
Polarîzed Fluorescence by the Electron Impact Excitation of 

Atoms 

A thesis 

submitted CO the Faculty of Gnduate Studies, 

University of Manitoba 

In partial Fulfillment 

of the requirements for the degree 

Master of Science 

by 

Bnan John Eves 

Winnipeg, Manitoba, Canada 

O July. 1998 



National Library (*B of Canada 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographic Services seivices bibliographiques 

395 W e l l i  Street 395. rue Weilingîon 
OttawaON KlAON4 Ottawa ON K I  A ON4 
canada canada 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exclusive permettant à la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou 
copies of this thesis in microform, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de rnicrofiche/nlm, de 

reproduction sur papier ou sur fonnat 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts kom it Ni la thèse ni des extraits substantiels 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author' s ou autrement reproduits sans son 
permission. autorisation. 



FACULTY OF GRADUATE STùiIES 
***** 

COPkTRIGHT PERMISSION PAGE 

POLABIZED FLUORESCENCE BY THE ELECTBON 

IMPACT RXCITATIOB OF ATmS 

X ThesidPracticum submitted to the Faculty of Graduate Studies of The University 

of Manitoba in partiai fulfillment of the requirements of the degree 

of 

W T E B  OF SCIENCE 

Brian John E v e s  331998 

Permission has been granted to the Library of The University of Manitoba to lend or sell 
copies of this thesis/practicurn, to the National Library of Canada to microfilm this thesis 

and to lend or sel1 copies of the film, and to Dissertations Abstracts International to publish 
an abstract of this thesidpracticum. 

The author reserves other publication rights, and neither this thesis/practicum nor 
extensive extracts from it may be printed or otherwise reproduced without the author's 

written permission. 



Abstract 

Polarized radiation emitted by electron impact excited atorns carries information 

about the anisotropic population of the magnetic sublevels. An overview of the theory 

necessary to describe the tirne evolution of an electron impact excited atom and therefore 

the emitted radiation. is presented and applied to three cases. The three cases include the 

ls4d-!s2p- 1s' cascade transition in helium, the 3s4d-3s3p-3s' cascade transition in 

magnesiurn, and the electron impact excitation off of a laser excited P-state to a D-state 

and subsequent re-emission back to the P-state. 

The apparatus required to measure the helium, and magnesium cascade transitions 

has k e n  built. The apparatus consists of an electron gun aimed at an atom vapour beam 

The emitted radiation was detected by two photon detectors. one for each level transition. 

The equipment is tested by c o m p a ~ g  the measured polarization of the ls4d-ls2p 

transition in helium to existing published data. The polarization of the 3s4d-3s3p 

transition in magnesium has also been measured. The coincidence measurements required 

to complete the detemination of the magnetic sublevel populations of the D-state for 

helium, and magnesium have not yet been made. 
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Chapter 1 Introduction 

The polarization of Light is a comrnon everyday event which occurs, for example, 

as a result of the scattering processes which make the sky appear blue. or the scattering of 

Light off of the atrnosphere. and is also responsible for the ability of polaroid sunglasses to 

block the glare from the road while driving. In general, any process which is anisotropic 

wili produce polarization of some f o m  In the case of scattering off of the atmosphere, 

the anisotropy is suppiied by the direction of the incident üght, or the position of the Sun. 

By analyzing the polarization we cm determine information about the anisotropic process 

which causes it. In atomic coilision experiments the anisotropy is usudy supplied by the 

coüiding electron beam The information obtained from the polarized emission which is 

due to the de-exciting atorns gives information about the elecwn excitation of the atom. 

The scattering cross section is used to rneasure the Likelihood of an event in a 

collision. In classical physics the cross section is simply the effective area of the target 

which is to be hit by a projectile. If the target is a dart board. for example, then it is easy 

to see that thc cross scction is highly dependent upon the direction of the projectile. Tne 

larger the cross section. the easier the object is to hit. The cross section concept is ody 

valid for large ensembles of targets and projectiles since it is assumed that the projectile is 

not actudiy aimed directly at the target. but is instead directed in the general direction of 

the targçt. In quantum mechanics the incident projectile is modeled as a plane wave. 

where the scattered wave is given by 



The first term in equation ( 1.1 ) is just the original plane wave, while the second term is a 

sphencal wave propagating outward fkom the collision centre with an amplitude defmed 

by 

Equation (1.2) is cailed the scattering amplitude and is a measure of the interference 

between the incident plane wave and the target. in a direction P ' .  The differential 

scattering cross section is defined to be the rate of particles scattered into a unit solid 

angle divided by the total flux of incident particles or 

The quantum mechanical scat tering cross section is consistent with the classical equivalent 

and has units of area. If the scattered particle is not directly measured then the quantity 

which is usually measured is the inte+pted scattering cross section. or 

Only the polarization of the emitted light Eom electron impact excited atorns WU 

be investigated in this work. and the obtained information wül therefore be in t e m  of the 

integrated scattering cross sections. The detailed analysis of the polarization frorn excited 

atomic systerns is required tu increase the understanding of the processes which occur in 

plasmas. The peripheral regions of classical gas-discharge sources exhibit appreciable 

anisotropy and are key componrnts in rnaintaining a plasma. The data obtainrd by 



studying the po larized emission from atornic ensembles c m  he lp to characterize the 

principal processes occumng in the penpheral regions (Kazantsev 1988). 

The fist  experiments which measured the polarized radiation due to electron 

impact were canïed out in the 1920's. In 1927, shortiy afier the fïrst measurernents, 

Oppenheimer (Oppenheimerl927) published the first atiempt to detail the theory of 

polarized emission The theory was later improved upon by P e ~ e y  in 1932 (Pemey1932) 

when he showed it was necessary to include the effects of the fine and hyperhe structure. 

The combined Oppenheimer-Pemey theory was incomplete however and gave ambiguous 

results in the limit of small h e  and hyperfine structure energies. In 1958, the arnbiguities 

were resolved by Percivd and Seaton (Percivall958) and they presented a method for 

detaiiing the polarized ernission t o m  an excited atom A more general formalism was 

introduced in 1973 by Fano and Macek (Fanol973) which included the time modulating 

effects of internai and external fields. The formalism also explicitly related the scattered 

electron to the subsequently radiated photon. and therefore enabled the parameters 

describing excitation to a P-state to be fully deternùned by electron-pho ton coincidence 

experiments. The fûst electron-photon coincidence measurements were carried out in 

1972 by King et ol.(King 1973). A paper by Macek and Hertel (Macek1974) in 1974 

detailed how superelastic scattering off of a laser excited state is in fact the tirne-inverse 

process of the inelastic elrctron-photon coincidence measurements. This. dong with the 

advent of the continuous wave dye laser. created the framework for a powemil 

experimrntal tool. Superelastic electron scattering has k e n  used extensively ever since to 

probe the coherence parameters which describe the shape and orientation of the electron 

excited atornic charge cloud of the P-state. In 1986, Heck and Gauntlett (Heck1986) 



presented a rnethod, based upon the work of Blum (Blum198!). for completely 

deterniining the parameters necessary to describe the electron excitation of a D-state. The 

suggested electron-photon-photon coincidence measurement has yet to be realized. In 

1995 however. Mikosza et al.(Mikoszal995) carried out a photon-photon coincidence 

experiment for a heliurn D-P-S cascade transition. Though their measurements did not 

provide al1 of the available parameters. a relatively simple experimental setup can be used 

to determine the scattering cross sections of the magnetic sublevels. 

ï he  current work details the theory necessary to follow the tirne evolution of an 

excited atomic state, and appiies the results to photon-photon coincidence measurements. 

The two dflerent atoms which are investigated are helium and magnesiurn Since 

rnagnesiurn has an isotope with non-zero nuclear spin, the calculations must include the 

effects of the hyperfhe structure. Prelirninary experirnentai work is presented for the 4 l ~ -  

2 ' ~ - ' S  cascade transition in helium. and for the . l l P - 3 ' ~ - 3 ' ~  transition in magnesium. 

The recent work by Zetner in 1997(Zetner1997). and work in progress by 

Johnson. Eves. and Zetner studying inelastic electron scattering off of a laser excited P- 

state. hris also prompted my investigation of the polarized radiation due to the electron 

impact excitation of a D-state kom a laser excited P-state. Not only are the D-P 

scattering cross sections available. but also some O ff-diagonal elements are non-zero due 

to the breaking of axial symmetry by the aligned P-state. 

This thesis is oganized into six separate chapters. The second chapter develops 

the theory necessary to drscribe the time evolution of excited atomic states, while in the 

third chapter the theory is applied to three srparate cases: the photon-photon coïncident 

measurement of helium: the photon-photon coincident measurement of magnesium 



including the odd mass isotope; the polarized radiation boom a D-state excited by electron 

impact kom a laser induced P-state. The fourth chapter describes the apparatus designed 

and consuucted to carry out a photon-photon coincidence measurement. while chapter 

five gives the preliminary results for the D-P transitions and some diagnostic tests of the 

photon-photon coincidence apparatus. The last chapter provides an overall summas, of 

the work. 



Chapter 2 Theory 

2.1 Introduction 

The excitation of an atom by an electron is a complex process. and not very weU 

understood. Once excited however, the behaviour of the atom cm be foUowed through its 

evolution until it ultimately decays to the ground state. The information which defines the 

state of the evolving atom is gven by the polarized photons which are emitted afier each 

energy level transition. If the scattered electron and al1 of the emitted photons are 

detected, the initial excited state of the atom can be reconstructed, and information can be 

O btainrd about the initial electron induced excitation. This c hapter provides the necessary 

tools to describe the time evoIution of an ensemble of excited atoms which have k e n  

excited to a D-state. The procedure is general enough. however. to be appiied to the time 

evolution of other atornic systems. The theory contained in this chapter is an expansion 

of the work by Blum (Blum1981) who describes the evolution of the density rnatrix and 

applies the theory to a single cascade transition. The analysis of multiple cascades has 

already k e n  presented by Heck and Gauntlett, Mikosza et ul.. and Wang et al. 

(Heck 1986,Mikosza 1996. Wang 1995). 

2.2 Density Matrix Theory 

Density matrices are useful when describing a mixed ensemble of States. The 

density operator for a system is defined as 



where the weighting factors must satisfy 

Equation (2.2.1) describes a system in which a fraction of the ensemble. w;.  is in the state 

1 ai) . The density matrix for a general two state system is 

The diagond elements of equation (2.2.3) give the total probability that the system is in an 

arbitrary state lpi) ,  and are necessluily red. The off-diagonal elements represent the 

excitation of the system into a coherent superposition of basis states. If only the diagonal 

elements are non-zero then the density matruc is said to be incoherent. since no phase 

relation is defined between the states. A density mat+ is coherent if at least one off- 

diagonal element is non-zero. Since the total probability of a system must add to one, the 

trace of the density maaix must also equal one. 

The ensemble average of an observable is found by sumrning the weighted 

expectation value for each state or 

= x ii' (P, IPIP f)(& IAIP, ) 
(2.2-4) 

The above result is general, and therefore proves that the density matrut contains all the 

information inherent in a system. If the opentor only acts on a portion of the system. 



then the ensemble average is 

where the reduced density matrix is defined by 

The reduced density matrix only contains information on the a system. 

2.2.1 The Photon density matrix 

An ensemble of photons cm be efficiently described by the defuution of a photon 

density rnatrix. A convenient basis for the density ma& is the helicity states of a photon. 

The quantkation axis for a helicity state is the direction of propagation of the photon, 

while helicity is defined as the component of angular momentum dong the quantization 

axis. and has two values. h = t 1. The density matrix for the two state system is simply 

What makes the helicity representation useful is that the helicity states cm be shown to be 

synonymous with right and left hand polarized light. for example see Blum (1981). The 

expansion of the helicity states into a Cartesian bais  is then 



and 

The helicity representation is beneficial as a mathematical description of the photon 

ensemble. however, the Stokes parameten are more usefbl from an experimental view 

point. The Stokes parrimeters are defined in terms of measurable quantities as 

the total beam intensity, 1 

the degree of linear polarization with respect to two orthogonal axes onented at 

45" to the x a i s  

the degree of circular polarization 

the degree of linear polarization with respect to the x and y axes 

The photon density matrix cm be expressed in these quantities by first ensuring that the 

trace of the matrix is equal to the total intensity of the ensemble of photons, and by then 

finding the specific intensities as noted above. For example, 



and 

1 ( a / 2 )  = (e,.lp(e,) . 

The density maûix written it terms of the Stokes parameters is therefore 

where 

Often it is necessary to prepare a specific photon density matrix. A purely 

polarized state c m  be written as 

where p is the angle of a polarizer with respect to the x-ais  and 6 is the phase shift 

between the two axes. The photon density matrix is then given by 

1 + sin 2P sin 6 -cos@+isin 2P cos6 
= l le) (el  =i[ 

2 -cos2B-isin2Bcos6 1 - sin 2p sin 6 (2.2.16) 

and c m  represent any  purely polarized photon state. 



2.3 Scattering Theory 

The state vector for a projectile electron with rnomentum p ,  and spin. rn, is 

1 p m) . The target atom of total angular rnomentum, J, and magnetic quantum nurnber, M. 

can be written as 1 d ~ )  , where a represents ail the other quantum numbers needed to 

completely defhe the atom The quantization axis for the atornic system is dong the 

direction of motion of the incident electron, p .  and is s h o w  in Figure 2.1 dong with the 

relevant quantum numbers. 

If a collision occurs between the electron and the atom, then the states are no 

longer independent and rnust be written as the single state vector 1 orlM; prn) . The excited 

state cm be related to the initial state via a transformation operator defined by 

The density maaix of the initial state, 

is then related to that of the final sbte by 

The above density ma& contains ail the information about the collision process, 

including the trivial case where the initial state is the same as the final state. TO 

concentrate upon transitions between differing states. the transition operator, f , is 

defined as 



scattered e- 
/ 

atom 

n >- x, 

Before: 

I 

U 

incident e- 

Figure 2. l :  Initial scattering geometry showing the relevant quantum numbers. The 
incident electron and atom wave hinctions are initially separate. After the collision. the 
electron scaners off at an able 9, md the wave functions are no longer independent. 



where it is understood that the subtraction is by a unit ma&. The density rnatrix which 

describes the excited ensemble of atoms is 

The initial density matrk characterizes an ensemble of atorns which are aiJ comrnoniy in 

their ground state. Electron scattering off of excited atoms is discussed in section 3.4. If 

no attempt is made to prepare the initial spin States of the incident electrons, and the 

atomic electrons, then each spin dependent state is populated with equal probability and 

where the total angular momentum of the atom reduces to the atomic spin, S. for the 

ground state. Writing only the essential quantum numbers, the excited ensemble of atoms 

is now represented by 

which has mabnx elements 

The bra-ket of the transition operator is cded the scattering amplitude f ( ~ , m ,  ; M ,m, ) 

and is usually norrnalized to the differentiai scattering cross section by 



If the spins of the electrons. atomic or scattered, are lefi unobserved then the density 

rnatrix must be surnmed over al1 the spin States, with the resulting reduced density matrix 

k i n g  only dependent upon the orbitai angular momentum, or 

where the angle brackets indicate an average over d l  spins. 

2.4 Expansion of the Density M a t e  into State Multipoles 

In order to calculate the evolution of the excited density matrix. careful 

considention of the appropriate quantization axis to use is required. In analyzing the 

electron-atom coilision, it is advantageous to use the electron b a r n  direction as the z-axis. 

while for the calculation of the electnc dipole operator elements. it is more convenient to 

use the photon direction as the quantization axis. By expanding the density matrix into 

irreducible sphencal tensors it becomes a simple matter to express the density rnatrix in 

any rotated basis. 

A convenient expression for the spherical tensors. as proposed by Blum 

(Blum198 1 ), is 

J' J 

MW M' - M  -Q 

where its matrix elements are simply 



and the inverse relation is given by 

The definition of an irreduciblr sphericai tensor can be given in terms of how it transforms 

under a rotation. specifically 

where D$(R) is the rotation matrix for the Euler angles. R = { y . ~ , a } .  defined by 

The rotation of a coordinate system by the Euler angles is austrated in Figure 2.2. 

Equation (2.4.4) says that an irreducible sphencal tensor can be rewritten as a sum of 

irreducible sphencal tensors defined according to a rotated basis, where the coefficients 

are simply the rotation mauix elements. The usefulness of expanding a density matrix into 

irreducible sphericai tensors is a direct consequence of the above property. since a system 

can be analyzed in the most convenient basis. and then. when appropriate. rotated ont0 a 

different basis to aid in subsequent analysis. The tensors, defined by equation (2.4.1). do 

indeed satisfy equation (2.4.4) upon substitution. 



X" X"' 

Figure 2.2: Rotation of a coordinate system due to a rotation defined by the Euler angles 



Having dehed the irreducible sphencal tensors, the density matrix is expanded into a sum 

of such tensors according to 

where the state multipoles, the coefficients of the above expansion, are defined as 

The above two equations provide a mechanism for hding the state multipoles of a given 

density rnatrix, and converçely, for finding the density matrix, having k e n  given a set of 

state multipoles. The usefulness of this is apparent when a given density matrk rnust be 

acted upon by a state or operator defined according to a different basis. Using equation 

(2.4.7) the density maaix can be rewritten in ternis of state multipoles in the correct basis, 

and the required density matrix elements are simply found by the action of the States upon 

the spherical tensor. Often it is more convenient to manipulate the state multipoles rather 

than the tensor operators. The anaiogous form of equation (2.4.4), the expansion of a 

tensor into a set of tensors with a dflerent frame of reference. is given below for the state 

multipoles as 

where the inverse relation is 



and the superscripts over the state multipoles explicitly define the quantization axis. 

2.5 S ymmetry Considerations 

If the scattering process shows a high degree of symrnetry then the amount of 

information that can be extracted fkom the experiment will be less than for a more general 

system For scattering ülustrated in Figure 2.1 there are two main symmetries. The first is 

due to the invariance of the transition operator f with respect to parity and rotation 

(defhed by an electromagnetic interaction H;uniltonian). This requires that there be 

reflection invariance within the scattering plane, or the density matrk be invariant under a 

rotation of K about the y-axis and an inversion of parity. The syrnmetry condition can be 

applied to the density ma& when it is written as a function of the scattering amplitudes, 

equation (2.5.8) or when it has been expanded into a hear superposition of irreducible 

spherical tensors, equation (2.4.6). Both approaches are identical. 

