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ABSTR.ACT

The objective was to design the technigues and corresponding
computer software initially reguired during the development

of a successful, machine vision based, automated wheat grad-
ing system.

The research was guided by an understanding of the cur-
rent canadian wheat grading system. This understanding en-

abred the anticipation of the objects that courd appear, the

selection of a processing organization which is in accord
with standard grading procedures and the determination of
which features are required to judge grade.

Four general phases of software development occurred.
First, the rmage Manipuration package was deveroped to oper-
ate a custom built digital imaging system. Second, four
different techniques vrere invented for computer percêption
of the objects appearing in a wheat grading image. À tech-
nique was also impremented to provide shape description of

these ob jects. Thi rd, techniques were devi sed to detect tr,¡o

anatomical- parts of the wheat kernel: the crease and the
germ. Finally, a 2-D signal processing technique was ap-
pried to analyze the visibl-e kernel surface texture. This
provided four facil-ities: rotation normarization, texture
moder estimation, power density spectrum image generation

and texture image synthesis.

1V



À11 of the programs, except that for texture model esti-
mation, generally performed we11. cl-ear recommendations are

given to rectify the deficiencies of this routine.
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Chapter I
INTRODUCTION

1.1 OBJECTIVES OF THIS RESEARCH

The canadian wheat grading system is part of canada's multi-
bilrion dorrar grain production and handring system. This
grading system is designed to rerate price to quality on a

consistent basis and to facititate grain handring. In the
past this grading sysLem has worked welr for canada's grain
industry.

one of the problems with the canadian wheat grading sys-
tem is that ít reries heavily on the visual assessment of
grain samples. consequently the grading procedure is very
subjective. rn fact, some of the degrading factors consid-
ered during the grading procedure, such as frost damage,

have tolerances which are impossibl-e to state in a manual.

Rather their proper use is dependent on. the experience and

training of the grain inspector Icanadian Grain commission,

19811.

Another problem is that, while the remainder of the grain
handling and transportation system is undergoing a major

shift to computerization ICandlish, 1984], the grading pro-
cedures used within the canadian wheat grading system are

1-
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performed entirery by human inspectors. computerization of

the grading system is particutarly attractive in right of

today's efforts to streamline the grain handring and trans-
portation system in Canada.

At the university of Manitoba I a rong term research

project is being undertaken jointry by the Department of

Prant science and the Department of ELectrical Engineering

to develop an automated, computer assisted wheat grading

system and thereby alleviate both of the above problems.

The research for this thesis was pursued in association with
that project. The desired grading system wourd reprace to-
day's highry trained human inspector or wouLd at least pro-
vide an objective quantitative assessment of the necessary

grading features for an inspector. The system wourd be suf-
ficiently intelligent to not require human interaction dur-
ing its operation. such a system courd also interface with
present day or future computer systems that control- grain

binning and inventory maintenance.

The research team is considering several approaches. The

first is a stand-arone computer image analysis system. The

second approach is to supplement the computer image analysis
with other tests such as test weight, protein content and

computer aided variety identification using the griadin
erectrophoregram. The third approa.ch is to develop a com-

pletely new set of grading criteria.
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The focus of this thesis was the computer image analysis
part of the research team's work. since this was the first
work on image analysis for the research team, this research

has been of a rudimentary nature. The main objectives of
this research v¡ere to create the software that would first
enable basic computer understanding of a wheat grading image

and then extract the basic features necessary for grading

wheat. This has necessitated an understanding of current
wheat grading techniques in canada so that the correct image

features could be chosen. The statistical analysis of the

acquired features was not undertaken.

This research had limitations which may be ressened for
Iater work by the research team. Only the hard red spring
class of wheat hras considered because it is the most popurar

class of wheat grov¡n. OnIy black and white imaging was

used, both for simplicity and since most of the visual de-
grading factors could be determined without the use of col-
our. Mechanicar handling of individual objects was not as-
sumed so that kerners courd appear in any orientation.
However it was assumed that only a single rayer of scattered
objects lying on a flat white surface would be produced by

some prior erementary mechanical method. consequently oc-

cluded objects $rere not alrowed and only rarely wourd ob-
jects touch. Finally, the mode of illumination was re-
stricted to diffuse white front lighting. Therefore the
grading system would have to contend with some object shadow
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and vrould view an object only with light reflected from its
surface. Separate research is now being carried out by the

team to determine the useiulness of transmitted Iight re-

sulting from back Iighting in determining wheat kernel vi-
treousness.

1.2 REvIEw OF REIJATED RESEA,RCH

Computer vision is a large and rapidly growing field. Many

effective low-leve1 early image processing and high-Ieve1

cognitive image understanding techniques have been developed

over the past decade Igatlard , 1982]. Typical areas of ap-

plication include biomedical imaging, aerial and satellite
photo interpretation, industrial robotics and military and

artificial intelligence research. However very little re-
search has been done in applying computer image analysis to
cereal grain inspection.

Two problems stand out in the sparse body of literature
surrounding computerized cereal grain inspection. The first
is the discrimination between types of grain such as corn,

wheat, soybeans, oats and rye.. Brogan and Edison llglAl and

Brogan and Inguanzo 119781 have worked extensively on the

pattern recognition aspects of this problem. The features

that they extracted were Iimited to the length, width, depth

and planiform area of each kernel. Each kernel r^¡as handled

individually by a special mechanism to place it in the prop-

er orientation before being optically scanned. This form of
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size feature extraction is probabry too cumberscme for use

in rear life grain inspection. Arso, the problem that they

dealt with is simpler than the grading problem. Grading

features are more obscure than the dimensional features that
they used to differentiate between grain types.

Recently, Draper and Travis [1984] used similar feaLures

obtained with a Iow-cost computerized imaging system to de-

scribe the shape of barley, wheat, Iettuce, grass, wild oats

and cleaver seeds. rn addition they utirized the shape fac-
tor and aspect ratio. However they did not attempt to cras-
sify seeds based on these features.

The second probrem deart with in the rerevant research is
rice grading by using interactive computer image analysis.
Recent research by Goodman and Rao [1984] f ound ¡,hat an in-
teractive computer image analysis system can measure rice
kerner sizes more accuratery and quickly for grading. Their
work does not approach the problem of automating the grading

procedure. Àgain, the features that they extract are not

sufficient for grading wheat.

In summary, wheat grading is a new application
puter image analysis. However, many of the necessa

niques are already in existence and merely need to
plied to the problem.

fo

ry

r com-

tech-

be ap-



1 .3 T{HEAT GRÀDING IN CÀNÀDÀ

1.3.1 Backqround

Grain grading in canada is organized and regulated by the

Canadian Grain Commission ICanada Grains Council, 19gZ¿ 49).

The commission has determined numericarly designated grades

for canadian wheat and has determined which factors are to
be used in the grading procedure. The grade designations
and grading factors were chosen based on their effect on the

technological value of wheat, ITipples, 1992], in other
words mirling and bread making quality, the ability oi cur-
rent technology to cl-ean the grain and to a certain extent
on the aesthetic appearance of the grain.

The statutory grades of hard red spring wheat in canada

which are of interest to the research team are No.1, No.2

ano No.3 c.w. Red spring and No.1 and No.2 canada utirity
wheat. Lower numbers indicate higher quality.

1.3.2 Gradinq Factors
(rtre general content and organization
from Duke 11982: I l. )

The principal grading factors used in

of this subsection is

grading wheat are:



A) TEST WEIGHT

B) VARIETÀL PURTTY

C) VITREoUSNESS

D) SOUNDNESS

E) MÀXTMUM LIMTTS OF FORETGN MÀTERIÀL

À) TEST WEIGHT. This is one of the few objectivery deter-
mined grading characteristics and it was historicarly one of
the first to be used in grading grain. under normal growing

conditions it is of onry small importance in determining the
grade of a sample.

B) vARTETÀL puRrry. The Marquis variety of wheat is the
standard of quality for the top two grades of Hard Red

spring wheat, arthough other varieties of quarity not rower

than Marquis can be mixed in a sample without lowering the
grade. other varieties not equar in quality to Marquis will
qualify onry for No.3 c.w. Red spring or canada Feed wheat.

The grades of No.1 and No.2 canada utirity are for the

rerativery ner{ cl-ass of wheat carred "utirity wheat". The

Glenlea variety is typical of this class.

Deterrnining the varieties composing a sample is the most

difficurt task facing a wheat inspector. To facilitate in
performing this task, the canadian Grain commission wirl 1i-
cence a variety for production onry if it is visuarly dis-
tinguishabre from all other varieties or visualry identical
to another previously approved variety of similar quality.
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Three visually determined kernel characters are the rnajor

factors in identifying varieties colour, texture arrd

shape IOwen and Àinslie, 19712 55].

Col-our is one of the most obvious characters. It is most

useful in distinguishing classes of wheat such as red

spring, white spring, amber durum, etc. Colour is also used

to classify the red wheats as light red, medium red or dark

red. Classifying the degree of redness is useful- in distin-
guishing variety. However, colour is very sensitive to sur-
face defects such as starchiness or a bleached surface,

which are caused by poor environmental conditions during
growing and harvest. The resulting irregularity of colour

as a feature indicates that the limitation to black and

white images in this research is not a serious drawback to
varietal determination.

KerneI texture is a relatively constant varietal charac-

teristic which can help discriminate between hard, semi-hard

or soft varieties of wheat. The endosperm of a kernel makes

up the majority of the visible kernel surface and is the

part whose surface texture is affected by the kernel hard-

ness. A hard kernel has a dark translucent or vitreous en-

dosperm while a soft kernel has a light or opaque endosperm.

The shape of the kernel outline can be described as

short, midlong or long and ovate, elliptical or oval (nig-

ure 1 .1 ) . This is one of the most important characters in
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determining variety. rt is arso important to other stages

in the grading process.

characters rerated to various anatomical parts of the

kernel- are of less importance but are sometimes used in var-
ietal identification. The characters of each part that are

used are usually shape, size and texture. The parts consid-
ered are the cheeks and the crease lying between them, both

of which lie on the ventral- side of the kerner, the germ

which includes the dormant embryo of the seed and lies on

the dorsal side of the kernel, the brush which is on the op-

posite end from the germ, the bran or skin of the kernel,
and the glumes which are kernel husks that sometimes remain

in a sample after threshing. The kernel anatomy is shown in
Figure 1.2.

c) vrrREousNESS. vitreous kernels have a sound surface and

have a naturar corour and translucence which denotes hard-

ness of the kernel. vitreous hard red spring wheat kerners

have an overarl dark and slightly red surface. Non-vitreous
kerners are damaged or have a starchy surface which is indi-
cated by its overall lighter shade.

Minimum percentages by weight of hard vitreous kerners

are set for the top two grades of hard red spring wheat.

D) souNDNEss. Higher grades of wheat require a higher degree

of kernel soundness. À broad range of kerner surface de-

fects can degrade the degree of soundness of a wheat sample.
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Figure 1 .1 : Major Shapes

Reproduced from Figure 46
Owen and Ainslie

-- Dorsal View

on page 57 of
119711.



Elliptical Ovate
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Figure 1.2: KerneI Anatomy

Reproduced from Figure 47 on page
Owen and Ainslie 119711.

58 of
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Poor growing conditions can degrade wheat kernel sound-

ness. Kernels from plants that vrere lacking water wiIl of-
ten be immature, small and shrivelled. Kernels from plants

which have had secondary growth after surviving a drought

will often be small and bright green in colour. These are

called "grass green" kernels. A very common surface defect

is bleaching which occurs when the plant must survive a se-

ries of excessively rainy and dry periods. À bleached ker-

nel has an overall medium light shaded surface and is opaque

to transmitted light. Frost damage often will cause a peb-

bled or shrivelled kernel- surface.

The degree of kernel- soundness can be degraded by the ef-
fects of disease. Disease can occur while the plant,s are

growing in the fieldt after they have been swathed and are

lying in the field waiting to be combined, or while the re-

sulting grain is in storage. Several fungous diseases start
in the embryo of the kernel and cause a dark-brown discolou-

ration of the germ call-ed blackpoint, a common degrading

factor. This discolouration can spread over more of the

kernel and is then called smudge, another common degrading

factor. Other diseases that are less common are ergot and

sclerotinia. WhiIe in storage, grain can suffer the effects
of mildew, mold and, in the final stages, rot. Àt the onset

of mildew, gray tufts appear at the distal ends of the ker-

neI.
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Breakage is a common surface defect which degrades the

degree of soundness. Breakage of wheat kernels results from

excessive mechanical handling. It is characterized by a

broken kernel surface and the exposed bright white patches

of the starchy endosperm.

Many other less common forms of damage can degrade kernel

surface soundness. Rainy conditions while swathed wheat

lies in a field can cause sprouting from the embryo which is
a result of premature germination. A sprouted kernel wilI
have a distinctly swollen germ and the bran will be notice-
ably split over the germ from apparent growth. Severa 1

types of insect damage can occur. Midge damage takes the

form of gouging along the kernel crease while grasshopper or

armyworm damage normally appears as chewing along the kernel

sides. Other less common factors that degrade kernel sur-

face soundness are fireburning, binburning and staining from

kernels coming in contact with foreign substances.

E) MAX]MUM LTMITS OF FOREIGN MATERIALS. Maximum Iimits of

the amount of cereal grains other than wheat and of the

amount of foreign material, other than cereal grains are set

for each grade of wheat. These limits, especially for for-
eign material other than cereal grains, are very smalI.

Most foreign material in a wheat sample will be the same

size as the wheat kernels since the grain is usually cleaned

before sampling. Bar1ey kernels are a common foreign ma-

terial found in wheat samples. Barley kernels have a size
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similar to that of wheat kernels but have more pointed ends

and are more yellow in colour. Other examples of foreign

material are large weed seeds, thistle heads or pieces of

stems and stones. Most foreign objects can easily be dis-
criminated from wheat by their shape.

1.3.3 Standard Samples

Each year standard samples of wheat and other grains are

prepared for use by grain inspectors [ouke, 19822 3] [Canada

Grains Counc i1, 1982: 53 I . Two sets of samples are estab-

lished, one for use at the producer or primary leve1 and the

other for use at the export leveI. Standard samples are

necessary becauser ês has already been shown, the Canadian

grain grading system depends to a large part on the ability
of inspectors to visually assess the appearance of grain

samples. The standard samples do not change the grade spec-

ification, but rather they are used as guides to grading.

Standard samples are a visual interpretation of the grade

specifications that reflect the growing conditions of the

year for which they were prepared.

The use of standard samples stresses two important ideas.

First it reaffirms that wheat grading in Canada is very sub-

jective and that therefore the use of an effective automated

grading system would be advantageous. Secondly, it indi-
cates that the thresholds of the various visual features

used in grading change subtly from year to year. Therefore,
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any automated wheat grading system must be capable of peri-
odic fine tuning through the manual entry of new standards.

More importantfy, the decision structure used in an automat-

ed grading system shoul-d roughJ-y model the current grading

procedure so that new grading criteria set by a Standards

Committee can be easily mapped into the machine's decision

structure.

1.4 REOUIRED IMAGE FEATT'RES

The grading factors used in the current Canadian wheat grad-

ing systemr âs outlined in the previous section, indicate
certain image features that a computer image analysis system

should be capable of extracting for grading wheat. This re-
search has qttempted to develop the techniques required to

extract those features. This section is an overview of

those features.

The most important class of features for wheat grading

are those that describe the size and shape of an object's
outline. The length, width and area are the most essential

elements of this class of features, buÇ others should be in-
cluded so that a more accurate description of the shape can

be made. Shape features used in wheat grading can be used

to distinguish wheat kernels from other cereal grains or

foreign objects. This function is particularly important to
later stages of processing where only objects identified as

r,¡heat kernels by shape analysis should be scrutinized fur-
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ther for grading factors. The shape of the object outline
can also be used to discriminate between durum and common

wheat cfasses, and between broken or shrivelled wheat ker-

nels and plump wheat kernels.

The size and shape of certain anatomical parts of wheat

kernels can sometimes be used for varietal determination.

However, these features are less regular because of the sub-

tle differences between wheat varieties and so their use has

not been pursued in this research.

Surface texture is another broad class of features that

is necessary for wheat grading. The description of surface

texture usually includes the average gray level of a surface

and some description of the variation of surface gray leve1

versus distance and direction. Normally some form of spa-

tial frequency transformation is employed, which facilitates
in differentiating between micro-texture (tine) and macro-

texture (coarse) components of the texture.

The surface texture of the overall visible kernel surface

is useful. Vitreousi"== can be indicated by a dark endos-

perm. Àn exposed starchy endosperm appears as extremely

Iight patches and indicates a broken surface.

À dorsal view of a wheat kernel is the most productive on

which to perform a texture analysis. The surface texture on

the dorsal side is not dominated by the effects of the cre-

ase, which appears on the opposite side of the kernel.
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Àlso, the germ is visible in a dorsaL view. A l-ocalized

texture analysis of just the germ should be performed for
each kernel for which a dorsar view is available. The germ

is usualry the area first and most affected by fungous dis-
eases and is the area in which sprouting occurs. Thus a

texture analysis of the germ should facilitate the detection
of diseases such as blackpoint and smudge and the detection
of sprout ing.

The ventral side of the kernel is the most probabre side

to face up due to the kernel shape. Therefore the ventral
view is more common. on this side a localized texture anar-
ysis along the crease could detect midge damage.

Wrinkling is a fine surface defect that, when present,

affects the entire kernel surface. Wrinkling is caused by

frost damage or poor growing conditions. It is most easily
discernable when the incident ilrumination makes a smarl an-

gle with the local surface. Thus wr i nkJ- i ng should be

searched for by using a localized texture analysis near the

lateral limb or edge of the kernel image where light from

the source of illumination only grazes the surface.

Many of the previously described texture features are Io-
cation dependent. obviousry, some features are required not

only to determine kerner orientation, dorsal or ventral side

up, but also to detect and specify the location of the major

anatomical- features in the image of the visibre kerner sur-
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face. The detection and specification of only two anatomi-

cal features can provide aIl of the location data required.

First, the crease is the most obvious part of the kernel

anatomy and its presence or absence specifies the kernel

orientation, either dorsal or ventral side up. Therefore

the detection of the crease and the specification of its 1o-

cation is necessary to determine the kernel orientation and

to guide texture analysis or shape analysis of the crease.

Second, if the kernel is dorsal side up then Lhe germ should

be located in order to guide Lexture analysis of the germ.

Colour is a feature that was not used in this research.

!.lhen restricting the grading problem to the hard red spring

class of wheat, âs v¡as done in this research, colour is not

normally important. However, it is useful in detecting

"grass green" wheat kernels and white wheat classes as for-
eign material-. Theref ore the use of col,our should be con-

sidered in future research.

A summary of the desired features discussed in this sec-

tion is as follows. First, a description of the contour

shape of all the objects in an image is required. Second, a

decision and a location specification for either the crease

or germ, depending on kernel orientation, is required for
each object identified as wheat. FinalIy, a description of

the texture of each visible area of interest should be ob-

tained. The texture analysis should characterize the energy

of the texture and describe its spatial frequency spectrum.
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The areas of interest for texture analysis on the visible
kernel surface are the overall visibre kerner surface, ei-
ther or both lateral- rimbs of the kerner and, when either is
available, the germ and the crease.

1.5 OUTLINE OF THIS THESIS

chapter 2 of this thesis describes the machine ranguage

package, IMP, which is the software portion of the custom

made digitar image acquisition system used during this re-
search. rMP performs many of the typical functions found on

commercial imaging systems. certainly, IMp is not tailored
specifically to the wheat grading probrem, but the writing
of it was necessary for the completion of this research and

the needs of the research team.

chapter 3 presents the object perception probrem. sever-
ar approaches were .developed during the evorution of a sat-
isfactory object detection method and these are presented

first. Then, a superior approach is presented which uti-
lizes a priori knowredge of wheat grading image characteris-
tics to constrain the object perception problem. The re-
sulting object detection argorithm is efficient, robust and

produces estimated object contours that are accurate even

for many poor images. Finarry the shape anarysis method,

that is used for providing features describing each object's
contour, is presented.
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Chapter 4 describes the techniques devised to detect and

specify the anatomical- parts of objects identified as wheat

kernel-s. Spec i f ical-Iy, the parts detected are the crease

and the germ.

Chapter 5 presents a two-dimensional signal processing

technique that vras used for the texture analysis problem.

With it texture is modelled as a statistical process so that
not only can features be calculated, but also an estimated

povrer density spectrum and a synthetic texture obeying the

model- can be produced.

The Software Manua1 Supplement to this thesis, a volume

separate from this one, lists the source code of the pro-
grams which implemented the procedures discussed in the

above mentioned chapters. These Iistings are in the same

order in which the corresponding procedures are presented.



Chapter II
IMAGE MANIPT'LATION PACKAGE

2.1 INTRODUCTION

The Image Manipulation Package, hereafter called IMP, is the

software portion ot. the digital image acquisition system

used during this research. IMP is a package of 8086 assem-

bter Ilntel,19B3] routines written for this research to
provide software facilities typically found on commercial

imaging systems. The user possessing only an elementary un-

derstanding of the irnage processing architecture of IMP will
iind the terminal discourse offered by IMP self-explanatory,
most of it being in a menu format. IMP is loaded and exe-

cuted using the Digital Research CPA.tt-86 operating system

lOigital Research, 19821 . Some of the CPA"I I/O anð, disk op-

erating functions are in turn used by IMP. Figure 2.1 shows

the main IMP command menu. Figure 2.2 on page 25 shows a

block diagram of image processing in IMP.

The hardware portion of the system was previously built
by Jack Sill of the Department of Electrical- Engineering at

the University of Manitoba. The combined, custom made imag-

ing system is intended for use with the automated wheat

grading project. The images processed in this research were

all initially acquired by it and some of the intermediate

23
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2.2 SUUMARY OF THE IMAGING HARDT{ARE

À block diagram of the digital image acquisition system

hardware is shown in Figure 2.3.

Images are provided by a Fairchild CCD3000 black and

white video camera in the conventional N. T. S. C. video

format. The image detector in this camera is a Charge

Coupled Device array which produces 482 rol¡s by 377 columns

of usable pixel val-ues. The photosites in this array are

arranged on a rectilinear lattice and are precisely spaced

1B microns apart vertically and 30 microns apart horizontal-
Iy. This arrangement produces images which have more verti-
cal spatial pixel density than horizontal spatial pixel den-

sity, a problem which is later solved by the image

equalization facility of IMP.

