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ABSTRACT

This thesis examines the induction effects in a multiconductor system
with ground return. It is shown that a strong coupling exists between the lines
with ground return at low frequencies even if the lines are considerably apart.
The motivation for studying this phenomenon came from an unexplained trip-
ping of 230 kV ac lines during one of the tests conducted by Manitoba Hydro,

involving parallel operation of two of its dc poles.

In order to study the phenomenon associated with this problem, a simple
but sufficient transmission line model was developed. A digital simulation
program was written to simulate the system under various conditions. A
parametric study was carried out to examine the effects of different parame-
ters involved in the system such as frequency, ground resistivity etc. on the
induction between the two lines. It is shown that large zero sequence currents
can be induced in the ac line due to transients in the nearby dc lines. The

phenomenon involved is explained both mathematically and qualitatively.

Methods to protect against such large zero sequence currents in ac lines

have also been outlined.
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phasor current
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admittance matrix
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depth of penetration of current into ground
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height of conductor i or j above ground
product of Z and Y matrices
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eigenvectors of matrix A
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CHAPTER 1

INTRODUCTION

During the summer of 1985, Manitoba Hydro conducted a number of tests
to check the parallel operation of two of its dc poles. One of the tests which
involved the blocking and bypassing of twé parallel poles resulted in tripping
of : fhree 230. kv ac iines comi_ng_.from the Grand Rapids generating station of
Manitoba Hydro. These lines which run adjacent to the dc lines for a distance
of approximately 240 kilometres, were tripped due to the operation of the zero
sequence current relays at the line terminations. A schematic diagram of the
systeﬁi and' :the concerned lines at the time of the test is shown in Fig.(1.1).
Fortunately the trippings did not cause any serious problem due to small line
loadings. But the similar disturbances at heavier line loadings would have the

potential of systein break up and loss of load in the system.

An analysis of the disturbances (Appendix-I) indicated that a large —
change in the d.c. ground currents occurs when two poles of the bipoles 1 and
2 are in the parallel mode of operation and the parallel modes get blocked at
Dorsey first. Lines G1A, G2A and G8P experience large offset phase currents
whose waveshapes are similar to that of the d.c. ground current. The offset
phase currents cause a high neutral or residual current to flow in the neutral

over current relay on each of these lines.
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The actual recorded waveforms are also shown in Figs. 2 and 3 of

Appendix-1. These should be compared with the results of Chapter 4.

Different explanations and theories were suggested about the cause of
tripping of the ac lines but no final conclusions were reached. Then in consul-
tation with the University of Manitoba, it was decided to study the

phenomenon involved on a simple multiconductor system separately.

Purpose

The purpose of this thesis is to develop a model for a multiconductor sys-
tem with an aim to study the cause of zero sequence currents found in a
nearby ac line due to transients in dc line with ground return path. How do
these induced currents vary with the change in different parameters involved
such as frequency, ground resistivity, distance between the ac and dc lines.
The model is to be developed with an intention of extending it to any number

of conductors and ground wires later on.

Method

A literature survey was carried out which yielded some indirect piecemeal
work done in this area. Much of the original work related to ground return
problems of transmission lines was carried out during the 1920’s and 1930’s.
One of the most important contributions was made by Carson in 19261 when
he worked out an earth correction term for calculating self and mutual

impedances of the lines. Later on some useful mathematical techniques and

approximations were developed to deal with the complex formulae required to



analyze the transmission line problems.

To study the present problem, a simplified system conjsisting of two con-
ductors was taken as shown in Fig (22). Line #1 is assumed to be a dc line
with a current source at the sending end while the other is an ac line. The ac
line has been grounded at both ends. The inductance termination of the ac
line represents the zero sequence impedance of the tenﬁninal transformers
because we are only interested in the zero sequence behavior, i.e., in the part
of the current that enters the ground. In reality, the normal positive and nega-
tive sequence currents are superposed on the zero sequence solution obtained

here.

A general digital simulation program was developed té simulate this sim-
ple system. Chapters 2 and 3 provide the theory used in developing the model.
Chapter 2 presents the method of calculating the basic mafrices known as the
impedance matrix and the admittance matrix. In chapter 3,tthe solution to the
differential equations governing the voltages and currents along the transmis-
sion line is given. Two port theory is also discussed brieﬂy to represent the
transmission line as a two port network. Once the desired model was com-
pleted, a short circuit test explained in chapter 4 was conducted on it to check
its validity.

After ensuring the proper working of the model, a number of runs of the _
program were carried out with different parameters changing such as ground
resistivity, frequency etc. Interesting results were recorded. It was found that

a strong coupling exists between the adjacent lines 1 and 2 at lower frequen-
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cies even if the lines are considerably apart. This depends upon how deep the
current flows into the ground. This is a function of transient currents’ fre-
quency and the resistivity of the ground. It is a well known fact of electromag-
netic theory that high frequency current in a conductor tends to flow near the
skin of the conductor. As the frequency is reduced, the current flows more
evenly over the wire cross section. Thus, the "depth of penetration” of the
current in the conductor diminishes with increasing freqpency. As long as
this depth of penetration of the current into the ground is:_ large as compared
to the distance between the lines, there is electromagnetié coupling between
the lines. It was also observed that the inclusion of a groulid wire with the ac
line does not have any appreciable effect on the induced cﬁrrent in it. A stan-
dard fast fourier transform program was also included to obtain the coupled

current waveforms to a general (non sinusoidal) input current.

Scope

A simple multiconductor model is developed to study the induction
effects between the lines with ground return path. This provides a sufficiently
simple system to do a parametric study of zero sequence c@rrent induction. It
could subsequently be extended to a detailed model of -a big system with
several ground return paths. The model can also analyze the effects of ground
wires present in the system. It can handle any type. of input current

waveforms.



CHAPTER 2

LINE PARAMETER CALCULATIONS
OF

A MULTICONDUCTOR SYSTEM

2.1 General

In order to model the transmission line it is necessary to obtain its electri-
cal parameters (inductance and capacitance) from its geometrical layout and
resistivity of the ground along its right of way. In this section, the basic
matrices of the conductor system are presented taking into account the effects
of conductor geometry, conductor internal impedance, earth return path etc.
A multiconductor line is defined by its series impedance matrix Z per unit
length and its shunt admittance matrix Y per unit length. It involves a number
of complex mathematical expressions if one wants to calculate them in their
totality. Different authors have tried and succeeded in developing somewhat
simpler alternative formulas/approximations for one or njore of the expres-
sions involved in the calculation of line parameters. A survey was carried out
in this regard. Efforts were made to put togetherz these alternative
expressions/approximations in order to m;ke overall calcujlation of the basic

matrices simpler and less time consuming without sacrificing the accuracy over

a considerable range of frequencies with respect to power system operations.



2.2 Transmission Line Differential Equations

The differential equations describing electromagnetic waves along a mul-

ticonductor transmission system of n conductors are:

=] e 2y ey i) | (1)
=2 - ey 2 4 6 ) (22)

where [v] and [i] are column matrices (of order nx1) of voltage and current
respectively, and [L], [R], [C] and [G] are square matrices (of order nxn),

defining inductance, resistance, capacitance and conductance respectively.

Transforming equations (2.1) and (2.2) to phasors produces equations as a

function of frequency as follows

-4 -z | (23)
-2 -y v) 24

where

[Z (0)] = [R(@)] + j () [L ()]
[¥ (0)] =[G (0)] + j(w) [C(w)]

Therefore, in frequency domain the equations (2.3) and (2.4) can simply

be written as (omitting matrix brackets for convenience)

dv
=—zr 2
T 25)
dl

Ll =—yv :
. (2.6)



where

Z =R +joL 2.7
Y =G + joC . (2.8)

The solution of equations (2.5) and (2.6) shall give the propagation of vol-

tage and current along a multiconductor system.

2.3 Modelling of a Simple Multiconductor System with Ground Return

To study the phenomenon involved in the main problem, a simple two
conductor system is taken as shown in fig. (2.1). From thié point onward, all
the theory presented in chapters 2 and 3 shall be related to this system from
time to time. In chapter 4, this system will be simulated in detail to observe
the induction effects between the two lines at low fre.quencies with the
different parameters changing. Line #1 is considered to be a dc line with
ground return and a current source at its sending end. Line #2 is assumed to
be an ac line with ground return and no source of current in it. The induc-
tances at the end of line 2 represent the zero sequence impedance of
transformers where the ac line terminates. The input data @sed in the analysis

of this system is tabulated in Table (2.1).

