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ABSTRACT

The objective was to design the techniques and corresponding
computer software initially required during the development
of a successful, machine vision based, automated wheat grad-

ing system.

The research was guided by an understanding of the cur-
rent Canadian wheat grading system. This understanding en-
abled the anticipation of the objects that could appear, the
selection of a processing organization which is 1in accord
with standard grading procedures and the determination of

which features are required to judge grade.

Four general phases of software development occurred.
First, the Image Manipulation Package was developed to oper-
ate a custom built digital imaging system. Second, four
different techniques were invented for computer perception
of the objects appearing in a wheat grading image. A tech-
nique was also implemented to provide shape description of
these objects. Third, techniques were devised to detect two
anatomical parts of the wheat kernel: the crease and the
germ. Finally, a 2-D signal processing technique was ap-
plied to analyze the visible kernel surface texture. This
provided four facilities: rotation normalization, texture
model estimation, power density spectrum image generation

and texture image synthesis.



All of the programs, except that for texture model esti-
mation, generally performed well. Clear recommendations are

given to rectify the deficiencies of this routine.
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Chapter 1I

INTRODUCTION

1.1 OBJECTIVES OF THIS RESEARCH

The Canadian wheat grading system is part of Canada’s multi-
billion dollar grain production and handling system. This
grading system is designed to relate price to guality on a
consistent basis and to facilitate grain handling. In the
past this grading system has worked well for Canada’s grain

industry.

One of the problems with the Canadian wheat grading sys-

tem is that it relies heavily on the visual assessment of

grain samples. Conseqguently the grading procedure is very
subjective. In fact, some of the degrading factors consid-
ered during the grading procedure, such as frost damage,

have tolerances which are impossible to state in a manual.
Rather their proper wuse is dependent on. the experience and
training of the grain inspector [Canadian Grain Commission,

1981].

Another problem is that, while the remainder of the grain
handling and transportation system is undergoing a major
shift to computerization [Candlish, 1984], the grading pro-

cedures used within the Canadian wheat grading system are
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performed entirely by human inspectors. Computerization of
the grading system is particularly attractive in 1light of
today’s efforts to streamline the grain handling and trans-

portation system in Canada.

At the University of Manitoba, a long term research
project is being undertaken jointly by the Department of
Plant Science and the Department of Electrical Engineering
to develop an automated, computer assisted wheat grading
system and thereby alleviate both of the above problems.
The research for this thesis was pursued in association with
that project. The desired grading system would replace to-
day’s highly trained human inspector or would at least pro-
vide an objective gquantitative assessment of the necessary
grading features for an inspector. The system would be suf-
ficiently intelligent to not require human interaction dur-
ing its operation. Such a system could also interface with
present day or future computer systems that control grain

binning and inventory maintenance.

The research team is considering several approaches. The
first is a stand-alone computer image analysis system. The
second approach is to supplement the computer image analysis
with other tests such as test weight, protein content and
computer aided variety identification wusing the gliadin
electrophoregram. The third approach is to develop a com-

pletely new set of grading criteria.
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The focus of this thesis was the computer image analysis
part of the research team’s work. Since this was the first
work on image analysis for the research team, this research
has been of a rudimentary nature. The main objectives of
this research were to create the software that would first
enable basic computer understanding of a wheat grading image
and then extract the basic features necessary for grading
wheat. This has necessitated an understanding of current
wheat grading techniques in Canada so that the correct image
features could be chosen. The statistical analysis of the

acquired features was not undertaken.

This research had 1limitations which may be 1lessened for
later work by the research team. Only the hard red spring
class of wheat was considered because it is the most popular
class of wheat grown. Only black and white imaging was
used, both for simplicity and since most of the visual de-
grading factors could be determined without the use of col-
our. Mechanical handling of individual objects was not as-
sumed so that kernels could appear in any orientation.
However it was assumed that only a single layer of scattered
objects lying on a flat white surface would be produced by
some prior elementary mechanical method. Consequently oc-
cluded objects were not allowed and only rarely would ob-
jects touch. Finally, the mode of illumination was re-
stricted to diffuse white front lighting. Therefore the

grading system would have to contend with some object shadow



and would view an object only with light reflected from its
surface. Separate research is now being carried out by the
team to determine the usefulness of transmitted 1light re-
sulting from back 1lighting in determining wheat kernel vi-

treousness.

1.2 REVIEW OF RELATED RESEARCH

Computer vision is a large and rapidly growing field. Many
effective low-level early image processing and high-level
cognitive image understanding techniques have been developed
over the past decade [Ballard, 1982]. Typical areas of ap-
plication include biomedical imaging, aerial and satellite
photo interpretation, industrial robotics and military and
artificial intelligence research. However very little re-
search has been done in applying computer image analysis to

cereal grain inspection.

Two problems stand out in the sparse body of literature
surrounding computerized cereal grain inspection. The first
is the discrimination between types of grain such as corn,
wheat, soybeans, oats and rye. Brogan and Edison [1974] and
Brogan and Inguanzo [1978] have worked extensively on the
pattern recognition aspects of this problem. The features
that they extracted were limited to the length, width, depth
and planiform area of each kernel. Each kernel was handled
individually by a special mechanism to place it in the prop-

er orientation before being optically scanned. This form of
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size feature extraction 1is probably too cumbersome for use
in real life grain inspection. Also, the problem that they
dealt with 1is simpler than the grading problem. Grading
features are more obscure than the dimensional features that

they used to differentiate between grain types.

Recently, Draper and Travis [1984] used similar features
obtained with a low-cost computerized imaging system to de-
scribe the shape of barley, wheat, lettuce, grass, wild oats
and cleaver seeds. In addition they utilized the shape fac-
tor and aspect ratio. However they did not attempt to clas-

sify seeds based on these features.

The second problem dealt with in the relevant research is
rice grading by using interactive computer image analysis.
Recent research by Goodman and Rao [1984] found that an in-
teractive computer image analysis system can measure rice
kernel sizes more accurately and quickly for grading. Their
work does not approach the problem of automating the grading
procedure. Again, the features that they extract are not

sufficient feor grading wheat.

In summary, wheat grading is a new application for com-
puter image analysis. However, many of the necessary tech-
niques are already in existence and merely need to be ap-

plied to the problem.



1.3 WHEAT GRADING IN CANADA

1.3.1 Background

Grain gréding in Canada is organized and regulated by the
Canadian Grain Commission [Canada Grains Council, 1982: 49].
The Commission has determined numerically designated grades
for Canadian wheat and has determined which factors are to
be used in the grading procedure. The grade designations
and grading factors were chosen based on their effect on the
technological value of wheat, [Tipples, 19821, in other
words milling and bread making quality, the ability of cur-
rent technology to clean the grain and to a certain extent

on the aesthetic appearance of the grain.

The statutory grades of hard red spring wheat in Canada
which are of interest to the research team are No.1, No.2
and No.3 C.W. Red Spring and No.1 and No.2 Canada Utility

wheat. Lower numbers indicate higher quality.

1.3.2 Grading Factors
(The general content and organization of this subsection is

from Duke [1982: 8].)

The principal grading factors used in grading wheat are:



A) TEST WEIGHT

B) VARIETAL PURITY
C) VITREOUSNESS

D) SOUNDNESS

E) MAXIMUM LIMITS OF FOREIGN MATERIAL

A) TEST WEIGHT. This 1is one of the few objectively deter-
mined grading characteristics and it was historically one of
the first to be used in grading grain. Under normal growing
conditions it is of only small importance in determining the

grade of a sample.

B) VARIETAL PURITY. The Marquis variety of wheat is the
standard of quality for the top two grades of Hard Red
Spring Wheat, although other varieties of quality not lower
than Marquis can be mixed in a sample without lowering the
grade. Other varieties not equal in quality to Marquis will

qualify only for No.3 C.W. Red Spring or Canada Feed Wheat.

The grades of No.1 and No.2 Canada Utility are for the
relatively new class of wheat called “Utility Wheat”. The

Glenlea variety is typical of this class.

Determining the varieties composing a sample is the most
difficult task facing a wheat inspector. To facilitate in
performing this task, the Canadian Grain Commission will 1i-
cence a variety for production only if it is visually dis-
tinguishable from all other varieties of visually identical

to another previously approved variety of similar quality.
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Three visually determined kernel characters are the major
factors in identifying varieties -- <colour, texture and

shape [Owen and Ainslie, 1971: 55].

Colour is one of the most obvious characters. It is most
useful in distinguishing classes of wheat such as red
spring, white spring, amber durum, etc. Colour is also used
to classify the red wheats as light red, medium red or dark
red. Classifying the degree of redness is useful in distin-
guishing variety. However, colour ié very sensitive to sur-
face defects such as starchiness or a bleached surface,
which are caused by poor environmental conditions during
growing and harvest. The resulting irregularity of colour
'as a feature 1indicates that the limitation to black and
white images in this research is not a serious drawback to

varietal determination.

Kernel texture is a relatively constant varietal charac-
teristic which can help discriminate between hard, semi-hard
or soft varieties of wheat. The endosperm of a kernel makes
up the majority of the visible kernel surface and is the
part whose surface texture is affected by the kernel hard-
ness. A hard kernel has a dark translucent or vitreous en-

dosperm while a soft kernel has a light or opague endosperm.

The shape of the kernel outline can be described as
short, midlong or long and ovate, elliptical or oval (Fig-

ure 1.1). This is one of the most important characters in
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determining variety. It is also important to other stages

in the grading process.

Characters related to various anatomical parts of the
kernel are of less importance but are sometimes used in var-
ietal identification. The characters of each part that are
used are usually shape, size and texture. The parts consid-
ered are the éheeks and the crease lying between them, both
of which 1lie on the ventral side of the kernel, the germ
which includes the dormant embryo of the seed and 1lies on
the dorsal side of the kernel, the brush which is on the op-
posite end from the germ, the bran or skin of the kernel,
and the glumes which are kernel husks that sometimes remain
in a sample after threshing. The kernel anatomy is shown in

Figure 1.2.

C) VITREOUSNESS. Vitreous kernels have a sound surface and
have a natural colour and translucence which denotes hard-
ness of the kernel. Vitreous hard red spring wheat kernels
have an overall dark and slightly red surface. Non-vitreous
kernels are damaged or have a starchy surface which is indi-

cated by its overall lighter shade.

Minimum percentages by weight of hard vitreous kernels

are set for the top two grades of hard red spring wheat.

D) SOUNDNESS. Higher grades of wheat require a higher degree
of kernel soundness. A broad range of kernel surface de-

fects can degrade the degree of soundness of a wheat sample.



Figure 1.1: Major Shapes —-- Dorsal View

Reproduced from Figure 46 on page 57 of
Owen and Ainslie [1971].

10
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Figure 1.2: Kernel Anatomy

Reproduced from Figure 47 on page 58 of
Owen and Ainslie [1971].
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Poor growing conditions can degrade wheat kernel sound-
ness. Kernels from plants that were lacking water will of-
ten be immature, small and shrivelled. Kernels from plants
which have had secondary growth after surviving a drought
will often be small and bright green in colour. These are
called ‘“grass green” Kkernels. A very common surface defect
is bleaching which occurs when the plant must survive a se-
ries of excessively rainy and dry periods. A bleached ker-
nel has an overall medium light shaded surface and is opaque
to transmitted light. Frost damage often will cause a peb-

bled or shrivelled kernel surface.

The degree of kernel soundness can be degraded by the ef-
fects of disease. Disease can occur while the plants are
growing in the field, after they have been swathed and are
lying in the field waiting to be combined, or while the re-
sulting grain is in storage. Several fungous diseases start
in the embryo of the kernel and cause a dark-brown discolou-
ration of the germ called blackpoint, a common degrading
factor. This discolouration can spread over more of the
kernel and is then called smudge, another common degrading
factor. Other diseases that are less common are ergot and
sclerotinia. While in storage, grain can suffer the effects
of mildew, mold and, in the final stages, rot. At the onset
of mildew, gray tufts appear at the distal ends of the ker-

nel.
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Breakage is a common surface defect which degrades the
degree of soundness. Breakage of wheat kernels results from
excessive mechanical handling. It 1is characterized by a
broken kernel surface and the exposed bright white patches

of the starchy endosperm.

Many other less common forms of damage can degrade kernel
surface soundness. Rainy conditions while swathed wheat
lies in a field can cause sprouting from the embryo which is
a result of premature germination. A sprouted kernel will
have a distinctly swollen germ and the bran will be notice-
ably split over the germ from apparent growth. Several
types of insect damage can occur. Midge damage takes the
form of gouging along the kernel crease while grasshopper or
armyworm damage normally appears as chewing along the kernel
sides. Other less common factors that degrade kernel sur-
face soundness are fireburning, binburning and staining from

kernels coming in contact with foreign substances.

E) MAXIMUM LIMITS OF FOREIGN MATERIALS. Maximum limits of
the amount o©of cereal grains other than wheat and of the
amount of foreign material other than cereal grains are set
for each grade of wheat. These limits, especially for for-
eign material other than cereal grains, are very small.
Most foreign material in a wheat sample will be the same
size as the wheat kernels since the grain is usually cleaned
before sampling. Barley kernels are a common foreign ma-

terial found in wheat samples. Barley kernels have a size
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similar to that of wheat kernels but have more pointed ends
and are more yellow in colour. Other examples of foreign
material are large weed seeds, thistle heads or pieces of
stems and stones. Most foreign objects can easily be dis-

criminated from wheat by their shape.

1.3.3 Standard Samples

Each year standard samples of wheat and other grains are
prepared for use by grain inspectors [Duke, 1982: 3] [Canada
Grains Council, 1982: 53]. Two sets of samples are estab-
lished, one for use at the producer or primary level and the
other for wuse at the export level. Standard samples are
necessary because, as has already been shown, the Canadian
grain grading system depends to a large part on the ability
of inspectors to visually assess the appearance of grain
samples. The standard samples do not change the grade spec-
ification, but rather they are used as guides to grading.
Standard samples are a visual interpretation of the grade
specifications that reflect the growing conditions of the

year for which they were prepared.

The use of standard samples stresses two important ideas.
First it reaffirms that wheat grading in Canada is very sub-
jective and that therefore the use of an effective automated
grading system would be advantageous. Secondly, it indi-
cates that the thresholds of the wvarious visual features

used in grading change subtly from year to year. Therefore,
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any automated wheat grading system must be capable of peri-
odic fine tuning through the manual entry of new standards.
More importantly, the decision structure used in an automat-
ed grading system should roughly model the current grading
procedure so that new grading criteria set by a Standards
Committee can be easily mapped into the machine’s decision

structure.

1.4 REQUIRED IMAGE FEATURES

The grading factors used in the current Canadian wheat grad-
ing system, as outlined in the previous section, indicate
certain image features that a computer image analysis system
should be capable of extracting for grading wheat. This re-
search has attempted to develop the techniques required to
extract those features. This section is an overview of

those features.

The most important class of features for wheat grading
are those that describe the size and shape of an object’s
outline. The length, width and area are the most essential
elements of this class of features, but others should be in-
cluded so that a more accurate description of the shape can
be made. Shape features used in wheat grading can be used
to distinguish wheat kernels from other <cereal grains or
foreign objects. This function is particularly important to
later stages of processing where only objects identified as

wheat kernels by shape analysis should be scrutinized fur-
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ther for grading factors. The shape of the object outline
can also be used to discriminate between durum and common
wheat classes, and between broken or shrivelled wheat ker-

nels and plump wheat kernels.

The size and shape of certain anatomical parts of wheat
_kernels can sometimes be used for varietal determination.
However, these features are less regular because of the sub-
tle differences between wheat varieties and so their use has

not been pursued in this research.

Surface texture is another broad class of features that
is necessary for wheat grading. The description of surface
texture usually includes the average gray level of a surface
and some description of the variation of surface gray level
versus distance and direction. Normally some form of spa-
tial frequency transformation is employed, which facilitates
in differentiating between micro-texture (fine) and macro-

texture {(coarse) components of the texture.

The surface texture of the overall visible kernel surface
is useful. Vitreousness can be indicated by a dark endos-
perm. An exposed starchy endosperm appears as extremely

light patches and indicates a broken surface.

A dorsal view of a wheat kernel is the most productive on
which to perform a texture analysis. The surface texture on
the dorsal side is not dominated by the effects of the cre-

ase, which appears on the opposite side of the kernel.
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Also, the germ 1is visible in a dorsal view. A localized
texture analysis of just the germ should be performed for
each kernel for which a dorsal view is available. The germ
is usually the area first and most affected by fungous dis-
eases and 1is the area in which sprouting occurs. Thus a
texture analysis of the germ should facilitate the detection
of diseases such as blackpoint and smudge and the detection

of sprouting.

The ventral side of the kernel 1is the most probable side
to face up due to the kernel shape. Therefore the ventral
view is more common. On this side a localized texture anal-

ysis along the crease could detect midge damage.

Wrinkling is a fine surface defect that, when present,
affects the entire kernel surface. Wrinkling is caused by
frost damage or poor growing conditions. It is most easily
discernable when the incident illumination makes a smali an-
gle with the 1local surface. Thus wrinkling should be
searched for by using a localized texture analysis near the
lateral limb or edge of the kernel image where 1light from

the source of illumination only grazes the surface.

Many of the previously described texture features are lo-
cation dependent. Obviously, some features are required not
only to determine kernel orientation, dorsal or ventral side
up, but also to detect and specify the location of the major

anatomical features in the image of the visible kernel sur-
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face. The detection and specification of only two anatomi-
cal features can provide all of the location data required.
First, the crease is the most obvious part of the kernel
anatomy and its presence or absence specifies the kernel
orientation, either dorsal or ventral side up. Therefore
the detection of the crease and the specification of its lo-
cation is necessary to determine the kernel orientation and
to guide texture analysis or shape analysis of the crease.
Second, if the kernel is dorsal side up then the germ should

be located in order to guide texture analysis of the germ.

Colour is a feature that was not used 1in this research.
When restricting the grading problem to the hard red spring
class of wheat, as was done in this research, colour is not
normally important. However, it 1is useful 1in detecting
“grass green” wheat kernels and white wheat classes as for-
eign material. Therefore the use o0f colour should be con-

sidered in future research.

A summary of the desired features discussed in this sec-
tion is as follows. First, a description of the contour
shape of all the objects in an image is required. Second, a
decision and a location specification for either the crease
or germ, depending on kernel orientation, 1is required for
each object identified as wheat. Finally, a description of
the texture of each visible area of interest should be ob-
tained. The texture analysis should characterizevthe energy

of the texture and describe 1its spatial frequency spectrum.
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The areas of interest for texture analysis on the visible
kernel surface are the overall visible kernel surface, ei-
ther or both lateral limbs of the kernel and, when either is

available, the germ and the crease.

1.5 OUTLINE OF THIS THESIS

Chapter 2 of this thesis describes the machine language
package, IMP, which is the software portion of the custom
made digital image acquisition system used during this re-
search. IMP performs many of the typical functions found on
commercial imaging systems. Certainly, IMP is not tailored
specifically to the wheat grading problem, but the writing
of it was necessary for the completion of this research and

the needs of the research team.

Chapter 3 presents the object perception problem. Sever-
al approaches were .developed during the evolution of a sat-
isfactory object detection method and these are presented
first. Then, a superior approach 1is presented which uti-
lizes a priori knowledge of wheat grading image characteris-
tics to constrain the object perception problem. The re-
sulting object detection algorithm is efficient, robust and
produces estimated object contours that are accurate even
for many poor images. Finally the shape analysis method,
that is used for providing features describing each object’s

contour, is presented.
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Chapter 4 describes the techniques devised to detect and
specify the anatomical parts of objects identified as wheat
kernels. Specifically, the parts detected are the crease

and the germ.

Chapter 5 presents a two-dimensional signal processing
technique that was used for the texture analysis problem.
With it texture is modelled as a statistical process so that
not only can features be calculated, but also an estimated
power density spectrum and a synthetic texture obeying the

model can be produced.

The Software Manual Supplement to this thesis, a volume
separate from this one, 1lists the source code of the pro-
grams which implemented the procedures discussed in the
above mentioned chapters. These listings are in the same

order in which the corresponding procedures are presented.



Chapter 1I1I

IMAGE MANIPULATION PACKAGE

2.1 INTRODUCTION

The Image Manipulation Package, hereafter called IMP, is the
software portion of the digital 1image acquisition system
used during this research. IMP is a package of 8086 assem-
bler [Intel, 1983] routines written for this research to
provide software facilities typically found on commercial
imaging systems. The user possessing only an elementary un-
derstanding of the image processing architecture of IMP will
find the terminal discourse offered by IMP self-explanatory,
most of it being in a menu format. IMP is loaded and exe-
cuted using the Digital Research CP/M-86 operating system
[Digital Research, 1982]. Some of the CP/M I/0 and disk op-
erating functions are in turn used by IMP. Figure 2.1 shows
the main IMP command menu. Figure 2.2 on page 25 shows a

block diagram of image processing in IMP.

The hardware portion of the system was previously built
by Jack Sill of the Department of Electrical Engineering at
the University of Manitoba. The combined, custom made imag-
ing system is intended for wuse with the automated wheat
grading project. The images processed in this research were

all initially acquired by it and some of the intermediate
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Figure 2.1: Main IMP Command Menu

processed images shown in this manuscript were obtained from
the system image display monitor. The reasons for building
a custom made imaging system were the substantially reduced
cost and the certainty that all of the desired features

would be available.
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2.2 SUMMARY OF THE IMAGING HARDWARE

A Dblock diagram of the digital 1image acquisition system

hardware is shown in Figure 2.3.

Images are provided by a Fairchild CCD3000 black and
white video camera in the conventional N. T. S. C. video
format. The image detector in this camera 1is a Charge
Coupled Device array which produces 482 rows by 377 columns
of usable pixel wvalues. The photosites in this array are
arranged on a rectilinear lattice and are precisely spaced
18 microns apart vertically and 30 microns apart horizontal-
ly. This arrangement produces images which have more verti-
cal spatial pixel density than horizontal spatial pixel den-
sity, a problem which 1is 1later solved by the 1image

equalization facility of IMP.

