were within

0.036 o/o of each other. Thus, grid-iúdependent behavior was obtained.

Thus, since the grid-refinements tests were successful, even on the most

"difficult" problem, namely that of counter-flow with the higher Reynolds number, the

search for an appropriate grid was over. The grid to be used was the medium grid, as
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defined in Table 4.4. The only remaining test was to compare the results obtained with

this grid to "kno\¡/n" results, namely those obtained by Vafai andZhu (1999). Since they

only considered the low Relmolds number, counter-flow case using the fully-developed

inlet profile assumption, the current comparisons needed to be done on Case 2. This is,

among the current cases, the closest match to the exact problem studied by Vafai and Zhu

(1999) was used. The only difference was that they included viscous dissipation terms in

their analysis, while in this work ANSYS CFX was not asked to include these terms. It

should be kept in mind that there were numerous sources of error in these comparisons:

the slightly different assumptions used, the exact values used for the properties, errors

resulting from the digitization process. Indeed, the paper of Vafai andZhu (1999)

contains relatively small figures, which made it difficult to accurately digitize the curves

in these figures. Thus, when rnaking the comparison between the current results and

those of Vafai and Zhu (1999), these sources of error need to be kept in mind.

Vafai andZhu (1999) presented temperature profiles along lines A, B, C, D, a, b,

c and d, in cross-sections 1, 3 and 5, as well as lines AX, BX, CX and DX. This gave, in

theory, 28 curves along which their temperature could be compared to the present results.

However, some of the results presented by Vafai and Zhu (1999) could not be

used with confidence in the comparisons to present results. Figure 4.25 shows the

temperature profiles along line D1, for the data of Vafaí and Zhu (1999) and the present

data. Line Dl passes in the solid region, and in the inlet of the top channel. In the inlet,

the temperature was set to 25 ["C], or 298.r5 [K], as a boundary condition. Thus, the

temperature should have been exactly equal to this value at every point along line D1 that

corresponds to the channel region (that is, for X > (f - A" )¡. ffris behavior was indeed

observed from the present data. However, the data of Vafai andZhts (1999) showed a

different trend. The temperature was slightly greater than the specified inlet value near

tlre center of the channel (that is, near X = B), and then, proceeding in the negative X-

direction towards the channel/solid interface, the temperature increased. This behavior

was contrary to both the boundary condition that was applied in the current work (and

that Vafai and,Zhu(1999) claimedto implement), and to the current results. However,

this behavior would have made sense if the temperature profile had indeed been along

line B, but, in a cross-section slightly inward, in the axial direction, from the top channel
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inlet. This is indeed the suspicion of the present author. Thus, if this suspicion is correct,

the results that Vafai and Zht (1999) presented for the Z: 0 cross-section actually

corresponded to some other cross-section, near Z: 0, but not right at Z :0. Thus, their

results would not have been incorrect, per se, but they would merely have corresponded

to a different position than what was claimed. However, since there was no way for the

present author to know where the temperature profiles, claimed to be for the cross-section

at Z :0, were actually taken, no comparison between Vafai and Zhu's (1999) data in the

Z:0 cross-section could be made with confidence. A similar observation was made

when comparing the present results to those of Vafai andZhu (1999) along line 85 (and

when one ignores the non-physical spikes generated by ANSYS CFX in the Z: Z cross-

section, as discussed earlier). Thus, again, it was suspected that the temperature results

shown by Vafai and Zhu (1999), supposedly for the Z : L cross-section, actually

corresponded to some other cross-section, slightly axially inward from this cross-section.

Therefore, no comparison could be made between the present work and that of Vafai and

Zhu (1999) for temperatures in the Z: Z cross-section. Thus, of the temperature results

presented by Vafai and Zhu (1999), only those presented for lines in the Z : 0 .5 Z cross-

section, and for lines AX, BX, CX and DX could be compared with confidence to the

data obtained in the present work. This gave 12 lines along which comparisons could be

made between the present work, and the results of Vafai andZhu (1999).

It should be noted that the discrepancies between the temperature data of Vafai

and Zhu (1999) and the present results in the Z : 0 and Z : L cross-sections were not due

to the faúthat Vafai andZhu (1999) set up the"Z'axis in the opposite direction as was

done in the present work. That is, the discrepancy in Figure 4.25 between the present

results and the data of Vafai andZhu (1999) was not a result of the present author having

somehow incorrectly labeled the temperatures obtained by Vafai andZhu (1999) along

line 85 as having been obtained along line 81. (Besides which, if the temperature profile

from the data of Vafai andZhu (1999) presented in Figure 4.25 was indeed been intended

to correspond to the profile along line 85, this would have been an even greater deviation

fi'om both physical expectations, and the current results.) Care was indeed applied, in

digitizing the data fi'om Vafai and Zhu (1999), to remember about the left-
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Figure 4.25:Temperature Profiles Along Line Dl, Using Vafai andZhu (1999) Data and
Present Data for the Case 2 Problem

handed coordinate system used by Vafai and Zhu (1999), and to process their data

accordingly.

So, as mentioned earlier, there were, once the lines in Íhe Z :0 and Z : L cross-

sections were excluded, only 12 lines along which the temperature profiles from the data

of Vafai and Zhu (1999) and the current data could be compared. Temperature profiles

were compared on all of these lines. These comparisons are not all presented here.

Instead, a sampling of temperature profile comparisons is shown, so as to present an

overview of the outcomes of these comparisons.

Figure 4.26 shows a comparison of Vafai andZhu's (1999) results and the current

results for the tempelature along line CX. Clearly, the two curves do not overlap. There

is a region, in the middle, where both curves are close to one another, and are separated

by an approximately constant, and relatively small, difference. At both extremities,

howevet, the curves deviate more significantly from one another. As shown in the fwo

inserts in Figure 4.26, which zoom into the temperature profile obtained from the present
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calculations near Z:0 and Z: L, the gradient of temperature profile with respectto Z

along line CX at both ends is zero (the inserts are included because these zero-gradients
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are indiscemible on the full-scale plot). This is due to the boundary condition that was

used in this work. However, because the data from Vafai andZhuwas digitized from a

paper graph, it was not possible to "zoom-in" beyond a certain magnification, and either

confirm or deny the existence of zero-gradients at Z:0 and Z: L. Attempting to do so

simply resulted in blurry lines/points that yielded no more information than was known

from the regular size of the graph. Furthermore, the paper of Vafai andZhu (1999) was

re-examined carefully at this point. This careful examination revealed that Vafai and Zhu

(1999) did not explicitly state what boundary condition was used on the solid faces at

Z:0 and Z: L. One possibility that seems plausible, from Figure 4.26, is that they set

the temperature to f,,. While this is not seen directly, it is possiblethat, if extrapolated

ever-so slightly towards Z:0 and Z: L, the steep gradients in their temperature profiles

could be leading to T¡,, at these extremities. While plausible, there was no way to confirm
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this. Thus, it is possible that Vafai and Zhu (1999) used a different boundary condition

on the solid surfaces at z: 0 and Z: L. This would mean, in fact, that, even for the

current case that most closely resembled the problem examined by Vafai and Zhu (i999),

the problem formulation was different. But, without a precise knowledge of how they set

up their numerical computations, it was not possible to replicate their results for the sake

of comparison. It was suspected that Vafai and Zhu (1999) did in fact formulate the

problem differently from how it was formulated in this work, particularly in the boundary

condition specification at the Z : 0 and Z: L planes in the sotid. This explains the great

discrepancy at these extremities. The temperature profiles near the middle were more in

agreement, because the effect of the boundary conditions was less significant in that

region. Similar observations were made when comparing the temperature profiles along

the other "axial" lines: AX, BX and DX.

In other comparisons, it appeared that, while maybe not "incorrect", the data of
Vafai and Zhu (1999) was in some cases mislabeled. Figure 4.27 shows the temperature

profiles along line C3, for both the present data and the data of Vafai and Zhu (1999).

Clearly, the two curves are not in agreement. ForXvalues below about 3x10-s [m],

corresponding to the value of (B - B,), the behaviors in the temperature data from the

present results and the data of Vafai andZhu (L999) were qualitatively the same.

Furlhermore, the differences in temperatures in this region could reasonably be explained

by various factors such as the use of different values for the properties, setting up the

problem formulation slightly differently, and so on. But, forXvalues above 3x10-s [m],
the present results showed the expected trend (temperature staying nearly constant), but

tlre data from Vafai and Zhu (1999) showed a drastic reduction in temperatures, which

would imply high temperature gradients in the solid. Because of the high thermal

conductivity of the solid, such large temperature gradients would mean that there were

unrealistically high heat fluxes occurring in the solid, well beyond any physically realistic

value for the heat flux. However, this dip in temperature would be qualitatively

consistent with the behavior expected on horizontal lines that cross through the channels

(such as lines B or D). Thus, the portion of the curve for X > 3x10-s fm] is suspected to

be the correct temperature profile, but for a different location. Thus, the results of Vafai

and zhu (1999) could still possibly have been correct, but simply mislabeled.
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Figure 4.27: Temperature Profiles Along Line C3, Using Vafai and Zhu (1999) Data and
Present Data for the Case 2 Problem

Another example of suspected mislabeling on the part of Vafai andZhu (1999) is

slrown in Figure 4.28, where the temperature profiles for the current results and the data

of Vafai andZhu (1999) are compared along line D3. ForX< (B - B"), no mislabeling

was suspected, since both curves were qualitatively identical, and the magnitude of the

discrepancy could be explained by other factors. For the X> (B - B") region, both the

present data and the data of Vafai and Zhu (1999) exhibited the correct qualitative

behavior. However, the two temperature profiles crossed each other, and the discrepancy

at X: B was rather large. Since, in every other case where there was no mislabeling

suspected, the data of Vafai andZhu (1999) never gave a higher temperature prediction

than the present data, it is suspected that their temperature prediction for X> (B - B") was

correct, but mislabeled, and instead corresponded to the temperature at some other

location. Furthermore, if the portion of the temperature profile along line D3 which

appeared to correspond to another location had been replaced with the portion of the

temperature profile along line C3 (shown in Figure 4.27) whichwas mislabeled, it would

-104-



have yielded a good comparison between the present data and the data of Vafai and Zhu

(teee).
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T[K]sor
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0 1e-05

Figure 4.28: T emperature
Present Data

3e-05

x [m]
4e-05 5e-05

Profiles Along Line D3, Using Vafai and Zhu (1999) Data and
for tlre Case 2 Problem

In some cases, the comparison of temperature data was successful. Figure 4.29

shows the temperature profiles along line 83, for the present data and that of Vafai and

Zhu (1999). The two profiles were qualitatively similar, and reasonably quantitatively

similar as well. The maximum discrepancy was 0.I0 %. An example of a successful

comparison is shown in Figure 4.30, where the temperature profiles are compared along

line d3. Here again, the same qualitative trends were observed for the present data and

the data of Vafai andZhu (1999). The data on both curves were always within 0.10 % of
each other. It should be noted that lines B3 and d3 contained points in the solid region,

and in at least one channel region. Since higher temperature gradients can be expected in

the fluid regions, it is important to compare the results in these regions, which has been

done.
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Figure 4.29: Temperature Profiles Along Line B3, Using Vafai and Zhu (1999) Data and
Present Data for the Case 2 Problem

T tK]

0 5e-05 0.0001 0.000i5 0.0002 0.00025
Y [m]

Figure 4.30: Temperature Profiles Along Line d3, Using Vafai and Zhu (1999) Data and
Present Data for the Case 2 Problem
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It should be noted that even in the cases where the comparison with Vafai and

Zhu (1999) yielded good agreement, the data of Vafai and Zht (1999) was always below

the present data, and always by approximately the same amount. This is an interesting

observation. It could be, and it is suspected, that there was some difference in the way

Vafai and Zhu (1999) set up andlor solved the problem that accounts for this. For

example, if they had set up their problem by choosing a value of T¡, equal to 298 [K],
which they would have done by wanting to use a value of 25 ["C] but used the rounded

conversion factor of 273, but then, when re-converting their data back into ['C], they had

used the un-rounded conversion factor of 273.15, they would have, in effect, used an inlet

temperature of 24.85 ['C]. Because of the nature of the temperature equation, if the inlet

temperatures are reduced by a certain value, it can be shown that the entire solution field

is also reduced by this same constant value. Thus, if they had indeed performed the

calculations by effectively using an inlet temperature of 24.85 ["C], one would only need

to add 0. 15 [K] to all of their ternperatures, to compare them with the present data. This

was indeed done, as a check (not documented here). As expected, the resulting

agreements were better. There is no way to be certain whether the explanation provided

above was indeed the reason behind the near-constant discrepancy between the

temperature profiles in every case where the comparison was successful. However, with

all due respect, it is certainly plausible that such an error (using a rounded conversion

factor in a conversion, then attempting to re-converl with an un-rounded conversion

factor) could have been made.

Thus, in summary, a detailed comparison with Vafai and Zhu's (1999) data has

been performed. It was found that the present data and the data of Vafai and Zhu (1999)

agreed reasonably well with one another, except in cases where obvious mislabeling of
data had occurred in the work of Vafai and Zhu (1999). It was also discovered in this

comparison that Vafai andZhu (1999) may have employed a slightly different problem

formulation than was used here, meaning that close agreement could not be expected.

So, since agreement was obtained between the present data and the data of Vafai

and Zhu (1999), and plausible explanations could be provided to explain all the cases

where agreement was not obtained, both the grid-refinement tests and the comparison
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with known data were successful. Thus, since the counter-flow problem is the most

"difficult", it can be stated with confidence that an adequate grid has been found.