The rotation about the y-axis is achieved by the rotation operator D(0,n.O) acting 

upon a state ket, or 

~ ( 0 ,  X,O] J M ;  pm) = (- I)""'-*-"~ I J -  M ; - P - m ) .  (2.5.1) 

The action of the parity opentor on a similar state ket is 

PI JM;  pm) = XI JM ;-pm). 

where K is the parity eigen value with possible values of I l ,  and the combined effect of 

M = P D(0.r.0) is therefore 



If an arbitrary density matrix representing an electron excited ensemble of atoms. 

is to remain invariant under the effect of the combined syrnmetry operators then 

where 

a = 2 J ,  + 2 J i + 4 ( 1 / 2 ) -  M ;  - Mf -mi -ml -2Mi - 2 m .  (3.5.6) 

If the initial state is the ground state with zero spin and the incident and scattered electron 

spins are unresolved then 

The above relation implies that 

where da( M )  1 dC2 refers to the differential scattering cross section for excitation of the 

M~ rnagnetic sublevel. 

Applying the reflection invariance symrnetry operators to the density ma& 

expanded into a superposition of irreducible spherical tenson gives 



and therefore, K + Q must be an even integer for the density maaix to remain invariant 

The second applicable syrnrnetry is a direct consequence of not detectuig the 

scattered electrons. Without their detection the scattering plane is not dehed and the 

density matrix must be invariant for any rotation about the electrons' initial direction of 

propagation. An arbitrary rotation applied about the z-mis, 

to the density matrix defined by (2.5.4) yields 

The ody way in which equation (2.5.10) cm be satisfied for an arbitrary rotation is if 

M; = Mf . and all off-diagonal elements are zero. If the scattered electrons are not 

measured then electron induced excitation to a singlet D-state is described by the three 

independent panmeters @M) for M a ,  1.2 where a(M) is the integrated scatteting cross 

section for excitation of the M" magnetic sublevel. The relation between integrated and 

differential scattering cross sections is given in equation ( 1.4). An axially symmeûic 

system is therefore incoherent. 



Axial symmetry applied to the density manix expanded into irreducible spherical 

tenson requires that 

If the density matrix is to be invariant then the above equation should hold for all cp. This 

implies that Q must equal zero, or 

and from equation (2.5.8). K must be an even integer and, hence only even state 

multipoles contribute. According to the previous results for an axially symmetric system 

the density maaix for a D-state cm be expressed as 

p = C(&O(JIJ)+)GO(J'J)  + ( G ~ ( J ' J ) + ) T , ' ( J ' J )  + ( ~ ( J ~ J ) + ) ~ ( J ~ J ) .  
J'J 

2.6 The Time Evolution Operator for an Excited Atomic System 

Once excited by electron impact, the atom will reside in the excited state untii a 

tirne t, at which point it will decay down to a lower energy state. If no electric or 

magnetic fields were present, and if the effects due to the fine or h y p e h e  coupling were 

minimal, then upon de-excitation the state of the atom will not have changed. The emitted 

photon, which carries information about the excited state, c m  then be used to probe the 

physical properties of the excitation process. To detemiine how the photon is related to 

the excited state, the HamiItonian of the system must k t  be defined and then used to 



describe the time evolution of the excited atom density matrix. 

The time development of an atomic system is governed by the wave equation 

where the Hamiltonian for the systern includes contributions boom the canonicd 

momentum and the scalar potential field due to the point charges. In the non-relativistic 

limit, the components of the canonical momentum reduce to the mornentum of the particle 

and the time dependent vector potential. The Hamiltonian can then be written as 

where F,,, and î, are the momentum and position operators for the nucleons. and j, and 

i, are the momentum and position operators for the electrons. If we study only those 

cases where a single valence electron rnakes a transition, and assume that the atomic 

constituenü remain unaffected during the process, then the constant terms can be ignored 

and 

where 

1 &, = - 6' - e @ ( ~ ) .  and 
2~ 



The term f ig  is cded the atornic Hamiltonian and generates the time independent energy 

eigenstates of the atom, or in our case those of the excited electron. The second tem, 

fi,, mediates the interaction between the atom and the radiation field. and therefore earm 

itself the title 'the interaction Hamiltonian'. The main component of the interaction 

Hamiltonian is the vector field operator. Â. which. according to the rules of second 

quantkation. can be expanded in r e m  of the photon creation and annihilation opentors. 

â; and 3,. as 

The sum is over all photon modes in a cavity which have direction k . energy hm, .  and 

polarkation Z, . The action of the photon creation and annihilation operators on a photon 

eigenstate 1 n, ) is defined as 

â+J = (n, + $''ln, + 1). 

and 

From the above dehitions it is apparent that these operators are responsible for the 

emission and absorption of photons which correlate directly with de-excitation and 

excitation processes of an atom. For more details see Loudon (Loudon 1983). 

Having defined the Harniltonian. it must still be shown how the system evolves 

with time. Since the interaction Hamiltonian is itself dependent upon tirne, we cannot 

write down a simple t h e  evolution operator. To overcome this dificulty the base 

eigenstates are transformed according to 



where i, iis the radiation field Harniltonian and is defined in t e m  of the number operator 

and satisfies the time independent energy eigen value relation 

By applying the above transformation ro the wave functions of equation (2.6.1) one finds 

that (Loudon 1983) 

irj,tlh Multiplying both sides by ë and noting that H~ and ndi do not cornmute yields 

where the application of the proper commutation relations gives 

The Hamiltonian on the left hand side is now t h e  independent and the evolution of the 

wave hnction, Ys([), cm be descnbed by the comparatively simple t h e  evolution 

operator 



where 

& = & , + H ~ + H ,  =&+a. (2.6.16) 

Unfonunately. the Schrodinger equation c m o t  be solved in closed form for the above 

Harniitonian due to the presence of the interaction Hamiltonian. In order to solve the 

Schrodinger equation, tirne-dependent perturbation theory must be applied. Of course, 

finding the eigen value solutions to the atomic Hamiltonian is in itself a daunting task for 

atoms other than hydrogen, but in principle it is possible. The radiation field Hamiitonian 

can also be solved in closed fom, and the appropriate eigen value/eigen function solutions 

to both of the previous Hamiltonians are 

and 

The time evolution operator for a system composed of the above Hamiltonians is 

A usehl transformation of the atornic t h e  evolution operator. given by equation (2.6.15), 

results if the complex conjugate of the previous tirne evolution operator is applied to it. 

The time evolution of the new opentor is 



where 

d i ~ "  i.r & d  
ih - dt {Û, (t)Ù, ( t ) }  = ih (7 e û , ( t ) + e  -ùs(t) dt 

= û: (t)  fi, ûo (t)û; (t)ûs (t ) 
d 

ih - Û ' ( t  ) = fîÛ ' ( t  ) 
dt 

and 

q!(t) = Ûo (t)fî,Û,(t) . (2.6.22) 

The benefit of the above transform &es when both sides of equation (2.6.20) are 

integrated with respect to tirne. giving 

where the above recursive formula. in iü expanded f o n  is calied the Dyson series. This 

is usehl since the tirne evolution operator. Û,(t ) .  has been expanded in a power series of 

~ ; ( t ) ,  and can be calculated to any degree of accuracy depending on the number of te- 

included, To the first order, 

fis (t ) = ûo ( t ) ,  

2.7 The Time Evolution of the Density Matrix 

The density rnatrix of the excited atoms directly after the collision is p(r = 0). 

which evolves in time according to the time evolution operator as 



~ ( t )  = û, ( ~ ) P ( o ) ~ J  ( t )  . (2.7.1 ) 

This matrix contains al the observable information about the state of the atom 

immediately after the collision. To filter this information out of the time evolving density 

ma&. the photons ernitted during de-excitation c m  be observed and the resulting 

information cm be directly related to the reduced density mtrix of the photon. Such a 

matrix cornpletely defines the photon. and is only a function of the initial state. 

The notation which will be used in the following sections is summarized by the 

energy scheme in Figure 2.3. The different coordinate axes which will be used to sirnplQ 

the andysis are shown for each part of the cascade: the initial electron excitation to the 

D-state in Figure 2.4; the decay to the P-state in Figure 2.5; the final decay to the ground 

state in Figure 2.6. 

The state ket of an atom with orbital angular mornentum L,, and z-component Mi 

is, in generd, defîned by the complete set of quantum numbers ( 4 ~ ~ ) .  where a 

represents ail the other quantum numbers required to dehe the state completely. We can 

represent such a state in the more concise form, 1 L, Mi). or even just 1 i) so long as no 

confusion is possible. A photon is cornpletely described by the ket 1 CO,A&:A,>, which 

specifies the energy h o ,  . the direction of propagation k  ̂. and the heiicity A, . To make 

subsequent calculations easier the quantization axis will be defîned to be the direction of 

propagation of the emitted photon. This axis will obviously change as the atom ernits the 

second photon in the cascade. The density matrix for a specific energy level. i. with 



Level 1 

I 

Level O 

l & M O )  

Figure 2.3: The energy level scheme for the D-P-S cascade transition illustrating the 
generai notation which will be used in the following sections. 



Level2 + e- 

Scattered e- 

Figure 2.4: The initial electron excitation of the atom. nie scattering plane is defined by 
the Z-axis and X-axis. This coordinate system is called the lab f i m e .  where the Z-axis is 
dong the direction of propagation of the incident electrons. 



Figure 2.5: The atom after de-exciting to the P-state. To aid in the analysis of the dipole 
operators the quantization axis is defined by the &-ais. The two sets of axes. the lab 
frame and the current photon frame. are related by the angles &,<pi. 



Figure 2.6: The atom afier de-exciting to the ground state. To aid in the analysis of the 
dipole operators. the quantiration axis is now defined by the &-axis. The two sets of 
axes, the lab frame and the current photon frame. are reiated by the angles B.,cp,. 



quantum nurnbers defined by a z-axis in direction k^ will be characterized by p," ( t )  , and a 

density matrix which also defines a specific photon will be characterized by JJ,',.(~). 

Using the above notation. the density matrix for the initially excited state is 

If, at a t h e  tl, the atom de-excites via photon emission to energy Ievel 1, then the 

corresponding density ma& elements are given by 

The above equation is a function of both the ernitted photon and the subsequent atomic 

state. Since it is the photon which wili be measured, the reduced density matrix is fomed 

by summing over the atomic states 

giving a photon density matrix which only describes the ernitted photon. 

To continue characterizing the tirne evolution of the atom, the density matrk 

describing the first energy Ievel. pf (t; t ,  ) , rnust aIso be subjected to the t h e  evolution 

operators as in equation (2.7.2). A dficulty arises due to the definition of the 

quantization mis, which requires that all quantum nurnbers be related to the direction of 

propagation of the ernitted photon. When a second photon is ernitted. the tirne evolution 

operators and the states of the system are quantized according to it. however, the actual 

density ma& . p: (t; r ,  ) , is de fined according to the direction of propagation of the first 

photon. This cm be resolved by expanding pf( t ; t , )  into its state rnultipoles and then 

expanding them into a set of multipoles whose quantization axis is that of the second 
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photon. The resulting density matrk will be defined by PL., and its evolution 

characterized by 

Aher the ernission of the second photon in direction i i .  and at a tirne t l  the density manix 

elements are 

Since the ground state is non-degenerate. the atomic density matrix and the photon density 

matrix are both given by the single element shown above. 

A two level cascade process for an axially symrnetric system is almost completely 

described by the previous density matrices. To pull out the information describing the 

initial coilision-excited state. all that is required is the calculation and then measurement of 

both the photon polarization density matrices. As mentioned before hand. for the 

excitation of an atomic D state there are only 3 unknowns available for measurement if the 

collision process is axiaily symrnetric. 

2.7.1 Evaluation of the Density Matrix Elements 

The term (1; k ^ l p l ( r ,  11'; k ' )  , and the corresponding te- for the different energy 

level transitions are cornrnon elements of the photon density rnatrix. To analyze them, the 

tirne evolution operators are expiicitly included and completeness is applied using the 

excited state eigenkets, or 



Since 

(21Û;(?i)(1p;k^t) = (lt;k^'(Û,(t,)~2)', (2-7.8) 

we need to explicitly evaluate only two distinct rnacrix elements. The first to be 

considered. the rnatrix elernent of the tirne evolution operator, is evaluated by applying 

first order perturbation theory to the evolution operator, or from equation (2.6.23) 

The action of the tirne evolution opentor Û, ( r ,  ) on the different basis states is 

An extra factor has been included for the tirne evo1ution of the excited state which 

accounts for the radiation of the moving electron before the state de-excites. The factor is 

an inherent component of the de-excitation process and specifies the minimum linewidth 

that can be achieved for the transition. The term y, is therefore calied the natural 

linewidth of the transition. Application of the above results to equation (2.7.9) yields 



where 

E,. - E, w î y =  - 
f i  

The next step requires hding the rnatrix elements o f  the perturbing interaction 

Hamiltonian. To evaluate (1; k 1 fi, 1 2') recail that 

and 

The squared vector potential term mediaies a transition with the emission. or absorption o f  

two photons. There is a very s d  probability of such a process occurring, as 

demonstrated by Mizushima (Mizushimal970) . and wiU not be considered here. Using 

the above equations the interaction Hamiltonian matrix elements become 



The elecvic dipole approximation is now made. in which the size of the atom is assumed 

to be srnall as compared to the wavelength of the radiation field. The exponential. 

approximated to the first order. is therefore one. The resulting expression is usuaily 

written in terms of r̂  by making use of the commutation relation between it and the 

atomic Hamil tonian, or 

The resulting expression for the matrix elements of the interaction Hamihonian is 

and the time evolution operator becomes 

The position operator, r^ , is a vector operator, or tensor of rank one. The ma& element 

of E, î can be evaluated ushg the Wigner-Eckart Theorem, which separates the physical 

orientation of the system with respect to the quantization axis fkom the physics of the 



interaction. For a tensor of rank K and magnetic quantum number Q the Wigner-Eckart 

Theorem States that 

where the Wigner 3j syrnbol has k e n  used. and the physics of the interaction is given 

solely by the reduced rnatrix element (L.&'IIL,). Wriring the components of the position 

opentor in the helicity basis of the photon k, 

and applying die Wigner-Eckart Theorem gives 

where 

The above is the fkst of two matrix elements required to describe the tirne evolution of the 

excited state density matrix. 

The second. according to equation (2.7.7). is the density matrix element of state 2 

at the thne of excitation. A generd approach. independent of the excitation method. is to 

write the density matrix as a superposition of sphencal irreducible tenson. or 

Recalling that the matrix elements of the tensor opentor are 



then the components of the density rnatrix are 

As mentioned previously, the state multipoles contain the 'physics' of the state and for 

excitation by electron collision they cm be written in tenns of the scattering amplitudes. 

In the case of excitation by decay frorn a higher lying atomic state. the state multipoles can 

be found fiom the tirne-evolved density matrix of the higher lying state by the procedure 

we now describe. 

Applying the results of the previous analysis, equations (2.7.19) and (2.7.23), to 

equation (2.7.7) gives the ùme evolution of the density matrix as 

where 

2m2 il, (t,) = - - w ' , i * l  ( t l ) ~ l ( t l ) ' '  
hm, 



and the approximations o, n o,. and W., G -, = u,, have k e n  made. The above term 

is dependent upon two differing frequencies: the fiequency of the radiation field, which 

interacts with the atom, and the energy difference between the transition states. TO 

coliapse the expression into oniy a function of the transition frequency, it is multiptied by 

the density of states of o, and integrated over dl positive real numbers. However. since 

the trace of the photon density matrix has been defined to be in units of intensity. the 

expression must first be multiplied by the energy of each photon The required integration 

which cm be evaluated with the help of the integnl (Heitler194-4) 

and therefore 

where 



The effects of a finite detector area have &O ken  includrd by the addition of the solid 

angle. Equation (2.7.23) can now be written as 

where the contributions from the dipole operator terms are clearly visible. 

If the electron source. which is exciting the atorns, is a continuous beam then there 

is no way to keep track of the arnount of time elapsed before the atom decays. In fact, the 

ernitted photons wdi be randornly distributed over time and the detection system is then 

sensitive to the nurnber of counts of detected photons and not their individual arriva1 

tirnes. For such a case. the sampling time of the apparatus is much longer than the decay 

time of the atom, and the exponential factor in equation (2.7.26) goes to zero. A second 

simplification results if the energy levels are well defhed and resolvable by the equipment. 

The energy difference between the state transitions, a,, and a,., , vanish giving the steady- 

state form of equation (2.7.26) for resolvable lines as 

2.8 Effects of Nuclear Spin 

Since the results from the previous section penain ody to atorns with zero nuclear 

spin, these results must be arnended for atorns with non-zero nuclear spin. The angular 



momentum vector for the atom is now the sum of the orbitai angular momentum vector, 

L and the spin vector of the nucleus, 1. The atom c m  therefore be characterized by the 

state vector ~~(u)FM). where F is the total angular momentum, and M is the z- 

component of F. During the excitation process it is assumed that no panicular spin 

orientation of the nucleus is favoured and the state vector is then essentiaily identical to 

the one used for the atom with no nuclear spin, but with the initial density matruc divided 

by 21+1 to account for the unresolved nuclear spin states. Equation (2.7.28) c m  then 

accurately describe a non-zero nuclear spin atom if the quantum number L, and aU its 

variations. is replaced by the total angular momentum quantum number F. Unfortunately, 

the dipole operators complicaie the evaluation of equation (2.7.28) since they mediate 

transitions between the orbital angular mornentum states, and not the total angular 

rnomentum Therefore, before the Wigner-Eckm theorem c m  be applied to equation 

(2.7.16), the coupled angular momentum states 1 (LI) FM) must be uncoupled into a sum 

of states 1 LM,) 63 ( IM, ) . by the transformation 

Applying the above equation to the matrix elements of the electric dipole operator gives 



where the contraction of the Wigner-6J symbol has been used to eliminate the surns over 

the magnetic quantum numbers. 

Another complication arises when the density matrix of the initial excited state is 

expanded into the scattering cross sections for the magnetic sublevels, for example see 

equation (2.7.24). These cross sections are defined according to the orbital angular 

momentum, not the total angular momentum To  correct t h .  equation (2.8.1) is once 

again used to expand the total angular momentum states into a sum of orbital angular 

momentum states, or  





Chapter 3 Applications of the Theory 

3.1 f ntroduction 

The theory derived in Chapter 2 is applied to three different cases. All of the 

applications use information canied by ernitted polarized photons to measdre propenies of 

the electron-atom collision. The scattered ekctrons are not measured. and the complete 

quantum knowledge of the coUision process can not be determined. The first two 

applications analyze a two photon cascade fkom the D-state to the ground state for helium, 

and rnagnesiurn The malysis of rqnes ium is complicated by the presence of isotopes 

with nuclear spin. The last application examines the scattering of electrons off of laser 

excited P-states, and into a D-state. 