The advantages of this camera over a comparable vidicon
tube camera are its higher dynamic intensity range of 1000
to 1, rugged construction and, most importantly for this ap-
plication, synchronization signals that are made available
to the external world. These signals consist of the compos-
ite blanking and sync, the field index pulse and the master
clock signal. The frame index pulse indicates the start of
a new frame when the scan is in the top left corner of field
one. The master clock signal indicates when the level of
the analog video output corresponds to a new pixel value.
These synchronization signals provide timing for the other
elements of the imaging system and, in part, permit the di-

gitization of the analog video signal.
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The lens system employed for the video camera consists of

a 50 mm and a 75 mm ‘C’ mount fixed focus lens and an exten-
sion tube set. This lens system provides a wide range of
distortion free image magnifications. At high magnification
a single wheat kernel will occupy the entire image, but at
the standard magnification used in this research a 256 by

256 pixel window will represent a 2 cm by 2 cm subject area.

The source of illumination for sample lighting was a to-
%oidal fluorescent lamp mounted on an adjustable arm. For
normal operation this lamp would be mounted horizontally
over the wheat sample and positioned so that the average an-
gle of illumination to the imaged background surface was 45
degrees. The camera would then view the sample from above
along the axis of the lamp. This setup produced images with
minimal shadow and diffuse omnidirectional illumination of

the subject.

Digitization of the analog video camera output signal is

accomplished using a Sony CX20052 Analog to Digital flash

converter Dboard. This product digitizes a single video
frame “real time”, or in other words, within the confines of
the fifteenth of a second duration frame. This extremely

high data rate, which amounts to 7.16 million pixel values
per second, requires that fast 100 nS RAM be used for image
storage. Each pixel value is represented by one byte there-
by allowing 256 distinct gray levels. White is represented

as 255 and black as 0. Each A/D conversion is synchronized
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with the camera master clock by using a derivative signal
from the camera interface board so that a conversion is per-

formed each time a new pixel level is available.

Storage of the digitized image 1is accomplished using 256
kilobytes of fast 100 nS static RAM. This memory section is
equipped with sufficient multiplexing to allow access to the
memory bus by the A/D converter during image storage, by the
D/A converter during image display and by the Slicer micro-
computer during computer access. Access by the computer ov-

errides the other two forms of memory access.

The video signal used to represent a stored image is gen-
erated by an Analog Devices HDG0805 Digital to Analog Video
Converter board. During image display, data from the image
memory is continuously inputted to the D/A converter along
with blanking and sync signals from the camera and a data
ready pulse from the A/D converter. The conversion of each
pixel value is synchronized with the A/D converter data
ready pulse which indicates the availability of a new pixel
value on the memory data bus. The output from the D/A con-
verter board is a N. T. S. C. analog video signal that is
fed to the image display monitor. The image display monitor
cannot directly access the camera video output. Consequent-
ly the operator 1is not provided with an instantaneous dis-

play of the camera output.
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The image digitization, storage and display elements of
the imaging system are coordinated by the camera interface
board. A major part of this board is the pixel counter.
This counter resets at the beginning of each frame and then
counts up with the camera master clock, thereby counting
pixel locations. The output from this counter continuously
addresses the display image memory except during computer
access of the this memory section. Thus the display image
memory is continuously scanned in synchronism with the cam-
era image scan during both image storage and display. This
synchronized scan guarantees that during image storage, any

one pixel’s value is always stored into the same memory lo-

cation. However, the video output is stored in the inter-
laced N. T. S. C. format and includes all of the margin
blanking. Therefore any software package attempting to ac-

cess a particular pixel value must account for the awkward
storage format when calcﬁlating the value’s address. The
camera interface board also controls the duration of the im-
age storage, also called frame grabbing, process. Normally
the imaging system will display the image stored in display
memory until the system’s microcomputer initiates a frame
grab. A frame grab is triggered by a pulse on the PCS4 line
from the microcomputer board. However, the actual storage
does not begin until the next start of a video frame, which
is signalled by the frame index pulse. When this occurs,
the write line to the image memory 1is set low by the inter-

face board and storage begins, lasting one fifteenth of a
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second until the next frame index pulse. This frame grab
control ensures that the stored 1image data represents one

individual video frame in its entirety.

The computational power indigenous to the imaging system
is provided by a Slicer Computers Inc. single board computer
[Slicer Computers, 1983]. This computer is based on the In-
tel iAPX 80186 CPU. The board is equipped with 256 kilo-
bytes of dynamic RAM. In addition, the board has two as-
ynchronous serial ports, ROM with a monitor program, a
floppy disk controller and a hard disk controller interface
port. Asynchronous Port 1 communicates with the operator’s
terminal and Port 2 1is used for sending data to and from a

larger host computer.

The remaining elements of the imaging system are a Visual
500 terminal, two 8 inch floppy disk drives and a 256 kilo-
byte RAM extension board. The terminal has graphics capa-
bility which is effective for presenting graphics displays
such as intensity histograms. The disk drives provide per-
manent storage for programming and image data. The exten-
sion memory provides space for temporary storage and pro-

cessing of an image while not being displayed.

In total the Slicer computer has 768 kilobytes of RAM un-
der its control. The on-board 256 kilobytes of RAM have the
lowest address range, 00000H to 3FFFFH. Interrupt vector

addresses, the Digital Research CP/M operating system, any
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user programming and some of the non-displayed image pro-
cessing scratch pad area reside in this memory section. The
extension board;s 256 kilobytes 0f RAM occupy the middle ad-
dress range, 40000H to 7FFFFH. This section is used entire-—
ly for non-displayed image processing scratch pad memory.
The display image memory has the highest RAM address range,
80000H to BFFFFH. When it is not being accessed by the Sli-
cer computer or accessed for storing a grabbed frame, the

contents of this section are continuously being displayed.

2.3 DISPLAY IMAGE FACILITIES

Two display image facilities of IMP do not have their own
program section, but rather are handled within the master
IMP program section. These are the single display image
grab, caused by entering ‘G’, and the repetitive display im-
age grab, toggled by entering ‘R’. Both of these commands
trigger the storage of the next camera video frame in the
display memory by pulsing the Slicer PCS4 line. However,
with the repetitive display image grab, the frame grab is
triggered once every half second until another command is
entered. This allows the operator to adjust the experimen-—
tal setup and observe the results on the image display moni-

tor.

The remaining display image facilities have their own
program sections which are called from the master IMP pro-

gram section. They operate on the display image memory and
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do not affect an egualized image that may be stored in the
mid-range memory. These routines are described in the fol-

lowing subsections.

2.3.1 Windowing

The routine WINDOW occupies the largest program section
within IMP. WINDOW is not directly called by the master IMP
section, but instead is called by some of the display image
routines. WINDOW assists the operator in determining and
specifying a rectangular subimage of the displayed image.
On return from WINDOW, the calling routine is supplied with

the subimage coordinates selected by the operator.

WINDOW draws a rectangular border around a subimage of

the display image. Each pixel on the border is set to ei-
ther black or white, whichever is most different from its
previous value. The display image is not affected perma-

nently by WINDOW since the old values of the border pixels
are saved and then restored when the window is moved or re-

moved.

Two modes are available for positioning the displayed
window, In the “direct” entry mode, the window coordinates
are directly entered by the operator. In the “adjust” entry
mode, the position or size of a previously existing window
can be adjusted. In this mode the numeric keypad keys are
used to adjust the position and the cursor positioning keys

are used to adjust the window size.
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The subimage coordinates obtained by using WINDOW are not
only used by the calling routine, but also saved ih the IMP
status block for use by other routines until the next frame
grab. Thus a subimage that is specified during ZOOM can be
HISTOGRAMmed and later ACQUIREd without having to respecify

it with WINDOW.

An example image with WINDOW in wuse is shown in Fig-

ure 2.4.



Figure 2.4:

WINDOWed Subimage
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2.3.2 Intensity Calibration
The routine CALIBRATE generates the intensity calibration
curve that can be used to calibrate a display image which 1is
being equalized and transferred to the equalized image memo-

ry. This curve is represented by a 256 byte look-up table.

The use of calibrated intensity images ensures that the
relationship between pixel value and surface reflectance is
reproducible from image to image. In properly calibrated
images, surface reflectance and the corresponding pixel val-
ue are linearly related. A pixel value of 0 represents a
reflection coefficient of 0 which 1s absolute black, and a
pixel value of 255 represents a reflection coefficient of 1
which is total diffuse reflection of incident light, in oth-
er words total white. Intensity calibration is particularly
important for images from which gray level texture features

are to be extracted.

Once the camera, 1lens and 1lighting are prepared for a

calibrated imaging session, the operator performs an itera-
tive procedure with CALIBRATE. First, an image of a gray
step of a calibrated paper gray scale is grabbed. Then the

gray step itself 1is WINDOWed by the operator and CALIBRATE
determines the average pixel value of the subimage. Finally
the operator enters the calibrated reflection coefficient of
the gray step, as determined by the manufacturer. CALIBRATE
multiplies the inputted value by 256 to yield the corre-

sponding calibrated pixel value. In this way, several
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points along the calibration curve are obtained. At the end
of any iteration, the operator can have CALIBRATE display
the current list of calibration curve coordinates or cause

CALIBRATE to start the entire procedure over again.

After the operator is satisfied that a sufficient number
of data pairs have been entered to specify the calibration
curve, CALIBRATE generates the curve. The minimum number of
pairs allowed by CALIBRATE is two since two points can de-
fine a line. The maximum number is arbitrarily set to fif-
teen. CALIBRATE first enters each data pair into the curve
look—-up table by setting the value of the byte representing
the average pixel value to the corresponding calibrated pix-
el value. Then the curve is completed by linear interpola-
tion between the data points and by linear extrapolation
from the outer data points to both end limits of the curve.
Before acknowledging that a successful curve has been gener-
ated, CALIBRATE ascertains that the curve generated repre-
sents a one-to-one strictly increasing function. If the
generation process is satisfactory, CALIBRATE displays the
resulting curve to the operator using the graphics capabili-
ty of the Visual 500 terminal before returning to the IMP
master program. A typical graphics display of a calibration

curve is shown in Figure 2.5.

Following the generation of a calibration curve, the cam-
era, lens and lighting setup are not changed until the end

of the calibrated imaging session. To do so would invali-
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date the calibration curve. During the session, the image
equalization routine ACQUIRE will, when commanded by the op-
erator, use the curve to intensity calibrate an image being

moved into the eqgualized image memory.

2.3.3 Intensity Histogramming

The routine HISTOGRAM produces a histogram of the pixel val-
ues in the display image or of the pixel values in a rectan-
gular subimage selected by using WINDOW. This histogram is

displayed graphically on the Visual 500 terminal.

A pixel intensity histogram describes the pixel value
distribution of an image. Knowledge of this distribution

can assist an experimenter in estimating the effectiveness
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of intensity thresholding for image segmentation. If thg
pixel values representing an object and the pixel values
representing its background are tightly clustered about
widely differing average values, then thresholding will be
effective for segmentation. The histogram of a suitable im-
age for thresholding will be distinctly bimodal. In addi-
tion, the minimum between the two histogram peaks will indi-

cate the best threshold value.

The histogram plot produced by HISTOGRAM has a normalized
vertical scale. The maximum value on the vertical frequency
of occurrence axis is set to the maximum frequency of occur-
rence found by HISTOGRAM for any pixel value in the selected
subimage. Thus the histogram bar for any pixel value will
fit within the histogram plot. HISTOGRAM also displays the
total pixels within the selected subimage and the maximum
and minimum pixel values found. The histogram of the subi-

mage shown in Figure 2.4 is shown in Figure 2.6.
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2.3.4 Intensity Thresholding

Display images can be intensity thresholded by using the
routine THRESHOLD. The result is a binary 1image which is
placed in the display image memory. A binary image consists

of totally white or totally black pixel values.

THRESHOLD is useful for testing the suitability of inten-
sity thresholding for segmenting a particular image. Typi-
cally an experimenter would wuse HISTOGRAM to determine a
suitable threshold value before using THRESHOLD to view the

result of thresholding an image at the selected pixel value.

THRESHOLD stores an exact copy of the display image into
equalized image memory beginning at 40000H provided that a

previous equalized image will not be overwritten or the op-
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erator has agreed to the equalized image’s destruction.
Then the operator can have THRESHOLD display binary versions
of the stored imagé thresholded at any possible pixel value,
in either positive or negative form. In addition, THRESHOLD
can grab and store new versions for thresholding. When
THRESHOLD is exitted, the stored display image is copied

back into the display memory automatically.

Figure 2.7 shows the result of thresholding the image in

Figure 2.4 at 160.



Figure 2.7:

THRESHOLDed Image
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2.3.5 Subimage Zoom
Enlarged views of rectangular subimages of the displayed im-
age are produced by the foutine ZOOML This facility can be
an important aid for the operator in determining whether a
small subimage possesses a desired feature. An enlarged
view is generated by expanding the subimage to fill the en-
tire display. Each pixel in the original subimage is repre-
sented by a rectangle of pixels that have the same value as

the represented pixel.

When ZOOM 1is called, the display image 1is immediately
stored in equalized image memory, provided that a previous
equalized image will not be overwritten or the operator has
agreed to its destruction. The display image is stored in
384 byte segments, one for each image row, in non-interlaced
format beginning at 52D00H. This memory organization allows
an equalized image, that has at the most 192 rows, to reside
in the equalized image memory while 200M is in operation.
Then WINDOW is called so that the operator can specify the
subimage which is to be enlarged. Once the window coordi-
nates have been obtained, ZOOM first creates a row and a
column look-up table. These look-up tables specify, for
each pixel in the new zoomed display image, the row and col-
umn of the pixel in the stored old image which is to be rep-
resented. A row range and a column range of display pixels
will represent one stored pixel so that a rectangle of dis-

play pixels will take the same value as one stored pixel.
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Then an iterative procedure is performed until the display
image is complete. This procedure maximizes the speed of
execution. For each display row range corresponding to one
stored subimage row, the corresponding display image row is
stored in a data segment array. Then, since all rows in the
display row range are the same, a version of the data array
is copied to each row of the range. A trait of this method
is that the 2zoom operation is faster for smaller subimages

since they require fewer display image row ranges.

When ZOOM is exitted, the stored image is restored to the
display image memory 1in exactly the same form as it was in

before ZOOM was called.

Figure 2.8 shows the result of zooming the subimage shown

in Figure 2.4.



Figure 2.8:

ZO0OMed Image
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2.4 IMAGE CONVERSION FACILITIES

The primary purpose of the imaging system, of which IMP is a
part, 1is to form digital images and after suitable prepara-
tion dispatch them to the external world for storage and/or
processing. ACQUIRE, one of the two image conversion rou-
tines, performs the required image preparation. This prepa-
ration includes fashioning the desired image into the stan-
dard row/column format, equalizing it so that the row and
column spatial densities are identical, and if necessary in-
tensity calibrating its pixel values. The most important
image preparation, however, is to extract, when necessary,
only a rectangular subimage of the grabbed display image.
By having a single extracted image already selected by the
operator and prepared by ACQUIRE, the routines that send the
image to the external world do not require their own image
preparation facilities. Instead they are presented with a
simple well defined image that is to be dealt with in its
entirety and which 1is ready to send. This prepared image
has its own storage area called the equalized image memory

which is addressed from 34B00H to 7FFFFH.

The other image conversion routine is DISPLAY. It is the
complement of ACQUIRE. DISPLAY copies a converted form of
an equalized image in the equalized image memory to the dis-
play image memory. As a result the operator 1is provided
with a displayed version of the image resident in the equal-

ized image memory. This image would normally originate from
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the outside world. The DISPLAY conversion consists of re-
versing the equalization process, interlacing the image and
finally formatting it so that it will appear centred on the
image monitor. DISPLAY does not harm the equalized image.
Once called, DISPLAY functions automatically without requir-

ing any further commands from the operator.

Equalization and the reverse process, hereafter called
de-equalization, are the most computationally expensive pro-
cesses involved in image conversion. As explained in sec-
tion 2.2, the 1image detector array of the system’s camera
has a rectilinear lattice of photosites which are precisely
spaced 18 microns apart vertically and 30 microns apart hor-
izontally. The image produced has 482 rows by 377 columns
of valid pixel values. The inequality in spatial pixel den-
sity is corrected by IMP since conventional digital images
possess equal vertical and horizontal pixel densities. Many
image processing programs on a host computer would expect
this format. The equalization process creates an image that
imitates the image that would result if the imaging array
spacing were 18 microns by 18 microns. The maximum equal-
ized image size then is 482 rows by 627 columns. It can be
shown using two-dimensional sampling theory that since the
vertical pixel density is not being changed, image equaliza-
tion can be considered a one-dimensional problem wherein im-
age rows are dealt with separately. The process adopted for

equalization is linear interpolation. During equalization
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groups of three contiguous display image row pixels are con-
verted into five contiguous equalized image row pixels. The
reverse occurs during de-equalization. If an equalized im-
age 1s unmodified, the de-equalized process will create from
it an image identical to the display image ffom which it

originated, ignoring round-off error. Both processes are
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Figure 2.9: Equalization and De-equalization Process

shown graphically in Figure 2.9. Linear interpolation was
chosen for two reasons. First it is much less computation-
ally expensive than the exhaustive sampling theory solution.

Second, the exhaustive sampling theory solution will cause
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the formation of multiple vertical edges in the equalization

of a display memory image containing only one vertical edge.

ACQUIRE gives the operator several options before acqui-
sition begins. The entire grabbed display image can be AC-
QUIREd or either WINDOW can be called to specify a subimage
to be ACQUIREd or the coordinates of a previous subimage, if
available, can be used to specify the subimage to be AC-
QUIREdA. If an intensity calibration curve is available and
calibration 1is requested by the operator, ACQUIRE will
translate each pixel value to 1its calibrated value during

the ACQUIRE operation.

Figure 2.10 shows the result of DISPLAYing the ACQUIREd

version of the subimage shown in Figure 2.4.



Figure 2.10:

DISPLAYed Subimage
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2.5 EQUALIZED IMAGE FACILITIES
The equalized 1image routines provide an interface between
IMP and the external world. Their purpose is to send a pre-
pared image in the equalized image memory to the external
world for storage or processing and to accept a properly
formatted image from the external world for temporary stor-
age in the equalized image memory from which it can be moved
to the display memory for inspection by the operator. The
routine LINK handles transmission of equalized images to and
from a host computer. 1In addition, LINK can connect the im-
aging system terminal to the host computer allowing the op-
erator to communicate directly with the host computer. The
routines STORE and RETRIEVE, as their names imply, handle
the permanent storage and retrieval of equalized images on
floppy disk. The equalized image rgutines do not affect the
display image memory contents. These routines are described

in the following subsections.

2.5.1 Data Linking to a Host Computer

The routine LINK performs all of the functions of data link-
ing IMP to a host computer. These functions are image
transmission to the host computer, image reception from the
host computer and a transparent mode in which the imaging
system’s terminal is virtually connected to the host comput-
er. When called, LINK initially enters the connect mode.
While in connect mode LINK relays all characters from the

host computer to the terminal and relays all characters from
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the terminal console, except three control characters, to
the host computer. These control characters are Ctrl-P,
Ctrl-R and Ctrl-T. Ctrl-T initiates image transmission,
provided an image is resident in the equalized image memory.
Ctrl-R prepares LINK for the reception of image data. Ctrl-

P allows the operator to terminate the LINK session.

The data channel for which LINK is designed is an asynch-
ronous duplex serial line which employs the XON/XOFF proto-
col for data flow control and ASCII for information coding.
This type of channel is slow for the massive amounts of data
needed to represent most images. Many sophisticated imaging
systems use a high-speed synchronous parallel data channel
for rapid image transfer. However several reasons motivated
the use of the slower channel for image transfer with LINK.
First, special hardware is normally not required for an as-
ynchronous serial line since most computers are already
equipped with this type of line for connecting ports to ter-
minals. Consequently, the installation of this type of com-
munication line 1is simple and inexpensive. Additionally,
the 9600 baud Data General port line used in this research
typically permits the transfer of a 200 row by 200 column
image in 45 seconds. This is not an unreasonable time re-
quirement for transferring an image having the standard size
used in this research. Finally, by connecting LINK to the
port line of a host computer, only one communications line

is required for the operator both to interactively command
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the host computer and to transfer image data. Imaging sys-
tems that employ a high-speed data line normally require a
separate slower terminal communication line that allows the

operator to command the host computer.

LINK does not quite occupy the largest program section in
IMP, yet it is the most complicated of the IMP routines.
LINK’s complexity is a result of its unusual structure.
LINK consists of a set of asynchronously executed program
units which are continuously polled in a cyclical fashion.
Some units are always executéd once every cycle while others
are included in the polling cycle only during certain opera-
tions. In essence, these wunits exchange the information,
which LINK is transferring, amongst themselves and the out-
side world. Hence an effective way of visualizing the oper-
ation of these units is as an information circuit. The LINK
information «circuit is shown in Figure 2.11 on the next

page.

The LINK information circuit contains five entities which
both consume and produce information. These are the termi-
nal, the host computer, the receive and transmit character
buffers and the equalized image memory. The equalized image
memory is implied but is not shown in Figure 2.11. The 16
byte character buffers are necessary because of the XON/XOFF
protocol. Without buffering, the delay caused by converting
from serial ASCII to an internal byte representation and

back to serial ASCII during the relay of information between
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the terminal and the host computer can allow the input buff-
er of either the terminal or host computer to overflow be-
fore the sender is signalled to wait. Each character buffer
used by LINK possesses its own input data flow control en-
abling it to have XON/XOFF control over the entity sending
to it. The terminal and host computer appear to LINK as I/0
ports since the Slicer interfaces to the serial asynchronous
lines of each of these entities by using its on-board Sig-
netics SCN2681 Dual Universal Asynchronous Receiver/Trans-
mitter (DUART). Channel A of the DUART communicates with
the terminal at 9600 baud and Channel B of the DUART commu-

nicates with the host computer.

