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ABSTRACT

The strucùure of stead'y axi-symmetric incom-

pressible developing turbulent pipe flow is investigated

through quantitative measurements of its mean velocity'

stress fields and component energy spectra, for piPe

Reynolds numbers of I x 105, 2 x lOs and 3 x 105, using

air as a working fluid. The measured characteristics are

used to evaluate the Lerms appearing in the time-averaged

energy equation to determine energy budgets for the flow.

The results illustrate the manner in which the flow adjusts

from a boundary layer structure to a fuIly developed flow

structure downstream by virtue of the mixing which occurs

when the boundary layer fills the whote of the pipe. It

is shown that in the mixing region the pipe centre-Iine

velocity becomes moderately peaked., and then subsides to a

velocity characteristic of a fully developed flow. The

energy budgets and spectral measurements indicate that the

main energy process involved in the mixing region is due

to convective diffusion of turbulence energy.

An approxjmate numerical analysis using an effect-

ive viscosity model based on the law of Lhe wall was d'eveloped

to simulate the flow characteristics of the mean axial and

rad.ial velocities, mean vorticity' loca1 wall shear stress

and Reynolds shear stress. Comparison of the numerical

solutions with the measured data gave reasonably good agree-



ment over the whole flow

model does not yield the

mixi-ng region.

l-rt

fie1d, but the effective viscositY

centre-line velocity peak in the
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1. TNTRODUCTION

Depending on the pipe Relmolds number, the con-

dition of the entering flow and its approach, the flow in

a cylindrical pipe can be laminar, partially laminar and

turbulent, or turbulent along its entire length. In many

cases the condition of the entering flow will be steady and

uniform and will contain a small amount of residual turbu-

lence due to its approach. If the pipe Reynolds number is

high enough (say Re > 2 x 103 ) , it is possible by introduc-

ing an artificial disturbance at the pipe entrance, to cause

the entering flow to form a turbulent boundary layer on

the pipe wall, which grows in the downstream d.irection by

molecular and turbulent mechanisms, untit Èhe boundary

layer fil1s the whole of the pipe to form a mixing region-

The flow then undergoes further ad.justment until it becomes

fully d.eveloped; i.e. independent of the downstream

distance. The length of pipe required for the flow to

become fully developed is called the inlet length and the

region of fluid surrounded by the developing boundary

layer, the entry core region. When such a flow has a

constant fluid density' the flow which develops in the

pipe is called a steady axi-symmetric incompressible

turbulent flow. This t1'pe of flow, which is the subject



of

in

ínvestigation in this thesis, is shown schematically

Figure 1.

The importance of developing turbulent pipe

flow has long been recognised in technology and is funda-

mental to the design of closed jet working sections .for

wind and water tunnels as well as for the design of

tubular heat exchangers and hydraulic piPe systems. Never-

thelessr the manner in which developing turbulent pipe flow

adjusts from a boundary layer structure to a fully developed

flow structure Ís not well understood.. This stems from

the fact that to date, all theoretical and experimental

studies have been mainly confined to the flow in Èhe pipe

close to the inlet or far downsLream, with very little

consideration given to the,mixing region which occurs

when the boundary layer fil1s the whole of the pipe.

Therefore, the purpose of the research to be reported' in

this thesis, will.be. to provide a better understanding of

developing turbulent pipe flow ancl the manner in which it

adjusts from a boundary layer type structure to a fu1ly

developed flow structure.

A statement of the problem can be formulated

as follows:
,'To produce a steady axi-symmetric incompressible

d.eveloping turbulent pipe flow in the laboratory and investi-



gate its mean, time-averaged and. spectral characteristics."

A brief outline of the current literature avail-

able on this problem is given in the next section.

1.1 Li-terature review

Pubtished experimental dat,a on the structure of

developing turbulent pipe flow are very few, e.g. Holdhusen

(L952) , Barbin (1961), and Mizushina et al (1970). In

Barbints work, perhaps the most cornpleter Some preliminary

measurements of the mean velocity, turbulence intensities

and Reynolds shear stress v¡ere reported for a single pipe

Reynolds number (Re = 3.BB x 105). in which fully devetoped

florv was not attained. Difficulties encountered with the

hot-wj-re equipment employed prevented. Barbin from measur-

ing the rad.ial turbulence intensity field and component

energy spectra. The work of Mizushina et al was confined

to Some turbulence measu.rements in the pipe inlet region

and Holdhusen's, to measurement of head loss in the develop-

ing florv. Both Barbin's data and the present work dispute

the findings of Mizushina et al that velocity profiles are

similar in the developing flow. Current thoughts on the

structure of fulIy d.eveloped pipe flow can be found in the

papers of Laufer (1954) and Lawn (1971) r who have made

extensive measurements of the mean and turbulence field

characteristics.



Although experimental data on developing turbu-

lent pipe flow are rather meager' several semi-empirical

analyses have been reported simulating mean flow character-

istics in the initial part of the piPe inlet region. The

first analysis was given by Latzko (1921) 
' based on the

Von Karman integral equation, using boundary layer assump-

tions and phenomenological concepts. Since that time many

workers t e.9. Holdhusen (L952) , Ross (1956) r. Fillipov (1958),

and Bowlus and Brighton (1968) and Bradley and Cockrell (1970)

have given improved analyses based on Latzko's original

method. Reynolds (1968) in a morphology of prediction

methods, considers how boÈh differential and integral boundary

layer techniques may be used to solve the problem of incom-

pressible bound.ary layers using either a "turbulence equation

of stat.e" which relates the turbulence quantities to the

properties of the mean field or a turbulent constitutive

equation which relates the turbulence structure as reflected

in Èhe fluctuation correlat,ions, to the turbulence energy

and mean rate of strain. In a more recent revíew of boundary

layer methods applied to internal fluid flow problems, Bradley

and Cockrell (1970) d.iscuss the limitations of the various

methods and comPare a solution of the Von Karman integral

equation using an auxiliary relation with the data of

Barbin (1961). Bradley and Cockrell admit their integral

technique becomes less satisfactory"for flow prediction

especialty after the boundary layer fills the whole of the

pipe
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other current prediction methods relying on

turbulent constitutive equat.ions and. rational closure

Èechniques have been reported in the literature by Daly

and Harlow (1970), Donaldson (1971), Donaldson (1g72) | Fox

and Lilly (1972) and others. Lumley and Khajeh-Nouri (L974)

have given a critical review of these methods and pointed.

out a basic flaw. None of them present any method for

generating Èhe models used for third. order terms. Lumley

and Khajeh-Nouri proceed Èo present two related techniques

which make it possible to generate in a st.raightforward and

consistent manner, models of all third moments and of all

orders of Reynolds numbers.

A basic conclusion which can be drawn from the

literature revj-ewed is that the fulI potential of boundary

layer and the more recent generation of pred.iction techniques

cannot be realised. until extensive and. reliable information

is obtained. tô serve as a basis for the formulation of

auxiliary relationships and as a test case for theoretical

solutions.
One approach not men-tioned above which provides

possibilities of simulating at least the mean flow parameÈers

and. shear stress fields in devetoping turbulent piPe flow,

without new experimental data or auxiliary relationships can

be found in the ideas of Gosman et aI (1969). This approach

will be pursued in Chapter 3.



L.2 Scope of the investigation

The scope of this investigation can be split into

two parts. Firstly, the structure of steady axi-s1'mmetric

incompressible turbulent flow in the inlet length of a

smooth pipe will be investigated through measurement of its

mean, tjme-averaged and spectral characteristics for pipe'

Reynolds numbers of I x l0s, 2 x IOs, and 3 x 10s. These

measurements will be used to evaluate the terms appearing

in the tjme-averaged energy equation to ,determine energy

budgets for the flow field.

Secondly, a phenomenological flow model will be

developed. to simulate the mean flow, Reynolds shear stress

and. wall shear stress characteristics for comparison with

the experimental measurements.



