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ABSTRACT

Many of the activities associated with the planning and operation of water resource
systems require forecasts of future events. For the hydrologic component that forms the
input for water resource systems, there is a need for both short term and long term
forecasts of streamflow events in order to optimize the real-time operation of the system

or to plan for future expansion.

The main objective of this research is to investigate the utility of Artificial Neural
Networks (ANNSs) for short term forecasting of streamflow. Short term is defined as
weekly time steps up to a time horizon of one month ahead. The work explores the
capabilities of ANNs and compares the performance of this tool to conventional
approaches used to forecast streamflow events one, two, three and four weeks in advance.
A number of issues associated with the configuration of the ANN are examined to
determine the preferred approach for implementing this technology in the forecasting
mode. The performance of the ANN for the forecasting task is evaluated for a range of
streamflow conditions in order to test the capabilities of ANNs in a realistic setting. The
capabilities of the ANN model are compared to those of more traditional forecasting

methods to ascertain the relative merits of each approach.

The specific issues addressed in this research include the applicability of ANNs for
forecasting hydrologic variables; the approaches that are best used for identifying the
appropriate structure for the ANN (the number of layers and the number of nodes), the
preferred strategy for training the ANN; and the transferability of the ANN technology to
another subwatershed. The application of the ANN approach is to a portion of the
Winnipeg River system in Northwestern Ontario, Canada. This system is large in spatial
extent and has a hydrometric data collection network that is very sparse. In this type of
setting, it is often difficult to obtain reliable forecasts of future streamflow events due, in
part, to the lack of accurate data for the required model inputs. As well, the remote

location and complex hydraulic relationships of many of the sites contribute to a poor

i



quality streamflow gauging record. ANNs have been found to be effective in situations
with noisy data. A perceived strength of ANN:G is the capability for representing complex,
nonlinear relationships as well as being able to model interaction effects. This capability is
expected to be beneficial for forecasting since the relationship between the input variables
and the resulting output (streamflow) is typically quite complex.

The results obtained were most promising. A very close fit was obtained during the
training phase and the ANNs developed consistently outperformed the Winnipeg Flow
Forecasting System (WIFFS) model during the testing phase in all of the four forecast
lead-times for the Namakan Lake subwatershed located in the Winnipeg River Basin in
Northwestern Ontario, Canada. The improvement in the Root-Mean-Squared Errors for
the eight years of test data varied from 5 cms in the four-week lead forecasts to 12.1 cms
in the two-week lead forecasts. Results also indicate that there was a 10 cms
improvement in the Root-Mean-Squared-Error for the eight years of test data for the
Rainy Lake subwatershed located in the Winnipeg River Basin in Northwestern Ontario,
Canada (from the WIFFS model to the ANN model) for the one-week lead. This
indicated that the ANN technology developed in this research is transferable to another

subwatershed.
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CHAPTER 1

1 INTRODUCTION

1.1 PROBLEM STATEMENT

Many of the activities associated with the planning and operation of a water resource
system require forecasts of future events. Examples include forecasts of future demand
for electricity, forecasts of the selling price associated with short or long term power sales,
and forecasts of costs associated with alternative energy sources, to name but a few. For
the hydrologic component that forms the input for hydroelectric power generation, there is
a need for both short term and long term forecasts of streamflow events in order to
optimize the system or to plan for future generation expansion. The Nelson-Churchill
drainage basin is the hydraulic system that is used by Manitoba Hydro for power
generation. This system is large in spatial extent (i.e. the locations of data collection are
few and remote from the forecaster) and has a hydrometric data collection network that is
very sparse. These conditions can result in considerable uncertainty in the data which are
available. In this type of setting, it is often difficult to obtain reliable forecasts of future
streamflow events due to the lack of accurate data for the required model inputs. As well,
the remote location and complex hydraulic relationships of many of the sites contribute to
a poor quality streamflow gauging record. As such, it is important that alternative
approaches to estimating future streamflow events be explored in this area.

Many of the techniques currently used in modelling hydrological time-series and
generating synthetic streamflows assume a linear relationship among variables.
Chakraborty [1992] states that, in the real world, temporal variations in data do not
exhibit simple regularities and are difficult to analyze and predict accurately. Linear
relationships for describing the behavior of such complex data are often found to be

inadequate. Therefore, it seems necessary to use nonlinear models such as Artificial



Neural Networks (ANNs), which are suited to complex nonlinear problems, for the
analysis of real world temporal data.

1.2 PURPOSE OF RESEARCH

The main objective of this research is to explore the use of ANNs for short term
streamflow forecasting. Comparisons will be made between the performance of different
neural network configurations and a model based on a more traditional forecasting
approach. Conventional models for streamflow forecasting typically involve a number of
physical variables that function as inputs. A physical variable that is not very useful for
forecasting on its own can often be useful when used in conjunction with other variables.
Given the number of physical variables that could be considered as potentially relevant, it
is apparent that a very large number of different combinations of both variables and
mathematical relationships that link them together are available when developing a
streamflow forecasting model. Determining an appropriate model structure by a trial-and-
error process is therefore not always practical. In this context, the power of ANNs arises
from the capability for constructing complicated indicators (nonlinear models) for
multivariate time-series without resorting to the use of complex statistics, system

identification theory, or other advanced mathematical techniques.

1.3 SCOPE OF THE INVESTGATION

The main focus of this research is concerned with the development of ANN models for
short term streamflow forecasting and the development of general methodologies for using
these models for any catchment area. This work will involve configuring, training, and
testing an ANN for a case study area. The relative performance characteristics for
different ANNs will be assessed to ascertain the preferred alternative for the forecasting
application. In addition, the performance of the preferred ANN will be compared to the
performance capabilities of a more traditional forecasting approach for a representative
range of hydrologic conditions.



The configuration and training of an ANN is analogous to the formulation and calibration
of a model of the type traditionally used in hydrologic applications (e.g. a rainfall-runoff
model). The configuring of the ANN involves determining the most appropriate structure
for the network (i.e. identifying the number of layers, the number of nodes in each layer
and the type of non-linear transformation between layers). The training of the ANN
involves feeding the network a variety of input values and comparing the predicted output
from the network to the actual (observed) output. The network will then alter the weights
that it applies to each input node and hidden node of the network in order to more closely
match the observed output. There are a number of currently unresolved issues associated
with configuring and training an ANN. Karunanithi et al. [1994] state that there has been
comparatively little work done in determining a systematic approach for identifying the
appropriate number of layers and nodes in an ANN. In addition, it has often been
observed that the selection of training sets to submit to a neural network and the order in
which they are presented can affect the final results of the training process and hence the
overall caliber of the performance of the ANN. It is the intent of this research to address

these issues in a systematic manner.

Testing of an ANN is analogous to the verification of a model of the type traditionally
used in hydrologic applications (e.g. a rainfall-runoff model). Verification of an ANN
involves submitting an independent set of input data (i.e. data that was not used in the
training process) to the neural network and evaluating the prediction capability of the
network for this set of data. The level of agreement between the forecasted (predicted)
output of the network and the actual (observed) output is used as an indicator of the
performance of the ANN. Unsatisfactory performance would indicate that the ANN
structure should be altered and the training exercise repeated. It is important at this stage
to ensure that the verification data set contains a sufficient range of input conditions. This
is to ensure that the performance of the model is being properly evaluated over the full
range of conditions that might be encountered in an operational mode. The ultimate
evaluation of the ANN model will come through a comparison of the network model with
a traditional forecasting tool. The two modelling approaches will be compared not only in



terms of the accuracy of the forecasting results but also in terms of the ease of use of the

two approaches.

There are several issues that will be addressed in the proposed application of ANNs to
short term streamflow forecasting. The nature and the number of the model inputs must
be determined. Inputs to short term streamflow forecasting models typically include
observations of streamflow for the present and past time intervals as well as variables
representing present and past meteorological inputs (e.g. temperature, precipitation and
contributions to snow melt). A perceived strength of ANNs is the capability to model
complex nonlinear relationships as well as interaction effects among input variables. This
capability would be expected to be beneficial for forecasting since the relationship between
input variables and the resulting output (streamflow) is typically quite complex. A
potential disadvantage of an ANN type model is that it is often difficult to directly
interpret the model parameters (connection weights) from a physical basis (i.e. the model
is structured like a black box). This can be problematic if the training data set is not
chosen properly such that the model becomes very efficient at mimicking the training data
set but has a very poor generalization capability. It will therefore be important to carefully
select the data sets included in the training data set and to ensure that a proper balance is
maintained between reproduction and generalization capabilities.

Contained in this thesis is a description of the research performed towards the
configuration, training, testing, and evaluation of ANN model alternatives for the case
study area. Chapter 2 begins with an overview of traditional streamflow forecasting
techniques such as conventional physical modelling and ARMA type modelling as well as
what has been done in the application of ANNs in solving water resource problems.
Chapter 3 describes essential background information on ANNs. This includes a
description of the structure and terminology of an ANN. The application of the forecast
technique to the Namakan Lake subwatershed, located in Northwestern Ontario, Canada,
is described in Chapter 4. A brief description of the case study area is presented, followed
by a discussion of the systematic process invoked to obtain the “optimal” ANN structure.



Chapter 5 describes the method of evaluation and goes on to present the analysis of the
results obtained from the ANNSs developed in chapter 4. Some discussion is given to the
topic of how to separate the data set into the training and testing ranges to guarantee
satisfactory network performance in the operational mode. Chapter 6 investigates the
transferability of the systematic approach for configuring an ANN, developed in Chapter
4, to the Rainy Lake Local subwatershed, located in Northwestern Ontario, Canada.
Recommendations are given on the procedures to be followed in applying the technique to
similar forecasting applications. Chapter 7 presents conclusions based on the analysis of
the case study and summarizes some of the experience gained in applying the technique to
a real-world application. Finally, Chapter 8 provides the reader with recommendations for
future research directions.



CHAPTER 2

2 LITERATURE REVIEW

Generally, forecasting models can be divided into statistical and physically based
approaches. Statistical approaches determine relationships between historical data sets,
whereas physically based approaches model the underlying physical processes directly.
Back-propagation networks are closely related to statistical models and according to
Maier and Dandy [1996] are the type of ANNs most suited to forecasting applications.
The following sections present a brief discussion on the various types of forecasting
models with an emphasis primarily on streamflow forecasting. Different types of
conventional and time-series models are discussed as well as their applicability to various
types of problems. Finally, a discussion of the most recent technology that is gaining
importance and recognition in the field of streamflow forecasting is presented.

2.1 PHYSICALLY BASED MODELS

A conceptual model is specifically designed to mathematicaily simulate the general internal
sub-processes and physical mechanisms that govern the hydrological cycle. These types
of models usually incorporate simplified forms of physical laws and are generally
nonlinear, time-invariant, and deterministic, with parameters that are representative of
watershed characteristics [Hsu, 1995] but ignore the spatially distributed, time-varying,
and stochastic properties of the rainfall-runoff (R-R) process. These conventional
streamflow models are based on the physical descriptions of the hydrologic and hydraulic
processes that govern the rainfall-runoff process. They are very powerful attempts to
represent, in a simplified manner, the known physical process occurring in the rainfall-
runoff transformation and are commonly referred to as conceptual rainfall-runoff models.
Kitanidis and Bras [1980 a, b] state that conceptual watershed models are generally
reported to be reliable in forecasting the most important features of the hydrograph,
namely, the beginning of the rising limb, the time and height of the peak, and the volume



of flow. However, the implementation and calibration of such a2 model can typically
present various difficulties [Duan et al., 1992], requiring sophisticated mathematical tools
[Duan et al., 1992 & 1994; Sorooshian et al., 1993], significant amounts of calibration
data [Yapo et al.,, 1995], and some degree of expertise and experience with the model
[Hsu et al., 1995). The first type of physically based models is the hydrometric data-based
model involving only streamflows. These methods involve correlating stages or
discharges and volumes, input/output models such as unit hydrograph approaches, and
hydraulic routing using dynamic wave, diffusion wave, kinematic wave, Muskingum
method, impulse response function, or storage models. The second, more common type
of conceptual model, is the hydrometeorologic and hydrometric data-based model
involving precipitation-to-runoff and streamflow processes. These complex rainfall-runoff
models represent the various water storage terms (interception, evapotranspiration,
snowmelt, interflow, groundwater baseflow, and surface runoff from rainfall and
snowmelt) in varying levels of complexity as well as indices such as Antecedent
Precipitation Index (API). The most complex of the rainfall-runoff models currently being
used are the conceptual storage models, a representative example being, the U.S. National
Weather Service River Forecast System. Singh [1992] provides a list of conceptual
models that attempt to model the underlying process of a system. The application of the
underlying processes are based on the discovery of strong empirical regularities gained
through observations of the system. These types of models provide a very powerful and
accurate means of prediction, but discovering the processes underlying the behavior of a
system is often a difficult task. The problem with conceptual médels is that empirical
regularities or periodicities are not always evident and can often be masked by noise.
Tong et al. [1985] state that some of the problems with a conceptual model are that it is
often very complex and possesses a large number of parameters related to physical
phenomena, all of which must be calibrated. Further, due to the great complexity of
natural systems, the conceptual model is only a crude approximation to reality.



2.2 TIME-SERIES MODELS

2.2.1 General

Conceptual models have proven their importance in the understanding of hydrologic
processes, but there are many practical situations such as streamflow forecasting where
the main concern is with making accurate predictions at specific watershed locations. In
order to understand and model how one or more inputs to a given system control various
outputs, engineers and scientists take measurements over time. For a given input or
output variable that is being monitored, a set of observations arranged chronologically is
called a time-series. In time-series analysis, stochastic or time-series models are fitted to
one or more of the time-series describing the system for purposes which include
forecasting, generating synthetic sequences for use in simulation studies, and investigating
and modelling the underlying characteristics of the system under study. In fact, time-series
and statistical models constitute one of the most frequently employed set of tools used in

water resources planning and management [Hipel, 1985].

2.2.2 Time-Series Modelling Procedures

Multivariate time-series modelling is comprised of three basic stages, namely: model
identification, parameter estimation and diagnostic checking for model accuracy. This
procedure, formalized by [Box and Jenkins, 1970] and advocated by [Salas et al., 1980],
is an iterative procedure of model building to ensure satisfactory model fitting and
utilization. The model identification stage is divided into model structure specification and
model order determination. Model structure specification is geared to finding the
structural form of the model or type of dependence relationship to be incorporated in the
model. Model order determination is concerned with identifying the number of lags and
number of moving average parameters. Some of the tools reviewed in the literature
include cross-correlation analysis, partial-autocorrelation analysis and likelihood ratio test.
After identifying possible models, the parameter estimation stage follows. The methods of
moments and maximum likelihood are among the most popular methods of parameter
estimation that have been suggested in the literature. Once the model parameters have
been estimated, diagnostic checks are necessary in order to see whether the selected model



is appropriate, whether it is better than other competing models, and whether to search for
model improvements. Some common diagnostic checks include model implementation as
well as testing the robustness of the model. For instance, the model may be implemented
according to its intended utilization, such as data augmentation, generation, or forecasting,
and examine how well the model performs. Robustness tests may be applied to see if the
model preserves properties not explicitly parameterized in the model (i.e. flood/drought
characteristics).

2.2.3 Stochastic/Time-Series Models

Stochastic forecasting models can be broken up into five different general types. They are
Autoregressive (AR) models, Moving average (MA) models, Autoregressive moving
average (ARMA) models, Nonlinear (threshold) time-series models; and Adaptive
algorithm models [Szollosi-Nagy, 1987). Univariate and multivariate time-series analysis
is an important statistical tool to study the behavior of time dependent data and forecast
future values depending on the history of variations in the data {Chakraborty et al., 1992].
Most of the time-series modelling procedures fall within the framework of multivariate
autoregressive moving average (ARMA) models [Raman and Sunilkumar, 1995].
Traditionally, the class of ARMA models have been the statistical method most widely
used for modelling water resources time-series [Maier and Dandy, 1996] an example of
which is found in Bender et al., 1992. In streamflow forecasting, time-series models are
used to describe the stochastic structure of the time sequence of streamflows and
precipitation values measured over time, in discrete or continuous time units. Time-series
models are more practical than conceptual models because one is not required to
understand the internal structure of the physical processes that are taking place in the
system being modelled. The forecaster needs only to determine the order of the time-
series equation. Forecasts using time-series methods have the property that they approach
the long-term mean as the forecast lead-time increases. The rate at which these forecasts
approach the mean depends on how far the initial value (the most recent observed flow) is
from the long term mean. The limitation of univariate time-series methods in streamflow

forecasting, is that the only information they incorporate is that which is present in past
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flows. Therefore, in regions that are dominated by snowmelit runoff, a method that makes
direct use of snow water storage is usually preferable. Chakraborty [1992] states that a
more accurate method is that of a multivariate time-series, which consists of sequences of
values of several contemporaneous variables changing with time. By studying many
related variables together, rather than by studying just one, a better understanding of the
phenomenon being modelled is obtained. However, for situations where snow storage is
not a factor, univariate time-series methods have the advantage that they are easily
implemented, and the forecast error variance can be readily computed [Box and Jenkins,
1976).  Several stochastic time-series models have been proposed for modelling
hydrological time-series and generating synthetic streamflows.  These include
Autoregressive Moving Average (ARMA) models [Box and Jenkins, 1970},
disaggregation models [Valencia and Schaake, 1973], and models based on conceptual
pattern recognition [Panu and Unny, 1980). Stedinger and Taylor [1982] studied the
performance of five different models for streamflow simulation. All of these types of
models have their merits and also have been criticized. These models are relatively easy to
develop and implement and have been found to provide satisfactory predictions in many
water resources applications [Salas et al., 1980]. Most real world problems, however,
involve temporal variations in data that do not exhibit simple regularities. Many of the
available techniques do not attempt to represent the nonlinear dynamics inherent in the
transformation of rainfall to runoff and as a result, these problems tend to be difficult to
analyze and predict accurately. Zong [1983] describes some of the drawbacks of linear
modelling for univariate time-series analysis. These include, for example, their inability to
explain sudden bursts of very large amplitudes at irregular time intervals, which is a
common occurrence in streamflow forecasting. 7ong [1990] also addresses some of the
problems with linear models for multivariate time-series analysis.

