
CNN based Bi-Directional Prediction for

Complexity Reduction of High Efficiency Video

Coding

Tharuki Rangana De Silva

A Thesis submitted to the Faculty of Graduate Studies of The

University of Manitoba in partial fulfillment of the requirements of

the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg

Copyright © 2022 by Tharuki De Silva

Abstract

Real-time video streaming has become the largest portion of internet traffic

in recent years. Therefore, improving the efficiency of video coding remains an

important research issue. Beyond the level of compression, there are two other

factors that must be considered to determine the efficiency of a real-time video

codec: decoded video quality and the computational complexity of the encoding

and decoding processes.

Modern video codecs rely on inter-frame prediction for efficient coding. However,

inter-frame prediction used in modern codecs is one of the most computationally

expensive and time consuming operations. Convolutional neural networks (CNN)

have been used in recent research for inter-frame prediction tasks. The CNN archi-

tectures in previous work have been used without regard to the model complexity

and computational efficiency. The objective of this thesis is to develop a CNN

based low complexity bi-prediction algorithm for video coding.

The contribution of this thesis consists of three parts. In the first part, a simple

floating point CNN architecture has been developed to perform bi-prediction op-

eration in video coding with an accuracy comparable to that produced by motion

estimation and compensation used in modern video encoders. This architecture

is then quantized to derive an integer arithmetic only CNN to further reduce the

computational complexity. It is shown that the encoding time for integer CNN is

considerably lower compared to the floating point CNN. The experimental results

ii

have shown that this conversion only causes a minor loss of prediction accuracy.

In the final part, it is experimentally shown that the proposed integer arithmetic

CNN bi-prediction algorithm has a lower computational cost and better video

quality compared to the conventional motion estimation based bi-prediction. Fur-

ther, it is shown that CNN based bi-prediction can contribute to a rate-distortion

performance improvement in video coding.

Acknowledgements

First and foremost, I wholeheartedly thank my adviser Prof. Pradeepa Yahampath

for allowing me to work with him, and for the continuous encouragement and

support throughout my M. Sc program. A special thanks must be conveyed to the

examining committee for accepting this thesis for review.

I would also like to acknowledge the support and inspiration given by the aca-

demic and non-academic staff of the Department of Electrical and Computer En-

gineering, Faculty of Graduate Studies and the University of Manitoba.

Last but not least, I would like to pay gratitude to the greatest inspirations of my

life, my father Upali De Silva and my mother Chandrika Kudagamage. Without

my parents support and encouragement, I would never be the person I am today.

I would also like to thank my sister Rydma De Silva and my partner Thulana

Kannangara for never giving up on me amidst all hardships. Many thanks to my

family and friends, who have been immensely supportive throughout this journey.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Tables vii

List of Figures viii

List of Acronyms x

1 Introduction 1

1.1 Video Compression . 1

1.2 Inter-frame prediction using CNNs 6

1.3 Motivation of this thesis . 8

1.4 Outline of the thesis . 10

2 Literature Review 11

2.1 HEVC Complexity Reduction Approaches 11

2.2 Advance Methods for Motion Estimation 14

2.3 CNN Architectures for Frame Prediction 15

3 Metrics for Assessing Performance of Video Codecs 18

3.1 Video Quality Estimation Models 19

3.1.1 PSNR . 19

3.1.2 SSIM . 19

3.2 Rate Distortion Performance Assessment 20

4 Complexity Analysis of Bi-Prediction in a HEVC Standard En-
coder 22

iv

Contents v

4.1 Overview of HEVC Block Partitioning 25

4.2 Minimum-complexity Encoder Configuration 26

4.3 Bi-prediction Process . 28

4.3.1 Advanced motion vector prediction (AMVP) 28

4.3.2 Inter-prediction block merging 30

4.3.3 Fractional sample interpolation 31

4.3.4 TZ search algorithm . 32

4.3.5 Weighted sample prediction 34

4.4 Computational Complexity of Bi-Prediction 34

4.4.1 Motion vector prediction . 35

4.4.1.1 Block merging . 41

4.4.1.2 TZ search algorithm 42

4.4.1.3 Weighted prediction 44

5 A Study of a Low Complexity CNN Architecture for Video Frame
Bi-Prediction 49

5.1 Hierarchical Bi-Prediction Using CNNs 51

5.2 U-Net Architecture for Bi-Prediction 54

5.2.1 Overview of the Architecture 54

5.2.2 Training and Validation . 57

5.3 Computational Complexity of U-Net Architecture 62

5.3.1 Convolutional layer complexity 62

5.3.2 Upconvolutional layer complexity 65

5.3.3 Other operations in U-Net CNN architecture 68

5.4 U-Net CNN Architecture with Integer Arithmetic Only Operations 73

5.4.1 CNN quantization in Pytorch 73

5.4.1.1 Integer-arithmetic-only matrix multiplication . . . 75

5.4.1.2 Implementation of a fused layer 77

6 Experimental Results and Discussion 80

6.1 Performance Evaluation of U-Net CNN Architecture 81

6.2 Video Coding Experiments . 86

6.2.1 Comparison of RD performance 86

6.3 Comparison of Computational Complexity 92

7 Conclusion and Future Work 94

7.1 Contributions and Conclusions . 94

7.2 Future Work . 95

A Motion Vector Scaling 97

Contents vi

Bibliography 99

List of Tables

4.1 PU modes allowed in the minimum-complexity encoder configuration. 28

4.2 Filters used in HEVC standard for fractional-pixel interpolation. . . 36

4.3 Integer operations involved in AMVP for one PU. 40

4.4 Integer operations required for TZ search for the bi-prediction of
one 8× 8 PU. 43

4.5 Integer operations for bi-prediction for all available PU modes. . . . 46

4.6 Integer operations required for bi-prediction of one frame in the
least-complexity case for CIF resolution video. 47

4.7 Integer operations required for bi-prediction of one frame in the
highest-complexity case for CIF resolution video. 48

5.1 Performance of the proposed CNN architecture with different loss
functions. 59

5.2 Best training and validation performance observed for U-Net archi-
tecture with different combinations of hyper-parameters. 60

5.3 Integer computations performed in U-Net CNN to bi-predict one
intermediate frame using the two adjacent frames. 72

6.1 Average bi-prediction performance of the floating point CNN. . . . 84

6.2 Loss in bi-prediction performance of the integer arithmetic CNN
compared to the floating point CNN. 84

6.3 Comparison of BD-PSNR performance between video codecs based
on different bi-prediction methods. 88

6.4 Comparison of BD-SSIM performance between the codecs based on
different bi-prediction methods. 90

6.5 Comparison of bit rate savings between the codecs based on different
bi-prediction methods. 91

6.6 Number of integer arithmetic operations required to predict one
video frame. 92

6.7 Encoding times for HM 16.22 encoder with ME, and CNN based
bi-predictions. 93

vii

List of Figures

1.1 Block diagram of a hybrid video encoder, including the modeling of
the decoder within the encoder. 2

1.2 Basic concept of block based motion compensation. 4

1.3 Prediction of pixel value by convolution. 7

4.1 Inter-frame prediction using the translational motion model. 24

4.2 PU modes supported in the HEVC standard. 25

4.3 CU partition modes considered in this study. 27

4.4 Candidate blocks in AMVP. 29

4.5 TZ search methods: (A) Eight point diamond search, (B) Raster
search with stride length = 3. 33

4.6 Integer pixels (shaded blocks with upper-case letters) and fractional-
pixels (un-shaded blocks with lower-case letters) for half-pixel in-
terpolation. 36

4.7 Integer pixels (shaded blocks with upper-case letters) and fractional-
pixels (un-shaded blocks with lower-case letters) for quarter-pixel
interpolation. 38

4.8 TZ search points in a 48×48 search region for 8×8 PUs: (A) Zonal
search, (B) Raster search with stride length = 2. 42

4.9 CU partitioning and PU mode selection based on the minimum SAE. 47

5.1 Hierarchical bi-prediction at the decoder. 51

5.2 Closed loop prediction. 52

5.3 Level 1 of bi-prediction architecture. 52

5.4 Level 2 of bi-prediction architecture 53

5.5 Encoder and decoder in U-Net architecture. 55

5.6 U-Net CNN architecture. 55

5.7 Convolution operation: (A) Input to the convolutional layer, (B)
Filter kernel, (C) Output of the convolutional layer. 63

5.8 Upconvolution operation: (A) Input to the upconvolutional layer,
(B) Filter kernal, (C) Output of the upconvolutional layer. 66

5.9 Number of additions per output feature for a 9× 11 upconvolution
output. 69

viii

List of Figures ix

5.10 Max pooling operation by a filter kernel of size 2 × 2 with stride
length 2. 69

5.11 Concatenation operation: (A) Convolutional layer output feature
map, (B) Upconvolutional layer output feature map, (C) Concate-
nated feature map. 71

5.12 Quantization mapping. 75

6.1 GOP-wise bi-prediction performance for Football sequence: (A)
PSNR, (B) SSIM. 81

6.2 GOP-wise bi-prediction performance for Mobile sequence: (A) PSNR,
(B) SSIM. 82

6.3 GOP-wise bi-prediction performance for News sequence: (A) PSNR,
(B) SSIM. 82

6.4 GOP-wise bi-prediction performance for Flower sequence: (A) PSNR,
(B) SSIM. 83

6.5 GOP-wise bi-prediction performance for Stefan sequence: (A) PSNR,
(B) SSIM. 83

6.6 Bi-predicted frames in Football sequence: (A) Original frame, (B)
Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN. 85

6.7 Bi-predicted frames in Mobile sequence: (A) Original frame, (B) Bi-
predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN. 85

6.8 Bi-predicted frames in News sequence: (A) Original frame, (B) Bi-
predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN. 85

6.9 Bi-predicted frames in Flower sequence: (A) Original frame, (B) Bi-
predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN. 86

6.10 Bi-predicted frames in Stefan sequence: (A) Original frame, (B) Bi-
predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN. 86

6.11 Bit rate versus PSNR curves: (A) Football sequence, (B) Mobile
sequence, (C) News sequence, (D) Flower sequence, (E) Stefan se-
quence. 87

6.12 Bit rate versus SSIM curves: (A) Football sequence, (B) Mobile
sequence, (C) News sequence, (D) Flower sequence, (E) Stefan se-
quence. 89

List of Acronyms

CNN Convolutional Neural Network

HEVC High Efficiency Video Coding

MCP Motion Compensated Prediction

HD High Definition

MV Motion Vector

PU Prediction Unit

CU Coding Unit

RDO Rate Distortion Optimization

IoT Internet of Things

MCVC Motion Compensated Video Coding

VVC Versatile Video Coding

SVM Support Vector Machine

CTU Coding Tree Unit

PSNR Peak Signal to Noise Ratio

SSIM Structural Similarity Index Measure

MSE Mean Square Error

AMVP Advanced Motion Vector Prediction

MVD Motion Vector Differences

MVP Motion Vector Prediction

TZ Test Zone

SAE Sum of Average Error

x

List of Acronyms xi

MER Merge Estimation Region

GOP Group Of Pictures

ReLU Rectified Linear Unit

To my family and friends.

xii

Chapter 1

Introduction

1.1 Video Compression

It is estimated that by 2022, video streaming will grow up to 88% of the to-

tal internet traffic [1]. Higher consumption of storage capacity and transmission

bandwidth from video streaming has become a challenge due to the rapid growth

of video applications and increasing demand for superior quality video. As a result,

video traffic has become the biggest load on communication networks and data

storage world-wide. This has made video compression a critical stage to guarantee

the quality and latency of video streaming. Video compression or video encoding

is the process of reducing the amount of data required to represent a video signal,

prior to transmission or storage. The complementary operation, decompression

or decoding, recovers a video signal from a compressed representation, prior to

display.

A video signal is a sequence of images or frames, which are correlated with each

other. Due to this high correlation in the video frames, a single frame within a

1

Chapter 1. Introduction 2

Transform Quantization
Entropy
Coding

Residual Coefficients Levels Output

Bitstream

Scaling

Inverse
TransformPrediction

In-Loop
FilterIntra-Picture

Prediction

Inter-Picture
Prediction

Motion
Estimation

Output
Video
Signal

Motion Data

+

+

101000

Input Video Signal

Divided into Blocks

Reconstructed residual
(incl. quantization error)

Decoder

Fig. 1.1: Block diagram of a hybrid video encoder, including the
modeling of the decoder within the encoder.

video sequence contains a notable number of similar neighboring pixels (spatial

redundancy) and a high similarity is present between consecutive frames in a

video sequence (temporal redundancy). Video compression methods are designed

to eliminate the redundancy in each video frame as well as in the video sequence.

All video compression methods since 1988 [2] have been based on the hybrid video

coding principle, which is illustrated in Fig. 1.1. The term hybrid refers to the

combination of two means used to reduce redundancy in the video signal, that

is, prediction and transform coding with quantization of the prediction residual.

Although prediction and transforms reduce the redundancy in the video signal by

decorrelation, quantization decreases the amount of data required for transform

coefficient representation by reducing their precision, ideally by removing only

imperceptible details; in such case, it serves to reduce irrelevance in the data [2].

Chapter 1. Introduction 3

The hybrid video coder given in Fig. 1.1 can be characterized by the following

building blocks.

Block partitioning is performed to divide the video frame into smaller blocks

for the prediction and transform processes. Over the years, block partitioning has

evolved to become more flexible by using different block sizes and shapes to enable

adaptation to local neighborhood statistics. In the prediction stage, this allows an

encoder to trade off the prediction accuracy (using small blocks) for the amount

of data required to signal the prediction information to the decoder (using large

blocks). In coding the residual differences, small blocks enable the coding of fine

details and large ones can smoothen regions very efficiently by avoiding blocking

artifacts.

Motion compensation or inter-picture prediction takes advantage of the redun-

dancy that exists between the frames of the coded video sequence. In block based

motion compensation illustrated in Fig. 1.2, for each block of a video frame, a

corresponding (best matched) area from a previously decoded picture, which is

the reference frame, is employed to predict the current block [3]. This process of

finding the best matching block is known as motion estimation. Assuming that

the content of a block moves between frames with translational motion, the dis-

placement between the current block and the corresponding area in the reference

frame is commonly referred to by a 2-D translational motion vector (MV) [3]. The

encoder then signals the estimated MV data to the decoder.

Intra-picture or intra-frame prediction exploits the spatial redundancy that ex-

ists within a video frame by deriving the prediction for a block from already cod-

ed/decoded, spatially neighboring reference blocks. After deriving the intra-frame

prediction mode, the encoder signals the estimated prediction information to the

decoder.

Chapter 1. Introduction 4

Fig. 1.2: Basic concept of block based motion compensation.

Transformation decorrelates a signal by transforming it from the spatial domain

to a transformed domain (typically a frequency domain), using a suitable trans-

form basis. Hybrid video coding standards apply a transform to the prediction

residual, that is, the difference between the prediction and the original input video

signal, as shown in Fig. 1.1. In the transform domain, the essential information

typically concentrates into a small number of coefficients. At the decoder, the

inverse transform needs to be applied to reconstruct the residual samples.

Quantization in hybrid video coding is typically applied to individual trans-

formed residual samples, that is to transform coefficients, resulting in integer coef-

ficient levels. As illustrated in Fig. 1.1, this process is applied at the encoder. At

the decoder, the corresponding process is known as inverse quantization or simply

as scaling, which restores the original value range without regaining the precision.

In-loop filtering is a filtering process that is applied to the reconstructed frame,

as illustrated in Fig. 1.1, where the reconstructed frame is the combination of the

reconstructed residual signal (with quantization error) and the prediction. This

reconstructed frame after in-loop filtering can be stored to be used as a reference

Chapter 1. Introduction 5

frame for inter-picture prediction of subsequent video frames. The main purpose

of the filtering is to reduce the visual artifacts and decrease reconstruction errors

of the reconstructed frame.

The above described video coding approach has been the basis for all video

coding standards developed during the last 3 decades [4]. The state-of-the-art

standards include H.265, also referred to as high efficiency video coding (HEVC)

and H.266, referred to as versatile video coding (VVC). According to [5], the inter-

frame prediction process is shown to consume 84% of encoding time of the motion

compensated video coding (MCVC) process. This is due to the high complexity of

the motion estimation and compensation techniques used in the inter-picture (or

inter-frame) prediction process. Motion estimation is considered the most compu-

tationally expensive and resource hungry operation in the inter-frame prediction

[6].

Although motion estimation plays an important role in MCVC, the high compu-

tational complexity makes it quite difficult to implement in real-time applications.

Therefore, it is necessary to reduce the computational complexity and speed up

the motion estimation operation. However, apart from regular block-wise shift

motion, there usually exists inconsistent pixel-wise motion such as rotation and

deformation between blocks, which will largely degrade the prediction performance

in using motion estimation. In this thesis we focus on developing an alternative

approach to prediction by using deep learning. This approach does not require

motion estimation and therefore has the potential to be computationally more

efficient.

Learning based approaches for video coding have been investigated due to the su-

perior capability of convolutional neural networks (CNN) to solve computer vision

and image processing problems compared to conventional model based approaches

Chapter 1. Introduction 6

[7]. In recent research, CNN based architectures have shown great potential in the

estimation and representation of complex motion. While motion estimation needs

precise per-pixel localization, it also requires finding correspondences between two

input images. This involves not only learning image feature representations, but

also learning to match them at different locations in the two images. According

to [8], CNNs are capable of solving motion estimation problem as a supervised

learning task. Different CNN architectures have been proposed to perform inter-

frame prediction in prediction unit (PU) and coding unit (CU) levels in recent

years. It has been observed that these CNN architectures improve the accuracy

of inter-frame prediction in video coding standards.

Even though CNNs can be used for improving motion estimation in video en-

coders, they can also be used for direct non-linear prediction of video frames. A

CNN can be pre-trained for universal prediction (using a large amount of training

data). The same CNN can then be used in the encoder and the decoder. This

approach can be more efficient for predictive video coding than motion estimation

and compensation, as the latter approach requires a part of the coded bit stream

to be used to signal motion information to the decoder.

1.2 Inter-frame prediction using CNNs

Inter-frame prediction in video coding can be performed by two methods; uni-

prediction and bi-prediction. In uni-prediction a given frame is predicted from

one of the temporally adjacent frames in a video sequence. In bi-prediction, a pair

of temporally adjacent frames are used as reference frames for predicting a given

frame. This thesis is concerned with using a CNN for bi-prediction. Therefore,

Chapter 1. Introduction 7

Fig. 1.3: Prediction of pixel value by convolution.

the process of using a CNN to perform this bi-prediction operation is explained in

this section.