2. BASIC EOUATIONS

2.I The time-averaged turbulence kinetic

energy equation

Energy budgets for the developing turbulent

pipe fLow can be obtained from experimental evaluation of

the terms in the time-averaged turbulence kinetic energy

equation. The time-averaged, energy equation written in

mixed cylindrical polar and cartesian tensor coordinates

has been derived by Huffman (1968) as

+ ["#. "#] + [*[r*. #] * ,,'# * * # ]

(r) ' (rr)

(rrr)

(w)

In the above equation an over bar represents time-averagingt

u, v, w(=0) and u, vt vtt denote the mean and fluctuating

velocity components in the natural cylindrical polar

coordinate system x, r and o, p the fluctuating static

(v)
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pressure, nt = ", 
* 7 * F ari." the turbulent kinetic

energy per unit mass, ui the fluctuating velocity component

in the x, direction and p and v the fluid density and

viscosity. The equation states that the sum of the

convection of turbuLence kinetic energy Per unit mass (I) t

the production of turbulence energy (II) r the convective

diffusion by turbulence of the total turbulence energy (III) t

the work done per unit mass and of time by the viscous

shear stresses of the turbulent motion (IV) and the rate of

energy dissipation per unit. mass by the turbulent motion (V)

is zero. The sign convention adopted for (2.L) is such

that íf a term is positive, more energy is transported out

of a volume element than is transported into a volume

element, resulting in a ne,t loss of energy in the volume

element. Implicit in (2.L) are the conditions of flow

axi-sltmmeÈry and symmetry of the Reynolds stress tensor'

Given the quantities of U, 1J2, v2, w2 and ffi from experiment

and. v computed from u via the continuity equationt

AU
âx

1 a (rv)
?T = 0t (2.2)

d.irectly from

term in (IV) , which

(L962) viscous

terms (I), (II) and. (IV) can be evaluated

the data with the exception of the first

can be neglected since according to Rotta
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diffusion is negligible except when the Reynolds number of

the t,urbulence is very Iow, such as in the viscous sub-layer.

the dissipation (term (V) ) can be evaluated using

the dissipalion rate e calculated from measured u2 energy

spectra by t.he method proPosed by Bradshaw (ir967) as

3/2 (2.3)L-

In the above equation,which assumes the existence of local

isotropy and an inertia subrange,Q.'rz (K) is the axial wave-

number spect,ral density in Èhe one-dimensional wave-number

space K. Equation (2.1) can be employed. to determine the
d.iffusion (term III) as the closing entry in the energy

balance.

2.2 Estimation of the loial wall shear stress

in developing Èurbulent PiPe flow

'A quantity of interest in developing turbulenÈ

pipe flow is the walI shear stress T=. In order to evaluate

Ts, two methods are considered.

In the first method, the wall shear stress is estima-

ted from a cylindrical section of the fluid. in the pipe of

differential length dx. The difference between the momentqrn

of the fluid entering and leaving the control volume must be

balanced by the net pressure force acting across the

cylind.er and by the neÈ force due to the waII shear'stress

act,ing around the cylind.er circumference. Thus, the

momentum balance can be written as

[0,r, r*l 
-s/s /0.fi)
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g{= ]Pnnz r2rrR (2.4)
ctx dx s

where M the momentum of fluid entering the cylinder is

given by

(2.5)

combining (2.4) and (2.5), the local shear stress at the

waIl can be evaluated from

'= =-å åå - h år I f:"'(ar2) ] "'"
by measurement of the walI sLatic pressure gradient and

axial velocities.
The second method considered for evaluation of the

10ca1 wall shear stress is based on the law of the wall

u*=*t"y++c t (2-7)

where (2.9)

+ vu-\/=É

!r = 2np I ru'at o

J"

u+=9u*

(2.9\
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and u* is defined bY the rel-ation

u*=/Ø (2.10)

The empirical constants k*and C, according to Hírst, and.

Coles (1968), should. be given the values 0.41 and 5 respectively.

By substituting values of u and their correspond-

ing values of y into (2.7) r ü* can be evaluated by making

the residuals

-=u*-åt"y+-cSK
(2.11)

negligibly sma}l. If the resulting values of u* are plotted

against y, the logarithmic. region will correspond to

constant values of the friction velocity for a particular

velocity profile. Hirst and. Co1es suggest that only part

of the axial velocity profile in the range 100<y+<300 be

used to obtain u* since close to the wallr high turbulence

intensities and wall interference effects may cause pressure

probe readings to be too high and. farther from the waII,

the wake-like outer structure of the developing turbulent

bound.ary maY be fe1t.

¡k It should be noted that the 'rconstant" k is not really a
constant. See Tennekes and Lumley (L972) -
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AN APPROXIMATE NUMERICAL SOLUTION

FOR DEVELOPING TURBULENT PTPE FLOW

3.1 The mathematical model

The mathematical mod.el is based on treating the

turbulent flow as a laminar one with non-uniform viscosity'

i.e. t.he fluid is considered to have an effective viscosit'y

y = p(v + ur) (3.1)

consisting of a laminar and turbulent contribution.

The equations of motion in cylind.rical polar co-

ordinates using the idea of an effective viscosity have

been given by Gosman et aI (1969) as

a

o[u

and.

lgg *
[âr

auì ra
-t 

-t- É 

-
ðxJ r âr

* k[,"[#.*â'âxo[t1'H

t, ["
avl
axJ l

(3.2)

."#] =-H âvl l*âxJ )['
avl -zyv

¿ T'

(3. 3)

By differentiating (3.2) with

respect to x, and subtracting

from the other, the vorticitY

respect to rt and (3.1) with

one of the resulting equations

transport equation maY be
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written in the form

and the stream function rÞ which satisfies (2.2) defined

through the relations

#= pur

where the term

s=2("t g- 2=?"J, f'g-gl -a3v.glr [a*z oÍ - 'm. l.ã" - ã7J - * *l ' (3's)

The mean vorticity ür is defined in terms of the stream

function as

.=-[ktþ#] .htþ#l l
(3.6)

(3.7)

and

*:-Pvr ' (3.8)

Both the vorticity transport and stream function equations

have an elliptic nature and can be expressed in a general

form as
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a[*[* [.,ry]
=0.

["'P]a,pll a

ñ) )-æ.
+rd

aq,l ð

FJ -E [*
d-ãE

(3.9)

for which Q and the coefficients at b, ct and d for the

vorticity and stream function equation are expressed in 
,

Table 1.

Simultaneous numerical solutions of the vorticity

transport and stream function equations are now possible

once suitable boundary and initial cond.itions and an

effectíve viscosity model have been defined.

3.2 Boundary and initial conditions

Boundary conditíons for the flow under consider-

ation must be specified on closed surfaces representing

the physical boundaries of the flow fieId. In formulating

these conditions the following assumptions vlere made:

(i) the entering flow has uniform velocity UOr

(ii) the boundary condition for the fully developed

flow may be placed at a dist.ance L = 100D on the basis that

Comte-Bel1ot (1965) and others have'concluded that fully

devetoped turbulent pipe flow is generally achieved within

100 pipe diameters from the inlett

(iii) close to the wall, gradients in the axial

direction are much smaller than gradients in the radial

direction,
(iv) U = V = 0 on the pipe waII and V = 0 along

the pipe axis



15

With these assumptions, the boundary conditions for rf and

t¡ can be derived as follows:

At the pipe entrance, (x/D = 0, 0$z/R11) Equation (3.7)

can be integrat.ed to give the stream function üO at the pipe

entrance as

ùb = pvrrz /2 + rl,r , (3 . r0)

where Vr is a constant of integration. Since Èhe flow

entering the pipe is assumed, uniform, the vorticity boundary

condition at the pipe entrance is

0b=o ' (3 .11)

At the pipe centre-Iine, (0 1x/o < 100, y/R = 1) the

stream function from (3.10) becomes

(3 .12 )

which simply expresses mass flux conservation. The corres-

ponding vorticity boundary cond.ition

t"=o (3.r3)

At the downstream boundary, (x/o > 100, 0 < y/g < 1) the

gradients of U and o in the axial d.irection are zero since

the flow is fully developed, therefore the downstream
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boundary conditions can be writ,ten as

k (å) = o

a{, 11vdx
(3.14)

and (3.15)

eÍ the pj.Pq,l¡all , (0 < x/O : 100' y/R = 0), the bound.ary

cond.ition for the stream function from (3.10) becomes

ü"= pÜbR2/2+ Vr (3;16)

In order to obtain the vorticity bound.ary conditiot ,s, the

vorticity ur j-s expanded through a first order Taylor

expansion to give

(3¡17)

Very close to the wal} the use of assumptíon (iii) reduces

(3.6) to

( 3. r8)

providing a second relation between rp and ur. Eliminating

o between (3.17) and (3.I8) I the resulting equat'ion can be

bth#] +ûr=o '



integrated twice to yield

t+ #] + ""[# +] = o.