The advantages of this camera over a comparable vidicon

tube camera are its higher dynamic intensity range of 1000

to 1, rugged construction and, most importantly for this ap-

plication, synchronization signals that are made available
to the external world. These signals consist of the compos-

ite blanking and sync, the field index pulse and the master

clock signal. The frame index pulse indicates the start of

a new frame when the scan is in the top left corner of field
one. The masLer clock signal indicates when the leve1 of

the analog video output corresponds to a nelr pixel value.

These synchronization signals provide timing for the other

elements of the imaging system and, in part, permit the di-
gitization of the analog video signal.
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The lens system employed for the video camera consists of

a 50 mm and a 75 mm'c'mount fixed focus rens and an exten-
sion tube set. This lens system provides a wide range of

distortion free image magnífications. Àt high magnification
a singre wheat kerner witl occupy the entire image, but at
the standard magnification used in this research a zs6 by

256 pixel window wirl represent a 2 cm by 2 cm subject area.

The source of. irlumination for sample righting vras a to-
roidal fl-uorescent lamp mounted on an adjustabre arm. For

normal operation this lamp wourd be mounted horizontalry
over the wheat sample and positioned so that the average an-
gre of irlumination to the imaged background surface was 45

degrees. The camera would then view the sample from above

along the axis of the lamp. This setup produced images with
minimal shadow and diffuse omnidirectional illumination of

the subject.

Digitization of the analog video camera output signal is
accomplished using a sony ct<20052 ÀnaIog to oigital frash
converter board. This product digitizes a single video

frame "real time", or in other words, within the confines of

the fifteenth of a second duration frame. This extremely

high data rate, which amounts to 7.16 million pixel values
per second, reguires that fast 100 ns RAM be used for image

storage. Each pixel varue is represented by one byte there-
by allowing 256 distinct gray levers. white is represented

as 255 and black as 0. Each e/o conversion is synchronized
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using a derivative signal

that a conversion is per-

i s ava i lable .

Storage of the digitized image is accomplished using 256

kirobytes of fast 100 ns static RÀM. This memory section is
equipped with sufficient mul-tiplexing to arrow access to the

memory bus by the A/o converter during image storage, by the

o/e converter during image display and by the sricer micro-
computer during computer access. Access by the computer ov-
errides the other two forms of memory access.

The video signar used to represent a stored image is gen-

erated by an Analog Devices HDG0805 Digital to Ànarog video

converter board. During image dispray, data from the image

memory is continuously inputted to the o/e converter along

with blanking and sync signars from the camera and a data

ready pulse from the A/D converter. The conversion of each

pixel val-ue is synchronized with the e/o converLer data

ready purse which indicates the availabirity of a nevr pixel
value on the memory data bus. The output from the o/e con-

verter board is a N. T. s. c. analog video signar that is
fed to the image display monitor. The image display monitor

cannot directly access the camera video output. consequent-

ly the operator is not provided with an instantaneous dis-
play of the camera output.
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The image digitization, storage and display elements of
the imaging system are coordinated by the camera interface
board. A major part of this board is the pixer counter.
This counter resets at the beginning of each frame and then

counts up with the camera master clock, thereby counting
pixel locations. The output from this counter continuousry
addresses the dispray image memory except during computer

access of the this memory section. Thus the display image

memory is continuously scanned in synchronism with the cam-

era image scan during both image storage and display. This
synchronized scan guarantees that during image storage, âDy

one pixel's val-ue is always stored into the same memory ro-
cation. However, the video output is stored in the inter-
laced N. T. s. c. format and includes alr of the margin

blanking. Therefore any software package attempting to ac-
cess a particular pixel value must account for the awkward

storage format when calculating the value's address. The

camera interface board arso controls the duration of the im-

age storage, also ca1led frame grabbing, process. Normarry

the imaging system witl dispray the image stored in display
memory until the system's microcomputer initiates a frame

grab. À frame grab is triggered by a pulse on the pcs4 line
from the microcomputer board. However, the actuar storage

does not begin until Lhe next start of a video frame, which

is signalled by the frame index pulse. When this occurs,

the write rine to the image memory is set row by the inter-
face board and storage begins, rasting one fifteenth of a
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second until the next frame index pulse. This frame grab

control- ensures that the stored image data represents one

indi.vidual video frame in its entirety.

The computational power indigenous to the imaging system

is provided by a Slicer computers rnc. singre board computer

Isricer computers, 1983]. This computer is based on the rn-
tel iÀpx 80186 cpu. The board is equipped with zs6 kilo-
bytes of dynamic RAM. In addition, the board has two as-
ynchronous seriar ports, RoM with a monitor program, a

floppy disk controller and a hard disk controller interface
port. Àsynchronous Port 1 communicates with the operator's
terminar and Port 2 ís used for sending data to and from a

Iarger host computer.

The remaining elements of the imaging system are a visual_

500 terminal, two B inch floppy disk drives and a zs6 kiro-
byte RAM extension board. The terminar has graphics capa-

bitity which is effective for presenting graphics disprays
such as intensity histograms. The disk drives provide per-
manent storage for programming and image data. The exten-
sion memory provides space for temporary storage and pro-
cessing of an image while not being displayed.

rn totar the slicer computer has 768 kirobytes of RÀM un-

der its control. The on-board 256 kirobytes of RAM have the

lowest address range, 00000H to 3FFFFH. rnterrupt vector
addresses, the Digital Research cp/l"I operating system, âDy
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user programming and some of the non-displayed image pro-

cessing scratch pad area reside in this memory section. The

extension board's 256 kilobytes of RAM occupy the middle ad-

dress range, 40000H to TFFFFH. This section is used entire-
1y for non-displayed image processing scratch pad memory.

The display image memory has the highest RÀM address range,

80000H to BFFFFH. When it is not being accessed by the Sli-
cer computer or accessed for storing a grabbed frame, the

contents of this section are continuously being displayed.

2.3 DISPLÀY IMAGE FACIT,ITIES

Two display image facilities of IMP do not have their own

program section, but rather are handled within the master

IMP program section. These are the single display image

grab, caused by entering 'G', and the repetitive display im-

age grab, toggled by entering 'R'. Both of these commands

trigger the storage of the next camera video frame in the

display memory by pulsing the Slicer PCS4 l-ine. Hov¡ever,

v¡ith the repetitive display image grab, the frame grab is
triggered once every half second until another command is
entered. This alIows the operator to adjust the experimen-

tal setup and observe the results on the image display moni-

tor.

The remaining display image facilities have their ovrn

program sections which are called from the master IMP pro-

gram section. They operate on the display image memory and
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do not affect an egualized image that may be stored in the

mid-range memory. These routines are described in the fol-
lowing subsections.

2.3.1 Windowinq

The routine wINDow occupies the rargest program section
within rMP. wINDow is not directl-y carled by the master rMp

section, but instead is called by some of the display image

routines. wINDow assists the operator in determining and

specifying a rectangular subimage of the dispJ-ayed image.

on return from wINDow, the calling routine is suppLied with
the subimage coordinates selected by the operator.

wrNDow draws a rectangular border around a subimage of
the dispray image. Each pixel on the border is set to ei-
ther brack or white, whichever is most different from its
previous val-ue. The di splay image i s not af f ected perma-

nently by wINDow since the old values of the border pixels
are saved and then restored when the window is moved or re-
moved.

Two modes are availabre for positioning the displayed
window. In the "direct" entry mode, the windov¡ coordinates
are directly entered by the operator. rn the "adjust', entry
mode, the position or size of a previousry existing window

can be adjusted. In this mode the numeric keypad keys are

used to adjust the position and the cursor positioning keys

are used to adjust the window size.
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The subimage coordinates obtained by using WINDOW are not

only used by the calling routine, but also saved in the IMp

status block for use by other routines until the next frame

grab. Thus a subimage that is specified during ZOOM can be

HISToGRAMmed and later ÀcQUrREd without having to respecify
ir with wrNDow.

An example

ure 2.4.

image with wINDOw in use is shown in Fig-
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Figure 2.42 WINDOWed Subimage
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2.3.2 Intensitv Calibration
The routine CALIBRÀTE generates the intensity calibration
curve that can be used to calibrate a display image which is
being equalized and transferred to the equalized image memo-

ry. This curve is represented by a 256 byte look-up table"

The use of calibrated intensity images ensures that the

reLationship between pixel value and surface reflectance is
reproducible from image to image. In properly calibrated
images, surface reflectance and the corresponding pixel val-
ue are linearly related. A pixel value of 0 represents a

reflection coefficient of 0 which is absolute black, and a

pixel value of 255 represents a reflection coefficient of 1

which is total diffuse reflection of incident light, in oth-

er words total- white. Intensity calibration is particularly
important for images from which gray level texture features

are to be extracted.

Once the camera, Iens and lighting are prepared for a

calibrated imaging session, the operator performs an itera-
tive procedure with CALIBRATE. Firstr ên image of a gray

step of a cal-ibrated paper gray scale is grabbed. Then the

gray step itself is WINDOWed by the operator and CALIBRATE

determines the average pixel value of the subimage. Finally
the operator enters the calibrated reflection coefficient of

the gray step¡ âs determined by the manufacturer. CALIBRATE

multiplies the inputted value by 256 to yield the corre-
sponding calibrated pixel value. In this wây, several
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points along the calibration curve are obtained. Àt the end

of any iteration, the operator can have CALIBRATE display

the current list of calibration curve coordinates or cause

CALIBRATE to start the entire procedure over again.

Àfter the operator is satisfied that a sufficient number

of data pairs have been entered to specify the calibration
curve, CALIBRATE generates the curve. The minimum number of

pairs allowed by CALIBRATE is two since two points can de-

fine a line. The maximum number is arbitrarily set to fif-
teen. CALIBRATE first enters each data pair into the curve

look-up table by setting the value of the byte representing

the average pixel value to the corresponding calibrated pix-
eI value. Then the curve is completed by linear interpola-
tion between the data points and by Iinear extrapolation
from the outer data points to both end limits of the curve.

Before acknowl-edging that a successfuf curve has been gener-

ated, CALIBRATE ascertains that the curve generated repre-

sents a one-to-one strictly increasing function. If the

generation process is satisfactory, CÀLIBRATE displays the

resulting curve to the operator using the graphics capabili-
ty of the Visua1 500 terminal before returning to the IMP

master program. A typical graphics display of a calibration
curve is shown in Figure 2.5.

Following the generation of a calibration curve, the cam-

era, Iens and lighting setup are not changed until the end

of the calibrated imaging session. To do so would invali-



39

CÊLIBRÊTION CURVE

C|ì- I EfñT€D
I xf€¡lst IY

Prør ra l.t to .r i t C¡ìL l8e^l€

Figure 2.52 Typical Calibration Curve

date the calibration curve. During the session, the image

equarization routine ÀcQUrRE wirr, when commanded by the op-

erator, use the curve to intensity calibrate an image being
moved into the equalized image memory.

2.3.3 IntensiÈv Histoqramminq

The routine HrsroGRAM produces a histogram of the pixer var-
ues in the dispray image or of the pixel varues in a rectan-
gurar subimage serected by using wINDow. This histogram is
displayed graphically on the Visual 50O terminal.

À pixel intensity histogram describes the pixer varue

distribution of an image. Knowredge of this distribution
can assist an experimenter in estimating the effectiveness



of intensity thresholding for image segmentation.
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if the

pixel values representing an object and the pixel var-ues

representing its background are tightly crustered about

widery differing average values, then threshording wir-l be

effective for segmentation. The histogram of a suitable im-

age for thresholding will be distinctly bimodar. In addi-
tion, the minimum between the two histogram peaks will indi-
cate the best threshold value.

The histogram plot produced by HrsroGRAM has a normalized

vertical scafe. The maximum val-ue on the vertical frequency

of occurrence axis is set to the maximum frequency of occur-
rence found by HrsroGRÀM for any pixel varue in the seÌected

subimage. Thus the histogram bar for any pixel varue will
fit within the histogram plot. HrsroGRAM arso disprays the

total pixels within the serected subimage and the maximum

and minimum pixel values found. The histogram of the subi-
mage shown in Figure 2.4 is shown in Figure 2.6"
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Figure 2.6: Histogram Display

2.3.4 Intensity Thresholdinq

Display images can be intensity thresholded by using the

routine THRESHOLD. The result is a binary image which is
placed in the display image memory. À binary image consists

of totally white or totally black pixet val_ues.

THRESHOLD is useful for testing the suitability of inten-
sity thresholding for segmenting a particular image. Typi-
cally an experimenter would use HISTOGRÀM to determine a

suitable threshord varue before using THRESHOLD to view the

result of thresholding an image at the selected pixel value.

THRESHOLD stores an exact copy

egualized image memory beginning

previous equatized image will not

the display image into
40000H provided that a

overwritten or the op-

of

at

be
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erator has agreed to the equalized image's destruction.

Then the operator can have THRESHOLD display binary versions

of the stored image thresholded at any possible pixel value,

in either positive or negative form. In addition, THRESHOLD

can grab and store nev¡ versions for thresholding. When

THRESHOLD is exitted, the stored display image is copied

back into the display memory automatically.

Figure 2

Figure 2.4

.7

at

shows the result of

160.

thresholding the image in
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Figure 2.72 THRESHOLDed Image
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2.3.5 Subimaqe Zoom

Enrarged views of rectangurar subimages of the disprayed im-

age are produced by the routine zooM. This facirity can be

an important aid for the operator in determining whether a
small subimage possesses a desired feature. Àn enlarged

view is generaLed by expanding the subimage to fill the en-

tire display. Each pixel in the original subimage is repre-
sented by a rectangre of pixers that have the same val-ue as

the represented pixel.

when zooM is carled, the dispray image is immediately

stored in equalized image memory, provided that a previous

equalized image will not be overwritten or the operator has

agreed to its destruction. The dispray image is stored in
384 byte segments, one for each image row, in non-interlaced
format beginning at 52D00H. This memory organization all-ows

an equalized image, that has at the most 192 rows, to reside
in the equalized image memory while zooM is in operation.
Then I^TrNDow is called so that the operator can specify the

subimage which is to be enlarged. once the window coordi-
nates have been obtained, ZOOM first creates a row and a

column look-up tab1e. These look-up tables specify, for
each pixer in the nevr zoomed display image, the row and cor-
umn of the pixel in the stored old image which is to be rep-
resented. A row range and a column range of display pixers
will represent one stored pixel so that a rectangre of dis-
play pixels will take the same value as one stored pixel"
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Then an iterative procedure is performed until the display

image is complete. This procedure maximizes the speed of

execution. For each display row range corresponding to one

stored subimage row, the corresponding display image roh' is
stored in a data segment array. Then, since all rovrs in the

display row range are the same, a version of the data array

is copied to each rovr of the range. À trait of this method

is that the zoom operation is faster for smaller subimages

since they require fewer display image row ranges.

When ZOOM is exitted, the stored image is restored to the

display image memory in exactly the same form as it was in

before ZOOM was caIIed.

F i gure

in Figure

shows the result of zooming the subimage shown2.8

2.4.
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Figure 2.82 ZOOMed Image
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2.4 IMÀGE CON\¡ERSION FACILITIES

The primary purpose of the imaging system, of which rMp is a

part, is to form digital images and after suitabre prepara-

tion dispatch them to the externar world for storage anð,/or

processing. ACQUTRE, one of the two image conversion rou-
tines, performs the required image preparation. This prepa-
ration includes fashioning the desired image into the stan-
dard row/column f ormat, egualizing it so that the ror.I and

column spatiar densities are identical, and if necessary in-
tensity calibrating its pixel varues. The most important
image preparation, however, is to extract, when necessary,

only a rectangular subimage of the grabbed display image.

By having a singre extracted image already serected by the
operator and prepared by ACQUIRE, the routines that send the
image to the externar world do not require their own image

preparation facilities. rnstead they are presented with a

simpre well defined image that is to be dealt with in its
entirety and which is ready to send. This prepared image

has its own storage area called the equalized image memory

which is addressed from 34800H to TFFFFH.

The other image conversion routine is Drspl,Ay. rt is the

complement of ÀcQUrRE. DrsplÀy copies a converted form of
an equarized image in the equarized image memory to the dis-
play image memory. Às a result the operator is provided

with a displayed version of the image resident in the equal-
ized image memory. This image wourd normarry originate from
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the outside world. The DISpLÀy conversion consists of re-
versing the equarization process, interracing the image and

finally formatting it so that it will appear centred on the

image monitor. Drspl,Ày does not harm the egualized image.

once cal-red, DTSPLAY functions automaticarly without requir-
ing any further commands from the operator.

Equalization and the reverse process, hereafter calred
de-equalization, are the most computationally expensive pro-
cesses invol-ved in image conversion. Às explained in sec-

tion 2.2, the image detector array of the system's camera

has a rectilinear lattice of photosites which are precisely
spaced 18 microns apart verticarly and 30 microns apart hor-
izontally. The image produced has 492 rows by 377 corumns

of valid pixer varues. The inequality in spatial pixer den-

sity is corrected by rMp since conventional digital images

possess equal vertical and horizontal pixer densities. Many

image processing programs on a host computer wourd expect

this format. The egualization process creates an image that
imitates the image that would resul-t if the imaging array
spacing were 18 microns by 18 microns. The maximum equar-
ized image size then is 482 rows by 627 columns. rt can be

shown using two-dimensional sampling theory that since the

vertical pixer density is not being changed, image eguariza-
tion can be considered a one-dimensional problem wherein im-

age rows are dealt v¡ith separately. The process adopted for
equalization is rinear interpolation. During equalization
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groups of three contiguous dispray image roÌ{ pixers are con-

verted into f ive contiguous equalized image ror.¡ pixels. The

reverse occurs during de-equalization. rf an equalized im-

age is unmodified, the de-equarized process will create from

it an image identical to the display image from which it
originated, ignoring round-off error. Both processes are

l_
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Figure 2.9'. Equalization and De-equalization Process

shown graphically in Figure 2.9.

chosen for two reasons. First it
alIy expensive than the exhaustive

Second, the exhaustive sampling

Linear interpolation was

is much less computation-

sampling theory solution.
theory solution will cause
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the formation of multiple vertical edges in the equalization
of a display memory image containing only one vertical- edge.

ACQUIRE gives the operator several options before acqui-

sition begins. The entire grabbed display image can be ÀC-

QUIREd or either WINDOW can be called to specify a subimage

to be ACQUIREd or the coordinates of a previous subimage, if
available, can be used to specify the subimage to be AC-

SUIREd. If an intensity calibration curve is available and

calibration is requested by the operaLor, ACQUIRE wiIl
translate each pixel value to its calibrated value during

the ÀCQUIRE operation.

Figure 2.10 shows the result of DISPLAYing

version of the subimage shown in Figure 2.4.

the ACQUIREd
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Figure 2.10: DISPLÀYed Subimage
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2.5 EOUÀLIZED IMÀGE FACILITIES

The equalized image routines provide an interface between

rMP and the e'xternal worrd. Their purpose is to send a pre-
pared image in the egualized image memory to the external
worrd for storage or processing and to accept a properly
formatted image from the external world for temporary stor-
age in the equarized image memory from which it can be moved

to the display memory for inspection by the operator. The

routine LINK handres transmission of equarized images to and

from a host computer. rn addition, LINK can connect the im-

aging system terminal to the host computer arlowing the op-

erator to communicate directry with the host computer. The

routines sroRE and RETRTEVET âs their names impry, handre

the permanent storage and retrieval of equarized images on

floppy disk. The equalized image routines do not affect the

dispray image memory contents. These routines are described
in the following subsections.

2.5.1 Data Linkinq to a Host Computer

The routine LrNK performs all of the functions of data rink-
ing rMP to a host computer. These functions are image

transmission to the host computer, image reception from the

host computer and a transparent mode in which the imaging

system's terminar is virtually connected to the host comput-

er. when carred, LINK initia]-Iy enters the connect mode.

while in connect mode LrNK rerays arr characters from the

host computer to the terminar and rerays all characters from
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the terminal consore, except three control characters, to
the host computer. These contror characters are ctrl-p,
ctrl-R and ctrl-T. ctrl-T initiates image transmission,
provided an image is resident in the equarized image memory.

ctrl-R prepares LINK for the reception of image data. ctrl-
P allows the operator to terminate the LINK session.

The data channel for which LINK is designed is an asynch-

ronous duplex serial line which emproys the xoN/xoFF proto-
cor for data fl-ow contror and Àscrr for information coding.

This type of channer is slow for the massive amounts of data

needed to represent most images. Many sophisticated imaging

systems use a high-speed synchronous pararrer data channel

for rapid image transfer. However several reasons motivated

the use of the srower channer for image transfer with LINK.

First, speciar hardware is normalry not required for an as-
ynchronous serial rine since most computers are already

equipped with this type of line for connecting ports to ter-
minars. conseguently, the install-ation of this type of com-

munication line is simpre and inexpensive. Additionally,
the 9600 baud Ðata General port line used in this research

typicarry permits the transfer of a 200 rovr by 2oo cor-umn

image in 45 seconds. This is not an unreasonable time re-
quirement for transferring an image having the standard size

used in this research. Finally, by connecting LINK to the

port line of a host computer, onry one communications rine
is required for the operator both to interactively command
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the host computer and to transfer image data. rmaging sys-
tems that employ a high-speed data rine normarly require a

separate slower terminal communication line that allows the
operator to command the host computer.

LINK does not quite occupy the l-argest program section in
rMP, yet it is the most complicated of the rMp routines.
LINK's complexity is a resurt of its unusual structure.
LrNK consists of a set of asynchronously executed program

units which are continuously polred in a cycrical fashion.
some units are always executed once every cycre whire others
are incruded in the porring cycle onLy during certain opera-
tions. rn essence, these units exchange the information,
which LrNK is transferring, amongst themserves and the out-
side world. Hence an effective v¡ay of visualizing the oper-
ation of these units is as an information circuit" The LINK

information circuit is shown in Figure 2.11 on the next
page.