4.6 Limitations Found \ryith Software

Throughout the work that has been performed in this chapter, a number of
limitations and drawbacks of the software used have been found. These are described

next.

o ANSYS CFX uses two values at every node located on a boundary: one which is

termed the hybrid value, and the other termed the conservative value. This

represents a conceptual diffrculty in interpreting the results. Furthermore, it
creates difficulty in cases where ANSYS CFX asks the user to choose which

value to use in a computation or plot. It also seems that the default choice is not

always the correct one.

. The initial, non-1:1 grid, which was chosen based on the experience gained with

the channel-only problems, did not work. It appears that, even though ANSYS

CFX can theoretically handle multiple domains where the nodes do not match-up

l:l at the interfaces, and even though ANSYS CFX did not complain when an

attempt was made to use such a grid, the results thus-obtained were obviously

incorrect.

o For reasons that are not known, there was a limit on the value of the contraction

ratio that could be placed near an outlet. If the contraction ratio was too large,

ANSYS CFX would sirnply not be able to start the run, displaying instead a

message that complained about some fatal overflow. It is not known whether this

is merely a bug in ANSYS CFX, or some inherent limitation in the methods used.

In either case, though, it was necessary to make concessions on the value of the

axial contraction ratio used.

o Furthermore, while it does not appear that the contraction near the outlet causes

the results themselves to be incorrect, it does pose problems when ANSYS CFX

is asked for temperature prof,rles near the outlet. When this is done, bizarre,

definitely non-physical "spikes", that oscillate above and below the correct

solution, are obtained. No way around this problem has been found. The result is
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that temperature profiles along any lines in cross-section 5 (and sometimes even

cross-section 4) cannot be shown.

. While not documented in this chapter, it was found that ANSYS CFX does not

allow the plotting of heat flux along any user-defined locations þlanes, line, and

so on). What ANSYS CFX called the "Wall Heat Flux" could be used on user-

defined locations, but, this is only expected to give correct results along walls.

Thus, no simple way of obtaining heat fluxes at arbitrary locations was found.

The comments about the various shortcomings of ANSYS CFX are not an attempt

to diminish the value of this program. Nor is it claimed, by any means, that the use of
another CFD package would have resulted in a total absence of such issues. ANSYS

CFX is a high quality program, which embodies countless hours of programming and

debugging by skilled professional programmers, and its technical rnerits are hereby

acknowledged. It is important to appreci ate that,like any other program; it is not perfect,

and it cannot be treated as a magical black box, which necessarily gives the correct

answer in all cases. Care must be exercised when using, and interpreting the results of,

any CFD program.

4.7 Closing Remarks

A suitable grid has been found for the problems under consideration in this thesis.

For the counter-flow and parallel-flow geometries, the grid listed in Table 4.4 as the

mediutn grid is the one that was used in this thesis. A cross-section of this grid, as output

from ANSYS CFX-pre, is shown in Figure 4.31. There, one can see the complexity of
the mesh, and see how it really looks. The solid region is shown in a different shade than

the fluid regions for clarity.

For the single channel arrangements, the mesh had to be modified slightly. For

the single channel (small) affangement, the grid is simply the bottom half of the grid used

for the two-row an:angements, as shown in Figure 4.32. For the single channel (large)

arrangement, however, the grid is as follows. The X- and Z-direction spacings are the

same as those of the grid for the two-row designs. In the I-direction, the spacings below

the channel are identical to those of the two-row design gnds. Inside the channel region,

the l/-spacings follow two geometric progressions, with the smallest spacings located
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Figure 4.31: Cross-Sectional Grid for the Two-Row Arrangements
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adjacent to the top and bottom of the channel. The contraction (or expansion) ratio is the

same as for the two-row grid, namely I.2. However, this channel has a number of )z-

spacings that is equal to the sum of the number of l-spacings in the bottom channel, the

"fin" in between the top and bottom channel, and the top channel of the two-row grid, in
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Figure 4.32: Cross-Sectional Grid for the Single Channel (Small) Arrangement

such a way that the total number of I/-spacings is the same as it is in the two-row grid.

This grid is shown, in cross-section, in Figure 4.33. MathematicalTy,with the grid

defined in this manner, it works out that the Ï-spacings near the top and bottom of the

channel for the single channel (large) aTrangement are smaller than the spacings near the

top and bottom of the channels for the two-row arrangements. Hence, the horizontal lines

in Figure 4.33 neæ the top and bottom of the channel are so close together, that

individual lines and spacings are indistinguishable in these regions.

It should be mentioned in passingthat all the grids are identical in the axial

direction.
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Figure 4.33: Cross-Sectional Grid for the Single Channel (Large) Arrangement

Various tests have been performed in this chapter. Having performed all of these

tests, it is now possible to proceed to the specific geometries under consideration in this

thesis, and to do so with confidence that the grids found are adequate, and that the

sirnulations are being correctly implemented.
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CHAPTER 5

RESULTS AND DISCUSSION

With a suitable grid having been found in the previous chapter, the cases in the test

matrix presented in Table 3.T cannow be solved. This chapter will present a summary of
these results, discuss their significance, and present a detailed description of the heat

transfer phenomena taking place within the heat exchanger.

5.1 Assessment Parameters

In order to assess the relative merits of the various designs considered in this

work, three distinct parameters are used as the basis for the evaluation. These parameters

are the overall thermal resistance, the pumping power, and the maximum temperature

difference on the heated surface. The overall thermal resistance, A¿,, is defined as

(s.1)

where T,,nris the maximum temperature occurring in the entire microchannel heat sink

aTrangement. On physical grounds, it is known that this temperature occurs somewhere

along the heated surface (y: 0). The denominator corresponds to the heat supplied per

channel (or, for the two-row designs, per pair of channels). Equation (5. 1) can be non-

dimensionalized to give

^,,,=(W)

ê
r,,, = R,,,Bk, =l (s.2)

where r¿, is the dimensionless thermal resistance and fl,u* is the maximum dimensionless

temperature occurring in the heat sink, obtained by applyingBq. (3.I26a), and omitting

the subscript ",s" for convenience. The dimensionless x-,y- arrdz-coordinates where án,o*

occurs are denoted xntax, lntox and z,,,nr, respectively.

The thermal resistance is a measure of how well the heat sink dissipates heat. A
low value, corresponding to a low maximum temperature, is desirable. This is because

the maximum temperature in the heat sink is related to the maximum temperature in the

component that is being cooled (typically a computer chip). Being able to dissipate the
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heat generated by the component, while maintaining this component at the lowest

possible temperature, is desirable. This is reflected in the thermal resistance.

The pumping power for a given channel, PPr, is defined as

pp, =ti't,LP" (5.3)
P¡

where rit" isthe mass flowrate flowing in this channel, and ÂP" is the channel's pressure

drop, given by

A,P, =P,, -F^,, (5.4)

where Pn, is the cross-sectional arca-averaged pressure taken over the channel's inlet

area, and Fo,, is the cross-sectional area-aveÍaged pressure taken over the channel's outlet

area. ANSYS CFX gives the value of AP" directly. To obtain the total pumping power

for a given case, the per-channel pumping power is multiplied by the number of channels.

Rather than dealing with total pumping powers, the following approach will be used.

When comparing the different designs, the pumping power per two "repeat units" will be

considered, and will be denoted PP. Thus, for single-row designs, the pumping power

PP will sirnply be the pumping power in one channel. For the two-row designs, the

pumping power will be the sum of the pumping power in one full lower channel, plus that

in one full upper channel. Thus, it can be written that

oo -ùMrr = p¡ (5'5)

where it is understood that ñt rcfers to the mass flowrate in one full channel for the

single channel arrangements, and that m refers to the sum of the mass flowrate in one

full top channel and the mass flowrate in one full bottom channel, and that, for the two-

rov/ cases, AP is the same in both channels. When Eq. (5.5) is non-dimensionalized, and

the appropriate relations for rfu are used, the dimensionless pumping power, pp, canbe

shown to be

PP = e#w;=Zb,hAP (s.6a)

for the two-row arrangements and the single channel (large) arrangement, and
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PP = -#^ = b"h"aP (5'6b)
PrB'W;,

for the single channel (small) arrangement.

The pumping power is a measure of how much energy is required to pump the

fluid through the heat exchanger. This is an important design parameter because it is

directly related to one of the costs associated with operating the heat sink. The lower the

pumping power, the better. It should be noted that the pumping power, as presented

above, only accounts for the channels themselves. It does not account for the power

required to pump the fluid into the channels (from the inlet plenum to the inlet planes of
the channels) and out of the channels (from the outlet planes of the channels to the outlet

plenum). However, there is still meaning to the component of the overall pumping power

that comes from pumping the fluid within just the channels. The only way that this

component of the pumping power would not matter is if it were insignificant compared to

the other components of the pumping power. Simple calculations were performed to

estimate the pumping powers to pump the fluid into and out of the channels. It was found

from these calculations that the pumping power to pump the flow into and out of the

channels is always either of the order of the pumping power in the channels themselves,

or, of lower order. Thus, in no case was the pumping power, as calculated above, merely

an insignificant component of the overall pumping power.

The final parameter used in assessing the relative merits of the various designs is

the difference between the maximum and minimum temperatures on the surface along

wlrich the heat flux is applied (that is, I:0). This parameter is denoted by aT,,"n,uo, and

the equation that gives its definition is

LT¡"o,"¿ = 4uo*,y=o - 4nin,y=o 6.7)

where 4,,0*,y=o is the maximum temperature on the heated surface, âfld L,rn,y=o is the

minimum temperature along this same surface. In dimensionless form, this becomes

aon, -LTn"*ua -P ^-e . (5.8)'otcd - q,,B -urtcr,y=g vnin,y=g

,,
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where 0u,n,,y=s is the maximum dimensionless temperature along the heated surface, and

0,,i,,¡,=6is the minimum dimensionless temperature along the heated surface.

This parameter is important because it is desirable, ideally, that the temperature

along the surface of heat application be as uniforTn as possible. This is because the chip

(or whichever other device is being cooled by the heat sink) is typically made of more

than one material, each of which having a different coefficient of thermal expansion.

Thus, some portions of the chip will expand more than others. If the temperature

variation is too large, then the extent of this mis-match in expansion due to heat will be so

greatthat severe stresses will be induced within the chip, possibly leading to cracking.

Thus, it is desired to keep the chip's temperature as uniform as possible, to avoid these

thermal stresses due to coefficient of thermal expansion mismatches. The difference

between the maximum and minimum temperatures along the heated surface is one

measure of how uniform the temperature along this surface (and hence the temperature of
the chip) is. The lower the value of this parameter, the more uniform the temperature is,

and hence the better the design. It should be noted that there are other possible

parameters that could have been used to measure how "uniform" the temperature is. For

example, the maximum temperature gradient in the X- and Z-directions along the I: 0

surface could also have served as a measure of uniformity. Alternatively, it would have

been possible to calculate the mean temperature on this surface, and calculated the root-

mean-square deviation from this temperature for every node on the heated surface.

However, it was deemed that these more elaborate measures of uniformity were not

necessary in this work.

In cases where the thermal resistance and the pumping power give conflicting

conclusions when comparing two designs, (one design is better in terms of pumping

power, while the other is better in terms of thermal resistance), it is useful to have away

to determine which is the better design. One way to do this is to consider the heat that

can be dissipated through the heat sink, per unit pumping power, for the same mass

flowrate and for the same maximum difference in temperature across the heat exchanger.

This new pararneter, which is denoted B, canbe expressed as

ß=4"'PP
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where q"'represents the maximum heat flux that will be dissipated through the heat sink

for a f,rxed maximum temperature difference across the heat exchanger. While B is a

good parameter, it is not directly possible to compute it, since, it would require that all

cases had been performed for the same maximum temperature difference across the heat

exchanger. This was not the case. Instead, for the two two-row arrangements and the

single channel (large) alrangement, within each of the high and low Reynolds number

cases, the heat flux was fixed, and the corresponding temperature difference was

determined. However, multiplying the definition for p Ay =2!l- giu",
Tn 

^* - T,u

2BLp zBL q" 1
(s.1 0)

Trru* -7,, 4rr* - Ti,, PP R,I,PP

Now, because of the way the non-dimensionalization was carried out, it can be shown
lt

¡fia¡ 
-l- 

is a constant for fixed geometry and mass flow rate. Thus, even though7- _7-
'nlax t in

q" was fixed and (Tno -7,,,) varied, their ratio is the same as would have been obtained

if the temperature difference was fixed and the heat flux was calculated. Thus, the

product of the parameters Rtn and PP, which is proportional to the inverse of B, as

calculated from the present results, has the same value for a given geometry as would

have been obtained if the test was indeed performed by keeping the temperature

difference fixed. So, the parameter Rtn PP is an indication of the heat flux that can be

dissipated per unit purnping power for fixed mass flow rate. The lower the value of R¡,

PP, the more heat that can be dissipated per unit pumping power. This can thus serve as

a tie-breaker in cases where the best "compromise" between pumping power and thermal

resistance is desired.

5.2 Summary of Parameters

This section presents and discusses the values of the parameters for the 14 cases

considered in this work. Table 5.1 presents, in dimensional form, the thermal resistance,

pumping power arrd LTnnn,uo data. As a reminder, the applicable supplied heat fluxes and

mass flowrates are presented as well. The mass flowrates in Table 5.1 are for fwo "repeat
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units", or, in other words, for one full channel (for single row cases), or for one full pair

of channels (for two-row cases). Also presented are the values of (R¿, PP) for every case.