Given two video frames F0 and F2 in the video sequence, the intermediate frame

F̂1 can be interpolated using the convolution operation. In this case, pixel inter-

polation is formulated as local convolution over the input frames F0 and F2 as

shown in Fig. 1.3. The color of pixel (x, y) in the target frame to be interpolated

can be obtained by convolving a filter kernal K over the input frames F0 and F2

centered at (x, y) position. This formulation of pixel interpolation as convolution

has several advantages. The pixels of the target frame are derived by local con-

volution over the two input frames and therefore this method combines motion

estimation and pixel synthesis into a single step. Second, the convolution filters

provide flexibility to account for complex motions such as deformation, occlusion

[9].

Estimating proper weights for the convolution filter K is essential to generate

an accurate prediction of the intermediate frame F̂1. A CNN can be trained to

estimate a proper convolution filter to synthesize each output pixel in the predicted

frame. The output of this CNN is the prediction of the intermediate frame F̂1 and

the inputs are the adjacent frames F0 and F2. The original intermediate frame

Chapter 1. Introduction 8

F1 serves as the ground truth during the training stage. The prediction loss is

then, back propagated to update the weights and biases of the network at each

step. At the end of the training process, the estimated weights and biases of the

convolution filters have the ability to predict the intermediate frame using the two

adjacent frames. Further, this process can be extended to predict a set of frames

using only two reference frames. This architecture has been used in this thesis to

perform CNN based inter-frame prediction.

1.3 Motivation of this thesis

Since the introduction of AlexNet [10], CNNs have been appraised according to

performance or accuracy. Thus, network architectures have evolved without regard

to model complexity and computational efficiency. In most inter-frame prediction

architectures proposed in previous literature, video frames are divided into small

blocks and CNNs are used to perform inter-frame prediction at the block level.

Therefore, CNNs are used at every block in a frame in order to predict a video

frame. As CNN architectures perform predictions based on the localized pixel

values, the inter-frame prediction process is performed in frame level using smaller

convolution filters in this thesis. Then, computationally intensive and time con-

suming block level processing can be avoided.

To perform inter-frame predictions at the frame level, the CNN architecture

must be able to output the intermediate video frame once the two adjacent video

frames are given as inputs. Thus, both inputs and outputs must have the same

resolution and the CNN architecture has to be optimized in both accuracy and

Chapter 1. Introduction 9

complexity. A CNN architecture with minimum parameters and optimum predic-

tion accuracy must be selected to perform bi-prediction operation with low com-

plexity. Therefore, we have selected a U-Net CNN architecture inspired by [11]

to perform bi-prediction. This CNN architecture has been tested with different

hyper-parameters in this thesis, to identify the optimum bi-prediction algorithm

for prediction accuracy and computational complexity.

Current state-of-the-art floating point arithmetic CNNs are not well suited for

use on embedded (IoT) hardware platforms with limited computing resources.

Floating point arithmetic costs much more computing power compared to integer

arithmetic. In addition, the implementation of floating point arithmetic is platform

dependent and this is a drawback for applications concerning interoperability, such

as video coding [12]. On the other hand, integer networks provide the advantage

of a smaller model, faster inference and cross platform consistency. In this thesis,

we also investigate an integer arithmetic only CNN for bi-prediction, to reduce the

complexity of the inter-frame prediction process.

In this thesis, the computational complexity of the CNN based bi-prediction

method is compared with that of one of the simplest motion estimation algorithms

available in a commonly used implementation of a H.265 standard video encoder,

the HM 16.22 reference implementation. This is a platform independent analy-

sis anchored on the number of integer arithmetic operations performed by both

methods. In addition, we have experimentally evaluated the performance of the

HEVC standard video encoder with both conventional motion estimation/com-

pensation based bi-prediction and the proposed CNN based bi-prediction. These

results show that the CNN approach can not only improve the encoding speed but

can also provide noticeable gains in rate-distortion performance.

Chapter 1. Introduction 10

1.4 Outline of the thesis

The main focus of this thesis is to develop a low complexity bi-prediction archi-

tecture based on CNNs for video coding.

A literature review of the research work on different complexity reduction ap-

proaches used in video coding standards, motion estimation models for inter-frame

prediction and learning based prediction models are presented in Chapter 2 of this

thesis.

Chapter 3 describes different metrics used in this thesis to evaluate the perfor-

mance of video codecs.

The bi-prediction techniques used in the HEVC standard HM 16.22 reference

encoder are discussed and an analysis of the associated computational complexity

is presented in Chapter 4.

In Chapter 5, the architecture, training procedure and the computational com-

plexity of CNN bi-prediction algorithms are discussed. The method used to convert

the floating point CNN to an integer-only CNN is also discussed.

The experimental results are presented in Chapter 6. Finally, the conclusions

and contributions of this study are summarized, and avenues for further research

are suggested in Chapter 7.

Chapter 2

Literature Review

2.1 HEVC Complexity Reduction Approaches

The HEVC standard saves approximately 50% of bit-rate at similar video quality

compared to the previous generation H.264/AVC standard. This is achieved by

using advanced video coding techniques which lead to a much higher computational

complexity. According to [13], the encoding time of HEVC is 253% higher than

H.264/AVC on average. The existing research on HEVC complexity reduction

can be classified into two categories: heuristic and learning based approaches. In

heuristic approaches, the brute-force rate distortion optimization search of coding

unit (CU) partitioning has been simplified using some intermediate features. At

the frame level, [14] proposed a fast coding unit decision algorithm that skips

several CUs by analysing the utilization rate of CUs in previous frames. Kim et

al. [15] proposed a fast pyramid motion divergence based CU selection algorithm

to simplify the HEVC inter-frame prediction process. [16] considers computation

friendly features such as rate distortion (RD) cost, inter mode prediction error and

11

Chapter 2. Literature Review 12

derives CU splitting decision based on the rule of minimizing the Bayesian risk. In

addition to simplified CU partitioning, various heuristic approaches were proposed

to reduce complexity of PU in inter-frame prediction. [17] has proposed a fast PU

size decision approach which combines smaller PUs into larger PUs depending

upon the video frame content. Estimating the PU partition with the maximum

probability, on account of the coding block flag and the RD costs of encoded PUs

is given in [18]. In addition, intra-frame and inter-frame prediction and in-loop

filtering have been simplified to reduce the encoder complexity in [19–23].

Recently learning based fast coding approaches have been developed for com-

plexity reduction in HEVC. Block partitioning and motion selection in video cod-

ing are modelled as data classification via online or offline training in these al-

gorithms. For example, [24] has modelled the CU partition process of the intra

mode as a binary classification problem with logistic regression. Support vector

machines (SVM) have been used to perform CU partition classification in [25]. In

[26], several HEVC domain features that are correlated with inter mode CU par-

titioning were explored and a joint classifier of SVM has been proposed to utilize

these features to determine the CU depths. Further, Corrêa et al. [27] proposed

three early termination schemes with data mining techniques to simplify the de-

cision on the optimal coding tree unit (CTU) structures. These approaches can

reduce computational time dedicated for brute force rate search of CU partitions

by using well trained classification models. In addition, binary and multi-class

SVM algorithms [28] have been proposed to predict both CU partition and PU

mode with offline training. The encoding time of HEVC is further reduced in

using this approach as online training computations are excluded from the video

coding process. However, the above learning based approaches rely heavily on

hand-crafted features that are related to the CU partition. Deep learning can be

used to automatically extract CU partition related extensive features, rather than

Chapter 2. Literature Review 13

the limited hand-crafted features. In [29] and [30] a shallow CNN architecture has

been used to predict the intra mode CU partition. The encoding time is further

reduced in [31] by region wise feature classification using a CNN for intra mode

prediction in CU partitions. [32] proposed a hierarchical CU partition map which

reduces the computational time of the CU partition by identifying the complete

CU partitions in a whole CTU in terms of one hierarchical CU partition map by

running the trained ETH-CNN/ETH-LSTM model only once. The ETH-LSTM

has been developed to learn the dependencies among CU partitions across frames

for inter mode HEVC.

All the above stated complexity reduction approaches focus on simplifying the

rate distortion optimization (RDO) search of quad-tree partitioning process of the

HEVC standard. According to [5], the inter-frame prediction is shown to consume

84% of encoding time while only 3% is taken by intra-frame prediction for HD

sequences. The high encoding time during inter-frame prediction is largely due

to the complexity of the state-of-the-art motion estimation and motion compen-

sation techniques used in the HEVC standard. Motion estimation is an effective

tool to find the best matching block in a reference frame to a given block, to

reduce the temporal redundancy between successive frames of a video sequence.

Although motion estimation plays an important role in video coding, the com-

putational complexity of this process is very high. Therefore, it is necessary to

reduce the computational complexity and speed up the motion estimation process.

As a result, the common optimization methods used to reduce HEVC complex-

ity, focus on decreasing the number of motion estimation operations during the

inter-frame prediction process [5]. Therefore, alternate methods for video frame

prediction have been investigated with the objective of reducing the complexity

and improving the accuracy of prediction in the HEVC standard.

Chapter 2. Literature Review 14

2.2 Advance Methods for Motion Estimation

In conventional approaches to motion estimation [33, 34], the prediction is derived

directly from one individual reference block or a linear combination of the multiple

reference blocks. Thus, the pixel-wise motion cannot be fully modeled and will re-

sult in a large residue between the prediction and the block to be coded, which costs

a lot of bits in coding. Over the past few years, several new approaches have been

proposed as alternatives to the state-of-the-art motion estimation in video coding.

Yin et al. in [35] proposed a weighted prediction strategy where the weighting

factors are derived from the neighboring blocks. This algorithm achieved signifi-

cant coding performance improvement in the H.264/AVC standard. But the linear

combination of the forward and backward predictions was not sufficient to handle

the complicated motions that occur in practical scenarios. A local affine motion

compensation framework for complex motion which supports multiple reference

frames for HEVC has been proposed in [36]. However, each pixel in the prediction

block derived by affine motion is still computed as the average of two correspond-

ing pixels and this linear combination process largely ignores complicated motions.

Multi-hypothesis prediction methods to reduce compression artifacts and improve

the quality of block transform video coding have been proposed in [37–39]. But

the irregular motion patterns of real world objects can not be effectively described

by the block wise translational motion model used in the inter-frame prediction in

the HEVC standard.

Deep learning has presented significant advantages in dealing with complex non

linear tasks such as image classification [10], image super resolution [40], etc.

Dosovitskiy et al. in [8] proposed a Flownet to directly predict optical flow from

two input video frames. [9] proposes a robust video frame interpolation method

using a deep CNN. These literature validate the ability of CNNs in estimation

Chapter 2. Literature Review 15

and representation of complex motion. Yan et al. in [41] introduced a CNN-based

interpolation filter to improve the accuracy of half pixel interpolation in motion

estimation. The performance of the filter module is further upgraded with the

support of a deep neural network in [42]. These literature have shown the ability

of CNNs to develop a motion estimation algorithm.

2.3 CNN Architectures for Frame Prediction

In previous work, different CNN architectures have been designed to perform pre-

diction tasks. In particular, Zhou et al. [43] trained a CNN to predict the appear-

ance flows, which was then used to reconstruct the target view. LSTMs have been

used to extrapolate images [44], but the results were observed to be blurry. [45]

and [46] have used adversarial training and unique loss functions to reduce blurri-

ness. However, the prediction capability of deep learning were not fully exploited

in the scenario of bi-directional motion compensation in these literature. In [11],

a deep neural network was used to generate dense voxel flows to optimize frame

interpolation results. An encoder-decoder (U-Net) CNN architecture is used in

this approach where the output is the prediction of the target video frame and the

input to the network is the two adjacent video frames. This CNN architecture has

shown better results in prediction quality compared to the previous approaches.

CNN architectures have also been designed to perform inter-frame prediction at

the CTU level. Among these approaches, adaptive separable convolution shows

considerable superiority in terms of both interpolation quality and complexity.

Niklaus et al. [47] formulated pixel interpolation as a local convolution process,

and provided an adaptive convolution approach which combines motion estimation

and pixel synthesis in a single step. A major drawback of adaptive convolution

Chapter 2. Literature Review 16

lies in its memory cost. As predictions are performed at CTU level, it is stated

in [48] that more than 20 GB memory overhead is needed to generate the inter-

mediate frame of a 1080p video sequence, which makes it impractical in real time

applications. In view of this, Niklaus et al. [48] then proposed adaptive separable

convolution algorithm which approximates 2D convolution kernels with two 1D

kernels. In this manner, an NÖN convolution kernel can be encoded using only

2N variables, showing considerable superiority than 2D convolution version. In

[49], this adaptive seperable architecture has been used to perform inter-frame

prediction in the HEVC encoder, and it was observed that the time complexity in

the encoder increased by 30−45% and further, the time complexity of the decoder

increased by about 70 times. The burden in time complexity makes this method

not applicable to real time scenarios. In [50], a CNN based method has been pro-

posed to refine the motion compensation in video coding. This is a uni-prediction

architecture used after motion compensation algorithm to improve the accuracy

of the prediction. It was observed that better compression performance can be

achieved by integrating this CNN architecture into the state-of-the-art motion es-

timation in HEVC. This architecture is highly complex as CNN adds additional

computations to the existing inter-frame prediction process in the HEVC stan-

dard. State-of-the-art HEVC standard adopts the bi-prediction (B-frames) to

improve the coding efficiency of the inter-frame prediction process. Recently, the

prediction capability of deep learning has been exploited by [51] for bi-directional

motion compensation. This approach has delivered better predictions compared

to traditional bi-prediction in HEVC. The input to the proposed CNN in [51]

is a PU. The computational expense of RDO search in quad-tree partitioning is

present in this method as the predictions are performed at PU level. Therefore,

the computational complexity of an HEVC encoder is further increased in using

this method.

Chapter 2. Literature Review 17

Based on the results reported in the literature, we can draw the following con-

clusion regarding the use of CNNs for inter-frame prediction of a HEVC standard

encoder. If a very deep CNN as required for good inter-frame prediction is used at

PU or CU levels, the computational complexity and the memory requirements of

the associated RDO process can increase significantly. This will make the method

impractical in real-time video coding applications. In view of this observation,

this thesis considers in Chapter 5, the use of deep CNNs for frame level predic-

tion, rather than for PU or CU level predictions.

Chapter 3

Metrics for Assessing

Performance of Video Codecs

The quality of a compressed video signal and the compression efficiency of the

video encoder play an important role in determining the performance of a video

coding method. This chapter describes the different metrics we will use to evaluate

the performance of video codecs in this thesis. The two objective metrics, peak

signal to noise ratio (PSNR) and structural similarity index measure (SSIM) will

be used for video quality assessment. Compression efficiency of video codecs will

be evaluated by Bjontegaard metrics.

18

Chapter 3. Metrics for Assessing Performance of Video Codecs 19

3.1 Video Quality Estimation Models

3.1.1 PSNR

The PSNR performance metric [52] is very commonly used to quantify the video

quality. PSNR is defined as

PSNR = 10 log10

(
MAXI

MSE(g, p)

)
(dB),

whereMAXI is the maximum pixel value possible in a video frame, andMSE(g, p)

is the mean square error (MSE) between the ground truth image g and predicted

image p. Let g(i, j) and p(i, j) denote the pixel values at the location (i, j) in the

ground truth image and the predicted image respectively, where i = 1, .., N, j =

1, ..,M . Then, the MSE is given by

MSE(g, p) =
1

NM

∑
i

∑
j

((g(i, j)− p(i, j))2 .

The PSNR, which is a pixel-wise error measure can be better for evaluating noisy

images [53].

3.1.2 SSIM

SSIM is an image quality measure based on certain features of the human visual

system, proposed by Wang et al. in [54]. It is an improvement over measures

like MSE and PSNR [55]. The main function of the human visual system is

the extraction of structural information from the viewing field. The SSIM is an

attempt to capture this principle in the same way. SSIM is a full reference objective

video quality metric which measures the structural similarity between two video

Chapter 3. Metrics for Assessing Performance of Video Codecs 20

frames. SSIM was selected in this thesis as it has been found to be sometimes

more useful in relative performance evaluation studies [55], [56].

The SSIM computes a score for each individual pixel, using a window of neigh-

boring pixels. These scores can then be averaged to produce a global score for

the entire image. The SSIM is usually normalized to produce a score in the (-1,

1) interval, where a value closer to 1 indicates a high similarity between the two

images.

3.2 Rate Distortion Performance Assessment

The compression performance of a video codec is usually measured by the average

distortion it introduces at a given bit rate. This is referred to as RD performance.

A set of metrics that is widely used to compare the RD performance of two different

video codecs or the same video codec at two different settings is Bjontegaard

metrics [57] which involve two parts: BD-PSNR and BD-Rate.

Given a reference codec with two different settings, BD-Rate or BD-PSNR values

are calculated as follows:

1. Several RD points are calculated for the reference codec with setting 1 and

setting 2. At least four points must be computed. These points should be

obtained using the same quantizers when comparing two versions of the same

codec.

2. Additional points outside of the range should be discarded.

3. The rates are converted into log-rates.

Chapter 3. Metrics for Assessing Performance of Video Codecs 21

4. A piece-wise cubic hermite interpolating polynomial is fitted to the RD

points for each setting to produce functions of log-rate in terms of distortion.

The metric score ranges are computed as follows:

1. In comparing two versions of the same codec, the overlap is the intersection

of the two curves, bounded by the chosen quantizer points.

2. The log-rate is numerically integrated over the metric range for each curve,

using at least 1000 samples and trapezoidal integration.

3. The resulting integrated log-rates are converted back to linear rate, and then

the percent difference is calculated from the setting 1 to the setting 2.

BD-PSNR (dB): This metric evaluates the quality gains made by the codec

setting 1 compared to the codec setting 2 at the same bit-rate. So if the BD-

PSNR value is 5 dB, then it means that the second settings gives 5 dB more

quality than the first setting at the same bit-rate. The calculations can also be

done with other objective quality metrics such as the SSIM (BD-SSIM).

BD-Rate (%): This metric evaluates the bit-rate savings at the same quality

and is also referred to as the BD-BR value. If the quality of both codec settings

are the same, then BD-Rate is used to find which setting uses more bits and how

much. If the value of BD-Rate is 50%, it means that setting 2 needs 50% more

bits than setting 1 to achieve the same quality.