The LINK information circuit contains five entities which

both consume and produce information. These are the termi-
nal, the host computer, the receive and transmit character
buffers and the eguarized image memory. The equarized image

memory is implied but is not shown in Figure 2.11. The 16

byte character buffers are necessary because of the xoN/xoFF

protocol. without buffering, the deray caused by converting
from seriar AScrr to an internal byte representation and

back to serial AScrr during the relay of information between
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the terminal and the host computer can al1ow the input buff-
er of either the terminal or host computer to overflow be-

fore the sender is signalled to wait. Each character buffer

used by LINK possesses its olrn input data flow control- en-

abling it to have XON/XOFF control over the entity sending

to it. The terminal- and host computer appear to LINK as I/O
ports since the Sl-icer interfaces to the serial asynchronous

lines of each of these entities by using its on-board Sig-

netics SCN2681 Dual Universal Àsynchronous Receiver/Trans-

mitter (nUent). Channel A of the DUART communicates with

the terminal at 9600 baud and Channel B of the DUART commu-

nicates v¡ith the host computer.

The connections between the above entities are provided

by six independent program sections. These sections commu-

nicate to each other by setting status fIags, incrementing

pointers and changing subroutine start addresses. The oper-

ation control section, which is subdivided into five subrou-

tines, âllows the operator to control LINK. This section

receives aIl characters entered at the terminal console by

the operator. During connect mode the received characters

are copied into the transmit buffer unless one of the three

control characters happens to be intercepted. I f a control-

character is detected, the operation control section changes

LINK's mode of operation to either receive mode, transmit

mode or control mode, depending on which control character

was entered. The control mode is not readily apparent to
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It is entered when the operator has issued a

questionabre command or at the end of transmit or receive

mode. rn command mode all other processing stops while LINK

prompts the operator for a further' entry. The transmit
buffer unroader section, the receive buffer roader section
and the receive buffer unloader section perform the opera-

tion implied by each of their names. The receíve buffer un-

l-oader section has the additional task of sending command

status information character strings to the terminal. These

character strings are kept in a data bl-ock and are refer-
enced by a character pointer and a next string pointer.
They enabre L]NK to prompt the operator during command mode

or inform the operator of an image transfer operation's sta-
tus during transmit or receive mode. Àrl four of the above

program sections take part in the xoN/xoFF protocol by de-

termining a buffer's status when loading or unloading it and

by transmitting xoN or xoFF to a sender when required. The

last two program sections are the image transmit section and

the image receive section. Each of these sections performs

the function suggested by its name. During transmit and re-
ceive mode, ihe operator is continuously informed of the

current number of pixel values transferred. During image

reception a tally of character, parity, missing row and row

size errors is kept. This tarry is presented to the opera-

tor at the end of reception.
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LrNK transfers image data using an elementary code in-
tended for use on ÀscII communication channers. The use of
this code is necessary to avoid the unintentional transmis-
sion of control characters and to avoid the use of the pari-
ty bit. A ravr pixel val-ue is represented by a byte or eight
bits. However in ÀscÏr the eighth bit is only used for par-
ity checking and therefore it shourd not be used when trans-
mitting data. rn addition, the lowest 32 characters of the
128 character AscIr code are control characters and their
unintentional use on some host computers can produce unex-
pected results. Consequently only 96 possible characters
can be safery transmitted as data using Ascrr. The image

transmission code uses 3 of these characters , 1!), <"> and

<#>, to specify the ranEe of the succeeding pixel values to
be 0 to 84, 85 to 169 or 170 to 2ss respectively. These are
calred the pixel base characters. once a value range is set
by a pixel base character, each of the succeeding contiguous
pixer varues in the current rov¡ that farrs within that range

is transmitted using a pixer offset character. pixel offset
characters are the 86 characters between <$> and <y> inclu-
sive. Each corresponds to an offset value between 0 and g5

which specifies the pixeL value by its offset within the
range. when a pixel varue is encountered which ries in a

different range, a new pixel base character is transmitted
before coniinuing. rmages are transmitted in row major

f orm. Each rohr begins with a pixel base charact,er and ends

with one .lt character. The image is terminated with two
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.lt characters. Each record of transmitted image data is 79

characters rong, the first being a brank. The first record

contains the image rcw and col-umn sizes as dec imal- numerals.

For most images, this algorithm can represent an image by a

total number of character transmissions which is onry

slightry greater than the number of pixers making up the im-

age.

The present version of LÏNK is designed for connection to
either a Data General or a DEc 9600 baud port rine. LINK

prepares for this environment by first querying the operator
for the type of host computer and then sending the appropri-
ate setup conLrol data when it begins operation. one con-

trol string is sent to the visual 500 terminar placing it in
either the D. G. Dasher 200 or the DEC vr52 terminal emura-

tion mode. other control- informaLion is sent to the DUART

to set up its channel B interfacing with the port line. The

receive buffer unloader section sends command status control
sLrings appropriate for the current terminal emulation mode.

These are obtained from a contror string tabre. rf LINK is
required in future to communicate with a different host com-

puter on a different serial asynchronous communication 1ine,
LINK can be reconfigured simply by changing the setup con-

trol data and adding the correct control strings to the con-

trol string table
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2.5.2 Storinq and Retrievinq Imases on Floppv Disk

Equalized images are stored and retrieved on ftoppy disk on

the imaging system's two I inch floppy disk drives by using

the routines sroRE and RETRTEVE respectivery. Both routines
utilize the BIOS disk operating functions of the C?A"I oper-

ating system.

The routines STORE and RETRIEVE all-ow the operator to
permanently archive essential images for future use. This

facility is particularry attractive when the host computer

has insufficient storage space for the requirements of the

operator. If this is the case, the operator can store both

unmodified. equalized images and images that were the resurt
of processing on the host computer and subseguently trans-
ferred to che imaging system using LINK. Àpproximately 16

images of the standard size used during this research, 2OO

rows by 200 columns, can be stored on one two sided double

density floppy disk.

Both STORE and RETRIEVE perform rigorous checks on the

varidity of the operator's instructions. sroRE verifies
that the disk drive specified has been logged-in by Cp/M,

that the drive is not in R/o (read on]-y) mode and that the

specified file name is legitimate and not arready present on

the disk. STORE automatically appends ".IMG" to the speci-
fied file name so that image files are readiry distinguisha-
bre. sroRE also tests for directory and data area overflow

each time it writes a record thereby ascertaining that the
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disk has sufficient storage space for the image fiIe. If
overflow does occur, sroRE erases the new image file and

aborts. RETRIEVE verifies that the specified disk drive is
logged-in and that the specified image fite does exist on

the disk. RETRIEVE also automaticarry appends ".rMG" to the
specified file name.

Each time the cP/M disk operating system functions read

data from or write data to diskr ân individual record of 129

bytes is transferred. This record is exchanged between cp4.i

and a calling routine through the use of a 128 byte RÀM mem-

ory array called the DMÀ. The DMÀ is part of the Fire con-
trol Brock which specifies the required attributes of a disk
access. The first 128 byte record stored in an image fire
contains two two byte numbers which specify the row and cor-
umn size of the image and an B0 byte array which may contain
a one rine description of the image. rf the operator choos-

es to describe the image during storage, STORE wiII place

the l-ine of description in Lhe 80 byte array. During re-
trievar of the image, RETRTEVE displays this rine of de-

scription to the operator. The remaining records in an im-

age file consist of image data. An image is stored in ror¡

major form. Both sroRE and RETRTEVE manipulate these re-
cords in sequential access mode. Most of Lhe computation
performed by both these routines invorves formatting the im-

age data transf erred to or f rom the DM^ê, so that pixers are

handled contiguously without overwriting or interspersed
gaps.



Chapter III
OBJECT PERCEPTION

3.1 INTRODUCTION

once an image of a grain sampre has been suitabry formed

through imaging, digitization and storage, the singre most

important task for the computerized image analysis system is
the perception of all pertinent objects appearing in the im-
age" The initial object perception operation must provide
data which directs subsequent image analysis only on regions
of the image which are of interest. Logically the object
perception operation shourd be the first image analysis per-
formed. rn this research the object perception routine vras

invoked before any further analysis could begin on an image.

object perception here refers to the detection of an ob-
ject appearing in an image and the exact specification of
its location and contour. Although this is a rather limited
form of perception, it forms the basis for the primitive im-
age understanding which the machine must possess.

In this research an object
lengthl v¡ere specified with a

code, ((rorco)rae,a1, . rã!

sequentially from the point (ro

's position and contour of

version of the Freeman chain

- r ). The contour was traced

,co) in single steps, the di-
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co the column coordinate of this point. The ,(tt step re-
turned the trace to the point (ro,co). This code allowed
contours to be 8-connected. That is, two contiguous pixers
on a contour could be vertical, horizontar or diagonar
neighbors.

The objects that were to be perceived in this research
v¡ere usually kerners of wheat although other objects, such

as cereal kernels other than wheat and foreign material oth-
er than cereal grains, courd sometimes be expected. It s¡as

safery assumed that at least each object would be simirar in
size to a wheat kerner since, as described in subsection
1-3.2, grain sampres are partiarry creaned before being ana-

lyzed. The object perception argorithm used wourd have to
ignore grossry differently sized objects such as specks of
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dust or finger print smudges on the background. The object
perception algorithm wourd arso have to avoid classifying a

part of an object, such as a wheat germ, or a group of sepa-

rate objects as being one individuar object. rn addition to
the rimited size range, another characteristic of the ob-
jects to be imaged further simprified the object perception
problem. The objects would only appear in a single 1ayer on

a flat white background. Theref ore r Ers stated in Sec-

tion 1.1 , objects would no.t occrude one another and wourd

only sometimes touch. wiLh this constraint object percep-

tion $¡as effectively a two-dimensionar problem without the

attendant complexities of three-dimensional scene analysis.

The object perception problem in this research was basi-
ca1ly one of object-background image segmentation; an image

pixel had to be classified as being either an element of an

object region or an erement of a nonobject region, the back-

ground. Many techniques are availabre for such simple image

segmentation. These utilize a variety of approaches which

typicarry depend on the regurarity of the image characteris-
tics. A good example is template matching. However the im-

ages encountered in this research exhibited many irregurari-
ties. The surface gray l-evel and the shape of a wheat

kernel- were always unpredictable. The gray leve1 of the

background also had a certain amount of unpredictability due

to the effects of shadow. Às a resurt mosL simple segmenta-

tion techniques were inappropriate.
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The object perception techniques, which were developed,

relied on the one simple and regular characLeristic of the

wheat grading images used in this research: the object con-

tour edge $¡as always the most dominant type of edge. Con-

sequently every technique employed a step edge detector at

some stage of its operation to find object contour edges.

Each of these edge detectors estimated the gradient of the

gray levef surface in order to gauge the probability of an

edge at any particular location.

All of the computerized image analysis, other than the

elementary image preparation performed using IMP, vraS exe-

cuted on a Data General Eclipse þN/8000 Mode1 9300 mainframe

computer. This image analysis included the object percep-

tion procedures described in this chapter and the procedures

described in Chapter IV and Chapter V. Every routine was

implemented in FORTRANTT loata General, 1 983 I . The Data

General computer was the host computer referred to in Chap-

ter II as being connected to the digital image acquisition

system.

Two images vtere used in this chapter as subjects for dem-

onstrating the capabilities of the object perception tech-

niques. These images, JUMBLEI and JUMBLE2, are shown in

Figure 3.2 and Figure 3.3 respectively beginning on page 72.

Both of these images v¡ere intended to present a substantial

challenge to any object perception algorithm while at the

same time remaining within the limitations of this research.
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JUMBLE1 was the most formidable of the tvro images because it
exhibited a wider range in wheat kernel sizes than normalry

encountered and because the contact point between two of the

touching wheat kerners in JUMBLE1 was totalry obscured by

shadow.

Two methods were used to present images in this chapter

and in Chapter IV and Chapter V. Unprocessed images, such

as JUMBLEl and JUMBLE2, were photographed directly from the

digitaJ. imaging system's image dispray monitor and disprayed

on 8t inch by 11 inch prints. The digital images shown in
chapter rI were also prepared this way. Representations of
processed images that v¡ere the resurt of some form of analy-
sis, such as edge detection, $rere produced using the symbol-

ics laser printer ISymbolics, 1982]. This printer was a pe-

ripheral device of the Data General- computer. wi th thi s

method an image pixel was represented by a 5 by 5 sguare of

dots, each of which coul-d be either "on", producing a black

dot on the paper, or "off" , leaving a vacant white dot on

the paper. Thus 26 gray levers courd be represented with
this method without the use of any intermediate photographic

processing. unfortunately the l-aser printer deposited ink
with slight inconsistencies which caused the obliteration of

subtle detail such as that seen on the surface of a wheat

kernel. consequentry image representations of unprocessed

digital images were not satisfactory when produced with this
method.
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The following four sections, 3.2 to 3.5, present four

different object perception techniques in the chronological

order in which they v¡ere developed during this research. In

effect the first three techniques represent the evolution of

the final superior technique, called the elliptical-object

detector. However each of these three can itself satisfac-

torily perform the object perception function provided the

limitations of the technique are recognized. The ellipti-

cal-object detector is the technique endorsed by this re-

search. Much of its underlying theory is presented in Sec-

tion 3.3.

Section 3.6 presents the shape description technique that

vras employed to generate shape features of an object contour

provided by an object perception technique.
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Figure 3.2t JLMBLEI
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Figure 3.3: JUMBLE2
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3.2 CTOSED-REGION DETECTOR

The first object perception technique developed in this re-
search utilized very little a priori knowledge of the images

to be expected. As explained in Section 3.1, a gradient
based step edge detector vras used to find possibre rocations
of the object-background border. The operation of edge de-

tection however only created an "intrinsic" image which,

along with noise caused by the presence of secondary edges

that r,¡ere not of interest, indicated possibre contour loca-
tions. Before the leap to the "segmented" image courd be

made, however, some technique based on the attributes of the
imaged scene had to be used to discard the false edges and

"string together" the real edge segments. with the forma-
tion of a segmented image in this fashion, the machine

would, with the simple object-background scenes encountered
in this research, be able to decrare objects found and

thereby accomplish basic object perception.

The technigue used to find object contours in an edge im-

age relied on a simple characteristic of object-background
images. rf the objects vrere not touching and the background

was entirely homogeneous (free of edges) then an object con-
tour wourd be a simpre closed curve that wourd contain any

edges present on the object's surface. Thus onry an edge

which formed a simpre closed curve and which was not con-
tained by another such closed edge would be decrared to be

an object contour. This technique was implemented in the
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program cLosED. This program inputted a binary edge image

and outputted a binary region image and a fire of Freeman

chain codes describing each detected object. rn the binary
edge image a pixel varue of 0 indicated no edge and one of
255 indicated that an edge was detected. rn the binary re-
gion image a pixel varue of 0 indicated background and one

of 255 indicated an erement of a decrared object region.

The edge detector chosen vras the Haralick 119g2l zeyo

crossing of second directional derivative edge operator.
This operator is one of several advanced edge operators that
represent a vast improvement, in terms of accuracy in edge

definition and performance in noisy images, over the classi-
cal gradient based edge operators such as the Roberts,

Kirsch and SobeI operators.

The cl-assical edge operators perform poorry in noisy im-

ages for two reasons. First, each operator uses only a

small window of image pixers in estimating the locaI gradi-
ent. second, each operator finds edges by merely threshord-
ing the gradient magnitude: when the magnitude is greater
than a preset threshold an edge is declared: otherwise no

edge is decrared. This method gives rise to a wide decrared

edge that poorly defines the location of what was a welr de-

fined edge in the oríginal image, and to a missed edge where

an obscure edge existed in the original image.
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the common sol-ution is to preaverage

the original Lmage before applying the gradient operator.
This approach can alleviate the noise problem so that noisy

edges are not overlooked and spurious edges are not generat-

ed, but only at the expense of further widening the declared

edges. In the images used in this research, the object con-

tour edge vras often obscured by detail on the object surface

and shadow on the background.

tor had to be used.

A more forgiving edge detec-

The Haralick edge operator combines two concepts to im-

prove its performance. First, for an edge pixel to be de-

cl-ared not only must the loca1 gradient magnitude be above

some threshold va1ue, but also a zeto crossing of the second

directional- derivative must occur nearby. The latter cri-
terion ascertains that the gradient has reached a loca1 max-

imum in the pixel's vicinity. Thus the declared edge will

be only one or two pixels thick and will provide a more ac-

curate estimate of the real edge's location. The effective-
ness of this approach is illustrated in Figure 3.4 where a

one dimensional image of a step edge was used.

Haralick's edge operator is
dreth [ 1980 J r,aplac ian of a

both operators use a form of

Marr-Hildreth edge operator i
edge detection I although it
noise. Before an edge pixel

similar to the Marr and Hil-
Gaussian edge operator since

the second derivative. The

s weIl-known for its accurate

suffers from susceptibility to

can be declared, the Marr-Hi1-
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dreth edge operator reguires that a zeto crossing of the La-
pracian, a type of second derivative, must occur nearby.
since the Laplacian is a nondirectionar operator, the Marr-
Hildreth edge operator is not sensitive to direction. How-

ever, Hararick's edge operator reguires that a zero crossing
of the component of the second directional derivatíve that
is in the same direction as the locar gradient must occur
nearby. consequentry the Haral-ick edge operator is sensi-
tive to direction and therefore can more effectivery differ-
entiate between spurious and genuine edges.

The second concept that gives the Haralick edge operator
its improved performance is the assumption that an image is
a noisy version of some underlying mathematicar modeL. Har-
alick assumes a two-dimensional cubic model. This assump-

tion does not by itself improve performance. Rather, it has



79

provoked the use of an estimate of the underlying model for
each sguare neighborhood of pixeJ_s. Thus an anaJ_ytical mod-

el is generated which can be directJ_y manipulated to find
the gradient at and second directionar derivative near the
centre pixel. This model tends to ignore noise in a fashion
similar to preaveraging. yet it will not cause the smearing
of an authentic edge to the extent of that caused by preav-
eraging. Thus it provides more accuracy in the definition
of an edge.

The method of estimating the two-dimensionar cubic model,
which underlied each pixel neighborhood, was al_tered for the
closed-region detector. Haralick employs a nine member or-
thogonal polynomial basis set to estimate the moder. Tn

this research a least squares estimate of the model was cal_-

culated directry. A pixel value in neighborhood row r and

neighborhood col-umn c vras modelled as:

f ( r, c ) = k r +k 2r+k 3c+ka r 2+k 
s rc+k 6c 2+k t r3*k6r 2c+ks rc 2+k 

r oc 3

Neighborhoods were square and had an odd number of rows and

columns so that a singre centre pixer was definabre. This
centre pixel occupied the origin position where r = 0 and

c = 0. For an M by M square neighborhood the equations
which estimated the varues of the constituent pixels could
have been written in matrix form as:
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or: Àx = B.

y2 v¡as larger than 10. Theref ore the

to this problem, such that I laX-A¡ ¡,
by:

r(:

least squares solution
is minimizeð,, is given

y2 "] lr,
Lo,"

,arl

10

T[ = (e e)

= A*B

T
1AB

where À* is the Moore-penrose inverse of A. Evidently each

estimated moder coefficient kl vras a linear combination of
the pixel val-ues in the neighborhood¡ or in other words each

coefficient v/as the dot product of the neighborhood and an

M by M mask. The mask values f or each coef f ic ient r¡¡ere cal-
culated once and rater perrnanentJ_y incorporated into the
program which executed the Hararick edge operator.

Ànother modification was made to the Haralick edge opera-
tor Lo arlow several- different pixer neighborhood sizes.
Haralick advocates the use of an 11 by 11 window. In this
research the neighborhood sizes used arso included 5 by 5,

7 by 7 and 9 by 9. The smarr-er sizes, 5 by 5 and 7 by 7,

were found to be a better compromise between noise rejection
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and the abi l- i ty to accurate]-y def ine a sharply curved edge ,

such as the pointed end of. a wheat kernel. In addition the
smaLler sizes required ress computation. The 7 by 7 síze
was standard.

The Hararick edge operator v¡as implemented with the pre-
viousry described modifications in the program zERox. Àt
each pixel locat ion the coef f ic ients k 2 and k 3 were cal-cu-
lated. Then the estimated gradient at that pixel,s Ìoca-
tion, which was the centre of the neighborhoodr wâs found
using the equation:

lvr(o,o) |

rf this estimated gradient was above a previously entered
threshord then processing wourd continue on this pixer.
First, the remaining coefficients kq to k I o were calculated.
These were then used to carcurate the distance in the
"chessboard" metric to the nearest zero crosÉing of the sec-
ond directionar derivative. onty the component of the sec_
ond directional derivative in the same direction as the gra-
dient nas considered. The distance *¡as determined by the
express ion :

d (min) =

where D

E

F

kz 2ka+2kzksks+3ks 2k 
r o

3kz2kt+2kzk¡ke+k¡ 2ks

kz2k++kzk¡ks+ks2ks
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ofThis expression v¡as relatively simple because the rocus

the zero crossing was the line:

Dc+Er = -F

rf the pixel passed the gradient threshold test and a zero
crossing vras within a set distance of the pixer, usualry 0.5
of the interpixer distance, then the pixel wourd be decrared
to be an edge pixel.

Before a binary edge image outputted by zERox v¡as ana-
lyzed by cLosED for the presence of object regions, it was

first transformed into another binary image. This new bina-
ry image h'as a "thin" version of the edge image, in other
words a line drawing of it. Thinning of the edge image v¡as

necessary because by definition in the continuous prane a

contour, r,¡hich may define a region with thickness, should
not by itself have thickness. In the discrete plane the
minimum rine thickness is 'l . Theref ore all contours in a

binary edge image should have a thickness of 1. The thin-
ning argorithm chosen $¡as deveroped by pavlidis [19g1 ] and

implemented in the program THrN. other than thinning, this
argorithm did not destroy the integrity of the original bi-
nary image since any region of 1 's in the input image that
was a connected set woul-d be reft connected by the algor-
ithm. Valid edges found and decrared by zERox were not
greatly affected by THIN since these edges were usually only
1 or 2 pixels thick.
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rn summary, the first object perception technique devel-
oped in this research, the closed-region detector, consisted
of three steps. First, the Haralick edge operator was em-

ployed in the program zERox to create an intrinsic binary
edge image from an unprocessed wheat grading image. second,

the edge image l¡as thinned using the pavl-idis thinning ar-
gorithm implemented in the program THIN. Finally, all
closed and uncontained contours in the thinned image v¡ere

found and specified in Freeman chain code by the program

cLosED. The l-ast step also produced a segmented or region
image. I^?ith the specification of object regions provided in
the last step I a shaky form of primitive machine image un-

derstanding was achieved.