3.2 Photon-Photon Coincidence Measurements in Heliurn 

As stated previously. the maximum nurnber of unknowns in the scattering mtrix 

for the incoherent excitation of a D statc is three. The detection of the polarization of the 

3 ~ ' - 2 ~ '  photon. which is in the visible spectrurn at 492 nm for helium and the detection 

of the polarization of the 3 ~ ' - 2 ~ '  photon in coincidence with the detection of the cascade 

transition 2 ~ ' -  1s'. gives two of the three nreded indrpendent obsenables. A third 

possible measurement is to determine the total scattering cross section. which would make 

it possible to extract the absolute scattering cross sections for the difierent magnetic 

sublevels. If the total scattering cross section is not anilable then it c m  be set to one. and 

the results are then relative. 



The ;round state of helium hm zero atomic spin due to the closure of the S-level. 

and the lack of stable isotopes with spin. The analysis of the evolution of the excited atom 

cm then be carried out using equation (2.7.4), which is repeated below. 

where 

Due to the resolving powcr of current interference filters and the spacing of the helium 

spectral lines the apparatus can be made sensitive to specific singlet-to-singlet transitions. 

Such a Limitation collapses the surn over L, and L,. to a single entry of L?.  the rotai 

angular mornentum of the excited state. In equation (32.1). the quantum numbers are 

defmed with the z-axis as the direction of propagation of the emitted photon. A more 

convrnient h m e  of reference is the direction of propagation of the incident electrons. 

Using rquation (2.48) the state multipoles c m  be expanded into a sum of multipoles 

whose frarne of reference is the Iab frame, or 



Now that the multipoles are defined in the scattering plane, the results of the symrnetry 

considerations c m  be applied. Axial symrnetry requires q to be zero, and the reflection 

invariance Ui the scattering pluie causes K to be oniy even integers. Expanding the lab 

frame state multipoles gives 

where the scattering cross sections have k e n  substituted according to equation (2.3.10). 

Substituting the above formula into equation (3.2.2) results in a computationai photon 

density matrix which is shown below for the steady state: 

Using the above equation. and the third Stokes parameter. equation (2.2.7d). the 

polarizûtion of the emittrd radiation is calculated to be 

p z -  (P -1 .1  + PLl) 
Pi., + P-1.4 



which was evaiuated using MathematicaTM. The density rnatrix elements should be 

integrated over the arimuthal angle, cp, . before finding the polarization, to account for the 

lack of a defined scattering plane. However, due to the proper choice of syrnrnetry 

conditions. the mtrix elements are independent of the angle. and therefore the constant 

term is simply canceled. The MathematicaTM file used to calculate equation (3.2.6) can be 

found in Appendix 1. The maximum polarization is obtaîned by setting a detector at 

8, = x 1 2 . which gives a polarization of 

and is in ageement with the literature. for exnmple see Percivd and Seaton 

(Peniivd1958). The solid angle of the detector will have a tendency to wash out the 

polarization, and will be investigated in Chapter 5. 

Following the procedure outlined in section (2.7). the tirne evolution of the atom 

after i t  has made the transition to the P-state is given by 

To accommodate the change in the quantization axis the density matm &.(t , )  must be 

written in terms of the previously derived matrices PL. ( r , )  .To do this. ( )  is 

rxpmded into irreducible sphrrical trnsors. 



and then. using rquations (2.3.8) and (2.3.9). the state multipoles are transformed into the 

k direction using the lab kame as an intermediate step. This ensures thai aii angles are 

referenced to the lab frame. and 

Once again making use of equation (2.7.29), the density rnatrk for the ernitted P-S 

photon is 

where the state multipoles are found according to 

Combining equations (3.2.5). (3.2.1 1). and (32.12) gives the finai form for the density 

matrix as 



The elements of the resulting photon density rnauut are dependent upon both of the 

ernitted photons. If the tirs1 photon decay is not measured then the resulting photon 

density rnauiv could be found by fmding the intensity of the D-P transition, equation 

(2.2.7a) . and then integrating over all related angles. Doing so would of course erase al1 

knowledge of the initial D state. Measuring both photons in coincidence prestrves the 

knowledge of the D state. If the polvization of the D-P transition photon is measured in 

coincidence with the intensity of the P-S transition thrn the expectrd polarization is found 

from the density rnatrix 

The resulting formula is independent of the previously found polarization for the D-P 

transition. equation (3.2.6). The solution of equation (3.2.13). usuig the MathrmaticaTM 

program found in Appendix 1. gives 

for 



where A is the difference between the zenith angles of the two detectors. If the two 

photon detectors are R radians apart then the coincidence polarization becomes 

which agrees with the work of Mikosza(Mikoszal996). The polarization measurements 

give two of the t h e  independent equations required to detennine the individual 

integrated scattering cross sections. If the sum of the integrated cross sections is set to 

then the corresponding values for the cross sections are 

(32.1 Sa) 



3.3 Photon-Photon Coincidence Measurements in Magnesium 

Magnesiurn is an akali-earth metal with a twelve proton nucleus, and is the eighth 

most abundant element in the Earth's crust. It occurs naturally in three isotopes. the most 

abundant of which has zero nuclear spin. Properties of the magnesium isotopes are @en 

below in Table 3.1. 

Table 3.1: Naturdy occuming isotopes in magnesium The number of nucleons is given 
by A, and the number of protons by Z (Heath 1986). 

A Z Natural Abundance Nuclear Spin 
24 12 78.99% O 
25 12 10.00% 5/2 
26 12 11.01% O 

Since magnesium has a low molecular weight, the orbital angular momentum is still a good 

quantum number and the analysis for the isotopes with zero nuclear spin is identical to that 

of helium The singlet D-P transition. 3s3p-3s('~)4d. is in the visible spectrum with a 

wavelength of 552.8 nm, while the singlet P-S transition. 3s'-3s('~)3~. is in the ultra- 

violet region with a wavelength of 285.2 nm. 

For the A = 25 magnesium isotope the andysis has to be carried out using the 

rnethods described in section 2.8 since it has non-zero nuclear spin. M o d w g  equation 

(3.2.5) and inserting equations (2.8.2) and (2.8.3). gives the density matrix describing the 



where the photon density matrix is 

The calculation of equation (3.3.2) was carried out with the program contaïned in 

Appendix 2. MathematicaTM was not used to do the calculation due to the complexity of 

the expression and the inefficiency of MathernaticaTM when doing non-symbolic 

calculations. The results of the calculation are 

To find the polarization of the D-P transition due to the contributions f?om all of the 

isotopes. a weighted sum of the isotope polarization density matrices is formed. and the 

equation is solved for the resulting polarization. or 

pu. = 0.7899~:~ + 0.1 000p$ + 0.1 10 lpg* . 
and 



The final expression for the polarkation is therefore 

Equation (3.3.6) is almost identical to the corresponding equation for helium, equation 

(3.2.7). The effect of the hyper-fine splitting has been to decrease die measured 

polarization. 

The decay of the P-state for the odd isotope is characterized by 

which is a modification of equation (32.13). Once again, a weighted sum is required to 

incorponte all of the rnagnesium isotopes into a single density rnatrix, and for the case 

where the polarization of the P-S photon is not observed 

The cornputer program in Appendix 2 was used to calculate equation (3.3.7). The resulü 

of the analysis are 

The final expression for the magnesium photon-photon coincidence measurement is 

there fore 



which is identical to the photon-photon coincidence calculation for helium presented in 

section 3.2. Equation (3.3.10) implies that the coincidence measurement of the D-P-S 

cascade transition is independent of the de-polarizing effects of the odd isotopes. The 

polarization of the D-P and P-S transitions, however. are effected by the presence of the 

odd isotopes. The polarization of the P-S transition in magnesium for just the odd isotope 

(A = 25) is 

where the polarization of the equivalent even isotope transition is 

3.4 Electron Scattering off of Laser Excited P-States 

So far 1 have shown what information can be obtained about the scattering 

amplitudes for a ground state to a D-state electron impact excitation, without the 

detection of the scattered electrons. A s i d a r  exercise can be camed out for the eIectron 

excitation of a D-state off of a pre-excited P-state. The preparation of the initiai P-state 

can be effectively accomplished via laser pumping. A laser provides enough energy 

resolution to selectively choose the appropriate transition. and by controlling the 

polarization of the light beam, the initial populations of the magnetic sublevels cm be 

chosen. The laser orientation with respect to the electron beam is shown in Figure 3.1. 



The initial density ma& for the system describes the ground state atom and the 

purely polarized laser bearn. or 

where the coefficients A,. are the density rnatrix rlements for a purely polarized Light 

beam given by equation (22.9). and the quantization axis is dong the direction of 

propagation of the photons. The time rvolution of the initial system. as usual. is given by 

pli ( t )  = u u ( t  ) . (3.4.2) 

and the resulting excited States are found to be 

The partial evaluation of the time evolution operator bn-ket gives. 

where the derivation is analogous to that for equation (2.7.19), and the ground state is 

assumed to have zero spin. With the application of the above equation. equation (3.4.3) 

becomes 

afier having been integrated over the radiation frequency. as in equation (2.7.27). If the 

laser is operated continuously then the steady state forrn of equation (3.4.5) is required. 

and 



Figure 3. l :  Orientation o f  the laser bearn axis in cornparison with the 
electron beam axis where the polarization of the laser is given by the angle 
p t o m  the laser's x-aris and the phase difference 6 between the two 
orthogonal polarization axes (not shown) 



The above equation gives the density rnaaix for the P-state atoms which have k e n  excited 

by a purely polarized laser beam Before electron scattering off of the P-state atoms c m  

be discussed, the atomic density rnatrix must be rewritten with the quantization axis along 

the electron beam axis. Expanding the density matrix into state multipoles gives 

where 1 have defined the set of state multipoles to be 

Using the notation defined in Figure 3.1. the state multipoles redehed along the electron 

beam axis are 

with the corresponding density matrix 



The optically pumped atomic states interact with the incident electrons according to the 

transition operator and 

where the combined optically excited state and incident electron density rnatrk is given by 

the combination of the density matrices p" and 

to give 

The density matrix elemenü for the electron excited states are therefore equal to 

where the lack of electron spin analysis, both preparation and detection, has been taken 

Uito account. and absorbed into the definition of the scattering amplitudes. The above 

equation gives the density ma& elements for the excited D state, and is equivalent to the 

initial D state population in equation (2.3.17). The analysis for the time evolution of an 
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excited D state c m  now be used to find the polarization of the D-P transition. or even the 

cascade transition D-P-S. 

The symmetry conditions derived in section (2.5) must be reevaluated for the laser 

excited P-state system The symmetry of the problem wiII change depending upon the 

orientation of the exciting laser. or in other words, the orientation of the excited P-state 

dipole. Therefore, the system will not generally be axidy symmetric and off-diagonal 

elements of the density rnatrix wiil no longer necessariiy be zero. The reflection invariance 

symmetry, however. is still applicable. Reflection invariance applied to equation (3.414) 

gives 

The density matrix for the de-excitation to the P state is found by a direct 

application of equations (2.7.17) and (3.4.14) to give 



The actual polarization of the emitted radiation is. of course, 

p z -  Pl.-1 + P-1.1 
9 

P1.1 + P-1.4 

where 

If the scattered electrons are not detected then the density matrix elements must be 

averaged over the zenith angle before the polarization can be calculated. 

Before solving for equation (3.4.19) it is instructive to see what combinations of 

density matrix elements of the P-state cm be chosen with the pumping laser. Fiding the 

mtrix elements of equation (3.4.10), the excited P-state density matrix given in the lab 

frame, for the three laser orientations €IL = 0, €IL = d4, and €IL = d 2  yields 





I sin(2~) e-I6 1 1 sin(2p) e-l6 1 a - - cos' (p) 
3 447 

sin' (P) - I sir@) e16 sin' (p) 
6 d 6 

When the laser beam is inline with the electron beam, €IL = 0. the density matrix is in its 

sirnplest form since the geometry is aKiaily symmetnc. though the excited P-state is not 

necessarily axiaily symmetric. Note that when circularly polarized Iight is used. see Figure 

3.2, the matrix collapses to a single element, either pi,, or p.,.., depending upon the 

photon's direction of rotation. Another single element density rnatrix is possible if, in the 

perpendicular laser beam direction, €IL = d2.  the polarizer is oriented dong the electron 

beam axis. or p = nx, see Figure 3.3. Such a system is axidy symmetnc due to the 

alignment of the P-state dong the electron beam, and the density rnatriw coilapses to the 

element po.0. Note that for = rd2 the P-state is orientated perpendicular to the electron 

beam for ail of the dfierent azirnuthal laser directions, for example see Figure 3.4, and 

hence d l  three density matrices are the sarne. 

The two axially symrnetric systems in Figure 3.2 and Figure 3.3 are the easiest to 

anaiyze. and hence a good place to start. Using the MathernaticaTM program given in 

Appendix 1 the appropriate polarization density matrices were generated by calculating 

equation (3.4.19). Since the scattering amplitudes are dependent upon both the initial and 

final States the following change of notation will be implemented 



Figure 3.2: Circularly polarized light is produced by a laser inline with the electron b e m  
axis and viewed at 90' to the elecîron bearn, The excited atorn state is shown. 



Figure 3.3: Linearly polarked üght exciting a P-state dipole dong the electron beam 
Incident laser light produced perpendiculv to the electron beam axis. but with the 
polaritation axis dong the bearn, causes a the P-state to be orientated dong the electron 
beam. 





The resulting Stokes parameten for the setup as defined by Figure 3.2 are 

where 

If the polarization in equation (3.424) is compared to the previously derived equation for 

the helium D-P transition. equation (3.1.7), then it is apparent that theû forms are 

identical. This is h i e  even though the electron is scattering OR of an anisotropic M=l P- 

state, and not the isotropie ground state. It is interesting that the scatteMg amplitudes for 

excitation to the Mr = +2 sublevels appear as a single term , as do the Mt = t1 sublevels. 

This suggests that the paired tenns might be heparable, and wl therefore reduce the 

total number of independent parameters that can be measured. A diagram showing the 

available energy level transitions is in Figure 3.5. 

The Stokes parameters for the second setup (Figure 3.3) are 

n, = O  

Once again the results are identical to the polarkation for the Heiium D-P transition. This 

tirne. however, the scattering amplitudes are due to scattering off of the M = O P-state. 
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Figure 3.5: Energy level transitions available from the laser excited P-siates 



The scattering amplitudes 

and 

do not appear in equation (3.4.24) due to the symmetry defined by equation (3.4.16). 

The solution to Equation (3.4.19) for the general case of a circularly polarized 

laser in a direction dehed by (f3,cp,) and a detector with a position dehed  by (8k,cpp+A) 

In, = -4sin(2~)cos(~,)sin'(8~ 1 3  f!,!, + 2& ~ e [  f ~ ~ ] )  
ir+ = O  

where the intensity, I ,  is 

3 
C&A) sin2 (8, ) sin' (op)(; f!,!, + ~6 ~e[f:~])- - 

If either the laser or the detector is orientated dong the electron bearn axis then the 

relative angle A in the density rnatrix elements must be integrated over a full revolution 

since the relative angle wiu no longer be defhed. Two off-diagonal tenns are evident in 



equation (3.4.27) and both are dependent upon the relative angle A. The contributions 

from these elements disappear as soon as axial syrnrnetry is restored to the system. 

The solution to equation (3.4.19) for the general case of a iinearly polarized laser 

orientated in a direction defined by (B,cp,) and a detector with a position defined by 

In, = -4sin(7~)cos(0,)cos~(8,)(3 f!;-, + 2& ~ e [ f $ ~ ] )  

Inl = O 

In, = 3sin'(@,)[sin'(8,)( f~ + f,: - 2f:) +cos2(8,)(f~l + f::' - 2 f ~ i l ) ]  

- cor(**) cos2 (B,)(L + cor' (O, ) f : j i  + J6 Re[f;, 1). r 
where the intensity. 1. is 

For the linearly polarized laser beam, the relative angle A is weli defmed until the P-state 

electric dipole is aligned with the electron beam (8, = id2) or when the detector is aligned 

dong the electron beam The difference between equations (3.4.27a) and (3.4.28a) is due 

to the extra dipole component contained within the circularly polarized laser beam The 

beam c m  be split into two orthogonal components. The component which is in the 

laser/electron beam plane is identical to the dipole caused by the Iinearly polarized beam 

while the component which is perpendicular to the plane is equivalent to the dipole shown 

in Figure 3.4. 



The number of independent parameters. as indicated by equations (3.4.27) and 

cross sections for excitation out of the M = O P-state. Three more, { fz;. fz:'. f:' }. are 

the scattering cross sections for excitation out of the M=l P-state. Two of these 

s c a t t e ~ g  processes. fz,' and fZ$' . do not discem between their target States even 

though the contributions from the dflerent processes are anisotropic. The last two 

parameters. fz, and f!,-, . are off-diagonal elements which only contribute when the axial 

symmetry has been destroyed by the orientation of the P-state dipoles. M d l .  

The number of independent nieasurements required to completely characterize the 

D-state atomic density rnaû-k created by electron scattering off of a laser excited P-state is 

eight. The number of independent parameters available for measurement in equations 

(3.4.27) and (3.4.28) is five. This becomes obvious when either of the equations is 

rearranged. For example, equation (3.4.28) c m  be rewritten as 

In, = -8 s i n ( 2 ~ )  cos(8, ) cos' (O, )y 

In2 = O 

In, = 3 sin'(8, )[sin2(8,)a, + cos' (9, )a,] - cos(2~)  cos2(9, 11 + cos2 (9, ))y. 

and 

where 



Since a common factor c m  be divided out from the numerator and denorninator of the 

polarization. there are only four independent parameters contained in equation (3.4.29). A 

fifih parameter cm be obtained by either setting the total cross section for the transition to 

one. or by m e a s u ~ g  it. The measurement of the polarized D-P transition is. therefore, 

not sufficient to fully determine the D-state density matrix populated from a laser excited 

P-state. 1 propose that in order to fUy characterize the D-state density matrix. the 

polarization of the D-P transition must also be measured in coincidence with the P-S 

cascade transition, or in coincidence with the scattered electron.. This is andogous to the 

measurement procedure required to hlly chancterize the D-state density matrix which has 

k e n  excited from the ground state. 



Chapter 4 Apparatus 

4.1 Introduction 

The apparatus was built to perform photon-photon coincidence measurements. It 

is capable of measuring the polarization of a visible photon. and wiU be capable of 

rneasuring the polarization of the visible photon in coincidence with an ultra-violet photon. 

The generd setup of the apparatus is iilustrated in Figure 4.1. The interaction region is 

formed by the intersection of the electron bearn. the atom bearn. and the optical axis. 

4.2 Vacuum System 

The main vacuum chamber is an aluminium block 10 % by 10 'h by 15 inches with 

a 9 % inch diarneter hole bored through its length The ends are capped with aluminium 

plates. the one on  the Front actually king a capped cylinder which increases the available 

volume. A four inch Varian diffusion pump provides the required vacuum and is 

exhausted by a Duo Seal Mode1 1402 roughing pump by the Welch Scientific Company. 

