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ABSTRACT

The structure of steady axi-symmetric incom-
pressible developing turbulent pipé flow is investigated
through quantitative measurements of its mean velocity,
stress fields and component energy spectra, for pipe
Reynolds numbers of 1 x 105, 2 x 105 and 3 x 10°, using
air as a working fluid. The measured characteristics are
used to evaluate the terms appearing in the time-averaged
energy equation to determine energy budgets for the flow.
The results illustrate the manner in which the flow adﬁusts
from a boundary layer structure to a fully developed flow
structure downstream by virtue of the mixing which occurs
when the boundary layer fi;ls the whole of the pipe. It
is shown that in the mixing region the pipe centre-line
velocity becomes moderately peaked; and then subsides to a
velocity characteristic of a fully developed flow. The
energy budgets and spectral measurements indicate that the
main energy process involved in the mixing region is due
to convective diffusion of turbulence energy.

An approximate numerical analysis using an effect—
ive viscosity model based on the law of the wall was developed
to simulate the flow characteristics of the mean axial and
radial velocities, mean vorticity, local wall shear stress
and Reynolds shear stress. Comparison of the numeriéal

solutions with the measured data gave reasonably good agree-
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ment over the whole flow field, but the effective viscosity
model does not yield the centre-line velocity peak in the

mixing region.
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1. INTRODUCTION

Depending on the pipe Reynolds number, the con-
dition of the entering flow and its approach, the flow in
a cylindrical pipe.can be laminar, partially laminar and
turbulent, or turbulent along its entire length. In many
cases the condition of the entering flow will be steady and
uniform and will contain a small amount‘of residual turbu-
lence due to its approach. If the pipe Reynolds number is
high enough (say Re > 2 x_103), it is possible by introduc-
ing an artificial disturbance at the pipe entrance, to cause
the entering flow to form a turbulent boundary layer on
the pipe wall, which grows in the downstream direction by
molecular and turbulent mechanisms, until the boundary
layer fills the whole of the pipe to form a mixing region.
The flow then undergoes further adjustment until it becomes
fully developed; i.e. independent of the doﬁnstream'
distance. The length of pipe required for the flow to
become fully aeﬁeloped is cal}ed the inlet length and the
region of fluid surrounded by the developing boundary
layer, the entry core region. When such a flow has a
constant fluid density, the flow which develops in the
pipe is called a steady axi-symmetric incompressible

turbulent flow. This type of flow, which is the subject



of investigation in this thesis, is shown schematically
in Figure 1.

The importance of developing turbulent pipe
flow has long been recognised in téchnology and is funda-
mental to the design of closed jet working sections for
wind and water tunnels as well as for the design of
tubular heat exchangers and hydraulic pipe systems. Never-
theless, theimanner in which developing turbulent pipe flow
adjusts from a boundary layer structure to a fully developed
flow structure is not well understood. This stems from
the fact that to date, all theoretical and experimental
studies have been mainly confined to the flow in the pipe
close to the inlet or far downstream, with very little
consideration given to the’mixing region which occurs
when the bbundary layer fills the whole of the pipe.
Therefore, the purpose of the research to be'reported in
this thesis, will be to provide a better understanding of
developing turbulent pipe flow and the manner in which it
adjusts from a boundary layer type structure to a fully
developed flow structure.

A statement of the problem can be formulated
as follows:

"To produce a steady axi-symmetric incompressible

developing turbulent pipe flow in the laboratory and investi~



gate its mean, time-averaged and spectral characteristics.”
A brief outline of the current literature avail-

able on this problem is given in the next section.

1.1 Literature review

Published experimental data on the structure of
developing turbulent pipe flow are very few, e.g. Holdhusen
(1952), Barbin (1961), and Mizushina et al (1970). 1In
Barbin's work, perhaps the most complete, some preliminary
measurements of the mean velocity, turbulence intensities
and-Reynolds shear stress were reported for a single pipe
Reynolds number (Re = 3.88 x 10%) in which fully developed
flow was not attained. Difficulties encountered with the
hot-wire equipment employed prevented Barbin from measur-
ing the radial turbulence intensity field and component
energy spectra. The work of Mizushiha et al was confined
to some turbulence measurements in the pipe inlet region
and Holdhusen's, to measurement of head loss in fhe develop-
ing flow. Both‘Barbin's data and the present work dispute
the findings of Mizushina et al that velocity profiles are
similar in the developing flow. Current thoughts on the
structure of fully developed pipe flow can be found in the
papers of Laufer (1954) and Lawn (1971), who have made
extensive measurements of the mean and turbulence field

characteristics.



Although experimental data on déveloping turbu-
lent pipe flow are rather meager, several-semi—empirical
analyses have been reported simulating mean flow character-
istics in the initial part of the.pipe inlet region. The
first analysis was given by Latzko (1921), based on the
Von Karman integral equation, using boundary layer assump-
tions and phenomenological concepts. Since that time many
workers, e.g. Holdhusen (1952), Ross (1956), Fillipov (1958),
and Bowlus and Brighton (1968) and Bradley aﬁd Cockrell (1970)
have given improved analyses based on Latzko's original
method. Reyholds (1968) in a morphoiogy of prediction
methods, considers how both differenfial and integral boundary
layer techniques may be used to solve the problem of incom-
pressible boundary layers psing'either a "turbulence equation
of state" which relates the turbulence guantities to the
properties 6f the mean field or a turbulent constitutive
equation which relates the turbulence structure as reflected
in the fluctuation correlations, to the turbulence energy
and mean rate of strain. In avmore recent review of boundéry
layer methods applied to internal fluid flow problems, Bradiey
and Cockrell (1970) discuss the limitations of the various
methods and compare a solution of the Von Karman integral
equation using an auxiliary relation with the data of
Barbin (1961). Bradley and Cockrell admit their integral
technique becomes less satisfactory for flow predicfion

especially after the boundary layer fills the whole of the

pipe.



Other current prediction methods relying on
turbulent constitutive equations and rational closure
techniques have been reported in the literature by Daly
and Harlow (1970), Donaldson (19715, Donaldson (1972), Fox
and Lilly (1972) and others. Lumley and Khajeh-Nouri (1974)
have given a critical review of these methods and pointed
out a basic flaw. None of them present any method for
generating ﬁhe models used for third order terms. Lumley
and Khajeh-Nouri proceed to preéent two related techniqﬁes
which make it possible to generate in a stréightforward and
consistent manner, models of all third moments and of all
orders of Reynolds numbers. |

A basic conclusion which can be drawn from the
literature reviewed is that the full potential of boundary
layer and the more recent generation of prediction techniques
cannot be reaiised until extensive and reliable information
is obtained to serve as a basis for the formulation of
auxiliary relationships and as a test case for theoretical
solutions.

One approach not mentioned above which provides
possibilities of simulating at least the mean flow parameters
and shear stress fields in developing turbulenﬁ pipe flow,
without new experimental data or auxiliary relationships can
be found in the ideas of Gosman et al (1969). This‘approach

will be pursued in Chapter 3.



1.2 Scope of the investigation

The scope of this investigation can be Split into
two parts. Firstly, the structure of steady axi-symmetric
incompressible turbulent flow in the inlet length of a
smooth pipe will be investigated through measurement of its
mean, time-averaged and spectral characteristics for pipe-
Reynolds numbers of 1 x 10°, 2 x 10°, and 3 x 10°. These
measurements will be used to evaluate the terms appearing
in the time-averaged ehergy equation to determine energy
pudgets for the flow field.

Secondly, a phenomenological flow model will be
developed to simulate the mean flow, Reynolds shear stress

and wall shear stress characteristics for comparison with

the experimental measurements.