The following three figures show the intermediate and fi-
na1 results of the closed-region detector operating on

JUMBLE2. Figure 3.5 shows the edge image produced by zERox.

A gradient threshold of 5, one-harf of the standard varue of
10, was chosen. This lower threshold was selected since
more sensitivity was desired for detecting the edges ob-

scured by shadows. These excessive shadows vrere a resurt of
the close object spacing. The standard neighborhood size,
7 by 7, and the standard minimum zero crossing distance,
0.5, were used. Figure 3.6 shows the thinned edge image

produced by THIN. Finally, Figure 3.7 shows the region im-

age produced by cLosED. The sorid brack connected regions
were "objects" declared by cLosED. The Freeman chain code

of each region's contour was stored in the output file.
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Figure 3.5: Edge Image from ZEROX

The previous figures demonstrate some shortcomings of the
closed-region detector. Àlthough the Haralick edge operator
produced superb resurts, it sometimes wourd leave a smarl
break in an object's contour thus voiding the object,s de-
tection. rn scenes of crosery spaced objects it was impos-
sibre to set a gradient threshold that would alrow both the
detection of object contour edges which h¡ere partially ob_

scured by shadow and the rejection of spurious edges which
were caused by regions of shadow on the background. scenes
of touching objects just could not be dealt with. rn short,
this detector r¡as unreliable, requiring human intervention
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Figure 3.6: Thinned Edge Image from THIN

to ensure that onry rear objects had been found, and re-
stricted to use on welr- behaved images containing widety
spaced objects with sharply defined contours.

The previous figures do not demonstrate a r_ess serious
shortcoming of the closed-region detector. The Haralick
edge operator demanded massive amounts of computation to
produce the superb resurts essential for the closed-region
detector. on the standard 2oo by zoo image used in this re-
search' applying this edge operator with the standard neigh-
borhood size of 7 by 7 reguired an absorute minimum of 3.gz

Êì

ft'æfì
Q%¡\
f,
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Figure 3.72 Region Image from CLOSED

rnillion multiprications arone. Even for the flexibre speed
of execution constraints for research, this was an undesira-
bly large amount of computation. unfortunateJ-y most of this
computation Ì{as a waste since many edge pixels decrared by

ZEROX would later be discarded as noise.

For the automated grading process pursued in this re-
search a more dynamic and serf-reliant object perception
technique was reguired. certainry the closed-region detec-
tor courd have been improved. The routine cLosED could have

been modified to ignore crosed regions that were beLow a
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preset size or that had parts with a thickness of only 1.

These modifications wourd have assisted cLosED in discrimi-
nating against false edges caused by shadow. Further,
cLosED could have been modified so that an attempt wourd

have been made to complete¡ L'âther than ignore, broken con-
tours which satisfied certain size and shape constraints.
À11 of these alterations wourd have been an attempt to in-
troduce additionar image contextual- information and a priori
knowledge about grain grading images into the object percep-
tion algorithm. However, each wourd have involved making

improvements based on the contents of only an intrinsic im-

â9€, the thinned edge image. This image would have lacked
much of the originar image informat'ion, notabry gradient
magnitude and direction, important in determining image con-
text. consequentry two powerfur and well-known technigues
were combined to create a new object perception algorithm
which used contextual- image information and a priori knowl-
edge to detect objects whire utirizing the original image

directry. several versions of this more successfur approach

r,¡ere developed, the first of which is described in the next
sect i on .
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3.3 REGT'LÀR-SIZED-OB¡'ECT DETECTOR

The regular-sized-object detector $ras radically different
rst major differenceapproach to object perception. The f.

vras the exploitation of globar image context obtained in
part by the use of local gradient magnitude and direction.
rn contrast, the closed-region-detector was rimited in its
use of context to the stringing together of decrared edges

without the knowledge of each edge,s gradient componenLs.

The second rnajor difference vras the use of the a priori
knowredge that objects in a grain grading image have simirar
sizes. rt was assumed that images wourd be taken with a

known or constant magnification so that the object region
size in an image courd be approximatery known beforehand.
This assumption was expressed in this research by having the
operator enter the approximate object radius. For a practi-
cal system the expected size would be calcurated by the ma-

chine using the known magnification. with these two funda-
mental changes the regular-sized-object detector was much

more dynamic and capable of use in an automated system while
at the same time being much more efficient.

The first of the two stages comprising the regular-sized-
object detector consisted of roughly determining the roca-
tion of each object in an image. This operation focussed
the computational power of the remainder of the detection
procedure to onry those parts of the image known to contain

a

1

an object Focussing computational power like this r{as one
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way that efficiency was improved as compared to the cl-osed-

region detector in v¡hich the Haralick edge operator was ap-

plied to each and every pixel location. This stage of the

detector's operation þ¡as accomplished with a Hough transform

designed to find roughly circular shapes. This Hough trans-
form utilized both gradient magnitude and direction informa-

tion from all parts of the image and thereby found prospec-

tive object locations which satisfied the globa1 gradient

context of the image.

The second stage consisted of finding and specifying the

contour of each object previously located. As stated in
section 3.1 the contour of an object was the most obvious

edge to be found in a wheat grading image. Thus the task of

finding the contour at each object location amounted to
finding the single most consistent well defined closed curve

edge which circumscribed the central point of the region and

which satisfied the object size constraints. This curve

would satisfy the local context of the object's region of

the image. By treating the object region as a graph, this
task was transformed into a heuristic gqaph search problem.

Both stages of the regular-sized-object detector utirized
the same methcd, the Sobel edge operator, f.or approximating

the gradient. This is one of the classical edge operators.

rt vras chosen because of its computational simplicity and

its good performance in noisy images as compared to the oth-
er classical edge operators. The Sobel operator employs two
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borhood was ft, the horizontal component, and that of mask 2

and the neighborhood was fz, the vertical component. The

estimated magnitude and direction of the gradient were then:

lvt I = and Ø = arctan (f z, f t)

The computational simplic

a further improvement in

object detector.

ity of the Sobel

efficiency for

operator provided

the regular-sized-

3.3.1 The Houqh Transform

The Hough transform engaged in the

tector used both gradient magnitude

roughly circular curves. Ballard

regular-sized-object de-

and direction to detect

[ 1 981 ] presents an excel-
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rent overview of the development of the Hough transform
through to its present form and presents examples which for-
tuitously cover most of the theory of the two configurations
of the transform involved in this research.

originalry the Hough transform was designed to detect
simpre parametric curves in an image by using onry edge mag-

nitude information gleaned from the image. rn effect it
transforms the image into a parameter space in which each

dimension represents an arterable parameLer of the desired
curve. The val-ue of each point in this space is proportion-
ar to some estimate of the likelihood of the existence of a

curve possessing the parameters denoted by the point's posi-
tion. This parameter space is deart v¡ith in a discrete form

carled an accumulator array. The Hough transform has the
advantage that detection of even a severely broken curve in
a noisy image is possibre where it would not be in many oth-
er strategies.

since its inception the transform has been improved in
severar ways. one improvement e¡as the use of edge orienta-
tion information as was done for the regular-sized-object
detector. This enhancement substantially reduced the compu-

tation time since the dimensionarity of the rocus of curves

impried by a single edge element r{as reduced by one. this
enhancement also increased the accuracy of detected curves.
other innovations aÌIowed the detection of generarized nona-

narytic shapes and of composite shapes composed of several
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simprer shapes. These latter innovations were not employed

in this research.

The Hough transform generated the transformed version of

an image by first determining the subset of Lhe desired
crass of curves implied by each suitabre edge erement in the

image, and then adding a suitable contribution to the re-
gions of the accumul-ator array possessing parameters which

corresponded to the implied subset. Some criterion had to
be determined for discriminating between suitabre and unsui-
tabre edge erements. For the regular-sized-object detector
the criterion was simpry that the 3 by 3 neighborhood of
which a pixel was the centre had to exhibit a sobel gradient
magnitude greater than some threshold. This threshold value
was usually set to 125 since this varue provided good dis-
crimination between edges caused by object contour and those

caused by interior object detail. some strategy arso had to
be determined for making an edge el-ement's suitable contri-
bution to the regions of the accumurator array irnplied by

the edge element. For the regurar-sized-object detector,
the impried accumuLator array entries vrere simpry increment-

ed by one. This incrementation strategy and the edge ele-
ment suitability criterion previousj-y described biased the
Hough transform in this research towards finding objects
whose contours were largely well defined.

The form of the accumurator array and the method of cal-
culating the curve parameters impried by each edge element
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were determined by the class of curves to be detected. The

class of curves that were of interest for the regular-sized-
ob ject detector were ci rcl-es of onry a singre radius R, as

entered by the operator, but at any rocation in the image.
The circle v¡as selected as a shape because of its analytic
simpricity, its symmetry and because onry the rough circu-
larity of objects in the image vras being assumed. For a

c i rcle of radius R whose centre r,¡as at rovr b and col_umn a,
the ror'v r and column c of a point on the c i rcle were given
by:

(c-a)2+(r-b)2 = R2

The accumulator array was two-dimensional since two dimen-
sions were required to represent the circre's parameters a

and b. This array was in registration wittr the image so

that each of its positions represented the location of the
centre of a prospective circurar object. The above equation
used only the rocation of the edge erement at (r,c) to de-
fine the locus of the centres of possible circles on which
it may have rain. In parameter space this locus rdas itserf
a circle of radius R.

To introduce the use of edge

the parameters of an indicated
curve was also given in terms of
perpendicular to the gradient of
curve. For the above equation

orientation in determining

curve, the equation for the

its slope. This slope was

an edge represented by the

of a circle differentiated
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rh

on

respect to column, the sl-ope, oF

of. an edge eLement was given by:

equivalently, orien

dr = tan ( ØxTl =
dc

v¡here Ø was the gradient direction anð, ØlT were the two in-
terpretations of edge orientation. By combining this ex-
pression for edge orientation with the previous expression
for edge location, the locus of the centres of possible cir-
curar objects impried by an edge element at (r,c) exhibiting
a gradient direction Ø was given by:

c-R.cos

r-R-sin

when the objects were dark on a l-ight surf ace. obviousJ_y by

including the use of edge orientation an edge element had

been made to specify the location of a single circular ob-
ject of radius R. Figure 3.9 shows the geometry of this
method.

unfortunatery the objects which the regular-sized-object
detector l¡as intended to detect were never perfectry circu-
rar in shape but rather Ì{ere elliptical-, ovar or at reast
irregularry shaped. This probrem of noncircurar shape was a

major source of error in the accumurator array since the
carculation of the rocation (b,a) of the object centre im-
pJ-ied by an edge erement rested upon the premise that the
object was circular. This error was interpreted as resuLt-

Ø

Ø

a=

b=
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Figure 3.9: Geometry of Circle Detection by H. T.

ing from uncertainties in R and the est imated Ø such that:

Ø-AØ < Ø,< ø+AØ

R_AR

where Ø' and R' h¡ere the actuar values. An error compensat-
ing convorution temprater âs described by Balrard, was the
device used to dear with this probJ-em. Instead of onry in-
crementing a singre array position (b,a) impried by an edge
element, a group of array positions in a region centred on
(b,a) and similar in size to the area of the expected uncer-
tainties in R and Ø !¡as incremented. For sirnpricity the
temprate was a square region composed entirely of 1,s. A

template size of 0.7 R by 0.7 R was chosen based on general
observations about the actuar shape of the objects expected
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in wheat grading images. The rarge size of the error temp-

late was a manifestation of the fact that this Hough trans-
form technique was meant to detect the approximate rocation
of irregularly shaped objects rather than the exact rocation
of perfectly circular objects.

rn summary, the Hough transform algorithm used for the
-egular-sized-object detector vlas as follows:

'1 .

a

Set each entry in the accumulator array
For every 3 by 3 neighborhood centred at
image, do:

a) CaIcuIate SobeI gradient direction
tude.

to 0

(r,c) in thec

Ø and magni-

b) rf the gradient magnitude is ress than threshold,start next neighborhood; otherwise continue.
c) CaIculate centre (b,a) of implied circle using

¡ 
=:_* 

:?: å

d) rncrement all accumulator array positions within
the 0.7 R by 0.7 R sguare centred at (b,a).

Determine position of the next object by finding thelocation of the largest entry in the acéumuratoi ar-ray.

The regular-sized-object detector performed this algor-
ithm only at the beginning of its operation and in this

3.

fashion found the first object
each object's contour, it set

within the contour to 0. Thus

sequent object by again finding
entry in the array.

. After the detector found

the accumulator array entries
the detector found each sub-

the location of the largest
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3.3.2 The Heuristic Edqe Search

The method developed to find the most likery contour edge in
an objecL region was an extension of the popular graph

search approach to the more generar problem of locating a

singre edge between a start position and an end position in
a digital image. with this approach the probrem was conven-
iently expressed as a search in a graph for the least cost
path between a start node and a goal node. rn this graph

each node corresponded to an image pixel. Àn edge v¡as rep-
resented by a path comprised of nodes and interconnecting
arcs in the graph. Each arc had an associated nonnegative
cost c which a path incurred if the arc vras on the path.
with a properly designed cost function the reast cost path
represented some form of the best edge. rn generar the cost
function had to generate a cost inversery rerated to the
likelihood of the presence of an edge.

The advantages of this interpretation of the edge finding
probrem were that the characteristics of the desired edge

could be easily changed by changing onry the cost function
and that several powerfur techniques already existed for
searching graphs. some of these techniques emproy heuristic
information to increase the speed of a search. The fruitful
idea of applying heuristic graph search methods to general
edge detection was first proposed by Marterli 11972l.

Much of the methodorogy for the heuristic edge search
strategy in this research was derived from a paper by Les-
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ter et aI. [1978]. The object of their work was to comp]ete
the contour and thus separate the region of several_ touching
white blood cel-rs in a micrograph image. part of the con-
tour of a cell vras determined by some other means prior to
the application of an edge search. The major extension to
their work by this research was to determine an entire
closed contour of an object with only the general l_ocation

of the object being known beforehand. They did extend their
work to tracing an entire cerrurar contour, but a starting
point had to be known before application of the edge search.
other differences include the form of the cost function and

the method used to incorporate circularity in the argorithm.

The graph used for the regurar-sized-object detector was

shaped like a circular annurus having the object location
estimated from the Hough transform situated at its centre.
The assumption that the objects to be imaged vi¡ere roughly
circurar in shape was the basis for the choice of the
graph's form. The centre point of the graph was calred the
pivot point. The constraints on the size and shape of the
object contours to be found were made very roose by having a

large outer radius and a smarl inner radius for the graph.
These radii were 3R and *n respectively, where R was the es-
timated object radius entered by the operator. The start/
goal nodes, each of which performed the duar duties of both
start and goal node, h¡ere placed along a vertical line ema-

nating from the pivot point to the top of the graph. A typ-
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ical search of the graph wourd begin on the left of the
start/goa1 nodes¡ proceed in a countercrockwise direction
around the pivot point (hence its name), and terminate after
approaching the start/goar nodes on their right. Fig-
ure 3.10 shows the form of the circular-anhurus graph.

Direction .rt/Goal Nodes

Graph

Object Contour

Pivot Point(position of
accumulator
array
max imum)

Search

Figure 3 . 10: Ci rcular-Annul_us Graph

The expected and desired features of the contour edge de-
termined which arcs were allowed in the graph. The first
feature was that a contour wourd be B-connected so that con-
tiguous points on the contour courd be either horizontal,
vertical or diagonar neighbors. Therefore an arc was ar-
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lowed to be in one of eight possibre directions. These arc
directions v¡ere enumerated with the same Freeman chain code

used in the rest of this research. The second feature vras

that a contour could proceed in a countercrockwise rotary
direction aroùnd the pivot point and in a radial direction
toward or away from the pivot point. However the contour
woul-d not be arlowed to reverse its rotary direction and

proceed crockwise since the expected objects were not suffi-
cientry irregurar in shape to exhibit this rotary backtrack-
ing. Therefore the number of possibre directions of an arc
emanating f rom any node r.ras restricted to f ive by the node's
position rerative to the pivot point. This group of five
contiguous directions was centred on the preferred direction
which was an angle of { greater than the direction of the
pivot point from the node. From any node in the graph the
preferred direction corresponded to the direction of coun-
terclockwise rotary motion. The f inal feature h'as that
sharp turns, angres greater than 4, wourd not be alrowed on

a contour. This requirement rras based on the observation
that sharp turns did not occur on valid contour edges: onry
on spurious edges resulting from noise. Therefore each time
a path was extended by adding a nev¡ arc to join the current
node to some neighboring successor node, the new arc woul_d

only be arlowed if its direction was different by an angle
of either ( ot 0 from the direction of the arc joining the
previous node to the current node. This feature also en-
sured that the contours generated were thin in the
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Path to
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Figure 3.11: Àrc Selection Process

The ÀIgorithm À*, a powerful heuristic graph

nigue formulated by Nilsson L1971l, yras the tool
find the least cost path. In the terminology
the function f which evaluates the suitability
in a path is:

search tech-

employed to

of NiIsson,

of a node n
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g(n) is the cumurative cost of the least expensive path

found between a start node and n. h(n), a type of heuristic
information, is an estimate of the cost h(n) of the l_east

expensive path from n to a goal node. when h(n) is a lower

bound of h(n), the solution path found by Algorithm A* has

least cost. The closer h(n) is to h(n) the more efficient
the search will be. In this research h(n) was set equar to
0 because, while the optimal path was desired, h(n) v¡as dif-
ficult to estimate. Thus the search strategy used in this
research was a special- form of the Argorithm À* carred a

"uniform cost algorithm", in which h(n) is unavairabre.

Àlgorithm e* develops paths in a graph through the itera-
tion of a process caIled node expansion. Expansion consists
of replacing the read node of a path, called an opened node,

with successor nodes in a file generarly catled opEN. Each

successor node is reached by traversing an arc emanating

from the old read node. The extension to the path is re-
corded by directing a pointer associated with each successor

node back ¡-o the oId node. The ord node is crosed by plac-
ing it in a file generally carted cLosED, sinc.e it is no

longer the read node of a path. Before each expansion the

node possessing the least f is selected from opEN as the
next node to be expanded. Thus only the currentry most at-
tractive path is lengthened.

Two characteristics of Algorithm A*,

of heuristic information, contribute
other than its use

to its efficiency.
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First, Algorithm A* is a dynamic programming argorithm: at
any time during a search it records only one path to each

encountered node, and this is the l-east cost path between

the node and any start node. À resurt of this characteris-
Lic is that, of the vast number of paths between a start and

a goar node, only a small- number are ever considered during
a graph search. second, because this algorithm is a seguen-
tial search, it wilr not consider any more nodes than are
actually required to find the least cost path. For an edge

search, if the edge is well defined, the operation of the
argorithm can become equivarent to a simpre edge folrowing
technique which considers only those nodes actuarly on the
edge. For a v¡orse edge the search wilr spread out and con-
sider more nodes.

Àlgorithm a* was modified in two b¡ays to improve its ef-
ficiency. First, each node had two flags, one labelled
"marked" and one rabelled "opened", associated with it.
These indicated whether the node had been encountered and if
so whether it was currentJ-y open or crosed. As a resurt a

search determined a successor node's status simply by in-
specting the node's flags rather than searching both opEN

and cLosED for it. second, the file cLosED was not in-
stalled since a node's f lags indicated the node's cl_osed

status. However the file opEN was retained since its use

drasticarly diminished the time required to find the next
node to be expanded. A search quickly determined the next
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Opened
Node

Pointèr
Prev i ous

to
Node

Contour
Node

Marked Element
Node of

Graph

Goa I
Node

Figure 3.12: Bit Definitions of cRApH

The graph search used a form of heuristic information to
improve its efficiency. The search measured the progress of
any path by the angular dispracement about the pivot point
between the path's lead node and the column of start/goar
nodes. It was assumed that if this angl-er câlredJ)(n), for
the path's lead node n was ress than the maximum fL of aIl
opened nodes minus some angurar back step limit, then the
path represented by n courd be discarded as a contender for
the least cost path. Thus when the search selected the next
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opened node from opEN, the node rdas closed and not expanded

if it faired the back step rimit test. This back step limit
was set to T. rn general the graph search was not optimal
with the use of this heuristic. However many tests vrere

conducted to compare the suboptimar with the optimal search
resurts for typicar wheat grading images; these tests demon-

strated that even with this heuristic a search almost always
produced the least cost path.

The form of the ÀIgorithm À* used for the
object detector, including modifications, was

regular-s i zed-

as follows:

1.

2.

¿.

fl(max)-back step limit, go

5. Expand n by generating its
must:

ts goaJ--node bi t ,set its cost f=0.
it may fulf iIl the

if it is 1ess than
to 2.¡ otherwise continue.

successors, each of which

For each start/goal node, set iplace its coordinates in OpEN and
However leave it unmarked so that
goa l- node f unc t i on .

Find the node n in opEN with the lowest value of fand mark it crosed by resetting its opened-node bit;if opEN is empty aboit the argoiithm *ìtr, fairure.
rf n is a marked (arready encountered) sLart/goarnode then an optimat path ñas been found so exii thealgorithm; otherwise continue.
Calculare Ît n I and

a) be an element of the graph,

b) be reachabre by one of the five arcs centred onthe preferred direction, and

c) satisfy the no sharp turns rule.
6. For each successor node not already marked carculatef, place its coordinates in opEN, 

"êt its openeålnodeand marked-node bits and carculate iqs o. ' rf itsois greater than fxmax), then reprace fI(*à*l *ltr-, thenew value.
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For each successor node aJ-ready marked carcurate its
new value of f but store only a temporary version ofit. rf the new varue of f is not iess Èhan the ordvalue, then omit this successor. otherwise repracethe old value of f with its new vaLue, redirecl thesuccessor's pointer to n and if it is currentry mark-ed closed, mark it open and place its coordinåtes in
OPEN.

Go to 2.