The equations (2.5) and (2.6) for this particular system will become

d Vi zy1  zyp| {1
dx v, 2zl |2 :
and
d 151 yiu Yzl |V .
£ =— (2.10)
dx 11, ya Y| |V2
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Table 2-1 Input data describing the system shown in fig (2.1)

S.no Description Quantity Units Remarks
1 Number of Conductors 2 nos
2 Type of Conductor 1 - - Aluminum
bundled con-
ductor hav-
ing 2 con-
ductors in it
3 Type of Conductor 2 - - -do-
4 Actual radius of each con-
ductor in the bundle
(a) Conductor 1 (r,) 0.02032 metres
(b) Conductor 2 (r,) 0.0254 metres
5 Geometric mean radius of
(a) Conductor 1 (GMR,) 0.0681554 metres
(b) Conductor 2 (GMR;) 0.1077631 metres
6 Resistivity of
(a) Conductor 1 (p,) 0.28248%10"7 | ohm-metre
(b) Conductor 2 (p,) 0.28248x10”7 | ohm-metre
7 Spacing between conduc- 182.88 metres
tors 1 and 2 (S)
8 Height above the ground of
(a) Conductor 1 (hy) 18.288 metres
(b) Conductor 2 (h,) 14.0208 metres
9 Ground Resistivity (p) 100 ohm-metre
10 Frequency (f) 10 hz
11 Current injected at sending 1 ampere
end of line 1 (I,)
12 Terminating inductances
(a) L, (Transformer) 0.0702 henry
(b) L; (Smoothing) 05 henry
(c) L4 (Transformer) 0.0702 henry
13 | The permeability of free 4w x1077 henry per
space (o) metre
14 | The permitivity of free 8.85x10™2 | farads per
space (ko) metre

-11 -



where

Vi, 14, V4,14 - the voltages and currents at point x along the conductors 1 and
2 respectively.

Z11» Y11» 2225 Y22 - the self impedances and admittances of Econductors 1and 2
respectively. |

Z13, Y125 Z215 Y21 - the mutual impedance and admittances between conductors

1 and 2 respectively.

Before equations (2.9) and (2.10) are solved or V’s and I's, it is necessary
to find the impedance matrix and the admittance matrix commonly known as

the Z-matrix and the Y-matrix.

2.4 Calculation of Impedance Matrix (Z-matrix)

Ignoring the proximity effect between adjacent conductors (i.e. non sym-
metric flow of current in conductor’s cross section caused by adjacent conduc-
tors), and conductors and ground, the elements of the Z-matrix may be

divided into two categories as follows
(i) elements representing the self impedance of the conductor, say i. (z;;)
(ii) elements representing the mutual impedance between the conductor i and

the conductor j. (z;;)

These elements of the Z-matrix can be calculated using the relations

presented next.

-12 -



2.4.1 Calculation of Self-Impedance

The self impedance of the conductor may be regarded as made up of the

following two components.
(a) the internal impedance of the conductor or (z; );nr
(b) the external impedance of the conductor or (z;; )gxr

Thus

z; (or z,05) = @:divr + (i dexr (29)
(a) Calculation of Internal Impedance (z;; );nr

When current flows in a conductor, it produces a magnetic field around
it. Some of the magnetic field is due to the flux inside the conductor. The
changing lines of flux inside the conductor also contribute to the induced vol-
tage in a circuit and therefore to the inductance. Since impedance consists of
resistance and inductive reactance, at low frequencies, (z;);yr is equal to the
dc resistance of the conductor. At higher frequencies, it is given by the classi-

cal formulal?

p; m Iy (mr;) —
Gidwr = 2; 7o Iy (m r:) ohm [metre (2.10)

where

m = \/l;“i&"._ : (2.11)

and I, I, are the modified Bessel functions of order 0.

An approximation to the above formula is found in a paper(*l which has

made the calculations much easier without using Bessel functions. The inter-

-13 -



nal impedance of a circular conductor can be calculated to a reasonable accu-

racy by using the following expression.

p; m 0.3565 p; o
Cidwr = |5 coth (07T mry) + ————|  ohm/metre  (2.12)
i

2
wr;

An error analysis done by the authors shows that there can be maximum
error of 4% in the real (resistive) part of equation (2.12) when |mr,-lv= 5,
whereas the maximum error in reactive (imaginary) part of (2.12) is 5% when
lmr;1 = 35. Apart from these maxima the formula is quite accurate. More-
over, it is justified by the fact that this expression requires less digital compu-

tation than that of (2.10) to which this is an approximation.

(b) Calculation of External Impedance (z;)gxr

Since the resistance is a quantity entirely ’internal’ to the conductor, the
external impedance will be nothing but the inductive component due to exter-
nal flux linkages of the conductor. It is dependent upon the properties of the
medium filling the interconductor space. Since we are inferested in conduc-
tors carrying current with ground as return path, the medilim filling the inter-
conductor space will be air and the ground. The Fig. (2;7.) shows two such
separate conductors i and j respectively. The usual method of finding induc-
tance of the lines with ground return is by considering the:images of the con-
ductors as shown in Fig. (22). Had the ground been a perfect conductor, a
conductor’s image will be exactly at the same depth as it ié above the ground.
In such a case an equal and opposite field will be produced by the conductor

and its image respectively. Therefore there will not be any inductive com-

-14 -
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ponent due to the ground medium. But unfortunately this is not the case in
real life. Ground is not a perfect conductor and therefore the image of con-
ductor cannot be at the same depth as the height of the conductor above the
ground. In other words the depth of penetration of current is not same for all
the cases but depends upon the ground conductivity etc. In 1926, J. R. Car-
sonll] worked out an earth correction term which gives tﬁe additional reac-
tance due to the ground. He found that the depth of penetration of current

into the ground is a function of frequency and the ground fesistivity.
Carson derived the following expression for calculating the self external

impedance of conductor i,16]

., Ko 2h )
Gii)exr = Joo - In ': + 0‘5-’; H U ) (2.13)

where the ground correction term J; is infinite integral and is given by

=2hi A

. je
J; =P +jO = dX\
’ {X+Vk2+jwp.

(2.14)

The only hard part of Carson’s earth correction term is the evaluation of
infinite integral with complex arguments. Later on some:. approximations to
this were suggested by different authors but most of them are valid over a lim-
ited range of frequency. In 1981, A. Deri of Technical University of Budapest
and A. Semlyen of University of Torontolf] provided a simple but an accurate
substitute to the equation (2.13) over the whole range of frequencies for which

Carson’s derivation is valid.

- 16 -



The Deri-Semlyen paperl! derived the following apbroximation to the

Carson’s equation (2.13) for calculating the external impedance of the conduc-

-

tor i. Referring to Fig. (22),

Po . 2hi , . Mo 2(h; +de)| .
(i ExT =jw—2-;- In -}-‘— tjo . In [ 7™ ohm [/metre (2.15)
_Jopg 2hi + de
= . In " ] (2.16)

where
r; = radius of conductor i
h; = height of the conductor i above the ground

de = depth of penetration of current into the ground

=~ /P . (2.17)
jop : |

p = ground resistivity

(Note: For a bundled conductor, r; will be replaced by the GMR i.e.

geometric mean radius of the bundled conductor).

Thus, the self impedance of a multiconductor system or the z; elements

of the Z-matrix will be given by substituting equations (2.12) and (2.16) in

(29),i.e.
_ ( p,-m 0.3565‘)'
z; = ~2‘ﬂ’r; coth (0.777mr,-) + '—;r-;‘-z—-
m 2 (h; +de
+ chadal In l—i—'—-—-—-)- ] ohm [metre (2.18)
{ 2‘" r,-
where

de = \/-2— (2.19)
jop

- 17 -



and

Pi
The main feature of the above equation is that all the diagonal elements of

the Z-matrix can be calculated by hand held calculators for a particular fre-

quency and ground resistivity.

Now substituting the data provided in Table (2-1) for the system of Fig.

(2.1) in equation (2-17), the self impedance at a frequency of 10 Hz is calcu-

lated as

24 = 02069%107 + j 0.1325%10™>  ohm /metre (221)
and

22 = 0.1685x107% + j 0.1267X10™>  ohm /metre (222)

(The 10 Hz value is only as an example to demonstrate the calculations pro-
cedure. Also, it is the major frequency present in the actual time domain sig-

nal)

2.4.2 Calculation of Mutual Impedances (z;;)

Mutual impedance is nothing but the mutual reactance between the two
conductors or circuits and is the result of flux linkages of one coﬁductor or
circuit due to the current in the second conductor or circuit. As in the case of
calculation of external impedance, it is also dependent upon the medium
filling the interconductor space. Again, for conductors shown in Fig. (2.2),
Carson derived ‘the following expressionm for calculating the mutual

impedance (or reactance) between the conductor i and the conductor j.