2. BASIC EQUATIONS

2.1 The time-averaged turbulence kinetic
energy equation |
Energy budgets for the developing turbulent
pipe flow can be obtained from experimental evaluation of
the terms in the time-averaged turbulence kinetic energy
equation. The time-averaged energy equation written in.
mixed cylindrical polar and cartesian tensor coordinates

has been derived by Huffman (1968) as

2 2 o C — ——
L (29 4 v + |T% 3V 4 3U) L g2 3y 2 8V
7 | 9x or T 3 r

(1) ' (Ii)

9xX o] °r o]
(I11)
ou. aui 1 2—; ‘ Bui ou. ou.
- Vg% Tx. T 3V°a +volsgT o3y XK. 0 (2.1)
1 | i 1
(IV) (V)

In the above equation an over bar represents time-averaging,
U, VvV, W(=0) and u, v, w, denote the mean and fluctuating
velocity components in the natural cylindrical polar

coordinate system x, r and &, p the fluctuating static



— eme— see—

pressure, ;; = u2 + v2 + w? twice the turbulent kinetic
energy per unit mass, uy the fluctuating velocity component
in the x, direction and p and v the fluid density and
viscosity. The equation states,thét the sum of the
convection of turbulence kinetic energy per unit mass (I),
the production of turbulence energy (II), the convective
diffusion by turbulence of the total turbulence energy (rIT),
the work done per unit mass and of time by the viscous

shear stresses of the turbulent motion (IV) and the rate of
energy dissipation per unit mass by the turbulent motion (V)
is zero. The sign convention adopted for (2.1) is such
that if a term is positive, more energy is transported out
of a volume element than is transported into a volume
element, resulting in a net loss of energy in the volume
element. Implicit in (2.1) are the conditiéns of flow
axi-symmetry and symmetry of the Reynolds stress tensor.
Given the quantities of U, ;;, ;Z, ;; and uv from experiment

and V computed from U via the continuity equation,

3U 1 3(xV) _
e (2.2)

terms (I), (II) and (IV) can be evaluated directly from
the data with the exception of the first term in (IV), which

can be neglected since according to Rotta (1962) viscous




diffusion is negligible except when the Reynolds number of

the turbulence is very low, such as in the viscous sub-layer.
The dissipation (term (V)) can be evaluated using

the dissipation rate e calculated from measured u? energy

spectra by the method proposed by Bradshaw (1967) as

]3/2 (2.3)

e = (¢u2(K)-5/3/o.53
In the above equation,which assumes the existence of local
isotropy and an inertia subrange,¢u;(K) is the axial wave-
number spectral density in the one-dimensional wave-number

space K. Equation (2.1) can be employed to determine the
diffusion (term III) as the closing entry in the energy

balance.

2.2 Estimation of the local wall shear stress
in developing turbulent pipe flow

A quantity of interest in developing turbulent
pipe flow is the wall shear stress 7 ,. In order to evaluate
Tgr two methods are considered.

In the first method, the wall shéar stress 1s estima-
ted from a cylindrical section ¢f the fluid in the pipé of
differential lengthvdx. The difference between the momentum
of the fluid entering and leaving the control volume must be
balancéd by the net pressure force acting across thé
cylinder and by the net force due to the wall shear: stress
acting around the cylinder circumference. Thus, the

momentum balance can be written as
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%% = :%g IR* - 7_2IR , o (2.4)

where M the momentum of fluid entering the cylinder is

given by

R
M = 2Ip J rUzdr . (205)
’ (o)
Combining (2.4) and (2.5), the local shear stress at the

wall can be evaluated from
Ra o d | Roo,an
T = 3 3% " IR A% IOU (dr<) (2.6)

by measurement of the wall static pressure gradient and

axial velocities.

i

The second method considered for evaluation of the

local wall shear stress is based on the law of the wall

ut = % my +c¢c (2.7)
where gt = 2 "y : (2.8)
Uy

yt = L8 (2.9)
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and u, is defined by the relation

S

u* = I/T ;p . (2.10)

The. empirical conétants x*and C, according to Hirst and

Coles (1968), should be given the values 0.4l and 5 respectively.
By substituting values of U and their correspond-

ing values of y into (2.7), u, can be evaluated by making

the residuals

R, =T -Flny -c (2.11)
negligibly small. If the resulting values of u, are plotted
against y, the logarithmic region will correspond to
constant values of the friction velocity for a particular
velocity profile. Hirst and Coles suggest that only part

of the axial velocity profile in the range lOO<y+<3OO be
used to obtain u, since close to the wall, high turbulence
intensities and wall interference effects may cause pressure
probe readings to be too high and farther from the wall,

the wake-like outer structure of the de&eloping turbulent

boundary may be felt.

* Tt should be noted that the "constant" k is not really a
constant. See Tennekes and Lumley (1972).
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3. AN APPROXIMATE NUMERICAL SOLUTION

FOR DEVELOPING TURBULENT PIPE FLOW

3.1 The mathematical model
The mathematical model is based on treating the
turbulent flow as a laminar one with non-uniform viscosity,

i.e. the fluid is considered to have an effective viscosity
Yy = p(v + vT) ©(3.1)

consisting of a laminar and turbulent contribution.
The equations of motion in cylindrical polar co-
ordinates using the idea of an effective viscosity have

been given by Gosman et al (1969) as

23U 3V - -8R 4 2_ 93U I3 30 , &V
p(U 5x T Var) T 9x 'R (ZY ax] T TIT [yr ( r T 3%
(3.2)
and

AV 3V -3p , 3 3U , V) ] L 13 3V]-2yV
p("f'ss? v 'a"f} = 3¢ tax [Y (ar * ’ax] ] tEwET T 7

(3.3)

By differentiating (3.2) with respect to r, and (3.1) with
respect to x, and subtracting one of the resulting equations

from the other, the vorticity transport equation may be
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written in the form

8_ (w9 2 1wl 3 g3 & (yml} _2_ g3 2 |1e
o B3- R - 5 M) - EM
- r3s =0 , (3.4)

where the term

s=:.2.[af_v_zg_ _2_5.[9_9_9_!] ._?_319.‘1]
ax2 9T drox (9x or 5p2 9X . (3.5)

The mean vorticity w is defined in terms of the stream

function as

- la_ (1_ 3y 5 (L sy
w = “('3'32 (B'E 35] * 5T (3? 3‘5;” ’ (3.6)

and the stream function y which satisfies (2.2) defined

through the relations

3y —
= pUr (3.7)_
and

Y _ . '

% pVr . (3.8)

Both the vorticity transport and stream function equations
have an elliptic nature and can be expressed in a general

form as
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3 oY ] R ] 2 (co) ] 3 (co)
a {555 (‘? 5?] ‘5‘1?("’ 532]] ‘m{brmar] "'a"r'[br a§¢]
+ rd =0 . o (3.9)

for which ¢ and the coefficients a, b, ¢, and d for the
vorticity and stream function equation are expressed in
Table 1. | | |

Simultaneous numerical solutions of the vorticity
transport and stream function equations are now possiblé
once suitable boundary and initial conditions and an

effective viscosity model have been defined.