The data in Table 5.1 are presented as a compact summary, and for the sake of presenting

all parameters dimensionally, for the sake of completeness. Each of the three assessment

parameters are presented in later tables, and their discussion accompanies those tables.

The discussion of thermal resistance times pumping power is presented later, following

discussion of individual parameters.

Table 5. 1 : Dimensional Summary of all Assessment Parameters

The cases that used the fully-developed inlet flow assumption were studied to

examine the effect of making this assumption on the results. This section therefore

focuses only on those cases that used the uniform inlet assumption. It is the goal of the

following section to discuss how the fully-developed assumption impacts the solution as

compared to the solutions of the cases using the uniform profile assumption (which is

Case

Number ,R¡¡, [IlW] PP lwl LT¡ua"¿lKl R¡¡, PP lKl q' lWlmz) ù lkglsl

I 21.2 9.08x10 3.21 0.0192 3.00x10' 1.65xi0-'

2 2l.r 8.66x10 3.00 0.0183 3.00x10' 1.65x10-'

J 7.16 0.111 T2.8 0.797 3.00x10' l'.65x10-*

4 7.r5 0.0867 r0.7 0.620 3.00xi0" 1.65x10

5 21.9 9.08x10-* 5.05 0.0199 3.00x10' 1.65x10-

6 22.0 8.66x10-" 4.93 0.0190 3.00x10' 1.65x10-'

7 7.6s 0.111 16.9 0.852 3.00xi0" 1.65x10-"

8 7.68 0.0867 15.6 0.666 3.00x10' 1.65x10-*

9 22.3 6.39xi0-. 5.03 0.0143 3.00x10' 1.65x10-'

10 22.4 5.94x10-* 4.90 0.0133 3.00x10' 1.65xi0-'

11 8.27 0.0789 t8.2 0.652 3.00x10" 1.65x10-"

12 8.30 0.0596 16.6 0.495 3.00x10o 1.65x10

13 42.7 4.54xT0- 10.0 0.0194 3.00x10' 8.26x10-'

t4 14.3 0.0ss6 33.6 0.79s 3.00xi0o 8.26x10-'
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deemed more "corect"; while the exact inlet velocity distribution cannot be known

without knowing the header arrangement leading to the inlet of the charurels, it is deemed

on physical and intuitive grounds that the uniform inlet assumption is "closer" to the

actual inlet velocity distribution than the fully-developed velocity profile).

In making the comparison, it is necessary to determine which of the single-row

designs is the standard against which the two-row designs are to be compared. It was

decided that the single channel (large) arrangement was the appropriate choice, since it
occupies the same overall dimensions as the two-row designs, required roughly the same

amount of heat sink material, and used the same amount of coolant flow as did the two

two-row designs. The single channel (small) arrangement, on the other hand, was only

considered so as to determine the effect of adding an identical layer on top of the original

layer. Clearly, this should result in better heat transfer characteristics, but, to what

extent?

The thermal resistance data are shown in Table 5.2. (This section only discusses

the values of the parameters; the locations where maximum and minimum dimensionless

temperatures occur are discussed in later sections.) The details of the various cases are

listed in Table 3.1. In all cases, for a given Reynolds number, the two-row designs offer

better (lower) thermal resistance properties than either of the single row designs, with the

counter-flow affangement proving slightly superior to the parallel-flow arrangement. For

the low Reynolds number cases, the counter-flow arrangement (Case 1) offers a 5.0 Yo

decrease in thermal resistance as compared to the single charurel (large) arrangement

(Case 9), and the parallel-flow arrangement (Case 5) has a thermal resistance that is 1.8

o/olower than that of the single channel (large) arrangement. For the high Reynolds

number cases, the same trend is observed, but, to a gteater extent. The counter-flow

arrangement (Case 3) has a thermal resistance that is 13 o/o lower than the single channel

(large) affangement (Case 11), and the parallel-flow arrangement (Case 7) has a thermal

resistance that is 7.3 % lower than that of the single channel (large) arrangement. Thus,

the advantages, from a thermal resistance perspective, of making the change from a

single-row design to a two-row design are greater at higher Reynolds number.
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Table 5.2: Summary of Dimensionless Thermal Resistance Data

Case Number

Location of 4,"*

0rru* filtXntox !,,n,
h

z
ilto_r

I

I 1.00 0.00 0.432 0.206 7.72x10-uo

2 1.00 0.00 0.432 0.205 7.70xI0-""
a
-1 1.00 0.00 0.373 0.069s 2.6IxI0'""

4 1.00 0.00 0.373 0.0694 2.60xI0'"^

5 1.00 0.00 1.00 0.213 7.98x10-'*

6 1.00 0.00 1.00 0.2r3 8.00x10-'*

7 1.00 0.00 1.00 0.0743 2.79xI0-u*

8 1.00 0.00 1.00 0.0746 2.80x10-"'

9 1.00 0.00 1.00 0.217 8.13x10-""

10 1.00 0.00 1.00 0.2r1 8.15x10-""

11 1.00 0.00 1.00 0.0803 3.01x10-'*

t2 1.00 0.00 1.00 0.0806 3.02xI0'"*

13 1.00 0.00 1.00 0.4t5 1.56x10-"

T4 r.00 0.00 1.00 0.139 5.20xl0-u*

For the low Relmolds number, making the switch from the single channel (small)

affangement (Case 13) to the parallel-flow affangement results in a 48.8 o/o decrease in

thermal resistance. Furthermore, for the high Reynolds number, making the switch from

the single channel (small) aTrangement (Case 14) to the parallel-flow affangement results

in a 46.3 o/o decrease in thermal resistance. Thus, adding another identical row on top of
the initial one will reduce the thermal resistance, by about 50 %.

If the same comparison is repeated, but this time considering the effect of adding

a second layer on top of the first one, with the flow in the opposite direction (that is,

comparing the switch from the single channel (small) affangement to the counter-flow

arrangement), the following is observed. For the high Reynolds number, the reduction in

thermal resistance is 49.8 o/o, and, for the low ReSmolds number, the reduction is 50.5 %.

-120-



It is interesting that this last value is greater than 50 o/o. It is not known whether this is

simply some anomaly, resulting from the sources of error in the computations, and hence

there is a theoretical limit of 50 %o on the reduction in thermal resistance, or whether this

actually represents that it is conceptually possible to reduce the thermal resistance by

more than 50 % by adding a second identical layer on top of an existing layer, and having

the flow go in the opposite direction. At any rate, it has been demonstrat ed., at a

miniruum, that, when adding a second identical layer on top of an existing layer, and

having the flow go in the opposite direction, it is possible to approach a 50 o/o reduction in

thermal resistance.

The pumping power data are shown in Table 5.3. The parallel-flow and counter-

flow arrangements require the same pumping power (in dimensionless and dimensional

form). This is true for both the high and low Reynolds number scenarios. This result is

supported by theory, since, the pumping power does not depend on the direction of the

flow. The single channel (small) affangement, for the respective high or low Reynolds

number being considered, has a pressure drop equal to those of the individual channels in

the two-row designs (as they should, since the hydrodl,namics of one channel is in no

way influenced by the presence of another channel), and a pumping power of half of the

two-row designs (because this design has half as many channels in total). Comparing the

single channel (large) aTrangement to the two-row designs, it is found that the single

channel (large) affangement has a pumping power that is roughly 30 % lower than the

two-row designs. This is true for both the high and low Reynolds numbers, and can be

explained by the reduction in the surface area per unit mass flowrate in the single channel

(large) arrangement as compared to the two-row arrangements.

Thus, in short, the effect of adding a second identical layer on top of an original

layer is to simply double the pumping power. The effect of merging two rows of
channels into one bigger row is to reduce the pumping power.

It should be noted that Table 5.3 may appear to contain an unintuitive result,

namely that, all other parameters being equal, it appears that the pumping powers are

greater for the low Relmolds number cases as they are for the corresponding high

Reynolds number cases. However, in dimensional form, as shown in Table 5.1, it is

indeed the case that the high Reynolds number cases have higher pumping powers than
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Table 5.3: Summary of Dimensionless Pumping Power Data

Case Number Ap pp

I s7.8 96.3

2 s5.1 91.8

-1 7.08 I 1.8

4 5.52 9.r9

5 s7.8 96.3

6 55.1 91.8

7 7.08 I 1.8

8 5.s2 9.r9

9 40.6 67.7

10 37.8 63.0

t1 5.02 8.37

t2 3.79 6.32

13 57.7 48.1

T4 7.08 s.90

low Reynolds number cases. However, in the non-dimensionalization process, this

characteristic is lost, owing to the fact that the pressures are normalized by a different

velocity for the high and low Reynolds number cases, in such away that,

dirnensionlessly, the pumping powers are lower for the high Reynolds number cases.

The temperature variation along the heated surface data is presented in Table 5.4.

For the low Reynolds number, the value of A?n"n,"o is nearly identical for the single

channel (large) arrangement and the parallel-flow anangement. The value for the

counter-flow is lower, by approximately 35 %. For the high Relmolds number, the

parallel-flow arrangement offers a7 Yo reduction in A0,*n,"0 compared to the single

channel (large) aTrangement, and the counter-flow arrangement offers a30 %o reduction

in A.O,,nn,no compared to the single channel (large) affangement. Thus, the superiority of
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the counter-flow affangement over the parallel-flow arrangement, as far as keeping the

temperature on the heated surface as uniform as possible is concemed, is undeniable.

Table 5.4: Summary of Dimensionless Temperature Variation Along Heated Surface
Data

Case
Number

Location of áDIt.\,)'=V Location of e,,r,,,¡,=o

L0n"n,uoX¡¿¡,¡t=Q 7

I

X¡n¡¡,¡,:6 z

I

1 1.00 0.432 1.00 133 0.1 10

2 1.00 0.432 1.00 133 0.101

J 1.00 0.373 0.3s0 133 0.0431

4 1.00 0.373 0.00 r33 0.0360

5 1.00 1.00 0.00 0.00 0.170

6 i.00 L00 0.00 0.00 0.166

7 1.00 1.00 0.00 0.00 0.0570

8 1.00 1.00 0.00 0.00 0.0525

9 1.00 1.00 0.00 0.00 0.169

10 1.00 1.00 0.00 0.00 0. i6s

11 1.00 r.00 0.00 0.00 0.061s

12 1.00 1.00 0.00 0.00 0.0560

13 1.00 1.00 0.643 0.00 0.337

T4 r.00 1.00 0.200 0.00 0.1 13

Comparing the single channel (small) anangements to the counter-flow

arrangements reveals that, adding an identical second row of channels on top of an initial

row, with the flow in the top row being in the opposite direction, decreases L7nun,"¿ by

67 %o for the low Rel'nolds number, and 62 o/o for the high Reynolds number.

Considering now the data for the product of ,R¿, and PP presented in Table 5.1, it
can be seen that the counter-flow arrangement has a lower R¡, PP value than the parallel-

flow arrangement (by 3.6 o/o for the low Reynolds number cases and 6.9 % for the high

Reynolds number case). However, the single channel (large) affangement is better than
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either of the two-row arrangement in terms of R¡¡, PP. For the low Reynolds number, the

product R¡¡ PP for the single channel (large) arrangementis 25 o/olower than for the

counter-flow alrangement, while for the high Reynolds number, the product R¡, PP for

the single channel (large) alrangement is 18 o/o lower than for the counter-flow

affangement. Thus, it can be said that, for fixed mass flowrate and overall temperature

difference, the single channel (large) geometry dissipates more heat per unit pumping

power than the counter-flow anangement, which in tum dissipates more heat per unit

pumping pov/er than the parallel-flow aïrangement. The single channel (small)

arrangement cannot be included in this comparison because it was run, in this work, with

half of the mass flow than the other arrangements.

5.3 Effect of Fully-Developed Inlet Profïle Assumption

This section examines the effect of making the fully-developed flow assumption

in the inlet on the predictions of the three assessment parameters. A discussion of the

effect of this assumption on other values, such as the locations of maximum and

minimum temperatures, is deferred until the relevant sections where the detailed physical

analyses are presented.

Looking first at the thermal resistance data presented in Table 5.2, it is apparent

even at first glance that the r¿, predictions given by making the fully-developed inlet

profile assumption are remarkably close to the values obtained using the uniform inlet

flow assumption. The greatest discrepancy observed is for the parallel flow arrangement

with high Reynolds number, where rnaking the fully-developed inlet assumption results

in an overprediction of r¡¡,by 0.38 % (this value was arrived at by using the futl precision

available, not by using the rounded r¿, values appearing in Table 5.2). For all of the

parallel flow and single channel (large) arrangement cases, making the fully-developed

flow assumption results in an overprediction of the thermal resistance, with the

magnitude of this discrepancy (in relative percentage terms) being greater for the high

Reynolds number cases than for the corresponding low Reynolds number cases. This

makes sense, since, the length of the developing region is greater in the higher Reynolds

number cases, and hence, the impact of neglecting this region, and replacing it by a fully-

developed flow, is greater for higher Reynolds number cases. Furthermore, that the
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difference in thermal resistance given by the futly-developed inlet flow assirmption and

the uniform inlet assumption is small can be explained as follows, for the parailel flow

and single channel (large) alrangements. For these arrangements, the maximum

temperature (which is the only non-input parameter on which the thermal resistance

depends) occurs in the cross-section z : l, which is the outlet planes in these cases. Thus,

this maximum temperature occurs in a plane where, even when using the uniform inlet

velocity assumption, the flow has already reached fulty-developed velocity conditions. It

can also be reasoned that, if the length of the channel(s) is long enough, in theory, fully-

developed thermal conditions should also be achieved by this cross-section. Fully-

developed thermal conditions would imply that the temperature field for every xy pornl,

in tlre solid and in the channel(s), varies with z by a constant slope. Thus, in any cross-

section that is in this thennally fully-developed region, the difference between the

maximum temperature, and the bulk temperature of the channel (or of either channel for

the parallel flow case) is a constant. Furthermore, the difference between the inlet and

outlet bulk temperature(s) can be determined from overall energy balances on the fluid.

