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Abstract

Electromagnetic (EM) metasurfaces are quasi two-dimensional structures that consist of

artificial “atoms”, typically referred to as meta-atoms. These meta-atoms, also known

as unit cells, are small compared to the operational wavelength. The whole metasurface

consists of many unit cells; thus, although the size of the unit cells is small compared to the

wavelength of operation, the total size of the metasurface is a few wavelengths. Based on

their properties, the unit cells can locally affect the amplitude, phase, and polarization of the

EM wave that impinges on them. When properly designed and arranged, the accumulated

effect of the unit cells allows the metasurface to alter the incident wave at will through

transmission, reflection and absorption of the EM wave. Thus, EM metasurfaces can be

used as a systematic means for beam shaping.

The design of a metasurface includes two main steps: macroscopic and microscopic de-

sign steps. The macroscopic design aims to determine the required surface properties of the

unit cells, such as surface polarizabilities or surface susceptibilities, to support the desired

field transformation. Once the macroscopic properties are determined, the microscopic de-

sign focuses on the practical design of the unit cells (which is typically copper trace design in

microwave and mm-wave frequencies) to physically realize the required surface properties.

The work presented in this thesis focuses on the macroscopic design of metasurfaces, and

the formulation is presented in terms of surface susceptibilities of metasurfaces. As will be

seen, based on the generalized sheet transition conditions (GSTCs), the tangential fields on

the two sides of the metasurface are required to calculate the required surface susceptibility

values to support the desired field transformation. In practice, these tangential fields,

especially the transmitted fields, might not be directly known. For example, one can be

asked to design a metasurface to transform a given incident field (e.g., a plane wave or the

field of a horn antenna) to a desired far-field power pattern. In this case, the known quantity

is the desired power pattern in the far-field zone, and therefore the complex (magnitude

and phase) tangential field on the output side of the metasurface is not known. Thus, this

- i -



unknown tangential field, which supports the required power (magnitude-only) pattern,

needs to be first determined for the metasurface design process.

To this end, an inversion algorithm based on the nonlinear conjugate-gradient (CG)

method was previously developed to infer the tangential fields on the transmitted side of

the metasurface from the desired power pattern with some additional side constraints such

as Love’s equivalence principle and the local power conservation constraint. This thesis

builds on this prior work and extends it in the following ways. Firstly, it provides an

analytical expression for the nonlinear CG step length. This was not previously available

and thus the inversion algorithm required an ad hoc choice for the step length. In this

thesis, the analytical expression for the step length is derived. This will make the CG

algorithm automated, and also drastically decreases the computational time. In addition,

the nonlinear CG requires that the step length changes at each iteration of the algorithm.

The ad hoc step length choice, previously used for this inverse design algorithm, was not

able to support a changing step length as a function of iteration.

Secondly, the prior work on this inversion algorithm was for the two-dimensional (2D)

case which required the metasurface to be fully periodic in one direction. In this thesis,

this inversion frame is extended to the three-dimensional (3D) configuration, allowing the

designed metasurface to spatially vary along the two orthogonal directions along the meta-

surface. Based on this 3D implementation, the user can provide the desired power patterns

on two perpendicular far-field cuts along with the incident field impinging on the metasur-

face, and then the inversion algorithm finds the macroscopic properties of the metasurface to

achieve this transformation. Thirdly, a brief discussion on the existence of the surface waves

in the formulation is presented which can assist with satisfying the local power conservation

constraint in the design of passive and lossless metasurfaces.
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1. Introduction

Chapter 1

Introduction

The will to control electromagnetic (EM) waves was of significant interest since the establish-

ment of the Maxwell’s equations. For example, in 1967, Dr. Veselago theoretically analyzed

the effect of having negative values for permittivity (ϵ) and permeability (µ) simultaneously

for a given medium [1]. (This paper was translated into English in 1968.) This property

will then result in negative refraction index. Several counter-intuitive phenomena, like the

reversed Doppler effect and reversed Cherenkov radiation, are then introduced based on the

negative refraction index [1].

In general, tailoring EM waves can be achieved by manipulating ϵ and µ of the material.

With limited variety of ϵ and µ offered by natural materials, the quest for implementing

negative values for ϵ and µ was pursued within the artificial material realm. The artificial

materials that possess this property were then called “negative-index materials” or “left-

handed materials”. The physical form of this surreal artificial material was proven plausible

when Dr. Pendry suggested that at certain operating frequencies, ϵ and µ could be adjusted

freely using resonance structures proposed in [2, 3]. This artificial material was then ex-

perimentally verified in [4]. The term “metamaterials” was introduced by Dr. Smith and

his colleagues to emphasize the unique aspect of negative-index materials as compared to
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other composite materials; this was done by using the prefix “meta” (µϵτά) which means

“beyond” in Greek [5].

As the research develops, the term “metamaterials” now refers to artificial materials that

are designed to possess desired unusual characteristics. A metamaterial consists of many

unit cells. These unit cells consist of constitutive elements located in a host medium that

collectively govern the EM properties of the metamaterial. Although the term “metamatri-

als” have been loosely assigned to many artificial media, it should be emphasized that the

proper definition of metamaterials requires that the size of each unit cell is small compared

to the wavelength in the host medium, but not too small [5]. If the unit cell size is too

small compared to the wavelength, we will be in the quasi-static region, and classic mixing

formula can be applied to obtain the EM properties of the artificial material [6]. On the

other hand, if the size of the unit cell is in the order of the wavelength, e.g., electromagnetic

bandgap (EBG) or photonic bandgap (PBG) structures, then an effective medium cannot

be defined [6].

While the potential of metamaterials is unlimited, their bulkiness has become one of the

major disadvantages, resulting in the increased overall loss, weight, size, and difficulties in

fabrication and implementation. To overcome this issue, physicists and engineers started

to investigate and develop quasi-two-dimensional metamaterials, which are also known as

metasurfaces. One of the pioneering works in this area was the work of Capasso and

colleagues [7] (published in 2011) that introduced the generalized laws of reflection and re-

fraction over a surface. Metasurfaces can be utilized to tailor reflection [8], transmission [9],

absorption [10] of EM waves, or a combination thereof. Herein, we focus on metasurfaces

that are used to tailor the transmission of EM waves. To manipulate electric and magnetic

fields at the metasurface boundary, appropriate electric and magnetic polarization currents

need to be induced on the metasurface [11]. Due to taking advantage of both electric and

magnetic polarization currents, these metasurfaces are often referred to as Huygens’ meta-
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surfaces [12]. These metasurfaces, which create collocated electric and magnetic responses

when illuminated by an EM wave [8, 13], are the focus of this thesis. The reason behind

their names (Huygens) comes from Huygens’ principle, named after Dutch scientist Chris-

tiaan Huygens, which enables us to predict a wavefront from a set of fictitious electric and

magnetic current sources [14].

Before the development of electromagnetic metasurfaces, thin structures have already been

used to manipulate EM waves with specific functionalities. For example, conventional

frequency selective surfaces are mainly used for filtering purposes, and reflectarrays are

designed as a flat counterpart of traditional parabolic reflectors. Although these structures

may loosely be referred to as metasurfaces, they are not exactly metasurfaces. As noted

in [6], the dimension of the unit cells need to be small compared to the wavelength for

the structure to be qualified as a metasurface. When this condition is not satisfied in

conventional frequency selective surfaces and reflectarrays, they cannot be categorized under

metasurfaces. However, it is important to note that these precursors played important

roles in the development of metasurfaces. For example, the reconfigurability techniques

considered in reflectarrays can be transferred to reconfigurable metasurfaces.

Metasurfaces often consist of an ultra thin dielectric structure with subwavelength (metallic)

inclusions that could locally affect the amplitude, phase, and polarization of the incident

wave. The accumulated effect of these subwavelength inclusions can create functionali-

ties which go beyond what can be achieved with natural thin materials (e.g., generalized

Snell’s law [7]). By tuning each unit cell individually, this complex inhomogeneous arti-

ficial material could systematically control the EM wave through transmission, reflection

and absorption, resulting in various applications. For example, many metasurfaces are de-

signed to perform polarization transformation. In [15], linearly polarized incident waves

can be transformed into circularly polarized waves. Wavefront manipulation could also be

achieved by metasurfaces [9] for creating desired near-field or far-field responses. With the
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use of active and nonlinear components, these metasurfaces can be further improved with

switching and tuning abilities [16]. The recent studies of space-time metasurfaces [17] pro-

vided another level of control for EM waves. Space-time metasurfaces utilize both temporal

and spatial modulation of the subwavelength inclusions. In this thesis, we only consider

the spatial modulations of their subwavelength inclusions (i.e., no temporal modulation is

employed), and therefore our focus is in the domain of spatially-modulated metasurfaces.

In addition, spatially-modulated metasurfaces can be designed in two general ways. In the

first approach, the subwavelength elements are tiny scatterers. This type of metasurfaces

are sometimes referred as metafilms [18], and is perhaps the most common form of imple-

mentation. In the second approach, the subwavelength elements are tiny apertures on a

sheet. This form is sometimes referred to as metascreens [6]. In this thesis, the focus is on

metafilms.

Although different techniques are used for different applications, the design of these meta-

surfaces are all based on their homogenized behaviour (effective medium concept) and thus,

they follow the same rule locally at each unit cell. Note that the effective medium concept

can now include extra features such as magneto-electric coupling (bianisotropy) to explain

the exotic wave transformation enabled by these metasurfaces. The macroscopic design of

metasurfaces is focused on determining their effective surface parameters, which relies on

the boundary conditions called the generalized sheet transition conditions (GSTCs). These

boundary conditions were first studies in [19] and three effective models were developed for

representing the GSTCs as followed:

− The polarizability model [20]

− The impedance model [13]

− The susceptibility model [21]

These models are related to each other. (For example, see [22,23] for the equations regarding
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Fig. 1.1: A flowchart representing some of the classifications used in this thesis. The early part
of this flowchart is based on a flowchart shown in [5].

their equivalency.) The susceptibility model is adopted in this thesis among these three

effectively equivalent models, and the details of this model will be demonstrated later in

the next chapter. As will be seen, once all the tangential components of the EM fields on

both sides of the metasurface are known, the GSTCs could be applied to acquire surface

susceptibilities, and hence the macroscopic design aspect is completed. On the other hand,

the microscopic design of the metasurfaces focuses on realizing the aforementioned surface

properties using practical physical implementation. The existing designs include Omega

particles [24], Chiral particles [25], wire-loop structures [26], dogbone structures [27], etc.

In summary, Figure 1.1 presents some of the topics explained above in the flowchart format.

In particular, it focuses more on what is relevant to this thesis. Some of the material

presented in this flowchart is not yet explained, but will be explained as we go over some

fundamentals of metasurfaces in the next chapter.
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1.1 Objectives

1.1 Objectives

As stated above, the macroscopic design of metasurfaces is rather straightforward if the in-

cident, transmitted, and reflected EM fields are known over the boundaries of metasurfaces.

However, for many practical problems, the information of these fields, especially transmit-

ted fields, might not be directly available. For example, in antenna design applications,

a complete far-field power pattern (phaseless), or certain far-field criteria, like main beam

direction(s), half-power beamwidth(s), null direction(s), and others, might be provided.

Therefore, typically, the designer has no access to the tangential complex (magnitude and

phase) fields over the boundary of the metasurface. Thus, these tangential fields over the

boundary of the metasurface need to be inferred from the provided performance criteria.

This problem can therefore be regarded as an inverse problem. The work in [28] is one

of the first works which address this problem within the inverse source framework. Later

on, the local power conservation (LPC) constraint (originally introduced in [29] and to be

discussed in the next chapter) was considered for the design of passive and lossless bian-

isotropic metasurfaces. The LPC constraint was incorporated into the inverse framework

in [30]. Later, the inverse source framework was augmented by a total variation (TV)

regularization term to favour smooth field variations on the surface of the metasurface for

practical reasons [31].1 (The collection of these inverse design works can be found in [32].)

The objectives and the contributions of this thesis are the following.

− In the inverse source design framework explained above, a nonlinear conjugate-gradient

(CG) method was used to solve the inverse problem. Due to the fact that the known

quantity in this inverse problem is the desired power pattern2, the inverse source

1As will be discussed in the next Chapter, the physical design (e.g., copper trace design) of metasurface
unit cells is typically done under the assumption of periodicity. Thus, a smoother field variation on the
metasurface will normally result in more convenient microscopic design. This is then typically referred to as
quasi-periodicity assumption. Note that in general the inverse source framework can provide us with many
solution due to the non-uniqueness associated with this inverse problem. Therefore, we need to single out a
solution which is more appropriate from a practical point of view.

2From a practical point of view, a designer is mainly interested in power (magnitude-only) patterns rather
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1.2 Thesis Outline

problem is nonlinear due to the absence of desired phase data. This requires a careful

choice of the step length in the CG algorithm. Note that the unknown x at the kth

iteration of the CG algorithm is updated as xk+1 = xk + βkvk where xk is the pre-

dicted unknown at the kth iteration, vk is the CG direction along which we update

xk. Finally, the step length βk is the step length. In previous works explained above,

an ad hoc approach has been used for the choice of βk when the LPC constraint

is utilized. Moreover, since the choice of the step length has been based on ad hoc

methods, the CG algorithm uses a constant step length. However, the ideal choice

is to minimize along the CG direction. In an attempt to make the above inverse

source framework automated, this thesis derives an analytical expression for the step

length in the presence of the LPC constraint and shows the result with this analytical

expression.

− The previous inverse source approaches for the synthesis of desired power patterns

have been based on the transverse electric (TE) or transverse magnetic (TM) as-

sumptions. For this, the metasurface needs to be fully periodic in one direction, and

can then have spatial modulation in the other direction. This thesis extends the in-

verse source framework to 3D scenarios where the desired power patterns are given on

two perpendicular far-field cuts, such as desired power patterns on the E-plane and

H-plane cuts.3 This will then result in a metasurface that has spatial modulation in

both directions along the surface of the metasurface.

1.2 Thesis Outline

This thesis is structured as follows.

than a complex field pattern (magnitude and phase).
3In [28], the authors consider the 3D problem, but they do not consider the LPC constraint, and also

they do not perform any metasurface design based on their inversion.
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1.2 Thesis Outline

Chapter 2 introduces a background of metasurface design. The generalized sheet transi-

tion conditions (GSTCs) based on the surface susceptibility model is presented. Then, a

three-layer impedance sheet topology is provided as it could be used to represent the sus-

ceptibility model for full-wave simulation in Ansys HFSS. Each of the impedances within

this three layer is either capacitive or inductive. These reactive impedances will then need

to be implemented using appropriate copper traces. The implementation of the required

impedances using copper traces is outside the scope of this thesis.

Chapter 3 presents an introduction to electromagnetic inversion. Since the electromagnetic

inverse source framework is utilized in this thesis, the emphasis will be on the inverse source

problem. Different components of the electromagnetic inverse source framework including

the enforcement of the Love’s condition is discussed. Since this chapter is presented using

an operator notation, it will be applicable to both 2D TE and 2D TM as well as the 3D

scenario.

Chapter 4 combines the topic discussed in Chapters 2 and 3 in an attempt to provide a step-

by-step procedure for the inverse design of metasurfaces. For the sake of completeness of the

thesis, all the steps are presented, but those who have been published before (e.g., see [32]) is

presented without derivation. The main contribution of the author to this framework which

is the analytical expression for the step length is presented with full derivation. Again, since

the presentation in this chapter is based on the operator notation, it can be applied to 2D

TE, 2D TM and 3D if the appropriate operator is utilized.