3.2 Boundary and initial conditions

Boundary conditions for the flow under consider-
ation must be specified on'closed surfaces representing
the physical boundaries of the flow field. In formulating
these conditions the following assumptions were made:

(i) the entering flow has uniform velocity Uy s

(ii) the boundary condition for the fully developed
flow may be placed at a distance L = 100D on the basis that
Comte-Bellot (1965) and others haveléoncluded that fully
developed turbulent pipe flow is generally achieved within
100 pipe diameters from the inlet,

(iii) close to the wall, gradients in the axial
direction are much smaller than gradients in the radial
direction,

(iv) U =V = 0 on the pipe wall and V = 0 along

the pipe axis.
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With these assumptions, the boundary conditions for y and
w can be derived as follows:

At the pipe entrance, (x/D = 0, 0<y/R<1l) Equation (3.7)

can be integrated to give the stream function wb at the pipe

entrance as
wb = pUbr2/2 + IP1 ’ (3-10)

where Y1 1is a constant of integration. Since the flow
entering the pipe is assumed uniform, the vorticity boundary

condition at the pipe entrance is
= 0 . (3.11)

At the pipe centre-line, (0 < x/D < 100, y/R = 1) the

stream function from (3.105 becomes

Yo=Y . (3.12)

which simply expresses mass flux conservation. The corres-

ponding vorticity boundary condition

w, =0 . (3.13)

At the downstream boundary, (x/D > 100, 0 < y/R < 1) the

gradients of ¥ and w in the axial direction are zero since

the flow is fully developed, therefore the downstream
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boundary conditions can be written as

oY _

T 0 | ‘ (3.14)
and 9 Wy _

R (;) = 0 . (3.15)

At the pipe wall, (0 < x/D < 100, y/R = 0), the boundary

condition for the stream function from (3.10) becomes

= 2 .
by PULR /2 + Y . (3.16)
In order to obtain the vorticity boundary condition Wer the
vorticity w is expanded through a first order Taylor

expansion to give

Q2

w
o = w + y[§§}s . (3.17)

Very close to the wall the use of assumption (iii) reduces

(3.6) to

,g.? [.l_. w_] + w = O ’ (3.18)

providing a second relation between y and w. Eliminating

w between (3.17) and (3}18), the resulting equation can be
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integrated twice to yield

3 2 3
(b = ) + D[E%}s [5%— - %—} 5 pws(g%— - %—J = 0. (3.19)

Because the above equation can only be applied close to the
wall, it can be reduced to give the vorticity boundary

condition at the wall as

2(v_ = ¥)
o = [ s . - (iﬂ] % (3.20)
S

S pRy?

y=>o

The initial conditions used to start the numerical analysis
at interior points in the flow field were arbitrarily chosen

as

¥ = pU RZ/2 - (3.21)
and w=0 . (3.22)

3.3 Effective viscosity model

Many proposals have been ﬁade in the literature
for an effective'viscosity model based on the law of the
wall and the assumption of a uniform shear stress in the
near wall region. These models have been designed in accord
with experimental evidence from flows which do not have rapid
streamwise variation of the wall shear stress. For a develop-
ing pipe flow in which the wall shear stress varies rapidly

in the inlet regibn, a more general model is required. Of
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several effective viscosity models considered for modifica-
tion, the Van Driest (1956) model appeared to be the most
amenable for use with the numerical solution method described
in Section 3.4; primarily becausé it satisfied the following
criteria.

(i) It was smooth and continuous in the near
wall region.

(ii) It was devoid of velocity gradients inherent
in the model structure which would considerably complicate
the iterative finite difference technique and increase
computing time and costs.

The form of the modified.effective viscosity model used in

the present analysis can be given as

y = % ov |1+ /1 + 4K2y+2(l'— exp(-y"/£))2 ] ’

< %/D < 100 and 0 < y/R < 0.158 (3.23)

o
A

for

and Y= gy pr0.158 ,

for 0 < x/D < 100 and 0.158 < y/R <'1. (3.24)
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The modification being a truncation of Van Driest's
original model at y/R = 0.158* to give a constant effective
viscosity in the range 0.158 < y/R < 1, and allowing the
model to be dependent on y+ based on the local wall friction
velocity u,, to account for the rapid streamwise variation of
the wall shear stress.

The justification for this latter modification can
be found in Hirst and Coles (1968), where the local wali
shear stress was evaluated using the law of the wall in flows
with rapid streamwise variation in the wall shear stress. It
is apparent that the success of the model depends on the
choice of the damping constant & which controls the thickness
of the viscous sub-layer and the mixing length constant k which
controls the slope of the turbulent portion of the velocity
distribution. The constants £ and k were given the values of
0.41 and 26 respectively,'to give velocitylprofiles, character-
istic of fully developed flow in the range 5 x 10" < Re <
5 x 10° when used with the truncated model with 0.158 < y/R < 1.

Although the model might be expected to apply well
in the fully turbulent flow regions, the assumption of a
constant effective viscosity can hardly be expected to apply
in the intermittent outer region of the turbulent boundary
layer or in the entry core region. The intermittent nature
of the outer region of the boundaryvlayer would effect a
decrease in the time-averaged viscosity, which would drop
rapidly to a low effective viscosity characteristic of the

entry core region. This objection, however, is not critical

* y/R = 0.158 was chosen to be compatible with a node in
the finite difference grid described in Section 3.5.
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to the finél outcome of the numerical solutions since the
mean velocity distribution outside of the wall region is
rather insensitive to the assumed effective viscosity
distribution. The behaviour of the effective viscosity in
the intermittent and entry core regions will be discussed

further in Section 5.3.

3.4 Numerical analysis

The basis for the numerical solution of the
vorticity transport and stream function equations using
the general elliptic form has been described by Gosman et
al (1969) and will be summarised below.

Suppose the field of interest»is covered by a
non-linear grid network, ;he nodes in the grid corresponding
to the intersection of the grid lines. Figure 2 shows a
typical interior node P, and eight surrounding nodes; N,

s, E, W, NE, NW, SE and sw; Integration of the general
elliptic equation is performed over the broken line rectangle
surrounding the point P, the sides of this rectangle denoted
by the points n, s, e, w, ne, nw, se and sw lying midway
between the neighbouring‘grid lines. In the integration,
five assumptions are made.

(i) The average value of r? is the value at the
centre of the rectangle rpz.

(ii) The value ¢ is uniform within each réctangle

and assumes the prevailing value at the particular node
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which the rectangle encloses.

(iii) The average value of ¢ at the point e takes
on the ¢ value possessed by the fluid upstream of the e-face
of the rectangle.

(iv) The value of the stream function ¥ at the
corner of the small rectangle is equal to the average of
the values on the four neighbouring nodes.

(v) The term S is uniform over the area of inte-
gration and takes on the value at the point P.
With these assumptions, the integration of (3.9) can pro-
ceed to give the géneral finite difference formula for each
variable at every interior node in the space as

{A! + c_(b_+b_ )B'} ¢ - d
_J=N,S,E,W[ J o T3Tg TRTdT g P (3.25)

q)P— ) ] y 1
{AJ + CP(bJ+bP)BJ}

J=N,S,E,W

where the coefficients b, ¢, and d assume the appropriate
values given in Table 1, and the A&’s and B&’s are given in
Appendix A.

The boundary conditions are easily discretised

since the ¢ values at the boundary nodes have the form
¢ = £ ’ ' (3.26)

where f is a known constant or function. The algebraic

sets of finite difference equations were solved simultan-
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eously by a Gauss Seidel iterative method in which new
values are used as soon as they are generated. Each cycle
in the iterative procedure consists of two sub-cycles, one
for each of the vorticity and streém function equations
respectively. During the first sub-cycle, the field is
scanned row by row and the independent variable w, updated
in the process. The second sub—cyclé is then performed

to obtain a new value of the dependént variable ¢, When
the sub-cycles have been completed, a new iterative cycle
is commenced; this procedure being repeated until converged
solutions in » and ¥ are obtained. The iterative procedure
was considered converged when the maximum fractional

th

change in ¢ for the M iteration did not exceed a speci-

fied value A, i.e.

1e@® o o M=1)y /o 001 < 5, for a < 0.001 . (3.27)

MAX

Significant gains in convergence and stability
were achieved by under-relaxing the vorticity and stream
function equations with a relaxation factor ¢ according to

the relation

(M) ¢(M—l)

¢ = T¢ + (1 - 1t) , for ¢ = 0.75 . (3.28)
3.5 Finite difference grid

The first step is to consider a finite number of

points located in the flow field for which the finite
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difference forms of (3.2) and (3;3) are assumed to be
valid. The array of points is referred to as a "grid",
and the points themselves are termed "nodes" of the grid.
Where the gradients of the variabies are steep, the nodes
should be closer together, and where the gradients are
~shallow, the nodes may be further apart. Also, the grid
is arranged so that the outermost nodal points correspond
to the physical boundaries of the flow field.