Thus, if thermal fully-developed conditions occur, the complete temperature field in the

region where these conditions occur (including everywhere in the z: / cross-section)

should be identical, regardless of which inlet velocity assumption was used, as long as the

bulktemperature(s) in the inlet(s) are the same, which will be the case for a uniform inlet

temperature, regardless of the inlet velocity distribution (for uniform inlet temperature,

the bulk temperature will simply equal this uniform value). So, if, as suspected, fully-

developed thermal conditions were indeed reached before the z: / cross-section, for the

parallel flow and single channel (large) arrangements, the maximum temperature in the

domain, and hence the thermal resistance, should be identical, regardless of the inlet

velocity distribution used. The slight difference in thermal resistance between cases of
uniform inlet velocity and the corresponding fully-developed inlet velocity cases could be

explained by the factlhat, due to the zero-gradient of temperature with respect to z

imposed by ANSYS CFX at z: l, true fully-developed thermal conditions were never

actually obtained, but these conditions were, rather, only approached.

However, for the counter-flow arrangement, while the thermal resistances for the

uniform inlet velocity cases were indeed close to those of the corresponding fully-
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developed inlet velocity cases, no simple physical argument can be made to explain this.

Fully-developed thermal conditions can definitely not be obtained for the counter-flow

arangement. Furthermore, in contrast to the parallel flow and the single channel (large)

affangements, making the fully-developed inlet flow assumption resulted, for the counter

flow arrangement, in an underprediction of the thermal resistance, and the magnitude of
the discrepancy (expressed as a percentage of the respective uniform-flow inlet

assumption value) was greater for low Reynolds number. That the "error" is greater at

low Relmolds number is contrary to what is expected on physical grounds.

In spite of these unresolved issues, it is quite clear that, as far as predicting the

thermal resistance is concerned, there is no practical difference between using the

uniform inlet assumption and using the futly-developed inlet assumption. That is, if one

were interested only in predicting the thermal resistance, the analysis that uses the fulty-

developed inlet flow assumption (that is, the simplified analysis) is quite adequate.

For the dimensionless pumping power, it is seen in Table 5.3 that making the

fully-developed inlet flow assumption always results in the pumping power being

underpredicted. This can be explained by the fact that, for developing flow, there is some

energy needed to change the shape of the temperature profile with axial position, which is

not needed for fully-developed flow. For the two-row designs (both the counter-flow and

parallel flow arrangements), making the fully-developed assumption results in an

underprediction of the dimensionless pumping power by 4.7 o/o for the low Reynolds

number, and 22 o/o for the high Reynolds number. For the single channel (large)

affangement, making the fully-developed assumption results in an underprediction of the

dimensionless pumping power by 7.0 %o for the low Reynolds number, and 24 o/o for the

high Reynolds number. Thus, as would be expected on physical grounds, it is indeed

found that the error introduced by making the fully-developed inlet flow assurnption is

gteater for larger Reynolds number, since the length of the developing region being

neglected is greater in those cases.

For the prediction of L?t,no,",t, it is found from Table 5.4 thatthe cases

corresponding to the fully-developed inlet assumption always underpredict this value,

compared to the corresponding uniform inlet velocity case. No simple physical argument

is known that can be made to supporl this observation. It is also observed that the
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magnitude of the discrepancies between the values of Leh"ntu,r predicted by the uniform

and fully-developed inlet assumptions is always greater for the high Reynolds number

cases than for the corresponding low Reynoids number cases. Furthermore, the

discrepancies are greater for the counter-flow arrangement than for the other

affangements. For the counter-flow arrangement, the magnitude of the difference in

L?nun,u¿ obtained by making the fully-developed inlet flow assumption is 8.2 o/o for low

Re¡molds number, and 17 o/o for high Reynolds number. The corresponding values for

tlre parallel-flow alrangement are 2.4 %o for low Reynolds number , and 7 .8 %o lor high

Re¡molds number, and, for the single channel (large) affangement, the corresponding

values are 2.5 o/o lor low Reynolds number, and 9.0 o/o for high Reynolds number.

5.4 Detailed Investigation: Single Channel (Large)

This section contains a detailed investigation of the fluid flow and heat transfer

phenomena occurring within the microchannel heat sink for the single channel (large)

arrangement. Because the fluid flow problem is decoupled from the heat transfer

problem (that is, the fluid flow problem is independent of the heat transfer problem), the

fluid flow problem is relatively well understood, and the fluid flow problem is

qualitatively the same for every channel regardless of which arrangement is being

considered, a detailed investigation of the fluid flow problem is only performed in this

section, and will be omitted when discussing other arrangements.

Since the cases that use the fully-developed inlet flow assumption were studied

only to see the impact of this assumption on the quality of solutions and have no

imporlance in themselves, they will not be examined explicitly. Furthermore, this section

will only examine the high Reynolds case, except when and to the extent that the low

Reynolds number case is qualitatively different. Thus, this section contains, more or less,

a detailed examination of Case 1 1 (case definitions are in Table 3 . 1 ).

The hydrodynamics are examined first. In analyzing the hydrodynamics, the

velocities will be plotted along various lines to understand the flow. While the lines

defined in Section 4.4 could be used, it is preferred instead to define another set of lines,

that will only be used for this section (and, in this section, only for the hydrodynamics).

This is done because the geometry is slightly different, and, it is desired to have more
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horizontal and vertical lines within the charurel itself, since the hydrodynamics occur in

the channel only, not in the solid. The same basic approach as that used in section 4.4

will be used here: a series of vertical and horizontal lines are defined which, when

combined with the specif,rcation of the cross-section, specify the exact line segment in

three-dimensional space. The various vertical and horizontal lines (or, more precisely,

line segments) are shown schematically in Figure 5.1. They can be described as follows:

. Line "v0": Vertical line segment passing along the left hand side of the channel

region (X = B - B,), from the bottom of this larger channel (Y : H r) to the mid-

height of this larger channel (Y = H. *1n ).,2

o Line "v1": Vetlical line segment passing one sixth of the channel's total width

from the channel's left boundar y (X = U -? U,), from the bottom of this larger
J

channel (Y = H r) to the mid-height of this larger channel (y = H, *)U rl2

. Line "v2": Vertical line segment passing one third of the channel's total width

from the channel's left boundar y ( X = U -I U,), from the bottom of this larger
J

channel (Y : H r) to the mid-height of this largerchannel (y = H, *1, ¡.2

o Line "v3": Vettical line segment passing one half of the charurel's total width

from the channel's left boundary (X = B), from the bottom of this larger channel

(Y = H r) to the mid-height of this larger channel (y = H 
" 
*1A ).

¿

o Line "h0": Horizontal line segment passing along the bottom of the large channel

(Y = H f), from the left boundary of the channel (X = B - B,), to the channel's

vertical slrnmetry plane (X = B).

o Line "hl": Horizontal line segment passing one eighth of the channel's height

from its bouom Q =? H , *\ U,),from the left boundary of the channel'8'4

(X = B - B"), to the channel's vertical symmetry plane (X : E).
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Figure 5.1 : Schematic Representation of the Nomenclature Specifying the Various Lines
Used to Analyze the Hydrodynamics of the Single Channel (Large)
Arrangement

o Line "h2": Horizontal line segment passing one quarter of the channel's height

from its bottom Q =1H, *!A,),from the left boundary of the channel'4t2

(X = B - B,), to the channel's vertical symmetry plane (X = B).
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o Line "h3": Horizontal line segment passing three eights of the channel's height

from its bottom g =* H , *1u 
"),from 

the left boundary of the channel,8'4

(X = B - B,), to the channel's vertical symmetry plane (X : B).

o Line "h4":Horizontal line segment passing one half of the channel's height from

its bottom U =1H , + H,),from the left boundary of the channel from the left
2 r c/'

boundary of the channel (X = B - B,), to the channel's vertical synmetry plane

(x = B).

The various cross-sections considered are as follows:

o "CSO": Cross-section located at Z =0
o "CS 1 ": Cross-section locate d at Z = 0.052

o "CS2": Cross-section located at Z = 0.10¿

o "CS3": Cross-section located at Z =0.IsL
. "CS4": Cross-section located at Z =0.20L

. "CS5": Cross-section located at Z =0.25L

. "CS6": Cross-section located at Z =0.50L

. "CS7": Cross-section located at Z =0.75L

o "CS8": Cross-section located at Z =0.95L

There is nothing to gain by defining a cross-section located exactly at Z: Z, because of
the problem with non-physical spikes in this cross-section discussed in Section 4.5, and,

because the flow is fully-developed near the outlet in any case.

The complete definition of a line segment is denoted by first specifying the line,

and giving the cross-section, and adjoining the two with a hyphen. For example, the line

denoted by h2-CS6 would represent the line h2, in cross-section CS6. Once again, this

nomenclature is used only in this section, and only for the purposes of analyzing the

hydrodynamics. It should be noted in passing that the various lines defined above are

presented in dimensional tetms; they can also be expressed in dimensionless terms by

applyrng the relevant definitions.
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A subtle but important point should be made at this point. The single channel

(large) alrangement is, in a sense, "derived" from the parallel-flow aïïangement. Indeed,

the geometry of the single channel (large) affangement is obtained by removing the solid

space above the lower channel and below the upper channel from the parallel-flow

geometry. The inlet velocity of the single channel (large) arrangement is "derived" from

the parallel-flow arrangement as follows: set the velocity of the single channel (large)

affangement to the value necessary so that, in the larger channel of this arrangement, the

mass flow rate is equal to the sum of the mass flow rates flowing in the two channels of
the parallel-flow arangement. In mathematical terms, Wi,, ln,su can be determined from

W¡¡7 accotding to Eqs. (3.120) and (3. 1 18). Thus, even though W¡,, does not appear, at first

glance, to have a meaning in the single channel (large) arangement, it does have

meaning, in the sense that it represents the inlet velocity of the corcesponding parallel-

flow arrangement case used to generate the single channel (large) case. So, because of
this, it was decided to perform the non-dimensionalization of the velocities by dividing

each of the velocity componentsby W¡u (even for the single channel (large) arrangement).

Thus, in the inlet cross-section, the dimensionless velocity w is indeed uniform, but does

not have a value of unity (the value is slightly below unity). This is because of how the

dimensionless velocities are defined, and not the result of some error. If the

dimensionless velocities for this case were defined by dividing the dimensional values by

Wíu rn,su,then the z-direction dimensionless velocity, w, would indeed have a value of
unity in the inlet. This is not done, however, so that there may be a consistent definition

of dirnensionless velocity across all arangements.

Figure 5.2 shows the dimensionless axial velocity, w, along the various horizontal

lines in cross-section CSl (the corresponding plot in cross-section CS0 is not shown, as it
only reveals that the velocities along all lines are the uniform inlet value). It can be seen

that at the left of the channel (x : 0.5), the velocity on every curve is zero. This is

because of the no-slip velocity condition at the walls. Because line h0 passes along the

bottom of the channel, the velocity along this line is zero, again because of the no-slip

velocity condition at the walls. Along the other horizontal lines, the following trend is

observed. Starting from a zero-velocity at the left wall at x:0.5, the velocity increases

monotonically with downward concavity, until such a point (in this case, approximately
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Figure 5.2: Dimensionless Axial Velocity for Various Horizontal Lines in the z:0.05 I

Cross-Section (CS1) for the Case 11 Problem

x: 0.8) where the velocity levels off to a nearly uniform value. This can be explained as

follows. The velocity at the left wall is "pinned" atzero because of the no-slip condition.

In the region where x is greater than approximately 0.8, the velocity is nearly uniform

because, in this region, viscous effects are negligible. That the viscous effects are

negligible is explained as follows. The flow enters with a uniform velocity into the inlet

of the channel from a source where viscous effects are essentially negligible, since there

is no surface near enough to the flow to offer any impedance to flow. But, with

increasing axial distance, the flow at the walls becomes zero, and. a thin region

surrounding the walls develops, in which the viscous effects are significant. This is

sometimes termed the boundary layer. But, outside of this thin region, viscous effects are

negligible. This region is sometimes termed the inviscid core. As one progresses axially

away from the inlet, the thickness of the boundary layer increases, and the inviscid core

decreases, until such a point where the inviscid core has disappeared, and the viscous

effects are felt throughout the entire cross-section. So, in this case, viscous effects are

negligible for x values greater than 0.8 because, for the cross-section under consideration
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(CS1), values ofx above this value are still in the inviscid core. So, the velocity is pinned

at zero at the left wall, and there is a viscous-free region of uniform velocity in the center

(it should be recalled that the velocity plot shown is only for the left half of the channel;

the velocity is symmetric about the line x : i.0). In the boundary layer region, the

velocity distribution is shaped subject to the condition that it must join the zero-velocity

at the left wall, and must join the uniform velocity near the channel's middle, in a

continuous and smooth fashion (that is, with no discontinuities in either the values of the

velocity w, nor in its first derivative with respect to x, respectively).