Chapter 5 presents full-wave simulation results using Ansys HFSS. Broadly speaking four

categories of results are presented: (i) 2D TM, (ii) 2D TE, (iii) 3D, and (iv) 2D TE

with cascaded metasurfaces. The 2D TE case with cascaded metasurfaces has been done

in collaboration with another MSc student (Mr. Jayesh Gohel). In [31, 32], the 2D TE

inversion with cascaded metasurfaces has been considered. The cascaded topology utilized

herein differs from these two works in the sense that it takes into account multiple reflections

- 8 -



1.2 Thesis Outline

between the two metasurfaces as in [33]. The discussion on the 3D inversion includes a small

part on the use of evanescent waves that has been done in collaboration with a PhD student

(Mr. Mario Phaneuf).

Chapter 6 concludes this thesis, and provides directions for future work based on the lessons

learned throughout this research and the new research directions currently being pursued

by other research groups.

- 9 -



2. Electromagnetic Metasurfaces Fundamentals

Chapter 2

Electromagnetic Metasurfaces

Fundamentals

An EM metasurface is a quasi two-dimensional (2D) artificial material with sub-wavelength

thickness that is formed by lattices of sub-wavelength inclusions known as meta-atoms with

sub-wavelength spacing. Due to its sub-wavelength structure, a metasurface is modeled

based on its surface properties as opposed to voluminal permittivity and permeability [34,

35]. The synthesis procedure includes deriving the appropriate surface properties, e.g.,

surface susceptibilities, based on the known incident, reflected, and transmitted EM fields,

and realizing the required surface susceptibility values using suitable unit cells designs.

(Each unit cell represents a meta-atom.) The emphasis of this chapter is on acquiring the

surface properties, with a brief description of unit cell design procedure. The fundamentals

of metasurfaces can be found in other works such as [36], [23].

2.1 The Generalized Sheet Transition Conditions

The behaviour of the metasurfaces is governed by the generalized sheet transition conditions

(GSTCs) [21]. To understand this, let us begin by considering a material that when exposed
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2.1 The Generalized Sheet Transition Conditions

Ψref

Ψinc

x

y

z

Ψtr

thickness ≪ λ

y = 0− y = 0+

E−
t

H−
t

E+
t

H+
t

v̂
n̂

û Metasurface

Fig. 2.1: Demonstration of a planar metasurface located on the xz plane that results in reflected
field, Ψref, and transmitted field, Ψtr, when illuminated by an incident field, Ψinc. The unit vector
that is normal to the metasurface, n̂, is specified, along with the tangential components, û and v̂.

to electric field E and magnetic field H will experience induced electric polarization P e

and induced magnetic polarization Pm. The resulting electric and magnetic flux densities,

denoted by D and B respectively, can be written as

D = ε0E + P e, (2.1a)

B = µ0H + µ0P
m, (2.1b)

where ε0 and µ0 represent the free space permittivity and permeability respectively. Now

consider a metasurface that lies on the xz plane, i.e., on the y = 0 plane as shown in

Figure 2.1. The metasurface will have two sides: y = 0− and y = 0+. If the metasurface
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2.1 The Generalized Sheet Transition Conditions

is illuminated by an incident field (e.g., from y = 0− side), surface electric and magnetic

currents will be induced on the metasurface that can support EM field discontinuities across

the surface. Consequently, a different field can be created on y = 0+ face. According to

the electromagnetic equivalence principle, this new field can create a new radiation pattern

which is different than that of the incident field.

Assuming a time-dependency of ejωt, where ω is the angular frequency and t denotes time,

these discontinuities on passive metasurfaces1 are described by the GSTCs, which can be

written as [18,21,37,38]

n̂×∆H = jωP e
t − n̂×∇tP

m
n , (2.2a)

∆E × n̂ = jωµ0P
m
t −∇t(

P e
n

ε0
)× n̂, (2.2b)

where n̂ represents the unit vector that is normal to the surface. For example, in our

current example, n̂ = ŷ. The subscripts t and n denote the vector components that are

tangential and normal to the surface, respectively. The vector cross product is represented

by ‘×’, and ‘∇’ represents the gradient operator.2 The field difference ∆Ψ is defined as

∆Ψ ≜ Ψ+ −Ψ−, where Ψ = {E,H}. (2.3)

where the superscripts + and − indicates the locations of the surface boundary that is

in the direction of n̂, and opposite to n̂, respectively. For example, if n̂ is set to ŷ (as

is the case in our example), the plus sign corresponds to locations on y = 0+, and the

minus sign corresponds to locations on y = 0−. For simplicity, the normal components of

the electric and magnetic polarization densities (i.e., P e
n and Pm

n ) are typically ignored as

1That is, no impressed currents exist on the metasurface.
2The operator ‘∇t’ is then the gradient vector with respect to the tangential components of the coordinate;

in our example, we will then have ∇t =
∂
∂x

x̂+ ∂
∂y

ẑ.
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2.2 The Susceptibility Model

justified in [21,39]. The resulting GSTCs then read as

n̂×∆H = jωP e
t , (2.4a)

∆E × n̂ = jωµ0P
m
t . (2.4b)

In the next section, we focus on how Pm
t and P e

t are related to surface susceptibilities.

2.2 The Susceptibility Model

Before starting this session, let us consider the concept of bianisotropy. We already know

that the electric polarization can be controlled by electric fields, and similarly the magnetic

polarization can be controlled by magnetic fields. Bianisotropic materials will then gen-

eralize this concept in the sense that their electric polarization can be controlled by both

electric and magnetic fields, and similarly their magnetic polarization can be controlled by

both electric and magnetic fields. This is referred to as magneto-electric coupling [40].

The surface electric and magnetic polarization densities can be expressed using surface

susceptibilities and averaged fields according to [18]. Considering a linear3 bianisotropic

metasurface, we have [21,39]

P e
t,s = ε0χee ·Et,av +

1

c0
χem ·Ht,av, (2.5a)

Pm
t,s = χmm ·Ht,av +

1

η0
χme ·Et,av, (2.5b)

3Nonlinear metasurfaces are outside the scope of this thesis. To briefly explain them, let us refer to [22,41]
which considers nonlinear metasurfaces with non-zero second-order susceptibilities. Based on that, the

susceptibility can be represented by the first-order (linear component), denoted by χ
(1)

, and the second-

order (nonlinear component), denoted by χ
(2)

[22, 41]. Then, assuming a mono-isotropic metasurface for

simplicity, the surface electric and magnetic polarization densities will be P e
t,s = ε0χ

(1)
ee Et,av + ε0χ

(2)
ee E2

t,av

and Pm
t,s = χ

(1)
mmHt,av + χ

(2)
mmH2

t,av. (The subscript ‘s’ emphasizes surface polarization densities.) Note that
due to nonlinearity, we cannot utilize phasor-domain formulation, and the previous two equations are in the
time domain.
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2.2 The Susceptibility Model

where c0 denotes the speed of light in vacuum, η0 denote the characteristic impedance of

vacuum, the subscript ‘s’ emphasizes surface polarization densities, and the averaged fields

are defined as

Ψav ≜
Ψ+ +Ψ−

2
, where Ψ = {E,H}. (2.6)

The tensors, χee, χem, χmm and χme, represent the electric and magnetic (first subscript)

surface susceptibilities that could be excited by electric or magnetic fields (second subscript).

Note that χem and χme represent the bianisotropic nature of this metasurface.4

Substituting the polarization densities by surface susceptibilities in the GSTCs, i.e., substi-

tuiting 2.5 in (2.4), the GSTCs will then become5

n̂×∆H = jωε0χee ·Et,av + jk0χem ·Ht,av, (2.7a)

∆E × n̂ = jωµ0χmm ·Ht,av + jk0χme ·Et,av, (2.7b)

where k0 denote the free space wavenumber. Note that (2.7) assumes that the susceptibil-

ities are only a function of spatial coordinates and they are invariant with respect to time.

That is why we may refer to these metasurfaces as space metasurfaces. If the susceptibilities

also change as a function of time, which is outside the scope of this thesis, we will then have

space-time metasurfaces [42].

To understand this system of equations in a clear and simple manner, these equations can

be expressed in their matrix form as



−∆Hv

∆Hu


 = jωε0



χuu
ee χuv

ee

χvu
ee χvv

ee






Eu,av

Ev,av


+ jk0



χuu
em χuv

em

χvu
em χvv

em






Hu,av

Hv,av


 , (2.8a)

4If the metasurface is monoanisotropic as opposed to bianisotropic, then χem = χme = 0 [22].
5As indicated earlier, if the metasurface is nonlinear, phase-domain formulation cannot be used, and the

GSTCs need to be written in the time domain [41].
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2.2 The Susceptibility Model




∆Ev

−∆Eu


 = jωµ0



χuu
mm χuv

mm

χvu
mm χvv

mm






Hu,av

Hv,av


+ jk0



χuu
me χuv

me

χvu
me χvv

me






Eu,av

Ev,av


 , (2.8b)

where u and v represent vector components that are tangential to the surface that satisfy

û × v̂ = n̂ and û ⊥ v̂. For example, in our example, û = ẑ and v̂ = x̂. The superscripts

of χ indicate the direction of the applied field and that of the induced polarizability. For

example, χvu
me indicates that for the applied electric (e) field in the û direction, there would

be a resulting induced magnetic (m) current in the v̂ direction.6

Note that if the tangential components of the EM fields on both sides of the metasurface

are known, the susceptibility values χ of the metasurface can be solved. However, this

results in infinite number of solutions. This is due to the fact that the above system of

equations is under-determined with 16 unknown χ and 4 equations (all of which can be

complex-valued). Sometimes it is worthwhile to split the unknowns and the equations into

their real and imaginary parts so as to arrive at purely real system of equations; this will

then result in 32 unknowns and 8 equations.

However, appropriate assumptions and conditions for metasurface design are typically em-

ployed which will significantly reduce the number of unknowns. These practical assumptions

are reciprocity, losslessness and passivity.

6Note that in general the susceptibility tensors are 3× 3 tensors. However, based on the electromagnetic
equivalence principle, we have ignored the normal components of the susceptibilities and have simplified
the susceptibility tensors to 2 × 2 tensors that only consider the tangential components [43]. However,
there are cases where the incorporation of normal components are useful [39]. In addition, as noted earlier,

if χem = χme = 0, then the metasurface is monoanisotropic. Now if further assume that the off-diagonal
elements of χee and χmm are zero, we will then have a birefringent metasurface [22]. Then, for the birefringent
metasurface, if we further assume that χuu

ee = χvv
ee and χuu

mm = χvv
mm, then the birefringent metasurface

becomes a monoisotropic metasurface. Therefore, from this point of view, one may consider the following
flow for simplification of the metasurface model:

bianisotropic → monoanisotropic → birefringent → monoisotropic
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2.3 Assumptions for Metasurface Design

2.3 Assumptions for Metasurface Design

Herein, we focus on some practical assumptions that can be made in the design of meta-

surfaces, and we will see their effect on the surface susceptibilites.

2.3.1 Non-gyrotropy

If the design process does not require change of polarization (such as linear polarization to

circular polarization), then it is rational to assume that the metasurface is non-gyrotropic,

which requires that [44]

χuv
ee = χvu

ee = χuv
mm = χvu

mm = χuu
em = χvv

em = χuu
me = χvv

me = 0 (2.9)

This will reduce the number of unknowns from 16 complex χ to 8 complex χ. Subsequently,

(2.8) will become

−∆Hv = jωϵ0χ
uu
ee Eu,av + jk0χ

uv
emHv,av

∆Hu = jωϵ0χ
vv
eeEv,av + jk0χ

vu
emHu,av

∆Ev = jωµ0χ
uu
mmHu,av + jk0χ

uv
meEv,av

−∆Eu = jωµ0χ
vv
mmHv,av + jk0χ

vu
meEu,av

(2.10)

2.3.2 Omega-type bianisotropy

The fact that we have assumed χuu
em = χvv

em = χuu
me = χvv

me = 0 in (2.9) links us to a particular

form of bianisotropy. To understand this, let us note that a bianisotropic medium can be

classified under two broad categories: reciprocal and non-reciprocal. In this thesis, the

focus is on reciprocal metasurfaces. Under the reciprocal class, we have two general types

of bianisotropic media: omega type and chiral type [36]. Herein, our focus is on omega

bianisotropic metasurfaces. In omega bianisotropic metasurfaces, (i) the acting magnetic

field will result in an electric current that is perpendicular to the acting magnetic field, and
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(ii) the acting electric field will result in a magnetic current that is perpendicular to the

acting electric field [13]. For this to happen, the diagonal components of χme and χem need

to be zero. This is exactly the condition that we have for χme and χem in (2.9).

Omega-type bianisotropy is needed for wide angle refraction (wide angle beam steering) [13],

and that is why it is employed in this thesis. On the other hand, for chiral metasurfaces, the

induced electric current due to the acting magnetic field are parallel and also the induced

magnetic current due to the acting electric field are parallel; this requires the diagonal

components of χme and χem. The chiral metasurfaces can be used for polarization rotation,

which is outside the scope of this thesis.

2.3.3 Reciprocity

Although we briefly noted the reciprocity in the previous section, let us now have a closer

look at its requirements. It is typically desired to design a reciprocal metasurface to avoid

complications such as applying external magnetic bias to ferrite or the use of the so-called

space-time metasurfaces as described in [44,45]. (It should be noted that for several applica-

tions, non-reciprocal systems are in fact needed; however, in this thesis, we limit ourselves

to reciprocal systems.) A reciprocal metasurface indicates that the field at the observer

location will not change if the location of the source and the observer interchanged, which

requires its susceptibility tensors to satisfy [22,46]

χ
T
ee = χee, χ

T
mm = χmm, χ

T
em = −χme, (2.11)

where the superscript ‘T’ denotes the transpose operator. Assuming non-gyrotropy and

reciprocity, we have now reduced the number of unknowns to 6 complex χ.
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2.3.4 Passivity and losslessness

In many applications, passive and lossless metasurfaces are preferred to avoid lossy elements

(to avoid power loss) and/or active element devices (to avoid biasing) [44]. The loss and

gain in the metasurface can be analyzed through the time-average Poynting vector stated

as [46]

⟨S⟩ = 1

2
Re(E ×H∗), (2.12)

where the ⟨·⟩ operator denotes the time-average operator, S denotes the Poynting vector,

‘Re’ denotes the real-part operator, and the superscript ∗ represents the complex conjugate

operator. Since ⟨S⟩ represents the time-average energy flow, its divergence, ∇ · ⟨S⟩, can be

used to determine whether the metasurface is acting like a source or a drain of energy. This

can be explicitly stated in terms of the surface susceptibility tensors as [22]

∇ · ⟨S⟩ =− 1

4
Re
[
jω
(
ε0E

∗ · (2χee − χ
∗
ee − χ

†
ee) ·E + µ0H

∗ · (2χmm − χ
∗
mm − χ

†
mm) ·H

+ 2k0E
∗ · (χme − χ

†
em) ·H

)]
,

(2.13)

where the superscript † denotes the Hermitian (complex conjugate transpose) operator. The

terms E and H represent the acting fields that can be expressed in terms of the average

fields, and for the metasurface to be passive and lossless, ∇ · ⟨S⟩ must be zero for arbitrary

sets of E and H. This can be met by

2χee − χ
∗
ee − χ

†
ee = 0

2χmm − χ
∗
mm − χ

†
mm = 0

χ
†
em − χme = 0

(2.14)

If we also assume a reciprocal metasurface, which requires satisfying (2.11), the conditions
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2.3 Assumptions for Metasurface Design

for losslessness and passivity as noted in (2.14) can be simplified as

Im(χee) = 0

Im(χmm) = 0

Re(χem) = 0

Re(χme) = 0.

