
Component Placement and Location in a Dynamic
Composition System

by

Behzad Sajed Khosrowshahi

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

April 2013

c© Copyright by Behzad Sajed Khosrowshahi, 2013

Thesis advisor Author

Dr. Peter Graham Behzad Sajed Khosrowshahi

Component Placement and Location in a Dynamic

Composition System

Abstract

Using Software-as-a-Service (SaaS), software resides on servers not on user com-

puters. Service Oriented Architecture (SOA) provides the ability to divide an appli-

cation into parts known as services. This allows enhanced support for distribution,

code re-use and code sharing. Combining these ideas, applications can be dynamically

composed from components stored at convenient locations in a wide-area network.

This benefits users since software installation and upgrades are unnecessary and is

also suited to personal devices that may have limited resources (e.g. disk space) to

support conventional installed software. I have designed, prototyped, and evaluated

component-placement and location algorithms for a system that combines ideas from

SaaS and SOA to support on-demand composition of applications that run on user

devices from storage sites in the network. These algorithms support mobility and are

scalable and reliable. I have implemented a Java prototype and a simulation system

that I used to assess my systems behaviour.

ii

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . viii
Acknowledgments . ix
Dedication . x

1 Introduction 1

2 Related Work 5
2.1 Monolithic vs. Non-Monolithic Software 5

2.1.1 Software-as-a-Service (SaaS) 5
2.1.2 Service Oriented Architecture (SOA) 6
2.1.3 Other Concepts Closely Related to SaaS and SOA 7
2.1.4 Component-based Software 7

2.2 Composition . 8
2.2.1 Service Composition . 8

2.3 Distributed Systems . 9
2.4 Placement Algorithms . 10
2.5 Location Algorithms . 13

2.5.1 Service Lookup . 13
LDAP . 13
MDS . 14
DNS . 14
INS . 16

2.6 Network Modelling and Simulation 16
2.6.1 Network Simulators . 16

Network Generator Tools . 17
Generation Methods . 18

2.6.2 Simulation Systems and Software 20

iii

iv Contents

3 Concise Problem Statement 22

4 Solution Strategy and Prototype Implementation 24
4.1 Introduction . 24
4.2 Components . 25
4.3 System Entities . 27

4.3.1 Clients . 27
Searching for a component and downloading it 27
Uploading and registering a new component 28

4.3.2 Cache Location Servers . 28
4.3.3 Master Location Servers . 29
4.3.4 Component Storage Server . 30

4.4 Use of Hash Function in My Prototype 30
4.5 Redundancy . 32
4.6 Location Awareness . 35
4.7 The Component Download Process 36

5 Assessment 41
5.1 Introduction . 41
5.2 Simulation . 41

BRITE Configuration . 42
BRITE Output . 44
Use of BRITE in my Thesis 48

5.2.1 Use of SSJ in my Thesis . 48
5.3 Results from the Simulation Work . 52

5.3.1 Scenarios . 52
Simulation Constants . 52
Simulation Default Values . 55

5.3.2 Scenario 1 - Increasing the Number of Components 57
Goal . 57
Expectation . 57
Result . 57

5.3.3 Scenario 2 - Increasing the Number of Clients 58
Goal . 58
Expectation . 59
Result . 59

5.3.4 Scenario 3 - Increasing the Number of Operations 60
Goal . 60
Expectation . 61
Result . 61

5.3.5 Scenario 4 - Increasing the Number of Component Update Events 62
Goal . 62

Contents v

Expectation . 63
Result . 63

5.3.6 Scenario 5 - Increasing the Probability of Cache Location Server
Failures . 65
Goal . 65
Expectation . 65
Result . 65

5.3.7 Scenario 6 - Increasing the Probability of Master Location Server
Failures . 68
Goal . 68
Expectation . 68
Result . 68

5.3.8 Scenario 7 - Increasing the Probability of Component Storage
Server Failures . 71
Goal . 71
Expectation . 71
Result . 72

5.3.9 Scenario 8 - Increasing User Movement 75
Goal . 75
Expectation . 75
Result . 76

5.3.10 Scenario 9 - Varying the Number of Clients in Dense Population
Areas . 77
Goal . 77
Expectation . 78
Result . 78

5.3.11 Scenario 10 - Varying Component Popularity 79
Goal . 79
Expectation . 79
Result . 80

5.3.12 Scenario 11 - Varying the Number of Component Storage Servers 81
Goal . 81
Expectation . 82
Result . 82

5.3.13 Scenario 12 - Varying the Number of Cache Location Servers . 85
Goal . 85
Expectation . 85
Result . 86

6 Conclusion 89
6.1 Summary and Contributions . 89
6.2 Future Work . 90

vi Contents

Bibliography 95

List of Figures

2.1 Example of a Distributed System . 10
2.2 Replication in Distributed System [WPS+00] 12
2.3 DNS structure for www.cs.umanitoba.ca 15

4.1 Example of the Solution Strategy [SKG09] 25
4.2 Code of Time 100.java . 26
4.3 Code of getServerID Method . 32
4.4 Example of Grouping Five Master Location Servers 34
4.5 Code of getServerIDSequence method 35
4.6 Code of calcDistance Method . 36
4.7 Flow chart of how a client downloads a new component 39
4.8 Communication between different entities 40

5.1 Structure of BRITE models adapted from [MLMB01] 43
5.2 Example of a BRITE output . 47
5.3 Scenario 1 - Effect of Increasing the Number of Components on Average

Download Time . 58
5.4 Scenario 2 - Effect of Increasing the Number of Clients on Average

Download Time . 60
5.5 Scenario 3 - Effect of Increasing the Number of Operations on Average

Download Time . 62
5.6 Scenario 4 - Effect of Increasing the Number of Component Update

Events on Average Download Time 64
5.7 Scenario 5 - Effect of Increasing the Probability of Cache Location

Server Failures on Average Download Time when 80% of Clients were
Placed in Dense Population Areas . 66

5.8 Scenario 5 - Effect of Increasing the Probability of Cache Location
Server Failures on Average Download Time when all Clients were
Placed Uniform Randomly . 67

vii

viii List of Figures

5.9 Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when 80% of Clients were
Placed in Dense Population Areas . 69

5.10 Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when all Clients were
Placed Uniform Randomly . 70

5.11 Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when 80% of the Clients
were Placed in Dense Population Areas 72

5.12 Scenario 7 - Effect of Increasing the Probability of Component Stor-
age Server Failures on Average Download Time when All Clients were
Placed Uniform Randomly . 74

5.13 Scenario 7- Effect of Increasing of Number of Component Storage
Server Failure on Number of Completed and Outstanding Search Op-
erations . 75

5.14 Scenario 8 - Effect of Increasing User Movement on Average Download
Time . 77

5.15 Scenario 9 - Effect of Varying Number of Clients in Dense Population
Areas on Average Download Time . 79

5.16 Scenario 10 - Effect of Varying Component Popularity on Average
Download Time . 81

5.17 Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 3 Components 83

5.18 Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 100 Components 84

5.19 Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 3 Components 87

5.20 Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 100 Components 88

List of Tables

5.1 Flat Topology (AS Only or Router Only) Parameters [MLMB01] . . . 45
5.2 Top-down Hierarchical Topology Parameters [MLMB01] 46
5.3 Nodes Information in BRITE’s Output File [MLMB01] 46
5.4 Edges Information in BRITE’s Output File [MLMB01] 46
5.5 Simulation Configuration Values . 56
5.6 Scenario 1 - Effect of the Increasing the Number of Components on

Average Download Time . 57
5.7 Scenario 2 - Effect of Increasing the Number of Clients on Average

Download Time . 59
5.8 Scenario 3 - Effect of Increasing the Number of Operations on Average

Download Time . 61
5.9 Scenario 4 - Effect of Increasing the Number of Component Update

Events on Average Download Time 64
5.10 Scenario 5 - Effect of Increasing the Probability of Cache Location

Server Failures on Average Download Time when 80% of Clients Placed
in Dense Population Areas . 66

5.11 Scenario 5 - Effect of Increasing the Probability of Cache Location
Server Failures on Average Download Time when all Clients Placed
Uniform Randomly . 67

5.12 Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when 80% of Clients were
Placed in Dense Population Areas 69

5.13 Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when all Clients were
Placed Uniform Randomly . 70

5.14 Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when 80% of the Clients
were Placed in Dense Population Areas 72

ix

x List of Tables

5.15 Scenario 7 - Effect of Increasing the Probability of Component Stor-
age Server Failures on Average Download Time when All Clients were
Placed Uniform Randomly . 73

5.16 Scenario 8 - Effect of Increasing User Movement on Average Download
Time . 76

5.17 Scenario 9 - Effect of Varying Number of Clients in Dense Population
Areas on Average Download Time . 78

5.18 Scenario 10 - Effect of Varying Component Popularity on Average
Download Time . 80

5.19 Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 3 Components 82

5.20 Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 100 Components 83

5.21 Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 3 Components 86

5.22 Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 100 Components 87

Acknowledgments

It is with immense gratitude that I acknowledge the inspiration, motivation, and

support of my advisor, Professor Peter Graham, throughout this project. In addition

to many aspects of computer science, Professor Graham has taught me how to exercise

patience while being persistent and how to respect and embrace diversity of our world.

I dedicate this thesis to my loving parents, Mahnaz and Hamid without whose

encouragement and push for tenacity this dissertation work would have been impos-

sible.

In addition, I would like to thank my uncle, Dr. Abbas Farazdel, for many stim-

ulating discussions about creative applications of computer science in everyday life

and for his continuous support and encouragement since I was in middle school.

xi

To Father, Mother and my lovely Sister

xii

Chapter 1

Introduction

Service Oriented Architectures (SOAs) [Car08, HKW+08] allow an application to

be composed of many distributed components while software-as-a-service (SaaS) [Cus10,

Nit09] system design allows applications to exist “in the network” rather than locally

on computers or personal devices. Using SOA principles, SaaS users should be able

to access their applications as components stored separately and remotely. This will

allow user devices such as laptops, smartphones, etc to operate directly off the net-

work with only core operating system code stored on the device and applications

loaded in parts, as needed, from the network and “composed”/assembled on the fly

to meet specific user requirements. To be useful, these components (i.e. parts of an

application)1need to be efficiently and reliably accessible from anywhere at anytime.

Component placement is the problem of deciding where to place copies/replicas of

components so they will be readily and quickly available when needed. Component

location is the problem of finding a needed replica of a component for efficient access

1For example Word might be decomposed into 10’s or 100’s of components based on function
(e.g. a formula editor might be one component) and users not load components they are not using.

1

2 Chapter 1: Introduction

based on the current location of an accessing device.

There are different benefits of using such a “non-monolithic” model of applications.

First of all, for devices with limited resources (memory, CPU) (e.g. a smartphone) it

is not a good idea to install the whole application on them. Instead, users can just

startup the core of the application and when they need another part of the application,

just download it and use it and then, later, when they do not need that part, it can be

deleted from the device. Another benefit of this model is cost efficiency. For example,

if a user needs Adobe Photoshop to edit a single photo, he does not need to buy the

whole application and install it on his local computer even though he needs to use the

application for only a short period of time. The non-monolithic approach gives the

ability to users to use and pay for the application based on their needs. Therefore,

users can save money and it is possible for vendors to sell the use of their products to

a larger number of clients. This will also tend to reduce copyright violations. Another

significant benefit of using a non-monolithic application model is that applications do

not need to be installed and maintained on user devices as automated composition of

the needed application components precludes this. The result is a simpler and thus

more attractive environment for the user and probably also enhanced security since

old, insecure software versions will no longer exist. (Security patching will be done

centrally and reliably by the software provider). I will show that such a system can

be both efficient and effective.

In this thesis I describe a system (focusing on component placement and location)

that I have designed, implemented and assessed that provides the basis for dynamic

composition of software from components found on the Internet in component storage

Chapter 1: Introduction 3

servers. My solution strategy is focused on the use of component replication (in

multiple storage servers) to ensure that the needed components are reliably accessible

to clients as quickly as possible from anywhere at anytime. It is these replicas that

need to be placed and quickly located. To do this, I created different types of servers

in my system. The first type is the cache location servers to which clients send their

requests to access components. They store the local information of the components’

locations. There are master location servers which store the primary information

about the location of all components. The component storage servers actually store

replicas of components. Cache location servers and component storage servers are

accessed by clients. Clients upload new components they may have created (i.e.

software providers) and send their requests to download needed components (i.e.

software users). My algorithms for component placement and lookup are location

sensitive to ensure efficiency based on locality of access.

To assess any system and prototype, we need to use a prototype system or simula-

tion software. I have chosen to use both. By prototyping, I have demonstrated algo-

rithm correctness, and by applying simulation I was able to assess large-scale system

behaviour. In my prototype I built all the aforementioned parts of the system using

Java and tested the prototype by distributing some simple Java components (e.g.

a component to retrieve the current time) across Linux machines in the Computer

Science Department. Components were placed by my system on certain machines

and then downloaded to others upon request. The first step of my simulation was

creating a simulated network topology. I used BRITE to create a network topology

that reflects the large-scale characteristics of the Internet. I chose SSJ to use to

4 Chapter 1: Introduction

develop my simulation system. I then designed 12 different scenarios to assess the

large-scale behaviour of my system under various conditions. I report the results of

these simulations in this thesis.

The rest of this document is organized as follows. Chapter 2 presents the work

related to my thesis including distributed systems generally, placement and location

algorithms, software composition and a brief overview of network modeling and sim-

ulation. Chapter 3 concisely describes the problem to be solved. I then describe my

solution strategy in Chapter 4. In Chapter 5, I describe the assessment of system,

focusing on the 12 simulation scenarios mentioned earlier. Finally, Chapter 6 provides

my conclusions and proposes some areas for future work.