The charnber cm be isolated from the diffusion pump by a pneumatically operated gate 

valve and roughed directly via a separate inlet. At low pressures. < 1 o4 torr, an ion gauge 

is used to measure the chamber pressure. at higher pressures there are 2 available 

thermocouple gauges. one before the difision pump exhaust valve. and the second after. 

The lowest pressure measured with the above system was approximately 9x 10' torr. The 

system is shown in Figure 4.2 There are six flanges attached to the main chamber which 

are used to interface to the outside: two on the top and two o n  each side. Two of the 

flanges are used solely for electrical co~ections. and another contains iwo quarter inch 
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Figure 4.1 : The general setup of the experiment. The interaction region is defined by the 
interception of the three orthogonal axes. 
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staidess steel pipe feedthroughs to allow the regulated supply of a target gas into the 

chamber. The fiange which holds the ion gauge also incorporates a light baffle to prevent 

any outside iight from entering the chamber. Another flange holds the intemal ultra-violet 

photo-multiplier tube and also provides for cooling and electrical connections, or contains 

a 1 'h inch diameter quartz window with the PMT being mounted on the outside. The last 

flange contains a 1 44 inch diameter glas  window enabling the visible florescence to enter 

the extemal optics setup. The birefkingence of such windows has k e n  ùivestigated by Li 

and was found to be undetectable (Li). The flanges form a vacuum seal to the main 

charnber by using Viton O-rings, wMe most connections ont0 the flanges are made via a 

Conflat Range seal.. 

A number of safety circuits have k e n  built to minimize the risk of a catastrophic 

event. The ks t  main system is triggered by the ion-gauge pressure surpassing a set 

mgger point. Once this pressure is exceeded, the power to the electron gun füament 

supply, the high voltage supply for the UV photo-multiplier tube, and the actual ion-gauge 

are autornaticaiiy shut off. The chamber is &O isolated fkom the diffusion pump by the 

closing of the gate valve, and the diffusion pump is itseif isolated from the roughing pump 

by the closing of a valve. A second system tests for water leaking From the coohg h e s  

of the diffusion pump. and in such an event shuts off the water supply and the power to 

the diffusion pump heater. 

4.3 Electron Gun 

ï h e  eiectron gun was designed by A. Chutjian at the Jet Propulsion Laboratos, 

and its design is detailed in his 1979 paper(Chutjian1979). The goal of the design was to 



create an electron gun which could focus at a k e d  region over a large range of electron 

energies. A hrther requirement was chat the tuning of the gun over the wide range of 

electron energies could be accomplished with the variation of only one potential. 

The lenses used in the gun are sirnply created by a potential difference between 

two isolated conductive cylinders. The field varying region between the cyiinders 

accelerate or decelerate the incident elestrons in a manner similar to an optical lem 

focusing light. The electrostatic lenses c m  be approximately modeled as a thick lens with 

focal points fi and fz. which are measured with respect to the principal planes Hi and HZ. 

The object focused by a lem is best represented as two Limiting apertures, a window and a 

pupil. The window is dehed to be a physically limited source which emits a constant flux 

of electrons. The image formed by the source is then limited by the pupil which defines 

the hdf  angles of the rays (Figure 4.3). The image formation by a thick lens is illustrated 

in Figure 4.4. The linear and angular magnification factors for a thick lens are given by 

and 

91 f~ - P fi (4.3.2) - - 4 =-----• el f, f r  -4  

where p and y are the object and image distances respectively. defined with respect to the 

principal planes. The ray-transfer mtrix method. descnbed by DiChio (DiChio 1973), was 

used by Chutjian to design the lens elements. The rnatrix method is just an application of 

the optical ray tracing matrix methods used to analyze optical elements discussed, for 

example, by Klein and Furtak (Klein 1 986). 
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Figure 4.3: An image defined by a window and a pupil. Adapted from (Li 1996). 
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Figure 4.4: The formation of an image window and pupil by a thick lens. Adapted fiom 
(Li 1 996). 



The first lem in the gun (Figure 4.5) is a Pierce extraction diode which f o m  the 

fkst image of the hairpin filament dehed by the window wl and the pupil pi. The next 

lens is placed with its focal point roughly located at wl and the emitted rays are therefore 

mostly paralleL A spatter aperture is located within the parallel portion of the electron 

bearn to limit any aberrations. The purpose of lenses two and three is to place a secondary 

image defined by w~ and pz at the focal point of the variable zoom lens system The zoom 

lem is created by the focusing of lenses four and five. and the window wz is capable of 

king focused at w3, the interaction region, for a large range of energies .2 eV to 1800 eV. 

The electron gun routinely supplied 1-2 pA of current over a wide range of 

energies, 15 eV to 350 eV. At lower energies, less than 15 eV, the overd current output 

decreased and the gun required more than the adjustment of the single focusing element to 

retune after a c h q e  in operathg energy. The Faraday cup used to measure the electron 

flux consisted of two concentric surfaces. The imer diarneter of the first was 0.083 

inches, while the diarneter of the second was 0.1 12 inches. A normal current distribution 

was 1 pA on the inner cup, and less than 100 nA on the outer cup. The energy resolution 

of the gun wris directly determined by the energy resolution of the cathode since no energy 

anaiyzer was used. The electrons' energy profile for ernission by a thermionic cathode is 

given by the Boltzmann equation 

where E is the kinetic energy of the ernitted electrons and T is the cathode temperature. A 

measure of the electron beam energy resolution is the full width at half maximum of 

equation (4.3.3). or 





M = I.79kT. (4.3.4) 

For a normal operating temperature of 3000°K the resolution of the electron gun is 

approximately 0.5 eV. 

The power supply for the gun was made by Yufei Li, and consists of separate 

supplies for each gun element di biased off of the cathode bias power supply. A block 

diagram of the electron gun power supply is shown in Figure 4.6. The 1s t  element of the 

gun and the interaction region are grounded. and therefore. the cathode bias supply is 

negative with respect to ground. To enable the electron gun to be switched on and off 

remotely. a background switching circuit was developed which cm be installed in series 

with these existing power supplies. The circuit, depicted in Figure 4.7. was designed to 

switch voltages less than 450 V with a minimum of effort. The switching speed of the 

circuit is limited by the high voltage opto-isolators. MOC8204, which take at most 5 pS 

to change state. The circuit is essentially an upldown counter whose sequence wdl ensure 

that both power supplies are isolated. The RC combination at the input to the CLR pins 

parantees that the flipflops will turn on in a safe state. 

The electron gun is capable of sweeping the impact energy of the electrons over a 

10 Volt range due to the ramp output of the ORTEC MCS cornputer card. To increase 

the range of the ramp a simple non-inverting op-amp circuit was built. The circuit. shown 

in Figure 4.8. provides the operator with the options of by-passing the ramp or applying a 

10 V. 20 V. or 30 V sweep. The ramp is only capable of increasing monotonicaliy over 

the set range. 
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Figure 4.6: A block diamgam of the electmn gun power supply. The deflector potentials 
are not mounted in serial with the parent element. but utilize sorne of the same circuitry to 
g u m t e e  their voltages are centered around the parent. 



Figure 4.7: The background switching circuit capable of switching a gun element from its 
operating potential to a different potential. n i e  'Background' signal line determines 
which supply is connected to the element: high - n o r d  gun element supply; low - -24 V 
with respect to cathode b i s .  



Figure 4.8: The ramp amplification circuit. The ramp input is a 0-10 V s ipa l  from the 
MCS pc card. The arnplified signal acts as a base voltage for the cathode bias. The 
possible voltage ranges are O V, 10 V. 20 V. and 30 V. 
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4.4 Atom Sources 

4.4.1 Helium 

The two different atorns which WU be investigated. helium and magnesium require 

two completely different delivery systems. The helium is supplied to the interaction region 

via a molybdenum tube with an inside diarneter of 2 mm and a length of 2 inches. 

Molybdenum is used for this purpose because it is completely non-magnetic and a good 

conductor. The flow of gas through the needle is iimited by a Varian variable leak-valve 

capable of supplying leak rates as small as 1 x IO-'' Torr-titres per second. To ensure a 

ciean supply of helium, the entire gas delivery system can be pumped on to remove any 

contaminants. The alignment of the gas needle to the interaction regon is accomplished 

by aligning a needle. inserted down the shaft of the tube. with two sets of orthogonal 

apertures. The fist set of apertures is defined by the Pierce element of the electron gun 

and the final element constituting the Faraday cup. The second axis is detemined by the 

set of apertures which define the opticai path. 

4.4.2 Magnesium 

The supply of rnagnesium to the interaction region requires more effort. To 

produce a metai vapour beam the magnesium mus& be heated tu approximateiy 530 OC. 

The oven ihat is used to heat the rnagnesium is shown in Figure 1.9. The heater used, a 

400 W element made by ARi Industries Inc.. is a 2-wire coaxial element which is wrapped 

around the magnesium chamber. The coaxial nature of the element significantly reduces 

the magnetic fields emitted by the oven due to the high currents involved. To insulate the 
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Figure 4.9: Magnesium oven. The magnesium oven is mounted undemeath the eiectron 
gun. The magnesium chamber is sealed with a stainless steel plug. The cerarnic balls and 
the holes drilled in the oven walls helped to minimize heat loss. 



main chamber from the rest of the oven the amount of conductive metal was reduced by 

drilling holes in the cylinder walls and by using ceramic bais as spacers between the 

mounting bracket and oven. and the rnounting plate and oven. The ceramic balls also 

serve to accurately position the oven since they sit in hemisphencal depressions which 

have k e n  drilled into the mounting plate. A major concern in designing the oven was 

ensuring there was a long enough exhaust hole to aid in collirnating the metal vapour 

beam However. if the chmber heats up prior to the exhaust tube then there is a danger 

of condensation forming on the exhaust wak and blocking it. To prevent this, the exhaust 

tube was off-centered and placed at the edge of the inner chamber. This ensured that the 

exhaust tube heated up at the same rate as the inner chamber walls. 

4.5 Photon Detection Systems 

45.1 Visible 

The visible photon detector consists of a number of optical elements whose aim 

was to select a specific polarization of Light at a specific frequency from the interaction 

region. The generai setup is shown in Figure 4.10. The k s t  element in the optical path 

was a 0.75 inch diameter lens with a focal length of 1.75 inches. The lens was placed so 

that the interaction region was located at its focal point. The interaction region was 

therefore focused at infinity. or equivalently. the diverging radiation. which was collected 

by the lens. was collimated into a non-diverging plane wave. With the atomic fluorescence 

no longer diverging. the distances between subsequent optical elements was no longer 

cntical. The solid angle seen by the lens was 0.14 sr. M e r  passing through the glass 

flange. the light was polarized by a sheet polarizer mounted in a rotating assembly. The 
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Figure 4.10: Optical path for the visible photon. The sheet polarizer and the quarter- 
wave plate can be rotated by an attached stepper motor. 



assembly was rotated by a 200 step per revolution stepper motor geared down by a ratio 

of 3.56:l. The motor was controlied by the data acquisition cornputer and could be 

placed with an accuracy of 0.5". Since there was no encoder on the shaft of the motor to 

provide a feedback as to the polarizer's position. the motor was only rotated in one 

direction, and its position was calibrated every rotation by an optical switch. Aiso 

mounted within the rotating assembly was a quater-wave plate which had its fast axis 

mounted at a 45' angle to that of the polarizer. This arrangement changed the hearly 

polarized iighi into circularly polarized Light which negated any polarization sensitivity that 

the subsequent elements had. 

The last opticd element before the photo-multiplier tube was a Fabry-Perot 

interference filter, a band-pass Nter, with maximum transmission at the wavelength of 

interest. Shown in Figure 4.11 is a percent transmission curve for the 492 nm füter used 

with heiium The closest adjacent iine in helium was at 502 nm, and was therefore weli 

rejected by the filter. The interference füter used to measure the 553 nm transition in 

rnagnesium had a FWHM of 10 nrn centred at 550 nm The closest transition to the 553 

nm spectral iine was at 5 18 nm, and was therefore ais0 rejected. Fabry-Perot interference 

fiters are sensitive to the direction of the incident light since the effective length of the 

interference cavity is increased for light rays which are not n o m 1  to the filter. The 

increased cavit y length increases the fiequency of the transmission maximum and increases 

the bandwidth of the filter. The plane wave produced by the initial collimating lens 

reduced the angular spread of the Light and therefore rninirnized the amount of non-normai 

light incident on the filters. The last optical elernent was the actual photo- 
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multiplier tube, EMI 9658R. The tube was enclosed in a Peltier cooled. hermetically 

sealed enclosure. a TE-206TSR.F made by Products for Research Inc. The cooled tube 

had an improved dark count, which for an operating voltage of 1100 V was approximately 

90 Hz. The wavelength sensitivity range for the 9658R was from 300 to 900 nm with a 

peak sensi tivity at 370 nrn. 

4.5.2 Ultra-violet 

The ultra-violet photon detector was mounted inside the vacuum chamber in a 

stainless steel container. Since the detection system had to operate when the oven was at 

535 O C ,  the normal operating temperature of magnesium oven, the container was cooled 

by an enclosing stainiess steel water cooling 1 . e .  Stainless steel was chosen for the tubing 

to minimize the risk of a rupture when under vacuum since the lab has found copper 

tubing to be susceptible to corrosion. 

Two difTerent UV photon detectors were required to mesure the ultra-violet P to 

S transitions in heliurn and magnesium The high energy of the heiium transition, 2 1.2 eV. 

required the use of an electron multiplier tube. The dynodes of the EMT are coated with 

an active film of processed dumina which emits an electron upon the absorption of a 

photon. The quantum efficiency for a device with a processed aluminium oxide coating is 

reported to be 14% for an incident wavelength of 58.4 nm (Canfieldl987). The P-S 

transition in magnesium emits a photon of lower energy. 4.35 eV. A conventional UV 

photo-multiplier tube, Hamamatsu R2078, with a spectral range of 160 to 320 nm, and a 

peak sensitivity at 240 nrn was used. The quantum efficiency of the detector was reported 

to be 1 0 8  for the 285 nm spectral line (Hamamatsu 1997). The view cone for the detector 



is formed by an aperture (diameter = 3/8 ") mounted on the stainless steel container, and 

the physical extent of the interaction region. The extent of the interaction region is 

approxirnated to be a 3 mm cube. 

4.6 Data Acquisition System 

As mentioned previously the photon detection was accomplished by using photon- 

multiplier tubes (PMT), or in the case of the high energy ultra-violet transition in helium 

an electron multiplier tube. The output from both of the aforementioned devices was 

similar, and consisted of smail negative current pulses caused by the cascade of electrons 

through the device. The detection electronics for both of the photon detectors for 

magnesium is shown in Figure 4.12. The difference in the detection electronics for the 

visible and ultra-violet photons was due to the use of the EC&G preamplifier/discriminator 

which outputs a ïTL or ECL pulse without the need for a separate amplifier stage and a 

single channel analyzer. 

The setup for helium was almost the same as for rnagnesium, the only difference 

was a change in the de-coupling circuit which extracted the current pulse from the 

electron multiplier tube. Since the electron multiplier tube c m  measure energetic particles 

including ions. and electrons. the entrance aperture of the device was grounded to limit the 

electnc field intensity. and the anode was maintained at a large positive potential. Photon 

multiplier tubes. however. cannot measure charged particles, and a large negative potential 

was applied to the cathode. leaving the anode at ground. The latter scheme was 

convenient since the detecied pulses were measured at the anode. and therefore, did not 

need to be separated from the large DC component of the EMT power supply. 
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Figure 4.12: Detection electronics. The separate detection paths for the visible and ultra- 
violet detectors converge at the tirne to pulse height converter. The PHA was used to bin 
the coincidence signal according to pulse height. The MCS was used to coiiect excitation 
functions and to measure the polarkation of the visible signal. 



The signal which contains the polarization of the D-P transition c m  be measured 

directly after the visible photon pre-amplifier/discriminator stage with the multi-channel 

scalar. The exact method of measuring the polarization, either accumulating signal at the 

maximum and minimum of the signal or mapping out the entire polarization curve. was no t 

Limited by the apparatus and crin be accommodated by the controlling hardware. The 

second measurement of interest. the polarization of the visible photon measured in 

coincidence with the ultra-violet photon used the tirne to puise height converter to 

generate a puise train of varying height. The ultra-violet transition. whose intensity was 

over an order of magnitude greater than the intensity of the visible transition. was used to 

start the tirne to pulse height converter. If the tirne to pulse height converter did not time 

out before a pulse fiom the visible transition arrived at the stop input. then a pulse whose 

height was dependent upon the time difference was sent to the pulse height analyzer and 

bimed into one of 1024 channels. 

The opention of the apparatus was controlled by an IBM compatible computer 

which interfaced with the equipment via a digital input/output computer card. The card. a 

PCL-720, had 32 digitd input and output channels and three 16-bit programmable 

counters. The hierarchy of the control system used is shown in Figure 4.13. The il0 card 

controiied the advancement of the MCS data channels and the stepper motor with the help 

of additional onboard circuitry. The e x a  circuitry. shown in Figure 4.14. enabled the 

software to control individually which devices were king advanced and &O enabled the 

'End of rotation' signal to stop any funher motor rotation once an optical switch on the 

rotator was triggered. 
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Figure 4.13: The controlier hierarchy. The software controis the PCL-720, which in turn 
enables the advancement of the MCS andor the stepper motor. The rotation of the 
stepper motor can be stopped by the 'End of Rotation' signai. 
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Figure 4.14: Onboard V 0  card controller circuit. The signals 'Mode 1 ' and 'MCS 
O d O f f  were used to enable the advancement o f  the MCS channel, while the signals 
'Mode 2' and 'Motor O d O f f  were used to advance the motor. The motor rotation can 
be stopped automaticaiiy by the rotator if the 'Clock On/Off signai is low, and the rotator 
sends the 'End of rotation' signai. 



The square wave gnerator and the programmable one-shot modules in Figure 

4.14 are two of the three available counters on the PCL-720. The square wave rate 

generator used the 10 KHz signal as a base clock and generated a variable clock to be 

used by the other circuitry. The rate of the variable dock output was set by a 

programmable 1 &bit register. The square wave rate generator can be tumed on by a high 

signai at 'D'. The variable clock signal can be stopped by the 'End of rotation' signal 

supplied by the rotator if the 'Clock On/Off signal had previously k e n  set low. The 

current status of the generator was read with the 'Clock monitor' signal line. The second 

counter operated in a programmable one-shot mode, and was used to generate a pulse 

train whose length was predetermined by a 16-bit register. This enabled the stepper motor 

andor the MCS to be advanced by a specified number of pulses. The clock to the counter 

was supplied by the output of the variable dock pulse generator. and the counting 

sequence was initiated by a pulse on the 'Counter toggle' line. The state of the counter 

was determined with the 'Count monitor' signal line. The tmth table for cont rohg which 

component of the system was to be advanced is aven in Table 4.1. The program which 

controlled the hardware is included in Appendix 3. 