2.3 ARTIFICIAL NEURAL NETWORK MODELS

Artificial neural networks (ANNs) have been successfully applied in a number of diverse
fields. This next section will only focus on water resource applications of the ANN
technology. In order to fit an ARMA-type model to a time-series, the data have to be
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stationary [Hipel, 1985] and have to follow a normal distribution [/rvine and Eberhardt,
1992]. If this is not the case, techniques such as differencing [Box and Jenkins, 1976]
have to be used to induce stationarity and the Box-Cox transformation has to be applied to
obtain normally distributed data. When developing ANN models, the statistical
distribution of the data does not have to be known [Burke, 1991] and non-stationarities in
the data, such as trends and seasonal variations, are accounted for by the intemnal structure
of the ANNs [Maier and Dandy, 1996]). ANNs are suited to complex problems, where
the relationship between the variables being modelled are not well understood. ANNSs
differ from the traditional approaches in synthetic hydrology in the sense that they belong
to a class of data-driven approaches, as opposed to traditional model/-driven approaches
such as ARMA-type models. Data-driven approaches have the ability to determine which
model inputs are critical, so that there is no need for a prior knowledge about relationships
between variables. Model-driven approaches, on the other hand, require some
understanding of the problem, as the model order has to be determined before the
unknown model parameters can be estimated [Maier and Dandy, 1996]). An ANN is a
flexible mathematical structure, capable of identifying complex nonlinear relationships
between input and output data sets [Hsu et al., 1995]. They are relatively insensitive to
noisy data, unlike ARMA-type models, as they have the ability to determine the underlying
relationship between model inputs and outputs, resulting in good generalization ability.
ANN models have been found to be useful in solving problems where the characteristics of
the processes were difficult to describe using physical equations (i.e. conceptual models).
ANN s are defined as one of the approaches in the area of artificial intelligence which use a
black-box approach where the user need not know much about the underlying process
being modelled. The analysis depends on available data, with little rationalization about
possible interactions between the data. ANNSs are constructed to obtain a prediction of
system response without attempting to reach understanding or to provide insight into the
nature of the phenomena. Relationships between variables, models, laws and predictions
are considered after building a machine whose behavior simulates the data being studied.
An ANN is a nonlinear mathematical structure capable of representing arbitrarily complex

nonlinear processes that relate the inputs and outputs of any system. The success with
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which ANNs have been used to model dynamic systems in areas of science and
engineering suggests that the ANN approach may prove to be an effective and efficient
way to model the streamflow process in situations where explicit knowledge of the
internal hydrologic sub-processes of the watershed is not required. Some studies in which
ANNSs have been applied to problems involving rainfall-runoff modelling and weather and
river flow prediction have been reported in the literature. Lorrai and Sechi [1995]
verified the possibility of utilizing ANNs to predict rainfall-runoff when only information
about the variation of the basic input variables, namely rainfall and temperature, is
available. Cheng and Noguchi [1996] obtained better results modelling the rainfall-runoff
process with ANNs using previous rainfall, soil moisture deficits, and runoff values as
model inputs, when compared with that from the Xinanjiang model (a rainfall-runoff
model). Smith and Eli [1995] applied ANNs to convert remotely sensed, spatially
distributed rainfall patterns into rainfall rates, and hence into runoff for a given river basin.
Hsu et al. [1995] showed that a nonlinear ANN model provided a better representation of
the rainfall-runoff relationship of the medium-sized Leaf River basin near Collins,
Mississippi, than the linear ARMAX (autoregressive moving average with exogenous
inputs) time-series approach or the conceptual SAC-SMA (Sacramento soil moisture
accounting) model. French et al. [1992] demonstrated that an ANN is capable of
forecasting the complex temporal and spatial distribution of rainfall generated by a rainfail
simulation model. Jayawardena and Fernando [1996) applied the ANN approach to
predict evaporation rates (using the vapor pressure difference, temperature, solar
radiation, and wind speed) that were found to be in better agreement with actual
observations than those obtained from an empirical equation. Karunanithi et al. [1994]
used ANNs for river flow prediction and Raman and Sunilkumar [1995] for forecasting
multivariate water resources time-series. ANNSs have also been applied to areas such as
deriving a general operating policy for reservoirs Raman and Chandramouli [1996],
prediction of water quality parameters Maier and Dandy [1996] and real-time forecasting
of water quality Dandy and Maier [1996].



13

CHAPTER 3

3 BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

3.1 GENERAL

Computers have traditionally been used to perform large numbers of calculations very
quickly with high numerical accuracy. Computers run on a series of sequential algorithms
or commands provided by the user. Therefore, if the user gives the computer an explicit
set of instructions that includes an error, the computer will execute the commands and
produce the wrong answer, i.e. the computer does not realize that it has made an error.
Why can’t the same machines that perform a million calculations per second learn from
experience, rather than forever repeating a sequential algorithm generated by a human
programmer? Freeman and Skapura [1991] state that if the only tool we have is a
sequential computer, then we will naturally try to cast every problem in terms of sequential
algorithms. Many real-world applications are not suited to this approach, yet many spend
a great deal of time and effort trying to develop sophisticated algorithms to solve these
problems, perhaps even failing to find an acceptable solution.

One of the most common problems encountered when sequential computer systems are
used to perform an inherently parallel task is that of visual pattern recognition. Complex
patterns contain many elements that, alone, reveal little information about the total pattern,
but together represent easily recognizable (by humans) objects. These are the typical
types of pattern that have proven to be the most difficult for computers to recognize. An
example of this type of pattern is shown in Figure 3.1.

If you just focus on the black areas in the picture, the picture is meaningless. Yet, if you
allow yourself to encompass all the components of the picture, you can see a commonly
recognizable object. Furthermore, once you see the image, it is easy to see it again
whenever you look at the picture. The illustration in Figure 3.1 is of a dalmatian seen in
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profile, facing left, with head lowered sniffing the ground and walking towards a tree.
Why is it that you can see the dog quickly, yet a computer cannot perform this task even
though the switching time of modern electronic computers are extremely faster than the
switching time of the cells that comprise our neurobiological systems?

Figure 3.1. An example of a complex pattern (Freeman & Skapura, 1991)

Part of the answer to this question is that the architecture of the human brain is
significantly different from that of a conventional computer (i.e, the massive parallelism
and interconnectivity observed in the biological systems is what allows the brain to
perform complex pattern recognition in a few hundred milliseconds). Artificial Neural
Networks (ANNs) are made up of the best of both worlds. They have the rapid
calculation speeds of a computer and the complex pattern recognition capabilities of a
human. They act on data by detecting some kind of underlying organization or pattern.
These networks can recognize spatial, temporal, or other relationships and, by bridging the
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gap between individual examples and general relationships, can perform tasks such as
function modelling, estimation, or approximation.

ANNSs offer valuable characteristics unavailable together elsewhere. First, they infer
solutions from data without prior knowledge of the regularities in the data; they extract
the regularities empirically. This characteristic is useful because gathering data does not
require explaining it. Second, these networks /earm the similarities among patterns
directly from instances or examples of them. ANNs can modify their behavior in response
to the environment (i.e. shown a set of inputs with corresponding desirable outputs, they
self-adjust to produce consistent responses). Third, ANNs can generalize from previous
examples to new ones. That is, once the network has been trained, they can respond
correctly to patterns that are only broadly similar to the original training patterns (i.e. its
response can be insensitive to minor variations in its input). Generalization is useful
because real-world data is noisy, distorted, and often incompiete. The ANNs ability to see
through noise and distortion to the pattern that lies within is extremely important to
pattern recognition in a real-world environment. Fourth, ANNSs are also very good at the
abstraction of essential characteristics from inputs containing irrelevant data. For
example, a network can be trained on many distortions of the letter “A”. After adequate
training of the network, a perfectly formed letter will be produced. The end result is a
network that has learned, through noisy and distorted examples, to produce something
that it has not seen before. Fifth, they are nonlinear, that is, they can solve some complex
problems more accurately than linear techniques do. Nonlinear behavior is quite common,
but can be difficult to handle mathematically. Finally, ANNs are highly parallel. They
contain many identical, independent operations that can be executed simultaneously, often
making them faster than alternative methods. These abilities are a distinct asset in many
applications because it does not require conventional programming, and while knowing
something about the problem at hand can improve the neural network design (i.e. which
inputs to include in the network training) the most important need is for data.
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ANNs also have several drawbacks for some applications. Firstly, they may fail to
produce a satisfactory solution, perhaps because there is no learnable function or because
the data set is insufficient in size. Secondly, the optimum network geometry (i.e. the
number of hidden layers and the number of hidden nodes per hidden layer) as well as the
optimum internal network parameters (i.e. learning rate and momentum term) are problem
dependent and generally have to be found using a trial-and-error-process. This can make
the neural networks training process slow and expensive. Part of this cost comes from the
need to collect, analyze, and manipulate training data while the other costs stem from the
need to experiment with parameters to find good values. Hammerstrom [1993] believes
that a greater understanding of training protocols and expert knowiedge of the parameters
which govern the process should help, especially in combination with parallel hardware
that can run systematic experiments quickly. Another disadvantage of ANN models is,
unlike ARMA-type models, a direct mathematical expression, relating the variables, is not
obtained. Instead, the relationship between the inputs and outputs is contained in the
connection weights, therefore making it hard to account for a neural network’s results.
Showing how the weights “cause” a result may be more complex than showing how a
computer program works. ANN models are also problem specific. Physically based
models, on the other hand, have had a wider range of applicability because they are based
on fundamental physical relationships. Physically based models are also able to cope with
changes in the system being modelled. ANNSs cannot cope with major changes in the
system because they are trained on a historical data set and it is assumed that the
relationship learned will be applicable into the future. If there are any major changes in the
system, the neural network would have to be quickly adjusted to the new process through
model retraining, in which new data describing the process are added to the network’s

learning procedure.

As previously mentioned, neural networks belong to a class of data-driven approaches, as
opposed to traditional computer model-driven approaches. These models attempt to
achieve good performance through dense interconnections of simple computational
elements. In this respect, the architectures of ANNs are based on the present
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understanding of the biological nervous systems. The highly sophisticated human brain,
which contains more than 100 billion neurons and trillions of interconnections, is able to
learn quickly from experience and is generally superior to any existing machine in tasks
involving recognition, learning, and control [Hsu et al., 1995]. Although the present
understanding of ANNs are based on that of biological neural networks, the structures of
the most current ANNs are extremely simple and the capabilities are quite poor when
compared to biological neural networks. Nonetheless, many ANN structures have been
proposed and explored since the 1950s. The most widely researched and used structures
are single and multilayer feed forward networks, Kohonen’s self organizing feature maps,
the Carpenter/Grossberg classifier, Hopfield networks, Hamming networks and
Counterpropagation networks. Lippmann [1987] and Wasserman [1989] provide a brief
summary and understanding of each of these network types. Of these, multilayer feed
forward networks have been found to have the best performance in solving function
approximation problems [Hsu et al, [995). Freeman and Skapura [1991] states that “this
model has a well-deserved reputation for being the neural network. It is a universal
JSunction approximator. We can, theoretically at least, teach anything learnable to this
network. Thus, it is reasonable to consider this network for any problem”. Note that the
network is said to be able to solve a function approximation problem if it is able to learn to
approximate the function to arbitrary accuracy. Freeman and Skapura [1991] state that
“A multilayer feedforward network CAN learn your function. If you have problems, they
are NOT due to the model itself. They are due to insufficient training, on insufficient
number of hidden neurons, or an attempt to learn a supposed function that is not
deterministic”. A short description about multilayer neural networks along with the
training algorithms are provided next.

3.2 ANN ARCHITECTURE

Generally speaking, all ANNS are vector mappers. That is, they map one vector space to
another. As shown in Figure 3.2, an input vector is applied to the network; in response,
the network produces an output vector. Each vector consists of one or more components,

each of which represents the value of some variable (e.g. precipitation, temperature,
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streamflow, etc.). Mapping may be static, in which case a feed-forward neural network
will suffice. Or, they may be dynamic, involving previous network states; in this case a
network with feedback is required.

Input mpp | ANN Output

Vector Vector

Figure 3.2. A Vector Mapper

3.2.1 Multilayer Feed Forward ANN Architecture

The architecture of a feed forward ANN can have many layers. A typical three-layer feed
forward ANN is shown in Figure 3.3. The first layer consists of a set of processing
elements (PEs) and connects with the input variable(s). This is called the input layer. The
last layer, consisting of PEs, connects to the output variable(s) and is called the output
layer. The term “feedforward” means that information flows in one direction only. The
inputs to neurons in each layer come exclusively from the outputs of neurons in previous
layers, and outputs from these neurons pass exclusively to neurons in following layers.
Layer(s) of PEs in-between the input and output layers are called hidden layers because
they have no direct connection to the outside world, neither input nor output. There can
be more than one hidden layer in an ANN. There are two conventions in use for counting
the number of layers in the network; some authors count the input terminals as a layer,
some do not. For purposes of this research, all layers are counted such that a network
with one hidden layer is a three-layer network. Introducing this intermediate layer
enhances the network’s ability to model complex functions. Lippmann [1987] suggests
that no more than three layers (one hidden layer) are required in feed-forward networks
because a three-layer network can generate arbitrarily complex decision regions. Freeman
and Skapura [1991] believe that three layers (one hidden layer) are generally sufficient,

however, sometimes a problem seems to be easier to solve with more than one hidden
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layer. In this case, easier means that the network learns faster. Valluru and Hayagriva
[1993] state that a feed-forward neural network with at least one nonlinear hidden layer of
unlimited size, is a universal approximator, capable of approximating to an arbitrary
degree of accuracy any continuous function on a compact set.

Passive Hidden Active
(Input) Nodes {(Output)
Nodes Nodes

X,@) Z,p)
X:p) Z(p)
& Xqp) \\" "/ \\' Z{p) °
// \\\w >\
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Figure 3.3. Multilayer Feed-Forward ANN and Processing Element Architectures

Masters [1993] has found that the number of hidden layers needed to solve most problems

are as follows;
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1) “If the function consists of a finite collection of points, a three-layer
network (one hidden layer) is capable of learning it”.

2) “If the function is contimuous and defined on a compact domain, a three-
layer network is capable of learning it. Roughly speaking, “compact
domain” means that the inputs have definite bounds, rather than
having no limits on what they can be .

3) “Many functions that do not meet the above criteria can also be learned
by a three-layer network. In particular, discontinuities can be
theoretically tolerated under all conditions likely to be met in real life.
Also, functions that do not have compact support, such as when the
inputs are normally distributed random variables, can be learned by a

three-layer network under some conditions".

4) “Under very general conditions, all other fimctions that can be learned
by a neural network can be learned by a four-layer (two hidden layer)

network”’.