L7

( 3.19 )

start the numerícal analYsis

field were arbitrarily chosen

,[Po] 
=

Because the above equation can only be appl-ied close to t'he

walI, it can be reduced to give the vorticity boundary

condition at the wall as

(3.20)
ì

l.a'l v. I

l.âvj- 3 
|

'y*o
û) =lSL

The

at

AS

initial condilions used to

interior points in the flow

rf = pubF.z,/2 (3.2L)

and oJ=0 (3.22)

3.3 Effective viscositY model

Many proposats have been made in the literature

for an effectj-ve viscosity model based. on the law of the

wall and the assumption of a uniform shear stress in the

near wa1} regíon. These mod.els have been designed in accord

with experimental evidence from flows which do not have rapid

streamwise variation of the wall shear stress. For a develop-

ing pipe ftow in which the walI shear stress varies rapid.ly

in the inlet region' a more general mod.el is required. Of
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several effective viscosity models considered for modifica-

tion, the Van Driest (1956) model appeared to be the mosÈ

amenable for use with the numerical solution method described

in Section 3.4¡ primarily because it satisfíed the following

criteria.
(i) It was smooth and. continuous in the near

wall region.

(ii) It was devoid of velocity grad.ients inherent

in the model strucÈure which would considerably complicate

the iterat.ive finite difference technique and increase

computing time and costs.

The form of the modified effective viscosity model used in

the present analysis can be given as

for 0<x/D <100and0.y/g <0.159

and y = (v)"7n=o.I58 
r

for 0 < x/D < 100 and 0.158 < y/R < 1.

(3.23)

(3.24)
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The modification being a truncation of Van Driestrs

original model aE y/n = 0.158* to give a constant effective

viscosity in the range 0.158 < y/R < 1, and. allowing the

model to be dependent on y+ based on the local wall friction

velocity u*r to account for the rapid streamwise variation of

the wall shear stress.

The justification for thís latter modification can

be found in Hirst and Coles (1968) ' where the loca1 waII

shear stress was evaluated using the law of the waII in flows

with rapid streamwise variation in the wall shear stress. It

is apparent that the success of the model depends on the

choice of the damping constant E which controls the thickness

of the viscous sub-Iayer and the mixing length constant r< which

controLs the slope of the turbulent portion of the velocity

distribution. The constants E and K were given the values of

0.41 and. 26 respectively, Èo give velocity profiles, character-

istic of fully developed flow in t.he range 5 x 10n : *" 1

5 x 10s when used wiÈh the truncated model with 0.158 !y/n < 1.

Although the model might be expected to aPPly well

in the ful1y turbulent flow regions, the assumption of a

constant effective viscosity can hardly be expected. to apply

in the inÈermittent outer region of the turbulent bound,ary

layer or in the entry core region. The intermittent' nature

of the outer region of the boundary layer would effect a

decrease in the time-averaged viscosity, which would d.rop

rapidly to a low effective viscosity characteristic of the

entry core region. This objection' however, is not critical

* y/R = 0.158 vTas chosen to be compatible with a node in
the finite difference grid described in Section 3.5.



20

to the final outcome of the numerícal solutíons since the

mean velocity distribution outside of the waIl region is

rather insensitive to the assumed effective viscosity

distribution. The behaviour of the effective viscosity in

the intermittent, and entry core regíons will be discussed

further in Section 5.3.

3.4 Numerical analysis

The basis for the numerical solution of the

vorticity transport and. stream function equations using

the general etliptic form has been described by Gosman et

al (L969) and will be summarised below.

Suppose the field of interest is covered' by a

non-linear grid network, the nodes in the grid correspond.ing

to the intersection of the grid Iines. Figure 2 shows a

typical interior node P, and eight surrounding nodes; Nt

S, E, W, NE, NW, SE and. SW. Integration of the general

elliptic equation is performed over the broken line rectangle

surrounding the point P, the sides of this rectangle denoted'

by the points n, sr e, w, rtêr rwr se and sw lying midway

between the neighbouring.grid lines. In the integration,

five assumptions are made.

(i) The average value of T2 is the value at the

centre of the rectangle tn'.

(ii) The value O is uniform v¡ithin each rectangle

and assumes the prevailing value at the particular node
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which the rectangle encloses.

(iii) The averagre value of Ó at the point e takes

on the þ value possessed by the fluíd upstream of the e-face

of the rectangle.

1iv) The value of the stream function rl¡ at the

corner of the small rectangle is equal to the average of

the values on the four neighbouring nodes.

(v) The term S is uniform over the area of inte-

gration and takes .on the value at the point P.

with these assumptions, the integration of (3.9) can pro-

ceed to give the general finite difference formula for each

variable at every interior node in the space as

( 3.2s)

where the coefficients

values given in Table

Append.ix A.

The boundarY

since the ô values at.

bt c, and d. assume the aPProPriate

1, and the Aj's and. Bj's are given in

conditions are easily discretised

the boundary nodes have the form

0- f.

where f is a known constant or function.

sets of finite d.ifference equations were

(3.26)

The algebraic

solved simult,an-
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eously by a Gauss Seidel iterative method in which new

values are used as soon as they are generated. Each cycle

ín the iterative procedure consists of two sub-cycles, one

for each of the vorticity and stream functíon equations

respectively. During the first sub-cycIe, the field is

scanned row by row and the independent variable u), updated

in the process. The second sub-cyc|e is then performed

to obtain a new value of the dependent variable þ, when

the sub-cycles have been completed, a new it'erat.ive cycle

is commenced.; this procedure being repeated' until converged

solutions in o and rp are obtained. The iterative procedure

was considered converged when the maximum fractional

change in O for the ¡tth iteration did not exceed a speci-

fíed value À, i.e.

À, forÀ < o.oor . ß.27)

significant gains in convergience and stability

r4rere achieved. by under-relaxing the vorticity and stream

function equations with a relaxation factor E according to

the relation

O=cO(M) +(I E)O(M-I),fore -0.75. (3.28)

3.5 Finite difference grid

The first step is to consider a finite number of

points located in the flow field for which the finite

M.AX
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difference forms of (3.2) and (3.3) are assumed to be

valid. The array of poínts is referred to as a "grid",

and the points themselves are t'ermed "nodes" of the gríd.

Where the gradient,s of the variables are steep, thg nodes

should be closer together, and where the grad.ients are

shallow, the nodes may be further apart. Also, the grid

is arranged so that the outermost nodal points corresPond

to the physical boundaries of the flow field'

Asatisfactoryfinitedifferencegridformat'

was achieved. by having twenty nodal grid points aL x/D = 0t

0.25, 0.5 | 0.75, I.5, 2t 3, 4t 5, 10, 20, 25, 30, 35, 40,

50, 60, 70, and 100, some of which were chosen to conform

with measuring st,ations on the experimental rig d'escribed

in Sectíon 4.1. (Other axial grid formats \dere used when

required.) In the radial d.j-rection, the pipe radius wab

divided into twenty equi-spaced distances. The first

eighteen v/ere retained and a further twelve grid nodes

fitt.ed. in the two remaining spaces using a geometric pro-

gression of ratio 1:I.4, the nodes getting closer together

as the wall is approached. This radial grid format was

found to be sufficient for the pipe Reynolds number range

considered and always enabled computation of points within

the viscous sub-layer d.efined by O : y* < 7 without the

use of sPecial waI1 functions.
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3.6 Errors

In order to check for round-off errors, the

numerical analyses were run first in single precision and

then in double precision. Round-off errors were found to

be negligible, differences occuring only in the third
significant digit.