In the upcoming chapters, these metrics will be used to compare the video

quality and compression efficiency of video codecs which use motion-estimation

based prediction and CNN based prediction.

Chapter 4

Complexity Analysis of

Bi-Prediction in a HEVC

Standard Encoder

As discussed in Chapter 1, one of the most time consuming operations in a modern

hybrid video encoder is the motion estimation used for predicting video frames

from reference frames. In this chapter we present an analysis of the computational

complexity of one of the most common implementations of the state-of-the-art

HEVC encoder, namely HM 16.22 reference software. This video encoder will be

used in the experimental work presented in Chapter 6. We determine the number

of addition and multiplication operations required for motion estimation based

bi-prediction process in HM 16.22 reference encoder.

HEVC standard follows the same basic hybrid video coding approach as shown

in Fig. 1.1. Block based motion compensated prediction (MCP) assumes that all

motions inside a block are homogeneous and any moving object is larger than the

22

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 23

prediction block size. In inter-frame prediction, suitably chosen blocks of pixels

in already coded reference frames are used as the predictors for blocks in the

frame. The concept of MCP based on a translational motion model is illustrated

in Fig. 4.1. In the translational model, a block of pixels in a given frame is

assumed to be a translated version of a similarly sized block in another already

coded, temporally close frame referred to as the reference frame, as shown in

Fig. 4.1. The motion information of the block is represented by a vector (∆x,∆y),

where ∆x and ∆y represent the horizontal and vertical distances between the

given block and the predictor block respectively. In a video encoder, the reference

frames are stored in a buffer referred to as the reference picture list where each

stored frame is identified by a reference picture index. The difference in display

order of the reference picture and the current picture to be encoded is given by

a reference picture index ∆t. In the HEVC standard, the motion vectors and

the reference indices define the motion data required for predicting a block. The

motion vectors are also allowed to have a fractional-pixel accuracy to capture the

motion of objects more accurately. When motion compensation is to be performed

at fractional accuracy, the pixels in the reference picture are interpolated to obtain

the reference blocks.

In a video codec, the motion data for each predicted block must also be en-

coded and conveyed to the decoder. Since motion data of neighboring blocks

can be highly correlated, modern video codecs employ predictive coding of mo-

tion data. In the HEVC standard, efficient predictive coding of motion data is

achieved by using a procedure referred to as advanced motion vector prediction

(AMVP). Furthermore, so called inter prediction block merging is used to reduce

blocking artifacts in decoded images. Even though these techniques improve the

codec performance, they also increase the computational complexity of motion

estimation.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 24

Fig. 4.1: Inter-frame prediction using the translational motion model.

Inter-frame prediction can be performed by two methods: uni-prediction and

bi-prediction. In the perceptive of coding efficiency, bi-prediction provides higher

efficiency compared to uni-prediction [58]. In the case of bi-prediction, two sets of

motion data are derived using motion estimation process, and the final prediction

for a given block is obtained by averaging or weighted prediction, see section 4.3.5.

In this thesis, we focus only on bi-prediction for inter-frame prediction.

The block-based motion estimation is essentially a search algorithm. The only

way to ensure that the best matching predictor block is found, is to use an ex-

haustive search, commonly referred to as a full search. In a typical full search

algorithm, all possible blocks inside a given search range in a reference frame are

compared with the block to be predicted, to find the best matching block in terms

of a cost function. It has been shown in [59] that when a full search is used, upto

96% of the encoding time can be consumed by motion estimation. Therefore, re-

duced complexity sub-optimal search algorithms are used to reduce computational

time. One such reduced complexity search method widely used is the test zone

(TZ) search algorithm described in section 4.3.4. This algorithm is used in the

HM 16.22 reference codec that will be used in our experimental work.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 25

Fig. 4.2: PU modes supported in the HEVC standard.

4.1 Overview of HEVC Block Partitioning

In HEVC standard, each video frame is partitioned to blocks of size 2N × 2N

where N can be set to either 4, 5, or 6. These partitions are known as coding

tree units (CTUs). While a CTU can be coded as a single block, each CTU may

also be further sub-divided into smaller blocks through a hierarchical quad-tree

partitioning process to improve the prediction efficiency. The blocks in the final

partitioning are referred to as coding units (CU). That is, a complete CTU may

form a single CU, or a CTU may be recursively split into 4 equally sized smaller

CUs, until the minimum CU size of 8× 8 is reached. The partitioning decision at

every level of the recursive process is based on the RD benefit.

Since a single set of motion data may not be able to accurately predict a complete

CU, a CU may be further split into smaller prediction units (PU). A PU is a block

of pixels that uses the same motion parameters for inter-frame prediction. For each

PU, a single set of motion parameters is signaled in the encoder output bit stream

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 26

[60]. In the HEVC standard there are 8 possible PU modes available for splitting a

CU (see Fig. 4.2), even though the actual PU modes used by the encoder depends

on how one configures the encoder. In symmetric PU modes, a CU is either

predicted as a single block or further split into two or four equal size PUs. The

(M/2)× (M/2) mode is only supported for the minimum CU size which should be

larger than 8 × 8 luma samples [60]. In asymmetric modes, the square section of

a CU is divided into (1/4) and (3/4) units as shown in Fig. 4.2. These modes are

useful when only a small part of a CU shows significantly different motion vectors.

Asymmetric PU modes are only supported if the the selected minimum CU size is

greater than 8× 8 luma samples. Thus, 8× 4 and 4× 8 are the smallest PU sizes

that can be used in inter-frame prediction.

In general the encoding process involved in an HEVC encoder depends on how

the encoder configuration is set by the user and can be very complicated. The

HM 16.22 reference implementation of the HEVC codec allows multiple options

for hierarchical block-partitioning and motion estimation which offer varying lev-

els of performance-complexity trade-offs to a user. In this chapter, we focus on

the simplest possible option to facilitate a fair comparison of the complexities be-

tween motion estimation based bi-prediction and CNN based bi-prediction. For a

comprehensive description of the complete HEVC encoding process, see [61].

4.2 Minimum-complexity Encoder Configuration

In this thesis we use the following simple set of settings (see Fig. 4.3) in the

HM 16.22 reference implementation of a HEVC codec, to keep the computational

complexity of motion estimation to a minimum.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 27

Fig. 4.3: CU partition modes considered in this study.

� CTU size is 16× 16.

� The Maximum CU partitioning depth is 1. That is, a CTU can only be

further divided into 4 sub-blocks. Therefore, the available CU sizes are

restricted to 16× 16 and 8× 8 as shown in Fig. 4.3.

� PU depth for inter-frame prediction is 1 and only symmetric PU modes are

used. The PU sizes allowed for inter-frame prediction are given in Table 4.1.

Note that the PU size 4 × 4 is not available for the 8 × 8 CU size, as it is

smaller than the minimum PU size, see section 4.1.

With this simple block-partitioning scheme, the computational complexity of

the motion estimation based frame bi-prediction can be determined by identifying

the number of addition and multiplication operations required for the prediction

of one PU. The total computational complexity of predicting a single frame can

then be obtained by multiplying this number by the number of PUs in a frame.

In order to determine the number of computations required for bi-prediction of a

single PU, we need to consider the following aspects:

� Advanced motion vector prediction (AMVP) and inter-prediction block merg-

ing processes used to determine the candidate blocks.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 28

Table 4.1: PU modes allowed in the minimum-complexity encoder
configuration.

CU size Available PU sizes
16× 16 16× 16, 8× 8, 8× 16, 16× 8
8× 8 8× 8, 8× 4, 4× 8

� Search algorithm used to find the best matching predictor blocks from the

two reference frames.

� Pixel interpolation process used for motion estimation with fractional pixel

accuracies.

4.3 Bi-prediction Process

In this section, we briefly describe the main operations involved in the bi-prediction

process that have to be considered in determining the computational complexity.

The prediction of a PU starts with the initialization of motion vectors using motion

vector predictors (MVPs) identified in the AMVP process.

4.3.1 Advanced motion vector prediction (AMVP)

In an HEVC encoder, AMVP involves a process known as motion vector compe-

tition to select the best prediction for a given PU. This is a complicated process

due to the quad-tree partitioning of a CTU, where a single PU can have multiple

neighboring PUs of different sizes, therefore identifying the best predictor may

be difficult. AMVP is used to simplify the motion vector competition for such a

complex block structure.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 29

Fig. 4.4: Candidate blocks in AMVP.

The AMVP candidate list is generated by selecting the most suitable MVPs

from different types of predictors as given below.

� Upto 2 spatial candidate MVPs that are derived from 5 spatial neighboring

blocks : Motion vector differences (MVD) between the motion vector (∆x,

∆y) of the current block and the MVPs of the 5 spatial candidates A1, A2,

B0, B1 and B2 (illustrated in Fig. 4.4) have to be calculated. Given a spatial

candidate, the MVD components are calculated as

MVDx = ∆x − MV Px,

MV Dy = ∆y − MV Py,

where MV Px and MV Py are the MVP components of the spatial candidate.

If the reference picture index of the current block is different to that of the

candidate block then the motion vector should be scaled according to the

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 30

temporal distance between the current reference picture and the candidate

reference picture [62]. In frame level prediction, this calculation is not per-

formed for spatial candidates as all blocks in one frame are predicted using

the same reference picture set. Two candidates out of A1, A2 and B0, B1,

B2, with the minimum error are included in the AMVP candidate list.

� One temporal candidate MVP is derived from two temporally co-located blocks :

In the HEVC standard, the blocks to the bottom right (C0) and the blocks

in the center of the co-located blocks (C1) (illustrated in Fig. 4.4) are deter-

mined to provide a good temporal motion vector predictor for the current

block [61]. Motion vectors of the temporal candidate MVPs can not be di-

rectly used for the MVD calculation as the reference pictures of the current

block and candidate blocks can be different. Motion vectors of the candi-

date MVPs need to be scaled according to the temporal distances between

the candidate reference picture and the current reference picture. Then the

MVD is calculated for scaled temporal MVPs with respect to the current

block MV, and the candidate with minimum error is added to the AMVP

list.

� Zero motion vectors are added to the candidate list when neither spatial nor

temporal candidates are available.

4.3.2 Inter-prediction block merging

Inter-frame prediction process in HEVC standard is based on prediction of PUs

using similar-sized blocks from temporally neighboring reference frames. The com-

plex quad-tree partitioning process introduces a large number of borders which can

interrupt the motion information in a video frame. A block merging algorithm is

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 31

used to identify a list of merge candidate blocks which improves the accuracy of

inter-frame prediction through joint description. A merge candidate comprises of

all motion data: motion vectors and reference picture indices. Merge candidate

lists consist of spatial and temporal candidates. Initially, 4 spatial candidates

are derived from 5 spatially neighboring blocks. Then, the motion data of the 4

candidate blocks are copied to the merge candidate list. Two temporal merge can-

didates are added to the list in bi-prediction mode. These candidates are selected

out of 2 co-located blocks from each reference frame. No motion vector scaling is

done but the motion information of the two candidates are copied to the candi-

date list. When a frame is bi-predicted, additional candidates can be generated

by combining the reference list 0 motion data of one candidate, with the reference

list 1 motion data of the other. If the list is not full after adding bi-predictive

candidates then zero motion vector candidates are added finally.

4.3.3 Fractional sample interpolation

HEVC standard supports motion estimation at fractional-pixel accuracy to capture

the continuous motions more accurately. The standard supports motion vectors

with quarter-pixel accuracy for luma component and one-eighth pixel accuracy for

chroma components. Unlike the older H.264/AVC standard, quarter pixel values

in the HEVC standard are derived without using half pixel values, but by directly

applying a 7 or 8 tap filter on integer pixels.

In HEVC bi-prediction, if one of the prediction blocks from the two prediction

lists has sub-pixel accuracy then instead of averaging each prediction block at the

precision of the input bit depth in the interpolation process, they are averaged

at the higher precision. Longer filter tap lengths increase the number of arith-

metic operations required to obtain the interpolated sample. Interpolation filter

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 32

in HEVC requires 20% more multiplication and addition operations compared to

the H.264/AVC filter for 8-bit video [60].

4.3.4 TZ search algorithm

TZ search algorithm has been adopted in the HM 16.22 reference implementation

of the HEVC encoder that is considered in this thesis, to perform fast motion

estimation using only integer arithmetic operations. This algorithm is divided

into four steps as follows.

1. Prediction motion vector selection

A motion vector predictor is used to identify the initial search center for a

given PU block for which a prediction is to be computed. This predictor is

derived using the AMVP candidate list which includes both temporal and

spatial candidates. A temporary best predictor is computed by deriving

the mean of the motion vectors of the spatial candidates [63]. This best

predictor candidate is used as the start point of the TZ search. If only the

spatial candidates are less than 2, the temporal candidates are considered

for this mean calculation.

2. Zonal search

After identifying the initial starting point, the next step is to determine the

search range and the search pattern for an initial grid search. This step

involves using a search window of either a diamond or a square shape where

the size of search area varies from 1 up to the search range. In HM 16.22

encoder implementation, the maximum search range is 64. In this encoder

implementation, the distance between the search points are multiples of 2,

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 33

(a) (b)

Fig. 4.5: TZ search methods: (A) Eight point diamond search, (B)
Raster search with stride length = 3.

which leads to 8 search points at each step for either square or diamond

shape search. The diamond search patterns for distance one to three are

shown in Fig. 4.5(A). The distance between the current search center and

the minimum distortion point out of all points in a given pattern is stored in

the Bestdistance variable. If Bestdistance=0 after the search is completed,

no additional steps are conducted.

3. Raster search

A parameter iRaster is used to specify the maximum distance that is allowed

between the current search center and the minimum distortion point in the

zonal search. If the Bestdistance found in the zonal search is greater than

zero but less than iRaster, then a refinement step is carried out directly

[64]. A raster scan is performed using iRaster value as the stride length if

Bestdistance > iRaster. This is a form of full search conducted using stride

length as the gap between the search points. A raster search with a stride

length of 3 is illustrated in Fig. 4.5(B).

With the minimum-complexity encoder configuration that we consider in this

thesis, the refinement stage of the TZ search algorithm is not considered. The

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 34

best estimate for the motion vector to predict the current PU from a PU of the

given reference video frame is identified by the TZ search process.

4.3.5 Weighted sample prediction

After the TZ search, two sets of motion data are derived for the current PU for

bi-prediction. These two sets of motion data identify the best matching PUs from

the two reference frames. Weighted prediction is applied to these two PUs to

derive the final prediction of the current PU as

P̂ = PL1[x][y] ∗ w1 + PL2[x][y] ∗ w2 + (O1 +O2), (4.1)

where PL1 and PL2 are the PUs from reference frame 1 and reference frame 2

respectively, x and y are the spatial coordinates of the PUs. Weighting factors w1,

w2 and offsets O1, O2 are determined according to the reference picture lists. In

HEVC standard, the weight and offset parameters are explicitly specified and no

derivation is required. Deriving the weighted prediction from the two motion data

sets is the final step of the bi-prediction process.

4.4 Computational Complexity of Bi-Prediction

Motion estimation in HEVC is performed at PU level where PUs are obtained by

hierarchical partitioning of a video frame. Several factors contribute to the high

computational complexity of this process.

1. A RD cost has to be computed at each level of quad-tree partitioning.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 35

2. RD cost computation at a given CU level has to be repeated for all 8 PU

modes shown in Table 4.1.

3. AMVP and inter-prediction block merging processes require that candidate

lists with both spatial and temporal candidates be derived.

4. Each TZ search algorithm consists of zonal and raster search procedures,

in which a distortion calculation is performed at each point. This complex

search algorithm is considered the most computationally expensive process

in the inter-frame prediction.

In the following, we determine the number of addition and multiplication oper-

ations involved in the computation steps of the motion estimation, for a single PU

in the minimum-complexity encoder configuration described in section 4.2.

4.4.1 Motion vector prediction

This analysis is based on the assumption that every PU has the minimum number

of MVP candidates allowed in the HEVC standard. Therefore, 7 MVP candidates

are present for every PU in the current frame, where 5 of them are neighboring

PUs from the same frame (spatial candidates) and 2 candidates are from the co-

located PUs from each reference frame (temporal candidates). We assume that

the size of MVP candidates are always equal to the size of the PU being predicted,

which is a reasonable assumption for the encoder configuration in section 4.2. In

the analysis to follow, we consider the 8× 8 PU block size, as this PU block size

is common to both CU sizes given in Table 4.1. It is assumed that half-pixel and

quarter-pixel interpolations are used in fractional-accuracy motion estimation.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 36

Table 4.2: Filters used in HEVC standard for fractional-pixel
interpolation.

Position Filter coefficients
1/4 −1, 4,−10, 58, 17,−5, 1, 0
2/4 −1, 4,−11, 40, 40,−11, 4,−1
3/4 0, 1,−5, 17, 58,−10, 4,−1

Fig. 4.6: Integer pixels (shaded blocks with upper-case letters) and
fractional-pixels (un-shaded blocks with lower-case letters) for half-pixel
interpolation.

Half-pixel interpolation

In the HEVC standard, half-pixel interpolation is performed using the 8-tap filter

given in Table 4.2 (filter in position 2/4). Half pixel interpolations performed to

generate 3 fractional pixels are shown in Fig. 4.6. The fractional position a0,0 is

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 37

interpolated by horizontally applying a 1D filter as

a0,0 = −A−3,0 + 4A−2,0 − 11A−1,0 + 40A0,0 + 40A1,0 − 11A2,0 + 4A3,0 − A4,0.

Similarly, the fractional position c0,0 is interpolated by applying the same filter

vertically to obtain

c0,0 = −A0,−3 + 4A0,−2 − 11A0,−1 + 40A0,0 + 40A0,1 − 11A0,2 + 4A0,3 − A0,4.

The position b0,0 is interpolated by, first applying a horizontal 1D filter eight times,

to determine the values of a0,−3, a0,−2, a0,−1, a0,0, a0,1, a0,2, a0,3 and a0,4 separately,

and then applying a vertical 1D filter to these values. Accordingly

b0,0 = −a0,−3 + 4a0,−2 − 11a0,−1 + 40a0,0 + 40a0,1 − 11a0,2 + 4a0,3 − a0,4.

It follows that each half-pixel interpolation requires 8 multiplications and 7 addi-

tions.