The first two cases above cover the majority of practical problems. Theoretically
speaking, we are always reasonably safe using a single hidden layer. Furthermore, (at least
theoretically) more than two hidden layers should never be needed. A network having
two hidden layers is a universal approximator. The need for a second hidden layer can
come about in essentially only one way. That is, when the network needs to leamn a
function that is mostly continuous, but has a few discontinuities. There are some functions
defined on a compact domain that are generally continuous, but have one or more sudden
jumps where the continuity is lost. These are called piecewise-continuous functions and,
in general, cannot be easily learned by a network having only one hidden layer. Two
hidden layers are usually required.
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The PEs in each layer are called nodes or units. The number of nodes in the input and
output layers are decided based on the dimension of input and output vectors presented to
the network for training. The number of hidden layers and hidden layer nodes are decided
upon by a trial-and-error procedure as there are no exact methods available in the
literature. These nodes are connected to the nodes in the preceding layer for input and the
following layer for output. There is no interconnection between nodes within the same
layer or nodes in nonadjacent layers. Furthermore, each connection has an associated
adjustable parameter called a weight or connection strength. An input connection may be
excitatory or inhibitory. Excitatory connections have positive weights and inhibitory
connections have negative weights. All weighted connections are “feed-forward™; that is,
they allow information transfer only from an earlier layer to the next consecutive layer(s).
Data enters the network through the nodes in the input layer. These nodes are passive,
not computational, and simply serve as distribution points. They perform no input
summation, but broadcast a single data value over weighted connections to the hidden
nodes in the following layer. All of the hidden nodes receive all input data, but because
each has a different set of weights, the sets of values differ. The number of hidden nodes
must be large enough to form a decision region that is as complex as is required by a given
problem. It must not, however, be so large that the many weights required cannot be
reliably estimated from the available training data [Lippmann, 1987]. A network with too
many weights may fit the training set well, but may produce large errors at intermediate
points. In other words, the network will memorize the training set rather than generalizing
around it. Conversely, networks with too few weights will fit both data points and the
underlying function poorly. The following paragraphs describe the processing element
(PE) architecture and transfer function.

3.2.2 The General Processing Element
The architecture of a single PE or node is shown back in Figure 3.3. It has n inputs,
labeled from 1 through ». In addition, it also has one assumed input, called its bias, who’s

input is always equal to 1.0. Each node j receives incoming signals from every node / in
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the previous layer. A weight (w;) is associated with each incoming signal (x,). The
effective incoming signal (NE7;) to node j is the weighted sum of all incoming signals,

otherwise known as the net input:
fy
NET; =Y w,x, ..3.1
i=0

where x; and wy, are called the bias term (x; = /.0) and the bias weights respectively. This
term is a weight on a connection that has its input value always equal to one. Including
the bias term sometimes helps convergence of the weights to an acceptable solution. It is
perhaps best thought of as an extra degree of freedom, and its use is largely a matter of
experimentation with the specific application [Freeman & Skapura, 1991]. Note that
excitation and inhibition are accounted for automatically by the sign of the weights. This
weighted sum is passed through a transfer function and produces the neuron’s output

which serves as input to the next layer of nodes.

3.2.3 Transfer Functions

The transfer function, activation function, gain function, or squashing function (as they are
often referred to) introduces a nonlinearity that, when applied to the net input of a neuron,
determines the output of that neuron. This nonlinearity further enhances the network’s
ability to model complex functions. Nearly always, the same transfer function is used for
all neurons. Wassermann [1990] states that the nonlinear activation functions are vital to
the expansion of the network’s capability beyond that of the single-layer network. The
effective incoming signal, NE7; , is passed through a nonlinear activation function or
transfer function to produce the outgoing signal/activation value (OUT)) of the node; see
Lippmann [1987] for a list of three different activation functions. The outgoing signal of
a node (OUT}), corresponds to the firing frequency of a biological neuron. The connection
weights (w;) and (wy), between two nodes, corresponds to the strength of the synaptic
connection between neurons in a biological network. Hsu et al. [1995] states that the
most commonly used activation function is the steadily increasing S-shaped curve called a
sigmoidal function. The shape of this curve can be seen below in Figure 3.4. This
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function acts as a squashing function and compresses the range of NET so that OUT lies
between O and 1. The desirable characteristics of the sigmoid function are that it is
bounded above and below (the attenuation at the upper and lower limbs of the “S”
constrains the raw sums smoothly within the fixed limits of 0 and 1), it is monotonically
increasing, and it is continuous and differentiable everywhere.

4 our
10 +

+ +——— 4+
0 NET

Figure 3.4. Sigmoidal Logistic Function (Freeman & Skapura, 1991)

The sigmoidal function most often used for ANNs is the logistic function (Hsu et al.
1995), expressed mathematically as shown in equation (3.2). It can be seen that the
activation value of any node is an explicit function of the net input value, NET;, of that

node;
OUT, = F(NET, )=1/} + espl- NET, )} ...32

in which NET; can vary between + oo, but OUT; is bounded between O and 1. The
activation function defines a nonlinear gain for the artificial neuron. The gain describes
how the output leaving a node is changed based on the weighted sum entering the node.
It is calculated by finding the ratio of the change in QUT; to a small change in NET, as

shown in equation (3.3).
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Therefore, the gain is the slope of the sigmoid curve at a specific excitation level. As can
be seen in Figure 3.3, the gain varies from a low value at large negative excitation, to a
high value at zero excitation, and it returns back to a low gain when the excitation of the
neuron becomes very large and positive. Another commonly used activation function is
the hyperbolic tangent, expressed mathematically in equation 3.4;

0UT, = tanb{VET, )= S~ 34
e +e
This function is similar in shape to that of the logistic function. The hyperbolic tangent
function is also “S” shaped, but is symetrical about the origin, resulting in OUT; having a
value of zero when NET; is zero. A characteristic of the hyperbolic tangent function that is
different from that of the logistic function is that the value for OUT; is bipolar (i.e. the
value of OUT; can range between +1). This characteristic can be beneficial in certain
networks whose outputs have negative values. It must be kept in mind that, regardless of
what type of sigmoidal function is being used, the sigmoid functions never reach their
theoretical minmimum or maximum. For example, neurons that use the logistic function
should be considered fully activated at around 0.9, and turned off at about 0.1 or so. It is
certainly reasonable to use the extremes of 0.0 and 1.0 as inputs to a network, but it is

futile to attempt to train a network to achieve extreme values as its outputs.

3.3 NETWORK CONFIGURATION

After choosing the ANN structure, the next step is configuring it to agree with the data.
This is done by setting the number of input and output nodes to agree with the dimension
of input-output vectors in the data set as well as deciding on the number of hidden layers
and the number of hidden nodes per layer. The latter is an iterative process and will be
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discussed further in the following sections. Since the number of inputs used in the
network will dictate how many nodes are required in the input layer, it is important to
decide which inputs are best in describing the underlying process. This is where familiarity
with the application is invaluable. The raw data can also be inspected by means of
statistical techniques, an example being calculating the strength of the correlation between
an input and an output. This will suggest whether to include or exclude a variable in the
input. Similarly, a strong correlation between two inputs might suggest that only one is
needed. Data analysis helps screen out the potential input variables so that only the most
telling ones are used to build the training patterns [Hammerstrom, 1993]. Preprocessing
or transforming the data often makes it easier for the network to learn. Preprocessing may
involve calculating sums, differences, differentials, inverses, powers, roots, logarithms,
averages, and moving averages. One important reason for taking care in selecting both the
type and number of input/output variabies is to keep the network small, so that less time
and data are needed to train it.

3.4 NETWORK TRAINING

The main objective of training a network is to produce the desired set of outputs when a
set of inputs is fed to the ANN. This step is often called the calibration stage in
conventional model building. Training a network is a process during which an ANN
passes through a training set (input-output data pairs) repeatedly, changing the values of
its weights (according to a predetermined procedure or algorithm) to improve its
performance. It is important that the training set provide a full and accurate
representation of the problem domain: otherwise the network will not meet expectations.
A critical goal during training is to find a network that is large enough to learn the
application but small enough to generalize well [Hammerstrom, 1993]. The number of
nodes in a network has a large impact on the generalization ability of the network.
Networks with too many hidden nodes tend to memorize the training data while those
with too few cannot learn the underlying process in the problem. A network with many
nodes will also have many connecting weights. Excessive weights can be a drawback,

since the ANN can use them to memorize the training data. A smaller network has fewer
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weights, forcing it to learn the underlying function and permitting it to generalize beyond
the training data, but too small a network cannot learn the problem at all. Therefore,
choosing the number of hidden layers and the number of hidden nodes per layer is an
iterative process. Each pass through the training data is called an epoch, and the ANN
learns through the overall change in weights accumulating over many epochs. During
training, the network weights gradually converge to values such that each input vector
produces output values that are as close as possible to the desired output vector. There
are many algorithms available to train neural networks, but unfortunately no-hard-and-fast
rules for matching training algorithms to applications exist. Valluru and Hayagriva
[1993] estimate that over 80% of all neural network projects in development use the
backpropagation (BP) training algorithm. This is possibly due to the relative ease of use
of the algorithm. BP algorithms have been found to do particularily well at function
approximation and time-series tasks as well as representing complex, nonlinear
relationships in the form of compact, efficient networks [Hammerstrom 1993]. Before the
training process is begun, all of the connection weights must be initialized to small random
numbers (the size of the initial random weights is very important). This is to ensure that
the network is not saturated by large values of the weights. If the initial weights are too
large the sigmoids will saturate from the beginning, and the system will become stuck in a
local minimum near the starting point. Herzz et al. [1991] suggests that a sensible strategy
is to choose the random weights so that the magnitude of the typical net input, NET,, to
unit 7, is less than, but not too much less than, unity. Typical initial weight randomization
is between £1.

The key to the BP training algorithm is its ability to change the values of the connection
weights in response to the error between the network output and the target output. It
accomplishes this through the use of the Generalized Delta Rule, which is the learning
algorithm of the network.
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3.4.1 Backpropagation Training Algorithm

The BP algorithm gives a prescription for changing the weights, w;;, in any feed-forward
network to learn a training vector of input-output pairs. It is a supervised learning method
in which an output error signal is fed back through the network, altering connection
weights so as to minimize that error. During the BP training, each input vector is applied
to the first layer nodes in the input layer. This stimulus is propagated through each hidden
layer and a result is generated at each output node. In forecasting applications, the
training data usually consists of input stimuli as well as the desired responses (output) to
these stimuli. During supervised training, the output predicted by the network, Z(p), is
compared with the actual (desired, historical) output, di(?), and the mean squared error
(MSE) between the two is calculated. The error signal, at time ¢, for each unit in the
output layer, is given below by the error measure or cost function E(¥);

E(z)=§;(zt(p)—d,(z»’ .35

The aim of training is to find a set of connection weights that will minimize the error
function.

3.4.2 Generalized Deita Rule
The Generalized Delta Rule (GDR), used as the learning algorithm for the BP network,
performs gradient descent down an error surface. Once the error signal of each node is
known, the weights can be adjusted and updated in the direction that will minimize this
error. This weight update is done with the GDR, shown explicitly in equation 3.6, where
o, is called the momentum term.

w(t+1)=w,()+Aw, ((+1)+aAw, () ..3.6

There are several methods for finding the weight increment, Aw;;, of which the gradient
decent method is the most common [Maier and Dandy, 1996]. The gradient descent
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method is a learning process that changes an ANNs weights to follow the steepest path

toward the point of minimum error.

3.4.3 Gradient Descent Method
The change in the output errors (£, with respect to the current weights (), are calculated
(equation 3.3) and passed backwards (backpropagated) from the output layer to each
node in the intermediate layer that contributes directly to the output. This is accomplished
using the gradient descent method,;

Awﬁ(l)=q%+dAwﬁ(t—l) 3.7

As most combinations of weights produce a different error, an error surface exists as a
function of the connection weights. To see this error surface, all possible sets of weights
are plotted against the corresponding sum-of-squared errors. An error surface with two-
dimentional weights (x & y) is shown in Figure 3.5. This error surface is bowl-shaped
whose bottom marks the set of weights with the smallest sum-of-squared errors. The
gradient descent method results in weights being incrementally changed in the direction of
the locally steepest path towards the bottom of the bowl.

Real error surfaces generally have a large number of local minima resulting in complex
ravine-like features and many have dent-like local minima [Hammerstrom, 1993]. This
local minimum is a point of regionally low error during gradient descent. It is a
metaphorical dent in the error surface. Since the gradient descent method follows the
steepest path, the network could train itself into a local minimum, (Z; or Z,), that it can

not escape from as in Figure 3.6.
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Figure 3.6. A cross-section of a hypothetical error surface in weight space (Freeman &
Skapura, 1991)

The global minimum is a unique point of least error during gradient descent. It is
metaphorically the true “bottom™ of the error surface. In practice, finding the global
minimum (Z.i) is not always necessary. What is important is to find a set of weights that

locate a local minimum that satisfy the accuracy requirements for the application at hand.
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The size of the step taken down the error surface, often called the learning rate, n, can be
critical. The learning rate governs the rate at which the weights are allowed to change at
any given presentation. Higher learning rates speed the convergence process, but may
cause the weights to oscillate around the bottom of the bowl-shaped weight surface,
giving an overall error that is unacceptable. This can result in non-convergence of the
problem. Lower learning rates slow the learning process resulting in more reliable results,
but can increase the training time. In this case, convergence will be excessively slow.
There are a number of ways of dealing with this problem, including the replacement of the
gradient descent by more sophisticated minimization algorithms, as discussed by Hertz et
al. [1991]. However, a much simpler approach, that is commonly used and often
effective, is the addition of a momentum term, a,, expressed mathematically in equation 3.7

The momentum term must be between 0 and 1; a value of 0.9 is often chosen [Hertz et al.,
1991]. The momentum term is applied to prevent the search direction from wildly
thrashing about the error surface, as the gradient changes. The idea of the momentum
term is to give each weighted connection, w;;, some momentum, so that it tends to change
in the direction of the average downhill “force” that it feels, instead of oscillating widely.
Each new search direction is computed as a weighted sum of the current gradient and the
previous search direction. This momentum is derived from the effect of previous weight
changes on the present change in weight space. This term is optional, but if used, can
improve the convergence on a local/global minima. Masters [1993] states that the
momentum term is essentially a low-pass filter applied to the search direction to dampen
the side-to-side oscillations. The idea being that if rapid local fluctuations are filtered out,
the remaining trend will be towards a more global minimum. The effective learning rate,

n, can then be made larger without divergent oscillations occuring.

Each unit in the intermediate layer receives only a portion of the total error signal, based
roughly on the relative contribution the unit made to the original output. This process
repeats itself, layer by layer, until each node in the network has received an error signal
that describes its relative contribution to the total error. Each hidden unit then calculates
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the weighted sum of the backpropagated errors to find its indirect contribution to the
known output errors. After the error value is calculated for each output node and hidden
node, the network adjusts its weights to reduce its contribution to the total output error.
For a more complete treatment of backpropagation see Wasserman [1990).

3.5 NETWORK TESTING

Resulits that are measured with the training data say very little about the ANN’s reliability
in the application. The only way to determine if an ANN is useful is if it produces
appropriate results with data that was not used to train it. Measuring the generalization
ability of the network requires testing the network with an independant set of data (i.e.
data that was not used in training). The main objective of testing is to determine how the
network performs on data it has not seen before. This step is often called the verification
stage in conventional model building. Testing is a process for measuring an ANNs
performance during which the network passes through an independant data set to calculate
a performance index, such as the mean squared error (MSE), without changing the
weights. The real objective during training is the test-set, not training-set, accuracy.
Testing alternated with training is a good way to monitor the network performance and it
shows when to end training to prevent memorization of the data, also called overtraining.
A technique used to prevent overtraining is to stop when the mean-squared-error yielded
by the testing set stops improving.

Test-set and training-set mean squared error both typically fall rapidly at the start of the
training phase as the network moves its weights away from their random initial positions.
As the training progresses, both the training-set and test-set error curves become flatter.
Typically, training-set error continues to decline, but test-set error eventually begins to
increase as shown in Figure 3.7. This type of behavior shows that the network has
stopped learning what the training patterns have in common with the test patterns and has
started to memorize meaningless differences. This overfitting of the training data,
sometimes called overtraining, is caused by the network memorizing the noise in the
training data. When a network is overtrained, it performs very well on the training data
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but loses its ability to generalize on the test data. Therefore, for best generalization,
training should stop when test-set mean-squared error reaches its lowest point. Training is
therefore an iterative process: the trainer tries a configuation (number of hidden layers and
nodes), evaluates the result (based on MSE), makes a change in the node configuration
and parameters, and tries it again until satisfied with the result. There is an optimum
number of hidden nodes producing the smallest error, with larger and smaller numbers of
hidden nodes both producing larger errors. It is the experience of Masters [1993] that
suprisingly few hidden nodes are usually needed. Monitoring error measured with a
separate test set while varying the number of hidden nodes is a key strategy for optimizing
architecture for performance with BP training.