Truncation errors which arise through replacement

of the actual equations with the finite difference equations,

urere checked. by refining the grid. Again no appreiciable

differences v¡ere found in the solutions, differences occuring

only j-n the fourth significant digit.

In the early stages of this work, numerical solu-

tions with and without the term S were obtained for Re =

5 x lOs. Comparison of the results showed that setting the

S term to zero throughout the flow field produced. errors of
less than I.2Z and O.2Z in the vorticity and stream functions,

respectively. (fhese percentage indications for the vorticity

and stream function equations being representative of the

regions which, according to boundary layer theory, would be

identified with the boundary layer.) The reason for the

slight effect. of the term S on the.numerical solution is due

to the fact that streamwise derivatives of y are involved and

that velocity gradients such as ðV/ðx and àV/àr are smaIl.

Hence, to conserve computer time and improve convergence and.

stàbility, the term S was neglected in further calculations.
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4. EXPERIMENTAI APPARATUS,

MEASUREMENTS AND ERRORS

4.L Experimental apparatus

The experiments for evaluation of the flow

characteristics \^rere conducted in an open circuit wind

tunnel shown schematically in Figure 3. The basic air

moving device was a centrifugal blowerr with the fan set

to give average velocities in the test section'i-n

the range 10 60 m/sec. Air was passed through screens

and flow straighteners into a specially designed contraction

cone of contraction ratio 89:1 to provide a flat velocity

profile at the inlet of the working section. Since the

contraction was found to give a laminar flow at the begin-

ning of the test section, turbulent flow \^ras promoted at

the pipe inlet by a 9 srn. length of No. 16 sandpaper,

inset around the circumference of the pipe at the beginning

of the working sect.ion. The working section consisted of

gun bored sections of steel pipe internally honed to a

mirror finish. The sections hlere 10.16 clns. in diameter

with a total length of 75 Pipe d.iameters. Air from the

teSt section was allowed Lo exit via a 40 half angle

d.iffuser, 7L.96 cms. in length to reduce any upstream

influence due to exit disturbances.

A Betz micromanometer was used in all pressure

probe measurements and the DISA hot-wire equipment used
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throughout consisted of two identical channels' one for

each wire of a 55439 x-probe. A single channel was used

with a single-wire 55F14 boundary layer probe. The two

channels consisted. of DïSA 55D01 constant temperature ane-

mometers, 55D10 linearísers, 55D25 auxiliary units and

55406 correlators. D.C. voltage components were measured

using a 55D30 digital voltmeter and A.C. signals with a

55D35 root mean square (r.m.s,) vortmeter. Axia1 rad'ia1

and circumferential frequency spectra were measured using

DISA equipment in conjunction with a Hewlett Packard 35944

wave-analyser utitising addition, subtraction and multi-

plying circuits d.eveloped in the turbulence laboratory at

the University of Manitoba. Cospectrum and phase-shift,

measurenents were mad.e using the DISA equipment in conjunction

with two 55D26 conditioning and. filtering circuits and a

phase-shift circuit capable of giving a phase-shift of 90o t

10. AIl instantaneous hot-wire signals were monitored on a

Tektronix type 502 dual beam oscilloscope

4.2 Measurements

Mean velocity traverses wer.e made with total

probe and walI static taps and these were used to calibrate

the hot-wire probes in the fully developed flow where con-

ditions are reasonably well known. The totaL head probe

consisted of a round tube of external and internal diameters

of 1 mm. and. 0.76 mm., with a flattened tip with internal

dimensions of 2 mm. wide and. 0.15 mm. deep. Static pressures

from wall tappings at 20 locations on the test section,
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(four tappings equispaced circumferentially at, each location)

were used to determine the friction velocitY u*sf in the

fully developed flow.
Mean velocity data was obtained from radial

traverses at several locations from the ínl-et to fully

developed flow condition using a total head probe and'

wall static tapsT single-wire boundary layer and x-probe.

A'single-wire boundary layer probe was used to measure

the.axial r.m.s. velocity ü. A check on the ü measurements

was made with the x-wire probe, which was also used to

measure the radial and circumferential root mean square

velocities i and ñ and the velocity correlation Ñ. Measure-

ment of the axial, radial anô circumferential spectra was

accomplished by manually scanning through the frequency

spectrum with a fixed band-width of IQHz using the wave-

analyser, with addition, subtraction and multiplying circuits'

Cospectrum and Phase-Shift measurements \À7ere mad'e using the

method of Bendat and Piersol (1966) ' The dual beam oscillo-

scope \{as used to give an aPproxjmate visualisation of the

instantaneous spatial structure of the turbulence and to

determine the outer UJnit beyond. which no intermittent bursts

of the boundary layer could be detected

4.3 Errors

Error estimates reflecting the trend accllrêc1rr

rather than the absolute accuracy of the measurernents were

evaluated using Èhe technique of K1ine and McClintock (1953).

The trend errors were considered to be comprised. of two d.is-



28

tinct types. Firstly, calibration errors of the instrumenta-
tion due to changes in experimental cond.itions {e.g. tempera_

ture and wire resistance changes), and secondry, the sum of
errors induced by the design of the measuring instruments

through which the signals are passed.

Enploying the standard. operational instrument

accuracies quoted in the manufacturerrs catalogues and

the maximum observed variations in environmental and. equip-

ment cond.itions, the following trend percentagie error
estimates (rounded off upwards to the nearest percent)

\^tere evaluated for the measured data

The maximum trend error in the mean axiaL velocity
and bulk velocity (ub) using pressure probes was estimated

at t13 and with hot-wire equipment, !2eo. Estimat.ed maxi-

mum trend errors in the fiiction velocity, in the ï.fii.s¡
velocities and Reynolds shear stress \Á/ere t5B, t3Z, and

t5? respect.ively.

Apart from corrections to V, fri and IF for yaw

sensitivity of the x-probe, no corrections hrere made to the

measured data.
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5. RESULTS AI{D DTSCUSSION

Apart from a slight ReynoJ.ds number effectr IIo

major d.ifferences in the flow characteristics could be

discerned. for the three Reynolds numbers investigated.

Therefore, discussion witl be limited mainly to results (.

obtained at Re = 3 x 10t.

5.1 Prelíminary results

In section 4.1 it was stated that Èhe contraction

cone rá¡as found to cause a laminar boundary layer to develop

at the pipe inlet. , 
Some experiments l^lere performed utiliz-

ing the change in velocity dist.ribution in Èhe transition

region to estjmate the transition point of the laminar flow

to turbulent flow. This.,was accomplished by moving a total

head boundary layer probe parallel to the PiPe waII at a

distance correspond.ing to a maximum d.ifference betr,rTeen the

velocities in the laminar and turbulent ftow regirnes. On

being moved across the transition point the total head Probe

showed an increase in the total Pressure Q. The resirlt's of

these experiments are shown in Figure 4, where Q" is the

total pressure of the entering flow at the piPe centre-line-

The transition points (estimated as the mid-point between

the maximum and minimunr values of Q/Q) are at approximately

x/D = 3t 4.5 and g for Re = 3 x I05, 2 x l0s and I x lOs.

Figure 5 shows the transiÈion points from Figure 4 and the

results of Mizushina et' al (1970) plotted as a function
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of pipe Reynolds number. As the pipe Reynolds number

increases, the transition point moves towards the pipe

entrance.

