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ABSTRACT

The routing problem for both printed circuit boards and YLSI
are addressed in the thesis. Different routing algorithms applicable to
printed circuit boards are discussed and evaluated. Using & printed
circuit board computer-aided design software package, Optimate™, the
relationship between the routing history and the routing performance
is investigated by experiments.F{esults show that a certain type of
routing history can generate better routing results. Empirical formulae
are developed for predicting routability based on the information given
by & placement configuration. Pertinent examples show that the

formulae can predict routability well.

& new channel router is developed particularly suitable for
YLS! layout. The new router can generate optimum results for one
class of problems whose lower bound of track number needed is
determined by the maximum ordering humber rather than the maximum
density number. It i shown that other channel routing algorithms
usually cannot generate optimum results for the class considered. This
thesis documents routing results from thirteen examples, ten of which
produce optimum results. The algorithm is coded in PASCAL. Both the

PCE and VLS| results were obtained oh an Apollo DNE6O.
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ABBREYIATIONS AND DEFINITIONS

The definitions provided here are based on the wark done in [2].

Blind Via

Buried Via

CaD

CAE

Component Pad

A blind via is & via penetrating at least two layers,
including one and (only one) outer layer. {See Layer,
Outer Layer and Via.)

A buried via is a via penetrating at least two inner
layers and no outer layers. Buried vias are not
accessible from the outer layers on & PCB or on an
SMB, thus it is very difficult to test them. (See
Inner Layer, Layer, Quter Layer and Via.)

Computer Aided Design.

Computer Aided Engineering.

A component pad is the physical representation of &

terminal on & net. For a PCB, the component pad is

located on the solder layer, and for an SHMB, the

Component Layer

Connection

component pad is located on the component layer.
(See Met and Terminal.)

A component layer is the outer layer where
components are placed. A PCB has one component
layer. An SMB may have either one or two component
layers. (See Layer and Outer Layer.)

A connection is what makes different terminals oh a

net electrically comman. {See Net and Terminal.)



DNR graph
EYME
Feed-through

Directed Net Relation graph.

Efficient Variable-cost Maze Router.

A feed-through is & hole passing through all the
layers of @& PCB. Feed-throughs enable the
compohents to be inserted into them and fixed on
the board. Every feed-through is attached to &
component pad located on only one layer of the
board. This is in contrast to & via which has traces
attached to it on at least two layers. If the
component pad is not attached to & trace located on
the solder layer, then the feed-through must also be
gttached to that trace located on another lager. In
this case, the feed-through also plays the role of &

vig. (See Trace and Via.)

Feed-through Yoid

GA

A feed-through void is the area on a PCB or an SMB
where feed-through and vias are forbidden. Traces,
however, may be allowed there. {(Also see Routing
Yoid.)

Gate Array.

Gate Array Design

Gate array design methedology is based on a reguiar
size of transistor cluster {cell) containing logic
gates or compaonents that ere predefined up to the
final stages of wafer processing. Gate array

includes digital, analog and mixed digital/analog

_xi_



circuits.

Horizontal and Vertical Direction on the Layer

iC

Inner Layer

Layer

Lead

For PCB routing, a comman approach is to give each
layer a preferable direction parallel to the board
sides. The layer with horizontal ({vertical)
preferable direction is called the horizontal
fvertical) layer and the majority of connections on
that layer are horizontally (vertically) routed. (See
Layer.)

Integrated Circuit.

An inner layer is the layer enclosed by two outer
layers. {(See Layer and Outer Layer.)

A layer iz a plane on which connections can be
routed to make different terminale electrically
equivalent and to form wires {(defined as sets of
cornponen{ pads, traces, and vias). Traces an
different layers are connected through vias. (Also
see Quter Layer, Inner layer, Component Layer, and
Solder Layer.)

A lead is usually referred to as the point where &
wire is attached to a passive component such as a
resistor or capacitor, or an IC with & lead package.
{Also see Pin) ‘

Large Scale Integration

"
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which make those terminals electrically comman.
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Outer Layer

Overflow

PCB

Pin

Piacement

Rats nest

RI
Routing

According to the function of the net, we call them
the power net, signal net, etc. A net is realized as @
wire through the process of routing. {Also see Wire.)
Net={Terminals, Connections}.

An outer layer of a PCB or an SMB is the layer
accessible from outside of the board. {Also see Inner
Layer.)

An overflow is 8 connection which can not be rauted
under the given constraints.

Printed Circuit Board, also called Printed Wiring
Board (PWE).

& pin is usually referred to as the point where &
wire is attached to an IC chip. {Also see Lead.)
Placement is the process of arranging all the
components within a two-dimensional area such
that the configuration of the placement will
facilitate the routing process.

A rats nest is 8 set of lines {abstract connections)
and the terminals connected by those lines. A rots
nest is converted into a set of wires by the process
of routing. (Also see Net.)

Routability Indicataor.

Routing is the process of converting the intended
connections {usually represented by rats nest) into
wires within a two-dimensional multilayer }region,

provided that certain mechanical and electrical

- Xiii -



Routing Yoid

st
SMB

Solder Layer

constraints are satisfied.

A routing void is the ares on a PCB or an SMB where
the traces are not permitted to be placed.

Standard Cell.

Surface Mount Board.

A solder layer is the cuter layer where pins of
components are saldered to the camponent pads. For
a PCB, the solder layer is located opposite to the
component layer, and far an SME, the solder layer is

on the same side as the component layer.

Standard Cell Design

Yia

Standard cell design methodology is based on a
library of predesigned {in shape and size) functional
cells, called standard cells, that may be equivalent
to standard SS1 and MSI logic families {from &
single inverter to an ALU and more). A full mask set
is required to manufacture chips based on the
standard cell methodology. Stardaed cell includes
digital, analog and mixed digital/analog circuits.

A via is & physical hole passing through a PCE or an
SME or an IC. Yias make connections between traces
on at least two different layers, thus contributing
to the creation of wires. Since vias do not carry any
mechanical loads, they may be smaller than the

e mrrvmlnm Fhlmm momm PlimAd L2is and Diaewiad [GIPY
feed-throughs. (4180 see Bling Via and ouimied via.)
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Terminal

Trace

YLS|

Wire

A terminal is the end point of & connection. On 8

physical board, it is represented by & companent pad.
{Alzo see Component Pad.)

A trace is the physical representation of &

connection which makes different points in a circuit
electrically commen on & single layer. Traces,
defined on layers, together with vias and component
pads constitute wires. {(Also see Connection.)

Very Large Scale Integration.

A wire is the phygical realization of a net which
makes different points in a circuit electrically
common. A wire includes at least one trace and twao
component pads. If the traces are located on
different layers, the wire also includes at least one
yia. For a PCB, the companent pad is attached to &
feed-through. {Also see Net)

wire={Component Pads, Traces, ¥ias}



CHAPTER |

INTRODUCTION

The design of any electronic circuit involves two major
phases: namely, electronic design and physical layout. In the electranic
design phase, the designer develops the circuit which is able to
complete the desired functions by using abstract functional blocks
(such as NAMD and/or NOR gates, registers, and latches). The first
phase usually results in & schematic disgram. The physical layout
phase can then be accomplished either manually or with the help of &
computer. In the computer-aided layout method, the first step requires
a process called schematic capture to convert the schematic diagram
into a computer readable form. The schematic capture stage is
followed by the conversion of the electrical representation of the
circuit into the physical representstion of the circuit. The conversion
may consider physical constraints such as ringing, crosstalk [1] and
heat dissipation. The physical representation may have different
forms, including the printed circuit board {PCB), surface-mount board

(SMB), gate-array (GA), standard cell {SC), and full custom [2].



increasing circuit density. The increasing density of circuits makés
the circuit layout almost impossible to be done by a human without the
aid of & computer. The problem iz compounded by the requirement of
very-high quality circuit layout which cannot be reached by human
designers, either. Thus, a large amount of effort has been devoted to
providing computer aids to assist the human designer with the Tayout
problem [3]. Such aids fall into the categories of computer-aided

design (CAD) and computer-aided engineering (CAE).

1.1 Partitioning of Physical Circuit Design

The layout problem can be described as follows: Many modules
{components) are to be placed in a given area so that they do naot
averlap (placement), while at the same time, certain points {called
terminals) must be connected by mutually noninterfering wires
(routing). More precisely, for a given circuit and physical size of all
modules, the placement process arranges all the modules within a
given two-dimensional area in such @ way that the locetions of the

placed modules facilitate the subsequent routing process. For a given



circuit and placement configuration, the routing process converts the
intended electrical connections (usually represented by a rats nes‘t)
into physical connections {such as the horizontal and vertical traces in
PCBs) within & two-dimensional multilayer region, provided that
certain constraints ere satisfied. Since the module placement
significantly affects the performance of routing, ideally the
placement and routing processes should be done simultaneously in
prder to achieve optimum results. But due to the complexity of each
step, it is almost impossible to do so at the present. Thus, the two
processes are commonly treated iteratively. That is, if it ig found
that it is very difficult to achieve reasonable completeness of routing,
it would be necessary to go back to repesat the placement process, and

then do the routing again, bﬁsed on the new placement of modules.

1.2 Classification of Routing Algorithms

Many routing algorithms have been developed in the past three
decades. The first recognized algorithm was developed by Lee (4] in
1961. The algorithm can find an optimum path connecting twa

different points on a plane, according to a certain cost function. Since



then, many other algorithms based on the Lee algorithm have been
developed in order to achieve better resuits in terms of memory
requirement, time, or routing patterns. All of those algorithms are

classified as maze routing algorithms. In this thesis, maze routing is

addressed in detail because of its applicability to printed circuit

board desigh.

Anather class of routing algorithms is the line routing

algorithm developed originally by Hightower [S] The line routing

algorithm takes less time than the Lee algorithm but it may not find &
solution which actually exists. Other similar algorithms are described
in (6] and [7]. 1t should be noted that since both the maze and line
routing algerithms trace the connecting paths one at & time, they are

called sequential.

In recent years, another class of routing algorithms has been

developed. These algorithms are classified as channel  routing

algorithms, and are widely used, especially in LS| and YLSI circuit
design [8]. This kind of router requires twao steps to complete its

aperation. In the first step, the router divides the available routing



ares into many rectangular sub-routing areas called channels. Then it
decides which channels should be used for routing each net. Since this
is & global routing procedure, the routing density can be evenly
distributed to increase the routability. The second step is to route
locally within the channel to determine the detailed position of each
connection within a channel. This may result in the reduction of both
the rmemary needed and the time consumed for routing. For these

reasons, channel routing algorithms constitute the second major topic

of this thesis.

Still another class of slgorithms is emerging [9-11] These
algorithms use concepts from artificial {computational) intelligence,
such as the expert system concept, which consider the history of the
process itself or the histories of many processes from the past, and
heuristics based on the process history. The algorithms with the
heuristics are designed to produce layouts better then those without
them. The heuristics can be applied to both the sequential {maze and
line) and global {channel) routers. For this reasan, they can be called

routing algorithms with history.