«——Test set

Mean-squared error

<«— Training set
Residual test-set enor

<=

Epochs
Figure 3.7. Training-set/Test-set error (Hammerstrom, 1993)

This trial-and-error process has hampered neural network development in the past,
because it has often been impractical to try all possible node configurations and training
parameters. There are many commercially available softwares, hardware, or combination
thereof that use systematic methods to configure, train, and test ANNSs to agree with the
data. This makes the ANN technology more feasible for application to real-life problems.

The network architecture (three fully connected layers) and the BP learning algorithm
mentioned in the preceeding sections provide a general idea about artificial neural
networks and the most popular Backpropagation training algorithm. Not all of the details
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mentioned above apply to all ANNs. Architectural elements such as layers, nodes,
connections and weights are universal, but the arrangements between them vary. Some
networks lack a hidden layer, and others have two or more. Some networks include nodes
that feed back to earlier nodes (i.e. not feed-forward), connections that skip layers, and
layers that are only partially connected. The learning algorithms controlling the updating
of connection weights also vary for different ANN structures (i.e. the three-layer feed
forward network descibed earlier might not use Backpropagation as its training algorithm
and likewise, the Backpropagation algorithm might appear in network structures other
than feed-forward networks as described in Freeman and Skapura [1991], Hertz et al.
[1991], Valluru and Halagriva [1993] and Wasserman [1989]).

3.6 ANN MODEL DEVELOPMENT

Designing an ANN can be as simple as selecting a commercially available software
package and configuring it to agree with the data or as complex as coding a fully custom
network from scratch - an approach beyond the scope of this research. The intended
research concentrates on the application of ANNs for streamflow forecasting and not on
the improvement or development of algorithms used in training ANNs. For this reason,
conventional ANN model development (using Pascal, Fortran or C code) was not used as
readily available commercial software packages, that have built-in training algorithms, can
save time. The time saved on programming can be spent on preprocessing data and
deciding which variables are driving the underlying process being modelled. Furthermore,
this data analysis will help decide which variables to include as network inputs. Braincel™
[Promised Land Technologies, 1993] is the software that will be used to implement the
ANN s in this research and will be discussed, in more detail in the case study chapter.
Braincel™ is an Excel™ spreadsheet add-on program that is embedded in an Excel™
worksheet. Having the power and flexibility of the spreadsheet environment greatly
enhances the power of neural network software. Braincel™ allows the user to fully access
the formulas, functions, printing, and graphing facilities of the Excel™ spreadsheet
environment. For these reasons, Braincel™ was the chosen software to be used in this
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research. Hammerstrom [1993] gives a breakdown and comparison of ANN software
packages currently on the market.

3.7 BRAINCEL (ANN tool)

Braincel™ is one of the many readily available commercial ANN software packages on the
market and as mentioned in chapter 3, is the software that was used to implement the
ANNS in this research. Braincel™ is an Excel™ spreadsheet add-on program that is
embedded in an Excel™ worksheet. The power of this ANN software is greatly enhanced
by having the power and flexibility of the spreadsheet environment. Braincel™ allows the
user to fully access the formulas, functions, printing, and graphing facilities of the Excel™
spreadsheet environment.

“Braincel™ is great for forecasting and building expertise. In regards to
Jorecasting, it is great at looking for relationships within data. Braincel™
should not be used when the formulas for a decision are already known
and are fairly static. Instead, it should be used to solve problems for
which it is difficult to formulate a procedural software solution or if the
procedure is likely to change frequently. Braincel™ is an excellent tool

Jor making discoveries in engineering and scientific disciplines”.

.. ... Promised Land Technologies, [1993].

Braincel™ uses the hyperbolic tangent as its transfer function and a variation of the
backpropagation algorithm, called backpercolation (developed by Mark Jurik of JURIK
RESEARCH AND CONSULTING), as its built-in training algorithm. This software
allows the user to configure the number of nodes in both the input and output layers as
well as configuring the number of hidden nodes in up to 7 hidden layers. The software
automatically scales the input/output data sets as per the requirements of the transfer
function used in the network. The only thing left to be automated by the user is how the
network is to be trained and tested. The training and testing process can be automated by
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Braincel™ in three ways:1) Auto Expert Mode; 2) Automated Best Net Search; and 3)
train on unseen data in Professional User Mode.

3.7.1 Auto Expert User Mode

The Auto Expert Mode is the simplest of the three training modes available in Braincel™.
In this mode, the user specifies the input/output structure, the hidden layer(s) structure
and the data to be used for training and testing. The user then sets a timer to specify a
time limit that the network is allowed to train for. In this mode, the user is not given much
control over the parameters that affect training such as; randomization of initial connection
weights (default value used in this training mode is +1.5) and leaming rate ().

3.7.2 Automated Best Net Search

In this mode, Braincel™ will automatically search out the best node configuration and
weight randomization in a single hidden layer. Best Net will try out many initial
randomizations of weights (between $0.1, +0.5 and +1.5) and hidden nodes. For example,
if the user wanted the Best Net to check between 1 and 5 hidden nodes, the following
steps would be taken:

Step 1: Check 1 hidden node with connection weights initialized between +0.1. This
sequence would be repeated 4 or 5 times before moving to the next step.

Step 2: Check 1 hidden node with connection weights initialized between 30.5. This
sequence would be repeated 4 or 5 times before moving to the next step.

Step 3: Check 1 hidden node with connection weights initialized between +1.5. This
sequence would be repeated 4 or 5 times before moving on to the next step,
which would be to repeated steps 1 through 3 using 2 hidden nodes. These three
steps would be repeated until all five hidden nodes were checked.

It is very easy for gradient algorithms to get stuck in local minima when learning
feedforward network weights.  Chakraborty et al. [1992] states that since
backpropagation is a gradient-descent optimization technique, training a network may
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result in its sinking into a local minimum that may be far removed from the global one.
Hertz et al. [1991] suggest conducting several training runs for each network and states
that...

“we should atways repeat the learning process from several different
starting positions on the error surface. It is criminally reckless to use just
one starting-weight configuration, assuming that the minimum to which it
leads is the best that we cando”.

This is exactly what the Best Net search is trying to accomplish by initializing weights
between say 0.1 in Step 1, and then repeatedly setting the initial weights between $0.1
before moving on to Step 2.

The objective of the Best Net Search is to minimize the error on the data used for testing
the network. It checks several, but not every, possible combination of hidden nodes and
weights within the parameters set, before selecting another. Because this can take a ot of
time, Braincel™ uses a smart algorithm to converge on likely combinations of hidden
nodes and weights. Still, the larger the range of hidden nodes specified, the longer it’s
going to take. Promised Land Technologies [1993] suggest setting Best Net on one
possible architecture at a time (i.e. select the same number as the minimum and maximum
hidden nodes to be checked). By doing this, the Best Net will just experiment with initial
weight randomization. When the Best Net search is finished, the optimum network is
automatically saved and a message describing the optimum number of hidden nodes and
initial weight randomization it has determined, is displayed.

One of the drawbacks to using the Best Net approach is that it only tests with one hidden
layer. Some problems require two or more layers, but as was mentioned back in chapter
three, these problems are quite rare. The Best Net also provides the user with a “Leave
Out Analysis”. The Leave Out Analysis charts relative importance of inputs to the
outputs and is used to; 1) give an indication of which variables are driving the underlying
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function you are trying to approximate, and 2) which variables are of no importance and

can be left out, for best training. Promised Land Technologies [1993] states that...

“this ranking is not foolproof; it calculates which inputs are most sensitive
in some parts of their range. Inputs that are steady throughout their
range are undervalued with this method”".

3.7.3 Professional User Mode

Professional User mode is designed for experienced users of neural networks. In this
mode, the user is able to gain manual access to many more parameters that make up the
network such as the learning rate (n) and the number of training cycles. In this mode, the
user is responsible for a lot more of the parameters that affect how the network trains
itself. Professional User Mode allows the user to manipulate several parameters of the
neural network during training: displaying error on unseen data (test data) rather than on
training data, counting training cycles rather than time (as in Auto Expert User Mode),
monitoring and changing the learning rate, recording training history, and displaying an
error chart while training progresses. To avoid overtraining or memorization of the data,
the Professional User Mode has an Autostop feature that allows Braincel™ to stop
training when the error on the unseen (test) data stops descending and begins to increase

or reaches a plateau.
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CHAPTER 4

4 CASE STUDY APPLICATION

4.1 GENERAL

In this chapter, the use of ANNS for the real-time forecasting of streamflow in a portion of
the Winnipeg River Basin located in Northwestern Ontario, Canada, will be described.
This involves first separating the available data into a training set and a testing set.
Through an iterative process of training and testing the ANNs, the best network
configuration (number of input and output nodes, number of hidden layers and the number
of nodes per hidden layer) is determined.

4.2 DESCRIPTION OF TEST LOCATION

The majority of the Winnipeg River Basin is located in the Precambrian Shield region of
Northwestern Ontario with parts of the watershed entering Southeastern Manitoba. The
Rainy River local drainage area, located in the Northeastern tip of Minnesota, is the only
subwatershed, within the Winnipeg River Basin, that lies outside of the Precambrian
Shield region. A map showing the location of the Winnipeg River Basin is shown in
Figure 4.1. The Winnipeg River and its main tributary, the English River, constitute an
enormous water resource, with a drainage area of approximately 150,000 square
kilometers. There are more than 100 major lakes and rivers in the system, with a
combined surface area of over 11 400 square kilometers [Acres International Ltd., 1993).
For this reason, The Lake of the Woods Control Board (LWCB) was formed in 1919 and
is one of several boards responsible for managing water in the Winnipeg River drainage
basin. All runoff from the basin eventually makes its way down the Winnipeg River,
spilling into Lake Winnipeg and then emptying into Hudson Bay. There are five regulated
lakes in the Winnipeg River Basin (Lake St. Joseph, Lac Seul, Namakan Lake, Rainy Lake
and Lake of the Woods) as shown in Figure 4.1. The basin consists of heavy woodlands,
and countless lakes, rivers, swamps and waterfalls, thin soil and frequent rock outcrops
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except for the portion of the basin that is in the state of Minnesota. This portion of the

watershed has physiography and soil types that are very different from the rest of the
basin.
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Figure 4.1. Winnipeg River Basin (LWCB brochure, 1994)
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The basin consists of scattered settled areas that include many rural and recreation-
oriented towns that are very active during the summer months. A significant portion of
the economic base of the Winnipeg River Basin is closely tied to the water resources of
the area. The area has a great diversity of water resource use in combining industrial,
commercial, and recreational interests. Mineral and timber resources are still important
elements of the local economy as evidenced by natural resource-based industries such as
mining and pulp and paper. Tourism is 8 major industry in the region along with sport
fishing and other outdoor recreational activities. The importance of water resources to the
local economy has led to considerable concern regarding the proper management of the

basin’s water resources.

Specific to water resources concems, serious flooding has been reported on the English
River in the past with record-breaking water levels during 1992. In addition to flooding
on the tributary rivers, two of the five major regulated lakes (Lac Seul and Lake of the
Woods) have experienced problems during both high flow years, when flooding has
resulted, and low flow years, when summer operating levels have not been reached on the
lake. The problem of determining the optimal operating policy for the outlet controls in
the Winnipeg River Basin has received much attention by the Lake of the Woods Control
Board (LWCB) due to the economic importance of the five major lakes to the surrounding
region, as discussed above.

The management of the Winnipeg River Basin system is particularly difficult due to
interests in control of flooding, water based recreational activities, hydroelectric power
generation, agriculture, and municipal and industrial water supply. Directing the operation
of large lakes requires monitoring and forecasting basin conditions, planning regulation
strategies, consulting with affected parties and providing public information. The
unpredictability and variability of natural inflows, into the five major lakes, can make the
LWCB’s job extremely challenging. Since this research only focused on forecasting
natural inflows, it was decided to model only the local inflow to one of these five lakes.
The most upstream lake in the watershed, Namakan Lake, was chosen as the test location
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in this case study. The Namakan Lake subwatershed has a drainage area of approximately
19 270 square kilometers. Figure 42 shows a schematic representation of the
subwatershed and the locations of the control dams, water level, flow level and
precipitation gauges. The information obtained from forecasted local inflows, into
Namakan Lake, could be used to assist in modifications made to the normal operating
procedure of the Namakan Lake subwatershed.

LEGEND
Cantrol dams =
Water level and flow gauges -
Preciprtation gauges 7

Figure 4.2. Namakan Lake Subwatershed (LWCB brochure, 1994)
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4.3 WINNIPEG FLOW FORECASTING SYSTEM (WIFFS)

The LWCB is currently implementing a comprehensive water management model called
the Acres Reservoir Simulation Program (ARSP), for reservoir operations in the basin.
The robustness of this model is very important for proper management of the system.
Forecasts of natural inflow for the next few quarter-monthly time intervals is of
considerable value in using the ARSP model [Acres International Ltd., 1993]. The
definition of quarter-monthly time steps adopted by the Lake of the Woods Secretariat and
used in the Winnipeg Flow Forecasting System (WIFFS) model includes four time steps
each month. The first time step includes 8 days, the second and third 7 days, and the
fourth has the remaining days in the month [Lake of the Woods Control Board (LWCB),
1994]. This particular breakdown of periods translates into 48 periods per year. The
WIFFS model was developed by ACRES International of Niagara Falls, Ontario, to
estimate these quarter-monthly natural inflows into the major lakes in the system. The
WIFFS model served as the comparison tool to the ANN method.

4.3.1 Model Type

There are a number of watershed models that have been developed and applied to
operational forecasting. Most of these models (e.g. the Streamflow Synthesis and
Reservoir Regulation (SSARR) model, developed by the US Corps of Engineers; and the
Hydrologic Simulation Program - Fortran version (HPSF) developed by the Hydrocomp
Incorporated) were initially developed for simulation purposes and are referred to herein
as conventional watershed models. Other more recent watershed models, such as
stochastic-deterministic models, were primarily developed for forecasting purposes.
WIFFS is a model of the second type. This watershed model contains three basic

components as shown in Figure 4.3. These include:

)] water input generation model;
(ii)  abstraction or loss model; and
(ii) distribution or watershed model.
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Figure 4.3. Components of WIFFS Model

The water input generation component includes a procedure to calculate rainfall and
snowmelt water input to the watershed, based on the meteorological data. The
abstractions model estimates the portion of the water input that does not infiltrate into the
ground but rather becomes runoff. This runoff is commonly referred to as effective or
direct water input. The watershed routing component of the model routes this effective
water input through the watershed. In stochastic-deterministic watershed models (as in
the WIFFS model) the persistence properties of streamflow and the covariance
(correlation structure) between streamflow and water input are modelled using
multivariate time-series models. In stochastic-deterministic models, the basic assumption
according to Acres International Ltd. {1993], is that the forecasted flow can be considered
to be the sum of a deterministic component and a stochastic component (noise model).
The deterministic component of the model relates the current flow to past flows and
curtent and past water inputs. The stochastic component (noise model) is included in
recognition of the fact that forecast errors do occur and that these errors have some
autocorrelation structure. For a more detailed description of each of the three
components of the WIFFS model, the reader is referred to the report by Acres
International Ltd. [1993] entitled “Winnipeg River Basin Flow Forecast Model
Development”.



4.3.2 Model Inputs

The WIFFS model employs 2 mixed time step, that is, precipitation and snowmelt water
input is calculated using a daily time step and daily precipitation and temperature are
required. Quarter-monthly effective water input is then calculated from the daily effective
water input. The stochastic-deterministic watershed routing models use a quarter-monthly
time step and quarter-monthly average local inflow is required.

The inputs to the WIFFS model are as follows:

-  Period “now”, P(1), this is the period before the first forecast period.

- Forecast lead-time, is the number of periods from Period “now” for which forecasts
are calculated.

- Historical Meteorological inputs, complete daily precipitation and temperature data
for Period “now” and the previous seven periods for Namakan Lake. The number of
previous periods of meteorological data required may differ for each subwatershed.

- Forecasted Meteorological inputs, an inference of future daily precipitation and
temperature inputs. The WIFFS model includes two options for creating future
meteorological inputs, i.e. probabilistic and manual entry of forecasts. Probabilistic
creations of future meteorological inputs involve choosing a percentile of distribution
to be used as the forecast and manual entry involves picking an actual value and
entering it as the forecasted number. For purposes of this research (to make
comparisons between modelling approaches easier) the probabilistic method, with the
50™ percentile of distribution, was used in developing these future meteorological
inputs. A more detailed discussion on this probabilistic method used to construct the
future precipitation and temperature sequences can be found in LWCB [1994], and
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- Historical flows; quarter monthly flow data for Period “now”, P(t), and the previous
seven periods for Namakan Lake. Again, the number of previous periods of flow data
required may differ for each subwatershed.

The outputs from the WIFFS model are as follows:

-  Streamflow (1+1, 2, 3 or 4); One, two, three or four week(s)-in-advance forecast of
local inflow. For the remainder of the thesis, each time period will be referred to as a
“week”, even though each quarter-month period is not comprised of seven days.

