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ABSTRACT 

Many of the activities associated with the planning and operation of water resource 

systems requke forecasts of fuhire events. For the hydroIogic component that forms the 

input for water rmurce systems, there is a need for both short tenn and long tenn 

forecasts of streadow events in order to optimize the reai-the operation of the system 

or to plan for future expansion. 

The main objective of this research is to hvestigate the unlity of Artifid Neurai 

Networks (ANNs) for short tenn forecasting of streamflow. Short tenn is defiwd as 

weekly tune steps up to a time horizon of one month ahead. The work explores the 

capabilities of ANNs and compares the pefformance of this tool to conventional 

approaches used to forecast streadow eveuts one, two, three and four weeks in advance. 

A number of issues associated with the coniïgwation of the ANN are examined to 

determine the preferred approach for implenienting this technology in the brecasting 

mode. The performance of the ANN for the forecasting task is evaiuated for a range of 

streamfiow conditions in order to test the capabilities of A N N s  in a realistic setting. The 

capabilities of the ANN mode1 are compareci to those of more traditional forecasting 

rnethods to ascertain the relative ments of each approach. 

The s p d c  issues addresseci in this research include the applicabiity of A N N s  for 

forecasting hydrologie variables; the approaches that are best used for idenafyug the 

appropriate structure for the ANN (the number of layers and the number of nodes), the 

preferred strategy for training the ANN; and the transferability of the ANN technology to 

another subwatershed. nie application of the ANN approach is to a portion of the 

Wuinipeg River system in Northwestem Ornario, Canada This system is large in spatial 

extent and has a hydrometric data coiiection network that is vay  sparse. In this type of 

setting, it is often difncult to obtain reliable forecasts of fimue streamfiow events due, in 

part, to the lack of accurate data for the required mode1 inputs. As weU, the remote 

location and complex hydraulic relationships of many of the sites contribute to a poor 



quaiity s t r d o w  gauging record. ANNs have been found to be effective in situations 

with noisy data. A perceiveci strength of ANNç is the capabiJïty for representing cornplex, 

nonlinear relationships as weU as being able to model ioteraction effects. This capability is 

eqected to be bemncial for forecasting since the relationship between the input vanables 

and the r d t i ng  output ( s t r d o w )  is typicaUy quite cornplex. 

The resuhs obtained were most promiskg. A very close fit was obtaïned during the 

training phase and the ANNs developed consistently outperfomed the Winnipeg Fiow 

Forecasting System (WIFFS) model during the testing phase in aii of the four forecast 

lead-Gmes for the Namakan Lake subwatershed located in the W ~ p e g  River Basin in 

Norihwestem Ontario, Canada. The ùnprovement in the Root-Mean-Squared Errors for 

the eight yean of test data varied f?om 5 cms in the four-week lead forecasts to 12.1 cms 

in the two-week lead forecasts. Results also indicate that there was a IO cms 

improvement in the Root-Mean-Squared-Error for the eight years of test data for the 

Rainy Lake subwatershed located in the Wuullpeg River Basin in Noxthwestem Ontario, 

Canada (nom the W E F S  model to the A N N  model) for the one-week lead. This 

indicated that the ANN technology developed in this research is trderable to another 

subwatershed. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

Many of the actMties associateci with the planning and operation of a water resource 

system req@re forecasts of fùture events. Examples include forecasts of fùtwe demand 

for electricity, forecasts of the sehg price associated with short or long tenn power sales, 

and forecests of costs associated with alternative energy m e s ,  to oame but a few. For 

the hydrologie component that fom the input for hydroefectric power generation, there is 

a need for both short tenn and long term forecasts of streamflow wents in order to 

opamize the systern or to plan for fimire generation expansion. The NelsonChuchill 

drainage basin is the hydraulic systern that is used by Manitoba Hydro for power 

generation. This qstem is large in spatiai extent (i.e. the locations of data collection are 

few and remote fiom the forecaster) ami bas a hydrometric data collection network that is 

very sparse. These conditions can r d t  in considerable u n ~ a h t y  in the data which are 

available. In this type of setting, it is often dïBcult to obtain reliable brecasts of fimw 

streamfiow events due to the lack of accufate data for the repuired mode1 inputs. As well, 

the remote location and complex hydraulic relationships of many of the sites contribute to 

a poor quality streamRow gaughg record. As such, it is important that altemative 

approaches to estimating fhre  s t r d o w  wents be explorexi in this area 

Many of the tecbniques cu~entiy used in modelhg hyQological the-series and 

generating syathetic streamflows assume a liaear relationship among variables. 

Chakrtzborty [1992] States that, in the reai world, temporai variations in data do not 

exhibit simple repuiarities md are ~ c d t  to analyze and predict accurately. Linear 

relationships for descriiing the behavior of such complex data are often found to be 

hadequate. Therefore, it seem uecessary to use nonliaear models such as Artificial 



N d  Ner~orks (ANNs), which are suiteci to complex nonlinear problems for the 

malysis ofreal wodd temporal data 

1.2 PURPOSE OF RESEARCH 

The main objective of this research is to explore the use of ANNs for short temi 

streamfiow foresasting- Cornparisons wili be made betweea the @ormance of différent 

neural network con6gruations and a modei based on a more traditional forecasting 

approach. Conventional modeis for s t r d o w  forecasting typically involve a number of 

physical variiles that hction as inputs. A physid variable that is not very usenil for 

forecasting on its own can often be usefiil when used m conjunction with other variables. 

Given the number of physicai v&abI that could be considered as potentidy relevant, it 

is apparent that a very large number of difFereat combinatcm of both variables and 

mathematicai relationships that lulk them togder are available when developing a 

streamflow forecastùlg model. Determining an appropriate model structure by a triai-and- 

error process is therefore not always practicai. in this conte* the power of ANNs arises 

fiom the capab* for constnictïng complicated indicators (noalinear models) for 

muitivariate the-series without resorthg to the use of complex statistics, system 

identifkation theory, or other advanceci mathematical techniques. 

1.3 SCOPE OF THE INVESTGATION 

The main focus of this resglrh is concemeci with the development of ANN models for 

short tenn streamflow forecasting and the development of generai methodologies for using 

these models for any catchment area This work wül involve codiguring, training, and 

testing an ANN for a case study area. The relative performance characteristics for 

different ANNs wiii be assessed to ascertain the prderred alternative for the forecasting 

application. in addition, the performance of the p r e f d  ANN wüi be compared to the 

performance capabilities of a more traditional forecasting approach for a representative 

range of hydrologie conditions. 



The configuration and training of an ANN is d o g o u s  to the formulation and calibration 

of a model of the type traditionally used in hydroIogic applications (e.g a raiddi-runoff 

model). The configuring of the ANN involves deteminhg the moa appropriate structure 

for the neîwork (Le. identifying the uunber of layers, the numbet of nodes in each layer 

and the type of non-linear bdormation between layers). The training of the ANN 

involves feedhg the network a variety of input values and comparing the predicted output 

fiom the aetwork to the achial (obsaved) output. The network wüi then alter the weights 

that it applies to each input node and hidden node of the network in order to more closely 

match the obsened output. There are a number of cmently umesolved issues associateci 

with configuring and training an ANN. Kmnanithi et ai. [1994] state that there has been 

comparatively little work doue in determining a systematic approach for identifjing the 

appropriate number of layers and nodes in an ANN. In addition, it has often been 

observed that the selecbon of training sets to submit to a neural network and the order in 

which they are presented can affect the nnal results of the oaining process and hence the 

overail calïer of the performance of the ANN. It is the intent of this remch to address 

these issues in a systematic mamer. 

Testing of an ANN is analogous to the verification of a model of the type traditionaüy 

used in hydrologie applications (e.g. a rainfàü-runoff model). Verification of an ANN 

involves submitting an independent set of input data (ie. data that was not used in the 

training process) to the neural network and evaluating the prediction capability of the 

network for this set of data The level of agreement between the forecasted (predicted) 

output of the network and the a d  (observeci) output is used as an indicator of the 

performance of the ANN. UnsatiSractory performance would indicate that the ANN 

structure should be altered and the training exercise repeated. It is important at this stage 

to ensure that the verification data set contains a sufliicient range of input conditions. This 

is to ensure that the performance of the mode1 is being properly evaluated over the fidl 

range of conditions that migbt be enwuntered in an operatioml mode. The ultimate 

evaluation of the ANN model wiU corne through a cornparison of the network model with 

a vaditional forecasting tool. The two modehg approaches will be compared aot only in 



terms of the accuracy of the forecasting results but also in ternis of the ease of use of the 

two approaches. 

There are several issues that wüi be addressed in the proposed application of ANNs to 

short tenn stteamfiow forecasting. The nature and the rnunber of the d e l  inputs must 

be detem&eded Inputs to short temi streamflow forecasting modeis typically include 

obsenatioas of stredow for the present and past t h e  intervais as weii as variables 

representing preserît and past meteorological inputs (e.8. temperature, precipitation and 

conmiutions to mow melt). A perceived strength of ANNs is the capabüity to model 

complex nonlinear relationships as weU as interaction & a s  among input variables. This 

capability wouid be expected to be beneficid for forecasting since the relationship between 

input variables and the resulting output (streamfîow) is typically quite complex. A 

potentid disadvantage of an ANN type mode1 is that it is ofken dScult to directly 

interpret the model parameters (comection weights) fiom a physical basis (Le. the model 

is stmctured W<e a black box). This c m  be problematic if the training data set is not 

chosen properly such that the mode1 becomes very efficient at mirnicking the training data 

set but bas a very poor generaüzation capability. It will therefore be important to carefully 

select the data sets included in the training data set and to ensure that a proper balance is 

maintahed between reproduction and generaüzation capabilities. 

Contained in this thesis is a description of the research pedormed towards the 

configuration, training, testing, and evaluation of ANN mode1 alternatives for the case 

study a r a  Chapter 2 begins with an oveniew of traditional streamfiow forecasting 

techniques such as conventional physical modelling and ARMA type modeliing as weU as 

what has been done in the application of ANNs in solviag water resource problerns. 

Chapter 3 d e m i s  essentid backgrouud information on ANNs. This includes a 

description of the structure and terminology of an ANN. The application of the fore- 

technique to the Namakan Lake subwatershed, located in Nortbwestem Ontario, Canada, 

is described in Chapter 4. A bnef description of the case study area is presented, foliowed 

by a discussion of the systematic process invoked to obtain the ccoptinial" ANN structure. 



Chapter 5 descriies the method of evaluation and goes on to present the anaiysis of the 

results obtained h m  the ANNs deveioped in chapter 4. Some discussion is given to the 

topic of how to separate the data set into the training and testing ranges to guacantee 

satisfactory network performance in the operationai mode. Chapter 6 investigates the 

transferabüity of the systematic approach for coafiguring an ANN, deveIoped in Chapter 

4, to the Rainy Lake Local subwatershed, located in Northwestem OmMo, Canada. 

Recommendations are @en on the procedures to be foiiowed in applying the technique to 

similar forecasting applications. Chapter 7 presents conclusions based on the aaalysis of 

the case study and summariÉes some of the eXpeneme gained in applying the techmque to 

a mai-world application. Fially, Chapter 8 provida the reader with recornmendations for 

fiiture research directions. 



2 LITERATURE REVIEW 

Generaüy, forecasting models can be divided into statistical anci physidy based 

approaches. Statisticai approaches determine relationships between historical data sets, 

whereas physidy baseâ approaches model the underlying physicai processes directly. 

Back-propagation networks are closely related to statisiical models and according to 

M i  and Dun& Cl9961 are the type of ANNs most suited to forecasting applications. 

The following sections present a brief discussion on the various types of forecasting 

models with an empbasis prirnarily on streadow forecasting Dinerent types of 

conventional and time-secies models are discussed as weIl as their applicability to various 

types of problems. Finally, a discussion of the most recent technology that is gaining 

importance and recognition in the field ofstreamflow forecasting is presented. 

2.1 PHYSICALLY BASED MODELS 

A coricepnd model is specincaiiy designed to mathematicdy simulate the general intemal 

sub-processes and physical mechanisms that govern the hydrological cycle. These typa 

of models usually incorporate simpiified forms of physicai laws and are generally 

noalinear, tirne-invariant, and detennjtzistic, with parameters that are representative of 

watenhed characteristics [Hsrr, 19951 but ignore the spatially distriiuted, the-Wyuig, 

and stochastic properties of the rainfàlî-runoff (R-R) process. These conventionai 

streamflow models are based on the physicai descriptions of the hydrologie and hydrauiic 

processes that govem the raïntàil-moff process. They are very powefil anempts to 

represent, in a simplified m e r ,  the known phygcal process occurring in the rainfdl- 

ninoff trdormation and are conmioniy referred to as conceptuai rainfall-runoff models. 

Kircniicüs and Brus [1980 a, b] state that conceptual watershed models are generally 

reported to be reliable in forecasting the most important features of the hydrograph, 

namely, the beginnllig of the rising iirnb, the t h e  and height of the peak, and the volume 



of flow. However, the implementation and calibration of such a model can typically 

preseut various difficulties [Ducm et uL. 19921, requiriag sophisticated mathematical tools 

[Duan et al., 1992 & 1994; Sbrooshtm et al., 19931, signincant amounts of caliiratiou 

data [ Y q  et al., 19951, aad some degree of expertise and expaïence with the rnodel 

[h et al., 19951. The fjrst type ofphysicaiiy based modeïs is the hydrometric data-based 

model invohring ody s t r d o w s .  These methods involve wrrelating stages or 

discharges and volumes, inputloutput models such as unit hydrograph approaches, and 

hycûaulic routiDg usbg dynamic wave, diffusion wave, kinematic wave, Muskingum 

method, impulse response fundon, or storage models. The second, more common type 

of conceptual model, is the hydrometeorologic and hydmmetric data-based mode1 

involving prex5pitation-to-ruaoff and streamflow processes. These complex rainfall-moff 

models represeat the Mnous water storage terms (interception, evapotranspiration, 

snowmelt, interflow, groundwater basefiow, and surface runoff firom rauifdl and 

snowmelt) in varying levels of complexity as weli as indices such as Antecedent 

Precipitation Index (API). The most cornplex of the rainfàll-runoff models currently being 

used are the conceptual storage models, a representative example being, the U.S. National 

Weather Semice River Forecast System. Si@ [1992] provides a List of conceptual 

models that attempt to mode1 the underlying ptocess of a system. The application of the 

underlying processes are based on the discovery of strong empirical regulanties gain& 

through observations of the system. These types of models provide a very powertiil and 

accurate means of prediction, but discove~g the processes underlying the behavior of a 

system is often a difficult task nie problem with conceptual models is that empuical 

regularities or periodicities are not always evident and can oAen be masked by noise. 

Tmg et al. [1985] state that some of the problems with a conceptual model are that it is 

often very complex and possesses a large nurnber of parameters related to physicai 

phenornena, ali of which mu4 be calibrated. Further, due to the great complexity of 

na- systems, the conceptual model is only a m d e  approximation to reality. 



2.2 TIME-SERIES MODELS 

2 . 2  Genenl 

Conceptual models have proven theïr importance in the understanding of hydrologie 

processes, but there are rnany practid situations nich as streadow f o r d g  where 

the main concem is with making accurate predictions at specific watershed locations. In 

order to understand and model how one or more inputs to a sR,m system control various 

outputs, enpineers and scientists take measuements over the. For a given input or 

output variable that is being monitored, a set of observations manged chronologically is 

cded a time-series. In time-series anaiysis, stochastic or the-series models are fitted to 

one or more of the tirneseries desaibing the system for purposes which include 

forecasting, generating syuthetic sequences for use in simulation studies, and imrestigating 

and modelhg the underlying charactenktics of the system under study. In fia, time-series 

and statistical models constitute one of the most fkquently employed set of tools used in 

water resources p l d g  and management [fipl, 19851. 

2.2.2 Time-Stries Modelüng Proceâiire 

Multivariate time-series modelling is comprised of three basic stages, namely: model 

identification, parameter estimation and diagnostic checking for model accuracy. This 

procedure, fonaalued by [Box dJe&ms, 19701 and advocated by [ S ~ ~ L I S  et d .  19801, 

is an iterative procedure of model building to ensure satisfactory model fitting and 

utilization. The model identification stage is divided into model structure speafication and 

mode1 order determination. Model structure specification is geared to hding the 

structural form of the rnodel or type of dependence reiatïonship to be incorporatecl in the 

model. Model orda determination is concerneci with identifying the nwnber of lags and 

number of moving average parameters. Some of the tools revieweâ in the literahire 

include cross-correlation analysis, partial-autocorrelation anaiysis anci keühood ratio test. 

Mer i d e n m g  possible models, the pararneter estimation stage folîows. The methods of 

moments and maximum likelihood are among the most popular methods of pararneter 

estimation that have been suggested in the literature. Once the model parameters have 

been estimated, diagnostic checks are necessary in order to see whether the selected model 



is appropriate, whether it is better than other competing models, and whether to search for 

model improvements. Some comamn diagnostic checks inciude model implementation as 

weil as testing the robustness of the model. For instance, the model rnay be implementd 

accordkig to its intended utilization, such as data augmentation, generation, or forecasting, 

and acamine how weli the model pcrforrns. Robwtness tests rnay be appGed to see if the 

model presmes properties not explicitly parameterized in the model (i-e £lood/drought 

characteristics). 

2.2.3 StochastWTime-Setits Modeis 

Stochastic forecasting models can be broken up into five differerit general types. They are 

Autoregressive (AR) models, Moving average (MA) models, Autoregressive mohg  

average (ARMA) models, Nonhear (threshold) the-series models; and Adaptive 

algorithm models [Srolosi-Nagy, 19873. Univariate and multivariate tirne-series analysis 

is an important statisticai tool to study the bebavior of t h e  dependent data and forecast 

fùture values depending on the history of variations in the data [Chakraborfy et aL, 19921. 

Most of the tirne-series modelling procedures fJI withh the fiamework of multivariate 

autoregressive moving average (ARMA) models [Raman and Stmiikumm, 19951. 