Due to addressing conHicts within the computer, the PHA card had to be installed 

in a separate data acquisition cornputer. The communication required to synchronize the 

cornputers was accomplished with the existing I/0 card and a separate controiler pro- 

which rnanipulated the PHA. The separate controllhg program enabled the data fiom the 

time to pulse height converter to be placed into two separate memory groups. The fint 

memory group contained the polarkation which was 



Table 4.1 : Tmth table for the controiler circuit. The operation is analogous for the MCS 
advanctment. The first column refers to whether a pulse train is currently king generated 
by the pro,pinmable one-shot counter module. 

Not counting 1 J-ul-n- O X 
1 -l-u-ul 1 1 A - u - u L  
1 -J-uln- 1 O 
1 X X 

Counting O -rul-n- O 1 J-LrLrL 
O - l l ru 'L O O 
O l-u-ul- 1 X 

Motor 
On/Off 

Mode 1 To stepper 
motor 

controller 

Square wave 
rate generator: 

Programmable 
one-shot 

Pmpmmable 
one-shot: Q 



pardel to the electron beam and the second contained the polarization which was 

perpendicular to the electron beam. The program is included in Appendix 4. 



Chapter 5 Preliminary Results 

5.1 lscid-ls2p Transition in Helium 

The initial diagnostics for the polarization sensitivity of the apparatus were 

performed with the ls4d- ls2p singlet transition in helium since there is a large amount of 

readily available data for this transition. For example. McFarland (McFarlandl967) has 

determined the polarization for electron impact energies ranging fmm 34 to 550eV. while 

Raan et aL(Raanl970) have measured the polarization with electron energies of up to 

1000eV. To date. however. there have been no D-P-S photon-photon coincidence 

measurements made involving the 492 nm spectral üne. The ody published results of a 

double photon coincidence rneasurement have been presented by Mikosza et al. 

(Mikosza1995) for the 1 s3d- 1 s2p- 1 s' helium transition and Williams et al.(Williams 1993) 

for the hydrogen n=3 levels. 

The apparatus described in Chapter 4 was used to rneasure the polarization of the 

492 nm transition in helium The incident electron energy ranged fkom the excitation 

threshold of the D-state, 33-76 eV, to 350 eV. The vacuum chamber was rnaintained at a 

background pressure of approxhtely 3x1 O-' torr during the measurements. but the actual 

density of the helium in the interaction region could not be detennined with the apparatus. 

The electron gun was tuned so that 1.0 FA was measured on the inner Faraday cup, and 

only 75 nA on the outer Faraday cup. The actual data were taken by continuously 

rotating the po latirer and coilecting the processed visible photon signal with the Ortec 

MCS card. The background signal due to the dark count of the PMT and any ambient 



light was measured by repeating the polarization rneasurement, but with the electron gun 

turned off. Since the average collection time for a polarization rneasurement was 

approximritely 15 minutes and the background signal rate was extremely stable. It was. 

therefore. not necessary to continuously alternate the polarization and background 

measurernents in order to eliminate error accumulation. At 40 eV an average photon 

count was 8 KHz with a background signal of approximately 90 Hz. Examples of the data 

collected, with the background aiready subtracted. are shown in Figure 5.1, 5.2. and 5.3. 

The three figures depict the extremes of polarization measured. At 43.6 eV the 

polarization was near its maximum (Figure 5. l), whde at approximately 303.6 eV the 

polarization underwent a sign change and was almost equal to zero (Figure 5.2). The 

polarization maintained a negative dope until the limits of the cathode bias power supply 

was reached at 353.6 eV (Figure 5.3) and data collection stopped. 

The entire collection of polarization measurements taken for the 492 nrn helium 

transition is shown in Figure 5.4, dong with previous measurements taken by Raan et al. 

(Raan1970). The energy scale in Figure 5.4 was determined by measuring the excitation 

function of the ultra-violet 1 ~ 2 ~ -  1 s' transition as s h o w  in Figure 5.5. The threshold of 

excitation is sharply defined by the steep drop-off in the UV count rate. A straight lhe  

was fitted to the incline and the intercept was used to shifl the energy scale to the proper 

threshold excitation energy. The accuracy of the excitation function energy scale was 

guaranteed by noting two energies off of the digital multi-meter at set places in the energy 

sweep. The threshold energy. as shown by Figure 5.5. is 24.7M.9 eV, while the accepred 

value is 2 1.24 eV. The energy scales in Figures 5.1 through 5.4 have already had the 3.5 

eV voltage shift applied. The measured 



Channel # 

Figure 5.1: Intensity as a function of 'Channel #' for the He singlet-singlet transition 
M d -  1 s2p at an impact energy of  = 43.6 eV. The fitting results are given in the bottom 
corner o f  the gnph for the equation A(l+p cos (kw x + C)). The parameter p is the 
polarization of the signal. 
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Figure 5.2: Intensity as a function of 'Channel #' for the He singlet-singlet transition ls4d- 
ls2p at an impact energy of & = 303.6 eV. The fitting results are given in the bottom 
corner of the graph for the equation A(l+p cos(2rrw x + C)). The panmeter p is the 
polarization of the signal. 
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figure 5.3: Intensity as a hnction of 'Channel #' for the He singlet-singlet transition 
Md-1sZp at an impact energy of 6 = 353.6 eV. The fitting results are given in the 
bottom corner of the graph for the equation A(I+p cos(2icw x + C)). The parameter p is 
the polarization of the signal. 
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Figure 5.4: The polarization function for the He singlet-singlet 1 s4d- ls2p transition as 
found in this work and as found by Raan et al. (Raan 1970). 

I 1 1 I 1 I 1 I I I 1 I 1 I 

A Measured data 
a 

- 
A Data from Raan et al. 

a 

t 
& 

A 

A 
4 

0 

A - 
O 

A - 
A 

A 
0 

a 

1 1 8 1 1 1 8 1 1 1 I 1 1 1 

O 50 1 00 1 50 200 250 300 350 



Excitation Energy (eV) 

m- 

6000- 

5000- 

Co -- 
c. 
t 

a -- 
O 

2000- . 

Figure 5.5: The excitation function for the ultra-violet I s2p- 1 s2 singlet-singlet transition 
in helium. 

1 l i I 1 1 1 - 

- 
i bnear Fit - 
i yrale(YJ = A + 8 ' xscaieO0 

i Parameter Vaiue Error - 
-- 

lm - A -21 81 56 3821 - 
B 8829 152 

- 
1 I I I 1 1 
15 20 25 30 35 40 45 



polarization curve shows good agreement with the measurements by Raan et aL(Fgure 

5.4). Although discrepancies between the two curves become noticeable at higher 

energies, Heddle has noted that the polarization measurements of other authors for the 

492 nm h e  &O diverge (Clou t 1 97 1. McFarland 1 967. Raan 1 970) and is probably a result 

of the small cross sections which occur at the higher energies (Heddle1989). The 

polarization minimum near the threshold has ken  noted previously by McFarland 

(McFarland 1967) and similar minima have been observed for the 389.9 MI, 438.8 nm, and 

501.6 nm spectral lines of helium (McFarlandl964). The polarization minimum is not a 

general feature of all spectral h e s  and has not been observed in the Lithium and sodium 

resonance lines (Haidt 1965). 

5.1.1 Analysis of the Depolarization Effects on the ls4d-ls2p Transition in Heüum 

There are four main mechanisms for the depolarization of the fluorescence caused 

by electron impact excitation. The four mechanisms are the anisotropic polarization 

sensitivity of the apparatus, the alignrnent of the atomic state vectors due to extemal 

electric and magnetic fields. the cascade population of the D-state from more energetic 

States, and the absorption and re-emission of the fluorescence. 

The polarization sensitivity of the apparatus cm be caused by the finite solid angle 

measured by the photon deiectors. and the inherent polarization sensitivity of some of the 

equipment. Since the electrons were not detected, the experiment was axially symmetric 

and the emitted polarized tight was independent of the zenith angle (assuming the electron 

beam was the z-axis). The depolarization can therefore only be dependent upon the 

azimutha1 angle seen by the detector (Figure 5.6). n ie  dependence of the measured 



Figure 5.6: Effect of the detector's view cone on the polarization. The view cone of the 
detector defined by a detector of radius r. The distance between the electron bearn axis 
and the detector is d. In the expenment the detector is actually the collimating Iens (f = d) 
which then focuses the interaction region at infinity. 



polarkation on the orientation of the detector was previously calculated in section 3.2 and 

is given by equation (3.2.6), or 

p = -  6 sin' (8, )(o(o) + a(1) - 2&)) 

(3 cos(28, ) - 7 b(0) + (3 cos(20, ) - l5)a(l) - 2(3 cos(20, ) + 9)0(2) ' 

A measure of the sensitivity of the polarization to the tinite solid angle cm be calculated if 

equation (3.2.6) is integrated over the detector view cone for sarnple values of the 

scattering cross sections. The polarization, rewritten in terms of the angle. a (Figure 5.6), 

and rearranged gives 

6 cos' (a ) (o (~ )  + a(1) - 2a(2)) 
P =  

6 cos' (a)(a(0) + d l )  - 20(2)) + (4a(0) + 120(1) + 240(2)) 

where 

and 

Integrating over the detector's view cone. and normalizing by the detector area yields the 

corrected polarization 

- cos' (a) 

The detector would be polarization insensitive if the coefficient d b  was zero, or 



equivalently, if the measured polarization was zero. The detector would also be 

insensitive to the polarization if d b  was much larger than one. Since the total scattering 

cross section requires that 

1 = o(0) + 20(1) + 2a(2) 

for the relative cross sections, the maximum and minimum values for d b  occur when 

and 

U 
- =M. or a(O)=l. 
L x  

The coefficient a&,, corresponds to the theoreticai lunit for the relative cross sections at 

the threshold excitation energy. The coefficient &,,, does not necessarily relate to a 

physically realizable case but will still supply a bound on the system The percentage 

dEerence between the numerical integration of equation (5.1.4) and equation (5.1.1 ) with 

a = O is shown in Figure (5.7). The calculations show that the effect of the detecrors view 

cone on the polarization of the fluorescence is less than 2% for any impact energy. 

The polarization sensitivity of the optical elements must also be accounted for. 

The opticd elements before the polarizer, the c o h t i n g  lens and the glass window, are 

essentiaily polarization insensitive. and will not affect the polarization. After the polarizer. 

the optical elements are the quater wave plate. the Fabry-Perot interference filter and the 



Figure 5.7: The polarization sensitivity of the detector as a function of the coefficient ah. 



PMT (Figure 4.8). n ie  Fabry-Perot interference filter is sensitive to the polarkation of 

the incident light if the incident rays are not perpendicular to the filter. The hansmitted 

wavelength is dso dependent upon the incident direction of the light since the effective 

length of the interference cavity is dependent upon the light's direction. The interference 

filter works by causing destructive interference between reflected waves in a cavity 

(Figure 5.8). The reflectance of a surface is polarization dependent and for a plane 

dielecaic boundary, the reflection and transmission coefficients for perpendicular 

polarization are. respectively, 

2n, cos 8, 
T,  = - n, cosû, + n, cos8, ' 

and for paralle1 polarization are. respectively. 

2?h cose; 
T, = 

%  COS^, +n, cosû, 

Since the Light rnust undergo multiple reflections before k i n g  hl ly  transrnitted. the 

important quantity is the difference between the two reflection coefficients. The 

perpendicular and parallel reflection coefficients are graphed for a iight-air interface in 

Figure 5.9. To remove the polarization sensitivity. the linearly polarized light c m  be 

convened into circularly polarized light. The circularly polarized Light will stiü lose 

intensity when taversing the filter, but the loss will be constant and independent of the 

initial linearly polax-ized light As mentioned earlier in section 4.5, a quater wave plate 
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Figure 5.8: The cavity of an interference filter and the reflections due to an arbitmy 
incident light ray. The cavity is formed by two rnirrored surfaces. 



Figure 5.9: The reflectance for the parailel and perpendicular polarizations for an air-glass 
interface. 



with its fast axis oriented at 45O to the linearly polarized iight will convert the linearly 

polarized light into circularly polarized light 

A consequence of not ensuring that the apparatus is polarization insensitive is 

shown in Figure 5.10. The figure shows the fitted polarization curves for the helium 492 

nrn transition before the insertion of the quarter wave plate. The fitted curves have had 

their offset intensities rernoved. From the figure it is clear that as the electron impact 

energy increases, a noticeable phase shifi develops between each measurement. The 

actual cause of the effect has not been determined. It is not due to rnisalignment of the 

interaction region with the photon axis. since the focusing of the electron gun had no 

effect upon the measured phase shifis. The problem was solved, however, by inserthg the 

quarter wave plate. The effect might have easily been missed if the polarization data had 

k e n  collected by the more aditional method of only recording data with the poiarizer 

parallel and perpendicular to the electron beam. 

Another cause of depolarization is the diDonment of the atomic state vectors due to 

the presence of extemai electric and mgnetic fields. If a small magnetic field is present 

then the angular momentum vectors precess about the direction of the field at the Larmor 

bequency of the excited states. This is an important effect for long lived states since there 

is ample t h e  for the momentum vectors to precess. therefore destroying the poiarization 

before the state has tirne to decay to a lower lying state. If the state is short lived then it 

cm decay before there is tirne for precession. The depolarization of light due to an 

applied magnetic field was discovered by Hanle in 1924. and is commonly called the Hanle 
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Figure 5.10: The phase shift caused by a sensitivity to IinearIy polarized light. The phase 
shift is only dependent on the energy of the incident electrons. 



effect (Hanle1924). The density matrix description of the Hanle effect cm be found in 

Blum (Blurn1981). The effect of an electric field on an atorn is to force alignrnent of the 

charge cloud with the elecaic field to minimize the system's energy. 

Electric fields c m  be easily shielded from the interaction region by a simple metal 

cage with a k e d  potentid Generdy it is harder to shield out magnetic fields. The 

normal method of shielding a region is to surround it with a substance of high 

permeability. The rnagnetic field energy is minimized if the field flows through the 

substance. therefore preventing field leakage into the interaction region The alloy 

comrnonly used to shield out rnagnetic fields is called p-metal and is manufactured by Ad- 

vance Magnetics Inc.. To obtain an ideal p-metal shield the d o y  must be in one 

continuous piece and the effects of rnachining must be rninimized by annealing the 

finished product. Due to the limited space in the vacuum chamber and a limited supply of 

p-metal, the mgnetic shielding for the apparatus was not in one continuous piece and it 

has therefore not been annealed. The rnagnetic field strength was rninimized however. by 

de-Gaussing the apparatus with a large oscillating rnagnetic field produced by a set of 

Helmhoht coils before each experiment. Three sets of Helmholtz coils, one set per 

orthogonal direction, were also built to actively minimize the magnetic fields present. The 

coils also allowed the dependence of the polarization on the applied field to be measured. 

No effects due to the applied field were detected and therefore. the de-polarization due to 

magnetic fields was not considered important 

The analysis of the electron impact excitation of the D-state has been carried out 

using the assumption that the electrons are the only mechanism for exciting the D-state. 

In reality the D-state c m  also be populated by decay from higher lying energy States which 
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are dso excited by electron impact. A thorough analysis would require calculating the 

contributions to the D-state density matrix €rom ail of the upper leveis which can cascade 

down into it. 'Ibis is impractical since we have yet to characterize completely the D-state 

density matrk. and have acquired even less information about the more energetic states. 

An estirnate of the cascade intensity can be made with the available data. Heddle and 

Galiagher (Heddle 1989) have presented a method for empiricaily determinhg the cascade 

contribution to a state if the cascade contributions are known for some of the Iower level 

transitions. The method is unsuitable for the current problem though since there are not 

enough data to fit a non-linear curve. The cross sections for the higher quantum number 

states decrease rapidly and it c m  therefore be assumed that a good approximation to the 

cascade intensity can be found by analyzing only the contributions from the two closest P- 

states. The energy level diagram for the transitions is shown in Figure 5. l l .  The ls4p and 

1s5p states cm be populated directly kom the groound state or from the metastable ls2s 

state. The scattering cross sections are available for both the ls4p and ls5p states. The 

cross sections for the states at an impact energy of 100 eV and the radiative transition 

probabilities are given in Table 5.1. 

Table 5.1: The total cross sections of helium (measured at 100 eV) 
and the radiative transition probabilities for the transitions which 
contribute to cascade population (Heddle 1989. Wiese 1969). 

h (nrn) a ( IO'" cm') Ai., ( 1 o%~c- '  ) 

1 s2- 1 s4p 5 2.2 1 09 2.46 



Figure 5.1 1: The energy level diagrarn for the cascade population of the ls4d state. The 
radiative transition probabilities are also shown. 



The cascade contribution is simply aven by the proportion of the scattering cross section 

which feeds the ls4d state. The proportion is determined by the ratio of the transition 

probabilities. A weightinp factor must be applied to the terms which describe scattering 

out of the metastable 1 s2s state since it is only populated by cascade kom the higher lying 

states. Table 5.2 shows that the contribution from the ls2s state will be small since the 

transition probabilities are much srnaUer than the 1s' terms. and the metastable states wiU 

therefore be ignored. nie cascade contribution is approximated as 

4 P.,, &,A, 
Gccrrccrde = - + asP - 

A\r.-tp A i r S r  

= 0.073 x 1 O-" cm' . 

while the cross section for the 1 s4d- ls2p transition at 100 eV is 9x10'" cm2 (Raan1989). 

The cascade population therefore contributes less than 1 C/c to the excitation of the D-state. 

and the depolarization effects will be small. 

The last potential cause for a depolarization of the emitted fluorescence is due to 

the re-absorption of the light by an atom followed by its subsequent re-emission into a 

dflerent solid angle and with a different polarkation. The process. cornmonly cailed 

radiation trapping, is negligible for the D-P transition since a high population of the P-state 

is required to absorb the D-P radiation. ï h e  P-state is extremely short lived = 

17.99~10' sec") and therefore no signifmnt population c m  be achieved to facilitate the 

radiation trapping. The pressure dependence of the polarization for the 492 nm transition 

was not observed with the current apparatus. and has been reponed to be insignificant for 

the helium 492 nrn transition by McFarland (McFarland 1967). The process is important 



for S-P transitions. since a large ground state population exists to trap resonance 

radiation. 