In order to have a common orígin for the develop-

ing turbulent boundary at all pipe Reynolds numbers considered,

the turbulence promoting device described in Section 4.1 was

used. From hot-wire measurements and bound.ary layer analysis

the virtual origin of the turbulent boundary layer was

estimated to be approximately 3 cms. upstream of the down-

stream end of the turbulence promoter. For conveniencer the

down-stream end of the turbulence promoter was used as a

datum for all subsequent axial measurements.

5.2 Oscillograph traces

By careful observation of the instantaneous

hot-wire signals on the oscilloscope, it was possible to

determine the distance from the waI1 beyond wliich no turbulent

bursts could be detected. The approximate outer limit of

the bound.ary layer intermittency shown in Figure 6 | índ.ícates

the entry core region to shrink in cross-sectional area aS

the turbulent boundary layer develops, with interaction of

the perimeter of the boundary layer surface beginning to

occur aL x/D = 25 on the pipe centre-line. By x/D = 30 the

entry core region entirely disappears as the boundary layer

filts the whole of the pipe. Oscillograph traces along the

pipe centre-line between x/D = 25 anð. x/D = 30 showed the
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flow to consist of slow alternatio,ns of turbulent and non-

turbulent fluid, suggesting that small pockets of fluid

from the core entry region become trapped in the turbulent

boundary layer aE x/D = 25 and eventually become entrained

as the boundary layer fills the whole of the pipe-

5.3 Mean characteristics

Figure 7 shows the axial velocity profiles obtained

from the total head. probe and static pressure taps for Re =

3 x 105, normalised by the bulk velocity in the test

Ub(= 42 m/sec.) . At the pipe entrance (x/O = 0) the enter-

ing flow velocity profile is uniform. As the flow develops,

the profiles show the fluid near the wall to be retarded

while the f1uid. in Ëhe entry core region is accelerated.

ïn the entry core region the velocity profiles remain uniform,

but as the boundary layer fills the whole of the pipe at

x/D = 30, the profiles become moderately peaked' the peak

gradually subsiding to give a constant value at

x/D = 7O as the velocity profiles become characteristic of

a fully developed fl-ow. This peaking first postulated by

Bradley and Cockrell (1970) from Barbinrs data and the

velocity defect lawr and IabeI1ed. "velocity overshoot", is

shown more clearly from consideration of Èhe centre-line

velocity given in the Figure I' which shows the centre-line

velocity in the mixing region to be higher than in the futly

developed f1ow. Figure 9 shows comparisons of the axial
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velocity profiles from experiment with those obtained' from

from the numerical analysis. Although agreement is seen to

be quite reasonable over the whole of the developing flow'

the numerical analysis does not exhibj-t the "overshoot"

phenomenon and predicts the centre-line velocity to proceed

asymptotically towards a fully developed. flow. This point

wilt be discussed further in Section 5.4. The ratio of the

bulk to centre-Iine velocity aL x/D = 70 which gives an

ind.ication of the degree of development of th'e flow, v/ere

0.847,0.84r and 0.826 for Reynolds numbers of 3 x 105,

Z x 105, and I x IOs. These are in reasonable agreement

with Lawn (1971) who reported values of 0.806 to 0.833 for

35'OOO < Re < 250,000 for an x/D = 59. Figure 10 compares

the axial velocity data of Barbin (1961) with the results

from the present numerical analysis and the integral method

of Bradley and Cockrell (1970). It is seen that the numeri-

cal analysis gives bett,er agreement with Barbin I s d.ata than

the integral method, especially after x/D = 16.5' the approx-

i¡nate lirnit of validity for integral methods.

Mean vorticity profiles calculated. from the axial

and corresponding rad.ial velocities using the relation

ðVû)=--iix (s.1)âU
âr

are shown in Figure 11, compared with vorticity profiles
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obtained from the numerical analysis. For convenience, Lhe

vorticity is normalised by the mean vort,icity at the wall ín

fuIly developed flow ur", obtained from the numerical analysis.
a

The y' values for the data were evaluated from the axial
velocity profiles by the momentum method described in Section

2.2 and employing Equations (2.9) and (2.10) . As a conse-

quence of the effective viscosity modeI, the numerically

obtained vorticity profiles d.isplay a high degree of
similarity in the viscous sub-Iayer and buffer regions,

defined by 0 . y* . 7 and 7 < y+ . lOO and. over a greater

part of the logarithmic region defined approximately by
-L+

100 < y' < 1000. In the remaining y' region, the vorticity

graduallylron.nates outward from the pipe walI and increases

in the downstream directíon as the flow develops. The

experiment.al data also shows this latter trend, but good

agreement near the pipe centre-line is prevented due to

difficulty in computing the vorticity from unsmoothed. axial

and radial velocity data.

Figure 12 shows a comparison of the local wall

shear stress obtained from the momentum and law of the waIl

methods described. j-n Section 2.2, the numerical analysis

and the integral analysis of Bradley and CockrêIl (1970). In

the inlet range 2 < x/D 1 7, the numerical and integral

analyses give very good. agreement wíth the loca1 wall shear

stress obtained from the momentum method whereas values

obtained from the law of the walI method appear lower. The

law of the walI method cannot be expected to apply in the
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initíaI inlet region because it is only strictly valid

tor flows with a constant or small streamwise variation in
wall shear stressi ê.9. fully developed pipe flow. After

x/D = 7 | the momentum and law of the wal1 methods and numeri-

cal analysis show the local waIl shear stress to decrease

asymptotically toward.s a fully developed value between 40 <

x/o < 50, whereas the integral method showé the loca1 watl

shear stress to become fully developed aE x/D = 25. Bradley

and Cockrell (1970) admit that their integral technique

becomes less satisfactory for flow prediction especially

after the entry core region d.isappears.

5.4 Time-averaged characterist,ics

Figures 13, 14 ana iS show the r.m.s. velocities

ü, V and il normalised by Èhe friction velocity **=f (=1.955

m,/sec.) for the fully developed flow. At any point in the

Éurbuleht fluid, r:,/u*sf > rl/u*sf > v,/u*sf , showíng the

turbulence to be-anisotropic, the degree of anísotropy

decreasing from the wall to the pipe centre-fine.

Profiles of the turbulence shear stress pÑ non-

dimensionalised by pu2*=, are shown in Figure 16. It can

be seen that the shear stresses are'slow to develop near

the pipe centre-line at the start of the mixing region. It

is this slow adjustment of the shear stresses which causes

the mean axial velocity profites to become moderately peaked

near the pipe centre-line when the boundary layer fills the

whole of the piper the peak gradually flattening to give a
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shallow maximum as the shear stress adjusts towards a linear

profile charact,eristic of futly developed flow. A similar

phenomenon has been noted. by Comte-Bel1ot (1965) and others

in the region of interaction between boundary layers in

steady two-dimensional duct flow.

The error estimates in Section 4 for ü, V, W

and Ñ appear higher than reflected by the experimental

data, since errors due to calibration d.rifts vlere always

lower than the observed. maximum variations in environment

and instrument conditions. It should. be noted that the

accuracy of the trends of the d.ata will be much better

than the accuracy of the absolute values.