The quarity of the cost function used to calculate c(n)
was of paramount importance since the qual_ity of the detect-
ed edge depended directly upon it. The cost function for
the regular-sized-object detector was composed of three
parts as follows:

c (n) = DADJUST(n) . RÀDJUST(n) .CneoCoST(n)

The cost of the gradient, GRÀDCOST(n), utirized the gra-
dient magnitude and direction to gauge the suitability of
the pixer neighborhood around n for having an edge passing
through n in the same direction as the arc reading to n.
The equat ion of the gradient cost eras as f orrows:

GRADCOST(n) = íCRaOCOST" GRÀDCOST'> 0( 0, otherwise

GRADCOST'= BÀSECOST
-s(n) .cos{2[arc direcrion(n )-ø(n) *T]],

s(n) was Sobel gradient magnitude at n,
Ø(n) was Sobe1 gradient diiection at n, andarc direction was angle of the arc 1eading to n.

7.

B.

where

GRÀDCOST never

can provide an

produced a negative cost since ÀIgorithm
optimum path only if every cost incurred

A*

is
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nonnegative. BÀsEcosr was the cost incurred if the neigh-
borhood contained no detair indicating an edge, in which
case s(n) = 0. The val-ue of BÀsECosr was normarly zso. If
the arc direction was within an angle of T of the edge di_
rection, ø(n)-7, impried by the gradient direcLion then
GRADcosr r¡ourd be less than BÀsEcosr. otherwise it woul-d be
greater than BÀsEcosr. The magnitude of this divergence
about BÀsEcosT was proportionar to the graoient magnitude.
Figure 3.1 3 shows these reLationships.

GRADCOST

BÀSECOST+s ( n )

BASECOST

BASECOST-s ( n )

0
7(
2 t\ |zr

Di f f erence between impJ. ied
edge direction, Ø(n)-{,

and arc direction

2X

Figure 3.1 3: Operation of GRÀDCOST

À drawback of GRÀDCOST was that it was

relative gray Level of the regions being
In other nords it could respond the same

dividing a dark region on the left and a

rightr oF one dividing a Iight region on

insensitive to the

divided by an edge.

to either an edge

light region on the

the left and a dark
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region on the right. This property was a resul_t of the two-
fold symmetry of GRÀDCOST from 0 to 2f(.

The radial adjustment, RÀDJUST(n), neutralized the pref-
erence for shorter small-radius paths near the pivot point
and against longer large-radius paths far from the pivot
point. The effect of RÀDJUST was equivalent to mapping the
circurar-annurus graph nodes onto a rectangular unfolded
version of the original graph. The expression for RADJUST

was simply:

RÀDJUST(n) =
d(n,pivot point)

where d was the Euclidean distance.

The diagonal adjustment

that used by Lester et aI.
preference for diagonal pat

by the small-er reguirement

ering the same distance as

DÀDJUST was given by:

, DÀDJUSI(n), was identical to
This adjustment neutral_ized the

hs. This preference was caused

for nodes in a diagonaJ. path cov-
a vertical or horizontal path.

DADJUST ( n ) i f the arc leadi ng to n was diagonal_
otherw i se .

The "closing" of a sor-ution path v¡as a signif icant prob-
lem in designing the regular-sized-object detector. The op-
timal version of Àlgorithm À* searching the circurar-annurus

={V2-,
( 1,
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graph finds the least cost path which begins at a start/goa!
node, circumscribes the pivot point and ends at a starr./goar
node. However the start/goar node at the beginning of the
path is not guaranteed to be the same start/goal node at the
end of the path; sometimes they are indeed different and the
resurting path is not crosed. Tf the path is not closed it
cannot represent a complete object contour.

rt is enlightening to consider how the reast cost cl_osed

path solution can always be found. A closed path must begin
and end at the same start/goal node. Therefore one method

to find the least cost cl-osed path in an annurar graph con-
taining t start/goar nodes would be to conduct t searches,
each having onry one starL/goar node which wourd be one of
the original t start/goaI nodes. Then the least expensive
of the t paths found by the t searches would be the sorution
path. of course this method would be computationalry very
expensive. À, more efficient method would make use of a

three-dimensional graph. Each of the t revels of this graph

wourd have only one of the t start/goar nodes and would not
have any interconnection with any other lever. The search
would be conducted simurtaneously on aIl levers of the graph

and its singre sorution path wourd be the reast cost crosed
path about the pivot point. while this method wourd be more

efficient, the amount of computer memory required wourd be

colossal for the standard object region size.
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Due to the difficulty in finding the reast cost crosed
path, a simple but suboptimar approach to this problem was

taken. The AJ-gorithm À* search operated on the original
circular-annurus graph to yierd the least cost, but possibry
open, path. If this path was found to be open then the
search continued, further extending the path, untir finarry
the first start/goar node of the path and the rast sLarL/
goal node of the path were one and the same node. rn most

circumstances the resulting path was optimal; in a few it
v¡as not. However the resulting closed path was accepted as

the objecL contour because a "good" and not necessariry op-
timal solution v¡as considered to be sufficient. Effects of
this suboptimality were rare and when present were smalr.
Figure 3.14 shows a situation in which the optimar solution
has not been found with this approach.
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Figure 3.1 4: suboptimarity of path crosing Method

3.3.3 performance

Figure 3.15 and Figure 3.16 show the resurts of the regurar-
sized-object detector operating on JUMBLEl and JUMBLE2 re_
spectively. Each closed curve represents the contour of a

decrared object. For both runs of the detector the entered
val-ue of R was 20. Hence the outer diameter of the c i rcu-
rar-annurus graph was set to 120. This was an ampJ_e size
since the object lengths ranged from 65 to 89.

The performance of the

erating on JUMBLE2 was a

the cl-osed-region detector

regular-sized-object detector op-

drastic improvement over that of
operating on the same image.

Dec 1a red
Solut ion path

/_--Before this node the
\ declared sol_ut ion

path has least cost.

Numbers indicate arc costs.

Least Cost path

o s/c Nodes

o Pivot point



OnIy two f laws r.¡ere evident
the shadow which obscured the
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and these were minor. First,
contact point between the two

Figure 3.15: contour Image of JUMBLEI from R-s-o Detector

Each of the wholly visibre objects in the image was detected
as being a singte object and specified by a declared. contour
closery corresponding to the actual contour. Às desired the
Hough transform ignored the partiatly visible object in the
rower right corner since too l-ittle of the object region was

availabre in the image to arrow the formation of a circul_ar-
annuLus graph. In short the detector produced almost per-
fect results with this image.
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Figure 3.16: contour rmage of JUMBLE2 from R-s-o Detector

touching objects deceived the edge search. Às a resuLt the
search partly omitted the tip of one of these objects from
the decrared contour. Second, the edge search gave porLions
of some contours a "fragmented" quaJ_ity. rn comparison
these same contours did not receive this quality from the
Harar ick edge operator of the cl-osed-region detector (rig-
ure 3.5). This quality, a side effect of image equaliza_
tion, indicated an over sensitivity of the edge search to
noise.
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The performance of the detector on JUMBLEl was much

worse. on one side of two separate objects the more domi-

nant contour edges of neighboring objects distracted the

edge search. Due to the rarge size of the circular-annurus
graph, these diverted searches v¡ere abre to cover rarge are-
as while erroneously following the neighboring edges. These

failures were partry a resuLt of the edge search cost func-
tion's inability to distínguish between object on left/back-
ground on right edges and object on ríght/background on left
edges. Ànother defect was the exclusion of a smarr portion
of one end of the rargest object from its contour. This end

could not be detected because it protruded slightly outside
the graph. Thi s Ì¡as a conseguence of two problems: the
graph pivot point was dispraced by an approximate distance
of 20 left of the actual object centre and the object þ¡as

abnormarly large. In total onry one object was satisfacto-
rily detected. This, the upper middre object, suffered
reast from surrounding shadow. Às occurred with JUMBLE2,

some edges retained a fragmented quality.

The number of node expansions performed in each edge

search gives a rough measure of the efficiency of the

search. For the ten edge searches conducted on these tvro

images the average number of expansions was 4718. The mini-
mum was 2570 for the upper middre object in JUMBLEI and the

maximum was 6091 for the rower middre object in the same im-

age. The wide range in varues implied that for some search-
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es a lot of unnecessary work was being done in mistakenly
following the contour edges of neighboring objects.

3.4 HYBRID DETECTOR

The hybrid detector v¡as designed to improve on the rejection
of noise during an edge search by taking advantage of the

excerrent performance of the Haralick edge operator. The

f ragmented quality of some of 'the contours decl-ared by the

regurar-sized-object detector motivated the development of
this detector.

The hybrid detector was identical to the regurar-sized-
object detector except for its edge search c.ost function.
rnstead of the sobel edge operator, this detector approxi-
mated the gradient with the Haralick edge operator emproying

a 5 by 5 neighborhood size. If the neighborhood satisfied
the distance to the zero crossing of the second directional
derivative test, then a cost function simirar to that of the

regular-sized-object detector determined the cost. The onry

difference was the value of BASECOST. However, if the

neighborhood did not pass this test the cost assigned was 1 0

times BASECOST. This large penalty cost effectively con-

strained the declared edge to only those pixers satisfying
the second directional derivative test. The only exceptions
were the rare breaks sometimes produced by the Haralick edge

operator in an object contour. An edge search had to bridge
these breaks by incurring the penalty cost.
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Figure 3.17 and Figure 3.1g show the contour edge images
produced by the hybrid detector operating on JUMBLEl and
JUMBLE2 respectively. The var-ue of R entered by the opera-
tor was the same as that used to produce the resurts of the

Figure 3.17: contour Image of JUMBLEl from Hybrid Detector

regurar-sized-object detector presented in subsection 3.3.3.

Both images exhibited improvements over the contour edge
images generated by the regurar-sized-object detector. The
fragmented quality of most edges was eriminated. unexpect-
edly none of the edge searches conducted on JUMBLEI were de-
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üÜ

Figure 3-18: contour Image of JUMBLE2 from Hybrid Detector

ceived by contours of neighboring objects, as occurred with
the regurar-sized-object detector. This was rikery due to
the infruence of the second directional derivative test.
For each object, the crosed curve of the contour edge pixers
which passed this test lrere typicalJ_y bounded on the inside
and outside by a margin of pixels not passing the test. The

high penarty cost of crossing this margin restrained a

search from diverging over the background to a neighboring
object.
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Three defects were evident. The same two objects, which
had a fraction of one end ignored by the reguJ_ar-sized-ob-
ject detector, again had armost the same areas ignored by

the hybrid detector. The causes vrere also the same: shadow

partialry obscured the object's end near the contact point
in JUMBLE2, and in JLMBLE1 the object's end exceeded the
limit of its graph. À third and more serious flaw occurred
in JUMBLEI. Almost one-half of the upper right object, one

of the pair of touching objects, vras omitted from its de-
clared contour. This was evidently caused by the shadow

near the contact point which severely obscured the contour
of Lhe ignored end. surprisingly the decrared contour of
the other object in this pair vras a good representation of
its actuaL contour.

The number of node expansions required by the hybrid de-
Lector vras generally Less than that for the regurar-sized-
object detector. The average number of expansions performed
in the ten edge searches conducted on JUMBLEI and JUMBLE2

v¡as 3106. The minimum was 1769 f or the upper middl_e object
in JUMBLEI and the maximum was 3gge for the upper right ob-
ject in JUMBLE2. However the amount of computation required
for each opened node was much greater than it was for the
règular-sizeo-object detector. when a node was first opened

the apprication of the Hararick edge operator required 2zs

multiplications and 22s additions just to derive the cubic
model. Thus the overarr computation was substantially
greater than for the regurar-sized-object detector.
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classic example of diminishing
returns. The edge quality had been marginally improved and

the edge search had been made ress prone to divergence from
the actual- contour; but these ref inements ïrere made at the
cost of shouldering the heavy computational burden of the
Haralick edge operator. Even with the application of this
computational brute force drastic errors in a defined con-
tour edge courd stilr occur, as was demonstrated in JUMBLEI.

conseguently the use of the Haralick edge operator was not
pursued further as an alternative to the sober edge operator
in the edge search.

3.5 ELLIPTICAL-OBJECT DETECTOR

The elriptical-object detector vras the most superior object
perception technigue, in terms of reliabirity, edge quarity
and efficiency, developed during this research. As such it
is the technique advocated by this research. Essentiarly it
was a modified version of the regurar-sized-object detector.
Two generar refinements were made to the regular-sized-ob-
ject detector to create the elriptical-object detector.
These were inspired by some of the deficiencies of the regu-
lar-sized-object detector observed during its operation on

test images.

The first refinement was to constrain the edge search to
a graph of much less area whire ensuring that the entire ac-
tuar object contour remained within the graph. By limiting

The hybrid detector Ì{as a
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the search area the number of unrel-ated edge elements, from
the object's surface detail or from neighboring objects, was

substant iarJ-y reduced. Thus the chance of an edge searc.h

being diverted to an erroneous edge was diminished and the
rel-iability of the detector, particurarly in images of
closely spaced objects, was increased. rn addition, the de-
tector's efficiency tras improved since a graph with fewer
nodes reguired less search effort.

The shape and size of the graph vrere chosen through con-
sideration of the expected object features. Às pointed out
in subsection 1.3.2 the objects courd be expected to be of
simirar size due to prior cleaning of the grain sampre. For
the elJ.iptical-object detector the objects vrere al_so expect-
ed to be roughly elripticai in shape. This vras of course
true for wheat kernels and foreign grain kernels and this
courd be a relativery safe assumption for other foreign ob-
jects if the size rimits of the graph were sufficientry un-
rest ra i ned.

The shape serected for the graph was an elriptical annu-
Ius. The inner and outer borders of this graph v¡ere erli.ps-
es centred on the same point and aligned in the same orien-
tation. The inner erlipse was 40 percent smaller than the
expected elripticaÌ object size and the outer erlipse was 40

percent rarger than the expected size. The span of the re-
surting graph, which determined the acceptable object sizes,
was intended to enable detection of any object likely to ap-



pear. The aspect ratio

based on the typical whea

of the graph h'ere allowed

in f7a angular increments.

compromise between having

adjustment and having a

for the Hough transform.

tical--annul-us graph.
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of the graph, b/a, was set to 0.565

t kernel- shape. Eighr orientations
, ranging f rom an angle of 0 to tff

This number of orientations was a
sufficient fineness of orientation
manageable accumulator array size
Figure 3.19 shows a typical eIIip-

Start/Goal Nodes

Direction

Expected Elliptical
Object Shape

Object Contour

Pivot Point

Graph

of Search \ I

*Æfl \'
À1 lowed
Orientations

Figure 3.19: ElLiptical-Annul_us Graph

closing the solution path was a problem with this detec-
tor as it was with the reguJ-ar-sized-object detector. The

elriptical-object detector used the same method to crose the
sorution path and therefore the optimarity of the sorution
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path v¡as again not assured. To minimize the effects of this
probrem the start/goar nodes were pLaced along either a ver-
tical, horizonLal or diagonal ray which emanated from the
pivot point on or near the minor axis of the graph. rn this
location the sLarL/goar node line usually crossed the object
contour orthogonally, the contour l¡as usualry werl defined
and fewer start/goar nodes were required to cross the graph.
Às e resurL the danger of confusing the edge search near the
start/goaI nodes vras minimized. This reduced the risk of
arriving at a suboptimal solution path.

The Hough transform was modified to detect erripses of
uniform size, but of any orientation, since this h'as now the
object shape of interest. The attributes of the elliptical
si:ape to be detected were the same as those of the expected
object shape: the aspect ratio, b/a, was 0.565 and the ex-
pected object length, 2a, was entered by the operator. Ba1-
lard [1981] presents the erlipse detection technique as an

example.

This technique vras

for circle detection.
tude and direction of.

lipses, each being at
and the c'-axis were

developed in the same manner as that
It utilized both the gradient magni-

an edge element to imply a set of el-
a different orientation. The r,-axis
a coordinate set in which an ellipse



was oriented with

An edge element on

tre (h' , k' ) as:

its major axis parallel to
this eJ-l ipse indicated the

the c'

eI I ipse '
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-ax i s.

s cen-

b
h'- r'+S

whe re (r' ,c' ) was th9 edge element's 1ocat ion,a and b were the major and minor axis oi the el_lipse (rn this case b/u = 0.56s aÃA the op_
¡ð erator_entered the vaf ue of a. ) ,E - tan (Ø'-T) ,q' *a: the gradient direction, andSr and Sc were. t1 depending on the quadrant of(r',c') with r.sþ..t tó (h,,Ii).=--

The sign f unctions, Sr and Sc, r.rere def ined as:

Sr Bac kground

White Blac k

0 < ø'<d
/7 < Ø'< 2n

-1
+1

+1

-l

Rotations of the erripse were accommodated by regarding the
r'and c'coordinate set as being a rotated version of the r
and c coordinate set. with o being the angle of rotation,
the transformed coordinates of an edge er_ement (r,c) were:

t' = -c.sin O + r.cos e

c'= c.cos O + r.sin O

Sc Bac kground

VÌhite Blac k

-{.Ø'<T
T . Ø'< ln

-1
+1

+1

-l

and, once the ellipse centre (h, , k, ) implied by (r, ,c,) had



the reverse

124

transformed coordinates ofbeen determined

(h',k') were:

h=

k-

k'.sin O +

k' 'cos O

cos e

sin e

h'

h'

Figure 3.20 shows the geometry of this Hough transform.

Àrrows denote gradient direction.

Figure 3.20: Geometry of ElIipse Detection by H. T.

The accumul-ator array requi red three dirnens ions to handle

leve1s of the

orientations.

However each

columns of the

the three parameters h, k and O. The eight O

array represented the eight possibl_e graph

Each leve1 was in registration wiLh the image.

level only represented the even rows and even

image so that computer memory lras conserved.
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Às vrith the regular-sized-object detector an error com-

pensating convolution template was incorporated in the accu-
mulator array incrementation strategy. However Iess error
was expected in the accumulator array since the actual shape

of an object was normally closer to the expected object
shape. Therefore a much smarler template, 0.2.a on a side,
v¡as employed.

rn summary, the Hough transform algorithm of the erlipti-
cal-object detector was as follows:

1.

2.

Set each accumulator

For every 3 by 3 nei
image, do:

a ) Calculate Sobel
tude.

array entry to 0.

ghborhood centred at (r,c) in the

gradient direction Ø anð magni-

b)

c)

If the gradient magnitude is less than threshold,start next neighborhood; otherwise continue.
For each of the eight values of e, do:

i ) Ca1culate the transformed edge element Loca-
tion, (t' ,c'), and gradient áirection, Ø, .

i i ) CaIculate the impl ied eIl ipse centre,(h',k').

3.

r:.r) Ca1cu1ate the reverse
centre, (hrk). transformed ellipse

iv) rncrement all accumulator array positions
within the 0.2a by 0.Za sguare centred at(h, k) in the level correspona:.ng to O.

Determine position and orientation of the next objectby finding the location of the largest accumurãtorarray entry.
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This Hough transform produced surprisingly accurate pre-
dictions of an object's Location and orientation. Most of-
ten the predicted rocation and orientation of an object were
the same as those rater determined by the shape anarysis of
the object's contour found by the edge search

The second refinement incorporated in the elliptical-ob-
ject detector was an improved cost function for the edge
search. The improvement vras a new version of GRÀDcosr, sim-
ilar to the ol-d version, but which coul-d distinguish between
object on ref.t/background on right edges and object on

right/¡'ackground on left edges. The vatidity of this nev¡

cost function depended on the assumption that an object pix-
el woul-d always be darker than a neighboring background pix-
er if the background was white (vice versa for a brack back-
ground). only in extremery rare instances !¡as thi s

assumpt ion incorrect. This new function ensured that an

edge search would never be deceived into folrowing the con-
tour edge of a neighboring object.
GRÀDCOST was as follows:

The new eguation for

GRADCoST(n) = (cRaocosr,, cRÀDCosr, > 0(0, otherwi se

where GRÀDCOST' = BÀSECOST-s(n) .cosIarc
white background

BÀSECOST-s ( n ) . cos Iarc
black background

was Sobel gradient magnitude
was Sobel gradient direction
direction" was the angle of

recrion(n)-ø(n)+Tl

rection(n )-ø(n)-Tl

at n,
at n, and

the arc leading to n.

di

di

s(n)
Ø(n)
"a rc

Figure 3.21 shows the operation of this new GRÀDCOST.



Figure 3.22 and Figure 3.23 show

produced by the elliptical-object
JUMBLEl and JUMBLE2 respectiveLy.
length entered by the operator was 75

JUMBLE2.

Figure 3.212 Operation of Improved GRADCOST
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the contour edge images

detector operating on

The expected object

for JUMBLEI and 70 for

Both contour images demonstrated the superiority of this
detector over any of the previous object perception tech-
niques. The anarysis of JUMBLEI produced only one notabre
flaw. of the pair of touching objects whose contact point
was totally obscured by shadow, part of the end of one was

ignored while the contour of the other was srightly mangled
near the contact point. This was not unexpected since even

a human wourd have difficulty accuratei_y drawing the con-
tours of these two objects near their contact point. of the

GRÀDCOST

BÀSECOST+s ( n )

BÀSECOST

BÀSECOST-s ( n )
0

7(
2 7( lrtDifference between implied

edge direction, Ø(n)-T,
and arc direction

2d
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Figure 3.22: contour Image of JUMBLEl from E-o Detector

f ive objects in this image, three were satisfactoriry de-
tected and t$ro had slight errors in their decrared contours.
on JUMBLE2 no notabr.e flaws were produced; each object was

satisfactoriry detected. surprisingly both contour images
displayed less of the fragmented edge quarity that had been
typical of the regurar-sized-object detector,s declared con-
tour edges. This was perhaps due to the improved cost func-
tion.

The number of node expansions required by the erliptical-
object detector indicated its more efficient and consistent
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Figure 3.23: contour Image of JUMBLE2 from E-o Detector

edge search. The average number of expansions performed in
each edge search conducted on JUMBLEI and JUMBLE2 was 2427.
The minimum was 17og for the upper left object in JUMBLE2

and the maximum was 3213 for the rower right object in the
same image. These varues $¡ere r-ower than f or the reguì_ar-
sized-object and hybrid detectors. This impried less search
effort had been required. Their reduced variabir.ity sug-
gested less search diversion by false edges.