Quarter-pixel interpolation

Quarter-pixel interpolation is performed by using all three filters given in Table

4.2 [65]. For example, the positions a0,0, b0,0, c0,0 illustrated in Fig. 4.7 are derived

by using 1D horizontal filters as,

a0,0 = −A−3,0 + 4A−2,0 − 10A−1,0 + 58A0,0 + 17A1,0 − 5A2,0 + A3,0,

b0,0 = −A−3,0 + 4A−2,0 − 11A−1,0 + 40A0,0 + 40A1,0 − 11A2,0 + 4A3,0 − A4,0,

c0,0 = A−2,0 − 5A−1,0 + 17A0,0 + 58A1,0 − 10A2,0 + 4A3,0 − A4,0.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 38

Fig. 4.7: Integer pixels (shaded blocks with upper-case letters) and
fractional-pixels (un-shaded blocks with lower-case letters) for
quarter-pixel interpolation.

The positions d0,0, h0,0, l0,0 are derived by applying the same 8-tap filter in

vertical direction. Next, the positions e0,0, i0,0, m0,0, f0,0, j0,0, n0,0, g0,0, k0,0 and

r0,0 are derived by applying the 8-tap filter to the fractional-pel pixels a0,i, b0,i and

c0,i in vertical direction respectively as

e0,0 = −a−3,0 + 4a−2,0 − 10a−1,0 + 58a0,0 + 17a1,0 − 5a2,0 + a3,0,

i0,0 = −a−3,0 + 4a−2,0 − 11a−1,0 + 40a0,0 + 40a1,0 − 11a2,0 + 4a3,0 − a4,0,

m0,0 = a−2,0 − 5a−1,0 + 17a0,0 + 58a1,0 − 10a2,0 + 4a3,0 − a4,0,

where i = −3, −2, −1, 0, 1, 2, 3, 4.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 39

Each quarter-pixel interpolation requires 8 multiplications and 7 additions sim-

ilar to half-pixel interpolation [65]. The total number of half-pixel interpolations

(nhalf) and quarter-pixel interpolations (nquarter) performed are given by

nhalf = (2H − 1)× (2W − 1)− (H ×W),

nquarter = (4H − 3)× (4W − 3)− (H ×W),

where H and W are the height and width of a PU respectively. For the 8 × 8

PU size we consider H = W = 8, and hence nhalf = 161 and nquarter = 777.

Therefore, 8 multiplications and 7 additions are required for every half- or quarter-

pixel interpolation, and a total of 1288 multiplications and 1127 additions are

performed for half-pixel interpolation of one PU. It follows that, 5439 additions

and 6216 multiplications are required for quarter-pixel interpolation of a single

PU.

MVP candidate selection

For MVP candidate selection, fractional pixel interpolation is performed for all 7

candidates and the current PU. Thus, the number of arithmetic operations for one

PU will be repeated for all candidate PUs. The total required multiplications and

additions for fractional pixel interpolation of spatial and temporal candidates are

given in Table 4.3.

To find the best 3 MVP candidates, the sum of average error (SAE),

SAE =
M∑
i=1

|ri − ci|, (4.2)

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 40

Table 4.3: Integer operations involved in AMVP for one PU.

Process name Additions Multiplications Total

Spatial
Half pixel interpolation 5635 6440 12075

Quarter pixel interpolation 27195 31080 58275

SAE calculation 11285 0 11285

Temporal

Half pixel interpolation 2254 2576 4830

Quarter pixel interpolation 10878 12432 23310

SAE calculation 4514 0 4514

Scaling 12 8 20

Total computations 61773 52536 114309

where ci and ri are pixels in the current PU and the candidate PU respectively, is

calculated for all spatial and temporal candidates at full and sub-pixel accuracies,

and M is the number of pixels in a PU. For full, half and quarter pixel accuracies

the values of M for an 8× 8 PU are given by,

Mfull = H ×W = 64,

Mhalf = (2H − 1)× (2W − 1) = 225,

Mquarter = (4H − 3)× (4W − 3) = 841. (4.3)

At each accuracy level, 2M−1 additions are required to compute the SAE between

the current block and one candidate block. To find the best matching block for the

current block, SAEs are calculated between the current block and all the candidate

blocks. The total number of integer arithmetic operations required to calculate

the SAEs are given in Table 4.3. After this computation, the two minimum SAE

candidates out of the spatial candidates and the minimum SAE candidate out of

the temporal candidates are added to the AMVP candidate list.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 41

Spatial candidates can be directly added to the AMVP candidate list but before

adding temporal candidates, a scaling operation must be performed as explained

previously in section 4.3.1. In bi-prediction, scaling must be performed on tempo-

ral candidates from both reference frames. A scaling operation requires 6 additions

and 4 multiplications per motion vector as described in Appendix A. Thus, for the

2 temporal candidates, this operation has to be performed twice to scale both

motion vectors. A total of 114309 integer operations are performed to identify

the AMVP candidates for one 8× 8 PU. The total integer operations required to

perform AMVP in all available PU sizes are given in Table 4.5.

4.4.1.1 Block merging

For spatial candidates, 5 neighboring PUs are selected from the merge estima-

tion region (MER) of the same frame as the current PU. The SAEs between the

current PU and each of the 5 candidates are calculated at both full resolution

and fractional-pixel resolutions using (4.2). Four minimum SAE candidates out

of the spatial candidates are added to the merge candidate list. As the temporal

candidates, 2 PUs are considered from each reference frame and the best merge

candidate is selected based on the minimum SAE criterion. The same set of com-

putations used in AMVP are used for block merging as explained in section 4.3.2.

Thus, the number of computations required for block merging is equal to the total

number of integer operations in AMVP for spatial and temporal candidates except

for the scaling operation. Scaling operation for motion vectors is not performed

for temporal candidates in block merging as explained in section 4.3.2. The total

number of integer computations required for block merging process is given in

Table 4.5.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 42

(a) (b)

Fig. 4.8: TZ search points in a 48× 48 search region for 8× 8 PUs: (A)
Zonal search, (B) Raster search with stride length = 2.

4.4.1.2 TZ search algorithm

To perform the TZ search, first the mean of AMVP spatial candidates is calculated

to identify the initial search center. The position (x, y) of the initial search center

is derived using the positions of the two spatial candidates s1 and s2 in the current

frame as

center(x, y) =
s1(x, y) + s2(x, y)

2
.

Zonal search is performed over a search range of 48× 48 pixels around the initial

search center. It is assumed that the zonal search is conducted in diamond pattern

only. This results in the lowest possible complexity. In this case, the diamond

search is performed until the maximum possible stride length of 2 is reached, see

Fig. 4.8(A). For the search area size 48× 48, 8× 8 PU size, and the stride length

2, that we consider, the TZ search can only be performed for 12 PU blocks as

illustrated in Fig. 4.8(A). Therefore, the SAEs between the current PU and only

the 12 neighboring PUs have to be computed. The PU with the minimum SAE

identified in the diamond search is used as the search center for the raster search,

which is performed inside a search range using a stride length of 2. Thus, the

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 43

Table 4.4: Integer operations required for TZ search for the
bi-prediction of one 8× 8 PU.

Process Add Multiply
In bi-prediction

Total
Add Multiply

Half pixel interpolation 22540 25760 45080 51520 96600

Quarter pixel interpolation 108780 124320 217560 248640 466200

SAE calculation 45140 0 90280 0 90280

Total 352920 300160 653080

SAEs between the current PU and 8 other PUs have to be computed in the raster

search. That is, if we consider the green block in Fig. 4.8(A) to be the PU with the

minimum SAE found in the zonal search, then a raster search is conducted with

the 8 neighboring PUs around the minimum SAE PU as indicated in Fig. 4.8(B),

as we consider 48× 48 search region and the stride length 2.

The SAE calculations are performed for full, half and quarter pixel resolutions

to identify the minimum SAE PU during both zonal and raster searches. For

a 8 × 8 PU, SAE between the current PU and the 20 neighboring blocks must

be computed, which includes 12 neighboring PUs during the zonal search and

8 neighboring PUs during the raster search. Therefore, SAE and interpolation

computations have to be performed for a total of twenty 8 × 8 PUs during the

zonal and raster searches. The total number of integer operations performed for

one 8× 8 PU in zonal and raster searches are given in Table 4.4. Note that, in bi-

prediction, the TZ search has to be performed twice, one per each reference frame.

Therefore, the number of integer computations will be doubled as given in Table

4.4. As we are considering the simplest possible motion estimation configuration

in an HEVC encoder, the integer computations in the refinement stage of the TZ

search are not taken into account in this analysis.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 44

4.4.1.3 Weighted prediction

Weighted prediction as given by (4.1) is applied to the two minimum SAE PUs

from the reference frame 1 and reference frame 2, found in the TZ search. This

produces the final prediction for the current PU. The pixel values in each minimum

cost block are multiplied with the respective weights and the offsets are added as

given in (4.1). Therefore, weighted prediction requires 64 multiplications and 64

additions per 8× 8 minimum SAE PU block (each pixel value must be multiplied

by a weight followed by the addition of an offset). The weighted pixels of the

minimum SAE blocks from the two reference frames are then added, to produce

the prediction for the current PU which requires another 64 addition operations.

In total, weighted prediction results in 192 additions and 128 multiplications as

given in Table 4.5. The weighted prediction process completes the computational

steps required for the bi-prediction of a single 8× 8 PU.

The total number of integer operations performed for a single PU in all available

PU modes, at each step of the bi-prediction process are given in Table 4.5. The

computational complexity of the motion estimation in HEVC standard highly

depends on the quad-tree partitioning structure used in the model. Although we

set the CTU size to 16 × 16, the CU and PU sizes can vary from one CTU to

another according to the RD optimization. Therefore, we considered two different

cases in order to analyze the computational complexity required to predict a single

video frame.

Case 1: Least complexity

The least complexity case for this minimum-complexity encoder occurs when the

CU size is selected as 16× 16 and the maximum CU partitioning depth is set to 0

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 45

(MaxCuDepth = 0). Consider, the PU mode selection process given in Fig. 4.9.

In this case, the video frame is divided into CUs of size 16 × 16. There will be 4

PU modes available for selecting the best coding option. The modes are 16× 16,

16× 8, 8× 16 and 8× 8 as given in Table 4.1. Thus, the SAE for each of the four

available PU modes have to be calculated to select the minimum SAE PU mode

as given in the Fig. 4.9. In this thesis, we consider CIF resolution video, which has

a frame size of 288 × 352 pixels. Therefore, if we consider the PU mode 16 × 16

alone, a single frame will have 396 PU blocks. Similarly, for 16 × 8, 8 × 16 and

8×8 PU modes there will be 792, 792 and 1584 PU blocks respectively. Therefore,

the total number of integer computations required in this case is

Tic =
∑

i ε PUmodes

IPU(i)×NPU(i), (4.4)

where IPU is the total number of integer operations required for the ith PU mode

and NPU is the number of PU blocks in a video frame for the ith PU mode.

We note that for the HEVC encoding configuration in Table 4.6, the minimum

possible computational complexity is about 6 × 109 integer operations per CIF

video frame.

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 46

T
a
b
l
e
4
.5
:
In
te
ge
r
op

er
at
io
n
s
fo
r
b
i-
p
re
d
ic
ti
on

fo
r
al
l
av
ai
la
b
le

P
U

m
o
d
es
.

P
U

si
ze

8
x
8
P
U
s

8
x
4
or

4
x
8
P
U
s

8
x
16

or
16

x
8
P
U
s

16
x
16

P
U
s

P
ro
ce
ss

A
d
d

M
u
lt
ip
ly

A
d
d

M
u
lt
ip
ly

A
d
d

M
u
lt
ip
ly

A
d
d

M
u
lt
ip
ly

A
d
va
n
ce
d
M
ot
io
n
V
ec
to
r
P
re
d
ic
ti
on

1.
S
p
at
ia
l
ca
n
d
id
at
es

H
al
f
p
el

-
ca
n
d
id
at
es

56
35

64
40

25
55

29
20

11
79
5

13
48
0

24
67
5

28
20
0

Q
u
ar
te
r
p
el

-
ca
n
d
id
at
es

27
19
5

31
08
0

12
07
5

13
80
0

57
43
5

65
64
0

12
12
75

13
86
00

S
A
E
ca
lc
u
la
ti
on

11
28
5

0
51
25

0
23
60
5

0
49
36
5

0
2.

T
em

p
or
al

ca
n
d
id
at
es

H
al
f
p
el

-c
an

d
id
at
es

22
54

25
76

10
22

11
68

47
18

53
92

98
70

11
28
0

Q
u
ar
te
r
p
el

-
ca
n
d
id
at
es

10
87
8

12
43
2

48
30

55
20

22
97
4

26
25
6

48
51
0

55
44
0

S
A
E
ca
lc
u
la
ti
on

45
14

0
20
50

0
94
42

0
19
74
6

0
S
ca
li
n
g

12
8

12
8

12
8

12
8

M
er
ge

C
an

d
id
at
e
L
is
t

1.
S
p
at
ia
l
ca
n
d
id
at
es

H
al
f
p
el
-
ca
n
d
id
at
es

56
35

64
40

25
55

29
20

11
79
5

13
48
0

24
67
5

28
20
0

Q
u
ar
te
r
p
el
-
ca
n
d
id
at
es

27
19
5

31
08
0

12
07
5

13
80
0

57
43
5

65
64
0

12
12
75

13
86
00

S
A
E
ca
lc
u
la
ti
on

11
28
5

0
51
25

0
23
60
5

0
49
36
5

0
2.

T
em

p
or
al

ca
n
d
id
at
es

H
al
f
p
el

-c
an

d
id
at
es

22
54

25
76

10
22

11
68

47
18

53
92

98
70

11
28
0

Q
u
ar
te
r
p
el

-
ca
n
d
id
at
es

10
87
8

12
43
2

48
30

55
20

22
97
4

26
25
6

48
51
0

55
44
0

S
A
E
ca
lc
u
la
ti
on

45
14

0
20
50

0
94
42

0
19
74
6

0
T
Z
se
ar
ch

H
al
f
p
el
-
ca
n
d
id
at
es

45
08
0

51
52
0

30
66
0

35
04
0

14
15
40

16
17
60

78
96
0

90
24
0

Q
u
ar
te
r
p
el
-
ca
n
d
id
at
es

21
75
60

24
86
40

14
49
00

16
56
00

68
92
20

78
76
80

38
80
80

44
35
20

S
A
E
ca
lc
u
la
ti
on

90
28
0

0
61
50
0

0
94
42
0

0
15
79
68

0

W
ei
gh

t
p
re
d
ic
ti
on

19
2

12
8

96
48

51
2

25
6

10
24

51
2

T
ot
al

47
63
98

40
53
52

29
24
82

24
75
12

11
85
64
2

11
71
24
0

11
72
92
6

10
01
32
0

T
ot
al

p
er

P
U

si
ze

88
19
98

53
99
94

23
56
88
2

21
74
24
6

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 47

Fig. 4.9: CU partitioning and PU mode selection based on the
minimum SAE.

Table 4.6: Integer operations required for bi-prediction of one frame in
the least-complexity case for CIF resolution video.

Available PU sizes Computations per PU Number of PUs Total

16× 16 2174246 396 8.6× 108

16× 8 2356882 792 1.9× 109

8× 16 2356882 792 1.9× 109

8× 8 881998 1584 1.4× 109

Total computations per frame 6× 109

Case 2: Highest complexity

The highest complexity case for this minimum-complexity encoder occurs when

CU partitioning is done by considering a maximum CU partitioning depth of 1. As

given in Fig. 4.9, the SAE calculations are first performed for all 4 PU modes of CU

Chapter 4. Complexity of Bi-Prediction in a HEVC Standard Encoder 48

Table 4.7: Integer operations required for bi-prediction of one frame in
the highest-complexity case for CIF resolution video.

Available PU sizes Computations per PU Number of PUs Total

16× 16 2174246 396 8.6× 108

16× 8 2356882 792 1.9× 109

8× 16 2356882 792 1.9× 109

8× 8 881998 1584 1.4× 109

4× 8 539994 3168 1.7× 109

8× 4 539994 3168 1.7× 109

Total computations per frame 9.5× 109

size 16×16 (at CUdepth = 0) and then the SAE calculations are performed for all

available PU modes for CU size 8× 8 (at CUdepth = 1). The available PU modes

for each CU size are given in Table 4.1. For the video frames of size 288 × 352,

considered in this thesis, the number of PU blocks per frame in considering different

PU modes are given in Table 4.7. The number of computations per PU block has

been multiplied by the number of PU blocks per frame (4.4), to calculate the total

number of integer computations used in this case.

We note that for the HEVC encoding configuration in Table 4.7, the maximum

possible computational complexity is about 9.5 × 109 integer operations per CIF

video frame.

Chapter 5

A Study of a Low Complexity

CNN Architecture for Video

Frame Bi-Prediction

In video coding algorithms inter-frame prediction is performed in a block-wise

manner. Typically size of these blocks are small compared to the frame size, as

the translational motion assumption which underpins classical motion estimation

can be poor for large block sizes. For example, the minimum block sizes used by

the HEVC standard are 4 × 8 and 8 × 4. Motion of objects occurring in natural

video sequences are a combination of translations, rotations and deformations.

Furthermore, the moving object can be smaller than the block size used for motion

estimation. In such cases, the block matching based motion estimation can result

in poor prediction performance. Deep learning architectures have been used for

bi-prediction tasks in recent works [51]. One of the most widely used approaches to

deep learning based predictions is CNNs. In contrast to motion estimation based

prediction, CNNs can be used for prediction at frame level. Furthermore, while

49

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 50

traditional motion estimation used in most video coding algorithms such as the

HEVC standard is linear, CNNs perform nonlinear prediction which can capture

complex motion in natural video. This chapter presents an investigation of an

efficient CNN architecture for video frame bi-prediction. The goal of the study

presented in this chapter has been to identify the best CNN architecture for video

frame bi-prediction, with both prediction accuracy as well as the computational

complexity in mind. This study involves the evaluation and comparison of several

candidate CNN architectures.

CNNs used for video frame bi-prediction in all previous work reported in the

literature have used floating point arithmetic operations. In state-of-the-art video

codecs, most of the operations, including motion estimation are implemented as

integer operations to reduce the computational complexity to levels required for

real-time video compression. Floating point CNNs may thus not be appropriate for

such video coding applications. In fact any advantage gained by improved predic-

tion may be offset by high computational complexity of floating point arithmetic.