As mentioned in Section 3.3, the success of the

numerical analysís hinges to a great extent on the effective
viscosity model because it determines how the theoreticat
shear stress field develops. Since the laminar shear stress

contribution to the total shear stress is smalL everlnrhere

except near the pipe waII, the Reynolds shear stress d.ata

obtained from experiment can be compared with the total

shear stress obtained from the analysis. This comparison

given in Figure L7 for Re = 3 x 105, shows quite reasonable

agreement. It can be seen that the effect of the truncation

of the effecËive viscosity model aE y/a = 0.158 gives a

slight discontinuity in the theoretical shear stress profiles

as the futly developed case is approached, resulting in

values approximately 5eo higher at y/n = 0.158 than those

obtained from experiment. At statj-on x/D = 30, the theoretical
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shear stress profile is developing more rapidly than the

profile obÈained from experiment. This would account, to
some extent, for the numerical analysis not exhibiting the

"overshoot" phenomenon found in the experimental velocity
profiles, because once the mixing region is formed., the frow

would be decelerated more quickly than in the real case.
A comparison of the normalised. eddy viscosity

obtained from the analysis and from experiment through the

relation

uT-
v (5.2)

is shown in Figure tB for Re = 3 x 10s. The values computed

from the experimental d,ata agree reasonably well with the

analysis over most of the turbulent flow region, but rapidly

drop aw4y from the assumed constant val-ue in the 'intermittent

outer region of the turbulent boundary layer and assumes

very small values in the entry core region and. in the mixing

region. The disagreernent of the assumed. and actual ed.dy viscos-
ity d.istribution in the turbulent boundary layer and entry core

region is not critical to the overall quality of the numerical

analysis in these'regions because of the relative insensiti-

vity of the mean velocity distribution to the assumed eddy

viscosity distribution. The relative insensitivity of the

mean velocity dj-stribution was investigated. by changing the

assumed constant value to correspond more closely with the

experimentally obtained values. Cornput,ed errqrs were less

than LZ.

uv,âU
f-v'ðy
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5.5 Spectral characteristics

Axial, radial, circumferential- and cospectrum

wave-number spectral. densities vrere obtained from measured

frequency spectral densities using Taylorrs hypothesis.

The resulting wave-number spectrum densities were non-

dimensionalised and, scaLed using the Kolmogorov length and

velocity microscales

giving Euru, (x) = ôr.o., (K) /Ð2\
1J

and

and

rt = (u' /.1\

r, = (ve¡k r

x=Kn

(5.3)

(5.4)

(5.5)

(5.6)

(s.8)

and

The cross spectral densities Eorr(X) and phase-

shift measurements 0 (X) v¡ere obtained from coincident

(Cuv(X)) and quadrature (Q,r.r(X)) spectral density functions

using the relations

I

noo.(x) = /c.,u" (x) + Qovt (x) , (5'7)

e (x) = ran -t 
[Oo*, 

(X) /cuv (X) 
]

respectivelY.
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The main spectral characteristícs of developing

turbulent pipe are shown by a few selected spectra in

Figures 19, 20, 2L, 22ranð, 23. It is apparent from Figure 19

that the axial energy spectra exhibit a X-s/3 dependence

for about one decade of X ind.icating that an inertial sub-

range can exist in t,he presence of shear, and justifying to

some extent the use of Bradshaw's (Lg67) method for obtain-

ing E.

corresponding radial and circumferential spectral

profiles shown ín Figures 20 and 21 I are very similar through-

out the d.eveloping flow, but their respective energy levels

ín the low wave-number range are much less Lhan the corres-

pondingaxialspectralenergylevels.Theaxialandradial

spectra did not obey the isotropic relation

= å 
[""'*'

aEoz (x)
x --ãil (s. e)Errz (x )

except in the high vTave-number ranges r ind'icating the small

scale turbulent structure to be isotropic in character and

the large scale structure associated. with the low wave-

numberrangestobeanisotropic.Closetothewallthe

figures show that the comPonent specLra are almost invariant

throughout the whole \^7ave-number range as the f low develops '
FigurelgshowsacomParisonoftheaxialspecÈra-

measured on the pipe centre-line in the mixing and fully

developed regions, with the axial spectrum displaying the
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maximum spectral energy in the l-ow wave-number range measured

in the developing turbulent boundary l-ayer at x/D = 10.

!ühere the boundary layer fil-ls the whofe of the pipe at the

beginning of the mixing region, the spectral energy in the

l-ow wave-number range is higher than 1n the boundary layer

and fulty developed regions. The same trend is exhibited

in the corresponding radial and circumferential- spectra

shown in Figures 20 and 2L, but not in the cospe etra j-n

Figure 22. This suggests that the increase in spectraf

energy is due mainly to convective diffusion of turbul-ent

energy in the l-ow wave-number range. Compari-son of the high

wave-number range of the cospectral- densities in Figure 22

with the high wave-number range of the other component spectra

in Figures 19, 20 and 2I reveal-s that there is a smafl

reduction in level- relative to the component spe etra. This

points towards lsotropy in the extreme wave-number ranges

even though ü > ñ > ü. For the sake of completeness,

measurements of the phase-shift 0(X) are shown in Figure 23.

In cospectral- densities measured near the wal-l the phase-

shifts have the same trends being above tBOo for the large

scale turbufence structure decreasing through the inertial

subrange to be below tBOo for the small- scale structure.

The reverse is true for cospectral densities measured near

the edge of the boundary layer and in the mixing and fully

devel-oped regions .
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5.6 Energy balances

Figures 24, 25 and 26 show the terms in the energy

equation non-dimensionalised fy uist/R aE x/D = 10, 30 and,

70, corresponding to the developing bound.ary layer region,

mixing region and fu1ly developed region. Perhaps the most

striking feature of the energy balances is the manner in

which each individual term adjusts as the flow develops from

a boundary layer structure to a fu1ly d.eveloped structure.

It can be seen that the loss of turbulent energy by convec-

tion (I) diminishes in the downstream direction and disapp.ears

completely once the flow becomes uni-directional. This term

is primarily responsible for the manner in which the normal

stresses develop in the downstream direction and generally

reflects the dependence of the turbulent flow on its upstream

history
Throughout the d.eveloping flow close to the waIl,

most of the gain in t,urbulence energy due to production (rI)

is dissipated. there. In the outer part of the turbulent

boundary layer and near the pipe centre-Iine in the mixing

and fully developed regions, the prod.uction of turburence

energy is negligible. This gives substance to the id.ea

Èhat very IittIe of the increase in spectrar energy levels
near the pipe centre-line in the mixing region can be due

to prod.uction, but mainly due to the gain by convective
diffusj-on of turbulence energy (fff). It should be noted

that, in the turbulent. flow the production term (ff¡ is
essentially uvaü/ðr, the remaining terms ñav/ax, urnu/r*



4L

ana. FaV/ar are of second order or more. The individual

terms are shown in Tables 2, 3 and 4, along with the velocity

gradients ðü/axt ðV/ðrt àV/ðx., àY/àr for x/D = I0, 30 and 70.

In Lhe entry core region there is some production of turbulence

energy due to the residual turbulence in the accelerating

flow through PaV/a*, but this is of second order magnitude

compared \^rith the turbulence energy production in the turbulent

part of the flow near the waII. In the fully developed flow

near the pipe centre-line all of the increase in turbulence

energy due to convective diffusion is dissipated. Inspection

of term (IV) shows that the v¡ork done by the viscous shear

stresses, on the turbulence motion, influences the flow only

near the waII and disappears as the flow becomes developed.

Finallyr Èhe dissipation term (v) shows that dissi-

pation of turbulence energy increases as the flov¡ develops,

and that most of the dissipation occurs close to the pipe waII'
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6. CONCLUDING REMARKS

An experiment,al and theoretical study of the

meán and turbulent flow properties of developing turbulent

pipe flow at a-Relznolds number of 3 x lOs has been described.

Data presented have included measurements of oscillograph

traces, mean velocity, turbulence intensities, Reynolds

stress, and one-dimensíona} energy spectra. The data was

used to evaluate the terms in the time-averaged energy

equation with the convective diffusion of turbulence energy

by kinetic and pressure effects d.etermined as the closing

entry in the energy balance.

The oscillograph traces indicated' the entry core

region to shrink in cross-sectional area aS the turbulent

boundary layer developsr'with interaction of the perímPter

of the bound.ary layer surface beginning to occur aE x/Ð = 25,

the entry core region entirely disappearing by x/o = 30 as

the bound.ary layer fil1s the whole of the pípe.