A satisfactory finite difference grid format
wés achieved by having twenty nodal grid points at x/D = 0,
0.25, 0.5, 0.75, 1.5, 2, 3, 4, 5, 10, 20, 25, 30, 35, 40,
50, 60, 70, and 100, some of which were chosen to conform
with measuring stations on the experimental rig described
in Section 4.1. (Other agial grid formats were used when
required.) In the radial direction, the pipe radius was
divided into twenty equi-spaced distances. The first
eighteen were retained and a further twelve grid nodes
fitted in the two remaining spaces using a geometric pro-
gression of ratio 1l:1.4, the nodes getting closer together
as the wall is approached. This radial grid format was
found to be sufficient for the pipe Reynolds number range
considered and always enabled computation of points within
the viscous sub-layer defined by 0 < y+ < 7 without the

use of special wall functions.
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3.6 Errors

In order to check for round—off errors, the
numerical analyses were run first in single precision and
then in double precision. Round-off errors were found to
be negligible, differences occuring only in the third
significant digit.

Truncation errors which arise through replacement
of the actual equations with the finite difference equations,
were checked by refining the grid. Again no appréciable
differences were found in the'solutions, differenées occuring
only in the fourth significant digit.

In the early stages of this work, ﬁumerical solu-
tions with and without the term S were obtained for Re =
5 x 10°. Comparison of the results showed that»setting the
S term to zero throughout fhe flow field produced errors of
less than l.Z%Aand 0.2% in the vorticity and stream functions,
respectively. (These percentage indications for the vorticity
and stream function equations being representative of the
regions which, according to bouhdary layer theory, would be
identified with the boundary layer.) The reason for the
slight effect of the term S on the numerical solution is due
to the fact that streamwise derivatives of y are involved and
that velocity gradients such as 9V/9x and 3V/9r are small.
Hence; to conserve computer time and improve convergence and

stability, the térm S was neglected in further calculations.
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4. EXPERIMENTAL APPARATUS,

MEASUREMENTS AND ERRORS

4.1 Experimental apparatus

The experiments for evaluation of the flow
characteristics were conducted in an open circuit wind
tunnel shown schematically in Figure 3. The basic air
moving device was a centrifugal blower, with the fan set
to give average velocities in the test'sectién’in
the range 10 - 60 m/sec. Air was passed through screens
and flow straighteners into a specially designed contraction
cone of contraction ratio 89:1 to provide a flat velocity
profile at the inlet of the working section. Since the
contraction was found to give a laminar flow at the begin-
ning of the test section, turbulent flow was promoted at
the pipe inlet by a 9 cm. length of No. 16 sandpaper,
inset around the circumference of the pipe at the beginning
of the working section. The working section consisted of
gun bored sections of steel pipe internéily honed to a
mirror finish. The sections were 10.16 cms. in diameter
with a total length of 75 pipe diameters. Air from the
test section was allowed to exit via a 4° half angle
diffuser, 71.96 cms. in length to reduce any upstream
influence due to exit disturbances.

A Betz micromanometer was used in all preésure

probe measurements and the DISA hot-wire equipment used



26

throughout consisted of two identical channels, one for
each wire of a 55A39 x-probe. A single channel was used
with a single-wire 55F14 boundary layer probe. The two
channels consisted of DISA 55D01 éonstant temperature ane-
mometers, 55D10 lineariéers, 55D25 auxiliary units and
55A06 correlators. D.C. voltage components were measured
using a 55D30 digital voltmeter and A.C. signals with a
55D35 root mean square (r.m.s.) voltmeter. Axial radial

and circumferential frequency spectra were measured using

DISA equipment in conjunction with a Hewlett Packard 3594A
wave-analyser utilising addition, subtraction and mqlti-
plying circuits developed in the turbulence laboratory at

the University of Manitoba. Cospectrum and phase-shift
measurements were made using the DISA equipment in conjunction
with two 55D26 conditioniﬁg and filtering circuits and a

phase—shift circuit capable of giving a phase-shift of 90°

1°. All instantaneous hot-wire signals were monitored on a

Tektronix type 502 dual beam oscilloscope.

4.2 Measurements

| Mean velocity traverses wefe made with total
probe and wall static taps and these were used to calibrate
the hot-wire probes in the fully developed flow where con-
ditions are reasonably well known. The total head probe
consisted of a round tube of external and internal diameters
of 1 mm. and 0.76 mm., with a flattened tip with internal
dimensions of 2 mm. wide and 0.15 mm. deep. Static pressures

from wall tappings at 20 locations on the test section,
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(four tappings equispaced circumferentially at each location)
were used to determine the friction velocity u, . in the

fully developed flow.

Mean velocity data was obtained from radial
traverses at several locations from the inlet to fully
developed flow condition using a total head probe and
wall static taps, single-wire boundary layer and x?probe.
A'single-wire boundary layer probe was used to measure
the‘aXial r.m.s. velocity'ﬁ. A chéck on the # measurements
was made with the x-wire probe, which was also used to
measure the radial‘and circumferential root mean squarev
velocities ¥ and W and the velocity correlation @v. Measure-
ment of the axial, radial and circumferential spectra was
accomplished by manualiy scanning through the frequency
spectrum with a fixed band-width of 10Hz using the wave-
analyser, with addition, subtraction and muitiﬁlYing_circuits.
Cospectrum and phase-shift measurements were made using the
method of Bendat and Piersol (1966). The dudi beam oscillo-
scope was used to give an approximate visualisation of the
instantaneous‘spatiél structure of the turbulence and to
determine the outer limit beyond which no intermittent.bursts

of the ‘boundary layer could be detected.

4.3 Errors

Error estimates réflecting the trend accuracy,
rather than the absolute accuracy of the measurements were
evaluated using the technique of Kline and McClintock (1953).

The trend errors were considered to be comprised of two dis-
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tinct types. Firstly, calibration errors 6f the instrumenta-
tion due to changgs in experimental conditions (e.g. tempera-
ture and wire resistance changes), and secondly, the sum of
errors induced by the design of the measuring instruments
‘through which the signals are passed.

Employing the standard operational instrument
accuracies quoted in the manufacturer's catalogues and
the maximum observed variations in environmental and equip-
ment conditions, the following trend percentage error
estimates (rounded off upwards to the nearest percent)
were evaluated for the measured data. ‘

The maximum trend error in the mean axial velocity
and bulk velocity (Ub) using pressure probes was estimated
at 1% and with hot-wire equipment, *2%. Estimated maxi-
mum trend errors in the friction velocity, in the r.m.s.
velocities and Reynolds shear stress were +5%, *3%, and
5% respectively.

Apart from corrections to ¥, W and uv for yvaw
sensitivity of the x-probe, no corrections were made to the

measured data.
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5. RESULTS AND DISCUSSION

Apart from a slight Reynolds number effect, no
major differences in the flow characteristics could be
discerned for the three Reynolds numbers investigated.
Therefore, discussion will be limited mainly to results

5
obtained at Re = 3 x 10 .

5.1 Preliminary results

In section 4.1 it was stated that the contraction
cone was found to cause a laminar boundary layei to develop
at the pipe inlet. \Some experiments were performed utiliz-
ing the change in velocity distribution in the transition
region to estimate the transition point of the lamihar flow
té turbulent flow. This'was accomplished by moving a total
head boundary layer probe parallel to the pipe wall at a
distance corresponding to a maximum differencé beﬁween the
velocities in the laminar and turbulent flow regimes. On
being moved across the transition point the total heéd probe
showed an increase in the total pressure Q. The results of
these experiments are shown in Figure 4, where Qe is the
total pressure of the entering flow at the pipe centre-line.
The transition points (estimated as the mid-point between
the maximum and minimum values of Q/Qe) are at approximately
%x/D = 3, 4.5 and 8 for Re = 3 x 10%, 2 x 10° and 1 x 10°.
Figure 5 shows the transition points from Figure 4 and the

results of Mizushina et al (1970) plotted as a function
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of pipe Reynolds number. As the pipe Reynolds number
increases, the transition point moves towards the pipe
entrance.

