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AESTR,ACT'

This thesis examines the induction effects in a multaon¿u"ror system

with ground return. nt is shown that a strong coupling exists between the lines

with ground return at low frequencies even if the lines are considerably apart.

The motivation for studying this phenomenon came from an unexplained trip-

ping of 230 kV ac lines during one of the tests conducted by Manitoba Flydro,

involving parallel operation of two of its dc poles.

In order to study the phenomenon associated with this problem, a simple

but sufficient transmission line model was developed. A digital simulation

program was written to simulate the system under various conditions. A

parametric study was carried out to examine the effects of different parame-

ters involved in the system such as frequency, ground resistivity etc. on the

induction between the two lines. It is shown that large zero sequence currents

can be induced in the ac line due to transients in the nearby dc lines. The

phenomenon involved is explained both mathematically and qualitatively.

Methods to protect against such large zero sequence currents in ac lines

have also been outlined.
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Some of the frequently occuring sysbols in tbis thesis are tabulated below.

V phasor voltage

n Phasor current

Z, impedance matrix '

Y admittance matrix

P¡J resistivitY of conductor i or i

p ground resistivitY

de depth of penetration of current into ground(:\4F) 
.

rtJ radius of conductor i or i

h¡j height of conductor i or i above ground

A product of. Z and Y marices

Às eigenvalues of matrix A

En s eigenvectors of matrix A

T propagation constant

f frequency

[¡0 permeabilitY of air

€s permittivity of air

(v)
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During the summer of 1985, Manitoba Flydro conducted a number of tests

to check the parallel operation of two of its dc poles. One of the tests which

involved the blocking and bypassing of two parallel poles resulted in tripping

of three 230 kv ac lines coming from the Grand Rapids generating station of

Manitoba [trydro. These lines which run adjacent to the dc lines for a distance

of approximately 240 kilometres, were tripped due to the operation of the zero

sequence current relays at the line terminations. A schematic diagram of the

system and the concerned lines at the time of the test is shown in Fig.(1.1).

Fortunately the trippings did not cause any serious problem due to small line

loadings. But the similar disturbances at heavier line loadings would have the

potential of system break up and loss of load in the system.

An analysis of the disturbances (Appendix-I) indicated that a large-

change in the d.c. ground currents occurs when two poles of the bipoles I and

2 are in the parallel mode of operation and the parallel modes get blocked at

Dorsey first. Lines GlA, GZA and GBP experience large bffset phase currents

whose waveshapes are similar to that of the d.c. ground current. The offset

phase currents cause a high neutral or residual current to flow in the neutral

over current relay on each of these lines.

-1
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The actual recorded waveforms are also shown in Figs. 2 and 3 of

Appendix-X. T'hese should be compared with the results of Chapter 4.

Ðifferent explanations and theories were suggested about the cause of

tripping of the ac lines but no final conclusions were reached. Then in consul-

tation with the ï.Iniversity of Manitoba, it was decided to study the

phenomenon involved on a simple multiconductor system separately.

Furpose

The purpose of this thesis is to develop a model for a multiconductor sys-

tem with an aim to study the cause of zero sequence currents found in a

nearby ac line due to transients in dc line with ground return path. ÉIow do

these induced currents vary with the change in different parameters involved

such as frequency, ground resistivity, distance between the ac and dc lines.

The model is to be developed with an intention of extending it to any number

of conductors and ground wires later on.

Method

A literature survey was carried out which yielded some indirect piecemeal

work done in this area. Much of the original work related to ground return

problems of transmission lines was carried out during the 1920's and 1930's.

One of the most important contributions was made by Carson in 1926t11 when

he worked out an earth correction term for calculating self and mutual

impedances of the lines. tr-ater on some useful mathematical techniques and

approximations were developed to deal with the complex formulae required to

-3-



analyze the transmission line problems.

To study the present problem, a simplified system consisting of two con-

ductors was taken as shown in Fig (22). tr ine #1 is assumed to be a dc line

with a current Eource at the sending end while the other is an ac line. The ac

line has been grounded at both ends. The inductance termination of the ac

line represents the zero sequence impedance of the terminal transformers

because we are only interested in the zero sequence behavior, i.e., in the part

of the current that enters the ground. In reality, the normal positive and nega-

tive sequence currents are superposed on the zero sequence solution obtained

here.

A general digital simulation program was developed to simulate this sim-

ple system. Chapters 2 and 3 provide the theory used in developing the model.

Chapter 2 presents the method of calculating the basic matrices known as the

impedance matrix and the admittance matrix. In chapte, 3,:th" solution to the

differential equations governing the voltages and currents along the transmis-

sion line is given. Two port theory is also discussed briefly to represent the

transmission line as a two port network. Once the desired model was com-

pleted, a short circuit test explained in chapter 4 was conducted on it to check

its validity.

After ensuring the proper working of the model, a number of runs of the

program were ca¡ried out with different parameters changing such as ground

resistivity, frequency etc. trnteresting results were recorded. It was found that

a strong coupling exists between the adjacent lines L and 2 at lower frequen-

-4-



[.íne #1 (DC]

[,lne #2 {AC)
Current Source

Smoothing
Inductance.

Fig 12 A símple two+onducror system with ground retuin,
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cies even üf the lines are considerably apart. This depends upon how deep the

current fiows into the ground. This ís a function of transient currents' fre-

quency and the resistivity of the ground. [t is a well known fact of electromag-

netic theory that high frequency current in a conductor tends to flow near the

skin of the conductor. As the frequency is reduced, the current ffows more

evenly over the wire cross 6ection. Thus, the 'depth of penetration" of the

current in the conductor diminishes with increasing frequency. ,4.s long as

this depth of penetration of the current into the ground is: large as compared

to the distance between the lines, there is electromagnetic coupling between

the lines. It was also observed that the inclusion of a ground wire with the ac

line does not have any appreciable effect on the induced current in it..A, stan-

dard fast fourier transform program was also included to obtain the coupled

current waveforms to a general (non sinusoidal) input current.

Scope

A simple multiconductor model is developed to study the induction

effects between the lines with ground return path. This provides a sufficiently

simple system to do a parametric study of zero sequence current induction. It

could subsequently be extended to a detailed model of a big system with

several ground return paths. The model can also analyze thç effects of ground

wires present in the system. It can handle any type of input current

waveforms.

-6
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2.X. Genenal

trn order to model the transmission line it is necessa¡y to obtain its electri-

cal parameters (inductance and capacitance) from its geometrical layout and

resistivity of the ground along its right of way. In this section, the basic

matrices of the conductor system are presented taking into account the effects

of conductor geometry, conductor internal impedance, ea¡th return path etc.

A multiconductor line is defined by its series impedance matrix Z per unit

length and its shunt admittance matrix Y per unit length. It involves a number

of complex mathematical expressions if one wants to calculate them in their

totality. Different authors have tried and succeeded in developing somewhat

simpler alternative formulas/approximations for one or more of the expres-

sions involved in the calculation of line parameters. A survey was carried out

in this regard. Efforts were made to put togetherl these alternative

expressionVapproximations in order to r"t" overall calculation of the basic

matrices simpler and less time consuming without sacrificing the accuracy over

a considerable range of frequencies with respect to power system operations.

-7 -



?.? Trasemlsiom ã,[se Ðlffenential Equa8lone

T'he differential equations describing electromagnetic waves along a mul-

ticonductor transmission system of n conductors are: .

- ð[vì
ð¡

- a[íl
ôx

= [¿l # .|- tR] til

= lcl ,J* + [cJ [v]

(2.1)

(22)

where [v] and [il are column matrices (of order nxl) of r4oltage and current

respectively, and [L], [R], [CJ and [G] are square matrices (of order nxn),

defi ning inductance, resistance, capacitance and conductance respectively.

Transforming equations (2.1) nd (22) to phasors produces equations as a

function of frequency as follows

= [z (or)] [I]

: [r(or)l [vl

where

V @\l = [R (')l + j (.) [¿ (')]
[Y (r)] = [c (o,)] + j (r) [c (')l

Therefore, in frequency domain the equations (23) and (2.4) can simply

be written as (omitting matrix brackets for convenience)

-zI
-YV

(23)

(2.4)

_ dlv\
dx

_ dvl
dx

(2Ð

(2.6)

dV

-=dx
dIÉ=
dx

-8-



w¡here

Z = R. + JøL
Y =G +JtrrC

The solution of equatíons (25) and (2.6) shall give the propagation of vol-

tage and curre¡rt along a multiconductor system.