Chapter 2

Related Work

2.1 Monolithic vs. Non-Monolithic Software

The traditional “monolithic” software model where an application is installed in

its entirety on each user machine introduces a number of problems including, high

resource demands (on the client machine), high cost, licensing issues and difficulty

in keeping software versions current. To address some of these issues, a number of

alternative models have been proposed and implemented. Those of direct relevance

to this thesis will now be briefly reviewed.

2.1.1 Software-as-a-Service (SaaS)

In recent years, many companies, including IBM, Google, Dell, and HP, have

pushed the SaaS concept and are delivering SaaS services in the form of cloud com-

puting and other hosted delivery services [KKLL09].

The general idea behind SaaS is that customers can access applications and data

5

6 Chapter 2: Related Work

using, for example, a web browser on a notebook or other personal device without

investing in and owning more extensive hardware and software infrastructure. The

SaaS provider company (or vendor) is responsible for delivery, management, main-

tenance, and security of the applications, data, and the infrastructure on which the

applications run. The delivery is usually based on a Service Level Agreement (SLA)

with the client company (or tenant). SaaS has become popular because it is a way

to save on the cost of owning and maintaining applications without, in most cases,

compromising functionality. A simple example of SaaS is web-based email systems

delivered over the Internet such as Gmail and Yahoo mail or document management

applications like Google Apps [Ciu09].

2.1.2 Service Oriented Architecture (SOA)

Hau et al. [HEHB08] identify two building blocks underlying SOA. The first is

architecture and the second is services. A service is any functional process. Thus, in

SOA, an application is divided into different component services according to some

architectural (business-based) model. The component services are independent from

each other but support connections allowing them to be combined. Thus, multiple

services possibly from different providers can be composed to build applications.

Hau et al. [HEHB08] also identify several benefits of SOA. The first is greater

agility allowing a vendor company to adapt services to new requirements faster. To

change a service in an SOA application is easier and faster than traditional appli-

cations because one may only need to change just one part of the loosely-coupled

application. Another benefit is decreased complexity because, in an SOA-organized

Chapter 2: Related Work 7

architecture, each component is implemented separately. Another benefit is reusabil-

ity. Each component can be reused in different applications. Finally, interoperability

between service components is enhanced since each service component has well defined

inputs and outputs intended for composition and programmers need be concerned only

about the middleware that connects the components.

2.1.3 Other Concepts Closely Related to SaaS and SOA

Cloud Computing [KKLL09] is a form of distributed computing in which real-

time scalable computing resources are provided to clients over the Internet (from

the “cloud”) as a service, rather than clients having their own local hardware and

software resources. As such, Cloud Computing can be thought of as one possible

implementation strategy for SaaS.

An Application Service Provider (ASP) [CS01] is a third-party entity that hosts

software-based services on a wide-area network (e.g. the Internet). SaaS-delivered

applications differ from ASP applications in multiple ways. ASP applications are

traditionally single-tenant, are hosted, managed, monitored by a third party and

are not customized, while SaaS applications are commonly multi-tenant, hosted by

vendors and users can customize the SaaS applications. Otherwise, SaaS and ASP

are very similar.

2.1.4 Component-based Software

Component-based software serves as a basis for SOA but can be used in dif-

ferent environments and at various scales from the small (e.g. shared libraries in

8 Chapter 2: Related Work

Unix [Lev99]) through to the large (e.g. distributed object systems such as Corba

[TB01]). Each component-based application is comprised of different components.

For example in a hypothetical component-based implementation of Microsoft Pow-

erPoint, there might be components for animations, editing slide shows, etc. In

component-based software, first a core component of the software is loaded onto a

device and later, when a user needs another feature of the application, the necessary

components are added (“composed” with the core). When components are no longer

needed, they may also be removed to save device resources (e.g. memory).

2.2 Composition

2.2.1 Service Composition

Wu et al. [WDLW09] describe the main task of service composition as being to

allow existing components to connect to each other. There are two parts to service

composition: composition synthesis and orchestration. Composition synthesis refers

to the procedure that components use to reply to service requests to enable their

assembly. Orchestration refers to runtime coordination between components in terms

of both data and control flow.

Ibrahim and Le Mouel [ILM09] describe a typical instance of service composition

middleware that is used to connect multiple services. Such services can be static or

dynamic. Static services run when the main software starts up, but dynamic services

can be added to the main software after startup. Using dynamic services, the main

software can be leaner and hence run faster (and/or on less capable devices) but the

Chapter 2: Related Work 9

user can still invoke dynamic services, as needed, that will be dynamically located

and attached prior to invocation and which may be later terminated and detached.

2.3 Distributed Systems

A distributed system [CD88] is a type of software architecture that includes dif-

ferent parts running across various networked machines. The whole software, for the

most part, operates as if it were a single monolithic piece of code running on a single

computer.

There are two primary benefits of a distributed system over a centralized system.

The first is scalability, which means that growing the system is very easy and fast.

The other benefit is redundancy. If a machine fails in the distributed system there

may be other machines that have the needed capabilities and can provide them to

the user. Therefore, if the distributed system is designed properly, the user may not

need to be aware that one machine is down.

The machines in a distributed system can have different operating systems (e.g.,

Unix, Windows, etc.) and also can connect to each other using different network pro-

tocols (e.g., TCP/IP, Bluetooth, etc.). Figure 2.1 shows an example of a distributed

system.

The most common type of distributed system is client/server [DC]. Modern clien-

t/server systems normally have three tiers. The first tier is the “Presentation” tier.

Using the presentation tier, a user creates requests and sends them to the second tier,

which is the “Business Logic” tier. The business logic tier processes users requests

and connects to the “Data/Resource” tier to retrieve data and then creates and sends

10 Chapter 2: Related Work

results back to the user for display using the presentation tier.

Figure 2.1: Example of a Distributed System

2.4 Placement Algorithms

In addition to scalability and redundancy, another potential benefit of distributed

systems is providing high availability, which means the system can minimize service

interruption. High availability should not be confused with fault tolerance. The latter

means the system has no service interruption. Fault tolerance relies on hardware

redundancy to replace the function of the failed components and it typically costs

significantly more than high availability.

Chapter 2: Related Work 11

High availability is one of the key goals in distributed systems design. As the

name suggests, high availability helps ensure that a software system will be available

for use a high percentage of the time. One way to achieve high availability is through

replication of the needed information (data and application). If access to the needed

information fails, another replicated copy can be accessed and the service will continue

with minor delay. Assuming that replication is to be done a key issue is where to

place the replicas.

Oki and Liskov [OL88] advocate a replication scheme based on a primary-backup

algorithm. The application runs on the “primary copy” of data while informing all

the replicas what it is doing. In the case that the primary copy fails, one of the backup

copies will take over and becomes the new primary and the service will continue.

Wiesmann et al. [WPS+00] compare four different models of replication for both

databases and distributed systems. The first is “Active Replication”, which is a

non-centralized replication technique where the client does not connect to a specific

server. The client sends its requests to all replicas. Advantages of this technique

include simplicity of implementation (just need to copy code on all servers) and failure

transparency for the client (if the system has a failed replica, client does not need to

know about it).A disadvantage is the overhead associated with the multiple request

messages that are sent to all replicas. Another technique is “Passive Replication”.

In this technique the client sends its request to a specific server and then updates

other replicas for backup (for example, it downloads a component and then uploads

this component to other replicas). This technique uses little processing time as all

servers do not need to process the client’s request. The third model is “Semi-Active

12 Chapter 2: Related Work

Replication”. This technique is very close to active replication, but there is a defined

leader server and multiple follower servers. The leader server informs the followers

of new update using “View Synchronous Broadcast” [WPS+00]1. The last model is

“Semi-Passive Replication”. This model is similar to the passive replication technique

but can be implemented asynchronously without needing any views2. A client does

not need to wait for the response of a failed replica using time out. Figure 2.2 shows

the key differences between these models.

Server Determinism

Needed

Server Determinism

Not Needed

Server Failure Not

Transparent for the Client
 Passive

Server Failure Transparent

for the Client
Active

semi-Active

semi-Passive

Figure 2.2: Replication in Distributed System [WPS+00]

Guerraoui and Schiper [GS96] present a comprehensive survey of replication tech-

niques to provide fault-tolerance. They elaborate on the two main classes of repli-

cation methods, namely, primary-backup replication and active replication. They

define an abstract general model to discuss a variety of aspects of using replication

in achieving fault-tolerance.

1View Synchronous Broadcast is a communication way to monitor modification of members
2Each view defines the composition of the group at some time t, i.e. the members of the group

that are perceived as being correct at time t. [WPS+00]

Chapter 2: Related Work 13

2.5 Location Algorithms

As entities of a distributed system (data, servers, etc.) may be located at different

places in a network, one of the most important aspects of a distributed system is its

location algorithm to find required entities.

2.5.1 Service Lookup

Repositories are commonly used to store code and data for access when they are

needed. There are many different repository/directory systems with corresponding

lookup methods used in various existing distributed systems. A small sample of such

systems is now briefly reviewed.

LDAP

The Lightweight Directory Access Protocol (LDAP) [KV04] is an application pro-

tocol that supports queries on a directory to find an “entity”. Each directory entry

in LDAP consists of a name, a type and a value. The name of the entry is unique and

sometimes is referred to as a “distinguishing” name. The type of an entry indicates

the type of value that the entry can accept. The value of an entry is the data that is

associated with the entry. Thus, LDAP can store different types of data in a single

directory.

The architecture of LDAP is client/server. There is an LDAP server that provides

lookup services and stores the data. Clients send requests that consist of an operation

(such as “query”) and a value, using a protocol agreed to by the clients and the server.

LDAP directories can be categorized into different types based on their location.

14 Chapter 2: Related Work

If a directory is in a local network, it is a local directory; otherwise it is a global

directory. LDAP directories can also be centralized, having all data stored in one

directory, or they can be distributed.

MDS

Another lookup system is the Monitoring and Discovery System (MDS) used in

the Globus grid computing toolkit [SPM+06]. With MDS a user has the ability to

discover a service and then monitor the repository that stores the service in a “virtual

organization” (VO) consisting of users and resources that are related by a common

policy set. There are two functions provided by MDS. The first is an indexing function

that involves data from different service repositories and supports querying the data.

If this function fails, clients cannot find new services in repositories but clients can

still use any cached lookup data. Clients can also ask about the current status of the

resources directly. The other function provided by MDS is a trigger function that

takes an action based on some condition in the repository/directory allowing clients

to react asynchronously (i.e. without the need for constant checking) to changes in

repository data.

DNS

The Domain Name System (DNS) [MD95, Moc87a, Moc87b] is a wide-area dis-

tributed system that looks up IP addresses (e.g. 130.179.28.33) given domain names

(e.g. gold.cs.umanitoba.ca). Each server in DNS contains databases that store do-

main names and their associated IP addresses. The namespace is hierarchical. The

Chapter 2: Related Work 15

root of the hierarchy is divided into different main “zones”3 (e.g., .com, .edu, .net).

This division continues to multiple levels of sub-domains. For example in the domain

“www.cs.umanitoba.ca” “cs” is a sub-domain of “umanitoba” and “umanitoba” is a

child of “ca” which is a child of the root of the DNS. Figure 2.3 shows this as an

example of the DNS hierarchical naming structure.

root

com edu ca com

umanitoba uwinnipeg

cs ee

Figure 2.3: DNS structure for www.cs.umanitoba.ca

The databases of domain name to IP address mappings are collectively distributed

across three types of servers in DNS. A master server contains information for one or

more zones. A slave server replicates domain name information from its master to

provide enhanced reliability. Cache servers distributed throughout the Internet save

domain name information locally (typically from multiple zones) for client machines

after they request and receive the information from a master (or a slave) server. DNS

provides a very efficient and reliable wide area lookup capability.

3A DNS zone corresponds to a specific part of the global DNS namespace.

16 Chapter 2: Related Work

INS

The Intentional Naming System (INS) [AWSBL00] provides a unique way to name

and look up information. In the INS, the names of entries are “expressive” which

means each name is a combination of different descriptive properties instead of just a

text string. A request in INS is made using a description of what is wanted in terms

of one or more properties, not using a specific name as in DNS. For example a client

might ask for information about a component that can “do animation in Microsoft

PowerPoint”.

2.6 Network Modelling and Simulation

Assessment of distributed systems almost always includes some form of simulation

based on an abstracted model of the network being used (commonly the Internet).

This section briefly reviews some common tools needed to do such simulations.

2.6.1 Network Simulators

To assess any distributed system, network simulation at global scale is commonly

required as large-scale deployments are impractical. A key characteristic of any sim-

ulation is accuracy within the constraints of the associated model. For distributed

systems, a key aspect of this is the structure of the underlying network. Many tools

exist in support of network simulation. A subset are now discussed.

Chapter 2: Related Work 17

Network Generator Tools

There are two ways to test a system (e.g., routing protocol, network application,

etc.) in a network environment. First, we can test in an actual new/existing network.

In this way the testing process is limited by scalability (e.g., number of nodes, etc.)

and network properties (e.g., bandwidth, node location, etc.). This method is not

sufficient to assess all possible aspects of a system’s behaviour. If we want to create

a new network just for testing, it will be expensive and for any modification of the

network or its property parameters, the network structure must be changed and this

will add to the cost. The second way to test a system in a network environment is to

use a network topology generator tool and then simulation. The advantages of using

network generator tools and simulation are to support scalability assessment, and

efficiency. There is much flexibility using such tools. For example, changing network

properties in a tool is trivial since by changing a network parameter you can quickly

and easily create a new network topology.