In order to have a commdn origin for the develop-
ing turbulent boundary at all pipe Reynolds numbers considered,
the turbulence promoting device described in Section 4.1 was
used. From hot-wire measurements and boundary layer analysis
the virtual origin of the turbulent boundary layér was
estimated to be approximately 3 cms. upstream of the down-
stream end of the turbulence promoter. For convenience, the
down-stream end of the turbulence promoter was used as a

datum for all subsequent axial measurements.

5.2 Oscillograph traces

By careful observation of the instantaneous
hot-wire signals on the oscilloscope, it was possible to
determine the distance from the wall beyond which no turbulent
bursts could be detected. The approximate outer limit of
the boundary layer intermittency shown in Figure 6, indicates
the entry core region to shrink in cross-sectional area as
the turbulent boundary layer develops, with interaction of
the perimeter of the boundary layer surface beginning to
occur at x/D = 25 on the pipe centre-line. By x/D = 30 the
entry core region entirely disappears as the boundary layer
fills the whole of the pipe. Oscillograph traces along the

pipe centre-line between x/D = 25 and x/D = 30 showed the
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flow to consist of slow alternations of turbulent and non-
turbulent fluid, suggesting that small pockets of fluid

from the core entry ;egion become trapped in the turbulent
boundary layerlat x/D = 25 and eventually become entrained

as the boundary layer fills the whole of the pipe.

5.3 Mean charaéteristicé

Figure 7 shows the axial velocity profiles obtained
from the total head probe and static pressure taps for Re =
3 x 105, normalised by the bulk velocity in the test

U, (= 42 m/sec.). At the pipe entrance (x/D = 0) the enter-

b
ing flow velocity profile is uniform. As the flow develops,
the profiles show the fluid near the wall to be retarded
while the fluid in the entry core region is accelerated.

In the entry core region the velocity profiles remain uniform,
but as the boundary layer fills the whole of the pipe at

x/D = 30, the profiles become moderately peaked, the peak
gradually subsiding to give a constant value at

" x/D = 70 as the velocity profiles become characteristic of

a fully developed flbw. This peaking first postulated by -
Bradley and Cockrell (1970) from Barbin's data and the
velocity defect law, and labelled "velocity overshoot", is
shown more clearly from consideration of the centre-line
velocity given in the Figure 8, which shows the centre-line

velocity in the mixing region to be higher than in the fully

developed flow. Figure 9 shows comparisons of the axial
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velocity profiles from experiment with those obtained from
from the numerical analysis. Although agreement is seen to
be quite reasonable over the whole of the developing flow,
the numerical analysis does not ekhibit the "overshoot”
.phenomenon and predicts the centre-line velocity to proceed
asymptotically towards a fully developed flow. This point
will be discussed further in Section 5.4. The ratio of the
bulk to centre-line velocity at x/D = 70 which gives an
indication of the degree . of developmént of the flow, were
0.847,‘0.84,'and 0.826-for Reynolds numbers of 3 x 1073,

2 x 105, and 1 x 10°. These are in reasonable agreement
with Lawn (1971) who reported values of 0.806 to 0.833 for
35,000 < Re < 250,000 for an x/D = 59. Figure 10 compares
the axial velocity data of Barbin (1961) with the results
from the present numerical analysis and the integral method
of Bradley and Cockrell (1970). It is seen that the numeri-
cal analysis gives better agreement with Barbin's data than
the integral method, especially after x/D = 16.5, the approx-

imate limit of validity for integral methods.

Mean vorticity profiles calculated from the axial

and corresponding radial velocities using the relation

g

U
~ 5T (5.1)

are shown in Figure 11, compared with vorticity profiles
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obtained from the numerical analysis. For convenience, the
vorticity is normalised by the mean vorticity at the wall in
fully developed flow Weg obtained from the numerical analysis.
The y+ values for the data were evaluated from the axial
velocity profiles by the momentum method described in Section
2.2 and employing Equations (2.9) and (2,10). As a conse-
quence of the effective viscosity model, the.numerically
obtained vorticity profiles display a high degree of
similarity in the viscous sub-layer and buffer regions,
defined by 0 < y+ < 7 and 7 < y+ < 100 and over a greater
part of the logarithmic region defined approximately by

100 < y+ < 1000. In the remaining y+ region, the vorticity
gradually propagates outward from the pipe wall and increases
in the downstream direction as the flow develops. The
experimental data also shows this latter trend, but good
agreement near the pipe centre-line is prevented due to
difficulty in computing the vorticity from unsmoothed axial
and radial velocity data.

Figure 12 shows a comparison of the local wall
shear stress obtained from the momentum and law of the wall
methods described in Section 2.2, the numerical analysis
and the integral analysis of Bradley and Cockrell (1970). 1In
the inlet range 2 < x/D < 7, the numerical and integral
analyses give very good agréement with the local wall shear
stress obtained from the momentum method whereas values
obtained from the law of the wall method appear lower. The

law of the wall method cannot be expected to apply in the



34

initial inlet region because it is only strictly valid

for flows with a constant or small streamwise variation in
wall shear stress; e.g. fully developed pipe flow. After
x/D = 7, the momentum and law of the wall methods and numeri-
cal analysis show the local wall shear stress to decrease
asymptotically towards a fully developed value between 40 <
x/D. < 50, whereas the integral method shows the local wall
shear stress to become fully developed at x/D = 25. Bradley
and Cockrell (1970) admit that their integral technique
becomes less satisfactory for flow prediction especially

after the entry core region disappears.

5.4 Time-averaged characteristics

Figures 13, 14 and 15 show the r.m.s. velocities
i, ¥ and ¥ normalised by the friction velocity Usgg (=1.955
m/sec.) for the fully developed flow. At any point in the
turbulent fluid, W/u, e > W/uy e > ¥/Usges showing the
turbulence to be‘anisOtropic,;thefdegree of anisotropy
decreasing from the wall to the pipe centre-line.

Profiles of the turbulence shear stress puv non-
dimensionalised by puz*sf are shown in Figure 16. It can
be seen that the shear stresses are slow to develop near
the pipe centre-line at the start of the mixing region. It
is this slow adjustment of the shear stresses which causes
the mean axial velocity profiles to become moderately peaked
near the pipe centre-line when the boundary layer fills‘the |

whole of the pipe, the peak gradually flattening to give a
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shallow maximum as the shear stress adjusts towards a linear
profile characteristic of fully developed flow. A similar
phenomenon has been noted by Comte-Bellot (1965) and others
in the region of interaction between boundary layers in
steady two-dimensional dpct flow.

The error estimates in Section 4 for u, ¥, W
and uv appear higher thaq reflected by the experimental
data, since errors due to calibration drifts were always
lower than the observed maximum variations in environment
and instrument conditions. It should be noted that the
accuracy of the trends of the data will be much better
than the. accuracy of the absolute values.

As mentioned in Section 3.3, the success of the
numerical analysis hinges to a great extent on the effective
viscosity model because if determines how the theoretical
shear stress field develops. Since the laminar shear stress
contribution to the total shear stress is small everywhere
except near the pipe wall, the Reynolds shear stress data
obtained from experiment can be compared with the total
shear stress obtained from the analysis. This comparison
given in Figure 17 for Re = 3 x 10°, shows quite reasonable
agreement. It can be seen that the effect of the truncation
of the effective viscosity model at y/R = 0.158 gives a
slight discontinuity in the theoretical shear stress profiles
as the fully developed case is approached, resulting in
values approximately 5% higher at y/R = 0.158 than those

obtained from experiment. At station x/D = 30, the theoretical
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shear stress profile is developing more rapidly than the
profile obtained from experiment. This would account, to
some extent, for the numerical analysis not exhibiting the
"overshoot" phenomenon found in the experimental velocity
profiles, because once the mixing region is formed, the flow

would be decelerated more quickly than in the real case.