-18 -



- jopg In V(B +h;)* + (J‘fs""j)2 4+ 8o

P Jn (2.23)
i r ‘V(h" —h" )2 + (x.' —X})z w " ’

where

-} —-—
. je(h; +h; )\
Jp =Py +j0On =] L

oA+ \/Kz-i-jwp.o

This infinite integral with complex arguments is difficult to evaluate

cos M(x; —x;yd A (2.24)

numerically but the Deri-Semlyen paperlﬁ] gives a very simple and an accurate
approximation to the equation (2.23). With reference to Fig.(22), they
developed the following expression for calculating the mutual impedance

between the conductors i and j with ground return path.

, = Joprgy In Vix;—x;)? + (3; +y; +2de )?
Y 27 Vix; =X 2+ 0y

ohm /metre (2.25)

where

de = depth of penetration of current into the ground (metres)

=3 /£
jop
p = ground resistivity

This value of z;; exactly equals the asymptotic expansions of Carson’s integral

at extremely low and high frequencies with acceptable error in between.

Equation (2.25) gives us a fairly simple expression for ;:alculating the off-

diagonal elements of the Z-matrix.

Thus with the help of equations (2.18) and (2.25), the complete Z-matrix

can be calculated for the parameters given in Table 2-1.

Now substituting the values from Table (2-1) in equation (2.25), the

-19 -



mutual impedance for our system will be

_ ., 2wXx60x4wx1077
213 =21 = Zy 1

o V(0-182.88)2 + (18.288+14.02+de )2
V(0-182.88)? + (18.288—14.02)°

where

,\/ 100
de =
j 27 X60x47w x10~7

= 795.7747 — j 795.7747 metres

or
21y =2 = 09703x107° + j 03167x10™*  ohms /metre (2.26)
Thus by combining equations (2.21), (2.22) and (2.26), we get

02069x1074 + j0.1325x10™3  0.9703x107° + j0.3167x10™*
zZ = ; (227)
0.9703x10~° + j0.3167x107* 0.1685x10™% + j0.1267x1073

2.5 Calculation of the Admittance Matrix (Y-Matrix)

The admittance of a conductor comprises of the distributed capacitance
and the distributed conductance G. These parameters are entirely ’external’
quantities i.e. totally independent of the material of the cohductors or of the
transverse extension of the conductors on either side of ’the interconductor
space. They are functions only of the nature and dimensions of the material
filling the interconductor space, and of the frequency. Thus the admittance
matrix Y is a only a function of physical geometry of the conductors relative
to the earth plane, because the conductor and the earth surfaces may each be

regarded as equipotential surfaces.

-20 -



The Y-matrix is assumed to have no real part because the conductance of

the air is negligible. The elements of the Y-matrix with respect to Fig. (2.2)

are given byl’]

Y = [j 27 weo[

where

ij

-1
Dy n i =1Dn, j =1(1)a (2.28)

D;; = distance between conductor i and conductor j

= Vi(x; ”o’j)2 + O +yj)2

D;; = 2k,
Dj; = 2k

= V(x; —xj% + O “}’j)z

d;; = radius of the conductor i

dj;

= radius of the conductor j

(229)
(230)
@31)__
(232)
(233)
(234)

In case of 2x2 conductor system, the equation (228) produces the Y-

matrix as follows

Y=j2‘ﬂ'(1.)€0

(2.35)

Now using the data given in Table (2-1) in equations (2.29) to (2.34) we can

calculate

Dy, = D,y = V(0-182.88)2 + (18.288+14.025)?

(x1 = 0, because conductor 1 is taken as reference with respect to conductor

2)

D, = 2 x 182880 = 36.5760 metres
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D,, = 2 x 14,0208 = 28.0416 metres

dyy = dg = V(0-182.88)? + (18.288—14.025)? = 182.9298 metres

d 11 = 0.0681544 mstres

d »» = 0.1077631 metres

2w weg = 2 X2 X60%8.85x10712 = 3.4938%x1077

Substituting the respective values in equation (2.35) leads to
05559x10™?  —0.1509x10~1

Y =j i (236)
—0.1509x10~11 0.6282x107°9 '

2.6 Elimination of Ground Wires

Consider a simple two conductor system, each conductor carrying a
ground wire alongwith it. With this system in hand, one will end up with a 4x4
Z-matrix and a 4x4 Y-matrix since now there are four coﬁductors in all. All
the further analysis of solving transmission line differential equations will
involve these 4x4 matrices. But with a little manipulation,. the order of these
basic matrices can again be reduced to the order equal to the number of non
grounded conductors (i.e. 2x2 in the above example), and at the same time,
the effect of ground wires will be taken into account. This will help in making
the overall computations of solving a multiconductor system having ground
wires, simpler and less time consuming. The technique of eliminating ground

wires while considering their effect is briefly examined here.

Rewriting the transmission line differential equations (2.5) and (2.6),
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v _ _ 7 ’ (237)
4L _ _yy - (238)

Let us assume that the impedance matrix Z and the admittance matrix Y
in the above equation take into account the ground conductors also.

The partitioning of the matrix equation (2.37) with respect to ground vol-

tage, ground current and ground conductors gives

d Vc Zee zcg Ic
< = — (2.39)
Ve 2ec  Zgg| |ls
where the suffix ¢ is meant for non grounded conductors, while the suffix g is

for grounded conductors.

The above equation (2.39) can easily be understood if it is written for a
2x2 conductor system with one ground wire. Let there be conductor 1 without
ground wire and conductor 2 with ground wire marked as conductor 3. For

this simple system, the equation (2.39) will become

Vi Zyy Zp I3 Iy
d
‘;‘; = Vz =123 222 223 | 12 (240)
V3(=V,)) 231 zm za] [[3(=Lp)

Now in most of the cases the ground wires are earthed at every tower. It
is valid to assume that ground wire potential is zero everywhere at normal fre-
quencies (upto 300 khz) ie.V, =0

Using this, equation (2.39) can be written as follows

= -z Ic — Zcg 18 (2.41)
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0=—z, I, -2 I, | (242)

Eliminating /, from the above pair of equations to obtain

dv,

dx

=-2Z' ' (2.43)
where
Z '=the reduced impedance matrix of the order equal to number of non .

grounded conductors

= Zoe ~ Zcg Zgg -1 Zge (2.44)
Similarly the Y matrix can also be reduced. For this the equation (2.38) can be

partitioned as before to give

d I Yee Yeg Ve
:i—x- = - (2.45)
I Yse  Yez| |Vs

Since V, = 0, equation (2.45) can be reduced to

Ae _ yw (2.46)
dx ‘

where

Y' =y, (2.47)

= the reduced admittance matrix of the order equal to number of non

grounded conductors.

Thus the impedance matrix Z' and the admittance matrix Y! in
differential equations (2.43) and (2.46) respectively are of the order equal to
number of non grounded conductors but at the same time carrying the ground

wires effect in them.
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CHAPTER 3

SOLUTION
TO
TRANSMISSION LINE DIFFERENTIAL EQUATIONS
OF

A MULTICONDUCTOR SYSTEM

3.1 Introduction

In the previous chapter, the differential equations governing voltage and
current distribution along the transmission lines of a multiconductor system
were presented. So far only the Z- matrix and the Y-matrix involved in these
were described .and calculated. After the calculation of these matrices, the
next step is to solve those differential equations so as to enable us to find out
the voltage and current at any point along the lines in a multiconductor sys-
tem. Efforts are being made to present the solution in its simplest form. At
the end of the chapter, two-port theory of representing transmission lines is
briefly discussed as the same will be used in Chapter 4 for analyzing our

model.

3.2 Solution to Transmission Line Differential Equations of a Multiconductor

System

Restating the differential equations (2.5) and (2.6) from the last chapter,

which describe the voltage and current at a point along the transmission lines
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of a multiconductor system, comprising of n conductors,

= =-1zI (3.1)

dx
dar _ _
g YI (32)

where V and I are column matrices (of order nx1) of voltage and current, and

Z and Y are the square matrices (of order nxn) defining line parameters.

The method to solve the above mentioned differential equations is

presented below.