Although many routing elgorithms were first deveioped for
pﬁnted circuit board design, it has been shown that these algorithms
can also be used- successfully in LS! and VLSI circuit design using
gote-array and standard-cell circuit design methodologies. The Lee
algorithm is still the most common algorithm implemented in CAD
layout tools because it can always find a connection path, 1T such a
path exists. This is especially true for printed circuit board design.
According to a survey of printed circuit board CAD systems [12],
among 26 systems from 22 vendors, 21 systems employ Lee's routing

algorithm or its variations.

With the emergence of YLSI, researchers started designing and
building special purpose chips. A hardware router described in [13] and
[14] serves as an example of such a kind of chip. Most of those
hardyare routers are based on the Lee algorithm. To find & connection,

the maze hardware router requires time Q(d), where d is the length of

the connection, while the software implementation of the maze router

usually takes time 0(d?),



1.3 Objectives of the Thesis

The objectives of this research work are:

a) To survey and evaluste the ewisting maze and channel
routing algorithms;

b} To find a relationship between the routing histories and
routing results: obtained from & commercially evailable PCB CAE
software;

¢} Ta find & relationship between the placement and routing
processes through a study of how routability is influenced by different
placerment configuretions and to find a possible routability indicatar;
and

d) To develop a new channel routing algorithm in order to
achieve 0pt1’munﬁ results for at least one class of circuit layout

problems.

1.4 Structure of the Thesis

The first part of the thesis deals with the routing problem of

_?_



printed circuit boards snd the second part deals with the problem of
the LSl and ¥LS! layout. In the first part, Chapter Il describes and
evaluates the existing routing algorithms for printed circuit boards.
For an improved version of Lee's routing algorithm, the effects of
different routing histories on routing results are discussed in
Chapter 1. Then, in Chapter 1V the routability problem is addressed
and & method of predicting routability based on the placement results

is introduced.

The second part of the thesis addresses the channel routing
algorithm which is the most comman routing strategy for LS and VLS
layout. A new algorithm for channel routing is then presented in
Chapter V. Chapter VI presents the experimental results on the new
track assignment algorithm as well as the discussion on the results. In
Chapter V11, its performance on & certain class of problems is
compared with the performence of other channel routing elgoerithms
and the reasons for its superior results over others are discussed.
Conclusions for both the printed circuit board routing problem and the
LS! and VLS| routing problem are drawn and suggestions for further

studies are given in the last chapter of the thesis.

_.8..



CHAPTER Il

LEE'S ROUTING ALGORITHM AND ITS YARIATIONS

2.1 Lee's Path Connection Algorithm

Ag stated in Chapter |, Lee's algorithm [4] is the most comrnon
routing algorithm for printed circuit boards (PCEs). The algorithm is
designed to solve the following problem: How to find an optimurn path,
connecting two different peints on a plane defined by the PCB
boundary, according to a certain cost function. The cost funclion
includes the length of & path, crossovers with existing paths (if

permitted), distance to other paths, and the nurmber of corners.

Lee's algorithm has the following properties: (i) It always
finds a path if one exists, and {ii) The path it finds always has the

minimurm possible cost.

Lee's algorithm can work with any monotonic path cost

function {a monotonic function is & function whose first derivative



does not change its sign). Such & manatonic function can also be & set

of monotonic functions, F,, represented by & vector F:[F],F2 ...... Fnl.

Assume that a routing area is divided into a finite number, N,
of subareas called cells labelled Ci. Further acsume that the cells

where routing is forbidden are tagged to prevent them from being used
in the routing process. The remaining cells can be used to build up @
path to connect two particular cells. The size of the cells is
determined by computational and manufacturing considerations. An

example of the routable cells and routing voids is illustrated in Fig. 1.

Each cell has an essociated cost. The cost of a cell is & humber
representing either a single quantity or a combination of quantities

such as the distance between the cell and its adjacent cells and the

directione in which the cell is entered and exited. The cost of a cell C].

is denoted by f(C). The cost function of & path is denoted by Fip),
where p is the path which consists of the starting cell S and a set of

cells C,, (32, .., and C which are adjacent to one another. The tost

- 10_
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function is defined as the sum of the cost of each cell on the path,
and can be expreased as

n
F(p)=Z 1(C,) (2.13

i=1

for a path defined by the following set of {n+1) cells

p=(5,C,, C,p, ., C } (2.2)

N

if two particular cells are to be connected, it is desirable to
know whether any possible path exists to connect them. If it exists,
can the path which has the minimum cost be found? The Lee algorithm

can answer the two questions.

be connected is selected as the starting cell, end the other as the
target cell. The process of finding the path between the starting and
target cells requires labelling cells into non-visited and visited ones.

A routable cell is labelled as hon-visited if it has not been used in

generating the minimum cost path connecting the starting and target



cells. & routable cell is labelled as visited if it has already been used
in generating the minimum cost path connecting the starting and

target cells.

Furthermore, any routable cell C, has at least one neighbor cell

€, defined as the cell adjacent to the cell C. For example, Fig. 1

shows two classes of adjacent cells: (i) the nearest neighbors along
the horizontal and vertical directions, marked 1, and {ii) the neighbors
along the diagonal directions, marked 2. If the class 1 neighbors are
considered in the algorithm, the resulting paths have only 90-degree
corners along the horizontal and vertical directions, without any
45-degree corners. This definition of cell neighborhood emphasizes the
local {cell-wise) nature of the Lee procedure rather than a global

algorithm.

Since the process of finding @ minimum cost path occurs in
stages, one cell is edded to the path at a time. The most recent cell

found along the minimum cost path is called the frontier cell, and it

remains the frontier cell until all of its neighbors are labelled as

- 13_



visited.

Finally, let us define two cell lists: L and L,. The lists are

variable in length from one stage of the path-finding procedure to
another. The cell list L contains frontier cellis) located along the

minimum cost path. The path finding process begins with L containing
the starting cell only. The cell list L, contains the cells which are

adjscent to the cells in the cell list L and are labelled non-visited.
When the path is restricted to the horizontal and vertical directions
with 90-degree corners, the adjacent cells belong to class 1; when the
path is allowed to have 45-degree corners, the adjacent cells include

the cells of both class 1 and class 2.

Based on the above definitions, the principal steps of the

algorithm cen be stated as follows:

[Lee Algorithm]:
Step 1) Initialization: L={starting cell}; L1:E’f; label all cells

non-visited to indicate that they can be used in generating

- 14_



Step 2)

o
—
=]
s
A
—

Step 4)

Step 5)

the minimum cost path.

For each cell E]. in the list L, do the following:
Add each non-visited neighbor C, of the cell C; into the list
L,. Calculate the cost function of the path containing this

cell Ek.
Among all the new path cost functions, find the one {or

ones) which has {have) the minimum value. Then, the cell{s)
in list L1 which result(s}) in this function value can be

identified. Add those cells to the list L, label them visited,
and record the direction in which they are entered. If any of
those cells inL is the target cell, the path finding process
is completed.

Delete from L any cells whose neighbors have all been
visited, and clear L1.

If L is empty, no path exists. Otherwise repeat from step 2.

O

If the iteration exits at Step 3, then a path with the minimum

— 15...



cost has been found. Tracing back the path can be done by starting from
the target cell and following the directions recorded for each cell ta

the starting cell. .

As shown in Fig. 1, a connection between S and T needs to be
found. For simplicity, consider the path length as the cost of the path.
That is, each cell has a unit cost (except for the cells in routing voids
which have infinite costs). According to the algorithm, the four
neighbar cells {marked 1 in Fig. 2-a} of the starting cell are expanded
and labelled visited during the first expansion stage, and they are the

cells in the cell list L after the first expansion stage. Furthermaore,
the dotted cells in Fig. 2-a are the cells in the cell list L, during the

second expansion stage. Similarly, the cells marked 2 in Fig. 2-b are

the cells in the cell list L after the second expansion stage, and the
dotted cells in Fig. 2-b are the cells in the cell list L, during the third

expansion stage. At the end of the path-finding process, the cells are
labelled as shown in Fig. 2-c, where the marked cells now represent
the three equivalent minimum length connection paths. If one chooses

the minimum number of corners on the path, then the path shown in

- 16_



(a)

(b)
Fig. 2. Routing results of the Lee algorithm.
(a) Expansion result after the first stage

{b) Expansion result after the second stage
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Fig. 2. Routing results of Lee algorithm (continued).
{c) Final expansion result
(d) Routing result
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Fig. 2-d is the optimum connection path.

The order of element cost functions in the function vector F

determines the priorities of the corresponding criteria. So, the
criterion represented by F, in vector F has the highest priority and F,

has the next highest priority, and so on.

Lee's algarithm uses a rather modest amount of storage. At any
given time anly the cells on the list L and L, are stored, along with the

infarmation concerning whether a cell has been visited and what its
minimum-cost predecessor had been--the direction from which the

cell is visited (this is called a cell map).

Lee's algorithm has several limitations. The very important
condition is that the vector F must be monotonic. Fortunately, the
layout problems considered can always satisfy this condition. The
algorithm is very time-consuming because it can only route one path
at a time. Also, once a path is routed, it becomes an obstacle for paths

to be routed later. Thus the routing order seems to be very important.
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Since publication of Lee's algorithm, many modifications of
this algorithm heve been made. Same of the meodifications are

discussed in the fallawing sections.

2 2 Improvement 1: Reducing the Cell Map Sterage

when Lee's algorithm is applied to @ circuit board, the number
of cells may be extremely large, depending on the smallest
recognizable feature on the hoard, such as the trace width. Therefore,
it is desirable ta minimize the amount of storage needed for each cell.
The minimum information in the cell map must include: {i) a means of
distinguishing between obstacle cells (which cannot be used to
generate & new path) and routable cells {which can be used to generate
a new path), and (i) a means of retracing the cannection path from the

target cell back to the starting cell.

Akers [15] presented a method to encode the cells by using 2
bits for each cell:
00=routable

01=zreached, with trace bit 1
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10=reached, with trace bit 2

11=obstacle

If the shortest path between two points S and T is desired {see
Fig. 1), with the cost of the path being equal to the number of cells in
that path, the following procedure can be used (see Fig. 3). & "1" is
entered in each routable cell which is the neighbor of the starting cell
{S), a second “1" is now entered in each routable cell which is the
neighbor of the cell cantaining one of these "17. Next, & "2" is entered
into each routable neighbor cell which has the second "17, and so on
until the target cell is reached (the path length can be counted by &
single counter). For back-tracing the path, if the target cell T is
reached by a 2 preceeded bg. another 2 (as the example shown in Fig. 3,
then it is traced back by following the sequence 2(T), 2, 1,1, 2, 2, 1,
.., 5 (starting cell). If, in the back-tracing process, there are several
cells eligible to be the next cell to be added to the path, then the one

which can keep the direction of the path unchanged should be selected.