While the velocity profiles along all the horizontal profiles aside from h0 are

close to one another, the velocity along line hl is greater than those along h2,h3 andh4,

even though hl is closer to the bottom wall than the other horizontal lines. This is not an

elror, even though it rnay be counter-intuitive. This can be explained by what are termed

velocity overs lrcots, discussed below.

It should be noted that it is incorrect to say that the velocity in the inviscid core is

unaffected by the walls, or that it has not felt the presence of the walls. The velocity

everyr,vhere in the channel is affected by the walls. If the velocity were to be truly

unaffected by the walls, the uniform value of the velocity within the inviscid core would

be equal to the inlet value. But, this is not the case. The magnitude of the near-uniform

velocity is in fact greater than the inlet value. This is because, with the velocity at the

wall being zero, and the velocity dropping sharply as the wall is approached, it is

necessary for the velocity in the inviscid core to have "shot up" in order to maintain the

same mass flowrate in the entire cross-section. Thus, even in the inviscid core, the

velocity is influenced by the wall. It is only the viscous effects that are not felt in the

inviscid core.

Figures that are analogous to Figure 5.2,but for the remaining cross-sections,

were generated. For the sake of brevity, they are not all presented here. Instead, here is a

summary of the observations made from such figures. As one proceeds axially in the

direction of flow, the length of the inviscid core region decreases, and the magnitude of
tlre velocity in this inviscid core region increases. This is seen in the w profiles along h1,

h2,h3 and h4. Along h0, the dimensionless axial velocity, w, remains at zero in every

cross-section. Furthermore, with increasing z, the w-profiles along the various horizontal
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lines become more and more separated from each other. This is more noticeable for the

horizontal lines closest to the bottom, and less noticeable for the prof,rles closer to the

center of the channel. Figure 5.3 shows the velocity along the horizontal lines in cross-

section CS8, which is in the fully-developed region. It can be seen that the inviscid core

region has disappeared, and that the profiles have separated from each other compared to

the corresponding profiles in Figure 5.2. Furtherrnore, in Figure 5.3, in the fully-

developed region, the dimensionless velocity w is always greater, for a given x, the

fuither away from the bottom of the channel. (The exception is at the left wall, at x: 0.5,

where w:0 on every horizontal line.) Of course, if other horizontal lines had been

defined above the channel mid-height, then the reverse trend would be observed in the

top half of the channel.

The trends mentioned above can be seen in Figure 5.4, which shows how the

velocity w varies along line h1, for various cross-sections (for clarity, the cross-sections
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Figure 5.3: Dimensionless Axial Velocity for Various Horizontal Lines in the z:0.95 I

Cross-Section (CS8) for the Case 11 problem
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the Case 11 Problem

CS4 and CS5 are omitted, as their presence adds too much clutter to the graph, yet makes

no qualitative difference). Furtherrnore, the achievement of fully-developed conditions

with increasing z can be observed by noticing that the w-profiles change less and less the

deeper one proceeds into the flow. The velocity profile along line hl in cross-section

CS7 is nearly overlapping that in cross-section CS8, despite the fact that these cross-

sections are spaced 20 Yo of the channel's length apart.

Figure 5.5 presents the velocity w along various vertical lines in cross-section

CS1. It should be noted that the region in which the axial velocity along line vl is

relatively constant does not coffespond to the inviscid core. Rather, it is simply a region

in which the velocity varies little withy, and more with x. This is not surprising, given

that the channel is stretched in they-direction more than in the.rr-direction. The notable

feature, however, in Figure 5.5, is that there are velocities along lines v2 and v3 that are

greater than the velocity in the inviscid core. Starting from a value of zero at the left wall

and proceeding in the direction of increasing x, it is found that w increases to a local
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Figure 5.5: Dimensionless Axial Velocity for Various Vertical Lines in the z:0.05 I
Cross-Section (CS1) for the Case 11 Problem

maximum, which is greater than the value w in the inviscid core, then decreases towards

the inviscid core. This phenomenon, sometimes termed velocity overshoots, has already

been observed by other researchers. It is documented in Shah and London (1978).

Explaining this phenomenon in detail is beyond the scope of this section, especially given

that it is documented elsewhere. It was merely desired to point out that this phenomenon

was observed.

Figure 5.6 shows the variation of the magnitude of the dimensionless pressure

gradient, ! ç*n "nwould 
strictly be written l4l,O"tthe overbar, which denotes cross-' dz '-J - - 

larl' 
"-" "-- '

sectional averaging, and the absolute values signs, are omitted for convenience;

fuithermore, again for convenience, the "magnitude of the dimensionless pressure

gradient" is referred to henceforth simply as the I'pressure gradient"), along the axial
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Figure 5.6: Axial Variation of Dimensionless Pressure Gradient for the Case 11 Problem

direction. Right at the inlet, the pressure gradient has an infinite value. This arises

because of the discontinuity of the velocity profile at the inlet. Right at the inlet, the

velocity is uniform, yet, even a small infinitesimal distance into the channel, the flow at

the walls has been brought to zero, and the velocity everywhere in the cross-section has

felt the presence of the wall (even, as discussed earlier, in the inviscid core). Thus, there

is a theoretically-explained infinite pressure gradient at the inlet. Then, with increasing z,

the pressure gradient decreases, and eventually levels off to a uniform value as the flow

becomes fully-developed. The pressure gradient (and hence the pumping power

required) is greater in the developing region because, in addition to overcoming friction,

it is necessary, in the developing region, to change the shape of the velocity profile,

which requires more energy to be supplied. As one proceeds axially towards the fully-
developed region, the degree to which the velocity changes with axial variations becomes

less pronounced, which is why the pressure gradient decreases.

Now, with a detailed examination of the fluid flow phenomena having been done,

the heat transfer phenomena can be examined more closely.

û.01
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It is useful to define the arcafraction, AF, as

AF = 
A'u'ß'u

A,o,n,

where A,u,fn"u is the area of the surface of which the AF is being calculated, and. A¡o¡n¡ is

the total area of all solid/fluid interfaces, in a given repeat-unit, along which heat passes

from the solid to the fluid. For this affangement, Aømt is the sum of the areas of the

channel's side and half of its bottom. It is also useful to define the heat fraction HF, as

HF= Q rurln"u
(s.r2)

Q,o,ot

where Qsmface is the heat exchanged between the solid and the fluid along the surface in
question, and Qøøt is the total of all heat exchanged along all solid/fluid interfaces in a

repeat-unit. By applyrng the principal of the conservation of energy on the solid heat sink

material, this Qøtnt must equal the amount of heat supplied at the bottom of the heat

exchanger for one repeat-unit.

Table 5.5 shows the values of AF for this arrangement, and the values of HF, for

the cases of uniform inlet velocity, for both the low and high Reynolds number cases. It
should be noted that AF is a function of geometry only. For both the low and high

Reynolds number, the value of HF is greater for the channel's side surface than for its

bottom. This is not surprising, given that the bottom surface accounts for only 12 o/o of
the area over which the heat sink transfers heat to the channel. Furthermore, the value of
HF for the side surface for both the low and high Reynolds number cases is greater than

the value of AF for this surface. This means that the side of the channel "pulls" a greater

proportion of the supplied heat than its fraction of heat transfer area. This can be

explained as follows. Within the solid, the thermal resistance between any two points is

relatively small, owing to the large thermal conductivity of silicon. Thus, the

determining factor that dictates where the heat will flow is the thermal resistance across

the fluid. Because of the channel's elongated height compared to its width, there is less

thermal resistance, on average, between points on the channel's side and the center of the

channel (where, for a given cross-section, the temperature is the lowest), than there is

between points on the channel's bottom and the center. Thus, since heat will

(s.11)
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preferentially flow in the direction of least thermal resistance, the side will attract more

heat than its area fraction.

Table 5.5: Area Fraction and Heat Fraction Data for the Single Charurel (Large)
AÍ

It is interesting that, for the high Reynolds number case, while it is indeed

observed that heat preferentially exits through the side of the channel, the magnitude of
this preference is less than it is in the low Reynolds number case. In fact, for the high

Reynolds number case, the values of HF for the two solid/fluid interfaces are nearly

equal to the corresponding AF values. This means that, with increasing Reynolds

number, the heat being transfer from the solid to the fluid is transferred more uniformly

across the solid/fluid interfaces.

It should be remembered, in the following discussions, that because the geometry

is different in this alrangement than in the two-row affangements, the interpretations of
the various horizontal lines are also different. Most notably, the lines "C" in the various

cross-sections pass through the channel, at its mid-height, and not in the solid only.

Figure 5.7 shows the dimensionless temperature along the lines C in the various

cross-sections. For some unknown reason, the non-physical spikes in the z : / cross-

section described earlier were not observed along line C, even though they were observed

for the other horizontal lines, and for the vertical lines. As expected, the value of d¡

(henceforth, the subscripts/and s on d are omitted for convenience) is constant, at a

value of 0, throughout the channel region in the z: 0 cross-section. In the z:0.05 I
cross-section, d still has a value of zero near x: 1, but, proceeding away towards the

channel/solid interface, the temperature increases. I¡ cross-section 3, there is again a

region where d is for all practical purposes zeÍo,but, it is much smaller. Thus, it is

confirmed that, contrarily to the trend observed in the velocities, for the temperature,

HF (%)

Low Reynolds Number

(Case 9)

High Reynolds Number

(Case 11)

Side of channel

Bottom of channel
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Figure 5.7: Dimensionless Temperatures Along Line C in Various Cross-Sections for the
Case 11 Problem

there is indeed a region in the center of the channel in which the temperature is unaffected

by the presence of the wall. This region gets smaller and smaller for increasing depth

into the channel, until it disappears.

Figure 5.8 shows the temperature profiles along the various horizontal lines in
cross-section 1 (that is, in the z : 0 cross-section). The temperature along all of these

lines has zero-gradients at x : 0 and x: T, because these locations are symmetry planes.

The temperature along line 41, which passes entirely below the channel, increases for
increasing x, though the magnitude of this increase is small, because of the solid

material's high thermal conductivity. Because this line is entirely within the solid, there

is no abrupt change in the derivative of temperature along it. Along the lines Bl, C1 and

D1, the temperature decreases in the solid region, x ( 0.5, but, once again, the variation of
temperature is slight, since the solid has a high thermal conductivity. For points on lines
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81, c1 and Di that lie within the channel, (that is, forx > 0.5), the temperature is

uniform, and equal to the inlet value. The derivative of 0 with respect to x is undefined

o.o2
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c1
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0.01

0.005

-0.005 0 0.1 o.2 0.3 o.4 
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Figure 5.8 Dimensionless Temperatures Along Various Horizontal Lines in Cross-
Section I (z :0) for the Case 1 1 Problem

right at x : 0.5, which is the interface between the solid and the fluid. The temperatures

increase (or, in some cases stay the same) for increasing vertical distance from the heat

source. That is, the temperature profile along line A1 is greater than that along line 81,
which in turn is greater (or equal to) that along line C1, and so on. All of these

observations can be explained as follows. Heat is supplied at the bottom surface. Then,

some of that heat flows directly into the bottom of the channel. But, as observed in

earlier discussion, the left side of the channel absorbs a greater fraction of the supplied

heat than its area fraction. Given that the side is also larger than the portion of the bottom

within the repeat-unit, the side absorbs more heat than the bottom. Clearly, then, since

half of the heat is supplied in the area directly below the channel (that is for x > 0.5),

some of this heat must travel towards the negative x direction to wind up entering the
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channel through its side. This flow of heat results in the temperature along line A1

needing to increase with increasing x. Then, once this heat has reached the region beside

the channel, it combines with the heat supplied directly in the x < 0.5 region of the

bottom plane. Some of this heat proceeds towards the side wall of the channel, while the

remaining heat proceeds upwards, to eventually reach the side wall of the channel at a

higher (greater y) location. Thus, in the region to the left of the channel, the heat flows

upwards and to the right. This explains why the temperature along lines 81, C1 and D1

decreases towards the channel in the x < 0.5 region. It also explains why the temperature

profile is greater along line A1 as it is along line 81, greater along line B1 as along line

Cl, and so on. All of these heat flows occur as result of the heat wanting to flow in the

path of least thermal resistance, as expressed more formally in the governing equations

given by Eqs. (3.3) and (3.a). Right in the channels, d is equal to zero along lines B1, C1

and D1, because this is the inlet boundary condition for temperature. The discontinuity in

derivative of temperature with respect to x at x : 0 .5 for lines B 1 , C 1 and D I is explained

by the different thermal conductivities of the solid and the fluid.

Figure 5.9 shows the ternperature profiles along the various vertical lines in cross-

section | (z :0). The line al passes entirely in the solid domain, and so, no discontinuity

of derivative of temperature is observed along this line. The derivative of temperature

along this line is negative, and its absolute value decreases with decreasing y. This is

because, as y increased, as the heat exits through the side of the channel, there is less and

less heat remaining that flows upwards. Right at the top surface, the derivative is zero

because of the insulated boundary condition. Along lines b1, ci and dl, the temperature

is equal to the specified inlet value for points that lie within the channel region. Right at

!:0, all curves have the same non-zero slope. The slope is non-zero because the bottom

surface is not insulated. Rather, it has as a boundary condition the specified heat flux.