Eliminating either V or I from equations (3.1) and (3.2) respectively, one

obtains
d¥v _ dl _
—x—; = —Z'Z; =ZYV , 33)
2
L _ _ydV _
"—1';5' =-Y i YzI (34)

The solutions of equations (3.3) and (3.4) for V and I respectively, must

be expressions which when differentiated twice with respect to x obtain the
original expression multiplied by ZY. For example, the solution for V when
differentiated twice with respect to x must yield ZYV. This suggests an
exponential form of the solution. Let us first solve equation (33) for V and

then equation (3.4) for L.

3.2.1 Propagation of Voltage

Assume the solution of equation (3.3) is of the following form

V.=e ¥V, +e¥ Vy (35)

where v is referred to as a propagation constant matrix and will be evaluated
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shortly, and V,, Vp are column matrices (nx1) representing constants of

integration to be determined from the boundary conditions.

Now

I |

16T = e (3.6)
and

A vx) = et ) '

L7y =ve | (37)

Using (3.6) and (3.7), the second derivative ox V, from equation (3.5) with
respect to x produces

dv,

) ‘
= 52y }
e ¥ (3.8)

Comparison of equations (3.3) and (3.8) gives

vV =2Zyv
o1
'yz =2Y
or
vy =[zr]* (39)

Thus the voltage propagation constant is equal to the square root of the multi-
plication of the impedance matrix and the admittance matrix. Note that the
propagation constant is a complex quantity in which the real part is known as
attenuation constant a while the imaginary part is called the phase constant B.

The properties of e** or ¢* ©@*/P) in equation (3.5) help to explain the vari- .
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ation of the phasor values of voltage as a function of distance along the line.
Now let

A=2ZY=27Y, =(YZ),

Therefore, the propagation constant is given by
y = VA . (3.10)
To solve the equation (35) for V,,y(=VA) andj e*¥* are to be
evaluated, remembering A is a complex square matrix of érder n. This could
have proved tedious to work out but some linear algebra techniques have
made this job considerably easy. The aim is to diagonalize tl:1e matrix A so that
the desired mathematical/ trigonometric operations could be performed e;'isily.
This can be achieved with the help of eigenvector algebrja. The method of
finding eigenvectors and eigenvalues of a matrix is assuﬁed to be known
herel®), Once the eigenvalues and eigenvectors of a matrix are known it

becomes easy to diagonalize the same matrix as shall be shown below.

Let A be the square diagonal matrix of order n, as follows

Moo 00 0
0 » o0 . O
A=1. . . . . (3.11)
6 0 0 A
where A{Az .. ., A, are the distnict eigenvalues of A. Let E, be the square

matrix of order n, the columns of which represent the eigenvectors

corresponding to their respective eigenvalues. i.e.
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E, =y 00 Ll - (3.12)

where E, ,E,, ..., E, are the eigenvectors of the matrix A corresponding to
its eigenvalues Ay, A, . .., A, Tespectively.
Now A can be diagonalized by simply performing the following opera-

tions

E;TAE, =\ f (3.13)

(Note: the proof of the above relation can be found in any book on linear

algebra)
or
E-'VA E, = WX
or
VE = E, VK . (314)

Note that the right hand expression is simple to solve as the square root of A
is nothing but the square root of its respective diagonal elements. Thus VA

can be found easily and hence the propagation constant v i.e.
y=VA =E, WE, (3.15)

To find e *7*, rearrange the equation (3.13) to get
E, vy E, = VA, still a diagonal matrix.

or
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Ev—l eX ¥ Ev = e:t\&x
or

eV =, Vi g1 ' (3.16)

Substituting for e*¥* from equation (3.16) in equation (3.5) produces

V, =E, e ™ E 1V, +E, ™ EV Yy | (3.17)
oY

V,=e T3 v, +eT vy , (3.18) -
where

T =E, WE,} (3.19)

e =E, eV g (320)

eT* =E, eV E 1 and (321)

e T* v, and e'™ Vy are known as ’reflected’ and ’incident’ voltage com-

ponents respectively.

The constants of integration V, and Vz can be determined from the end
conditions of the system i.e. if the voltages at any two points in the system are
known, V, and Vy can easily be calculated by substituting them in equation

(3.17).

Hence equation (3.5) can be completely solved for the voltage V, at any
point x along the transmission lines in a multiconductor system. As x increases —
i.e. as we progress along the system from its sending end to receiving end, the
incident voltage decreases in magnitude and is retarded in phase whereas

opposite happens in the case of reflected component.



3.2.2 Propagation of current

The current at a point x along the line can be found by solving the equa-

tion (3.2) for I by the same procedure used in voltage propagation or directly

from equation (3.1).

Vi
=-Z1
dx g
or
dv
= — Z'_1 X
L dx

Substituting for V, from equation (3.18) to obtain

I,=-2z"! }4}' [eT* v, +e™ Vp]

=Z 1T [eT* v, — ™ Vg

or

I, =Yo[e >V, —e™ Vg]
where

Yo = Z—l F
or

Zy=Ygl=T7z

(322)

(323)

(324)

(325)

Once the boundary conditions are known, equation (3.22) or (3.23) can be

completely solved for propagation of current. Incident current and reflected

current behave in the same manner as in the case of voltage propagation.
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Physical significance of Y /Z

Consider a semi infinite line i.e. the line starts at some point but ends at
infinity. Therefore, in this case there will be no reflected component of either

voltage or current, and the equations (3.18) and (3.23) will be reduced to

vV, =e TV, (326)
I, =Yge >V, (327
respectively.

Dividing (327) by (326) to get

II

— Y

v, °

or I, =YV, (328)

The above equation shows that the incident current is related to the
incident voltage through Y, and is independent of distance. Y is known as
the characteristic admittance matrix. In the same way Z; is known as the

characteristic impedance matrix.

3.3 Multiconductor System as a Two Port Network

In network theory, a ’port’ of a network is defined as any pair of termi-
nals at which the instantaneous current into one of the terminals is equal to
the instantaneous current out of the other terminal. Therefore any section of
the transmission line is a two port network and can be reéresented as shown
in fig (3.1). As per standard convention, the currents ar;e assumed positive
when they enter a node. The object of two port theory is to develop useful

relationships among various chioce of pairs of the four quantities (i.e. voltage
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Fig. 31 A two-port network with the notations of
the transmission line.
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and current at two ports), in terms of the nature of the network. The model

developed in this report has made considerable use of this theory.

To express the solution of multiconductor equations in two port theory,

rewrite the equations (3.18) and (3.23)

V,=eT*V, +eT* vy (329)
I, =Yo[e™™* v, — ™ V] (3.30)

At x = 0, equations (3.29) and (3.30) become

Vo=V, +Vp (331)
Io=Yg[Vq — Vgl (332)

At x = ], the length of the system

Vi=e Ty, +ell vy ‘ (333)
I, = Yo [e"r' VA - er' VB] . (3.34)

Solving (3.29) and (3.30) for V, and Vp to obtain

Vo+2 - '.

V, = —‘?-—2—9[—9 4 (335)
Vo—Zolo

Vg =——> (3.36)

where

1

Z — —

0% ¥,

Substituting for V, and Vy from equations (3.35) and (3.36) respectively in

equation (3.33) to get

Vo 1 Zolo + el Vo Ry Zolo

+
2 ¢ 2 2 2




By rearranging the right hand side,

Ty -Ti I (I V|
v, = =Tt - S5z 0
= cosh (T1) Vo — sinh (T1) Zo I i (337)

Similarly, we can solve (3.34) for ; to give

I, =Yysinh (T1) Vo —Ygocosh (T1) Zg 1, : (3.38)
By rearranging (3.37) to obtain

Ig=Ygcoth (T1) Vg — Y, cosech (F1)V,; ' (339)

Substituting for I from (3.39) in (3.38) to get

I, = =Y cosech (T1) Vg + Y coth (T1) V, ' (3.40)

Putting the equations (3.39) and (3.40) in matrix form

Ig Y, coth (T'1) Yo cosech (T1)| [V
= (3.41)
I —Y ¢ cosech (T'l) Y, coth (T'1) v,
Similarly
Vo Zycoth (T'!) Zgcosech (T1)] o
= (342)
v, Z cosech (T'l) Z,coth (T'!) I,

Equations (3.41) and (3.42) are the multiconductor two port equations.
The system can be analyzed by observing the behavior of the elements of the
matrices as the different parameters involved in the system such as frequency,
physical geometry of the conductor etc. are changed. This is exactly what we

will be doing in Chapter 4.
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3.4 An example

Coming back to our system of fig (2.1) and treating it as a two port net-
work as shown in fig (32), an attempt will be made to form a similar set of

equations as those of (3.41) and (3.42).