There are different topology models that are commonly used for modelling the

Internet and other real-world network structures with the most popular ones being

Waxman [Wax88] and the hierarchical domain model [CDZ97]. Each of these models

uses a different structure to generate the topology [MLMB01]. The Waxman model

is based on placing routing nodes at random locations on a plane (representing the

earth’s surface) and then adding edges between these nodes to reflect connectivity

of nodes. The hierarchical domain model reflects common Internet structure. It

first creates Autonomous Systems (ASs) that reflect wide-area network infrastructure

owned by a single organization (and connected to other ASs at what are sometimes

18 Chapter 2: Related Work

referred to as “peering points”) and then adds routing nodes to the ASs.

There are different network generator tools available with different features. [MLMB01]

says that a generator tool is universal if it has certain specific features. The first is

Representativeness, which means the generated topology should be an accurate reflec-

tion of the characteristics of the real topology of interest. Inclusiveness says that the

tool has the strength of many generation models. Flexibility means that changing the

topology characteristics should be feasible and easy. Efficiency implies that running

the tool and generating a topology should use the CPU and the memory efficiently.

Extensibility means the user should be able to change a model’s features or add new

models to the tool. Interoperability indicates that the tool should generate output

that can be used in another tool. Robustness requires detection features to find er-

rors in the topology. Lastly, User-friendliness, implies that using the tool should be

easy and intuitive for the user. All these features give researchers the ability to use

the existing tool or just modify it for their new requirements without developing and

implementing a new model. BRITE (the Boston university Representative Internet

Topology gEnerator) [MLMB01] is a universal generator tool.

Generation Methods

In any specific network generator, there are two key factors, the placement method

that is used to distribute nodes, and the connection function which gives the proba-

bility of a new node connecting to existing node(s).

There are three common generation strategies [MMB00]. The first is the ran-

dom method. In this method, nodes are placed in a plane uniform randomly. The

Chapter 2: Related Work 19

probability that two nodes connect to each other is based on Waxman’s probability

function shown in Equation (2.1) [MMB00] where α > 0 , 0 < β ≤ 1, d is the distance

between two nodes and L is the longest distance between any two nodes. If α is a

large number, β is close to 0 and d is a small value, which means if two nodes are

very close to each other, then the probability of these two nodes connecting to each

other is increased.

P (u, v) = αe
−d
βL (2.1)

The second method is the regular method. In this method nodes are not at random

locations but are located on the vertices of a regular grid. The connection between

two nodes is determined by the grid connectivity, which means each node is connected

to two or four (in 2D) adjacent nodes.

The third method is the hierarchical method. This method has two types of

connectivity graphs: higher-level and lower-level. In GT-ITM [CDZ97] the nodes

are placed randomly in the lower-level graph and then these lower-level graphs are

connected to each other by a higher level structure. The connection between nodes in

the lower level graphs are random but the connection at the higher level is structured

(i.e. grid). Another type of hierarchical method, is the Transit-Stub method [CDZ97].

In this method, first a Transit domain graph is randomly generated and then nodes

are placed randomly inside each domain which is called a Stub domain. A topology

generated by the Transit-Stub method is the closest to the Internet topology.

Both Waxman and Transit-Stub methods create their nodes and then add the

edges between them. Therefore, the network cannot be grown [MMB00]. Barabasi

20 Chapter 2: Related Work

and Albert [AR99] believe generated network topologies should be able to grow re-

flecting the fact that real networks do so. There are two aspects to growing networks.

First is incremental growth, which means a network is open to grow and nodes can

be added to it based on a timeline reflecting activities such as a new smartphone or a

laptop connecting to the Internet. The other is Preferential connectivity that reflects

the increased probability that a new node will be connected to a popular node (rather

than to other nodes).

2.6.2 Simulation Systems and Software

There are different types of simulation systems. In some of them, the user must

implement the whole simulation from scratch and use a programming language such as

C++. The benefit of this type is the performance of simulation, which is customized

to the problem at hand and thus the simulations use less resources and run faster. The

downside is the need to re-implement all common simulation functions (e.g. queue

management, random number generation, etc.). This could be a time consuming

and complex process. Another option is to use point and click simulation software

(e.g. NetSim [CIS]) to create the simulations. The benefit of this type of simulation

software is it is very user friendly. The user just needs to drag and drop a pre-defined

simulation component and the simulation component is added to the simulation. The

user does not need to know much about programming and can have all graphic results

very easily and quickly. Unfortunately, this type of simulation is very restrictive. User

cannot modify existing functionality or add new functionality to the simulation. Also,

the speed of running the simulation is commonly slower than the first type [PE05].

Chapter 2: Related Work 21

There is another type between these two where the simulation is based on a pro-

gram but a pre-defined simulation architecture and components are provided. One ex-

ample of this type of simulation system is SSJ (Stochastic Simulation in Java) [PE05]

from the Université de Montréal. SSJ is written in Java and uses Java as its main pro-

gramming language and it contains most common simulation features in its library.

The user just needs to add new components to the software and then specify the

simulation parameters. Also, the user can modify existing functionality or add new

features. This approach provides a compromise between powerful but complex “sim-

ulation from scratch” and simple but restrictive “drag and drop” simulation systems.

Another benefit of using SSJ is that it is based on Java so it runs on many different

machines and is operating system independent. As SSJ uses Java, it runs simulation

faster than those created with ”drag and drop” system. SSJ also supports different

types of simulation including event view, process view, continuous simulations or any

combination of these types.

Chapter 3

Concise Problem Statement

To create a system where applications can be composed from components dy-

namically, it must be possible to find and access components quickly regardless of

user location. Such components will be stored in component storage servers located

throughout the Internet. Deciding which component storage servers to place com-

ponents in to ensure efficient access is the first aspect of the problem. Then the

problem of how to dynamically locate needed components quickly to compose an ap-

plication must also be solved. There are certain challenges that must be dealt with

to address these two sub-problems. Any solution must support user mobility and

be location sensitive, (i.e., it must be possible to find the required components from

nearby component storage servers). The solution must also be scalable with respect

to the number of users and the number of components. The solution also needs to

provide fast response and be reliable because users need to be sure that they will

always have access to the required components if such a system is to be accepted

as an alternative to applications stored locally on devices or the use of conventional

22

Chapter 3: Concise Problem Statement 23

SaaS approaches.

Chapter 4

Solution Strategy and Prototype

Implementation

4.1 Introduction

Figure 4.1 shows high-level abstraction of the solution strategy described in this

thesis. A client with any device (e.g. in this example a smartphone) requests a

component. First it connects to a nearby cache location server. Then, the cache

location server queries in its database or, if necessary, asks one or more master location

servers to find a component storage server’s ID that has the component. The cache

location server sends back the component storage server ID to the client. After that,

the client and the component storage server have a direct connection and the client

downloads its requested component. Component lookups are location-aware so that

the nearest available component replicas are used. New components uploaded by users

are automatically replicated and distributed by the system to ensure later efficient

24

Chapter 4: Solution Strategy and Prototype Implementation 25

access.

Figure 4.1: Example of the Solution Strategy [SKG09]

4.2 Components

A component is an identifiable part of an application that provides a particular

function or group of related functions for the whole application (e.g. the animation

part of the Microsoft PowerPoint). In a distributed computing system a component

is a reusable part of the application that can be combined with other components

and which may be stored at different locations in a network.

In my prototype implementation, which is done in Java, each component has two

26 Chapter 4: Solution Strategy and Prototype Implementation

key attributes, which are the name of the component Component Name and the ver-

sion Component Version. Every component has at least one method that represents

the functionality of the component. For exampleTime 100 is a component that prints

the current time and has a version1 number of 1.0.0. You can see the source code

in Figure 4.2. The name of a component class will have the form (Component-

public class Time_100 {

private static final String VERSION = "1.0.0";

private static final String COMPONENT_NAME = "Time";

private static final String DATE_FORMAT_NOW ="yyyy -MM-dd HH:mm:ss";

public static String getCurrentVersion (){

return VERSION;

}

public static String getComponentName (){

return COMPONENT_NAME;

}

public static String getCurrentTime (){

String result = "";

Calendar cal = Calendar.getInstance ();

SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT_NOW);

result = sdf.format(cal.getTime ());

System.out.println("Current time is " + result);

return result;

}

}

Figure 4.2: Code of Time 100.java

Name) (Version without dots).java. For example, in Figure 4.2, ComponentName =

Time and Version = 1.0.0, so the class name will be Time 100.java

This component includes the getCurrentTime() method which prints the current time

of the system and can be dynamically loaded into a Java Virtual Machine (JVM) for

use via Java’s ClassLoader mechanism [CLA].

1There is a method in each component (getComponentVersion()) which returns the component’s
version.

Chapter 4: Solution Strategy and Prototype Implementation 27

4.3 System Entities

In my research there are four entities of interest, which are explained in the fol-

lowing subsections.

4.3.1 Clients

Client machines/nodes are where users generate requests to access/download com-

ponents. Each client has two major responsibilities:

1. Searching for a component and downloading it from the closest component

storage server when accessing a component created elsewhere.

2. Uploading and registering a new component to the closest component storage

server when providing a new component for the use of others.

Searching for a component and downloading it

Each component has its own name and version. When a user needs a component,

the component name and the component version are provided. The client node will

then connect to the closest operational cache location server based on Euclidean

distance. Then the client sends its request to the cache location server along with

its latitude and longitude information. It then waits for the response of the closest

component storage server that has the requested component. After downloading the

component, the client checks if the component storage server which it downloaded

from was reasonably close or not. If not, then the client uploads the component to

its closest component storage server.

28 Chapter 4: Solution Strategy and Prototype Implementation

Uploading and registering a new component

The second task for the client is registering a new component to a component

storage server when a user creates one. Again, the component storage server chosen

is the closest component storage server to the client as described. After the client

uploads its component, the client notifies its closest cache location server that the

new component storage server has the component.

Also, if a client connects to a component storage server to download the requested

component and component storage server sends the response that it does not have

the component (the component could have been removed), then the client sends a

message to the cache location server that this component storage server does not have

the component. Then the cache location server update its database (removing the

record of that component storage server) and searches again for another component

storage server.

4.3.2 Cache Location Servers

The client always sends its component requests to the nearest cache location

server. Cache location servers provide nearby copies of information on locally relevant

components to provide quick lookup and access. Each cache location server has an

empty database initially. The responsibility of the cache location server is to store

the component name and its assigned component storage server ID for the next client

request (as shown in Figure 4.8).

When there is more than one component storage server ID in the cache location

server database, the cache location server will return the “best” component storage

Chapter 4: Solution Strategy and Prototype Implementation 29

server based on shortest ping time. Cache location servers build up their databases

using successful previous results from master location servers. Also cache location

server records the component storage server information when a client has uploaded

a new component to the client’s nearby component storage server.

4.3.3 Master Location Servers

Each master location server has its own database that for each component stores

component name, component version, and the ID of the component storage servers

containing the component. Master location servers are the definitive source for loca-

tion information. When a cache location server contacts the master location server

for a client’s requested component, it checks its own database and returns component

storage server ID that contains the requested component. If more than one compo-

nent storage server has the component, the master location server will return a list

of IDs of the closest component storage servers based on the latitude and longitude

of both the client and the component storage server. The number of items in the list

is defined in the configuration file and the default value is 2 providing for support of

basic redundancy. The IDs of the closest component storage servers in each master

are returned to the cache location server and the cache location server will decide

which to give to the requesting client based on the ping time.

Another responsibility of the master location server is to register new components’

component storage servers IDs in all master servers that replicate that information.

When a client uploads a new component to its closest component storage server based

on latitude and longitude, the component storage server after downloading the com-

30 Chapter 4: Solution Strategy and Prototype Implementation

ponent, sends a notification to the primary master location server and the master

location servers in the master location server sequence list. The notification con-

tains the componentName, componentVersion and the ID of the component storage

server. This information will be used by cache location servers which do not have any

information about requested components from their clients.

4.3.4 Component Storage Server

A node that stores components is a component storage server. A component

storage server connects to a client to upload or download components. When a client

uploads a component into a component storage server, the component storage server

sends a notification to the primary master location server and the master location

servers in the master location server sequence list asking them to update their location

information to include the new component. Then the component storage server sends

a copy of the new component to its closest component storage server. So there is

redundant storage of each component. The selected alternate storage server also

contacts the necessary location servers to have them update their information.

4.4 Use of Hash Function in My Prototype

Each component based on its name and version gets a key, which is used to

register the component into master location servers that, as the name implies, store

the locations of available components and their replicas. This key is generated by

using a hash function.

For getting the master location server ID, first all letters of the component Name

Chapter 4: Solution Strategy and Prototype Implementation 31

are converted to uppercase letters (Component names are assumed to be case-insensitive

and thus, for example a user may search for “Time” and another user searches for

“time”, but both are assumed to be searching for the same Time component). The

ASCII code values of all uppercase letters are then simply summed to produce the

hash code value. While this technique will likely not distribute all component names

uniformly over the available hash space, it is sufficient for this application and is very

simple and therefore efficient to compute. For example, if a component name is Time,

then its hash value would be computed as follows:

Step 1- Retrieve Component Name: Component Name = Time

Step 2- Convert all letters to uppercase: = TIME

Step 3- Get ASCII code values for all Component Name letters: TIME ⇒ T (84)

I (73) M (77) E (69)

Step 4- Summing of ASCII code values: For TIME is 84+73+77+69 = 303

The second phase in computing a component’s key is to get a numeric value of the

version. For doing this, the value is the version number without dots. For example,

if the component version is 1.2.0 then the numeric value is 120.

After getting the component name and the component version values, I mul-

tiply them together. The primary master location server ID is thus computed as

(component name value × component version value) mod (number of master location

servers) which is done in the getServerID method. The source code of the getServerID

method is shown in Figure 4.3. If the result is zero, the primary master location server

ID is arbitrarily set to the number of master location servers in the configuration file.