The connections between the above entities are provided
by six independent program sections. These sections commu-
nicate to each other by setting status flags, incrementing
pointers and changing subroutine start addresses. The oper-
ation control section, which is subdivided into five subrou-
tines, allows the operator to control LINK. This section
receives all characters entered at the terminal console by
the operator. During connect mode the received characters
are copied into the transmit buffer unless one of the three
control characters happens to be intercepted. If a control
character is detected, the operation control section changes
LINK’s mode of operation to either receive mode, transmit
mode or control mode, depending on which control character

was entered. The control mode is not readily apparent to
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the operator. It is entered when the operator has issued a
questionable command or at the end of transmit or receive
mode. In command mode all other processing stops while LINK
prompts the operator for a further entry. The transmit
buffer unloader section, the receive buffer loader section
and the receive buffer unloader section perform the opera-
tion implied by each of their names. The receive buffer un-
loader section has the additional task of sending command
status information character strings to the terminal. These
character strings are kept in a data block and are refer-
enced by a character pointer and a next string pointer.
They enable LINK to prompt the operator during command mode
or inform the operator of an image transfer operation’s sta-
tus during transmit or receive mode. All four of the above
program sections take part in the XON/XOFF protocol by de-
termining a buffer’s status when loading or unloading it and
by transmitting XON or XOFF to a sender when required. The
last two program sections are the image transmit section and
the image receive section. Each of these sections pefforms
the function suggested by its name. During transmit and re-
ceive mode, the operator is continuously informed of the
current number of pixel values transferred. During image
reception a tally of character, parity, missing row and row
size errors is kept. This tally is presented to the opera-

tor at the end of reception.
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LINK transfers image data using an elementary code in-
tended for use on ASCII communication channels. The use of
this code is necessary to avoid the unintentional transmis-
sion of control characters and to avoid the use of the pari-
ty bit. A raw pixel value is represented by a byte or eight
bits. However in ASCII the eighth bit is only used for par-
ity checking and therefore it should not be used when trans-
mitting data. In addition, the lowest 32 characters of the
128 character ASCII code are control characters and their
unintentional use on some host computers can produce unex-
pected results. Consequently only 96 possible characters
can be safely transmitted as data using ASCII. The image
transmission code uses 3 of these characters, <!>, <"> and
<#>, to specify the range of the succeeding pixel values to
be 0 to 84, 85 to 169 or 170 to 255 respectively. These are
called the pixel base characters. Once a value range is set
by a pixel base character, each of the succeeding contiguous
pixel values in the current row that falls within that range
is transmitted using a pixel offset character. Pixel offset
characters are the 86 characters between <$> and <y> inclu-
sive. Each corresponds to an offset value between 0 and 85
which specifies the pixel value by 1its offset within the
range. When a pixel value is encountered which 1lies in a
different range, a new pixel base character is transmitted
before continuing. Images are transmitted 1in row major
form. Each row begins with a pixel base character and ends

with one <|> character. The image is terminated with two
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<|> characters. FEach record of transmitted image data is 79
characters long, the first being a blank. The first record
contains the image row and column sizes as decimal numerals.
For most images, this algorithm can represent an image by a
total number of character transmissions which 1is only
slightly greater than the number of pixels making up the im-

age.

The present version of LINK is designed for connection to
either a Data General or a DEC 9600 baud port line. LINK
prepares for this environment by first querying the operator
for the type of host computer and then sending the appropri-
ate setup control data when it begins operation. One con-
trol string is sent to the Visual 500 terminal placing it in
either the D. G. Dasher 200 or the DEC VT52 terminal emula-
tion mode. Other control information 1is sent to the DUART
to set up its Channel B interfacing with the port line. The
receive buffer unloader section sends command status control
strings appropriate for the current terminal emulation mode.
These are obtained from a control string table. If LINK is
required in future to communicate with a different host com-
puter on a different serial asynchronous communication line,
LINK can be reconfigured simply by changing the setup con-
trol data and adding the correct control strings to the con-

trol string table.
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2.5.2 Storing and Retrieving Images on Floppy Disk

Equalized images are stored and retrieved on floppy disk on
the imaging system’s two 8 inch floppy disk drives by using
the routines STORE and RETRIEVE respectively. Both routines
utilize the BIOS disk operating functions of the CP/M oper-

ating system.

The routines STORE and RETRIEVE allow the operator to
permanently archive essential images for future use. This
facility 'is particularly attractive when the host computer
has insufficient storage space for the requirements of the
operator. If this is the case, the operator can store both
unmodified equalized images and images that were the result
of processing on the host computer and subsequently trans-
ferred to the imaging system using LINK. Approximately 16
images of the standard size wused during this research, 200
rows by 200 columns, can be stored on one two sided double

density floppy disk.

Both STORE and RETRIEVE perform rigorous checks on the
validity of the operator’s instructions. STORE verifies
that the disk drive specified has been logged-in by CP/M,
that the drive is not in R/0O (read only) mode and that the
specified file name is legitimate and not already present on
the disk. STORE automatically appends “.IMG” to the speci-
fied file name so that image files are readily distinguisha-
ble. STORE also tests for directory and data area overflow

each time it writes a record thereby ascertaining that the
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disk has sufficient storage space for the 1image file. If
overflow does occur, STORE erases the new image file and
aborts. RETRIEVE verifies that the specified disk drive is
logged-in and that the specified image file does exist on
the disk. RETRIEVE also automatically appends “.IMG” to the

specified file name.

Each time the CP/M disk operating system functions read
data from or write data to disk, an individual record of 128
bytes is transferred. This record is exchanged between CP/M
and a calling routine through the use of a 128 byte RAM mem-
ory array called the DMA. The DMA is part of the File Con-
trol Block which specifies the required attributes of a disk
access. The first 128 byte record stored in an image file
contains two two byte numbers which specify the row and col-
umn size of the image and an 80 byte array which may contain
a one line description of the image. If the operator choos-
es to describe the image during storage, STORE will place
the line of description in the 80 byte array. During re-
trieval of the image, RETRIEVE displays this line of de-
scribtion to the operator. The remaining records in an im-
age file consist of image data. An image is stored in row
major form. Both STORE and RETRIEVE manipulate these re-
cords in sequential access mode. Most of the computation
performed by both these routines involves formatting the im-
age data transferred to or from the DMA so that pixels are

handled contiguously without overwriting or interspersed

gaps.



Chapter III

OBJECT PERCEPTION

3.1 INTRODUCTION

Once an 1image of a grain sample has been suitably formed
through imaging, digitization and storage, the single most
important task for the computerized image analysis system is
the perception of all pertinent objects appearing in the im-
age. The initial object perception operation must provide
data which directs subsequent image analysis only on regions
of the image which are of interest. Logically the object
perception operation should be the first image analysis per-
formed. In this research the object perception routine was

invoked before any further analysis could begin on an image.

Object perception here refers to the detection of an ob-
ject appearing in an image and the exactv specification of
its location and contour. Although this is a rather limited
form of perception, it forms the basis for the primitive im-

age understanding which the machine must possess.

In this research an object’'s position and contour of
length £ were specified with a version of the Freeman chain
code, ((ro,co),ao0,a1, o « . r@gp-1). The contour was traced

sequentially from the point (ro,co) in single steps, the di-
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rection of each being specified by a directional element,

apr of the code as shown in Figure 3.1. ro was the row and
6
5 7
4 0
3 1
2

Figure 3.1: Elements of the Chain Code

Co the column coordinate of this point. The Ath step re-
turned the trace to the point (rg,co). This code allowed
contours to be 8-connected. That is, two contiguous pixels
on a contour could be vertical, horizontal or diagonal

neighbors.

The objects that were to be perceived in this research
were usually kernels of wheat although other objects, such
as cereal kernels other than wheat and foreign material oth-
er than cereal grains, could sometimes be expected. It was
safely assumed that at least each object would be similar in
size to a wheat kernel since, as described in Subsection
1.3.2, grain samples are partially cleaned before being ana-
lyzed. The object perception algorithm used would have to

ignore grossly differently sized objects such as specks of
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dust or finger print smudges on the background. The object
perception algorithm would also have to avoid classifying a
part of an object, such as a wheat germ, or a group of sepa-
rate objects as being one individual object. In addition to
the limited size range, another characteristic of the ob-
jects to be imaged further simplified the object perception

problem. The objects would only appear in a single layer on

a flat white background. Therefore, as stated in Sec-
tion 1.1, objects would not occlude one another and would
only sometimes touch. With this constraint object percep-

tion was effectively a two-dimensional problem without the

attendant complexities of three-dimensional scene analysis.

The object perception problem in this research was basi-
cally one of object-background image segmentation; an image
pixel had to be classified as being either an element of an
object region or an element of a nonobject region, the back-
ground. Many techniques are available for such simple image
segmentation. These utilize a variety of approaches which
typically depend on the regularity of the image characteris-
tics. A good example is template matching. However the im-
ages encountered in this research exhibited many irregulari-
ties. The surface gray 1level and the shape of a wheat
kernel were always unpredictable. The gray level of the
background also had a certain amount of unpredictability due
to the effects of shadow. As a result most simple segmenta-

tion techniques were inappropriate.
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The object perception techniques, which were developed,
relied on the one simple and regular characteristic of the
wheat grading images used in this research: the object con-
tour edge was always the most dominant type of edge. Con-
sequently every technique employed a step edge detector at
some stage of its operation to find object contour edges.
Each of these edge detectors estimated the gradient of the
gray level surface in order to gauge the probability of an

edge at any particular location.

All of the computerized image analysis, other than the
elementary image preparation performed wusing IMP, was exe-
cuted on a Data General Eclipse MV/8000 Model 9300 mainframe
computer. This image analysis included the object percep-
tion procedures described in this chapter and the procedures
described in Chapter IV and Chapter V. Every routine was
implemented in FORTRAN77 [Data General, 1983]. The Data
General computer was the host computer referred to in Chap-
ter II as being connected to the digital image acquisition

system.

Two images were used in this chapter as subjects for dem-
onstrating the capabilities of the object perception tech-
niques. These images, JUMBLE1 and JUMBLE2, are shown in
Figure 3.2 and Figure 3.3 respectively beginning on page 72.
Both of these images were intended to present a substantial
challenge to any object perception algorithm while at the

same time remaining within the limitations of this research.
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JUMBLE1 was the most formidable of the two images because it
exhibited a wider range in wheat kernel sizes than normally
encountered and because the contact point between two of the
touching wheat kernels in JUMBLE1 was totally obscured by

shadow.

Two methods were wused to present images 1in this chapter
and in Chapter IV and Chapter V. Unprocessed images, such
as JUMBLE1 and JUMBLE2, were photographed directly from the
digital imaging system’s image display monitor and displayed
on 8% inch by 11 inch prints. The digital images shown in
Chapter II were also prepared this way. Representations of
processed images that were the result of some form of analy-
sis, such as edge detection, were produced using the Symbol-
ics laser printer [Symbolics, 1982]. This printer was a pe-
ripheral device of the Data General computer. With this
method an image pixel was represented by a 5 by 5 square of
dots, each of which could be either “on”, producing a black
dot on the paper, or “off”, leaving a vacant white dot on
the paper. Thus 26 gray levels could be represented with
this method without the use of any intermediate photographic
processing. Unfortunately the laser printer deposited ink
with slight inconsistencies which caused the obliteration of
subtle detail such as that seen on the surface of a wheat
kernel. Consequently image representations of unprocessed
digital images were not satisfactory when produced with this

method.
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The following four sections, 3.2 to 3.5, present four
different object perception technigues in the chronological
order in which they were developed during this research. 1In
effect the first three technigues represent the evolution of
the final superior technique, called the elliptical-object
detector. However each of these three can itself satisfac-
torily perform the object perceptioh function provided the
limitations of the technigque are recognized. The ellipti-
cal-object detector 1is the technique endorsed by this re-
search. Much of its underlying theory is presented in Sec-

tion 3.3.

Section 3.6 presents the shape description technique that
was employed to generate shape features of an object contour

provided by an object perception technique.



Figure 3.2:

JUMBLE1
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Figure 3.3:

JUMBLEZ
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3.2 CLOSED-REGION DETECTOR

The first object perception technigue developed in this re-
search utilized very little a priori knowledge of the images
to be expected. As explained in Section 3.1, a gradient
based step edge detector was used to find possible locations
of the object-background border. The operation of edge de-
tection however only created an “intrinsic?” image which,
along with noise caused by the presence of secondary edges
that were not of interest, 1indicated possible contour loca-
tions. Before the leap to the “segmented” image could be
made, however, some technique based on the attributes of the
imaged scene had to be used to discard the false edges and
“string together” the real edge segments. With the forma-
tion of a segmented image in this fashion, the machine
would, with the simple object-background scenes encountered
in this research, be able to declare objects found and

thereby accomplish basic object perception.

The technique used to find object contours in an edge im-
age relied on a simple characteristic of object-background
images. If the objects were not touching and the background
was entirely homogeneous (free of edges) then an object con-
tour would be a simple closed curve that would contain any
edges present on the object’s surface. Thus only an edge
which formed a simple closed curve and which was not con-
tained by another such closed edge would be declared to be

an object contour. This technique was implemented in the
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program CLOSED. This program inputted a binary edge image
and outputted a binary region image and a file of Freeman
chain codes describing each detected object. In the binary
edge image a pixel value of 0 indicated no edge and one of
255 indicated that an edge was detected. In the binary re-
gion image a pixel value of 0 indicated background and one

of 255 indicated an element of a declared object region.

The edge detector chosen was the Haralick [1982] zero
crossing of second directional derivative edge operator.
This operator is one of several advanced edge operators that
represent a vast improvement, 1in terms of accuracy in edge
definition and performance in noisy images, over the classi-
cal gradient based edge operators such as the Roberts,

Kirsch and Sobel operators.

The classical edge operators perform poorly in noisy im-
ages for two reasons. First, each operator uses only a
small window of image pixels in estimating the local gradi-
ent. Second, each operator finds edges by merely threshold-
ing the gradient magnitude: when the magnitude is greater
than a preset threshold an edge is declared: otherwise no
edge is declared. This method gives rise to a wide declared
edge that poorly defines the location of what was a well de-
fined edge in the original image, and to a missed edge where

an obscure edge existed in the original image.
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For noisy images,  the common solution is to preaverage
the original 1image before applying the gradient operator.
This approach can alleviate the noise problem so that noisy
edges are not overlooked and spurious edges are not generat-
ed, but only at the expense of further widening the declared
edges. In the images used in this research, the object con-
tour edge was often obscured by detail on the object surface
and shadow on the background. A more forgiving edge detec-

tor had to be used.

The Haralick edge operator combines two concepts to im-
prove its performance. First, for an edge pixel to be de-
clared not only must the local gradient magnitude be above
some threshold value, but also a zero crossing of the second
directional derivative must occur nearby. The latter cri-
terion ascertains that the gradient has reached a local max-
imum in the pixel’s vicinity. Thus the declared edge will
be only one or two pixels thick and will provide a more ac-
curate estimate of the real edge’s location. The effective-
ness of this approach is illustrated in Figure 3.4 where a

one dimensional image of a step edge was used.

Haralick’s edge operator is similar to the Marr and Hil-
dreth [1980] Laplacian of a Gaussian edge operator since
both operators use a form of the second derivative. The
Marr-Hildreth edge operator is well-known for 1its accurate
edge detection, although it suffers from susceptibility to

noise, Before an edge pixel can be declared, the Marr-Hil-
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Figure 3.4: Zero Crossing at a Step Edge

dreth edge operator requires that a zero crossing of the La-
placian, a type of second derivative, must occur nearby.
Since the Laplacian is a nondirectional operator, the Marr-
Hildreth edge operator is not sensitive to direction. How-—
ever, Haralick’s edge operator requires that a zero crossing
of the component of the second directional derivative that
is in the same direction as the local gradient must occur
nearby. Consequently the Haralick edge operator is sensi-
tive to direction and therefore can more effectively differ-

entiate between spurious and genuine edges.

The second concept that gives the Haralick edge operator
its improved performance is the assumption that an image is
a noisy version of some underlying mathematical model. Har-
alick assumes a two-dimensional cubic model. This assump-

tion does not by itself improve performance. Rather, it has
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provoked the use of an estimate of the underlying model for
each sqguare neighborhood of pixels. Thus an analytical mod-
el is generated which can be directly manipulated to find
the gradient at and second directional derivative near the
centre pixel. This model tends to ignore noise in a fashion
similar to preaveraging. VYet it will not cause the smearing
of an authentic edge to the extent of that caused by preav-
eraging. Thus it provides more accuracy in the definition

of an edge.

The method of estimating the two-dimensional cubic model,
which underlied each pixel neighborhood, was altered for the
closed-region detector. Haralick employs a nine member or-
thogonal polynomial basis set to estimate the model. In
this research a least sqguares estimate of the model was cal-
culated directly. A pixel value 1in neighborhood row r and

neighborhood column ¢ was modelled as:
f(r,c) = kitkor+kszc+kar2+ksrc+kgc?+k,r3+kgr2c+kgrc2+k oc?® .

Neighborhoods were square and had an odd number of rows and

columns so that a single centre pixel was definable. This
centre pixel occupied the origin position where r = 0 and
c = 0, For an M by M sguare neighborhood the equations

which estimated the values of the constituent pixels could

have been written in matrix form as:
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1T rcr? rcc?rd r2c rc2 3 K 1 f(r,c)
______ k2 = .
MZ ______ .
______ k10
10
or: AX = B.

M2 was larger than 10. Therefore the least squares solution

to this problem, such that ||AX-B|[2 is minimized, 1is given
by:
T T
X =(AA)"'AB
= A'B
where A" is the Moore-Penrose inverse of A. Evidently each

estimated model coefficient kj was a linear combination of
the pixel values in the neighborhood, or in other words each
coefficient was the dot product of the neighborhood and an
M by M mask. The mask values for each coefficient were cal-
culated once and later permanently incorporated into the

program which executed the Haralick edge operator.

Another modification was made to the Haralick edge opera-
tor to allow several different pixel neighborhood sizes.
Haralick advocates the use of an 11 by 11 window. In this
research the neighborhood sizes used also included 5 by 5,
7 by 7 and 9 by 9. The smaller sizes, 5 by 5 and 7 by 7,

were found to be a better compromise between noise rejection
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and the ability to accurately define a sharply curved edge,
such as the pointed end of a wheat kernel. In addition the
smaller sizes required less computation. The 7 by 7 size

was standard.

The Haralick edge operator was implemented with the pre-
viously described modifications in the program ZEROX. At
each pixel location the coefficients k, and k3 were calcu-
lated. Then the estimated gradient at that pixel’s loca-
tion, which was the centre of the neighborhood, was found

using the equation:

[VE(0,0)| = /k,%+ka2

If this estimated gradient was above a previously entered
threshold then processing would continue on this pixel.
First, the remaining coefficients ke to k1o were calculated.
These were then used to calculate the distance in the
“chessboard” metric to the nearest zero crossing of the sec-
ond directional derivative. Only the component of the sec-
ond directional derivative in the same direction as the gra-
dient was considered. The distance was determined by the

expression:

d (min) = F
E|+]|D
where D = k22k8+2k2k3kg+3k32k10
E = 3k22k7+2k2k3k8+k32k9

F = k22k4+k2k3k5+k32k5
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This expression was relatively simple because the locus of

the zero crossing was the line:

Dc+Er = -F ,

If the pixel passed the gradient threshold test and a zero
crossing was within a set distance of the pixel, usually 0.5
of the interpixel distance, then the pixel would be declared

to be an edge pixel.

Before a binary edge image outputted by ZEROX was ana-
lyzed by CLOSED for the presence of object regions, it was
first transformed into another binary image. This new bina-
ry image was a “thin” version of the edge image, in other
words a line drawing of it. Thinning of the edge image was
necessary because by definition in the continuous plane a
contour, which may define a region with thickness, should
not by itself have thickness. In the discrete plane the
minimum line thickness is 1. Therefore all contours in a
binary edge image should have a thickness of 1. The thin-
ning algorithm chosen was developed by Pavlidis [1981] and
implemented in the program THIN. Other than thinning, this
algorithm did not destroy the integrity of the original bi-
nary image since any region of 1’s in the input image that
was a connected set would be 1left connected by the algor-
ithm. Valid edges found and declared by ZEROX were not
greatly affected by THIN since these edges were usually only

1 or 2 pixels thick.
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In summary, the first object perception technique devel-
oped in this research, the closed-region detector, consisted
of three steps. First, the Haralick edge operator was em-
ployed in the program ZEROX to create an intrinsic binary
edge image from an unprocessed wheat grading image. Second,
the edge image was thinned using the Pavlidis thinning al-
gorithm implemented in the program THIN. 'Finally, all
closed and uncontained contours in the thinned image were
found and specified in Freeman chain code by the program
CLOSED. The last step also produced a segmented or region
image. With the specification of object regions provided in
the last step, a shaky form of primitive machine image un-

derstanding was achieved.

The following three figures show the intermediate and fi-
nal results of the closed-region detector operating on
JUMBLEZ. Figure 3.5 shows the edge image produced by ZEROX.
A gradient threshold of 5, one-half of the standard value of
10, was chosen. This lower threshold was selected since
more sensitivity was desired for detecting the edges ob-
scured by shadows. These excessive shadows were a result of
the close object spacing. The standard neighborhood size,
7 by 7, and the standard minimum zero crossing distance,
0.5, were used. Figure 3.6 shows the thinned edge image
produced by THIN. Finally, Figure 3.7 shows the region im-
age produced by CLOSED. The solid black connected regions
were “objects” declared by CLOSED. The Freeman chain code

of each region’s contour was stored in the output file.
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Figure 3.5: Edge Image from ZEROX

The previous figures demonstrate some shortcomings of the
closed-region detector. Although the Haralick edge operator
produced superb results, it sometimes would leave a small
break in an object’s contour thus voiding the object’s de-
tection. In scenes of closely spaced objects it was impos-
sible to set a gradient threshold that would allow both the
detection of object contour edges which were partially ob-
scured by shadow and the rejection of spurious edges which
were caused by regions of shadow on the background. Scenes
of touching objects just could not be dealt with. 1In short,

this detector was unreliable, requiring human intervention
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Figure 3.6: Thinned Edge Image from THIN

to ensure that only real objects had been found, and re-
stricted to use on well behaved images containing widely

spaced objects with sharply defined contours.