Akers' method cannot, however, be used if the cost

_21_
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cell and F is the target cell. It is now impossible to tell whether Cor E
is the prodecessar of F (it should be E). This example shows thvat
Akers' method is limited to the case where the cost function is the
length of the path. Since the routing length is a very important
criterion in the routing problem, it is still a very powerful strategy
for implementing Lee's algorithm. For a general cost function, & 3-bit

cell coding method has been introduced by Rubin [16]

2.3 Improvement 2: Reducing the Area Expanded

Since Lee's algorithm {and its variations) examines many cells
which are not on the way to the target, its speed is limited. All cells
reachable with a cost less than the cost of reaching the target cell

have been expanded, including those directly away from the target cell.

In [16], Rubin presented three methods which aim at reducing
the number of cells expanded. It can be shown that for Lee's original
algorithm with the Manhattan distance of d between the starting and
target cells, the number of expanded cells is about 2d® before the

target cell is reached by expanding from the starting cell. {(Manhattan
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distance between two points (x,, 4} and (%, W) is measured by the

sum of the sbsolute values of (x,-x,} and (4, -y,).)

Pohl [16] developed & two-ended procedure for reducing the
number of cells expanded. The main strategy of this method is to
expand bath the starting cell and the target cell such that these two
gxpansions cah be terminated when they meet in mid way The
expanded cell number will be reduced to 2*{(2%{d/2F)=d®. That is half
of what the original Lee algorithm needs. There is a drawback of this
procedure. It is necessary in this procedure to distinguish between the
cells expanded from the starting cell and those expanded from the
target cell. Then, when a cell which has been previously visited is
encountered, it is possible to determine whether this is a path
doubling back upon itself or the completion of the search. Thus,
storage for each cell will be increesed by one bit. Figure 5 gives

the expanding result of this searching strategy.
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Another method of speeding up the original Lee algorithm to
reduce number of cells expanded is to chonse one endpoint, which is
nearer to ane of the four corners of the available routing area, as the
starting cell to be expanded [2]. Then, potentially fewer cells directly
away from the target cell will be expanded because of the blockage of
the natural edges of the routing region. The expanding result of this

method is shown in Fig. 6.

Since the Manhattan distance gives the exact measure of how
far apart two given cells may be in & rectangular grid, Rubin [16]
intraduced a predicted pasth cost functien H, which could guide the

gxpansion direction.

Let e represent the Manhattan distance from cell C, to cell
Cj, and dij the distance from cell Ci to CJ. along the minimum cost path.

Clearly, condition clijzmij always holds true. Assume that the path cost

function F=[F,(p), F,(p), .., F,(p)]has components of the form

F () = g lp)+a *d, 8,20 (2.3)
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where gk(p) is a monotonic path function, dSi i the distance between
the starting cell C_ and the cell C, which is added to the path most

recently, & is & nonnegative constant, and not a1l g are zero. Since in

routing, the path length is usually considered as an important factor,
the path cost function F can always satisfy the above conditions. The

predicted path cost function ig constructed as

H (p)=F (pi+b *m, b, <8, (2.4)

where My is the Manhattan distance between the current cell Ci and

the target cell C, and b, is & nonnegative constant. It can be

shown [16] that the slgorithm with the predicted path cost function
can always find a path whose F cost is minimurm whenever such g path
exists. It has also been shown [16] that the set of cells expanded with
@ predictor is a subset of the cells expanded without the predictor.

Figure 7 shows the expanded area for the example shown in Fig. 1.
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Since there may be many synonymous cells {synonyms) of equal
cost of the target cell in each path routing process, and with the use
of the predictor function, the number of syhonyms can increase
considerably. Thus, some kind of order for the expansion of synonyms

can be expected to reduce the number of cells expanded considerably.

Suppose that after expanding the starting cell, one of its
neighbars nearer to the target is chosen. This defines a direction
towards the target. If this cell is expanded next, then its neighbors
can be generated in an order so that the next cell to be considered is
the neighbor in the same direction towards the target. This procedure
cah be continued until the opposite boundary of the primary rectengle
fprimary rectangle is the rectangle whose one pair of opposite carner
are the starting and target cells respectively) is reached. If the order
for choosing the next cell to be expanded requires thet all neighbors of
the last-expsnded cell are checked first, then at this point the singl.e
neighbor which is nearer to the target cell will be chosen, which
estahlishes the preferred direction for the remaining cells. It was
shown in [16] that this so called depth-first search will | find

minimum-cost paths.
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By using the depth-first search strategy, the following

algorithm can be formulated:

[Depth-first Searching Algorithml:

Step 1)

Step 2)

Step 3)

Place the starting cell{s) on the cell list. Set the direction
entered to O and the cost threshold to 0.

Find the last cell C in the cell list such that the cost of
the path which includes the new cell C equals the threshold.
If none, set the threshold to the least cost of the path
which contains one of the cells on the cell list, and repeat
Step 2.

If Cis the target cell, go to Step 11,

If Cis labelled as visited, gqo to Step o

3 Otherwise, 1et d be the direction from which the cell was

entered (visited), and consider its neighbors in directions
d+1, d+2, d+3, d+4 (taken mod{4)).

a) If the neighbor was previously visited, or it is an
obstacle, skip it.

b} Otherwise recaord its predicted cost and direction

entered at the end of the cell list.
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Step 7) Record the direction of cell C in which it was visited, and
label it as visited.

Step 8) DeleteC from the cell list.

Step 9) If any other cells exist in the list, repeat from Step 2.

Step 10)No path exists. Stop.

Step 11)Trace back along the path to its starting cell. Exit.

It should be noticed that if the neighbors of cell C have the
same cost, then the neighbor entered by the same direction as C was
entered will be expanded. This is because the last admissible neighbor
of cell C has the direction d+4 which is the same as C's direction d due
to the modulo 4. Therefore, the algorithm always tries to expand the
least cost cell which can preserve the direction of the expansion, if it

is possible. The expansion result is shown in Fig. 8.
Thus the major algorithms proposed in order to reduce the

number of cells expanded have been presented. Table | presents a

comparison of the number of cells expanded by the above-described
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TABLE 1

Comparison of number of cells
expanded by different methods

) Number of cells
Expanding Methods expanded
Lee's original 171
algorithm
Two-ended expansion 101
algarithm
Corner-ended 116
expansion algorithm
Rubin's expansion 121
algorithm
Depth-first function
guided expansion 18
algorithm




methods far the routing problem shown in Fig. 1. It is seen that the
depth-first function guided expansion method produces the fewest

number of cells expanded.

It has been shown in [17] that by using Rubin's strategy, if
there is a small blockage near the target cell, the whole routing areg
could be filled {see Fig. 9, where S and T are the starting and target
cells, respectively). So in [17], Korn introduced another method to get
an even smaller number of cells expanded by sacrificing the guarantee
of the path having the minimal cost. Being different from Rubin's
method, the Efficient Variable-cost Maze Router {EVMR) constructs the
prediced path cost function by weighting the distance from the target
cell more heavily than thé distance from the starting cell. That is, in

a predicted path cost function:

Hk(p):Fk{p%b'k*mﬂ b'.>8, { in Rubin's method bkiﬂk) {2.5)

where m, is the same as in Eq. 2.4. Figures 9 and 10 show the results

of routing the same example by using Rubin's method and EVMR,

respectively. The reduction in the number of cells expanded is obvious.
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It is shown in [17] that the actual path cost is at or near the minimum
despite the averpull (Korn calls b\ >a as agverpull). The path cost is

just one directioh—change cost more than the minimal cost in the

example.

Another strategy for reducing the expanding ares is due to
Hoel [18]. In his paper, @ stack is employed to store the cells in the
cell list. (The same cell list as in depth-first searching algarithm.)
The property of last-in-first-out of the stack has a similar effect to
taking modulo 4 of the direction in the depth-first searching

algorithm.

2.4 Routing with Yariable Searching Space

One key factor that makes Lee's routing algorithm slower than
other routers is the large searching area for finding the potential path.
Even though the seaching area can be greatly reduced by using the
strategies introduced in the last section, it is still desirable to rgduce

the searching area further. The following three methods can be adopted
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to serve this purpose.

2.4.1 Single Rectangular Frame Technigue[2]

Though it is possible for a path connecting two points on the
board to lie anywhere on the board outside the rectangle defined by the
two points to be connected, the rectangle is the maost likely region
where the path can be found [2]. The rectangle is defined by the two
points either exactly (these two points serve as either the upper left
and lower right corners or upper right and lower left corners of the
rectangle) or it is slightly lerger than the smallest rectangle. For
example, assume the two points to be connected have the Manhattan
distance {x+y), then the rectangle area far searching the path can be

defined as the one shown in Fig. 11 with ax, Ay being defined as:

Ax=max{x/a, y/b, o} (2.6a)

Ay=maxix/c, y/d, B} (2.6b)

where 8, b, ¢, d, 8, and B are pre-defined positive integers with the

unit of grid length in the x and y directions. The positive integers ¢ and
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B represent the minimum distences between the edges of the
rectangular frame and the edges of the smallest rectangle
passing through the endpoints S and T. Thus, the maze router is
constrained to search the path connecting S and T within the rectangle
defined shove. If the router fails to find out the path, the rectangle can
be enlarged by changing @ end B. Within the larger area, the router
tries to search for the connection path again. This interactive strategy

yields new CAE design options.

2 4.2 Double Rectanqular Frame Techniquel2]

The above method is simple and effective, but it may result in
finding & very undesirable path as shown in Fig. 12. Fortunately, one
improved version of the rectangular frame technique can be used to
avoid such a zigzag trace. It is called the double rectanguiar frame
technigue [2]. This technique provides not only an outer-rectangle to
prevent the router from searching the area outside it but also an
inner-rectangle to prevent the router from searching the area inside it
(Fig. 13). Obviously, this strategy not only avoids the undesirable

zigzag path but reduces the searching area as well. Of course, if the

_38_



CLOSED [MACRO PHTHf

>

A b

Fig. 13. Double rectangular frame

MACRO PATH
N

Fig. 14. L-shape routing ares



router fails to find the path within the area defined, a larger area can

be defined and the router can try ta find the path within this aree.

2.4.3 Variable Searching Area Pestriction Techhigue

Since the path most likely lies in one L-shape of the double
rectangular area, it is possible to reduce the searching area further.
In [19], Tada et al. introduced a fast maze router with iterative use of
a variable searching area restriction. The algorithm has the following

strateguy:

(i) The establishment of macro path: To restrict the searching

area, a "macro path” is established. 11 is denoted by an L-shaped frame
surrounded with solid or dotted lines as shown in Fig. 14. The choice of
solid or detted lines is made by considering previously routed line
density within each frame.

{ii) Iterative use of router with varying_macro path width.

The algorithm realizing the above strategy can be described as

follows:
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[variable Searching Area Algorithm]:

Step 1)

Step 2

step 3)

During the first trial, all pairs of points are tried with &
narrow macra path width, so that @ simple path may be
successfully established with short machine time. Complex
paths which will require wider path width may fail. This
fact is an important feature to reduce computation time
and achieve 8 high completion ratic because of simple paths
taking less space.