4.3.3 Available Data and Resources

The Water Survey of Canada (WSC) has operated hydrometric gauging stations for a
number of sites in the Winnipeg River Basin. The locations of the six WSC gauges in the
Namakan Lake subwatershed, for which there are flow records available, are shown in
Figure 4.2. LWCB has, in recent years, developed an extensive network of data collection
platforms (DCPs) making some of the meteorological data available in real time. The
three stations that have historical meteorological data, in the Namakan Lake
subwatershed, are shown in Figure 4.2 along with the two stations (Winton and Gunflint)
that have the data available in real-time. Basin average precipitation was estimated for
each subwatershed using 3 to 6 selected records from stations with historic and real-time
data. Thiessen’s polygon method was used to determine the weighting coefficients for
each record. The stations and coeflicients used for each subwatershed are summarized in
the report by Acres International Lid. [1993]. There were twenty-nine years of available
data from 1960-1988 for the Namakan Lake subwatershed. This data included average
daily precipitation and temperature values as well as average weekly streamflow values.
The historical data for Namakan Lake can be found in Appendix A.

The stochastic-deterministic watershed model (WIFFS) was calibrated by Acres
International Ltd. [1993] for each subwatershed using daily precipitation and temperature
data and quarter-monthly average flow data. Data from the period 1965 to 1985 were
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used for model calibration, and the available data before 1965 and after 1985 were set
aside for model verification purposes LWCB [1994]. It should be noted that the WIFFS
model was not run as part of this research. Rather, the resuits (R M.S.E) already
compiled by Acres International Ltd. [1993] were used for comparison with the results
from the ANN technology.

44 TYPES OF MODEL COMPARISONS

As mentioned earlier in chapter one, the ultimate evaluation of the ANN model came
through a comparison of the network model with a traditional forecasting tool (WIFFS).
The two modelling approaches will be compared not only in terms of the accuracy of the
forecasting results but also in terms of the ease of use of the two approaches. The
following two sets of experiments were performed in this study.

4.4.1 Experiment #1

In the first experiment, an ANN model was produced to give a fair comparison between
the forecasting accuracy of the WIFFS model and that of the ANN technology. This was
done by providing the ANN with the same inputs that were used in the development of the
WIFFS model. The ANN model was then trained and tested on the same sets of data that
were used to calibrate and verify the WIFFS model respectively. In this experiment, the
ANN made use of all 29 years of data from 1960-1988, as did the WIFFS model.

4.4.2 Experiment #2

In the second experiment, an ANN that was not restricted to the input variables used in
the WIFFS model, was built. Using too many inputs can excessively complicate the
model, whereas using too few inputs can result in inadequate modelling. In the context of
ANNs, Chakraborty et al. {1992] indicate that too many inputs would imply slower
training and slower convergence and may in fact worsen the generalization capabilities
(applicability to test cases) of the network. The purpose of the second experiment (called
experiment #2.2) was to build an “optimum™ ANN. This “optimum” network involved a
smaller number of inputs (i.e. only inputs that were being used to describe the underlying
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process being modelled), thus reducing training times, yet still remain as accurate if not
more accurate than the ANN model built in experiment #1. This was done using some of
the same inputs as in WIFFS and investigating the use of some new, additional inputs, that
were not used in the WIFFS model. In this experiment, part of the data (from period 33
of 1983 to period 33 of 1984) had to be eliminated from the data set. The reason for
doing this was that it appeared the actual measured data was missing. This missing data
appeared to be artificially filled-in for purposes of keeping the time-series continuous.
Therefore, to obtain a proper comparison between the accuracy of the ANN developed in
experiment #1 and that developed in experiment #2, these data were eliminated and
experiment #1 was redone and called experiment #2.1. The ANN model was then trained
and tested on the same sets of data that remained to calibrate and verify the WIFFS model

respectively.

4.5 TIME-SERIES FLOW FORECASTING USING ANNs

4.5.1 Single Predictor

Any neural network that is capable of accepting real-valued vectors as input and
producing real-valued vectors as outputs may be used for time-series prediction. For now,
we will assume the simplest possible structure (using lags of one particular variable as
inputs to the network). The ANN is 2 black box having one or more inputs and exacrly
one output. We are attempting to predict one point ahead in a single time-series.
Extensions to this simple structure will be discussed later. A typical mapping of a time-
series to an ANN for prediction is outlined in Figure 4 4. This schematic demonstrates the
use of six continuous points (of a single variable) in a time-series to predict the next point.
The training series is produced by generating a large number of individual samples. Each
sample consists of seven points: the current point (lag 0), five historical points (lags 1
through 5), and the following point (often called the target output), which is used to direct
the training of the output neuron. It is possible to make use of more than one variable
along with their lags as well. As can be seen, the training set can become very large.
Figure 4.4 shows the prediction to be exactly one point into the future. Many times, as in
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the case of this research, we need to predict further out than just one point. Multiple
predictions fiom one network are possible, but are generally best avoided. Hertz ef al.
[1991] state that, it is best to limit a network to having to make only one lead prediction,
whether that lead is one point into the future or one hundred points into the future.
Although most networks can easily accommodate multiple outputs, Hertz et al. [1991]
state it is better not to try to train multiple outputs to learn different lead predictions.
Instead, train separate networks for each lead-time. In other words, a network shouid not
be designed with two outputs, training one of the outputs to predict one point ahead, and
the other output to predict one hundred points ahead. Instead, two separate networks can

be used.
O Learning
-

i

ANN

o
O O O O O O

A

Lag5 Lag4 Lag3 Lag2 Lagl Lag0  Predicted

Figure 4.4. Univariate time-series prediction model.

4.5.2 Muitiple Predictors Series

The most basic time-series predictions use lags from a single-variable time-series as the
predictors, as discussed in the previous section. If needed, this can be extended to
multiple time-series of multiple variables as shown below in Figure 4.5. Figure 4.5
demonstrates the use of three lags of three different variables, Var;; , where i corresponds
to the variable type and j corresponds to the lag of that variable type. The lags of these
three variables create three separate time-series to predict the next point of Var;. Again,



49

the training series is produced by generating a large number of individual samples. In this
case, each sample consists of ten points (9 inputs and 1 output). The inputs are the
current point (lag 0) of all three variable types and two historical points (lags 1 and 2) of
all three variable types. The output is the following point (often called the target output)
of the variables being predicted, which is used to direct the training of the output neuron.

Var, , —‘—’O .
Var,, — O —_—
Var 12 —> O —_—
Var,, ——'O —

Varz,, ——-rO — ANN |

Learning

Predicted ——-(}

Figure 4.5. Multivariate time-series prediction model.

The inputs to a time-series prediction model serve as information about the underlying
relationship being modelled. This input information need not be limited to measured
values. It is generally agreed [Hertz et al., 1991] that, inputs that provide the network
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with information about the underlying process being modelled, and are not restricted to
time domains, are referred to as “identifying” information. An example of identifying
information is in the recent work by Ramesh and Mujumdar [1996]. They used the
“period of the year” as an input to their neural network for a 10 day ahead forecast of
rainfall. The addition of this “identifying” information proved to be extremely useful in
letting the neural network know what season of the year the current time step was in.
This type of information is not easily incorporated into a single, traditional ARMA model.

Instead, separate ARMA models must be developed for each season of the year. It is
important to remember that the guideline for neural network data is that if it is not clear
whether a particular input variable will be of much use to the network, it should be
included so that the network can decide what is important and what is not. It is important
to note that the more inputs variables fed to the network, the more connection weights
between neurons which result in a more complex error surface and ultimately longer

training times.

4.6 ANN MODEL IDENTIFICATION

In both experiments, a multivariate time-series model was derived for the output Flow,., ;
i =1,2,3, and 4 The data used are total weekly precipitation, average weekly
temperature and average weekly -streamflow over the period from January 1, 1960 to
December 31, 1988 obtained from Acres International Ltd. [1993). In all cases, the
networks were trained over a certain part of the data (1965-1985) and once training was
complete, the networks were tested over the remaining data (1960-64 and 1986-88), i.e.
to make the network predict the so-called “future values”.

4.6.1 Experiment#1

The number of input and output variables used in the ANN model were fixed to match
those used in the WIFFS model. These inputs included precipitation, temperature and
local inflow of the preceding weeks as well as rainfall and temperature of the examined
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week. For the one-week ahead forecast of local inflow, Flow(t+ 1), the model consisted of
the following 18 input variables in the time-series equation:

- past seven periods of weekly precipitation, P(@), P(t-1), ...., P(t-6).

- past seven periods of weekly temperature, 7@, T(z-1), ...., T(t-6).

- past two periods of local inflow, Flow(?) and Flow(t-1).

- one week ahead inference of the average weekly precipitation, P(t+1)=50" percentile,
and

- one week ahead inference of the average weekly temperature, T(t+7)=50" percentile.

The two week ahead forecast included an additional 3 inputs [P(r+2)= 50" percentile,
T(t+2)= 50" percentile, and Flow(t+1) calculated in the one-week ahead forecast] for a
total of 21 inputs and 1 output [Flow(t+2)]. The number of input/output variables for the
three and four week ahead forecasts followed the same sequence and included 24 inputs —
1 output and 27 inputs ~ 1 output, respectively.

All temperature values less than zero were set to zero before being submitted to the
network for training. This eliminated any negative numbers in the data which made
scaling of the data between O and 1 possible. The WIFFS model dealt with the
temperature values in a similar way by setting a base temperature between —1.8 °C and 0
°C.

Since the number of inputs (18) and outputs (1) for the one-week ahead forecast were
fixed to match those of the WIFFS model, the input layer consisted of 18 input nodes with
one node in the output layer. The only part of the network that remained to be configured
was the hidden layer(s). Cheng and Noguchi [1996] state there is no well-defined
algorithm for determining the optimal number of hidden layers and hidden nodes. Initial
forecasting results indicated that the problem of forecasting streamflow in this River Basin
could be accomplished with only one hidden layer. Networks were initially configured
with two hidden layers but improvement in forecasting results were only marginal if at all,
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with training times increasing from approximately ten minutes to approximately two
hours. Therefore, the ANNs created for modelling the rainfall-runoff transformation in
this subwatershed have been built considering a one-hidden layer ANN for each simulation
trial. The problem then became that of how many nodes would make up this single hidden
layer. Cheng and Noguchi [1996] indicate that selecting too many hidden neurons will
increase the training time but without significant improvement on training results.
Ranjithan et al. [1993] state that too many hidden neurons will encourage each hidden
neuron to memorize one of the input patterns, and thereby diminish the interpolation
(generalization) capabilities. Taking too few hidden neurons will decrease the training
times but will restrict the network from generalizing on new data (test data) and therefore
reduce the accuracy of prediction. Guidance as to how many hidden-layer nodes should
be used is given by several authors. A number of these guidelines [Baum and Haussler,
1989; Weigend et al., 1990] relate network size to the number of training samples
available. However, as pointed out by Chakraborty et al., [1992] such methods are too
restrictive when a small number of training samples is available. Hecht-Nielsen [1987]
suggests an upper limit of 2/+1 hidden layer nodes, where / is the number of inputs.
However, in many practical applications, the number of hidden layer nodes was found to
be considerably less [e.g. DeSiltes et al., 1992]. Maren et al. [1990] indicate that for
many applications, the optimum number of hidden layer nodes has been found to be less
than the number of inputs. Ranjithan et al. [1993] state that the general practice is to
determine the number of intermediate units by trial-and-error based on a total error
criterion. However, several adaptive approaches have been recently reported by Hirose et
al. [1991] and Karnin [1990]. These methods automatically add or remove intermediate
nodes, driven by a total error criterion, during the training process. These approaches
have been shown to be more efficient than the trial-and-error procedures but require these
algorithms to be manually coded into a program. This process is beyond the scope of this
research and the trial-and-error process was used. Therefore, training was done on ANNs
with hidden layer nodes varying from 1 to 30.
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[nitial experimentation with the Braince™ software indicated that the Automated Best Net
Search would be the easiest to implement and would also produce more accurate results
than those produced by the Professional User Mode and the Auto Expert User Mode.
After reviewing the current literature, it became obvious that the most common
mathematical means of measuring the effectiveness of each network structure was the
Mean Squared Error (MSE). Therefore, the MSE was calculated and monitored for both
the training and test sets of each network configuration. The systematic approach used in
experiment #1 to identify the optimum hidden layer structure was as follows;

Step 1: Set the minimum and maximum number of hidden nodes to be checked by the
Automated Best Net Search to 1 and 5 respectively.

Step 2: Let the network self-train to completion and record the MSE for both the training
set and testing set data.

Step 3: Repeat steps 1 and 2 by increasing the minimum and maximum number of hidden
nodes to be checked, by 5 nodes respectively. Repeat steps 1 and 2 until the
network has checked a hidden layer structure consisting of up to 30 hidden

nodes.

Step 4: Plot the number of hidden nodes versus both the MSE(test) and MSE(train) as
shown below in Figure 4.6.

The network with the lowest MSE (test) is termed the best network because it is the one
that performs the best at generalizing on new data. Figure 4.6 indicates that the error of
the training set decreases gradually with an increasing number of intermediate units.
Further, the error predictions for the test set decreases initially but tends to increase after
reaching a minimum. These observations indicate that although the training process
becomes progressively easier, the generalization capabilities of the network reaches an
optimum and does not improve indefinitely with an increasing number of intermediate
nodes. This suggests that, for the one-week ahead forecast, networks with greater than 17
hidden nodes are oversized for the given multivariate data and a network with a single
hidden layer consisting of 17 hidden nodes is suitable for prediction. This model structure
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is represented by the notation ANNp.y (i, my, n,), where n; is the number of nodes in the
input layer, ny is the number of nodes in the hidden layer, and n, is the number of nodes in
the output layer (n, = | in our case). Therefore, the optimum ANN structure for the one-
week ahead forecast is presented as ANN (18, 17, 1). The optimum ANN structure for
the two, three, and four-week ahead forecasts were as follows, ANN,(2l, 9, I),
ANN;(24, 24, 1), and ANN(27, 18, 1).

-—o—MSE (Test)
2500 ] -.-Msacrmm) *—
p—
[ ]
<, 2000 - ./
g ]
< 1500 /
= i —— ———t
[ ] .\
g 1000 ———
500
0 RY 14 b b 1 Rl

12 13 14 15 16 17 18 19 20 30
Number of nodes in hidden layer

Figure 4.6. Experiment #1, Variation of MSE for (1) training set and (2) testing set, with
the number of hidden nodes for the one-week ahead forecast.

4.6.2 Experiment #2

After training the initial model in experiment #1 with the same inputs used in the WIFFS
model, two new inputs were added to the data set. These additional inputs, referred to as
“identifying information”, proved to be helpful in training the network. The first of these
two inputs was the “period of the year”, Period(t+1), of the one-week ahead forecast.
This input provided the network with information on which season the forecast was being
made in. The second of the two inputs was the cumulative precipitation from November
1* to the time of the current period of the year, Cprecip(t), up to April 1*. This input

represented a measure of the amount of snowpack that accumulates over the winter and
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adds to the spring runoff. This input was particularly helpful in accurately forecasting the
rising limb of the hydrograph during the spring runoff periods. As in experiment #1, only
one hidden layer was used in the network with the problem again of how many nodes to
use in the hidden layer. In addition to determining the number of nodes in the hidden layer
was the problem of how many nodes should be used in the input layer. Inputs were not
being restricted to only those used in the WIFFS model and inputs that were not being
utilized by the network to learn the underlying function being modelled were eliminated.

With the additional two inputs added to the data set, a sensitivity analysis of all of the
input variables was carried out to determine the relative significance of each of the model
inputs. The aim of the sensitivity analysis was to delete those inputs that do not have a
significant effect on model performance. The software package used enables such
sensitivity analysis to be carried out. Plots of the sensitivity of the inputs can then be
inspected to determine which of the inputs can be deleted. No fixed level was used to
distinguish between significant and non-significant inputs. The sensitivities were used as a
guide to decide which inputs to retain and which to delete by applying some degree of

judgement.

The systematic approach used in experiment #2 to identify both the optimum input and
hidden layer structures were as follows;

Step 1: For the one-week ahead forecast, start with the original 18 inputs as in experiment
#1 and add the two new inputs Period(t+1) and Cprecip(t) for a total of 20
inputs. Again there is only one output from the network, Flow(t+ ). Therefore,
the input layer structure included 20 nodes and the output layer structure
included one node.

Step 2: Once the input/output structure was determined, the same systematic approach
that was used in experiment #1 was followed to determine the number of nodes
in the single hidden layer.