5.2 3s4d-3s3p Transition in Magnesiun 

The 3s4d-3s3p transition in magnesium was measured in an analogous rnannet to 

the hetium D-P transition. The major dflerence between the two rneasurements was the 

use of the oven to form a metal vapour beam. The oven n o d y  operated at a 

temperature of 530°C which resulted in a background pressure of 3x 10" Torr. The actual 

pressure inside the interaction region could not be measured. Since the ion gauge was not 

calibrated to measure magnesium, the background density was probably also a lot higher. 

The oven was mauitained at the operating temperature by approximately 1.0 A of DC 

current. The black body radiation given off by the oven was detectable by the visible 

photon multiplier tube. Baffling h i d e  the vacuum chamber was used to block the 

radiation. although some was still detected (Figure 5.13). The polarization of the 

radiation is presumably due to the rnany reflections off of metal surfaces that the light must 

have traversed before entering the PMT, in conjunction with a highly selective path. The 

data collection was carried out in an identical rnanner to the helium transition. though the 

energy scale covered was much srnalier. The threshold energy for the ultra-violet 

transition is 4.35 eV. and the excitation function for the transition is given in Figure 5.13. 

The required energy shift is calculated to be 0.7H.2 eV. The polarization of the ernitted 

radiation as a function of energy is shown in Figure 5.14. No previous measurements of 

the polarization have been reported. The shape of the curve is sirnilar to the helium 

transition though near threshold the behaviours differ. A minimum near the threshold is 



Channel # 

Figure 5.12: Polarized background signal attributed to the magnesium oven 
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Figure 5.13: The excitation function for the ultra-violet 3 ~ 3 ~ - 3 s '  singlet-singlet transition 
in magnesium. The results of the linear fit are gven  in the right-hand corner of the graph. 
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Figure 5-14: The measured polarization curve for the 552.8 nm 3s4d-3s3p singlet-singlet 
transition in magnesium 



suggested by the data but the energy resolution of the electron gun is not adequate to 

resolve any structure. 

52.1 Analysis of Depolarization Effects on the 3s4d-3s3p Transition in Magnesium 

Of the four depolarization mechanisms discussed in section 5.1.1, only one needs 

to be re-addressed. The cascade contribution to the D-state must be re-evduated for the 

3s4d-3s3p magnesium transition. However, no data has k e n  reported which would 

enable an analysis of the cascade contribution. The best estimate for the cascade 

contribution is therefore the previously calculated cascade population results for the 

hetiurn D-P transition discussed in section 5.1.1. 

5.3 Photon-Photon Coincidence Measurements 

At the tirne of writing, a successhl coincidence measurernent had not been made. 

The general setup of the apparatus used to attempt the measurements has k e n  discussed 

previously in Chapter 4. The coincidence measurement required finding the polarization 

of the D-P transition in coincidence with the P-S transition. Attention was focused on the 

magnesium photon-photon coincidence measurement due to the favourable total cross 

sections of the D-state. A simple calculation c m  be made to determine an expected rate 

of coincidence. Using the notation in Figure 2.4, the detected rate of ernission from the D 

state is 

w here 

al = total scattering cross section for level2 



1, = length of the interaction region seen by the visible photon detector 

AQ, = solid mgle of the visible photon detector 

IC, = quantum efficiency of the visible photon detector 

n = atom beam density 

i = electron beam current. 

A similar expression can be written for the P-S msition 

which includes the cascade contribution from the D-state, assurning that the D-state 

cannot decay via a difTerent transition. The coincidence rate is simply the portion of the 

D-P transition which is also detected by the ultra-violet detector or 

nl,i AR, 
N ,a,N =O? - K , - K ~  -. 

e 4n: 47r 

The coincidence rate can be rewrinen in terms of the D-P photon count rate as 

and an approxirnate value for the coincidence rate can be deterrnined if the solid angle and 

quantum efficiency of the ultra-violet detector are known. The count rate of the visible 

photons has already been determined fiom the P-D polarization measurements. The soiid 

angle seen by the UV detector is approxirnately 0.0013 sr. and according to the 

Hamamatsu catalogue, the quantum efficiency of the PMT is 10% (Hamamatsu 1997). For 

a visible count rate of 1 KHz the coincidence signal should therefore be roughly 0.01 Hz, 

or 360 counts every ten hours. The background signal accumulated over a ten hour 



period is of the same order of magnitude as the coincidence s i g d  This suggests that 

sufficient coincidence signal is present to resolve a coincidence peak in under 24 houn. 

To check the timing of the visible and ulm-violet photon signals. a de-excitation 

timing curve was generated for each signal. The electron gun was repeatedly switched on 

and off. and the signal which switched the electron gun off ako triggered the stop pulse 

on the tirne to height pulse converter. The start pulse to the tirne to height pulse converter 

was supplied by a delay generator fed by one of the photon detectors. The procedure is 

clarified in Figure 5.15. The switching of the electron gun at a fkequency of 20 KHz was 

accomplished with the background switching circuit described in section 4.3. The timing 

diagrams for the visible and ultra-violet photons are shown in Figure 5.16. Ideaily. the 

two graphs would have the sarne shape and be offset by the life t h e  of the D-state or 0.7 

m. However, the two curves are offset by more than 20 p and their shapes are not 

identical. The dflerent profiles of the graphs were due to a misalignment of the ultra- 

violet detector. When the UV detector was aligned. the UV data profile mirrored the 

visible photon timing curve in Figure 5.15. The cause of the timing difference between the 

two signals has yet to be established. 
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Figure 5.15: The timing procedure used to measure the timing curves of the photon 
transitions. The delayed pulses from a photon detector are used to start  the b e r .  The 
stop pulse is supplied when the electron gun turns off. The original timing, t, is 
represented by the delayed time. t. 



Figure 5.16: The timing curves for the visible and ultra-violet transitions of Mg. The 
shapes of the above curves should be the same. and the timing difference should be less 
than 1 ns. The difference in shape was caused by a misaligrnent of the ultra-violet 
detector. 



Chapter 6 Summary 

The measurement of polarized fluorescence emitted fkom electron impact excited 

atorns provides information on the relative populations of the magnetic sublevels for the 

excited atomic state. An overview of the theory required to describe the tirne evolution of 

excited atorns has k e n  presented and has k e n  used to calculate the contributions of the 

integrated scattering cross sections of the magnetic sublevels to the measured polarization. 

Three separate cases have been analyzed: the 1 s4d- 1 s2p- 1 s' cascade transition in helium; 

the 3s4d-3s3p-3s' cascade transition in magnesium that required the inclusion of hyper- 

fine splitthg effects; the D-P transition as a result of electron scattering off of a laser 

excited P-state. 

The first case, the 1 s4d- 1 s2p  1 s' cascade transition in helium, has been previously 

analyzed by Mikosza (Mikoszal996) and his results agree with the calculations in this 

work The corresponding transition in magnesium, 3~4d-3s3~-3s'. has also k e n  analyzed 

in dus work for all naturaily occurrhg isotopes. The affects of the hyperfine splitting on 

the magnesium cascade transition did not result in a depolarization of the emitted 

fluorescence. However. the polarizations of the D-P and P-S transitions were afEected by 

the hyperfine structure. 

I have ako shown that the laser excitation of a P-state removes the axial symmetry 

for a collision process in which the scattering plane has not k e n  defined. The loss of axial 

symrnetry resulted in the contribution of off-diagonal atomic density matrix elements to 

the calculated polarization These results provide the background theory for a set of new 



experiments which can be used to probe the scattering cross sections for excitation off of 

an excited atornic state. 

The measurement of the polarization of the D-P transition, and the polarization of 

the D-P transition in coincidence with the P-S transition was shown to be sufircient to 

obtain relative measurements of the integrated scattering cross sections. The apparatus 

required to conduct the D-P-S cascade measurements has k e n  constructed, and 

preliminary diagnostic testing of the apparatus. to ensure accurate polarkation 

measurements, has been completed for the M d -  ls2p transition in helium The measured 

polarization for the helium transition agreed with the previous measurements of Raan et 

al. (Raan1970). The polarization of the 3s4d-3s3p spectral h e  for magnesium was ako 

measured. This measurement is the first of two measurements required to calculate the 

integrated scattering cross sections for the D-state of magnesiun The D-P-S coincidence 

measurement has yet to be reaiized. Initial diagnostic work has revealed a timing problem 

in the apparatus. Further diagnostic work is required before a photon-photon coincidence 

rneasurement cm be made. 
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Appendix 1 MathematicaTM Prograrns 

Photon-Photon Coincidence Measurements for Helium 

Off[ClebschGordan::phy] Kurns off annoying messages1 
Off[Cle bschGordan: :tri] 

Rotation matrix for a rotation about the y-axis by an angle 8. see Blum (Blurnl981)l 
d~,rnp-,m-.0-]:= du.rnp.m.81 = Sum[(- 1 )A(j-mp-k)(ÿ+m)!(i-m)!(j+mp)!(j-mp) !)Y 112) 

ifctb-m-k] ifctu-k-rnp] ifct[m+mp+k] i fct[k] Cos[0/2]Y 2k+m+mp) 
Sin[8l2JA(2j-2k-m-rnp). { k. 0. j+Abs[m]+Abs[mp] } ] 

Rotation matrix for a general rotation defined by the Euler angles (y.P.a)l 
rotU-,mp-,m-,y-,~-.crl := (Cosbp  yl+I Sin[mp yl)d~,mp,rn.~](Cos[m a]+ 

1 SinCm a ] )  

IConjugate of the rotation rnatrid 
C r o t l j - p ]  := (Cos[mp y]-I Sin[mp y])d~.mp.m.P] 

(Cos[m a]-1 Sin[m or]) 

/Dipole opentor manix elementl 
DipoleElementlja-,ma-,n-,jb_,mb-] := (- 1 )"@ma) ThreeJSymbol[{ja.ma}. {jh-mb } , 

( l.-n)l 

hreducible tensor matrix elementl 
TensorElementua-,ma-,KK,QQ,jbb,mh] := (- 1 )"(ja-ma) (2K+ 1 )"( 112) 

ThreeJSymbol[ (ja.rna }. {jb.-rnb}, ( K-Q } ]  

IConjugate of the keducible tensor m a ~ x  elementl 
TensorElementClja-,ma-,KK,QQ,jb-,mb-] := (- 1 )"(jb-mb) (2K+ 1 )Y 112) 

ThreeJSymbol[{jb,mb }. Cja,-ma}. { K.-Q }] 

/Following equations are equivalent to equations (3.1.2).(3.1.3). and (3.1 .4)l 
DStateDen~ity[m2p-,m2~,0-,cp~] := DStateDensity[rn2p.m2.8.q] = 

Sum[If[EvenQ[K], TensorElementC(2,m,K.0,2.m] 
TensorElement[2,m2p.K.Q,2,m2] o[Abs[m]] rot[K.Q,O,O. 0,cpl. 
( m.-2.2 1 ,  { K.0.41, { Q.-K.K 11 



lFollowing equations are equivalent to equation (3.1.12)l 
PStateMulti[K-,Q-,k-,kp-,8kk,cpkk] := Surn[TensorElementC[ 1 .m 1 ,K.Q, 1 .m 1 pl 

PStateDensity[mlp.m1.k,kp,0kT~k].{rn1.-1.1 }.(mlp,-l,l}] 

lFollowing equations are equivalent to equation (3.1.13)/ 
RotPStateDensity[m 1 p-,m 1 ,k_,kp-,0k,cpk-,0n-,cpn J := 

Sum[RotPS tateMulti [K,Q.k.kpt8k.qk.0n.qn] 
TensorElernent[l,mlp,K.Q, l.ml],{K.0.2},{Q,-K,K}] 

Equivalent to equation (3.1.4)/ 
SS tateMeasureable@c-,kp-,8kk,cpkk,0nn,cpnn] := 

Sum[SStateDensity~,kp.~k.cpk.nTnt8n,cpn] {n.- 1.1.2}] 

/To calculate the polarization density matrix for a D-P-S cascade transition with the D-P 
detector at (8k,cpk), and the P-S detector at (@n,cpk+A)/ 
p = Table [SStateMeasureableF,kp.@k.cpk.8n,cpk+A]. { k.4.1.2). {kp.- 1.1.2}] 

TTo calculate the polarization density m a ~ x  for a D-P transition with the detector at 
(ek*cpk)l 
PStatePhoton[k-,kp-,8kk,cpkk] := Sum[PStateDensity[ml .ml .k.kp.Qk.cpk]. {m 1 ,- 1.1 }] 

p l  = Table [PStatePhoton[k.kp,Bk,cpk]. {k.- 1.1.2). {kp,- l.1.2}] 



Electron Scattering off of Laser Excited P-States 

Rotation matrix for a rotation about the y-axis by an angle 8/ 
du - mp ,? m , .O , ]:= db7mp,rn,0] = Sum[(-l)"(j-mpk)((i+m)!(i-m)!(i+mp)! 

(i-mp)!)"( 112) ifctu-m-k] ifctu-k-mp] ifct[m+mp+k] ifctm] Co~[B/2]~(Zk+m+mp) 
Sin[BR]A(2j-2k-m-mp). (k,O.j+Abs[m]+Abs[mp] }] 

Rotation matrix for a general rotation defined by the Euler angles (y.P.a)/ 
rot~-?mp-,m-,y-.p-,a_1 := (Cos[mp y]+[ W m p  yl)dLi,mp.m.Pl 

(Coslm a]+[ Sin[m a ] )  

IConjugate of the rotation maaix/ 
Crotu,mp-,m,y-,P-,a-] := (Cos[mp y]-1 Sin[mp yl)dlj.rnp,m,Pl 

(Coslm a]-1 Sin[m CC]) 

meducible tensor matrix elementl 
Tens~rElement~a,rna~~K~~Q~,jb~,mb~] := (- l)"(ja-ma) (2K+ 1 )'Y 112) 

ThreeJSymbol[{ja,ma}. {jb,-mb} ,{ K.-Q)] 

IConjugate of the irreducible tensor matrix element/ 
Tens~rElementClja~,rna~,K~~Q~~jb~~rnb_] := (- l)ACjbmb) (2K+ 1 )"( 1 

ThreeJSymbol[{jb.mb}.~a,-ma}.( K.-Q}] 

lpurely polarized photon, equivalent to equation (2.2.16)l 
A[l. 1 ][P-,&] := ( 1 + Sin(2p)Sin(6))/2 
A[-l.I][P-,&] := (-Cos(2P) - 1 Sin(2P)Cos(6))/2 
A[!.- 1 ][P-.&] := (-Cos(2P) + 1 Sin(2P)Cos(6))12 
A[- 1 .- I I  [P-,&] := ( 1 - Sin(2P)Sin(6))/2 



Equivalent to equation (3.3. IO)/ 
LûserPS tateDen~ity[8~,cp~, P,6-] := Table[Shplify[Sum[RotPStateMulti[KQ 8.(p,P.6] 

TensorElement[l.ml,K,Q,l.mlp], {K,0,2}, {Q,-K,K}]], {ml,-l,l  }. {mlp,-l.l)] 

Equivalent to equation (3.3.14)/ 
DS tateDen~ity[m2p-,m2-,8~,cp~,~-,8-] := Sum[If[EvenQ[K+Q], 

RotPStateMulti[K,Q, B,(p.p.6] Sum[If[Abs[m+Q] 5 1, 
TensorEIement[ I .m+Q,K,Q, 1 .ml f [dp,m+Q J Conj [firn2.m]],O], 
{m,-iT 1 )], 01, {K0,3}, {QT-KK)I 

/Following equations are equivalent to equation (3.3.17)/ 
DStateM~Iti[K,Q~~û-,cp~,~~,6~] := Surn[If[Abs[rrG+Q] 5 2, 

DStateDensity[m2+Q.m?. 0.(pTP.6] TensorElementC[2,m2.K.Q,2,m2+Q].0l. 
{ mz -2, 2) 1 

RotDStateDen~ity[m2p-,m2~,0k~,cpk~,Bp~,cpp~,P~,8-] := Sum[IfTAbs[m2-m2p] < 
K. TensorElement[2.m2p.K,m2p-rn2,2,m2] 
RotDStateMulti [K,m2p-m2.0k,cpk,8p,cpp,P,8], O], { K.0.4 } ] 

PStateDensity[m 1 p-,m l-,k8,kp~8kk7~kk,8pP,cppP,~PT66] := If[Abs[m 1 p-k] S 2, 
if[Abs[m 1 -kp] 5 2, DipoleElernent[l ,m 1 p,k,2,m 1 p-k] 
RotDStateDensity[m 1 p-k,ml -kp,0k,cpk,Bp.cpp.P,6] 
DipoIeEIement[Z,m 1 -kp,-kp, 1 .m 1 ].0],0] 

/'quivalent to equation (3.3.19)l 
PhotonDensitylk-,kp-,8kk,cpkkf QpP,~pP,PPT88] := 

Sum[PStiiteDensity[m1.ml.k,kp,8k.cpk.~pT~p,~,6], {ml.  - 1, 1 } ]  

/To calculate the polarization density mamx elements for a system with a laser at (8p.vp) 
and polarization defined by (P.6). and a detector at (Qk.cpp+A)l 

/The Stokes parameters are1 





Appendix 2 Photon-Photon Coincidence Programs for 
Magnesium 

Two dflerent programs were created to calculate separately the polarization for the D-P 

transition in magnesiun and the polarization of the coincidence measurement, D-P-S, for 

rnagnesium. The programs use analytical f o m  of the rotation matrices. Clebsch-Gordan 

coefficients and the Wigner-6j syrnbols presented by Zare (Zûre1988). Note that there is a 

mistake in the analyticd form of the Clebsch-Gordan coefficient printed in Zare, and the 

equation has been corrected for the progams. 