The previous figures do not demonstrate a less serious
shortcoming of the closed-region detector. The Haralick
edge operator demanded massive amounts of computation to
produce the superb results essential for the closed-region
detector. On the standard 200 by 200 image used in this re-
search, applying this edge operator with the standard neigh-

borhood size of 7 by 7 required an absolute minimum of 3.92
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Figure 3.7: Region Image from CLOSED

million multiplications alone. Even for the flexible speed
of execution constraints for research, this was an undesira-
bly large amount of computation. Unfortunately most of this
computation was a waste since many edge pixels declared by

ZEROX would later be discarded as noise.

For the automated grading process pursued 1in this re-
search a more dynamic and self-reliant object perception
technique was required. Certainly the closed-region detec-
tor could have been improved. The routine CLOSED could have

been modified to ignore closed regions that were below a



87
preset size or that had parts with a thickness of only 1.
These modifications would have assisted CLOSED in discrimi-
nating against false edges caused by shadow. Further,
CLOSED could have been modified so that an attempt would
have been made to complete, rather than ignore, broken con-
tours which satisfied certain size and shape constraints.
All of these alterations would have been an attempt to in-
troduce additional image contextual information and a priori
knowledge about grain grading images into the object percep-
tion algorithm. However, each would have involved making
improvements based on the contents of only an intrinsic im-
age, the thinned edge image. This image would have lacked
much of the original image information, notably gradient
magnitude and direction, importanf in determining image con-
text. Consequently two powerful and well-known technigues
were combined to create a new object perception algorithm
which used contextual image information and a priori knowl-
edge to detect objects while wutilizing the original image
directly. Several versions of this more successful approach
were developed, the first of which is described in the next

section.
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3.3 REGULAR-SI ZED-OBJECT DETECTOR

The regular-sized-object detector was a radically different
approach to object perception. The first major difference
was the exploitation of global image context obtained in
part by the wuse of local gradient magnitude and direction.
In contrast, the closed-region-detector was limited in its
use of context to the stringing together of declared edges
without the knowledge of each edge’s gradient components.
The second major difference was the use of the a priori
knowledge that objects in a grain grading image have similar
sizes. It was assumed that images would be taken with a
known or constant magnification so that the object region
size in an image could be approximately known beforehand.
This assumption was expressed in this research by having the
operator enter the approximate object radius. For a practi-
cal system the expected size would be calculated by the ma-
chine using the known magnification. With these two funda-
mental changes the regular-sized-object detector was much
more dynamic and capable of use in an automated system while

at the same time being much more efficient.

The first of the two stages comprising the regular-sized-
object detector consisted of roughly determining the loca-
tion of each object in an image. This operation focussed
the computational power of the remainder of the detection
procedure to only those parts of the image known to contain

an object. Focussing computational power like this was one
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way that efficiency was improved as compared to the closed-
region detector in which the Haralick edge operator was ap-
plied to each and every pixel location. This stage of the
detector’s operation was accomplished with a Hough transform
designed to find roughly circular shapes. This Hough trans-
form utilized both gradient magnitude and direction informa-
tion from all parts of the image and thereby found prospec-
tive object locations which satisfied the global gradient

context of the image.

The second stage consisted of finding and specifying the
contour of each object previously located. As stated in
Section 3.1 the contour of an object was the most obvious
edge to be found in a wheat grading image. Thus the task of
finding the contour at each object 1location amounted to
finding the single most consistent well defined closed curve
edge which circumscribed the central point of the region and
which satisfied the object size constraints. This curve
would satisfy the local context of the object’s region of
the image. By treating the object region as a graph, this

task was transformed into a heuristic graph search problem.

Both stages of the regular-sized-object detector utilized
the same method, the Sobel edge operator, for approximating
the gradient. This is one of the classical edge operators.
It was chosen because of its computational simplicity and
its good performance in noisy images as compared to the oth-

er classical edge operators. The Sobel operator employs two
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3 by 3 masks to approximate the gradient components at the

centre pixel of a 3 by 3 neighborhood. Figure 3.8 shows
these masks. The dot product of mask 1 and a pixel neigh-
-1 0| 1 -11-2(-1

Mask 1|-2] 0} 2 Mask 2; O 0| O

Figure 3.8: Sobel Operator

borhood was fi, the horizontal component, and that of mask 2
and the neighborhood was f,, the vertical component. The

estimated magnitude and direction of the gradient were then:

|[VE| =/f2+f,2 and @ = arctan(f,,f;) .

The computational simplicity of the Sobel operator provided
a further improvement in efficiency for the regular-sized-

object detector.

3.3.1 The Hough Transform
The Hough transform engaged in the regular-sized-object de-
tector used both gradient magnitude and direction to detect

roughly circular curves. Ballard [1981] presents an excel-
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lent overview of the development of the Hough transform
through to its present form and presents examples which for-
tuitousiy cover moét of the theory of the two configurations

of the transform involved in this research.

Originally the Hough transform was designed to detect
simple parametric curves in an image by using only edge mag-
nitude information gleaned from the image. In effect it
transforms the image into a parameter space in which each
dimension represents an alterable parameter of the desired
curve. The value of each point in this space is proportion-
al to some estimate of the likelihood of the existence of a
curve possessing the parameters denoted by the point’s posi-
tion. This parameter space is dealt with in a discrete form
called an accumulator array. The Hough transform has the
advantage that detection of even a severely broken curve in
a noisy image is possible where it would not be in many oth-

er strategies.

Since its inception the transform has been improved in
several ways. One improvement was the use of edge orienta-
tion information as was done for the regular-sized-object
detector. This enhancement substantially reduced the compu-
tation time since the dimensionality of the locus of curves
implied by a single edge element was reduced by one. This
enhancement also increased the accuracy of detected curves.
Other innovations allowed the detection of generalized nona-

nalytic shapes and of composite shapes composed of several
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simpler shapes. These latter innovations were not employed

in this research.

The Hough transform generated the transformed version of
an 1image by first determining the subset of the desired
class of curves implied by each suitable edge element in the
image, and then adding a suitable contribution to the re-
gions of the accumulator array possessing parameters which
corresponded to the implied subset. Some criterion had to
be determined for discriminating between suitable and unsui-
table edge elements. For the regular-sized-object detector
the criterion was simply that the 3 by 3 neighborhood of
which a pixel was the centre had to exhibit a Sobel gradient
magnitude greater than some threshold. This threshold value
was usually set to 125 since this value provided good dis-
crimination between edges caused by object contour and those
caused by interior object detail. Some strategy also had to
be determined for making an edge element’s suitable contri-
bution to the regions of the accumulator array implied by
the edge element. For the reqular-sized-object detector,
the implied accumulator array entries were simply increment-
ed by one. This incrementation strategy and the edge ele-
ment suitability criterion previously described biased the
Hough transform in this research towards finding objects

whose contours were largely well defined.

The form of the accumulator array and the method of cal-

culating the curve parameters implied by each edge element
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were determined by the class of curves to be detected. The
class of curves that were of interest for the regular-sized-
object detector were circles of only a single radius R, as
entered by the operator, but at any location in the image.
The circle was selected as a shape because of its analytic
simplicity, its symmetry and because only the rough circu-
larity of objects in the image was being assumed. For a
circle of radius R whose centre was at row b and column a,
the row r and column ¢ of a point on the circle were given

by:
(c-a)2+(r-b)2 = r2 ,

The accumulator array was two-dimensional since two dimen-
sions were required to represent the circle’s parameters a
and b. This array was in registration with the image so
that each of 1its positions represented the location of the
centre of a prospective ciréular object. The above equation
used only the location of the edge element at (r,c) to de-
fine the locus of the centres of possible <circles on which
it may have lain. In parameter space this locus was itself

a circle of radius R.

To introduce the use of edge orientation in determining
the parameters of an indicated curve, the equation for the
curve was also given in terms of its slope. This slope was
perpendicular to the gradient of an edge represented by the

curve. For the above equation of a circle differentiated
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with respect to column, the slope, or equivalently, orienta-
tion of an edge element was given by:

= tan(@x%) = -(c-a)
(r-b)

dr
dc
where ¢ was the gradient direction and ?+% were the two in-
terpretations of edge orientation. By combining this ex-
pression for edge orientation with the previous expression
for edge location, the locus of the centres of possible cir-

cular objects implied by an edge element at (r,c) exhibiting

a gradient direction @ was given by:

a = c~-R-cos ¢

b = r-R-sin @

when the objects were dark on a light surface. Obviously by
including the wuse of edge orientation an edge element had
been made to specify the location of a single circular ob-
ject of radius R. Figure 3.9 shows the geometry of this

method.

Unfortunately the objects which the regular-sized-object
detector was intended to detect were never perfectly circu-
lar in shape but rather were elliptical, oval or at least
irregularly shaped. This problem of noncircular shape was a
major source of error in the accumulator array since the
calculation of the location (b,a) of the object centre im-
plied by an edge element rested upon the premise that the

object was circular. This error was interpreted as result-
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light

Arrows denote gradient direction.

Figure 3.9: Geometry of Circle Detection by H. T.

ing from uncertainties in R and the estimated @ such that:

D-AQ < @'< P+AD

R-AR < R’'< R+AR

where @' and R' were the actual values. An error compensat-
ing convolution template, as described by Ballard, was the
device used to deal with this problem. Instead of only in-
crementing a single array position (b,a) implied by an edge
element, a group of array positions in a region centred on
(b,a) and similar in size to the area of the expected uncer-
tainties in R and @ was incremented. For simplicity the
template was a square region composed entirely of 1's, A
template size of 0.7 R by 0.7 R was chosen based on general

observations about the actual shape of the objects expected
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in wheat grading images. The large size of the error temp-
late was a manifestation of the fact that this Hough trans-
form technique was meant to detect the approximate location
of irregularly shaped objects rather than the exact location

of perfectly circular objects.

In summary, the Hough transform algorithm used for the

regular—-sized-object detector was as follows:

1. Set each entry in the accumulator array to O.

2. For every 3 by 3 neighborhood centred at (r,c) in the
image, do:

a) Calculate Sobel gradient direction ¢ and magni-
tude.

b) If the gradient magnitude 1is less than threshold,
start next neighborhood:; otherwise continue.

c) Calculate centre (b,a) of implied circle using
a c~-R:-cos @
b r-R-sin @ .

nn

d) Increment all accumulator array positions within
the 0.7 R by 0.7 R square centred at (b,a).

3. Determine position of the next object by finding the
location of the largest entry in the accumulator ar-
ray.

The regular-sized-object detector performed this algor-
ithm only at the beginning of 1its operation and in this
fashion found the first object. After the detector found
each object’s contour, it set the accumulator array entries
within the contour to 0. Thus the detector found each sub-

sequent object by again finding the location of the largest

entry in the array.
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3.3.2 The Heuristic Edge Search
The method developed to find the most likely contour edge in
an object region was an extension of the popular graph
search approach to the more general problem of locating a
single edge between a start position and an end position in
a digital image. With this approach the problem was conven-
iently expressed as a search in a graph for the least cost
path between a start node and a goal node. In this graph
each node corresponded to an image pixel. An edge was rep-
resented by a path comprised of nodes and interconnecting
arcs in the graph. Each arc had an associated nonnegative
cost ¢ which a path incurred if the arc was on the path.:
With a properly designed cost function the least cost path
represented some form of the best edge. 1In general the cost
function had to generate a cost inversely related to the

likelihood of the presence of an edge.

The advantages of this interpretation of the edge finding
problem were that the characteristics of the desired edge
could be easily changed by changing only the cost function
and that several powerful techniques already existed for
searching graphs. Some of these techniques employ heuristic
information to increase the speed of a search. The fruitful
idea of applying heuristic graph search methods to general

edge detection was first proposed by Martelli [1972].

Much of the methodology for the heuristic edge search

strategy in this research was derived from a paper by Les-—
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ter et al. [1978]. The object of their work was to complete
the contour and thus separate the region of several touching
white blood cells in a micrograph image. Part of the con-
tour of a cell was determined by some other means prior to
the application of an edge search. The major extension to
their work by this research was to determine an entire
closed contour of an object with only the general location
of the object being known beforehand. They did extend their
work to tracing an entire cellular contour, but a starting
point had to be known before application of the edge search.
Other differences include the form of the cost function and

the method used to incorporate circularity in the algorithm.

The graph used for the regular-sized-object detector was
shaped like a circular annulus having the object location
estimated from the Hough transform situated at its centre.
The assumption that the objects to be imaged were roughly
circular 1in shape was the basis for the choice of the
graph’s form. The centre point of the graph was called the
pivot point. The constraints on the size and shape of the
object contours to be found were made very loose by having a
large outer radius and a small inner radius for the graph.
These radii were 3R and IR respectively, where R was the es-
timated object radius entered by the operator. The start/
goal nodes, each of which performed the dual duties of both
start and goal node, were placed aiong a vertical line ema-

nating from the pivot point to the top of the graph. A typ-
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ical search of the graph would begin on the left of the
start/goal nodes, proceed in a counterclockwise direction
around the pivot point (hence its name), and terminate after
approaching the start/goal nodes on their right. Fig-

ure 3.10 shows the form of the circular-annulus graph.

Direction Start/Goal Nodes
Search

Graph
Object Contour

Pivot Point
(position of
accumulator
j array
maximum)

Figure 3.10: Circular-Annulus Graph

The expected and desired features of the contour edge de-
termined which arcs were allowed in the graph. The first
feature was that a contour would be 8-connected so that con-
tiguous points on the contour could be either horizontal,

vertical or diagonal neighbors. Therefore an arc was al-
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lowed to be in one of eight possible directions. These arc
directions were enumerated with the same Freeman chain code
used in the rest of this research. The second feature was
that a contour could proceed 1in a counterclockwise rotary
direction around the pivot point and in a radial direction
toward or away from the pivot point. However the contour
would not be allowed to reverse its rotary direction and
proceed clockwise since the expected objects were not suffi-
ciently irregular in shape to exhibit this rotary backtrack-
ing. Therefore the number of possible directions of an arc
emanating from any node was restricted to five by the node’s
position relative to the pivot point. This group of five
contiguous directions was centred on the preferred direction
which was an angle of % greater than the direction of the
pivot point from the node. From any node in the graph the
preferred direction corresponded to the direction of coun-
terclockwise rotary motion. The final feature was that
sharp turns, angles greater than 4; would not be allowed on
a contour. This requirement was based on the observation
that sharp turns did not occur on valid contour edges: only
on spurious edges resulting from noise. Therefore each time
a path was extended by adding a new arc to join the current
node to some neighboring successor node, the new arc would
only be allowed if its direction was different by an angle
of either glor 0 from the direction of the arc joining the
previous node to the current node. This feature also en-

sured that the contours generated were thin in the
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8-connected region sense thus satisfying the thinness prop-
erty desired for contours. Figure 3.11 shows the arc selec-

tion process for a typical current node neighborhood.

Path to

Pivot Point

Successor Nodes \
\ Preferred
‘Direction

New arc directions are restricted to 0, 1, 2, 3
and 7 by the preferred direction.

Of these only 1, 2 and 3 are allowed by the
previous arc direction.

Figure 3.11: Arc Selection Process

The Algorithm A*, a powerful heuristic graph search tech-
nique formulated by Nilsson [1971], was the tool employed to
find the least cost path. In the terminology of Nilsson,
the function £ which evaluates the suitability of a node n

in a path is:

f(n) = g(n)+h(n) .
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g(n) is the cumulative cost of the least expensive path
found between a start node and n. h(n), a type of heuristic
information, 1is an estimate of the cost h(n) of the least
expensive path from n to a goal node. When h(n) is a lower
bound of h(n), the solution path found by Algorithm A* has
least cost. The closer h(n) is to h(n) the more efficient
the search will be. In this research h(n) was set egual to
0 because, while the optimal path was desired, h(n) was dif-
ficult to estimate. Thus the search strategy used in this
research was a special form of the Algorithm A* called a

“uniform cost algorithm”, in which h{(n) is unavailable.

Algorithm A* develops paths in a graph through the itera-
tion of a process called node expansion. Expansion consists
of replacing the lead node of a path, called an opened node,
with successor nodes in a file generally called OPEN. Each
successor node is reached by traversing an arc emanating
from the old 1lead node. The extension to the path is re-
corded by directing a pointer associated with each successor
node back to the o0ld node. The old node is closed by plac-
ing it in a file generally called CLOSED, since it 1is no
longer the lead node of a path. Before each expansion the
node possessing the least £ is selected from OPEN as the
next node to be expanded. Thus only the currently most at-

tractive path is lengthened.

Two characteristics of Algorithm A*, other than its use

of heuristic information, contribute to its efficiency.
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First, Algorithm A* is a dynamic programming algorithm: at
any time during a search it records only one path to each
encountered node, and this is the least cost path between
the node and any start node. A result of this characteris-
tic is that, of the vast number of paths between a start and
a goal node, only a small number are ever considered during
@ graph search. Second, because this algorithm is a seqguen-
tial search, it will not consider any more nodes than are
actually reguired to find the least cost path. For an edge
search, 1f the edge is well defined, the operation of the
algorithm can become equivalent to a simple edge following
technigue which considers only those nodes actually on the
edge. For a worse edge the search will spread out and con-

sider more nodes.

Algorithm A* was modified in two ways to improve its ef-
ficiency. First, each node had two flags, one labelled
“marked” and one labelled “opened”, associated with it.
These indicated whether the node had been encountered and if
so whether it was currently open or closed. As a result a
search determined a successor node’'s status simply by in-
specting the node’s flags rather than searching both OPEN
and CLOSED for it. Second, the file CLOSED was not in-
stalled since a node’s flags indicated the node’s closed
status. However the file OPEN was retained since its use
drastically diminished the time required to find the next

node to be expanded. A search quickly determined the next
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node by searching this file, which contained only the opened
nodes, for the lowest value of £, instead of searching the

entire graph for the opened node with the smallest f.

The above two flags together with the node pointer and
three other flags of each node were stored in the array
GRAPH. This array was in registration with the image. Fig-

ure 3.12 shows the bit definitions of GRAPH.

INTEGER*2 Word

15 - = - - - - - 7 6 5 4 3 2 1 0
T 1 -
Opened |[Contour Pointer to
Node Node Previous Node

Goal Marked Element
Node Node of
Graph

Figure 3.12: Bit Definitions of GRAPH

The graph search used a form of heuristic information to
improve its efficiency. The search measured the progress of
any path by the angular displacement about the pivot point
between the path’s lead node and the column of start/goal
nodes. It was assumed that if this angle, called{)(n), for
the path’s lead node n was less than the maximum {2 of all
opened nodes minus some angular back step limit, then the
path represented by n could be discarded as a contender for

the least cost path. Thus when the search selected the next
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opened node from OPEN, the node was closed and not expanded
if it failed the back step limit test. This back step limit
was set to %. In general the graph search was not optimal
with the wuse of this heuristic. However many tests were
conducted to compare the suboptimal with the optimal search
results for typical wheat grading images; these tests demon-
strated that even with this heuristic a search almost always

produced the least cost path.

The form of the Algorithm A* used for the regular-sized-

object detector, including modifications, was as follows:

. For each start/goal node, set its goal-node bit,
place its coordinates in OPEN and set its cost £=0.
However leave it unmarked so that it may fulfill the
goal node function.

2. Find the node n in OPEN with the lowest value of £
and mark it closed by resetting its opened-node bit;
if OPEN is empty abort the algorithm with failure.

3. If n is a marked (already encountered) start/goal
node then an optimal path has been found so exit the
algorithm; otherwise continue.

4. Calculate ()(n) and if it is less than
{l(max)-back step limit, go to 2.; otherwise continue.

5. Expand n by generating its successors, each of which
must:

a) be an element of the graph,

b) be reachable by one of the five arcs centred on
the preferred direction, and

c) satisfy the no sharp turns rule.

6. For each successor node not already marked calculate
f, place its coordinates in OPEN, set its opened-node
and marked-node bits and calculate its (). If its (2
is greater than Qmax), then replace {}max) with the
new value,
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7. For each successor node already marked calculate its

new value of f but store only a temporary version of

it. If the new value of £ is not less than the old

value, then omit this successor. Otherwise replace

the old value of f with 1its new value, redirect the

successor’s pointer to n and if it is currently mark-

ed closed, mark it open and place its coordinates in
OPEN.

8. Go to 2.

The qguality of the cost function used to calculate c(n)
was of paramount importance since the quality of the detect-
ed edge depended directly upon it. The cost function for
the regular-sized-object detector was composed of three

parts as follows:

c(n) = DADJUST(n) -RADJUST(n) -GRADCOST(n) .

The cost of the gradient, GRADCOST(n), utilized the gra-—
dient magnitude and direction to gauge the suitability of
the pixel neighborhood around n for having an edge passing
through n in the same direction as the arc leading to n.
The equation of the gradient cost was as follows:

GRADCOST(n) = {GRADCOST', GRADCOST'> 0
0, otherwise
where GRADCOST'= BASECOST
~s(n) -cos{2[arc direction(n)-@(n)+¥]},
s(n) was Sobel gradient magnitude at n,
@(n) was Sobel gradient direction at n, and
arc direction was angle of the arc leading to n.

GRADCOST never produced a negative cost since Algorithm A*

can provide an optimum path only if every cost incurred is
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nonnegative. BASECOST was the cost incurred if the neigh-
borhood contained no detail indicating an edge, in which
case s(n) = 0. The value of BASECOST was normally 250. If

the arc direction was within an angle of 4’of the edge di-
rection, @(n)—%ﬁ implied by the gradient direction then
GRADCOST would be less than BASECOST. Otherwise it would be
greater than BASECOST. The magnitude of this divergence
about BASECOST was proportional to the gradient magnitude.

Figure 3.13 shows these relationships.

GRADCOST

BASECOST+s(n)

BASECOST

BASECOST-s(n)
0

L L L i
0 3 a jm 27
Difference between implied
edge direction, @(n)-%,
and arc direction

Figure 3.13: Operation of GRADCOST

A drawback of GRADCOST was that it was insensitive to the
relative gray level of the regions being divided by an edge.
In other words it could respond the same to either an edge
dividing a dark region on the left and a light region on the

right, or one dividing a light region on the left and a dark
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region on the right. This property was a result of the two-

fold symmetry of GRADCOST from 0 to 2m.