Traditionally, the class of ARMA rnodels bave been the statistid method most widely 

used for modeüing water resources the-series [Maier and Dm*, 19961 an example of 

which is found in Belder et al.. 1992. In streadow forecasting, tirne-series models are 

used to descni the stochastic structure of the time sequence of streamflows and 

precipitation values rneasued over time, in discrete or coatinuous tirne units. T'une-series 

models are more praaical than conceptual models because one is not required to 

understand the intemal structure of the physical processes that are taking place in the 

system being modelied. The forecaster needs only to determine the order of the tirne- 

series equation. Forecasts using the-series methods have the property that they approach 

the long-terni mean as the forecast lead-time increases. The rate at which these forecasts 

approach the mem depends on how fw the initial value (the most recent observeci flow) is 

from the long terrn mean. The limitation of univariate time-series methods in streamflow 

forecasting, is that the only idonnation they incorporate is that which is present in past 



flows. Therefore, in regions bat are dominated by snowmelt runoff, a method that makes 

direct use of snow water storage is usuaiiy preferable. CChrraborîy [1992] states that a 

more acwate methoci is thet of a muitiwiate tirne-series, wbich consists of sequences of 

values of several contemporaneous variables chaaging with the. By studying rnany 

related variables togeber, rather than by studyîng just one, a Mer understanding of the 

phenornenon being modeiied is obtatoed. However, for situations where snow storage is 

not a factor, univariate theseries methods have the advantage that they are easily 

implemented, and the forecast error variance can be readiiy computed [Box md Jenkim. 

19761. Several stochastic tirne-series models have been proposeci for rnodelling 

hydrological time-series and generating synthetic streamftows. These include 

Autoregressive Mowig Average (ARMA) models [Bm md JenRirzs. 19701, 

disaggregation models [Vufe~icia and Schauke, 19731, and models based on conceptuai 

pattern recognition [ P m  ami Llnny. 19801. Stedinger catd Tbytlw [1982] stuâied the 

performance of five different models for s t r e d o w  simulation. AU of these types of 

models have their merits and also have been criticited. These models are relatively easy to 

develop and implement and have been found to provide satisfactory predictions in many 

water resources applications [&ILIS et 41.. 19801. Most real world problems, however, 

involve temporal variations in data that do not exhibit simple reguiarities. Many of the 

available techniques do not attempt to represent the nonlinear dynamics inherent in the 

aaasforrnation of rainnill to runoff and as a redt, these problems tend to be âiflïcult to 

analyze and predict accurately. Tong [1983] descnies some of the drawbacks of hear 

modeliing for mivariate time-series analysis. These inchde, for example, their inability to 

explain sudden bursts of very large amplitudes at irreguiar t h e  intervals, which is a 

common occurrence in streamfîow forecasting. Totig [IWO] also addresses some of the 

problems with linear models for muitivariate tirne-series analysis. 

2.3 ARTIFICIAL NEURAL NETWORK MODELS 
Artificial neural networks (ANNs) have been successfûiiy applied in a number of diverse 

fields. This next section will ody focus on water resource applications of the ANN 

technology. In order to fit an ARMA-type mode1 to a the-series, the data bave to be 



aationary [HipeL 19851 and have to follow a normal distnauton [Inine a d  Eberhardt, 

19921. If this is not the case, techniques such as Merencing [Box mtd Jenkh, 19761 

have to be used to induce stationarity and the Box-Cm trdormation has to be applied to 

obtain n o d y  distributeci data. When developing ANN models, the statistical 

disiniution of the data does nat have to be icnown [Bt~rRe, 19911 and non-stationazities in 

the data, such as trends and seasonal are accouuted for by the interna1 saucture 

of the ANNs [ ' d e r  caid Dandy, 19961. ANNs are suiteci to cornplex problems, where 

the relationship between the variables being modeiled are not weii understood. ANNs 

dXer fiom the traditional approaches in synthetic hydrology in the sense that they belong 

to a class of &a&ve~z approaches, as opposed to traditional modeLdnVetz approaches 

such as ARMA-type models. Data-driven approaches have the ability to determine which 

model inputs are critical, so that there is no need for a pnor knowledge about relationships 

between variables. Model-driven approaches, on the other hancl, require some 

understanding of the problem, as the mode1 order has to be determined before the 

unknown mode1 parameters can be estimateci [Maier and Dan&, 19961. An ANN is a 

flexible mathematicai smicture, capable of identifyiog cornplex nonluiear relationships 

between input and output data sets [Hsir et al., 19951. Thq. are relatively insensitive to 

noisy data, unlike ARMA-type models, as they have the abüity to determine the underlying 

relationship between model inputs and outputs, resulting in good generaluation ability. 

ANN models have been found to be usefiû in sohing problems where the characteristics of 

the processes were diflicuit to describe using physical equations (Le. conceptual models). 

ANNs are defined as one of the approaches in die ana of &cial intelligence which use a 

black-box approach where the user need not know much about the underlying process 

being modelied. The analysis depe~ds on avdable data, with iittle rationaikation about 

possible interactions between the data. ANNs are constructed to obtain a prediction of 

system response without attempting to reach understandimg or to provide bight into the 

nature of the phenornena. Relationships between variables, models, laws and predictions 

are considered after building a machine whose behavior simulates the data being studied. 

An ANN is a nonlinear mathematicai structure capable of representing arbitrarily complex 

noalinear processes that relate the inputs and outputs of aay system. The success with 



which A N N s  bave been used to model dynamic systems in areas of science and 

enginMg suggests h t  the ANN approach may prove to be an effective and efficient 

way to model the streamflow process in situations where explicit howledge of the 

intenial hydrologie sub-processes ofthe watershed is not required. Some studies in which 

ANNs have been applied to problems iwolving raiafall-runoErnodehg and weather and 

river fiow prediction have been reportai in the iiterature. Lorrui md &chi [1995] 

verified the possi'b'i of utilking ANNs to predict raidMi-runoff when only idormation 

about the variation of the basic input vafjables, narnely rainfd and temperature, is 

avaiiable. Cheng mdNogt~chi [1996] obtained better resuits modelling the rainfd-runoff 

process with ANNs using previous rahM, soi1 moimire deficits, and niaoff values as 

model inputs, when compared with tbat fiom the Xinanjiang mode1 (a rauifall-niaoff 

model). Smith and Eli [1995] appüed ANNs to convert remotely seased, spatidy 

distributed r a i d i  patterns into raintjill rates, and hence into cunoff for a given river basin. 

H m  et al. [1995] showed that a nonlinear ANN model provided a better representation of 

the raùifal-nmoff relationship of the medium-shed Leaf River basin near Collins, 

Mississippi, than the hear ARMAX (autoregressive moviag average with exogenous 

inputs) tirne-series approach or the conceptual SAC-SMA (Sacramento soii moisture 

accounting) model. F r e d  et ai. CI9921 demonstrateci that an ANN is capable of 

forecasting the complex temporal and spatial distribution of rainfall generated by a rainfàll 

simulation model. J i m d e m  and Fenrcodo [1996] applied the ANN approach to 

predict evaporation rates (using the vapor pressure dflerence, temperature* solar 

radiation, and wind speed) that were found to be in better agreement with actuai 

observations than those obtaiaed fkom an ernpiricai equation. Kanmanifht et al [1994] 

used A N N s  for river fiow prediction and Raman d St~niIktmrar 119951 for forecasting 

rnultivariate water tesouces time-series. ANNs have also ban applied to areas such as 

denving a general operating policy for reservoirs Raman and C h s a r d r d i  [1996], 

prediction of water quality parameters Mder d D m i 4 >  [19%] and red-time forrcasting 

of water quality Dmdy and MOer [ 19961. 



CHAPTER 3 

3 BACKGROUND ON ARTIElCIAL NEURAL NETWORKS 

3.1 GENERAL 
Computers have traditionally been used to petfonn large numbers of calculations very 

quickly with high numerical accuracycy Computers m on a sesies of sequentiai algorithms 

or commands provided by the user. Therefore, ifthe user gives the computer an expiicit 

set of instructions that inchides an error, the computer wiil execute the comrnands and 

produce the wrong answer, i-e. the cornputer does aot reake that it has made an emr. 

Why can't the same machines that perform a million caldations per second l e m  from 

expenence, rather than forever r e p e a ~ g  a sequential aigorithm generated by a hurnan 

programmer? Freeman mxf Skxq~n~ [1991] state that if the only tool we have is a 

sequential computer, then we wiii n a ~ a i l y  try to cast every problem in terms of sequentiai 

algorithms. Many rai-world applications are not suited to tbk approach, yet many vend 

a great deal of time and effort trying to develop sophisticated algonthms to solve these 

problems, perhaps even failing to find an acceptable solution 

One of the most common problems encountered when sequential computer systems are 

used to pe~orm an inherentiy pandiel task is that of visuai pattern recognition. Complex 

patterns contain many elements that, aione, reveai littie information about the total pattern, 

but together represent easiiy recoghble (by humans) obj-S. These are the typical 

types of pattem that have proven to be the most difiiicult for cornputers to recognize. An 

example of this type of pattern is shown in Figure 3.1. 

If you jua focus on the black areas in the picture, the pichue is meaningiess. Yet, if you 

allow yourself to encompas aU the components of the picture, you c m  see a commonly 

recognizable object. Furthemore, once you see the image, it is easy to see it again 

whenever you look at the picnire. The illustration in Figure 3.1 is of a dalmatian seen in 
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profile, facing le& with head lowered mifihg the ground and walking towards a tree. 

Why is it that you cm see the dog quickly, yet a computer cannot perform this task even 

though the switchhg time of modern electronic cornputen are extremeIy faner than the 

switchiag time of the ceiis that comprise our neurobiological systems? 

Figure 3.1. An example of a complex pattern (Freernan & Skapura, 199 1) 

Part of the m e r  to this question is that the architecture of the human brain is 

signincantly different fiom that of a conventional computer (Le, the massive pardelism 

and iaterconneCtMty observeci in the biological systems is what dows the brain to 

perform complex pattern recognition in a few hmdred aiilliseconds). M c i a l  Neural 

Networks (ANNs) are made up of the best of both worlds. They have the rapid 

calculation speeds of a computer and the complex pattern recognition capabilities of a 

human. They act on data by detecting some kind of underlying organitation or pattern. 

These networks can recognize spatial, temporal, or other relationships and, by bridging the 



gap between hdMdua.1 examples and general relationships, can perfonn tasks such as 

ninction modebg, estimation, or approximation. 

ANNs off- ValuabIe cbaracteristics uoavaiiable together dsewhere. First, they i.fr 

so1utions fiom data without pnor knowledge of the reguiarities in the data; they extfact 

the regularities empiridy. This characteristic is usefLl becsuJe gathering data does uot 

require explainhg it. Second, these networks l e m  tbe similarities among patterns 

directly Grom instances or examples ofdiem ANNs can moday th& behavior in response 

to the environment (Le. show a set of inputs wah corresponding desirable outputs, they 

seiGadjust to produce consistent responses). Tbird, ANNs can generaiize fkom pmious 

examples to new ones. That is, once the naork has been trahed, they can respoad 

correctiy to patterns that are ody broadiy sMilar to the original training patterns (i-e. its 

response can be insensitive to minor variations in its input). Generali7ation is usefiù 

because rd-world data is noisy, distorted, and o h  incornpiete. The ANNs a b ' i  to see 

through noise and distortion to the pattern tbat Iies withm is sctremely importaut to 

pattern recognition in a reaI-world environment. Fourth, ANNs are also very good at the 

abstraction of essential characteristics f?om inputs containing irrelevant data For 

example, a network can be trained on rnany distortions of the letter ccAy'. Mer adequate 

training of the ne~~oric,  a perfectly formed Ietter wiIi be produced The end resuit is a 

network that has learned, through noisy and distorted exampIes, to produce sometbing 

that Ï t  has not seen More. Fifkh, they are nonfii~ew, that is, they cm solve some cornplex 

problems more acmtely than hear techniques do. Nonlinear behavior is quite common, 

but can be dîflicult to handle mathematidy. Fdy, MS are highfj, pwail'ei. They 

contain many identicai, independent operations that can be executed simuitaneously, offen 

making them fister than alternative metho&. These abilities are a disMa wet in many 

applications because t does not require conventional programmirg, and while knowing 

something about the probtem at hand can improve the neural network design (i-e. which 

inputs to include in the network training) the most important need is for data. 



ANNs also have several drawbacks for some applications. Fiustly, they may fail to 

produce a satisfactory solution, pethaps because there is no leamable hction or because 

the data set is insufllicient in size. Secoady, the opbmum network geometry (Le. the 

number of hidden layers and the number of hidden nudes per hidden layer) as weil as the 

optimum interna1 network parameters (Le. leamhg rate and momentum tenn) are problem 

dependent and g e n d y  have to be found usjng a trial-and-error-process. niis cm d e  

the neural networks training process slow and expensive- Part of this wa cornes from the 

need to coliect, analyze, and maaipulate traiuing &ta while the other cons stem fiom the 

need to experiment with parameters to fkd good values. Hmmerstrum il9931 believes 

that a greater understanding of training protocols and expert lmowiedge of the parameters 

which govem the process should help, especially in combination with paralleI hardware 

that can run systematic experiments quickly. Another disadvamage of ANN models is, 

unlike ARMA-type models, a direct mathematical expression, relating the variables, is not 

obtained. Instead, the relationship between the inputs and outputs is comained in the 

comection weights, therefore xnalcing it hard to account for a neurai network's resuits. 

Showing how the weights '%ause" a resuit may be more cornplex than showing how a 

computer program works. ANN models are also problem specific. Physicaliy based 

models, on the other band, have had a wider range of applicability because they are based 

on budamental physical relationships. Physically based models are also able to cope with 

changes in the system king rnodelled. ANNs camiot cope with major changes in the 

system because thq. are train& on a historical data set and it is assumed that the 

relationship leamed Win be applicable into the &me. If there are any major changes in the 

system, the neural network would have to be quickly adjusted to the new process through 

mode1 retraùling, in which new data d e s a i g  the process are added to the network's 

leaniing procedure. 

As prewiously mention4 neural networks belong to a class of dda&nIen approaches, as 

opposed to traditional computer modkf-cfriven approaches. These modds attempt to 

achieve good performance through dense intercomections of simple computationai 

elements. In this respect, the architectures of ANNs are based on the preseat 



understanding of the biologicai nervous systerns. The hi@y sophidcated human brain, 

which contaias more than 100 billion neuroas and tniiions of intercomeaions, is able to 

l e m  quickiy tiom experience and is generally superior to any Bgsting machine in tasks 

involving recognition, lemhg, and control [Hm et aL. 19951. Although the preseat 

understanding of ANNs are based on that of biologicai neural networks, the structures of 

the most current ANNs are extremely simple and the capabilities are quite poor when 

compared to biologicai neural networks. Nonetheiess, m a q  ANN structures have been 

proposed and exploreci since the 1950s. The most wideïy researched and used structures 

are single and muitilayer feed forward networks, Kohonen's seif organiling feature maps, 

the CarpentedGrossberg classifier, Hopfield networks, Hamming networks and 

Counterpropagation networks. L@pmmn [[1987l and W-eman Cl9891 provide a brief 

summaxy and understanding of each of these network types. Of these, muitilayer feed 

forward ne!tworks have been found to bave the best performance in solving fhction 

approximation problems [Hm et a4 19951. Freemm and S@ma Cl99 11 states that "this 

madel has a well-deseerwd rep~tanon for bemg the netnd network. It is a miversal 

f<n~ctiot~ cpproximutor~ We cm, theoreticai& at leas?, teach mtytthig i e m b / e  to this 

iietwork Thus, tt is reasonabie to considkr this network for any probient ". Note that the 

nenwork is said to be able to solve a fiinction appro.rcimation problem if& is able to leam to 

approlamate the bctioa to arbitrary accuracy. Freeman and Skapura [1991] state that 

"A rnultiiiyer fee&iorward nehuork CAN kam yow funclion l f y m  have problems, they 

are NOT dLe to the mode! i&e& They are ciire to im@cient tr&zing. 011 fim@cieienl 

inmiber of hiden neuronq or m uttempt to leam a srrpposed function t& is not 

detemmistrc". A short description about mdtilayer neural networks dong with the 

training algorithms are provided n a .  

3.2 ANN ARCHITECTURE: 

Generally speakhg, ali A N N s  are vector mappas. Tbat is, they map one vator space to 

another. As shown in Figure 3.2, an input vecio* is applied to the network; in response, 

the network produces an outpc~t vector. Each vector consists of one or more components, 

each of which represents the value of some variable (e.g. precipitation, temperature, 



streaITLIIow, etc.). Mapping may be static, in which case a feed-forward neural network 

will &ce. Or, they may be dynamic, involving previous network states; in this case a 

network with feedback is required. 

Figure 3.2. A Vector Mapper 

3.2.1 Multüayer Fccd Formrd Am Architecture 

The architecture ofa feed forward ANN can have many layen. A typical three-layer f d  

forward ANN is shown in Figure 3.3. The &st layer consists of a set of processhg 

elements (PEs) and connects with the input variable(s). This is d e d  the input layer. The 

last layer, consisting of PEs, connects to the output variable(s) and is called the output 

layer. The terni 'Yeedforward" means that information flows in one direction only. The 

inputs to neurons in each layer corne exclusively fiom the outputs of neurons in previous 

layers, and outputs fiom these neurons pass exclusively to neurom in foUowing layers. 

Layer(s) of PEs in-between the input and output layers are cailed hidden layers because 

they have no direct connection to the outside world, neither input nor output. There can 

be more than one hidden layer in an ANN. There are two conventions in use for coumiag 

the number of layers in the network; some authors count the input terrnioals as a layer, 

some do not. For purposes of this research, ail layers are counted such that a network 

with one hidden layer is a three-layer network htroàucing this intermediate layer 

enhances the network's ability to mode1 complex fùnctions. Lippmann Cl9871 suggests 

that no more than three layers (one hidden layer) are required in feed-forward networks 

because a three-layer network can generate arbitrariiy complex decision regions. Freernrm 

md Skwiru 1199 1) believe that three layers (one hidden layer) are generdly sutficient, 

however, sometirnes a problem seems to be easier to solve with more than one hidden 



layer. In this case, earier means that the network leams faster- Vallwu rad Hayugriva 

[1993] state that a féed-forward neural network with at Ieast one nonliaear hidden layer of 

unlimiteci size, is a universai approximator, capable of approrcimating to an arbitrary 

degree of accuracy any continious hction on a compact set 

Figun 3.3. Muitilayer Feed-Fonvard ANN and Processing Element Architectures 

Maers  [1993] has found that the number of hidden layen needed to solve most problems 

are as follows; 



il "y the fMictioi1 co~tsists of a B i t e  co~lectiot~ of points, a three-layer 

network (one hiden lciyer) is ~cp>c&le of lemming it ". 