Rewriting equations (2.27) and (2.36) from Chapter 2 to have

02069%10~% + j 0.1325x1073  0.9703x1075 + j 03167x107*
zZ = (343)
09703x1075 + j 03167x10™%  0.1685x10™* + j 0.1267x103

0.0000 + j 0.5559x10™°  0.0000 — j 0.1509x1071
Y = (3.44)
0.0000 — j 0.1509x10™1!  0.0000 + j 0.6282x107°

Now

A=ZY

—0.7362x10713 — j 0.1149x10”13  -01970x10713 + j 0.6064x1071*

= (3.45)
—0.1741x1071 + j 0.5368x1071*  —0.7956x107'* + j 0.1057x107 13
The eigenvalues and eigenvectors for this matrix are calculated as
Ay = —0.9530x1071 + j 0.1660x1071 i (3.46)
A, = —0.5788x10713 + j +0.5453x10714 (347)
09229 — j 0.6197x107! ;
EV = (3.48)

' _ 10 +j 00

1.0 — j 03725x1078 :
E, = . (3.49)
—0.8160 + j 0.5508x167! |
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Fig. 32 A two-port representation of system of fig. 2.1.




Using (3.11), (3.46) and (3.47), we have

0.9530%1073 + j 0.1660%x10°13 0
A= (3.50)
0 —0.5788x10713 + j 0.5453x10™14

Also, from equation (3.12), we can write
09229 — j 0.6197x10™'  1.0000 — j 03725x1078

E, = : (351)
1.0000 + j 0.0000 —0.8160 + j 0.5508x107!

Now from equation (3.19), we have
T =E, V\E, ! | (3.52)
Use of (3.50) and (3.51) in (3.52) gives

02026x10~7 + j 02700x1076  0.8496x108 + j 036351077
T = j (3.53)
075231078 + j 03214x10~7  0.1785x1077 + j 0.2807x107¢

Inversion of Z-matrix from (3.43) produces

1063.00 — j 786700 6351 + j 2056.00]
71 = | (3.54)
6351 + j 205600  927.00 — j 8277.00
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From equation (3.24), Y, can be calculated as follows
Yo=Z7IT =

02080x1072 + j 0.1451x10™>  —02809x1073 + j 0.2631x107*

(355)
—02809x1073 + j 02631x10™%  02265x1072 + j 0.1322x1072

Now, again from equation (3.19), we have

or

E,‘II‘xEv-'f-V{x -

or

E,! coth (Tx) E, = coth (VAx)

or
coth (I'x) = E, coth (Vix) E!
For a system length of x =1 = 800 km,
coth (T!) = E, coth (VAl) E,! - (3.56)
Use of (3.54) and (3.55) in (3.56) gives
03319 — j 4604  0.0622 + j 0.6292{
coth (TL) = : 357)
0.0552 + j 05563 02680 — j 44311

On similar lines, cosech (T'l) is calculated as follows

03237 — j 4713  0.0587 + j 0.6144
cosech (T'l) = (357)
0.0521 + j 05433 02607 — j 4.544

Multiplication of (3.55) & (3.57), and (3.55) & (3.58) respectively gives
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Yocoth (T!) =

0.1328x1072 — j 096851072  0.7942x1074 + j 0.2569%10~2

(3.58)
0.7942x107% + j 02569%x1072  0.1159%1072 — j 0.1018x107}
Y, cosech (T'l) =
0.1328x1072 — j 0.9908x10™2  0.7935%107% + j 0.2570x1072
(3.59)

0.7935x107¢ + j 02570x1072  0.1159%1072 — j 0.1043x10™!

Using (3.41) and due to the size of matrices, the two-port equations for our

system is written as

1] B Y12 -yis ]| [V4
Iy ya Y2  Yn  yau| (V2
= ) (3.60)
14 -y Yz ¥m yau| |Vs
T 4] S U 'V} Ya3 yaa| Va
where b
Yn Y Y3 Y34 .
= = Yqcoth (I'!) ; given in equation (3.58)
Y21 Y22 Y43 Yaa A
Y13 Y14 Y31 Y32 -
- = - = Y cosech (T'l) ; given in equation (3.59)
Y23 Y24 Y& Ya

The end conditions in our case are as follows

I, =1 ampere : (3.61)
Vz = 12 (j(!)Lz) volts (362)
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V3 = 13 (R3 + j(&)L3) volts (363)

Ve=14(oly) volts (3.64)
L,, Ly, L4, Ry are known from Table (2-1). Using equations (3.58) to (3.64), the
equation (3.60) is solved for I, I'5, I 4 to give

I, = —02403 + j 0.04316 or 0.2441 amperes

Iy = —1.037 + j 0003237 or 1.0370 amperes
I, = 02403 — j 004315 or 02441 amperes

Thus it is found that with the data given in Table (2-1), 02441 ampere
(24%) is induced in the line 2 due to 1 ampere current in the line 1 at a fre-
quency of 10 hz and with a ground resistivity of 100 ohm-metre. The qualita-

tive reasoning is provided in Chapter 4.

The whole set of calculations can be repeated at some .‘other frequency or
with some other changed parameters. But it is rather impossible if we want to
see the response of the system say from 1 hz to 108 hz. F;)r this a computer
program is required. In the next chapter, a digital simulation program is

developed to analyze our model under different conditions.
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CHAPTER 4

PARAMETRIC STUDY
ON
A SIMPLIFIED MULTICONDUCTOR SYSTEM MODEL

WITH GROUND RETURN

4.1 Introduction

In the last two chapters, the theory of analyzing a multiconductor system
was presented and with its help, a simple multiconductor system shown in Fig.
(2.1) of chapter 2 was solved for the data given in table (2-1) of the same
chapter. The system was studied for only one frequency. 'fo study the syétem
behavior at different frequencies and with the other paraﬁeters changing, a
computer program is required. A digital simulation program is developed for
simulating the same system as shown again here in Fig. (4.1). Though a two
conductor system was chosen for simplicity, the model can handle any number
of conductors. The model was tested for its validity and found to be working
properly. A number of simulation runs were carried out with different param-
eters changing and interesting results were recorded and are presented in this
section. Later on a slightly different version of the modei_ was developed to
take into account the ground wires associated with multicohductor system. A
standard fast fourier transform is also incorporated to: analyze the time

domain input signals.
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Zero sequence impedances
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Fig. 41 A simplified two-conductor system with ground return.
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4.2 Digital Simulation of a Multiconductor System with Ground Return

A digital simulation program is developed to study the induction effects
in a multiconductor system with ground return. The purpose of developing
this model in this report is to study the currents induced in a line due to the
transieﬁt currents in the nearby lines at low frequencies. The model works in
the frequency domain though a fast fourier transform is added to analyze the
time domain input signals. There are two versions of the model, one analyzes
the system with ground wire while the other does not handle the ground wire.
The theory used in the model has already been explained in chapters 2 and 3.
A particular case of a simplified system as shown in Fig. (4.1) was also shown

there. The input/output data for the model without ground wire is as follows
(i) number of conductors. (input)

(ii) physical geometry of the conductors i.e. the distance between the conduc-

tors, height above the ground etc. (input)
(iii) actual radius of each conductor. (input)
(iv) geometric mean radius in case of a bundled conductor. (input)
(v) resistivity of each conductor. (input)
(vi) ground resistivity. (input)
(vii) contact resistance between the conductor and the ground. (input)

(viii)end conditions of the lines depending upon which are required to be

known and which are already known. End conditions involve
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(a) currents and voltages at the sending and receiving ends
(input/output)
(b) line terminating impedance. (input)
(ix) (a) frequency range of interest. (input) or

(b) time domain input signal. (input)

In the version which includes the ground wires, the number of ground
wires in a system is to be fed as input in addition to the above mentioned

input/output data.