The radial adjustment, RADJUST(n), neutralized the pref-
erence for shorter small-radius paths near the pivot point
and against longer large-radius paths far from the pivot
point. The effect of RADJUST was equivalent to mapping the
circular-annulus graph nodes onto a rectangular unfolded
version of the original graph. The expression for RADJUST
was simply:

RADJUST(n) = 1
d(n,pivot point)

where d was the Euclidean distance.

The diagonal adjustment, DADJUST(n), was identical to
that used by Lester et al. This adjustment neutralized the
preference for diagonal paths. This preference was caused
by the smaller requirement for nodes in a diagonal path cov-
ering the same distance as a vertical or horizontal path.

DADJUST was given by:

DADJUST(n) j?/?, if the arc leading to n was diagonal
1, otherwise.

The “closing” of a solution path was a significant prob-
lem in designing the regular-sized-object detector. The op-

timal version of Algorithm A¥* searching the circular-annulus
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graph finds the least cost path which begins at a start/goal
node, circumscribes the pivot point and ends at a start/goal
node. However the start/goal node at the beginning of the
path is not guaranteed to be the same start/goal node at the
end of the path; sometimes they are indeed different and the
resulting path is not closed. If the path is not closed it

cannot represent a complete object contour.

It is enlightening to consider how the least cost closed
path solution can always be found. A closed path must begin
and end at the same start/goal node. Therefore one method
to find the least cost closed path in an annular graph con-
taining t start/goal nodes would be to conduct t searches,
each having only one start/goal node which would be one of
the original t start/goal nodes. Then the least expensive
of the t paths found by the t searches would be the solution
path. Of course this method would be computationally very
expensive. A more efficient method would make use of a
three-dimensional graph. BEach of the t levels of this graph
would have only one of the t start/goal nodes and would not
have any interconnection with any other level. The search
would be conducted simultaneously on all levels of the graph
and its single solution path would be the least cost closed
path about the pivot point. While this method would be more
efficient, the amount of computer memory required would be

colossal for the standard object region size.
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Due to the difficulty in finding the least cost closed
path, a simple but suboptimal approach to this problem was
taken. The Algorithm A* search operated on the original
circular-annulus graph to yield the least cost, but possibly
open, path. If this path was found to be open then the
search continued, further extending the path, until finally
the first start/goal node of the path and the last start/
goal node of the path were one and the same node. In most
circumstances the resulting path was optimal; in a few it
was not. However the resulting closed path was accepted as
the object contour because a “good” and not necessarily op-
timal solution was considered to be sufficient. Effects of
this suboptimality were rare and when present were small.
Figure 3.74 shows a situation in which the optimal solution

has not been found with this approach.
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Figure 3.14: Suboptimality of Path Closing Method

3.3.3 Performance

Figure 3.15 and Figure 3.16 show the results of the regular-

sized-object detector operating on JUMBLE1 and JUMBLE2 re-

spectively. Each closed curve represents the contour of a
declared object. For both runs of the detector the entered
value of R was 20. Hence the outer diameter of the circu-
lar-annulus graph was set to 120. This was an ample size

since the object lengths ranged from 65 to 89.

The performance of the regular-sized-object detector op-
erating on JUMBLE2 was a drastic improvement over that of

the closed-region detector operating on the same image.
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Figure 3.15: Contour Image of JUMBLE1 from R-S-0O Detector

Each of the whdlly visible objects in the image was detected
as being a single object and specified by a declared contour
closely corresponding to the actual contour. As desired the
Hough transform ignored the partially wvisible object in the
lower right corner since too little of the object region was
available in the image to allow the formation of a circular-
annulus graph. In short the detector produced almost per-—

fect results with this image.

Only two flaws were evident and these were minor. First,

the shadow which obscured the contact point between the two
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.

Figure 3.16: Contour Image of JUMBLE2 from R-S-0 Detector

touching objects deceived the edge search. As a result the
search partly omitted the tip of one of these objects from
the declared contour. Second, the edge search gave portions
of some contours a “fragmented” quality. In comparison
these same contours did not receive this quality from the
Haralick edge operator of the closed-region detector (Fig-
ure 3.5). This quality, a side effect of image equaliza-
tion, indicated an over sensitivity of the edge search to

noise.
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The performance of the detector on JUMBLE! was much
worse. On one side of two separate objects the more domi-
nant contour edges of neighboring objects distracted the
edge search. Due to the large size of the circular-annulus
graph, these diverted searches were able to cover large are-
as while erroneously following the neighboring edges. These
failures were partly a result of the edge search cost func-
tion’s inability to distinguish between object on left/back-
ground on right edges and object on right/background on left
edges. Another defect was the exclusion of a small portion
of one end of the largest object from its contour. This end
could not be detected because it protruded slightly outside
the graph. This was a consequence of two problems: the
graph pivot point was displaced by an approximate distance
of 20 left of the actual object centre and the object was
abnormally large. In total only one object was satisfacto-
rily detected. This, the upper middle object, suffered
least from surrounding shadow. As occurred with JUMBLE2,

some edges retained a fragmented quality.

The number of node expansions performed in each edge
search gives a rough measure of the efficiency of the
search. For the ten edge searches conducted on these two
images the average number of expansions was 4718. The mini-
mum was 2570 for the upper middle object in JUMBLE1 and the
maximum was 6091 for the lower middle object in the same im-

age. The wide range in values implied that for some search-
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es a lot of unnecessary work was being done 1in mistakenly

following the contour edges of neighboring objects.

3.4 HYBRID DETECTOR

The hybrid detector was designed to improve on the rejection
of noise during an edge search by taking advantage of the
excellent performance of the Haralick edge operator. The
fragmented quality of some of the contours declared by the
regular-sized-object detector motivated the development of

this detector.

The hybrid detector was identical to the regular-sized-
object detector except for its edge search cost function.
Instead of the Sobel edge operator, this detector approxi-
mated the gradient with the Haralick edge operator employing
a 5 by 5 neighborhood size. If the neighborhood satisfied
the distance to the zero <crossing of the second directional
derivative test, then a cost function similar to that of the
regular-sized-object detector determined the cost. The only
difference was the value of BASECOST. However, 1if the
neighborhood did not pass this test the cost assigned was 10
times BASECOST. This large penalty cost effectively con-
strained the declared edge to only those pixels satisfying
the second directional derivative test. The only exceptions
were the rare breaks sometimes produced by the Haralick edge
operator in an object contour. An edge search had to bridge

these breaks by incurring the penalty cost.
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Figure 3.17 and Figure 3.18 show the contour edge images
produced by the hybrid detector operating on JUMBLE! and
JUMBLE2 respectively. The value of R entered by the opera-

tor was the same as that used to produce the results of the

Figure 3.17: Contour Image of JUMBLE! from Hybrid Detector

regular-sized-object detector presented in Subsection 3.3.3.

Both images exhibited improvements over the contour edge
images generated by the reqular-sized-object detector. The
fragmented quality of most edges was eliminated. Unexpect-

edly none of the edge searches conducted on JUMBLE1 were de-
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Figure 3.18: Contour Image of JUMBLE2 from Hybrid Detector

ceived by contours of neighboring objects, as occurred with
the regular-sized-object detector. This was likely due to
the influence of the second directional derivative test.
For each object, the closed curve of the contour edge pixels
which passed this test were typically bounded on the inside
and outside by a margin of pixels not passing the test. The
high penalty cost of crossing this margin restrained a
search from diverging over the background to a neighboring

object.
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Three defects were evident. The same two objects, which
had a fraction of one end ignored by the reqular-sized-ob-
ject detector, again had almost the same areas ignored by
the hybrid detector. The causes were also the same: shadow
partially obscured the object’s end near the contact point
in JUMBLEZ2, and in JUMBLE1 the object’s end exceeded the
limit of its graph. A third and more serious flaw occurred
in JUMBLE1. Almost one-half of the upper right object, one
of the pair of touching objects, was omitted from its de-
clared contour. This was evidently caused by the shadow
near the contact point which severely obscured the contour
of the ignored end. Surprisingly the declared contour of
the other object 1in this pair was a good representation of

its actual contour.

The number of node expansions required by the hybrid de-
tector was generally 1less than that for the regular-sized-
object detector. The average number of expansions performed
in the ten edge searches conducted on JUMBLE1 and JUMBLE2
was 3106. The minimum was 1769 for the upper middle object
in JUMBLE1 and the maximum was 3994 for the upper right ob-
ject in JUMBLE2. However the amount of computation required
for each opened node was much greater than it was for the
regular-sized-object detector. When a node was first opened
the application of the Haralick edge operator required 225
multiplications and 225 additions just to derive the cubic
model. Thus the overail computation was substantially

greater than for the reqular-sized-object detector.
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The hybrid detector was a classic example of diminishing
returns. The edge quality had been marginally improved and
the edge search had been made 1less prone to divergence from
the actual contour; but these refinements were made at the
cost of shouldering the heavy computational burden of the
Haralick edge operator. Even with the application of this
computational brute force drastic errors in a defined con-
tour edge could still occur, as was demonstrated in JUMBLET.
Consequently the use of the Haralick edge operator was not
pursued further as an alternative to the Sobel edge operator

in the edge search.

3.5 ELLIPTICAL-OBJECT DETECTOR
The elliptical-object detector was the most superior object

perception technigue, in terms of reliability, edge quality
and efficiency, developed during this research. As such it
is the technigue advocated by this research. Essentially it
was a modified version of the regular-sized-object detector.
Two general refinements were made to the regular-sized-ob-
ject detector to create the elliptical-object detector.
These were inspired by some of the deficiencies of the regu-
lar-sized-object detector observed during its operation on

test images.

The first refinement was to constrain the edge search to
a graph of much less area while ensuring that the entire ac-

tual object contour remained within the graph. By limiting
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the search area the number of unrelated edge elements, from
the object’s surface detail or from neighboring objects, was
substantially reduced. Thus the chance of an edge search
being diverted to an erroneous edge was diminished and the
reliability of the detector, particularly in images of
closely spaced objects, was increased. 1In addition, the de-
tector’s efficiency was improved since a graph with fewer

nodes required less search effort.

The shape and size of the graph were chosen through con-
sideration of the expected object features. As pointed out
in Subsection 1.3.2 the objects could be expected to be of
similar size due to prior cleaning of the grain sample. For
the elliptical-object detector the objects were also expect-
ed to be roughly elliptical in shape. This was of course
true for wheat kernels and foreign grain kernels and this
could be a relatively safe assumption for other foreign ob-
jects if the size limits of the graph were sufficiently un-

restrained.

The shape selected for the graph was an elliptical annu-
lus. The inner and outer borders of this graph were ellips-
es centred on the same point and aligned in the same orien-
tation. The inner ellipse was 40 percent smaller than the
expected elliptical object size and the outer ellipse was 40
percent larger than the expected size. The span of the re-
sulting graph, which determined the acceptable object sizes,

was intended to enable detection of any object likely to ap-
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pear. The aspect ratio of the graph, b/a, was set to 0.565
based on the typical wheat kernel shape. Eight orientations
of the graph were allowed, ranging from an angle of 0 to ki
in d7v angular increments. This number of orientations was a
compromise between having sufficient fineness of orientation
adjustment and having a mahageable accumulator array size
for the Hough transform. Fiqure 3.19 shows a typical ellip-

tical~annulus graph.

Expected Elliptical
Object Shape
Object Contour

Pivot Point
Start/Goal Nodes
~-Graph
Direction

of Search —X\
0 a
%nﬁﬁr 3
R For \ -0

Allowed
Orientations

Figure 3.19: Elliptical-Annulus Graph

Closing the solution path was a problem with this detec-—
tor as it was with the regular-sized-object detector. The
elliptical-object detector used the same method to close the

solution path and therefore the optimality of the solution
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path was again not assured. To minimize the effects of this
problem the start/goal nodes were placed along either a ver-
tical, horizontal or diagonal ray which emanated from the
pivot point on or near the minor axis of the graph. 1In this
location the start/goal node line usually crossed the object
contour orthogonally, the contour was usually well defined
and fewer start/goal nodes were required to cross the graph.
As a result the danger of confusing the edge search near the
start/goal nodes was minimized. This reduced the risk of

arriving at a suboptimal solution path.

The Hough transform was modified to detect ellipses of
uniform size, but of any orientation, since this was now the
object shape of interest. The attributes of the elliptical
shape to be detected were the same as those of the expected
object shape: the aspect ratio, b/a, was 0.565 and the ex-
pected object length, 2a, was entered by the operator. Bal-
lard [1981] presents the ellipse detection technique as an

example.

This technigue was developed in the same manner as that
for circle detection. It utilized both the gradient magni-
tude and direction of an edge element to imply a set of el-
lipses, each being at a different orientation. The r’'-axis

and the c¢'-axis were a coordinate set in which an ellipse
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was oriented with its major axis parallel to the c'-axis.
An edge element on this ellipse indicated the ellipse’s cen-

tre (h',k’) as:

b a
h'= r'+Sr——— | k'= ¢'+Sc— —
T+ 2& 2 T+_b?
b2 azglz
where (r',c’) was the edge element’s location,

a and b were the major and minor axis of the el-
lipse (In this case b/a = 0.565 and the op-
erator_entered the value of a.),

S tan(@'-%),

@' was the gradient direction, and

Sr and Sc were #*1 depending on the guadrant of
(r',c’') with respect to (h',k").

The sign functions, Sr and Sc, were defined as:

Sr Background Sc - |Background
White|Black White[Black

0 < @'<a -1 +1 T <pg < ¥ -1 +1
< @< 27 +1 -1 T <0< 3n] +1 =1

Rotations of the ellipse were accommodated by regarding the
r' and ¢’ coordinate set as being a rotated version of the r
and ¢ coordinate set. With © being the angle of rotation,

the transformed coordinates of an edge element (r,c) were:

r' = -¢c-sin © + r-cos ©

C'CcO0s8S © + r-sin ©

(9]
it

and, once the ellipse centre (h',k') implied by (r',c’) had
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been determined, the reverse transformed coordinates of

(h',k’) were:

h =k’ -5in 6 + h' -cos ©

k = k'"-cos ®© - h'!-sin © .

Figure 3.20 shows the geometry of this Hough transform.

Arrows denote gradient direction.

Figure 3.20: Geometry of Ellipse Detection by H. T.

The accumulator array required three dimensions to handle
the three parameters h, k and ©. The eight © levels of the
array represented the eight possible graph orientations.
Each level was in regiétration with the image. However each
level only represented the even rows.and even columns of the

image so that computer memory was conserved.
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As with the regular-sized-object detector an error com-
pensating convolution template was incorporated in the accu-
mulator array incrementation strategy. However less error
was expected in the accumulator array since the actual shape
of an object was normally closer to the expected object
shape. Therefore a much smaller template, 0.2-a on a side,

was employed.

In summary, the Hough transform algorithm of the ellipti-

cal-object detector was as follows:

1. Set each accumulator array entry to 0.

2. For every 3 by 3 neighborhood centred at (r,c) in the
image, do:

a) Calculate Sobel gradient direction @ and magni-
tude.

b) If the gradient magnitude 1is less than threshold,
start next neighborhood; otherwise continue.

c) For each of the eight values of ©, do:

i) Calculate the transformed edge element loca-
tion, (r’,c’), and gradient direction, @'.

ii) Calculate the implied ellipse centre,
(h,]k,)u

iii) Calculate the reverse transformed ellipse
centre, (h,k).

iv) Increment all accumulator array positions
within the 0.2a by 0.2a square centred at
(h,k) in the level corresponding to ©.

3. Determine position and orientation of the next object
by finding the location of the largest accumulator
array entry.
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This Hough transform produced surprisingly accurate pre-
dictions of an object’s location and orientation. Most of-
ten the predicted location and orientation of an object were
the same as those later determined by the shape analysis of

the object’s contour found by the edge search.

The second refinement incorporated in the elliptical-ob-
ject detector was an improved cost function for the edge
search. The improvement was a new version of GRADCOST, sim-
ilar to the old version, but which could distinguish between
object on left/background on right edges and object on
right/background on left edges. The validity of this new
cost function depended on the assumption that an object pix-
el would a%ways be darker than a neighboring background pix-
el if the background was white (vice versa for a black back-
ground) . Only 1in extremely rare instances was this
assumption incorrect. This new function ensured that an
edge search would never be deceived into following the con-
tour edge of a neighboring object. The new equation for
GRADCOST was as follows:

GRADCOST(n) = (GRADCOST', GRADCOST' > 0
0, otherwise
where GRADCOST'= BASECOST-s(n)-cos[arc direction(n)-@(n)+%],
white background
BASECOST-s(n) -cos[arc direction(n)-@(n)-%1,
black background
s(n) was Sobel gradient magnitude at n,

@(n) was Sobel gradient direction at n, and
“arc direction” was the angle of the arc leading to n.

Figure 3.21 shows the operation of this new GRADCOST.
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GRADCOST

BASECOST+s(n)

BASECOST B

BASECOST-s(n)

0 ] 1 J

™ 37 27¢
Difference between implied
edge direction, ¢(n)-%,
and arc direction

Ny -

0

Figure 3.21: Operation of Improved GRADCOST

Figure 3.22 and Figure 3.23 show the contour edge images
produced bj the elliptical-object detector operating on
JUMBLE1 and JUMBLE2 fespectively. The expected object
length entered by the operator was 75 for JUMBLE1 and 70 for

JUMBLEZ2.

Both contour images demonstrated the superiority of this
detector over any of the previous object perception tech-
niques. The analysis of JUMBLE1 produced only one notable
flaw. Of the pair of touching objects whose contact point
was totally obscured by shadow, part of the end of one was
ignored while the contour of the other was slightly mangled
near the contact point. This was not unexpected since even
a human would have difficulty accurately drawing the con-

tours of these two objects near their contact point. Of the
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Figure 3.22: Contour Image of JUMBLE1 from E-Q Detector

five objects in this image, three were satisfactorily de-
tected and two had slight errors in their declared contours.
On JUMBLE2 no notable flaws were produced; each object was
satisfactorily detected. Surprisingly both contour images
displayed less of the fragmented edge quality that had been
typical of the regular-sized-object detector’s declared con-
tour edges. This was perhaps due to the improved cost func-

tion.

The number of node expansions required by the elliptical-

object detector indicated its more efficient and consistent
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Figure 3.23: Contour Image of JUMBLE2 from E-O Detector

edge search. The average number of expansions performed in
each edge search conducted on JUMBLET and JUMBLE2 was 2427.
The minimum was 1709 for the upper left object in JUMBLE2
and the maximum was 3213 for the lower right object in the
same image. These values were lower than for the regqular-
sized-object and hybrid detectors. This implied less search
effort had been required. Their reduced variability sug-

gested less search diversion by false edges.

In conclusion the use of contextual image information and

of a priori knowledge of the specific object perception
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problem were maximized in the elliptical-object detector to
produce a dynamic, reliable and efficient object perception
technique. 1Indeed further constraiﬁt of the téchnique would
probably have had a detrimental effect on its performance.
This detector produced satisfactory results with all of the
wheat grading images encountered during this research. How-
ever if a wider range of object types had been of interest,
for instance wheat and rape seed 1in the same image, then a
less specific approach, such as the regular-sized-object de-

tector, would have been required.

The reliability of the elliptical-object detector made it
suitable for use in an automated system. For images satis-
fying the limitations of this research the detector did not
require human interaction to verify its output; the detector
always produced good results even with scenes of closely

spaced or almost touching objects.

However this detector was not a final solution for scenes

of touching objects (although for such images it did prevent

drastic errors from being made). For more complicated
scenes, perhaps also involving occluded objects, an even
more intelligent approach would be required. Such an ap-
proach, similar to the human visual system, would likely

treat an image as a two-dimensional representation of a
three-dimensional world, match regions in the image to
three-dimensional models of known objects and from such in-
sights knowledgeably infer object identity, contours and

orientation.
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3.6 SHAPE DESCRIPTION

The first and most important group of features extracted
from a wheat grading image are those that describe the size
and shape of an object. As discussed in Section 1.4 shape
features of an object outline are necessary for distinguish-
ing between wheat kernels and other cereal grains or other
foreign objects, they are useful in detecting surface de-
fects such as breakage and shrivelling, and they are impor-
tant in determining variety. 1In addition, the shape can in-
dicate an object’s orientation and thereby direct succeeding
routines which must analyze only a particular subset of an

object’s visible surface.

The method chosen for describing the shape of an object
outline was moments. For a binary discrete image, the p,q

moment is defined as:

pa
M = z m n
pag (m,n)€ER
where (m,n) is a point in the object region R. Once one of

the object perception programs had determined the contour of
each object in an image, the program MOMENTS could then de-
termine shape features based on the moments of each detected
object. This program used as input the object’s contour

specified in Freeman chain code.

The moments method of shape analysis offered several ad-

vantages. Moments provided a unique description of a shape
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and provided more accuracy in that description when more of
them were considered. They were simple to calculate. They
were easily made to be invariant to translation, rotation
and size, The invariance calculations involved only moment

values and not the original data.

The discrete Greeﬁ’s theorem, as developed by
Tang [1981], was used to calculate the Mpg moments of a re-
gion. This theorem enabled the calculation of a moment by
summing over an object’s contour instead of the object’s re-
gion. Consequently the number of computations was propor-
tional to the length of the region’s boundary instead of to

its area.

In the discrete Green's theorem, R is a discrete

8-connected region without holes in the subspace:
S'= {(h,k), h=0, k20, h and k are integers}.