(2.15)

where ‘Im’ denotes the imaginary-part operator.

We have already noted that if we consider non-gyrotropy and reciprocity, we will have 6 un-

known complex χ, which is equivalent to 12 real-valued unknown components. Considering

the lossless and passivity constraints as listed in (2.15), we will now have 6 real unknowns.

2.3.5 Fixing the polarization

In this work, we consider a fixed polarization. That is, we assume that the tangential

electric field on the metasurface has only one component (say, Eu) and also the tangential

magnetic field on the metasurface has one component (say, Hv). Then, after applying the

reciprocity condition, (2.10) will become

−∆Hv = jωϵ0χ
uu
ee Eu,av + jk0χ

uv
emHv,av

−∆Eu = jωµ0χ
vv
mmHv,av − jk0χ

uv
emEu,av

(2.16)

This represents two complex equations or equivalently four real-valued equations. Based

on the losslessness and passivity condition, we also have three real unknowns. This may be

seen as an over-determined system of equations.

To better understand this, we should note that for the metasurface to be lossless and passive,

it needs to satisfy the local power conservation (LPC) constraint [29, 30]. That is, at any

unit cell of the metasurface, the real part of the in-going power density needs to be equal to

- 19 -



2.4 Two-Port Network Model for Metasurfaces

the real part of the out-going power density. Now, let us assume that the LPC is satisfied

for the desired field transformation. In other words, we would like to solve (2.16) while

knowing that the LPC has already been met by {E+
u , E

−
u , H

+
v , H−

v }. (We later discuss the

LPC constraint in more details in Section 4.4.5.)

For the sake of discussion, let us now assume that in (2.16) χuv
em is a complex susceptibility

(i.e., having real and imaginary parts). We still require χuu
ee and χvv

mm to be purely real.

Therefore, we now have four real unknowns. (The real and imaginary parts of χuv
em are

treated as two real unknowns.) Thus, solving (2.16) is now equivalent to solving for four

real equations with four real unknowns. Since the LPC is satisfied, when the two components

(real and imaginary parts) of χuv
em are solved, we will observe that its real part is zero since

the metasurface has to be lossless and passive. This is due to the fact that the LPC is

already satisfied and χuu
ee , χ

vv
mm are purely real. If χuv

em is to have a real component, we

should then have either gain or loss, which is in contradiction with the LPC constraint.

That is why (2.16) can be solved with a unique solution if the tangential fields satisfy the

LPC constraint.

2.4 Two-Port Network Model for Metasurfaces

As discussed above, a metasurface transforms a set of tangential fields to another one.

This ‘wave transformation’ can be modeled by a two-port networks using parameters like

the scattering parameters (S-parameters) [47], impedance parameters (Z-parameters) [13],

transmission parameters (ABCD parameters) [48]. This concept has been depicted in Fig-

ure 2.2. Herein, the transmission parameters are adopted because of its advantage in ana-

lyzing cascaded networks.

To explain this, let us consider electromagnetic waves with the tangential components on

the metasurface as (Eu, Hv). The unit cell of the metasurface lies on the uv plane as shown

in Figure 2.2 and is considered to be non-gyrotropic and reciprocal. The GSTCs can then
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Fig. 2.2: A close-up look at the unit cell of the metasurface. For analysis, the tangential fields
are assumed to be uniform over the unit cell. The systematic transformation from one set of
tangential fields to another can be treated as a two-port network.

be written as

H−
v −H+

v =
jωε0
2

χuu
ee

(
E+

u + E−
u

)
+

jk0
2

χuv
em

(
H+

v +H−
v

)
, (2.17a)

E−
u − E+

u =
jωµ0

2
χvv
mm

(
H+

v +H−
v

)
− jk0

2
χuv
em

(
E+

u + E−
u

)
. (2.17b)

The above equations can then be written into the matrix representation of a transmission

two-port network as [49] 

E−

u

H−
v


 =



T11 T12

T21 T22






E+

u

H+
v


 , (2.18)

where

T11 =
ζτχuu

ee χ
vv
mm + (1− ξχuv

em)
2

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 , (2.19a)

T12 =
2τχvv

mm

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 , (2.19b)

T21 =
2ζχuu

ee

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 , (2.19c)

T22 =
ζτχuu

ee χ
vv
mm + (1 + ξχuv

em)
2

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 , (2.19d)
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and

ζ =
jωε0
2

, ξ =
jk0
2

, τ =
jωµ0

2
. (2.20)

Based on the above, two observations can be made:

− Notice that the determinant of the transmission matrix is unity, i.e. T11T22−T12T21 =

1, which corroborates the reciprocity assumption.

− Another observation to be made is that if the metasurface is passive and lossless (χuu
ee

and χvv
mm are purely real, and χuv

em is purely imaginary), then T11 and T22 will be

purely real, and T12 and T21 will be purely imaginary, which corroborates the passive

and lossless condition for two-port network represented by transmission parameters.

Similarly, for the other polarization, i.e., with tangential components as (Ev, Hu), the

GSTCs read

H+
u −H−

u =
jωε0
2

χvv
ee

(
E+

v + E−
v

)
+

jk0
2

χvu
em

(
H+

u +H−
u

)
, (2.21a)

E+
v − E−

v =
jωµ0

2
χuu
mm

(
H+

u +H−
u

)
− jk0

2
χvu
em

(
E+

v + E−
v

)
, (2.21b)

and the corresponding transmission parameters are [23]

T11 =
ζτχuu

ee χ
vv
mm + (1 + ξχuv

em)
2

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 , (2.22a)

T12 =
2τχvv

mm

ζτχuu
ee χ

vv
mm + (ξχuv

em)
2 − 1

, (2.22b)

T21 =
2ζχuu

ee

ζτχuu
ee χ

vv
mm + (ξχuv

em)
2 − 1

, (2.22c)

T22 =
ζτχuu

ee χ
vv
mm + (1− ξχuv

em)
2

1− ζτχuu
ee χ

vv
mm − (ξχuv

em)
2 . (2.22d)
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2.4.1 Unit cell topology

To verify the metasurface design, ideal or realistic physical models can be made from the

two-port network parameters that are derived from the material parameters. Consider

the case where the transmission parameters are known and the metasurface is reciprocal,

the three independent7 parameters can be realized using an ideal topology that consists of

three admittance sheets connected by two dielectric substrates as in [48]. This is shown in

Figure 2.3 where we can see three impedance layers (denoted by their admittances Y1, Y2,

and Y3) connected with two dielectric substrates with the thickness of tTL,1 and tTL,2.

The resulting transmission parameters of the cascaded structure are calculated as [48]

T = T Y,1 · TTL,1 · T Y,2 · TTL,2 · T Y,3, (2.23)

where the transmission parameters of the admittance sheets are expressed as

T Y,i =




1 0

Yi 1


 , i = 1, 2, 3, (2.24)

and the transmission parameters of the dielectric substrates are expressed as

TTL,i =



TTL,i,11 TTL,i,12

TTL,i,21 TTL,i,22


 =



cos(βTL,itTL,i) jZTL,i sin(βTL,itTL,i)

j sin(βTL,itTL,i)
ZTL,i

cos(βTL,itTL,i)


 , i = 1, 2,

(2.25)

with Yi denoting the admittance value, βTL,i denoting the phase constant in the dielec-

tric, tTL,i denoting the thickness of the dielectric, and ZTL,i denoting the characteristic

impedance of the dielectric. Once the substrates are determined, the admittance values can

7One of the parameters is dropped due to the reciprocity assumption.
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Fig. 2.3: Demonstration of the three-layer admittance sheet topology. This ideal model can be
physically realized using the dogbone structure.

be calculated as [48,49]

Y1 =
T22 − Y2TTL,1,22TTL,2,12 − TTL,1,21TTL,2,12 − TTL,1,22TTL,2,22

Y2TTL,1,12TTL,2,12 + TTL,1,11TTL,2,12 + TTL,1,12TTL,2,22
, (2.26a)

Y2 =
T12 − TTL,1,11TTL,2,12 − TTL,1,12TTL,2,22

TTL,1,12TTL,2,12
, (2.26b)

Y3 =
T11 − Y2TTL,1,12TTL,2,11 − TTL,1,11TTL,2,11 − TTL,1,12TTL,2,21

Y2TTL,1,12TTL,2,12 + TTL,1,11TTL,2,12 + TTL,1,12TTL,2,22
. (2.26c)

It is worth noting that for passive and lossless metasurfaces, Y1, Y2, and Y3 are purely

imaginary, which correspond to capacitive or inductive sheets. This unit cell topology is
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can then be simulated in Ansys HFSS using impedance sheets. In practice, these impedance

sheets need to be converted to physical structures such as the dogbone structure. To do

this, typically dogbones of various shapes are simulated and then a lookup table is formed,

and is then used to choose a dogbone structure that corresponds to the desired capacitive

or inductive value [50,51]. Alternatively, the physical design may be pursued using machine

learning approaches [52]. The physical procedure is not presented herein and it is outside

the scope of this thesis.

2.4.2 Asymmetry and bianisotropy

To understand how bianisotropy can be achieved using a three layer design, let us write the

impedance matrix representation of the two-port network as



E−

u

E+
u


 =



Z11 Z12

Z21 Z22







H−
v

−H+
v


 , (2.27)

for (Eu, Hv) polarization (tangential components on the metasurface). Noting (2.17), we

can then derive the two-port impedance paramaters as

Z11 =
ζτχuu

ee χ
vv
mm + (1− ξχuv

em)
2

2ζχuu
ee

, (2.28a)

Z12 =
−ζτχuu

ee χ
vv
mm + 1− (ξχuv

em)
2

2ζχuu
ee

, (2.28b)

Z21 =
−ζτχuu

ee χ
vv
mm + 1− (ξχuv

em)
2

2ζχuu
ee

, (2.28c)

Z22 =
ζτχuu

ee χ
vv
mm + (1 + ξχuv

em)
2

2ζχuu
ee

, (2.28d)

where ζ = jωε0
2 , ξ = jk0

2 , and τ = jωµ0

2 .

As expected, due to reciprocity, we have Z12 = Z21. More importantly, it can be seen that

if χuv
em ̸= 0, then Z11 ̸= Z12. That is, for bianisotropic design, we need to create asymmetric
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2.4 Two-Port Network Model for Metasurfaces

two-port networks. Based on our model, this requires Y1 ̸= Y3. Further details on this topic

based on the surface impedance model of metasurfaces can be found in [53].
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Chapter 3

Electromagnetic Inversion

As described in the previous chapter, we need to know what the tangential fields on the

metasurface are so as to obtain the required surface susceptibilities. However, in many

applications, we do not know the tangential fields on the metasurface. For example, let

us consider a design scenario in which the designer would like to achieve two main beams

in the far-field zone in specified directions with a few specified null angles. Based on

these performance criteria, how can we find the tangential fields to support the desired

specifications? This is why we need a mechanism to use these design objectives to obtain

the required tangential fields. As will be seen, similar to [28, 32], our approach to address

this is based on formulating an electromagnetic inverse problem.

In general, an electromagnetic inverse problem describes a situation where the electromag-

netic effects or observations are known and the causes of these observations are to be found.

The three essential components in such problems are the sources (e.g., a radiating antenna),

materials (e.g., dielectric substrates, human body, or simply free space), and the resulting

fields (e.g., the fields in the far-field zone). A forward problem can be constructed if the

source and the material are given. On the other hand, inverse problems typically deal with

finding source or material properties. Therefore, EM inversion can be characterized into
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two broad categories depending on the unknown [54]:

− One is the inverse scattering problem where the resulting fields and the source are

known, and the goal is to find what material properties (e.g., relative complex per-

mittivity) have created the effects.

− The other one is the inverse source problem where the goal is to find the source where

the resulting fields and material properties are known.

A typical example that is related to the inverse scattering problem is microwave imaging

where the dielectric properties of the object being imaged is to be found from the knowledge

of resulting scattered fields and the illuminating antennas [55]. Similarly, the inverse scat-

tering framework can be used to design dielectric lenses, by finding their required dielectric

profiles, to satisfy far-field performance criteria [56]. On the other hand, A typical example

for inverse source problems is antenna diagnostics where the goal to to find the equiva-

lent currents of the antenna under test and then find the faulty element in the antenna

array [57,58].

More recently, metasurface design has been cast as an electromagnetic inverse problem [28,

30,59] where the followings are assumed to be known:

− The source that illuminates the metasurface. For example, as will be seen in this

thesis, the source can be a plane wave, a line source or a horn antenna.

− The desired far-field power pattern or the desired far-field performance criteria such

as main beam directions, half-power beamwidth (HPBW), and null angles.

The unknown is then

− the required macroscopic properties of the metasurface such as surface susceptibilites

(χuu
ee , χ

vv
mm, χ

uv
em) that we have discussed in the previous chapter.
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D

n̂

J0 M0

E1,H1

(a) Original problem

D

n̂

E1,H1

E2,H2

J = n̂×
(
H+ −H−)

M = −n̂×
(
E+ −E−)

E+E−

H+H−

(b) Equivalent problem

D

n̂

E1,H1

E2 = 0,H2 = 0

J = n̂×H+

M = −n̂×E+

E+0

H+0

(c) Equivalent problem under Love’s equivalence
principle

Fig. 3.1: Demonstration of the equivalent principle. The original current sources in (a), J0 and
M0 , produces E1 and H1 everywhere. A set of equivalent surface current densities in (b), J and
M , produces the same fields outside D and different fields inside D. (c) The Love’s equivalent
principle assumes null internal fields.

Based on the above definition of inverse scattering problems, the inverse metasurface design

problem can be classified under inverse scattering problems, but as will be seen, it can also

be treated as an inverse source problem. This section will focus on describing the proposed

inverse source problem, and its associated details.

3.1 Problem Statement

Consider a set of impressed electric and magnetic current density sources, J0 and M0,

enclosed by an imaginary closed surface D as shown in Figure 3.1. According to the equiva-

lence principle [60], we can remove the original sources, then assume arbitrary fields within

in the internal region of fictitious surface D, and then support the discontinuity between
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3.1 Problem Statement

the assumed internal fields and the original external fields with surface electric and mag-

netic currents on D, denoted by J and M . Based on the EM’s boundary conditions, these

surface currents will be

J = n̂×
(
H+ −H−) , (3.1a)

M = −n̂×
(
E+ −E−) , (3.1b)

where n̂ denotes the unit vector that is normal to the surface D, ‘×’ denotes vector cross-

product, and the superscripts ‘+’ and ‘−’ indicate the locations of the surface boundary

that is in the direction of n̂, and opposite to n̂, respectively. Notice that in the equivalent

problem, the sources, the material and the fields inside D are not necessarily the same as

the original ones. For the inverse source problem, it is assumed that the material outside

D, and the fields away from and outside D are known, and the goal is to find the equivalent

surface currents J and M .

As will be seen, in this thesis, we invoke a particular form of the equivalence principle known

as Love’s equivalence principle [61] in which the internal fields are assumed to be zero, and

the equivalent problem is formed with respect to the external region. Thus, the surface

electric and magnetic currents will be

J = n̂×H+, (3.2a)

M = −n̂×E+. (3.2b)

Note that the ‘n̂×’ operator yields the tangential component of the field on which it

operates; thus, these Love’s equivalent currents are directly related to the tangential fields.

This makes them, in particular, suitable for metasurface design applications in which the

tangential fields are a critical part of the GSTCs. Therefore, the problem may be stated as

follows.
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3.2 Forward Problem

− For a given desired power pattern, find a set of Love’s currents that support the given

pattern.