' An interesting feature of the flow is the peaking

of the pipe centre-Iíne velocity caused. by the slow adjust-

ment of the shear stresses in the mixing region. Consid'era-

tion of the mean velocity, turbulence intensities and shear

stress measurements show that d.eveloping turbulent pipe flow

requires an entry length of some 60 70 piPe diameters

before it assumes the characteristics of a fu1ly developed

flow. Within this entry length the turbulence is inhomogen-
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eous and anisotropic, the degree-of aì:isotropy decreasing

from the pipe wall towards the pipe axis.

The spectrum measurements show that corresponding

rad.ial and circumferential spectra are very similar through-

out the developing flow but that. their energy levels are

less than in the corresponding axial spectra which exhibit

X-5/3 d.ependence for about one decade of the non-dimensional

wave-number X. The spectra indicate the small scale turbu-

lence structure to be isotropic even though ü > W > Vr and

the large scale structure associated with the low wave-

number range to be anisotropic. Perhaps the most interesting

conclusion to be drawn from the spectra is that they show

that the dominant energy process occurring in the mixing

region is due to convective diffusion of turbulence energy and

that this energy is associated with the ]ow wave-number

range.

confirmation that the convective diffusion of

turbulence energy is the dominant energy process in the

mixing region is also given by the energy balances derived

from the measured data, Term II in.the energy equation indi-

cates that nost of the gain in turbulence energy by production

is due primarily to the Ñay/ðr term' other production terms

being at. most of second order.
From the numerical analysis it has been shown that

a reasonable simulation of the mean flow and Reynolds stress

characteristics can be obtained. The failure of the analysis
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to predict the velocity "overshoot" phenomenon can be

att,ributed in some measure to the crudity of the effective

viscosity model and. the exclusion of the source term S.
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7. RECOMMENDATÏONS

The primary objective of this research was to

obtain quantitative information on the manner in which

developing turbulent pipe flow adjusts from a boundary

layer st,ructure to a fully developed flow structure. As

poínted out in Section 1.2 the full potential of boundary

layer prediction methods (or indeed any of the current

generation of prediction methods) cannot be realised until

they have been tested against extensive and reliable

informat.ion. It is therefore strongly recommended that

the present data serve as a basis for the formulation of

auxiliary equations and as a test case for comparison of

integral methods and also, serve as a basis for comparison

of the turbulence models of Daly (1970), Donaldson (1971)

and (19721, Fox and Lilly (L972) and. others-
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APPENDIX A

COEFFTCfENTS rN EQUATTON (3.25)

and

\n/here

Aå = AJ/vp

"j 
= ør/ (b, - bp)vp

rD
vp=å(x"-xr)'(rN ts) |

(A.1)

(A.2)

(A.3 )

Aw=

aD
As = -fr t(úsw * rlw - úsn ün) + lúsr * üw - üsr - ,l'El]

*P-xw

*E-*w.

êo.

+t t(ú*u * {'E - úNw

+ lú*o * uN - úsw - vsl] t

(A.4)

\=

and ' (rE + rn)

(rW * rp)

(rN * tp)

(rS + rp)

(A. s)

BN= -..T-bN+bP.

bs*bp
--.-8-

tN

xI,

tP

*vü
Bs= tP ts
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r/R

0.000E 00
0.5008-01
0.1008 00
0.150E 00
0.200E 00
0.250E 00
0.3008 00
0.350E 00
0.4008 00
0.450E 00
0.5008 00
0.5508 00
0.600E 00
0.6508 00
0.7008 00
0.7508 00
0.8008 00
0.8508 00
0.9008 00
0.9508 00
0.9708 00
0.1008 01

0.0008 00
0.279E.-02
0.27 9E-02
0.2728-02
0.272E,-02
0.272E.-02
0.3698-02
0.542E.-02
0. 6788-02
0.5738-02
0.4578-02

-0.77 8E-02
-0. 6238-03
-0.1408-01
-0.262E.-0L
-0. 551É-01
-0. 6528-01
-0.2628-0L
0.1048-01
0.3398-01

-0.595E-02
I 0.0008 00
I

o"u/u* vz ðv ¡èr

0.0008 00
-0.134E-02
-0.8908-03
-0.8908-03
-0.8908-03
-0.8908-03
-0.8568-03
-0. r09E-02
-0.8878-03
-0.3078-04

0 .1678-02
0.3718-02
0 .477E.-02
0.697F-02
0.110E-01
0.1548-01
0.1548-01
0.862I.-02

-0 .13 9E.-02
-0.4568-02

0.468E-02
0.000E 00

TABLE 2.

ñau7ar

Turbulence

(Note: The

0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00

-0.2048-01
-0.1078 00
-0.3708 00
-0.1028 01
-0.1868 01
-0.2978 01
-0.4158 01
-0.686E 01
-0.1008 02
-0.L298 02
-0.1748 02
-0,2948 t2
-0.2578 03
0.0008 00

energy production and

production terms have

ilvav,zax

0.0008 00
0.000E 00
0.000E 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.5918-06
0.3008-05
0.1058-04
0.2638-04
0.5208-04
0.7338-04
0.8288-04
0.4868-04

:0.5608-04
-0.27 4E-03
-0.561E-03
-0.7168-03
-0.7 408-03
-0 .7 408-03
0,0008 00

velocity gradient terms x/D - 10.

been non-dimensionalised Uy ui=r,/n)
(tl
o



r/R

0.0008 00
0.5008-01
0.1008 00
0.1508 00
0.2008 00
0.2508 00
0.3008 00
0.3508 00
0.400E 00
0.4508 00
0.5008 00
0.5508 00
0.6008 00
0.6508 00
0.7008 00
0.7508 00
0.800E 00
0.8508 00
0.9008 00
0.9508 00
0.9708 00
0.1008 01

0.2578 01
0.2578 01
0.2578 01
0.2578 01
0.2578 01
0.2578 01
Q.2578 01
0.2388 01
0.1988 01
0.1108 01
0.6178 00

-0.7 46E. 00
-0.4898-01
-0;8198 00
-0.120E 0r
-0.206E 01
-0.2038 01
-0.6978 00
0.2558 00
0.7338 00

| -0.1108 00
I 0.0008 00

ðulðx ðUrlâr

0.1498-01
0.0008 00

-0.7 458-02
-0 .7 458-02
0.0008 00
0.0008 00
0.000E 00
0.0008 00

-0.4018 02
-0.1008 03
-0.2008 03
-0.34IE 03
-0.4418 03
-0.4818 03
-0.5018 03
-0.642E. 03
-0.7 42E. 03
-0.762E. 03
-0.9228 03
-0.1308 04
-0.9568 04
-0.340E 05

0.000E 00
-0.7 648-03
-0.9038-03
-0.8798-03
-0.693-03
-0.100E-03

0.97 9E-03
0.2888-02
0.5898-02
0.9848-02
0.1428-0I
0. r73E-01
0.1748-01
0. t34E-01
0 . 58 7E-02

-0.524E'-02
¡ -0.2038-Ol
| -0. 3338-oI
| -o.37BE-oII -o.3zz¡-oLI -o.zzsg-oLI o.oooE oo

ðVlÐx

TABLE

àv /ðr
-0.321E 01
-0.1938 01
-0.1298 01
-0.1298 01
-0.1298 01
-0.1298 01
-0.L248 01
-0.1058 01
-0.6098 00
-0.1558-0I
0.6788 00
0.tI6E 01
0.1178 01
0.1348 01
0.1808 01
0.2I7E 01
0.1898 01
0.8558 00

-0.1258 00
-0.3418 00
0.293E 00
0.2028 0t

2. (continued)
(tl
F



r/R

0.0008 00
0. 5008-01
0.1008 00
0.1508 00
0.2008 00
0.2508 00
0.300E 00
0.3508 00
0.4008 00
0.450E 00
0.5008 00
0. 5508 00
0.6008 00
0.6508 00
0.7008 00
0.7508 00
0.8008 00
0.8508 00
0.9008 00
0.950E 00
0.9708 00
0.1008 01

u2 ãu,/ôx

0.000E 00
-0 .2018-02
-0 . 4 968-02
-0. 5718-02
-0. 1378-01
-0. 2188-01
-0. 28 5E-01
-0.1828-01
-0.2608-01
-0.2488-01
-0. 2898-01
-0.293E-01
-0.2998-01
-0.2938-01
-0.3198-01
-0. I91E-01
-0.2658-01
-0. 2248-01