To observe the induction effects in a multiconductor s&stem at lower fre-
quencies and with the change of other parameters involvéd such as ground
resistivity etc., tests were conducted on the system of Fig..(4.1) so far we are
using in this report. The input required fgr the system is provided in table 4-
1. But before we proceed with a parametric study, it is necessary to test the
simulation program for its proper working. In the next sgbtion a simple test

and its results are described to check the validity of the program.
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Table 4-1 Input data describing the system shown in fig (4.1)

S. no Description Quantity Units Remarks

1 Number of Conductors 2 nos ,

2 Type of Conductor 1 - - Aluminum bundled
conductor having 2
conductors in it

3 Type of Conductor 2 - - -do-

4 Actual radius of each

conductor in the bundle
(a) Conductor 1 (r,) 0.02032 metres
(b) Conductor 2 (r;) 0.0254 metres
(c) Ground conductor 0.0127 metres
5 Geometric mean radius of
(a) Conductor 1 (GMR,) 0.0681554 metres
(b) Conductor 2 (GMR;) | 0.1077631 metres
6 Resistivity of
(a) Conductor 1 (h,) 28248x10~7 | ohm-metre
(b) Conductor 2 (h;) 28248x10”7 | ohm-metre
(c) Ground conductor 0471x10”7 | ohm-metre
7 Spacing between conduc- 182.88 metres
tors 1 and 2 (S)
8 Height above ground of
(a) Conductor 1 (h;) 18.288 metres
(b) Conductor 2 (h,) 14.0208 metres
(c) Ground conductor 15.0208 metres
9 Ground Resistivity (p) - ohm-metre | As desired
10 Frequency (f) - hz As desired
11 Current injected at send- - ampere This could be of
ing end of line 1 (I,) any waveshape
form (periodic or
non periodic)
12 Terminating inductances
(a) L, (Transformer) 0.0702 henry Inductances are not
(b) L, (Smoothing) 05 henry of much importance
(c) L, (Transformer) 0.0702 henry at low frequencies
13 | The permeability of free 4w x1077 henry per
space (o) metre
14 | The permitivity of free 8.85x10712 | farads per
space (ko) metre




4.3 Testing of Digital Simulation Program

A short circuit test was performed to check the working of computer
simulation program. Under this test, the system of fig. (4.1) shall be modified
to that of fig. (4.2). Both the lines are short circuited to ground at their
respective ends. A current of 1 ampere was injected at the sending end of line
1 while the other was kept opened at the same end. The test was carried out
with a low frequency of 10 hz so that capacitance effect of the line could be
ignored. The ground resistivity is assumed to be 100 ohm-metre. Under these

conditions voltages at node 1 and at node 2 are given by
Vi 2 zz| '
Va 2y Iz {2

I, =1 ampere

12=0

Since

IVl = 1Z44!, the self impedance of line 1

V4l = 1Z41, the mutual impedance between line 1 and 2

The test was performed with the same data of table (2.‘1) of chapter 2 and

the impedance matrix came out as
0.2069%107% + j0.1325x10™ 097031075 + j0.3167x107*

0.9703x1075 + j0.3167x10~* 0.1685x107% + j0.1267x1073

i.e.

Z,y = 02069%x107* + j 0.1325x107>  ohms /metre
Z 1, = 09703x1075 + j 03167x107%  ohms /metre
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Fig. 42 Representation of the system of Fig. 4.1 during
short circuit test.



For transmission line of 10 km each,

Zy = 02069 + j1325 ohms and
Zy, = 00970 + j 3167  ohms

The voltages vy and v, which are being calculated at the end of entire
program came out as expected.

Vl = 0207 + j 1325 volts (= lzul)
V,=00970 +j 3167 volts (= 1Z1!)

The test was repeated with other frequencies and ground resistivities and
the results were found to be satisfactory. To an extent this confirmed the

correctness of the computer program.
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4.4 Parametric Studies of the Model

After verifying the computer simulation program, other tests were carried
out keeping in view the main problem of induced zero sequence currents in
the ac lines due to transients in the nearby dc lines with ground return. The
system of fig. (4.1) was simulated under various conditions. The tests and their

results are explained below.

4.4.1 Base Case

First of all a base case was run with the data provided in table (4-1). In
this case, earth is assumed to be a perfect conductor i.e. ground resistivity is
equal to zero. Contact resistances between the ground and :the conductors are
neglected. The currents were measured and recorded at ali the four nodes of
the system of fig. (4-1) as shown in fig. (4-3). It can be seen that almost no
current is induced at low frequencies. A -physical reason for this is given in
the following section. The peaks at higher frequencies ind?cate the effects of
inductance and capacitance of the lines and the resonant cénditions which are

of little interest in the case at hand.
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4.4.2 Effect of Ground Resistivity

A number of simulation runs were carried out considering the practical
case of ground being an imperfect conductor. Though the earth is very non-
uniform (the surface layers of the land have many local irregularities of
differing resistivity, such as rivers, deserts, marshes etc.) yet for simplicity the
assumption of uniform earth gives a good starting point for analyzing the
problem. With the same data except the ground resistivity used in the base
case, the system of Fig. (4-1) was simulated with varying»_ ground resistivity.
The system response as recorded in Fig. (4.4) shows that épproximately 27%
current is induced in liné 2 due to current in line 1 at lowj frequencies. This
proves that there exists a fairly strong coipling between tf;e lines at low fre-
quencies even when the lines are sufficiently apart (in the present case they

are 200 metres apart). This is attributed due to the reason explained below.

In a transmission system using ground as a return path, the depth of
penetration of the current into the ground depends upon its frequency and

the ground resistivity and is given by the equation (2.17) of chapter (2).

At zero frequency (direct current) or at low frequencies the current flows
very deep into the ground and spreads over a very large cross sectional area in
both depth and width. This return current may be represénted as that in an
’image conductor’, the location of which is at a depth eqt.ial to the depth of
penetration below the ground. The two lines with grouﬁd as their return
paths, and running parallel, may be quite apart, still there is a strong coupling

between the two at low frequencies due to the formation of two electromag-
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netic coupled loops as shown in Fig. (45). The area of the loop is much
greater than the separation between the conductors and hence most of the flux

linking one loop also links the other, resulting in strong coupling.

Now as the frequency increases (as in the case of transients or alternating
current), the current starts flowing nearer to the ground énd if the lines are
farther apart, the electromagnetically coupled loop shall be formed as shown
in Fig. (4.6).

In the case of ground resistivity being exactly zero (superconducting
ground), the image depth is exactly equal to the height of tl}e conductor above
ground (at any frequency) and so the strong coupling fér low frequencies
(which appears because of large penetration depths) does not occur in this

case. This explains the results of section 4.4.1.

Note also, that the actual induced voltage in the second loop is a function
of field coupling as well as rate of change of that field. So at near dc frequen-
cies, though most of the flux links both loops, the rate of change of flux is
very small. This voltage, which is the driving force behind' the current in the
loop therefore drops to zero at low frequencies and consequently so does the
current. That is why current induced is quite small at very iow frequency (less

than 1 Hz) as shown in Fig. (4.4).
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4.4.3 Effect of Varying Distance Between the Lines (ac and dc)

The base case was simulated assuming approximately i83 metres distance
betwen the lines. To observe the effects of different distances between the two
lines on the induced current, simulation runs were carried out by assuming 50,
183 and 1000 metres as the distance between the two line‘s respectively. The
results are shown in Fig. (4.7). Increase in induction when fhe lines are just 50
metres apart is not as much of a surprise as the existence of a significant
induction at lower frequencies even when the lines are one km apart. This is
attributed to the fact that depth of penetration of ground current (which may
be several hundred metres) is still quite large as compared to the distance
between the lines and consequently resulting in electromagnetically coupled

loop as explained in the previous section.
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4.4.4 Effect of Contact Resistance

In a transmission system with ground as a return path; current flow lines
are parallel to one another and to the metallic conductors except near the
ends of it as shown in Fig. (4.8). At the ends, these current flow lines diverge
from, or converge to, the electrode in case of dc transmission or to the station
earthing mat in case of ac transmission. This phenomenon is usually known as
an ‘end effect’['! This effect is predominant in a zone hdving dimensions of
twice or thrice the depth of penetration of the ground current. Both direct .
and alternating currents follow ground paths which offer the least impedance.
For dc, the impedance consists only of resistive component whereas for ac, it
has both resistive and reactive components. At low frequencies, only the
resistive component will be active. The end effects are taken into account by
considering resistance in series with the lines at their ends as shown in Fig.
(4.9). As mentioned earlier for dc (at zero frequency), the ground currents
spread deep below the ground, in which case nothing is left but the end
effects. In that case the resistance of the ground return is merely the sum of
the resistances associated with each electrode. In ac transmission with ground
return, the earthing mat at the generating stations has typical resistance (con-
tact resistance) of .5 to 4 ohms. However, it depends upon the ground resis-

tivity at which the station is located.