:

ã"3 Modelllng of ø Slmpte Mnlticonductor Systeno wïth Ground Return

To study the phenomenon involved in the main problem, a simple two

conductor system is taken as shown in fig. (2.1). From this point onward, all

the theory presented in chapters 2 and 3 shall be related to this system from

time to time. In chapter 4, this system will be simulated in detail to observe

the induction effects between the two lines at low frequencies with the

different parameters changing. Line #t is considered to be a dc line with

ground return and a current source at its sending end. I-inè #2 is assumed to

be an ac line with ground return and no source of current in it. The induc-

tances at the end of line 2 represent the zero sequence impedance of

t¡ansformers where the ac line terminates. The input data used in the analysis

of this system is tabulated in Table (2.1).

The equations (25) and (26) for this particular system witt become

(2.e)

(2.7)

(2.8)

":l[;J
-9-
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[.íne #X (æ]

Current Source

Smoothine
Inductaa&

Fig.2.1 A two+onductor system with ground return.

Lise #2 (,{C}

Inductances reprerenting
Transformers' +-

Zero oequence impedances
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Table 2-t tnput data describing the system shown in fig (2.1)

S. no Description Quantity Units R'emarks

I Number of Conductors 2 nos

2 Type of Conductor X Aluminum
bundled con-
ductor hav-
ing 2 con-
ductors in it

3 Type of Conductor 2 -do-

4 Actual radius of each con-
ductor in the bundle

(a) Conductor I (r¡)
(b) Conductor 2 (r2)

0.02032
0.0254

metres
metres

5 Geometric mean radius of
(a) Conductor I (GMR¡)
(b) Conductor 2 (GMR)

0.0681ss4
0.t07763t

metres
Eetres

6 Resistivity of
(a) Conductor I (p¡)
(b) Conductor 2 (p2)

028248x10-7
O28248x10-7

ohm-metre
ohm-metre

7 Spacing between conduc-
torsland2(S)

182.88 metfes

I Height above tbe ground of
(a) Conductor I (h¡)
(b) Conductor 2 (h2)

18288
14.0208

metres
metres

9 Ground Resistivity (p) 100 ohm-metre

10 Frequency (f) 10 hz

11 Current injected at sending
end of line I (I¡)

I ampere

t2 Termin ating in ductances
(") Lz (Transformer)
(b) L¡ (Smoothing)
(c) Lo (Transformer)

0.0702
05

0.0702

henry
henry
henry

13 The permeability of free
space (ps)

4rr x l0-7 henry per
metre

t4 The permitivíty of free
space (ke)

885x10-u farads per
metre

-11 -



where

V ,, I 7, V 2,f z - the voltaget and currents at point x along the conductors tr and

2 respectively. 
:

ztt,!tt, z72t!zz- 8he self impedances and.admittances of ðonductors I and 2

respectively.

znrytz, z2lt!2t- the mutual impedance and admittances between conductors
.

I and 2 respectively.

Before equations (2.9) and (2.10) are solved or V's and I's, it is necessary

to find the impedance matrix and the admittance matrix commonly known as

the Z-matríx and the Y-matrix.
.

2.4 Celculetion of lmpedance Matrlx (Z-metrix) ,

Ignoring the proximity effect between adjacent conductors (i.e. non sym-

metric flow of current in conductor's cross section caused by adjacent conduc-

tors), and conductors and ground, the elements of the Z-matrix may be

divided into two categories as follows

(Ð elements representing the self impedance of the conductor, say i.(r¡¡)

(ii) elements representing the mutual impedance between the conductor i and

the conductor j. (2,7)

These elements of the Z-matrtx can be calculated using the relations

presented next.

-12-



*.4.3' Cølcula8lom o8 SeXf-ãmpedance

The self ímpedance of the conductor may be regarded

following two components.

(a) the internal impedance of the conductor or (r¡¡)wr

(b) the external impedance of the conductor or (t¡¡)exr

Thus

z¡¡ (or z,,ry) = (z¡¡)tur * Q¡i)pxr

(a) Calculation of Internal Impedance (z¡¡)¡¡¡¡

as made up of the

(2.e\

lVhen current flows in a conductor, it produces a magnetic ñeld around

it. Some of the magnetic field is due to the flux inside the conductor. The

changing lines of flux inside the conductor also contribute to the induced vol-

tage in a circuit and therefore to the inductance. Since impedance consists of

resistance and inductive reactance, at low frequencies, (z¡¡)¡,rrr ir equal to the

dc resistance of the conductor. At higher frequencies, it is given by the classi-

cal formula[2]

(z¡¡)wr =
p¡ m Io(^r¡\

ohm fmetre2n r¡ I1(mr¡)
(2.10)

(2.11)

where

m=
\Æ

and /s, /1 are the modified Bessel functions of order 0.

An approximation to the above formula is found in a paper[a] which has

made the calculations much easier without using Bessel functions. The inter-

-13-



nal impedance of a círcular conductor can be calculated to a reasonable accu-

racy by using she folloç¡ing expression.

( o, m 03565 o, ì('u)wr=[ñcoth(0.777mr¡)+ã|ohmfmetre(2.l2)

An error analysis done by tbe authors shows that there can be maximum

error of. 4Vo in the real (resistive) part of equation (2.12) when lmr¡ I = 5,

whereas the maximum error in reactive (imaginary) part of. (2.12) is SVo when

lmr¡ I = 35. Apart from these maxima the formula is quite accurate. More-

over, it is justified by the fact that this expression requires less digital compu-

tation than that of (2.10) to which this is an approximation.

(b) Calculation of External Impedance (z¡¡)¿¡y

Since the resistance is a quantity entirely 'internal' to the conductor, the

external ímpedance will be nothing but the inductive component due to exter-

nal flux linkages of the conductor. It is dependent upon the properties of the

medium ñlling the interconductor space. Since we are interested in conduc-

tors carrying current with ground as return path, the mediúm filling the inter-

conductor space will be air and the grouìd. The Fíg. (2'2) shows two such

separate conductors i and j respectively. The usual method of finding induc-

tance of the lines with ground return is by considering the images of the con-

ductors as shown in Fig. (22). Had the ground been a perfect conductor, a

conductor's image will be exactly at the same depth as it is above the ground.

In such a case an equal and opposite field will be produced by the conductor

and its image respectively. Therefore there will not be any inductive com-

-14-
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ponent due 8o the ground medium. But t¡nfortunately this is not the case in

real life. Ground is not a perfect conductor and therefore the image of con-

ductor cannot be at the same depth as the height of the conductor above the

ground. In other words the depth of penetration of current is not sâme for all

the cases but depends upon the ground conductivity etc. Xn 1926, J. R. Car-

son[l] worked out an earth correction term which gives the additional reac-

tance due to the ground. EIe found that the depth of penetration of current

into the ground is a function of frequency and the ground resistivity.

Carson derived the following expressíon for calculating the self external

impedance of conductor i,[61

þùBn = ¡rfr n 2h

v1
il¡ = Po+ orEJ,

,t¡

where the ground correction term J¡ is infinite integral and is given by

J¡=p+je=l i{^^ dÀoI+\ffi

(2.r3)

(2.14)

The only hard part of Carson's earth correction term ís the evaluation of

infinite integral with complex arguments. tr-ater on some approximations to

this were suggested by dífferent authors but most of them are valid over a lim-

ited range of frequency. In 1981, A. Deri of Technical University of Budapest

and A. Semlyen of University of Toronto[6] provided a simple but an accurate

substitute to the equation (2.13) over the whole range of frequencies for which

Carson's derivation is valid.

-16-



The Ðeri-Semlyen papert6l derived the fotlowing approximation to the

Carson's equation (2.13) for calculating the external lmpedance of the conduc-

tor i. Referring 8o Fig. (22),

where

r¡ = radius of conductor i

å¡ : beight of the conductor i above the ground

de = depth of penetration of current into the ground

(2.17)

p = ground resistivity

(Note: For a bundled conductor, r, will be replaced by the GMR i.e.

geometric rnean radius of the bundled conductor).

Thus, the self impedance of a multiconductor system or the z¡¡ elements

of the Z-mafttx will be given by substituting equations (2.12) and (2.16) in

(2.9), i.e.

("¡)rrr = Jr# v, þL + i'ff r' 
I=t"[ryì

z¡í = 
[Xcoth 

(0.77 7mr¡)- #l
+[+'"[apl) ohmrme,re

de2(h¡ +

2hí
rl ohm fmetre (2.15)

(2.16)

(2.18)

where

de=\Æv JO¡t

- tt -

(2.1e)



and

\Æ
(220)

The main feature of the above equation is that all the diâgonal elements of

the Z-matrix can be calculated by hand held calculators for a particular fre-

quency and ground resistivity.