This primary master location server records information about the component’s com-

32 Chapter 4: Solution Strategy and Prototype Implementation

ponent storage server and then replicates this information to other master location

servers for reliability.

public int getServerID(String componentName ,String version) throws IOException{

Config cfg = new Config ();

int numberOfServer = cfg.getNumberofMasterServers ();

int result = 0;

int ID = getStringASCIIValue(componentName) * getVersion(version);

if (ID % numberOfServer != 0){

result = ID % numberOfServer;

}else{

result = numberOfServer;

}

return result;

}

Figure 4.3: Code of getServerID Method

The hash function returns the same master location server ID for all components

with the same name, and version number. When different components are hashed to

the same master location server, they are identified by the server using their name

and version number so there is no problem.

4.5 Redundancy

The hash function returns the primary master location server ID for each compo-

nent and version. But for reliability we need to have more than one master location

server that stores the component’s information. The solution for this problem is

redundancy.

The redundancy factor (total number of master location servers storing informa-

tion for a given component) is set in the configuration file. Based on the number of

master location servers and the redundancy factor and having the primary master

location server’s ID which comes from the hash function, getServerIDSequence(int

Chapter 4: Solution Strategy and Prototype Implementation 33

primaryNumber) will return a sequence of master location server IDs that store infor-

mation for a component of interest. This sequence is called the master location servers

sequence. The number of master location server groups with a desired redundancy

factor is int(number of master location servers / redundancy factor)+1.

For example, if we have 5 master location servers and the redundancy factor is 2

then there are 3 master location server groups:

Group 1 includes (Master Location Server1, Master Location Server2),

Group 2 includes (Master Location Server3, Master Location Server4),

Group 3 includes (Master Location Server5)

Only master location servers with the same sequence number within their own

group can be used as redundant servers. For example, Master Location Server1,

Master Location Server3 or Master Location Server3, Master Location Server5 or

Master Location Server2, Master Location Server4 can be selected as master location

servers in this example provided that the primary master location server is Master

Location Server1 or Master Location Server3 or Master Location Server2, respectively.

On the other hand, if getServerID selects Master Location Server 4 as the primary

master location server, what will be chosen by the algorithm as the next master

location server? Since Master Location Server 4 is placed as the second position in

its own group (Group 2), and there is no such position in Group 3, the algorithm

will select the second position from the previous group which is Group 1 and it will

be Master Location Server 2. Figure 4.4 shows the grouping of five master location

servers.

34 Chapter 4: Solution Strategy and Prototype Implementation

Group Number Position 1 Position 2

1 MLS 1 MLS 2

2 MLS 3 MLS 4

3 MLS 5

Figure 4.4: Example of Grouping Five Master Location Servers

Based on the required number of selected master location servers which is set in

the configuration file, the selecting master location server ID loop in the getServerID-

Sequence method continues to get enough master location servers to create its master

location servers IDs sets. Figure 4.5 shows the source code of the getServerIDSe-

quence method. This sequence of master location server IDs would be again identical

for components with the same name and version number and given redundancy factor

in configuration file.

Chapter 4: Solution Strategy and Prototype Implementation 35

public int[] getServerIDSequence(int primaryNumber) throws IOException{

Config cfg = new Config ();

int numberOfServer = cfg.getNumberofMasterServers ();

int redundancyFactor = cfg.getRedundancyFactor ();

int numberOfSelectedServer = cfg.getNumberofSelectedMasterServers ();

int numberOfGroups = getNumberOfGroups(numberOfServer , redundancyFactor);

int[] result = new int[numberOfGroups];

result [0] = primaryNumber;

int value = 0;

int leftCounter = 1;

int rightCounter =1;

int totalCounter = 1;

int internalCounter = 1;

int i = 1;

while (totalCounter <numberOfSelectedServer && i<numberOfServer){

if (i%2 != 0){ value = primaryNumber + (rightCounter *

redundancyFactor);

if (value <= numberOfServer){

result[internalCounter] = value;

rightCounter ++;

internalCounter ++;

totalCounter ++;

}

}else{ value = primaryNumber - (leftCounter * redundancyFactor);

if (value > 0){

result[internalCounter] = value;

leftCounter ++;

internalCounter ++;

totalCounter ++;

}

}

i++;

}

return result;

}

Figure 4.5: Code of getServerIDSequence method

4.6 Location Awareness

I have used two methods to decide on the closest component storage server to

each client. The first is based on latitude and longitude of the client and component

storage servers that store the component. Figure 4.6 shows the source code of the

calcDistance method.

The master location server performs this distance calculation and sends the ID

of the closest component storage servers to a requesting cache location server. The

36 Chapter 4: Solution Strategy and Prototype Implementation

//It comes from http :// www.movable -type.co.uk/scripts/latlong.html

//http :// www.csgnetwork.com/gpscoordconv.html

//http :// support.microsoft.com/kb /213449

static double calcDistance(double lat1 , double long1 , double lat2 , double

long2){

double distance = 0;

double radius = 6371;

double deltaLat , deltaLong;

double a, c;

deltaLat = Math.toRadians ((lat2 - lat1));

deltaLong = Math.toRadians(long2 - long1);

a = Math.pow(Math.sin(deltaLat /2), 2) + (Math.cos(Math.toRadians(lat1

))*Math.cos(Math.toRadians(lat2))*Math.pow(Math.sin(deltaLong /2),

2));

c = 2 * (Math.atan2(Math.sqrt(a), Math.sqrt(1-a)));

distance = radius * c;

return distance;

}

Figure 4.6: Code of calcDistance Method

default number of closest component storage servers to be returned is predefined in

the configuration file.

The second method used to find the closest component storage server in cache

location servers is the average ping time. First the master location server sends the

list of closest component storage servers based on latitude and longitude of the client

to the cache location server. Then the cache location servers ping each component

storage server and the component storage server with the shortest average ping time

is sent to the client. By this method, cache location servers can also be assured that

the chosen component storage server is currently online and can be accessed as quickly

as currently possible.

4.7 The Component Download Process

The flow chart in Figure 4.7 shows the algorithm for the entire process for down-

loading a new component from the closest component storage server. The procedure

Chapter 4: Solution Strategy and Prototype Implementation 37

a client uses to find a component is:

• Step1: The client sends the name and the version of required components to its

nearby cache location server.

• Step 2: The cache location server receives the component name and version of

the requested component.

• Step Q21: The cache location server checks to see if the component is found in

its database?

• Step Q1N3-1: The cache location server runs the hash function on the name

and the version of the requested component to find the series of master location

server IDs and sends the request component name and component version to

these master location servers.

• Step Q1N-2: The master location server searches its database for the requested

component and returns a sequence of component storage servers (the number of

component storage servers is defined in configuration file) based on the closeness

to the clients location.

• Step Q1N-3: The master location server sends information of these component

storage servers to the cache location server.

• Step Q1N-4: The cache location server records this information to its database.

2The ‘Q’ means this step poses a ‘Question’.
3The ‘N’ means the answer to the preceding question was ‘No’.

38 Chapter 4: Solution Strategy and Prototype Implementation

• Step Q1Y-1: The cache location server runs ping method to find the closest

currently online component storage server to the clients between its lookup

results.

• Step Q1Y-2: The cache location server sends the IP address of the component

storage server to the client.

• Step Q1Y-3: The client sends its request to the component storage server to

download the component.

• Step Q1Y-4: The component storage server sends the requested component to

the client.

• Q2: Was the responding component storage server the one close to the client?

• Q2N-1: The client sends a copy of the component to its closest component

storage server and notifies the cache location server that the new component

storage server has this component.

• QN-2: The cache location server records the new uploaded component’s infor-

mation and the component storage server’s ID that the client has uploaded.

• QN-3: The component storage server copies the component to its closest com-

ponent storage server for reliability and notifies the appropriate master location

servers of the update.

The diagram in Figure 4.8 shows connections among the different entities in my

system.

Chapter 4: Solution Strategy and Prototype Implementation 39

Figure 4.7: Flow chart of how a client downloads a new component

40 Chapter 4: Solution Strategy and Prototype Implementation

Figure 4.8: Communication between different entities

Chapter 5

Assessment

5.1 Introduction

To assess my strategy, I needed to run a number of simulations. I used BRITE

to create a network topology that was structurally representative of the Internet but

scaled down by a factor of approximately 1000 (in terms of area covered, number of

routers, hosts, etc.) to make the simulations feasible in the time available. I used SSJ

to develop my event-based simulation. In this chapter, I explain my usage of BRITE

and SSJ and I describe the results from the different scenarios I used to assess my

approach.

5.2 Simulation

I chose to use the BRITE [MLMB01] network generation tool in my research

to create realistic models of the Internet on which I could simulate my system’s be-

41

42 Chapter 5: Assessment

haviour. BRITE is an open source and universal network generator that was designed

and implemented at Boston University. There are eight models supported in BRITE

but it also has the ability to be extended, which means new models can be added to

it or imported from other network generators [MLMB01].

BRITE defines five groups of models, which are Flat Router model, AS Flat model,

Hierarchical Top-down model, Hierarchical Bottom-up model, and models imported

from other network generators such as GT-ITM [MLMB01].

There are two models that are used in all BRITE groups except, of course, when

importing from some other generator. The first model is the “Waxman” model in

which the nodes are placed in the plane uniformly randomly and interconnected based

on Waxman’s function as described earlier in the Related Work chapter. The next

model is “Barabasi” in which the tendency of a new node to connect to a popular

node is higher than to other nodes. These two models are used in four sub-models of

BRITE’s Flat Router and Flat AS models. The hierarchical top-down model where

first the ASs are created and then in each AS, nodes are connected based on some

router models is also supported. The other sub-type is the Bottom-Up model where

first nodes are connected based on an underlying router model and then these routers

are grouped into different ASs. Figure 5.1 shows the BRITE models structure.

BRITE Configuration

In BRITE, there are two key configuration choices. The first is placement of

nodes. There are two types of placement: random and heavy tailed.

The second configuration choice is bandwidth assignment between pairs of nodes.

Chapter 5: Assessment 43

Model

Flat Router
Models

Router
Waxman

Router
Barabasi

Flat AS
Models

AS Waxman AS Barabasi

Imported File
Models

Imported File
BRITE

Imported File
GT-ITM

Imported File
NLANR

Imported File
Inet

Imported File
SKITTER

Hierarchical
Top-down

Model

Hierarchical
Bottom Up

Model

Figure 5.1: Structure of BRITE models adapted from [MLMB01]

The method used is AssignBandwidth. The value of the bandwidth is unit-less and

can be interpreted based on specific requirements.

The AssignBandwidth method needs three variables to be set to calculate the

bandwidth between two nodes:

1. Minimum bandwidth.

2. Maximum bandwidth.

3. Bandwidth distribution, which is the method of assigning the bandwidth. There

are four different possibilities:

• Constant: BRITE picks the minimum bandwidth for all bandwidths.

• Uniform: The bandwidth value will be a uniformly distributed value be-

tween minimum and maximum bandwidth.

44 Chapter 5: Assessment

• Exponential: Bandwidth will increase exponentially by the mean BW(min)1

• Heavy-tailed: The value is Pareto distributed with minimum and maxi-

mum bandwidth (see Equation 5.1 [MLMB01] where α, k > 0 and x ≥ k

where k is the smallest random value).

p(x) = αkαxα−1 (5.1)

BRITE first reads its configuration parameters and then generates the requested

topology based on the configuration file parameters. Tables 5.1 and 5.2 explain

the parameters available for the two major models: Flat topology and Top-down

hierarchical topology.

BRITE Output

After configuring BRITE through the GUI or the configuration file and running

BRITE to generate the topology, BRITE produces output based on its configura-

tion. BRITE’s output file has three sections. The first section describes the model

configuration. The second section has information about nodes and each line has in-

formation for a given node (see Table 5.3). The final section provides edge connection

information between nodes (see Table 5.4).

1Minimum Bandwidth.

Chapter 5: Assessment 45

Table 5.1: Flat Topology (AS Only or Router Only) Parameters [MLMB01]

Parameter Meaning Values

HS Size of one side of the plane int ≥ 1
LS Size of one side of a high-level square int ≥ 1
N Number of nodes int1 ≤ N ≤ HS ∗ LS

Model Model ID

int ≥ 1
1: Router Waxman
2: Router Barabasi
3: AS Waxman
4: AS Barabasi
5: Top-down hierarchical
6: Button-up hierarchical

alpha Waxman-specific exponent 0 < α ≤ 1, α ∈ R
beta Waxman-specific exponent 0 < β ≤ 1, β ∈ R

Node Placement How nodes join the topology
1: Incremental
2: Random

m Number of links per new node int ≥ 1

Growth Type How nodes join the topology
1: Random
2: Heavy-tailed

BWdist Bandwidth assignment to links

Constant
Uniform
Exponential
Heavy-tailed

MaxBW, MinBW minimum, maximum link bandwidth values float > 0

46 Chapter 5: Assessment

Table 5.2: Top-down Hierarchical Topology Parameters [MLMB01]

Parameter Meaning Values

Edge Connection
Method for interconnecting

1: Random node
2: Smallest degree

router topologies
3: Smallest degree non-leaf
4: k-Degree

Intra BWdist
Intra-domain bandwidth

1: Constant
2: Uniform

assignment distribution
3: Exponential
4: Heavy-tailed

Intra BWMax/Min
Minimum, Maximum bandwidth

float > 0
values intra-domain links

Inter BWdist
Inter-domain bandwidth

1: Constant
2: Uniform

assignment distribution
3: Exponential
4: Heavy-tailed

Inter BWMax/Min
Minimum, Maximum bandwidth

float > 0
values for inter-domain links

Table 5.3: Nodes Information in BRITE’s Output File [MLMB01]

Value Description

NodeID The identifier of the node
xPos x-axis coordinate in the plane
yPos y-axis coordinate in the plane

Indegree Indegree of the node
Outdegree Outdegree of the node

ASid The AS’s ID that node belongs to it
Type The type of the node lke router, AS

Table 5.4: Edges Information in BRITE’s Output File [MLMB01]

Value Description

EdgeID The identifier of the edge between two nodes
From The origin nodeID

To The destination nodeID in edge
Length Euclidean length between two nodes
Delay Propagation delay

Bandwidth Edge’s bandwidth
ASFrom The AS’s ID of the origin node

ASTo The AS’s ID of the destination node
Type The type of the edge by classification routine

Chapter 5: Assessment 47

Figure 5.2 shows a simple example of BRITE output for a network with 50 nodes

and 107 edges between these nodes. Note that some details are omitted for simplicity.