In conclusion the use of
of a priori knowledge of

contextual image information and

the specific object perception
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problem vrere maximized in the elriptical-object detector to
produce a dynamicr rêliabre and efficient object perception
technique. rndeed further constraint of the Lechnique would
probabl-y have had a detrimental ef f ect on its perf orrnance.

This detector produced satisfactory resurts with arr of the
wheat grading images encountered during this research. How-

ever if a wider range of object types had been of interest,
for instance wheat and rape seed in the same image, then a

Less specific approach, such as the regular-sized-object de-
tector, would have been required.

The reriabirity of the erriptical-object detector made it
suitable for use in an automated system. For images satis-
fying the rimitations of this research the detector did not
reguire human interaction to verify its outputi the detecÈor
always produced good resul-ts even with scenes of crosely
spaced or almost touching objects.

However this detector was not a finar solution for scenes

of touching objects (arthough for such images it did prevent
drastic errors from being made). For more complicated
scenes, perhaps arso involving occluded objects, an even

more intelligent approach wourd be required. such an ap-
proach¡ sirnirar to the human visual system, wourd rikely
treat an image as a two-dimensionar representation of a

three-dimensionar worrd, match regions in the image to
three-dimensional models of known objects and from such in-
sights knowledgeably infer object identity, contours and

orientation.
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3.5 SHÀPE DESCRIPTION

The first and most important group of features extracbed
from a wheat grading image are those that describe the size
and shape of an object. Às discussed in Section 1.q shape

features of an object outline are necessary for distinguish-
ing between wheat kerners and other cereal grains or other
foreign objects, they are useful in detecting surface de-
fects such as breakage and shrivelring, and they are impor-
tant in determining variety. rn addition, the shape can in-
dicate an object's orientation and thereby direct succeeding
routines which must analyze only a particular subset of an

object's visibte surface.

The method chosen for describing the shape of an object
outline was moments. For a binary discrete image, the p,e
moment is defined as:

pq
M = E mn
pq (m,n)eR

where (m,n) is a point in the object region R. once one of
the object perception programs had determined the contour of
each object in an image, the program MOMENTS could then de-
termine shape features based on the moments of each detected
object. This program used as input the object,s contour
specified in Freeman chain code.

The moments method of shape analysis offered severar ad-
vantages. Moments provided a unique description of a shape
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and provided more accuracy in that description when more of
them were considered. They were simple to calcurate. They

were easily made to be invariant to translation, rotation
and size. The invariance cafcul-ations invorved onry moment

val-ues and not the original data.

The discrete Green's theorem, as developed by
Tang [1981], was used to carculate the Mpq moments of a re-
gion. This theorem enabred the calcuration of a moment by
summing over an object's contour instead of the object,s re-
gion. consequently the number of computations $ras propor-
tionar to the length of the region's boundary instead of to
its area.

In the discrete Green's the-orem,

8-connected region without holes in the

R is a discrete
subspace:

S'= [(h,k), h>0, k>0, h and k are integers].

R has more than one lattice point. The sequential boundary
of R is B represented by the Freeman chain code as
( ( re ,co ) ,âo râ r r . ,a1 - t) such that the region is seen on

the right as one moves along the boundary. The moment of R

i s then:

1-1
M = E F (r ,c.) D (a ,a ) + f (r tc ) c (a ,a )pq i=0c i i r i-1 i i i r i_1 i
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þrhere (r tcii
sequent ial

F (m,n)
c

f (i,n) =

boundary

n qp
=Eim,

i=0

pq
in,

) is a point,

and D and C are defined as:
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once the moments of a region R had been determined with
the discrete Green's theorem, MOMENTS calculated and printed
several preliminary results before the normalization of the
moments v¡as undertaken. First, MOMENTS calculated the cen-
troid of R as (Ut o/uoo rMo , /Mo o) . The ,,pr inc ipal centroidal
moments of inertia", which were the second order moments

about the principal axes of the object, were then calculated
õÐ ¡

max ( a, ß) and min ( a, ß)

eigenvalues of L

[::; sr;]

2
0
0
0
0
0
0
1

1

3
0
0
0
0
0
0
0
1

1
0
0
0
0
0
1

I

1

!
0
0
0
0
0
0
0
0

0
0
0
0
1

1

1

1

0
1

1

1

1

1

1

1

whereoandßare he matrix:
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The aspect ratio of these moments:

was then printed. These moments were a means of describing
the size and aspect ratio of any generar. object shape ar-
though they did not provide the rear length I vtidth and

aspect ratio. Last, the area of R, Moo, qras printed.

MOMENTS normarized the original moments with respect to
transration, rotation and size using methods described by

Reeves and Rostampour Ij981]. To normalize with respect to
translation MOMENTS carcuLated the centraL moments from the
original moments by:

whe re

and

whe re

and

pq
¡Ð

u=0 v=0

Czo = Mzo
Moo

Coz = Moz
Moo

Ct r = Ml l
Moo

q
c

M',n2
Moo2 r

Mor2
Moo2 r

MorMlo
Mo oMo o

uvt-it (-;) Mll=pq

p
c

u

p
L

u

P-u 'Q-v
p!

I

u! (p-u) !

r- Mr o
Moo

Mor
Moo



Then the angle O of the principal axes

This equation speci

ue which satisfied
rotation normatized

pq p-u
Ø = E I (-1) C
Pq u=0 v=0
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was calculated by:

tan 2O = 2lu '
|-lo z-f{zott

fied four possible values of e. The va1_

Øoz > Øzo and Øso

moments were then calculated as:

P q q-u+v Þ-v+uc (cos e) (sin e)-
uv\Þr¡¡wt¡' U+v, q-U+p-v

At this stage the orientation and position of the principal
axes v¡ere known¡ so MoMENTS determined and printed the coor_
dinates of the two object contour points nearest the princi-
pal major axis. The locations of these two points rater
guided the search for the kerner crease by a succeeding pro-
gram. Figure 3.24 shows the geometry of rotation normariza_

Principal Major Àxis Crossing points

(r,c)

Figure 3.242 Rotation Normalizat ion
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re spec ttion. Finally MOMENTS normatized the moments with
to size by using:

.Y

=Ø /Øoo
pq

*(p+q)+twhere

This normalized set

was characterized by

N
pq

-l=

of moments, called .,standard moments,,,

the following vaLues:

and

Noo

Nor

Nr r

1 (normalized size),
Nro = 0 (normalized Iocation),
0 (normaÌized orientation).

MOMENTS printed only the second and third
ments and excluded the above four values.
ments could easily have been calculated
cedures. However the value of high order
since the higher the order of a moment,

ceptible to digital sampling errors near
ject.

order standard mo-

Higher order mo-

with the above pro-

moments is limited

the more it is sus-

the edge of an ob-

each ob-The final calculations performed by MOMENTS on

ject estimated its length and width as:

L = 4r,Ñ_o-rÞr"" and

These estimates were correct if the object contour was er_
lipticar. since wheat kerners are generally erriptical in
shape, these estimates were normalry very close to the actu-
ar values. These estimates had the additionar advantage
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that they ignored the smarr irregularities in a kerner con-
tour caused by a rough surface and digitar sampling error.
The aspect ratio, r./w, and eccentricity, /1-ænr were arso
calculated and printed.

The output from MOMENTS into the output data fire incrud-
ed only the object region centroid, the two principaJ_ major
axis crossing points, the object orientation, e, and the
Freeman chain code of the object contour. This data was

later used by the crease detection program for initiarry es-
timating the l-ocation of a crease. More of the resurts,
such as the standard moments, cour-d have been included in
thç output file. However they were not reguired since the
task of classifying objects based on the generated shape
features was not pursued in this research.

Figure 3-25 on pages 138 and 139 shows the printed output
produced by MoMENTS processing the object contours found in
JUMBLE2 by the erlipticar-object detector. Arr of the cal-
culated values of length and width assuming an erripticar
object were very crose to the actual vaLues measured in the
original image.
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Chapter IV

KERNEL ÀNATO}IY DETECTION

4.1 INTRODUCTION

Àfter the computerized image analysis system has perceived
all the objects in a wheat grading image and obtained shape

features for each of them, the machine is left only with
data describing the location and shape of each object's con-
tour. It was assumed in this research that some form of
pattern crassification analysis wilr then utilize the shape

data to decide which object regions correspond to unbroken

wheat kerners. only these objects would be scrutinized for
the grading factors, variety, vitreousness and soundness,

since each of the remaining objects wourd be classed as for-
eign material. Horvever, before the machine can look for
these factors on each kernel, it must first determine which

side of each kernel is visible (dorsar or ventral) and lo-
cate the anatomical- parts present on that side which are
useful- for grading. This task was accomplished by attempt-
ing to detect onry two major parts of the kernel: the crease
and the germ.

sections 1.3 and 1.4 presented the reasons for wishing to
detect the crease and the germ. The detection of either of
these parts is not by itself useful for grading, Rather,

140
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the knowledge of the existence of a crease on a kernel and

of the location of either a crease or germ can guide texture
or shape analysis of the visible parts of the kernel_ that
are important for grading. The crease and germ are them-
sefves important areas in which to find cues for the condi-
tion of the kerneL. They arso imply the location of other
important parts, especiarly the cheeks and the brush (see

Figure 1 .2) .

The anatomy detection analysis was performed by two rou-
tines. The first attempted to detect a crease on each ob-
ject in the irnage. The second routine attempted to find a

germ on only those objects on which a crease r^¡as not f ound.
crease detection was performed first since the crease is the
most di st inct ive anatomical part rr,hich appears on only one

side of the kernel, the ventral side. Its presence or ab-
sence on the visibre side indicates the kerne1' s orienta-
tion, ventraì- or dorsaL side up respectivery. Germ detec-
tion was onry attempted on those kernels not displaying a

crease since the germ is visible onry on the dorsal side.
rn addition this routine searched for the germ only on the
burbous end of the kernel because this is usually the end on

which the germ is 1ocated (see Figure 1.1). The brush is
located opposite the germ on the more pointed end of the
kernel.

Both kernel anatomy detection routines specified the con-
tour of each detected anatomicar part with a version of the
Freeman chain code. This code vras described in section 3.1,
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Two unprocessed images acted as subjects in this chapter
with which to demonstrate the performance of the anatomy de-
tection routines. These images, CREÀSESl and CREÀSES3, ap_

pear in Figure 4.1 and Figure 4.2 respectivery. cREÀsES1

contained four wheat kernels, all of which v¡ere ventrar side
up. The top left kernel v¡as shriverred. The left two ker-
nels had distinct creases whire the right two had poorly de-
fined creases. This image was intended to demonstrate cre-
ase detection. CREASES3 also contained four kernels.
However the reft two kerners vrere ventral_ side up while the
right two vrere dorsal side up. This image was intended to
demonstrate both crease and germ detection.

section 4.2 presents the crease detection technique and

section 4.3 presents the germ detection technique. Much of
the underrying theory for both of these detectors vras pre-
sented in Subsection 3.3.2.
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Figure 4.1 z CREÀSES1





F i gure CREASES3
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4.2 CREASE DETECTOR

The design of the crease detector was based on three charac-
teristics of wheat kerner creases. First, the typical cre-
ase is darker than the surrounding kernel surface. since it
is an indentation, it therefore reflects ress of the ilrumi-
nating light. second, this change in reflectivity near the
crease often causes a large change in gray lever perpendicu-
lar to the direction of the crease. Thus the crease fre-
quently has the characteristics of a step edge. This is un-

derstandable since the crease is an edge separating the
kernel cheeks. Usually the crease is the most prominent

edge feature on the kerner surface arthough the effects of
shadow sometimes cause false edges on the kernel which are
just as prominent. FinaIly, the crease runs the furr length
of the kernel along its longitudinarr or in other words,

principal major axis.

4 .2 .1 Pr inc iples of Operat ion

The crease detector operated by finding and specifying the
single best edge running rongitudinalry through each kernel
lmage reElon. This problem was transformed into a graph

search by treating the kernel image region as a graph in a

rray similar to that of the regular-sized-object detector.
This graph was in registration with the object region of the
image so that each pixel within or on the kernel contour
corresponded to a graph node. An edge was represented by a

path comprised of nodes and interconnecting arcs in the
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graph. The idea of the "best" edge v¡as guantitatively de-
fined by a node evaLuation or cost function like that of the
regular-sized-object detector.

The cost function of the crease detector embodied the ex-
pected characteristics of the crease. This function, which

determined the cost for a path to incorporate the node n,
vras composed of two subordinate costs as f ol_lows:

c(n) =

where c' (n) = DÀDJUST(n)

'(n), c'(n) ì 0
, otherwise
- GRÀDCOST (n ) + ß. prxCOSr( n ) l

ß were entered by the operator to
GRÀDCOST(n) and PIxCoST(n). Nor_

to .l . The diagonat ad j ustment ,

as that in the regular-sized-object

GRÀDCOST(n), evaluated the

a pixel on an edge running

the l-ongitudinal axis of the

ion as the arc leading to n.

edge strength at n and gauged

direction implied by the gra-
ipaJ- major axis direction and

[;
la

The coeffic

controi- the

ma1ly they

DÀDJUST(n),

detec tor .

ients ø and

influence of

were both set

was the same

The cost of the gradient,

likelihood that n represented

through n in Lhe direction of

kernel and in the same direct
Thus GRÀDCOST(n) measured the

the correspondence of the edge

dient direction with the princ
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the gradientwi th the arc di rect ion.
cost v¡as:

GRÀDCoSr(n) = BÀSEcosr-s(n). lcos [ø(n)_FeJl
'cos [ 2lØ(n) -{-arc di rection ] i

where s ( n ) was tlr" Sobel gradient magn i tude at n ,Ø(n) was rhg Sobet gradienr di;;¿iion;;;;"arc direction" $¡as the angle of the arc råading to n,and o v¡as the orientation of tñe principai Ã.j"r-".1u.

The normar vaLue of BASECOsT vras z5o. This f unction v¡as the
same as the GRÀDCOST'(n) of the regular-sized-object detec_
tor except for the incl-usion of the term comparing Ø(n) with
o. This term cour-d onJ-y reduce the cost if the edge direc-
tion implied by the gradient , Ø(n) -T, was similar to the
kernel orientatíon, o. Figure 4.3 shor+s the ef f ect of this
term on GRÀDCOST(n).

GRADCOST

BASECOST-s ( n ).cos { zlØ(") -T
-arc direction l

BÀSECOST

TÍbr
Difference between impliea

edge direction, ø(ni-T,
and kernel orientation, O

Figure 4-32 Effect of KerneL orientation Term on GRÀDCosr
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The cost of the pixei- varue, prxcosT(n), favoured dark
pixels. The expression for the pixel varue cost was simpry:

whe re

pIxCoST(n) = (sesecosr/128) . tp(n)-¡lrNprxl
p(n) was the pixel value at n and
MINPTx was the minimum pixel varue within the ker-nel region.

The coefficient, BÀsEcosr/128, normarized prxcosr(n) with
respect to GRÀDCosr(n) so that each cost had the same effect
when ¿ equalled ß.

onry three arc directions were arrowed in the graph used

for the crease detector. These three contiguous directions
were centred on the "major rattice direction',. This direc-
tion was that Freeman chain code direction which was cLosest
to the kernel's principar major axis orientation, o. The

set of allowed arc directions ensured that the minimum angle
availabre on either side of the major axis direction nu= T
and that the start and goal- nodes were connected. In addi-
tion they v,ere the onry arc directions which courd possibly
be on a path representing an authentic crease.

The graph had only a single start node and a s

node. These nodes corresponded to the principal
crossing points found by the program MOMENTS on

contour. These locations made the edge search

along the longitudinal axis of the kernel region
crease was expected to run. Figure 4.4 shows the
typical graph used in the crease detector.

ingle goal

major axis

the kernel-

progress

where the

form of a
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Major Àxis
Orientation

Goal Node
_ \.PrrnclpaJ-
Major
Àxis

Figure 4.4: Typical Crease Detector Graph

The array GRAPH represented the crease detector graph.
The bit definitions in GRÀPH were the same as those used in
the regurar-sized-object detector except that a frag bit for
the goal node vras neither required nor defined. Figure 4.5
shows the bit definitions of GRAPH.

The graph search algorithm employed in the crease detec-
tor to find the least cost path had two major differences
from the graph search algorithm of the regular-sized-object
detector. First, it did not have the mechanisms instalred
for handring combined start/goar nodes since the start and

goar nodes were separate nodes in the crease detector. sec-
ond, it did not use heuristic information to improve the
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Figure 4.5: Bit Definitions of GRAPH

speed of the search. À typicar graph for the crease detec-
tor was much smaller than its counterpart for the regurar-
sized-object detector so that speed was not as important.
ÀIso, it was found that obtaining the single reast cost so-
lution was important for obtaining acceptabre results.
Therefore a heuristic could not be used since it wourd have

introduced suboptimarity into the search. Indeed the combi-
nation of no heuristic and the allowed arc directions guar-
anteed not onJ-y that solely the least cost solution was

found, but also that the search would never end in fairure.
sharp turns again were not arlowed in the sorution path.

The form of the Àlgorithm e* used for the crease detector
was as follows:

1.

2.

Place the start node's coordinates
its cost f=0.

Find the node n in OPEN with the
and mark it closed by resetting its

in OPEN and set

lowest value of f
opened-node bit.

15
INTEGER*2 Word

-6 5 4

Opened
Node

Contour
Node

Pointér to
NodePrev i ous

Marked Element
Node of

Graph
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3. If n is the goar node then the least cost path has
been found so exit the algorithm; otherwise cãntinue.
Expand n by generating its successors, each of which
must:

a) be an element of the graph,

b) be reachable by one of the three arcs centred onthe major lattice direction, and

c) satisfy the no sharp turns rule.
For each successor node not arready marked caÌcurate
1, set l!l opened-node and marked-nóde bits and placeits coordinates in OPEN.

For each successor node already marked carcul-ate its
new varue of f but store onry á temporary version ofit. rf the new varue of f is not iess lhan the ordvarue, then omit this successor. otherwise repracethe old varue of f with its nevr value, rediru.i thesuccessor's pointer to n and if it is currently mark-ed closed, mark it open and place its coordinãtes in
OPEN.

Go to 2.

A major difference between the crease detector and the
regurar-sized-object detector h'as that not only did the cre-
ase detector have to find the reast cost path in a graph, âs

did the regurar-sized-object detector, but also it had to
decide whether this path represented an actual edge, the
crease. This decision was based on two conditions.

The first condition was that the number of solution path
nodes following the kernel contour had to be below a thresh-
old entered by the operator. rf a fairry well defined cre-
ase existed in a kernel region then the solution path would

follow it. rn contrast, forlowing the contour from one end

of the kernel to the other r^ras more expensive since a longer

¿"

tr

6.

7.
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path was required and pixels on the contour generalry had

higher gray ]evers. rf a well defined crease did not exist,
such as for a dorsal side view, the sorution path often fol-
lowed part of the kerner contour since it was the only well
defined edge. The standard setting for this threshord v¡as

R

The second condition was that the average cost per node

on the sorution path had to be berow a threshord entered by

the operator. À soLution path that folrowed a werr deiined
crease had less average cost per node than one following a

poorly defined or nonexistent crease. The standard setting
for this threshold was about 200.

4.2.2 Performance

Figure 4.6, Figure 4.7 and Figure 4.8 show the crease images

outputted by the crease detector operating on CREASESI. The

kernel outlines were previously determined by the erripti-
cal-object detector. pixers on a contour were set to 2ss.

The defined crease paths were then found by the crease de-

tector. Pixers on a defined crease were set to 1zg. Thus

points representing contours and creases in these figures
can be easily diiferentiated since those representing de-
fined creases are smaller than those representing kerneL

contours. The threshords entered by the operator, for cre-
ase nodes on contour and average cost per nodef r¡¡ere set in
effect to infinity so that a crease vras arways decLared and
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Figure 4.62 Crease Image of CREÀSES1 With pixel Va1ue Cost
Only

therefore the solution path was always displayed in the fig-
ure.

Figure 4.6 and Figure 4.7 demonstrate the resurts pro-
duced by using onry the pixer varue cost and onry the gradi-
ent cost respectively. with the pixer val_ue cost onry, each

edge search found a solution path that traversed just the
darker areas of the kerner region. This path was just as

rikery to follow shadows on the kernel surface as it was to
f ollow the crease. with the gradient cost on]_y, each solu-
tion path forrorsed, within rimits imposed by the allowed arc
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Figure 4.7: Crease Image of CREÀSES'l With Gradient CostOnly

directions, the most weII defined
region: nameì-y the kernel contour.

edge in the kernel image

Figure 4-8 shows the resurts produced by using the stan-
dard settings of ø and ß so that the pixeJ- value cost and
gradient cost had equar infruence on the solution path. The

crease det.ector accurately specified the werl defined creas-
es of the two kernels on the teft side. The average cost
per node on the two sol-ution paths was 169 for the upper
kerneL and 200 for the rower kerner-. However the detector
incorrectly specified the poorly defined creases of the two



Figure 4-Bz crease Image of CREASESI with Eguar weights

kernels on the right side. I nstead
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the solution paths fol-
The average cost per

233 for the lower ker-
total graph nodes were

high percentage illus-

the typicaL search in

lowed false edges created by shadow.

node was 225 for the upper kernel_ and

nel. On average 91 percent of the
expanded in each graph search. This
trated the difficulty encountered by

estimating the location of the crease

Figure 4.9 and Figure 4. 1 O

duced by the crease detector
equal values of ø and ß. For

crease images pro-

on CREÀSES3 with

the thresholds en-

show the

operating

Figure 4.9
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Figure 4.92 Crease Image of CREÀSES3 Using Infinite

Thr e sholds

tered by the operator were effectivery infinite while for
Figure 4.10 the thresholds $¡ere the standard values. The

detector accuratery specified the crease of the upper reft
kernel. But it made a small error specifying the rocation
of the crease on the l-ower left kernel. The upper harf of
the solution path for this kernel_ was somewhat above the ac-
tual crease position. The average cost per node for each of
these two solution paths was 167 and 1g7 respectively.
since each of the right two kernel regions in cREÀsES3 did
not have a crease, the edge search in that region foLrowed a
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Figure 4.1 0: Crease Image of CREÀSES3 Using Standard
Thre sholds

considerable length of the kernel contour. Thus the soru-
tion path for each of these kerner-s exceeded the crease
nodes on contour threshord in the second run of the crease
detector. Hence Figure 4.10 does not show defined crease
locations in the right two kernel regions.