2) 'ïf the fimction is c o ~ c o u s  d d e f i ~ e d  on a conrpact domain, a three- 

loyer network is cipuble of leaming it. Rougtly qpeakïng "compact 

dornaW memts t h t  the inpub have defmte 6 m d p  rarher throi 

having no limits on whaf they c m  be '' 
3) "Mij imctiom thai do not meet the abme c M a  c m  a h  be lemed 

&y a three-layer network In partic~tIiu, disconfim~ities cm2 be 

theoretically tderated ioder all conditions likeiy to be met in reaI Ive. 

Also, flmctiom that do izot have contppct support, s ~ c h  as when the 

iqmts are r~omully distrih~ted rmdorn variablesp cmz be Ieamed by a 

three- layer network mder some condito~ts". 

4) "Under vety geîieral condiioms. all other fmctiom thai c m  be Iemned 

&y a riewai network cm, be leamed by a fadàyer (bu hi& Iayer) 

i~etwork ". 

The fmt two cases above cover the majority of practicai problems. Theoretically 

speakhg, we are always reasonably safe using a single hidden layer. Furthemiore, (at least 

theoretically) more than two hidden layen should never be needed. A network baving 

two hidden layers is a universal approximator. The need for a second hidden layer cm 

corne about in essentidly only one way. That is, when the network needs to lem a 

fùnction that is rnostly contkuous, but has a few discontinuities. There are some fùnctions 

defined on a compact domain that are g e n d y  continuous, but have one or more sudden 

jumps where the contiauity is lost. These are d e d  piecovisecoîatimms fi~iactions and, 

in generai, cannot be eady leamed by a network hahg  oniy one hidden layer. Two 

hidden layers are usualiy required. 



The PEs in each layer are d e d  nodes or units. The number of nodes in the input and 

output layers are decided based on the dimension of input and output vectors presented to 

the network for training. The number ofhidden layers and hidden layer nodes are decided 

upon by a trial-and-error procedure as there are no exact methods available in the 

literature. These nodes are connecteci to the nodes in the precediag layer for input and the 

foliowing layer for output. niere is no interconnection between nodes within the siune 

Iayer or ndes in nonadjacent iayers. Fwthermore, each comection has an associateci 

adjustabk parameter calleci a weight or connection streagth. An input connection may be 

excitatory or inhiiiory. Excitatory comections have positive weights and inhibitory 

connections have negative weights. AU weighted co~eztions are 'Yeed-forward"; that is, 

they aiiow information trader only fiom an earlier layer to the next consecutive layer(s). 

Data enters the network through the nodes in the input layer. These nodes are passive, 

not computational, and simply sene as distniution points. They perfonn no input 

surnrnation, but broadcast a single data value over weighted comections to the hidden 

nodes in the foiiowing layer. Al1 of the hidden nodes receive ail input data, but because 

each has a different set of weights, the sets of values differ. The number of hidden nodes 

must be large enough to fonn a decision region that is as wmplex as is required by a given 

problem. It must not, however, be so large that the rnany weights required cannot be 

reliably estimateci fiom the available training data [Lippmann, 19871. A network with too 

many weights may fit the training set weii, but may produce large mors at intermediate 

points. In other words, the network wüi memorize the training set rather than generalipng 

around it. Convenely, networks with too few weights wiü fit both data points and the 

underlying bctiion poorly. The following paragraphs describe the processing element 

(PE) architecture and transkr hction. 

3.2.2 The Genemî Processing Elenient 

The architecture of a single PE or node is shom back in Figure 3.3. It has n inputs, 

labeled ftom 1 through n. In addition, it also has one assumed input, called its O h ,  wwhs 

input is always equal to 1.0. Each node j receives inwming signais &om every node i in 



the previous layer. A weight (w,J is associateci with each incomiag signal fx3 The 

effective incornhg signal (NEZ'J to aode j is the weighted sum of ail incoming signals, 

otherwise known as the net input: 

where xo and y0 are d e d  the bias term (xo = 1.0) and the bias weights respectively. This 

term is a weight on a connection that bas its input value ahvays qua1 to one. Including 

the bias tenn sometimes helps convergence of the weights to an acceptable solution. It is 

perhaps best thought of as an extra degree offreeedm, and its use is largely a matter of 

experùnentation with the specific application [Freeman & Skqwa. 19911. Note that 

excitation and inhibition are accounted for automaticdy by the sign of the weights. This 

weighted sum is passed through a t rader  fùnction and produces the neuron's output 

which serves as input to the nad layer of nodes. 

3.2.3 Translcr Functions 

The t r d e r  fimction, activation finction, gain function, or squashing fûnction (as they are 

often refend to) introduces a nonhearity that, when apptied to the net input o fa  newon., 

determines the output of that neuron. This nonfinearity fllrther enhances the network's 

ability to mode1 complex fùnctions. Neariy always, the same t r d e r  fimction is used for 

al nwons. Wmsennmm [1990] states that the nonllliear activation fùnctions are vital to 

the expansion of the network's capability beyond that of the singielayer network. The 

effectve incoming sigoal, MT, , is passed through a nonlinear activation hc t ion  or 

transfa bction to produce the outgoing sigaaYactivation value (OUT3 of the node; see 

Lippmamz [1987] for a üst of three different activation functions. The outgokg signal of 

a node (OWZ'J, corresponds to the firing frequency of a biological nniron. The connection 

weights (y& msd (wd, between two nodes, corresponds to the strength of the synaptic 

connection between aeurons in a biologicai network. Hm et al. [1995] states that the 

most commonly used activation fiinction is the steadwiy increasing S-shaped curve cded a 

sigrnoidai fiindion. The shape of this cuve can be seen below in Figure 3.4. This 



hction acts as a squashing bction and compresses the range of MET so that OUT lies 

between O and 1. The desirable characteristics of the sigmoid fbnction are that it is 

bounded above and below (the attenuation at the uppet and lower iimbs of the "Sn 

constrains the raw sums smoothly within the fixeci b i t s  of O and l), it is monotonidy 

increasing, and it is continuous and differentiable everywhere. 

O NET 

Figure 3.4. Sigrnoidal Logistic Function (Freeman & Skapura, 199 1) 

The sigrnoidal fùnction moa often used for ANNs is the logistic fùnction (Hsi et al. 

1995), expresseci mathematically as shown in equation (3.2). It can be seen that the 

activation value of any node is an explicit fùnction of the net input value, NET,, of that 

node; 

in which NET, cm vary between f a, but OUT, is bounded between O and 1. The 

activation fbnction defines a nonhear gain for the artificial neuron. The gain describes 

how the output leaving a node is changecl based on the weighted sum e n t e ~ g  the node. 

It is calculated by hding the ratio of the change in OUïj to a small change in AET, as 

shown in equation (3.3). 



Therefore, the gain is the siope of the sigmoid m e  at a specinc excitation lwel. As can 

be seen in Figure 3.3, the gain varies fkom a low value at large negative excitation, to a 

high value at zero excitation, and it retum back to a low gain when the excitation of  the 

neuron becomes very large and positive. Another commonly used activation fbnction is 

the hyperboiic tangent, expressed mathematically in equation 3.4; 

e~YH' 
OUT, = t a n h k ~ ,  )= ..,.3.4 

e~w. + e - m ~  

This hction is similar in shape to that of the logistic fiuiction. The hyperbolic tangent 

function is also shaped, but is symetrïcal about the origin, resulting in OUT, hahg a 

value of zero when NET, is zero. A characteristic of the hyperbolic tangent bction that is 

different nom that of the logistic fùnction is tbat the vaiue for OUT, is bipolar (i-e. the 

value of OCn; can range between H). This characteristic can be beneficial in certain 

networks whose outputs have negative values. It must be kept in mind that, regardess of 

what type of sigrnoidal bction is being used, the sigmoid huictions never reach their 

theoretical minrnimum or maximum. For example, neurons that use the logistic fùnction 

shouid be considerd fiilly activateci at around 0.9, and tumed off at about O. 1 or so. It is 

certainly reasonable to use the extremes of 0.0 and 1 .O as inputs to a mtwork, but it is 

fiitile to attempt to train a network to achieve extreme values as its outputs. 

3.3 NETWORK CONFIGURATION 

Mer choosing the ANN structure, the aext step is contiguring it to agree with the data. 

This is done by settkg the number of input and output nodes to agree with the dimension 

of inputsutput vectoa in the data set as weii as deciding on the nwnber of hidden layers 

and the number of hidden nodes per layer. The latter is an iterative process and will be 



discussed fiutber in the following sections. Since the nurnber of inputs used in the 

network will dictate how many nodes are required in the input layer, it is important to 

decide which inputs are best in d e d i  the underlying process. This is where âimüiarity 

with the application is invaluable. The raw data caa also be inspected by means of 

statisticai techniques, an example king calculating the strength of the correlation between 

an input and an o u ~ u t .  This wül suggest whether to include or exclude a variable in the 

input. Similarly, a strong correlatioa between two inputs mi*@ suggest that only one is 

needed. Data d y s i s  helps screen out the potential input variables so that only the most 

teiiing ones are used to build the training patterns [Nammerstmm, 19931. Preprocessing 

or trandomiiag the data often makes it easier for the network to luira Preprocessing may 

involve caldating sums, difFerences, differentids, inverses, powers, roots, logarithms, 

averages, and moving averages. One important r-n for taking tare in selectiag both the 

type and aumber of input/output variables is to keep the network smaiî, so that less time 

and data are needed to train it. 

3.4 NETWORK TRAINING 

The main objective of training a network is to produce the desireci set of outputs when a 

set of inputs is fd to the ANN. This step is often calleci the &%ration stage in 

conventionai mode1 building. Training a network is a process during which an ANN 

passes through a training set (input-output data pairs) repeatedy, changing the values of 

its weights (accordhg to a predetermined procedure or algorithm) to improve its 

perConnance. It is important that the training set provide a fidl and accurate 

representation of the problem domain: otherwise the network wili not meet expectations. 

A criticai goal during training is to find a network that is large enough to Iemn the 

application but small enough to get~eralize well [Hmmerstroon. 19931. The number of 

nodes in a network has a large impact on the generaiization ability of the n ~ o r k .  

Networks with too many hidden nodes tend to memorize the training data while those 

with too few cannot leam the underlying process in the problem. A network with many 

nodes wiil also have many comecting weights. Excessive weights can be a drawback, 

since the ANN cm use them to memorize the training data A smaller network has fewer 



weights, forcing t to learn the underlying fûnction and permitting it to generalize beyoad 

the training data, but too d a network cannot leam the probiem at aii. Therefore, 

choosing the number of hidden Iayers and the number of hidden nodes per layer is an 

iterative proces. Each pass through the training data is d e d  an epoch, and the ANN 

leams through the overd change in weights accumulating over many epochs. During 

training, the network weights gradualiy converge to values such that each input vector 

produces output values tbat are as close as possibk to the desired output vector- There 

are many algorithms adable to train neurai networks, but wifortunately no-hard-and-fast 

d e s  for matching training algorithms to applications exist. Valluru mzd N q @ w  

[1993] esErnate that over 8û% of di neural network projects in development use the 

backpropagation (BP) training aigoritha This is posa%,ly due to the relative ease of use 

of the aigorithm. BP algorithms have been found to do particulady weii at fiindon 

approximation and timeseries tasks as weU as represmting cornplex, nonlinear 

relationships in the fom of compact, efficient networks [Hamrnerstrom 19931. Before the 

training process is begun, ail of the comection weights must be Uiitiaiized to smaii random 

numbers (the size of the initial random weights is very important). This is to easure that 

the network is not sahiratai by large values of the weights. If the initial weights are too 

large the sigmoids will saturate fiom the beginning, and the system wili become stuck in a 

local minimum near the starting point. Hertz et al. [1991] suggests that a sensible strategy 

is to choose the random weights so that the magnitude of the typicaî net input, MT, to 

unit j, is less than, but not too much less than, unity. Typicai initiai weight randomization 

is between f 1. 

The key to the BP training algorithm is its ability to change the values of the comection 

weights in response to the =or between the network output and the target output. It 

accompiishes this through the use of the Generalued Delta Rule, which is the learning 

algorithm of the network. 



3.41 Backpmpagation Training Algorithm 

The BP algorith gives a prescription for changïng the weights, w,,, in any feed-forward 

network to leam a training vector of input-output pairs- It is a superviseci leamhg method 

in which an output error signai is fod back through the network, altering conadon 

weights so as to minenite that error. hiring the BP training each input vector is applied 

to the Grst iayer nodes in the input layer. This Stunuius is propagated tbrough each hidden 

layer and a redt is generated at each output node. In forecashg applications, the 

training data u d y  consists of input stimuli as weli as the desireci responses (output) to 

these stimuli. During supenRsed training, the output predicted by the nebvork, Zk(p), is 

compared with the actual (desired, historical) output, ddi, and the mean squared error 

(MSE) between the two is calculated The error signal, at the t, for each unit in the 

output layer, is *en beiow by the error measure or cost fimction E(); 

The airn of training is to find a set of co~ection weights that wili minimte the error 

f'unction. 

3.4.2 Generalized Delta Rule 

The Generalized Deha Rule (GDR), used as the Ieaming algorithm for the BP network, 

per60m gradient descent down an error sufice. Once the error signai of each node is 

known, the weights can be adjusted and updated in the direction that wüi minimi2e this 

error. This weight update is done with the GDR, shown explicitly in equation 3.6, where 

a, is d e d  the momentwn term. 

There are several methods for hdiag the weight bernent, hjt, of wbich the gradient 

decent method is the most cormnon [Maier md Dm&, 19961. The gradient descent 



method is a leamhg process that changes an ANNs weights to follow the steepest path 

toward the point of minimum m. 

3.4.3 Gradient Descent Mtthod 

The change in the output enors 0, with respect to the current weights (w), are calnilated 

(equation 3.3) and passed b a c h d s  (backptopagated) f?om the output layer to each 

node in the intemiediate layer that c o n ~ e s  directly to the output. This is accomplished 

using the gradient descent method; 

As most combinations of weights produce a Merent error, an error d a c e  exists as a 

firnction of the comection weights. To see this error SLUface, al1 possible sets of weights 

are plotted q@St  the corresponding sum-of-squared errors. An error surface with cwo- 
dimentional weights (x & y) is shown in Figure 3.5. This error stdàce is bowl-shaped 

whose bottom marks the sa of weights with the srnailest sum-of-squared errors. The 

gradient descent method results in weights being incrementally changed in the direction of 

the locally steepest path towards the bonom ofthe bowl. 

Real error d c e s  generally have a large number of local minima remlting in complex 

ravine-iike features and rnany have dent-iike local minima [Hranmerstrom. 19931. This 

local minimum is a point of regiody low enor during gradient descent. It is a 

metaphoncal dent in the error surfbce. Since the gradient descent method follows the 

steepest path, the network could train itself into a local minimum, (21 or 2 3 ,  that it can 

not escape fiom as in Figure 3.6. 



Figure 3.5. Bowi-Shaped Error Surtace (Hammerstrom, 1993) 

Figure 3.6. A cross-section of a hypotheticai emor Surface in weight space (Freernm & 
Skapura, 1991) 

The global minimum is a unique point of least error during gradient descent. It is 

metaphoricdy the true "bottom" of the error surface. In practice, hdmg the global 

minimum (&) is not always necessary. What is important is to find a set of weights that 

locate a local minimum that sati* the acairacy requirements for the application at hand. 



The size of the step taken d o m  the error d a c e ,  often calleci the 1-g rate, q, can be 

critical The learning rate govems the rate at which the weîghts are aiiowbd to change at 

any &en presentatioa Higher learning rates speed the convergence process, but may 

cause the weights to oscillate mund the bottom of the bowl-shaped weight sudice, 

giving an o v d  a m r  that îs unacceptable. This can resuit in non-convergence of the 

problem. Lower learning rates slow the learning process resultmg in more reliable resuits, 

but can haease the training the. h this case, cornergence wiu be excessive1y slow. 

T h e  are a number of ways of deaikg with this probIem, incfuding the replacement of the 

gradient descent by more sophïsticated muiimilation algoritbms, as discussed by Hertz et 

al. [1991]. However, a much sirnpler approach, that is commonly used and often 

effecbve, is the addition of a rnomer~Itm tenn, a, expresseci mathematidy in equation 3 -7 

The rnomentum tenn must be between O and 1; a d u e  of 0.9 is ofien chosen [Hertz et al.. 

19911. The momentum term is applied to prevent the search direction f?om wildly 

thrashing about the enor surface, as the gradient changes. The idea of the mornentum 

tenn is to give each weighted coanection, w,, some momentun., so that it tends to change 

in the direction of the average downhill 'Yorce" that it feeis, instead of oscillating widely. 

Each new search direction is cornputeci as a weighted sum of the current gradient and the 

previous search direction. This momentum is deriveci nom the effect of previous weight 

changes on the present change in weight space. This terni is optioad, but if used, can 

irnprove the convergence on a ldgiobal minima. Maners 119931 states that the 

momentum tem, is essentially a low-pas fiIter applied to the search direction to darnpen 

the side-to-side oscillations. The idea king that ifrapid local fluctuations are fiitered out, 

the remainu>g trend will be towards a more global minimum The effective learning rate, 

q, can then be made larger without divergent oscillations ocairing. 

Each unit in the intermediate layer receives ody a portion of the total error signal, based 

roughly on the relative contribution the unit made to the origimal output. This process 

repeats itself, layer by layer, uatil each node in the netmork has received an error signal 

that descriies its relative conm%ution to the total error. Eacb hidden unit then calculates 



the weighted ami of the backpropagated mors to find its indirect com*bution to the 

kwwn output enors. A f k  the m o t  value is catdated for each output node and hidden 

node, the network adjusts its weights to reduce its cornnion to the total output erroc- 

For a more complete eeatment of backpropagation see W-man [1990]. 