R has more than one lattice point. The sequential boundary
of R is B represented by the Freeman chain code as

((ro,co),a0,21, . . . ,ax_1) such that the region is seen on

the right as one moves along the boundary. The moment of R
is then:
1-1
M =ZXZF (r ,c)DI(a a ) + f(r ,c ) C (a ra )

pg 1i=0 ¢ 1 i r 1i-1 i 11 r i-1 1
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where (r ,c ) is a sequential boundary point,

i 1
n gp
F (myn) =2 im,
c i=0 :
P a
t(i,n) = i n ,
and D and C are defined as:
r r
D (a ,a ) Cc (a ,a )
r 1-1 1 r i-1 1

a a
i 01234567 i 01 2345¢67
a O 01111000 a 0 0O0O0OCO0OO0OO0O0OO
i-11{ 01111000 i-1 1] 00000100
2, 01111000 21 00000110
3] 01111000 3] 00000 1T 11
41-1 0 0 0 0-1-1-1 4, 1 0000 111
5/-1 0 00 0-1-1-1 5/ 11000111
6{-1 0 0 0 0-1-1-1 6] 11100111
7i-1 0 0 0 0-1-1-1 7711110111

Once the moments of a region R had been determined with
the discrete Green’s theorem, MOMENTS calculated and printed
several preliminary results before the normalization of the
moments was undertaken. First, MOMENTS calculated the cen-
troid of R as (M10,/Moo,Mo1,/Moo) . The “principal centroidal
moments of inertia”, which were the second order moments
about the principal axes of the object, were then calculated

as:
max{(a,B8) and min(a,B)

where a and B8 are eigenvalues of the matrix:

Coz Cuy
Ci11 Cao
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where C20 = Mao _ Mygo?
Moo Moo 2?2 ,

Co2 = Moy _ Mgi?
Moo Moo? ,

and Ci1 = My
Moo MooMoo .

The aspect ratio of these moments:

A = max(a,B)
min(a,B)
was then printed. These moments were a means of describing

the size and aspect ratio of any general object shape al-
though they did not provide the real length, width and

aspect ratio. Last, the area of R, Moo, was printed.

MOMENTS normalized the original moments with respect to
translation, rotation and size using methods described by
Reeves and Rostampour [1981]. To normalize with respect to
translation MOMENTS calculated the central moments from the

original moments by:

where cC =

0]
I
3

and
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Then the angle © of the principal axes was calculated by:

tan 20 = 2
Joz27M2o
This eqguation specified four possible values of ©. The val-
ue which satisfied @0, > @,0, and @30 > 0 was chosen. The
rotation normalized moments were then calculated as:
p-u p g-u+v p-v+u

q q ,
zZ (-1) C C (cos ©) (sin ©)
0 v=0 u v u+v,g-u+p-v

@ =
PG u

™Mo

At this stage the orientation and position of the principal
axes were known, so MOMENTS determined and printed the coor-
dinates of the two object contour points nearest the princi-
pal major axis. The locations of these two points later
. guided the search.for the kernel crease by a succeeding pro-

gram. Figure 3.24 shows the geometry of rotation normaliza-

—T———w: //Principal Major Axis Crossing Points

Figure 3.24: Rotation Normalization -
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tion. Finally MOMENTS normalized the moments with respect
to size by using:

Y
N =@ / Doo
pg pg

where v = 3(p+g)+1 .

This normalized set of moments, called ‘“standard moments”,

was characterized by the following values:

Noo = 1 (normalized size),
Noi = Nyo = 0 (normalized location),
and N{;y =0 (normalized orientation).

MOMENTS printed only the second and third order standard mo-
ments and excluded the above four values. Higher order mo-
ments could easi}y have been calculated with the above-pro—
cedures. However the value of high order moments is limited
since the higher the order of a moment, the more it is sus-
ceptible to digital sampling errors near the edge of an ob-

ject.

The final calculations performed by MOMENTS on each ob-

ject estimated its length and width as:
L = 4¥yNgo2Moo and W = %VMOO;NOZ .

These estimates were correct if the object contour was el-
liptical. Since wheat kernels are generally elliptical in
shape, these estimates were normally very close to the actu-

al values. These estimates had the additional advantage
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that they ignored the small irregularities in a kernel con-
tour caused by a rough surface and digital sampling error.
The aspect ratio, L/W, and eccentricity, V/T:ﬁ_z7f?were also

calculated and printed.

The output from MOMENTS into the output data file includ-
ed only the object region centroid, the two principal major
axis crossing points, the object orientation, ©, and the
Freeman chain code of the object contour. This data was
later used by the crease detection program for initially es-
timating the location of a crease. More of the results,
such as the standard moments, could have been included in
the output file. However they were not required since the
task of classifying objects based on the generated shape

features was not pursued in this research.

Figure 3.25 on pages 138 and 139 shows the printed output
produced by MOMENTS processing the object contours found in
JUMBLE2 by the elliptical-object detector. All of the cal-
culated values of length and width assuming an elliptical
object were very close to the actual values measured in the

original image.



MOMENTS PROGRAM OUTPUT

*** INPUT IMAGE NAME ***

JUMBLE?2

*** OBJECT NUMBER T owww
CENTROID 175,295, 69,512

PRINCIPAL CENTROIDAL MOMENTS OF INERTIA
MAXIMUM 275.2
MINIMUM 83.5
ASPECT RATIO 3.295

AREA 1901,
ORIENTATION OF PRINCIPAL AXES 24.321 DEGREES
PRINCIPAL MAJOR AXIS CROSSING POINTS 162, 40 AND 189,100

TRANSLATION, ROTATION AND SIZE NORMALIZED MOMENTS (2ND AND 3RD ORDER)

N(2,0) - 14474E100
N(0,2) -.43823E 01
N(3,0) .25933E 02
N{2,1) «74673E-05
N(1,2) . 70923E 03
N(0,3) 21147 03
SIZE, ASSUMING AN ELLIPTICAL OBJECT
LENGTH 66.4
WIDTH 36.5

ECCENTRICITY .83s53
ASPECT RATIO 1.819

¥** OBJECT NUMBER 2 www
CENTROID 139.038,120,975
PRINCIPAL CENTROIDAL MOMENTS OF INERTIA
MAXIMUM 386.2
MINIMUM 119.6
ASPECT RATIO 3,230
AREA 2696,
ORIENTATION OF PRINCIPAL AXES 273,439 DEGREES
PRINCIPAL MAJOR AXIS CROSSING POINTS 178,119 AND 102,123

TRANSLATION, ROTATION AND SIZE NORMALIZED MOMENTS (2ND AND 3RD ORDER)

N(2,0) .14325E400
N{0,2) .44348E-01
N(3,0) +234B0E-03
N{2,1) ~.51781E-03
N{1,2) -.67550C-04
N(0,3)} .22507E- 03
SIZE, ASSUMING AN ELLIPTICAL OBJECT
LENGTH 78.6
WIDTH 43.7

ECCENTRICITY .8315
ASPECT RATIO 1,800

*** OBJECT NUMBER 3 W
CENTROID S$1.1B4, 83.109

PRINCIPAL CENTROIDAL MOMENTS OF INERTIA

MAXIMUM 268.0
MINIMUM 89.0
ASPECT RATIO 3,009 ’

AREA 1934.
ORIENTATION OF PRINCIPAL AXES 164.328 DEGREES
PRINCIPAL MAJOR AX1S CROSSING POINTS 43,112 AND 60, 53

TRANSLATION, ROTATION AND SI1ZE NORMALIZED MOMENTS (2ND AND 3RD ORDER)
N(2,0) . 13857100

N(0,2) .46043E-01
N(3,0) +23210E-02
N(2,1) -.40229E-03
N{1,2) -,77910E-03
N(0,3) .12639E-03
S1ZE, ASSUMING AN ELLIPTICAL OBJECT
LENGTH 65.5
WIDTH 37.6

ECCENTRICITY .8187
ASPECT RATIO 1,741

138

Figure 3.25: Output from MOMENTS Processing JUMBLE2



*** ODJECT NUMBER 4 wxw
CENTROID 41.769,137.658

PRINCIPAL CENTROIDAL MOMENTS OF INERTIA
MAXIMUM 303.5
MINIMUM 108.4
ASPECT RATIO 2,799

AREA 2271.
ORIENTATION OF PRINCIPAL AXES 85.149 DEGREES
PRINCIPAL MAJOR AXIS CROSSING POINTS 10,135 AND 76,141

TRANSLATION, ROTATION AND SIZE NORMALIZED MOMENTS (2ND AND 3RD ORDER)
N(2,0) -13363E100
N{0,2) .47745E 01
N(3,0) -11253E 02
N{2,1) .10661E 02
N(1,2) .59680E 03
N(0,3) .81515E-03
SIZE, ASSUMING AN ELLIPTICAL OBJECT
LENGTH 69.7
WIDTH 41.5
ECCENTRICITY .8033
ASPECT RATIO 1.679

*** OBJECT NUMBER § wwxx
CENTROID 116.065, 70.289
PRINCIPAL CENTROIDAL MOMENTS OF INERTIA
MAXIMUM 279.4
MINIMUM 89.8
ASPECT RATIO 3,112
AREA 1588,
ORIENTATION OF PRINCIPAL AXES 147 .875 DEGREES
PRINCIPAL MAJOR AXIS CROSSING POINTS 98, 98 AND 134, 43

TRANSLATION, ROTATION AND SIZE NORMALIZED MOMENTS (2ND AND 3RD ORDER)

N(2,0) .14055E+00
N{(0,2) .45174E-01
N{3,0) .49141E 03
N{2,1) .71222E-03
N(1,2) .21482E 03
N{(0,3) .25805E 03
SIZE, ASSUMING AN ELLIPTICAL OBJECT
LENGTH 66.9
WIDTH 37.9

ECCENTRICITY .8243
ASPECT RATIO 1,766

Figure 3.25 Continued



Chapter IV

KERNEL ANATOMY DETECTION

4,1 INTRODUCTION

After the computerized image analysis system has perceived
all the objects in a wheat grading image and obtained shape
features for each of them, the machine is left only with
data describing the location and shape of each object’s con-
tour. It was assumed in this research that some form of
pattern classification analysis will then utilize the shape
data to decide which object regions correspond to unbroken
wheat kernels. Only these objects would be scrutinized for
the grading factors, variety, vitreousness and soundness,
since each of the remaining objects would be classed as for-
eign material. However, before the machine can 1look for
these factors on each kernel, it must first determine which
side of each kernel is visible (dorsal or ventral) and lo-
cate the anatomical parts present on that side which are
useful for grading. This task was accomplished by attempt-
ing to detect only two major parts of the kernel: the crease

and the germ.

Sections 1.3 and 1.4 presented the reasons for wishing to
detect the crease and the germ. The detection of either of

these parts is not by itself useful for grading. Rather,

- 140 -
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the knowledge of the existence of a crease on a kernel and
of the location of either a crease or germ can guide texture
or shape analysis of the visible parts of the kernel that
are important for grading. The crease and germ are them-
selves important areas in which to find cues for the condi-
tion of the kernel. They also imply the location of other
important parts, especially the cheeks and the brush (see

Figure 1.2).

The anatomy detection analysis was performed by two rou-
tines. The first attempted to detect a crease on each ob-
ject in the image. The second routine attempted to find a
germ on only those objects on which a crease was not found.
Crease detection was performed first since the crease is the
most distinctive anatomical part which appears on only one
side of the kernel, the ventral side. Its presence or ab-
sence on the visible side indicates the kernel’s orienta-
tion, ventral or dorsal side up respectively. Germ detec-
tion was only attempted on those kernels not displaying a
crease since the germ is visible only on the dorsal side.
In addition this routine searched for the germ only on the
bulbous end of the kernel because this is usually the end on
which the germ 1is located (see Figure 1.1). The brush is
located opposite the germ on the more pointed end of the

kernel.

Both kernel anatomy detection routines specified the con-
tour of each detected anatomical part with a version of the

Freeman chain code. This code was described in Section 3.1,
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Two unprocessed images acted as subjects in this chapter
with which to demonstrate the performance of the anatomy de-
tection routines. These images, CREASES1 and CREASES3, ap-
pear in Figure 4.1 and Figure 4.2 respectively. CREASES1
contained four wheat kernels, all of which were ventral side
up. The top left kernel was shrivelled. The left two ker-
nels had distinct creases while the right two had poorly de-
fined creases. This image was intended to demonstrate cre-
ase detection. CREASES3 also contained four kernels.
However the left two kernels were ventral side up while the
right two were dorsal side up. This image was intended to

demonstrate both crease and germ detection.

Section 4.2 presents the crease detection technique and
Section 4.3 presents the germ detection technique. Much of
the underlying theory for both of these detectors was pre-

sented in Subsection 3.3.2.
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Figure 4.1: CREASES1
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4.2 CREASE DETECTOR
The design of the crease detector was based on three charac-
teristics of wheat kernel creases. First, the typical cre-
ase is darker than the surrounding kernel surface. Since it
is an indentation, it therefore reflects less of the illumi-
nating light. Second, this change in reflectivity near the
crease often causes a large change in gray level perpendicu-
lar to the direction of the crease. Thus the crease fre-
quently has the characteristics of a step edge. This is un-
derstandable since the <crease is an edge separating the
kernel cheeks. Usually the crease is the most prominent
edge featufe on the kernel surface although the effects of
shadow sometimes cause false edges on the kernel which are
just as prominent. Finally, the crease runs the full length
of the kernel along its 1longitudinal, or in other words,

principal major axis.

4,2.1 Principles of Operation

The crease detector operated by finding and specifying the
single best edge running longitudinally through each kernel
image region. This problem was transformed into a graph
search by.treating the kernel image region as a graph in a
way similar to that of the regular-sized-object detector.
This graph was in registration with the object region of the
image so that each pixel within or on the kernel contour
corresponded to a graph node. An edge was represented by a

path comprised of nodes and interconnecting arcs in the
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graph. The idea of the “best” edge was guantitatively de-
fined by a node evaluation or cost function like that of the

regular-sized-object detector.

The cost functiqn of the crease detector embodied the ex-
pected characteristics of the crease. This function, which
determined the cost for a path to incorporate the node n,
was composed of two subordinate costs as follows:

c(n) =¢c'(n), c’(n) 20
0, otherwise

where c'(n) = DADJUST(n):[a-GRADCOST(n)+8-PI1XCOST(n)] .

The coefficients a and B were entered by the operator to
control the influence of GRADCOST(n) and PIXCOST(n). Nor-
mally they were both set -to 1. The diagonal adjustment,
DADJUST(n), was the same as that in the regular-sized-object

detector.

The cost of the gradient, GRADCOST(n), evaluated the
likelihood that n represented a pixel on an edge running .
through n in the direction of the longitudinal axis of the
kernel and in the same direction as the arc leading to n.
Thus GRADCOST(n) measured the edge strength at n and gauged
the correspondence of the edge direction implied by the gra-

dient direction with the principal major axis direction and
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with the arc direction. The expression for the gradient

cost was:

GRADCOST(n) = BASECOST-s(n) - [cos[@(n)-Te]|

cos{2[@(n)-F-arc direction]}

where s(n) was the Sobel gradient magnitude at n,

@(n) was the Sobel gradient direction at n,

“arc direction” was the angle of the arc leading to n,
and © was the orientation of the principal major axis.
The normal value of BASECOST was 250. This function was the
same as the GRADCOST'(n) of the reqular-sized-object detec-
tor except for the inclusion of the term comparing @(n) with
6. This term could only reduce the cost if the edge direc-
tion implied by the gradient, @(n)—?ﬁ was similar to the
kernel orientation, ‘©. Figure 4.3 shows the effect of this

term on GRADCOST(n).

GRADCOST
BASECOST -

BASECOST-s(n)
‘cos{2[@(n)-§
-arc direction]}
, 0 | 1 ! 1
0 [ 7T 3rc 277
Difference between implied
edge direction, @(n)-%,
and kernel orientation, ©

Figure 4.3: Effect of Kernel Orientation Term on GRADCOST
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The cost of the pixel wvalue, PIXCOST(n), favoured dark

pixels. The expression for the pixel value cost was simply:

PIXCOST(n) = (BASECOST/128) [p(n)-MINPIX]
where p(n) was the pixel value at n and
MINPIX was the minimum pixel value within the ker-
nel region.
The coefficient, BASECOST/128, normalized PIXCOST(n) with

respect to GRADCOST(n) so that each cost had the same effect

when a equalled 8.

Only three arc directions were allowed in the graph used
for the crease detector. These three contiguous directions
were centred on the “major lattice direction”. This direc-
tion was that Freeman chain code direction which was closest
to the kernel’s principal major axis orientation, 6. The
set of allowed arc directions ensured that the minimum angle
available on either side of the major axis direction was @’
and that the start and goal nodes were connected. In addi-~
tion they were the only arc directions which could possibly

be on a path representing an authentic crease.

The graph had only a single start node and a single goal
node. These nodes corresponded to the principal major axis
crossing points found by the program MOMENTS on the kernel
contour. These locations made the edge search progress
along the longitudinal axis of the kernel region where the
crease was expected to run. Figure 4.4 shows the form of a

typical graph used in the crease detector.
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\ Start Node

AN

© / Major Axis
Orientation

Goal Node

N,
Principal
Major
Axis

Figure 4.4: Typical Crease Detector Graph

The array GRAPH represented the crease detector graph.,
The bit definitions in GRAPH were the same as those used in
the regular-sized-object detector except that a flag bit for
the goal node was neither required nor defined. Figure 4.5

shows the bit definitions of GRAPH.

The graph search algorithm employed in the crease detec~—
tor to find the least cost path had two major differences
from the graph search algorithm of the regular-sized-object
detector. First, it did not have the mechanisms installed
for handling combined start/goal nodes since the start and
goal nodes were separate nodes in the crease detector. Sec-

ond, it did not use heuristic information to improve the
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INTEGER*2 Word

15 - = = - = - - - - ¢ 5 4 3 2 1 0
T T
Opened |[Contour Pointer to
Node Node Previous Node

Marked Element
Node of
Graph

Figure 4.5: Bit Definitions of GRAPH

speed of the search. A typical graph for the crease detec-
tor was much smaller than its counterpart for the regular-
sized-object detector so that speed was not as important.
Also, it was found that obtaining the single least cost so-
lution was 1important for obtaining acceptable results.
Therefore a heuristic could not be used since it would have
introduced suboptimality into the search. Indeed the combi~-
nation of no heuristic and the allowed arc directions guar-
anteed not only that solely the least cost solution was
found, but also that the search would never end in failure.

Sharp turns again were not allowed in the solution path.

The form of the Algorithm A* used for the crease detector
was as follows:
1. Place the start node’s coordinates in OPEN and set
its cost £=0.

2. Find the node n in OPEN with the lowest value of f
and mark it closed by resetting its opened-node bit.
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3. If n 1is the goal node then the least cost path has
been found so exit the algorithm; otherwise continue.

4. Expand n by generating its successors, each of which
must: .

a) be an element of the graph,

b) be reachable by one of the three arcs centred on
the major lattice direction, and

c) satisfy the no sharp turns rule.

5. For each successor node not already marked calculate
f, set its opened-node and marked-node bits and place
its coordinates in OPEN.

6. For each successor node already marked calculate its
new value of £ but store only a temporary version of
it. If the new value of £ 1is not less than the old
value, then omit this successor. Otherwise replace
the old value of f with 1its new value, redirect the
successor’s pointer to n and if it is currently mark-
ed closed, mark it open and place its coordinates in
OPEN.

7. Go to 2.

A major difference between the crease detector and the
regular-sized-object detector was that not only did the cre-
ase detector have to find the least cost path in a graph, as
did the regular-sized-object detector, but also it had to
decide whether this path represented an actual edge, the

crease. This decision was based on two conditions.

The first condition was that the number of solution path
nodes following the kernel contour had to be below a thresh-
old entered by the operator. If a fairly well defined cre-
ase existed in a kernel region then the solution path would
follow it. In contrast, following the contour from one end

of the kernel to the other was more expensive since a longer
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path was reqguired and pixels on the contour generally had
higher gray levels. If a well defined crease did not exist,
such as for a dorsal side view, the solution path often fol-
lowed part of the kernel contour since it was the only well
defined edge. The standard setting for this threshold was

5'.

The second condition was that the average cost per node
on the solution path had to be below a threshold entered by
the operator. A solution path that followed a well defined
crease had less average cost per node than one following a
poorly defined or nonexistent crease. The standard setting

for this threshold was about 200.

4,2,2 Performance

- Figure 4.6, Figure 4.7 and Figure 4.8 show the crease images
outputted by the crease detector operating on CREASES1. The
kernel outlines were previously determined by the ellipti-
cal-object detector. Pixels on a contour were set to 255.
The defined crease paths were then found by the crease de-
tector. Pixels on a defined crease were set to 128. Thus
points representing contours and creases in these figures
can be easily differentiated since those representing de-
fined creases are smaller than those representing kernel
contours. The thresholds entered by the operator, for cre-
ase nodes on contour and average cost per node, were set in

effect to infinity so that a crease was always declared and
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Figure 4.6: Crease Image of CREASES1 With Pixel Value Cost
Only

therefore the solution path was always displayed in the fig-

ure.

Figure 4.6 and Figure 4.7 demonstrate the results pro-
duced by using only the pixel value cost and only the gradi-
ent cost respectively. With the pixel value cost only, each
edge search found a solution path that traversed just the
darker areas of the kernel region. This path was just as
likely to follow shadows on the kernel surface as it was to
follow the crease. With the gradient cost only, each solu-

tion path followed, within limits imposed by the allowed arc
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Figure 4.7: Crease Image of CREASES! With Gradient Cost
Only

directions, the most well defined edge in the kernel image

region: namely the kernel contour.

Figure 4.8 shows the results produced by using the stan-
dard settings of a and B so that the pixel value cost and
gradient cost had equal influence on the solution path. The
crease detector accurately specified the well defined creas-
es of the two kernels on the left side. The average cost
per node on the two solution paths was 168 for the upper
kernel and 200 for the lower kernel. However the detector

incorrectly specified the poorly defined creases of the two
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Figure 4.8: Crease Image of CREASES1 With Equal Weights

kernels on the right side. Instead the solution paths fol-
lowed false edges created by shadow. The average cost per
node was 225 for the upper kernel and 233 for the lower ker-
nel. On average 91 percent of the total graph nodes were
expanded in each graph search. This high percentage illus-
trated the difficulty encountered by the typical search in

estimating the location of the crease.