With minimal computational complexity in mind, the main objective of this thesis

is to explore the possibility of using integer CNNs for frame bi-prediction in video

compression. Section 5.3 presents a quantitative analysis for computational com-

plexity of the CNN bi-prediction architecture used in this thesis. This analysis is

used for the experimental study presented in Chapter 6, where the computational

complexity of CNN bi-prediction is compared with that of the simplest motion es-

timation option available in the HEVC (HM 16.22) reference encoder as described

in Chapter 4.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 51

GOP 1 GOP 2

Frame type:

Display order:

Coding order:

𝑰𝟎 𝑩𝟏
𝑩𝟐

𝑩𝟑
𝑰𝟒 𝑩𝟓

𝑩𝟔
𝑩𝟕

𝑰𝟖

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖

𝟎 𝟓 𝟑 𝟔 𝟏 𝟕 𝟒 𝟖 𝟐

Fig. 5.1: Hierarchical bi-prediction at the decoder.

5.1 Hierarchical Bi-Prediction Using CNNs

In this chapter, we assume that the video encoder is operated on the group of

pictures (GOP) structure as shown in Fig. 5.1, where the prediction process for two

consecutive GOPs, GOP1 and GOP2 are illustrated. Without a loss of generality,

we consider the first two GOPs in a video sequence. In this encoding scheme,

the first frame of the GOP is encoded as a key-frame. In video coding, the key-

frames are encoded as still images, without reference to any other frame. These

are referred to as I-frames. All other frames in the GOP are predicted using two

reference frames. These are referred to as bi-predicted frames (B-frames). The bi-

prediction process for the first two GOPs in a video sequence is shown in Fig. 5.1.

Every two consecutive GOPs are predicted and coded as shown here.

When a trained CNN is incorporated into a video encoder, it will be performing

closed-loop prediction, as shown in Fig. 5.2. This means that the input frames

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 52

Input Frame Transform Quantization

Prediction
Error Frame

Scaling

Inverse
Transform

+

+

Quantized Prediction
Error Frame

Frame
Buffer

Predicted
Frame CNN

Bi-Prediction

Two Reference
Frames

Quantization
levels

Fig. 5.2: Closed loop prediction.

CNN +
Residual

Quantization in
Video Encoder

+

𝑰𝟎

𝑰𝟒

𝑩𝟐 𝒆𝟐

𝑰𝟐

ො𝒆𝟐 𝑰𝟐

+

-

Fig. 5.3: Level 1 of bi-prediction architecture.

to the CNN will be the encoded versions of the original frames. Let us consider

the closed-loop hierarchical bi-prediction process for GOP 1. Let I0, I1, I2, I3 and

I4 be the original frames of this GOP. In this case, the bi-prediction hierarchy

consists of 2 levels as shown in Figs. 5.3 and 5.4. In these diagrams, for Ii where

i = 1, 2, 3, 4: Bi is the bi-prediction, ei is the prediction error and êi is the

quantized version of the prediction error. In level 1, the encoded versions of the

input frames Î0 and Î4 are used as the inputs to bi-predict the middle frame I2. In

level 2, the reconstructed frame Î2 from level 1 is used with Î0 and Î4 separately

to bi-predict I1 and I3 respectively, as shown in Fig. 5.4.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 53

CNN +
Residual

Quantization in
Video Encoder

+

𝑰𝟎

𝑰𝟐

𝑩𝟏 𝒆𝟏

𝑰𝟏

ො𝒆𝟏 𝑰𝟏

+

-

CNN +
Residual

Quantization in
Video Encoder

+

𝑰𝟐

𝑰𝟒

𝑩𝟑 𝒆𝟑

𝑰𝟑

ො𝒆𝟑 𝑰𝟑

+

-

Fig. 5.4: Level 2 of bi-prediction architecture

Our description above applies to closed-loop prediction in a video encoder. Note

that in closed-loop prediction, the predictor inputs are dependent on the predictor

itself. Therefore, it is actually not possible to train the CNNs to minimize the

closed-loop prediction error. However, if the bit-rate of the video encoder is not

very low, we can expect the CNNs trained to minimize the open-loop prediction

error which will also be good for closed-loop prediction. We therefore considered

the open-loop prediction error during the CNN training stage for bi-prediction. As

we only consider the compression of monochrome video sequences, in the following

sections we will focus on the prediction of monochrome video using CNNs.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 54

5.2 U-Net Architecture for Bi-Prediction

5.2.1 Overview of the Architecture

In the literature review presented in Chapter 2, we have discussed the different

types of CNN architectures for video frame bi-prediction. We require a CNN

architecture with low complexity and high quality of bi-prediction performance to

fulfill the objective of this thesis. The CNN architecture used in this thesis is based

on the U-Net architecture for video frame interpolation originally proposed in [11].

We selected this architecture for bi-prediction due to the following reasons as we

discussed in Chapter 2. Bi-prediction can be performed at the video frame level

and therefore, the quad-tree partitioning structure used in the HEVC encoder is

not considered for bi-prediction. U-Net architecture has a limited number of layers

and parameters and therefore the computational complexity and memory cost are

low enough to be used in real-time video coding. Further, U-Net architecture has

shown better results in prediction quality compared to many CNN architectures

proposed in previous work. We further reduced the number of parameters in the

U-net architecture proposed in [11] to reduce the complexity of the bi-prediction

operation. More specifically, in this thesis, we use a reduced number of layers and

filters in the U-Net architecture.

The U-Net architecture consists of two parts, namely the encoder and the de-

coder, as illustrated in Fig. 5.5. In the encoder side of the network, each processing

unit contains both convolutional and max-pooling layers. The input feature map

sizes are down-sampled in this side. In the decoder side, the feature maps are

up-sampled to the size of the reference video frames. Each processing unit of the

decoder side contains an up-convolutional layer followed by a convolutional layer.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 55

Encoder

Decoder

Conv
Layer 1
(5 x 5)

Max
Pooling
(2 x 2)

Max
Pooling
(2 x 2)

Conv
Layer 2
(3 x 3)

Conv
Layer 3
(3 x 3)

Input
Images

8 8 16 16 16

Up conv
Layer 1
(3 x 3)

Conv
Layer 4
(5 x 5)

Up conv
Layer 2
(5 x 5)

Conv
Layer 5
(5 x 5)

Conv
Layer 6
(5 x 5)

16 16 816 8

16 8

Output
Image

To
Decoder

From
Encoder

Fig. 5.5: Encoder and decoder in U-Net architecture.

Fig. 5.6: U-Net CNN architecture.

As the network performs down-sampling of the input and up-sampling of the out-

put (so that the reference frames and predicted frame are of the same size), the

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 56

network parameters are independent of the video frame resolution. As shown in

Fig. 5.6, the network consist of 6 convolutional layers, 2 up-convolutional layers

and 2 max pooling layers. The number of channels at each of the layers are denoted

above the feature maps of the respective layers in this figure. In section 5.2.2, we

present experimental results demonstrating the complexity vs performance trade-

off when the number of channels and layers are varied. These results show that it

is possible to further reduce the complexity of the U-net architecture compared to

the original architecture in [11], with only a small degradation in the prediction

accuracy.

The convolution, up-convolution and max-pooling filter sizes that we have used

is given in Fig. 5.6. This diagram also illustrates the down-sampling and up-

sampling of the feature maps. Convolution filter dimensions in the 1st and 2nd

levels of the encoder are 5 × 5 and 3 × 3 respectively. In using different filter

dimensions, different scales of motion can be detected. Each convolution operation

is followed by batch normalization, a rectified linear unit (ReLU) and a 2× 2 max

pooling operation with a stride length of 2, to reduce feature map dimensions

as given in Fig. 5.6. This down-sampling encoder architecture can extract the

global (low resolution) features of a large receptive field of the input frames as

the information propagates through the layers towards the bottleneck between the

encoder and the decoder. If there is a considerable movement of an object that

occurs between the two input frames, the bottleneck layer will be able to capture

a feature related to this motion [11]. In the bottleneck layer the convolution

operation has an effective receptive field of 72× 88 pixels from the original input

frames. In the decoder section, an up-convolutional layer is introduced after every

convolution operation. Up-convolutional layer performs up-sampling at each level,

to finally generate a prediction with same resolution as the input video frames.

Both up-convolution and convolution kernels are of the same dimensions, 3 × 3

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 57

and 5×5 respectively. ReLUs have been used as the activation functions in all the

convolutional and up-convolutional layers except for the last convolutional layer,

where the tanh non-linearity has been used. The tanh non-linearity will restrict

the pixel value of output to (−1, +1). This network output is converted to the

standard 16−235 range of the 8-bit pixel depth of the luma component to generate

the final predicted frame.

To better maintain spatial information flow through the network, skip connec-

tions are added between the corresponding convolutional and up-convolutional

layers. Specifically, the corresponding up-convolutional layers and convolutional

layers are concatenated together before being fed forward. The convolution that

is followed by skip connection and up-convolution will warp the low resolution fea-

tures to high resolutions. In addition, skip connections can assure that gradients

will flow backward, which mitigates the vanishing gradient problem when training

the network [66].

5.2.2 Training and Validation

In this thesis CNN models have been trained and implemented using the Pytorch

platform [67]. Publicly available UCF101 database [68] was selected to train the

CNN model.

� Data set: The UCF101 database is mainly used for action recognition tasks

and has 13320 video clips with resolution 320×240. The video clips have been

recorded at 25 frames per second and are available in RGB format. UCF101

database has slow to fast motion video sequences of a large variety of action

types. Therefore, training with this database can generalize the network to

tackle complex motions in video sequences. OpenCV and Pytorch software

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 58

were used to preprocess the original video files and to form the training data

set, including applying transforms for normalization and random flipping

[69].

� Training loss functions: The choice of the loss function for training a CNN

in Pytorch generally defaults to the mean squared error (MSE) loss. This is

due to the many desirable properties of this loss function. But MSE has its

limitations. MSE correlates poorly with the image quality as perceived by

a human observer [70]. In designing U-Net our objective is to obtain high

performance in video frame reconstruction and therefore, we studied the

effect of different loss functions for better network performance. The U-Net

architecture has been trained using three different loss functions including

the MSE and their impact on the overall bi-prediction performance have

been evaluated. The loss functions considered are

– MSE (or l2 loss),

– l1 loss,

– Structural similarity index measure (SSIM).

These loss functions are widely used in training CNNs for image processing

applications [70]. Importantly, they are differentiable (l1 loss is differentiable

everywhere except at the origin), which is a requirement for the propagation

of the training algorithm to work.

� Best choice of loss function: The overall performance obtained by the net-

work under different combinations of training loss functions and performance

metrics are given in Table 5.1. When the network was trained using l1 loss

instead of the MSE loss, the quality of the output image has been better

according to both PSNR and SSIM metrics, for the validation data set. The

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 59

Table 5.1: Performance of the proposed CNN architecture with
different loss functions.

Loss function MSE l1 loss SSIM

PSNR (dB)
Training 22.3 22.5 22.1

Validation 22.1 22.2 22

SSIM
Training 0.78 0.79 0.78

Validation 0.77 0.78 0.77

network trained with SSIM as the loss function, has performed either at par

or slightly worse than the network trained with l1 loss, for the validation

data set. These results indicate that the l1 loss outperforms the other loss

functions for this U-Net CNN architecture. The better performance of l1 loss

function compared to other loss functions is also discussed in [70]. Thus, l1

loss has been adopted as the loss function for training, in the rest of this

thesis.

� Performance criteria for evaluation: PSNR and SSIM metrics have been

used to evaluate the performance of the trained CNN. These metrics are

widely used in image processing tasks as discussed in Chapter 3. As these

two metrics evaluate the image quality in two different aspects, both of these

metrics were used to evaluate the CNN network output.

� Effect of hyper-parameters: The results of the Adam optimizer are generally

better than every other optimization algorithm. This optimization has faster

computation time, and require fewer parameters for tuning. Therefore our

network has been trained using the Adam optimization criterion [71] for

different sets of hyper-parameter selections. These are learning rate α, the

betas β1, β2 of the Adam algorithm and the weight decay parameter λ. A

mini-batch size of 5 has been used and the CNN model was trained for 100

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 60

Table 5.2: Best training and validation performance observed for
U-Net architecture with different combinations of hyper-parameters.

Network Network f1 Network f2 Network f3

Epochs 100 100 100

Learning Rate (α) 0.001 0.002 0.001

Betas (β1, β2) 0.85, 0.997 0.95, 0.995 0.95, 0.995

Weight decay (λ) 0.001 0.0008 0.001

Loss 0.094 0.098 0.088

Training PSNR 24.8 24.4 24.9

SSIM 0.76 0.72 0.76

Loss 0.072 0.079 0.07

Validation PSNR 22.8 22.6 23.4

SSIM 0.67 0.67 0.68

epochs. A fixed set of 8% samples from the dataset has been used to form

the validation set while the remaining samples are used as the training set.

The network was trained by initializing weights using Xaviar initialization

[72] and data augmentation was enabled. The training and validation results

for the 3 best performing networks with different hyper-parameter values are

given in Table 5.2. The highest PSNR and SSIM values for the validation set

have been observed with Network f3. Further, Network f3 was also trained for

500 epochs to analyze any performance improvement with a longer training

time, but no improvements were observed.

� Impact of network complexity: In order to investigate the potential perfor-

mance improvements in increasing the network complexity, U-Net structures

with more layers and channels were trained and tested. The same hyper-

parameter values used with the Network f3 were used here as well. The

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 61

evaluated architectures are as follows.

– High channel U-Net architecture: A two level U-Net architecture with

the same filter kernel sizes as Network f3 is used here. The number

of channels were increased to 16 and 32 in the 2 levels respectively.

The number of addition and multiplication operations in this archi-

tecture was about 12 times higher than in Network f3, but validation

performance was increased only by 0.01 dB in PSNR. As a PSNR gain

below 0.5 dB is visually insignificant, we note that this more complex

architecture does not yield any useful performance improvement.

– 3 level U-Net architecture: One more level was added to the Network f3

architecture. The filter kernel sizes used in the 3 levels of the encoder

side are 5×5, 5×5 and 3×3 respectively and vice versa in the decoder

side. The number of channels used in the 3 levels of the encoder are

16, 32, and 64. The number of addition and multiplication operations

in this architecture was about 8 times higher than in the Network f3,

but the validation performance was not as good. CNN models tend to

overfit the training data set of fixed size, as the network depth increases.

This overfitting can be the reason for performance degradation in this

case.

The goal of this study is to minimize the computational complexity of the CNN

architecture with a minimal sacrifice in prediction performance. Therefore, Net-

work f3 has been selected as the best low complexity floating point CNN architec-

ture for video frame bi-prediction.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 62

5.3 Computational Complexity of U-Net Archi-

tecture

In this section, the computational complexity of U-Net architecture shown in

Fig. 5.6 is established, in terms of the number of addition and multiplication oper-

ations. The objective is to compare the complexities of CNN based bi-prediction

and the simplest motion estimation algorithm option in HM 16.22 encoder de-

scribed in Chapter 4.

5.3.1 Convolutional layer complexity

Convolutional layers perform two-dimentional (2D) convolution between a given

input matrix and a filter kernel. Consider an input matrix of sizeH×W introduced

to a convolutional layer with filter kernels of size Hk × Wk as given in Fig. 5.7.

The input can have several channels. As an example, in our CNN architecture we

input 2 video frames of size 288× 352 concatenated together as a 2 channel input,

as given in Fig. 5.7(A). Further, a convolutional layer can have multiple filters, but

all these filters have the same dimensions Hk ×Wk. To perform convolution, the

filter moves across the input matrix. This is a 2D shift operation in both x and

y directions and the filter kernel is shifted in stride length S. The stride length is

the number of pixels shifted by the filter kernel over the input matrix. During this

shift operation, the dot product between the overlapped part of the input matrix

and the filter kernel (F) is performed at every shift position. The result of this

dot product computes the features of the output feature map of the convolutional

layer. Consider the feature O1 in the output of the convolutional layer given in

Fig. 5.7(C). The convolution operation between the input matrix and the filter

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 63

Fig. 5.7: Convolution operation: (A) Input to the convolutional layer,
(B) Filter kernel, (C) Output of the convolutional layer.

kernel is given by

O1 =
C∑

n=1

I(n) . F (n) , (5.1)

where C is the number of channels in the input, I(n) and F (n) are the overlapped

part of the input matrix and filter kernel in the channel n respectively, as illustrated

in Fig. 5.7. If we assume that the same filter is used on all channels, the number

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 64

of multiplications (nM,O1) and additions (nA,O1) required to compute one feature

(O1) in the output are given by

nM,O1 = (Hk ×Wk)× C ,

nA,O1 = ((Hk ×Wk)× C)− 1 , (5.2)

where (Hk × Wk) is the number of parameters in the filter kernel. Further, the

height and width of the output feature map of the convolutional layer are respec-

tively given by

Ho =
H −Hk + 2P

S
+ 1 ,

Wo =
W −Wk + 2P

S
+ 1 , (5.3)

where P is the zero-padding added to the input. Zero padding denotes the number

of additional zero pixels added to the input feature map to increase the dimensions

of the input matrix. P has been multiplied by 2 to add these zero pixels in

both sides of the x and y dimensions, of the input matrix. Every filter in the

convolutional layer will generate an output of dimensions Ho × Wo individually.

Suppose the number of filters in the convolutional layer is Co. Then the total

number of features in the layer output isHo×Wo×Co. Therefore, the total number

of multiplications (nM,conv) and additions (nA,conv) performed in the convolutional

layer to generate the output are given by

nM,conv = Hk ×Wk × C ×Ho ×Wo × Co ,

nA,conv = ((Hk ×Wk × C)− 1)×Ho ×Wo × Co . (5.4)

As an example, consider the convolutional layer 1 of the U-Net architecture shown

in Fig. 5.5. The layer parameters are as follows. Input height (H) and width (W)

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 65

are 288 and 352 respectively. Two channels are present in the input (two adjacent

frames) and therefore C = 2. The height (Hk) and width (Wk) of the filter kernal

are 5 and 5 respectively. There are 8 such filters present in the convolutional

layer, so Co = 8. The stride length and padding in this layer are S = 1 and P = 2

respectively. Thus from (5.3), we derive that Ho = 288 and Wo = 352 and from

(5.4) we derive that nM,conv = 40550400 and nA,conv = 39739392.