3.5 NETWORK TESTING 
Results that are measured with the training data say very linle about the ANWs reiiabiiïty 

in the application The ody way to detemine if an ANN is d is if Ï t  produces 

appropriate results with data that was not used to train it. Measuring the generaiization 

abiiïty of the network requires testing the network wah an independant set of data (Le. 

data that was not used in training). The main objective of testhg is ta d e t e d e  how the 

network perforrns on data it bas not seen More. This step is oRen caüed the verification 

stage in conventionai mode1 building. Testing is a process for measu~g an ANNs 

pertormance during which the network passes through an independant data set to calculate 

a performance index, wch as the mean squared emor (MSE), without changing the 

weights. The real objective duriag training is the test-set, not training-set, accuraq. 

Testing alternated with training is a good way to monitor the network pdonnance and it 

shows when to end training to preveat memorization of the data, also called overtraining 

A technique used to prwent overtraining is to stop when the mean-s~uared-error yielded 

by the testing set stops ùaproving. 

Test-set and training-set mean squared error both typically fkü rapiàly at the start of the 

training phase as the network moves its weights away fiom their random initial positions. 

As the ttaining progresses, both the training-set and test-set enor curves become flatter- 

Typidy, training-set error continues to decline, but test-set error eventuaiiy begins to 

increase as shown in Figure 3.7. This type of behavior shows that the netwark has 

stopped leaniing wbat the training pattemu have in common with the test patterns and bas 

s t a n d  to memorize meaningiess Werences. This overfimng of the training data, 

somehes d e d  overtraining, is caused by the network mernorizhg the noise in the 

training data. When a network is overtrained, Ï t  perfonns very weii on the training data 



but [oses its abüity to geaeralize on the test data Therefiore, for best generaiization, 

training should stop whea test-set mean-squared error reaches its lowest point. Training is 

therefore an itetative pmcws: the trainer tries a configuation (number of hidden layen and 

nodes), evaiuaîes the result (based on MSE), makes a change in the node configuration 

and parameters, and tries it again until satiSned with the r d t .  There is an optimum 

number of hidden nodes producing the srnailest enor, with iarger and d e r  nurnbers of 

hidden d e s  both producing krger mors It is the eXpenence of Miuters 119931 that 

suprisingly few hidden nodes are usuaiiy needed. Monitoring error measued with a 

separate test set wMe varying the number of hidden nodes is a key strategy for optimiEog 

architecture for performance wÏth BP training. 

This trial-and-error process has bpered neural network development in the past, 

because it has o h  been impractical to try al1 possible node configurations and training 

parameters. 'There are many comrnercially available softwares, hardware, or combination 

thereof that use systematic methods to configure, train, and test ANNs to agrre with the 

data. This makes the ANN technology more feasible for application to real-üfe problems. 

The network architecture (three ttlly comxted layers) and the BP learning algorithm 

mentioned in the preceeding Sections provide a general idea about artificiai neural 

networks and the most popdar Backpropagation training algorithm. Not al1 of the details 



mentioned above apply to all ANNs. Architecturai elements such as layers, nodes, 

comectiom and weights are universal, but the arrangements between them vary. Some 

networks lack a hidden layer, and othets have two or more. Some networks include nodes 

that feed back to eariier nodes (Le. not féed-fornard), comections that skip layen, and 

layers that are oniy partiaiiy connected- The leamhg algorithms controliing the updating 

of connection wàghts alw vary for different ANN structures (i-e. the three-layer feed 

forward netwwk d e s c i i  earlier might aot use Backpropagation as its trainkg algorithm 

and iikewise, the Backpropagation algorithm mi@ appear in network structures other 

than feed-forward networks as d e s c n i  in Freeman and Skpma [LWl], Hertz et al. 

11, Valuru dHuIapiw 119931 and Wassennan [1989]). 

3.6 ANN MODEL DEVELOPMENT 

Designing an ANN can be as simple as s e l d g  a commerciaiiy avaiiable sofhware 

package and configuting it to agree with the data or as complex as coding a fùUy custorn 

network fiom scratch - an approach beyond the scope of this research The intendecl 

research concentrates on the application of ANNs for streamflow forecasting and not on 

the improvement or development of algorithms used in training ANNs. For this reason, 

conventional ANN model development (ushg Pasai, Fortran or C code) was not used as 

readily available commercial software packages, that have built-in training algorithrus. can 

save the.  The the saved on programming can be spent on preprocesshg data and 

decicihg which variables are driving the underlykg process king modeued. Furthmore. 

this data d y s i s  will help decide which varrarrables to include as network inputs. Braincelm 

[Pmised Land Techo!ogies, 19931 is the software that will be used to implement the 

ANNs in this research and wiü be discussed, in more detaii in the case mdy chapter. 

Braincelm is an Excein spreadsheet add-on program that is embedded in an Excel* 

worksheet. H a . g  the power and flaobility of the spreadsheet environment greatly 

enhances the power of neural aetwork software. Brainelm allows the user to M y  access 

the formulas, hctions, printing, and graphing ficüities of the E x c e p  spreadsheet 

environment. For these reasons, Braincel* was the chosen sohare to be used in this 



research. Hmmersttom [1993] &es a breakdown ad cornparison of ANN software 

packages ment ly  on the market. 

3.7 BRAINCEL (ANN tool) 

BrainceP is one of the many readily a d a b l e  commercial ANN soAware packages on the 

market and as medoneci in chapter 3, is the software that was used to implemem the 

A N N s  in this research, BrainceP is an Excel's" spreadsheet add-on program that is 

embedded in an ExcelTY worksheet. The power ofthh ANN s o h e  is greatly enhanced 

by having the power and flexiibility of the spreadsheet environmestt. BrainceP aiiows the 

user to W y  access the fornulas, fbnctions, printing, and graphing fàcilities of the E x c e P  

spreadsheet environwnt 

"BrainceP is great for forecasting and hdding erpemse. In regard ro 

forecasting it is greut Z'king for reIutiomhips ipswil hm&z BroirceP 

shutdd îlot be tcsed when the fornias for a decision are aire- know~z 

md are fw sturic. Instead, it shmld be used fo s&e problems for 

which it is d.%fimft to fornnihte a procedural sofrwure sohtiun or if the 

prmedrme is Ii&& to change frepently. BrainceP is an excelfenr tool 

for making discoveries in engineering and scientijk disciphes". 

BraincelfM uses the hyperûolic tangent as its transfèr fùnction and a variation of the 

backpropagation algorithm, caifed backpercolation (devdoped by Mark lu& of RTRIK 

RESEARCH AND CONSULTING), as its buiit-in training aigorithm. This software 

allows the user to configure the number of d e s  in both the input and output layers as 

weU as configuring the nimba of hidden nodes in up to 7 hidden layers. The software 

automatically s d e s  the input/output data sets as per the requirements of the d e r  

fùnction used iri the network The ody thhg left to be automated by the wr is how the 

network is to be ~ained and tested. The training and testing process can be automated by 



BrainceP in three ways: 1) Auto Expert Mode; 2) Automated Best Net Search; and 3) 

train on unseen data in Professional User Mode. 

3.7.1 Auto Expert User Mode 

The Auto Expert Mode is the simplest of the three training modes adable in BrainceP. 

Ln this mode, the uset speQfies the inpui/out structure, the hidden layer(s) smicture 

and the data to be used for training and testing. The user then sets a b e r  to spe@ a 

time limit that the netwotk is aîiowed to train for. In thïs mode, the user is not giwn much 

control over the parameters that S k c t  training such as; randomization of initial comection 

weights (defàult vahie used in this training mode is f 1.5) and leanillig rate (q). 

3.7.2 Automatcd h t  Net Search 

In this mode, Braincelm di automaticaIly search out the best node configuration and 

weight randomization in a single hidden layer. Best Net wiIl try out many initial 

randomizations of weights (between S. 1 ,H.S  and k1.5) and hidden nodes. For exampie, 

if the user wanted the Best Net to check between I and 5 hidden nodes, the foliowhg 

steps would be taken: 

Step 2: Check 1 bidden node with conmdion weights initiali?ed between M. 1. This 

quena would be repeated 4 or 5 times More m o h g  to the next step. 

Step 2: Check 1 hidden node with comection weights initialized between M.5. This 

squence would be repeaîed 4 or 5 thes  More moving to the next step. 

Sep 3: Check 1 hidden node with comection weights initiaiïzed between f 1.5. This 

sequace wouid be repeated 4 or 5 times before movhg on to the next step, 

which would be to repeated seps 1 through 3 using 2 hidden nodes. These three 

steps wouid be repeated until ail  five hidden nodes wae checked. 

It is very easy for gradient algoritbms to get stuck in local minima when learauig 

feedforward network weights. Chdrabon'y et al. [1992] states that since 

backpropagation is a gradient-descent o p ~ t i o n  technique, training a network may 



result in its sinking into a local minimum that may be fu removeci fiom the global one. 

Hertz et al. [1991] suggest conducthg several training mas for each network and suites 

that.. . 

'ke skdd ahuqts repeaf the iemning proces f om sewmi dierrent 

stwtmgpariiom an the emor surface. II is crhtimiiy reckiess to < ~ r e  JUS 

one starfing-weight co~tfiguranon, asruming ihat Ihe mininnnn to which it 

le& is the best thal we can do". 

This is exady what the %est Net seacch is trying to accomplish by initiaiizing weights 

between say Io. 1 in Step 1, and then repeatedly settiag the initial weights between H.1 

before mowig on to Step 2. 

The objective of the Best Net Search is to minimize the error on the data useci for testing 

the network. It checks several, but not every, possible combination of bidden nodes and 

weights within the parameters set, More selecting another. Because tbis can take a lot of 

time, BrainceP uses a smart algorithm to converge on Wrely combinations of hidden 

nodes and weights. Stdi, the larger the range of hidden nodes specified, the longer it's 

going to take. Prontised Lund TechnoIogies [1993] suggest setting Best Net on one 

possible architecture at a time (Le. seiect the saw number as the minimum and martiniwn 

hidden nodes to be checked). By doing fis,  the Best Net wiii just experirneut with initial 

weight randotnization. When the Best Net search is finished, the optimum network is 

automatidy saved and a message d e s m i g  the optimum nwnber of hidden nodes and 

initiai weight randomization it has determined, is displayed. 

One of the drawbacks to using the Best Net approach is that it only tests with one hidden 

layer. Some problems require two or more layers, but as wss mentionad back in cbapter 

t h e ,  these problaas are quite me. The Best Net also provides the user with a "b 

Out Anak'ysis". The Leave Out Analysis charts relative importance of inputs to the 

outputs and is used to; 1) give an indication of which variables are driving the underlyhg 



hction you are aying to approhte, and 2) which variables are of no importance and 

can be lefi out, for ben training. Promised Land Techno!ogies [ 1 993 1 states that . . . 

"'this rmking is nut fm@roofi it mfcufhes which i p t s  me most semllSItive 

in s m e  porrs of rheir r01ge. I i p î t ~  thut are ~ e d y  thrmghouf th& 

ratage are uodentoIued willr bis t n e W W .  

3.7.3 Profasionai User Mode 

Professionai User mode is designed for experienced users of neural networks. In this 

mode. the user is able to gain mamal access to many more parameters that make up the 

network such as the learning rate (q) and the number of training cycles. Li tbis mode, the 

user is responsible for a lot more of the parameters that afiéct how the network trains 

itself. Professionai User Mode dows the user to manipulate several parameters of the 

neural network during training: displaying emor on unseen data (test data) ratber than on 

training data, COWIM~ training cycles rather than tirne (as in Auto Expert User Mode), 

monitoring and changing the leamhg rate. recordùig trainiiig history, and displaying an 

error chart whüe training progresses. To avoid ovemainiDg or memorization of the data, 

the Professionai User Mode has an Autostop feature that aiiows BrainceP to stop 

training when the error on the unseen (test) data stops descendhg and beghs to increase 

or reaches a plateau. 



CHAPTER 4 

4 CASE STURY APPLICATION 

4.1 GENERAL 
In this chapter, the use of ANNs for the d - t i m e  forecasting of streadow in a portion of 

the Wuyiipeg River Basin located in Nonhwestem Ontario, Canada, wiU be described. 

This involves first separatiag the available data into a trainhg set and a testing set. 

Through an iterative process of training and testing the ANNs, the best network 

configuration (number of input and output wdes, number of hidden layers and the number 

of nodes per hidden layer) is determùied. 

4.2 DESCRIPTION OF TEST LOCATION 
The majority of the WMpeg River Basin is located in the Precambrian Shield region of 

Northwestem Ontario with parts of the watershed entering Southeastem Manitoba The 

Rainy River local drainage area, located in the Northeastem tip of Minnesota, is the only 

subwatershed, witbin the Wllllljpeg Riva Basin, uiM lies outside of the Precambrian 

Shield region A map showkg the location of the Wdpeg River Basin is shown in 

Figure 4.1. The WUmipeg River and its main tniary, the Eaglish Riva, constitute an 

enormous water resoucce, with a drainage area of approximately 150,000 square 

kilometers. There are more thsn 100 major lakes and rivers in the system, with a 

combined surfhce ana of ove 1 1 400 square Hometers [Acres Infemtionaf Lld. 19931. 

For this reason, The Lake of the Woods C o d  Board (LWCB) was f o n d  in 1919 and 

is one of several boards responsiie for ammghg water in the WUMipeg River drainage 

basin. ALI ninoff fiom the basin eventuaüy rnakes its way down the WùuPpeg River, 

spilling into Lake WIlllljpeg and thai emptying into Hudson Bay. There are five reguiated 

lakes in the Wimiipeg River Basin (Lake St. Joseph, Lac Seui, Namakan Lake, Rainy Lake 

and Lake of the Woods) as shown in Figure 4.1. The basin consists of heavy woodlands, 

and countiess laLes, nvers, swarnps and watems, thin soii and âequent rock outcrops 



except for the portion of the basin that is in the state of Minnesota. This portion of the 

watershed has physiography and soi1 types that are very &Rirent fhm the rest of the 

basin. 

Figure 4.1. Winnipeg River Basin (LWCB brochure, 1994) 



The basin consists of scattered settled areas that include many nuai and recreation- 

orienteci towns that are v q  active duriag the suminer months. A significam portion of 

the economic base of the Winnipeg RMr Basin is closely tied to the water resources of 

the amr The area has a great diversity of wata resource use in combining industrial, 

commercial, and recreational htetests. Mineral and t u n k  resoufces are stiIi important 

elewats of the local economy as evidenced by naturai resource-based industries such as 

mining and pulp and paper. Tourism is a major indu- in the region dong with sport 

fishg and other outdoor recreational aaMties. The impottance of water resowces to the 

local economy has led to considerabIe concern regarding the proper management of the 

basin's water resowces. 

Specific to water resources concerns, serious flooding has been reportecl on the Engüsh 

River in the past with record-breakhg water Ievels duMg 1992. In addition to flooding 

on the tributary rivers, two of the five major regulated Iakes (Lac Seul and Lake of the 

Woods) bave @enced problems during both high flow years, when fiooduig has 

resulteû, and low flow years, when Summer operating levels have not been reached on the 

lake. The problem of determiiiiag the optimal operating policy for the outlet coatrols in 

the W i p e g  River Basin has received much attention by the Lake of the Woods Control 

Board (LWCB) due to the ecowmic importance ofthe five major lakes to the swrounding 

regig as disaissed above. 

The management of the Wdpeg River Basin system is particularly f i c u i t  due to 

interests in control of floodiag, wata b a d  recreationai activities, hydroelectric power 

generation, agriculture, and municipal and industrial water suppiy. Directing the operation 

of large lakes reqyires monitoring and forecasting basin conditions, planning regulation 

sûategies, codtiug with affècted parties and providhg public idormation. The 

unprrdictability and var iab i i  of natural inaows, h o  the five major lakes, can d e  the 

LWCB's job extremely challenging. Shce tbis research oniy tOcused on forecasting 

naturai inoows, it was decided to mode1 only the local infiow to one of these five lakes. 

The most upstream lake in the watershed, N a d m  Lake, was chosen as the test location 



in this case study. The Namakan Lake subwatershed has a drainage area of approximately 

19 270 square Hometers. Figure 4.2 shows a schematic representation of the 

subwatershed and the locations of the coatrol dams, water levd, flow level and 

precipitation gauges. nie information obtained fiom forecasted local idows, into 

Namakm Lake, couid be used to assist in modifications made to the oormai opera~g 

procedure of the Nimakan Lake subwatershed. 

LEGEHD 
Cantrol dams - 
Watw level and fiaw gauqes 
Precipmaon gauges - w 

Figure 4.2. NBmakan Lake Subwatershed (LWCB brochure, 1994) 



4.3 WLNMPEG FLOW FORECASTING SYSTEM (WIFFS) 
nie LWCB is cumatly implememiog a comprehensive water management model called 

the Acres Resemoir Simulation Program (ARSP), for reservoir operations in the basin. 

The robustness of this modd is very important for pmper management of the system- 

Forecasts of mtwal inflow for the next few ~uarter-monthly tane intervals is of 

considerable value in using the AKSP mode1 [Acres Intemutiomi Lld,  19931. The 

definition of quartet-monthly time steps adopted by the Lake ofthe Woods Secretariat and 

used in the Wdpeg Fiow F o r d g  System (WEFS) modd indudes four tirne seps 

each month. The nrst time step includes 8 days, the second and tliird 7 days, and the 

fourth has the remaining days in the momh [ M e  of the WOOdr Contrai Bomd (ZWCB). 

19941. This partidar breakdown of peiiods translates into 48 periods per year. The 

WlFFS model was developed by ACRES International of Niagara Fails, Ornano, to 

estimate these quaria-monthly naturai infiows h o  the major lakes in the systen The 

WIFFS model serveci as the cornparison tool to the ANN method. 