A comparison of the normalised eddy viscosity
obtained from the analysis and from experiment through the

relation

Vp _ uv , U
vV oy (5.2)
is shown in Figure 18 for Re = 3 x 105. The values computed
from the experimental data agree reasonably well with the
analysis over most of the turbulent flow region, but rapidly
drop'aWay from the assumed constant value in ‘the intermittent
outer region of the turbulent boundary layer and assumes
very small values in the entry core region and in the mixing
region. The disagreement of the assumed and actual eddy viscos-
ity distribution in the turbulent boundary layer and entry core
region is not critical to the overall quality of the numerical
analysis in these regions because of the relative insensiti-
vity of'the mean velocity distribution to the aséumed eddy
viscosity distribution. The relative insensitivity of the
mean velocity distribution was investigated by changing the
assumed constant value to correspond more closely with the
experimentally obtained values. Computed errors were less

than 1%.
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5.5 Spectral characteristics

Axial, radial, circumferential and cospectrum
wave-number spectral densities were obtained from measured
frequency épectral densities using TaYlOr's hypdthesis.
The resulting wave-number spectrum densities were non-
dimensionalised and scaled using the Kolmogorov length and

velocity microscales

n = (v3/e)% (5.3)
and v = (ve)% ’ ' (5.4)
giving Euiuj(x) = ¢uiuj(K)/u2n (5;5)
and : x = Kn . ' (5.6)

The cross spectral densities Euv(x) and phase-
shift measurements 0 (x) were obtained from coincident
(Cuv(x)) and‘quadrature (qu(x)) spectral density functions

using the relations

E,v(X) = /Euvz(x) + quz(x) ' (5-7)
and 6(x) = tan f’[QuV(x)/Cuv(x)] ] (5.8)

respectively.
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The main spectral characteristics of developing
turbulent pipe are shown by a few selected spectra in
Figures 19, 20, 21, 22,and 23. It is apparent from Figure 19
‘that the axial energy spectra exhibit a x—-5/3 dependence
for about one decade of x indicating that an inertial sub-
range can exist in the presence of shear, and justifying to
some extent the use of Bradshaw's (1967) method for obtain-
ing €.

Corresponding radial and circumferential spectral
profiles shown in Figures 20 and 21, are very similar thraugh—
out the developing flow, but their respective energy levels

in the low wave-number range are much -less than the corres-

ponding axial spectral energy levels. The axial and radial

spectra did not obey the isotropic relation

3Eu2(x)

55 (5.9)

E2(x) = % Eﬁz(x) - X
except in the high wave-number ranges, indicating the small
scale turbulent structure to be isotropic in character and
the large scale structure associated with the low wave-
number ranges to be anisotropic. Close to the wall the
figures show that the component spectra are almost invariant

throughout the whole wave-number range as the flow develops.

Flgure 19 shows a comparison of the axial spectra
measured on the pipe centre—line in the mixing and fully

developed regions, with the axial spectrum displaying the
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maximum spectral energy in the low wave-number range measured
in the developing turbulent boundary layer at x/D = 10.
Where the boundary layer fills the whole of the pipe at the
beginning of the mixing region, the spectral energy in the
low wave-number range 1s higher than in the boundary layer
and fully developed regions. The same trend is exhibited

in the corresponding radial and circumferential spectra
shown in Figures 20 and 21, but nbt in the cospectra in
Figure 22. This suggests that the increase in spectral
energy is due mailnly to convective diffusion of turbulent
energy in the low wave-number range. Comparison of the high
wave-number range of the cospectral densities in Figure 22
-with the high wave-number range of the other component spectra
in Figures 19, 20 and 21 reveals that fthere is a small
reduction in level relative to the component spectra. This
points towards isofropy in the extreme wave-~number ranges
even though U > W > ¥. For the sake of completeness,
measurements of the phase-shift 8(x) are shown in Figure 23.
In cospectral densities measured near the wall the phase-
shifts have the same trends being above 180° for the large
scale turbulence structure decreasing through the inertial
subrange to be below 180° for the small scale structure.

The reverse is true for cospectral densifies measured near
the edge of the boundary layer and in the mixing and fully

developed regions.
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5.6 Energy balances

Figures 24, 25 and 26 show the terms in the energy
equation non-dimensionalised by uisf/R at x/D = 10, 30 and
70, corresponding to the developing boundary layer regibn,
mixing region and fully developed region. Perhaps the most
striking feature of the energy balances is the manner in
which each individual term adjusts as the flow devélops from
a boundary layer structure to a fully developed structure.
It can be seen that the loss of turbulent energy by convec-
tion (I) diminishes in the downstream direction and disappears
completely once the flow becomes uni-directional. This term
is primarily responsible for the manner in which'the normal
stresses develop in'the downstream direction and generally
reflects the dependence of the turbulent flow on its upstream
history.

Throughout the developing flow close to the wall,
most of the gain in turbulence energy due to production (II)
is dissipated there. In the outer part of the turbulent
boundary layer and near the pipe centre-line in the mixing
and fully developed regions, the production of turbulence
energy is negligible. This gives substance to the idea
that very little of the increase in spectral energy levels
near the pipe centre-line in the mixing region can be due
to production, but mainly due to the gain by convective
diffusion of turbulence energy (III). It should be noted
that in the turbulent flow the production term (II) is

essentially uvdU/dr, the remaining terms uvev/ox, u2dU/dx
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and Gfav/ar are of second order or more. The individual
terms are shown in Tables 2, 3 and 4, along with the velocity
gradients 3U/3x, 3U/3r, 3V/3x, oV/s3r for x/D = 10, 30 and 70.
In the entry core region there is some production of turbﬁlence
energy due to the residual turbulence in the accelerating
flow through EEBU/EX, but this is of second order magnitude
compared with the turbulence energy production in the turbulent
part of the flow near the wall. In the fully developed flow
near the pipe centre-line all of the increase in turbulence
energy due to convective diffusion is dissipated. Inspection
of term (IV) shows that the work done by the viscous shear
stresses, on the turbulence motion, influences the flow only
near the wall and disappears as the flow becomes developed.
Finally, the dissipation term (V) shows that dissi-
pation of turbulence energ? increases as the flow develops,

and that most of the dissipation occurs close to the pipe wall.
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6. CONCLUDING REMARKS

An experimental and theoretical study of the
mean and turbulent flow properties of developing turbulent
pipe flow at a Reynolds number of 3 x 105 has been described.
Data presented have included measurements of oscillograph
traces, mean velocity, turbulence intensities, Reynolds
stress, and one-dimensional energy spectra. The data was
used to evaluate the terms in the time-averaged energy
equation with the convective diffusion of turbulence energy
by kinetic and pressure effects determined as the closing
entry in the energy balance.

‘The oscillograph traces indicated the entry core
region to shrink in cross-sectional area as the turbulent
boundary layer develops, with interaction of the perimeter
of the boundary layer surface beginning to occur at x/D = 25,
the entry core region entirely disappearing by x/D = 30 as
the boundary layer fills the whole of the pipe.

An interesting feature'of the flow is‘the peaking
of the pipe centre-line velocity caused by the slow adjust-
ment of the shear stresses in the mixing region. Considera-
tion of the mean velocity, turbulence intensities and shear
stress measurements show that developing turbulent pipe flow
requires an entry length of some 60 - 70 pipe diameters
before it assumes the characteristics of a fully developed

flow. Within this entry length the turbulence is inhomogen-
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eous and anisotropic, the degree of anisotropy decreasing
from the pipe wall towards the pipe axis.

The spectrum measurements show that corresponding
radial and circumferential spectra are very similar through-
out the developing flow but that their energy ievels are
less than in the corresponding axial spectra which exhibit
x—5/3 dependence for about one decade of the non-dimensional
wave-number y. The spectra indicate the small scale turbu-
lence structure to be isotropic even though ¢ > & > ¥, and
the large scale structure associated with the low wave-
number range to be anisotropic. Perhaps the most interesting
conclusion to be drawn from the spectra is that they show
that the dominant energy process occurring in the mixing
region is due to convective diffusion of turbulence energy and
that this energy is associated with the low wave-number
range.