These sections are shown with ellipses.

Line1: BRITE Simulation Output

Line2: Header Section: N, HS , LS, Node Plancement , m, alpha , beta ,

Growth type , BWDistribution , MinBandwidth , MaxBandwidth

Line3: Node Section: Node ID, xPos , yPos , indegree , outdegree ,

ASid

Line4: Edge Section: EdgeID , fromNode , toNode , Length , Delay ,

Bandwidth , ASFrom , ASTo

Line5: Topology: (50 Nodes , 107 Edges)

Line6: Model (5 - TopDown)

Line7: Model (3 - ASWaxman): 5 1000 100 1 2 0.15 0.2 1 1 1000.0 3000.0

Line8: Model (1 - RTWaxman): 10 1000 100 1 2 0.15 0.2 1 1 100.0 500.0

Line9: Nodes: (50)

Line10: 1 258 964 4 4 0

...

Line11: 11 901 601 3 3 1

...

Line12: 21 209 323 5 5 2

...

Line13: 31 893 951 6 6 3

...

Line14: 41 611 377 4 4 4

...

Line15: Edges: (107)

Line16: 7 3 2 310.04837 0.982 315.65 0 0

Line17: 8 3 1 523.2447 2.033 257.38 0 0

...

Line18: 27 15 13 1027.6498 3.109 330.55 1 1

Line19: 28 15 12 552.0082 3.046 181.24 1 1

...

Line20: 47 29 30 362.00552 2.092 173.03 2 2

Line21: 48 29 28 236.59671 1.192 198.57 2 2

...

Line22: 67 35 31 443.90652 1.503 295.27 3 3

Line23: 68 35 34 658.96436 2.182 301.95 3 3

...

Line24: 87 45 46 482.14935 1.453 331.94 4 4

Line25: 88 45 47 913.9125 1.846 495.05 4 4

...

Line26: 107 8 13 724.6544 0.603 1201.83 0 1

Line27: 108 35 17 379.86972 0.217 1750.55 3 1

Line28: 109 26 5 298.69046 0.101 2967.17 2 0

Line29: 110 39 4 1038.6309 0.437 2375.44 3 0

Line30: 111 26 16 1070.6937 0.747 1433.48 2 1

Line31: 112 49 16 982.28406 0.438 2245.19 4 1

Line32: 113 41 32 370.41733 0.174 2129.85 4 3

Figure 5.2: Example of a BRITE output

The output from BRITE begins with information describing the high level pa-

rameters of the network being generated. These are shown in the first 10 lines of the

48 Chapter 5: Assessment

example in Figure 5.2. This is followed by sections detailing the individual nodes in

the network [starting at line 11] and the edges (communication links) between them

[starting at line 22 in the Figure 5.2].

For example, the line 1 258 964 4 4 0 means node 1 has xPosition=258, yPosi-

tion=964 and has an indegree of 4 and outdegree of 4 and is in AS of 0. For the

edge example, 8 3 1 523.2447 2.033 257.38 0 0 means there is an edge between node

3 and node 8 from the same ASs (both are 0), the distance is 523.2447 and delay=

2.033 and the bandwidth=257.38 (the unit of the bandwidth can be set by the user).

Presumably the unit for the distance and delay are also left unspecified and are thus

subject to interpretation by the user. If so, you should say this. If not, specify the

units.

Use of BRITE in my Thesis

In my simulation I generated a network topology with BRITE. In my simulated

network, I placed 4000 routers in 10 different autonomous systems (ASs). The mini-

mum bandwidth between ASs was 3Gbps and the maximum bandwidth was 20Gbps.

And the minimum bandwidth between routers in each AS was 100Mbps and the

maximum bandwidth was 4Gbps. In my network topology, there were 8020 edges

generated between these routers.

5.2.1 Use of SSJ in my Thesis

I chose SSJ (Stochastic Simulation in Java) [PE05] from the Université de Montréal

to run my thesis simulation.

Chapter 5: Assessment 49

In my simulation, I used the event view of SSJ. In event view, each simulated

event needs to extend from the Event class and has an action method. I created

the following events corresponding to activities in the proposed system and in my

implemented prototype:

• EventGenerateClientRequestMessage: In this event, after reading a user re-

quest, the simulation creates a message that is sent to a cache location server

near the client.

• EventSearchCacheServerDatabase: In this event, the cache location server looks

for the requested component in its database. If the cache location server finds

the component in its database, it will send a response to the client otherwise it

will create a hash function event.

• EventHashFunction: If the cache location server cannot find any information

about the requested component, the hash function must be run to determine

the selected master location servers that will be asked to provide a location for

the requested component.

• EventSearchMasterServerDatabase: After receiving cache location servers mes-

sage for a requested component each selected master location server must search

their databases for the best two component storage servers (based on distance

to the client).

• EventAddMasterServerResponsestoCacheServer: Master location servers send

the result of their searches to the requesting cache location server that must

update its information.

50 Chapter 5: Assessment

• EventGenerateClientMessageToDownloadFromRepository: Cache location servers

wait for all responses from master location servers and then send the best com-

ponent storage servers ID (based now on ping time to the client) to the client so

it can create a message to download the component from a component storage

server.

• EventRepositoryChecksDatabase: After receiving a message from a client, the

component storage server, must search its database for the component and send

the component to the client.

• EventCheckIftheClosestRepository: The client checks if the component storage

server was its closest component storage server or not. If not, it triggers an

EventGenerateClientMessageToUpload event (so there will be a nearby copy in

the future).

• EventGenerateClientMessageToUpload: The client creates a message to upload

the component to its closest component storage server.

• EventUploadComponentToRepository: The client uploads the component to its

closest component storage server.

• EventSendMessageToMasterServers: After receiving a replica of the component,

the new local component storage server sends a notification to the associated

master location server (based on hash function) that it now has a new compo-

nent.

• EventSendMessagetToUpdateCacheServer: The component storage server sends

Chapter 5: Assessment 51

another notification to the client’s cache location server that it has the compo-

nent.

• EventRequestCompleted: When a request is completed, the status of the re-

quest changes to completed. This is used for statistics gathering during the

simulation.

• EventUpdateRequest: If a request is an update request, it creates a new record

in the “updated component table” (For any search operation request, first sim-

ulation checks this table if there is a new version of component available) for

future requests and starts uploading the updated component to the clients clos-

est component storage server.

• EventFailure: When a host failure event occurs, based on the scenario (failure

for cache location server, for master location server or failure for component

storage server) a random server is chosen and added to the “failed event table”

(when sending message to any server, first the simulation checks this table and

if the server is failed, tries a different server).

• EventMovingClient: When a user changes location, a move event occurs and

the client moves to a new location where a new cache location server is needed.

• EventNewCacheServer: When a cache location server associated to the client

fails, the client must find a new cache location server.

A simulation starts with events corresponding to user actions such as uploading

or accessing components occurring at simulated hosts where the users reside. These

52 Chapter 5: Assessment

lead to the creation of other events at other simulated hosts in response to messages

created to “implement” the user actions. During the course of a simulation, certain

hosts (possibly running various servers) may fail. Also, users may relocate to new

locations. These latter two scenarios are asynchronous to, but may affect, normal user

request processing. They are generated stochastically in a subset of my simulation

scenarios.

5.3 Results from the Simulation Work

After creating my simulation with SSJ and Java, I designed different scenarios to

assess the behaviour of my system.

5.3.1 Scenarios

I designed 12 different scenarios and in each scenario I just changed one property

of the system. There are also simulation constants that are fixed for all scenarios.

Simulation Constants

To make the simulations run in a reasonable time I had to model a scaled down

version of the Internet (reduced by a factor of approximately 1000). This means I

scaled the earth to a surface of 380km by 380km (145,000 km2) instead of 149 million

km2 of land surface on the earth. Then I placed 4000 routers on this surface.

The first step of the pre-run phase of the simulation was to randomly select six

dense population areas corresponding to large cities with many expected users of

the system. I selected six random routers which have at least 6 and a minimum

Chapter 5: Assessment 53

of 15 routers around themselves with distance less than 20km. These main routers

have distance of at least 100km from each other. From the rest of the routers, I

chose one single router from every 100 routers where I placed component storage

servers and master location servers and called them component storage routers and

master location routers. Finally I selected one router from every four routers to

have cache location servers which is called cache location routers which should be

widely distributed for overall system efficiency. All these routers were selected uniform

randomly.

The next step was to assign component storage servers, master location servers and

cache location servers to these selected routers. For dense population areas’ routers, I

assigned d(4 ∗ 2 ∗ number of routers in the area)/(number of routers in the area+

1)e component storage servers and master location servers2. I also assigned one cache

location server to each router. For the single component storage routers, I assigned 2

component storage servers and one cache location server and also assigned a master

location server and one cache location server to each master location routers. Finally,

I assigned one cache location server to each cache location routers. For example,

in dense population areas like New York or Tokyo, there are more clients to request

components in the system and in a small city like Stonewall, because of the population,

there are far fewer clients and therefore far fewer requests. Therefore, In New York

or Tokyo more servers required and in small cities, we do not need to have a server.

After assigning servers to the system, I placed 500 clients to these routers. At

least 80% of my clients belong to dense population area. For each client, I selected

2The formula used to determine the number of servers in dense population area was selected to
provide more capacity (4*) with redundancy (2*) per server site while maintaining a minimum of
two servers of each type (for reliability).

54 Chapter 5: Assessment

the nearby cache location server and component storage server by distance.

The next step of the simulation was creating components. I created three cate-

gories of components which were very popular components, popular components and

non-popular components reflecting probability of access. (For example, components

in an office processing suite might be very popular and thus widely used while compo-

nents in a program for simulating river flooding might be non-popular and hence in-

frequently used and possibly only in a geographically limited area.). The distribution

of number of components by category was 1% very popular components, 4% popular

components and 95% non-popular components. 90% of search operations were for

very popular components, 8% for popular components and 2% for non-popular com-

ponents. The components’ sizes were assigned uniformly randomly between 10KB

to 500KB. And also the name and version of the component were selected uniform

randomly.

The final step of the pre-run phase of simulation was generating operations. First,

all components were uploaded to the system based on generated user operations, and

then a sequence of operations (search operation, upload operation, update event ,

failure event and moving event involving the initially uploaded components) were

created to assess different situations of interest.

Other specific constant values of interest in my simulation were generating message

time costs, database operation (searching, updating, deleting) time costs, message size

between different entities and number of best component storage server and master

location server.

Chapter 5: Assessment 55

Simulation Default Values

There was a configuration file for each scenario in which one variable was changed

for each experiment and the remaining values were fixed. I designed 12 scenarios and

for each scenario I defined three experiments. I picked up a default value and changed

that value for each experiment and then ran each experiment five times. My default

values for each scenario are in Table 5.5

56 Chapter 5: Assessment

Table 5.5: Simulation Configuration Values

Field Name
Default
Value

Description

Number of Components 1000
Default number of components in the simu-
lation

Number of Clients 500 Default number of clients in the simulation

Number of Operations 10000
The first 1000 operation is upload operation
for all components and the rest could be
search or upload operation or other events

Simulation Time Horizon 15000 Time to run the simulation
Number of Upload Operations 100 10% of operation are upload operations
Number of Search Operation 900 90% of operation are search operations
Number of Update Events 0 Just scenario 4 has update events.
Number of Failure Events 0 Just scenario 5, 6 and 7 have failure events.
Number of Moving Events 0 Just scenario 8 has moving events.
Percentage of Clients in Dense
Population Area

80
Default percentage of clients in dense popu-
lation areas

Component Distribution 1-4-95
1% of very popular components, 4% of popu-
lar components and 95% of non-popular com-
ponents

Number of Very Popular Compo-
nents

13 These numbers were calculated based on the
number of components and component dis-
tribution value

Number of Popular Components 40
Number of non-Popular Compo-
nents

947

Factor for Number of Single Com-
ponent Storage Routers

100
Selecting 1/100 of non-dense population area
routers for component storage servers.

Factor for Number of Single Mas-
ter Location Routers

100
Selecting 1/100 of non-dense population area
routers for master location routers

Factor for Number of Cache Lo-
cation Routers

4
Selecting 1/4 of non-dense population area
routers for cache location servers.

Number of Component Storage
Servers

126 These number were calculated based on
dense population area and the constant vari-
ables were discussed in 5.3.1

Number of Master Location
Servers

87

Number of Cache Location
Servers

1150

I designed 12 scenarios to study the behaviour of the system.

Chapter 5: Assessment 57

5.3.2 Scenario 1 - Increasing the Number of Components

Goal

The goal of this scenario was to study the effect of increasing the number of

components in the average download time.

Expectation

If the number of component is increased, then there is less chance of repeat search

operations for components. Therefore, there is less chance to find the location of

the component in the client’s nearby cache location server. And also there is less

chance to download the component from the client’s nearby component storage server.

Therefore, the result of increasing number of components will increase the average

download time.

Result

I ran this scenario with three different experiments, five times each. The first

experiment had 100 components, the second experiment had 1000 components and

the third experiment had 2500 components.