Figure 4.9 and Figure 4.10 show the crease images pro-
duced by the crease detector operating on CREASES3 with

equal values of a and 8. For Figure 4.9 the thresholds en-
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Figure 4.9: Crease Image of CREASES3 Using Infinite
Thresholds

tered by the operator were effectively infinite while for
Figure 4.10 the thresholds were the standard values. The
detector accurately specified the crease of the upper left
kernel, But it made a small error specifying the location
of the crease on the lower 1left kernel. The upper half of
the solution path for this kernel was somewhat above the ac-
tual crease position. The average cost per node for each of
these two solution paths was 167 and 187 respectively.
Since each of the right two kernel regions in CREASES3 did

not have a crease, the edge search in that region followed a
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Figure 4.10: Crease Image of CREASES3 Using Standard
Thresholds

considerable length of the kernel contour. Thus the solu-
tion path for each of these kernels exceeded the crease
nodes on contour threshold in the second run of the crease
detector. Hence Figure 4.10 does not show defined crease

locations in the right two kernel regions.

The above five figures demonstrate the shortcomings of
the crease detector. Although the detector was usually able
to detect and specify well defined creases, it was rarely
able to detect poorly defined creases. When a crease was

poorly defined, the detector was easily deceived by the ef-
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fects of shadow. Another fault with the detector was its
questionable ability to differentiate between a solution
path representing a poorly defined crease and one represent-
ing a false edge. For the limited number of test images em-
ployed in this research the crease detector had modest suc-
cess at distinguishing between valid and invalid solution
paths. However the small change in the average cost per
node encountered between typical wvalid and invalid solution
paths made clear the uncertainty of the crease decision

method.

The mediocre performance of the crease detector suggested
that a better detector was desirable. In fact many modifi-
cations of the «crease detector were tested before the cur-
rent version was arrived at. These included a different set
of allowed arc directions, several different crease decision
methods, multiple start and goal nodes, artificial limita-
tion of the edge search away from the kernel contour and six
different cost functions. It was deduced that the essential
problem with the crease detector was that it was a two-di-
mensional solution to a three-dimensional problem. Indeed
considering this handicap, the performance of the crease de-

tector was surprisingly good.

It is instructive to consider the human vision system
when assessing the performance of the crease detector. The
human vision system can easily detect the kernel creases in

CREASES1 and CREASES3 because it employs the knowledge that
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these images are representations of three-dimensional solids
and that the crease is a manifestation of the kernel’'s sur—
face topography. A machine that would improve on the crease
detector by taking advantage of this approach would probably
use local surface gray level to estimate local surface ori-
entation while generating a three-dimensional model of each
kernel and finally determine a crease’s presence and loca-

tion based on this model, not on the image itself.

In conclusion the crease detector applied three known
traits of the appearance of kernel creases in a graphical
edge search to detect and specify the kernel crease. The
performance of this detector was satisfactory for well de-
fined creases. However it could not reliably detect poorly
defined creases or discriminate between a solution path rep-
resenting a poorly defined crease and one not representing a

crease at all.

4.3 GERM DETECTOR

Several characteristics of wheat kernel germs guided the de-
sign of the germ detector. The germ appears only on the
dorsal side of the kernel where the crease 1is not visible.
Thus the germ detector did not attempt to find a germ on a
kernel on which the crease detector had previously found a
crease. The germ is usually located on the bulbous end of
the kernel. Therefore the germ detector analyzed only the

bulbous end of a kernel for the presence of a germ., This
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end was previously determined by the program MOMENTS. The
germ has an albedo and surface orientation which differ from
those of the surrounding kernel surface. These changes oc-
cur abruptly at the periphery of the germ and thereby cause
the appearance of a weak step edge which delineates the
germ. The germ can appear either darker or lighter than the
shrrounding kernel surface. Finally, the typical germ out-
line roughly describes part of a circle whose centre is the
major axis crossing point of the bulbous end of the kernel
contour. The radius of this circle is about one-quarter of

the length of the kernel.

Evidently the germ detector had an objective similar to
that of the crease detector. The germ detector first had to
find and specify the single best edge which possibly repre-
sented an anatomical feature on part of the visible kernel
surface. Then it had to decide whether the detected edge
actually did represent the desired feature. Consequently
the germ detector employed a very similar technique to that
of the crease detector. The only major differences between
the germ detector and érease detector were the graph loca-
tion, the cost function, the allowed arc directions and the

number of start and goal nodes.

The following subsection discusses, for the sake of brev-
ity, only the significant differences between the germ de-

tector and crease detector.
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4.3.1 Principles of Operation

The graph of the germ detector represented and was in regis-
tration with the bulbous half of the kernel 1image region.
This graph was demarcated by the principal minor axis and
half of the kernel contour. Figure 4.11 shows the form of

the germ detector graph.

Kernel Contour
Principal
Minor

7 Axis

Graph

Start

‘Nodes

Expected Germ
Contour Location

2A 7 “Pivot Point
Goal . 1A
Nodes ;>\ P?incipal
Major
Axis

Figure 4.11: Typical Germ Detector Graph

The graph had multiple start' and goal nodes. The start
nodes were positioned on the kernel contour on the right
side of the principal major axis crossing point. The goal
nodes were positioned on the kernel contour on the left side
of the principal major axis crossing point. Thus the edge

search was rotary in nature about the principal major axis
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crossing point. This point was referred to as the pivot
point. The start nodes and the goal nodes were not posi-
tioned closer than 4A to the pivot point, where 2A was the
kernel length. This restriction ensured that the solution
path did not begin or end nearer to the pivot point than ex-

pected for the typical germ outline.

The array GRAPH represented the germ detector graph. The
bit definitions in GRAPH were equivalent to those of the
regular-sized-object detector. Figure 3.12 shows these bit

definitions.

The arcs allowed in the graph were determined in exactly
the same fashion as those in the regular-sized-object detec-
tor since the desired features of the germ contour were sim-
ilar to those of the kernel contour. Each arc had to be one
of the eight Freeman chain code elements, have a direction
which was one of the five contiguous directions centred on
the preferred direction and satisfy the no sharp turns rule.

Figure 3.711 shows the arc selection process.

The cost function of the germ detector was composed of

three parts as follows:
c(n) = DADJUST(n) RADJUST(n) -GRADCOST(n) .

The diagonal adjustment, DADJUST(n), was identical to that

of the regular-sized-object detector.



165

The cost of the gradient, GRADCOST(n), was the same in
every way to that of the regular-sized-object detector ex-
cept that BASECOST had the lower value of 75. This reduced
BASECOST provided more sensitivity for the edge search with
which to detect the weak step edge that delineated the typi-

cal germ.

The radial adjustment, RADJUST(n), neutralized the low-
cost advantage of short paths near the pivot point. This
adjustment performed the same function as that of the requ-
lar-sized-object detector, but its form was considerably
different. The derivation of RADJUST(n) was based on the
elliptical model of the kernel contour shape and the circu-
lar arc model of the germ contour shape. For a circle of
radius-R centred on a vertex of an ellipse with an aspect
ratio of 2 and length of 2A, the length of the arc of the

circle within the ellipse is:

L = 2R-arccos[-3(a/R)+% /(A/R)2+12] .

A close approximation to L for R/A < 1.3 is given by:

A
L/A = Ea(R/A)?-*-b(R/A), (rR/a) < 0.8

1, otherwise

where a -1.71, and

b= 2,58,

This approximation, which is normalized with respect to the

size of the ellipse, required considerably less computation
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to calculate than the exact expression for L. The radial

adjustment was then:

A
RADJUST(n) = (L/A)" ' .

Figure 4.12 shows the geometry of the derivation of

RADJUST(n).

X2+y2=r2 (x~A)2%2+4y2=1
A? A?
| X
O L A 2A

Figure 4.12: Derivation of RADJUST(n)

4.3.2 Performance

Figure 4.13 shows the germ image «created by the germ detec-
tor program when it processed CREASES3. The kernel outlines
and crease paths had been previously defined by the ellipti-
cal-object detector and crease detector respectively. Pix-
els on kernel contours were assigned the value 255 and those
on crease paths and germ contours were assigned the value
128. This image demonstrated the germ detector’s remarkable

ability to detect and follow the very subtle edge which out-
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Figure 4.13: Germ Contour Image of CREASES3

lined the germ in each of the right two kernel image re-

gions.

A definitive statement concerning the performance of the
germ detector can not be made because the detector was not
tested on a sufficient number of images. However, since
both detectors utilized similar techniques, the germ detec-
tor likely had problems similar to those of the crease de-
tector. Conseguently the germ detector probably suffered
from the rigidity of 1its two-dimensional approach to the
germ detection problem, thereby being truly successful only

on images of at least moderately well defined germs.



Chapter V
TEXTURE ANALYSIS

5.1 INTRODUCTION

As discussed in Section 1.4, surface texture is a broad
class of features which is important for wheat grading.
Texture is the major characteristic in describing the two
grading factors, vitreousness and soundness. It 1is also
useful for determining variety which is another grading fac-
tor. Indeed texture is second only to shape in importance

for wheat grading.

The areas of interest on the visible kernel surface for
which texture features are valuable include not only the en-
tire visible kernel surface, but also several subsets of
this region: specifically the germ and the crease. The en-
visioned computerized grading system would obtain texture
features for each of these regions of interest in each wheat
kernel image region after it had first identified the loca-
tion of each whole wheat kernel and its visible anatomical

parts.

In this research a texture analysis technique was imple-
mented and employed just for obtaining texture features of

the overall image region of a wheat kernel. The implementa-

- 168 -
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tion of a technigue to analyze specific subsets of the ker-

nel region was left for future research.

The choice of the texture analysis technique was based on
several desired and tractable capabilities of the technique.
The technigque had to distinguish between micro-texture
(fine) and macro-texture (coarse) components of a texture.
Since these distinctions correspond to spatial frequency,
then some form of frequency transformation was required.
The technique had to characterize the amount of energy in a
texture or, in other words, the gray tone variation between
pixels. Finally, a desired, but not essential, capability
was texture synthesis. This facility would allow visualiza-
tion of a texture represented by texture features and indi-
cate that in some sense the analysis technigue could capture

everything about a texture.

The selected texture analysis technique, two-dimensional
(2-D) autoregression (AR) modelling, was chosen from the
wide variety of approaches that are applied to the texture
analysis problem today. Haralick [1979] gives a broad ac-
counting of most of these. The advantages of 2-D AR mod-
elling which motivated its use are as follows:

® AR modelling is sensitive to spatial pizxel dependence

while at the same time being able to account for the
stochastic nature of a random texture image.

® The AR model parameter equations are linear and there-
fore have a straight forward solution.

® The estimated AR model can be easily manipulated to
generate its power density spectrum (PDS).
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® AR modelling is a superior techniqgue for resolving
spectrum peaks in one-dimensional (1-D) signal analysis
and so the same can probably be said for 2-D AR image
analysis. This superiority is related to the fact that
AR modelling is, as pointed out by Makhoul [1975],
identical to the very successful maximum entropy spec-
tral estimation technique.

® AR modelling has a complimentary texture image synthe-

sis facility.

AR modelling provided two types of features with which to
describe a texture. The first, the AR model parameters,
characterized the spatial dependence of pixel wvalues. A
stepwise linear discriminant analysis was applied to the AR
parameters of images of three classes of wheat kernel sur-
faces in order to gauge the discriminant power of these pa-
rameters. The results were disheartening and are described
in Subsection 5.6.2. The second type, samples from the AR
model’s power density spectrum which approximated that of
the texture, however held far more promise for successful
discrimination. The approximate texture spectrum provided a
qQuantitative assessment of the importance of the spatial
frequency components of a texture in a range from coarse to
fine texture. This characterization corresponded more
closely to the visual description of the surface degrading

factors of wheat kernels and, in addition, was much easier

for the experimenter to relate to his own visual experience.

A problem arose in applying AR modelling to texture
synthesis. Although some authors have used only a 1-D AR

model, most authors agree, Haralick for instance, that a 2-D
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AR model is necessary to fully represent a texture image.
But, 2-D AR models do not have easily calculated stability
criteria. Therefore, when a 2-D AR model is used for tex-—
ture image synthesis, the experimenter, Gambotto [1980] for
example, must go to great lengths to ensure that the model
remains in a stable domain. This usually implies that model

complexity is extremely limited.

The texture synthesis technique chosen for this research
is due to Kashyap [1980] who has found a solution to stabil-
ity problems in texture synthesis with 2-D AR models. Kash-
yap assumes that the image is folded into a torus. A torus
image is folded so that its top edge joins its bottom edge
and its left edge joins its right edge. Under this assump-
tion AR texture image synthesis becomes a problem in the si-
multaneous solution of a set of linear eqguations. Thus, AR
model instability becomes very unlikely, occurring only when
the solution matrix is singular. If a Moore-Penrose inverse
is used then the problem of model stability is totally elim-
inated. Chellappa and Kashyap [1981] refer to this approach

as simultaneous autoregressive modelling or SAR.

Section 5.2 presents the technique employed to normalize
the texture analysis with respect to rotation. Rotation
normalization was necessary to remove the dependence of the

texture analysis on wheat kernel orientation.
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Sections 5.3, 5.4 and 5.5 present the AR model estima-
tion, the PDS generation and the texture synthesis tech-

nigues respectively.

Section 5.6 demonstrates preliminary experimental re-
sults. Section 5.7 presents recommendations based on these
results for the direction of future research into the use of

the texture analysis technigue for wheat grading.

S.é ROTATION NORMALIZATION

The normalization of the estimated AR model with respect to
rotation minimized the dependence of the model on the orien-
tation of the kernel being analyzed. Thus the AR models of
images of the same kernel rotated at different angles about
an axis parallel to the camera axis would be almost identi-
cal provided that the same magnification and lighting were
used. The results of a test like this are presented in Sub-

section 5.6.1.

The normalization was performed by copying the kernel re-
gion of the original image onto a transformed image whose
column axis was parallel to the -principal major axis of the
kernel. The principal major axis had been previously deter-
mined by the program MOMENTS. Then the AR model was esti-
mated using the transformed image so that the direction de-
pendent model parameters always had the same orientation
relative to the kernel orientation. This procedure was re-

Pbeated for each kernel region in the original image.
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Each pixel, P’, in the transformed image, I’', was as-
signed the value of the nearest pixel, P, in the original
image, 1I. The centre of the transformed image corresponded
to the centroid of the kernel image region. The size of the
transformed image was 128 rows by 128 columns which easily
accommodated typical kernel images at the standard magnifi-
cation. The expression that defined each transformed image

pixel value was then:

P'(i',3") = P(i,])

such that i (j’'-64)-sin @ + (i’'-64)-cos © + r

and j (j'-64)-cos & - (i'-64)-sin © + ¢

where (i,j) was the pixel location in I,
(i'.3") was the pixel location in I',

(r,c) was the centroid of the kernel region, and
© was the orientation of the kernel.

Figure 5.1 shows the geometry of the rotation normalization

method.
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Figure 5.1: Geometry of Rotation Normalization

5.3 TEXTURE MODEL ESTIMATION

The texture of an arbitrafily shaped kernel image region was
modelled as a 2-D AR system driven by the uncorrelated, zero
mean, nonstationary and unity variance random process w(i,j)
such that:

Y(i,j) =¢?w(i,j) + Z o(p,q) Y(i+p,j+q)

p,ge€N

where ¥(i,j) = P(i,j)-a is the zero mean pixel value,

P(i,j) is the actual pixel value,

a is the average pixel value in the region,

is the spatial input noise variance,

©(p,q) is an AR coefficient, and

N is the influential neighborhood.
N was the set of coordinates of the estimated AR coeffi-

cients. N was called the influential neighborhood and

¥(i,j) the dependent pixel of that neighborhood since Y(i,j)
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was related to a linear combination of the other pixel val-
ues in the neighborhood. N was, for convenience, defined to

be rectangular and lower-right causal such that:
N={i,j | i,j #0,0; 0 <i < N,-1; 0 < j £ No-1}.

Figure 5.2 illustrates the AR texture model.

w(i,j) v(i,j) P(i,j)

\Qo Linear a

Predictor

Figure 5.2: AR Texture Model

The method of solution for the AR coefficients 1is the
well known method of least squares. The predicted value of

the zero mean pixel value Y(i,j) was:

A

v(i,j) = Z eo(p,q) Y(i+p,j+q)
PrQ€EN

and the resulting total squared error was:

A
E= L [Y(i,j)-v(i,j)]12 = w2(i,j)
i, j€ER’ i,j€ER’
where R'= {i,j](i,j)eRr; (i+p,j+g)€ER for all (p,g)eN}, and

R was the kernel image region.



176
R’ was the largest subset of R for which the influential
neighborhood of each Y(i,j) was within R. By minimizing E
with respect to ©6(p,g), the “normal equations” which defined

6(p,q) were:

Z o(p,q) I v(i+p,j+q) Y(i+u,j+v) = Z v(i,J) Y(i+u, j+v)
P,Q€éN i,jer’ i,j€ErR’

for all u,veN,

and the spatial input noise variance was:

/0 ={ & [¥v%(i,j) - Z e(p,q) ¥Y(i,3j) v(i+p,j+q)I}/n
i,Jj€ER’ p,gEN

where n was the number of influential neighborhoods in R'.
Thus the AR coefficients were found by the solution of

NiN2-1 simultaneous linear equations with NyN,-1 unknowns.

The above normal equations had several properties that
are worthy of note. First, they did not rely on the assump—
tion that the texture’s random process was stationary.
Hence the AR model’s portrayai of a texture was more depen-
dable than that of one which assumed Stationarity. Second,
the terms

Z ¥(i+p,j+q) Y(i+u,j+v)
1, JER’
formed an image correlation matrix which was symmetric. The

program TEXTURE, which performed both the rotation normali-
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zation and texture model estimation, solved these equations
with a Cholesky decomposition which took advantage of this
symmetry. ~Finally, an increase in the number of AR coeffi-
cients, or equivalently in N, improved the model “fit” and
thereby decreased/o at the expense of more parameters to de-

scribe a texture.

A concern with AR modelling is model order determination:
in this case the determination of the optimal influential
neighborhood size N to represent the typical wheat kernel
surface texture. Several objective criteria exist for model
order determination. One 1s the Final Prediction Error
(FPE) of Akaike. Deguchi and Morishita [1978] have applied
the FPE to 2-D AR texture modelling for images. However the
wheat grading problem requires only a rudimentary form of
texture characterization and therefore only a small N such
as 2 by 2 or 3 by 3. A small N like this would probably be
much smaller than that indicated by the FPE. Consequently a
more suitable approach would be a statistical analysis to
determine the number of parameters required to differentiate
surface class. Being beyond the scope of this research,

this analysis was left for future research.
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5.4 POWER DENSITY SPECTRUM

The PDS of the 2-D AR model approximated the actual texture

spectrum.

The AR predictor model again was:

45 w(i,j) = ¥(i,3) - £ e(p,g) ¥Y(i+p,j+qg)
pP,g€EN

For convenience this was rewritten as:

Ni-1 Np—1
ve wli,j) = £ L alp,q) Y(i+p,j+q)
p=0 g=0
where: alp,gq) = {1, p=0 and g=0
-6(p,q), otherwise

and N is assumed to be rectangular.

Taking the Z transform:

N:~-1T N,-1 P q
%8 W(zq,2z,) = Y(z,,z,) Z Z alp,q) z, Z2
p=0 g=0

The system function of the AR model then was:

H(z{,z,) = Y{(z{,z,) = 1

\//E‘W(Z1,Zz) N{-1 N,-1 p aq
z Z alp,q) zy z, .

p=0 g=0

By considering only

364 W2

Z1= e and z,= e

the PDS of the AR model was:

A -jWwr —j2
P61 ,0)2) = [H(e , e )| = 1
N{-1 Np-1 —ip —jgwz |2
Z I alp,q) e e
p=0 g=0
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The following discrete version of the above expression
was used with equal summation 1limits to generate the square

digital image representing the texture PDS:

A
P(k,1) = 1
-j27mok -j2mgl|?2
M-1 M-1 M M
z Z alp,q) e e
p=0 g=0
where M 2> Ny and M 2 N,,

-0(p,q), p £ Ny-1 and q £ N,-1

alp,gq) = 51, p=0 and g=0
0, otherwise,

k and 1 are integers such that 0 < k,1 £ M-1, and

k = (1M and 1 = [ATIVIER
2 2

The above spectral estimate was more simply expressed as:

A

P(k,1) = 1
la(k,1)]?

where A(k,1) is the 2-D discrete Fourier transform (DFT) of
alp,q). The PDS image becomes more detailed as the size of
the influential neighborhood, and therefore the number of AR

pParameters, increases since, in the limit,

A
P(k,1) = P(k,1) as the size of N—> oo

where P(k,1) is the actual texture PDS. The 1-D version of

this is stated by Makhoul.
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The program TXTRGEN, which calculated and created the PDS
image, had several peculiarities. First, since this program
also created a synthetic texture, it was more convenient for

it to calculate the spectrum with the equivalent expression:

A

P(k,1) = 1 2
M2-A-1(k,1)

where A~ '(k,1) was the inverse 2-D DFT of a(p,g). The frac-

tion

;
M2-A-1(k,1)

was also employed in the texture synthesis calculation.
Second, the image width M was 128 so that a fast Fourier
transform (FFT) algorithm could be used to calculate the in-
verse DFT. Third, the zero frequency pixel, where k=1=0,
was placed in the centre of the image so that for the pixel

value Y(i,j) the values of k and 1 were:

k = (i+64) mod 128 and 1 = (j+64) mod 128 .

Thus the distance from the centre of the image was propor-
tional to the spatial frequency. Since in general the Four-
ier transform is conjugate symmetric, the PDS was also sym-—

metric such that

A A

P(k,1) = P(-k,-1)

so that the PDS image was symmetric about its centre or zero

frequency point. Finally, to accommodate the wide dynamic
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range of the detail in the PDS, TXTRGEN set each pixel to a
value proportional to the logarithm of the corresponding PDS

value.