During the second trial, all connections that failed in the
above process are attempted again with a wider macro path
width.

In the same manner az mentioned above, successively
expanding the macro path width, the router is used for r
iterations, where r can be controlled outside of the

program.

Experimental results of this method together with the single

rectangular frame technique method are given in [19). It has been seen

that the routing completeness increases from 63.5% (for the single
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rectangular frame technique) to 97.4%, and at the same time the
computation time of this method is only one quarter of the time
required by the single rectangular frame technique. The test board is a
printed circuit board with a routing area of 7.9x7.1 inches (236x213
cells), 80 integrated circuits {ICs), 4 discrete components and 686

required connections. The board has two layers for routing.

2.5 Other Routing Algorithms

Apart from the algorithms introduced above, many other
strategies have also been developed for the printed circuit board
routing. Among them are the Efficient Shortest Path Finding algorithm
[20], Parametric Pattern Router [21], Saturated Zone Router [22], and
Topographic Router [23]. The Efficient Shortest Path Finding router is
based on Lee's algorithm for finding interconnections between points
on different layers of the board. The Parametric Pattern Router aims
at overcoming the problem of undesirable path shapes produced by
Lee's router by using pre-defined path patterns in certain order until a
path is found to connnect the starting and target points. The Satufated

Zane Router initially partitions the board into regions called saturated
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zones within which all connections are completed. These saturated
zones are subsequently merged into larger and larger saturated zones
until the final comhination yields a routing for the entire board. The
merging of zones is done by routing the disconnections between zones.
{4 disconnection is where a path is needed to connect points which
should be electrically equivalent.) The Topographic Router uses a
topograph simulation strategy; that is, the router first assigns the
obstacle cells & very high cost and a lower cost to the routable cells
near to them and so on. Thus, the minimum cost path found by this
router must be awey from other paths routed. This can reduce the
cross-talk between wires as well as balance the distribution of the

routing density.

Still other algorithms based on the Lee algorithm can be found
in [24] and [25]. To reduce the number of vias used during routing
process, some via reduction technigues were also developed [26, 271.
(A vis is a plated-through hole connecting traces on different layers.

Also see ABEREVIATIONS and DEFINITIONS.)

As discussed in this chapter, the technigues based on Lee's



algorithm have two fundamental limitations: (i} just one path can be
routed at a time and (i) it is difficult to route multi-terminal nets. To
avercome these limitations, another strategy has been developed for
routing multileyer printed circuit boards [26-40] The first step of
this method is the via assignment. Adding vwias on board makes those
terminals to be connected become possible to be connected by vertical
and/ar harizantal paths on different layers. Thus, the objective of via
assighment is to convert the original connection problem inte simpler
connection problems, that is, the problems of connecting points 1ying
on the single row by paths on a single layer. Since an increase in the
number of vias on the board results in a larger, more expensive, and
less reliable board, the optimum via assignment is the one which uses
the fewest vias. This via assignment is followed by & single row
routing which is a procedure to route the paths to connnect terminals
and/or Qias which 1ie on a single line. The objective of single row
routing is to use the smallest area possible on both sides (ar one side)

of the row to route all paths required for connections.
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2.6 Summary

Ih this chapter, Lee-type routing algorithms have been
investigated extensively. Lee's original algorithm can guarantee the
optimum solution provided the cost function vector is manatonic. On
the other hand, Lee's algorithm becomes less practical as the size of
the problem increases. So, other algorithms aiming at reducing the
storage requirement and computation time were discussed. Strategies
which could avoid the generation of undesired path patterns were also
presented. Most of the algorithms presented are based on Lee's

algorithm.



CHAPTER

EFFECTS OF ROUTING HISTORY ON MAZE ROUTING

The previous chapter presented different routing algorithms
and their routing performance. The routing results can be affected by
many factors, even though we use the same routing atgorithr and the
same component placement. Therefore, we have investigated the
relationship between different sets of parameters on the process of
routing, by using a working OFTIMATE™ software package. Since the

routing process is seldom completed with just one set of routing

parareters, we define the seguence of using different sets of routing

parameters for routing & board as the routing history for that board.

OPTIMATE™ is & printed circuit board schematic capture and
layout software system developed by Secmai (France) and distributed
by Optims Technology Inc. (USA) [2, 41] It provides & graphical
interactive software package for the entire printed circuit board
physical design process, with interfaces to standard manufacturing

services. The software provides multi-lager routing with & uniform

...46..



distribution of interconnections over the layers.

The software uses many routing control parameters, including
costs for horizontal and vertical routing paths on different layers,
costs for 45-degree routing, costs for using vias, maximum number of
vias to be used for one connection, maximum connection length,
window definition, etc. Some details of window definition are as
follows: we can control routing area for each connection by using
window definition, we can define single rectangular window or double
rectangular frame and we can also specify the size of each rectangular

frame.

3.1 Experimental Results for Small Routing Rectangle

Four boards have been used in the test. One of them (example
four) is a surface-mount board and the rest are printed circuit boards.
The sizes of the printed circuit boards are in the range of
11.0x4.2 inch to 11.8x6.7 inch and the size of the surface-mount board
is 6.6%5.3 inch. The ratio between the board size and the number of ICs

an the board is 1.24 inch®/chip to 2.25 inch®/chip for the printed
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circuit boards and 1.14 inché/chip for the surface-mount board. The
total numbers of connections to be routed are 354, 342, 425, and 432
for example one, two, three, and four, respectively. All of the boards

were designed for practical purposes at the Microelectronics Centre.

To avoid cross-effects of other parameters in our tests, only
two major parameters are allowed to change and all other parameters
are fixed. The two parameters allowed to change are the maximum
number of vias allowed for each connection and the size of the

rectangular routing area.

For convenience of description, let the set of routing

parameters

(93]
=

{(v,, 5,0, (¥, 8,0, ., (v, §) (3.

n n

denote the routing histary, where ¥ represents the maximum nhumber

of vias allowed for one connection, and S is the size of the single
rectangular routing window. We should keep in mind that the set of

routing parameters (Vm, Sm} is applied immediately before the set
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me Smﬂ). we should also keep in mind that the number indicating
the size of the rectangle is not the actual size but is just equivalent
to the aw and Ay .of Fig. 11 (ax=ay=S_ grid step, one grid step is
equivalent to 25 mils). So the actual rectanguiar routing area is the
rectangle whose four sides are S_ grid steps away from the sides of
the inner rectangle. The outermost two points of the net 1o pe
connected serve as either the upper left and lower right corners or

upper right and lower left corners of the inner rectangle.

For each hoard tested, we apply the following sets of
parameters to route the board (&l other parameters are kept

constant):

H,=(2,6), (2,12), (2,20), (2,300 (3.28)
H=((3,6), (3,12), (3,20), (3,300} (3.2b)
H,=((4,6), (4,12), (4,20), (4,30} (3.2¢)
H,=((5.6), (5,12), (5,20), (5,30} (3.2d)
H={(6,6), (6,12), (6,20, (6,300} (3.2€)

and
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H.=1(2,30), (3,30, (4,30), (5,320), (6&,30)} (3.3) .

The routing results of routing history H, are then compared
with those of routing history of H, to Hg. The comparison is based on

the following results: (i) the number of successful connections, (if)

the average number of vias used for each successful connection, and

(ii1) the average routing length of each successful connection (for Hy

and H, only).

The selection of routing history H, as & reference for those

four test boards has the following sdvantages over using other routing
hiztories: (i) the number of successful connections is increased by up

to 3 percent, {ii) the number of wias for each successful connection
used is reduced by 3 to 8 percent. The routing history of H, results ina

slight increment {one percent at the most) of the average routing

length for each successful connection, which is undesirable, compared
with using the routing history Hy. The routing results for the four test

boards are shown in Table 1L For each example in Table |l, the first
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three columns are the results of routing histories from H, to H, the

second three columns are the resulte of routing history H,, and the

last three columns are comparisons between routing results of
different routing histories. For the first three columns, each row
corresponds to & routing history from H, to Ho. The results in each row
are the number of completed connections, the average number of vias
uzed for each successful connection and the average routing length for

each successful connection. For the second three columns, the last row

indicates the final routing results of routing history H,.

The last three columns are the increment of the number of
completed connections, the increment of the average number of vias
used for each successful connection, and the increment of the average
routing length for each successful connection, respectively The

formulae for calculating them are as follows:

{* of comp. conn. using H&) - { * of comp. conn. using Hi}
COMp. CORN. [CH.= === === m e m o (3.4)
# of comp. conn. using Hi
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{# of vias/conn. using He 3 -{#* of vias/ conn. using Hi}
. " A
'l.,’]as Incr‘: _______________________________________ 135}
# of vias/conn. using Hi

{&ver.leng./conn. using He) - (Aver. leng/conn. using Hi)

#ver. leng./conn. using Hi

ft i seen from Table Il that the successful connections
(wires) are distributed more evenly on the board if the routing
rectangle is allowed to be reascnably large from the beginning.
Furthermore, the router will select the solutions with fewer vias if
fewer wvias are allowed to be used for complete connections.
Consequently, the routing of connections becotmes easier, yielding a
higher routing completion with fewer vias. Of course, the routing
length ray increase because of the larger routing rectangle and fewer
allowed wias, but the results show that this increment is not

significant.

For the last surface-mount board (SMB), the routing history of

He produces results that are betier in almost every aspect as

compared with the ather routing histories of H, to Hg.
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3.2 Experimental Results for Large Routing Rectangle

The following routing histories were applied to a PCE and an

SMB:
H,'={(2,6), (2,12, (2,20}, (2,30), (2,400} (3.7a)
HZ':{(}.E), (2,12, (3,20}, (3,20), (3,40)} (3.70)
H,'={(4,6), (4,12), (4,20}, (4,30}, (4,40} (3.7c)
H,'={(5,8), (5,12}, (5,20}, (5,30}, (5,40)} (3.7d)
H.'={(6,6), (6,12), (6,20), (6,30, (6,40}} (3.78)
and
He'=1(2,40), (3,40}, (4,40), (5,40), (6,400 (3.8}

Motice that Egs. (3.2} and (2.7) are similar except for the new
parameter set {n, 40) appearing in Eq. {3.7). The size of the routing

rectangle constitutes the difference between Eqs. (3.3) and (3.8).

The results of these tests are shown in Table 11l They are

consistent with those of Table 1. 1t is seen that the time needed to
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find solutions for connections incresses with the increasing size of
the routing area, as expected. However, since the results of Table [l
are not much better than those of Table Hl, the large routing rectangle

size is not recommended.

3.3 Summary

A3 we have seen from the experimental results, factors other
than routing algorithm can still affect the performance of routing to
8 large extent. Different routing histories lead to different routing
results even though the final sets of routing parameters for different
routing histories are identical. The proper selection of routing history
can improve the final routing results. Of course, more extensive study

of the effects of other routing histories should also be done to

improve the routing results as much as possible.