The above five figures demonstrate the shortcomings of
the crease detector. although the detector was usualty abre
to detect and specify werl defined creases, it was rarery
abl-e to detect poorly def ined creases. when a crease was

poorry defined, the detector !{as easily deceived by the ef-
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fects of shadow. Ànother fault with the detector was its
questionable ability to differentiate between a sorution
path representing a poorly defined crease and one represent-
ing a fal,se edge. For the rimited number of test images em-

ployed in this research the crease detector had modest suc-
cess at distinguishing between valid and invalid soLution
paths. However the smarl change in the average cost per
node encountered between typical valid and invarid sorution
paths made crear the uncertainty of the crease decision
method

The mediocre performance of the crease detector suggested

that a better detector was desirabl-e. rn fact many modifi-
cations of the crease detector vrere tested before the cur-
rent version was arrived at. These included a different set
of allowed arc directions, severaL different crease decision
methods, multiple start and goal nodes, artificiar limita-
tion of the edge search away from the kernel contour and six
different cost functions. rt was deduced that the essential
probrem with the crease detector was that it was a two-di-
mensional solution to a three-dimensional probrem. rndeed

considering this handicap, the performance of the crease de-
tector was surprisingly good.

It is instructive to consider the human vision system

when assessing the performance of the crease detector. The

human vision system can easiry detect the kerner creases in
CREÀSES'I and CREÀSES3 because it employs the knowledge that
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these images are representations of three-dimensional solids
and that the crease is a manifestation of the kernel_'s sur-
face topography. À machine that woul-d improve on the crease
detector by taking advantage of this approach would probably
use locar surface gray level- to estimate rocal surface ori-
entation while generating a three-dimensional model of each

kernel and finally determine a crease's presence and loca-
tion based on this moder, not on the image itself.

rn concrusion the crease detector applied three known

traits of the appearance of kernel creases in a graphical
edge search to detect and specify the kernel_ crease. The

performance of this detector was satisfactory for werr de-
fined creases. However it courd not reriably detect poorly
defined creases or discriminate between a sorution path rep-
resenting a poorry defined crease and one not representing a

crease at all.

4.3 GER}T DETECTOR

several- characteristics of wheat kernel germs guided the de-
sign of the germ detector. The germ appears only on the
dorsar side of Lhe kerner- where the crease is not visibre.
Thus the germ detector did not attempt to find a germ on a

kernel on which the crease detector had previously founc a

crease. The germ is usuarry located on the burbous end of
the kernel. Therefore the germ detector analyzed onl-y the
bulbous end of a kernel for the presence of a germ. This
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end was previousry determined by the program MOMENTS. The

germ has an albedo and surface orientation which differ from

those of the surrounding kernel surface. These changes oc-
cur abruptly at the periphery of the germ and thereby cause

the appearance of a weak step edge which delineates the
germ. The germ can appear either darker or righter than the
surrounding kerner surface. Finarry, the typical germ out-
line roughly describes part of a circle whose centre is the
major axis crossing point of the bulbous end of the kerner
contour. The radius of this circre is about one-guarter of
the length of the kernel.

Evidently the germ detector had an objective simitar to
that of the crease detector. The germ detector first had to
find and specify the single best edge which possibly repre-
sented an anatomical feature on part of the visible kernel
surface. Then it had to decide whether the detected edge

actualry did represent the desired feature. consequentry
the germ detector emproyed a very simirar technique to that
of the crease detector. The onry major differences between

the germ detector rna 
"rease detector r¡¡ere the graph loca-

tion, the cost function, the arrowed arc directions and the
number of start and goal nodes.

The following subsection discusses,

ity, only the significant differences
tector and crease detector.

for the sake of brev-

between the germ de-



4.3.1 princioles of Operation
The graph of the germ detector represented and v¡as i
tration with the burbous harf of the kerneJ- image

This graph was demarcated by the principal minor
harf of the kerner contour. Figure 4.11 shows the
the germ detector graph.
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n regl s-

region.

axis and

form of

Figure 4.11: Typical Germ Detector Graph

The graph had murtipre start and goal nodes. The start
nodes hrere positioned on the kernel contour on the right
side of the principal major axis crossing point. The goal
nodes nere positioned on the kerner contour on the l_eft side
of the principar major axis crossing point. Thus the edge

search was rotary in nature about the principal major axis

Goa I
Nodes

Kernel- Contour
Principal
Mi nor/Àxis

Graph

Start
Nodes

Expected Germ
Contour Locat ion

Pivot Point

Pr'i nc i pa 1
Major
Àxis
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Thi s point v¡as ref erred to as the pivot
point. The start nodes and the goal nodes were not posi-
tioned closer than *e to the pivot point, where 2A was the
kernel length. rhis restriction ensured that the solution
path did not begin or end nearer to the pivot point than ex-
pected for the typical germ outline.

The array GRAPH represented the germ detector graph. The

bit definitions in GRÀPH were equivalent to those of the
regurar-sized-object detector. Figure 3.12 shows these bit
definitions.

The arcs allowed in the graph were determined in exactly
the same fashion as those in the regurar-sized-object detec-
tor since the desired features of the germ contour v¡ere sim-
ilar to those of the kernel contour. Each arc had to be one

of the eight Freeman chain code erements, have a direction
which was one of the five contiguous directions centred on

the preferred direction and satisfy the no sharp turns rule.
Figure 3.11 shows the arc selection process.

The cost function of the germ detector $ras

three parts as follows:
composed of

c (n) = DÀDJUST(n) . RADJUST(n) .cnaoCoST(n)

The diagonal adjustment, DADJUST(n),

of the regular-sized-object detector.
was identical to that
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The cost of the gradient, GRADCOST(n), was the same in
every way to that of the regular-sized-object detector ex_
cept that BÀsECosT had the lower vaLue of 75. This reduced
BÀsEcosT provided more sensitivity for the edge search with
which to detect the weak step edge that delineated the typi-
caI germ.

The radial adjustment, RÀDJUST(n), neutralized the low-
cost advantage of short paths near the pivot point. This
adjustment performed the same function as that of the regu-
Lar-sized-object detector, but its form was considerably
different. The derivation of RADJUST(n) was based on the
erripticar moder of the kerneL contour shape and the circu-
lar arc model of the germ contour shape. For a circre of
radius R centred on a vertex of an elripse with an aspect
ratio of 2 and length of 2A, the length of the arc of the
circle within the ellipse is:

Ça (n/a ) 2+b (a/e
L1, otherwise

1 .71 , and

2.58

imat ion,

ellipse,
which is normalized wi

required considerably

L = 2R.arccos t -* (erzn ) +* /(lñ+121

À close approximation to L for A/e

t/e = ), &/e) < o.B

whe re ct

b=

This approx

size of the
th respect to the

Iess computation
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The radialto cal-cuLate than the exact expression for
adjustment was Lhen:

RÀDJUST(n) = (t/e)-

Figure 4.12

RADJUST(n ) .

shows the geometry of the derivation of

2+y2=rz (x-À)'*Ðt=1

Figure 4.12: Derivation of RÀDJUST(n)

4.3.2 Performance

Figure 4.13 shows the germ image created by the germ detec-
tor program when it processed CREASES3. The kernel outlines
and crease paths had been previousry defined by the elripti-
cal-object detector and crease detector respectively. pix-
ers on kernel contours were assigned the value 255 and those
on crease paths and germ contours were assigned the varue
128. This image demonstrated the germ detector's remarkable
ability to detect and folrow the very subtle edge which out-
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Figure 4.13: Germ Contour Image of CREASES3

lined the germ in each of the

gions.
right two kerneL image re-

À definitive statement concerning the performance of the
germ detector can not be made because the detector r.¡as not
tested on a sufficient number of images. However, since
both detectors utirized simirar techniques, the germ detec-
tor J-ikely had probrems simir-ar to those of the crease de-

tector. consequentry the germ detector probabry suffered
from the rigidity of its two-dimensional approach to the
germ detection problem, thereby being truly successfur onry
on images of at least moderately werl defined germs.

-¡fr-
{__q--- ì

\__



Chapter V

TEXTT'RE ANALYSIS

5.1 INTRODUCTION

Às discussed in section 1.4, surface texture is a broad

class of features which is important for wheat grading.
Texture is the major characteristic in describing the two

grading factors, vitreousness and soundness. rt is also
usefur for determining variety which is another grading fac-
tor. Indeed texture is second only to shape in importance
for wheat grading.

The areas of interest on the visible kerneL surface for
which texture features are varuabre include not only the en-
tire visible kerneL surface, but also several subsets of
this region: specificarly the germ and the crease. The en-
visioned computerized grading system wourd obtain texture
features for each of these regions of interest in each wheat

kernel image region after it had first identified the roca-
tion of each whol-e wheat kerner and its visible anatomicar
part s .

rn this research a texture anarysis technique was impre-
mented and employed just for obtaining texture features of
the overall image region of a wheat kerner. The implementa-

- 168



tion of a technique

nel- region was left
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analyze specific subsets of the ker-
future research.

The choice of the texture analysis technique was based on

several desired and tractabre capabilities of Lhe technique.
The technique had to distinguish between micro-texture
(fine) and macro-texture (coarse) components of a texture.
since these distinctions correspond to spatiaJ_ freguency,
Lhen some form of frequency transformation was required.
The technique had to characterize the amount of energy in a

texture or, in other words, the gray tone variation between

pixers. Finally, a desired, but not essential, capability
v¡as texture synthesis. This facility wourd alrow visuaríza-
tion of a texture represented by texture features and indi-
cate that in some sense the analysis technigue could capture
everything about a texture.

The selected texture analysis technique, two-dimensional
(2-n) autoregression (an) modellingr wâs chosen from the
wide variety of approaches that are applied to the texture
analysis problem today. Haralick 119791 gives a broad ac_

counting of most of these. The advantages of 2-D AR mod-

elling which motivated its use are as follows:

to

for

AR.modelling is sensitive to spatiar pixer dependencewhile at the same time .being áure to ãccount for thestochastic nature of a random texture image.

The ÀR model parameter equations ere rinear and there-
f ore have a slraight f orw-ard solution.
The estimated ÀR model can be easiry manipurated togenerate its power density spectrum (poS).
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AR modelJ-ing is a superior techniqge for resolvingspgctrum peaks in one-dimensionar (t-D) signar analysiãand so the same can probably be said for 2-D ÀR imãgeanarysis. This superiority is rerated to the fact that
+f modelling i=' as poinred out by Makhour 119751-,identical to the very êuccessful *a*i*u* enLropy spec-tral estimation technique.

AR modelling has a complimentary texture image synthe-sis faciliLy.

AR modelling provided two types of features with which to
describe a texture. The first, the AR model parameters,
characterized the spatial dependence of pixel_ values. A

stepwise linear discriminant anarysis was applied to the AR

parameters of images of three classes of wheat kernel_ sur-
faces in order to gauge the discriminant power of these pa-
rameters. The resul-ts r^rere disheartening and are described
in Subsection 5.6.2. The second type, samples from the ÀR

model-'s power density spectrum which approximated that of
the texture, however herd far more promise for successful
discrimination. The approximate texture spectrum provided a

quantitative assessment of the importance of the spatial
frequency components of a texture in a range from coarse to
f ine texture. This characterization corresponded more

closely to the visuar description of the surface degrading
factors of wheat kernels and, in addition, was much easier
for the experimenter to rerate to his ovln visual experience.

À probrem arose in applying AR modelring to texture
synthesis. Although some authors have used only a 1-D AR

model, most authors agree, Haralick for instance, that a 2-D
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AR moder is necessary to furry represent a texture image.
But, 2-D ÀR model-s do not have easily carculated stabitity
criteria. Tirerefore, when a 2-D AR model is used for tex-
ture image synthesis, the experimenter, Gambotto [1980] for
example, must go to great l-engths to ensure that the model
remains in a stabre domain. This usually impries that model

complexity is extremely Iimited.

The texture synthesis technique chosen for this research
is due to Kashyap 119801 who has found a solution to stabil_
ity probrems in texture synthesis with 2-D AR moders. Kash-
yap assumes that the image is folded into a Lorus. A torus
image is folded so that its top edge joins its bottom edge

and its left edge joins its right edge. under this assump-

tion AR texture image synthesis becomes a problem in the si-
multaneous solution of a set of linear equations. Thus, ÀR

model instability becomes very unlikely, occurring only when

the sorution matrix is singurar. rf a Moore-penrose inverse
is used then the probrem of model- stability is totalry erim-
inated. Chellappa and Kashyap t19g1l refer to this approach
as simultaneous autoregressive modelling or sAR.

section 5.2 presents the technique emproyed to normarize
the texture analysis with respect to rotation. Rotation
normalization was necessary to remove the dependence of the
texture analysis on wheat kernel orientation.
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niques respectively.
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5.5 present the AR model estima-

and the texture synthesis tech-

section 5.5 demonstrates preliminary experimental_ re-
su1ts. Section 5.7 presents recommendations based on these

results for the direction of future research into the use of
the texture analysis technique for wheat grading.

5.2 ROTATION NORMALIZATION

The ".r*"r-r".tion of the estimated AR moder with respect to
rotation minimized the dependence of the model on the orien-
tation of the kernel being analyzed. Thus the ÀR models of
images of the same kernel rotated at different angres about

an axis paraller to the camera axis would be almost identi-
cal provided that the same magnification and lighting v¡ere

used. The results of a test like this are presented in sub-
section 5.6. 1 .

The normarization was performed by copying the kernel_ re-
gion of the original image onto a transformed image whose

column axis was paraIleI to the principar major axis of the
kernel. The principar major axis had been previously deter-
mined by the program MOMENTS. Then the AR moder was esti-
mated using the transformed image so that the direction de-
pendent model parameters arways had the same orientation
relative to the kernel orientation. This procedure was re-
.peated f or each kernel region in the original image.
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P' , in the transformed image , Í, , was as-
signed the varue of the nearest pixel, p, in the original
image, I. The centre of the transformed image corresponded
to the centroid of the kernel image region. The size of the
transformed image was 128 rows by 129 corumns which easiry
accommodated typical kernel images at the standard magnifi-
cation. The expression that defined each transformed image

pixel value was then:

such that

and

whe re

i = (j
j = (j
(i,j)
(i'-i'
(rrc)
g ç'as

P'(i' , j') = P(i, j)
'-64).sin e + (i'-64).cos e + 7
'-64).cos O (í'-64).sin O + ã
vras the pixel location in I,
) was the pixel location in I,,
r,ras the centroid of the kernel region, andthe orientation of the kernel

Figure 5.1 shows the geometry

method.

of the rotation normalization
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T,+
P'(i',j') =-p(\,j)

)

Figure 5.1: Geometry of Rotation NormaLízation

5.3 TEX.rURE MODEL ESTIMATION

The texture of an arbitrariJ-y shaped kerneL image region r.ras

model-led as a 2-D ÀR system driven by the uncorrelated, zero
mean' nonstationary and unity variance random process w(irj)
such that:

Y(i,j) = f w(i,j) *n,å.*"(p,q) v(i+p,j+q)

where v(i,j) =P(i,j) is
cL is the
P is the
'e(p,q) is
N is the

P(i,j)-" is tþu zero mean pixel value,the actual pixeJ_ value,
average pixel value in the region,spatial input noise variance,
an AR coefficient, and

inf luent iaI neighborhood.

N was the set of coordinates of the estimated ÀR coeffi-
cients. N was carred the infruential neighborhood and
Y(i'j) the dependent pixel of that neighborhood since y(i,j)
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was rerated to a linear combination of the other pixeJ_ var_
ues in the neighborhood. N wasr for convenience, defined to
be rectangurar and r-ower-right causar- such that:

. N = [i, j I l, j * o,o; o < i s Nr-1; o

Figure 5.2 illustrates the AR texture mode1.

w(i v(i,j)

Linear
Predi c tor

Figure 5.2: AR Texture Model

The method of solution for the ÀR coefficients is the
well known method of least sguares. The predicted var_ue of
the zero mean pixeJ. value y(i, j) was:

î, r, i, = ¿ o(p,q) y( i+p, j*q)
Þ'Q€N

and the resulting total squared error was:

E =. l^_ly(i,j)-;(i,j)12 =p ¿ w2(i,j)i,jeR' /i,¡eR,
where R'= t i, j l ( i, j )€R; ( i+p, j+q)eR for al1 (p,q)eu], and

R was the kernel image region.
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ne i ghborhood

with respect

o(p,q) were:

i-argest subset

of each y(i,j)

to O(p,q), the
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of R for which the influential
was within R. By minimizíng E

"normal equations" which defined

¡ _o(p,q) E y( i+p, j*q) v( i+u, j+v)p,eeN i, jeR, :- ì Y(i,j) y(i+u,j*v)
r , j€R'

for aIl u,v€N,

and the spatial input noise variance was:

where n was the number of
Thus the AR coef f ic ients
N1N2-1 simuÌtaneous linear

infLuential neighborhoods in R,.
were found by the solution of

equations with NrNz-'l unknowns.

es that

assump-

ionary.

depen-

Second,

The above normal equations had several properti
are worthy of note. First, they did not rely on the
tion that the texture's random process was stat
Hence the ÀR mode's portrayar of a texture ïras more
dabre than that of one which assumed stationarity.
the terms

Ð Y(
i , jeR'

formed an image correlat
program TEXTURE, which

i+p,j+q) y(i+u,j*v)

ion matrix which was symmetric. The

performed both the rotation normali-

o(p,q) y( i, j ) y( i+p, j*q ) l\/n
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zation and texture model estimation, sol_ved these equations
with a cholesky decomposition which took advantage of this
symmetry. 'Fina1Iy, an increase in the number of ÀR coeffi-
cients, or equivalentry in N, improved the model-..fit,, and

thereby decreaseð¡ at the expense of more parameters to de-
scribe a texture.

A concern with ÀR modelJ-ing is moder order determination:
in this case the determination of the optimar influential
neighborhood size N to represent the typicaJ. wheat kernel
surface texture. several- objective criteria exist for moder

order determination. one is the Final prediction Error
(rpn) of Àkaike. Deguchi and Morishita [1978] have applied
the FPE to 2-D AR texture modeJ-ling for images. However the
wheat grading problem reguires onry a rudimentary form of
texture characterization and therefore only a small N such
as 2 by 2 or 3 by 3. À smart N like this would probably be

much smarÌer than thaL indicated by the FpE. conseguentry a

more suitable approach woul-d be a statisticar anarysis to
determine the number of parameters reguired to differentiate
surface cfass. Being beyond Lhe scope of this research,
this analysis nas left for future research.



5.4 POWER DENSITY SPECTRT'M

The PDS of the 2-D ÀR model

spec t rum.

For convenience this was rewr

/-', Nr-'l N2
r'f "(i,j) = E Ð

p=0 q=

where: a(p,q) = f1, p=0 a
t-o(p,9),

and N is assumed to be rectan

Taking the Z transform:

,f w(zt,zz) = y(zt,zz)

The system function of the ÀR

The ÀR predictor model again v¡as:
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approximated the actuaÌ texture

¡ O(p,q) y( i+p, j*q)
P, QeN

itten as:

-1
a (p,q) Y( i+p, j*q)

0

nd q=g
otherwise

gu1ar.

Nr-'l
u

p=0

model

pq
21 22

Nz-1
¿ a (p,q)

q=0

then was:

H(zt,zz) = Y(zt,zz)
,,6W(z1rz2)/ p

ó1
q

Z2

By considering

the PDS of

P (dr ,CJz ) =

only

jt)'
21= e and

Nr-1 Nz-1
¿ ¿ a (p,q)

P=0 Q=0

j(^)z
zz= g

the ÀR model was:

. -jot -jÒz
fu(e ,e )l =

N I -1 Nz-1
ts-þUcl

P=0 q=0
(p,q) e

-iqo,



The foJ_lowing discrete version of
was used with egual summation Iimits
digital image representing the texture

the above

to generate

PDS:
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expression

the square

P(k,1)

M-1 M-1
I t a (p,q)

P=0 g=0

- j2ttpu
M

- j2rßI
M

e

where M > Nr

a (p,q)

and 1

= ûJrM
2

-1andq<Nz-1

that 0 < k,1 S M-1, and

The above spectral estimate was more simply expressed as:

P(k,1) =

where À(k,1) is the 2-D discrete Fourier transform (orr) of
a(p,q). The pDS image becomes more detailed as the size of
the influentiar neighborhood, and therefore the number of ÀR

parameters, increases since, in the Iimit,

P(k,1) = p(k,I) as the size of N---->ao

and M

= C1, p=0 and q=0
J-o(p,q), p s Nr
Lo, otherwi se,

are integers such

and 1 = á)"M
2

k

k

where P(k,1) is the actual texture pDS.

this is stated by Makhoul.

The 1-D version of
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image, had several- pecul

also created a synthetic
it to calculate the spec

P(k,1)
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which calculated and created the pDS

iarities. First, since this program

texture, it r.Jas more convenient for
trum with the equivalent expression:

= I I 12

luz.a-1(k,I)l

The frac-

image was propor-

general the Four-

PDS was also sym-

1MqTlm

was also employed in the texture synthesis carcuration.
second, the image width M was 1zg so that a fast Fourier
transform (r'rr) algorithm couLd be used to carculate the in-
verse DFT. Third, the zero frequency pixe1, where k=1=0,

was placed in the centre of the image so that for the pixel
value Y(i,j) the values of k and I were:

k - (i+6¿) mod 128 and 1 - (j+6+) mod 128

where À-1 (k,1) was the inverse 2-D DFT of a(p,q).
tion

Thus the distance from the centre of the
tional to the spatial frequency. Since in
ier transform is conjugate symmetric, the

metric such that

^P̂(k,1) = P(-k,-1)

so that the PDS image $¡as symmetric about its centre or zero
frequency point. FinaI1y, to accommodate the wide dynamic
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range of the detail in the pDS, TXTRGEN set each pixer to a

varue proportionar to the logarithm of the corresponding pDS

value.

5.5 TEXTT'RE SYNTHESIS

The synthesis of SÀR texture images was

ably by the torus image assumption.
value in an M by M torus image obeying
given by:

simplified consider-
The zero mean pixel
the 2-D ÀR model is

of

If w is in lexi-

To avoid redundant

stricted to 0 < i,j
causal Io¡ver right
hoods are possible.