As will be seen later, the above objective is not sufficient for the design of lossless and

passive metasurfaces as the currents need to meet an extra condition known as the LPC

constraint [30]. In addition, it is typically desirable to deal with smoother currents for

practical implementation [31].

3.2 Forward Problem

Since the inverse source problem is the ‘inverse’ of the forward problem, it is necessary to

first construct the forward problem that establishes the relationship between the equivalent

currents, the material, and the resulting fields. Similar to [32], assuming vacuum for sim-

plicity, their relationship is described by the electric and magnetic field integral equations

(often abbreviated as EFIE and MFIE). These can be written as [62]1

E(r) = −jη0k0

∫

D
G̃0(r, r

′) · J(r′)dS′ +

∫

D
M(r′)×∇g0(r, r

′)dS′, (3.3a)

H(r) = −jk0
η0

∫

D
G̃0(r, r

′) ·M(r′)dS′ −
∫

D
J(r′)×∇g0(r, r

′)dS′, (3.3b)

where r and r′ are the position vectors and ‘∇’ denotes the gradient operator. In addition,

G̃0 is the free space dyadic Green’s function that can be written as

G̃0 =

(
Ĩ +

1

k20
∇∇

)
g0(r, r

′), (3.4)

where Ĩ is the unit dyadic, and g0 denotes the 3D free space Green’s function that can be

expressed as

g0(r, r
′) =

e−jk0|r−r′|

4π|r − r′| . (3.5)

1Throughout this thesis, we assume a time-dependency of exp(jωt).
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3.3 Inverse Source Problem

where k0 is the wavenumber in free space.

According to the uniqueness theorem [63], there is a unique solution to the Maxwell’s

equations if the source inside the boundary, and the tangential electric or magnetic fields

on the boundary are known 2, which means solving one of the equations in (3.3) is sufficient

for the forward problem.3 If the electric field is of interest for example, the forward operator

A can be used to represent the forward mapping from the current densities to the electric

field as

E = A (J ,M) . (3.6)

where A is defined based on (3.3a). Also note that assuming J = J1 + αJ2 and M =

M1 + αM2, where α is a scalar, the operator A satisfies

A (J ,M) = A (J1,M1) + αA (J2,M2) , (3.7)

which means A is a linear operator. It should be emphasized that this operator is linear

for the complex output, i.e, complex (magnitude and phase) field E. On the other hand, in

our inverse problem we deal with power pattern synthesis. Thus, we are effectively dealing

with |E|2 (magnitude-only) which makes the inverse problem nonlinear.

3.3 Inverse Source Problem

As noted above for the forward problem, the known quantities are current densities and the

unknown is their resulting effect, e.g., E. The situation is reverse in the inverse problem,

and more precisely in the inverse source problem. In inverse source problems, the unknowns

are the current densities, and the known quantities are the left hand side of (3.3) at a given

2This theorem is derived for lossy media, and the lossless case is justified by letting loss go to zero.
3In certain cases, which are outside the scope of this thesis, one might solve a combined EFIE and MFIE

problem in the form of α EFIE + (1− α) j
k
MFIE [64, Sec. 3.2.1] where 0 ≤ α ≤ 1. This approach is called

the combined field integral equation (CFIE). Note that if α = 1, then the CFIE becomes the EFIE.
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3.3 Inverse Source Problem

region of interest, e.g., in the far-field zone. In other words, the known quantities are the

EM effect of these unknown sources.

Considering the current densities as the unknowns, the equations in (3.3) will be Fredholm

integral equations of the first kind, which suggests that the problem is ill-posed [65]. This

ill-posed problem need to be solved numerically, and may have zero or infinite number

of solutions. For example, there may exist no sets of current densities that can produce

the given EM fields, as the fields might represents a far-field directivity level that is not

achievable with the given aperture for the current densities. This is known as the non-

existence of the solution.

Moreover, the data (EM effect) are typically known at discrete number of angles (e.g., over

a specified angular interval in the far-field zone). Then, there may exist non-radiating (NR)

sources, JNR and MNR, such that A (JNR,MNR) is zero at the data locations [57]. Note

that the effect of these NR currents can still be non-zero at some other locations which are

not specified by the designer, and is therefore absent in the problem formulation. This is

because that the Green’s function acts like a low-pass spatial filter that attenuates high

spatial frequency components of the sources (e.g., evanescent waves). Since A is linear,

adding the NR sources to the solution will not change the field data (based on a finite

precision numerical calculation). This can create infinite number of solutions. In the design

process, this non-uniqueness is an advantage and ideally the designer needs to choose the

best solution, e.g., in terms of the ease of fabrication.

To solve this ill-posed problem, a cost functional is formed and minimized using an opti-

mization algorithm, which is the conjugate gradient (CG) method in our case. Assuming

that the electric field data desired by the designer at a given region of interest (ROI) is

denoted by Edes, the cost functional reads as

C (J ,M) = ∥A (J ,M)−Edes∥2ROI, (3.8)
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where ∥·∥ROI denotes the L2 norm over the ROI, and it is defined as

∥E∥ROI = ⟨E,E⟩
1
2
ROI , (3.9)

with the inner product, ⟨·, ·⟩, defined as

⟨E1,E2⟩ROI =

∫

ROI
E1(r

′) ·E∗
2(r

′)dr′. (3.10)

where ‘·’ in the above equation represent the vector dot product. The above cost functional,

often referred to as the data misfit cost functional, is then minimized over J and M using

the CG method. The CG method works in an iterative manner and yields the required J

and M when converges.

Numerically solving this minimization problem requires discretization of J and M over D

and the field data Edes over the ROI. As will be seen later, there are often other require-

ments to be enforced on the sources so as to meet design constraints. Therefore, other

regularization terms will be introduced in Chapters 4 to accommodate the extra needs.

This will potentially limit the number of solutions as we then not only aim to minimize

the data misfit cost functional but also aim to minimize other cost functionals which are

beneficial for the design process.

Finally, it should be noted that (3.8) represents the simplest form of the inverse design

formulation. As will be seen later, the desired field specifications are typically given as

normalized power patterns. Note that power is a phaseless (magnitude-only) quantity.

Thus, this is different than the formulation in (3.8) where the desired specification is given

in terms of complex (magnitude and phase) Edes. It is well-known that phaseless inverse

problems are nonlinear and are generally more difficult to be solved [66,67]
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3.4 Interior Field Constraint

With the field data assigned outside D, no internal field (internal with respect to D) con-

straint has been made. That is, the solution of the inverse source problem would fit the given

field data that located outside D, and create arbitrary field inside D. Herein, the Love’s

equivalent condition [57, 62] is applied, which enforces the internal fields to be zero. This

extra requirement would bring several benefits. First of all, extra field specifications would

enhance the stability of the solution by annihilating some of the non-radiating sources from

the original problem, as these sources might not produce null field at the internal locations.

Secondly, assuming the unit normal vector n̂, which is pointing outward of D, the boundary

conditions in (3.1) are simplified to

J = n̂×H+, (3.11a)

M = −n̂×E+. (3.11b)

As can be seen, this directly relates the equivalent current densities to the tangential

fields outside of the boundary. This is important as the tangential fields are required for

metasurface design according to the GSTCs. Lastly, as will be shown in Chapter 4, another

regularization term will be added to eliminate some other non-radiating sources by reducing

the spatial variation of the sources. If Love’s condition is enforced, this direct link between

the sources and the tangential fields will result in smoother transmitted fields as well,

which is beneficial for metasurface design. This is due to the fact that the unit cell design

procedure is performed under periodic assumption (local periodicity approximation). That

is, the properties of each unit cell, such as surface susceptibilities or scattering parameters,

are obtained by simulating the individual unit cell under periodic boundary condition in a

full wave solver such as Ansys HFSS.

Finally, it should be noted that in an inverse source approach, the currents are found
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3.4 Interior Field Constraint

numerically, and we need to make sure that they are consistent with Maxwell’s equations.

The enforcement of Love’s condition is a means to make sure that the reconstructed currents

are consistent with Maxwell’s equations [62]. In particular, in [68], it has been shown that

the enforcement of Love’s condition is not only required for reflectionless metasurfaces, but

is also necessary to obtain a desired reflection as well as a desired transmission.
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Chapter 4

Inversion Framework

In this chapter, a general electromagnetic (EM) inversion framework for metasurface design

is presented under both 2D and 3D assumptions. Note that the 2D assumption is still

practical as the metasurface can be made fully periodic in one direction and then have

spatial modulation in the other direction. Most of the works in the area of metasurface

design have been done under the 2D assumption. In particular, the 2D work presented

in this Chapter follows the work in [28, 30–32], which is presented here for the sake of

completeness. This chapter then extends these works by providing an analytical expression

for a component of the inversion algorithm (known as step length) which was chosen in an

ad hoc way in those previous works. In addition, in this chapter, the inverse metasurface

design is extended to 3D. Note that in the 3D case, we can have spatial modulation along

both dimensions of the metasurface. That is, for a metasurface lying on the uv plane, the

surface susceptibility χ will be a function of u and v coordinates, i.e., χ(u, v). To the best

of the author’s knowledge, this is the first time that this inverse source approach has been

developed for the 3D case.
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4.1 Introduction

As noted earlier in the thesis, EM metasurfaces are quasi two-dimensional structures with

subwavelength inclusions. These inclusions are typically metallic in the microwave frequency

range. Metasurfaces provide systematic transformations of the EM waves that impinge onto

them. This is achieved by locally altering the amplitude, phase and/or polarization of the

incoming EM waves. As we already described, there are two necessary steps for metasurface

design, namely, macroscopic design and microscopic design. The macroscopic design focuses

on solving for surface properties, such as surface susceptibilities, that support the desired

transformation. On the other hand, the microscopic design focuses on realizing these surface

properties with physical unit cell structures. The macroscopic design procedure, which is

the focus of this thesis, requires the knowledge of the tangential EM fields over the faces of

the metasurface. However, in many practical cases, these fields, especially the transmitted

fields, may not be directly available. For example, five possible cases for the transmitted

field information were noted in [28], namely:

1. Analytical expressions of the transmitted field (e.g., plane wave refraction)

2. Complex (magnitude and phase) field on a canonical surface and canonical shaped

metasurface

3. Complex (magnitude and phase) field on an arbitrary surface and/or arbitrary shaped

metasurface

4. Magnitude-only (phaseless) field on an arbitrary surface and/or arbitrary shaped

metasurface

5. Far-field criteria such as main beam direction(s), half-power beamwidth(s), null di-

rection(s), and side lobe levels.
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In the cases listed above, only the first two cases could retrieve the transmitted tangen-

tial field on the metasurface easily. The other three cases would require the use of other

techniques to find the transmitted tangential field on the surface of the metasurface. Note

that in many design scenarios, the user only cares about obtaining a desired power pattern

which is a phaseless quantity. Thus, the first two cases cannot support this situation as they

require phase information. In addition, assuming a phase distribution would unnecessarily

limit the scope of the achievable solutions. That is why the use of phaseless approaches are

desired.

Herein, since far-field criteria can be transformed into far-field power patterns (phaseless

quantity) [28,69], and practical metasurfaces are mostly flat or curved, an inversion frame-

work for solving flat metasurface design problem for the third and fourth cases will be

provided based on [28,30–32]. These techniques are all iterative and at each iteration they

require the choice of the optimization step length. However, they have so far relied on ad

hoc approaches to determine this step length which is not effective and cannot result in

an automated design approach. Herein, the analytical step length that was missing from

the optimization method used in [30, 31] will be derived and provided. Moreover, the in-

verse metasurface design technique is extended to 3D so as to be able to handle desired

power patterns in two fundamental cuts. (In the 2D case, we can only handle desired power

patterns in one cut.)

4.2 Problem Statement

Consider a transmitting metasurface lying on the xz plane as shown in Figure 4.1 and the

orientation implies that û = ẑ, v̂ = x̂, and n̂ = ŷ. Assuming that the incident field, Ψinc,

produced by the source is known on the input side of the metasurface, and the desired
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Ψref

Ψinc

x

y

z

Ψtr

Input side Output side (D)

E−
t

H−
t

E+
t

H+
t

v̂
n̂

û Metasurface

S

f or |f |

Fig. 4.1: A metasurface is designed to transform the known incident field, Ψinc, to the desired
field quantities, f or |f |, at region S. The tangential fields on the both sides of the metasurface
are required for the design, and more specifically, the tangential output fields, E+

t and H+
t , are

inversely found through f or |f |.

electric or magnetic field, with or without phase information1, is known on the region S

instead of the transmitted side of the metasurface, the goal is to find the susceptibility

profile for the metasurface, such that the metasurface could transform the known incident

field to a transmitted field that matches desired magnitude-only electric or magnetic field

pattern2. Also, note that magnitude-only field patterns are equivalent to power patterns

as power density is a phaseless quantity and is related to |f |2. Therefore, they can be used

interchangeably throughout this thesis.

1To clarify the difference, desired field with phase information (i.e., a complex field value) is denoted by
f , and amplitude-only desired field is denoted by |f |, where |·| represents the absolute value.

2The reason that matching the pattern rather than matching the exact field values is required is that
once the pattern is matched, matching the exact field values can be achieved by simply adjusting the power
of the incident field.
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4.3 Methodology

In this section, the procedure to solve the proposed metasurface macroscopic design problem

is described.

4.3.1 Finding the Tangential Fields

As can be seen in the GSTC equations, the tangential fields on both sides of the metasurface

are required to compute the corresponding surface susceptibility values χ. In the following,

the incident and transmitted sides of the metasurface will be referred as the input and

output sides, respectively. Therefore, it is necessary to first find the tangential input and

output fields.

Tangential Input Fields

As the metasurface described in Figure 4.1 aims to alter the incident wave through transmis-

sion, it is rational to assume that no reflection is desired, and therefore, the tangential input

fields are known quantities as they equal to the tangential incident fields, i.e., E−
t = Einc

t

and H−
t = H inc

t . However, we note that there might be cases that the designer would

like to create a desired reflection in addition to a desired transmission. However, this is

not discussed within this thesis and we limit ourselves to reflectionless metasurfaces. Since

these metasurfaces are used for transmission, they are typically referred to as Huygens’

metasurfaces [70].

Tangential Output Fields

The tangential output fields are not directly available since the desired fields (or more

accurately desired power patterns) are defined over S instead of on the output side of the

metasurface. To this end, the equivalent surface currents, J and M , on the output side of

the metasurface will be found by using the approach described in Chapter 3, with Love’s
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equivalence principle applied. Notice that extra regularization terms are needed to ensure

that the metasurface is practical, and the details of finding these currents are later presented

in Section 4.4. Once the currents are obtained, the tangential output fields can be found

by rearranging the boundary conditions in (3.11) as3

E+
t = ŷ ×M , (4.1a)

H+
t = −ŷ × J . (4.1b)

However, in practice, the above equation needs to be written as

E+
t = α ŷ ×M , (4.2a)

H+
t = −α ŷ × J , (4.2b)

where α is a real-valued scalar to ensure that the total power conservation is satisfied [30].

Since the metasurface is passive and lossless, the total output power needs to be equal to

the total input power. As will be demonstrated in Section 4.4, the choice of α will not

change the resulting pattern.