Now substituting the data provided in Table (2-l) for the system of Fig.

(2.1) in eguation (2-17), the self impedance at a frequency of 10 Hz is calcu-

lated as

ztt = 02069x10-4 + i 0.1325x10-3 ohm fmete

z?2 = 0.1685x10* + ¡ 0.1267x10-3 obn fmene 
'

(221)

and

(222)

(The 10 Hz value is only as an example to demonstrate the calculations pro-

cedure. Also, it is the major frequency present in the actual time domain sig-

nal)

2,4,2 CalculeÉion of M¡rtual [mpedances (z¡¡)

Mutual impedance is nothing but the mutual reactance between the two

conductors or circuits and is the result of flux linkages of one conductor or

circuit due to the current in the second conductor or circuit. As in the case of

calculation of external impedance, it is also dependent upon the medium

filling the interconductor space. Again, for conductors shown in Fig. (2.2),

Carson derived the following expressionll] for calculating the mutual

impedance (or reactance) between the conductor i and the conductor j.

-18-



ztl
j¡o¡ro 

-= -ã- tn ffi . (,)l¡o 
_f 

-J*
îT

olun fmetre

t223)

(224)

(22s\

where

Jo = p^ * i g^- | ¡u-(¿,+å')x 
cos À(r,-.r¡¡ dÀro 

À + YÍu+¡rpo

This infinite integral with complex arguments is difficult to evaluate

numerically but the Deri-semlyen paper[6] gives a very simple and an accurate

approximation to the equation (223). \Mith reference to Fig.(22), they

developed the following expression for calculating the 'mutual impedance

between the conductors i and j with ground return path. .

jo¡po -,ti=-ã-rn

where

de : depth of penetration of current into the ground (metres)

-\rc.v j.p
p : ground resistivity

This value of z¡¡ exactly equals the asymptotic expansions of Carson's integral

at extremely low and high frequencies with acceptable error in between.

Equation (225) gives us a fairly simple expression for calculating the off-

diagonal elements of the Z-matrtx.

Thus with the help of equations (2.18) and (221), the complete Z-matrtx

can be calculated for the parameters given in Table 2-1.

Now substituting the values from Table (2-1) in equation (225), the

-19-



mutual impedance for our system will be

- -. 2zrxú)x4rx10-7 r*ztZ=ZZt=J Z" tn

where

de:aÆV ¡ Zzrx60x4rrxl0-7

= 795J747 - i 795:1747 metres

zt2 = zzt = 0.9703x10-s + i 03167x10{ ohns fmetre

Thus by combining equations (221), (222) and (226), we get

(226)

2.5 C-alc¡¡Iation of Íhe Adnnittance Matrix (V-Matnix) 
:

The admittance of a conductor comprises of the distributed capacitance

and the distributed conductance G. These parameters are entirely 'external'

quantities i.e. totally independent of the material of the conductors or of the

transverse extension of the conductors on either side of the interconductor

space. They a¡e functions only of the nature and dimensiqns of the material

filling the interconductor space, and of the frequency. Thus the admittance

matrix Y is a only a function of physical geometry of the conductors relative

to the earth plane, because the conductor and the earth surfaces may each be

regarded as equipotential surfaces.

þ:ooe*to -4 + j0.1325x10-3 0.9703xr0-s + .r'03167x10-41

' 
: 

l.n03xr0-s + i 03167>(10-4 0.r685xr0* + j 0.1267xr0-rl"tn

-20 -



The V-matrix üs assumed 8o have no real part because the conductance of

the air is negligible" T'he elements of the V-matrix with respect to F'ig. (22)

are given by[51

(228)

where

DU = distance between conductor i and conductor j

=ffi ezs)
D¡¡ = ùi (230)

D ji = ùj (231)_

=ffi esz)
du = radíus of the conductor í (233)

dii = radías of the conducîor j (234)

In case of 2x2 conductor system, the equation (228) produces the Y-

matrix as follows

r = 
[t 

z' ,uo[- #il 
',, = x(r)n , i =r(rÞ

-1Dtntn-
dtz

D.',
ln-

dzz

Now using the data

calculate

given in Table (2-1) in equations (229) to (234) we can

Dt2 = Dzr =

("t : 0, because conductor I is taken as reference with respect to conductor

2)

Y = jZrrroeg

-Dnln-
dn

Dzt
dzt

(2ss)

D tt = 2 x 182880 = 3ó5760 metres

-21 -



D 22 = 2 w 14.t208 = 28.0416 metres

d tt = 0.0681544 metres

dn = 0.1077631 metres

2m c¡es =2rx2rx60x8.E5x10-12 = 3.4938x10-e

Substituting the respective values in equati_on (235)

d tz o dzt * = 182'9298 metres

leads to

05559x104

Y =i (236)

2.6 Elímination of Ground Wires 
.

Consider a simple two conductor Eystem, each conductor carrying a

ground wire alongrvith it. With this system in hand, one will end up with a 4x4

Z-matrixand a 4x4 Y-matrix since now there are four conductors in all. All

the further analysis of solving transmission line differential equations will

involve these 4x4 matrices. But with a little manipulation,. the order of these

basic matrices can again be reduced to the order equal to the number of non

grounded conductors (i.e. 2x2 n the above example), and at the same time,

the effect of ground wires will be taken into account. This will help in making

the overall computations of solving a multiconductor system having ground

wires, simpler and less time consuming. The technique of eliminating ground

wires while considering their effect is briefly examined here.

Rewriting the transmission line differential equations (25) and (2.6),

-0.1509x10-111

0.6282x10-e I
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dv *-2,!
dx
dÍ =-YVdx

n et us assume that the impedance matrix z anð the admittance matrix Y

ln the above equation take into account the ground conductors also.

The partitioning of the matrix equation (237) with respect to ground vol-

tage, ground current and ground conductors gives

*[î;l =-l[";"'r":,l[,l

where the suffix c ís meant for non grounded conductors, while the suffix g is

for grounded conductors.

The above equation (239) can easily be understood if it is written for a

2x2 conductor system with one ground wire. Let there be conductor I without

ground wire and conductor 2 with ground wire marked as conductor 3. For

this simple system, the equation (239) will become

(237)

(238)

(2ie)

(2.40\

V1 11 ztz zt3

d

-=dx

v s(=V,) 3l zE2 zgl t 3þIr)

Now in móst of the cases the ground wires are earthed at every tower. It

is valid to assume that ground wire potential is zero everywhere at normal fre-

quencies (upto 300 khz) i.e. V, = 0

Using this, equation (239) can be written as follows

V2

Ir

I2

dv^
+ : -2"" I" - zru Iu

ax

-23-
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(2.42)0=-zgc8"-z*Iu
Etiminating xa from the above pair of equations to obtain

dv" 
- -zttdx e .c Q.43)

where

Zt=tbe reduced impedance matrix of the order equal to number of non

grounded conductors

=, , ' (2.44)- .cc - Z"t Ztt 'tt,

Similarly the Y matrix can also be reduced. For this the equation (238) can be

I partitioned as before to give
I

* [;:l 
=-h ;l [;,] e4s,

Since Vs = 0, equation (z'afl can be reduced to

L = -ytv- Q.46)
dxc

where

yt =y"" (2.47)

: the reduced admittance matrix of the order equal to number of non

grounded conductors.

Thus the impedance matrix Zt and the admittance matrix Yt in

differential equations (2.43) and (2.46) respectively are of the order equal to

number of non grounded conductors but at the same time carrying the ground

wires effect in them.
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3.1. futrod¡¡c8lon

In the previous chapter, the differential equations governing voltage and

current distribution along the transmission lines of a multiconductor system

were presented. So fa¡ only the Z- mafilx and the Y-matrix involved in these

were described and calculated. After the calculation of these matrices, the

next step is to solve those differential equations so as to enable us to find out

the voltage and current at any point along the lines in a multiconductor sys-

tem. Efforts are being made to present the solution in its simplest form. At

the end of the chapter, two-port theory of representing transmission lines is

briefly discussed as the same will be used in Chapter 4 for analyzing our

model.

3"2 Sotution to Trensmision Line Ðifferential Equations of a Multiconductor

System

Restatíng the ditferential equations (25) and (2.6) from the last chapter,

which describe the voltage and current at a point along the transmission lines

-25-



of a multiconductor system, comprising of n conductors,

dv *-z[
ds

ü=-Ytr
dx

obtains

(3.1)

(32)

where V and I are column matrices (of order nxl) of voltage and current, and

Z andY are the square matrices (of order nxn) defining line parameters.

The method to solve the above mentioned differéntial equations is

presented below.