CHAPTER I¥Y

EFFECTS OF PLACEMENT ON MAZE ROUTABILITY

As we stated in the previous chapters, the processes of
placement and routing are usually done separately in succession,
although they are heavily dependent on each other. This approach often
causes the following problern: Since we do not have any objective
evaluation of the placement until routing is done, we nay not realize
that it is either impossible or very difficult to route a board based on
a given placement configuration. In other words, only gfter having
spent & relatively long time and considerable effort on routing, we can
realize that the placement needs to be improved in order to achieve
reasonably good routing results. Therefore, it is desirable to find an
indicator capable of predicting the routability based on & given
placement result. It is also desirable to find some criteria which
would make it possible to compare different placement configurations
for the same circuit in terms of routability. This approach is usually

called a pre-routing analysis.
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Foster [42] presented one strategy for the pre-routing
ahalysis. In his paper, he claimed that the reason for the pre—muti.ng
analysis, as a figure of merit for placement, may in the long run be the
most important. Here, we present a very simple methodology which can
evaluate different placement configurations for the same circuit and
predict the routability of the given board. Though Foster's method may
be a good indicator of the pre-routing analysis, the method introduced
here is simpler, and we will show that it is reasonably reliable by
performing experiments with the test boards. By using this method, we
are able to predict the routability based on the given placement

configurations.

4.1 A Pre-Routing Analysis of Connection Densities

Component placement within a printed circuit board or
surface-mount board produces a rats nest. The rats nest contains all
the information needed to complete routing of all the connections.
Foster [42] suggested & method to gather the raw data for the
pre-routing analysis as follows: First, subdivide the board into m

vertical strips; then for every connection, a counter for a verticel
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strip is incremented whenever the connection crosses the verticq]
sfrip, signifying that & horizontal track will be needed somewhere in
that vertical strip. The final velue of the counter is called the
connection density of that corresponding strip. It indicates the
minimum horizontal tracks required to complete the routing in that
vertical strip. Similarly, the board is also subdivided into n horizontal
strips, and & counter for each horizontal strip is incremented
whenever a connection crosses the horizontal strip, thus signifying
that a vertical track will appear in that horizontal strip. The final
value of the counter is the connection density of that corresponding
horizontal strip. The number of vertical strips m and the number of
horizontal strips n can be chosen according to the board size and the
computational complexity. With larger m and n, more detailed data can

be gathered.

we employ the seme method to get the densities of the
connections in horizontal and vertical layers. The board is first
divided into vertical strips with the width rezolution of 0.25 inch per
strip. We then count the number of connections which cross ’the

individual strip, and the resulting number indicates the minimum
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number of horizontal tracks needed to route those connections within
that strip. Similerly, the board is divided inte horizontal strips with
the same resoluti'on, and the number of connections which cross each

harizontal strip is obtained.

Next, we normalize the densities by calculating the density of
strips per unit length (inch). That is, if the density fora vertical strip
is @ and the length of the vertical strip is d, then the narmalized
density is Q/d. Based on the above data, we can calculate the mesan
value and variance of all the normalized horizantal strip densities and

vertical strip densities as follows:

Ny
M =1/ 2 O (4.1)
i=1
By
V22010 - 102 200, M, 2 (42)
i=1
N"‘"
M,=C1/N =2 @, (43)

=1
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N

v

- < _ 2 Y
Y 2=(1AN - 1% 200 M) (4.4)

i=1

where M, and M are the mean values of the horizontal and vertical
normalized densities, '»’hQ and ‘v‘v? are the variances of the horizontal
and vertical normalized densities, M, and NY are the numbers of the

harizontal strips and vertical strips, and th and QW. are the

normalized densities for the horizontal and vertical strip i,

respectively.

From a statistical point of view, we know that the mean value
is the best representation of all the samples, and the variance is the
measurement of the validity of the mean value ag the best
representation of the samples. Thus, we should expect that the larger
the mean value of the connection density, the denser the board, and the
more difficult the routing. Also, for the same mean density, but a
larger variance, we can conclude that the connections are distributed
more unevenly on the board, and that the routing of the board will be

more difficult than the routing of a board with a smaller variance.
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Notice that the symmetry of bus-oriented circuits may not comply

with the above principles. Such circuits are routed in zones.

4.2 A Pre-Routing Analysis of Connection Length

Another critical parameter we should congider is the length of
a conhhection. Here connection refers to the connection between any
two pins in the rats nest. It is well known that to route a shorter
cannection is easier than to route & longer one. The size of available
routing space also affects the routability of the circuit. Therefore, we
shall use the average connection length per unit area of a board to
represent the effects of the connection length and the routing space. It
is expected that for the same density distribution, routing on & board
with a shorter average length per unit area is easier than routing with

a longer average length per unit area.

It should be noted that although the length of & connection in

the rats nest is the Euclidean distance between the two corresponding

terminals (Euclidesn distance between two points (x,, u,) and (%, 4,)



is measured by the square root of the sum of (x,-x,)% and (y,-y,)*), the

minimum distance of @ connection between the terminals routed by an
orthogonal router-on the board is the Manhattan distance. We prefer to
use Manhattan distance between the two points to represent the length

of the rats nest.

4.3 Routability Indicator

Four test boards were investigated in regard to the routability
prediction based on the given placement configuration. We gathered the
raw data of the connection distributions of these four boards. Based on
the discussion of sections 4.1 and 42, we developed the following
expressions to calculate the routability indicator (RI):

K1

S (4.5)
log{{Mh*¥h+My*Yv)*(Total_length/Size_of _board))

Rlzz ——-==m=mm oo oo oo o oo {4.6)
log{{Mh+My)*{Vh+Vv)*(Total_length/Size_of_board))

where Ki and Kz are constants, M and V are given by Egs. 4.1 to 4.4,
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Total_length is the total length of the rats nest, and Size_of_board
represents the routing area. These two formulae reflect t.he
relationship between the routability and the factors affecting the
routability which were discussed in sections 4.1 and 4.2, the selection
of the functions in this formulae was made by curve fitting. The
selection of the constants K1 and Kz depends on a subset of optimum
rauting parameters used. For example, the constants Kt and Kz are

11.77 and 12.46, respectively, for the Manhattan distance representing
the Total_length, the routing history H,, as given by Eq. 3.3, and the

fixed subset of routing parameters as described in [72]. Due to time
limitation, the constants were computed only once from a test hoard
that had 100% completion of routing (Example 2). For the same

Example 2 and the Eclidean distance, K1=11.58 and K2=12.27.

It should also be noticed that the size of the board may not be
identical ta the available routing area for that board, but the retic of
the available routing area and the size of the board is & constant for g
given schematic diagrem regardless of the placement configuration,

provided that the size of the elements on the board has not been
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changed. The size of the board can still represent fairly well the
available routing area, while the measurement of the size of the board

is much easier than the measurement of the available routing area.

Tables 1V-A and [VY-B present the routability indicators
calculated from four boards with placed compenents, using the
Manhattan (with K1=11.77 and K2=12.46) and Euclidean {with K1=11.58
and Kz=12.27) distance, respectively. Since Example 2 has 1008
completion of routing, it serves as the basis for the calculation of Ki
and Kz. These constants were then used to calculate Rit and Riz for the
other three boards. It can be seen that the routability indicators
predict the actual routing completion well. Further work should

improve the prediction accuracy.

4.4 Experimental Results for Routability

We routed the same four test boards as described in Chapter
1, using OPTIMATE™ software with the same routing history. The
routing completion percentage and the calculating results of the above

formulae for these boards are summarized in Table V.
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Fram Teble 1Y, we can see that the routability indicaetar, R, is
not identical to the actual routing completion percentage. This is
partially due to .the fact that the second-order statistice do not
contain all the information in the rats nest. Another reason is that we
use the board size to represent the svailable routing ares because of
the reason stated before, but the ratios between them are obviously
different for different boards, and this may introduce some errors in

our experiments.

Though the most valid method of evaluating & placement
configuration is to actually route it, a good indicator may save time
and effort of doing routing by just doing some simple calculations.
Though Table IV compares the results between four different
examples, we could compare results for the same board with different
placement configurations. The later one is more attractive and
impartant. We may also be able to find out the threshold velue of the
Rl in order to reach a certain percentage of routing completion for @
particular routing software and the routing parameters. Also, based on
the values of Rl for different placement configurations, we could

select the best placement configuration to continue the routing
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process.

4.5 Summary

In this chapter, we related the placement and routing by using
information contained in the placement configuration to predict the
routability of the board. & method to gather the information from a
placement configuration was introduced. The relationship between
data obtained from a given placement configuration and the
corresponding routing was analyzed. Two empirical formulae for
calculating routability were developed and their validity was
demonstrated by examples. The advantages for pre-routing analysis
were analyzed, and we concluded that the most valuable feature of the
routability indicator is in its ability to give & fairly good indication of
how good & placement is for the routing to be done on it. Thus allowing
us to select the placement configuration which can be routed with a

higher routability percentage.



CHAPTER Y

A NEW CHANNEL ROUTER

5.1 Introduction

The fundamental methods presently used to route printed
circuit boards (PCBs) and surface-mount boards {(SMBs) are the MMaze
routing, Line routing and Channel routing methods. Of these three
classes of algorithms only one has suitable characterstics for LSI and
VLS! integrated circuit (IC) design using gate array and standard cell
methodolagies. The method of channel routing is suitable for
high-density chip layout because it utilizes a simultaneous
rmodularized scheme. By splitting the routing process into two steps of
topological routing and track assignment, the channel router allows
iterative optimization of the routing at a lower oversll cost than the

other two methods.

In chapter I, we discussed many routing algorithms of Lee's

type. Though they are different in many aspects, one thing remain-s the
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same. That is, they all can route one path at & time. Once & connection
path is routed, it becomes an obstacle to other connections to be
routed. Theoretically, those connections blocking other connections
can be removed and be re-routed later, but there is no guarantes that

e there are more

)]

they can be successfully routed at o later time becau
cannections existing on the board. Also, removing some connections
and re-routing them is very time-consuming. The discussions on

re-routing can be found in [43] and [44].

5.2 Ordering_ in Maze Routing Algorithms

It seems to be very important to decide an the order in which
the nets should be routed. Unfortunately, there is no simple criterion
according to which we should make such & decision. In practice, twao
ordering methads are used: (i) in the ascending order of the length of
the net and (i) in the descending order of the length of the net. The
argument for the first method is that routing of a short-length
connection causes fewer obstacles which prevent the completeness of
the later routing. Also it is easier to route a longer tength cunnec:-tmn

around a shaorter one than vice versa. The argument for the other



method is that since routing of & long-length connection is more
difficuit than routing a short-length connection, it is more desirable
to route the longer one first in order to increase the completeness of
the routing. But according to Abel [45], the performance of & maze
router is independent of the order in which connections are attempted
if the minimum length of connections successfully completed 15 used

as the reasonable norm.