4.3.2 Calculating the Susceptibility Profile

According to Section 2.2, the susceptibility profile of the metasurface is related to the

tangential fields through the GSTCs. With the predefined coordinates shown in Figure 4.1,

the GSTCs read



−∆Hx

∆Hz


 = jωε0



χzz
ee χzx

ee

χxz
ee χxx

ee






Ez,av

Ex,av


+ jk0



χzz
em χzx

em

χxz
em χxx

em






Hz,av

Hx,av


 , (4.3a)

3Note that n̂ is now ŷ. Also, the identity A× (B×C) = B(A ·C)−C(A ·B) is used where A, B, and
C are arbitrary vectors and × denotes vector cross product and · denotes vector dot product.
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


∆Ex

−∆Ez


 = jωµ0



χzz
mm χzx

mm

χxz
mm χxx

mm






Hz,av

Hx,av


+ jk0



χzz
me χzx

me

χxz
me χxx

me






Ez,av

Ex,av


 , (4.3b)

Although microscopic unit cell (meta-atom) designs are not considered, the unit cell design

of a reciprocal, passive and lossless metasurface is generally preferred to avoid energy loss

and using circuit components that require DC bias or more advanced fabrication. Moreover,

the design of reciprocal metasurfaces is also preferred in this thesis. Therefore, herein, it

is required that the metasurface is reciprocal, passive and lossless. Since the three-layer

topology employed herein cannot support change of polarization, the metasurface is assumed

to be non-gyrotropic as well. Combining the assumptions stated above and applying the

requirements stated in Section 2.3 to fulfill the assumptions, the GSTCs become



−∆Hx

∆Hz


 = jωε0



χzz
ee 0

0 χxx
ee






Ez,av

Ex,av


+ jk0




0 χzx
em

χxz
em 0






Hz,av

Hx,av


 , (4.4a)




∆Ex

−∆Ez


 = jωµ0



χzz
mm 0

0 χxx
mm






Hz,av

Hx,av


+ jk0




0 −χxz
em

−χzx
em 0






Ez,av

Ex,av


 . (4.4b)

In the above equation, in accordance with Section 2.3, the susceptibility values need to

satisfy

χzz
ee , χ

xx
ee , χ

zz
mm, χ

xx
mm ∈ R,

χzx
em, χ

xz
em ∈ I,

(4.5)

where R denotes the real number set and I denotes the imaginary number set. For simplicity,

one can align the polarization of the tangential fields with the predefined coordinate system.

For example, if the incident fields are TE (TMz) fields, the GSTCs in (4.4) can be further

simplified to

H−
x −H+

x =
jωε0
2

χzz
ee

(
E+

z + E−
z

)
+

jk0
2

χzx
em

(
H+

x +H−
x

)
, (4.6a)
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E−
z − E+

z =
jωµ0

2
χxx
mm

(
H+

x +H−
x

)
− jk0

2
χzx
em

(
E+

z + E−
z

)
. (4.6b)

As mentioned in Section 2.3.4, this problem is well defined and there will be a unique set

of susceptibility values that can realize the desired field transformation.

4.3.3 Implementing the Susceptibility Profile

The three-layer admittance sheet topology described in Section 2.4.1 is used to implement

the acquired susceptibility profile. Firstly, according to Section 2.4, assuming a TE (TMz)

incident field, the field transformation delivered by the metasurface unit cell can be repre-

sented by a two-port network using transmission parameters as [49]



E−

z

H−
x


 =



T11 T12

T21 T22






E+

z

H+
x


 , (4.7)

where4

T11 =
ζτχzz

eeχ
xx
mm + (1− ξχzx

em)
2

1− ζτχzz
eeχ

xx
mm − (ξχzx

em)
2 , (4.8a)

T12 =
2τχxx

mm

1− ζτχzz
eeχ

xx
mm − (ξχzx

em)
2 , (4.8b)

T21 =
2ζχzz

ee

1− ζτχzz
eeχ

xx
mm − (ξχzx

em)
2 , (4.8c)

T22 =
ζτχzz

eeχ
xx
mm + (1 + ξχzx

em)
2

1− ζτχzz
eeχ

xx
mm − (ξχzx

em)
2 , (4.8d)

and

ζ =
jωε0
2

, ξ =
jk0
2

, τ =
jωµ0

2
. (4.9)

4We repeat some of the equations noted in Section 2.4 with the specified coordinate considered herein.
That is, we replace u and v by the coordinates considered in Figure 2.1.
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Assuming that the two substrates are identical, the three purely-imaginary (i.e., lossless

and passive) admittance values can be calculated as [48,49]

Y1 =
T22 − jZ0 sin (βt) cos (βt)Y2 + sin2 (βt)− cos2 (βt)

2jZ0 sin (βt) cos (βt)− Z2
0 sin

2 (βt)Y2
, (4.10a)

Y2 =
T12 − 2jZ0 sin (βt) cos (βt)

−Z2
0 sin

2 (βt)
, (4.10b)

Y3 =
T11 − jZ0 sin (βt) cos (βt)Y2 + sin2 (βt)− cos2 (βt)

2jZ0 sin (βt) cos (βt)− Z2
0 sin

2 (βt)Y2
, (4.10c)

where β denotes the phase constant in the dielectric substrate, t denotes the thickness of

the substrate, and Z0 denotes the characteristic impedance of the dielectric substrate.5

4.4 Numerical Implementation

The procedure described in the previous section provides explicit calculation for all the

quantities needed for the proposed problem except for the equivalent surface current den-

sities. As these unknown current densities are difficult to be analytically calculated, they

are inferred from user-specified field specifications (with or without phase) through an EM

inversion algorithm. In this section, the procedure for numerically finding the current den-

sities will be elaborated. Since this thesis builds on the work presented in [32], it follows a

similar style of presentation for the numerical implementation.

4.4.1 Creating the Vector of Unknowns

Let us begin this section by emphasizing one more time that only the tangential field

components, E+
z and H+

x , are concerned in the design process, and also let us emphasize

that according to (3.11), the equivalent electric and magnetic current densities are directly

related to the output tangential fields as Jz = −H+
x and Mx = −E+

z . In order to apply

5Although we typically have small losses in the substrate, the substrate is considered to be lossless in the
above calculation. But, in the full-wave simulation in Ansys HFSS, the loss will be considered.
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an EM inversion algorithm to numerically solve for the current density components, the

metasurface needs to be discretized into N unit cells, and the current density components

can then be discretized and approximated as

Jz (r) ≈
N∑

n=1

Jnfn (r) , (4.11a)

Mx (r) ≈
N∑

n=1

Mnfn (r) , (4.11b)

where Jn and Mn are the complex coefficients, and fn (r) is the pulse basis function that

equals unity when r is inside nth unit cell and zero elsewhere. Let

J =




J1

J2

. . .

JN



∈ CN×1, M =




M1

M2

. . .

MN



∈ CN×1 (4.12)

be the vectors that contain the coefficients. As in [30], these vectors can be expressed in

terms of their real and imaginary components as6

J = JR + jJI, (4.13a)

M = MR + jMI. (4.13b)

6As can be seen in [30], the main reason for decomposing the equivalent currents into their real and
imaginary parts is to develop a cost functional for the enforcement of the local power conservation (LPC)
constraint.
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Finally, similar to [32], the vector of unknowns, x, is constructed by concatenating the real

and imaginary parts of the coefficients as

x =




JR

JI

MR

MI



∈ R4N×1. (4.14)

Notice that with this arrangement, the unknown is a real-valued vector that could simplify

some of the calculations later on.

4.4.2 Creating the Forward Operator

The forward operator is an operator that accepts a set of known currents and calculate

their effect in the region of interest (ROI). The effect is typically electric or magnetic fields

in the far-field zone. However, the formulation presented here also covers the electric and

magnetic fields in the near-field zone. The forward operator is created based on the integral

equations in (3.3). Assuming that the observation point r is in ROI, i.e, r ∈ ROI, based

on the EFIE and the discretized current densities, the relationship between the unknowns

and the electric field at the observation point, E(r), can be expressed as

E(r) = −jη0k0

∫

D
G̃0(r, r

′) · ẑ
N∑

n=1

Jnfn
(
r′
)
dx′dz′

+

∫

D
x̂

N∑

n=1

Mnfn
(
r′
)
×∇g0(r, r

′)dx′dz′, (4.15)

where r ∈ ROI, and r′ spans the outside surface of the metasurface denote byD, i.e., r′ ∈ D.

The discrete forward operator A is then created such that Ax produces a vector of electric

field component values over the ROI. The details of constructing the linear operator A can
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be found in Appendix A. As will be seen, the selection of the Green’s function in (4.15)

depends on whether 2D assumption is applied, and therefore, the resulting operator will be

different. In addition, another forward operator ALove is created in a similar manner such

that ALovex produces a vector of Ez values at locations where Love’s equivalence principle is

enforced7. Note that (3.11) is valid under Love’s condition, and thus, it makes sense to have

an operator that can be later used to enforce the Love’s equivalence principle. To create

this operator, the observation point r will span the Love’s surface according to [28,57,62].

4.4.3 Forming the Data Misfit Cost Functional

The data misfit cost functional quantifies the relative difference between the user specified

discrete field data f and the field produced by the equivalent current densities at the region

of interest (ROI). Herein, we denote the ROI by S for brevity. To match complex field data,

the data misfit cost functional is expressed as

Cdata(x) =
∥Ax− f∥2S
M∥f∥2S

, (4.16)

where M denotes the number of discrete field data and it is presented for the purpose of

normalization and ∥·∥S represents the L2 norm taken over the domain S.8 Similarly, to

match amplitude-only field data (i.e., power patterns), the data misfit cost functional is

expressed as

Cdata(x) =

∥∥∥|Ax|2 − |f |2
∥∥∥
2

S

M
∥∥∥|f |2

∥∥∥
2

S

. (4.17)

7Herein, the null fields are enforced on the input side of the metasurface.
8Compared to previous works in our group, e.g., [32], we have intentionally added the parameter M in

the data misfit cost functional to provide better balance between this cost functional, and the remaining
cost functionals. From the experience of the author, this leads to an easier choice for the regularization
parameters. In particular, the author has observed that by this particular implementation, an appropriate
weight for the LPC cost functional is around unity. Intuitively, this is reasonable as the LPC cost functional
for the design of lossless and passive metasurfaces is as important as the data misfit cost functional.
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Minimizing this functional reduces the difference between the desired magnitude-only field

and the magnitude-only field produced by the equivalent current densities. That is, it

represents the power pattern mismatch, or simply the data misfit.

4.4.4 Forming the Love’s Equivalence Principle Cost Functional

Similar to the data misfit cost functional, the Love’s equivalence principle cost functional

quantifies the electric field values at locations where null fields are desired. Similar to [31],

it is constructed as9

CLove(x) =
∥ALovex∥2

L
, (4.18)

where L denotes the number of testing points that enforces null fields. If this functional is

minimized, the relationship between the equivalent sources and the output tangential fields

in (4.2) is then valid.

4.4.5 Forming the Local Power Conservation Cost Functional

The local power conservation (LPC) [29] constraint is needed to be met to arrive at lossless

and passive metasurfaces. This requires ensuring that the real power perpendicular to the

unit cell on its input and output sides are the same. To this end, we have utilized the

LPC cost functional derived in [30]. This cost functional aims to minimize the discrepancy

between the real power entering a given unit cell in the perpendicular direction and the real

power exiting that unit cell in the perpendicular direction. Thus, to enforce LPC, one must

satisfy

1

2
Re
(
E−

t ×H−∗
t

)
=

1

2
Re
(
E+

t ×H+∗
t

)
(4.19)

9The reason for normalizing this cost functional with L is the same as the reason presented in the
previous footnote. In addition, we would like to note that in some other works, the Love’s principle has been
incorporated directly into the data misfit cost functional by augmenting the data operator, e.g. in [28].
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at each unit cell, that is, pinn = poutn . The input power density for the nth unit cell can be

approximated as

pinn ≈ 1

2
Re
(
E−

z,nH
−∗
x,n

)
, (4.20)

where E−
z,n and H−

x,n are measured at the centroid of the nth unit cell. Notice that the input

power densities are known quantities, and the vector containing these values will be denoted

as pin. Similarly, the output power density for the nth unit cell can be approximated as

poutn ≈ 1

2
Re
(
E+

z,nH
+∗
x,n

)
, (4.21)

which, according to the equations in (4.2) and (4.11), can be written in terms of the coeffi-

cients as

1

2
Re
(
E+

z,nH
+∗
x,n

)
=

α2

2
Re (MnJ

∗
n) . (4.22)

The vector that contains the output power densities can then be written as

pout =
α2

2
Re (M⊙ J∗) , (4.23)

where ⊙ denotes the element-wise Hadamard product. Separating the real and imaginary

parts of the coefficients, (4.23) becomes10

pout =
α2

2
Re [(MR + jMI)⊙ (JR − jJI)]

=
α2

2
(JR ⊙MR + JI ⊙MI) .

(4.24)

10At this point, we would like to remind the reader about the reason behind decomposing the unknown
equivalent currents into their real and imaginary parts. As done in [30], this is needed to derive the LPC
cost functional.
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Now, to satisfy the total power conservation, i.e., sum
(
pin
)
= sum

(
pout

)
, α is calculated

as [30]

α =

(
sum

(
pin
)

1
2sum (JR ⊙MR + JI ⊙MI)

) 1
2

. (4.25)

Instead of strictly enforcing LPC which would potentially eliminate some of the solution

sets, the cost functional associated with LPC,

CLPC(x) =
∥∥JR ⊙MR + JI ⊙MI − 2

α2p
in
∥∥2
D

N
∥∥ 2
α2pin

∥∥2
D

, (4.26)

is minimized to reduce the difference between the input and output power. As will be

seen, in our 3D implementation, we are concerned with the main (co-pol) polarization, and

therefore, we will utilize the same LPC cost functional (originally developed for 2D [30]) for

3D. Obviously, we will deal with more unit cells in 3D as compared to the 2D case.

Note that enforcing LPC this way results in slightly different input and output power, and

even if LPC is strictly enforced, the input and output power might still be slightly different

due to precision error. This will cause problems when calculating the susceptibility profile

and the admittance values, since the passive and lossless assumption of the metasurface

no longer perfectly holds. This will result in χzx
em to have a non-zero real part. (If the

LPC is perfectly satisfied, χzx
em will have zero real part.) On the other hand, if the LPC is

sufficiently satisfied, the real part of the resulting χzx
em will be insignificant comparing to its

imaginary part, and therefore, passivity and losslessness can still be achieved by neglecting

the real part of χzx
em. This is the situation that happens in the inversion process. Once

we get a complex χzx
em, we ignore its (small) real part in the process of implementing the

corresponding three-layer admittance model.
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4.4.6 Forming the Total Variation Regularization Term

As mentioned before, the Green’s function used in (4.15) acts like a low-pass spatial filter.

This can create non-radiating sources with high spatial frequency. That is, for a given

solution x̄, we can also have x̄ + xNR as another solution where xNR represents a non-

radiating (NR) component. Meanwhile, since the output tangential fields are directly related

to the equivalent current densities (with Love’s equivalent principle enforced), a spatially

smoother solution would better support the periodic assumption of three-layer admittance

sheet topology. Therefore, among different possible solutions, it makes sense to favour the

one that has smoother field variations across the metasurface. This is sometimes referred

to as quasi-periodicity assumption. To this end, we might use penalty terms (regularization

terms) that favour smoother solutions. For this, one candidate is the use of total variation

(TV) regularization term that was first used in [31] for cascaded metasurface design.