(33)

(3.4)

The solutions of equations (33) and (3.a) for V and I respectively, must

Eliminating either V or I from equations (3.1) and (32) respectively, one

dzv -dI3 = -Z+ =ZYV
dxt ax

4 = -Y+ =YZI
dxt ax

be expressions which when differentiated twice with ,"r0"., to x obtain the

original expression multiplied by ZY. For example, the solution for V when

differentiated twice with respect to x must yield ZYV. This suggests an

exponential form of the solution. Let us first solve equation (33) for V and

then equation (3.4) for I.

3.2.1. Fropagation of Voltage

Assume the solution of equation (33) is of the following form

V, = e1' Ve * elt Vn (35)

where 1 is referred to as a propagation constant matrix and will be evaluated

-26-



shortly, and V6, Vø are column

integration to be determined from

Now

*rt-r') = -îe-t¡
and

ft@r'\ -- 1e'tx

Using (3.6) and (3.7), the second derivative ox V'

respect to x produces

dlv,
::12vaÍ

matrices (nxl) representing constants

the boundary conditions.

(3.6)

from èquation

(3.7)

(3s) with

(3.8)

Comparison of equations (33) and (3.8) gives

72v = zyv
or

'!2 = ZY

of

.! : lzYlrb (3.e)

:

Thus the voltage propagation constant is equal to the square root of the multi-

plication of the impedance matrix and the admittance matrix. Note that the

propagation constant is a complex quantity in which the real part is known as

attenuation constant c while the imaginary part is called the phase constant p.

The properties of e*'t" or e* ("+jFÞ in equation (3Ð help to explain the vari-
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ation of the phasor values of voltage as a function of distance along the line.

Now let

A = ZV = ZrY, = (YZ\t

Therefore, the propagation constant is given by

'Y=6
To solve the equation (3Ð for V",nl (=fã-) and e*r' are to be

.

evaluated, remembering .4, is a complex square matrix of order n. This could

have proved tedious to r*'ork out but some linear algebia techniques have

made this job considerably easy. The aim is to diagonalize túe matrix A so that

the desired mathematicaV trigonometric operations could be performed easily.

This can be achieved with the help of eigenvector algebra. The method of

finding eigenvectors and eigenvalues of a matrix is assumed to be known

here[l3]. Once the eigenvalues and eigenvectors of a mátrix are known it

becomes easy to diagonalize the same matrix as shall be shown below.

I-et I be the square diagonal matrix of order n, as follows

(3.10)

(3.11)[::.l
where À1,À2, . . . , Ào are the distnict eigenvalues of A. Let E" be the square

matrix of order !1, the columns of which represent the eigenvectors

corresponding to their respective eigenvalues. i.e.
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FE (3.12)

where ErrrEo2,..., E"n are the eigenvectors of the matrix A, corresponding to

its eigenvalues À1, À2, . . ., Àn resPectively.

uvr F
-y3 E-

lr[ow A can be diagonalized by simply performing

tions

the following opera-

:

E;rA E" =À
(Note: the proof of the above relation can be found in

algebra)

or

Er-lÃ E" =\Ã
or

Ã = E" vÍ- E"-1

'!:Ã:8" \¡f,8"-1

To find e*'tt, rearrange the equation (3.13) to get

Elr I E, = vf, still a diagonal matrix'

or

Note that the right hand expression is simple to solve as the square root of À

is nothing but the square root of its respective diagonal elements. Thus \Ã-

can be found easily and hence the propagation constant I i.e.

(3.13)

qnT book on linear

(3.14)

(3.1s)
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Ellu*7s Ev =sÊ\õ..r

or

e*'tz = E, 8* rÃr ¿'n-l

Substituting for e*"t" fsom equation (3.16) in equation

v" =8" ,-ü" Er-l ve * En e& Er-l va

of

v" = e-1" ve + eî" vB

: (3.16)

(35) produces

(3.17)

(3.18)

H'here

f = Ey r¡f E,-1 (3.19)

ent = E" e* Er-l (320)

e-ît = E, ,-& E"-1 and (321)

e-1, Ve and ert Vg are known as 'reflected' and 'incident' voltage com-

ponents respectivelY.

The constants of integration V¿ and Vp can be determined from the end

conditions of the system i.e. if the voltages at any two points in the system are

known, V¿ and V¿ can easily be calculated by substituting them in equation

(3.t7).

Flence equation (35) can be completely solved for the voltage V, at any

point x along the transmission lines in a multiconductor system. As x increases-

i.e. as we progress along the system from its sending end to receiving end, the

incident voltage decreases in magnitude and is retarded in phase whereas

opposite happens in the case of reflected component-

-30-



3"2.2 Fropaga8lon of e¿¡nren8

The current at a Point

tion (32) for I bY the Eame

from equation (3.1).

:

x along the line can be found by solving the equa-

procedure used in voltage propagation or directly

dv_+=_ZIx
øx

r"=-r^*

Substituting for V" from equation (3.18) to obtain

I, = - rn * [e-r" ve * u,* vrl

= Z-r X [e-r' V^ - et, Val Q22)

or

I, =Yo[e-r" vA - u" vrl (323)

where

Yo = z-rT (324)

Zo: Íill = T-r Z (32s)

Once the boundary conditions are known, equation (322) or (3.23) can be

completely solved for propagation of current. Incident current and reflected

current behave in the same manner as in the case of voltage propagation.

or

31 -



Phyeical eigmlfîcance of V ol7 o

Consider a semi infinite line i.e. the line starts at some point but ends at

infinity. Therefore, i,n this case there will be no reflected component of either

voltage otr current, and the equations (3.18) and (323) will be reduced to

v, - e-lo ve

Ir = Ío e-lt Vr

respectively.

Dividing (327) by (326) to get

T-

t =ro

or I, = Y sV, (328)

The above equation shows that the incident current is related to the

incident voltage through ls and is independent of distance. Ys is known as

the cha¡acteristic admittance matrix. In the same way Zg is known as the

characteristic impedance matrix.

3.3 Multiconductor System as a Two Port Network

In network theory, a 'port' of a network is defined as any pair of termi-

nals at which the instantaneous current into one of the terminals is equal to

the instantaneous current out of the othet terminal. Therefore any section of

the transmission line is a two port network and can be represented as shown

in fig (3.1). As per standard convention, the currents arè assumed positive

when they enter a node. The object of two port theory is to develop useful

relationships among various chioce of pairs of the four quantities (i.e. voltage

(326)_
(327)
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r
vL

f

Fig.3.1 ,{ wo-port network with tbe notations of
tbe transmission line.
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and current at two ports)n in terms of the nature of the network. T'he model-

developed in this report has made considerable use of this theory.

To express 8be solution of multiconductor equations in two port theory,

rewrite the equations (3.X8) and (323)

v, = e-î" ve + eft vg

I, = Yo[e-f,x vA - ur' vpl

At x = 0, equations (329) and (330) become

Vo=VA +VB

lo = lo ÍVe - Va\

At x = l, the length of the system

vt = u-tl ve + ert vs

It = Y ole-rr vA - "'t vrl

Solving (329) and (330) for V¿ and V¡

(32e)

(330)

(331)

(3s2)

(333)

(334)

to obtain

Vo+Z0lo
nþ

vo- zúo
a
L

where

Substituting for V¿ and Vs from equations

equation (333) to get

(33s)

(336)

:

(33Ð and (33ó) respectively in

Ve=

vB=

I
fszo=

Vo

2
+e-rt ry +erl

zolo
2

Vo

2
- ellV¡ = ¿-ll
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By rearranging the right hand side,

vt=ryvs-ryzoto
= cosh (l'r) Yo - sinh (Tl)Z,oto (337)

Similarly, we can solve (33+) f.ot Í¡ to give

trt =Yosinh (ft) Vs- Yecosh (Tt)Z'oIo (338)

By rearranging (337) to obtain

fo = locoth (Fl) yo - Yscosech (Il) v, (339)

Substituting for f s from (339) in (338) to get

It = -Y o cosech Of ) yo * lo coth (fl) V¡ (3'40)

Putting the equations (339) and (3.40) in matrix form

krl I to coth (Il) -v s coscch (rl)l [url

lr,l 
-- 

þr, cosech (rt') rs coth (r't) I [",] 
(3'41)

Similarly

[uJ IzscothOl) zscosech(I¿)l ltrl

' [nI 
(342)

þ,1 
: 

þo"orrrn $D zscothtrt) 
.|

Equations (3.41) and (3.42) are the multiconductor two port equations.