Step 3: Record the lowest MSE (test).
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Step 4: Using the “Leave Out Analysis™ available in the Braincel™ software, perform a
sensitivity analysis on the input data and eliminate input variables that are not
being used to learn the underlying process being modelled. Repeat steps |
through 4.

Step 5: Plot the number of inputs versus both the MSE(test) and MSE (train) as shown in

Figure 4.7.
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Figure 4.7. Experiment #2.2, Variation of MSE for (1) training set and (2) testing set,
with the number of inputs - for the one-week ahead forecast.

The network with the lowest MSE(test) is termed the optimum network because it is the
one that performs the best at generalizing on new data with fewer inputs than were used in
experiment #1. It was found that there was no special advantage in taking into account
more than, at most, the data of the previous four periods from the week being forecasted.

The optimum network consisted of 10 inputs variables in the input layer.

For the one-week ahead forecast of local inflow, Flow(t+ [), the ANN model consisted of

the following 10 input variables:
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- “period of the year” of the one-week ahead forecast, Period (t+1)

- past three periods of weekly precipitation, P(), P(t-1), P(t-2).

-~ cumulative precipitation since November 1* to the period of the forecast, Cprecip(i).
- past week of average temperature, (7).

- past four periods of average weekly local inflow, Flow(), Flow(t-1), ...., Flow(t-3).

Both the “One-lag” and “Multi-lag” output predictions for the test samples are done with
the given model structure. In the “One-lag” prediction, forecast of streamflow for each
week are made based only on actual past values. The benefit of the optimum network
configured in experiment #2.2 (for the one-week ahead forecast) is that the forecaster
does not need to make an inference on the future weekly precipitation and average weekly
temperature as was needed in experiment #1. All data used in the network for the one-
week ahead forecast is historical data. In “Multi-lag” predictions, on the other hand, the
50" percentiles were used as predicted values of precipitation and temperature and
previous forecasted streamflows from the neural networks were used as predicted values
for streamflow. These values were appended to the database and used to predict future
streamflow values. For instance, if a single prediction network is used to predict a value
ns from the observed input data i; ,....., is, then the next network prediction »; is made
using inputs i, ....., is, ns , and the subsequent network prediction 7, is made using inputs
i3, Is, Is, N, n;. With the “One-lag” prediction, on the other hand, the prediction at the
eighth instant is made using only the actual input data values i3, i¢, /s, is, i>.

The network for a one-week ahead forecast consisted of 17 hidden neurons and is
represented as ANN;(10, 17, 1). Similar simulations were conducted to determine the
hidden node structure for the two, three and four week ahead forecasting networks and
are represented as follows; ANNx(10, 5, 1), ANNx(10, 7, 1), and ANN(10, 16, 1).
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CHAPTERSS

S RESULTS AND ANALYSIS

S§.1 RESULTS OF FLOW FORECASTING

In this chapter, the forecasting capability of the preferred ANN, as applied to the
Winnipeg River Basin, will be compared to historical values as well as results obtained
from a more traditional stochastic-deterministic forecasting model for a representative
range of hydrologic conditions.

5.1.1 Experiment #1

The results of forecasting using the ANN model (with the same inputs used in the WIFFS
model) on the test data are presented in Figures 5.1 through 5.4 for forecast lead times of
1, 2, 3, and 4 weeks respectively. Each of these figures are of the same format. These
graphs show the period of the year, P(t+ 1), the forecast was made, along the x-axis with a
comparison of both the historical and forecasted streamflows on the y-axis. Similar graphs
can be found in Appendix B for the training data set (1965-85). The results obtained for a
I-week forecast of Namakan Lake local inflow in 1960-64 and 1986-88 are shown in
Figure 5.1. The ANN seems to have had difficulty in forecasting the streamflow in period
36 of 1961. The historic precipitation and streamflow record (Appendix A) shows
approximately 140 mm of precipitation in period 34 and approximately 150 cms of
streamflow in period 36, both in the year of 1961. This forecasting error is probably due
to one of two types of problems in the data for that time period. The first possible
problem with the data is that the streamflow gauging station could have been misread,
indicating a lower streamflow than what actually occurred. The second possible problem
with the data is that the precipitation gauge could have been misread, indicating a higher
precipitation amount than what actually occurred. Furthermore, the forecast error for
period 36 of 1961 gets larger as the lead-time increases. This is expected because
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forecasts of larger lead-times rely heavily on inferences of future temperature,
precipitation and streamflow values.

The ANN model forecasts the magnitude and timing of both the summer peaks and the
smaller peaks which occur early and late in the year, quite well. Such peak flows were
detected in the 20 years used for training from 1965-85, so it is not surprising that the
model did well at forecasting them in 1960-64 and 1986-88. The results obtained for the
2, 3, and 4 week forecast of Namakan Lake local inflow in 1960-64 and 1986-88, are
shown in Figures 5.2-5.4. The ANN model forecasts the magnitude of the baseflow quite
well, but encounters some difficulty in forecasting the magnitude of the peak flows.
Generally, as the forecast lead-time grows from 2 to 4 weeks so does the forecast error.
This is expected since these forecasts are beginning to use inferences on the precipitation,
temperature and forecasted flow from the previous week(s).

The traditional scatter plots showing observed (historical) flows on the x-axis against the
forecasted flows from the ANN on the y-axis are displayed in Figures 5.5-8 for the test set
data. Similar graphs can be found in Appendix D for the training data set. In each of the
scatter plots a perfect forecast lies on the 45° line. Generally, the order of the figures
follows decreasing ANN performance. This is expected since forecasts with lead-times of
greater than a week rely heavily on forecasts of both meteorological conditions and
streamflows. Consequently, the practical limit to forecast lead-time is a function of the
basin lag-time and the accuracy and availability of weather forecasts [Acres, 1993]). The
current technology cannot provide forecasts of meteorological conditions beyond 3 to 5
days into the future and for a basin like Namakan Lake with a 7-day lag time, the forecast
lead-time would be limited to about 10 to 12 days. Forecasts with lead times beyond 10
or 12 days are largely probabilistic. This is why the one-week ahead forecasts are fairly
accurate while the two, three and four-week ahead forecasts generally worsen as the lead-
time increases.
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Figure 5.1. Best 1-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #1 ANN model.
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The one-week ahead forecast (Figure 5.5) falls relatively close to the 45 line except for
three points. These three points are most likely problems with the input data (ie;
streamflow or precipitation gauging errors). [t is interesting to note that the flows below
200 cms tend to fall closer to the 45°. This illustrates that the ANN is very accurate at
forecasting baseflow values. As the flows increase above 200 cms, the forecasts tend to
diverge from the 45° line showing the difficulty the ANN has with larger, peakflow values.
As the lead-time increases from 1 through to 4 weeks, the forecasted flows tend to
increasingly diverge from the 45° line, especially for flows greater than 200 cms. This can

be seen by comparing the plots in Figures 5.6-8.
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Figure 58.5. Observed versus Best 1-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #1 ANN.
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Figure 5.6. Observed versus Best 2-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #1 ANN.
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Figure 5.7. Observed versus Best 3-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #1 ANN.
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Figure 5.8. Observed versus Best 4-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #1 ANN.

5.1.2 Experiment #2
Again, in the second experiment (#2.2), the ANN built was not restricted to the input

variables used in the WIFFS model and the data set had part of the data (from period 33
of 1983 to period 33 of 1984) eliminated. The results of experiment #2.2 using the ANN
on the test data are presented in Figures 5.9 through 5.12 for forecast lead-times of 1, 2,
3, and 4 weeks respectively. Each of the Figures 5.9-12 are of the same format. These
graphs show the period of the year, P(z+1), the forecast was made, along the x-axis with
a comparison of both the historical and forecasted streamflows on the y-axis. Similar
graphs can be found in Appendix C for the training data set. The traditional scatter plots
showing observed (historical) flows on the x-axis against the forecasted flows from the
ANN on the y-axis are displayed in Figures 5.13-16 for the test set data. Similar graphs
can be found in Appendix D for the training data set. In each of the graphs in Figures
5.13-16, a perfect forecast lies on the 45° line. Generally the order of figures follows
decreasing ANN performance. The following section quantitatively evaluates the data in

each of the figures in terms of the four performance measures discussed earlier.
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Figure 5.9. Best 1-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #2 ANN model.
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Figure 5.10. Best 2-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #2 ANN model.
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Figure 5.12. Best 4-week forecast of local inflow into Namakan Lake for 1960-64 & 1986-88 using the Exp. #2 ANN model.
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Figure 5.13. Observed versus Best [-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #2 ANN.
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Figure 5.14. Observed versus Best 2-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #2 ANN.
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Figure 5.15. Observed versus Best 3-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #2 ANN.
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Figure 5.16. Observed versus Best 4-week Forecast of local inflow to Namakan Lake for
1960-64 & 1986-88 using Exp. #2 ANN.
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5.2 COMPARISON OF RESULTS

In order to evaluate the results of forecasting the natural inflow into Namakan Lake
utilizing ANNS, an alternative forecasting model was employed for comparison purposes.
This model, as previously mentioned, was the WIFFS model developed by Acres
International L., [1993]

In order to quantify the relative merit of the two forecasting techniques, it was important
to determine appropriate mathematical means of measuring the effectiveness of each
method. The forecasting results were based on three evaluation measures. These
performance measures were computed separately for the ANN forecasts of the training
data and the independent events or testing data. These measures indicate how well the
ANN learned the events it was trained to recognize, and the degree to which each ANN
can generalize its training to forecast events not included in the training process. The
primary performance measure that compared the WIFFS model to the ANN model was i)

root-mean-squared error.

The three secondary performance measures that were used (only in experiment #2) to
compare the best ANN model against historical values were ii) forecast of total volume,
iii) forecast of peak flow magnitude, and iv) forecast of peak flow location. These four
performance measures are described below. Each of the three effectiveness measures
were calculated for the calibration set (1965-85) and each of the two veriﬁcaﬁon sets
(1960-64 and 1986-88).

i) The root mean squared error (RMSE) measures the residual variance; the optimal value
is 0.0. The RMSE of the forecast resuits was calculated by first squaring the difference
between the measured and forecasted values. The squared values were then summed
over all the forecasts in a given data set and divided by the number of forecasted values
in that data set. The square root of this final number was taken to produce the RMSE.
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if) The Percent Volume Error (% VE) statistic measures the percentage of the observed
volume that is captured under the predicted hydrographs, summed over the test period,
the best value is 100. The ability to forecast the total yearly volume of flow was
represented by the fraction of the measured yearly volume that was forecasted by the
ANN model. This value was calculated by taking the difference between the forecasted
and actual volume (Forecasted Value - Actual Value) dividing this difference by the
actual volume and adding this number to 100. This quantity will provide a utility
measure of the ANN forecasting technique for making predictions and could be used in
determining the optimal filling procedure to be pursued for Namakan Lake.

iii) The Percent Maximum Flow Magnitude (% MFM) statistic measures the percent error
in matching the maximum (peak) flow magnitude of the test set. The ability of the
ANN model to forecast the magnitude of the peak flow was measured by calculating
the difference between the forecasted and actual peak flow (Forecasted Value - Actual
Value) and dividing this difference by the actual peak flow. The resulting quantity,
multiplied by 100, is the percent error in forecasting the peak flow. The peak flow
was defined as the maximum flow in the year (i.e. one per year), for each of the eight
seasonal hydrographs in the test set. The best value is 0.0, indicating a perfect forecast
of peak flow magnitude. Positive percentages result when the ANN forecast is greater
than the actual value indicating an overestimation of the peak flow. Negative
percentages result when the ANN forecast is less than the actual peak value indicating
an underestimation of the peak flow.

iv) The Location of the Maximum Flow Magnitude (LMFM) statistic measures the error
in matching the location of the maximum (peak) flow magnitude of the test set. The
ability of the ANN model to forecast the location of the peak flow was measured by
calculating the difference between the forecasted peak location and the actual peak
location (Forecasted Peak Location - Actual Peak Location), where location refers to
the position on the time axis. Again, the best value is 0.0, indicating a perfect forecast
of the location of the peak flow. A positive number indicated the location of the
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forecasted peak lags behind the actual peak. A negative number indicates the location
of the forecasted peak is located before the actual peak.

The error in predicting the magnitude and location of the peak flow is a useful means
of determining the utility of the forecasting model for providing early warning of
potential flood events.

§5.2.1 Experiment #1

The ANN was able to train to a smaller RMSE than the WIFFS model in all of the four
forecast leads. The improvements in RMSE during the twenty-one training years ranged
from as little as 1 cms in the one-week lead to as much as 4.4 cms in the two-week lead.
The real test of the ANN was the comparison to the WIFFS model for the testing periods
from 1960-64 and 1986-88. The ANN was able to forecast to a smaller RMSE than the
WIFFS mode! in all four forecast leads in all eight years of test data. The improvements
in RMSE for the testing period from 1960-64 ranged from as little as 3.0 cms in the one-
week lead to as much as 10.2 cms in the four-week lead.

Table S.1. Root Mean Squared Forecast Error, Experiment #1

RMSE (m’/s)
Forecast
Period Lead (weeks) WIFFS ANN
Calibration 1 36.5 35.5
(1965-1985) 2 56.3 51.9
3 69.7 68.6
4 823 78.4
Verification 1 36.9 339
(1960-1964) 2 513 494
3 60.9 54.6
4 68.6 584
Verification 1 504 341
(1986-1988) 2 783 52.7
3 80.1 71.7
4 898 89.2
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The greatest improvement was seen in the 1986-88 test years where the improvement in
RMSE ranged from as little as 0.6 cms in the four-week lead to as much as 16.3 ¢ms in
the one-week lead. These results are summarized in Table 5.1 which lists the calculated
root mean squared error for both models (WIFFS and ANN) and each of the three data
sets (one calibration set and two verification sets).

5.2.2 Experiment #2

5.221 RMSE

The calculated root-mean-squared error for both models (ANN experiment #2.1 and ANN
experiment #2.2) and each of the three data sets is given in Table 5.2. Again, experiment
#2.1 was the ANN built with the same inputs as WIFFS with period 33 of 1983 through
period 33 of 1984 eliminated. Experiment #2.2 was the “optimal” ANN built with fewer
inputs than the WIFFS model and the same data eliminated as in experiment #2.1. The
“optimum™ ANN was able to train to a smaller RMSE than the ANN model trained in
experiment #1, in all of the four forecast leads

Table 5.2. Root Mean Squared Forecast Error, Experiment #2

RMSE (m’/s)
Forecast
Period Lead (weeks) ANN (exp. #2.1) ANN (exp. #2.2)
Calibration 1 36.5 35.3
(1965-1985) 2 55.1 48.4
3 64.4 56.5
4 759 68.4
Verification 1 343 339
(1960-1964) 2 472 49.0
3 56.5 55.5
4 61.0 62.2
Verification 1 33.5 30.0
(1986-1988) 2 588 53.7
3 772 70.9
4 94.0 86.0
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The improvements in RMSE during the 21 training years ranged from as little as 1.2 cms
in the one-week lead to as much as 7.9 cms in the three-week lead. The real test of the
optimum ANN was the comparison to the ANN model trained in experiment #2.1, for the
testing periods from 1960-64 and 1986-88. The optimum ANN was able to forecast to a
smaller RMSE than the ANN model trained in experiment #2.1, in all but two of the
forecast leads during the 8 years of test data. The improvements in RMSE for the testing
period from 1960-64 ranged from as little as 0.4 cms in the one-week lead to as much as
1.0 cms in the three-week lead. The RMSE in this test period worsened from the ANN
tested in experiment #2.1 by 1.8 cms and 1.2 cms in the 2-week and 4-week leads
respectively. The greatest improvement was seen in the 1986-88 test years where the
improvement in RMSE ranged from as little as 3.5 cms in the one-week lead to as much as
8.0 cms in the four-week lead. It is interesting to note that the overall RMSE for the
entire eight years of test data (for the one-week lead) was considerably less than that of
the WIFFS model (32.5 cms compared to 42.5 cms respectively).

5.2.2.2 Forecasted Total Yearly Volume

The results for the percentage of the forecasted total yearly volume, %VE, are given in
Table 5.3. The ANN model generally did a2 good job at forecasting the volume of flow
that could be expected in a given year.