The TV regularization term quantifies the spatial variation of the current densities, and it

is formulated as

CTV(x) =
∥∇∇(x)∥2D

N
, (4.27)

where the operator ∇∇ takes the length of the gradient of the real and imaginary parts of

current densities separately, which can be explicitly written as11

∇∇(x) ≜




|∇JR|

|∇JI|

|∇MR|

|∇MI|



=




√(
∂
∂xJR

)2
+
(

∂
∂zJR

)2
√(

∂
∂xJI

)2
+
(

∂
∂zJI

)2
√(

∂
∂xMR

)2
+
(

∂
∂zMR

)2
√(

∂
∂xMI

)2
+
(

∂
∂zMI

)2



, (4.28)

and the partial derivatives are numerically calculated using the central difference approxi-

11We would like to remind the reader that it is assumed that the metasurface lies in the xz plane for the
3D case.
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mation. With the 2D assumption, for example ∂
∂z = 0, this functional is simplified as

CTV(x) =
∥Dx(x)∥2D

N
, (4.29)

where Dx is a operator that computes the partial derivative of the real and imaginary

current density components separately, which can be explicitly written as

Dx(x) ≜




∂
∂xJR

∂
∂xJI

∂
∂xMR

∂
∂xMI



. (4.30)

Minimizing this functional penalizes solutions with rapid spatial variations, resulting in both

less non-radiating sources and eventually a metasurface with more uniformly distributed

unit cells.

4.4.7 Solving the Minimization Problem

The unknowns are determined by minimizing the total cost functional that is constructed

as

C(x) = Cdata(x) + wLoveCLove(x) + wLPCCLPC(x) + wTVCTV(x), (4.31)

where wLove, wLPC and wTV are three real-valued weighing parameters that controls the

relative importance between the three functionals. (As noted earlier, the specific choice of

the normalization parameters in the above cost functionals has a beneficial consequence: the

weight wLPC can be typically chosen to be around unity.) Herein, the proposed minimization

problem is solved using the nonlinear conjugate gradient method. This iterative method
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updates the vector of unknowns as

xk+1 = xk + βkvk, (4.32)

where xk denotes the predicted solution at the kth iteration, βk is the real-valued step

length, and the vector vk is the search direction at the kth iteration. Similar to [32], we

employ the Polak-Ribière conjugate gradient method [71], which can be calculated as

vk = −gk +
(gk − gk−1)

† gk

g†
k−1gk−1

vk−1. (4.33)

In the above equation, gk represents the gradient of C(x) with respect to x at the kth iter-

ation and the superscript † denotes the Hermitian (complex conjugate transpose) operator.

Now to apply (4.32) to update the solution, the gradient of the total cost functional g and

the step length β must be determined.

Determining the Gradient

To determine g, one can individually calculate the gradient for the three cost functionals.

If complex field data are given, the gradient of (4.16) can be calculated as

gdata(x) =
2Re

[
A† (Ax− f)

]

M∥f∥2S
. (4.34)

If amplitude-only field data12 are given, the gradient of (4.17) can be calculated as [31]

gdata(x) =
4Re

[
A† (rdata ⊙Ax)

]

M
∥∥∥|f |2

∥∥∥
2

S

, (4.35)

12In the region of interest is in the far-field zone, this will correspond to desired power patterns.
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where rdata is the residual vector for the data misfit cost functional that is defined as

rdata(x) ≜ |Ax|2 − |f |2. (4.36)

The gradient of the Love’s equivalence principle cost functional in (4.18) is calculated as [31]

gLove(x) =
2Re

[
A†

LoveALovex
]

L
. (4.37)

The gradient of the LPC cost functional in equation (4.26) is derived as [31]

gLPC(x) =
2

N
∥∥ 2
α2pin

∥∥2
D




rLPC ⊙MR

rLPC ⊙MI

rLPC ⊙ JR

rLPC ⊙ JI



, (4.38)

where the residual vector for the LPC cost functional, rLPC, is defined as

rLPC(x) ≜ JR ⊙MR + JI ⊙MI −
2

α2
pin. (4.39)

The gradient of the total variation cost functional in equation (4.27) is derived as [31]

gTV(x) =
−2∇∇2(x)

N
, (4.40)
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where the operator ∇∇2 takes the Laplacian of the real and imaginary parts of the current

density components separately. That is,

∇∇2(x) ≜




∇2JR

∇2JI

∇2MR

∇2MI



, (4.41)

and similar to (4.28), is numerically evaluated using central difference approximation. If 2D

assumption is made ( ∂
∂z = 0), the gradient of the total variation cost functional is simplified

as

gTV(x) =
−2D2

x(x)

N
, (4.42)

where the operator D2
x computes the second partial derivative of the real and imaginary

current density components separately as

D2
x(x) ≜




∂2

∂x2JR

∂2

∂x2JI

∂2

∂x2MR

∂2

∂x2MI



. (4.43)

Finally the gradient of the total cost functional is calculated as

g = gdata + wLovegLove + wLPCgLPC + wTVgTV (4.44)

Determining the Step length

The step length of the nonlinear conjugate gradient algorithm has been denoted by βk in

(4.32). This parameter is essential in controlling how much the optimization algorithm

should incorporate the conjugate gradient direction vk in the update process. Since the
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derivation of the step length in the presence of the local power conservation (LPC) cost

functional is a contribution of this thesis, a full derivation is presented herein.

In the nonlinear conjugate gradient (CG) optimization for inverse (passive and lossless)

metasurface design, the choice of the step length has been considered in an ad hoc way.

Originally, for the case of lossy or active metasurfaces, an analytical expression for the step

length was derived [28]. However, when the LPC cost functional was added to the problem

formulation to enforce lossless and passive metasurfaces [49], the analytical expressions for

the CG direction and step length were not derived for the LPC-augmented cost functional.

Consequently a global optimization approach (particle swarm optimization) in conjunction

with the CG algorithm was used in a two-step fashion. Later, in [31], for the LPC-augmented

cost functional, an analytical expression for the CG direction was derived. However, the

step length was still chosen in an ad hoc fashion. For example, in [31], this step length has

been changed from 100, 10, 1, 0.1, and 0.005 for different design examples. There are at

least two shortcomings with this ad hoc choice of step length:

− This requires a trial-and-error approach, and thus can be time consuming for the

designer.

− Even if the trial-and-error approach is successful to determine a reasonable step length,

this step length is kept fixed during different iterations of the CG algorithm as was

done in [31]. This is not ideal as the step length in the CG algorithm varies at different

iterations. The change of step length as a function of the CG iteration ensures a faster

convergence and possibly arriving at a better solution for the optimization problem.

To address the above issues, herein, we derive the analytical expression for the CG step

length of the LPC-augmented cost functional. The analytical expression of the step length,

which makes the minimization more efficient, can be found by minimizing F(βk) = C(xk +

βkvk) with respect to βk. (Note that the step length βk is a real number.) Similar to
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calculating the gradient, the three cost functionals in terms of βk are derived individually.

If complex field data are given, the data misfit cost functional can be expressed as

Fdata(βk) = Cdata(xk + βkvk)

=
∥A(xk + βkvk)− f∥2S

M∥f∥2S

=
∥Avk∥2Sβ2

k + 2Re
[
(Avk)

† (Axk − f)
]
βk + ∥Axk − f∥2S

M∥f∥2S
.

(4.45)

If amplitude-only field data are given, the data misfit cost functional can be expressed as a

fourth order polynomial of βk as [28,72]

Fdata(βk) = Cdata(xk + βkvk)

=

∥∥∥|A(xk + βkvk)|2 − |f |2
∥∥∥
2

S

M
∥∥∥|f |2

∥∥∥
2

S

=

∥∥∥|Avk|2β2
k + 2Re [(Axk)⊙ (Avk)

∗]βk + rdata,k

∥∥∥
2

S

M
∥∥∥|f |2

∥∥∥
2

S

= adata,4β
4
k + adata,3β

3
k + adata,2β

2
k + adata,1βk + adata,0,

(4.46)

where

adata,4 =

∥∥∥|Avk|2
∥∥∥
2

S

M
∥∥∥|f |2

∥∥∥
2

S

, adata,3 =
4(|Avk|2)TRe [(Axk)⊙ (Avk)

∗]

M
∥∥∥|f |2

∥∥∥
2

S

,

adata,2 =
4∥Re [(Axk)⊙ (Avk)
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(4.47)

Similarly, the Love’s equivalence principle cost functional in terms of βk can be expressed
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as

FLove(βk) = CLove(xk + βkvk)

=
∥ALove(xk + βkvk)∥2

L

=
∥ALovevk∥2β2

k + 2Re
[
(ALovevk)

† (ALovexk)
]
βk + ∥ALovexk∥2

L
.

(4.48)

The LPC cost functional can also be expressed as a fourth order polynomial of βk as [72]

FLPC(βk) = CLPC(xk + βkvk)

=

∥∥(JR,k + βkv1,k)⊙ (MR,k + βkv3,k) + (JI,k + βkv2,k)⊙ (MI,k + βkv4,k)− 2
α2p

in
∥∥2
D

N
∥∥ 2
α2pin

∥∥2
D

=

∥∥ckβ2
k + dkβk + rLPC,k

∥∥2
D

N
∥∥ 2
α2pin

∥∥2
D

= aLPC,4β
4
k + aLPC,3β

3
k + aLPC,2β

2
k + aLPC,1βk + aLPC,0,

(4.49)

where

aLPC,4 =
∥ck∥2D

N
∥∥ 2
α2pin

∥∥2
D

, aLPC,3 =
2cTk dk

N
∥∥ 2
α2pin

∥∥2
D

, aLPC,2 =
2cTk rLPC,k + ∥dk∥2D

N
∥∥ 2
α2pin

∥∥2
D

,

aLPC,1 =
2dT

k rLPC,k

N
∥∥ 2
α2pin

∥∥2
D

, aLPC,0 =
∥rLPC,k∥2D
N
∥∥ 2
α2pin

∥∥2
D

.

(4.50)

In the expressions given in (4.49) and (4.50), ck and dk are two real-valued vectors at the

kth iteration that can be calculated as

ck = v1,k ⊙ v3,k + v2,k ⊙ v4,k, dk = JR,k ⊙ v3,k +MR,k ⊙ v1,k + JI,k ⊙ v4,k, (4.51)

where v1,k, v2,k, v3,k and v4,k are vectors in RN , and are the segments of the search direction

- 59 -



4.4 Numerical Implementation

vk such that (i.e., column-wise concatenation)

vk =




v1,k

v2,k

v3,k

v4,k



. (4.52)

The total variation cost functional in terms of βk can be expressed as

FTV(βk) =

(
∥Dx(vk)∥2D + ∥Dz(vk)∥2D

)
β2
k

N
+

2
(
Dx(xk)

TDx(vk) +Dz(xk)
TDz(vk)

)
βk

N

+
∥Dx(xk)∥2D + ∥Dz(xk)∥2D

N
, (4.53)

where similar to (4.43), the operators Dx and Dz take the partial derivative of real and

imaginary current density components, or the segments of the search direction separately,

with respect to x and z. Notice that if 2D assumption ( ∂
∂z = 0) is made, the total variation

cost functional in terms of βk can be simplified as

FTV(βk) =
∥Dx(vk)∥2Dβ2

k + 2Dx(xk)
TDx(vk)βk + ∥Dx(xk)∥2D
N

. (4.54)

Finally, whether the field data is given with or without phase, the total cost functional is a

fourth order polynomial in terms of βk, and can be calculated as

F(βk) = Fdata(βk) + wLoveFLove(βk) + wLPCFLPC(βk) + wTVFTV(βk). (4.55)

The analytical step length can then be found by numerically solving the third degree poly-

nomial, ∂F(βk)
∂βk

= 0, and choosing the real-valued root that results in the smallest F(βk).
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Chapter 5

Full-Wave Simulation Results

In this chapter, several metasurface designs simulated in Ansys HFSS will be presented.

The design procedure follows the previous chapter where the output tangential fields are

acquired using the inversion algorithm, and the three-layer admittance sheet topology is

used for each unit cell. In all the examples shown here, the admittance sheets are either

purely capacitive or inductive. That is, no gain or loss mechanisms have been used. In

addition, in all the examples, practical dielectric substrates, e.g., Rogers RO3010, have

been used in the unit cell model, and the unit cell model shown in Figure 2.3 is used for

the metasurface implementation in Ansys HFSS.

5.1 Performance Comparison between Fixed and Analytical

Step Length

The main purpose of this section is to investigate the advantage of using the analytical

step length derived in this thesis. Two examples are conducted within the 2D assumption

( ∂
∂z = 0). In these examples, the metasurface lies in the xz plane. Since the problem is 2D

with no variations along the z axis, the metasurface will have spatial variations only along
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the x axis, and is fully periodic along the z axis. Furtheremore, due to this 2D assumption,

the desired power pattern contains only one far-field cut in the xy plane. Therefore, the

angular variation of the desired power pattern cut can be represented by the azimuthal

angle φ. (As will be seen, when we go to the 3D case, we also need the elevation angle θ to

fully represent the angular variation of the power pattern.)

For the first example, two metasurfaces are designed to transform a transverse magnetic

(TM)1 incident plane wave to a desired far-field power pattern (|Hz|) as shown in red

in Figure 5.1 at 10.5 GHz. The metasurfaces lie in the xz plane and they individually

consist of 30 unit cells with the same width of λ
6 spread across the x axis. To calculate the

susceptibility profiles of the two metasurfaces, the tangential output fields are found using

the inversion algorithm via (i) a fixed step length (βk = 2 × 103)2 and (ii) the analytical

step length, respectively. The weighting parameters are wLove = 10−4, wLPC = 1 and

wTV = 5× 10−12 for both cases.

The inversion algorithm is then run with the fixed step length and with the analytical step

length using the same initial guess and stopping condition. It takes 11883 iterations to

converge using the fixed step length, and 543 iterations to converge using the analytical

step length. Their convergence rates in the first 10000 iterations are shown in Figure 5.2.

As expected, the inversion algorithm converges faster when the analytical step length is

implemented. It should be emphasized that we have intentionally chosen an appropriate

fixed step length. If we were to choose a non-appropriate one, the inversion algorithm using

a fixed step length could have failed.

The resulting far-field power patterns from the inversion results are shown in black in

Figure 5.1. After the equivalent current densities are determined, the susceptibility values,

1This is equivalent to the TEz configuration.
2In this particular example, a step length of 2× 103 is not the largest fixed step length that guarantees

the algorithm to converge, but a fixed step length of 3× 103 would cause convergence issue, and therefore,
it is reasonable. The same reason applies to the choice of the fixed step length of the second example. Also,
note that the step length in this case does not vary as a function of iteration k.
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(a) Fixed Step Length

(b) Analytical Step Length

Fig. 5.1: Far-field comparison between the use of the fixed step length and analytical step length
for the 2D TM test case. The desired far-field power pattern is shown in red, the power pattern from
the inversion solution is shown in black, and the power pattern from the Ansys HFSS simulation
is shown in blue.

and consequently, the three admittance values can be calculated, where Rogers RO3010

(εr = 10.2, tan δ = 0.0022) is used for the two dielectric substrates, and each with a thickness

of 1.28 mm. As the metasurface is lossless and passive, the admittance values are purely

imaginary, and the resulting susceptance values (i.e., the imaginary part of the admittance)
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Fig. 5.2: The convergence rate using the fixed step length versus the analytical step length for
the 2D TM test case.

for each unit cell are shown in Figure 5.3. The metasurface designs are then simulated in

Ansys HFSS, and to improve the result, perfect electric baffles3 [27] are placed in between

the unit cells to create a closer agreement between the unit cell transmission-line based

model and the full-wave behaviour. In addition, absorbing metasurfaces are placed next to

the metasurface, extending each side by 2λ.

The absolute value of the real part of the total electric field (|Re(E)|) in the simulation

domain is shown in Figure 5.4. Note that this is the near-field distribution. In this near-

field distribution, we can still identify the formation of the refracted beam. The resulting

tangential fields on the output side of the metasurface are then extracted from Ansys HFSS.