The system can be analyzed by observing the behavior of the elements of the

matrices as the different parameters involved in the system such as frequency,

physical geometry of the conductor etc. are changed. This is exactly what we

will be doing in Chapter 4.
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3.4 Am esemple

Coming back to our system of fig (2.1) and treating it as a two port net-

work as shown in fig (32\, an attempt will be made to form a similar set of

equations as those of (3.a1) and (3.42).

Rewriting equations (227) and (23ó) from Chapter 2 to have

lo¿ougnro* +i 0.1325x10-3 0.9703x10-s +i 03167x10-41

z =l I

þ.nror*to-s + i 03t6zxt0{ 0.1685x10* +i o.tzozxto-3J

(3.43)

, = [0.*00 
+i 05559x10-e 0.0000-i 0.1s09xro-111

þ.oooo - i 0.1509x10-11 0.0000 + i o.6zuztro-'J

(3.44)

Now

A=ZY

(3.4s)

(3.46)

(3.47)

(3.48)

[-or*r*to-r3 - j 0.1149N10-13
_t-l

[-o.rr+t*to-13 + i o-s36rxlo-la

The eigenvalues and eigenvectors

Àr = -0.9530x10-B + j 0.1660x10-13

Àz: -05788x10-13 + j+05453x10-14

[o.nrn-io.6rs7oro-tlE":I to+io.o I

I t.o - i o3Tzsxto-8 IE"= I ^^..^, .^ËË^o.,r^-, I
[-u.ðI(ruÎJ UJJUo/\ru 

J

-o.t97oxto-13 + j o.6o64xto-141

-0.7956x10-13 + j o.1o57xro-tj

for this matrix are calculated as

-36-
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h{ode I Line #1 (æ)

Fig.32 A two-port repres€ntation of s)¡srem of fig. 2.1,

Node 3

Öürrent Source

Le

(Ac)
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Using (3.n1), (3.46) and (3.47), we have

o=þ.nr*xlo-3+io.166ox1o-ß 
o 

I Oro,
I o -o-r/B8x1o-13+i05453N10-14J

,{lso, from equation (3.12), we can write

lo.szzs - i a.6tnx10-1 1.0000 - i osTzsxro{ lE"=l | (3s1)

I r.oooo +i 0.0000 -0.8160 +i 055,08îro-tl

Now from equation (3.19), we have

F = E" vf E"-t (352)

Use of (350) and (351) in (352) gives 
'

lo¿oza*to -z + i02700x10-ó 0.8496x10-s + i 03635x1c-?ì

a = luru¿oxl0-' 
+ i 02700x10-" 0'E496xl

[o.rr*oto-s +i 03zt4xt0-7 0.1785x10-t + i 02sozxto-61

Inversion of Z-malrix from (3.43) produces

[toei.oo -i7867.00 63s1 +i20s6.00 Iz-r-l I (3-54)

Iuurt +i 2os6.oo sn.oo- i szl7-ool

.
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From equation (324)' ls can be calculated as follows

Yo=Z-lT =

Io:oæ*r0-2 
+/ 0.14s1x10-3 -0280ex10-3+ i 02631xr.-1 

(35Ð

[-orr*oto-3 +i 0¿63txt0{ 03265xtr0-z + i o.rzzxto-3 I

Now, again from equation (3.19), we have

or

En-l f I En = rÃ'¡
otr

E"-1 coth (I¡) E" : coth (\'ft)
or

coth (Ix) = Ev coth (rÃt) E"-1

For a system length of x = I : 800 km,

corh (Il) = E" coth (\zft) E"-1 (356)

Use of (354) and (35$ in (356) gives

[osrts -i 4.ffi4 0.0622+i 0.62e21

coth(r¿)=| | Qsz)
lo.ossz+i 05s63 02680 - i 4.43t1

On similar lines, cosech (fl) is calculated as follows 
:

Íoszgt - i 4J13 o.os87 +i 0.61441

cosech(rr)=l I (357)

lo.oszt + j 05433 02ffi7 - i 4s44]

Multiplicarion of (35Ð & (357), and (355) & (358) respectively gives
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(358)

(35e)

for our

(3.60)

0.9685x10-? 0.7942NX0-4 +

02569x10-2 0.1159x10-2 -

0.9908x10-2 0.7935x10-4+

02570x10-2 0.1159x10-2 -

the size of matrices, the two-

I Ytt ltz -]r¡ -Yr¿l

| ,r, tn -tæ -rrl
l-rr -!sz )r¡ ,* I

[-ro, -y n ]q¡ ,* I

t_j

,+ j

,_J

'+i
eto

6-2

g-a

g-2

g-a

dur

/t : 1 ampere

Vz=I2QroL2) volts

1l

Xt

1t

I

I

X

X

X

)=

)=

328

(r,)'

[o.rgz

[o,,,

,r Cfl

[o.r¡z

1,,
1.41) r

s writ

,7942

crt)

.1328

rcht

to.

t
(3.4:

isq

:oth

lOS€t

ng(

em

0 col

'g cot

Jsing

ysten

Yo

ro

Us

svs

cosec

107935

and

tten as

Ir

I2

It

In

where

b,, vrzl [r" ntol :

I I = I I = Íscoth(I'r);gívenine.quation (358)

[rzr Yul pæ Y*J

b,, vrcl br, trrl
-l l=-l l= Yscosech (fr);gívenínequatíon (359)

þzt tzal [rcr tez]

The end conditions in our case are as follows

(3.61)

(3.62)
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V j = fs (Rg + jorr,3) volts

Va=[a(juLa\ volts

(3.63)

(3.64)

L2, L3,L4, R3 are known from Table (2-1). Using equations (358) to (3.64), the

equation (3.60) is solved Íor tr 2, 13, X ø to give

Iz= -02483 + j 0.04316 or 02Ml amPeres

I¡ = -1.037 + i 0.003237 or t.0370 amperes

I a = 024f.3 - i 0.04315 or 02441 amperes

Thus it is found that with the data given in Table (?-t¡, 02441 amPere

QaV) is induced in the line 2 due to I ampere current in the line I at a fre-

quency of l0 hz and with a ground resistivity of 100 ohm-metre. The qualita-

tive reasoning is provided in Chapter 4.

The whole set of calculations can be repeated at some other frequency or

with some other changed parameters. But it is rather impossible if we want to

see the response of the system say from I hz to 106 hz. For this a computer

program is required. In the next chapter, a digital simulation program is

developed to analyze our model under different conditions.
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4.t [ntrCIduction

In the last two chapters, the theory of analyzing a muiticonductor system

was presented and with íts help, a eimple multiconductor system shown in Fig.

(2.1) of chapter 2 was solved for the data given in table (2-1) of the same

chapter. The system was studied for only one frequency. To study the system

behavior at different frequencies and with the other parameters changing, a

computer progrann is required. A digital simulation prograin is developed for

simulating the same system as shown again here in Fig. (a.1). Though a two

conductor system was chosen for simplicity, the model can handle any number

of conductors. The model was tested for its validity and found to be working

properly. A number of simulation runs were carried out with different parem-

eters changing and interesting results were recorded and are presented in this

section. Later on a slightly different version of the model was developed to

take into account the ground wires associated with multiconductor system. A

standard fast fourier transform is also incorporated to: analyze the time

domain input signals.
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B,ine #t (æ)

Fig.4.1 Á, simplified two+onductor system with ground return.

L2
Smootbing
Inductance

Lz

l-ine #2 (AC)

lnductanceo representing
------> Transformcrs' (-

Zero sequence impedaoses

-+J-



4.2 ã!¡gi8@I Simulaßion of ø M¡¡åticonduc8on Syøtem witb Gnound Returm

A digítal simulation program ís developed to study tbe induction effects

in a multiconductor system with ground return. The purpose of developing

this model in this report is to study the currents induced in a line due to the

transient currents in the nearby lines at low frequencies. The model works in

the frequency domaín though a fast fourier transform is added to analyze the

time domain input signals. There are two versions of the model, one analyzæs

the system with ground wire while the other does not handle the ground wire.

The theory used in the model has already been explained in chapters 2 and 3.

A particular case of a simplified system as shown in Fig. (4.1) was also shown

there. The inpuUoutput data for the model without ground wire is as follows

(Ð number of conductors. (input)

(iÐ physical geometry of the conductors i.e. the distance between the conduc-

tors, height above the ground etc. (input)

(iii) actual radius of each conductor. (input)

(iv) geometric mean radius in case of a bundled conductor. (input)

(o) resistivity of each conductor. (input)

(vi) ground resistivity. (input)

(vii) contact resistance between the conductor and the ground. (input)

(viii)end conditions of the lines depending upon which are required to be

known and which are already known. End conditions involve
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(u) currents snd voltages st the sending and receiving ends

(inpuUoutput)

(b) line terminating impedance. (input)

(ix) (a) frequency range of interest. (input) or

(b) time domain input signal. (input)

In the version which includes the ground wires, the number of ground

wires in a system is to be fed as input in addition to the above mentioned

input/output data.