Polarbation of the D-P Transition in Magnesium 

int ftoi(doub1e num) 
{ 
int i; 

retum i; 
1; 

/*********************************************/ 

double f(doub1e num) 

{ 
double a n s w e ~  1 .O; 



int i; 

if (i < 0) 
return 0.0; 

else if (i  <= 1 ) 
return 1.0; 

else 
C 
while ( i  > 1 )  

C 
answer=answeF i; 
1--' 

1; 
retuin answer; 
1; 

1; 

double f-comb(doub1e a. double b, double c) 

{ 
retum sqn( f(a+b-c)*f(a- b+c)*f(-a+b+c)/f(a+b+c+ 1 )); 
1; 

double threejs(doub1e j 1, double ml, double j2. double m2. double j3, double m3) 

{ 
double answer, 

surn=O, 
tmp; 

int k; 

if (fabs(m l +m2+m3) <= 0.000 1 ) 

mswer = pow(- 1 .ftoi(j 1 -j2-rn3))*f_comb(j 1 .j2.~3)*sqrt(f(j 1 +m 1 )*f(j Lm 1 )* 

fQ2+m2)*f(i2-m2)*f(i3+m3)*f(j3-m3)); 
for (k=O;k<=(j 1 +j2+j3); k u )  

{ 
tmp=f(j 1 +j2-j3-k)*f(i I -m l-k)*f(j2+m2-k)* 



retum answePsum; 
1 

eIse 
retum 0; 

1; 

double Rot(doub1e j, double mp, double m. double theta) 

{ 
double tmp. 

sum=û.O, 
answer; 

int k; 

answer = sqrt(f(j+m)*f(i-m)*f(i+mp)*f(j-mp)); 

for (k=O;k<=(fabs(rn)+fabs(mp)+j);k++) 

tmp = fÿ-m-k)* f(j-k-mp)* f(m+mp+k)* f(k); 

if (fabs(tmp) >= 0.000 1 ) 
sum += pow(- 1 .ftoi(i-rnpk))*pow(cos(theta/2),2* k+m+mp)* 

pow(sin(thetal2).2*j-2* k-in-mp)/tmp; 

retum answer%um; 
1; 

double cg(doub1e j 1 ,double m 1, double j2. double m2. double j3, double m3) 



double sixjs(doub1e j 1 .double j2. double j3, double 11, double 12, double 13) 

{ 
double trnp, 

s u m a ;  

int min, 
max, 
k; 

min = -j 1-j2-j3; 
if (min > -j 1-12-13) 

min = -j 1-12-13; 
if (min > -1 1 -j2-13) 

min = -Il-j2-13; 
if (min > -1 1 -l2-j3) 

min = -1 1-12-j3; 

max = j 1 +j2+11+12; 
if (max < j2+j3+12+13) 

max = jZ+j3+12+13; 
if (max < Q3+j 1 +l3+ll)) 

max = j3+j 1 +13+11; 

{ 
tmp = f(k-j 1 -j2-j3)*f(k-j 1 -12-13)*f(k-Il -j2-13)*f(k-11-12-j3)* 

f(j l+j2+11+12-k)*f(i2+j3+12+13-k)*f(j3+j 1 +l3+I 1-k); 

sum *= f-cornbu 1 .j7.j3)*f-comb(i 1,1?.13)*f-comb(1l .j2.13)*f-comb(1 l .l2.j3); 
return sum; 
1; 

double DipoleElement(double fa, double j a  double ma, double n. 
double fb. double jb. double mb. double i)  

{ 
retum pow(- 1 ,ftoi( l+ja+i+fa+fb-ma))*sqrt((2*fa+ 1 )*(2*fb+ 1 ))*threejs(fa.-ma, 1 .n.fb,mb)* 

sixjs(ja,fa,i,fb.jb, 1 ); 



double TensorElement(double ja, double ma, double k, double q. 
double jb. double mb) 

{ 
retum pow(- l . f to i ( ja-ma))*sq*k+ 1 )*threejs(ja,rna.jb,-mb.k,-q); 
1; 

double TensorElementC(doub1e ja, double ma, double k, double q, 
double jb. double mb) 

{ 
retum pow(- 1 ,ftoi(jbmb))*sqrt(2*k+ 1 )*threejs(jb,mb.ja-rnrtk.-q); 
1; 

void main() 

{ 
double mtpp=- 1, 

m2=-2, 
f l ,  
m12, 
mi2, 
f2, 
QP, 
sum2d;  

int K=O, 
n=l,  
np=- 1, 
x=- 1, 
xp=- 1 ; 



for(ml2=-2;ftoi(ml2)<=2;ml2++) 
for(mi3=-2.5;ftoi(mi2-0.5)<=2;mi2+= 1 .O) 
for(fI= lS;ftoi(fl-0.5)<=3;f 1+= 1 .O) 
for(f2=0.5;ftoi(f2-0.5)<4;f2+= 1 .O) 
for(f2p=OS;ftoi(f2p-O.5)~=4;f2p+= 1 .O) 
if (np+d2+rni2 c= f 1+0.1) 
if (np-n+ml2+mi? <= f2+0.1) 

if (mi2+mi2 <= f2pO.I ) 
if (np-n+dS <= 2) 
sum? += DipoleElement(fl.1 .np+d2+mi2.n.f2p,Z.npn+m12+mi2.225)* 

DipoleElement(fl , 1 .npm12+mi2.np.f2.27mi3+mi3~235)* 
cg(2.np-n+m12,2.5,mi2.f2p,npn+d?+mi3)* 
cg(2,d2,2.S.mi3,E,m12+mi2)* 
TensorElement(2,npn+ml2,K,np-n,2,d2)* 
TensorElementC(2.m2pp.K.0.2.m2pp)* 
Rot(K.np-n.0.PV2.0); 

Polarization of the Coincidence Measurement in Magnesiurn @-P-S) 

double fl3 11; 

int ftoi(doub1e num) 

int i; 



retum i; 
1; 

double factorial(doub1e num) 

I 
double answer= 1 .O; 

int i; 

if (i c 0) 
return 0.0; 

else if (i <= 1 ) 
retum 1.0; 

else 

while ( i  > 1 ) 
{ 
answer=answePi; 
1--; 

1; 
return answer; 
1; 

1; 

double fcomb(doub1e a, double b, double c )  

{ 
retum sqn(f[ l S+ftoi(a+b-c)] *f[ 1 S+ftoi(a-b+c)]*f[ 1 S+ftoi(-a+b+c) ]If[ 1 S+ftoi(a+b+c+ 1 )]); 
1; 

double threejs(doub1e j 1 ,  double ml, double j2, double m2, double j3, double m3) 

{ 
double answer, 

sum=O, 
tmp; 



int k; 

if (fabs(m 1 +m2+m3) c= 0.000 1 ) 
{ 
answer = pow(- 1 .ftoi(j 1 -j2-m3))*f_comb(j 1 .j2,j3)*sqrt(f[ 15+fioi(j 1 +m 1 )]* 

f [  1 S+fioi(j 1 -m 1 )]*f[ lS+fioi(j7+m2)]*fl l5+ftoi(i2-d)]* 
f[ i 5+ftoi(j3+m3)]* 
f[ 15+ftoi(j3-m3)]); 

for (k=û;k<=(j 1 +j?+j3);k++) 
{ 
tmp=f[ 1 S+fioi(i 1 +j?-jIk)]*f[l S+ftoi(j 1 -m 1 -k)]*fll5+ftoi(j2+m2-k)]* 

f[ lS+ftoi(j3-jZ+m l+k)]*f[ 15+ftoi(j3-j 1-m?+k)]*f[ lS+k]; 
if ( fabs(tmp) >= 0.000 1 ) 

sum+=pow(- 1 .k)/( tmp); 
1; 

return answer%urn; 
1 

else 
return O; 

1; 

double Rot(doub1e j. double mp, double m. double theta) 

{ 
double tmp, 

sum=O,O, 
answer; 

int k; 

answer = sqrt(q1 S+ftoiQ+m)]*f[ 1 S+ftoi(j-m)]*f[ 1 S+ftoi(j+rnp)]*f[ 1 S+ftoi(i-mp)]); 

for ( k=O:k<=( fabs( m)+fabs( mp )+j );k++) 
{ 
tmp = f[ lS+ftoi(j-m-k)]*fl l S+ftoi(j-k-mp)]*fl lS+ftoi(m+rnp+k)]*f[ lS+k]; 



retum answePsum; 
1; 

double cg(doub1e jl ,double m 1, double j2, double m2, double j3, double m3) 

{ 
retum pow(- 1 .ftoi(j l-j2+m3))*sqrt(2*j3+ I)*threejs(j 1 ,m 1 ,j2.m2,j3.-m3); 

double sixjs(doub1e j 1,double j2, double j3, double I I ,  double 12, double 13) 

i 
double trnp, 

sum=O, 
min, 
=; 

int k; 

min = -j 1 -j2-j3; 
if (min > -j 1-12-13) 

min = -j 1-12-13; 
if (min > -1 1 -j2-13) 

min = -1 1-j2-13; 
if (min > -1 1 -12-j3) 

min = -1 1 -12-j3; 

max = j 1 +j2+11+12; 
if (ma < j2+j3+lZ+l3) 

max = jZ+j3+12+13; 
if (mm < (i3+j 1 +l3+ll)) 

rnax = j3+j 1 +l3+ll; 



sum *= f-comb(i 1 .j2j3)*f_comb(j 1.12.13)*f-comb(11 ,j2,13)*f-comb(l1 .Iz.j3); 
retum sum; 
1; 

double DipoleElement(double fa. double ja, double ma. double n. 
double fi. double jb. double mb. double i) 

{ 
retum pow(- 1 ,ftoi( I+ja+i+fa+fb-ma))*sqrt((2*fa+l)*(2*fb+l))*threejs(fa-ma 1 .n.fb,mb)* 

sixjs(ja,fa,i,fbjb, 1 ); 
1; 

double DipoleElement(double j a  double ma, double n. 
double jb, double mb) 

{ 
retum pow(- 1 .ftoi(ja-ma))*threejs(ia,ma,jb.-rnb, I ,-n); 
1; 

double TensorElement(double ja. double ma, double k, double q, 
double jb. double mb) 

{ 
retum pow(- 1 ,ftoi(ja-ma))*sqrt(2*k+ 1 )* threejsCja.ma,jb.-mb.k,-q); 
1; 

double TensorElementC(doub1e ja double ma. double k. double q. 
double jb. double mb) 

{ 
retum pow(- 1 .ftoi(jbmb))*sqn(2*k+ 1 )*threejs(jb,rnb,ja.-mak-q); 
1; 

void main() 



double m2pp=-2, 
f l ,  
flp, 
~ ~ P P P .  
mlpp, 
mi2, 
miO, 
f2, 
f 2 ~ .  
sum 1 =O, 
sum2=0, 
sum3=0, 
sum4=0, 
sum5=0; 

int K=O, 
k=O, 
qlab=O, 
n=l, 
np=l, 
x=l, 
xp= 1 ; 

for (k=- 1 5; k<= 1 5; k t t )  
f(k+ 1 51 = factorial(k); 

for(x= 1 ;x>=- 1 ;x-=2) 
for(np= 1 ;np>=- 1 ;np-=2) 
for(m2pp=O:ftoi(rn2pp)c=2;m2pp++) { 
for(miû=-2.5;ftoi(miO-O.5)<=2;rniO+= 1 -0) { 
for(fl= 1 S;ftoi(fl -O.S)<=3;fl+= 1 .O) 
if(ftoi(fabs(mi0-x)-0.5) c= ftoi(f 1 - 0 3 )  
for(f1 p= 1 J;ftoi(fl p-OS)<=3;f 1 p+= 1 .O) 
if(ftoi(fabs(mi0-x)-0.5) <= ftoi( f 1 p-0.5)) { 
for(k=O;k<=ftoi(f 1 +fl p);k++) 
for(qlab=-k;qIak=k;qlab++) { 

for(m 1 ppp=-f 1 ;ftoi(m 1 ppp-OS)c=ftoi(f 1 -0S);m 1 p p p =  1 .O) 
for(m 1 pp=-fl p;ftoi(m 1 pp-OS)<=ftoi(f 1 p-0.5);m 1 pp+= 1 .O) 

if(ftoi(fabs(m 1 ppp-m 1 pp)) <= k) 



for(mi2=-2.5;ftoi(mi2-0.5)<=2;mi2+= 1 .O) 
if(ftoi(hbs(m I ppp-mi2-np))<=2) 
if( ftoi( fabs(m 1 pprni2-n))<=2) ( 
for( f2=0.5 ;ftoi(Q-0.5)<=4;f2+= 1 .O) 

if( ftoi(fabs(m 1 pppnp)-O.S)c=ftoi(fL-0.5)) 
for(f2p=0.5;ftoi(f2p-OS)c=4;f2p+= 1 .O) 
if( froi(fabs(m 1 pp-n)-OS)<=ftoi(f2p-0.5 )) ( 
for(K=O;K<=4;K+=2) 
if(abs(ftoi(m 1 pp-m 1 pppn+np))<=K) 
sum5 += TensorElementC(2.mZpp,Kt0.2,m2pp)* 

TensorElement(2.m 1 pp-n-mi2.K.m 1 p p m  1 ppp- n+np.3.m 1 pppnp-rni2)* 
Rot(K,m 1 p p m  1 ppp-n+np.O.PU?-.O); 

sum4 += DipoleElement(f l p. I .m l pp.n.fZp.2.m l pp-n.2.5)* 
DipoleElement(f1 . 1 .m 1 ppp,np,f2,2.m 1 ppp-np.2.5)* 
cg(2.m 1 ppn-mi2.2.5,miZ.f2p.m 1 pp-n)* 
cg(2.m 1 pppnpmi2.2.5.mi2.f2.m 1 ppp-np)*sum5; 

s u d  = O; ); 
sum3 += TensorElementC( f 1 .m I ppp.k.m 1 pppm 1 pp.fl p.m 1 pp)* 

Rot( k.qlab.m 1 pppm 1 pplPU2)*sum4; 
sum3=0; ); 

sum2 += TensorElement( f 1 p.rni0-x,k,O,fl .miO-x)* 
Rot(k.01qlab.PV2)*pow(- 1 .ftoi(qlab))*sum3; 

sum3 = O; ); 
sum 1 += DipoleElement(2.5,0~miO~x,f 1 pl 1 .rniO-x.2.5)* 

DipoIeElement(2.5.0,miOx.fl. 1 .rniO-x.2.5)*sum2; 
sum2 = 0; ); 

} ;*/ 
fprintf(data,"h 5% f 8 f 56 f '.m2pp.miO.surn 1 ); 
fflush(data); 
1 : 

fpfintf(data."hp=%d n=%d xp=%d x=%d m2=8f sum=%f ~n".np.n.x.x.m2pp,sum 1 ); 
mush(data); 
surn 1 S . 0 ;  
1; 



Appendix 3 MCS Data Acquisition Program 

The following program was written in Basic and compiled using Microsofi Quick Basic. 

'program: DATA-AQ. BAS 
'date of last modification: 33-05-1998 

DECLARE SUB set-bckgrnd (seg.bckgrnd%) 
DECLARE SUB send-to-end (dwell%) 
DECLARE SUB send.to.end,b (dwellclc) 
DECLARE SUB wave.gen (dwell Çrc ) 
DECLARE SUB counter-set (numclc) 
DECLARE SUB c0unt.b (num%, normaiize!, rnax.num() AS LONG, old.num() AS INTEGER. 
bin.width%) 
DECLARE SUB c0unt.a (mm%, normalize!, max.num() AS LONG, old.num0 AS INTEGER. 
bin.width9) 
DECLARE SUB c0unt.m (mm%, normaiize!. max.num0 AS LONG. old.num() AS INTEGER, 
bin.widtM) 
DECLARE SUB get.mag (chamelSc, num&) 
DECLARE SUB nom (normalize!, nom.num&) 
DECLARE SUB display (normalize!. max.num0 AS LONG, old.num() AS INTEGER. bin.width%) 
DECLARE SUB rearmnge (bin.num&, max.num() AS LONG) 

DIM old.num( 1 TO 600) AS INTEGER 'stores the vertical position of the data for display purposes 
DIM max.num( 1 TO 9) AS LONG 'keeps a record of the largest 9 numbers in the data 

'address definitions and counter settings for the digital IO card 
CONST cntr.cntrI = &H2A7 'address of clock conrrol registers 
CONST cntr.c 1 = &H2A5 'address of clock number 1 
CONST cnt.cbl = &H72 
CONST cntr-cb 1 = &H42 
CONST wve.cb2 = &HB6 
CONST clckc2 = &H2A6 'address of clock number 2 
CONST ext-out = &WAO 'address of extemal ourput port #? 
CONST int-out = &H2A2 'address of internai output port #? 
CONST int.in = &H2A2 'address of internai input port #? 
CONST clock = 25000 

'determination of the code segments to be run according to specific function keys, or due to error uapping 
KEY (1 ) ON 
ON KEY( 1)  GOSUB stop-loop 
KEY(2) ON 
ON KEY(?) GOSUB stop-end 
ON ERROR GOTO error.routine 

'input the initialization dam from the save file "data-aq-dat" 
OPEN "data-aq.datW FOR INPUT AS #1  
INPUT # I ,  npass%, dwell%, mtr.period%. nchanclc. file.name$ 
CLOSE #1 
'npass%: total number of executions of the main Ioop 
'dwell%: default Divide by N 
'mtr.period%: number of stepper motor advances for one full revolution 



%chan%: total number of MCS channels available 
'file.naneS: string containing the location and name of the data file 

'initialize the counters for a pulse train of zero length with frequency determined by dweIl% 
CALL wave.gen(dwell%) 
CALL counter.set(0) 

'rotate the polarizer until the opticai switch is reached 
CALL send. to.end(dwell%) 

'initialize the graphics screen 
SCREEN 2: CLS 
LINE (0. 12)-(620. 195). . B 'draws a box 
LINE (0.25)-(20.25) 'draws a reference Iine to indicate scaling 
LOCATE 1,5: PRINT "[Fl=Stop][FZ=Stop at End]" 

'this segment of code calculates the tota! number of channels which wiIl be viewed and determines the 
'amount of binning which must take place to accommodate a screen width of 600 pixels. 
chan% = O 
OPEN file.name$ FOR INPUT AS #1 
DO 

INPUT #1. seg.chan%. seg.dwell%. seg.adv%. seg.mu4c. seg.bckgrnd% 
chan% = chan9 + seg.chan& 'determines the total number of channels for the entire data file 

LOOP UNTIL EOF( 1) 
CLOSE #1 
bin.width% = INT(chan9 1600) 'sets bin.width 
least.bin9 = chan9 - bin.width% * 600 'if the number of missed channels is less 
IF least.bin% > 60 THEN bin.width% = bin.width% + 1 'than 10%. donn't bother to increase the 

'bin.width to accommodate. 
FOR i = 1 TO 600 'initializes the vertical positions to zero 

old.num(i) = O 
PSET (9 + i. 185) 'draws initial data 

NEXT i 
F O R i = l T O 9  'initializes rnax.num 

max.num(i) = i 
NEXT i 
normalize! = 1 'sets the nonnalization constant (ensures tbat the data is viewable) 
pass% = 1 'sets the number of passes to be one 

DO WHILE pass% <= npasscï'c 'loop m i l  the specified number of passes has occurred 
chan% = O 'stm at the first channel 

LOCATE 3.60: PRINT "# of Passes: ": pass% 

OUT ext-out. 1 
OUT ext-out. O 

OPEN file.name$ FOR INPUT AS #1 

'send start pulse to mcs to start data acquisition 

DO 'evaluate until the end of file is reached 
INPUT #I. seg.chan%. seg.dwell%, seg.adv%, seg.mtr%. seg.bckgrnd% 
'seg.chan%: the current number of channels 
*seg.dwell%: the current Divide by N 
'seg.adv%: advances the MCS channels if TRUE (greater than zero) 