They can then be used in near-field to far-field transformation to obtain the resulting far-

field power pattern.4 The far-field power pattern from the Ansys HFSS simulation is shown

3In practice, these can be implemented using vias [27].
4This can be for example done by converting the output tangential fields to the equivalent currents, and
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(a) Fixed Step Length

(b) Analytical Step Length

Fig. 5.3: The three susceptance values per unit cell resulting from using the fixed step length
approach and the analytical step length approach for the 2D TM case.

in blue in Figure 5.1. As can be seen, the simulated power pattern matches well with

the desired power pattern, with some minor deviation in the side lobes. The efficiencies,

then mapping them to the far-field zone using the forward operator.
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(b) Analytical step length

Fig. 5.4: The absolute value of the real part of the electric field in the simulation domain (near-
field zone) for the 2D TM test case. The metasurface lies in the xz plane with no variations along
the z axis. In this 2D cut, the metasurface is located on the y = 0 line. From its left side, the
metasurface is illuminated by a plane wave which is normally incident on the metasurface. The
right side of the metasurface is its output side which shows the creation of a refracted beam. The
metasurface design in (a) is based on the inversion solution using the fixed step length, and (b)
is based on the inversion solution using the analytical step length. Note that in both cases, the
quality of the impinging plane wave on the input side of the metasurface is quite good which is a
testament to the fact that the metasurface is nearly reflectionless.

calculated as the ratio between the input power and the output power, are 94% for the

fixed step length and 95% for the analytical step length. The reason that the transmission

efficienct is not 100% is due to at least two reasons: the substrate RO3010 is slightly lossy,

and also the LPC constraint is not perfectly satisfied.

The second example uses the same configuration for the metasurfaces with a transverse

electric (TE)5 incident plane wave, and a desired far-field power pattern (|Ez|) as shown in

red in Figure 5.5 at 10.5 GHz. The inversion algorithm is again run twice with a fixed step

length of 4 × 10−4 and the analytical step length. Both cases use the same initial guess,

5This is equivalent to the TMz configuration as it is known in electromagnetic imaging.
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(a) Fixed Step Length

(b) Analytical Step Length

Fig. 5.5: Far-field comparison between the use of the fixed step length and analytical step length
for the 2D TE test case. The desired far-field power pattern is shown in red, the power pattern from
the inversion solution is shown in black, and the power pattern from the Ansys HFSS simulation
is shown in blue.

stopping condition and weighting parameters, which are chosen as wLove = 10−5, wLPC = 1

and wTV = 1×10−4. It takes 219199 iterations to converge using the fixed step length, and

only 207 iterations to converge using the analytical step length. Their convergence rates in

the first 10000 iterations are shown in Figure 5.6. It is again shown that the use of analytical

step length makes the inversion algorithm converge faster. Also, note that since the fixed
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Fig. 5.6: The convergence rate using the fixed step length versus the analytical step length for
the 2D TE test case.

step length is based on ad hoc choice, the cost functional is not guaranteed to decrease at

each iteration. This is clearly visible in the first few iterations of the CG algorithm under

the fixed step length.

The far-field pattern derived from the inversion results is shown in black in Figure 5.5.

The two designs are then simulated in Ansys HFSS with the same setup of the previous

example (using Rogers RO3010 substrates), except that the PEC baffles are now switched

to perfect magnetic conductor (PMC) baffles to accommodate the change of polarization.6

The resulting susceptance values for each unit cell are shown in Figure 5.7. The absolute

value of the real part of the total magnetic field (|Re(H)|) in the simulation domain is shown

in Figure 5.8. Noticeable reflections can be observed from the case where the metasurface

6Although the implementation of the PEC baffles are practical using vias as was done in [27], it is not
clear to the author how these PMC baffles can be implemented in practice.
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(a) Fixed Step Length

(b) Analytical Step Length

Fig. 5.7: The three susceptance values resulting from using the fixed step length and the analytical
step length approaches for the 2D TE case.

is designed using the fixed step length.7 This is because the resulting equivalent currents

7This can be understood by looking at the quality of the plane wave on the input (left) side of the
metasurface. As can be seen, the quality of the plane wave in the case of analytical step length is better.
For the case of fixed step length, we see reflections that tend to create a standing wave on the input side of
the metasurface.
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(b) Analytical step length

Fig. 5.8: The absolute value of the real part of the magnetic field in the simulation domain
(near-field zone) for the TE test case. The metasurface lies in the xz plane with no variations
along the z axis. In this 2D cut, the metasurface is located on the y = 0 line. From its left side,
the metasurface is illuminated by a plane wave which is normally incident on the metasurface.
The right side of the metasurface is its output side which shows the creation of a refracted beam.
The metasurface design in (a) is based on the inversion solution using the fixed step length, and
(b) is based on the inversion solution using the analytical step length.

using the fixed step length have a rapider spatial change, and poorer enforcement of the

Love’s equivalent principle8 than the ones using the analytical step length. The far-field

power pattern from the Ansys HFSS simulation is shown in blue in Figure 5.5, and the case

using the analytical step length shows a better alignment. The efficiencies are calculated as

80% for the fixed step length and 91% for the analytical step length which agrees with the

observation of more reflections in the case of fixed step length.

8We have already shown that if Love’s condition is not properly enforced, undesired reflections will
arise [68].
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5.2 3D Far-Field Power Pattern Synthesis

In the above, we have shown the improvements that can be achieved by the use of analytically-

derived expressions for the step length in comparison with the prior works [28,30,32] using

ad hoc fixed step lengths. These works have been done under the 2D TM or TE assump-

tions. In this section, we examine the inversion algorithm under the 3D case. As opposed

to the 2D case, the metasurface under the 3D assumption can have spatial modulation in

both directions along the metasurface, and the beam shaping can be done at different cuts

in the far-field zone.

Herein, two 3D examples will be presented with their main difference being the incident

field. The goal of the first example is to design a metasurface that transform the ẑ polarized

incident plane wave traveling towards ŷ to a desired far-field power pattern (|Eθ|2) that is

specified on two plane cuts as shown in red in Figure 5.9 at 10.5 GHz. The metasurface lies

in the xz plane, and it consist of 30 unit cells along both x̂ and ẑ directions, resulting in

a total of 900 unit cell. Each unit cell is λ
6 in width, making the metasurface a total area

of 5λ× 5λ. The desired power pattern is given in xy plane and yz plane as |f1|2 and |f2|2.

The total desired power pattern is then constructed by concatenating the two cuts as9

|f |2 =



|f1|2

|f2|2


 . (5.1)

The above vector then serves as the data to the inversion algorithm.

The inversion algorithm is then used to find the equivalent currents and subsequently the

susceptibility profile and the admittance values. The weighting parameter are wLove = 10−7,

wLPC = 1 and wTV = 10−7. Once the algorithm converges, the far-field power pattern

generated by the equivalent currents is then found as shown in black in Figure 5.9. Rogers

RO3010 of 1.28 mm thickness is used as the two substrates of the metasurface, and the

9The desired pattern is constructed using a dipole array.
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(a) xy plane

(b) yz plane

Fig. 5.9: 3D Test case with far-field power patterns in two perpendicular cuts. The metasurface
aperture lies in the xz plane with the y axis being perperndicular to the metasurface aperture. Far-
field power pattern with plane wave incident field in (a) xy plane and (b) yz plane. Desired power
pattern is shown in red, power pattern obtained directly from reconstructed equivalent currents is
shown in black, and power pattern from Ansys HFSS simulation is shown in blue.
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(b) yz plane

Fig. 5.10: 3D test case with the plane wave incident on the metasurface from its left side. The
absolute value of the real part of the electric field with plane wave incident field in the simulation
domain on (a) xy plane and (b) yz plane.

design is then simulated in Ansys HFSS. PEC baffles are placed in between each row of the

metasurface to improve the results. In addition, absorbing metasurfaces are placed around

the metasurface, extending each side by 2λ, to prevent the spillover that could potentially

affect the tangential output field. Two cuts of the absolute value of the real part of the

total electric field in the simulation domain are shown in Figure 5.10.

Following the step described in the previous section, the far-field power pattern from the

simulation result can be produced as shown in blue in Figure 5.9. This figure shows a good

match between the desired far field pattern and the far-field pattern from the simulation

in both cuts. The efficiency of the metasurface is calculated as 76%. One reason for this

relatively low transmission efficiency is the reflections on the input side of the metasurface

that can be seen in Figure 5.10(b). This is likely due to the fact that the LPC constraint is

not satisfied well.

In the second 3D example, a horn antenna is used to generate the incident field. The horn
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(a) xy plane

(b) yz plane

Fig. 5.11: 3D far-field power pattern synthesis with the horn antenna as the source in (a) xy
plane and (b) yz plane. Desired power pattern is shown in red, power pattern obtained directly
from reconstructed equivalent currents is shown in black, and power pattern from Ansys HFSS
simulation is shown in blue.

antenna is fed with TE10 mode and the co-polarized component of the electric field of the

horn antenna is along ẑ. It is placed 3λ away from the metasurface, with its boresight
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towards ŷ. The goal of this example is to transform this incident field to a far-field power

pattern that is the same as the previous example as shown in red in Figure 5.11.

With the set up of the metasurface unchanged, the inversion algorithm is preformed with

the weighting parameters chosen as wLove = 10−5, wLPC = 1 and wTV = 10−9. The far-field

power pattern generated by the resulting equivalent currents is found as shown in black in

Figure 5.11. After calculating the susceptibility profile, the metasurface design is simulated

in Ansys HFSS with the PEC baffles placed in between each row. The resulting two cuts of

the absolute value of the real part of the total electric field in the near field region are shown

in Figure 5.10, and the far-field power pattern from the simulation result is produced as

shown in blue in Figure 5.9. A good match between the desired far-field and the simulation

result can be observed, with the transmission efficiency calculated as 80%.

We now investigate if our inverse formulation supports the existence of surface waves.10

Surface waves travel along the metasurface (xz plane) and they are evanescent toward the

ŷ direction based on the coordinates chosen in this section. In the metasurface literature,

surface waves have been utilized to help with satisfying the LPC constraint as surface waves

can travel along the metasurface and help with power redistribution [73]. For example,

in [74, 75], surface waves have been utilized to redistribute the power such that the power

profile of a line source, which has a taper, can be locally matched with that of a plane wave,

which is uniform. Similarly, in [76], surface waves are added to the solution in a separate

optimization stage.

Herein, to check if our solution contains such surface waves, we perform the following.

After finding the required tangential fields on the output metasurface side, we find its plane

wave spectrum. As it is well-known, the plane wave spectrum consists of two parts: the

propagating part and the evanescent part. The evanescent part exponentially decays as a

10The author acknowledges the contribution of Mario Phaneuf in the discussion on surface waves. Mario
Phaneuf has developed the methodology to investigate the presence of surface waves in this inverse source
framework.
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Fig. 5.12: The absolute value of the real part of the electric field with horn antenna as the source
in the simulation domain on (a) xy plane and (b) yz plane.
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(a) xy plane

(b) yz plane

Fig. 5.13: 3D far-field power pattern derived from the equivalent currents in (a) xy plane and (b)
yz plane. Power pattern derived from the original solution is shown in red, and the power pattern
obtained from the filtered solution (without the evanescent spectrum) is shown in black.

function of y and therefore has no signature in the far-field zone. However, it is still present

in the aperture of the metasurface and can potentially help with power redistribution to

help satisfy the LPC constraint. If our inverse solution is benefiting from these surface

waves, if we filter out the evanescent spectrum from the metasurface aperture tangential

fields, the far-field pattern should not change but the LPC constraint on the metasurface
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should be adversely affected.

After calculating the plane wave spectrum of the metasurface aperture tangential fields, we

can remove its evanescent component. After removing the evanescent spectrum, we can

propagate the filtered solution to the far-field zone to check if it still satisfies the far-field

power pattern. This has been shown in Figure 5.13.

As can be seen, the far-field pattern of the original solution matches almost perfectly with

the filtered solution. The reason behind small discrepancies lies in the fact that the far-field

distance cannot be set to infinity to make the effect of evanescent waves exactly zero.

We now need to investigate whether or not the removal of the evanescent component has

affected the power distribution on the metasurface. To this end, we calculate the normal real

power density on the metasurface output side (aperture) for these two cases: the original

solution and the filtered solution. Since the normal power density is along the y direction,

we denote it as Sy, and then calculate the following:

Power Difference (%) = 100×
Sy
original − Sy

filtered

Sy
original

, (5.2)

at each unit cell location. The result of this calculation has been plotted in Figure 5.14.

As can be seen, if we filter the evanescent component of the aperture field, the power

distribution profile on the metasurface aperture significantly changes with respect to the

original solution. Given that the original solution has a reasonable LPC match, we can

conclude that the presence of the surface wave (evanescent component with respect to y

direction) has helped us satisfy the LPC constraint.
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Fig. 5.14: The percentage difference of the normal power density between the original solution
and filtered solution.

5.3 Cascaded Metasurface Design

As emphasized in the previous section, the LPC constraint must be well satisfied for a

lossless and passive design. The approach that was discussed in the previous section to help

with meeting the LPC constraint is to take advantage of surface waves. Another approach

to help with the LPC constraint is to use a second metasurface. The combination of the two

metasurfaces can help redistribute the power and can help with satisfying the LPC. The

resulting metasurface pair is then referred to as a cascaded metasurface system [31,33,77,78].

The cascaded metasurface system does that through multiple reflections formed in the cavity

between the two metasurfaces. These multiple reflections can then redistribute the power

between the unit cells.

For pattern synthesis using a cascaded metasurface system, we still need to know the tan-

gential fields on the output of the second metasurface. In [31,32], this has been done using

electromagnetic inversion. However, in these works, the design of cascaded metasurface
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systems has been limited to the case in which there are no reflections in the cavity formed

between the two metasurfaces. This increases the size of the cascaded metasurface system

(i.e., the separation between the two metasurfaces). Herein, we use electromagnetic inver-

sion to find the tangential fields on the second metasurface and then design a cascaded

metasurface system that utilizes the multiple reflections between the two metasurfaces to

reduce the overall size of the system. This is based on [33] and in particular using the

implementation presented in [79].11

The cascaded metasurface system is designed to transform the incident field generated by

a ẑ polarized infinite line source with 2D assumption ( ∂
∂z = 0) to a desired far-field power

pattern (|Ez|) as shown in red in Figure 5.15 at 10 GHz. The two metasurfaces lie in the xz

plane, with a separation of 0.5λ. Each metasurface consists of 61 unit cells with the same

width, and the resulting total width is 6λ. The line source is placed λ
3 away from the center

of the first metasurface. For comparison purposes, a single metasurface is designed using

the same set up as the cascaded metasurface system excluding the second metasurface. The

inversion algorithm is then run twice, with the weighting parameters chosen as wLove = 10−3,

wLPC = 1 and wTV = 1 × 10−7 for the single metasurface, and wLove = 10−4, wLPC = 0

(LPC is satisfied by redistributing the incident power) and wTV = 1×10−7 for the cascaded

system. The far-field power pattern derived from the resulting equivalent currents are shown

in black in Figure 5.15. The two designs are then simulated using Ansys HFSS, using Rogers

RO3010 as substrates and the thickness of each substrate is 0.13 mm. The absolute value

of the real part of the total electric field in the simulation domain is shown in Figure 5.16.

Notice that no PEC baffle is used for both cases, which makes the design more practical.