Table 5.6 and Figure 5.3 shows the scenario 1 results.

Table 5.6: Scenario 1 - Effect of the Increasing the Number of Components on Average
Download Time

Experiment
1 2 3

Number of Components 100 1000 2500
Average Download Time(seconds) 4.50 5.12 7.87
Standard Deviation 0.04 0.05 0.07

58 Chapter 5: Assessment

100 Components 1000 Components 2500 Components

Average Download Time 4.50 5.12 7.87

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Se
co

n
d

s

Scenario 1 - Effect of Increasing the Number of
Components on Average Download Time

Figure 5.3: Scenario 1 - Effect of Increasing the Number of Components on Average
Download Time

As expected, the average download time increases with the number of components,

ceteris paribus due to less benefit from access to nearby information (storage server

locations and component replicas).

5.3.3 Scenario 2 - Increasing the Number of Clients

Goal

The goal of this scenario was to study the effect of increasing the number of clients

on the average download time.

Chapter 5: Assessment 59

Expectation

If the number of clients is increased more, clients are placed randomly in more

different locations. The number of cache location servers is fixed and the chance that a

cache location server connects many clients is going to be decreased since more clients

will be in sparsely populated areas. Thus, cache location servers are less busy and

their databases contain fewer entries. Hence, the chance that a cache location server

has information about a component being searched for will be decreased. Therefore,

the average download time should, again, be increase.

Result

I ran this scenario with three different experiments, five times each. The first

experiment had 50 clients, the second experiment had 500 clients and the third ex-

periment had 5000 clients.

Table 5.7 and Figure 5.4 shows the scenario 2 results.

Table 5.7: Scenario 2 - Effect of Increasing the Number of Clients on Average Down-
load Time

Experiment
1 2 3

Number of Clients 50 500 5000
Average Download Time(seconds) 4.74 5.91 6.38
Standard Deviation 0.03 0.04 0.02

60 Chapter 5: Assessment

50 Clients 500 Clients 5000 Clients

Average Download Time 4.74 5.91 6.38

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Se
co

n
d

s

Scenario 2 - Effect of Increasing the Number of
Clients on Average Download Time

Figure 5.4: Scenario 2 - Effect of Increasing the Number of Clients on Average Down-
load Time

As predicted, the average download time increases since the caching of storage

locations in less effective. The overall change from 50 to 5000 clients is relatively

small since component replicas are still being cached.

5.3.4 Scenario 3 - Increasing the Number of Operations

Goal

The goal of scenario 3 was to study the behaviour of the system as the number

on search and upload operations changes to determine its effect on average download

time.

Chapter 5: Assessment 61

Expectation

If the number of search operations increases with the same number of clients and

components, the chance of a repeat request from a given client for the same component

will increase. After a number of initial requests, a nearby cache location server should

have a high probability of storing information for a component being requested so the

average download time should decrease. Similarly, the chance a cache location server

has information about a component needed by other clients will also be increased.

Result

I ran this scenario with three different experiments, five times each. The first

experiment had 10,000 operations and the second experiment had 30,000 operations.

Finally, the third experiment had 100,000 operations.

Table 5.8 and Figure 5.5 shows the scenario 3 results.

Table 5.8: Scenario 3 - Effect of Increasing the Number of Operations on Average
Download Time

Experiment
1 2 3

Number of Operations 10,000 30,000 100,000
Average Download Time(seconds) 5.55 4.65 4.20
Standard Deviation 0.04 0.02 0.01

62 Chapter 5: Assessment

10000 Requests 30000 Requests 100000 Requests

Average Download Time 5.55 4.65 4.20

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Se
co

n
d

s

Scenario 3 - Effect of Increasing the Number of
Operations on Average Download Time

Figure 5.5: Scenario 3 - Effect of Increasing the Number of Operations on Average
Download Time

The results confirm that as the number of requests grows, the average download

time decreases showing that the system is effective in providing fast access for “pop-

ular” components that are accessed repeatedly.

5.3.5 Scenario 4 - Increasing the Number of Component Up-

date Events

Goal

In the real system, the components will periodically be updated to accommodate

feature updates, security patches, etc. The goal of this scenario was to study the

average download time when the number of update events increases.

Chapter 5: Assessment 63

Expectation

In my simulation, when an update event happens for a component, I update the

component’s version and increase the size of the component by 10% (reflecting the

general trend of code to grow in size). Then the assigned client uploads the component

to its nearest component storage server. The component storage server updates the

assigned master location servers and makes a copy to its replica. After that, when a

client searches for the component with the old version number, the clients download

the new version of the component3 Because information for the new version of the

component will not be in nearby cache location servers, the client needs to contact a

master location server for information about the new version of the component. Then

the nearby cache location server will get an updated record for the new component.

Due to the overhead associated with this processing, the average download time is

expected to increase with an increase in the number of update events.

Result

I ran this scenario with three different experiments, five times each. In the first

experiment the probability of an update event was 1.96%. In the second experiment

the probability of an update event was 9.09%. For the third experiment, I changed

the probability of an update event to be 33.33%4. In the graphs for this scenario and

other scenarios, I rounded the probabilities (e.g. 1.96% was rounded to 2%).

Table 5.9 and Figure 5.6 shows the scenario 4 results.

3Of course, it may be desirable to maintain multiple versions of a component but this is not
considered in my experiments.

4Because in my simulation config file is based on the number of events, not percentage, these
numbers are not rounded.

64 Chapter 5: Assessment

Table 5.9: Scenario 4 - Effect of Increasing the Number of Component Update Events
on Average Download Time

Experiment
1 2 3

Probability of Update Event 2% 9% 33%
Average Download Time(seconds) 8.89 9.74 9.91
Standard Deviation 0.09 0.04 0.08

2% Update Events 9% Update Events 33% Update Events

Average Download Time 8.89 9.74 9.91

0.00

2.00

4.00

6.00

8.00

10.00

Se
co

n
d

s

Scenario 4 - Effect of Increasing the Number of
Update Events on Average Download Time

Figure 5.6: Scenario 4 - Effect of Increasing the Number of Component Update Events
on Average Download Time

As expected, the overhead of the update process does have an impact on the

average download time. When the number of operations is fixed and the number

of update events is increased, the number of search operations is decreased. The

difference between average download times between experiment 2 and experiment 3

is, at first glance, small but the average number of search operations in experiment

2 was 8112 operations and for experiment 3 was 4476 operations. This is a signif-

icant difference as compared to the number of search operations for experiment 1

Chapter 5: Assessment 65

(8121) and experiment 2 (8112). This explains the smaller difference in the results

for experiments 2 and 3.

5.3.6 Scenario 5 - Increasing the Probability of Cache Loca-

tion Server Failures

Goal

Any entities in a real system can fail. One of the scenarios I designed was to assess

the effect of increasing the probability of cache location servers’ failures.

Expectation

When a cache location server fails, the client cannot find any information about its

requested component in the nearby cache location server. This cache location server

failure results in two types of overhead: First, the time out waiting for the cache

server that has failed and second, the time to find another nearby cache location

server. These two overheads should increase the average download time.

Result

I ran this scenario with two sets of configurations. In the first configuration as a

default 80% of the clients were placed in dense population areas and 20% elsewhere.

Table 5.10 and Figure 5.7 show the scenario 5 results when 80% of the clients were

placed in dense population areas.

66 Chapter 5: Assessment

Table 5.10: Scenario 5 - Effect of Increasing the Probability of Cache Location Server
Failures on Average Download Time when 80% of Clients Placed in Dense Population
Areas

Experiment
1 2 3

Probability of CLS Failure Event 0.05% 0.3% 1%
Average Download Time(seconds) 5.28 5.38 5.88
Standard Deviation 0.15 0.19 0.40

0.05% Cache Location
Server Failure Events

0.3% Cache Location
Server Failure Events

1% Cache Location
Server Failure Events

Average Download Time 5.28 5.35 5.88

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Se
co

n
d

s

Scenario 5 - Effect of Increasing the Probability of
Cache Location Server Failures on Average

Download Time when 80% of Clients were Placed
in Dense Population Areas

Figure 5.7: Scenario 5 - Effect of Increasing the Probability of Cache Location Server
Failures on Average Download Time when 80% of Clients were Placed in Dense Pop-
ulation Areas

There are overlaps between these results when considering the error bars for dif-

ferent experiments. The reason I suspected for the significant error values for each

experiment is the variation in the number of failed cache location servers in each run.

The number of failed cache location servers and their placement were distributed

uniform randomly. When most of the failed cache location servers were in dense pop-

ulation areas in one run and in another run the converse was true, number is different,

Chapter 5: Assessment 67

then the error bars were large.

To confirm my suspicion, I set up another scenario configuration. All the previous

configuration values were fixed except the percentage of clients in dense population

areas which I set to zero. (i.e. all clients were placed uniform randomly across the

geographic space). Table 5.11 and Figure 5.8 show the revised scenario 5 results when

all clients were placed uniform randomly.

Table 5.11: Scenario 5 - Effect of Increasing the Probability of Cache Location Server
Failures on Average Download Time when all Clients Placed Uniform Randomly

Experiment
1 2 3

Probability of CLS Failure Event 0.05% 0.3% 1%
Average Download Time(seconds) 10.68 10.98 11.46
Standard Deviation 0.06 0.08 0.20

0.05% Cache Location
Server Failure Events

0.3% Cache Location
Server Failure Events

1% Cache Location
Server Failure Events

Average Download Time 10.68 10.98 11.46

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Se
co

n
d

s

Scenario 5 - Effect of Increasing the Probability of
Cache Location Server Failures on Average

Download Time when all Clients were Placed
Uniform Randomly

Figure 5.8: Scenario 5 - Effect of Increasing the Probability of Cache Location Server
Failures on Average Download Time when all Clients were Placed Uniform Randomly

With uniform random placement of clients, we observe the originally expected

68 Chapter 5: Assessment

behaviour: slower average downloads with additional failures.

5.3.7 Scenario 6 - Increasing the Probability of Master Lo-

cation Server Failures

Goal

Like cache location servers, Master Location Servers can fail. I designed this

scenario to study the effect of master location server failures on average download

time.

Expectation

When a master location server fails, there is another (alternate) master location

server to respond to the cache location server requests for component information.

The failure of a master location server, however, will incur the cost of the time out

of connection between the cache location server and the failed master location server.

Therefore, by increasing the probability of failure events for master location servers,

the average download time should also be increased.

Result

I ran this scenario for two different configurations for three different experiments,

five times each. In the first configuration 80% of clients were placed in dense popu-

lation areas. Table 5.12 and Figure 5.9 show the scenario 6 results when 80% of the

clients were placed in dense population areas.

Chapter 5: Assessment 69

Table 5.12: Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when 80% of Clients were Placed in
Dense Population Areas

Experiment
1 2 3

Probability of MLS Failure Event 0.1% 0.5% 2%
Average Download Time(seconds) 5.80 8.70 19.41
Standard Deviation 0.19 1.63 3.37

0.1% Master Location
Server Failure Events

0.5% Master Location
Server Failure Events

2% Master Location
Server Failure Events

Average Download Time 5.80 8.70 19.41

0.00

5.00

10.00

15.00

20.00

25.00

Se
co

n
d

s

Scenario 6 - Effect of Increasing the Probability of
Master Location Server Failures on Average

Download Time when 80% of Clients were Placed
in Dense Population Areas

Figure 5.9: Scenario 6 - Effect of Increasing the Probability of Master Location Server
Failures on Average Download Time when 80% of Clients were Placed in Dense Pop-
ulation Areas

I also ran this scenario when all clients were placed uniform randomly. Table 5.13

and Figure 5.10 show these results.

70 Chapter 5: Assessment

Table 5.13: Scenario 6 - Effect of Increasing the Probability of Master Location Server
Failures on Average Download Time when all Clients were Placed Uniform Randomly

Experiment
1 2 3

Probability of MLS Failure Event 0.1% 0.5% 2%
Average Download Time(seconds) 11.29 13.95 22.42
Standard Deviation 0.40 1.90 4.91

0.1% Master Location
Server Failure Events

0.5% Master Location
Server Failure Events

2% Master Location
Server Failure Events

Average Download Time 11.29 13.95 22.42

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Se
co

n
d

s

Scenario 6 - Effect of Increasing the Probability of
Master Location Server Failures on Average

Download Time all Clients were Placed Uniform
Randomly

Figure 5.10: Scenario 6 - Effect of Increasing the Probability of Master Location
Server Failures on Average Download Time when all Clients were Placed Uniform
Randomly

There is a large different in average download time between Figure 5.9 and Fig-

ure 5.10 which is expected as in first case, 80% of clients were placed in dense pop-

ulation areas and in the second case, all clients were placed uniform randomly. In

scenario 9, I am going to explain more about it.

Chapter 5: Assessment 71

5.3.8 Scenario 7 - Increasing the Probability of Component

Storage Server Failures

Goal

Another system entity that can fail is the component storage server. I designed

Scenario 7 to study of the effect of increasing the probability of component storage

server failures on average download time.

Expectation

When a component storage server fails, there are four associated time costs. First

the client gets the time out from the component storage server trying to download

a component. (Of course, the client can no longer download any other previously

downloaded components from its nearby component storage server either). There

is also a second time out between the connection of the cache location server and

the component storage servers to select the best component storage server based on

the ping time. Also, access to a replica failed, there is a time delay trying to find

another replica in a different nearby component storage server. All these time costs

suggest that by increasing the probability of component storage server failure events,

the download average time should increase. (Also the average download time for

upload operations should be increased as the client cannot upload the components to

its nearby component storage server).

72 Chapter 5: Assessment

Result

To study this effect, I again designed two configurations for this scenario. In the

first configuration, I placed 80% of the clients in the dense population areas.