In the U-Net architecture there are six convolutional layers as illustrated in

Fig. 5.5. i.e. convolutional layer 1, convolutional layer 2, convolutional layer 3,

convolutional layer 4, convolutional layer 5 and convolutional layer 6. Using (5.4)

we can determine the number of addition and multiplication operations required

in each layer, which are summarized in Table 5.3.

5.3.2 Upconvolutional layer complexity

Upconvolutional or transpose-convolutional layer is used to up-sample the input

feature map using a filter kernal. Consider an input of size Hi ×Wi where Hi is

the height and Wi is the width. If this input is given to a upconvolutional layer

with filter kernels of dimensions Hk × Wk, then for every feature in the input

feature map, Hk ×Wk number of output values are computed. This process can

be explained as follows. The nth output generated by the feature I1 in the input

feature map is

O1,n = I1 × Fn, (5.5)

where Fn is the nth parameter in the filter kernel. Therefore, for a single feature

I1 in the input feature map, there will be Hk×Wk output features computed. The

multiplication operation in (5.5) is performed for all features in the input feature

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 66

Fig. 5.8: Upconvolution operation: (A) Input to the upconvolutional
layer, (B) Filter kernal, (C) Output of the upconvolutional layer.

map. Therefore, the total number of multiplication operations performed in the

upconvolution operation is given by

nM,upconv = (Hi ×Wi × Ci)× (Hk ×Wk)× Co, (5.6)

where Hi×Wi×Ci is the total number of features in the input feature map, and Co

is the number of filters in the upconvolutional layer. Consider the case of Hk = 3

and Wk = 3 as given in Fig. 5.8. In this case, a total of 9 values will be derived

from the input feature I1 which are denoted by O1,1 to O1,9 in Fig. 5.8. Similarly,

for the I2 feature, 9 values O2,1 to O2,9 are computed as shown in Fig. 5.8. In this

case the stride length is S = 2.

Consider the shaded feature in the output feature map in Fig. 5.8(C). From the

multiplication between I1 and F3 the output value O1,3 is derived for this feature.

Then, from the multiplication between I2 and F1 another output value O2,1 is

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 67

derived for the same feature. Then, these two output values are added to derive

the shaded feature in Fig. 5.8(C). Therefore, the number of addition operations

performed to derive features of the output can vary from one feature to another

as given in figure Fig. 5.8(C). Therefore, the total number of addition operations

in the upconvolutional layer is derived by calculating the sum of the number of

addition operations per every feature in the output feature map. The size of the

output feature map (Ho ×Wo) generated by an upconvolution layer is given by,

Ho = ((Hi − 1)× S) +Hk − 2P + Po,

Wo = ((Wi − 1)× S) +Wk − 2P + Po, (5.7)

where S is the stride length, P is the zero padding added to the input and Po is

the zero padding added to the output to obtain the required dimensions for the

layer output.

As an example, consider the upconvolutional layer 2 in the U-Net architecture

in Fig. 5.6. The height (Hi) and width (Wi) of the input feature map are 144 and

176 respectively. There are 16 channels (Ci) in the input. This layer consists of 8

filter kernels (Co) with height (Hk) and width (Wk) equal to 5. Then, according to

(5.6) the total number of multiplications (nM,upconv2) performed in upconvolutional

layer 2 is 81100800. The stride length (S), padding (P) and output padding (Po)

in this layer are 2, 2, 1 respectively. Thus, the size of the output feature map

generated in this layer is 288 × 352 according to (5.7). For each pixel position

of this output, the number of additions performed vary as indicated in Fig. 5.8.

Thus, in upconvolutional layer 2 it has been observed that 1, 2, 3, 4, 5 and 8

additions are possible for different output feature derivations. This is illustrated

in Fig. 5.9. This is a 9×11 size output derived from an upconvolutional layer with

the same stride length and filter kernel size as the upconvolutional layer 2. For blue

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 68

features in Fig. 5.9, only a single value is computed using (5.5). For white features,

9 values are computed by (5.5) using different combinations of the input features

and the filter kernel parameters. Therefore, 8 addition operations are performed

to derive the value of the features indicated in white in the output. Taking the

above result into account, we selected the highest number of possible additions

per output feature in each upconvolutional layer. For the upconvolutional layer

2, it is 8 additions per output feature. This is used as the number of additions

(nA,feature) to derive one output feature in the upconvolutional layer 2. Therefore,

the total number of addition operations performed to derive the output in the

upconvolutional layer 2 is given by

nA,upconv = nA,feature ×Number of output features,

= nA,feature × (Ho ×Wo × Co). (5.8)

Thus, using this equation the number of additions for upconvolution layer 2 is

computed as 6488064 additions.

In the U-Net CNN architecture there are two upconvolutional layers as illus-

trated in Fig. 5.6: upconvolutional layer 1 and upconvolutional layer 2. According

to (5.6), the integer multiplication operations performed at each upconvolutional

layer are given in Table 5.3. The number of addition operations for every upcon-

volutional layer shown in this table has been computed by considering the stride

length and filter kernel dimensions specified for the upconvolution operations.

5.3.3 Other operations in U-Net CNN architecture

The other operations performed in the U-Net architecture are max pooling, acti-

vations (ReLU or tanh), and concatenation. Max pooling is a logical operation. In

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 69

Fig. 5.9: Number of additions per output feature for a 9× 11
upconvolution output.

Fig. 5.10: Max pooling operation by a filter kernel of size 2× 2 with
stride length 2.

this architecture, max pooling is used to replace a 2× 2 block of pixel values with

the maximum pixel value as illustrated in Fig. 5.10. Thus, no arithmetic compu-

tations are required in this operation. But max pooling is a form of sub-sampling,

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 70

and it is used to reduce the feature map size in the encoder section of the CNN

architecture. As 2× 2 filter kernels with stride length 2 are used for max pooling

operation throughout the U-Net, the height and width of the input feature maps

are reduced to half of the dimensions at the output as shown in Fig. 5.10.

CNN activation functions are mapping operations. Therefore, in ReLU and

tanh activations, additions or multiplications are not performed. Concatenation

operation is used in the decoder section of the U-Net CNN architecture. This

operation is used to join the output of the upconvolutional layers (in the decoder

section of U-Net) end-to-end channel wise with the convolutional layer outputs (in

the encoder section of U-Net) channeled through skip connections as illustrated

in Fig. 5.6. No computations are performed in the concatenation operation. The

number of output channels in the convolutional layers of the encoder side is set

equal to the number of output channels in parallel upconvolutional layers of the

decoder side (Cconv = Cupconv) in the U-Net architecture. Therefore, the number

of channels is doubled after the concatenation operation as the convolution and

upconvolution outputs with same dimensions (H×W ×C) are fused channel wise

in concatenation operation. This is illustrated in Fig. 5.11.

Considering all the above mentioned operations performed in the U-Net archi-

tecture, the total number of arithmetic operations performed to bi-predict one

video frame are given in Table 5.3. In the max pooling layer 1 and the max pool-

ing layer 2, the height and width of the feature maps are reduced to half of the

input dimensions, but the number of channels remains the same. In the concate-

nation layer 1 and the concatenation layer 2, the number of channels are doubled,

but the height and width of the input feature maps remain the same. The num-

ber of additions and multiplications performed in convolution and upconvolution

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 71

Fig. 5.11: Concatenation operation: (A) Convolutional layer output
feature map, (B) Upconvolutional layer output feature map, (C)
Concatenated feature map.

operations are computed as explained in section 5.3.1 and section 5.3.2 respec-

tively. Therefore, in order to bi-predict one video frame using the U-Net CNN

architecture, about 1.2× 109 additions and multiplications are required.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 72

T
a
b
l
e
5
.3
:
In
te
ge
r
co
m
p
u
ta
ti
on

s
p
er
fo
rm

ed
in

U
-N

et
C
N
N

to
b
i-
p
re
d
ic
t
on

e
in
te
rm

ed
ia
te

fr
am

e
u
si
n
g
th
e
tw

o
ad

ja
ce
n
t
fr
am

es
.

L
ay
er

H
i

W
i

H
k

W
k

S
P
o

P
C

i
C

o
H

o
W

o
M
u
lt
ip
li
ca
ti
on

s
A
d
d
it
io
n
s

C
on

vo
lu
ti
on

-
la
ye
r
1

28
8

35
2

5
5

1
2

2
8

28
8

35
2

40
55
04
00

39
73
93
92

M
ax

p
o
ol
in
g
-
1

28
8

35
2

2
2

2
8

8
14
4

17
6

0
0

C
on

vo
lu
ti
on

-
la
ye
r
2

14
4

17
6

3
3

1
1

8
16

14
4

17
6

29
19
62
88

28
79
07
84

M
ax

p
o
ol
in
g
-
2

14
4

17
6

2
2

2
16

16
72

88
0

0

C
on

vo
lu
ti
on

-
b
ot
tl
en
ec
k
la
ye
r

72
88

3
3

1
1

16
16

72
88

14
59
81
44

14
49
67
68

U
p
co
n
vo
lu
ti
on

-
la
ye
r
1

72
88

3
3

2
1

1
16

16
14
4

17
6

14
59
81
44

32
44
03
2

C
on

ca
te
n
at
io
n
-
1

14
4

17
6

16
32

14
4

17
6

0
0

C
on

vo
lu
ti
on

-
la
ye
r
3

14
4

17
6

3
3

1
1

32
16

14
4

17
6

11
67
85
15
2

11
63
79
64
8

U
p
co
n
vo
lu
ti
on

-
la
ye
r
2

14
4

17
6

5
5

2
1

2
16

8
28
8

35
2

81
10
08
00

64
88
06
4

C
on

ca
te
n
at
io
n
-
2

28
8

35
2

8
16

28
8

35
2

0
0

C
on

vo
lu
ti
on

-
la
ye
r
4

28
8

35
2

5
5

1
2

16
8

28
8

35
2

32
44
03
20
0

32
35
92
19
2

C
on

vo
lu
ti
on

-
la
ye
r
5

28
8

35
2

5
5

1
2

8
1

28
8

35
2

20
27
52
00

20
17
38
24

T
ot
al

co
m
p
u
ta
ti
on

s
64
15
07
32
8

55
29
04
70
4

11
94
41
20
32

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 73

5.4 U-Net CNNArchitecture with Integer Arith-

metic Only Operations

For real-time video coding, low computational complexity of the video encoder

is a critical requirement. As such state-of-the-art video codecs rely on integer

arithmetic for all time consuming operations such as motion estimation. From

this perspective, floating-point CNNs may not be competitive with efficient inte-

ger only motion estimation algorithms. To this end, in this section we investigate

the use of integer only CNNs for video frame bi-prediction. There is also another

motivation for using integer operations in the implementation of a video encoder.

Floating-point operations tend to produce hardware dependent results whereas in-

teger operations typically do not. Thus an integer only video encoder will perform

consistently across all hardware platforms.

5.4.1 CNN quantization in Pytorch

CNN quantization refers to the representation of weights, bias values and acti-

vation outputs using finite-precision integer values in a CNN. In this case, all

additions and multiplications are carried out on integer variables resulting in an

increase in the speed of execution. However, this results in an inevitable loss

of accuracy and hence a loss of prediction accuracy compared to a CNN using

floating-point representations.

The Pytorch platform used in our study implements CNN models using high

precision 32-bit floating point arithmetic (FP32). However, Pytorch does support

8-bit arithmetic (INT8) as well [73]. In general, there are three approaches to

generating an integer precision CNN model in Pytorch.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 74

1. Dynamic quantization: This is the simplest form of quantization where the

weights are quantized ahead of time but the activations are dynamically quantized

during the operation of the CNN, referred to as the inference stage. This is used

for situations where the model execution time is dominated by loading weights

from memory rather than computing the matrix multiplications.

2. Post training static quantization: This is the most commonly used form of

quantization where the weights are quantized ahead of time and the scale factor

and bias for the activation tensors are pre-computed based on observing the be-

havior of the model during a calibration process. Static quantization is mainly

used when both memory bandwidth and savings in computations are significant

in a CNN.

3. Quantization-aware training: During training, all calculations are done in

floating point, with fake quantization modules used to model the effects of quan-

tization by clamping and rounding to simulate the effects of INT8. After model

conversion, weights and activations are quantized. It is commonly used with CNNs

and yields higher accuracy compared to other methods.

In this thesis we use the simpler approach of static quantization to convert the

previously trained and validated floating point CNN model to integer arithmetic.

Let q be a finite-precision unsigned binary representation of the real-value r.

Then, the quantization operation can be described by the affine mapping given

in Fig. 5.12, where s is a scaling factor that maps the range of the binary repre-

sentation to that of the real representation, and Z is an off-set representing the

value zero in the binary representation. This ensure that the real value zero is

quantized to the binary representation 0, which allows efficient implementation of

the zero-padding operation. The off-set Z has the same finite-precision resolution

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 75

𝑞𝑚𝑎𝑥𝑞𝑚𝑖𝑛

(unsigned
integer)

(real)

q

r
𝑟𝑚𝑎𝑥𝑟𝑚𝑖𝑛

= 𝑠 (𝑞𝑚𝑎𝑥 − 𝑍)= 𝑠 (𝑞𝑚𝑖𝑛 − 𝑍)

𝑍

0

Fig. 5.12: Quantization mapping.

as q. On the other hand, the scale factor s has to be represented as a floating

point value to prevent the severe degradation of the accuracy of computations.

However, as described in section 5.4.1.1 it is possible to implement arithmetic

operations without using such floating point representations.

In our research, we will consider 8-bit binary interpretations of real parameters

for a high computational efficiency. However quantizing some bias variables to

32-bit accuracy is required for acceptable performance, see section 5.4.1.2.

5.4.1.1 Integer-arithmetic-only matrix multiplication

Consider the multiplication of two square N ×N matrices of real numbers r1 and

r2, to compute r3 = r1r2. We denote the entries of each of these matices rα

where α = 1, 2, or 3 as r
(i,j)
α for 1 ≤ i, j ≤ N , and the quantization parameters

with which they are quantized as Sα and Zα. The quantized entries are denoted

by q
(i,j)
α . Then according to quantization mapping

r(i,j)α = Sα(q
(i,j)
α − Zα),

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 76

and using this, the definition of matrix multiplication can be written as

S3(q
(i,k)
3 − Z3) =

N∑
j=1

S1(q
(i,j)
1 − Z1) S2(q

(j,k)
2 − Z2),

which can be rewritten as

q
(i,k)
3 = Z3 + M

N∑
j=1

(q
(i,j)
1 − Z1)(q

(j,k)
2 − Z2), (5.9)

where the multiplier M is defined as

M =
S1S2

S3

.

In (5.9) the only non-integer is the multiplier M . As a constant that depends only

on the quantization scales S1, S2, and S3, it can be computed offline. It has been

empirically found that M always lies in the interval (0, 1) [74], and can therefore

be expressed in the normalized form

M = 2−nM0,

where M0 is in the interval [0.5, 1) and n is a non-negative integer. The normalized

multiplier M0 now lends itself well to being expressed as a fixed point multiplier.

For example, if 32-bit integers (INT32) are used (depends on the hardware capa-

bility), the integer representing M0 is the INT32 value nearest to 231M0. Since

M0 ≥ 0.5, this value is always at least 230 and will therefore always have at least

30 bits of relative accuracy. Multiplication by M0 can thus be implemented as a

fixed point multiplication in Pytorch software. Multiplication by 2−n can be im-

plemented with an efficient bit shift, but accurate round-to-nearest behavior can

be expected from this operation.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 77

5.4.1.2 Implementation of a fused layer

Following [74], in this section we explicitly define the data types of all quantities

involved and modify the quantized matrix multiplication in (5.9) to merge the bias

addition and activation function evaluation directly into it. Consider q1 matrix

to be the weights and the q2 matrix to be the activations. Both the weights

and activations are 8-bit unsigned integers (UINT8), with modified zero-points

we could have similarly chosen INT8. Accumulating products of UINT8 values

requires a 32-bit accumulator, and we choose a signed type for the accumulator.

The sum in (5.9) is thus of the form

INT32 = INT32 + UINT8 × UINT8.

In order to have the quantized bias-addition be the addition of an INT32 bias into

this INT32 accumulator, the bias-vector is quantized such that:

� INT32 is used as the quantized data type.

� 0 is used as the zero-point Zbias.

� Scale Sbias is of the same data type as that of the accumulators, which is the

product of the scales of the weights and input activations.

In the notation of section 5.4.1.1,

Sbias = S1S2,

Zbias = 0.

Although the bias-vectors are quantized as 32-bit values, they account for only a

tiny fraction of the parameters in a CNN. Furthermore, the use of higher precision

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 78

for bias vectors meets a real need: as each bias-vector entry is added to many

output activations, any quantization error in the bias-vector tends to act as an

overall bias (i.e. an error term with non zero mean), which must be avoided in

order to preserve good end-to-end CNN accuracy.

With the final value of the INT32 accumulator, there remain three things left to

do: scale down to the final scale used by the 8-bit output activations, cast down to

UINT8 and apply the activation function to yield the final 8-bit output activation.

The down-scaling corresponds to multiplication by the multiplier M in (5.9). As

explained in section 5.4.1.1, it is implemented as a fixed-point multiplication by a

normalized multiplier M0 and a rounding bit-shift. Afterwards, a saturating cast

to UINT8, saturating to the range [0, 255] is performed. We focus on activation

functions that are mere clamps such as ReLU. Fusing of mathematical functions

are further discussed in [74].

Static quantization quantizes weights to INT8 and activations to UINT8. To

prepare the model, Pytorch modules QuantStub and DeQuantStub are used in

the Network f3. These modules are used to quantize the inputs and de-quantize

the output of the final layer. Activations are fused to the preceding layers where

possible, to improve both model accuracy and performance. Convolution oper-

ation was fused with ReLU operation at each layer. Quantization configuration

was set to qnnpack, which specifies how weights and activations should be quan-

tized. Modules were added to observe the activation tensors during calibration

stage using torch.quantization.prepare() method. Then the model was calibrated

using the validation dataset. Finally, the calibrated model was converted with the

torch.quantization.convert() method. This method quantizes the weights, com-

putes and stores the scale and bias value to be used in each activation tensor, and

replaces key operators with quantized implementations.

Chapter 5. Low Complexity CNN Architecture for Video Frame Bi-Prediction 79

In the next chapter, the bi-prediction performance and encoding times of floating-

point CNN and integer arithmetic only CNN are experimentally compared.