4.3.1 Modd Type 

There are a number of watershed models that have been developed and applied to 

operational forecasting. Most of these models (e.g. the Strearnflow Synthesis and 

Resewou Regdation (SSARR) mode& developed by the US Corps of Engineers; and the 

Hydrologie Simulation Program - Fortran version (HPSF) developed by the Hydrocomp 

hcorporated) were initially developed for simtiIafio~t purposes and are referred to herein 

as conventional watmbed models. ûther more recent watershed models, such as 
, 

stochastic-deterministic models, were primarily developed for forec~sting purposes. 

WIFFS is a model of the second type. This watershed model contains three basic 

components as show in Figure 4.3. These indude: 

(i) water input generation model; 

(ii) abstraction or los  model; and 

(iïi) distribution or watershed model. 



Figure 4.3. Components of WIFFS Model 

The water input generation component hchides a procedure to calculate rauifàll and 

snowmelt water input to the watershed, based on the meteorological data. The 

abstractions model estirnates the ponion of the water input tbat does not innltrate into the 

ground but rather becomes runoff. This runoff is commody refmed to as effective or 

direct water input. The watershed routing comjmnent of the mode! routes this effe*ive 

water input through the watersbed. In stochastic-determiaistic watershed models (as in 

the WIFFS model) the persisteme properties of streamflow and the covariance 

(correlation structure) between streamflow and water input are modelied using 

multivariate tiw-Senes models. in stochasticdeterministic models, the basic assumption 

according to Acres httenmtiod L d  [1993], is that the forecasteci fIow can be considered 

to be the sum of a detenninistic component and a stochastic component (noise model). 

The detemiinistic component of the model relates the curent flow to past flows and 

cunent and past water inputs. The stochastic component (noise muciel) is included in 

recognition of the fhct that forecast arors do occur and thPt these mors have some 

autocorrelation structure. For a more detaiied description of each of the three 

cornponents of the WIFFS mode4 the reader is refened to the repoR by Acres 

Ir~ternafio~taI Ldd 119931 entitled 'Wdpeg River Basin Flow Forecast Model 

Development". 



43.2 Modd Tnpats 

The WEFS mode1 employs a mixed time sep, that is, precipitation and snowmelt water 

input is caIculated using a daily the  step and M y  precipitation and temperature are 

required. Quana-monthiy effkctke water input is then caldateci f?om the daily &&e 

water input. The stochasticdet ednhtic watershed routing models use a quarter-rnow 

time step and quarter-momhly average local How is reqyked- 

The inputs to the WIFFS modd are as foiiows: 

- P d .  "now", PIt); this is the period More the fht forecast period. 

- FomOSt feaà-n'me; is the number of p&ods fiom Period 'how" for which forecasts 

are calculateci. 

Histiwicol M&ed@cal inprm, complete daiiy precipitatioa and temperature data 

for Period 'how" and the previous seven periods for Namakan Laice. The number of 

previous periods of meteorological data tequird may diffa for each subwatershed. 

Fmusfed MacOrOIt@d inprts, an inference of future daiiy precipitation and 

temperature inputs. The WJFFS modei indudes two options for cteaîing fimire 

meteoroIogicai inputs, i-e. probabîlistic and manual entry of forecasts. Probabilistic 

aeatiom of b e  meteorological inputs involve choosing a percede of disaiution 

to be used as the forecast and mamial entry %volves pichg an actual vahie and 

entering it as the forecasted aumk. For purposes of this research (to malce 

compaOsoas betweeu modeilhg approaches easier) th probabilistic m*hod, with the 

5 0 ~  p e r d e  of distriion, was used in devdoping these fhure meteorologid 

inputs. A more detailed discussion on this probabîiistic method used to comma the 

h u e  precipitation and temperature sequences can be found ni LWCB [1994], and 



- Krstmid/raws; quarter montbiy flow data for Period "no+, P(t), and the previous 

seven periods for Namakan Lake- Agaùi, the number of previous periods of flow data 

rapuired may dina for each subwatershed. 

The outputs fiom the WIFFS mode1 are as foiiows: 

- Stkamflow ( i ,  2,3 a 9; One, two, three or four week(s)-in-advance foremit of 

local inflow. For the remahder of the thet&, each tirne period will be refèrred to as a 

'bvedr", even though each quatter-month period is not comp<ised of seven da.. 

4.3.3 Avrilrbie Data and Resources 

The Water Survey of Canada (WSC) bas operateci hydromeaic gauging stations for a 

number of sites in the WWuinpeg River Basin. The locations of the six WSC gauges in the 

Namakan Lake subwatershed, for which there are fiow records avaiiable, are shown in 

Figure 4.2. LWCB has, in ment y-, developed an extensive network of data collection 

platforms @CPs) making some of the meteorologicai data avaiiable in real time. The 

three stations that have historiai meteorologid data, in the Namaian Lake 

subwatershed, are show in Figure 4.2 dong with the two stations (Wïinton and Gunflim) 

that have the data adable in real-time- Basin average precipitation was estimateci for 

each subwatershed using 3 to 6 selesteci records 6om stations with historic and rd-time 

data. Thiessea9s polygon method was used to determine the weighting coefficients for 

each record. The stations and d c i e n t s  used for each subwatershed are swamarized in 

the report by Acres Intent~fiomI L&i! [1993]. There were twenty-nine yeafs of available 

data from 1960-1988 for the Namokan Lake subwatershed. This data included average 

daily precipitatioa and temperature values as well as average weekly s t r d o w  values. 

The historical data for Namakan Lake cau be found in Appenda A 

The stochasticdeterministic watemhed mode1 (WIFFS) was califirateci by Acres 

I ~ ~ t e m i o n i ~ ~ I  Lrd [1993] for each subwatershed using daily precipitatioa and temperature 

data and quarter-monthiy average flow data. Data âom the pied 1965 to 1985 were 



used for mode1 caiiiration, and the adable  data before 1965 and &ex 1985 were set 

aside for model verincation purposes LWCB [1994]. It shouid be noted that the WIFFS 

model was mt nui as part of this researcb Ratber* the resuits (RMSE) aiready 

cornpileci by Acres Intemationui Ld CI9931 wexe used for compatison with the resuits 

fiom the ANN techn010gy~ 

4.4 TYPES OF MODEL COMPARISONS 

As mentioued eariier in chapter one, the ultimate evaiuation of the ANN model came 

through a cornparison of the network mode1 with a ûaditionai forecasting tool (WWFS). 

The two modelüng approaches will be compared not ody in temis of the accuracy of the 

forecasting results but also in terms of the ease of use of the two approaches. The 

foiiowing two sets of experiments were performed in this study. 

4.4.1 Experimmt W 1  

in the fint arperiment, an ANN mode1 was produced to gn* a fiiir cornparison between 

the forecasting acairacy of the WîFFS mode1 and tbat of the ANN tecbnology. This was 

done by providhg the ANN with the same inputs that were used in the development of the 

WIFFS model. The ANN model was then trained and tested on the same sets of data that 

were used to d i t e  and verify the WTFFS modd respective@. LI this experiment, the 

ANN made use of 9 29 years of data h m  1960-1988, as did the WEFS modei. 

4.4.2 Experiment #2 

in the second scpaime~t, an ANN tbat was not restricted to the input variables used in 

the W F F S  model, was built. Using too amy inputs caa excessiveIy complicate the 

mode4 wherm Usmg too few inputs can resuit in idequate modeuiag. in the context of 

AN'S, ChaRrab0t-y et cil. [1992] indicate t h  too many inputs would imply slower 

training and slower convergence and may in tact wonen the generalization capabilities 

(applicabiiity to test cases) of the network. The purpose of the second eqmiment (caiied 

experiment #2.2) was to buùd an ccoptimum" ANN. This c'optimum" network involved a 

smaller number of inputs (i.e. only inputs that were being used to d e m i  the mderlying 



process being rnodeIled), thus reduchg training times, yet still remain as accurate if not 

more accurate than the ANN model b d t  in expriment #1. This was done using m e  of 

the same inputs as in WIFFS and mve~a*gaîing the use of some new, additional inputs, that 

were not used in the WFFS modeL In this acpaiment, part of the &ta (âom period 33 

of 1983 to period 33 of 1984) had to be eîïmhated h m  the data set. The reason for 

doing this was that it appeared the actual measured data was miss@ Tbis niissïng data 

appeared to be artiSciaUy fjiied-in for purposes of keeping the tirneseries contiauous. 

Therefore, to obtain a proper cornparison between the accuracy ofthe ANN dwetoped in 

expairnent #1 aad that developed in experùnent #O, these data were eliminated and 

experiment #l was redone and d e d  experiment #2.1. nie ANN model was then ûained 

and tested on the same sets of  data that remaineci to calirate and verifil the WiFFS mode1 

respectively. 

4.5 TIME-SERIES FLOW FORECASTING USING ANNs 

4.5.1 Sin@ Rcdictor 

Any neural network that is capable of accepting reai-vaiued vecton as input and 

producing real-valueci vectors as outputs may be used for tirneseries prediction. For now, 

we WU assume the simplesi possile structure (using lags of one particuls variable as 

inputs to the uetwcjrk). The ANN is a black box having one or more inputs and exucfiy 

one output. We are aîtempting to predid one point ahead in a single tirne-series. 

Extensions to this simple structure wül be h s s e d  Iaîer. A typical mapphg of a the- 

series to an ANN for prediction is outlined in Figure 4.4. This scbematic demonstrates the 

use of six continuous points (of a single variable) in a tirne-series to predict the next point. 

The trainhg series is produced by generating a large nimber of individuai sampies. Each 

sample consists of smn points: the CUrtent point (lag O), fie historical points (Iags 1 

through S), and the foilowing point (ofken d e d  the target output), which is used to direct 

the training of the output netnon. II is possible to make use of more than one variable 

dong with th& lags as weli As csn be seen, the minhg set can become vey  large. 

Figure 4.4 shows the prediction to be exactly one point kt0 the h e .  Maoy tiws, as in 



the case of tbis research, we need to predict M e r  out thaa just one point. Multiple 

predictions fiom one network are possible, but are generaiiy best avoided. Herir et al. 

Cl9911 state that, it is best to liniit a network to heving to make oniy one lead prediction, 

whether that l d  is one point h o  the &tue or one hundred points hto the fùture- 

Ahhough most networks can &y accommodate multiple outputs, H a  et al. [1991] 

state it is better not to tiy to train muitiple outputs to lem diffèrent kad predictions. 

Instead, train separate networks for each lead-the- In 0th- words, a network shouid not 

be designecl with two outputs, training one of the outputs to prodia one point ahead, and 

the other output to predict one hundred points ahead. Instead, two separate networks can 

be used. 

I ANN I 

Lag 5 Lag4 Lag 3 Lag2 Lag 1 Lag O Predicted 

Figure 4.4. Univafiate time-series prediaioa model. 

4.5.2 Multipk Predicton Series 

The most basic the-series predictions use lags fiom a singie-variabIe the-series as the 

predictors, as disaisseci in the previous section. If needed, this csn be extendeci to 

multiple the-series of multiple VaRabies as shown below in Figure 4.5. Figure 4.5 

demonstrates the use of thra lags of three M i e n t  variables, Y i ,  where i corresponds 

to the variable type and j corresponds to the lag of that vanaMe type. The lags of thex 

three variables mate three separate tirneseries to predict the next point of Vara. Again, 



the training series is produced by generating a large nwnber of individual samples. In this 

case, each sarnple consists of ten points (9 inputs and t output). The inputs are the 

current point (iag O) ofall three variable types and two historicai points (lags 1 and 2) of 

aîi three variabk types. The output is the followiag point ( o h  d e d  the target output) 

of the being prdcted, which is used to direct the training ofthe output nailon. 

ANN 
Future 

Figure 45. Multivariate tïme-sesies prediction m d .  

The inputs to a the-series preâiction mode1 serve as idormation about the underîying 

relationship king modelied. This input iafonnati011 need not be limited to rneawred 

values. It is generally agreed [Hem et al. 19911 that, inputs that provide the network 



with information about the underlying process king modeiied, and are not restricted to 

the domains, are refend to as "ideotifying'' idionnation. An example of identi@ing 

information is in the recent work by Ramesh d M1@m& [19%]. They used the 

'period of the yeaf' as an input to their neural network for a 10 day ahead forecast of 

raiafd. The addition of this "identifyhg" information proved to be extremely usettl in 

letting the neural network know w h t  season of the year the ment  time step was in 

This type of information is not easily bwrporated ïnto a single, traditional ARMA model- 

Mead, separate ARMA models rnust be developed for each season of the year. It is 

important to temeniber that the guideline for neural network data is tbat if it is not clear 

whether a particular input variable will be of  much use to the network, it should be 

included so that the network can decide what is important and what is not. It is important 

to note that the more inputs vafiab1es fed to the network, the more comection weights 

between neurons which result in a more complex error surface md uitimately longer 

training thes. 

4.6 A N '  MODEL IDENTIFICATION 

In both experirnents, a multivariate the-series model was derived for the output Flow,+i ; 

i = 1, 2, 3, and 4. The data used are total weekly precipitation, average weekiy 

temperature and average weekly -s t tedow over the period nom January 1, 1960 to 

December 3 1, 1988 obtained fiom Acres ihfertmatiomi Lfd [1993]. In ali cases, the 

networks were trained over a certain part of the data (1965-1985) and once training was 

complete, the networks were tested over the remahhg data (1960-64 and 1986-88), Le. 

to make the mwork predict the so-caüeâ 'YÙture values". 

4.6.1 Esperiment #L 

The number of *ut and output vWablle used in the ANN mode1 were fked to match 

those used in the WIFFS model. These inputs ticluded pncipitation, temperature and 

local inûow of the preceding weeks as weli as raiafall and temperature of the examined 



week. For the one-week ahead forecast of local inflow, FIow(t+i), the model consisteci of 

the following 18 input variables in the the-series equatior 

- past seven paiods ofweekiy precipitation, m9, mi-I), ...., pl-6)). 

- past seven periods of weddy temperature, Tm, Te-11, ...., T't-6). 

past two @ods of I d  ~ O W ,  FI'($) a d  FIow(~-1)). 

- one week ahead infèrence of the average weekiy precipitation, P ( ~ + I ) ~ s o ~  pemntüe, 

and 

- one week ahead inference of the average weekiy temperature, ~(i+1)=5@' percentile. 

The two week ahead forecast included an additional 3 inputs [P(l+2)= 50& percentile, 

T0+2)= SO* percentile, and Flow(t+l) calculated in the one-wak ahead forecast] for a 

total of 21 inputs and 1 output [Flow(+Z)]. The number of input/output variables for the 

three and four week ahead forecasts followed the same sequence and hcluded 24 inputs - 
1 output and 27 inputs - 1 output, respectively- 

AU temperature vaiues less tban zero were set to zero before being submitted to the 

network for training. This eluninated any negative numbers in the data which made 

scaling of the data between O and 1 possible- The WIFFS model dealt with the 

temperature values in a similar way by setting a base temperature between -1.8 OC aml O 

OC. 

Since the number of inputs (18) and outputs (1) for the onc-wak ahead forecast were 

k e d  to match those of the WïFFS modei, the input layer coiiJisted of 18 input nodes with 

one node in the output layer. The ody part of the network thPt remahed to be configureci 

was the bidden laya(s). Cheng a d  Noguchi Cl9961 state there is no weildenned 

aigorithm for detenninitlg the opthai number of ûidden layas and bidden nodes. Initiai 

forecasting resuits indicated that the problem offorecasting streadlow in this River Basin 

could be accomplished with only one hidden layer. Networks were iaitidy configwed 

with two hidden layers but improvement in forecasting resuhs were onîy marginal ifat all, 



with training times increasing from approxhately ten minutes to approxknately two 

hours. Therefore, the ANNs cruned for modehg the rainfd-niaoff trdormation in 

this subwatershed have been built considering a one-hidden layer ANN for each simulation 

triai. The problem then became that of how rnany nodes would make up this single hiddm 

layer. Cheng a d  Noguchi [ I W q  indicate tbat selecting too many bidden newons wiU 

increase the trainiag tïme but without siBnificaat improvement on training results. 

Rmjithan et al. Cl9931 state that too many hidden neurons wiil encourage each hidden 

neuron to rnemorize one of the input patterns, and thereby dimiaish the interpalation 

(generaüzation) capabilitia Taking too few hidden neurons wüi decrease the training 

times but wiii restrict the network fkom generaüzing on new data (test data) and therefore 

reduce the accuracy of prodiction. Guidance as to how m q  hidden-layer nodes should 

be used is given by several authors. A number of these guidelines [Barn d N ~ ~ s s I e r ,  

1989; Weigeind et al., 19901 relate network site to the number of rcaiaing samples 

avaiiable. However, as pointed out by CWaboCy  et aL, 119921 such methods are too 

restrictive when a s d  number of training samples is availabIe. Hechr-Nelsen [1987] 

suggests an upper Iunit of 21+1 hidden layer nodes, where I is the nmber of inputs. 

However, in many practicai applications, the number of hidden layer nodes was found to 

be cowiderably less [e.g DeSiifes et cd. 19921. Mmen et a[ [1990] indicate that for 

many appücations, the optirnum number of hidden Iayer nodes bas been found to be less 

than the number of inputs. Ronjiithrar et al. 119931 state that the g e n d  practice is to 

determine the nimba of intermediate units by ttial-and-error baseci on a total error 

criterion. However, severd adaptive approaches bave been recently reporteci by Hirose et 

al. 1199 11 and Kontiti [199û]. These mthods automatidy add or remove intemediate 

nodes, âriven by a total e m ~  criterion, during the training proass. These approaches 

have been show to be more efncient than the trial-and-error procedures but require these 

algorithms to be manuaiiy codd into a program. This proass is beyond the scope of this 

research and the tnal-and-enw process was used. Therefore7 traimng was done on ANNs 

with hidden layer nodes varyiag âom 1 to 30. 



initial experimentation with the BrainceP software hdicated that the At~tomated Best Ne! 

Se& wodd be the easiest to implement and would also pmduce more accurate resdts 

than those produced by the Prqfessio~~î US~I M d e  and the Auto -ri User M d e .  