Table 5.14 and Figure 5.11 show the scenario 7 results for this configuration.

Table 5.14: Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when 80% of the Clients were Placed in
Dense Population Areas

Experiment
1 2 3

Probability of CSS Failure Event 0.05% 0.3% 1%
Average Download Time(seconds) 6.11 14.41 22.59
Standard Deviation 0.03 5.70 13.76

0.05% Component
Storage Server Failure

Events

0.3% Component
Storage Server Failure

Events

1% Component
Storage Server Failure

Events

Average Download Time 6.11 14.41 22.59

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Se
co

n
d

s

Scenario 7 - Effect of Increasing the Probability of
Component Storage Server Failures on Average
Download Time when 80% of the Clients were

Placed in Dense Population Areas

Figure 5.11: Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when 80% of the Clients were Placed in
Dense Population Areas

As the results show the average download times were increased but the error bars

Chapter 5: Assessment 73

were large and overlapping for the two right hand bars in Figure 5.11. The reason

for these significant error values was surmised to again probably be the placement

of the clients. The number of failed component storage servers in dense population

areas was probably very different for each run, and thus the standard deviations were

significant.

To confirm this assumption, I ran this scenario for another configuration where

I placed all clients uniform randomly. The number of components was decreased to

100 and number of operations was set to 1000 and the simulation time horizon was

increased to 40000 seconds. I needed to change these default configuration values

for this scenario because with the default values there were more outstanding search

operations at the end of the simulation which affected the simulations resulting in

misleading results (Failing component storage servers takes more time and all search

operations could not be completed). Table 5.15 and Figure 5.12 show the revised

scenario 7 results when all clients were placed uniform randomly.

Table 5.15: Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when All Clients were Placed Uniform
Randomly

Experiment
1 2 3

Probability of CSS Failure Event 0.05% 0.3% 1%
Average Download Time(seconds) 13.13 13.76 17.32
Standard Deviation 0.09 0.48 1.42
Average Number of Completed Search Operations 872 819 635
Average Number of Outstanding Search Operations 22 53 163

74 Chapter 5: Assessment

0.05% Component
Storage Server Failure

Events

0.3% Component
Storage Server Failure

Events

1% Component
Storage Server Failure

Events

Average Download Time 13.13 13.76 17.32

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

Se
co

n
d

s

Scenario 7 - Effect of Increasing the Probability of
Component Storage Server Failures on Average
Download Time when All Clients were Placed

Uniform Randomly

Figure 5.12: Scenario 7 - Effect of Increasing the Probability of Component Storage
Server Failures on Average Download Time when All Clients were Placed Uniform
Randomly

As the results show in Figure 5.12, the average download time still increased,

but this time there was an error bar overlap between the two left-hand bars. All

of my experiments ran in a constant simulation time horizon. As a result, when

the probability of component storage server failure events increased the number of

completed search operations decrease. This means the average download time for

experiment 3 was between fewer search operations. Figure 5.13 shows the number of

completed and outstanding search operations for each case. As shown in the results

for experiments 1 and 2 the difference in average download time is not significant

and in a real world the 0.05% failure for component storage server is a more realistic.

Thus, the results of the third experiment are unlikely to reflect actual behaviour in

an implemented system so we can conclude that there is sufficient redundancy in the

Chapter 5: Assessment 75

storage servers to effectively deal with a small number of failures.

0.05% Component
Storage Server
Failure Events

0.3% Component
Storage Server
Failure Events

1% Component
Storage Server
Failure Events

Average Number of Completed
Search Operations

872 819 635

Average Number of Outstanding
Search Operations

22 53 163

0
100
200
300
400
500
600
700
800
900

1000

N
u

m
b

e
r

o
f

Se
ar

ch
 O

p
e

ra
ti

o
n

s

Scenario7- Effect of Increasing of Number of Component
Storage Server Failures on Number of Completed and

OutStanding Search Operations

Figure 5.13: Scenario 7- Effect of Increasing of Number of Component Storage Server
Failure on Number of Completed and Outstanding Search Operations

5.3.9 Scenario 8 - Increasing User Movement

Goal

One of today’s important features for any system is to be accessible from anywhere

at anytime. I designed scenario 8 to study the effect of user mobility on average

download time.

Expectation

When a client moves from one location to a new location, and if the client has

already downloaded its components from its nearby component storage server, the

client will not need to download the components from its nearby component storage

76 Chapter 5: Assessment

server until it has replaced the component and needs it again. Then the client needs

to contact its new nearby cache location server (wherever it has moved to) to locate a

replica of the requested component near its new location. The new nearby component

storage server of the client may not have the component and then the client needs

to download the components from a more distant component storage server. Then

the client must upload the component to its new nearby component storage server.

Therefore, user mobility should increase the download time for the first download

after relocating. Thus, we can expect user mobility to increase the average download

time but perhaps not greatly.

Result

I ran three experiments for five times each in this scenario. In the first scenario

the probability of user movements was 0.1%. The second experimental probability

was 1% and for the third experiment the movement probability was 5% (a very high

percentage of the population to be mobile at any time).

Table 5.16 and Figure 5.14 show the scenario 8 results.

Table 5.16: Scenario 8 - Effect of Increasing User Movement on Average Download
Time

Experiment
1 2 3

Probability of User Mobility 0.1% 1% 5%
Average Download Time(seconds) 5.79 6.40 8.18
Standard Deviation 0.05 0.16 0.10

Chapter 5: Assessment 77

0.1% Moving Events 1% Moving Events 5% Moving Events

Average Download Time 5.79 6.40 8.18

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Se
co

n
d

s

Scenario 8 - Effect of Increasing User Movement
on Average Download Time

Figure 5.14: Scenario 8 - Effect of Increasing User Movement on Average Download
Time

As surmised, movement does negatively impact average download time. The

longer the time a mobile user stays in a given location, however, the less significant

the impact should be.

5.3.10 Scenario 9 - Varying the Number of Clients in Dense

Population Areas

Goal

It seems logical that dense population areas should benefit more from the caching

effects of the system. Thus, for this scenario I wanted to study the average download

time based on whether clients tended to be clustered in dense population areas or

not.

78 Chapter 5: Assessment

Expectation

If there are fewer clients in dense population areas, it means more clients will

likely be accessing different cache location servers and component storage servers.

Therefore, the probability of a client to download a component from its nearby com-

ponent storage server the first time it needs it (because another client nearby has

already, forced a replicas to be there) will be lower. On the other hand, if all clients

are placed in dense population areas, the chance the client downloads its requested

component from a nearby component storage server on its first access will be higher.

Also, in dense population areas, cache location servers have more chance to already

have information about requested components. Therefore, the average download time

should be decreased with denser populations.

Result

I ran scenario 9 with three different experiments, five times each. In the first

experiment 20% of the clients were placed in dense population areas. In the second

experiment, 40% of the clients were placed in dense population area and, finally, in

the third experiment all clients were placed in the dense population areas.

Table 5.17 and Figure 5.15 shows the scenario 9 results.

Table 5.17: Scenario 9 - Effect of Varying Number of Clients in Dense Population
Areas on Average Download Time

Experiment
1 2 3

Percentage of Clients in Dense Population Areas 20% 40% 100%
Average Download Time(seconds) 10.37 9.25 4.37
Standard Deviation 0.05 0.06 0.03

Chapter 5: Assessment 79

20% of Client in
Dense Population

Area

40% of Clients in
Dense Population

Area

100% of Clients in
Dense Population

Area

Average Download Time 10.37 9.25 4.37

0.00

2.00

4.00

6.00

8.00

10.00

12.00
Se

co
n

d
s

Scenario9- Effect of Different Number of Clients
in Dense Population Area on Average Download

Time

Figure 5.15: Scenario 9 - Effect of Varying Number of Clients in Dense Population
Areas on Average Download Time

The benefits of living in a densely populated area are clear and the more people

in such areas the greater the benefit will be.

5.3.11 Scenario 10 - Varying Component Popularity

Goal

The goal of scenario 10 was to study the effect of different numbers of components

by types (very popular, popular and non-popular) on average download time.

Expectation

If there are relatively few very popular and popular components in the system,

then the chance of cache location servers having the requested components’ location

80 Chapter 5: Assessment

in their databases is higher. Also, in dense population areas, clients have a better

chance to download the component from a nearby component storage server on a

first request. Thus, with relatively few very popular/popular components efficiency

in accessing those components should be high. Because they are “popular” there will

be many accesses to them so the average access time should be low. If the number

of very popular and popular components is higher, however the average download

time will be likely increase because the limited resources of the system will have to

be spread across more, frequently accessed, components.

Result

I ran this scenario with three different experiments, five times each. In the first

experiment, I had 1% very popular, 4% popular and 95% non-popular components

(probably a realistic choice). Then for the second experiment, there were 5% very

popular components, 15% popular components and 80% non-popular components.

And finally in the third experiment, there were 15% very popular components, 45%

popular components and 40% non-popular components. Table 5.18 and Figure 5.16

show the scenario 10 results.

Table 5.18: Scenario 10 - Effect of Varying Component Popularity on Average Down-
load Time

Experiment
1 2 3

Components Category Distribution 1%, 4%, 5%, 15%, 15%, 45%,
(VP,P,NP) and 95% and 80% and 40%

Average Download Time(seconds) 6.29 7.43 9.20
Standard Deviation 0.04 0.04 0.03

Chapter 5: Assessment 81

1% VP, 4% P and 95%
NP

5% VP, 15% P and
80% NP

15% VP, 45% P and
40% NP

Average Download Time 6.29 7.43 9.20

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Se
co

n
d

s

Scenario 10 - Effect of Component Popularity on
Average Download Time

Figure 5.16: Scenario 10 - Effect of Varying Component Popularity on Average Down-
load Time

As seen in Figure 5.16 the average access time does decrease with a high percent-

age of very popular/popular components. Fortunately, this is unlikely to occur in

practice. There is much software available but relatively few truly popular programs

(e.g. Firefox, MS Word, Adobe Acrobat, etc.) Much of the software created is simply

too special purpose to be generally popular.

5.3.12 Scenario 11 - Varying the Number of Component Stor-

age Servers

Goal

In this scenario I wanted to study what effects would occur if I decrease the

number of component storage servers in the system. Again, the key metric is average

82 Chapter 5: Assessment

download time.

Expectation

If there are more component storage servers in the system, it means that clients

can download their requested components from component storage servers that are

more likely to be nearby. Therefore, the average download time should be decreased.

Result

I ran this scenario with two sets of configurations with four experiments, five times

each. In the first configuration, I had 400 Component Storage Servers, 80 Component

Storage Servers, 16 Component Storage Servers and 4 Component Storage Servers,

respectively with only 3 components (one very popular, one popular and one non-

popular). Table 5.19 and Figure 5.17 show the scenario 11 results with just the 3

components.

Table 5.19: Scenario 11 - Effect of Varying the Number of Component Storage Servers
on the Average Download Time with 3 Components

Experiment
1 2 3 4

Number of CSS 400 80 16 4
Average Download Time(seconds) 8.06 8.26 8.41 7.94
Standard Deviation 0.08 0.05 0.06 0.06

Chapter 5: Assessment 83

400 Component
Storage Servers

80 Component
Storage Servers

16 Component
Storage Servers

4 Component
Storage Servers

Average Download Time 8.06 8.24 8.41 7.94

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00
Se

co
n

d
s

Scenario 11 - Effect of Varying the Number of
Component Storage Servers on the Average

Download Time with 3 Components

Figure 5.17: Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 3 Components

I then ran this scenario again with 438 Component Storage Servers, 126 Com-

ponent Storage Servers, 62 Component Storage Servers and 50 Component Storage

Servers and now with 100 components. Table 5.20 and Figure 5.18 show the scenario

11 results with 100 components.

Table 5.20: Scenario 11 - Effect of Varying the Number of Component Storage Servers
on the Average Download Time with 100 Components

Experiment
1 2 3 4

Number of CSS 438 126 62 50
Average Download Time(seconds) 8.34 8.52 8.53 8.45
Standard Deviation 0.04 0.03 0.07 0.06

84 Chapter 5: Assessment

438 Component
Storage Servers

126 Component
Storage Servers

62 Component
Storage Servers

50 Component
Storage Servers

Average Download Time 8.34 8.52 8.53 8.45

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Se
co

n
d

s

Scenario 11 - Effect of Varying the Number of
Component Storage Servers on the Average

Download Time with 100 Components

Figure 5.18: Scenario 11 - Effect of Varying the Number of Component Storage
Servers on the Average Download Time with 100 Components

As expected when the number of component storage servers is decreased there is

less chance for a client to download the component from a nearby component storage

server. Thus, the average download time is increased. This effect becomes clearer

when the simulation runs for a longer time. In these scenario, when there are few,

experiment 4 with 4 component storage servers in the first configuration and exper-

iment 4 with 50 component storage servers in the second configuration, the average

download time is decreased (which was not expected). The reason for this behaviour

is the relationship between the size of the components, the bandwidth between nodes

and the distance between nodes. As described before, the maximum distance be-

tween any nodes in the simulations was 380km. Given that realistic latencies and

bandwidths were used in the simulation, the message transit times are thus compar-

atively small, so the impact of accessing a more remote component storage server is

Chapter 5: Assessment 85

not great. Further, when there are few component storage servers in the system, there

is more chance for a given cache location server to already have information about

the required component storage servers’ ID. Therefore, cache location servers do not

need to contact the master location servers which decreases the download time of the

component.

5.3.13 Scenario 12 - Varying the Number of Cache Location

Servers

Goal

In this scenario I wanted to study the effect of varying the number of cache location

servers on average download time.