To observe the induction effects in a multiconductor system at lower fre'

quencies and with the change of other parameters involved such as ground

resistivity etc., tests were conducted on the system of Fig..(a.1) so far we are

using in this report. The input required for the system is provided in table 4-

1. But before we proceed with a parâmetric study, it is necessary to test the

simulation program for its proper working. [n the next section a simple test

and its results are described to check the validity of the program.
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fabte 4-1 tnput data describing the system shown in fig (4.1)

S. no Description Quantity Ï-lnits Remarks

I Number of ConductorÊ 2 nos

2 Type of Conductor I "A.luminum 
bundled

conductor having 2
conductors in it

3 Type of Conduclot 2 do-
4 Actual radius of each

conductor in the bundle
(a) Conductor I (r1)

(b) Conductor 2 (r2)
(c) Ground conductor

0.02032
0.0254
o.ot27

metres
metres
metres

5 Geometric mean radius of
(a) Conductor 1 (GMRr)
(b) Conductor 2 (GMR)_

0.0681554
0.t07763t

metres
metres

6 Resistivity of
(a) Conductor I (h¡)
(b) Conductor 2 (h2)
(c) Ground conductor

282¿fxl}-7
28248x10-7
.(X71x10-7

ohm-metre
ohm-metre
ohm-metre

7 Spacíng between conduc-
torsland2(S)

182.88 metres

I Height above ground of
(a) Conductor I (h¡)
(b) Conductor 2 (h2)
(c) Ground conductor

18288
14.0208
15.0208

metres
metres
metres

9 Ground Resistivity (p) ohm-metre As desired

10 Frequency (f) hz As desired

11 Current injected at send-
ing end of line I (Ir)

ampere This could be of
any waveshape
form (periodic or
non periodic)

t2 Terminating in ductances
(a) ra (Transformer)
(b) L¡ (Smoothing)
(c) Lq (Transformer)

0.0702
05

0.0702

henry
henry
henry

Inductances are not
of much importance
at low frequencies

13 The permeability of free
space (ps)

4rr x10-' henry per
metre

14 The permitivity of free
space (ks)

8.85x10-r¿ farads per
metre
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4'3 ?'estËag o8 Ðtgi8a[ Sim¡rta8lom Progrann

Á, shors circuit test was performed to check the working of computer

simulation program. Under thís 8est, the system of fig. (4.1) shalt be modified

to that of fig. (4¿). Both the lines are short círcuited to ground at their

respective ends. A current of L ampere was inþcted at the sending end of line

X while the other was kept opened at the same end. The test E'as carried out

with a low frequency of 10 hz so that capacitance effect of the line could be

ignored. The ground resistivity is assumed to be 100 ohm-metre. Under these

conditions voltages at node I and at node 2 are given by 
:

[;i [;: 
',:\[i

:

since 
I -- -t r -r 

-

trt = 1 amPere

Iz=o

lVll = l7Íl,the self ímpedance of líne I

lV 2l = lZ Al , the mutual ímpedance between línc I and 2

The test was performed with the same data of table (2.1) of chapter 2 and

the impedance matrix came out as 
.

lo¿oonr.toa + ¡0.1325x10-3 0.9703x10-s + i03167x10-41tl
þ.ezor*to-s + i03t6zxt0-4 0.1685x10-q + io.taezxto-3J

i.e.

Ztt = 02069x10* + i 0.1325N10-3 ohms fmete

Ztz = 0.903x10-s + j 03167x10-4 ohms fmete

-47-



C¡¡rrent Source

Fig.42 Represeatation of the system of Fig. 4.1 during
short circuit test.
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For transmission line of 10 km each,

Z tr = 02069 + i 1325 ohms and

Z tz = 0.0970 + j 3t67 ohms

The voltages vt and v2 which are being calculated at the end of entire

program came out as expected.

Vt= 02VI + i t3ZS volts (= lZlnl)

V z = 0.0970 + j 31'67 volts (= lZ :pl)

The test E'as repeated with other frequencies and ground resistivities and

the results were found to be satisfactory. To an extent this confirmed the

correctness of the computer program.
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4.4 Førame8r[c Studåes o8'she Modd

After verifying the computer simulation program, other tests were carried

out keeping in view the main problem of induced zero sequence currents in

the ac lines due to transients in the nearby dc lines with ground return. The

system of fig. (4.1) was simulated under various conditions. The tests and their

results are explained below.

4.4.[ Bese Csse

Fi¡st of all a base case s'as run with the data provided in table (a-l). In

this case, earth is assumed to be a perfect conductor i.e. ground resistivity is

equal to zero. Contact resistances between the ground and the conductors a¡e

neglected. The currents were measured and recorded at uU tn" four nodes of

the system of fig. (4-1) as shown in fig. (4-3). Xt can be seen that almost no

current is induced at low frequencies. A ahysical reason ior this is given in

the following section. The peaks at higber frequencies indicate the effects of

inductance and capacitance of the lines and the resonant conditions which are

of little interest in the case at hand.
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&,&.2 EfSecS of Ground Reds8ívtty

A number of simulation runs were carried out considering the practical

case of ground being an imperfect conductor. Though the earth is very non-

uniform (the surface layers of the land have many local irregularities of

differing resistivity, such as rivers, deserts, marshes etc) yet for simplicity the

assumption of uniform earth gives a good starting point for analyzing the

problem. With the same data except the ground resistivity used in the base

case, the system of Fig. (4-l) was simulated with varying ground resistivity.

The system response as recorded in Fig. (4.4) shows that approximately 27Vo

current is induced in line 2 due to current in line I at low frequencies. This

proves that there exists a fairly strong coùpling between the lines at low fre-

quencies even when the lines are sufficiently apart (in the present case they

are 200 metres apart). This is attributed due to the reason explained below.

In a transmissÍon system using ground as a return path, the depth of

penetration of the current into the ground depends upon its frequency and

the ground resistivity and is given by the equation (2.17) of chaptet (2).

At zero frequency (direct current) or at low frequencies the current flows

very deep into the ground and spreads over a very large cross sectional area in

both depth and width. This return current may be represented as that in an

'image conductor", the location of which is at a depth equal to the depth of

penetration below the ground. The two lines with ground as their return

paths, and running parallel, may be quite apart, still there [s a strong coupling

between the two at low frequencies due to the formation of two electromag-
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netic coupled loops as shown ín Fig. (45). The area of the loop is much

greater than Ehe separation between the conductors and hence most of the fiux

tinking one loop also links the otheru resulting in strong coupling.

Now as the frequency increases (as in the case of transients or alternating

current), the current starts flowing nearer to the ground and if the lines are

farther apart, the electromagnetically coupled loop shall be formed as shown

in Fig. (4.6).

In the case of ground resistivity being exactly zero (superconducting

ground), the image depth is exactly equal to the height of the conductor above

ground (at any frequency) and so the strong coupling for low frequencies

(which appears because of large penetration depths) does not occur in this

case. This explains the results of section 4Ã-1.

Note also, that the actual induced voltage in the second loop is a function

of freld coupling as well as rate of change of that field. So at near dc frequen-

cies, though most of the flux links both loops, the rate of change of flux is

very small. This voltage, which is the driving force behind the current in the

loop therefore drops to zero at low frequencies and conseQuently so does the

current. That is why current induced is quite small at very low frequency (less

than I Hz) as shown in Fig. (4.4).
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&.&.3 þf8ecg of varying Ðis8ønce &etween the E ûnes (ac and dc)

T'he base c&se was eimulated assumíng approximately 183 metres distance

betwen the lines. To observe the effects of different distancbs between the two

lines on the induced current, simulation runs were carried out by assuming 50,

183 and 1000 metres as the distance between the two lines respectively. The

results are shown in Fig. (4:l). lncrease Ín induction when ih" lit "t 
are just 50

metres apart is not as much of a surprise as the existence of a significant

induction at lower frequencies even when the lines are onè km apart. This is

attributed to the fact that depth of penetration of ground current (which may

be several hundred metres) is stíll quite large as compared to the distance

between the lines and consequently resulting in electromagnetically coupled

loop as explained in the previous section.
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@"&.& El'fec8 of Con8øcå R,edstance

In a transmission system with ground as a return path, cunrent flow lines

are parallel to one another and 8o the metallic conductors except near the

ends of it as shown ín Fig. (4.8). At the ends, these current fiow lines diverge

from, or converge too the electrode in case of dc transmission or to the station

earthing mat in case of ac transmission. This phenomenon is usually known as

an 'end effect'.fut This effect is predominant in a zone having dimensions of

twice or thrice the depth of penetration of the ground current. Both direct

and alternating currents follow ground paths which offer the least impedance.