After reviewuing the current titeratwe, it became obvious that the most cornmon 

mathematical means of measuring the effectveness of each network structure was the 

Mean Squand Error (MSE). Thaefore, the MSE was caiculated and rnonitored for both 

the training ad test sets of each network configuration. The systematic approach used in 

experiment #1 to i d e  the optimum hidden laya structure was as foiiows; 

Stq I r  Set the minimum and maximum number of hidden nodes to be checked by the 
Automated Best Net Search to 1 and 5 respectively. 

Step 2: Let the network sectrain to completion and record the MSE for both the training 
set and testing set data. 

Step 3: Repeat seps 1 and 2 by increasing the minimum and maximum number of hidden 
nodes to be check& by 5 nodes rrspectively. Repeat steps 1 and 2 util  the 
network has checked a hidden layer structure consisthg of up to 30 hidden 
nodes. 

Step 4: Plot the number of hidden nodes versus both the MSE(test) and MSE(train) as 
shown below in Figure 4.6. 

The network with the lowest MSE (test) is tenned the best network because it is the one 

that perfonas the best at generalizing on new data Figure 4.6 Micates tbat the enor of 

the training set decteases gradually with an increasing nmber of intermediate units. 

Furiher, the error predictions for the test set decreases initialiy but tends to increase after 

reaching a minimum. These observations indicate that although the training process 

becomes progressive1y easier, the generaüzation capabilities of the network reaches an 

optimum and does not improve indefiniteiy with an hcreasing nunba of intemediate 

nodes. This suggests that, for the one-week ahead forecast, networks with greater than 17 

hidden nodes are oversLed for the given rnuhimiate data and a network with a singie 

W e n  layer comisting of 17 hidden nodes is suitable for prediction. This mode1 structure 



is represented by the notation A N N L ~  (ni, q, h), where ni is the number of nodes in the 

input layer, nb is the number of nodes in the hidden layer, and n. is the number of nodes in 

the output layer (n, = 1 in our case). Therefore, the optimum ANN structure for the one- 

week ahead forecast is presented as ANNI(LI, 17, 1). The optimum ANN structure for 

the two, three, and four-week ahead forecasts were as follows; Am(21, 9, L), 

ANN3(24,24, L), and ANhh(27, 18, 1). 

L2 13 14 LS 16 17 18 19 20 30 

Number of nodes in hiddea iayer 

Figure 4.6. Experimeot #l, Variation of MSE for (1) training set and (2) testhg set, with 
the number of hidden nodes for the one-week ahead forecast. 

4.6.2 Esperiment #2 

Mer training the initial mode1 in eqeriment #L with the same inputs used in the WIFFS 

modei, two new inputs were added to the data set. These additional inputs, refened to as 

"idenmg iaforx~tion'~, proved to be helpfùî in training the network. The 6rst of these 

two inputs was the "period of the year", Pdod.f+I)), of the one-week ahead forecast. 

This input provided the network with uiformation on which season the forecast was being 

made in. The second of the two inputs was the cumulative precipitation nom November 

1' to the time of the curreat period of the year, CprecippO, up to April la. This input 

represented a measure of the amount of snowpack that accumulates over the winter and 



adds to the s p ~ g  ruaoff. This input was particuIarly helpfùl in accurately forecasting the 

rising h b  of the hydrograph durhg the spring =off periods. As in experiment #1, oniy 

one hidden layer was used in the network wiîh the problem agak of how many nodes to 

use in the hidden Iayer. in addition to determimiig the nwnber of nodes in the hidden layer 

was the problem of how many nodes shouM be used in the input tayer. Inputs were not 

being r 6 c t e d  to oniy those used in the W E F S  model aad inputs that were not king 

utilized by the network to leam the mderiyhg hction M g  moâeUed were eIiminated 

W h  the additional two inputs added to the data set, a sensitivity analysis of al i  of the 

input was carriecl out to determine tbe relative sigdicance of each of the model 

inputs. The a h  of the sensithity analysis was to delete those inputs that do uot have a 

signifiant effkct on model performance. The software package used enables such 

sensitivity malysis to be carried out. Plots of the sensitivity of the inputs can then be 

inspectai to detetmine which of the inputs can be deleteci. No ked level was used to 

distinguish between signaicant and non-sipifiaint inputs. The sensitivities were used as a 

guide to decide which inputs to retain and which to delete by applying some degree of 

judgement . 

The systematic approach used in expiment #2 to identify both the optimum input and 

hidden layer structures were as foliows; 

Step I: For the one-week ahead foreCasi, start with the original 18 inputs as in expriment 
#l and add the two new inputs Pen'd(r+I) and Cprec@(f) for a total of 20 
inputs. Again there is only one output fiom the network, Flow(f+l). Therefore, 
the input layer structure included 20 nodes and the output layer structure 
included one node. 

Step 2: Once the input/output structure was determineci, the sam qstematic approach 
thaî was used in experiment #1 was folowed to determine the n m k r  of nodes 
in the single hidden layer. 

Sfep 3: Record the lowest MSE (test). 



Step 4: Using the "Leave Out Analysis" available in the BraincclTM software, perform a 
sensitivity analysis on the input data and eliminate input variables that are not 
being used to iearn the underlying process being modelied. Repeat steps 1 
through 4. 

Step 5: Plot the number of inputs venus both the MSE(test) and MSE (train) as shown in 
Figure 4.7. 

7 8 10 11 12 14 17 

Number of Inputs 

Figure 4.7. Experiment #2.2, Variation of MSE for (1) training set and (2) testing set, 
with the number of inputs - for the one-week ahead forecast. 

The network with the lowest MSE(test) is termed the optimum network because it is the 

one that performs the best at generaüzing on new data with fewer inputs than were used in 

experiment #1. It was found that there was no special adventage in taking into account 

more than, at most, the data of the previous four periods fiom the week being forecasted. 

The optimum network consisted of 10 inputs variables in the input layer. 

For the one-week ahead forecast of local intlow, Fiow(r+ l), the ANN mode1 consisted of 

the fofiowing 10 input variables: 



- "pe!riod of the yeaf' ofthe oneweek ahead forecast, P d  (Ecl) 

- past three perioâs of weekly precipitation, P(i, P(r-I), PPll-2)). 

- cumulative precipitation since November 1. to the paiod of the for- Cp-p(i. 

- past week of average temperature, Ti). 

- past four perîods of average weekiy Id Uiflow, Hm@), Fîbwtit-I)), ..., 1CTinvfit-3). 

Both the ''One-iag" and "M~iti-Iag'~ output predictions for the test samples are done with 

the @en mode1 st~~cture. In the 'melag" prediction, f o r a  of s t r d o w  for each 

week are made based only on actual past vaiues. The benefit of the ophum network 

configureci in experimeat #2.2 (f8r the one-week ahead forecast) is that the foreaister 

does not need to make an inference on the fiiture weekiy precipitation and average weekly 

temperature as was needed in experiment #1. AU data used i~ the network for the one- 

week ahead forecast is historicai data In "Muiti-hg" predictions, on the 0 t h  hand, the 

5 4  percedes were used as predicted values of precipitation and temperature and 

previous forecasteci stremfIows nom the newal networks m e  used as predicted vaiues 

for streamfiow. ïhese values were appended to the database and used to predict fùture 

streamfiow values. For dance, if a single prdction network is used to predict a value 

ns fkom the observeci input data il . ..... . 6, then the next network prediction n~ is made 

using inputs in ..-.-. G . 4 5  , and the subsequent network prediction na is made using inputs 

i 4 , 1 . n ,117. W& the Wne1ag" prediction, on tâe other hand, the predictioa at the 

eighth instant is made using oniy the amal input data vaiues i3. ir , & . is  , it . 

The nétwork for a one-week ahead forecast consisteci of 17 hidden neurons and is 

represeated as ANNl(lO, 17, 1). Simiiar sinnilations m e  conducteci to determine the 

bidden node structure for the two, three and four week ahead hrecastïng networks and 

are represented as fi,Uows; ANN1(10,5, 1). m3(10 ,7 ,  l), and m1(10,  16, 1). 



5 RESULTS AND ANALYSIS 

5.1 RJ3SULTS OF FLOW FORECASTING 
In this chapter, the fo-g capabiüty of the preferred ANN, as appiied to the 

W1I1Iilpeg River Bash, wdi be compared to historiai vahies as weil as r d t s  obtained 

fiom a more traâitional stochastic-deterministic forecasting model for a representative 

range of hydrologic conditions. 

5.1.1 Ezperimemt #l 

The resuhs of forecasting us@ the ANN mode1 (with the same inputs used in the W E F S  

model) on the test data are premted in Figures 5.1 through 5.4 for forecast lead times of 

1, 2, 3, and 4 weeks respectively. Each of these figures are of the same format. These 

graphs show the period of the y=, P(l+l/, the forecast was made, dong the x-axis with a 

cornparison of both the histoncal and forecasteci streamûows on the y-axis. SUnilar graphs 

can be found in Appendix B for the training data set (1%5-85). The results obtained for a 

1-week forecast of Namakan Lake local inflow in 1960-64 and 1986-88 are show in 

Figure 5.1. The ANN sams to have had diEculty in forecasthg the streamflow in penod 

36 of 1961. The histofic precipitation and m d o w  mord (Appendix A) shows 

approximately 140 mm of precipitation in period 34 and apptoximately 150 cms of 

streamfiow in period 36, both in the year of 1961. This forecasting error is probably due 

to one of two types of problems in the data for that time period. The nnt possible 

problem with the data is that the streamflow gaughg station could have been misead, 

indicating a Iowa stredow than wbat achially occw~ed. The second po~sible problem 

with the data is that tbe precipitation gauge could have been misread, indicating a higher 

precipitation amount than what actuaiiy occameci. Furthemore, the forecast error for 

period 36 of 1961 gets larga as the lead-time increases. This is expected because 



forecasts of larger lead-&es rely h e a .  on inferences of future temperature, 

precipitation and streandlow values. 

The ANN model forecasts the mgnimde and timing of both the Summer peaks and the 

d e r  peaks wbich occur eady and late in îhe yeaq quite weii. Such peak flows were 

detected in the 20 years used for training nom 1965-85, so it is aot surprising that the 

model did well at forecasting t&em in I96û-64 and 1986.88. The r d  obtained for the 

2, 3, and 4 week forecast of Nam- Lake local H o w  m 196û-64 and 1986-88, are 

shown in Figures 5.2-5.4. The ANN model forecasts the magnitude of the basefîow quite 

weii, but encountm some diflicuity in forecasting the magainide of the peak flows. 

G e n d y ,  as the fofecast lead-time grows fiom 2 to 4 weeks so does the forecast enor. 

This is scpeaed since these forecasts are begiming to use inferences on the precipitation, 

temperature and forecasted flow fiom the previous week(s). 

The traditional scatter plots showing observeci (historiai) 00ws on the x-axis against the 

forecasted flows Erom the ANN on the y-axis are displayed in Figures 5.5-8 for the test set 

data. SimiIar graphs can be found in Appenda D for the training data set. In each of the 

scatter plots a p d i  forecast lies on the 45" Iu». Generaiiy7 the order of the figures 

foUows decreasïng ANN perfionnaace This is expected since forecasts with lead-times of 

greater than a week rely heaviiy on forecasts of both meteorologicaf conditions and 

s t r d o w s .  Coll~eqllentIy, the practical Ianit to forecast lead-time is a bction of the 

basin lag-the and the accuracy and availability of weafher farecasts [Acres, 19931. The 

ment  tcchnology carmot provide forecasts of meteocologicai conditions beyond 3 to 5 

days into the nmire and for a basin WEC Namakaa Lake with a 7day lag time, the forecast 

lead-time would be limiteci to about 10 to 12 days. Forecasts with lead times beyond 10 

or 12 days are largeiy probabilisîic. This is why the one-week ahcad foremsts are f i l y  

accurate wbiie the two, three and four-week ahed forecasts generaüy worsen as the lead- 

time inmeases. 
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The one-week ahead Forecast (Figure 5.5) fdls reiatively close to the 45" line except for 

three points. These three points are most likely problems with the input data (Le; 

streamflow or precipitation gauging errors). It  is interesting to note that the flows below 

200 cms tend to fa11 doser to the 45". This illustrates that the ANN is very accurate at 

forecasting baseflow values. As the flows increase above 200 cm, the forecasts tend to 

diverge fiom the 45" line showing the difficulty the ANN has with larger, pealdow values. 

As the lead-time increases from 1 through to 4 weeks, the forecasted flows tend to 

increasingly diverge from the 45" Iine, especially for flows greater than 200 cms. This can 

be seen by comparing the plots in Figures 5.6-8. 
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Figure 5.5. Observed versus Best 1-week Forecast of local infiow to Namakan Lake for 
1960-64 & 1986-88 US@ EXP. #1 ANN. 
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Figure 5.6. Observed versus Best 2-week Forecast of local infiow to Namakan Lake for 
1960-64 & 1986-88 using Exp. #1 ANN. 
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Figure 5.7. Observed versus Best 3-week Forecast of local infîow to Namakan Lake for 
1960-64 & 1986-88 ushg Exp. # 1 ANN. 
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Figure 5.8. Observed versus Best 4-week Forecast of local infiow to Namakan Lake for 
1960-64 & 1986-88 ushg Exp. #1 ANN. 

5.1.2 Experiment #2 

Again, in the second experiment (#2.2), the ANN buiit was not restncted to the input 

variables used in the W[FFS mode1 and the data set had part of the data (nom period 33 

of 1983 to period 33 of 1984) eüminated. The results of experiment #2.2 using the ANN 

on the test data are presented in Figures 5.9 through 5.12 for forecast lead-times of 1, 2, 

3, and 4 weeks respectively. Each of the Figures 5.9-12 are of the same format. These 

graphs show the period of the year, P(t*l), the forecast was made, dong the x-axis with 

a cornparison of both the historical and forecasted s t r e ~ o w s  on the y-ans. Similar 

graphs can be found in Appendix C for the training data set. The traditionai scatter plots 

showing observeci (hstorical) flows on the x-axis aga& the forecasted flows nom the 

ANN on the y-axis are displayed in Figures 5-  13-16 for the test set data. Similar graphs 

can be found in Appendix D for the training data set. in each o f  the graphs in Figures 

5.13-16, a perfect forecast lies on the 45" line. Generally the order of figures foliows 

decreasing ANN performance. The foliowing section quantitatively evaluates the data in 

each of the figures in terms of the four performance measures discussed earlier. 
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Figure 5.10. Best 2-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #2 ANN model. 
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Figure 5.12. Best 4-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #2 ANN niodel. 
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Figure 5.13. Observed versus Best 1-week Forecast of local intlow to Namakan Lake for 
1960-64 & 1986-88 ushg Exp. #2 ANN. 
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Figure 5.14. Observed versus Best 2-week Forecast oflocal Uiaow to Namakan Lake for 
1960-64 & 1986-88 using Exp. #2 ANK. 
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Figure 5.15. Observed versus Best 3-week Forecast of local inflow to Namakan Lake for 
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Figure 5.16. Observed versus Best 4-week Forecast of local idow to Namakan Lake for 
1960-64 & 1986-88 ushg Exp. W ANN. 



5.2 COMPARISON OF RESULTS 
In order to evaiuate the results of forecashg the natural inflow into NamakaD Lake 

utüuing ANNs, an aiternative forecasting modd was empIoyed for cornparison purposes. 

This modei, as previously mdoned, was the W E F S  mode1 dweioped by Acres 

Intemationai Ld, [1993] 

In order to quant* the relative mait of the two forecsstjag techniques, it was importanî 

to determine appropriate mathematical wans of mauviing the effectiveness of each 

method. The f o r d g  fesuits were bas4 on three evaluation measures. These 

performance measules were computed separately for the ANN forecasts of the trainiag 

data and the independent events or testing data These measues indicate how weil the 

ANN learned the events R was trained to recognk, and the degree to which each ANN 

caa generaiîze its training to forecast wents not included in the training process. The 

primary pdonnaace measure that compareci the WWFS model to the ANN model was i) 

root-mean-squared error. 

The three secondaq performance measures that were used (only in experiment #2) to 

compare the best ANN model against bistorical values were 6) forecast of total volume, 

iii) forrcast of peak flow magnitude, and iv) forecast of peak flow location. These four 

@orniance rneasures are d e s c r i i  below- Each of the three &eCtiveness measures 

were calculated for the caliiration set (1965-85) and each of the two verification s*s 

(1960-64 and 198688). 

i) The root mean squared error (RMSE) mea~u~es the residuai the optimal value 

is 0.0. The RMSE of the forecast resuits was calcuiatd by nrst squaring the Mwence 

between the measured and forecasteci dues.  The squared values were then summed 

over ali the forecasts in a given data set and dniided by the number of forecasteci values 

in that data set. The square mot o € W  final nimber was taken to produce the RMSE. 



iij The Percent Volume Error (% VE) statistic meanires the percentage of the observed 

volume that is captut'ed under the predicted bydrographs, surnmed over the test period; 

the best vaiue is 100. The abiiity to forecast the total yeady vohune of flow was 

represented by the fiaction of the measured yedy volume that was forecasted by the 

ANN d e l .  This vaiue was caiculated by taking the diffîence h e m  the forecasted 

and actuai vofme (Forecasted Value - A d  Value) dM&g dgs dBkrence by the 

actuai volume and adding tbis mmiba to 100. This <luaatity will provide a utility 

measure ofthe ANN forecasting technique for makjIlg predictions ami codd be used in 

detennining the optimal nIling procedure to be pursueci for Namakan Lake. 