Even though there is not much difference between the two
ordering methods based on the length of the net in the sense stated
abaove, it is clear that one method may be more desirable than the
other under certain circumstances. For example, if the propogation
time delay on the wires is critical to the operation of the circuit, the
length of the wire should be as short as possible, and the method of
routing the longest connections first may be preferable. The resson is
that the router can trace the long-length path connection along a more
direct line because fewer obstacles (previously routed paths) exist an
the board; and the short-length path connection may have slightly
langer traces because of the other obstacles already exristing on‘ the

board. Both factors will make contribution to the balance of the length
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of the routed path.

Kulkarni and  Jayakumar [46] presented another ordering
strategy in which the arder of nets to be routed is based on & criterion
other than the length of the net. This method was shown [46] to
perform better than the methods of ordering based on the the length of

the net for thirteen of the sixteen test printed circuit boards.

Lee's {maze) routing algorithm has another problem: that is, in
order to trace the shortest possible wires, the router may make many
connections through e congested erea. This tendency may result in (i)
an uneven density of wires on the board (wire clusters), and (ii) the

need for any blocking connections to be routed at a later time.

5.3 The Channel Routing Strategy

To overcome the above problems, one solution is to use &
channel routing strategy [47-49]. In this strategy, the routing process
consists of the following two steps: (i) global routing {or loose

routing) and {ii) track assignment (or channel routing).
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5.3.1 Global Routing

The global. router [50-54] first breaks the routing ares into
rectanguiar regions, which are called channels, between the
components or modules ta be interconnected. Then the global router
decides through which channels individual connections will run. Since
the global routing is rather simple, it may iterate several times in
order to diminish or eliminate overflows (An overflow candition
occurs when the number of tracks within a channel exceeds the
maximum number of tracks that the channel can have) The iterative

process may achieve higher routability.
5.3.2 Local Routing

when the global routing is completed, the detailed connection
paths of nets are determined by using & local routing approach. This
local routing is called track assignment (or channel routing) [S5-67],
which we will discuss exiensively in the following two chapters.
Since the track assignment considers only a portion of the muiing

area, and the track assignment for different channels can be done

_?5_



independently, not only the memory needed to perform routing can be

reduced significantly, but also the total time needed may be reduced.

5.4 Channel Routing Applicability

Due to the reqular shape of modules in LSt and YLSI ICs, using
gate array or standard cell methodologies, the module placement
leaves rectangular spaces between the modules to be interconnected.
Since such rectangular spaces are exactly what the channel router
needs to operate on, channel routing is very suitable for gate-array

and standard-cell LS| and YLS! layout.

The main goal of channel routing is to use the smallest number
of tracks in order to route all the connections. That is, the optimum
realization of & channel routing problem is the realization of the
problem with the minimum number of tracks. The following sections
are dedicated to a new algorithm for channel routing. The algorithm is
simple but is shown to be very efficient through examples. Before we
introduce the algorithm, the pertinent concepts and definitions are

introduced in the next section.
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5.9 Definitions

we shall describe {i} how & channel routing problem can be
represented using graphical and matrix forms, (i) how & directed net
relation (DNR} graph can be constructed to show which pairs of nets
should be exchanged to avoid any potential overlap of traces in the
yertical tracks, {iii) how to construct @ distance matrix used to
resolve any potential overlap of traces in the horizontal tracks, and
{iv} how to find the lower and upper bounds an the number of tracks

required to realize the channel routing problem.

5.5.1 The Channel Routing Problem and its Representation

As shown in Fig. 15, & channel routing problem is defined on @
rectangular area called @ channel. Each channel has two rows of
terminals along its top and bottom sides. Tracing of all the
connections within the channel is done on two layers, which are
electrically isolated from each other. We assume that the horizontal
tracks are located on one layer, and the vertical tracks on the ather.

Connections are routed within trecks. Since horizontal tracks are
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isolated from vertical tracks, the connections between them are made

through vigs.

The channel routing problem is expressed by a graphical net

list as shown in Fig. 15 This representation is referred to as graphical

representation. For computational purposes, the problem can also be

represented by a matrix & with dimensions NxM

A = [aij] (5.”

where W is the number of nets in the problem and M is the number of
tarminals on one side of the channel. The matrix elements B have the

following form:

au.:+1 if net i is connected to the terminal j on the top side
of the channel;
8..=-1 if net iis connected to the terminal j on the bottom

side of the channel;



8..= if net i crosses the wvertical track j, but is not
cannected to the terminals within the track; and
g..=0 otherwise.

Such a matrix representation of the problem is shown in Fig. 161t is

readily seen that each colurnn of the matrix has only & single positive
1 {+1) and/or a single negtive 1 {-1). The number of 2s can be greater
than one. The maximum number of nonzero elements in one column is

the magimum net density of the channel routing problem. Motice that,

although the grephical representation does not call for any net
numbering, the matrix representation reguires a net numbering for
their placement in the matrixz. The net numbering may be arbitrary, as

shawn in Fig. 15

In the realization of the problem, such as that shown in
Fig. 17, we assume that the horizontal segment of each net can occupy
no more than one track {ie, no so called doglegs are allowed). With

this restriction, a problem can be guaranteed to be solvable if and only

if the channel routing problem does not have any cyclic conflict, as

shown in Fig. 16, Such a cyclic conflict cannot be resolved because
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Fig. 17. A realization for the channel routing problem of Fig. 15.

] 2 3
:l 15 l :




when the left vertical track 1 has no overlapping vertical segments of
ﬁets 1 and 2, the vertical segments of nets 1 and 2 must overlap in
the vertical track 3. On the other hand, if we interchange the order of
the nets {net 1 at the bottom, and net 2 at the top) then the conflict

occurs in the left vertical track 1.

Motice that any non-cyclic trace conflict that may appear in
the channel routing representation (either graphical or matrix) can be

resolved by using proper procedures. For example, the verticel trace

conflict between nets 6 and 7 shown in the vertical track 7 of Fig. 13

cen be solved with the use of a directed net relation (DNR) graph

(Section 5.5.2), and the horizontal trace conflict between nets 4and 7

can be resolved by the use of & distance matrix (Section 5.5.3).

5.5.2 Directed Net Relation (DNR) Graph

Recall that a solvable problem can be realized when no overiap
between two nets occur within a vertical track. Furthermore, no
dogleg (a jump of the horizontal net segment between the horizontal

tracks) is allowed, resulting in only one horizontal segment per
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connection. With these assumptions, it is clear that the horizontial
segment of a net i connecting to the top terminal j (in the vertiﬁal
track j) must be placed above the horizontal segment of another net k
connecting to the bottom terminal j {in the same vertical track j). This

condition results in an ordered matrix representation whaose columns

contain single pairs of +1 and -1, with the property that the +1is in &
row above the row with the -1, There are various algorithms used to

re-order the matrix in order to resolve all the vertical trace conflicte.

We shall accomplish the re-ordering by using a directed net

relation (DNRY graph. The DNR graph reflects the relationship between

nets of & channel routing problem as follows: As shown in Fig. 19-g,
each vertex i in DNR graph represents a net i in the channel routing
problem. The graph contains @ directed edge {ik) from vertex i to
vertex k if and only if net i is to be placed in & horizontal track above
the track with the net k in order to avoid the vertical trace conflict.
For a solvable problem, the complete graph should not have ang

directed cycles representing cyclic confilcts as shown in Fig. 19-b.

Next, we assign an ordering number to each vertex according to
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©)
ORDER I NG
NUMBER

{c)

Fig. 19. The directed net relation (DNR) graph
{a) Nomenclature {b) Cyclic conflict
{c} Example corresponding to Fig. 15
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its category. As shown in Fig. 19-c, the vertices fall into three
categaries: (1) the vertices with no edges emanating from them,
representing the nets located close to the bottom of the channel, (2}
the vertices with single edges emanating from them, representing
pairs of nets to be exchanged, and (3} the vertices with more than one
edge ernanating from them, representing the nets to be exchanged maore
than once. The procedure for the ordering number assignment iz as
follows: First, any vertex of class 1 is assigned the ordering number
1. Then, each successive vertex k of class 2, with a directed edge from
k toi, is assigned an ordering number q+1 if vertex 1 has been assigned
the ordering number g. If the vertex k of class 3 haz already been
assigned an ordering number, we must compare the ordering number
already assigned with the one to he gzsigned, and if the newly
azsighed number is larger than the old one, the old ordering number is
replaced by the new one; otherwise it remains unchahged. This
procedure continues until every vertex is assigned the proper ordering

number.

Figure 19-c shows an example of the DNE graph, corresponding

to the problem of Fig. 15 To construct the graph, we employ & scan of
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all the nets in the channel from the left vertics! track to the right,
First, net 2 is considered, and & wertex is placed with thé
corresponding net number 2 in it. Since nets 1 and 2 appear in the
vertical track 2, vertices 1 and 3 are placed. Since net 1 has to be
placed in & track sbove the one for net 3, s directed edge £1, 3) s
added between vertices 1 and 3. This procedure continues until the
last vertical track is reached. Usually, the initial form of the graph
does not resemble that of Fig. 19-c. Figure 19-c is obtained by a
re-arrangement of the positions of its vertices, in order to resemble
the final track assignment in the channel. Finally, we assign &

corresponding ordering number to each vertex in the graph.

From the graph, we see that vertex 2 does not have any edges
emanating from it, which means that net 2 does not have to be placed
in & harizontal track sbove a track for any other nets. So, an ordering
number 1 {shown outside the circle) is assigned to it. Since o directed
edge from vertices 6 to 2 exists, an ordering number 2 {equal to 1+1)
is assigned to vertex 6. This sssignment continues up to vertex 10 as
well as all the other vertices. Note that since there are directed edges

{1, 5) and {5, 3) in the DNR graph, the ordering number of vertex
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shaould be 3 instead of 2 which would otherwise result from the

edge {1, 3).

553 The Distance Matrig

The directed net relation {(DNR) graph reflects the constraint
in the track assignment due to the overlaps in the vertical tracks.
Clearly, it is not enough to just avoid the overlaps in the vertical
tracks. Overlapping in the horizontal tracks must also be avoided. For
example, we cannot place nets 2 and 3 in the same horizontal track
even though there are no overlaps in any vertical tracks {see Fig. 15).

Thus, & matrix called the distance matrix is created to reflect the

constraint imposed by the overlasps in the harizontal tracks. The NxN

symmetric matrix is denoted by

D= [d,] (5.2)

where N is the number of the nets in a8 channel routing problem. Each

eglerment d].k of the matrix indicates the horizontal distance between
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hets i and k. The distance between two nets is the number of vertical
tracks left between them plus one if they are placed in the same
horizontal track. If the two nets are overlapped when they are placed

in the same horizontal track, the distance between them is equal to

zero. For example, d,-=d-, =2, d,e=de, =1, and d15:d51:0 are all elements

of the distance matrix for the channel routing problem shown in

Fig. 15.