Table S.3. Percent of Total Yearly Volume Forecasted, Experiment #2

Forecasted Volume (% of Actual)
Test Year Lag1l Lag2 Lag 3 Lagd4
1960 106.1 104.9 100.3 113.4
1961 101.2 1034 1054 106.4
1962 96.5 92.5 86.2 818
1963 100.8 980 96.7 102.2
1964 96.3 954 97.8 90.9
1986 100.5 983 9%.5 97.6
1987 1010 9.4 92.7 984
1988 98.7 94.5 84.9 82.4

Average 100.1 97.9 94.8 96.6
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For a lead-time of one week, the forecasted volumes ranged from an overprediction of 6.1
% to an underprediction of 3.7%. The average overprediction was 0.1%. For a lead-time
of two weeks, the forecasted volumes ranged from a 4.9% overprediction to a 7.5%
underprediction with an average underprediction of 2.1%. Three-week lead times
produced forecasted volumes ranging from a 54% overprediction to a 15.1%
underprediction with an average underprediction of 52%. Four-week lead times
produced forecasted volumes ranging from a 13.4% overprediction to a 18.2%
underprediction with an average underprediction of 3.4%. As expected, there was a
considerable range of observed errors in forecasting the total yearly volume within both
the eight years of test data as well as the four different lead times. It was encouraging
though, to see that the average total forecasted yearly volume only worsened by 5.3%
from a one-week ahead forecast to a three-week ahead forecast with forecasts made four
weeks ahead improving by 1.8% over the three-week ahead forecast.

5.2.2.3 Forecasted Peak Flow Magnitude

The results for the percent error in forecasting the maximum (peak) flow magnitude,
%MFM, are shown in Table 5.4. The ANN model performed well at forecasting both the
magnitude and location of the eight peak flows in the test set. However, there is a
considerable range of observed errors in forecasting the magnitude of the peak flow.

Table S.4. Percent Error in Forecast of Peak Flow Magnitude, Experiment #2

% Error in the Magnitude of Peak Flow

Test Year Lagl Lag 2 Lag3 Lagd_
1960 3.1 6.4 -16.3 1.7
1961 4.1 9.6 30 57
1962 -39 4.1 4.1 -84
1963 0.9 0.5 -19.5 -12.1
1964 -18.8 -17.0 -28.7 -29.6
1986 0.5 6.4 -1.8 -88
1987 «i.0 -2.9 2.9 89
1988 <48 <46 -14.6 «27.2

Avera&e 4.4 -1.3 -10.6 -12.6
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For a lead-time of one week, the forecasted peak flows ranged from an overprediction of
0.9% to an underprediction of 18.8% with an average underprediction of 4.4%. For a
lead-time of two weeks, the forecasted peak flows ranged from an overprediction of 9.6%
to an underprediction of 17% with an average underprediction of 1.3%. Three-week lead
times produced forecasted peak flows ranging from a 3% overprediction to a 28.7%
underprediction with an average underprediction of 10.6%. Four-week lead times
produced forecasted peak flows ranging from a 5.7% overprediction to a 29.6%
underprediction with an average underprediction of 12.6%. The year 1964 seemed to be
largely underpredicted for all lead times. This is perhaps due to one or perhaps both of the
following reasons. The peak flow in 1964 was approximately 612 cms which was almost
as large as the extreme flow of approximately 668 cms in 1977 used in the training of the
network. When the network scales the data the extreme low and high events are scaled
very close to zero and one respectively. When fed through the transfer function in the
hidden and output nodes, these values fall on the most linear portion of the curve and
therefore are not entirely being modelled in a nonlinear fashion. This is why the results
show that the ANN has a difficult time predicting the extreme high (e.g. peak of 1964) and
low events (e.g. periods 35-48 of 1960) in the test set. The second reason for the
underestimation of the 1964 peak flow could be that the 1963 peak flow was considerably
lower at approximately 298 cms. Peak flows for the first three years (1960-62) of the test
set were in the commonly higher flow ranges of approximately 400-500 cms. Then all of a
sudden the next year (1963) drops to below 300 cms and the year after that (1964) jumps
up past the 600 cms flow level. The ANN seems to have some trouble jumping from one
extreme event to another extreme event the following year. The ANN did not see this
type of situation in the training set and therefore cannot be expected to predict this
situation in the testing set.

5.2.2.4 Forecasted Location of Peak Flow

The results for the error in the location of the forecasted maximum (peak) flow magnitude,
LMFM, are shown in Table 5.5. Peak flow locations for a one-week ahead forecast
ranged from being two weeks ahead to three weeks behind the actual location with an
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average of 0.90 weeks behind. Two and three-week ahead forecasts of peak location
produced values in the range of one week ahead to three-weeks behind the actual peak.
The two-week ahead forecasts averaged 1.13 weeks behind the actual peak with the three-
week ahead forecast averaging 1.5 weeks behind. The four-week ahead forecast produced
results that ranged from a perfect forecast of peak location to a forecast of three-weeks
behind with an average of 1.88 weeks behind. It is interesting to note that the average
location of the forecasted peak deteriorates very slowly when forecasting from one week
ahead to a month ahead.

Table 5.5. Error in Location of Forecasted Peak Flow, Experiment #2

Location of Peak Flow (weeks from actual peak)

Test Year Lag1 Lag2 Lag3 Lagd
1960 1 1 2 3
1961 0 1 0 3
1962 1 1 2 2
1963 2 3 3 3
1964 3 2 3 0
1986 | 1 2 2
1987 1 0 ] 2
1988 -2 -1 -1 0

Average 0.9¢ 1.13 1.50 1.88

5.3 SEPARATION OF DATA INTO TRAIN/TEST SETS

As mentioned earlier, when the ANN trains to the desired error tolerance using the
training set, but performs poorly when applied to the test set, the network is either
overtrained or data set design problems are probably present. Smith and Eli [1995]
suggest that the data set problem usually results from either the training data set being too
small, or it contains insufficient content to properly characterize the functional relationship
between inputs and outputs. The following section discusses how one should break up the
data set into the training and testing components to ensure optimum prediction capabilities
from an ANN.
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In order to investigate the effect of using different years of data for training and testing on
the generalization ability of the network, the best network configuration for the one-week
forecast was trained for six different data sets. Each of the six data sets used all 29 years
of available data (except for the 1983-84 year of missing data) but were broken up into
different years for training and testing. Table 5.6 outlines which years were used for
testing and which for training.

Table 5.6. Breakdown of Training/Testing Data Set.

Data Set # Training Set Test Set
1 1965-67, 69-76 & 1978-85 1960-64 & 1986-88
2 1965-76 & 1978-85 1960-64, 1968, 1977, 1986-88
3 1960-64, 1970-72, 1976-88 1965-69 & 1973-75
4 1960-69, 1973-77, 1983-88 1970-72 & 1978-82
S 1960-62, 1966-88 1963-65
6 1960-71 & 1975-88 1972-74

Data Set #1 was trained and tested on the same data as the “optimum™ ANN built in
experiment #2.2 (referred to herein as the base case) except that the extreme low year of
1968 and the extreme high year of 1977 were eliminated from the training set. This was
done to see how the network would perform on the test set when the extreme low and
high events were not seen in the training set. Results indicate that both the RMSE(train)
and RMSE(test) increased by 10.5 cms and 8.9 cms respectively. This suggests that
including the extreme years in the training set improves the network ability to learn the
other years in the training set. This is most likely because the extreme low and high years
on record sets the boundaries for 0 and 1 respectively, for scaling the rest of the data in
the training set. Any data in between this extreme range is then scaled to values in the
range of say 0.1-0.9 or 0.2-0.8. The lower range of the scaling depends on how much
smaller the extreme low event is to the next lowest event on record (in the training set).
Likewise, the higher range of the scaling depends on how much larger the extreme high
event is to the next highest event on record (in the training set). When these values are
passed through the transfer function in the hidden and output nodes, they are on the
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nonlinear portion of the curve providing more accurate forecasts. The reason the
forecasts of both the extreme low and high event (during 1968 and 1977 respectively in
this case) are never reached is because when scaled, the low event is scaled close to 0 and
the high event is scaled close to 1. On the sigmoidal transfer function, values of 0 and 1
fall on the outer most linear parts of the curve. For the testing set, these results suggest
that including the extreme year in the training set assisted the network in generalizing on
new data for the same reasons as mentioned above for the training set.

The network in Data Set #2 was trained and tested on the same data as in the base case
but with the extreme low year of 1968 and the extreme high year of 1977 eliminated from
the training set and put in the test set. This was done to see how the network would
perform at predicting extreme flow events that were not seen in the training range.
Results indicate that the RMSE(train) decreased by 5.1 cms and the RMSE(test) increased
by 20.4 cms. This suggests that including an extreme event in the training set might make
it slightly harder for the network to learn the other training samples. More importantly,
this suggests that including an extreme low and high event in the test set, that was not
seen during the training period, can worsen the generalization capabilities of the ANN.
This indicates that ANNSs are poor at extrapolating on data in the test set that was not seen
during training.

The network in Data Set #3 used eight years of data from the training set of the base case
in the test set and the eight years of data that the base case was tested on was placed in the
training set along with the remaining 13 years of training data from the base case. The
years from 1965-69 and 1973-75, used as training years in the base case model, were used
as test years in the ANN model, to determine the capabilities of the network for
forecasting higher flow years. Results indicate that the RMSE(train) decreased by 7.3 cms
and the RMSE(test) increased by 12.6. Again, this suggest that removing the high flow
events from the training set will make it easier for the network to leam the other training
samples but, by inchuding these high flow events in the test set (flows that were never seen
in the test set) makes it harder for the network to generalize on these samples.
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Again, in Data Set #4, parts of the data set used to train the base case model were used to
test the ANN while parts of the testing set from the base case model were used to train the
ANN. The years from 1970-72 and 1978-82, used as training years in the base case
model, were used as test years in the ANN model, to determine the capabilities of the
network for forecasting years of lower flows. Results indicate that the RMSE(train)
decreased by 7.4 cms and the RMSE(test) increased by 11.3 cms. This suggest that
removing the lower flow events from the training set will make it easier for the network to
learn the other training samples but, including these low flow events in the test set (flows
that were never seen in the test set) makes it harder for the network to generalize on these

samples.

In both the WIFFS model and the ANN models built in chapter 4, the data set was
broken-up into a 70/30 - train/test split. That is, 70% (21 years) of the data was used to
train the network and 30% (8 years) of the data was used to test the network’s prediction
capabilities. The current literature and the Braincel™ software manual both suggest
approximately a 90/10 - train/test split of the data set. Therefore, the next two data sets
(#5 and 6) were run to investigate if there is any advantage in training on more data and
saving lesser amounts of data to test on. In Data Set #5, the three higher flow years from
1963-65 were used to test the ANN model. This was done to see how the network would
perform at predicting the high peak of 1964 following the low peak of 1963 that the ANN
had trouble with in the initial experiments. Results showed that the RMSE(train)
decreased by 7.0 cms but the RMSE(test) increased by 16.0 cms. This is most likely due
to the fact that the ANN was not having any difficulty forecasting the years from 1960-62
and 1986-88, the problem was forecasting the years from 1963-1965. It makes sense that
the RMSE(train) would improve because the ANN did not have difficulty forecasting
those years and therefore it should not have any trouble learning from those years. It also
makes sense that the RMSE(test) got worse because the ANN initially had difficulty
forecasting the years 1963-65 and now the MSE(test) statistic is only based on those three
hard-to-forecast years. In Data Set #6, the three years from 1972-74 (that were similar to
the flows in 1963-65) were used to test the ANN model. Results showed that the
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RMSE(train) increased by 13.2 cms but the RMSE(test) decreased by 14.5. This can be
explained in a similar manner to what happened in data set #5. The data that the ANN
was having difficulty forecasting (1963-65) was placed in the training set and the data that
the ANN learned well (1972-74) was placed in the test set to be forecasted. Therefore,
the results indicate that the data the ANN had difficulty forecasting also had trouble in
learning and the data that the ANN found easy to learn also had little difficulty forecasting.
Note that in each of data sets #5 and #6, the training set included the extreme low and
high events of 1968 and 1977 respectively.

A few points came out of this analysis of data sets. Firstly, including the extreme low and
high events in the training set might increase the RMSE for the training set but it seems to
be beneficial in improving the forecasts in the test set. Since the true test of a model is its
ability to predict new data (i.e. generalize on data not seen in the training set) one should
not be too concerned about the value of the RMSE(train) but be more concerned with the
value of the RMSE(test). Therefore, it is recommended to include the extreme low and
high years in the training set. One cannot expect the network to predict values from a
range outside of what it has been trained on (i.e. poor extrapolation).

It does not matter what ratio (training/testing) the data is split into as long as the following
three points are kept in mind; 1) the extreme low and high years on record are included in
the training set, 2) the set of observations in the training set span the range of pattemns for
which the network will be used, and 3) the data you are testing on should be a
representative range of realistic flow regimes.

The results obtained from splitting the data into 90/10 - train/test were not significantly
different from the initial results obtained with the 70/30 - train/test split of the data. A
review of the current literature indicates that there is no set rule available for splitting the
data into a specific train/test ratio. However, the minimum split used seems to be 90/10 —
train/test and the maximum split being 50/50 Yang et al. [1996] with the most common
split being 66/33 and 80/20.
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5.4 SUMMARY

This chapter has revealed that the ANN forecasting technique utilized for this research is
capable of providing reliable forecasts for the one-week ahead local inflow into Namakan
Lake. Even though the estimates deteriorated for two, three and four-week ahead
forecasts, which was expected, the overall results produced by the ANN models were
more accurate than those produced by the WIFFS model.

The results of forecasting the local inflow, which included a representative range of
realistic flow regimes for the eight test years, were quite consistent with actual flow
values. This indicates that the ANN technique is applicable to a wide variety of flow
conditions and exhibits the potential for a competitive alternative tool for the analysis of

multivariate time-series.
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CHAPTER6

6 TRANSFERABILITY OF THE RESULTS

This chapter investigates the transferability of the results to another subwatershed in the
Winnipeg River basin. An ANN model was built to forecast the one-week ahead
streamflows for the Rainy Lake subwatershed resulting from local inflows. The same
steps that were used in building the ANN for the previous subwatershed (Namakan Lake)
were applied to the Rainy Lake subwatershed.

6.1 ANN MODEL IDENTIFICATION

The size of the Rainy Lake subwatershed is approximately the same as the Namakan Lake
subwatershed with both having approximately the same lag times of about 6 to 12 days.
Therefore, the ANN model for the one-week ahead forecast of local inflow into Rainy
Lake, Flow(1+ 1), again consisted of the same following 10 input variables:

- “period of the year” of the one-week ahead forecast, Period (1+1)

- past three periods of weekly precipitation, P(1), P(t-1), P(t-2).

- cumulative precipitation since November 1* to the period of the forecast, Cprecip(t).
- past week of average temperature, T(#).

- past four periods of average weekly local inflow, Flow(?), Flow(t-1), ...., Flow(t-3).

The network structure for the one-week ahead forecast consisted of a single hidden layer
consisting of 5 neurons and is represented as ANN\(10, 5, 1).

6.2 RESULTS OF FLOW FORECASTING

The results of forecasting using the ANN on the test data are presented in Figure 6.1 for a
forecast lead-time of one-week. These graphs show the period of the year the forecast
was made, P(t+1), along the x-axis with a comparison of both the historical and
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forecasted streamflows on the y-axis. Similar graphs can be found in Appendix F for the
training data set. The traditional scatter plots showing observed (historical) flows on the
x-axis against the forecasted flows from the ANN on the y-axis are displayed in Figures
6.2 and 6.3 for the testing and training data sets respectively. In each of the graphs in
Figures 6.2 and 6.3, a perfect forecast lies on the 45° line. It is interesting to note that the
flows below 150 cms tend to fall closer to the 45°. This illustrates that the ANN is very
accurate at forecasting baseflow values. As the flows increase above 150 cms, the
forecasts tend to diverge from the 45° line showing the difficulty the ANN has with larger,
peakflow values.

6.3 COMPARATIVE ANALYSIS OF WIFFS AND ANN MODELS
6.3.1 RMS.E

The ANN was only able to train to a MSE that was slightly larger than the WIFFS model
(3340.5 compared to 3124.8 respectively) in the one-week forecast lead. This is
translated into a RMSE of 60.1 cms for the ANN and 55.9 cms for the WIFFS model as
shown below in Table 6.1. The real test of the ANN was the comparison to the WIFFS
model for the testing periods from 1960-64 &1986-88. The ANN was only able to
forecast to a slightly larger RMSE than the WIFFS model (63.3 ¢cms compared to 60.6
cms respectively) in the five years of test data from 1960-64. The ANN model did a much
better job than the WIFFS model at forecasting the lower baseflows during the three years
for 1986-88. This is evident in comparing the RMSE of the ANN to that of the WIFFS
model (47.4 cms compared to 77.8 cms respectively). These results are summarized
below in Table 6.1 which lists the calculated root-mean-squared error for both models
(WIFFS and ANN) and each of the three data sets (one calibration set and two verification
sets) for the one-week ahead forecast.
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Even though the ANN was not able to outperform the WIFFS model during the test years
from 1960-64, it is interesting to note that the overall RMSE for the entire eight years of
test data was considerably less than that of the WIFFS model (57.7 cms compared to 67.7

cms respectively).