Confirmation that the convective diffusion of
turbulence energy is the dominant energy process in the
mixing region is also given by the energy balances derived
from the measure& data. Term II in the energy'equation indi-
cates that most of the gain in turbulence energy by production
is due primarily to the UvaU/dr term, other production terms
being at most of second order.

From the numerical analysis it has been shown that
a reasonable simulation of the mean flow and Reynolds stress

characteristics can be obtained. The failure of the analysis
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to predict the velocity "overshoot" phenomenon can be
attributed in some measure to the crudity of the effective

viscosity model and the exclusion of the source term S.
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7. RECOMMENDATIONS

The primary objective of this research was to
obtain quantitative information on the manner in which
developing turbulent pipe flow adjusts from a boundary
layer structure to a fully developed flow structure. As
pointed out in Section 1.2 the full potential of boundary
layer prediction methods (or indeed any of the current
generation of prediction methods) cannot be realised until
they have been tested against extensive and reliable
information. It is therefore strongly recommended that
the present data serve as a basis for the formulation of
auxiliary equations and as a test case for comparison of
integral methods and also, serve as a basis for comparison
of the turbulence models of Daly (1970), Donaldson (1971)

and (1972), Fox and Lilly (1972) and others.




andr

where

and
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APPENDIX A

COEFFICIENTS IN EQUATION (3.25)

A& = AJ/VP (A.l)
B& = BJ/(bJ bP)VP ’ (2.2)
Ip
Vp = =7 (xE - xW) . (rN - rs) ’ (A.3)
ap
— {(hgg + Vg = yg -~ ) + |vgg * Vg = Yy~ Uyl) v
aP )
— {0y * ¥y = Yew ~ ¥s) t [ t ¥y T Vew T vgld ,
(A.4)
5 Ty * Vg = Yy = V) Y Ve T Ve T Y T byl ,
aP_
— gy + ¥y ~ Vgg — ¥g) + Ve * Vg = Vg ~ Vgl}
b, +Db r., - r
o P N S
B, = y * (r, + 1)
B 8 xE - xP E P !
b..+ b r,. —
W P N s
B — . c. (r + r )
W g Xp - Xy W p’ !
(A.5)
b. + b - x
N P E W
B_. = ¢ * (r., + r.)
N 8 rN - rP N P ’
b. +b X - X
_ Vs P." E W .
Bg = 3 r_ - T (rS + rP) .
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FUNCTION

¢ a b d
EQUATION
- STREAM
FUNCTION v 0 1 Ty

pr? o

VORTICITY
TRANSPORT %< r? r? r2gs

TABLE 1.

Functions ¢4, a, b, c and d.
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uvou/ar

~{EV?V/8X

r/R u2du/ox v2ov/or
0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0.500E-01 0.279E-02 -0.134E-02 0.000E 00 0.000E 00
0.100E 0O 0.279E-02 -0.890E-03 0.000E 00 0.000E 00
0.150E 00 0.272E-02 -0.890E-03 0.000E 00 0.000E 00
0.200E 00 0.272E-02 -0.890E-03 0.000E 00 0.000E 00
0.250E 00 0.272E-02 -0.890E-03 0.000E 00 0.000E 00
0.300E 0O 0.369E-02 -0.856E-03 0.000E 00 0.000E 00
0.350E 00 0.542E-02 ~-0.109E~-02 0.000E 00 0.591E-06
0.400E 00 0.678E-02 ~-0.887E~-03 -0.204E~-01 0.300E-05
0.450E 00 0.573E-02 -0.307E~-04 - =0.107E 00 0.105E-04.
0.500E- 00 0.457E-02 0.167E-02 -0.370E 00 0.263E-04
0.550E 00 -0.778E-02 0.371E-02 -0.102E 01 0.520E-04
0.600E 00 -0.623E-03 0.477E-02 -0.186E 01 0.733E-04
0.650E 00 -0.140E-01 0.697E-02 -0.297E 01 0.828E-04
0.700E 00 -0.262E-01 0.110E-01 -0.415E 01 0.486E-04
0.750E 00 -0.551E-01 0.154E-01 -0.686E 01 -0.560E-04
0.800E 00 -0.652E-01 0.154E-01 -0.100E 02 -0.274E-03
0.850E 00 -0.262E-01 0.862E-02 -0.129E 02 -0.561E-03
0.900E 00 . 0.104E-01 -0.139E-02 -0.174E 02 -0.716E-03
0.950E 00 0.339E-01 -0.456E-02 -0.294E 02 ~-0.740E-03
0.970E 00 -0.595E-02 0.468E-02 -0.257E 03 ~-0.740E-03
0.100E 01 0.000E 00 0.000E 0O 0.000E 00 0.000E 0O
Turbulence energy production and velocity gradient terms x/D 10.

TABLE 2.

(Note: The production terms have been non-dimensionalised by uisf/R)
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r/R du/dx dU/9r dV/ox dV/9r
0.000E 00 0.257E 01 0.149E-01 0.000E 00 -0.321E 01
0.500E-01 0.257E 01 0.000E 00 -0.764E-03 -0.193E 01
0.100E 00 0.257E 01 -0.745E-02 -0.903E-03 -0.129E 01
0.150E 00 0.2578 01 -0.745E-02 -0.879E-03 -0.129E 01
0.200E 00 0.257E 01 0.000E 00 -0.693-03 -0.129E 01
0.250E 00 0.257E 01 0.000E 00 -0.100E-03 -0.129E 01
0.300E 00 0.257E 01 0.000E 00 0.979E-03 -0.124E 01
0.350E 00 0.238E 01 0.000E 00 0.288E-02 -0.105E 01
0.400E 00 0.198E 01 -0.401E 02 0.589E-02 -0.609E 00
0.450E 00 0.110E 01 -0.100E 03 0.984E-02 -0.155E-01
0.500E 00 0.617E 00 -0.200E 03 0.142E-01 0.678E 00
0.550E 00 -0.746E 00 -0.341E 03 0.173E-01 0.116E 01
0.600E 00 -0.489E-01 -0.441E 03 0.174E-01 0.117E 01
0.650E 00 -0.819E 00 -0.481E 03 0.134E-01 0.134E 01
0.700E 00 -0.,120E 01 -0.501E 03 " 0.587E~02 0.180E 01
0.750E 00 -0.206E 01 -0.642E 03 -0.524E-02 0.217E 01
0.800E 00 -0.203E 01 -0.742E 03 -0.203E-01 0.189E 01
0.850E 00 -0.697E 00 -0.762E 03 -0.333E-01 0.855E 00
0.900E 00 0.255E 00 -0.922E 03 -0.378E-01 -0.125E 00
0.950E 00 0.733E 00 -0.130E 04 -0.327E-01 -0.341E 00
0.970E 00 -0.110E 00 -0.956E 04 -0.275E-01 0.293E 00
0.100E 01 0.000E 00 -0.340E 05 0.000E 0O 0.202E 01