üi) The Percent Maximum Fiow Magnitude (% MFM) statisbic meaSuTes the percent error 

in matchhg the rnaMmum @eak) 00w magnitude of the test set. The ability of the 

ANN mode1 to for- the magnitude of the peak flow was measured by calcuiabiig 

the dif3erence between the forecasteci and a d  peak flow (Forexastecl Value - Amal 

Value) and dividïng this Werence by the amai  peak 00w. Tlie resuiting quantity, 

multiplieci by 100, is the percent aror in forecashg the pak flow. The peek flow 

was defined as the maximum flow in the year (Le. one per year), for each of the eight 

seasonal hydrographs in the test set. The best value is 0.0, indicating a paf- for- 

of peak flow magaitude. Positive perceritaga result when the ANN for- is grniter 

than the aaual d u e  indicathg an overestimation of the peak flow. Negative 

percentages result when the ANN forrcast is less than the acnial peak value indicating 

an underrstimation of the peak flow. 

iv) The Location of the MaOrmmi Flow Mkgnitude (LMFM) staîÏstic measwes the error 

in matching the location of the maximum @eak) flow magnitude of the test set. The 

ability of the ANN mode1 to for- the locatioa of the peak flow was mea~u~ed by 

caldating the differeace between the fofec~lsted peak location and the actual peak 

location (Forecasteci Peak Location - Actuaî Peak Location), where location refèrs to 

the position on the timc axis. Again, the b a t  value is 0.0, mdirafing a patéa forecast 

of the location of the peak flow. A positive number indicated the location of the 



forecasteci peak lags behind the actual peak. A negative aumber indicates the location 

of the forecasteci peak is located More the actuai pealc 

The enor in predicting the magnitude and location of the peak flow is a usenil means 

of determinhg the ut* of the forecasting model far providing eady warning of 

potdai flood events. 

The ANN was able to train to a smder RMSE than the WEFS model in all of the four 

forecast leads. The improvements in RMSE during the twenty-oae training years ranged 

fkom as iittie as 1 cms in the one-week lead to as much as 4.4 cms in the two-week lead. 

The real test of the ANN was the cornparison to the WIFFS model for the testing periods 

fiom 1960-64 and 1986-88. The ANN was able to forecast to a smaiier RMSE tban the 

WEFS model in ail four forecast leads in di eight years of test data The improvements 

in RMSE for the testhg perîod fkom 1960-64 ranged fiorn as M e  as 3.0 cms in the one- 

week lead to as much as 10.2 cms in the four-week lead. 

Table 5.1. Root Mean Squared Forecast Enor, Experiment #1 
RMSE (m31s) 

Forecasî 
Perîod Lead (wedcs) HrIFFS ANN 

Verification 1 
(1 960- 1 964) 2 

3 
4 

Verification t 
(1 986-1 988) 2 

3 
4 



The greatest improvement was seen in the 1986-88 test yean where the improvement in 

RMSE rangeci fbm as Me as 0.6 cms in the fourweek lead to as much as 16.3 cms in 

the one-week lead. These resuits are summarized in Table 5.1 which lists the CalcuIated 

root mean squareci =or for both models (WïFFS and ANN) and each of the three data 

sets (one catliiration set and two vaification sets). 

5.23 fipcriment #2 

5-2.2.1 RMmSE 

The calculateci mot-mean-squareci error for both models (ANN s<perimem #2.1 and ANN 

experiment #2.2) and each of the three data sets is given in Table 5.2. Again, aperiment 

#2.1 was the ANN b d t  with the same inputs as WIFFS with period 33 of 1983 through 

perioâ 33 of 1984 elimilated. Expriment #2.2 was the "optimal" ANN built with fmer 

inputs than the WEFS model and the same data eliminated as in experiment #2.1. The 

ccopQnum" ANN was able to train to a smaller RMSE than the ANN model trained in 

experiment #1, in al1 of the four forecast lads 

Table 5.2. Root Mean Squared Forecast Error, Experiment #2 
RMsE (a%) 

Forccrwt 
Period Lera (w&) ANN tup. #2.1) ANN (up. tf2.2) 

Calibrabon 1 
(1965-1985) 2 

3 
4 

Verification 1 
( 1 960- 1 964) 2 

3 
4 

Verification 1 
(1986-1988) 2 

3 
4 



The improv~nents in RMSE during the 21 training years ranged fiom as little as 1.2 cms 

in the one-week lead to as much as 7.9 cms m the three-week lead, The real test of the 

optimum ANN was the cornparison to the ANN model trained in experiment #2.1, for the 

teshg periods f?om 1%0-64 and 1986-88. The optimum ANN was able to for- to a 

smaiier RMSE than the ANN model traïned in aperimat #2.1, in all but two of the 

for- leads driring the 8 years of test data. The impmvements in RMSE for the testing 

penod nom 196û-64 ranged fkom as little as 0.4 cms in the one-week lead to as much as 

1.0 cms in the three-week lead. The RMSE in this test perïod worsened fkom the ANN 

tested in arperiment #2.1 by 1.8 cms and 1.2 cms in the 2-week and 4-week lads 

respectiveiy. The greatest improvement was seen in the 1986-88 test years where the 

improvernent in RMSE ranged nom as iittie as 3.5 ans in the one-week lead to as much as 

8.0 cms in the four-week lead. It is interesthg to note that the o v d  RMSE for the 

entire eight years of test data (for the one-week lead) was considerabIy less than that of 

the WIFFS model (32.5 cms compareci to 42.5 cms respectiveIy). 

5.2.2.2 F e e d  T d  Y e d y  Vdwnc 

The redts for the perceotage of the foreatsted total yearly volume, %VE, are @en in 

Table 5.3. The ANN model gewraiiy did a good job at forecasting the volume of flow 

that could be expected in a given year. 

Table 5.3. Percent of Totd Yeady V o h e  Forecasted, Experiment #2 
Forecasteâ Volume (% of Acturl) 

Test Ycrr -1 h g  2 h g  3 -4 

Average 100.1 97.9 94.8 96.6 



For a lead-time of one week, the forecasted volumes ranged fiom an overprediction of 6.1 

% to an mderpredktion of 3.7%. The average overprediction was 0.1%. For a lead-time 

of two weelrs, the forecastecl volumes ranged tiom a 49% overpreâiction to a 7.5% 

underprediction with an average underprediction of 2.1%. Three-wedr lead tirnes 

produced forecasted vohuws ranghg h m  a 5.4% overprediction to a 15.1% 

underpredidion with an average underprediction of 5.2%- Four-week lead tmies 

produced forecasted volumes mging fiom a 13.4% overprediction to a 18.2% 

underpredih with an average undefprediction of 3.4%. As expected, there was a 

considerable range of observeci mors in forecasting the total yearly volume within both 

the eight years of test data as well as the four di&rent lead times. It was encouraging 

though, to sec that the average total forecasted yearly volume only worsened by 5.3% 

fiom a one-week ahead forecast to a three-week ahead forecast with forecasts made four 

weeks ahead ïmpioMig by 1.8% over the three-week ahead for-. 

5.2.2.3 Forecasted Peak Flnv Mugninr& 

The results for the percent error in forecasting the maximum @eak) flow magnitude, 

%MFM, are show in TaMe 5.4. The ANN mode1 performed well at forecasting both the 

magnitude and location of the eight peak flows in the test set. However, thae is a 

considerable range of observed mors in forecasting the @tude of the peak flow. 

Table 5-4- Percent Error in For- of Peak Flow Magnitude, Experinieat #2 
% Emr in the Magnitude of Pt& Flow 

Test Year Lag 1 Lag 2 Lag3 Lag 4 

Average -4.4 -1.3 -10.6 -126 



For a Iead-time of one week, the forecasted peak flows ranged nom an overprediction of 

0.9% to an underprediction of 18.8% with an average underprediction of 4.4%. For a 

lead-time oftwo weeks, the forecasted peak fiows mged h an overprediction of 9.6% 

to an undefprediction of 17% with an average underprediction of 1.3%. Three-week lead 

times produced forecasted pedE flows rangkg h m  a 3% overprediction to a 287% 

underprediction with an average undefprediction of 10.6%. Four-week Iead times 

produced forecasteci peak flows iaaging fiom a 5.7% overprediction to a 29.6% 

underprediction with an average underprediction of 12.6%. The year 1964 seemed to be 

Iargely underpredicted for aii lead times. This is perbaps due to one or pmhaps both of the 

following reasons. The peak flow in 1964 was approximately 612 cms which was almost 

as large as the extreme flow of approximately 668 cms in 1977 used in the training of the 

network. When the network scales the data the exfreme low and high evems are scaled 

very close to zero and one respectively. When fd through the transfer function in the 

hidden and output nodes, these values fidl on the moa ünear portion of the curve and 

therefore are not entirely king modeiied in a nonlinear Eashion. This is why the results 

show that the ANN has a dinicuit t h e  predicting the extreme high (e-g. peak of 1964) and 

low events (e.g. periods 3548 of 1960) in the test set. The second reason for the 

underestimation of  the 1%4 peak flow could be that the 1963 peak fiow was considerably 

lower M approximately 298 cms. Peak flows for the tint t h e  years (196062) of the test 

set were in the cocnmonly bigher 0ow ranges of approximately 400-500 cms. Then all of a 

sudden the nad year (1963) dmps to bdow 300 c m  and the year after that (1964) jumps 

up past the 600 cms flow Iml. The ANN ~eems to have some trouble jumping fiom one 

extreme event to another ameme event the foUoWiag year. nie ANN did not see t&is 

type of situation in the training set and therefore cannot be acpeaed to predia this 

situation in the testhg set. 

5.2.2.4 F o m m c d M i a o f P & F l o n  

The redts for the error in the location of the forecasted maximum @eak) flow magnitude, 

LMFM, are shown in Table 5.5. Peak flow locations for a one-week ahead forecast 

ranged fkom being two weeks ahead to three weeks b e h d  the a d  location with an 



average of 0.90 weeks bebind. Two and three-week ahead f o r a s  of peak location 

produced values in the range of one week ahead to tbree-weeks b e b d  the aaual peak. 

The two-week ahead forecasts avaaged 1-13 weeks behind the aaual peak with the three- 

week ahead forecast av-g 1.5 weeks behind. The four-week ahead forecast produceà 

resuhs that ranged âom a @ect forecast of peak location to a for- of three-weeks 

b e h d  with an average of 1.88 weeks behind. It is interesthg to note that the average 

location of the forecasteci peak deteriorates very slowly when forecasting fiom one week 

ahead to a month ahead. 

Table 5.5. Emor in Location of Forecasted Peak Fiow, Experiment #2 
Loution of Pcrk Flow (w& from actiiil peak) 

Test Year Lag 1 h g  2 Lag 3 h g  4 

Average 0.90 1.13 1.9 1.88 

5.3 SEPARATION OF DATA INTO TRAINITEST SETS 
As mention4 earîier, when the ANN trains to the desired error tolerance using the 

training set, but perfomis pooriy when applied to the test set, the network is either 

overtrained or data set design problems are probably present. Smith d Eii [1995] 

suggest that the data set problem u d y  results fiom either the trainhg data set being too 

srnali, or it contains inditient content to pro- cbaracterize the hctional relatiouship 

between inputs and outputs. The following section discusses how one should break up the 

data set into the traimng and testing wmponents to enwire optimum prediction capabilities 

fiom an ANN. 



In order to investigate the effm of using different years of data for training and testing on 

the generakation ability of the network, the best network configuration for the one-week 

for- was train4 for six different data sets. Each of the six data sets used al1 29 years 

of adable data (except for the 1983-84 year of missing data) but were brokm up &O 

different years for training and testing. Table 5.6 outluies which years were used for 

testing and which for ttauiing. 

Table 5.6. Breakdown of Traiaiaflesting Data Set. 

Data Set #1 was trained and tesied on the same data as the "optimum" A N '  bdt in 

experiment #2.2 (refmed to herein as the base case) except that the extreme low year of 

1968 and the extreme high year of 1977 were eliminated fiom the trainhg set. This was 

done to see how the wtwork would pedorm on the test set when the extreme low and 

high m t s  were aot seen in the training set. Results indicate that both the RMSHtrain) 

and EtMSE(test) increased by 10.5 cms and 8.9 cms respectively. This suggests that 

including the extleme yean in the training set improves the network ability to leam the 

0th- years in the training set. This is most iikely because the extrerne low and high years 

on record sets the boundaries for O and 1 res@veIy, for Jcaüog the rest of the data in 

the training set. Any data in between this extreme range is then d e d  to values in the 

range of say 0.14.9 or 0.2-0.8. The lower range of the scaüng depends on how much 

srnalier the extteme low ment is to the next lowest evan on mord (im the training set). 

Liewise, the higher range of the scaüng depends on how much larger the extreme high 

event is to the next highest event on recurd @ the training set). When these values are 

passed through the tramfer hction in the hidden and output nodes, they are on the 



nonlinear portion of the curve providing more accurate forecasts. The reason the 

forerasts of both the extfeme low and high event (during 1968 and 1977 respective1y in 

this case) are never reached is because when d e 4  the low event is scaled close to O and 

the high ment is scaied close to 1. On the sigrnoidal trader fünction, valws of O and 1 

fall on the outer most linear parts of the cunre. For the testing set, these resuits suggest 

that including the extreme year in the training set assisteci the network in generaünllig on 

new data for the same reasons as mentioned above fot the training set. 

The network in Data Set #2 was trained and tested on the same data as in the base case 

but with the extreme low year of 1%8 and the extreme high year of 1977 elimiaated fkom 

the training set and put in the test set. This was done to see how the network would 

perfom at predicting exmme flow eveats that were not seen in the training range. 

Resuits indicate that the RMSE(train) deaeased by 5.1 cms and the RMSE(test) increased 

by 20.4 cms. This suggests that includùig an extreme event in the training set might make 

it slightly harder for the network to leam the other training sampIes. More importantly, 

this suggests that including an extreme low and high event in the test set, that was w t  

seen during the training period, can worsen the generalkation capabilities of the ANN. 

This indicates that ANNs are poor at extrapolating on data in the test set that was not seen 

during training. 

The network in Data Sa #3 used eight years of data fiom the training set of the base case 

in the test set and the eight years of data thet the base case was tested on was placed in the 

training set dong with the remaining 13 yean of training data nom the base case. nie 

years corn 1965-69 and 1973-75, used as training y w n  in the base case modd, were used 

as test years in the ANN modei, to detemine the capabilities of the network for 

forecasting higher 00w yean. Resuîts indicate that the RMSE(tnh) decreased by 7.3 cms 

and the RMSE(test) increased by 12.6. Again, this suggest that removing the high flow 

events fiom the training set wili make it easier for the netwwork to leam the other training 

samples but, by includhg these high 00w events in the test set (00- that were never seen 

in the test set) d e s  it harder for the network to generalize on these samples. 



Again, in Data Set #4, parts of the data set used to train the base case model were used to 

test the ANN whiie parts of the testmg set f?om the base case mode1 were used to train the 

ANN. The years fbm 1970-72 and 1978-82, used as traimag years Ui the base case 

mode4 were used as test yean in the ANN modei, to determine the capabïilities of the 

network for forecasting yean of lower flows. R d t s  indicate that the RMSE(train) 

decreased by 7.4 cms and the RMSE(test) increased by 11.3 cms. This suggest that 

removing the lower flow m t s  fiom the training set Win make it easier for the Mtwork to 

leam the otha  training amples but, including these low flow mats in the test set (fhws 

that were never seen in the test set) d e s  t barder for the network to generalize on these 

samples. 

In both the WIFFS model and the ANN models built in chapter 4, the data set was 

broken-up into a 70/30 - trainltest split. That isy 700/. (21 years) of the &ta was used to 

train the network and 30% (8 years) of the &ta was used to test the network's prediction 

capabilities. The current litecature and the BraincelTM software manual both suggest 

approximateiy a 9O/f 0 - train/test spiit of the data set. Therefore, the next two data sets 

(#5 and 6) wen ru0 to investigate if dme is any advantage in training on more data and 

saving lesser amoums of data to test on. In Data Set #5, the three bigher flow years from 

1963-65 were used to test the ANN rnodel. This was done to see how the network would 

perfom at predicting the bigh pealr of 1%4 foiiowing the low peak of 1%3 that the ANN 

had trouble with in the Uiitial atperiments. Resuits showed diat the RMSE(train) 

decreased by 7.0 cms but the RMSE(test) incnwd by 16.0 cms. This is  most iikely due 

to the fact that the A .  was not having any ~ C U I t y  forecasting the y e m  60m 1960-62 

and 1986-88, the problem was forecasting the years fiom 1963-1965. It maices sense that 

the RMSE(trah) would improve because the ANN did not have difticuity forecasting 

those y- and therefore t should not have any trouble leaming âorn those years. It dm 

makes sense that the RMSE(test) got wome because the ANN uiitidiy had difficulty 

forecasting the years 1963-65 and now the MSE(test) statistic is ody based on those three 

hard-to-forecast years. In Data Set #6, the three years ftom 1972-74 (that were similar to 

the fiows in 1963-65) were used to test the ANN model. Results showed thet the 



RMSE(train) increased by 13.2 cms but the RMSE(test) decreased by 14.5. This can be 

explaineci in a similar mamer to w h t  happenecl in data set #S. The data that the ANN 

was havhg clifEculty forecasting (1%365) was p l a d  in the training set and the data tbat 

the ANN leamed weli (L972-74) was placed in the test set to be forecasteci. Therefore, 

the resuits hdicate that the data the ANN had difficuity forecasting also had trouble in 

learning and the data that the ANN found easy to leam also had little difliculty forecasting- 

Note that in each of data sets #5 and #6, the training set included the exfieme low and 

bigh events of 1968 and 1977 respective1y- 

A few points came out of this analysis of data sets. Firdy, including the extreme low and 

high events in the training set might increase the RMSE for the aoiiung set but it seems to 

be beneficial in improving the forecasts in the test set. SiDce the tme test of a mode1 is its 

ability to predict new data (i.e. generalize on data not seen in the training set) one should 

not be too concerned about the value of the RMSE(train) but be more concerned with the 

value of the RMSE(test). Therefore, t is recommended to include the m e  low and 

high years in the training set. One cannot expect the nehivork to predict values fiom a 

range outside ofwhat it has been trained on (Le. poor extrapolation). 

It does not matter what ratio (traininghesting) the data is spiit into as long as the foliowing 

three points are kept in miad; 1) the extreme low and high years on record are included in 

tbe training set, 2) the set of observations in the training set spm the range of patterns for 

which the network wiU be used, aad 3) the data you an testing on should be a 

represmative range of realistic 00w regimes. 

The resuits obtained fiom spiitting the data into W/10 - &test were not signifimtly 

different fiom the initial nsults obtauied with the 70/30 - ûain/test split of the datk A 

review of the cwmt literahire indicates that thm is no set mie aVBi1able for splittiag the 

data into a specific trainhest ratio. However, the minitnum split useû seems to be 90/10 - 
traidtest and the maximum spiit b h g  50/50 Ymg et al. 119961 with the most cornmon 

split being 66/33 and 80/20. 