5.5.4 Lower and Upper Bounds of the Track Number Required

Though effort has been devoted to finding the necessary and
sufficient conditions for the number of tracks needed to realize a
given channel problem [68, 69], no such conditions have been developed
for @ general channel routing problem. More precisely, only the
number of horizontal tracks is of interest, because the number of
vertical tracks is determined by the number of terminals in the
problem. Without providing any detailed discussion on this topic here,
it may be observed that the maximum net density is the obvious lower

bound for the number of horizontal tracks required in & channel to
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realize & given problem, because every net crossing the vertical track
where the magimum net density occurs requires one harizontal track.
The maxirmum ordering number assigned to the vertices in DNR graph is
also another lower bound for the number of horizontal tracks required,
since the wvertical constraint of the net implies that every net
represented in the longest chain of the DNR graph has to be in different
horizontal tracks. The number of the total nets in a given profiem, on
the other hand, i3 an upper bound of the number of tracks required to

realize the problem.

5.6 The New Track Assignment Algorithm

The eszzence of the new track assignment algorithm is to

aszign proper nets, to the harizontal tracks so that the number of

—

tracks required to realize the problem is minimized. The track
assignment is done according to a priority number {defined later). The

algorithm is as follows.



5.6.1 The New Track Assighment Algorithm

[New Track Assignment Algerithm]:

Step 0)

Step 1)

Step 2)

Step 3)

Initiglization.

ORDERINGNUMBER=highest ordering number in the DNR
graph;

SETO={all nets to be routed}; //set of nets to be routed//
SET 1=6; //set of nets routed//
TRACKNUMBER=0;

TRACKNUMBER=TRACKNUMBER+1;

Are there any nets in SETO with ordering number equal to
ORDERINGNUMEBER? If yes, choose one of these nets as
MOTHER NET A and goto Step 3; otherwise,
ORDERINGNUMBER=0ORDERINGNUMBER-1, goto Step 2.

Create a set READYNETS with respect to MOTHER NET A.
READYNETS includes the nets which have non-zero distance
with net A and whose corresponding vertices in the current
DNR graph have no edges directed to them. Natice that the
selectian rules for the nets in READYNETS imply that each

net in READYNETS, together with net A, can be routed in one
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Step 4)

Step 5)

track, without violating any horizontal and vertical tr‘a;ki
constraints.

Choose a proper subset 50 of nets in READYNETS such that
(i) all the nets in the subset, together with net A, can be
assigned to one track, and (i1} the assignment of those nets
in the current track may lead to the minimization of the
total number of tracks required. Assign these nets and net

A to track TRACKNUMBER.
Delete those nets in So and net & from SETO.

Add those nets and net & into SET 1.

Considering the DMR graph G, delete those vertices (and
their associated ordering number) which correspond to the
nets asssigned to track TRACKNUMBER. Also delete all the
edges etnanating from those vertices.

Have all the nets been assigned ¥ (that is, if set SETC equal

to null set?) If yes, exit; otherwise goto Step 1.



5.6.2 Net Priority Function

In order to-decide which net{s) in the set READYNETS should be
routed in the same track with MOTHER MNET A, first we establish a

function referred to as priority function PINET,A). This function should

reflect the priority of a net NET to be selected for routing in the same
track where net & is located. An example of a suitable function is

given by:

P{MET,A) = Klen*Length
+Kdis*{Mdiz-Distance)

+Kord*0rder_number {5.3)

where Klen, Kdis, and Kord are weight factors for Length, Distance, and
Ordering number, respectively; Mdis is the maximum distance amaong
the distances between the net A and the nets in READYNETS; Length is
the length of net NET, Order_number is the ordering nurnber of net NET;

Distance is the distance between net NET and A.



5.6.23 Selection of an Optimum Subset of Mets for Track Routing

The overall track assignment process occurs in stages, one
stage for each track. Since some of the nets from the total set of nets
eligible for routing are assigned to the current track, the DNE graph

must be reduced after each stage.

The critical step in the new track assighment algorithm is
Step 4. Since there may be some horizontal track conflicts between
the nets in the set READYNETS, not all them can be assigned to one
track simultaneously. Thus, the problem is how to properiy select the
net{s) from READYNETS so that not only the selected netis) together
with net A could be assigned to the same track, but also their

assignment could result in an optimurm realization.

Notice that at the end of each track assignment stage, the
maximum ordering number in the current reduced DNR graph indicateé
the lower bound of the number of tracks required to complete the track
assignment. Thus, a smaller maximum ordering number in the current

reduced DNR graph indicates that fewer tracks are required to assign



the rest of the nets. Consequently, the nets with a larger ordering
n'umt'er should be assigned first in order to obtain & reduced DNR gra‘ph
with a smaller maximum ardering number. On the other hand, in order
to minimize the number of tracks used in the channel, we should
utilize the current routing track as much as possible. This can be
achieved by sssigning nets with the smallest distence between them
{The distance is defined in Section 5.5.3.). For example, two long nets
with short horizontal distance utilize the track better than three

short nets with large distances.

It should also be noticed that the above discussion relates to @
class of problems for which the maximum density number is not
greater than the maximum ordering number. In other words, the lower
bound on the number of the horizontal tracks required is determined by
the maximum ordering number rather than the maximum density

humber.

For convenience, let us define an eligible subset 8i of the set

READYNETS as a subset in which all the nets, together with net A, can



be routed simultaneously in one track, or equivalently, as & subset

with all the nets in the set READYNETS having non-zero distance

between thern. Notice that for all eligible subsets 5¢, S, . Sy we

“~

have:

S, USs, U...U S = READYNETS (5.4

1 2

(5{nS, is not necessarily equal to null for &l i and j)

wWe can now define an oplimurm subset SD as follows: &n aptimum

subset S, 1s an eligible subset of nets whose sum of the priority
numbers of all the member nets in this subset is the highest among all
eligible subsets. Thus, the nets in the optimum subset S, and the net A

can be routed in the track TRACKNUMBER.

The last remaining question 15 how to find the optimum subset

Sy In general, the problem of generating the optimum subset 5 is

equivalent to finding a subset of vertices in & weighted graph Gy such



that there are no edges between vertices in that subset, and the sum

of the weights associated with the vertices in the subset is

maximized. The weighted graph G, consists of vertices and edges

corresponding to the nets in READYNETS. Each vertex in GR corresponds

to a net in READYNETS, and the weight associated with each vertex is
the priority number for the corresponding net. An edge between two
vertices exists if and only if those two corresponding nets have
horizontal overlapping and, consequently, can not be routed in the same

track.

Since the "subset” problem is NP-complete, so it is very

unlikely an efficient algorithm exists that could generate an optimum
subset of vertices for a given weighted graph G In our

implementation of the routing algorithm, @ sub-optimum alternative
approach is used. A description of the implementation of the approach
is given in Appendix A. The corresponding program listing in Pascal is
included in Appendix B. The listing refers to the latest versiaon of the
program extensively tested on an Apollo DNE6O workstation. The first

yersion was developed and tested on Amdahl 580/5830 computer.



5.7 Efficiency of the New Algorithm

Two examples are selected to illustrate the efficiency of the

new track assignment algorithm.

5.7.1 Example A

The net list of the first example is shown in Fig. 15 The
corresponding DMR graph is shown in Fig. 20-a. The priority function

PINET, A) of Eq. 5.2 is evaluated using Klen=1, Kdis=1, and Kord=5.

We shall now demonstrate the procedure by executing all the
steps of the algorithm of Sectin:un 5.6.1. The partial results are also
demaonstrated in Fig. 20.

Step 0) ORDERINGNUMBER=4.
SET0={1,2,3,45,6,7,6,9,10}
SET1=4.

TRACKNUMBER=0.
Step 1) TRACKNUMBER=1.

Step 2) Net 10 is selected as net A; SET0={1,2,3,4,5,6,7,8,9}.
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Step 3)

Step 4)

Step 9)

Step 6}
Step 1)
Step 2)
Step 2}
Step 3)

Step 4)

Step 5)

Step 6)

READYNETS={4, 1}.

Pi4, 10)=25; P{1, 10)=18.

Assign net 4 to track 1 and net 10 to track 1. For brevity,
we use the following notation:

Net d->track 1; net 10->track 1.

SETO={1,2,3,5,6,7,8,9}.

Reduced DNR graph 15 shown in Fig. 20-b.

Goto Step 1.

TRACKMUMBER=2,

ORDERINGNUMBER=3.

Met 7 is chosen as net &4; SET0={1,2,3,5,6,8,9}.
READYNETS={7}.

Pi7, 1)=18.

Net 7—»>track 2; net 1-»track 2.
SET0={2,3,5,6,8,9}.
Reduced DNR graph is shown in Fig. 20-c.

Goto Step 1.
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Step 1) TRACKNUMBER=3.
Step 2) ORDERINGNUMBER=2,
Step 2) Met 9 is selected as net A; SET0={2,3,5,6,8}.

Step 3} READYNETS={S, 6}

Step 4) P(5, 9)=12; P(f, 9)=13.

S,=15,6}

Net S—»track 3; net 6-»track 3; net 9—>track 3.
Step 5) SETO={2,3,8}

Reduced DHR graph is shown in Fig. 20-d.
Step 6} Goto Step 1.
Step 1) TRACKNUMBER=4.
Step 2) ORDERINGNUMBER=1.
Step 2) Net 2 is selected as net A; SET0={2,3,8}.
Step 3} READYNETS={G}.
Step 4) P(8, 2)=7.

Sy=18}.

Net 6—>track 4; net 2—>track 4.
Step 5 SETO={3}.

Reduced DNR graph is shown.in Fig. 20-e.
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Step 6) Goto Step 1.
Step 1) TRACKNUMBER=S.
Step 2) Net 3 is selected as net A; SETO=M.

Step 3) READYNETS:=4.

Step 4) 54=8.
Met Z-»track 5.
Step 5) SETO=M.
Reduced DNR graph is a null graph.
Step &) Exit.
O
The final track assignment result is shown in Fig. 21 {similar to that
of Fig. 17). The realization can be easily verified to be an optimum ane

because the number of horizontal tracks used is equal to the maximum

density number.

aAnather exarnple igs the problem with the net list shown in

Fig. 22. The corresponding DNR greph is shown in Fig. 23



Fig. 21. The realization of Example A by using the new algorithm
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Fig. 22. The net list for Example B
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Fig. 23. The directed net relation (DNR) graph for Example B



The parameters in the priority function of Eg. 5.3 are the same as

thase for the first example.