Expectation

If there are more cache location servers in the system, then clients can quickly send

their requests to a nearby cache location server and get a fast response. This means

that decreasing the number of cache location servers, should increase the average

download time because the cache location server used could be further from the

client. But when there are more cache location servers in the system, while access to

the cache location server may be quicker, the chance that a client connects to a cache

location server which another client used for the same component is going to decreased

resulting in lower “cache hit rate”. Therefore, the cache location servers’ database

have fewer entries (at least at the beginning of the simulation) and therefore cache

location servers need to connect to master location servers more frequently (incurring

86 Chapter 5: Assessment

the associated overhead). Therefore when this happens, the average download time

may be decreased by increasing the number of cache location servers.

Result

I ran this scenario with two sets of configurations with five different experiments,

for five times each for the first configuration and ten times each for the second

configuration. In the first configuration, I had 1000 Cache Location Servers, 80 Cache

Location Servers, 20 Cache Location Servers, 8 Cache Location Servers and 4 Cache

Location Servers. There were 3 components (one very popular, one popular and

one non-popular) and the number of operations was 10000 with 5000 clients. The

simulation time horizon was 15000 seconds. Table 5.21 and Figure 5.19 show the

scenario 12 results with 3 components.

Table 5.21: Scenario 12 - Effect of Varying the Number of Cache Location Servers on
Average Download Time with 3 Components

Experiment
1 2 3 4 5

Number of CLS 1000 100 20 8 4
Average Download Time(seconds) 8.82 8.46 8.48 7.97 8.38
Standard Deviation 0.09 0.06 0.06 0.03 0.07

Chapter 5: Assessment 87

1000 Cache
Location
Servers

80 Cache
Location
Servers

20 Cache
Location
Servers

8 Cache
Location
Servers

4 Cache
Location
Servers

Average Download Time 8.82 8.46 8.48 7.97 8.38

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00
Se

co
n

d
s

Scenario 12 - Effect of Varying the Number of
Cache Location Servers on Average Download

Time with 3 Components

Figure 5.19: Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 3 Components

I then ran this scenario again with 1000 Cache Location Servers, 100 Cache Lo-

cation Servers, 20 Cache Location Servers, 4 Cache Location Servers and 2 Cache

Location Servers with 100 components and 5000 clients. There were 20000 opera-

tions in 35000 seconds. Table 5.22 and Figure 5.20 show the scenario 12 results with

100 components.

Table 5.22: Scenario 12 - Effect of Varying the Number of Cache Location Servers on
Average Download Time with 100 Components

Experiment
1 2 3 4 5

Number of CLS 1000 100 20 4 2
Average Download Time(seconds) 13.61 11.70 8.96 7.15 7.51
Standard Deviation 0.05 0.03 0.02 0.02 0.02

88 Chapter 5: Assessment

1000 Cache
Location
Servers

100 Cache
Location
Servers

20 Cache
Location
Servers

4 Cache
Location
Servers

2 Cache
Location
Servers

Average Download Time 13.61 11.70 8.96 7.15 7.51

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Se
co

n
d

s

Scenario 12 - Effect of Varying the Number of
Cache Location Servers on Average Download

Time with 100 Components

Figure 5.20: Scenario 12 - Effect of Varying the Number of Cache Location Servers
on Average Download Time with 100 Components

As the simulation results show for both configurations, decreasing the number of

cache location servers will actually decrease the average download time until there

are very few cache location servers in the system when the lack of locally available

information outweighs overhead.

Chapter 6

Conclusion

6.1 Summary and Contributions

In my thesis research, I designed a placement algorithm exploiting information

about previous accesses to components to decide where best to place new component

replicas and also a location-aware component lookup algorithm. I then implemented

and tested a simple Java-based prototype built using these algorithms. I then de-

veloped a simulation system to assess the prototype’s reliability, performance and

scalability. After running a number of simulation experiments, using a scaled down

model of an Internet-like environment, I conclude that my system performs well (as-

suming the constraints of the simulations done), providing good performance and

reliability in the face of system failure and user mobility.

89

90 Chapter 6: Conclusion

6.2 Future Work

There are a number of questions that arose in this thesis that could be areas for

future work.

The first, obvious one is running the simulation on a larger scale. I can create a

network topology with more routers with longer distances between them. Then, I can

run the simulation for more clients and components over a longer simulation time to

build confidence in my belief that my system will scale well to very large deployments.

This would confirm the consistency of my simulation results between the small and

large scale.

Another area of future might be including different devices with different network

properties (e.g. 3G networks [LW02]) into the simulations to assess their impact on

performance of the system.

In the longer term, I would like to do further, more detailed studies on network

failure like failure of routers and network congestion to assess the impact of such

failures on the system.

A couple of final areas for future work would be simulations with different system

properties like search queries times on different databases to assess their impact as

well.

Finally, a real deployment using something like PlanetLab [PLA] would allow

confirmation of simulation assumptions.

Bibliography

[AR99] Barabasi A. and Albert R. Emergence of Scaling in Random Networks.

SCIENCE, 286:509, 1999.

[AWSBL00] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The

Design and Implementation of an Intentional Naming System. SIGOPS

Oper. Syst. Rev., 34:22–, April 2000.

[Car08] M. J. Carey. Soa What? IEEE Computer, 41(3):92–94, 2008.

[CD88] G. F. Coulouris and J. Dollimore. Distributed Systems Concepts and

Design. Addison-Wesley, 1988.

[CDZ97] K.L. Calvert, M.B. Doar, and E.W. Zegura. Modeling Internet Topology.

Communications Magazine, IEEE, 35(6):160 –163, June 1997.

[CIS] http://www.boson.com/netsim-cisco-network-simulator.

[Ciu09] E. Ciurana. Developing with Google App Engine. Apress, Berkeley, CA,

USA, 2009.

[CLA] http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/

ClassLoader.html.

91

http://www.boson.com/netsim-cisco-network-simulator
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/ClassLoader.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/ClassLoader.html

92 Bibliography

[CS01] W. L. Currie and P. Seltsikas. Exploring the Supply-side of IT Outsourc-

ing: Evaluating the Emerging Role of Application Service Providers.

Eur. J. Inf. Syst., 10(3):123–134, 2001.

[Cus10] M. Cusumano. Cloud Computing and SaaS as New Computing Plat-

forms. Commun. ACM, 53(4):27–29, 2010.

[DC] http://publib.boulder.ibm.com/infocenter/txformp/v6r0m0/

index.jsp?topic=%2Fcom.ibm.cics.te.doc%2Ferziaz0015.htm.

[GS96] R. Guerraoui and A. Schiper. Fault-Tolerance by Replication in Dis-

tributed Systems. In Proceedings of the 1996 Ada-Europe International

Conference on Reliable Software Technologies, Ada-Europe ’96, pages

38–57, London, UK, UK, 1996. Springer-Verlag.

[HEHB08] T. Hau, N. Ebert, A. Hochstein, and W. Brenner. Where to Start with

SOA: Criteria for Selecting SOA Projects. In HICSS ’08: Proceedings

of the Proceedings of the 41st Annual Hawaii International Conference

on System Sciences, page 314, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[HKW+08] J. Hutchinson, G. Kotonya, J. Walkerdine, P. Sawyer, G. Dobson, and

V. Onditi. Migrating to SOAs by Way of Hybrid Systems. IT Profes-

sional, 10(1):34 –42, jan. 2008.

[ILM09] N. Ibrahim and F. Le Mouel. A Survey on Service Composition Mid-

http://publib.boulder.ibm.com/infocenter/txformp/v6r0m0/index.jsp?topic=%2Fcom.ibm.cics.te.doc%2Ferziaz0015.htm
http://publib.boulder.ibm.com/infocenter/txformp/v6r0m0/index.jsp?topic=%2Fcom.ibm.cics.te.doc%2Ferziaz0015.htm

Bibliography 93

dleware in Pervasive Environments. International Journal of Computer

Science Issues, IJCSI, 1:1–12, 2009.

[KKLL09] W. Kim, S. D. Kim, E. Lee, and S. Lee. Adoption Issues for Cloud

Computing. In MoMM ’09: Proceedings of the 7th International Con-

ference on Advances in Mobile Computing and Multimedia, pages 2–5,

New York, NY, USA, 2009. ACM.

[KV04] V. Koutsonikola and A. Vakali. LDAP: Framework, Practices, and

Trends. Internet Computing, IEEE, 8(5):66 – 72, 2004.

[Lev99] J. R. Levine. Linkers and Loaders. Morgan Kaufmann; 1st edition, 1999.

[LW02] J. Liu and K. P. Worrall. Theory and Practice in 3G Network Planning.

In 3G Mobile Communication Technologies, 2002. Third International

Conference on (Conf. Publ. No. 489), pages 74–80, 2002.

[MD95] P. V. Mockapetris and K. J. Dunlap. Development of the Domain Name

System. SIGCOMM Comput. Commun. Rev., 25:112–122, January 1995.

[MLMB01] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Universal Topol-

ogy Generation from a User’s Perspective. Technical report, Boston, MA,

USA, 2001.

[MMB00] A. Medina, I. Matta, and J. Byers. On the Origin of Power Laws in

Internet Topologies. SIGCOMM Comput. Commun. Rev., 30(2):18–28,

April 2000.

94 Bibliography

[Moc87a] P. V. Mockapetris. IETF RFC 1034: Domain Names-Concepts and Fa-

cilities, 1987.

[Moc87b] P. V. Mockapetris. IETF RFC 1035: Domain Names-Implementation

and Specification, 1987.

[Nit09] Nitu. Configurability in SaaS (Software as a Service) Applications. In

ISEC ’09: Proceedings of the 2nd India Software Engineering Confer-

ence, pages 19–26, New York, NY, USA, 2009. ACM.

[OL88] B. M. Oki and B. H. Liskov. Viewstamped Replication: A New Pri-

mary Copy Method to Support Highly-Available Distributed Systems.

In Proceedings of the Seventh Annual ACM Symposium on Principles of

Distributed Computing, PODC ’88, pages 8–17, New York, NY, USA,

1988. ACM.

[PE05] L’Ecuyer P. and Buist E. Simulation in JAVA with SSJ. In Proceedings

of the 37th Conference on Winter Simulation, WSC ’05, pages 611–620.

Winter Simulation Conference, 2005.

[PLA] http://www.planet-lab.org/.

[SKG09] B. Sajed Khosrowshahi and P. Graham. Component Placement and Lo-

cation for a Dynamic Software Composition System. In Proceedings of

the 2nd Canadian Conference on Computer Science and Software Engi-

neering, C3S2E ’09, pages 127–130, New York, NY, USA, 2009. ACM.

[SPM+06] J. M. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M. D’Arcy,

http://www.planet-lab.org/

Bibliography 95

and A. Chervenak. Monitoring the Grid with the Globus Toolkit MDS4.

Journal of Physics: Conference Series, 46(1):521, 2006.

[TB01] Z. Tari and O. Bukhres. Fundamentals of Distributed Object Systems:

The CORBA Perspective. John Wiley & Sons, Inc., New York, NY,

USA, 2001.

[Wax88] B.M. Waxman. Routing of Multipoint Connections. Selected Areas in

Communications, IEEE Journal on, 6(9):1617 –1622, dec 1988.

[WDLW09] Z. Wu, S. Deng, Y. Li, and J. Wu. Computing Compatibility in Dynamic

Service Composition. Knowl. Inf. Syst., 19(1):107–129, 2009.

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Un-

derstanding Replication in Databases and Distributed Systems. In Dis-

tributed Computing Systems, 2000. Proceedings. 20th International Con-

ference on, pages 464 –474, 2000.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Related Work
	Monolithic vs. Non-Monolithic Software
	Software-as-a-Service (SaaS)
	Service Oriented Architecture (SOA)
	Other Concepts Closely Related to SaaS and SOA
	Component-based Software

	Composition
	Service Composition

	Distributed Systems
	Placement Algorithms
	Location Algorithms
	Service Lookup
	LDAP
	MDS
	DNS
	INS

	Network Modelling and Simulation
	Network Simulators
	Network Generator Tools
	Generation Methods

	Simulation Systems and Software

	Concise Problem Statement
	Solution Strategy and Prototype Implementation
	Introduction
	Components
	System Entities
	Clients
	Searching for a component and downloading it
	Uploading and registering a new component

	Cache Location Servers
	Master Location Servers
	Component Storage Server

	Use of Hash Function in My Prototype
	Redundancy
	Location Awareness
	The Component Download Process

	Assessment
	Introduction
	Simulation
	BRITE Configuration
	BRITE Output
	Use of BRITE in my Thesis

	Use of SSJ in my Thesis

	Results from the Simulation Work
	Scenarios
	Simulation Constants
	Simulation Default Values

	Scenario 1 - Increasing the Number of Components
	Goal
	Expectation
	Result

	Scenario 2 - Increasing the Number of Clients
	Goal
	Expectation
	Result

	Scenario 3 - Increasing the Number of Operations
	Goal
	Expectation
	Result

	Scenario 4 - Increasing the Number of Component Update Events
	Goal
	Expectation
	Result

	Scenario 5 - Increasing the Probability of Cache Location Server Failures
	Goal
	Expectation
	Result

	Scenario 6 - Increasing the Probability of Master Location Server Failures
	Goal
	Expectation
	Result

	Scenario 7 - Increasing the Probability of Component Storage Server Failures
	Goal
	Expectation
	Result

	Scenario 8 - Increasing User Movement
	Goal
	Expectation
	Result

	Scenario 9 - Varying the Number of Clients in Dense Population Areas
	Goal
	Expectation
	Result

	Scenario 10 - Varying Component Popularity
	Goal
	Expectation
	Result

	Scenario 11 - Varying the Number of Component Storage Servers
	Goal
	Expectation
	Result

	Scenario 12 - Varying the Number of Cache Location Servers
	Goal
	Expectation
	Result

	Conclusion
	Summary and Contributions
	Future Work

	Bibliography