For dc, the impedance consists only of resistive component whereas for ac, it

has both resistive and reactive components. At low frequencies, only the

resistive component will be active. The end effects are taken into account by

considering resistance in series with the lines at their ends as shown in Fig.

(4.9). As mentioned ea¡lier for dc (at zero frequency), the ground currents

spread deep below the ground, ín which case nothing is left but the end

effects. In that case the resistance of the ground return is merely the sum of

the resistances associated with each electrode. [n ac transmission with ground

return, the earthing mat at the generating stations has typical resistance (con-

tact resistance) of 5 to 4 ohms. Ftrowever, it depends upon the ground resis-

tivity at which the station ís located.

Simulation runs \ilere carried out with different values of contact resis-

tances and the results were recorded as shown in Fig. (4.10). Fig. (a.10 b)

shows that as contact resistance increases, there is higher damping effect,
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resulting in lower time constant of decay for the induced curren8. This fact

can be observed more explicitty i¡r tíme domain analysis carried out i.n a

further section.

-63-



4.4"5 Effec$ of Mu8wa[ ConSacS Resistance

trnitiatly a theory based upon the mutual contact resistance was thought to

be the cause for induction effects at lower frequencies. The mutual contact

resistance ís nothing but considered as to account for common ground path

shared by the current Is and 12 shown in Fig. (4.11). The mpdel was simulated

with some typical values of R,, and without Rr. The results recorded are

shown in Fig. (4.12). It can be seen from Fig. (4.12 b) that at nearly zero fre-

quency, there is a significant amount of current induced in line 2. However,

unlike the observed induced current (Uy Manitoba Hydro), the induced

current calculated by this theory has a dc component. Therefore mutual con-

tact resistance does not explain the observed phenomenon, and must be dis-

carded. The theory explained in section 4.42, therefore, seems more applica-

ble.
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&.&.6 Effec8 of Gnoumd Wtree

Usually overhead lines are protected from direct strokes of lightning by

one or more wires at ground potential strung above the power line conductors.

The zone of protection ís normally considered to be So on each side of verti-

cal beneath a ground wire. To observe the effect of ground wires present in

the system on induction between the two lines, a simulatign run was carried '

out with the data of Tabte (2-1). [t is assumed that the line 2 (ac) carries a

ground wire above it as shown in fig. (4.13). It was found that ground wires in

the system did not have any appreciable effect on the induction between the

two lines. The frequency response of the system with and without ground

wire is shown in fig. (4.14). About {Vo rcduction in the induced current (I ù

was observed at ground resistivity of 100 ohm-metre.
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4,5 Ræ¡loøse o8 $be $ystem wâth 8lmedomaim ånpu8 eurs'en$ øigna[

ln the previous sectíons, the model was analyzed with a sinusoidal current

of I ampere magnitude, injected ünto the dc line. The aim was to study the

basic phenomenon involved ín the main problem. ln this.section efforts are

being made to study the response of the system to an input current signal,

similar to the actual one recorded during the parallel operation of the dc

valve g¡oups by Manitoba Flydro. The waveshape of the recorded signal is in

time domain. To analyze the system (which is in frequency domain) to an

input time domain signal, a standard fast fourier transform ppTltzl is included

into simulation program as explained below.

So far the digital simulation program was calculating the response of the

system to a given input frequency domain signal over a certain range of fre-

quencies. To deal with an input time domain signal i(t), the first task would be

to transform this into its frequency components such as.I1(ot1), I1(or1) etc.

through a standa¡d FFT program. The procedure is illustrated in block

diagram (4.1Ð. Then, as before, the simulation Program would calculate

I z(r),I¡(r), Iq(r) corresponding to each frequency compònent. To get time

domain output signal (or response), all the respective frequency components

of /2(o),I¡(r), /q(r) a¡e fed into a standard inverse FFT program.

The number of points in FFT has been chosen in such a way so as to

avoid wrap around errorllz] in the time domain response. For this, an estimate

of the time constant (r) of the system to dc was made from Eíg" 4"!7 and the

number of points (N) were selected so that
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¡ü x?'8 > 36

where îu ís the sampling tíme or Sime between 8wo consecutive points. T'his

would prevent wrap around error (or inverse aliasing). This is just analogous

to the necessity of obeying the sampling theorem in frequency domain to-

avoid aliasing. Further, a rectangular window was used in time domain, but as

long as the window width N x TB >> 3r, it really would not make any

difference even if some other window is being used.

The input signal lr(r) in the present case is band limited (to I kHz),

therefore 11(r,r).6(ro), where G(r,r) is the frequency resPonse of the system,

shall also be band limited to I kllz. As we are actually interested in the

inverse transform of J1(or).G(o) i.e. time response of the system, we do not

require any special window in the frequency domain uP to 1/T" which is 2

kHz (> I kI{z). In other words, the sampling theorem is to be followed to

avoid aliasing.

An approximation of the actual recorded current signal by Manitoba

Hydro is shown in Fig. (4.16). It can be seen that before current gets stabil-

izeð, there is a sharp rate of change of current (from 1800 amperes to 4000

amperes) during a very short interval of time. During this transient period, the

nearby ac lines running parallel to the dc lines got tripped. An analysis was

ca¡ried out with a simila¡ ínput current signal.

The input current signal shown in Fig. (4.16) was applied to the system

under consideration with the data given in table (4-1). The:system response is

recorded in Fig. (4.17).It is observed that the induced current has the same
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initiat waveshape as of the ínput current signal but with a lesser magnitude

(approximately 25To of. the input current) and dying down exponentially. nn

this case, the contact resistance is assumed to be negligible and perhaps could

be the reason for taklng induced current a long time (mor" tn"n one second)

to die down.

Next, the above case was repeated with some typical values of contact

resistances for ac ground mat and dc electrodes and the response obatained is

shown in Fig. (4.18). Xn comparison with the Fig. (a.U) it can be noticed that

the decay time of the induced current has been reduced in this case. This is

attributed to the lower time constant of decay and higher damping of the cir-

cuit due to increased resistance. The overall magnitude of the induced current

has also reduced from approximately ?SVo lo 20Vo. The trend observed here is

quite similar to the actual one recorded by Manitoba Hydro. This proves that

large currents can be induced in the lines with ground return at low fre-

quency, with decay time as a function of ground resistance.
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5"!. Conclueïons 
:

1. There exists a Etrong coupling in a multiconductor system using ground as

return path at low frequencies even if transmission lines are far apart

(say $0 metres or more). As long as the depth of penetration of ground

current, which is a function of frequency and ground resistivity, is large

as compared to the distance between the lines,the system shall experience

a significant coupling in the zero sequence current.

2. The induced current in a line would have much the same initial

waveshape as that of the current in another line du" to which it occurs,

but with less magnitude as shown in figs. 4.17 and 4.18. This is also evi-

dent from the frequency response graph of fig. (4.4), which shows con-

stant gain in the low frequency range (.1 - 100 I{2.). At very low fre-

quency (dc), however, the gain is zero. Thus, any dc component in the

input current would not show up in the induced current. The induced

current between 0.1 to 100 Hz. can be regarded as a step signal, the

response of which would be an exponential decay in time domain.
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5.

3. Contact resistance (ground mat resistance in case of ac and eletrode resis-

tance in dc transmission with ground return) can affect the magnitude of

the induced currents as well as its decay time. An increase in contact

resistance value would tend to reduce the magnitude of induced current

slightly and also its decay time.

4. The presence of ground wires in a multiconductor system with ground

return does not have any appreciable effect on the induced currents in

the lines at low frequencies.

For simplicity and better understanding, the analysis was being carried

out on a simple two conductor system with ground return. Various

parametric studies are possible with the program developed in this thesis.

Some of them have been explained in detail in Chapter 4.

A similar induced current as to that observed can be explained with the

help of assuming a mutual contact resistance between the lines. This,

however, leads to a finite induced current even at exactly zero frequency

(dc) which is against the observed facts. This explanation must thus be

discarded.

5.2 Recommendations for further wonk

1. Though in this thesis a simple multiconductor system is analyzed but a

more complex system can be handled on similar lines. The model and the

simulation program developed here could be extended for this purpose.

The progrem has been developed to handle any number of conductors,

and this exercise is thus quite straight forward.