Because the heat flux is the same, and because the thermal conductivity of the solid is

uniform, the gradient of temperature with respect to y aty:0 has the same value along

all of the vertical lines in Figure 5.9.

It should be mentioned that, in the inlet plane, it is not possible to exactly satisfy

the conditions across the interfaces. The conditions across the interfaces are that

continuities of ternperature and heat flux are preserved. In the inlet, however, the
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temperature is set to a uniform value, meaning that the gradient, and hence the heat flux,

are zero. Thus, it would be necessary for the temperature in the solid to have zero-

gradients at the solid/fluid interfaces as well. This would be problematic in two ways.
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Figure 5.9: Dimensionless Temperatures Along Various Vertical Lines in Cross-
Section T (z :0) for the Case 1 1 Problem

First, it would imply that no heat is transfer from the solid to the fluid in this plane, and,

second, it would require the discontinuity of temperature at the interface. Thus, the exact

conditions cannot be satisfied exactly. This explains why, in cross-section 1, there does

not appear to be a continuity of temperature at the solid/fluid interfaces.

With the temperature profiles in the inlet having been observed, it is insightful to

observe similar graphs in other cross-sections. Figure 5.10 shows the variation of
temperature along the horizontal lines in cross-section2 (z: 0.05 /). Many of the same

trends observed in the z : 0 cross-section are observed here as well. One noteworthy

difference is that here, the continuity of temperature at the solid/fluid interface can be

observed. Also, the temperature is no ionger constant within the channel region. Instead,
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along lines 82, C2 and D2, starting with a slope that can be determined by ensuring the

continuity of heat flux at the interface, the temperature decreases for increasingx in the

channel region (x > 0.5). The magnitude of the derivative decreases, until it reaches a

value of zero in the center of the channel, at which point the temperature is still.not
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Figure 5.10: Dimensionless Temperatures Along Various Horizontal Lines in Cross-
Section 2 (r:0.05 Ð for the Case 11 Problem

affected by the presence of the heat transferred at the wall. With increasing distance from

the inlet plane (that is, with increasing z), the temperature profiles for a given horizontal

line increase. Fufthermore, the size of the region where temperature is the same as the

inlet value decreases. However, no other qualitative noteworthy differences are observed

when looking at horizontal temperature profiles in other cross-sections. So, these graphs

are not presented here.

It should be noted that the trend observed in Figure 5.10, whereby the temperature

in the channel region is always lowest for lines with greater y value,is not always
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observed. It happens here because of the specific choice of which horizontal lines are

used to plot temperatures on.

Figure 5.1i shows the temperature profiles along the various vertical lines in
cross-section3 (z:0.5 D. Unlike the corresponding graph for cross-section 1, the

continuity of temperature at the solid/fluid interface can be seen. Because line b3 passes

directly along the solid fluid interface, and is hence separated from line a3 by solid
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Figure 5.1 1: Dimensionless Temperatures Along Various Vertical Lines in Cross-
Section 3 (z :0.5 I) for the Case 1 1 problem

material only, the temperature profîles along line a3 and b3 are close together, owing to

the high thermal conductivity of the solid material. This was not observed in Figure 5.9,

because there, for values ofy corresponding to the channel region, the temperature on

line b1 is set to the inlet temperature boundary condition. At the solid/fluid interface, the

temperature profiles along line c3 and d3 are continuous, but, the derivatives of
temperature are discontinuous, in a manner that ensures the continuity of heat flux. Then,

the temperatures decrease with increasingy, with the magnitude of the derivative
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decreasing as well, until the temperatures achieve a uniform value. However, as the top

wall of the channel is approached, the temperature once againincreases, and then it levels

off to azero-gradient at the top wall. The zerc-gradient at the top wall makes sense; it
can be explained by the fact that the top wall is assumed to be insulated. However, the

rise in temperature that occurs following the zerc-gradient region in the middle of the

channels seems incorrect at first glance. It appears at first glance that heat is magically

created. This is not the case, and, this behavior can be explained. First, though, it is
necessary to explain a few other facts.

While the preceding discussions of where the heat is flowing made no explicit

mention of this fact, since it was not necessary to qualitatively explain most heat transfer

processes discussed thus far, the heat transfer processes are in fact three-dimensional.

That is, in both the solid and the fluid, heat flows in the axial direction, as well as within

a given cross-section. The following trend is observed. For a given set ofxy coordinates,

whether in the solid or in the fluid, the temperature rises with increasingz (that is, for

increasing axial distance from the inlet). In some cases, the temperature rises with

upward concavity, in other cases, with downward concavity, and in some cases, there is a

point of inflection somewhere along the z direction. But, in all cases, the temperature

increases with increasing z. This is due to the fact that, for increasing axial distance from

the inlet, more heat is being "carried along" by the fluid than is the case for cross-sections

closer to the inlet.

Within the solid, heat transfer occurs by one mechanism only, namely conduction.

This implies, given the observation that temperatures increase with increasing axial

distance, that heat flows in the direction of decreasing z within the solid (in addition to

the "transverse" heat flows described earlier). This may seem counter-intuitive, at first,

but is nevertheless correct.

Within the fluid region, the heat transfer process is more complicated. Here, there

are two mechanisms of heat flow. The first mechanism is the heat transfer that occurs by
conduction. As in the solid, the axial component of conduction occurs in the negative z

direction, meaning in the direction opposite to the fluid flow. The other mechanism of
heat transfer is heat flow by advection, which is, simply put, the transfer of heat that takes

place when the moving fluid "caries away", or advects, the heat that is contained in the
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fluid at a given location. On the whole, more heat is transferred by advection than by

conduction. However, there are regions of the flow where this is not the case. Indeed,

close the walls of the channel, where the velocities are relatively small (and, right at the

walls, where the velocities are by definitionzeto,because of the no-slip boundary

condition), conduction (axially, and within a cross-section) dominates over advection.

But, fufther away from the walls, the advection dominates. Because the flow is

essentially uni-directional, even in the developing region, advection carries heat in the

direction of fluid flow.

Thus, an overall picture of the heat transfer is as follows. Heat is supplied at the

bottom surface. Heat is then conducted through the solid, axially, in the direction

opposite the direction of fluid flow, and in transversally, in the manners discussed

previously. All of the heat that enters the solid through the bottom surface makes its way,

through axial and transverse conduction, to the solid/fluid interfaces. Once there, the heat

is absorbed by the fluid. There is a thin region near the channel walls where conduction

effects dominate. In this region, heat is actually carried backwards, by conduction,

towards the channel inlet. At the same time, however, there is a component of
conduction that carries the heat "radially" (that is, in the x- and/or y-directions) inwards

towards the center of the channel. So, as the heat is carried "backwards" and towards the

center of the channel by conduction, it eventually reaches aradialposition where the

axial velocity is great enough, and, it starts to flow predominantly "forward" by

advection, and is ultimately carried out of the channel outlet by advection. It should be

emphasized that conduction, whether axial or "radial", occurs everywhere, even near the

center of the channel where the velocities are great. However, in such regions, it is

insignificant compared to advection. At the top of the channel, there is indeed a wall, but

this wall is not a solid/fluid interface. It is instead an insulated wall. Even though no

heat "originates" from this wall, there is, in the thin region near this wall, axial

conduction of heat. A srnall distance away from this wall, heat that has been so-

conducted is also conducted radially, until such a point where advection becomes

significant, and the heat is can:ied along with the fluid flow.

It would have been desired at this point to carefully study the flow of heat, and to

demonstrate the phenomena described above. It would have been to show how the heat
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flow in the regions near the walls of the channel are in the direction opposite to the

direction of flow. However, ANSYS CFX does not seem to be able to give heat flux

values at arbitrary, user-defined planes. When asked to produce such heat flux values, it
gives an effor message to the effect that heat flows are not defined on such surface.

Furthermore, attempting to work around this limitation by defining a user-specified

variable is not fruitful, because, in order to do so, it is necessary to evaluate spatial

derivatives of temperature, and, to the best knowledge of the authors, after attempting to

do so, this is not possible. Thus, there is no reasonably-convenient way to obtain the

"heat flux field". (It was possible, in earlier sections, to generate Nusselt numbers, which

depend on heat flux, by making use of the factthat the desired heat flows were all along

walls, and so it was possible to use the variable that ANSYS CFX calls "Vy'all Heat

Flux".)

Thus, it is now possible to explain the apparently non-physical behavior observed

in Figure 5.11. At the top of the channel, no heat is supplied from the wall. However,

along the wall, where the velocity is zero because of the no-slip boundary condition, axial

conduction occurs, because of the axial increase in temperature discussed previously.

Then, once this heat gets conducted into cross-section 3, some of it continues to be

conducted towards the inlet plane, but some of it gets conducted "radially" towards the

center of the channel. For this to happen, the temperature along lines c3 and d3 near the

top of the channel A : q must be as shown in Figure 5.1 1 . Thus, in short, the heat that

appears to originate out of "nowhere" originates in fact from a downstream cross-section.

It is unfortunate that this cannot be demonstrated or explored further, because of the

limitation discussed in the previous paragraph.

The discussions of heat flows presented above imply that the maximum

temperature occurs in the outlet plane (because the temperature rises along the z axis), on

the bottom surface (the surface of heat application), and directly below the channel's

symmetry plane. In other words, at the dimensionless point (x: 1, y:0, z: t). This is

confirmed by the data presented in Table 5.2. Prccatse this maximum temperature for the

whole domain is located along the plane of heat flux application þt: 0), it follows that

the maximum temperature on this surface, 0,,n,,y=0, is the same as the overall maximum

temperature, and of course its location is the same. As for 0,,i,.y=6, its location is known
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to be in the inlet plane (z:0) because of the fact that temperatures always rise for

increasing z. Furthermore, because it was shown that, for lowy, the heat flows along the

negative x direction, the x-coordinate of e,,iu,y=o is expected to be x : 0. Thus, the

minimum temperature along the surface of heat application is expected to be located at

x:0 and z:0. This is indeed observed to be the case in Table 5.4.

While the heat flow discussions for the single channel (large) arrangement have

focused on the high Reynolds number case using the uniform inlet velocity profile (that

is, Case 11), it should be mentioned that no qualitative difference is observed in the low

Repolds number case. Also, when making the fully-developed inlet velocity

assumption, while the temperatures are different from those obtained using the inlet

velocity profile, no qualitative difference in the heat flow patterns is observed. The

locations of the maximum temperature overall, as well as the maximum and minimum

temperatures along the heated surface, are identical for all cases using the single channel

(large) alrangement. This is one symptorn of the similar qualitative heat flow patterns

obtained for these cases.

An interesting observation was made while comparing temperature profiles of the

uniform inlet velocity profile cases to the corresponding fully-developed inlet velocity

profile cases. Figure 5.12 shows the variations of temperature along line DX, using the

low Reynolds number, for both the uniform inlet velocity and fully-developed inlet

velocity cases. Also shown in Figure 5.I2 is a vertical line at the z coordinate that

cor'responds to the theoretically calculated entrance length for this problem, by applying

the correlation for laminar flow presented in Incropera and DeWitt (2002). As a check,

the centerline velocity at this axial location for the uniform inlet velocity case was

compared against the centerline velocity near the outlet for this same case, and it is
confirmed that the centerline velocity is within 96 o/o of its fully-developed value. It
appears from Figure 5.12 that, for axial positions greater than the hydrodynamic entrance

length, the temperature predictions along line DX using the uniform inlet velocity and the

fully-developed inlet velocity are nearly identical. In fact, for z values greater than the

hydrodl'namic entrance length, the predictions of temperature (on a dimensionless basis)

along line DX given by the uniform inlet velocity case and the fully-developed velocity

profile case are within 1.80 % of each other. Other tests not presented here confirm that
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similar observations are made when comparing the temperature profiles along any line

that runs parallel to the z axis. So, using the uniform inlet velocity assumption, in cross-

sections where the velocity is fully-developed, the temperature field obtained is nearly

identical to that obtained using the fully-developed assumption. So, if only temperatures

in the region where the flow is known to be fully-developed are desired, it is possible to
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Figure 5.12: Dimensionless Temperatures Along Line DX for Different Inlet Velocity
Assumptions

make the fully-developed assumption in the inlet, with negligible loss in accuracy.

Expressed another way, it is only necessary to use the uniform inlet velocity assumption

when the temperatures in cross-sections where the flow is developing need to be

determined with accuracy. This can be explained as follows. It should be recalled that

the velocity field is detennined separately from, and then used as input in the equations to

determine, the temperature field. For cross-sections where the velocity field of the

unifonn inlet velocity case has reached fully-developed conditions, the velocity fields of
both inlet assumptions are identical. Additionally, it was found earlier that, for the solid
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regions and a thin layer surrounding the walls of the channel, the heat flow in the axial

direction occurs in the negative z direction Thus, the region where the velocity profiles

of the two different assumptions differ is, so to speak, for any z value greater than the

hydrodynamic entrance length, "downstream" along the heat flow lines. Thus, the

difference in velocity fields for z values smaller than the hydrodynamic entrance length

has negligible effect on the temperature field for greater z values.