Simulation runs were carried out with different values of contact resis-
tances and the results were recorded as shown in Fig. (4.10). Fig. (4.10 b)

shows that as contact resistance increases, there is higher damping effect,
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resulting in lower time constant of decay for the induced current. This fact

can be observed more explicitly in time domain analysis carried out in a

further section.
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4.4.5 Effect of Mutual Contact Resistance

Initially a theory based upon the mutual contact resistance was thought to
be the cause for induction effects at lower frequencies. 'I:'he mutual contact
resistance is nothing but considered as to account for corﬁmon ground path
shared by the current I, and I, shown in Fig. (4.11). The model was simulated
with some typical values of R, and without R,. The résults recorded are
shown in Fig. (4.12). It can be seen from Fig. (4.12 b) that at nearly zero fre-
quency, there is a significant amount of current induced in line 2. However,
unlike the observed induced current (by Manitoba Hydro), the induced
current calculated by this theory has a dc component. Therefore mutual con- .
tact resistance does not explain the observed phenomenon, and must be dis-
carded. The theory explained in section 4.4.2, therefore, seems more applica-

ble.
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4.4.6 Effect of Ground Wires

Usually overhead lines are protected from direct strokes of lightning by
one or more wires at ground potential strung above the power line conductors.
The zone of protection is normally considered to be 30° on. each side of verti-
cal beneath a ground wire. To observe the effect of grouhd wires present in
the system on induction between the two lines, a simulation run was carried -
out with the data of Table (2-1). It is assumed that the line 2 (ac) carries a
ground wire above it as shown in fig. (4.13). It was found that ground wires in
the system did not have any appreciable effect on the induction between the
two lines. The frequency response of the system with and without ground
wire is shown in fig. (4.14). About 4% reduction in the induced current (1)

was observed at ground resistivity of 100 ohm-metre.
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4.5 Response of the System with time-domain input current signal

In the previous sections, the model was analyzed with é sinusoidal current
of 1 ampere magnitude, injected into the dc line. The ain:n was to study the
basic phenomenon involved in the main problem. In this section efforts are
being made to study the response of the system to an ini)ut current signal,
similar to the actual one recorded during the parallel oi»eration of the dc
valve groups by Manitoba Hydro. The waveshape of the récorded signal is in
time domain. To analyze the system (which is in frequehcy domain) to an
input time domain signal, a standard fast fourier transform FFT [12] j5 included

into simulation program as explained below.

So far the digital simulation program was calculating the response of the
system to a given input frequency domain signal over a certain range of fre-
quencies. To deal with an input time domain signal i(t), the first task would be
to transform this into its frequency components such as I,(w,), ,(w) etc.
through a standard FFT program. The procedure is iflustrated in block
diagram (4.15). Then, as before, the simulation progra@ would calculate
I,(w), I3(w), I4(w) corresponding to each frequency component. To get time
domain output signal (or response), all the respective frequency components

of I,(w), I3(w), I 4{(w) are fed into a standard inverse FFT program.

The number of points in FFT has been chosen in such a way so as to
avoid wrap around error{!? in the time domain response. For this, an estimate
of the time constant {v) of the system to dc was made from Fig. 4.17 and the

number of points (N) were selected so that
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N XT, = 3

where T, is the sampling time or time between two consecutive points. This
would prevent wrap around error (or inverse aliasing). This is just analogous
to the necessity of obeying the sampling theorem in frequency domain to™
avoid aliasing. Further, a rectangular window was used in time domain, but as
long as the window width N X T, >> 31, it really would not make any

difference even if some other window is being used.

The input signal /4(w) in the present case is band limited (to 1 kHz),
therefore /{(w).G(w), where G(w) is the frequency response of the system,
shall also be band limited to 1 kHz. As we are actually interested in. the
inverse transform of /,(w).G(w) i.e. time response of the system, we do not
require any special window in the frequency domain up to 1/T, which is 2
kHz (>1 kHz). In other words, the sampling theorem is to be followed to
avoid aliasing.

An approximation of the actual recorded current signal by Manitoba
Hydro is shown in Fig. (4.16). It can be seen that before current gets stabil-
ized, there is a sharp rate of change of current (from 1860 amperes to 4000
amperes) during a very short interval of time. During this tfansient period, the
nearby ac lines running parallel to the dc lines got tripped. An analysis was

carried out with a similar input current signal.

The input current signal shown in Fig. (4.16) was applied to the system
under consideration with the data given in table (4-1). The system response is

recorded in Fig. (4.17). It is observed that the induced current has the same
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initial waveshape as of the input current signal but with a lesser magnitude
(approximately 25% of the input current) and dying down exponentially. In
this case, the contact resistance is assumed to be negligible and perhaps could

be the reason for taking induced current a long time (mor;a than one second)

to die down.

Next, the above case was repeated with some typical values of contact
resistances for ac ground mat and dc electrodes and the response obatained is
shown in Fig. (4.18). In comparison with the Fig. (4.17) it can be noticed that
the decay time of the induced current has been reduced in this case. This is
attributed to the lower time constant of decay and higher damping of the cir-
cuit due to increased resistance. The overall magnitude of the induced current
has also reduced from approximately 25% to 20%. The trend observed here is
quite similar to the actual one recorded by Manitoba Hydro. This proves that
large currents can be induced in the lines with ground return at low fre-

quency, with decay time as a function of ground resistance.
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CHAPTER §

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

1. There exists a strong coupling in a multiconductor syst@:m using ground as
return path at low frequencies even if transmission lines are far apart
(say 500 metres or more). As long as the depth of peﬁetration of ground
current, which is a function of frequency and ground‘ resistivity, is large
as compared to the distance between the lines,the system shall experience

a significant coupling in the zero sequence current.

2. The induced current in a line would have much the same initial
waveshape as that of the current in another line due io which it occurs,
but with less magnitude as shown in figs. 4.17 and 4.18. This is also evi-
dent from the frequency response graph of fig. (4.4), which shows con-
stant gain in the low frequency range (.1 - 100 Hz.). At very low fre-
quency (dc), however, the gain is zero. Thus, any dc component in the

“input current would not show up in the induced current. The induced
current between 0.1 to 100 Hz. can be regarded as a step signal, the

response of which would be an exponential decay in time domain.
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3. Contact resistance (ground mat resistance in case of ac and eletrode resis-
tance in dc transmission with ground return) can affect the magnitude of
the induced currents as well as its decay time. An increase in contact
resistance value would tend to reduce the magnitude of induced current

slightly and also its decay time.

4. The presence of ground wires in a multiconductor system with ground
return does not have any appreciable effect on the induced currents in

the lines at low frequencies.

5. For simplicity and better understanding, the analysis was being carried
out on a simple two conductor system with ground return. Various
parametric studies are possible with the program developed in this thesis.

Some of them have been explained in detail in Chapter 4.

6. A similar induced current as to that observed can be explained with the
help of assuming a mutual contact resistance between the lines. This,
however, leads to a finite induced current even at exactly zero frequency
(dc) which is against the observed facts. This explanation must thus be

discarded.

5.2 Recommendations for further work

1. Though in this thesis a simple multiconductor system is analyzed but a
more complex system can be handled on similar lines. The model and the
simulation program developed here could be extended for this purpose.
The program has been developed to handle any number of conductors,

and this exercise is thus quite straight forward.
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Series capacitors in an ac transmission line could help in blocking direct
currents from dc ground return transmission. Though there is no record
to date of installing these series capacitors for such a purpose, a study can

be carried out in this regard.

The direct induced current flowing through the neutral of the
transformer could also be reduced by grounding neutrals of the
transformer through a resistance of a few ohms. An exact analysis can be

done in this respect.

-78 -



(1)

)

©)

(4)

)

©

(™)

(8

®

REFERENCES

Carson, J. R., 'Wave Propagation in Overhead Wires, with Ground

Return’, Bell System. Tech. J., 192 | Vol. §, pp 539-554

Shelkunoff, S. A., 'The electromagnetic theory of Cd-axial transmission

lines and cylindrical shields’, Bell System. Tech. J., 1934, Vol. 13, pp 532-

579

Sunde, E. D., ’Earth Conduction Effects in Transmission System’, Prince-

ton, N. J.: Van Nostrand, 1948.