TABLE 2. (continued)
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r/R u?3u/9x v23V/dr uvou/dr uvav/sx
0.000E 00 0.000E 00 0.000E 0O 0.000E 00 0.000E 00
0.500E-01 -0.201E-02 0.121E-02 -0.689E-01 0.267E-05
0.100E 0O -0.496E-02 0.175E-02 -0.157E 00 0.837E-05
0.150E 00 -0.571E~-02 0.272E-02 ~0.460E 00 0.171E-04
0.200E 00 ~-0.137E-01 0.469E-02 -0.703E 00 0.215E-04
0.250E 00 -0.218E-01 0.699E-02 -0.950E 00 0.305E-04
0.300E 00 -0.285E-01 0.680E-02 -0.138E 01 0.338E~04
0.350E 00 -0.182E-01 0.467E~-02 -0.187E 01 0.323E-04
0.400E 00 -0.260E-01 0.394E-02 -0.254E 01 0.252E-04
0.450E 00 -0.248E-01 0.394E-02 . -0.291E 01 0.790E-05
0.500E 00 -0.289E-01 0.371E-02 -0.315E 01 -0.125E-04
0.550E 00 -0.293E-01 0.346E-02 -0.382E 01 -0.354E-04
0.600E 00 -0.299E-01 0.284E-02 -0.491E 01 -0.555E-04
0.650E 00 -0.293E-01 0.245E-02 -0.612E 01 -0.696E-04
0.700E 00 -0.319E-01 0.148E~-02 -0.689E 01 -0.730E-04
0.750E 00 -0.191E-01 0.119E-03 -0.931E 01 ~0.603E-04
0.800E 00 -0.265E-01 -0.220E-03 -0.120E 02 -0.461E-04
0.850E 00 -0.224E~01 ~0.320E-02 -0.145E 02 -0.363E-04
0.900E 00 0.226E-01 -0.135E~-01 ~0.345E 02 -0.191E-04
0.950E 00 0.858E-01 -0.316E~-01 -0.219E 02 -0.166E-03
0.970E 00 0.140E 00 ~0.878E-~01 -0.203E 03 -0.250E-03
0.100E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 0O

TABLE Turbulence energy production and velocity gradient terms x/D = 30.

3.

(Note: The production terms have been non-dimensionalised by uisf/R)
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r/R 9U/3x 9U/or oV/0ox aV/3x
0.000E 00 -0.149E 00 -0.217E 03 0.000E 00 0.149E 00
0.500E-01 -0.248E 00 -0.986E 02 0.383E-02 0.248E 00
0.100E 00 ~0.546E 00 -0.986E 02 0.525E~-02 0.339E 00
0.150E 00 ~0.546E 00 -0.178E 03 0.658E-02 0.503E 00
0.200E 00 -0.114E 01 -0.197E 03 0.703E-02 0.833E 00
0.250E 00 ~-0.154E 01 -0.217E 03 0.697E-02 0.113E 01
0.300E 00 ~-0.174F 01 ~0.256E 03 0.629E-02 0.101E 01
0.350E 00 -0.945E 00 -0.296E 03 0.511E-02 0.640E 00
0.400E 00 -0.114E 01 -0.335E 03 0.332E-02 0.480E 00
0.450E 00 -0.947E 00 -0.335E 03 0.910E~03 0.441E 00
0.500E 00 -0.948E 00 -0.316E 03 -0.125E~-02 0.378E 00
0.550E 00 -0.849E 00 -0.335E 03 -0.311E-02 0.319E 00
0.600E 00 ~0.751E 00 -0.375E 03 -0.423E-02 0.237E 00
0.650E 00 ~-0.653E 00 ~-0.414E 03 ~0.471E-02 0.184E 00
0.700E 00 -0.654E 00 ~0.434E 03 ~0.460E-02 0.107 00
0.750E 00 -0.357E 00 -0.533E 03 -0.345E-02 0.789E-02
0.800E 00 -0.458E 00 -0.631E 03 -0.243E-02 —=0.138E-01
0.850E 00 -0.360E 00 -0.710E 03 -0.179E-02 -0.186E 00
0.900E 00 0.333E 00 -0.158E 04 -0.873E-03 -0.748E 00
0.950E 00 0.122E 01 -0.958E 03 -0.725E-02 -0.164E 01
0.970E 00 0.192E 01 -0.839E 04 ~-0.103E-01 -0.425E 01
0.100E 01 0.000E 00 ~0.324E 05 0.000E 00 -0.114E 02

TABLE 3. (continued)
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r/R u?du/ox v2oV/or - avou/dr uvav/ox
-0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0.500E-01 0.000E 00 0.000E 00 -0.600E-01 -0.362E-05
0.100E 00 0.000E 00 0.000E 00 -0.192E 00 -0.105E~04
0.150E 00 0.000E 00 0.000E 00 -0.379E 00 -0.146E-04
0.200E 00 0.000E 0O 0.000E 00 -0.448E 00 -0.190E-04
0.250E 00 0.000E 0O 0.000E 00 ~-0.648E 00 -0.200E-04
0.300E 00 0.000E 00 0.000E 00 -0.105E 01 -0.195E-04
0.350E 00 0.000E 00 0.000E 00 -0.149E 01 -0.165E-04
0.400E 00 0.000E 00 0.000E 00 -0.238E 01 -0.155E-04
0.450E 00 0.000E 00 0.000E 00 -0.227E 01 -0.198E-04
0.500E 00 0.000E 0O 0.000E 00 -0.359E 01 -0.191E-04
0.550E 00 0.000E 00 0.000E 00 -0.533E 01 -0.142E-04
0.600E 00 0.000E 00 0.000E 0O -0.513E 01 -0.228E-04
0.650E 00 0.000E 00 0.000E 00 -0.617E 01 -0.448E-04
0.700E 00 0.000E 00 0.000E 00 -0.674E 01 -0.696E-04
0.750E 00 0.000E 00 - 0.000E 00 -0.833E 01 -0.920E-04
0.800E 00 0.000E 00 0.000E 0O -0.107E 02 -0.103E-03
0.850E 00 0.000E 00 0.000E 00 -0.146E 02 ~0.984E-04
0.900E 00 0.000E 00 0.000E 00 . —-0.188E 02 -0.100E-03
0.950E 00 0.000E 00 " 0.000E 00 -0.539E 02 -0.106E-03
0.970E 00 0.000E 00 0.000E 00 -0.228E 03 -0.936E-04
0.100E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00

TABLE 4. Turbulence energy production and velocity gradient terms x/D = 70.

(Note: The production terms have been non~-dimensionalised by uisf/R)
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r/R 3U/9x 0U/3x AV/9x ovV/9or
0.000E 0O 0.000E 00 ~0.235E 02 0.000E 00 0.000E 00
0.500E~-0L1 0.000E 00 -0.415E 02 -0.251E~02 0.000E 00
0.100E 00 0.000E 00 -0.686E 02 - -0.376E-02 0.000E 0O
0.105E 00 0.000E 00 -0.921E 02 -0.354E-02 0.000E 0O
0.200E 00 0.000E 00 -0.831E 02 -0.354E-02 0.000E 00
0.250E 00 0.000E 00 -0.101E 03 -0.312E-02 0.000E 0O
0.300E 00 0.000E 00 -0.134E 03 -0.248E-02 0.000E 00
0.350E 00 0.000E 0O -0.161E 03 -0.178E-02 0.000E 00
0.400E 00 0.000E 00 -0.228E 03 -0.149E-02 0.000E 00
0.450E 00 0.000E 00 -0.193E 03 -0.168E-02 0.000E 00
0.500E 00 0.000E 00 -0.276E 03 -0.147E-02 0.000E 00
0.550E 00 0.000E 00 -0.378E 03 -0.100E~-02 0.000E 00
0.600E 00 0.000E 00 -0.336E 03 -0.150E-02 0.000E 00
0.650E 00 0.000E 00 -0.369E 03 -0.267E~-02 0.000E 00
0.700E 00 0.000E 00 -0.370E 03 -0.382E-02 0.000E 00
0.750E 00 0.000E 00 -0.421E 03 -0.465E-02 0.000E 00
0.800E 00 ‘0.000E 00 -0.504E 03 -0.489E-02 0.000E 0O
0.850E 00 0.000E 00 -0.663E 03. -0.447E-02 0.000E 00
0.900E 00 0.000E 00 -0.849E 03 -0.453E-02 0.000E 0O
0.950E 00 0.000E 00 '=-0.233E 04 -0.457E-02 0.000E 0O
0.970E 00 0.000E 00 -0.104E 05 -0.425E-02 0.000E 00
0.100E 01 0.000E 0O -0.328E 05 0.000E 0O 0.000E 00

TABLE 4. (continued)
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FIGURE 1. Idealiséd model of developing turbulent pipe flow.
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FIGURE .24. Energy balance, Re = 3 x 105, x/D = 10.
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