0. 226E-01
0.8588-01
0.1408 00
0.000E 00

0.0008 00
0.1218-02
0.1758-02
0.272E.-02
0.4698-02
0 . 6 998-02
0.6808-02
0.467E.-02
0.3948-02
0 . 3 948-02
0.3718-02
0 . 34 6E-02
0.2848-02
0.2458-02

r 0.1488-02
I o.11eE-03
I -o .220r-03
| -o.32oE-02| -o. 135E-01
| -o.3r6E-oII -o. B7sE-01I o.ooog oo

vz ðv /ðx

TABLE 3.

uvau/ar

Turbulence

(Note: The

0.0008 00
-0 . 68 9E-01
-0.1578 00
-0.4608 00
-0.7038 00
-0.9508 00
-0.1388 01
-0.1878 01
-0.2548 01
-0.291E 01
-0.3158 01
-0. 3828 01
-0.49r8 0r
-0.612E 01
-0. 68 9E 01
-0. 931E 01
-0.1208 02
-0.1458 02
-0.3458 02
-0.2198 02
-0.2038 03
0.0008 00

energy production and

product,ion terms have

ñav,zax

0.0008 00
0.2678-05
0.8 378-05
0.17lE-04
0. 2158-04
0. 3058-04
0.3388-04
0.323E-04
0.2528-04
0.7908-05

-0.1258-04
-0.354E-04
-0. 5558-04
-0.6968-04
-0.7308-04
-0.6038-04
-0.4618-04
-0.3638-04
-0.1918-04
-0.1668-03
-0.2508-03
0.000E 00

velocit.y gradient terms x/D = 30.

been non-dimensionalised by ui"¡/n)
(.rl
l\'



r/R

0.0008 00
0.500E-01
0.100E 00
0.1508 00
0.2008 00
0.2508 00
0.3008 00
0.3508 00
0.4008 00
0.450E 00
0.500E 00
0.5508 00
0.6008 00
0.6508 00
0.7008 00
0.750E 00
0.8008 00
0.8508 00
0.9008 00
0.9508 00
0.9708 00
0.1008 01

âurlðx

-0.1498 00
-0.2488 00
-0.5468 00
-0.5468 00
-0.1148 01
-0.1548 01
-0.1748 01
-0.9458 00
-0.1148 0t
-0.947E' 00
-0.9488 00
-0.8498 00
-0.751E 00
-0. 653E 00
-0.6548 00
-0.3578 00
-0.4588 00
-0.360E 00
0.3338 00
0.L228 01
0. r92E 01
0.0008 00

ðU/àr

-0.2t7E. 03
-0.9868 02
-0.9868 02
-0. 1788 03
-0.1978 03
-0.2178 03
-0.2568 03
-0.296E. 03
-0. 3358 03
-0.3358 03
-0.3168 03
-0.3358 03
-0.3758 03
-0.4148 03
-0.434E 03
-0.5338 03
-0.6318 03
-0.7108 03
-0.1588 04
-0.9588 03
-0.8398 04
-0.324I. 05

ðvlôx

0.0008 00
0.3838-02
0. 5258-02
0. 6588-02
0.7038-02
0.6978-02
0 .6298-02
0.5I1E-02
0.3328-02
0.9108-03

-0.125E-02
-0.3118-02
-0 . 4 23r-02
-0 . 4 718-02
-0.4608-02
-0. 34 5E.-02
-0.2438-02
-0.17 9E-02
-0.8738-03
-0 . 7 25E'-02
-0.1038-01
0.0008 00

TABLE

ðv /ðr
0.1498 00
0.2488 00
0.3398 00
0.5038 00
0.8338 00
0.1138 01
0.1018 01
0.6408 00
0.4808 00
0.4418 00
0.3788 00
0.3198 00
0.2378 00
0.1848 00
0.1078 00
0.78 9E-02

-0.1388-01
-0.r86E 00
-0.7488 00
-0.1648 01
-0.4258 01
-0.1148 02

3. (continued.)

IJ¡(,



T/R

0.0008 00
0.5008-01
0. I00E 00
0.1508 00
0.2008 00
0.2508 00
0.3008 00
0.3508 00
0.4008 00
0.4508 00
0.5008 00
0.5508 00
0.6008 00
0.6508 00
0.7008 00
0.750E 00
0.800E 00
0.8508 00
0.9008 00
0.9s08 00
0.9708 00
0.1008 01

0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0. 0008 00
0.0008 00
0.0008 00
0.0008 00
0.000E 00
0.0008 00
0.000E 00
0.0008 00
0.0008 00
0.0008 00

| 0.0008 00I o.oooE ooI o. ooon ooI o. oooE ooI o.ooon ooI o.ooon ooI o.ooon oo

u2 âu7ax

0.000E 00
0.0008 00
0.0008 00
0.0008 00
0.000E 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.000E 00
0.0008 00
0.000E 00
0.0008 00
0.0008 00
0.0008 ooI o. ooon oo

v2 òv ¡ðx

TABLE 4.

ñau/ar
0.0008 00

-0.6008-0r
-0. 192E 00
-0.3798 00
-0.4488 00
-0.6488 00
-0.1058 01
-0.1498 01
-0.2388 01
-0.2278 01
-0.3598 01
-0.5338 01
-0.5138 01
-0.6178 01
-0.6748 01
-0.8338 01
-0.1078 02
-0.1468 02
-0.1888 02
-0.5398 02
-0.2288 03
0.0008 00

Turbulence

(Not,e: The

energy production and

production terms have

ñav/ax

0.0008 00
-0.3628-05
-0 . I 058-04
-0.1468-04
-0.1908-04
-0.2008-04
-0.1958-04
-0.1658-04
-0.1558-04
-0.1988-04
-0.I918-04
-0 .14 2E-04
-0.2288-04
-0.448E-04
-0.6968-04
-0.920E-04
-0.1038-03
-0.9848-04
-0.1008-03
-0.1068-03
-0.9368-04
0.0008 00

velocity gradient terms x/D = 70.

been non-dímensionalised Uy uf"rrzn)
lJl
À



x/R

0. 0008 00
0.5008-01
0.100E 00
0.1058 00
0.2008 00
0.2508 00
0.3008 00
0.3508 00
0.4008 00
0.4508 00
0.500E 00
0.5508 00
0.6008 00
0.6508 00
0.700E 00
0.7508 00
o.8ooE 00
0.8508 00
0.9008 00
0. 950E 00
0.9708 00
0.1008 01

àtJ/ ðx

0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0. 0008 00
0.0008 00

ðU/ðr

-0.2358 02
-0.4158 02
-0.6868 02
-0.9218 02
-0.8318 02
-0.1018 03
-0.1348 03
-0.1618 03
-0.2288 03
-0.193E 03
-0.27 6E 03
-0.3788 03
-0.3368 03
-0.3698 03
-0.3708 03
-0.4218 03
-0.5048 03
-0.6638 03
-0.8498 03
-0.2338 04
-0.1048 05
-0.3288 05

âVlÐx

0.000E 00
-0.2518-02
-0 . 37 6E-02
-0 . 3 548-02
-0 .3s48-02
-0.3128-02
-0.248E-02
-0.1788-02
-0 .14 9E'-02
-0.1688-02
-0.1478-02
-0.100E-02
-0.1508-02
-0.2678-02
-0 .3 82E,-02
-0.4658-02
-0.48 9E-02
-0.4 47E'-02
-0 . 4 538-02
-0 . 4 57E.-02
-0 . 4 258-02
0.000E 00

TABLE

ðv/ðr

0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.000E 00
0.0008 00
0.000E 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00
0.0008 00

4. (continued)
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