Wedepohl, L. M. and Wilcox, D. J., "Transient Analysis of Underground

Power Transmission Systems’, Proc. IEE, 1973, Vol. 120, No. 2, pp 253-260

Galloway, R. H., Shorrocks, W. B. and Wedepohl, L. M., transmission

lines’, Proc. IEE, 1964, Vol. 111, No. 12, pp 2051-2059

Deri, A., Tevan, G., Semlyen, A., and Castanheira, A., Homogeneous and

Multi-Layer Earth Return’, Trans. IEEE, Power System Apparatus; 1981,

pp 3686-3693

Hedman, D. E., 'Propagation on Overhead Transmission lines I - Theory

of Modal Analysis’, Trans. IEEE (PAS), 1965, pp 200-205

Wedepohl, L. M., ’Electrical Characteristics of polyphase transmission
system with special reference to boundary-value calculations at power line

carrier frequencies’, Proc. IEE, 1965, Vol. 112, No. 11, pp 2103-2112

Hedman, D. E., 'Propagation on Overhead Transmission Lines II - Earth

Conduction Effects and Practical Results’, Trans. IEEE, PAS, 1965, pp

205-211

-79 -



(10) Wedepohl, L. M., "Application of matrix methods to the solution of trav-
elling wave phenomenon in polyphase systems’, Proc. IEE, 1963, Vol. 110,

No. 12, pp 2200-2212

(11) Kimbark, E. W,, 'Direct Current Transmission’, Vol. 1, John Wiley, 1971,

pp 391-482

(12) Gonzalez, R. C. and Wintz, P., 'Digital Image Processing’, Addison-

Wesley, 1977, pp 78-88

(13) Wedepohl, L. M., 'Class notes on Transmission Lines course offered at

the University of Manitoba’, Winnipeg, 1986

- 80 -



APPENDIX-I

( Escerpts from Minutes of Meeting held at System Performance Section
of Maritoba Hydro )

The disturbance of September 18, 1985 @ 1:20

During paralleling tests of bipoles 1 and 2 lines at Grand Rapids tripped
on two occasions on August 14, 1985 and September 18, 1985. On each occa-
sion, lines tripped at Grand Rapids end only by the line high set instantaneous
neutral overcurrent relays.

Due to the similarity of these disturbances and the unavailability of tran-
sient recorder charts from Grand Rapids for August 14, 1985, the disturbance
of September 14, 1985 @ 1:20 is only analyzed here.

(a) System Initial Conditions for the disturbance on Sept.ember 18, 1985 @

120 were:
(i) Pole 1 and pole 2 had 3 valve groups each in service.
(i) Pole 3 and pole 4 had 1 and 2 valve groups respectively.

(iii) D.C. powers on bipoles 1 and 2 were 6800 MW and 360 MW respectively

at Dorsey.

(iv) Current orders on bipoles 1 and 2 were close to 800 and 500 Amps respec-

tively.



(v) Poles 2 and 4 were in parallel mode on line DC2.

(b) Sequence of Events

¢t =0~ — a.c. undervoltage protection was operated manually on pole 4 at

Dorsey.
¢ = 0% — Bypass pair (like a d.c. short) was formed on pole 4.

— I4,.; = 0 and force retard signals were sent to Henday and Radisson

from Dorsey for the paralleled poles 4 and 2.

t =20-30 msec — I, = 0 and force retard commands received at Henday

and Radisson. (Telecom delay)
¢t = 90 msec — parallel poles 4 and 2 blocked.

t = 125 msec — lines G1A and G2A tripped.

2. Discussion:

On September 2, 1985 @ 1:20, pole 2 of bipole 1 and pole 4 of bipole 2
were operating in parallel. To check the deparalleling sequence and the d.c.
link response during deparalleling, an a.c. undervoltage protection on pole 4

was operated manually.

Operation of the undervoltage protection caused the formation of bypass
pair on pole 4 valve groups at Dorsey. This in turn initiated I,,,, = 0 signal
for pole 4 and force retard signal for pole 2 which were then sent to pole 4
and pole 2 controls at Henday and Radisson respectively. Before these signals

were received (telecom delay of 20-30 msec) by the respective stations, the



rectifiers of paralleled poles 4 and 2 fed large currents into the bypass pair on
pole 4 at Dorsey. The initial current rise was largely limited by the
impedances of the d.c. line D2, the line reactors of poles 2 and 4 at Radisson
and Henday and the line reactor of pole 4 at Dorsey. Later but before I,,,, =
0 and force retard signals were received, the poles 4 and 2 controls at Henday
and Radisson raised their firing angles in an attempt to bring their pole
currents to the predisturbance levels. Increased currents and firing angles on
paralleled poles caused a substantial reactive power demand on the collector

system. The a.c. voltage in the collector system depressed momentarily. This

was reflected in reduced currents on poles 3 and 1. After receipt of the I,

= 0 and the force retard commands on poles 4 and 2 at Henday and Radisson,
currents on poles 4 and 2 started to reduce, a.c. voltage started to recover and
the currents on poles 3 and 1 started to increase. In about 5-6 cycles after the
bypass pair formation, currents on poles 4 and 2 became zero. The currents
however continued to increase on poles 3 and 1 to satisfy power orders of
their bipoles. In so doing the current on poles 3 and 1 experienced a large
overshoot (60% of the final value) in about 2-3 cycles after current zero on
poles 4 and 2. It appears that the large overshoot in the non paralleled pole

currents were influenced by the following factors:
(i) Bipoles 1 and 2 power orders
(ii) No. of valve groups in operation on unparalleled poles -

(iii) dynamic response of poles 1 and 2
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(iv) a.c. voltage transients in the collector system

Following the formation of bypass pair on pole 4, the collector system
voltage depressed as discussed earlier and therefore the firing angles on the
nonparalleled poles moved close to 5°. When the currents on the parallel
poles 4 and 2 came down to zero, the a.c. voltage in the collector system rose
with an overshoot. With rectifiers at 5°, nonparalleled poles experienced an

overshoot larger than the normal.

Figure 2 shows the waveshape of the d.c. groundjelectrode current
(difference in the pole currents) for each dipole during the disturbance. It
shows that the ground current was zero before the bypass éair was formed on
pole 4 at Dorsey. The total ground current of the two bipoles increased to a
maximum of 1500 Amp in about 1 cycle, came down to éero in another 3-4
cycles and reached a maximum of 4000 Amp in the direction opposite to the

first maximum.

Figure 3 shows the 230 kV bus voltage and the transient curfent changes
on the transformer neutral and lines at Grand Rapids ends. The transient
current waveshapes look identical to the total ground currént waveshape pro-
duced by the d.c. A comparison of figures 2 and 3 indicatés that each of the
G1A, G2A and GYP lines had approximately one-fifth of the d.c. ground

current.



Conclusions:

Whatever may be the cause, the test and the disturbance present the following

facts:

(1)

(ii)

(iii)

(iv)

Large neutral currents (which tripped lines at Grand Rapids on
August 14, 1985 @ 03:00 and September 18, 1985 @ 01:20) can occur on

all the lines parallel to the HVDC line only when two poles are in the

parallel mode of operation.

Fault at Dorsey on the d.c. line associated with the paralleled poles
cause a maximum ground current of 2 000 Amps on the d.c. and following
the block of the paralleled poles, the ground current goes to another
maximum with reverse polarity. The second maximum depends on the
power orders of each bipole and the number of valve groups on the
nonparalleled poles. This maximum can be close to 6 500 Amp (with
curreat orders of 2 000 Amps on each bipole and an overshoot of 60%).
/s
The neutral curreant on the lines A3R, A4D, GlA, G2A and G8P seem to
follow the shape of the d.c. ground curreant. The maximum neutral
curreat on each of GlA, G2A and G8P lines which have caused lines at
Grand Rapid to trip is close to one-fifth and on each of A3R and A4D
is close to one-sixth of the d.c. ground current. For an estimated
6 500 Amp maxinum d.c. ground curreat, the neatral current on 2ach of
the lines GIA, G2A and G8P can be expected to be I 300 Amps and 1100 A
on each of A3R and A4D.

When one of the lines GlA and G2A is out of service the line in
service experiencas nearly 1.75 times the neutral current than if both
lines were in service. G8P neutral curreat is not affected by the
outage of either GlA or G2A line. The maximum currant when one of the
lines GlA or G2A is out of service can thereforz reach 2 300 Amps. It
is also expected that when A3R or A4D is out of service the line 1in

service could experience a neutral curreat of abour 1 900 A.



(v) All these observations do not lead to prove the cause as either the

ground current or the induction theory can explain the observed

phenomena.

(vi) Monitoring of the open line voltage at Ashern in Test #2 1s therefore

essential to establish the cause.