Chapter 6

Experimental Results and

Discussion

The main objective of this thesis has been to investigate the possibility of reducing

the computation complexity of a video codec by replacing the classical motion

estimation-based bi-prediction by the U-Net CNN described in Chapter 5. This

chapter presents experimental results which compare the prediction performance

and encoding times of the CNN approach with the state-of-the-art low-complexity

TZ search motion estimation algorithm described in section 4.3.4.

The performance evaluations are conducted in this chapter as follows. In section

6.1 the bi-prediction performance of floating point CNN and integer arithmetic

only CNN algorithms are evaluated and compared. The RD performance of the

encoder with different bi-prediction techniques are evaluated in section 6.2. In

section 6.3, the complexity of CNN based bi-prediction methods are compared

with the motion estimation.

80

Chapter 6. Experimental Results and Discussion 81

0 10 20 30 40 50 60 70 80 90

GOP

30

31

32

33

34

35

36

37

38

39

P
S

N
R

 (
d
B

)

FPN CNN

INT CNN

(a)

0 10 20 30 40 50 60 70 80 90

GOP

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

S
S

IM

FPN CNN

INT CNN

(b)

Fig. 6.1: GOP-wise bi-prediction performance for Football sequence:
(A) PSNR, (B) SSIM.

6.1 Performance Evaluation of U-Net CNN Ar-

chitecture

In this section, we experimentally evaluate the prediction performance of the U-

Net CNN architecture Network f3 described in section 5.2. Both floating point

and integer-only (8-bit integer arithmetic) U-Net architectures are evaluated and

compared.

The performance of these algorithms were evaluated using 5 different video

sequences from Xiph.org video test media [75]. Football, Mobile, News, Flower and

Stefan are the selected video sequences. These sequences were chosen as they cover

different types of motion, speeds, objects, camera motion, and scene changes. We

consider bi-prediction of frames inside a GOP in a hierarchical manner as shown

in Fig. 5.1. As our goal is to compare the reduced complexity integer-only U-Net

with the full-complexity floating point U-Net, in this section we only consider the

hierarchical predictions that are initiated from the original (uncoded) I frames.

This means that all results in this section applies to open-loop prediction.

Chapter 6. Experimental Results and Discussion 82

0 10 20 30 40 50 60 70 80

GOP

26.8

26.9

27

27.1

27.2

27.3

27.4

P
S

N
R

 (
d
B

)

FPN CNN

INT CNN

(a)

0 10 20 30 40 50 60 70 80

GOP

0.82

0.825

0.83

0.835

0.84

0.845

0.85

S
S

IM

FPN CNN

INT CNN

(b)

Fig. 6.2: GOP-wise bi-prediction performance for Mobile sequence: (A)
PSNR, (B) SSIM.

0 10 20 30 40 50 60 70 80

GOP

40

40.1

40.2

40.3

40.4

40.5

40.6

40.7

40.8

40.9

P
S

N
R

 (
d
B

)

FPN CNN

INT CNN

(a)

0 10 20 30 40 50 60 70 80

GOP

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

0.97

S
S

IM
FPN CNN

INT CNN

(b)

Fig. 6.3: GOP-wise bi-prediction performance for News sequence: (A)
PSNR, (B) SSIM.

Figs. 6.1 to 6.5 compare the PSNR and SSIM performance of the two U-Net

architectures. For the simplicity of presentation, these figures show the PSNR and

SSIM averaged over each GOP in the video sequence, where a GOP consists of 4

frames as shown in Fig. 5.1. The per-GOP PSNR and SSIM refer to the averages

over the three predicted frames B1, B2, and B3. The bi-prediction performance

of the floating point CNN is evaluated by PSNR and SSIM metrics as given in

Table 6.1. For video with 8-bit resolution a PSNR of 30 dB is considered good.

Chapter 6. Experimental Results and Discussion 83

0 10 20 30 40 50 60 70

GOP

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

P
S

N
R

 (
d
B

)

FPN CNN

INT CNN

(a)

0 10 20 30 40 50 60 70

GOP

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

S
S

IM

FPN CNN

INT CNN

(b)

Fig. 6.4: GOP-wise bi-prediction performance for Flower sequence: (A)
PSNR, (B) SSIM.

0 5 10 15 20 25

GOP

30

30.1

30.2

30.3

30.4

30.5

30.6

30.7

P
S

N
R

 (
d
B

)

FPN CNN

INT CNN

(a)

0 5 10 15 20 25

GOP

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

S
S

IM
FPN CNN

INT CNN

(b)

Fig. 6.5: GOP-wise bi-prediction performance for Stefan sequence: (A)
PSNR, (B) SSIM.

Accordingly, floating point CNN based bi-prediction performs well in Football,

and Stefan video sequences and the bi-prediction performance in News sequence is

nearly transparent. The other two sequences have average performance according

to the PSNR evaluation. The SSIM performance of the floating point CNN bi-

prediction given in Table 6.1 is fairly good for all the sequences. A low SSIM

performance is observed for the Flower sequence, for which the PSNR was also the

lowest compared to other sequences. Next, the performance loss in using integer

Chapter 6. Experimental Results and Discussion 84

Table 6.1: Average bi-prediction performance of the floating point
CNN.

Sequence PSNR (dB) SSIM
Football 32.4 0.71
Mobile 27.1 0.75
News 40.8 0.70
Flower 26.1 0.54
Stefan 38.4 0.72

Table 6.2: Loss in bi-prediction performance of the integer arithmetic
CNN compared to the floating point CNN.

Sequence PSNR loss (dB) SSIM loss (%)
Football 0.2 0.5
Mobile 0.1 0
News 0.6 1
Flower 0 0
Stefan 0.1 0.5

arithmetic only CNN for bi-prediction in place of floating point CNN is given in

Table 6.2. The PSNR performance loss and SSIM performance loss for any given

video sequence are below 0.6 dB and 1% respectively. For some sequences, no

performance loss is observed with PSNR or SSIM metrics. Meaningful difference

in visual quality can be observed if the PSNR and SSIM performance loss is greater

than 0.5 dB and 1% respectively. Therefore, we can safely conclude that switching

the bi-prediction architecture from floating point CNN to integer arithmetic only

CNN does not result in a considerable performance loss.

To better understand the bi-prediction performance in using the CNN based

architectures, the visualizations of bi-predicted frames of the video sequences are

given in Figs. 6.6 to 6.10. The visual quality of bi-predictions from both CNN

based architectures are very similar. Therefore, a significant difference in visual

Chapter 6. Experimental Results and Discussion 85

(a) (b) (c)

Fig. 6.6: Bi-predicted frames in Football sequence: (A) Original frame,
(B) Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN.

(a) (b) (c)

Fig. 6.7: Bi-predicted frames in Mobile sequence: (A) Original frame,
(B) Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN.

(a) (b) (c)

Fig. 6.8: Bi-predicted frames in News sequence: (A) Original frame,
(B) Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN.

performance can not be observed between floating point CNN and integer CNN

based bi-predictions.

Chapter 6. Experimental Results and Discussion 86

(a) (b) (c)

Fig. 6.9: Bi-predicted frames in Flower sequence: (A) Original frame,
(B) Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN.

(a) (b) (c)

Fig. 6.10: Bi-predicted frames in Stefan sequence: (A) Original frame,
(B) Bi-predicted frame from floating point CNN, (C) Bi-predicted frame
from integer CNN.

6.2 Video Coding Experiments

6.2.1 Comparison of RD performance

In this section we evaluate and compare the performance of video compression

using the HM 16.22 video encoder with motion estimation based bi-prediction and

the same video encoder with motion estimation replaced by U-Net CNN based

bi-prediction. When using U-Net based bi-prediction, the prediction error frames

have been encoded as still frames (I-frames). In the following we refer to motion

estimation based coding as ME, floating point U-Net based coding as FPN CNN

Chapter 6. Experimental Results and Discussion 87

200 300 400 500 600 700 800 900

Rate

26

27

28

29

30

31

32

33

34

P
S

N
R

 (
d
B

)

INT CNN

FPN CNN

ME

(a)

200 300 400 500 600 700 800 900 1000 1100

Rate

20

21

22

23

24

25

26

27

28

P
S

N
R

 (
d
B

)

INT CNN

FPN CNN

ME

(b)

200 300 400 500 600 700 800 900 1000 1100 1200

Rate

31

32

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
d
B

)

INT CNN

FPN CNN

ME

(c)

100 200 300 400 500 600 700 800 900 1000

Rate

20

21

22

23

24

25

26

27

P
S

N
R

 (
d
B

)

INT CNN

FPN CNN

ME

(d)

200 300 400 500 600 700 800 900 1000 1100 1200

Rate

21

22

23

24

25

26

27

28

29

30

31

P
S

N
R

 (
d
B

)

INT CNN

FPN CNN

ME

(e)

Fig. 6.11: Bit rate versus PSNR curves: (A) Football sequence, (B)
Mobile sequence, (C) News sequence, (D) Flower sequence, (E) Stefan
sequence.

and integer U-Net based coding as INT CNN.

Chapter 6. Experimental Results and Discussion 88

Table 6.3: Comparison of BD-PSNR performance between video
codecs based on different bi-prediction methods.

Sequence FPN CNN to INT CNN FPN CNN to ME INT CNN to ME
BD-PSNR (dB) BD-PSNR (dB) BD-PSNR (dB)

Football -0.2 -0.6 -0.4
Mobile -0.1 -1.3 -1.3
News -0.5 -1.6 -1.1
Flower -0.1 -0.7 -0.7
Stefan -0.1 -1.5 -1.4

Fig. 6.11 shows the RD performance for the five video sequences we have con-

sidered. These results indicate that CNN-based bi-prediction consistently outper-

forms, the motion-estimation by noticeable margins. The main reason for this

RD performance gain is that, with motion estimation, a part of the output bit-

rate must be used to signal the motion information to the decoder, which is not

required when CNN based prediction is used.

Table 6.3 summarizes the relative performance gains among the three coding

methods in terms of the BD-PSNR. The BD-PSNR drops by 0.2 dB for the Football

sequence in changing the bi-prediction algorithm from FPN CNN to INT CNN.

For the same sequence the BD-PSNR drops by 0.4 dB when the bi-prediction

algorithm is changed from INT CNN to ME. By considering performance for the 5

sequences, we can observe that, a maximum reduction of 0.5 dB in BD-PSNR has

occurred in changing the bi-prediction architecture from FPN CNN to INT CNN.

But in changing the bi-prediction method from FPN CNN to ME, the maximum

reduction in PSNR for the reconstructed video sequence is 1.6 dB. Thus, we can

observe that even in using INT CNN for bi-prediction, a PSNR performance gain

can be achieved compared to the motion estimation based bi-prediction at the

same bit-rate.

Chapter 6. Experimental Results and Discussion 89

200 300 400 500 600 700 800 900

Rate

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

S
S

IM

INT CNN

FPN CNN

ME

(a)

200 300 400 500 600 700 800 900 1000 1100

Rate

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
S

IM

INT CNN

FPN CNN

ME

(b)

200 300 400 500 600 700 800 900 1000 1100 1200

Rate

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

S
S

IM

INT CNN

FPN CNN

ME

(c)

100 200 300 400 500 600 700 800 900 1000

Rate

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S
S

IM

INT CNN

FPN CNN

ME

(d)

200 300 400 500 600 700 800 900 1000 1100 1200

Rate

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

S
S

IM

INT CNN

FPN CNN

ME

(e)

Fig. 6.12: Bit rate versus SSIM curves: (A) Football sequence, (B)
Mobile sequence, (C) News sequence, (D) Flower sequence, (E) Stefan
sequence.

Chapter 6. Experimental Results and Discussion 90

Table 6.4: Comparison of BD-SSIM performance between the codecs
based on different bi-prediction methods.

Sequence FPN CNN to INT CNN FPN CNN to ME INT CNN to ME
BD-SSIM BD-SSIM BD-SSIM

Football 0 -0.05 -0.05
Mobile -0.01 -0.08 -0.08
News -0.02 -0.05 -0.04
Flower 0 -0.06 -0.06
Stefan -0.01 -0.09 -0.08

SSIM values achieved with video coding, using the three bi-prediction methods

are given in Fig. 6.12. The SSIM results follow the same pattern as the PSNR re-

sults. The FPN-CNN method performs the best with all 5 video sequences at every

bit-rate tested. Consider the SSIM performance for the Football sequence given in

Fig. 6.12(A). At the average bit-rate of 820 kbps, FPN-CNN and INT-CNN coding

reaches a SSIM performance of 0.71 and 0.70 respectively. But the SSIM achieved

by ME based coding is only 0.68. In both Mobile sequence (Fig. 6.12(B)) and

Stefan sequence (Fig. 6.12 (E)), about 10% of SSIM performance reduction can be

observed in ME based coding compared to CNN based coding. If we consider the

Flower sequence SSIM performance given in Fig. 6.12 (D), both INT CNN coding

and FPN CNN coding perform the same at every bit rate considered.

BD-SSIM performance between FPN CNN, INT CNN and ME based codecs at

a fixed bit-rate are summarized in Table 6.4. FPN CNN coding has the highest

BD-SSIM for all 5 sequences. When the bi-prediction architecture is changed from

FPN CNN to INT CNN, the reduction in average SSIM is less than 0.01 which

is a negligible performance loss in visual analysis. But a significant reduction in

average SSIM, greater than 0.06 can be observed in using ME based coding, when

compared to FPN CNN coding. Therefore, even INT CNN coding performs better

than ME based coding at the same bit-rate, according to BD-SSIM evaluation.

Chapter 6. Experimental Results and Discussion 91

Table 6.5: Comparison of bit rate savings between the codecs based on
different bi-prediction methods.

Sequence FPN CNN to INT CNN FPN CNN to ME INT CNN to ME
BD-BR (%) BD-BR (%) BD-BR(%)

Football 5.2 16.4 11.9
Mobile 2.5 33.1 31.6
News 10.6 25.6 19.7
Flower 1.1 21.8 21
Stefan 1.3 24.6 23.7

Next we evaluated the BD-BR or the bit-rate savings in using different bi-

prediction approaches. Table 6.5 illustrates the bit-rate saving achieved by chang-

ing the bi-prediction method while maintaining the same video quality. For exam-

ple, FPN CNN based coding can save about 16% in bit-rate over ME based coding

for the Football sequence. As the Table 6.5 shows, the CNN-based bi prediction

can result in a greater saving of bit-rate compared to ME based bi-prediction for

the same video quality. The additional bit-rate penalty in ME based coding is due

to the fact that with ME, a fraction of the output bit-rate has to be used to signal

motion information to the decoder.

In summary, our BD-PSNR, BD-SSIM, and BD-BR evaluations have shown that

the CNN-based bi-prediction improves the RD performance of the HM 16.22 video

encoder. Furthermore, the performance loss resulting from restricting the CNN to

integer arithmetic is only marginal. In the next section, we present experimental

results demonstrating that the computational complexity of the video encoder can

be reduced by using an integer CNN for bi-prediction.

Chapter 6. Experimental Results and Discussion 92

Table 6.6: Number of integer arithmetic operations required to predict
one video frame.

Algorithm
Motion estimation bi-prediction CNN

Highest complexity Lowest complexity bi-prediction
Total operations 9.5× 109 6× 109 1.2× 109

6.3 Comparison of Computational Complexity

In section 4.4, we determined the number of addition and multiplication operations

involved in a reduced complexity motion estimation based bi-prediction algorithm

that is available in the HEVC standard HM 16.22 encoder. In section 5.3, we

determined the number of operations that will be required for bi-prediction using

U-Net CNN architecture. The results are summarized in Table 6.6. These numbers

predict that motion estimation may require about 5 − 8 times more arithmetic

operations than the CNN based approach to predict a single video frame. While it

is difficult to experimentally verify the number of arithmetic operations involved

in the HM 16.22 encoders motion estimation algorithm, it is possible to get a sense

of computational complexity by measuring the time taken by the encoder to code

a sequence of video frames.

Table 6.7 presents the time taken by the HM 16.22 encoder for encoding the 5

test video sequences. Note that the encoder parameters used in this experiment,

are common to all three methods. Therefore, the differences in encoding time are

due to bi-prediction of B-frames and transform coding the corresponding predic-

tion errors. As can be seen from Table 6.7, both floating point CNN and integer

arithmetic only CNN can perform bi-prediction faster than the simplest, reduced

complexity motion estimation algorithm available in HM 16.22 encoder.

As explained in Chapter 4, the exhaustive search for PU mode decision and

Chapter 6. Experimental Results and Discussion 93

Table 6.7: Encoding times for HM 16.22 encoder with ME, and CNN
based bi-predictions.

Sequence
Average bit Encoding time (s)
rate (kbps) ME FPN CNN INT CNN

218 534.2 403.3 218.4
Football 345 532.7 422.1 348.5

(357 frames) 540 532.7 455.2 390.3
820 591.9 433.3 390.4
234 444.1 320.3 282.2

Mobile 425 453.5 333.5 296.5
(297 frames) 710 500.7 363.1 322.4

1030 590.7 397.3 358.1
230 392.8 303.3 271.5

News 433 441.4 341.8 303.3
(297 frames) 620 459.7 333.1 301.4

1070 475.8 392.6 346.2
194 359.1 287.5 241.5

Flower 386 377.8 298.6 254.6
(249 frames) 655 390.3 314.7 281.1

947 417.3 327.1 284.6
213 133.2 115.4 96.6

Stefan 453 141.3 127.8 74.9
(89 frames) 771 139.3 128.3 108.6

1090 154.4 137.9 116.6

advanced features in motion vector determination are both highly computationally

expensive operations in the motion estimation process. This causes an increase

in the encoding time during the bi-prediction. With CNNs, a high computational

effort is required during the off-line training phase. The computational complexity

involved using the trained CNN for bi-prediction inside the video coding-loop is

however much lower. As can be seen from Table 6.7, converting the trained CNN

from 32-bit floating point arithmetic to 8-bit integer arithmetic leads to a further

reduction in encoding times.

Chapter 7

Conclusion and Future Work

7.1 Contributions and Conclusions

1. Inter-frame prediction based on motion estimation is considered as the most

computationally expensive and time consuming operation in state-of-the-art

video coding standards. In this thesis, a low complexity CNN architecture

has been investigated which is inspired by the previously proposed U-Net

CNN architecture. In experimental evaluations, it was found that this algo-

rithm is able to provide satisfactory prediction performance.