5.5 TEXTURE SYNTHESIS

The synthesis of SAR texture images was simplified consider-
ably by the torus image assumption. The zero mean pixel
value in an M by M torus image obeying the 2-D AR model is
given by:

v(i,j) - £ e(p,q) Y[ (i-p) mod M, (j-q) mod M] = 46‘w(i,j),
D,gEN

- Using the terminology of Chellappa and Kashyap, this set of

linear equations can be written in matrix form as:

B(e)Y = %8 W

where Y and w are in lexicographic order. If w is in lexi-
cographic order then:
T
w=1[ w(0,0),w(0,1), . . . w(M-1,M-1) ] .
To avoid redundant influential neighbors, 6(i,j) is re-
stricted to 0 < i,j < M-1. This is called a one-sided or
causal lower right neighborhood. Other one-sided neighbor-

hoods are possible.
B(®) is obviously M2 by M2, If

B(6) = [b(r,c)]
M2 x M2
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then it can be shown that:

b(r,c) =(-6(0,0)=1, r=c

This is the dependent pixel of row r.
-0(i,3j), (i,3j) e N
< where

{Int[(c-1)/M]) - Int[(r-1)/M] + M} mod M
{(c=1) mod M - (r-1) mod M + M} mod M

i
3
L0, (i,j) €N

These specifications for B(®) imply that it is an element
of a wunique set of matrices called “block circulant with
circulant blocks” (BCCB), where each block of B(8) is

M by M. The structure of each block is as follows:

.~ -

o(i,0) e(i, 1) e(i,2) - - - - o(i,M-1)

6(i,M~1) 6(i,0) e(i,1) - - - - o(i,M-2)

o(i,1)  o(i,2) o(i,3) - - - - 6(i.0)
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The arrangement of the blocks within B(®) is as follows:

i=0 i=1 i=2 i=Mf1
1=M~—1 1=0 1=1 1=M-2
1=1 1=2 i=3 1=0

The objective 1in synthesizing a torus AR texture 1is to

solve the set of linear equations:

B(BO)Y = %5 w

Davis [1978] has shown that all BCCB matrices are diagonali-

zable so that B(®) can be diagonalized as:

B(®) = F*AF

where F=FPRF ,
M M

F is the M by M Fourier matrix,
M

® is the Kronecker product, and

/. is the diagonal eigenvalue matrix.
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Using this diagonalization Davis has shown that the

Moore-Penrose inverse of B(©) is:

B*(@) = F* *F

where A= (N)
M2 x M?
A= A, A #0
0, A=0

which presents the following solution to the synthesis prob-

lem:

Y = B*(0)w = F*A'Fw .

The eigenvalues of B(®) are given by:

M-1 -(k-1)i M-1 -(1-1)]
Ak,1) =2z w Z b(i+1,3+1) w
i=0 M 3=0 M
-j(27t/M)
where W = e '

b(p,q) is element g of block p of B(®), and

Ak,1) is eigenvalue 1 of block k of B(®).

Substituting in for the elements of B(8) which are the SAR

coefficients, the eigenvalue expressions become:

M=1 M-1 —-(k-1)i-(1-1)
Alk,1) = -2 Z W e(i,j)
i=0 j=0 M

where ©(0,0) = -1 as this corresponds to the dependent pix-
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el. Obviously Alk,1) is expressed as a 2-D inverse DFT over

the SAR coefficients 6(i,j).

By using the Moore-Penrose inverse of B(©) the difficulty
of having a singular B(®) and therefore not having a stan-
dard inverse of B(®) is avoided. Thus the problem of insta-
bility of the 2-D AR texture model can be totally eliminat-
ed. The Moore-Penrose inverse has the property that 1if
|B(6)| # 0 then the standard inverse is employed. Otherwise
the generalized inverse that minimizes |]|Y||, is used. In
terms of the synthetic image this is the solution that minj-

mizes the image power or variance.

To complete the derivation of the texture synthesis tech-
nigque, a solution to the product Y = F*A'Fw is found. Mul-
tiplication by F amounts to the application of a 2-D DFT
while multiplication by F* amounts to the application of a
2-D inverse DFT. Therefore the final expression specifying

the synthetic SAR texture image can be directly written as:

P(iq,i,) = 48'{(1/M2) z Z A W
k1=0 k2=0 kik, M

M-1 M-1 k1j1+k2j2
[ Z £ w(j,,j2) W 1}+ai
J1=0 j2=0 M

where  A*(k;,kz) is an eigenvalue of the Moore-Penrose in-
verse of B(®©),
a is the average pixel value,
1 is an M by M field of which each element is 1,
/% is the variance of the spatial input noise, and
P(iy,i,) is a pixel of the synthetic texture image.
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The program TXTRGEN, which calculated and created a syn-—
thetic texture image, also calculated and created the tex-
ture PDS image, since both calculations involved an inverse
2-D DFT over 6. The width M of both of these square images
was 128 so that an FFT form of the DFT could be used. The
block diagram in Figure 5.3 demonstrates the combined PDS

generation and SAR texture synthesis process.

MZ
Ak,1)
©(i,j)| Inverse Moore- P(i,J)
— Penrose [*¢*log(]| -|)2}—of
2-D FFT Inverse PDS
A (k,1)
v{(i,j)
w(i,j) pP(i,j)
— 2-D FFT 2-D FFT of
Synthetic
Texture
V/O a

Figure 5.3: PDS Generation and SAR Texture Synthesis

For deriving the least squares AR parameter estimation
technigque, nothing was assumed about the spatial input noise
%ﬁ?w(i,j). However, during texture image synthesis, w(i,j)
must be uncorrelated if the texture is to have exactly the
desired SAR parameters. This is stated by Kashyap. In

practice w(i,j) must have a certain amount of correlation
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since it is a zero mean real random field. The objective of
the experimenter while using the SAR texture synthesis tech-
nigque then is to maintain the correlation within w(i,j) at a
minimum in order that the reproduction of SAR statistics in

synthesized textures is optimized.

5.6 EXPERIMENTAL RESULTS

5.6.1 Rotation Normalization Test

The first test of the texture analysis technique examined
the operation of its rotation normalization facility. The
technique was applied to three images of the same wheat ker-
nel. In each succeeding image, the kernel was rotated by a
further angle of roughly 30 degrees about an axis parallel
to the camera axis. The other imaging conditions for each
image were identical. Thus the desired results were that
the AR parameters and the PDS of the kernel region in each
image would be exactly the same. Figure 5.4 shows these im-

ages, called ROTEST1, ROTEST2 and ROTEST3.

The following table lists the AR parameters obtained from
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Figure 5.4: ROTEST1, ROTEST2 and ROTEST3
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each image with a 3 by 3 influential neighborhood.

Image Angle " a AR Coefficients P

ROTEST1}225.289(102.469 * .58853 .13596(57.4370
.36972 .11603 -.15208
".03370 .02411 -.09673

ROTEST2{250.872{105.447 * .57535 .12950(32.3359
.85755 -.28382 -.10115
-.13275 -.00891 -.02860

ROTEST3|281.118[114.391 * .63195 .08628/24.0637
.96416 -.30657 -.15258
-.18383 -.00547 -.01885

*Corresponds to dependent pixel.

For ROTEST2 and ROTEST3 the corresponding AR coefficients,
and therefore the AR models, were as expected guite similar.
However the AR coefficients for ROTEST1 had many dissimilar-
ities with those of the other two images. In fact some cor-
responding coefficients had different signs. The most like-
ly cause for this difference in the AR models was that while
the elliptical-object detector had accurately specified the
kernel contour in ROTEST2 and ROTEST3, it had omitted the
small region representing the left half of the brush of the
kernel in ROTESTI1. Consequently this extremely white patch
of the kernel surface had none of the influence on the
ROTEST1 AR model which it had had on the AR models of the

other two images.

Figure 5.5 shows the PDS and synthetic texture images de-
termined from the 8 by 8 influential neighborhood AR models

of ROTESTIT, ROTEST2 and ROTEST3. The 8 by 8 influential
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ROTEST PDS Synthetic Texture

Figure 5.5: PDS and Synthetic Texture Images of ROTESTT,
ROTEST2 and ROTEST3
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neighborhood size was the arbitrary maximum size allowed by
the AR model estimation program. This size provided the
most definition in the generatibn of the PDS. However it
required too much computation to be of use in a practical

wheat grading system.

As shown in this figure, the PDS and synthetic texture
images for ROTEST2 and ROTEST3 had a very similar appear-
ance. The pixels 1in the synthetic texture images did not
have a one-to-one correspondence since each image represent-
ed a random process, but it is clear that the texture models
which they represented were similar. However the PDS and
synthetic texture images of ROTEST1 were not similar to
those of ROTEST2 and ROTEST3. Hence the PDS and synthetic
texture images upheld the similarities and dissimilarities

indicated by the AR coefficients themselves.

The PDS of ROTEST1 displayed a phenomenon typical of im-
ages of ventral side up kernels 1like this one. The step
edge formed by the crease was often manifested in the PDS by
a ridge that was perpendicular to the <crease direction and
which intersected the zero frequency point. Since the rota-
tion normalization caused the column axis of the PDS té be
aligned with the crease direction, this ridge was always

parallel to the row axis of the PDS.
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5.6.2 Texture Classification Test
The second test of the texture analysis technique investi-
gated 1its performance when analyzing representatives of
three <classes of overall kernel surface guality. These
classes were sound, wrinkled and shrivelled. Sound kernels
have a smooth surface texture. Wrinkled kernels exhibit a
fine surface texture. Shrivelled kernels are smaller and

sometimes have a coarse surface texture.

Two calibrated intensity images for each texture class

and for each kernel orientation, ventral side up or down,
were used. Each image contained five wheat kernels. As a
result, ten kernels represented each surface class and ker-

nel orientation combination.

Intensity calibration was necessary because the absolute
gray level is an important facet of texture. Intensity cal-
ibration ensured the correctness of a gray level and the

consistency of the imaging process.

Figure 5.6, Figure 5.7 and Figure 5.8 show the first im-
age of each surface class for the ventral side down (crease
not visible) kernel orientation. These images were SOUND1,
WRINK1 and SHRIV1 respectively. The surface class repre-

sented in each image is obvious from the image’s name.

In the first stage of this test, a stepwise linear dis-
criminant analysis was applied to evaluate the merit of the

AR model parameters for discriminating surface class. The
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Figure 5.6: SOUND1
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program BMDP7M of BMDP Statistical Software Inc. [University
of California, 1981] analyzed the parameters of the 3 by 3
influential neighborhcod AR models for the kernel regions of
the ventral side down images and then for the ventral side
up images. This program found the two most discriminatory
linear discriminant functions that utilized only the vari-
ables determined to be statistically significant. The first
function attempted to classify the surface types for the
ventral side down kernels, the second function for the ven-

tral side up kernels.

The results were disappointing. For the ventral side
down images, only the average pixel value a and the spatial
input noise variance were deemed to be statistically sig-
nificant. The classification success rate was poor. For
the ventral side up images, only the AR coefficient ©(2,2)
was considered to be significant. The classification suc-
cess rate was even poorer. The following table lists the

classification success rates.

Surface Type Percent Correct
Ventral Side Down Ventral Side Up
Sound 60 70
Wrinkled 70 20
Shrivelled 50 50
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These unsatisfactory results indicated that, for a linear
classification function at least, the AR parameters of the
overall kernel image region were not suitable for discrimi-
nating surface type. This conclusion was not entirely unex-
pected. The surface classes of wheat kernels are given tex-
ture descriptions most easily related to energy and spatial
frequency content of the surface texture. However the AR
coefficients represented the spatial dependence of pixels;
only through a Fourier transform would they yield the fre-

guency content in a form such as the PDS.

As a result, a second stage of the test was undertaken.
This stage was to provide an intuitive feel for the discrim-
inatory value of the estimated PDS of the texture. PDS im-
ages were generated for the first object defined by the el-
liptical-object detector in each of the twelve test images.
For each of these objects, a PDS image was generated corre-
sponding to the 2 by 2, 3 by 3, 5 by 5 and 8 by 8 influen-
tial neighborhood AR models. Thus a wide range of defini-

tion of the PDS of each evaluated object was available.

Figure 5.9, Figure 5.10 and Figure 5.711 show the PDS im-
ages for the 2 by 2, 3 by 3 and 5 by 5 influential neighbor-
hood AR models for the first object in SOUND1, WRINK1 and
SHRIV1 respectively. In SOUND1 the first object was the
top-left kernel. In WRINK1 the first object was the top
kernel. 1In SHRIV1 the first object was the bottom-left ker-
nel. For interest sake these figures also show a synthetic

texture image for each AR model.
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I.N.Width PDS Synthetic Texture

Figure 5.9: PDS and Synthetic Texture for Top-Left Object
in SOUNDT
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I.N.Width PDS Synthetic Texture

Figure 5.10: PDS and Synthetic Texture for Top Object in
WRINK1 ’
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I.N.Width PDS Synthetic Texture

Figure 5.11: PDS and Synthetic Texture for Bottom-Left
Object in SHRIV1
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The conclusion reached from inspection of all the PDS im-
ages was that the PDS of the texture model of the entire
kernel image region did not have any obvious features that
indicated the surface class. The anatomical features, espe-
cially the crease, germ and brush, caused bands or ridges in
the PDS. These effects tended to drown out features which
originated from the actual surface texture. Therefore, it
was decided that for the texture analysis technique to be
useful at distinguishing the surface texture class of the
overall kernel surface, it must be modified in future re-
search in such a way that it can mask out the effects of the

anatomical features on the visible kernel surface.

5.7 RECOMMENDATIONS

Texture analysis and its application to surface classifica-
tion is by far the portion of this research most in need of
future development and refinement. The texture model esti-
mation, PDS estimation and texture synthesis techniques
themselves performed well the tasks for which they were de-
signed. However the model estimation program, as a source
of texture features, had two general deficiencies which di-
sallowed satisfactory surface classification. First, the AR
model parameters described the spatial dependence of pixels,
instead of the composition of the texture in the frequency
domain. Second, the model estimation procedure was influ-
enced by the gross anatomical features of the kernel to the

extent of overpowering the influence of the actual surface
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texture. This section presents suggestions for the solution

of these two problems.

PDS features based on the AR model can be calculated in
the same way that the PDS image was generated. However, the
PDS image was actually a needless overspecification of the
estimated PDS of the texture since it supplied M2 = 16384
pixel values or parameters when the model had at most only
63 coefficients. An expression which completely specifies

the PDS without redundancy is:

A

P(k,1) = /°

-j2abk -j2mgl|2

N;-1 N,-1 N, N
z Z alp,g) e e
p=0 g=0 ,
for 0 <k <N;-1 and 0 <1 < (N,-1)/2
where al(p,q) = {1, p=0 and g=0
-0(p,q), otherwise.

The variable 1 is employed over only half of its valid range

since:

A A
P(k,1) = P(N{-k,N,-1) .

A
The Ny (N2+1)/2 values of P(k,1) would be used, instead of

the N{-Ny-1 AR coefficients themselves, as features for a

statistical analysis like BMDP7M.

An attempt could be made to minimize the effects of ana-
tomical features on the AR model by limiting the AR estima-

tion region to image areas where both the presence of these
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teatures is unlikely and the surface texture should find the
most expression. Figure 5.12 shows a pair of such areas,

each of which follows a lateral edge or limb of the visible

Germ
Crease

7 N .
- AR Model Estimation Region

Figure 5.12: Suggested AR Model Estimation Regions

kernel surface. In both of these areas the surface texture
will likely be most evident since the light of illumination
only grazes the kernel surface near the kernel limb. In ad-
dition these areas are not where the crease, germ or brush
are typically found for either a ventral side up. or down

kernel.



Chapter VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The goal of this research was to develop the computer soft-
ware that will be initially required during the development
of a successful, machine vision based, automated wheat grad-
ing system. This software fell into three broad categories:
digital image formation, primitive image understanding and
the extraction of shape and texture features directed by

this image understanding.

The research proceeded in four general phases of software
development. The first phase created assembly language pro-
gramming for a microcomputer system. The remaining phases
produced programs which were written in FORTRAN77 and exe-
cuted on a mainframe computer. Each phase had a different

degree-of success.

In the first phase, the Image Manipulation Package (IMP),
a collection of 8086 assembler routines, was developed. IMP
provided facilities on the custom built black and white di-
gital image acquisition system which are found on standard
commercial imaging systems. IMP satisfied the imaging needs

of this research.

- 208 -
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In the second phase, four different approaches were de-
veloped for computer perception of the objects contained in
a fypical wheat grading image. Each of these approaches was
able to perform the object perception function. However,
the last approach, the elliptical—object detector, was the
superior technique and it represented the culmination of
this phase. The use of image context and a priori knowledge
were maximized in this detector to produce a dynamic, relia-
ble and efficient technique. It achieved good results even
with scenes which suffered from shadow because of close and
sometimes touching objects. The reliability of this detec-

tor made it suitable for use in an automated system.

During this phase a technigue was also implemented to de-
scribe the shape of the image region of each perceived ob-
ject. This technique was based on moments. It efficiently
provided shape features that were normalized with respect to
translation, rotation and size. It also provided character-
istics, such as length, width and the principal major axis

location, which guided succeeding analysis.

In the third phase, two techniques were developed to de-
tect and specify two important anatomical parts of the wheat
kernel: the crease and the germ. Knowledge of the presence
and whereabouts of these parts implied the orientation, ei-
ther ventral side up or down, of the kernel and the location

of surface features relevant to wheat grading.
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The performance of these two techniques was mediocre.
Each performed satisfactorily if the image definition of the
part was at least fair. However if the part was poorly de-
fined, the technique would often miss the part and sometimes
have difficulty determining that it had failed. By compari-
son, the human vision system could more easily detect the
poorly defined parts in the same digital images. The essen-
tial deficiency of these technigues was their two-dimension-
al approach to a three-dimensional problem; they did not em-
ploy the knowledge that the images were representations of
three-dimensional solids and that the crease and germ are

manifestations of the kernel’s surface topography.

In the fourth and final phase, a signal processing tech-
nigue, two-dimensional autoregression modelling (2-D AR),
was implemented to analyze the kernel surface texture. Four
facilities of the texture analysis were created: rotation
normalization of the analysis, estimation of the 2-D AR tex-
ture model, generation of the 1image of the estimated power
density spectrum (PDS) of the texture and generation of a
synthetic texture image which obeyed the estimated 2-D AR
texture model. These facilities worked well to the extent
of their design. However, this phase was by far that most
in need of future development and refinement. This need was
caused by the shortcomings of the texture model estimation

facility.
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The texture model estimation facility was the most impor-
tant of the four facilities since it was the source of tex-
ture features. Yet it had two deficiencies which prevented
successful surface classification based on these features.
First, these texture features, which were the 2-D AR model
parameters, described the spatial dependence of pixels.
However, it would have been more desirable to employ fea-
tures which succinctly described the estimated PDS of the
texture. Second, the model estimation procedure allowed the
gross anatomical features of the kernel to have more influ-
ence on the AR texture model than that of the actual surface
texture. Evidently the texture model estimation procedure
must be improved if it is to serve successfully in the wheat

grading system.

6.2 RECOMMENDATIONS

This research was the pfeliminary part of a larger research
project which has definite goals. Therefore several rather
obvious ideas can be stated which are as much a commentary
on the likely future pursuits of the research team as they

are actual recommendations.

Evidently classification functions must be determined
which will utilize the shape and texture features made
available in this research to obtain degrading factors.
Perhaps other features not produced during this research may

also be required. 1In any event a vast amount of statistical



212
analysis of image data remains before satisfactory classifi-

cation functions can be determined.

A definite plan for fhe overall wheat grading system’s
decision structure will have to be chosen. This decision
structure will direct the analysis of each perceived object,
from initial perception to identification and, if necessary,
to feature extraction and grade determination. Knowledge of
this structure is important to members of the research team
since the information/processing structures which they will
design must model it. Ballard and Sklansky [1976] present a
classic example of the value of a well designed decision
structure in an intelligent image analysis system. In this
research a simple information/processing tree was utilized.
Figure 6.1 shows this structure. The wuse of an expanded
version of this structure would be advantageous 1in future

work by the research team.

The research team may find it necessary to employ colour
as a feature for detecting grass green kernels or wheats of
other classes such as soft white spring and amber durum.
The addition of colour could be inexpensively accomplished
by attaching colour filters to the existing black and white

imaging system camera.

Several recommendations can be made which pertain more
directly to the results of this research. These are dis-

cussed in the following two subsections.



Original Image

Object
Perception

Image
and
Data

.KER

Shape Description
With Moments

Data .MOM

Crease
Detection

Texture Mode
Estimation

PDS Image
Generation

Synthetic Texture
Image Generation

Image .SYNnn

.AAA - Suffix appended to image file name.
Denotes image type.

nn - Object number.

Figure 6.1: Information/Processing Tree Used in this
Research
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6.2.1 Short Term
Only one of the routines developed in this research, the AR
texture model estimation procedure, is drastically in need

of immediate improvement.

Section 5.7 suggested two modifications to this routine.
The first was to utilize the nonredundant PDS values as tex-
ture features instead of the AR model parameters themselves.
The second was to limit the AR model estimation region to
image areas where the presence of interfering anatomical
features is wunlikely and the actual surface texture finds

most expression.

It is recommended that this routine should be revised as

suggested in the near future.

6.2.2 Long Term

Any of the following related problems may appear in work un-
dertaken by the research team in the more distant future.
It may become necessary to improve on the mediocre perform-
ance of the kernel anatomy detection software; the texture.
analysis methodology may have to be upgraded by modelling
kernel surface texture with a three-dimensional (3-D) deter-
ministic surface rather than the present 2-D stochastic pro-
cess; the ability to perceive partially occluded objects may
become necessary. These problems are similar in that the
solution of each of them requires a 3-D approach to image

understanding.
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In Subsection 4.2.2 it was suggested that one method for
implementing 3-D image understanding would be the following:
estimate local surface orientation by using‘ local surface
gray level, generate a 3-D model of each object using this
estimated surface orientation and, finally, direct subseg-
uent analysis on this model, not on the image itself. Horn

and Ikeuchi [1984] have implemented such a method.

It is recommended that the research team be aware of this
radically more advanced approach to image understanding as a
means of dealing with any of the previously mentioned prob-

lems.
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