Thus, in addition to the earlier argument that the achievement of fully-developed

thermal conditions could account for why making the fully-developed inlet velocity

assumption results in such a good approximation to the thermal resistance, another

argument, that does not rely on this presumption, can be made based on the observation

made in the previous paragraph. Because the thermal resistance depends only on input

parameters to the problem and the maximum temperature in the domain, and because for

the single channel (large) alrangement, it is known that the maximum temperature will
occur in the outlet plane, where the temperature predictions obtained using either inlet

profile assumption are nearly identical, it follows that the thermal resistances predicted

using either inlet velocity profile assumptions will be nearly the same. However, because

the lowest temperature in the domain is known to occur in the z:0 plane. where the

velocity f,relds for the fwo different inlet profile assumptions are known to differ

significantly, the minimum temperature obtained using the fully-developed inlet

assumption differs significantly frorn the "correct" value obtained using the uniform inlet

assumption. Thus, when determinin E A0nnn,"¿, it is necessary to use the inlet velocity

profile; making the fully-developed inlet profile assumption will not yield great accuracy.

5.5 Detailedlnvestigation:Parallel-Flow

Because a detailed presentation of the fluid flow phenomena has been presented

in the previous section, and because the fluid flow does not depend on the heat transfer

and is hence qualitatively the same for every arrangement, this section only presents a

detailed investigation of the heat transfer.

Table 5.6 shows heat fraction and area flaction data for the parallel-flow

alrangement, for the uniform cases of both low and high Reynolds number (Case 5 and

Case 7, respectively). In some cases, entries in this table that should add up to 100 % do
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not do so, because of rounding error. Because the top channel has no solid heat sink

material above it, while the bottom channel does, the area fractions of the channels are

not 50 %. Instead, AF:55.I % for the bottom channel, while AF: 44.8 Yo for the top

channel. If one looks at the heat fractions of both channels overall, without regard for

individual sides, for the low Reynolds number case, the bottom channel has a smaller

heat fraction than area fraction and the top channel has a larger heat fraction that its area

fraction, meaning that the upper channel has a "stronger pull" on the heat than the bottom

charurel. The opposite trend is observed in the high Reynolds number case, where the

Table 5.6: Area Fraction and Heat Fraction Data for the parallel-Flow
Arransement

bottom channel has a stronger pull of heat. However, in both cases, the difference in the

overall heat fractions for the channels and their respective area fractions is not significant.

For both channels, for both Reynolds numbers considered, the respective sides

have greater heat fractions than their respective area fraction. This mean that the sides

tend to pull more heat than other solid/fluid interfaces. The reason for this is the same as

in the single channel (large) affangement. Because the channels are elongated in the y-
direction, the thermal resistance between the heated surface and the cooler middle regions

of the channels is smaller for heat that enters the channels from the side than for heat that

en

Surface AF (%)

HF (%)

Low Reynolds Number
(Case 5)

High Reynolds Number
(Case 7)

Bottom of
lower channel

10.3 8.6 1 1.0

Side of lower
chamel

34.5 36.6 J/./

Top of lower
channel

10.3 7.2 8.2

Bottom of
upper channel

10.3 7.6 8.4

Side ofupper
channel

34.5 40.0 34.6

Lower Channel
Total

55.1 52.4 56.9

Upper Channel
Total

44.8 47.6 43
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enters through the top and bottom. This is the case simply because there is less distance

(and hence less thermal resistance) between the sides of the channels and the cooler inner

regions of the channels, than there is between the bottom and/or top of the channels, and

the cooler inner regions. Thus, heat tends to preferentially exit the solid through the sides

of the channels.

Of the remaining three solid/fluid interfaces, which are horizontal and have the

same area (and area fraction), the bottom of the bottom channel attracts more heat than

the other two. This is to be expected, since it is located much closer to the heat source

than the other two, and the advantage the distances to the channels'cooler inner regions

are expected to be similar for all three surfaces. In fact, for the high Reynolds number,

the heat fraction is HF: 1 1.0 o/o, which is higher than the area fraction for this interface.

This is the only case of ahorizontal surface having a greater value of HF than its AF for

the parallel-flow alrangertent. It occurs here because, with the higher Reynolds number

and hence the smaller distance required to reach the cooler inner regions of the bottom

channel from this surface, and with the smaller distance that heat needs to travel in the

solid to reach this surface, the thermal resistance to heat flow for heat that follows a path

that exits from this surface is low enough to allow this surface to have a greaterheat

fraction than area fraction.

The other two horizontal surfaces are the top of the lower channel, and the bottom

of the top channel. For both the high and low Reynolds nurnber cases, the heat fractions

of these surfaces are less than their corresponding area fractions. Of the two surfaces, the

bottom of the upper channel attracts more heat than the top of the bottom channel.

However, the difference is nearly insignificant. For example, for the low Reynolds

number case, the heat fraction of the top of the bottom channel is HF :7.2 o/o,while that

for the bottom of the top channel is 7.6 Yo. For the high Reynolds number case, the

difference is even less significant, with the top of the bottom channel have HF:8.2 yo,

and tlre bottom of the top channel having HF:8.4 %. The slight difference is due to the

fact that the top channel is expected to be cooler, on average, than the bottom channel,

because it is further away from the heat source. Thus, the bottom of the top channel can

absorb more heat than the top of the bottom channel.
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Attention is now focused to temperature plots, in dimensionless form, along

various lines. Unless otherwise noted, all temperature profiles are for the high Reynolds

number case using the uniform inlet velocity assumption (Case 7).

Figure 5.13 shows the temperature profiles along the various horizontal lines in

cross-section2 (z: 0.05 /). At x : 0 and x : I, the temperature profiles along all lines in

this figure has a slope of 0, because the surfaces at these ends are symmetry planes.

Because they are both located entirely within the solid, there is no discontinuity in the

slope of the temperature profiles at any point along lines A2 and C2. Along lines B2 and

D2 there are discontinuities in the slope at x : 0.5, which is where these lines cross

solid/fluid interfaces (from the solid into the bottom and top channels, respectively). The

abrupt change in slope is due to the difference in thermal conductivities between the solid

and the fluid. Along line A2, the temperature increases in the direction of increasing x.

This can be explained by the factthat half of the heat that enters the solid from the

bottom surface does so directly below the bottom of the bottom channel, while this

surface absorbs only 17 o/o of the heat, as shown in Table 5.6. Thus, some of the heatthat

enters the heat sink directly below the bottom channel must flow in the direction of
decreasing x, in order to travel along paths leading to other solid/fluid interfaces. This

flow of heat in the negative x-direction is reflected in the temperature profile along line

42. Then, in the region to the left of the channels (x < 0.5), heat that has originated

below the channels but moved towards the left, and heat that originated directly below

the region to the left of the channels, combine, and proceed upwards (in the direction of
increasingy). As this heat is proceeding upwards, some of it gets absorbed into the side

of the bottom channel, while the remainder continues upwards. This upwards flow of
heat, therefore, is not truly moving only upwards: it has a component towards the right as

well (otherwise, the heat could not actually flow towards either channel). Heat thus

proceeds upwards, with some losses along the way. These losses occur as heat flows into

the side of the bottom channel, into the solid region above the bottom channel but below

the top channel, and into the side of the top channel. The upward flow of heat in the

region x < 0.5 is reflected in Figure 5.13 by the fact that, in this region, the temperatures

along line A2 are greater than those along lineP.2, which are greater than those along line

C2, which are in turn greater than those along D2. Thus, temperatures in this region
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Figure 5.13: Dimensionless Temperatures Along the Various Horizontal Lines in Cross-
Section 2 (t -- 0.05 D for the Case 7 problem

decrease for increasingy, which indicates an upward flow of heat. Furthermore, the

rightward component of heat can be seen, in Figure 5.13, by the fact that, for x < 0.5, the

tetnperature profiles along lines 82, C2 andD2have a slight negative slope. Along lines

B2 andD2, after the abrupt discontinuities in slopes atx:0.5, the temperature profiles

drop off shalply, as heat is being absorbed and carried by the fluid, and continue to drop

until they level off at some point. Towards the center of the channels (that is, for x values

close x : 1) the temperatures along line B2 andD} both approach the channel inlet

temperature, which is the same in both channels. This is because the region where the

temperature is unaffected by the heat transfer from the solid/fluid interfaces is

approached. The region where the temperature in the channels still equal the inlet value

is relatively large, because this is the high Reynolds number case, and because the cross-

section under consideration is close to the inlet plane. In the region above the bottom

channel and below the top charurel, the heat flows from left to right, and, as it does so,

some of it gets absorbed into the top and bottom channels. This flow of heat from left to

0.80.60.4
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right is shown by the negative slope of the temperature profile along line C2. As the heat

gets absorbed by either channel, the heat that continues to flow towards the right

diminishes. This is seen by the decrease in the absolute value of the slope of the

temperature profile along line C2 for increasing x in x > 0.5.

Figure 5.14 shows the temperature profiles along the various vertical lines in

cross-section 2 (z : 0.05 /). The slope of the temperature profiles at y :0 are non-zero.

This is true for all lines. The negative slope at y :0, which is the same along all vertical

lines, can in fact be determined by applying the boundary condition (the specified heat

flux) at this boundary. The temperature prof,rles along lines c2 and, d2, in the regions

corresponding to the channels, reveal that the region of the channels where the

temperature is equal to the inlet value is relatively large (occupying most of the channel

regions' axial cross-sections). The temperature profiles along lines a2 and,b2 always

decrease with increasingy, which signifies that the heat is flowing upwards along these

lines. Furthermore, the magnitude of the slopes of the temperature profiles along these

lines decreases with increasing y. This is because, as y increases, there is less and less

heat flowing upwards, because some of this heat is lost along the way (it is lost to the side

of the bottom channel, the solid space above the bottom channel but below the top

channel, and the side of the top channel). In the y range corresponding to the region

below both channels þ < 0.333), the temperature profile along line d2 is greater than that

along line c2, which in tum is greater than that along hneb2,which in tum is greater than

that along line a2. This is because, as discussed, the heat in this region is flowing in the

direction of decreasing x, and hence the temperature increases with increasing x. The

reverse is observed in the region above the bottom channel and below the top channel

(2 < y < 2.333 ). Here, the heat is flowing in the direction of increasing x, meaning that

the ternperatures are decreasing with increasing x. The profiles along line a2,b2, c2 and,

d2 in the region 2 < y < 2.333 confirm this trend.

The only significant axial effect is that temperatures increase along the direction

of flow. Thus, analogues to Figures 5.13 and 5.14 in other cross-sections look

qualitatively similar (except in the inlet, where the temperatures are exactly equal to the

specified inlet values, and hence "square" profiles result). Since temperatures rise with
increasing z, whichis true in tire solid and in the fluid, axial conduction occurs in the

- 1s6 -



0.03

o.o25

o.o2

0.015

0.01

0.005

0

-0.005
0 0.5 1 1.5 2 2.5 3 3.5 4

v

Figure 5.14: Dimensionless Temperatures Along the Various Vertical Lines in Cross-
Section 2 (z :0.05 Ð for the Case 7 Problem

direction of decreasing e. This is true everywhere in the solid and fluid. However, it is

only in the solid and in a thin region surrounding the wall of the channels (where the

velocities are small) that conduction is significant. ln the central regions of the channels,

conduction is negligible, and advection is the dominant mode of heat transfer.

Thus, an overall picture of the heat flow pattems is as follows. Heat enters the

bottom surface of the solid, according to the boundary condition on this surface. Within

the solid, heat flows in the negative z-direction, axially, and at the same time flows within

a cross-section in the manners specified above. Then, when heat crosses into one of the

channels, it flows towards the center of the respective channel, and is conducted axially

in the negative z-direction. As it proceeds towards the channel's center, it eventually

reaches a point where the velocities are great enough, and the heat is advected, into the

positive z-direction, by the fluid. When the fluid exits through the outlet, it carries the

heat with it.
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Comparisons were made between this case (Case 7), and the other parallel-flow

cases. No qualitative differences in temperature profiles were observed among any of
these four cases.

5.6 Detailedlnvestigation:Counter-Flow

Table 5.7 shows the area fraction and heat fraction data for the counter-flow

alrangement cases using the uniform inlet velocity assumption. It can be seen from these

datathat the sides of the channels have greater heat fractions than their area fractions.

This can be seen in every case except for the side of the top channel in the high Reynolds

number case, where the heat fraction (HF:34.3 %) is ever-so-slightly less than the area

Table 5.7: Area Fraction and Heat Fraction Data for the counter-Flow
Arran

fraction (AF:34.5 %). As was the case in the parallel-flow arangement, this

observation can ultimately be traced to the fact that the channels are elongated in the y-
direction.

Among each of the remaining solid/fluid interfaces, all of which are horizontal

and all of which have the same area (and hence the same area fraction),the one through

which most heat gets transferred is the bottom of the bottom channel. In fact, for the high

Surface AF (%)

HF (%)

Low Reynolds Number
(Case 1)

High Reynolds Number
(Case 3)

Bottom of
lower channel

10.3 8.5 TT.2

Side of lower
channel

34.s 37.5 38.3

Top of lower
channel

10.3 6.9 8.2

Bottom of
upper channel

10.3 6.9 8.0

Side ofupper
channel

34.5 40.1 34.3

Lower Channel
Total

55.1 52.9 57.7

Upper Channel
Total

44.8 47.0 42.3
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Reynolds number case, the heat fraction for this surface (ItF : lLz %) is greater than the

atea fraction of this surface (AF : 10.3 %). This is the case because, as was the case in
the parallel-flow case, with the higher Relnolds number and hence the smaller distance

required to reach the cooler inner regions of the bottom channel from this surface, and

with the smaller distance that heat needs to travel in the solid to reach this surface, it ends

up being the case that heat is "pulled" towards this surface in a greater proportion than

this surface's proportion of total solid/fluid interface area.