2. Majority of CNN architectures reported in the literature, including the orig-

inal U-Net use floating point arithmetic. Floating point arithmetic costs

much more computing power compared to integer arithmetic. In this thesis,

an integer arithmetic only CNN has been derived by post training static

quantization of the floating point CNN. Only a minor video quality perfor-

mance reduction was observed in this conversion. When used in a video

encoder for bi-prediction of B-frames, the encoding time achieved with the

94

Chapter 7. Conclusion and Future Work 95

integer only CNN was observed to be about 8% less than that of the floating

point version.

3. We have analyzed the computational complexity of both motion estimation

and CNN based bi-prediction and determined the number of additions and

multiplications required in each algorithm. Our results show that CNN based

approach involves much less computational complexity than the motion es-

timation algorithm.

4. The experimental results show that the proposed integer arithmetic CNN

based bi-prediction algorithm saves a considerable computational cost while

maintaining a better video quality compared to the simplest motion esti-

mation model available in the HEVC standard HM 16.22 video encoder.

Further, the proposed bi-prediction algorithm has shown to improve the RD

performance.

7.2 Future Work

1. The experimental and analytical results in Chapter 6 highlight that low

complexity bi-prediction algorithms for video coding can be derived using

U-Net CNN architectures. Different CNN architectures must be further

analyzed to identify whether a higher reduction of complexity is possible

for bi-prediction process in video coding.

2. Post training static quantization method is employed to convert a trained

floating point CNN architecture to integer arithmetic CNN in this thesis.

Quantization aware training method which has greater accuracy, can be

used to convert a floating point CNN to integer arithmetic CNN during the

training time.

Chapter 7. Conclusion and Future Work 96

3. The bi-prediction accuracy of CNN based algorithm and motion estimation

based algorithm are not compared in this thesis. This comparison would be

a useful step to further analyze and improve the bi-prediction performance

of the video coding process.

Appendix A

Motion Vector Scaling

Let A and B be the temporal MVP candidates for the current block derived from

the AMVP process. Before adding these candidates to the AMVP candidate list,

it is checked whether any of the candidate blocks contain a reference index that is

equal to the reference index of the current block. If reference indices from candidate

blocks are pointing to a different reference picture than the reference index of the

current block, the associated motion vector cannot be used as is. Therefore, the

motion vectors need to be scaled according to the temporal distances between

the candidate reference picture and the current reference picture. The candidate

motion vector mvcand is scaled according to a scale factor Sf as

mv = sign(mvcand . Sf) . ((|mvcand . Sf | + 27) >> 8),

97

Appendix A. Motion Vector Scaling 98

where the scale factor is calculated as

Sf = clip(−212, 212 − 1, (tb . tx + 25) >> 6),

tx =
214 + | td

2
|

td
,

based on the temporal distance between the current picture and the reference

picture of the candidate block td and the temporal distance between the current

picture and the reference picture of the current block tb. The temporal distance is

expressed in terms of the difference between the picture order count values which

define the display order of the pictures. This factoring allows pre-computation of

scale factor at PU level since it only depends on the reference picture list structure

signaled in the PU header.

.

Bibliography

[1] “Cisco annual internet report - cisco annual internet report

(2018–2023) white paper.” https://www.cisco.com/c/en/us/solutions/

collateral/executive-perspectives/annual-internet-report/

white-paper-c11-741490.html, Mar 2020.

[2] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, “Developments

in international video coding standardization after AVC, with an overview

of versatile video coding (VVC),” Proceedings of the IEEE, vol. 109, no. 9,

pp. 1463–1493, 2021.

[3] S. Xia, W. Yang, Y. Hu, and J. Liu, “Deep inter prediction via pixel-wise mo-

tion oriented reference generation,” in 2019 IEEE International Conference

on Image Processing (ICIP), pp. 1710–1774, 2019.

[4] A. Puri, X. Chen, and A. Luthra, “Video coding using the H.264/MPEG-

4 AVC compression standard,” Signal Processing: Image Communication,

vol. 19, no. 9, pp. 793–849, 2004.

[5] K. Saurty, P. C. Catherine, and K. M. S. Soyjaudah, “Inter prediction com-

plexity reduction for HEVC based on residuals characteristics,” International

Journal of Advanced Computer Science and Applications, vol. 7, no. 10, 2016.

99

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

References 100

[6] I. Chakrabarti, Motion Estimation for Video Coding Efficient Algorithms and

Architectures. Studies in Computational Intelligence, 590, Cham: Springer

International Publishing, 1st ed. 2015. ed., 2015.

[7] S. Liu, W.-H. Peng, and L. Yu, “Guest editorial introduction to special sec-

tion on learning-based image and video compression,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 1785–1788,

2020.

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. v. d.

Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with con-

volutional networks,” in 2015 IEEE International Conference on Computer

Vision (ICCV), pp. 2758–2766, 2015.

[9] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive con-

volution,” in 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 2270–2279, 2017.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Commun. ACM, vol. 60, p. 84–90, May

2017.

[11] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame synthesis

using deep voxel flow,” in 2017 IEEE International Conference on Computer

Vision (ICCV), pp. 4473–4481, 2017.

[12] H. Zhao, D. Liu, and H. Li, “Efficient integer-arithmetic-only convolutional

neural networks,” CoRR, vol. abs/2006.11735, 2020.

[13] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Performance

and computational complexity assessment of high-efficiency video encoders,”

References 101

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,

no. 12, pp. 1899–1909, 2012.

[14] J. Leng, L. Sun, T. Ikenaga, and S. Sakaida, “Content based hierarchical fast

coding unit decision algorithm for hevc,” in 2011 International Conference

on Multimedia and Signal Processing, vol. 1, pp. 56–59, 2011.

[15] J. Xiong, H. Li, Q. Wu, and F. Meng, “A fast hevc inter CU selection method

based on pyramid motion divergence,” IEEE Transactions on Multimedia,

vol. 16, no. 2, pp. 559–564, 2014.

[16] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC based

on bayesian decision rule,” in 2012 Picture Coding Symposium, pp. 453–456,

2012.

[17] M. U. K. Khan, M. Shafique, and J. Henkel, “An adaptive complexity re-

duction scheme with fast prediction unit decision for HEVC intra encoding,”

in 2013 IEEE International Conference on Image Processing, pp. 1578–1582,

2013.

[18] H.-M. Yoo and J.-W. Suh, “Fast coding unit decision algorithm based on inter

and intra prediction unit termination for HEVC,” in 2013 IEEE International

Conference on Consumer Electronics (ICCE), pp. 300–301, 2013.

[19] H. Zhang and Z. Ma, “Fast intra mode decision for high efficiency video coding

(HEVC),” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 24, no. 4, pp. 660–668, 2014.

[20] J. Vanne, M. Viitanen, and T. D. Hämäläinen, “Efficient mode decision

schemes for HEVC inter prediction,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 24, no. 9, pp. 1579–1593, 2014.

References 102

[21] L. Shen, Z. Zhang, and Z. Liu, “Effective CU size decision for HEVC intracod-

ing,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4232–4241,

2014.

[22] K. Miyazawa, T. Murakami, A. Minezawa, and H. Sakate, “Complexity re-

duction of in-loop filtering for compressed image restoration in HEVC,” in

2012 Picture Coding Symposium, pp. 413–416, 2012.

[23] C.-S. Park, “Edge-based intramode selection for depth-map coding in 3D-

HEVC,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 155–162,

2015.

[24] Q. Hu, Z. Shi, X. Zhang, and Z. Gao, “Fast HEVC intra mode decision based

on logistic regression classification,” in 2016 IEEE International Symposium

on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–4, 2016.

[25] D. Liu, X. Liu, and Y. Li, “Fast CU size decisions for HEVC in-

tra frame coding based on support vector machines,” in 2016 IEEE

14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th

Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on

Big Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), pp. 594–597, 2016.

[26] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine

learning-based coding unit depth decisions for flexible complexity allocation

in high efficiency video coding,” IEEE Transactions on Image Processing,

vol. 24, no. 7, pp. 2225–2238, 2015.

[27] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz, “Fast

HEVC encoding decisions using data mining,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 25, no. 4, pp. 660–673, 2015.

References 103

[28] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, “Binary and

multi-class learning based low complexity optimization for HEVC encoding,”

IEEE Transactions on Broadcasting, vol. 63, no. 3, pp. 547–561, 2017.

[29] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “CU partition mode de-

cision for HEVC hardwired intra encoder using convolution neural network,”

IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5088–5103, 2016.

[30] T. Laude and J. Ostermann, “Deep learning-based intra prediction mode

decision for HEVC,” in 2016 Picture Coding Symposium (PCS), pp. 1–5,

2016.

[31] S. Kuanar, K. R. Rao, M. Bilas, and J. Bredow, “Adaptive CU mode selection

in HEVC intra prediction: A deep learning approach,” Circuits, systems, and

signal processing, vol. 38, no. 11, pp. 5081–5102, 2019.

[32] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing complexity

of hevc: A deep learning approach,” IEEE Transactions on Image Processing,

vol. 27, no. 10, pp. 5044–5059, 2018.

[33] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[34] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high

efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[35] P. Yin, A. Tourapis, and J. Boyce, “Localized weighted prediction for video

coding,” in 2005 IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 4365–4368 Vol. 5, 2005.

References 104

[36] L. Li, H. Li, Z. Lv, and H. Yang, “An affine motion compensation framework

for high efficiency video coding,” in 2015 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 525–528, 2015.

[37] X. Zhang, R. Xiong, W. Lin, J. Zhang, S. Wang, S. Ma, and W. Gao, “Low-

rank-based nonlocal adaptive loop filter for high-efficiency video compres-

sion,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 27, no. 10, pp. 2177–2188, 2017.

[38] X. Zhang, W. Lin, R. Xiong, X. Liu, S. Ma, and W. Gao, “Low-rank

decomposition-based restoration of compressed images via adaptive noise es-

timation,” IEEE Transactions on Image Processing, vol. 25, no. 9, pp. 4158–

4171, 2016.

[39] X. Zhang, R. Xiong, W. Lin, S. Ma, J. Liu, and W. Gao, “Video com-

pression artifact reduction via spatio-temporal multi-hypothesis prediction,”

IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6048–6061, 2015.

[40] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep

convolutional networks,” IEEE transactions on pattern analysis and machine

intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[41] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network approach

for half-pel interpolation in video coding,” in 2017 IEEE International Sym-

posium on Circuits and Systems (ISCAS), pp. 1–4, 2017.

[42] C. Jia, S. Wang, X. Zhang, S. Wang, and S. Ma, “Spatial-temporal residue

network based in-loop filter for video coding,” 2017 IEEE Visual Communi-

cations and Image Processing (VCIP), Dec 2017.

[43] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis

by appearance flow,” in Computer Vision – ECCV 2016, Lecture Notes in

References 105

Computer Science, pp. 286–301, Cham: Springer International Publishing,

2016.

[44] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learning

of video representations using LSTMs,” in 32nd International Conference on

Machine Learning, ICML 2015, vol. 1, pp. 843–852, 2015.

[45] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction

beyond mean square error,” in 4th International Conference on Learning Rep-

resentations, ICLR 2016, (San Juan, Puerto Rico), 2016.

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances

in Neural Information Processing Systems (Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K. Q. Weinberger, eds.), vol. 27, Curran As-

sociates, Inc., 2014.

[47] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive con-

volution,” in 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), (Los Alamitos, CA, USA), pp. 2270–2279, IEEE Computer

Society, Jul 2017.

[48] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive sep-

arable convolution,” in 2017 IEEE International Conference on Computer

Vision (ICCV), pp. 261–270, 2017.

[49] L. Zhao, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao, “Enhanced

motion-compensated video coding with deep virtual reference frame genera-

tion,” IEEE Transactions on Image Processing, vol. 28, no. 10, pp. 4832–4844,

2019.

References 106

[50] S. Huo, D. Liu, F. Wu, and H. Li, “Convolutional neural network-based mo-

tion compensation refinement for video coding,” in 2018 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1–4, 2018.

[51] Z. Zhao, S. Wang, S. Wang, X. Zhang, S. Ma, and J. Yang, “CNN-based

bi-directional motion compensation for high efficiency video coding,” in 2018

IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4,

2018.

[52] J. L. Mart́ınez, P. Cuenca, F. Delicado, and F. Quiles, “Objective video qual-

ity metrics: A performance analysis,” in 2006 14th European Signal Processing

Conference, pp. 1–5, 2006.

[53] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in 2010 20th

International Conference on Pattern Recognition, pp. 2366–2369, 2010.

[54] Z. Wang and A. Bovik, “A universal image quality index,” IEEE Signal Pro-

cessing Letters, vol. 9, no. 3, pp. 81–84, 2002.

[55] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment:

from error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600–612, 2004.

[56] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on struc-

tural distortion measurement,” Signal Processing: Image Communication,

vol. 19, no. 2, pp. 121–132, 2004.

[57] G. Bjøntegaard, “Calculation of average PSNR differences between RD-

curves,” in ITU-T SG 16 Q.6 document VCEG-M33, 13th VCEG meeting,

(Austin, Texas, USA), 2001.

References 107

[58] H. Tao, J. Qian, L. Yu, and H. Wang, “Bi-prediction enhancement with deep

frame prediction network for versatile video coding,” in 2021 Data Compres-

sion Conference (DCC), pp. 374–374, 2021.

[59] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Com-

parison of the coding efficiency of video coding standards—including high

efficiency video coding (HEVC),” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 22, no. 12, pp. 1669–1684, 2012.

[60] M. Wien, High Efficiency Video Coding: Coding Tools and Specification.

Springer Publishing Company, Incorporated, 2014.

[61] High Efficiency Video Coding (HEVC) Algorithms and Architectures. Inte-

grated Circuits and Systems, Cham: Springer International Publishing, 1st

ed. 2014. ed., 2014.

[62] S. Wang, Z. Wang, F. Luo, S. Wang, S. Ma, and W. Gao, “Enhanced mo-

tion vector prediction for video coding,” in 2018 IEEE Fourth International

Conference on Multimedia Big Data (BigMM), pp. 1–5, 2018.

[63] R. Khemiri, N. Bahri, F. Belghith, F. E. Sayadi, M. Atri, and N. Masmoudi,

“Fast motion estimation for HEVC video coding,” in 2016 International Im-

age Processing, Applications and Systems (IPAS), pp. 1–4, 2016.

[64] N. Doan, T. S. Kim, C. E. Rhee, and H.-J. Lee, “A hardware-oriented concur-

rent tz search algorithm for high-efficiency video coding,” EURASIP journal

on advances in signal processing, vol. 2017, no. 1, pp. 1–17, 2017.

[65] H. Lv, R. Wang, X. Xie, H. Jia, and W. Gao, “A comparison of fractional-pel

interpolation filters in HEVC and H.264/AVC,” in 2012 Visual Communica-

tions and Image Processing, pp. 1–6, 2012.

References 108

[66] H. Ahn and C. Yim, “Convolutional neural networks using skip connections

with layer groups for super-resolution image reconstruction based on deep

learning,” Applied Sciences, vol. 10, p. 1959, 03 2020.

[67] “Pytorch.” https://pytorch.org/.

[68] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human

actions classes from videos in the wild,” in CRCV-TR-12-01, Nov 2012.

[69] “Writing custom datasets, dataloaders and transforms.” https://pytorch.

org/tutorials/beginner/data_loading_tutorial.html.

[70] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restora-

tion with neural networks,” IEEE Transactions on Computational Imaging,

vol. 3, no. 1, pp. 47–57, 2017.

[71] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Inter-

national Conference on Learning Representations, 12 2014.

[72] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” Journal of Machine Learning Research - Proceed-

ings Track, vol. 9, pp. 249–256, 01 2010.

[73] “Quantization.” https://glaringlee.github.io/quantization.html.

[74] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

D. Kalenichenko, “Quantization and training of neural networks for efficient

integer-arithmetic-only inference,” in 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 2704–2713, 2018.

[75] “Xiph.org video test media [derf’s collection].” https://media.xiph.org/

video/derf/.

https://pytorch.org/
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://glaringlee.github.io/quantization.html
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Video Compression
	1.2 Inter-frame prediction using CNNs
	1.3 Motivation of this thesis
	1.4 Outline of the thesis

	2 Literature Review
	2.1 HEVC Complexity Reduction Approaches
	2.2 Advance Methods for Motion Estimation
	2.3 CNN Architectures for Frame Prediction

	3 Metrics for Assessing Performance of Video Codecs
	3.1 Video Quality Estimation Models
	3.1.1 PSNR
	3.1.2 SSIM

	3.2 Rate Distortion Performance Assessment

	4 Complexity Analysis of Bi-Prediction in a HEVC Standard Encoder
	4.1 Overview of HEVC Block Partitioning
	4.2 Minimum-complexity Encoder Configuration
	4.3 Bi-prediction Process
	4.3.1 Advanced motion vector prediction (AMVP)
	4.3.2 Inter-prediction block merging
	4.3.3 Fractional sample interpolation
	4.3.4 TZ search algorithm
	4.3.5 Weighted sample prediction

	4.4 Computational Complexity of Bi-Prediction
	4.4.1 Motion vector prediction
	4.4.1.1 Block merging
	4.4.1.2 TZ search algorithm
	4.4.1.3 Weighted prediction

	5 A Study of a Low Complexity CNN Architecture for Video Frame Bi-Prediction
	5.1 Hierarchical Bi-Prediction Using CNNs
	5.2 U-Net Architecture for Bi-Prediction
	5.2.1 Overview of the Architecture
	5.2.2 Training and Validation

	5.3 Computational Complexity of U-Net Architecture
	5.3.1 Convolutional layer complexity
	5.3.2 Upconvolutional layer complexity
	5.3.3 Other operations in U-Net CNN architecture

	5.4 U-Net CNN Architecture with Integer Arithmetic Only Operations
	5.4.1 CNN quantization in Pytorch
	5.4.1.1 Integer-arithmetic-only matrix multiplication
	5.4.1.2 Implementation of a fused layer

	6 Experimental Results and Discussion
	6.1 Performance Evaluation of U-Net CNN Architecture
	6.2 Video Coding Experiments
	6.2.1 Comparison of RD performance

	6.3 Comparison of Computational Complexity

	7 Conclusion and Future Work
	7.1 Contributions and Conclusions
	7.2 Future Work

	A Motion Vector Scaling
	Bibliography