Table 6.1. Root Mean Squared Forecast Error, Rainy Lake

RMSE (m?/s)
Forecast

Period Lead (weeks) WIFFS ANN
Calibration l 559 60.1
(1965-1985)

Verification 1 60.6 63.3
(1960-1964)

Verification 1 77.8 474
(1986-1988)

6.3.2 Forecasted Total Yearly Volume

The results for the percentage of the forecasted total yearly volume, %VE, are given in
Table 6.2. The ANN model generally did a good job at forecasting the volume of flow
that could be expected in a given year. For a lead-time of one-week, the forecasted
volumes ranged from an overprediction of 27.0% to an underprediction of 6.0%. The
average overprediction was 7.5%. The reason the overprediction was so high in 1987-88
is that during this period there were approximately eight weeks where the evaporation was
greater than the inflow into the subwatershed. The data for this period was represented in
the data set as negative streamflows which is physically impossible. This problem was
solved by setting all negative streamflows to zero before training the network. The results
in Figure 6.1 show that the network had difficulty predicting these extreme low flows
causing a large overestimation in flow volume for these periods.
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Table 6.2. Percent of Total Yearly Volume Forecasted, Rainy Lake
Forecasted Volume (% of Actual)

Test Year Lag1
1960 103.0
1961 116.0
1962 99.0
1963 99.0
1964 94.0
1986 104.0
1987 127.0
1988 1180

Avenﬁ 107.5

6.3.3 Forecasted Peak Flow Magnitude

The results for the percent error in forecasting the maximum (peak) flow magnitude,
%MFM, are shown in Table 6.3. The ANN model performed fairly well at forecasting
both the magnitude and location of the eight peak flows in the test set. However, there is
a considerable range of observed errors in forecasting the magnitude of the peak flow.
For a lead-time of on-week, the forecasted peak flows ranged from an overprediction of
25.3% to an underprediction of 32.8% with an average underprediction of 7.2%. The
large underprediction of the peak flow in 1962 is probably because it is the highest flow on
record for this subwatershed. Since this event was in the test set instead of the training
set, the network had never experienced an event of such magnitude during its training.
Since the network cannot predict flows outside of the range it was trained on (poor
extrapolation) it is not surprising that the network could not predict the peak flow event of
1962.
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Table 6.3. Percent Error in Forecast of Peak Flow Magnitude, Rainy Lake

% Error in the Magnitude of Peak
Flow
Test Year Lagl
1960 14.0
1961 253
1962 -32.8
1963 -10.2
1964 222
1986 -3.7
1987 <243
1988 -3.5
Average -1.2

6.3.4 Forecasted Location of Peak Flow

The results for the error in the location of the forecasted maximum (peak) flow magnitude,
LMFM, are shown in Table 6.4. Peak flow locations for a one-week ahead forecast
ranged from being exactly on time to three weeks behind the actual location with an
average of 1.25 weeks behind.

Table 6.4. Error in Location of Forecasted Peak Flow, Rainy Lake
Location of Peak (weeks from

actual pesk)
Test Year Lagl

1960
1961
1962
1963
1964
1986
1987
1988

S W o N e e e e

&

Average
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6.4 SUMMARY

This chapter has demonstrated the transferability of the results to another subwatershed in
the Winnipeg River basin. The techniques used in chapter four to construct an ANN to
forecast the local inflows into Namakan Lake were also transferable to the Rainy Lake
subwatershed and are capable of providing reliable forecasts for the one-week ahead local
inflow into Rainy Lake. Even though the forecasts were slightly worse for the 1960-64
test period the overall results produced by the ANN model was more accurate than those
produced by the WIFFS model.

The extent to which knowledge and experience from the Namakan Lake data set was
transferable to the Rainy Lake data set was in the inputs to the ANN. Since the Rainy
Lake subwatershed was approximately the same size as the Namakan Lake subwatershed
with approximately the same basin response times, the same number of lags were used for
the precipitation, temperature and streamflow inputs. More importantly was the
transferability of the period of the year at the time of the forecast, Period (t+1) as well as
the cumulative precipitation from November 1* to the period being forecasted, up until
April 1%,

If one was going to tackle another river in the Winnipeg River Basin it would be beneficial
to conduct an analysis of the basin response times to obtain a good starting estimate of the
number of lags of precipitation, temperature and streamflow to include as inputs to the
ANN. Furthermore, if one was to apply this model elsewhere in Manitoba or other parts
of Canada, it would not only be advantageous to conduct an analysis of the basin response
times but it would also be advantageous to determine the physical processes involved in
the resulting flow regimes. An example of knowing which physical processes translate
into flow is that of the precipitation that falls during warm temperatures. In parts of
Western Canada, the snow that falls during the period from November 1* to April 1* melts
quickly causing immediate contributions to the streamflow. Therefore, for watersheds
under these conditions, the cumulative precipitation input, Cprecip (), would not be of
much use to the ANN. In the Namakan Lake subwatershed, the temperatures are cool
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enough during this period to cause the snowfall to accumulate over the winter causing
large runoff due to this snowmelt come spring time. In this situation, the cumulative
precipitation input, Cprecip (1), proved to be useful to the ANN.
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CHAPTER 7

7 CONCLUSIONS AND RECOMMENDATIONS

The neural network is a relatively new technology and improvements are being made quite
rapidly. The ANN model applied to the streamflow forecasting problem seems to have
reached encouraging results for the subwatersheds under examination. A very close fit
was obtained during the training phase and the networks developed consistently
outperformed the WIFFS model during the testing phase. A comparison of fit between
the WIFFS model and the ANN model developed in Experiment #2.2 for the Namakan
Lake subwatershed revealed the following; the RMSE(test) decreased by 10 cms from
42.5 cms to 32.5 cms for the one-week lead, the RMSE(test) decreased by 12.1 cms from
62.9 cms to 50.8 cms for the two-week lead, the RMSE(test) decreased by 6.9 cms from
68.8 cms to 61.9 cms for the three-week lead, and the RMSE(test) decreased by S cms
from 77.3 cms to 72.3 cms for the four-week lead. Furthermore, a comparison of fit
between the WIFFS model and the ANN model developed for the Rainy Lake
subwatershed revealed that the RMSE(test) decreased by 10 cms from 67.7 cms to 57.7

cms for the one-week lead.

The results obtained with ANNs for one, two, three, and four-week ahead forecasts are
significantly better than those reached in the WIFFS model and confirm the ability of this
approach to provide a useful tool in solving problems in hydrology and more specifically,
streamflow forecasting. The initial success of the ANN models developed for both the
Namakan Lake and Rainy Lake local subwatersheds indicated the transferability of the
ANN technology to other watersheds in the Winnipeg River Basin as well as a bright
future for further applications in other watershed basins in Manitoba.

Working with these simple subwatersheds, the main indications about ANN modelling
features have been confirmed: i.e. their ability to self-calibrate a well balanced set of



96

linking weights and the possibility of being applied at the real system level. ANNs are far
from being a universal tool for all computing situations. Because the ANN approach
presented here does not provide models that have physically realistic components and
parameters, it is by no means a substitute for conceptual watershed modelling. However,
the results suggest that the ANN approach may provide a superior alternative to the time-
series approach for developing input-output simulations and forecasting models in
situations that do not require modelling of the internal structure of the watershed. In
addition, there were a few instances where possible data problems in the case study were
presented. The ANN performed poorly on these cases by significantly overpredicting the
streamflows. This demonstrates that the ANN technology can also be used as an effective
tool for data screening.  Nevertheless, it is an efficient tool with great potential for
handling natural problems where the relationships between inputs and outputs are not
thoroughly explained.

The potential of ANN models for simulating the hydrologic behavior of watersheds has
been presented in this research. The greatest difficulty was determining the appropriate
model inputs for such a complex problem. Although ANNs belong to the class of data-
driven approaches, it is important to determine the dominant model inputs, as this reduces
the size of the network and consequently reduces the training times and increases the
generalization ability of the network for a given data set. In the case study considered,
sensitivity analyses were used in conjunction with judgement to reduce the number of
model inputs from 18 to 10 (for the one-week forecast model), which reduced training
times from approximately ten minutes to under two minutes and reduced the RMSE(test)
from 33.3 cms to 32.5 cms. Similar improvements were observed for the two, three, and
four-week forecast models.

It is recommended to include the extreme low and high years in the training set. One
cannot expect the network to predict values from a range outside of what it has been
trained on (i.e; poor extrapolation). It does not matter what ratio (training/testing) the
data is split into (70/30, 90/10, 80/20 etc.) as long as more data is used to train the
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network than is used to test the network. The following three points should be kept in
mind when designing the training/testing data sets; 1) the extreme low and high years on
record are included in the training set, 2) the set of observations in the training set span the
range of patterns for which the network will be used, and 3) the testing data should be a
representative range of realistic flow regimes. A review of the current literature indicated
that there is no set rule available for splitting the data into a specific train/test ratio. The
amount of data used for training and testing an ANN is therefore left up to the individual.

The success of an ANN implementation is dependant not just on the quality of the data
used for training, but also on the type and structure of the ANN adopted, the method of
training, and the way in which both the inputs and outputs are structured and interpreted.
Designing a successful ANN for a specific problem doesn’t require as much expertise as it

does your imagination!
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CHAPTER 8

8 FUTURE WORK
The research described in this thesis has identified potential avenues for future work. The
following is a description of several additions that could be made to this research in order

to increase its potential application.

It would be advantageous to explore the issue of data requirements for effective model
building. ANNs are much like humans that is, the more examples given to us to learn
from, the better we understand the task at hand and the easier the task becomes.
Therefore, there is no limit as to how large the data set should be but is there a limit to
how small the data set becomes? For both the Namakan Lake and Rainy Lake case
studies there were 30 years of weekly data available for the ANNs to determine the
underlying function between the inputs and the outputs. What if some of the other
subwatersheds had fewer years of available data say twenty, ten or say five years? Would
it be worthwhile attempting to build an ANN model for these subwatersheds with so few
years of data? These are important questions that could be investigated in future research.

An addition to this research would be to build seven additional ANNSs to forecast the local
inflow to the each of the remaining seven subwatersheds. Furthermore, work could be
implemented to network all nine subwatershed together through one ANN. That is, the
ANN output from the most upstream subwatershed would serve as inputs to ANNs of
downstream subwatersheds.
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APPENDIX B:
NAMAKAN LAKE TRAINING RESULTS, EXPERIMENT #1

B-1: ONE-WEEK LEAD

B-a-1: 1965-1969
B-a-2: 1970-1974
B-a-3: 1975-1979
B-a-4: 1980-1985

B-2: TWO-WEEK LEAD

B-b-1: 1965-1969
B-b-2: 1970-1974
B-b-3: 1975-1979
B-b-4: 1980-1985

B-3: THREE-WEEK LEAD

B-c-1: 1965-1969
B-¢c-2: 1970-1974
B-¢c-3: 1975-1979
B-c-4: 1980-1985

B-4: FOUR-WEEK LEAD

B-d-1: 1965-1969
B-d-2: 1970-1974
B-d-3: 1975-1979
B-d-4: 1980-1985
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Figure B-a-2. Namakan Lake Training Results, 1970-74, one-week lead.
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APPENDIX C:

NAMAKAN LAKE TRAINING RESULTS, EXPERIMENT #2

C-1: ONE-WEEK LEAD

C-a-1: 1965-1969
C-a-2: 1970-1974
C-a-3: 1975-1979
C-a-4: 1980-1985

C-2: TWO-WEEK LEAD

C-b-1: 1965-1969
C-b-2: 1970-1974
C-b-3: 1975-1979
C-b-4: 1980-1985

C-3: THREE-WEEK LEAD

C-c-1: 1965-1969
C-c-2: 1970-1974
C-c-3: 1975-1979
C-c-4: 1980-198S

C-4: FOUR-WEEK LEAD

C-d-1: 1965-1969
C-d-2: 1970-1974
C-d-3: 1975-1979
C-d-4: 1980-1985
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Figure C-b-4. Namakan Lake Training Results, 1980-85, two-week lead.

9¢1



137

P HRM-321Y) ‘69-5961 ‘SHNSIY Bupurea ] ey usyswN °§-3-) .anSyy
(sqaapy) awax jo portag
Le  sT ¢l 1 e  s7 £l 1 e §T ¢l { e st ¢t { e ST ¢l |

L 1 L I3 1

\\%..:J. .9..4/./

| 1 L 1 } 1 I rl L L 4 i °

- 001

- 002

- 00t

(swd) moguy

; . - 00F
I
3 é c - 00§
. . - 009
; - MOpJu] PP ——
. . mopuj [empy .

00L



138

"PEI HRM-RIP ‘pL-0L61 ‘RINSNY Juupea], er] ueysmwN “7-2-) dandiy

(sq9aA\) 383X Jo poriag
e §T £l { e sT ¢t { e st ¢l { e st ¢t | Le st ¢l i

- 001

- 00T

00s

. - 009

Moyju} paroipergd —| }
Mojju] [empoy .

00L



139

"PUI HRIM-IY) ‘6L-SL61 ‘snnsay Susures g, e unsmEN ‘g-2-) undyy
(8433 A\) awax jo powsag

{ A%

s¢ €l I e st ¢

. .

MOPJU] POVIPISY —

Mmopjuj fenjdy

.

(1]

002

00t

ooy

a0

009

00L

(su1d) moguy



140

U NN ‘58-0861 ‘SHNsoY Supurway, e vy p-3-) iy

(s3a M) ava X Jo porsayg
4] < 8¢ ¢ ¢l { e sT €t _

bn

mﬂ

MO[JT] PAOIPILJ e
Mmo[juj [enjoy .

001

00T

- 00§

- 009

00L



141

LE

§¢C

P HRM-IN0J ‘69-S961 ‘SHNSIY Sutures ), aye] usyBwEN J-p-D) dnByy
(sq3apy) awax jo porsag

l LE

§C

el

. MOJJT] PIAOIPIIJ —mme
mopuj jemoy .

- 001

- 00C

- 008

- 009

00L

(swd) vy mogug



142

"PEI HIIM-IN0} ‘pL-0L 61 ‘sHNSIY Buupes L ] unppmey “z-p-0) 2anSyy

(sqaapy) 1eay 3o pordg
Lt st £1 1 LE  §T £l ! e €T ¢l { Le ¢t ¢

T

Mopju] pAdIpasg ——1| |
mopuj jemoy .

001

007

oo¢

00t

00s

009

00L

(sun) vy moguy



700

600 -

500

Inflow Rate (cms)

«  Actual Inflow

= Predicted Inflow

| 13 25 37 1
Period of Year (Weeks)

Figure C-d-3. Namakan Lake Training Results, 1975-79, four-week lead.
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APPENDIX D:

NAMAKAN LAKE SCATTER PLOTS FOR TRAINING SETS

D-1: EXPERIMENT #1

D-a-1: One-Week Lead
D-a-2: Two-Week Lead
D-a-3: Three-Week Lead
D-a-4: Four-Week Lead

D-2: EXPERIMENT #2

D-b-1: One-Week Lead
D-b-2: Two-Week Lead
D-b-3: Three-Week Lead
D-b-4: Four-Week Lead
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FigureD-a-1. Observed versus Best 1-week Forecast of local inflow to Namakan Lake for 1965-85
using Exp. #1 ANN.
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Figure D-a-2. Obsmdvernsneuz-wed:ForeustofhulinﬁomemakuLakeforl%m
using Exp. #1 ANN.
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Figure D-a-3. Observed versas Best 3-week Forecast of local inflow to Namakan Lake for 1965-85
using Exp. #1 ANN.
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Figure D-a-{. Observed versus Best 4-week Forecast of local inflow to Namakan Lake for 1965-8S
using Exp. #1 ANN.
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(swd) moyg parsedauoy
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Figure D-b-1. Observed versus Best 1-week Forecast of local inflow to Namakan Lake for 1965-8S

using Exp. #2 ANN.
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Figure D-b-2. Observed versus Best 2-week Forecast of local inflow to Namakan Lake for 1965-85

using Exp. #2 ANN.
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Figure D-b-3. Observed versus Best 3-week Forecast of local inflow to Namakan Lake for 1965-8S
using Exp. #2 ANN.
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Figure D-b-4. Observed versus Best 4-week Forecast of local inflow to Namakan Lake for 1965-85
using Exp. #2 ANN.
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APPENDIX E:

RAINY LAKE LOCAL HISTORICAL DATA
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APPENDIX F:

RAINY LAKE LOCAL TRAINING RESULTS

F-1: ONE-WEEK LEAD

F-a-1: 1965-1969
F-a-2: 1970-1974
F-a-3: 1975-1979
F-a-4: 1980-1985
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Figure F-a-2. Rainy Lake Training Results, 1970-74, one-week lead.
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