6.
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2. Seri.es capacitors in an ac transmission line could help in blocking direct

currents from dc ground return transmission. Though there is no record

to date of installing these series capacitors for such a purpose, a study can

be carried out in this regard.

3. The direct induced current flowing through the neutral of

transformer could also be reduced by grounding neutrals of

transformer through a resistance of a few ohms. ¡4,n exact analysis can

done in this respect.

the

the

be
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( Excerp8c Snom Mínu6es of Meeting held a8 Syctem Fes'-f'onmance Sec$ion
of Manitoha ffiydno )

?'he dfu8¡¡nbance of September 3.8, 3'985 @ 3.:20

During paralleling tests of bipoles I and 2 lines at Grand Rapids tripped

on two occasions on August 14, 1985 and September 18, 1985. On each occa-

sion, tines tripped at Grand Rapids end only by the line high set instantaneous

neutral overcurrent relaYs.

Due to the similarity of these disturbances and the unavailability of tran-

sient recorder charts from Grand Rapids for August 14, 1985, the disturbance

of September 14, 1985 @ 120 is only analyzed here.
:

(") System Initial Conditions for the disturbance on September 18, 1985 @

X20 were:

(ÐFole1andpole2had3valvegrouPseachinservice.

(ii) Pole 3 and pole 4 had 1 and 2 valve groups respectively.

(iiÐ D.C. powers on bipoles 1 and 2 were 6800 MW and 360 MW respectively

at Dorsey.

(iv) Current orders on bipoles X. and 2 were close to 800 and 500 Amps respec-

tively.
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(v) Foles ? and 4 were ín parallel mode on line DCZ.

(b) Sequence of Events

, = 0- - a.c. undervoltage protection s¡as operated manually on pole 4 at

Ðorsey.

t = 0+ - Eypass pair (like a d.c. short) was formed on pole 4.

- Iar"f = 0 and force retard signals ç'ere sent to Flenday and R.adisson

from Dorsey for the paralleled poles 4 and 2.

t = 20-30 msec - I¿r"¡ = 0 and force retard commands received at Flenday

and Radisson. (Telecom delay)

r = 90 msec - parallel poles 4 and 2 blocked.

t = !25 msec - lines GIA and G2A tripped.

2. Discusslon:

On September 2, 1985 @ 120, pole 2 of bipole 1 and pole 4 of bipole 2

were operating in parallel. To check the deparalleling sequence and the d.c.

link response during deparalleling, an a.c. undervoltage protection on pole 4

was operated manually.

Operation of the undervoltage protection caused the formation of bypass

pair on pole 4 valve groups at Dorsey. This in turn initiated /r,"¡ : 0 signal

for pole 4 and force retard signal for pole 2 which were then sent to pole 4

o*.1 *^la /) ancîenlc aÉ IJanáqu anr{ T!qrliccnn secnantivelw Elefnre thpcp cicnqlcq¡¡9 trv¡v - w¡t ¡r vrÙ

were received (telecom delay of 20-30 msec) by the respective stations, the
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rectifiers of paralleled poles 4 and 2 fed large currents into &he bypass pair on

pole 4 at Ðorsey, T'he initia! current rise was largely limited hy the

impedances of the d.c. line D2, the line reactors of poles 2 and 4 at Radisson

and Henday and the line reactor of pole 4 at Dorsey. l-ater but before l¿rul =

0 and force retard signals were received, the poles 4 and 2 controls at Flenday

and Radisson raised their firing angles ín an attempt to bring their pole

currents to the predisturbance levels. Increased currents and firing angles on

paralleled poles caused a substantial reactive power demand on the collector

system. The a.c. voltage in the collector system depressed momentarily. This

was reflected in reduced currents on poles 3 and 1. After receipt of. the lorr¡

= 0 and the force retard commands on poles 4 and 2 at Henday and Radisson,

currents on poles 4 and 2 started to reduce, a.c. voltage started to recover and

the currents on poles 3 and 1 started to increase. In about 5{ cycles after the

bypass pair formation, currents on poles 4 and 2 became zero. The currents

however continued to increase on poles 3 and I to satisfy power orders of

their bipoles. In so doing the current on poles 3 and I experienced a large

overshoot (60Vo of the final value) in about 2-3 cycles after current zero on

poles 4 and 2. It appears that the large overshoot in the non paralleled pole

currents were influenced by the following factors:

(Ð Bipoles I and 2 power orders

(iÐ No. of valve groups in operation on unparalleled poles
.

/:;:\ ,r,*^*;^ -^.-^*.^ ^f -^l^. | ^-,1 I(rrv uJtrourv r!ù[rv¡¡ùw va PvrLù r s¡rs &
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(iv) ac. voltage transíents in the collector system

Following $be formation of bypass pair on pole 4u the collector systeno

voltage depressed as discussed earlier and tberefore the firing angles on the

nonparalleled poles moved close to 50. When the currents on the parallel

poles 4 and 2 came down to zero, the a.c. voltage in the collector system rose

with an overshoot. With rectifiers at 50, nonparalleled poles experienced an

overshoot larger than the normal.

Figure 2 shows the waveshape of the dc. ground electrode current

(difference in the pole currents) for each dipole during lhe disturbance. It

shows that the ground current was zero before the bypass pair was formed on

pole 4 at Ðorsey. The total ground current of the two bipoles increased to a

maximum of 1500 Amp in about I cycle, came down to zero in another 34

cycles and reached a maximum of 4000 Amp in the di¡ection opposite to the

first maximum.

Figure 3 shows the 230 kV bus voltage and the transient current changes

on the transformer neutral and lines at Grand Rapids ends. The transient

current waveshapes look identical to the total ground current waveshape pro-

duced by the d.c. A comparison of figures 2 and 3 indicates that each of the

Glén, G2A and G9F lines had approximately one-fifth óf the d.c. ground

current.
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Conc I us ions:

trIhatever may be the causc, the test and Èhe d isÈurbartce prescnt che f o I lowing

fact s:

( i) Large neutrat currencs (which tripped lincs at Grand Rapids on

August 14, 1985 G 03:00 and Sepcember 18, 1985 G 0t:20) can ùccur ùn

al I the I ines p:rra I lel to the HVDC I ine orrly when t¡¿o pol es are in rhe

paral lel mocle of operat ion.

(ii) Fault aE Dorsey o¡r the tl.c. Iine a.sscci¡ted wlth che par:rl leled poles

cause a ma<irnum !,rùuntl current of 2 000 A'nps on che d.c. anrl fotlc'virrg

the block of the paralteled poles, the ground current goes to another

maxirnum with revarse polaricy. Tlre second maxinum depends on the

power orders of eech b ipcle and cìle rrumber of valve groups on Ehe

norrparalleled poles. Tlr is ma-<i,n,.¡m can be ctcsc to 6 500 A'nP (rv irlr

currenÈ orders of 2 000 Amps ,rn e.rch b ipcle artd .tn overshoùt ,>Í 607") .

( iii) '[he neuÈral c,¡rrent ¡rn Ëhe lines.{3R, A4D, GlA, G2A a¡r¿l GBP seem Ëo

foIlor¿ the shepe of Ehe d.c. gr-ouorl current.. The maxi¡ntlm rìeutral

current on e¡rcìr of GlA, G2A anrl G8P I ines which have caused I irres aE

Grand Rapid Co trip is clcse Ëo ùne-flfth ancl un each of A3R and A4t)

is close Èc one-sixth of the d.c. gruunrl current. For ail esEim.el-ed

6 500 Amp :naxirum d.c. grourtrl currenc, the rter¡t.ral curr:ent o'r cacl'¡ of

Ëhe lines GlA, G2A and G8P can be expected tu be t 300 Am¡:s arrtÌ t l00 A

on each of A3R and A4D.

( iv) tlhen one of the I incs GIA and G2.{ is out of serv ice the t ine in
service experiences nearly 1.75 times che neucral currerlc than if boEh

lines were in service. GBP rreutrat currenË is noc affecced by Ehe

outage of eicher GIA or G2A line. The m,aximt¡n current when one of the

lines GtA .rr G2A is out of service caa tlìeref.lre reach 2 300 Amps. lt
i.s also expected thaÈ wt¡en A3R or .A4D is cut of service the I ine in

service could experience a neuEral current of abour I 900 A.
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(v) /\l I these ¡rhscrvat ions do rrot lead tù prr\re the c:ìr¡st: as eiËher tlte

ground currertt or the ir¡dr¡cEiun tlrer.¡ry c.:trl explain clre oìrsetvetl

phertomerra.

(vi) Yonitoring of the open Iine volEage.lc Ashern in TesL +2 is therefore

essent ial to escab I ish Ëlre cause-.
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