'seg.mHc: advances the motor if TRUE 
'seg.bckgmd%: electron gun off - TRUE; on - FALSE (zero) 

LOCATE 1-35: PRINT "# of Channels:": LOCATE 1, 16: PRINT seg.chan% 
LOCATE I.  60: PRINT "Background:"; seg.bckgmd% 

CALL set.bckgrnd(seg.bckgrnd%) 'tums the gun on or off 
CALL wave.gen(seg.dwell%) 'sets the divide by N counter 
CALL counter.set(seg.chan%) 'sets the length of the pulse train 
IF seg.adv% AND seg.mtr% THEN 'both advance 

CALL count.b(seg.chan8. nonndize!, max.num(), old.num(), bin.width%) 
chan% = chan% + seg.chan% 

ELSE 
IF seg.adv% AND seg.mu% = O THEN 'MCS channels advance 

CALL count.a(seg.chan%, nonnaiize!, max.num(), old.num(), bin.width9) 
chan% = chan% + seg.chan% 

ELSE 
IF seg.adv% = O AND seg.mrr% THEN 'motor advances 

CALL count.m(seg.chanQ, normalize!, max.num(), old.num(), bin.width%) 
ELSE 

CALL send. to.end. b(seg.dwell%) 'if non of the above route until 
END IF 'the optical switch 
END IF 
END IF 

LOOP UNTTL €OF( 1 ) 
CLOSE #1 

IF chan% < nchan% THEN 'if the full number of MCS channels has not 
CALL wave.gen(2) k e n  used, quickfy advance through them 
CALL count.a(nchan% - chan% + 15, normalize!. max.num(), old.num(), bin-widtha) 

END IF 

passq = ppass% + 1 
LOOP 

END 

stop.loop: 
END 
RETURN 

'end of main program 

'imrnediately stops the program loop 

stopend: 
pass% = npassq + 1 'prematurely sets the nurnber of passes to be the maximum 
RETURN 

error.rou tine: 'on an error print the emor code 
SCREEN O: PMNT "Error"; ERR 
INPUT a 
END 

'this sub-routine only advances the MCS channel 
'num%: the number of channels to advance 
SUB c0unt.a (num%, nomalize!. max.num() AS LONG, old.nurn() AS INTEGER, bin.width%) 



OUT cntr.cntrl. cnt.cb 1 
OUT cntr.cl , num% - INT(num% / 256) 
OUT cntr-c 1. IN(num% / 256) 

'sers counter 1 to accept num% 
'formatting for num% 

OLJT int-out, &HU 
OüT int.out, &H4C 
OUT int.out, &H44 
OUT int-out. &Fi54 
OUT iot-out, &HU 
IF (INP(int.in) AND 2) = 2 THEN 'INP(int.in) AND 2 detemines the state of the counter 

DO 
n = INP(int.in) AND 2 

LOOP UNTIL n = O 'waits for counter to srart 
DO 

CALL display(normalize!, max.nurn(). old.num(), bin-widths) 'update viewing screen 
n = INP(int.in) AND 2 

LOOP UNnL n = 2 'waits for counter to finish 
ELSE 

DO 
CALL display(nomalize!. max.num(). old.num(), bin.width%) 'update viewing screen 
n = INP(int.in) AND 2 

LOOP UNTIL n = 2 'waits for counter to finish, if it had already started 
END IF 

END SUB 

'bis sub-routine advances both the motor and the MCS concurrently 
'num%: the number of channels to advance 
SUB c0unt.b (numq, normalize!, max.num() AS LONG. old.num() AS INTEGER, bin-widthq) 

OUT cntr.cnu1, cnt.cb 1 
OUT cntr.cl. num% - INT(num% / 256) 
OUT cntr.c 1, iNT(num% / 256) 

OUT int-out, &Ha 
OUT int.out, &H6C 
OUT int-out, &H64 
OUT int-out. &H74 
OUT int-out, &H64 
IF (INP(int.in) AND 2) = 2 THEN 

DO 
n = INP(int.in) AND 2 

LOOP UNTIL n = O 'wait for counter to start 
DO 

CALL display(normalize!. max,num(), old.num(), bin.width9) 
n = INP(int.in) AND 2 

LOOP UNTIL n = 2 'wait for counter to finish 
ELSE 

DO 
CALL display(normalize!, max.num(). old.num(). bin.width%) 
n = INP(int.in) AND 2 

LOOP UNTiL n = 2 
END IF 



END SUB 

'this sub-routine onIy advances the stepper motor 
'num%: the number of steps to advance 
SUB count-m (num%, normalize!, max.nurn() AS LONG, old.num() AS INTEGER. bin.width%) 

OUT cntr.cnu1, cnt-cb 1 
OUT cntr.cl . num% - INT(num% 1 256) 
OUT cntr-c 1, INT(numC7c 1 256) 

OUT int-out. &Hz4 
OUT int-out. &H2C 
OUT int.out. &Hz4 
OUT int-out, &H34 
OUT int-out, &Fi24 
IF (INP(int.in) AND 2) = 2 THEN 

DO 
n = INP(int.in) AND 2 

LOOP UNTIL n = O 'wait for counter to start 
DO 

CALL dispIay(normalize!, max.nurn(), oId.num(), bin.width%) 
n = INP(int.in) AND 2 

LOOP UNTIL n = 2 'wait for counter to finish 
ELSE 

DO 
CALL display(normalize!, max.num(), old.num(), bin.widh%) 
n = iNP(int.in) AND 2 

LOOP UNTIL n = 2 
END IF 

END SUB 

'this sub-routine loads counter one with num% to set the length of the pulse train 
SU8 counterset (num%) 

OUT cntrxntrl, cnt-cb I 'set counter 1 to mode '? 
OUT cntr.cI, num% - INT(num% / 2256) 
OüT cntr.c 1, INT(num% 1 256) 

END SUB 

'this subroutine displays the data contriined within the MCS 
SUB display (normalize!. max.num() AS LONG, old.num() AS INTEGER. bin.width%) 

FOR i = 1 O TO 609 'step once through the entire display 

'j: bin width counter 
'bin.num&: total counts per bin 



DO 'this loop bins the data according to bin.width% 
CALL get.rnag(channel%. num&) 
bin.num& = bin.num& + num& 
channels = channe[% + 1 
j = j + l  

LOOP UNTIL j >= bin.width% 

IF bin.num& > max.nurn( 1 ) THEN 'if the number of counts in bin.num& 
CALL remange(bin.num&, max.num()) 'is greater than the ninth 

highest count in max.num0. then 
END IF 'remange the list to include bin.num& 

bin.h% = CINT(bin.num& / normaiize!) This segments converts bin.num& to 
'a position 

IF bin.h% O oId.num(i - 9) THEN 'on the screen. An overall normalization factor 
IF 185 - old.num(i - 9) > 12 THEN 'is bandled by normalize! 

PRESET (i. 185 - old.num(i - 9)) 
END IF 
IF 185 - bin.h% > 12 THEN 

PSET ( i .  185 - bin.h%) 
END IF 
oId.nurn(i - 9) = bin-hclc 

END IF 
NEXT i 

CALL norm(normdize!. max.num( 1 )) 'recalculates the normdization factor wrt the ninth 
'highest number 

END SUB 

'this function reuieves the data from the MCS which is contained in chamel% and places it in num& 
SUB get-mag (channelclc, num&) STATIC 

DEF SEG = &HD000 
num& = PEEK(4 * (chamel% - 1 ) + 2) * 65536 + PEEK(4 * (channel% - 1)  + 1) * 256& + PEEK(4 * 
(channel% - 1 )) 
DEF SEG 

END S U 3  

'this function calculates the normdization factor according to the screen dimensions 
SUB nom (normdize!. norm.num&) 

IF (norm.num& / normdize! ) >= 155 THEN 
normalize! = norm.num& / 80 
LOCATE 3.3: PRINT 2 * norm.num& 

ELSE 
IF (norm.num& / normalize!) < 50 THEN 

normaiize! = norm.num& / 80 
LOCATE 3 .3:  PRINT 2 * norm.num& 

END IF 
END IF 
IF normalize! < 1 ! THEN normalize! = 1 

END SUE3 



'this function sorts the m y  rnax.num() and adds bin.num& into the appropriate d l .  
'max.num() is sorted highest to lowest 
SUB remange (bin.num&. max.num() AS LONG) 

DO 
IF bin.num& >= max.num(n%) THEN 

min.lim% = n% 
stp% = INT((max.lim% - min.limR) 1 2 )  
n 9  = nlrc + stplrc 

ELSE 
max.lim% = a% 
stp% = INT((max.lim% - min.lim%) 1 2 )  
n% = n% - stp% 

END IF 
LOOP UNTIL stp% = O 

IF bin.num& > max.num(9) THEN 
min.lim% = 9 

ELSE 
IF bin.num& = max.num(min.lim%) OR bin.num& = max.num(min.lim% t 1 ) THEN 

min.lim% = O 
END IF 

END IF 

FOR n% = 1 TO min.lim% - 1 
max.num(n%) = max.nurn(n% + 1) 

NEXT n% 
max.num(min.lirn%) = bin.num& 

END SUB 

'rotates the polarizer until the photo-derector detects the start/end of the rotrition 
SUI3 send. to.end (dwelllrc) 

OUT int-out. &Hz7 'clck odof  = 1, mode1 = 1. mode2 = O 
OUT int-out, &H2F 'toggle clock 
OUT int-out, &Hz7 
start! = TIMER 
DO 'wait until at least 10 

finish! = TIMER 'steps have k e n  taken 
LOOP UNTIL finish! - start! > dwell% * 15 / clock 
OUT int-out. &Hz3 'mode1 = 1 

DO 
num = INP(int.in) AND 1 

LOOP UNTIL num = O 'wait for clock odoff  = O 

END SUB 



'rotates the polarizer and advmces the MCS until the photodetector detects the stadend 'of the rotation 
Sul3 send.to.end.b (dweIl%) 

OUT int-out, &H67 'clck odof = 1. mode 1 = 1, mode2 = O 
OUT int.out, &H6F 'toggle ciock 
OUT int-out, &H67 
start! = TIMER 
DO 'wait until at Ieast 10 

finish! = TIMER 'steps have been taken 
LOOP UNnL finish! - start! > dwella * 15 / cIock 
OüT int-out, &H63 'mode1 = 1 

DO 
num = INP(int.in) AND 1 

LOOP UNTIL num = O 'wait for clock onloff = O 

END SUB 

'sets the background 
SUB set-bckgmd (seg-bckgrndq) 

OUT ext-out. 2 * seg.bckpd% 

END SUB 

'sets the frequency of the pulse train 
SUB wave-gen (dwellq) 

OUT cntr.cntrl, wve.cb2 'set counter 2 to act as 
OUT clck.c2. dwelI% - INT(dwell55 / 256) 'a wave-generator wi th 
OUT clckc2. INT(dweII% 1 256) 'period .dwell. 

END SUB 



Appendix 4 PHA Data Acquisition Program 

The following program was written in C, and compiled using Borland Turbo C V3.0. The 
program is split into two main sections. The first section describes the task of the Nucleus 
PHA, while the second section is a list of functions used to interface with the Nucleus 
PHA. 

First section: 

void init-pca(void); 
void (*pcapa)(void); 
unsigned char get-byte(unsigned char f ) ;  
unsigned int get,2bytes(unsigned char f); 
void get-bytesbnsigned char f, unsigned char *parameter); 
void put,byte(unsigned char f. unsigned char parameter); 
void put_3bcd(unsigned char f, unsigned int parameter); 
void pca-func(unsigned char f); 

unsigned int *pcasegptr = MK-FP(O.Ox3CA); 
unsigned in t *pcaoffsetptr = MK-FP(O.Ox3C8); 
unsigned int pcaoffsetpaseg; 
unsigned int parmoffset, parmseg; 
unsigned char *funptr; 

#indude "pca-int.c" 
void main () 
{ 
unsigned char parameter, 

Ioop. 
done, 
h d f ;  

unsigned in t parameter2; 

ini t-pca(); 

pc~fÙnc(DISP1NIT); /*display ini tialization*/ 

put-byte(MGRPNMBR, FULL); /*prime pca for fuI1 memory group*/ 
pca-func(GR0 UP); /*change group*/ 
// pca-func(ERASEDAT); /*crase data in rnemory group*/ 

pca-func(PHAM0DE); /*put pca into pha mode*/ 
put-3bcd(ACQFï, 60); /*prime preset acquisition time to I minutes*/ 
pca,func(PHATMDS); /*set preset tirne*/ 

pca-func(MCSM0DE) ; /*put pca into mcs mode*/ 



putbytet MCSDWLNM, 28): /*prime mcs for external dwell tirne*/ 
pca,func(MCSTPDS); /*set mcs to extemal*/ 

put,3bcd(MCSPSTP, 1 ); /*prime mcs for one pas*/  
pca-funcf MCSTPDS); /*set mcs for one pas*/  

loop = TRUE; 
while (loop) 

for (half = 2 ;  half < 3: haIf++) /*loop to cover both polarizations*l 
( 
pcli_func(ACQU) ; /*start acquisition*/ 
while (!get,byte(ACQFLG)); /*wait for data acquisition to stop*/ 

pc;i,func(PHAMODE); /*switch to pha mode*/ 

put-byte(MGRPNMBR, hain; /*prime pca for 'half half O' mernory*/ 
pca,func(GROUP); /*change memory group*/ 

pu t,3bcd(ACQET, O); /*prime elapsed time for zero seconds*/ 
pca-func(PHATMDS): /*set elapsed time to zero*/ 

pca-func(ACQU) : /*start acquisition*/ 
done = TRUE; 
whiIe (done) 

I 
pca-func(SPUD); l*update spectrum on the display*/ 
pca-func(PARMUP); /* u pdates paramecers to the screen */ 
if (kbhit()) 

switch(getch()) { 
case O: 

switch(getch()) ( 
case 59: /*FI : stop rit end*/ 

loop = FALSE; 
break; 

case 72: /*numberpad 8 */ 
pca-func(CFS1); /*increases full scale*/ 
break: 

case 80: /*numberpad 2*/ 
pcti_func(CFSD): /*demases full scde*/ 
break; 

1 
break; 

case 93: 
case 125: 

ex i t(0) ; 
1; 

done = !getbyte(ACQFLG); 
1 

put-byteWGRPNMBR. FULL): /*prime pca for full memory group*/ 
pca-func(G ROUP); /*change group*/ 

/*s and S: stop at once*/ 

pcaJunc(MCSM0DE); /*put pca into mcs mode*/ 



put_3bcd(MCSPSTP, 1 ); /*prime rncs for one pass*/ 
pca- func(MCSTPDS ) ; /*set mcs for one pass*/ 
1 

1 
1 

Second section: "pca-int-c" 

/* parameter labels*/ 
Mefine MGRPNMBR 1 30 /*memory group number: one byte*/ 
#define MGRPDATA 133/*memory group data: two bytes*/ 
#define PHAFLAG 134 /*ph3 flag: one byte; 'OFF - selected, O - not selected*/ 
Mefine MCS FLAG 135 /*mcs flag: one byte: 'OFF - selected. O - not seIected*/ 
Mefine ACQFLG 140 /*acquisition flag: one byte; O - aquinng, 

1 - not aquiring & stopped by keyboard, 
80 - not aquiring due to time out*/ 

Mefine ACQPT 141 /*acquisition preset time: 3 bytes packed BCD in seconds*/ 
#define ACQET 142 /*acquisition elapsed time: 3 bytes packed BCD in 

seconds*/ 
#define MCSTCFLG 144 /*mcs time channel flag: 1 byte; O - time display mode. 

'OFF' - channel display mode*/ 
Mefine MCSDWLNM 146 /*mcs dwell number: 1 byte: 28 - extemal dwell time, 

0-27 - 10 microsecond to 60 second range*/ 
Mefine MCSPSTP 147 /*mes preset passes: 3 byte packed BCD*/ 

/* function labesl*/ 
Mefine DISPIMT 
#define PARMUP 
#define SPUD 
Mefine ACQU 
Mefine ERASEDAT 
MefineGROUP 7 
Mefine PHAMODE 
Mefine MCSMODE 
Mefine PHATMDS 

Mefine MCSTPDS 

Mefine CFSI 
#define CFSD 

/*other definitions*/ 
#defineFULL 1 
#de fine HALFI 2 
Mefine HALFî, 3 
#define TRUE 1 
Mefine FALSE O 

2 /*display initiaiization*/ 
3 /*updates ail the parameters to the screen*/ 
4 /*specrrum update*/ 
5 /*start or stop the acquisi tion*/ 

6 /*erase al1 data in the current memory group*l 
/*selects memory group according to MGRPNMBR*I 
19 /*selects pha data acquisition mode*/ 
20 /*selects mcs data acquisition mode*/ 
25 /*displays preset time, elasped time, & time rernaining; 

must be run to set preset tirne*/ 
26 /*displays current dwell time, preset # of passes, 

passes elapsed, and passes rernaining; must be run 
to set preset time or preset # of passes*/ 

30 /*full scale counts increase*/ 
31 /*full scale counts decrease*/ 

unsigned char get-byte(f) 



unsigned char f; 
{ 
unsigned char *paramptr; 

parampu = *(unsigned char **) (funptr + 1 ); 
retum *pararnptr; 
1 

................................................................... 
void put-byte( f. panmeter) 

unsigned char f. pararneter: 
{ 
unsigned char *paramptr: 

parampu = *(unsigned char **)(funpu + 1 ): 
*parampu = parameter: 
1 

................................................................. 
void put-3bcd(f. parameter) 

unsigned char f; 
unsigned int parameter; 
{ 
unsigned char *parampu; 
unsigned char bcd[3]; 
int i; 
div-t d: 

for (i = O; i c 3: i++) /*changes parameter into 3 bytes of*/ 
( /*BCD format. LSByte in bcd[O]*/ 
d = div(parmeter. 100): 
bcd[i] = d-rem; 
parameter = cl-quot: 
1 

parnmptr = *(unsigned char **)(funptr + 1 ): 
for (i = O; i < 3; i++) 

*(paramptr+i) = bcd[i]; 
1 



/*****************************************************************/ 
void pca-hnc(f) 

unsigned char f; 
( 
unsigned char *parampu; 

/******************************************************************/ 
unsigned int get-?bytes(f) 

unsigned char f: 
{ 
unsigned int *parampu; 

paramptr = Yunsigned int **)(funptr + 1 ); 
retum *paramptr; 
1 

/**************************************************************/ 
void get-bytes(f, parameter) 

unsigned char f; 
unsigned char *parameter: 
I 
*funpu = f; 
(*pcapWO; 
parameter = *(unsigned char **)(funpu + 1); 
1 

void init-pca() 
I 
pcaofiset = *pcaoffsetptr; 
pcaseg = *pcasegptr; 
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