5.4 SUMMARY 
This chapter has reveakd that the ANN forecashg technique utïiized for this research is 

capable ofproviding retiable forecasts for the one-week ahead local inflow into Namakan 

Lake- Eves though the estimates deteriorateci for two, tiuee and four-week ahead 

forrcasts, which was acpc*eâ, the overall d t s  produced by the ANN m d s  were 

more accurate than those produced by the WiFFS model. 

The renilts of forecashg the local inflow, which hcludeâ a representative range of 

realistic flow regimes for the eight test years, were quite consistent with actuai flow 

values. This indicates that the ANN technique is applicable to a wide variety of fiow 

conditions and exhibits the potentiai for a comp*ve alternative tool for the analysis of 

muhivariate Ume-series. 



CHAPTER 6 

6 TRANSFERABILITY OF THE RESULTS 
This cbapter investigates the transfetabiüty of the r d t s  to another subwatershed in the 

Wuinpeg River basin. An ANN model was b d t  to forecast the one-week ahead 

stredows for the Rainy Lake subwatded resuitiag fiom local Mows. The same 

steps that were used in building the ANN for the previous subwatenhed (Namakm Lake) 

were applieâ to the Rainy Lake subwatershed. 

6.1 ANN MODEL IDENTIFICATION 

The size of the Rainy Lake subwatexshed is approhtely the same as the Namaikm Lake 

subwatershed with both having approxitnately the same lag h e s  of about 6 to 12 days. 

Therefore, the ANN model for the one-week ahead forecast of local i d o w  iato Rainy 

Lake, FIwfr+ 2' .  again consisteci of the same foUowing 10 input vaciables: 

- 'period of the yeaf' of the one-week ahead forecast, Pd& ( i l )  

- past tbree periods of weekly precipitation, &O, P o ,  Nt-2). 

- cumulative precipitation since November 1. to the period of the forecast, Qrd,p(r) .  

- past week of average temperature, T(i.  

- past four periods of average w e d y  local inflow, Flaw(t), Flmtit-l), . .., Flowfit-3). 

The network structure for the one-week ahead for- wnsisted of a single hidden layer 

consisting of 5 neyrons and is represented as A N ~ ( l O , S ,  1). 

6.2 RESULTS OF n o w  FORECASTINC 

The results of forecasting ushg the ANN on the test data are presented in Figure 6.1 for a 

forecast lad-tirne of one-week. These graphs show the period of the year the forecast 

was made, P(t+i', dong the x-axis with a cornparison of both the histoncai and 
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Figure 6.1. BCSI I -week forecast of local inflow into Kahy Lake for 196044 & 1986-88 (iesi set) using the ANN iiiodel 



Figure 6.2. Observed versus Bea l-week Forecast of local Linow to Rainy Lake for 
196064 & 1 986-88 (test set) using the ANN. 
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Figure 6.3. Observed versus Best 1-week Forecast of local inflow to Rauiy Lake for 
1965-85 (train set) using the W. 



forecasted streadows on the y-axis. Similar gtaphs can be found in AppaidDc F for the 

training data set. The traditionai scatter plots showing obsewed (bistorical) flows on the 

x-axis against the forecasted flows fiom the ANN on the y-axis are displayed in Figures 

6.2 and 6.3 for the t&g and aainmg data sets respectivcfy- In each of the graphs in 

Figures 6.2 and 6.3, a perféct forecast lies on the 45' line. It is interesthg to note that the 

flows below 150 cms tend to f3.i closa to the 45'. m~ iIhistrates that the ANN is very 

accurate at forecashg basefiow vahies. As the fiows mcmse above 150 cms, the 

forecasts tend to diverge fiom the 45" line showing the difEicuity the ANN has with larger, 

peakiiow values. 

6.3 COMPARATIVE ANALYSIS OF WIFFS AND ANN MODELS 

6.3.1 RM.S.E 

The ANN was ody able to train to a MSE that was slightly larger than the WIFFS model 

(3340.5 cornparrd to 3 124.8 respectively) in the one-week f o r e  lead. This is 

translateci into a RMSE of 60.1 cms for the ANN and 55.9 cms for the WFFS model as 

shown below in Table 6.1. The real test of the ANN was the cornparison to the WIFFS 

mode1 for the testing petiods fiom 1960-64 &1986-88. The ANN was ody able to 

forecast to a slightly larger RMSE tban the WJFFS mode1 (63.3 cms compared to 60.6 

m s  respectively) in the f i e  years of test data âom 1%W. The ANN model did a rnuch 

better job than the WIFFS modd at forecastmg the lower basefiows during the tbne yaus 

for 198688. This is evident in cornparhg the RMSE of the ANN to that of the WIFFS 

mode1 (47.4 ans compareû to 77.8 cms respectbeiy). These d t s  are Summarized 

below in Table 6.1 which lists the caiculated root-mean-squared error for both modds 

(WIFFS and ANN) and each ofthe three data sets (one caliiration set and two verification 

sets) for the one-week ahead forecast. 



Even though the ANN was not able to outpediorm the WIFFS mode1 during the test years 

fiom 196064, it is imeresting to note that the 04 RMSE for the entire eight yean of 

test data was considenbiy Iess thon tbat ofthe WlFFS modei (57.7 cms compared to 67.7 

Table 6.1. Root Mean Squared Forecast Error, Rainy Lake 

RMsE (a%) 
Fortcrwt 

P e n d  Lead [weeks) WIFFS ANN 

Verification 1 
(1 96û-1964) 

Verification I 
(19861988) 

63.2 Fo-td Totd Ywly V O ~ U ~ C  

The results for the percentage of the forecasted total yearly volume, %VE, are &en in 

Table 6.2. The ANN modd generally did a good job at forecasting the volume of flow 

that could be expected in a &en y w .  For a lead-tirne of one-weclg the forecasted 

volumes ranged fiom an ovnprediction of 27.W to an underprediction of 6.0"/.. The 

average ovetpcediction was 7.5%. The rrason the overprediction was so bigh in 1987-88 

is tbat duruig this period thae wae approxiniately àgta w& wôere the evaporation was 

greater than the Eflow into the subwatershed. The data for tbis period was represented in 

the data set as negative streamflows which is physicaüy impossible. This problem was 

solved by settrhg al1 negative streadlows to zero More tniaiDg the mtwork The resuits 

in Figure 6.1 show that the network had diflicuity predicting these extfeme low Bows 

causing a large overestimation in flow vohune for these periods. 



Tabk 6.2. Percent ofTotal Yearly Volume Forecasted, Rairry Lake 

Forecasted Volume (% of Actuai) 
T a  Year Laa 1 

6.3.3 Forecuted Peak Flow Magnitude 

The results for the percent error in forecastjng the maximum (peak) flow magnitude, 

%MFM, are shown in Table 6.3. The ANN mode1 performed fiirly well at f o r d g  

both the magnitude and location of the eight peak fiows in the test set. However, there is 

a considde  range of obsemd mors in forecasting the magnitude of the peak flow. 

For a lead-the of on-week, the forecasted peak flows ranged fiom an overprdction of 

25.3% to an underprediction of 32.8% with an average underprediction of 7.2%. The 

large tmderprediction of the peak fiow in 1962 is probably because it is the bighest fiow on 

record for this subwatershed. S i a a  this event was in the test set instead of the training 

set, the network had never ntpaienced an event of such magnitude during its training. 

Since the network cannot preâict flows outside of the range it was trained on @or 

extrapolation) it is not surprishg that the nawork couid not p d c t  the peak flow event of 



Table 6.3. Percent Error in Forecast ofPeak Elow Magnitude, Rainy Lake 
- - - -  

K Ermr in the Magnitude of P&- 
Flow 

Test Y e u  Lagl 

6.3.4 Forecwtcd Location of Peak Fton 

The results for the error in the location of the forecasted maximum (peak) flow mapitude, 

LMFM, are shown in Table 6.4. Peak flow locations for a one-week ahead forecast 

rangeci Eom being exactly on the  to tbree weeks bebind the actual location with an 

average of 1.25 weeks behhd. 

Table 6.4. Error ia Location of Forecasteci Peak Flow, Rsiiiy LaLe 
Loution o f  Peak (weeks from 

- - - -  

Average 1.25 



This chapter has demonstrated the transfetability ofthe r d t s  to another subwatershed in 

the Whpeg River basin. The techniques useci in chapter four to coastruct an ANN to 

forecast the local infiows into Naamican Lake were aiso Ûansférable to the Rainy Lake 

subwatershed and are capable of providing reiïabIe forecasts for the one-& ahead local 

inflow into Rainy Lake- Even though the forecasts were süghtly worse for the 1960-64 

test pxiod the o v d  resuits produced by the A N '  model was more accurate than those 

produced by the WIFFS model. 

nie extent to which knowledge and experience f?om the Namakan Lake data set was 

transferable to the Raky Lake data set was in the inpas to the ANN. Since the Rainy 

Lake wbwatershed was approximately the same size as the Namakan Lake subwatershed 

with approxhately the same basin response times, the same nuxnber of lags were used for 

the precipitation, temperature and s t r d o w  inputs. More importantly was the 

transfèrability of the period of the year at the tune of the forecast, Pd& ( i l )  as weli as 

the cumulative precipitation from Novexnber 1* to the period being forecasted, up until 

Apd 1.. 

lfone was going to tackle another river in the Wlnnpeg River Basin it would be benencial 

to conduct an anaiysis of the basin response times to obtain a good starhg estimate of the 

number of lags of precipitation, temperature and s t r e d o w  to include as inputs to the 

ANN. Furthmore, if one was to apply this model elsewhere in Manitoba or other parts 

of Canada, it would not only be advantageous to waûuct an analysis of the bash response 

times but it would ais0 be advaatageous to detemine the physical processes involved in 

the redting fiow regimes. An example of knowing which physical processes translate 

into flow is that of the precipitation that U s  duriag warm temperatures In parts of  

Western Canada, the snow tbat fals during the paiod nom November 1. to Apd 1. m e b  

quicldy causing immediate contriions to the s t r d o w .  Thetefore, for wutersheds 

under these conditions, the cumulative precipitation input, Cpracrp 0, would not be of 

much use to the ANN. In the Namakan Lake subwatershed, the temperatures an cool 



enough during this period to cause the raowfd to accmulate over the winter causing 

large runoff due to this mowmelt corne spring tiw. In this situation, the cumulative 

precipitation input, C p m p  (a, proved to be usefiil to the ANN. 



CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS 
The neural network is a relatively new tedmology and improvements are king made quite 

rapidly. The ANN model applied to the s t r d o w  forecasting problem seems to have 

reached encouraging results for the subwatersheds under examinatioa. A very close fit 

was obtaimd dmbg the training phase and the networks dewloped consistently 

outperformed the WIFFS model during the testing phase. A cornparison of fit between 

the WIFFS model and the ANN model deveIoped in Experiment #2.2 for the Namakart 

Lake subwatershed revealed the following; the RMSE(test) dmeased by 10 cms fiom 

42.5 cms to 32.5 cms for the one-week lead, the RMSE(test) decreased by 12.1 cms fiom 

62.9 cms to 50.8 cms for the two-week lead, the RMSE(test) decreased by 6.9 cms fiom 

68.8 cms to 61.9 cms for the three-week lead, and the RMSE(test) d a r d  by 5 c m  

fiom 77.3 cms to 72.3 cm for the four-week lead. Furthemore, a amparison of fit 

between the WIFFS model and the ANN model developed for the Rainy Lake 

mbwatershed rmealed that the RMSE(test) decreased by 10 cms f?om 67.7 cm to 57.7 

cms for the one-week tead. 

The r e d t s  obtained with ANNs for one, two, three, and four-week abead forecasts are 

significantly Mer than those rmched in the WlFFS model aad confimi the ability of this 

approach to provide a usefui tool in solving problems in hydrology and more specifically, 

stre8mflow forecastjng. The initial sucass of the ANN models developed for both the 

Narnakan Lake and Rainy Lake local subwatersheds indicated the tranierability of the 

ANN techology to 0th- watersheds in the WLuiipeg River Basin as weli as a bright 

fuhûe for M e r  applications in othn watershed baWas in Manitoba. 

Working with these simple subwatersheds, the mam indications about ANN modelhg 

features have been confitmeci: i.e. theù abiity to seIf&%rate a weil balanad set of 



linking weights and the possibiiity of being applied at the d system level. ANNs are fw 

fiom king  a univend tool for al1 cornputhg situati~ns~ Because the ANN approach 

presented here does not provide moàels that have physicaily realistic components and 

parameters, it is by no means a substi~e for conceptual watershed modelling. Howmr, 

the results suggest that the ANN approach may provide a sup&or alternative to the h a  

series approach for devdoping input-output sÜnuiations and f o r d g  models in 

situations that do not require modebg of the internai structure of the watershed. In 

addition, there wen a few instances whae possldle data probkms in the case study were 

presented. The ANN perfonned poorly on these cases by sigdicantiy overpredicting the 

streamûows. This demonstrates that the ANN technology can also be used as an & d v e  

tool for data screening. Nevertheiess, t is an efficient tool with great poteatiai for 

handihg n a d  problems where the relatiomhips between inputs and outputs are not 

thoroughly expiaineci. 

The potential of ANN rnodels for amulating the hydrologie behavior of watersheds has 

been presented in this research. The greatest ditficulty was determining the appropriate 

model inputs for such a cornplex problan Although ANNs beiong to the class of &- 

driveil approaches, it is important to determine the dominant model inputs, as this reduces 

the size of the network and cuwequentiy reduces the training times and increases the 

generabtion ability of the network for a given data set. In the case study cansidered, 

sensitivity anaiyses were used in conjMction with judgement to reduce the number of 

model inputs fiom 18 to 10 (for the one-week for- moâel). which reduced training 

times fiom approximately ten minutes to unda two minutes and reduced the RMSE(test) 

fiom 33.3 cms to 32.5 cms. Sinnlar improvments mn ob~erved for the two, the ,  and 

four-week forecast models. 

It is recornrnended to include the odreme low and high y e m  in the traiallig set. One 

cannot expect the nawork to predict d u e s  âom a range outside of what it has been 

trained on (i.e; poor extrapolation). It does not matta wbat ratio (traininglteshg) the 

data is split into (70130, 90/10, 80/20 etc.) as long as more data is used to train the 



network than is used to test the network The foliowing tlaee points should be kept in 

mind when designhg the trainmghesting data sets; 1) the extreme low and hi& y e m  on 

record are included in the training set, 2) the set of obsemîtioas in the oainiag set span the 

range of patterns for which the network wiil be used, and 3) the testhg data should be a 

representatïve mge of redistic flow reghes. A review of the aurent üteratwe hdicated 

that there is no set rule avdable for splitting the data into a specific train/test ratio. The 

amount of data used for training and testïng an ANN is therefore left up to the individuai. 

The success of an ANN implementation is dependant not just on the quality of the data 

used for training, but ais0 on the type and structure of the ANN adopted, the method of 

training, and the way in which both the inputs and outputs are stnrctuted and ioterpreted. 

Designhg a successfiil ANN for a specinc problem doesn't require as much expertise as it 

does your imagination! 



CHAPTER 8 

8 FUTUREWORK 
The research described in this thesis has identifieci potentîai avenues for f h r e  work The 

following is a description of several additions that could be made to this research in order 

to increase its potenW application 

It would be advantageous to explore the issue of data requirements for &e*iw mode1 

building. ANNs are much iike humaas that is, the more examples @en to us to leam 

nom, the better we understand the task at hand and the easier the task becomes. 

Therefore, there is no M t  as to how large the data set sbould be but is there a Mt to 

how d the data set becomes? For both the Namakan Lake and Rainy Lake case 

studies there were 30 years of weddy data avaüable for the A N ' S  to determine the 

underlyiug fùnction between the inputs and the outputs. What if some of the other 

subwatersheds had fewer years ofavailable data say twenty, ten or say five years? Wouîd 

it be worthwbik attempting to build an ANN made1 for these subwatersheds with so few 

years of data? These are important questions tbat could be investigated in niture research. 

An addition to this research would be to buiid seva  additional ANNs to forecast the local 

inflow to the each of the remaiaing seven subwatersheds. Furthemore, work could be 

irnplemented to network aU nine subwatershed together through one ANN. That is, the 

ANN output from the most upstream subwatershed wodd serve as inputs to A N N s  of 

downstream subwatersheds. 
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APPENDIX A: 

NAMAKAN LAKE HISTORICAL DATA 
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NAMAKAN LAKE TRAINING RESULTS, EXPERMENT #1 

B-4: FOUR-WEEK LEAD 
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NAMAKAN LAKE TRAINING RESULTS, EXPERIMENT #2 

C-4: FOUR-WEEK LEAD 
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Figure C-b-4. Namakan Lake Training Rcrultr, 19û0-85, hvo-wtck lead. 
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Figure Cd-3. Namakan Lakt Training IlmuHi, 1975-79, four-wetk Iead. 





NAMAKAN LAKE SCATTER PLOTS FOR TRAINING SETS 

D-a-1: OneWeek Lead 
D-a-2: Two-Week Lead 
D-a-3: Thm+Week Lead 
Wa4: Four-Week Lead 

Db-1: OneWeek Lead 
Db-2: Two-Week Lead 
D-b-3: ThreeWeek Lead 
DM: Four-Week Lead 







Fïgure D-b-1. Obscrvcd verrris Bcrt l -wdc  Fomcast of locd Mow to Nliiulua Lake for 1965.85 

O 100 200 300 JO0 500 600 700 

obrerved Flow (cm) 

FCgumDd-2 O b w r v c d w i u ~ h p c d r F o ~ O t ~ ~ t ~ N ~ ~ f o r l ~  
ushg Eq. #2 ANN. 
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APPENDEX E: 

RAINY LAKE LOCAL HISTORICAL DATA 















APPENDM F: 

RAINY LAKE LOCAL TRAINING RESULTS 





Period of  Y car (W ceka) 
Figure P-r-2. Rainy Lake Training Rmulti, 1970-74, one-wttk lead. 