When the heat fraction data for the top of the bottom charurel and the bottom of
the top charurel are considered, the trend observed is different from the trend observed in
the parallel-flow arrangement. For the low Re¡molds number case, the heat fraction of
these two surfaces are identical (to 2 significant digits, they are both HF : 6.9 o/o). For

the high Re¡molds number case, the heat fraction of the top of the bottom channel is

gteater than that of the bottom of the top channel (the former is HF : 8.2 o/o, while the

latter is HF :8.0 %). This is in contrast to the parallel-flow affangement, where the heat

fraction of the bottom of the top channel was greater than that for the top of the bottom

channel. However, the difference in heat fractions, even for the high Reynolds number

case where they are not equal, are nearly equal for both surfaces. Thus, it can be said that

the heat fractions of the bottom of the top channel and the top of the bottom channel are

nearly equal, and are below the area fractions for these surfaces. It is also interesting to

note that, for both the parallel-flow arrangement and the arrangement under current

consideration (the counter-flow arrangement), the heat fractions of these two surfaces is

greater for high Reynolds number. Thus, increasing the Reynolds number resulted in

more heat being attracted to these surfaces.

Having examined the heat flows along the various solid/fluid interfaces, attention

can now be focused on temperature profiles. Unless otherwise noted, the plots are for the

high Reynolds number, uniform inlet velocity case (that is, Case 3). Furthermore, to

avoid excessive repetition, the discussions that follow will place emphasis on phenomena

that were not already observed when looking at temperature profiles for the previously

considered affangements. As such, certain features, such as zero-slopes at symmetry

planes, and the discontinuity in slope across solid/fluid interfaces, will not be pointed out.
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Figures 5.15, 5.16 and 5.17 show, respectively, the non-dimensional temperature

profiles along the various honzontal lines in cross-section2 (z:0.05 f, the non-

dimensional temperature profiles along the various horizontal lines in cross-section 3

(r:0.5 [), and the non-dimensional temperature profiles along the various horizontal

lines in cross-section 4 (z: 0.95 l).

In interpreting the temperature profiles shown in Figure 5.15, it must be

remembered that they corespond to an axial cross-section that is close to the inlet of the

top channel, but, close to the outlet of the bottom channel. Thus, the bottom channel

contains fluid that has already picked up most of the heat that it will pick up before

exiting the heat exchanger, while the top channel has just begun to pick up some heat.

So, in this cross-section, the top channel is cooler, which would tend to make it pull more

heat than the bottorn channel, but, it is also located further away from the heat source.

These two trends tend to have opposite effects; the result is the temperature profiles

shown in Figure 5.15. In the region to the left of the channels (x < 0.5), the temperatures

are greatest along lines closest to the heat source. Thus, in this cross-section, the heat

flow proceeds, in the region to the left of the channels, in a mainly upward and rightward

fashion. Along lineD2, in the top channel region, the temperature to the right of the

solid/fluid interface drops relatively suddenly, and then levels off to the specified inlet

value. However, along line 82, in the bottom channel region, the temperature also drops

of with increasingx, but it does so in a different fashion. Rather than dropping off
suddenly, immediately to the right of the solid/fluid interface, it "lingers", so to speak,

behind the temperature profile along D2. The temperatures at most x coordinates in the

region x > 0.5 is substantially greater along line B2 than along line D2. This is because

this channel has already undergone a lot of heating by the time it reaches this cross-

section. Close to .;r : 1.0, however, the temperature profile along line B2 levels off, and

its value at x: 1.0 is only slightly greater than that along lineD2. This is because, even

though the bottom channel has undergone most of its heating, the temperature near its

center has risen only slightly. This is due to the high Reynolds number. This is a

desirable feature because, even though the temperature of the bottom channel has risen,

even near its outlet, there still remains a region of cool fluid, that acts to attracfheat to

this bottom charurel (albeit to a lesser extent than is the case near its inlet).
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The temperature profiles in Figure 5.16 are for the cross-section z: 0.5 /. This

cross-section is sufficiently far away each channels'respective inlets and outlets. Thus,

as might be expected intuitively, since each channel has (to a first approximation)

undergone the same amount of heating prior to reaching this cross-section, the qualitative

behavior of the temperature profiles (and hence the heat flow pattems) in this cross-

section is the same as it is in any cross-section for the parallel-flow arrangement.

Figure 5.17 shows the temperature profiles in cross-section 4. In this cross-

section, it is the top channel that has undergone more heating upstream, and the bottom

channel that is close to its inlet and has thus undergone less heating. Thus, the top

channel is warmer than the bottom channel, and it is located father away from the heat

source. Both of these factors favor the flow of heat, in this cross-section, to preferentially

exit the solid through its interfaces with the bottom channel. Indeed, in the region

x < 0.5, the temperature profile along line C4 nearly overlaps that along line D4, which

suggests that little or no heat is actually flowing upwards from line C4 to eventually enter
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the top channel through its side surface. In this cross-section, then, the top channel is

only attracting a negligible amount of heat; the rest is flowing axially, and/or towards the

bottom channel.

Figure 5.18 shows the temperature profiles along the various vertical lines in

cross-section 4. It can be seen from this figure that, not only is there no heat flowing

from the solid into the top channel, but, some heat is actually flowing out of thetop

channel, into the solid, and enters the bottom channel. This is indicated by the rise in the

temperature profiles along lines c4 and d4 just to the right of ! =2.333.
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Figure 5.18: Dimensionless Temperatures Along the Various Vertical Lines in Cross-
Section 4 G:0.95 t) for the Case 3 Problem

Figure 5.19 shows the variation of dimensionless temperature along line AX,
using the high Reynolds number, for the counter-flow (Case 3) and parallel-flow (Case 7)

alrangements. The significant trend in the axial direction is that, for the counter-flow

alTangement, starting from one end (z = 0 or z = l) the temperature rises to a maximum,

and then decreases. The temperatures at both ends may be close to each other, or, one
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Case 7 Problems

may be significantly higher than the other (in all observed cases, the temperafire at z = 0

was found to be higher than that at z = I for a given axial line). Because of this,

compared to the other arrangements, there tends to be less variation of temperatures

axially, and less amplitude of temperature along a given axial line. This true everywhere,

including on the heated surface ( y = 0 ). However, the temperature variation along line

AX is monotonic for the parallel-flow case. This simple yet crucial feature explains why

the counter-flow affangement is the best at maintaining the uniformity of temperature

along the heat surface. Furthermore, it can be seen that the lowest temperature along line

AX for the parallel-flow case is lower than that for the counter-flow case. This is the

case because, for the parallel-flow case, both channels have their inlets in the same plane,

which can keep temperatures in this cross-section cooler than in the counter-flow case,

where the inlet of one channel is in the same cross-section as the outlet of the other.

There are no major qualitative differences between the temperature profiles for

the high Reynolds number case using the uniform inlet velocity assumption and the high
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Reynolds number case using the fully-developed inlet velocity assumption. Aiso, there

are no major qualitative differences between the temperature profiles for the low

Reynolds number case using the uniform inlet velocity assumption and the low Reynolds

number case using the fully-developed inlet velocity assumption. However, there is one

significant qualitative difference between the high Reynolds number case using the

uniform inlet velocity assumption and the low Reynolds number case using the uniform

inlet velocity assumption.

Figure 5.20 shows the temperature profiles along the various vertical lines in

cross-section 4 (z: 0.95 /) for the low Reynolds number, uniform inlet velocity case

(Case 1). This reveals that, in the top channel, even the "innermost" temperature is

greater than the temperatures of the surrounding solid material (and hence, in this cross-

section, heat flows from this channel, into the solid and into the other channel). This is in
sharp contrast to the high Reytolds number case where, in this cross-section, while some

heat was indeed flowing from the top channel, into the solid and then into the bottom

channel), the temperature at the innermosl regions of this channel were below the

temperatures of the surtounding solid material, and was in fact only slightly higher than

the inlet temperature. The three-dimensional effect that was first-demonstrated in Figure

5.11 (and explained in detail in Section 5.4) can also be seen in Figure 5.20.

Figure 5.21 shows a contour plot of the heat flux along the walls of the channels

Gil*,,) for the counter-flow, low Reynolds number case (Case 1). Only negative values

are shown, where a negative value indicates that the heat is leaving the channel, and

entering the solid. Values are normalizedby dividing them by the heat flux supplied at

the bottom. It should be noted that the view in Figure 5.21 is not isometric. Instead, it is
a view frorn an angle ahnost (but not completely) "head-on" to the Z-axis,which is

necessary to be able to see the whole heat sink in one view (since the length of the

channels is much greater than the cross-sectional dimensions). It can be seen in Figure

5.2I that there are regions near each channel's respective outlet where heat actually flows

out of the channels. Figure 5.22 shows a contour plot of the negative heat flux values

along the walls of the channels for the counter-flow, high Reynolds number case (Case

3). clearly, it can be seen that, for the high Reynolds number case, there are again
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Figure 5.20: Dimensionless Temperatures Along the Various Vertical Lines in Cross-
Section 4 (, : 0.95 I) for the Case 1 Problem

regions where heat flows out of the channels into the solid (and absorbed into the other

channel), but, these regions are smaller than they are for the low Reynolds number case.

Thus, in summary, the heat transfer processes in this counter-flow arrangement

are more complicated than those of the other arrangements (even though the same

physical principles, and the same goveming equations, apply). Axial conduction does

occur, but, unlike earlier affangements, it does not only occur in one direction. At lower

z, axial conduction occurs in the negative z-direction (temperatures increase with z),

while at higher z, axial conduction occurs in the positive z-direction (temperatures

decrease with z). Axial conduction occurs everywhere, but, it is only significant in the

solid and in the thin region in the channels surrounding the walls. Heat flows also occur

cross-sectionally, but, these heat flow pattems are not, as was the case for the parallel-

flow and single-channel (large) anangements, qualitatively the same in every axial cross-

section. Instead, these heat flow pattems vary with axial cross-section. This is due to the

factthat the flow directions in the two channels are opposite to one another, and thus,
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there are cross-sections where one channels has experienced little heated, while the other

has experience more. Near each channels'respective outlets, particularly in the low

Reynolds number case, heat will actually flow from the channel, into the solid, and be

absorbed into the other channel (because this channel is cooler, since it is close to its

inlet).
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CHAPTER 6

CLOSING REMARKS

6.7 Conclusions

A number of conclusions can be drawn from this work:

' If one is only interested in predicting the value of the thermal resistance of the heat sink,

the fully-developed inlet velocity assumption can be made, which simplifies the

calculations. However, determining the maximum temperature difference along the

heated surface and the pumping power requires using the uniform inlet velocity profile,

particularly for high Reynolds number.

o For a given total mass flowrate, the counter-flow affangement gives the lowest thermal

resistance (lower values are desirable). This is followed by the parallel-flow

alrangement. The single channel (large) affangement has the highest thermal resistance.

(The single channel (small) affangement, as examined in this work, did not use the same

total mass flowrate as the other ar¡angements. Hence, it cannot be used in this

comparison.)

' The difference in thermal resistance among the two two-row designs is smaller than that

between the single charurel (large) affangement and either of the two-row arrangements.

Thus, the two-row designs show promise.

o While the counter-flow affangement has a lower thermal resistance than the paraliel-flow

alÏangement, it is more difficult to construct, because of the complexity of pumping the

flow in both rows of channels in opposite directions. Thus, since the difference in
thermal resistance between the two two-row designs was not overwhelmingly great, it
may be desired to sacrifice some perfoffnance in the area of thermal resistance in favor of
a simpler (and less expensive to construct) design.

o The pumping power required to pump a given mass flowrate is lowest in the single

channel (large) affangement. The pumping power for the two-row arrangements is

higher, and both two-row affangements considered have the same pumping power for a
given mass flowrate to be pumped.

' The single channel (large) arïangement was found to be able to dissipate more heat per

unit pumping power than either of the two-row designs, for fixed mass flowrate and
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overall temperature difference across the heat sink. Among the two-row designs, the

counter-flow affangement can dissipate more heat per unit pumping power than the

parallel-flow alrangement, again for fixed mass flowrate and overall temperature

difference across the heat sink.

o Where the counter-flow arangement demonstrates its superiority over the other

arangements is in cases where a low variation of temperature along the heated surface is

the dominant criterion. If this is the key factor in a given application, then it might be

necessary to use the counter-flow arangement, since, achieving the same uniformity of
temperature along the heated surface would require comparatively large amounts of
pumping power.

6.2 Recommendations for Further Work

The work presented in this thesis could be improved upon in the following ways:

o Cases where the validity of classical fluid mechanics does not apply could be considered.

o A more detailed parametric study could be performed, where various geometric and flow
parameters are varied. The effect of varying these parameters on the heat transfer and

pumping power data could then be determined.

. Channels of circular cross-section could be examined.

o Multi-row designs with more than two-rows could be studied.

. Turbulent flows could be considered.

o A more detailed examination of the additional complexities (and costs) of the counter-

flow arrangement over the parallel-flow arangement could be made.

¡ More generally, the costs of the various designs presented in this work could be

examined more closely, including the costs to manufacture, operate and maintain the heat

sinks.

. Cases of two-row desigrs where the mass flowrates in both channels are not the same

could be explored.

o To improve the exactness of the analysis, the plenum before and after the channels could

be modeled.
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