The far-field power pattern from the simulation result is shown blue in Figure 5.15. As can

be seen in this figure, the far-field pattern from the simulation using the cascaded system

11The electromagnetic inversion has been performed by the author of this thesis and the design of the
cascaded metasurface system employing multiple reflections has been done by Mr. Jayesh Gohel who is
currently an MSc student in our group.
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(a) Single metasurface

(b) Cascaded metasurface

Fig. 5.15: Far-field comparison between the use of a single metasurface and a cascaded meta-
surface system. The desired far-field power pattern is shown in red, the power pattern from the
inversion solution is shown in black, and the power pattern from the Ansys HFSS simulation is
shown in blue.

has a better match for the two main beams. This is because the equivalent currents for the

cascaded system are spatially smoother and enforce Love’s equivalent principle better, since
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Fig. 5.16: The absolute value of the real part of the electric field in the simulation domain using
(a) a single metasurface and (b) cascaded metasurface system where the sepration between the
two metasurfaces is 0.5λ.
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no LPC is required during the inversion process in the cascaded metasurface design. This

is due to the fact that the LPC in the cascaded metasurface design is satisfied via multiple

reflections between the two metasurfaces, and thus the inversion algorithm does not need

to enforce the LPC constraint CLPC in (4.31). The calculated efficiencies are similar for the

two cases, which are 96% for the single metasurface, and 94% for the cascaded system.
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Chapter 6

Conclusions and Future Work

This chapter provide the overall conclusions of the thesis, along with some potential im-

provements that could be done in the future work.

6.1 Conclusions

Electromagnetic metasurfaces are capable of systematically transforming electromagnetic

waves that impinge on them. Therefore, they can be used as a systematic means for

beam shaping. Designing a metasurface to preform the desired transformation requires (1)

obtaining the surface properties of the metasurface and (2) implementing unit cells that

support those surface properties. These two step are often referred to as the macroscopic

and the microscopic design steps respectively.

For the macroscopic design, the knowledge of the tangential fields on the both side of the

metasurface are required. In this thesis, an inversion framework is presented as an ap-

proach to acquire the output tangential fields when they are not directly available. This is

needed as the desired specifications are typically available in terms of, for example, far-field

power patterns or performance criteria such as side lobe levels. The design problem can

then be formulated as an inverse source problem where the inversion algorithm aims to
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find the equivalent currents on the metasurface that produces the desired specifications.

This optimization can be done by augmenting the cost functional to incorporate the Love’s

equivalence principle and the local power conservation constraint to support the design of

lossless and passive metasurfaces. To this end, a total cost functional is constructed to

quantify (1) the difference between the desired fields and the fields produced by the equiva-

lent currents at the region of interest (the far-field zone in our case), (2) the fields produced

by the equivalent where the null fields are required according to the Love’s equivalence

principle, (3) the difference between the input power and the output power for each unit

cell, and (4) the spatial variation of the equivalent currents. This cost functional is then

minimized using the nonlinear conjugate gradient method to find the equivalent currents

that satisfy the assumptions and requirements for the metasurface. To validate the design,

the three-layer impedance sheet topology for omega bianisotropic Huygens’ metasurfaces

is utilized to simulate the metasurface in a full-wave solver, which is Ansys HFSS in our

case. It should be emphasized that the above formulation is a contribution presented by

other authors [28, 30–32], which is utilized in this thesis and was presented for the sake of

completeness.

In particular, the novelty of this thesis focuses on extending and improving the previous

inversion approach for metasurface design [28,30–32]. The major improvement includes the

derivation and implementation of the analytical step length. In the original work presented

in [28, 30–32], trial and error for selecting a fixed step length is required, since a large

step length might cause the algorithm to diverge, and a small step length results in slow

convergence rate. The use of the analytical step length spare the trial and error stage, while

the performance of the designed metasurface is not compromised according to the example.

Moreover, the 2D assumption used in the previous works [28, 30–32] is now relieved and a

3D implementation of the inverse source approach is presented to handle desired patterns

on two perpendicular cuts. In particular, the 3D implementation has been tested against a
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practical incident field emanating from the horn antenna. It should be emphasized that the

desired specifications considered in our implementation are in the form of power patterns

as opposed to complex (magnitude and phase) field patterns. Due to the phaseless nature

of power patterns, the associated inverse source problem will become nonlinear as opposed

to a linear one when the desired complex field pattern is available. (Other forms of 3D

inverse metasurface design for complex field pattern synthesis can be found for example

in [80,81].) Finally, through the author’s collaboration with two other team members, within

the framework of our inversion algorithm, we have discussed the presence of surface waves

in the utilized formulation that can be used for power redistribution along the metasurface

as well as the use of two metasurfaces (i.e., cascaded metasurface systems) to help with

power redistribution. These approaches can provide an extra means to satisfy the LPC

constraint needed for the design of passive and lossless metasurfaces.

6.2 Future Work

There are several research directions that worth investigating based on the work presented

in this thesis. First of all, although with the derivation of the analytical step length, the CG

optimization algorithm is fully automated, the weightings of the LPC, TV and Love’s cost

functional are still need to be set by the user. Future work should investigate approaches to

automate the choice of these weighting parameters. Currently, the weighting parameters are

chosen in an ad hoc manner. If these values can self-adjust, then the whole inversion process

is fully automated regardless of the problem. A promising approach is to dynamically

change wLove, wLPC and wTV as functions of the cost functionals, so that the resulting

equivalent currents could fulfill the four aforementioned requirements and assumptions for

all situations. (This will be similar to the concept of adaptive regularization described

in [82] for the inverse scattering problem associated with electromagnetic imaging.)

Moreover, the validation stage right now uses the three layer admittance sheet topology
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which is an ideal model. Although this could be physically implemented using the dogbone

structure, the mutual coupling between the three layers could prevent the fabricated unit

cell to have the same performance as the impedance model. One can develop an efficient and

accurate transformation from the ideal admittance model to the physical dogbone structure,

and eventually fabricate the metasurface based on the inversion frame work, and compare

the measurements with the specifications. One approach to go from the impedance model to

copper trace design (e.g., dogbone geometry design) is to use machine learning approaches

as explained in [52]. In addition, the current design methodology addresses narrow-band

scenarios. Both the macroscopic and microscopic design aspects need to be investigated for

wideband applications if this is to be useful for wireless communications.
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A. Derivation of the Forward Operator

Appendix A

Derivation of the 2D and 3D

Forward Operators

First of all, consider a 2D ( ∂
∂z = 0) problem where the surface current densities exist on

the x axis (currents are in fact on the xz plane but are invariant with respect to z). The

currents are discretized as described in Section 4.4.1. The goal is then to create an operator

A that maps the vector of unknown, x, to Ez at the region of interest (ROI). According to

(4.15), substituting the 2D Green’s function, the electric field resulted from the z-polarized

electric current source in the nth unit cell can be expressed as

E(r) = −jη0k0

∫

celln

1

4j
H

(2)
0

(
k0
∣∣r − r′

∣∣) ẑJnfn
(
r′
)

+
1

k20
∇
(
∇ · 1

4j
H

(2)
0

(
k0
∣∣r − r′

∣∣) ẑJnfn
(
r′
))

dx′, (A.1)

where H
(2)
0 denotes the zeroth-order Hankel function of the second kind of. If the length

of the nth unit cell, ln, is negligible1 compared to |r − r′|, the equation above can be

1This is a reasonable approximation as ln is typically in the order of λ/6 to λ/10.
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approximated as

E(r) ≈ −ẑ
η0k0Jnln

4
H

(2)
0

(
k0
∣∣r − r′n

∣∣)− η0Jnln
4k0

∇
(

∂

∂z
H

(2)
0

(
k0
∣∣r − r′n

∣∣)
)
, (A.2)

where r′n denotes the centroid of the nth unit cell. Now the operator AJ can be created such

that AJJ produces a vector of electric field values due to the electric current source at the

observation points. The elements of the matrix AJ can be calculated from the expression

of the z component of the electric field at mth testing point (rm ∈ ROI) written as

Ez,mn = −η0k0Jnln
4

H
(2)
0

(
k0
∣∣rm − r′n

∣∣) . (A.3)

Similarly, the electric field due to the x-polarized magnetic current source in the nth unit

cell can be expressed as

E(r) =

∫

celln

x̂Mnfn
(
r′
)
×∇ 1

4j
H

(2)
0

(
k0
∣∣r − r′

∣∣) dx′, (A.4)

which can be approximated as

E(r) ≈ ẑ
Mnln
4j

∂

∂y
H

(2)
0

(
k0
∣∣r − r′n

∣∣) . (A.5)

The z component of the electric field at mth testing point due to the magnetic current

source can then be calculated as

Ez,mn = −k0Mnln (ym − y′n)

4j|rm − r′n|
H

(2)
1

(
k0
∣∣rm − r′n

∣∣) . (A.6)

from which the operator AM that maps the coefficients of the magnetic current density to

Ez at ROI can be constructed. To create the operator A that acts on the unknown x, first
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a matrix G is formulated such that

Gx =



J

M


 , (A.7)

and the matrix G is created as

G =



I jI 0 0

0 0 I jI


 , (A.8)

where I denotes the N ×N identity matrix and 0 denotes the N ×N null matrix. Finally,

the operator A is calculated as

A =



AJ

AM


G. (A.9)

Notice that the second term in equation (A.2) is zero due to the 2D assumption. If the

orientation of the 2D assumption is changed ( ∂
∂x = 0), equation (A.2) will become

E(r) = −ẑ
η0k0Jnln

4
H

(2)
0

(
k0
∣∣r − r′n

∣∣)+ η0Jnln
4

∇
(

z − z′n
|r − r′n|

H
(2)
1

(
k0
∣∣r − r′n

∣∣)
)
, (A.10)

and the z component of the electric field can be calculated as

Ez,mn = −η0k0Jnln
4

H
(2)
0

(
k0
∣∣rm − r′n

∣∣)+ η0Jnln
4

(zm − z′n)
2

|rm − r′n|3
H

(2)
1

(
k0
∣∣rm − r′n

∣∣)

+
η0k0Jnln

8

(
zm − z′n
|rm − r′n|

)2 (
H

(2)
0

(
k0
∣∣rm − r′n

∣∣)−H
(2)
2

(
k0
∣∣rm − r′n

∣∣)
)
. (A.11)

Now let us consider the 3D case, where the polarization at ROI is not necessarily ẑ (for

example, θ̂ component is specified and desired in Section 5.2). Using the same discretization

scheme, the electric field caused by the z-polarized electric current source in the nth unit
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cell is calculated as

E(r) = −jη0k0

∫

celln

e−jk0|r−r′|

4π|r − r′| ẑJnfn
(
r′
)

+
1

k20
∇
(
∇ · e

−jk0|r−r′|

4π|r − r′| ẑJnfn
(
r′
)
)
dx′dz′, (A.12)

which can be approximated as

E(r) ≈ −ẑ
jη0k0JnAne

−jk0|r−r′
n|

4π|r − r′n|
− jη0JnAn

4πk0
∇
(

∂

∂z

e−jk0|r−r′
n|

|r − r′n|

)
, (A.13)

where An represents the area of the nth unit cell. The calculation of the partial derivatives

is rather tedious, but it could be accomplished using software like MATLAB. The electric

field component values at mth testing point are explicitly written as

Ex,mn =
jη0JnAn (x− x′) (z − z′)

(
k20|rm − r′n|2 − 3jk0|rm − r′n| − 3

)
e−jk0|rm−r′

n|

4πk0|rm − r′n|5
,

(A.14a)

Ey,mn =
jη0JnAn (y − y′) (z − z′)

(
k20|rm − r′n|2 − 3jk0|rm − r′n| − 3

)
e−jk0|rm−r′

n|

4πk0|rm − r′n|5
,

(A.14b)

Ez,mn = −jη0k0JnAne
−jk0|rm−r′

n|

4π|rm − r′n|
+

jη0JnAne
−jk0|rm−r′

n|

4πk0|rm − r′n|5

×
((

zm − z′n
)2 (

k20
∣∣rm − r′n

∣∣2 − 3jk0
∣∣rm − r′n

∣∣− 3
)
+ jk0

∣∣rm − r′n
∣∣3 +

∣∣rm − r′n
∣∣2
)
.

(A.14c)

Similarly, if x-polarized magnetic current source exists in the nth unit cell, the corresponding

electric field can be calculated as

E(r) =

∫

celln

x̂Mnfn
(
r′
)
×∇e−jk0|r−r′|

4π|r − r′| dx
′dz′, (A.15)
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and then the electric field can be approximated as

E(r) ≈ x̂
MnAn

4π
×∇e−jk0|r−r′

n|

|r − r′n|
. (A.16)

At the mth testing point, the electric field components due to magnetic current source can

be explicitly expressed as

Ex,mn = 0, (A.17a)

Ey,mn =
MnAn (zm − z′n) (jk0|rm − r′n|+ 1) e−jk0|rm−r′

n|

4π|rm − r′n|3
, (A.17b)

Ez,mn = −MnAn (ym − y′n) (jk0|rm − r′n|+ 1) e−jk0|rm−r′
n|

4π|rm − r′n|3
. (A.17c)

Alternatively, the 3D operator can be derived in a more elegant way by considering each

unit cell containing infinitesimal electric and magnetic dipoles. At the mth testing point, the

electric field components (in the spherical coordinate) caused by z-polarized infinitesimal

electric dipole at centroid of the nth unit cell having a electric moment of JnAn are given

as [83]

Er,mn =
η0JnAn cos θ

2π|rm − r′n|2
(
1 +

1

jk0|rm − r′n|

)
e−jk0|rm−r′

n|, (A.18a)

Eθ,mn =
jη0k0JnAn sin θ

4π|rm − r′n|

(
1 +

1

jk0|rm − r′n|
− 1

(k0|rm − r′n|)2
)
e−jk0|rm−r′

n|, (A.18b)

Eϕ,mn = 0, (A.18c)

where r′n is used as the origin when measuring θ. Similarly, for a z-polarized infinitesi-

mal magnetic dipole with magnetic moment of MnAn, the electric field components are

calculated as

Er,mn = 0, (A.19a)
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Eθ,mn = 0, (A.19b)

Eϕ,mn = −jk0MnAn sin θ

4π|rm − r′n|

(
1 +

1

jk0|rm − r′n|

)
e−jk0|rm−r′

n|. (A.19c)

To calculate the electric field due to a x-polarized infinitesimal magnetic dipole, one can

apply the concept of Euler angles [84] to transform the values under local coordinate (z-

polarized dipoles) to values under global coordinate (x-polarized dipoles). For this specific

case, the Euler angles (not the unique combination) in radians are

α = 0, β = −π

2
, γ = −π

2
, (A.20)

where α indicates the amount of first counterclockwise rotation that is about z axis, β

indicates the amount of second counterclockwise rotation that is about x axis, and γ in-

dicates the amount of third counterclockwise rotation that is about z axis. The Cartesian

components of the electric field due to a x-polarized infinitesimal magnetic dipole can be

then calculated as

Eg =
(
gTl
)
El, (A.21)

where El is the vector containing the Cartesian components of the electric field due to a

z-polarized infinitesimal magnetic dipole that can be easily derived from equation (A.19),
(
gTl
)
is the transformation matrix from the local coordinate to the global coordinate cal-

culated as

(
gTl
)
=




cos γ sin γ 0

− sin γ cos γ 0

0 0 1







1 0 0

0 cosβ sinβ

0 − sinβ cosβ







cosα sinα 0

− sinα cosα 0

0 0 1




. (A.22)

Comparing to the first approach that deriving the operator straight from EFIE, this ap-

proach is more convenient. Moreover, the use of Euler angles could be easily extended to
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deal with arbitrarily shaped metasurfaces where the polarization of the equivalent sources

are location-dependent.
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