If

Y(i,j) I o(p,q) vt(i-p) mod M, (j-q) mod Ml =vF w(i,j),p, qeN '/-

0 < i, j s M_1

Using the terminology of CheIlappa

Linear equations can be written in

B(e)Y = ,ß v
/

where Y and w are in lexicographic order.
cographic order then:

influential neighbors, e( i, j ) is re_
< M-l. This is called a one-sided or

neighborhood. Other one-sided neighbor_

B(e) is obviously M2 by M2.

and Kashyap, this set

matrix form as:

B(e) = [b(r,c)
YzxM2
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then it

b(r,c) =

can be shown that:

-e(0,0)=1, r=c

This is the dependent pixel

-o(i,j), (i,j) e N

of row r.

where

i = {lnt[(c-1)/u) rnr[(r-1)/u] * ¡r] mod Mj = {(c-1) mod M - (r-1) moa í¡ i u} Áoa-ü 
--

0, (i, j) Ø ¡¡

These specifications for B(e) imply that it is an erement
of a unique set of matrices called.,block circurant with
circulant blocks" (sCCs), where each block of B(e) is
M by M. The structure of each block is as follows:

e(i,0)

",t:M-1)

o( i,1 )

e( i,1 )

o(i,0)
o(i,2)
o( i,1 )

o(i,M-1)

", 
t 

:t"1-2)

o(i,0)o(i,2) e(i,3)



The arrangement of the blocks within
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B(e) is as follows:

EEE
HHtr
trtrtr

in synthesizing a

Iinear equations:

B(e)y = S w
/

Davis [1978] has shown that ar1 BccB matrices are diagonali-
zable so that B(e) can be diagonalized as:

B(e) = Fl\F
F=FØF ,

MM

F is the M by M Fourier matrix,

The objective

solve the set of

torus AR texture is to

the Kronecker product, and

the diagonal eigenvalue matrix.

where

M

E

^

is

is
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inverse of B(e)

has shown
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that theDavis

is:

B. (ê) = F*

zt= (N)

*F

where

x=
Y2xM2

À*o
Â=0

which presents the foJ_lowing solution to
l-em:

the synthesis prob-

f = n. (g)w = F*/tFw

The eigenvalues of B(e) are given by:

À(t,t ( l_-1 ) l

where W = e
M

b(p,q) is element q of block p of B(g), and

À(t,t) is eigenvalue I of block k of B(e).

substituting in for the elements of B(e) which are the sÀR

coefficients, the eigenvalue expressions become:

Å,
0,

M-1 -(k-1)i M-1
) = E w Ð b(i+1,j+1

i=0 M j=0

- j (2tr/u)

)w
M

l(x,r) =
M-1 M-1 -( k-1 ) i-(1_1 ) j-t Iw
i=0 j=0 M

e(i,j)

where O(0,0) = -1 as this corresponds to the dependent pix-
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el. obviously 
^(k,1) 

is expressed as a 2-D inverse DFT over
the SÀR coefficients O(i,j).

By using the Moore-penrose inverse of B(e) the difficulty
of having a singurar B(g) and therefore not having a stan-
dard inverse of B(e) is avoided. Thus the probrem of insta-
bility of the 2-D ÀR texture model can be total_ly eliminat-
ed. The Moore-penrose inverse has the property that if
lgtg)l t 0 then the standard inverse is employed. otherwise
the generalized inverse that mínimizes I lv¡ ¡ z is used. In
terms of the synthetic image this is the solution that mini-
mizes the image povrer or variance.

To complete the derivation of the texture synthesis tech-
nigue, a sol-ution to Lhe product y = F*ztFw is f ound. Mul-
tiplication by F amounts to the application of a 2-D DFT

while murtiplication by F* amounts to the application of a

2-D inverse DFT" Therefore the final expression specifying
the synthetic sÀR texture image can be directry written as:

P(i1,i2) =
M-'1

'ß t(14qz) ¿

' k.,=o

M-1 M-1
[ ¿ E v¡(j
j r =0 j z=0

M-1 -irkr-izkzEÀ*w
kz=0 krkz M

krjr+kzjz
t,jz) I^7 l]*ø1

M

À*(kr,kz
a is the
1 is an
f ís the
P( i r , i 2 )

) is an eigenvalue of the Moore-penrose in-verse of B(O),
average pixel val_ue,

M by M field of which each element is 1,
variance of the spatial input noise, andis a pixel of the synthetið texture image.

where
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The program TXTRGEN, which calcurated and created a syn-
thetic texture image, arso caLcurated and created the tex-
ture PDS image' since both calculations involved an inverse
2-D DFT over o. The width M of both of these sguare images

was 1'28 so that an FFT form of the DFT could be used. The

block diagram in Figure 5.3 demonstrates the combined pDS

generation and SAR texture synthesis process.

l.(k,1)
o(i,j) P(i,j)

of
PDS

\. ( k,1)
w(i, j) Y(i,j)

P(i,j)
of

Synthet ic
Texture

Inverse

2-D FFT

Moore-
Pen rose
Inverse

1og(l.l)2

2_D FFT

Figure 5.3: PDS Generation and sAR Texture synthesis

For deriving the least squares ÀR parameter estimation
technique, nothing was assumed about the spatial_ input noise

6w(i,j). However, during texture irnage synthesis, w(i,i)
must be uncorrelated if the texture is to have exactry the
desired sÀR parameters. This is sbated by Kashyap. rn
practice w(i,j) must have a certain amount of correlation
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since it is a zeyo mean rear random fierd. The objecLive of
the experimenter while using the sAR texture synthesis tecir-
nique then is to maintain the correrat,ion within w(i,j) at a

minimum in order that the reproduction of sAR statistics in
synthesized textures is optimized.

5.5 EXPERIMENTAL REST'LTS

5.5.1 RoËation NormaLization Test

The first test of the texture anatysis technique examined

the operation of its rotation normalization facility. The

technique $¡as applied to three images of the same wheat ker-
neI. rn each succeeding image, the kerner was rotated by a

further angJ-e of roughry 30 degrees about an axis paraller
to the camera axis. The other imaging conditions for each

image were identical. Thus the desired results v¡ere that
the AR parameLers and the pDs of the kerner region in each

image wourd be exactly the same. Figure 5.4 shows these im-

ages, câlIed ROTEST1 , ROTEST2 and ROTEST3.

The following tabre lists the AR parameters obtained from



188

Figure 5.4: ROTESTI, ROTEST2 and ROTEST3
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each image with a 3 by 3 influential neighborhood.

I mage Àng1e ø ÀR Coefficients P
ROTESTl 225.289 1 02 .469 * .58853 .13596

.36972 .11603 -.'15208

.03370 .02411 -.09673

57.4370

ROTEST2 250 .87 2 105.447 ',. .57535 . 12950
.85755 -.28382 -.1011s

-.13275 -.00891 -.02860

32.33s9

ROTEST3 281.118 114.391 * .631 95 .08628
.96416 -.306s7 -. 1 52s8

-. 1 8383 -. 00547 -. 0 1 8Bs

24.0637

*Corresponds to dependent pixel.

For RorEsr2 and RorEST3 the corresponding ÀR coefficients,
and theref ore the ÀR moders, were as expected quite simil_ar.
However Lhe ÀR coeff icients for ROTEST'l .had many dissirnilar-
ities with those of the other two images. rn fact some cor-
responding coefficients had different signs. The most rike-
ly cause for this difference in the ÀR models was that while
the ellipticaì--object detector had accurately specified the
kernel contour in RorEST2 and RorEsr3, it had omitted the
smarr region representing the left harf of the brush of the
kerner in RorESTl. consequently this extremery white patch
of the kernel surface had none of the infruence on the
RorESTl ÀR model which it had had on the ÀR moders of the
other two images.

Figure 5.5 shows the pDS and synthetic texture images de-
termined from the B by I infruentiar neighborhood ÀR moders

of RorEsrl, RorEST2 and RorEST3. The g by g influentiar
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ROTEST Synthetic Texture

Figure 5.5: PDS and synthetic Texture rmages of RorESTl,
ROTEST2 and ROTEST3
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neighborhood size was the arbitrary maximum size arlowed by

the AR model estimation program. This size provided the

most definition in the generation of the pDS. However it
reguired too much computation to be of use in a practical
wheat grading system.

As shown in this figure, the pDS and synthetic texture
images for RorEST2 and RorEST3 had a very simirar appear-

ance. The pixels in the synthetic texture images did not

have a one-to-one correspondence since each image represent-
ed a random process, but it is crear that the texture moders

which they represented v¡ere similar. However the pDS and

synthetic texture images of RorEsrl $rere not similar to
those of ROTEST2 and ROTEST3. Hence the PDS and synthetic
texture images upheld the similarities and dissimilarities
indicated by the ÀR coefficients themselves.

The PDS of ROTESTI displayed a phenomenon typical of im-

ages of ventral side up kernels like this one. The step
edge formed by the crease was often manifested in the pDS by

a ridge that was perpendicurar to the crease direction and

which intersected the zero freguency point. since the rota-
tion normalization caused the column axis of the pDS to be

aligned with the crease

parallel to the row axis

rection, this ridge vras always

the PDS.

di

of
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5.6.2 TexLure Classification Test

The second test of the texture analysis technique investi-
gated its performance when analyzing representatives of

three classes of overall kernef surface quality. These

classes were sound, wrinkled and shrivelled. Sound kernels

have a smooth surface texture. Wrinkled kerneLs exhibit a

f ine surface texture. Shrivelled kernel-s are smalfer and

sometimes have a coarse surface Lexture.

Two calibrated intensity images for each texture class

and for each kernel orientation, ventral side up or down,

were used. Each image contained five wheat kernels. Às a

result, ten kernels represented each surface cLass and l:er-

nel orientation combination.

Intensity calibration was necessary because the absolute

gray l-evel is an important facet of texture. Intensity cal-
ibration ensured the correctness of a gray level and the

consistency of the imaging process.

Figure 5.6, Figure 5.7 and Figure 5.8 show the first im-

age of each surface class for the ventral side down (crease

not visible) kernel orientation. These images were SOUNDI,

WRINKl and SHRI\¡1 respectively. The surface class repre-

sented in each image is obvious from the image's name.

In the first stage of this test I a stepwise linear dis-
criminant analysis was applied to evaluate the merit of the

ÀR rnodel parameters for discriminating surface class. The
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Figure 5. 6: SOUNDl





F i gure 9IRINKl





F i gure SHRIV'1
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program BMDPTM of BMDP statistical software rnc. Iuniversity
of California, 19811 analyzed the parameters of the 3 by 3

infruential neighborhood ÀR models for the kernel regions of

the ventral- side down images and then for the ventral side

up images. This program found the two most discriminatory
linear discriminant functions that utitized onry the vari-
abres determined to be statistically significant. The first
function attempted to classify the surface types for the

ventral side down kerners, the second function for the ven-

tral side up kernels.

The results were disappointing. For the ventral side

down images, only the average pixel value a and the spatial
input noise variance were deemed to be statistically sig-
nificant. The classification success rate was poor. For

the ventral- side up images, only the AR coef f ic ient e(Z ,Z)

was considered to be significant. The classification suc-

cess rate r,¡as even poorer. The f olrowing table lists the

classificaiion success rates.

Surface Type Percent Correct

Ventral Side Down Ventral Side Up

Sound
Wrinkled
Shr ivelled

60
70
50

70
20
50
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These unsatisfactory results indicated that, for a rinear
classification function at least, the AR parameters of the

overall kernel image region v¡ere not suitable for discrimi-
nating surface type. This conclusion was not entirely unex-

pected. The surface crasses of wheat kernel-s are given tex-
ture descriptions most easily rerated to energy and spatial
frequency content of the surface texture. However the ÀR

coefficients represented the spatial dependence of pixers;
only through a Fourier transform would they yield the fre-
quency content in a form such as the pDS.

As a result, a second stage of the test was undertaken.

This stage was to provide an intuitive feer for the discrim-
inatory value of the estimated PDS of the texture. pDS im-

ages were generated for the first object defined by the eI-
liptical-object detector in each of the twerve test images.

For each of these objects, a PDS image was generated corre-
sponding to the 2 by 2, 3 by 3, 5 by 5 and I by I influen-
tial neighborhood AR models. Thus a wide range of defini-
tion of the PDS of each evaluated object was available.

Figure 5.9, Figure 5.10 and Figure 5.11 show the pDS im-

ages for the 2 by 2,3 by 3 and 5 by 5 influential neighbor-

hood ÀR models for the first object in souNDl, wRrNKl and

SHRIVI respectivery. rn souNDl the first object was the

top-left kernel. In WRINKI the first object was the top

kernel. rn sHRrvl the first object was the bottom-left ker-
nel. For interest sake these figures also show a synt,hetic

texture image for each AR model.
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Synthetic Texture
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rexrure for rop-Lefr objecr
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Synthetic Texturer.N.widrh

PDS and Synthetic
WRINKl

Figure 5. 10: Texture for Top Object in
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Synthetic Texturer.N.widrh

PDS and Synthetic Texture for Bottom-Left
Object in SHRIVI

Figure 5.1 1 :
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The concl-usion reached from inspection of all the pDS im-

ages was that the PDS of the texture model of the entire
kernel image region did not have any obvious features that
indicated the surface crass. The anatomical- features, espe-

ciaIly the crease, germ and brush, caused bands or ridges in
the PDS. These effects tended to drown out features which

originated from the actual surface texture. Therefore, it
r.¡as decided that for the texture analysis technique to be

useful at distinguishing the surface texture crass of the

overaLl- kernel surface, it must be modified in future re-
search in such a way that it can mask out the effects of the

anatomical features on the visible kernel surface.

5.7 RECOMMENDATIONS

Texture analysis and its apprication to surface cLassifica-
tion is by far the portion of this research most in need of

future development and refinement. The texture model esti-
mation, PDS estimation and texture synthesis techniques

themselves performed werr the tasks for which they were de-

signed. However the moder estimation programr âs a source

of texture features, had two general deficiencies which di-
sallowed satisfactory surface crassification. First, the AR

model parameters described the spatial dependence of pixels,
instead of the composition of the texture in the frequency

domain. second, Lhe moder estimation procedure vras influ-
enced by the gross anatomicar features of the kerner to the

extent of overpowering the influence of the actual surface
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texture. This section presents suggestions for the solution
of these two problems

PDS features based on the AR model can be cal-curated in
the same way that the pDS image vras generated. However, the

PDS image was actualry a needless overspecification of the

estimated PDS of the texture since it supplied M2 = 16394

pixel varues or parameters when the model had at most only
63 coefficients. Àn expression which completery specifies
the PDS without redundancy is:

P(k,1) =

N r -'1 Nz-1
Ð E a(p,q) e

p=o g=o

- j2rrþk - j2rlqt
N1 N2

for

where

The variable

since:

0 < k < Nr-

a(p,q)

o s I < (Nr-1)/2

and q=g
, otherwise.

1 and

= f1, P=0(-etp,q)

I is employed over only half of its vatid range

AA

P(k,I) = P(Nr-k,N2-1)

The Nr'(Nz+1)/2 varues of p(k,1) wourd be used, instead of
the Nr'Nz-1 AR coefficients themselves, as features for a

statistical analysis like BMDPTM.

An attempt courd be made to minimize the effects of ana-

tomicar features on the AR model by rimiting the AR estima-

tion region to image areas where both the presence of these
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ind the

a reas ,

visible

Ge rm
Crease

- ÀR Model Estimation Region

Figure 5.12: Suggested ÀR Model Estimation Regions

kerner surface. In both of these areas the surface texture
will rikely be most evident since the right of ilrumination
only grazes the kerner surface near the kerner rimb. In ad-
dition these areas are not where the crease, germ or brush
are typically found for either a ventrar side up. or down

kernel.



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

5.1 coNcLusroNs

The goar of this research was to develop the computer soft-
ware that will be initiarly required during the development

of a successful, machine vision based, automated wheat grad-

ing system. This software fell into three broad categories:
digital image formaLion, primitive image understanding and

the extraction of shape and texture features directed by

this image understanding

The research proceeded in

development. The first phase

gramming for a microcomputer

produced programs which v¡ere

cuted on a mainframe computer

degree. of success.

four general phases of software

created assembly language pro-

system. The remaining phases

written in FORTRANTT and exe-

. Each phase had a different

In the first phase, the Image Manipulation package (fUp),

a collection of 8086 assembrer routines, vras developed. rMp

provided facilities on the custom built brack and white di-
gital image acquisition system which are found on standard

commercial imaging systems. rMP satisfied the imaging needs

of this research.

208
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rn the second phase, four different approaches v¡ere de-

veloped for computer perception of the objects contained in
a typical wheat grading image. Each of these approaches was

abre to perform the object perception function. However,

the last approach, the elliptical-objecL detector, was the

superior technique and it represented the curmination of
this phase. The use of image context and a priori knowredge

were maximized in this detector to produce a dynamic, reria-
bre and efficient technigue. rt achieved good resul_ts even

with scenes which suffered from shadow because of close and

sometimes touching objects. The reriability of this detec-
tor made it suitable for use in an automated system.

During this phase a technique was ar-so impremented to de-

scribe the shape of the image region of each perceived ob-
jeci. This technique was based on moments. rt efficiently
provided shape features that v¡ere normalized with respect to
translation, rotation and size. rt al-so provided character-
istics, such as rength, v¡idth and the principal major axis
location, which guided succeeding analysis.

rn the third phase, two technigues were developed to de-

tect and specify two important anatomicar parts of the wheat

kerner: the crease and the germ. Knowredge of the presence

and whereabouts of these parts impried the orientation, ei-
ther ventrar side up or down, of the kernel and the location
of surface features relevant to wheat grading.
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The performance of these two techniques vras mediocre.

Each performed satisfactorily if the image definition of the

part v¡as at l-east f ai r . However i f the part was poorly de-

fined, the technique wourd often miss the part and sometimes

have difficulty determining that it had failed. By compari-

son, the human vision system could more easily detect the

poorly defined parts in the same digital images. The essen-

tial deficiency of these techniques v¡as their two-dimension-

al approach to a three-dimensional problem; they did not em-

ploy the knowledge that the images were representations of

three-dimensional solids and that the crease and germ are

manifestations of the kernel's surface topography.

In the fourth and final phase, a signal processing tech-
nique, two-dimensional autoregression modelling Q-o ÀR),

v¡as implemented to analyze the kernel surface texture. Four

facirities of the text,ure anarysis were created: rotation
normalization of the analysis, estimation of the 2-D AR tex-
ture model, generation of the image of the estimated power

density spectrum (poS) of the texture and generation of a

synthetic texLure image which obeyed the estimated 2-D AR

texture model. These facilities worked well- to the extent

of their design. However, this phase was by far that most

in need of future development and refinement. This need was

caused by the shortcomings of the texture modei. estimation

facility.
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The texture model estimation facility vras the most impor-

tant of the four facilities since it was the source of tex-
ture features. Yet it had two deficiencies which prevented

successful surface classification based on these features.
First, these texture features, which were the 2-D ÀR model

parameters, described the spatial dependence of pixels.
However, it would have been more desirable to employ fea-

tures which succinctly described the estimated pDS of the

texture. Second, the model es'timation procedure allowed the

gross anatomical features of the kernel to have more influ-
ence on the AR texture model than that of the actual surface

texture. Evidently the texture model estimation procedure

must be improved if it is to serve successfully in the wheat

grading system.

6.2 RECOMMENDÀTIONS

This research was the preliminary
project which has definite goa1s.

obvious ideas can be stated which

on the likeIy future pursuits of

are actual recommendations.

part of a larger research

Therefore several rather

are as much a commentary

the research team as they

Evidently classification functions must be determined

which will utilize the shape and texture features made

available in this research to obtain degrading factors.
Perhaps other features not produced during this research may

arso be required. rn any event a vast amount of statistical
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analysis of image data remains before satisfactory cl-assifi-
cation functions can be determined.

A definite plan for the overall wheat grading system's

decision structure will have to be chosen. This decision

structure will direct the analysis of each perceived object,
from initial perception to identification and, if necessary,

to feature extraction and grade determination. Knowledge of

this structure is important to members of the research team

since the informat ion/processing structures which they will
design must model it. Ballard and Sklansky 11976J present a
classic example of the value of a well designed decision

structure in an intelligent image analysis system. In this
research a simple information/processing tree was utilized.
Figure 6.1 shows this structure. The use of an expanded

version of this structure would be advantageous in future
work by the research team.

The research team may find it necessary to employ colour

as a feature for detecting grass green kernels or wheats of

other classes such as soft white spring and amber durum.

The addition of colour could be inexpensively accomplished

by attaching colour filters to the existing black and white

imaging system camera.

Several recommendations can be made which pertain more

directly to the results of this research. These are dis-
cussed in the following two subsections.
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6.2.1 Short Term

Only one of the routines developed in this research, the AR

texture model estimation procedure, is drastically in need

of immediate improvement.

Section 5.7 suggested two modifications to this routine.
The first was to util-ize the nonredundant PDS values as tex-
ture features instead of the ÀR model parameters themselves.

The second was to limit the ÀR model estimation region to
image areas where the presence of interfering anatomical

features is unlikely and the actual surface texture finds
most expression.

It is recommended that this
suggested in the near future.

routine should be revised as

6.2.2 tonq Term

Any of the following related problems may appear in work un-

dertaken by the research team in the more distant future.
It may become necessary to improve on the mediocre perform-

ance of the kernel anatomy detection software; the texture

analysis methodologlz may have to be upgraded by modeliing

kernel surface texture with a three-dimensional (3-p) deter-
ministic surface rather than the present 2-D stochastic pro-

cess; the ability to perceive partially occluded objects may

become necessary. These problems are similar in that the

solution of each of them requires a 3-D approach to image

understanding.
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In Subsection 4.2 "2 it vras suggested that one method f or

implementing 3-D image understanding would be the following:
estimate local surface orientation by using local surface

gray IeveI, generate a 3-D model of each object using this
estimated surface orientation and, fina11y, direct subseq-

uent analysis on this model, not on the image itself.
and Ikeuchi [1984] have implemented such a method.

Horn

It is recommended that the research team be aware of this

radically more advanced approach to image understanding as a

means of dealing with any of the previously mentioned prob-

lems.
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