First, we select net 9 as net MOTHER NET A, thus READYNETS
={7, 10, 17, 18, 19, 20}. The priority numbers of nets 7, 10, 17, 18, 19,

and 20 are 63, 10, 35, 22, 16, and 49, respectively. The optimum

subset S, is SO={?}. This process of selection is shown in the first row

of Table V. Each bold net in each row of Table ¥ is an element of the SU

with respect to each MOTHER NET A shown in the left-most column.
The realization of the example according to the results of this
algorithm is shown in Fig. 24. Qbyiouslty, it is an optimum one because
the number of the horizontal tracks used is equal to the maximum

density number.
3.8 Summary

In this chapter, we discussed the channel routing problem,
which appears to be the most important problem in LS| and VLS|

layout. Since LS| and YLSI circuits are more complex than FCB
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Fig. 24. The realization of Example B by using algorithm
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circuits, end since the maze routing and line routing algorithms lack
the ability to consider the routing globally, these algorithms are not
suitable for the.LSl and YLSI circuit layout. & routing strategy
suitable for LSl and YLSI IC layout is channel routing. The objective of
a channel router is to route all the nets within a channel by using the
fewest horizontal tracks. A new track assignment algorithm has been
developed to solve this problem, especially for the kind of problems
whose lower bound of the solution is determined by the maximum
ordering number in a DNR graph rather than the maximum density
number. The efficiency of this algorithm was illustrated by two

examples.
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CHAPTER ¥YI

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Experiment with Restricted MOTHER NET Selection Strategy

The new track sssignment algorithm ie implemented in
PASCAL code. A flow-chart and the explanation of the implementation
can be found in Appedix A, the source program is in Appedix B. Thi'rteen
examples are used to test the new channel routing algorithm. Seven
examples (Examples 5, 6, 7, 9, 10, 11, and 12} are taken from the
existing paper [71]. The experimental results of the thirteen examples

are chown in colutmn four of Table VI

The priority function used in the program is slightly different

from the one shown in Section 5.6:
F(NET,A) = Klen*Length

+Kdic*(Mdis-Distance)

+Kord*0rder_nurmber/Curr_order (6.1}
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where Length is the length of the net NET, Mdis is the ma:ﬂmum
distance among the distances between every net in READYNETS and the
MOTHER NET A, Distance is the distance between net NET and A,
Order—_number is the ordering number of the net NET, Curr_order is the
current maximurm ardering number in the DNR graph, and Kien, Kdis, and
Kard are the weight factors of Length, distance, and Ordering number,
respectively and they are assigned the walue of 1, 1, and 3 in
experiments. To calculate the priorities of the nets with different
ordering numbers, the last term uses the ratioc between the ordering
number of the net NET and the current maximum ordering number
instead of the ordering number itself. This approach equalizes the
contribution of the ordering numbers of the nets to the priorities of

the nets throughout the track assignment procedure.

Section 5.6.3 describes the procedure for the selection of an
optimum subset So for problems with the mawimum density number

being not greater than the maximum ordering number. For problems
with the maximum density number larger than the maximum ordering

number in the DNR graph, we may miss the nel which crosses the
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yertical track where the maximum density occurs. Therefore, we

should madify the definition of the optimum subset 5, as follows:

An optimum subset 5, is an eligible subset of READYNETS
such that (i) one of the nets in it should cross the vertical track where
the maximum net density exists, if it is possible (this criterion is
called in-density-check); and (i) the surn of the priority numbers of
gll the nets in this subset should have the largest vwalue among all

subsets which satisfy condition (i),

The nets in the new optimum subset Sg, together with MOTHER
MET A, are routed in one track. The results are the same as those
shown in the fourth column  of Table I That is, the
in-density-checking does not improve the performance of the router.
So, the priority nurber of each net fairly well reflects its priority in

routing it in the current track.
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TABLE V1. Track assignment results.

Mascirum | Masimumn Re;&i‘;‘; '&iﬁ;gmm Optimum
Examples o dering nensty  IRestriot Moth- [Relaxed Moth- ek
net selection | net selection
1 4 9 5 2 2
2 2 4 4 4 4
3 3 3 > 4q 3
4 =] 5 3 8] 5
5 6 18 19 16 18
6 23 18 31 30 28
7 3 20 20 20 20
8] 7 12 12 12 12
g 13 17 18 18 17
10 7 12 12 12 12
11 4 19 16 13 15
12 g 17 18 16 17
13 5 5 5 5 5




6.2 Experiment with Relaxed MOTHER KET Selection Strategy

Next, we modify the algorithm by relaxing the condition for

selecting MOTHER NET from

curtentorder-ardernum{Mother_net]< i {B.2)
to

currentorder-ardernum{Mother_net]<2 {6.3)

That is, we do not restrict the selection of the MOTHER NET to those
nets whose vertices in the current DNR graph have the maximum
ardering number. The results for the thirteen exemples are shown in
the fifth column of Table V1. We can see that twa more examples (the
examples 5 and 11) get the optimum realizations and for both of them
the maximum denszity number is much larger than maximum ordering

number.

For all the above thirteen examples, the best realizations
produced by the new channel routing algorithm are shown in

Fig. 25-37.



6.3 Discussion

In this section, we discuss the results shown in the fourth and
fifth columns in details. When the maximum ordering number is larger
than (or equal to) the maximum density number, the marimum ardering
number becomes the lower bound of the number of tracks required for
the realization. Thus, to quarantee that each track has one of the nets
in the longest chain of the DNR graph is essential for the realization to
be optimum {or the number of tracks used reaches the lower bound of
the track number required). This is why we should select MOTHER NET
only from those unessigned nets which have the highest ordering
number in the DNR graph, if the marimum ordering number is larger {or
equal to) the maximurm density number of the problem. This was proved
by the results of Example 3 and Exarple 4 from columns four and five.
When we restrict the router to select the MOTHER NET anly from those
unassigned nets whose ordering number is the largest in the current
DNR graph, it produced the optimum results for these two examples.
Both of these two examples have the lower bound of the required
number of tracks determined by the maximum ordering number. But if

we relaxed the MOTHER NET selection condition from Eq. 6.2 to Eq. 6.3,



the realizations produced are no longer the optimum ones.

On the other hand, when the maximum density number is larger
than the maximum ordering number, the minimum number of tracks is
determined by the maximum density number. It is more important to
use the current track efficiently rather than to assign the nets with
current highest ordering number. We still give higher priority to the
nets having the higher ordering numbér, so we can minimize the
possibility of the case that more tracks are required at the final stage
of the track assignment because of the vertical constraint. Thus, we
do not restrict ourselves to select MOTHER NET only from unassigned
nets with current highest ordering number in this case. The
improvement of realizations of Examples 5 and 11 shows this clearly.
For both of them, the masximum density number is much larger than the
maximum ordering number. The relaxed MOTHER NET selection
condition results in more efficient usage of the tracks and therefore,
the track number required is reduced and the optimum realizations are

reached.

Example 6 (the so-called difficult example} shows that the
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minimum requirement of the number of the horizontal tracks is equel
to neither the maximum density number nor the maximum orderi.ng
number for example 6. This may be the reason why the relaxed MOTHER
NET selection condition produces better realization. It is also worthy
of mention that the realization of Example 6 requires 29 tracks if the
relaxed MOTHER NET selection condition is used and the weight factar
for the ordering number is changed from S to 10. This indicates the
necessity of finding the optimum set(s) of the weight factors for the

priority function of Egs 5.1 and 6.1.

6.4 Summary

Thirteen examples were tested, using the new channel routing
algorithm. The experimental results show that the new algorithm has
yery good performance on these examples, especially for one class of
problems whose lower bound of track number required are
determined by the maximum ordering number. This is because of the
nature of this algorithm. The algorithm considers the ordering number
of each net and gives the higher priom:ties to those nets having higher

ordering number in the procedure of assighing nets to tracks. To cope
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with the examples whose lower bounds of the number of tracks
required are determined by the maximum density number, @ relaxed
MOTHER NET selection strateqy was also introduced and tested. The
improvement of the results for this kind of problems was

demonstrated through two examples.
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Fig. 25. Example 1
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Fig. 26. Example 2
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Fig. 27. Exampe 3

Fig. 28. Exampie 4
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CHAPTER VII
COMPARISON WITH

OTHER CHANNEL ROUTING ALGORITHMS

In Chapter %, we developed a new channel routing algorithm
capable of finding optirurm realizations Tor & class of channel routing
problems. The routing problems of that class have the lower bound of
the required track number determined by the maxirmum ordering
number rather than the usual maximum density number. In order to
demonstrate the advantsges of the new sglgarithm, this chapler
describes two other well-known channel routing algorithms: (i) the
Left-Edge Greedy aAlgorithm, and (i) the Zone-Based Algorithm. One
example is used to illustrate their inability to generate optimum
reglizations for this class of problems. Finally, we address the reasan
why the new channel routing algorithm can produce results better than

the other algorithms.
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7.1 The Left-Edge Greedy Channel Routing Algorithm

The left-edge greedy channel router was first intreduced by
Hashimaoto and Stevens [70]. We present this algorithm here to show
that it cannot generate an optimum realization for an example

belonging to the class discribed abave.

Suppose that the nets to be assigned to tracks are contained in
the set NETS. To simplify the description of the left-edge algorithm,
we define the left and right edges of a net; that is the Teft edge of &
net coincides with the Teftmost vertical track spanned and the right
edge of the net coincides with the rightmost vertical track. Clearly,
for the routing to be realizable, no two nets must averlap in a single
harizantal track. This can be assured by the requirement that the right
edge of one net is located on the left side of the left edge of another
net. &4 simple sorting by the left edge of all the nets in NETS resolves
any horizontal trace conflicts, while minimizing the distance between
adjacent nets in the same track. This greedy strategy may result in

over-utilizstion of the first track, thus producing blockeges for nets

in the subsequent tracks.
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The algorithm can then be stated as follows:

[Left-Edge Greedy Channel Router]

Step 1) Sort the nets in the set NETS by the left edge of each net.
Thus, after sorting, the first net in the set NETS has @
connection with the leftmast terminal.

Step 23 Assign the first net to the next track and delete this nei
from the set NETS.

Step 3) Find the first net in NETS so that its left edge is to the
right of the right edge of the last net selected. Assign this
net to the current track and delete this net from set NETS

Step 4) Repeat Step 3 until no nets can be assigned to the track.

Step 9) If the set NETS is not empty, goto Step 2; otherwise exit,

0

7.1.1 Example C for the Left-Edae Greedy Alqorithm

The example shown in Fig. 38 has ten nets to be assighed to
tracks. Both the maximum ordering number in the corresponding DNR

graph and the maximum density number are S So, the maximum
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ordering number deterrnines the lower bound on the number of tracks

required. The algorithm handles the example as follows:

Step 1}

Step 2)
Step 3)

Step 4)

Sort the nets in NETS by their left edge. The sorting result
is shown in Fig. 39-a.

Assign net 1 to track 1.

Assign net S to track 1.

Mo other nets can be assigned to track 1 because of the
vertical constraint.

Goto Step 2.

Assign net 2 to track 2,

Assign net 6 to track 2.

Mo other nets can be assigned to track 2 because of the
vertical constraint.

Goto Step 2.

Aszign net 3 to track 3.

Mo other nets can be assigned to track 3 because of the
vertical constraint.

Goto Step 2.

Assign net 4 to track 4.

Mo other nets can be assigned to track 4 becsuse of the
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(a)

(b)
Fig. 39. Left-edge greedy channel routing algorithm

(a). Sorted result by left edge
(D). Realization using left-edge greedy algorithm
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Step 5}
Step 2)

Step 4)

tn

Step 5)
Step 2)

Step 4)

vertical constraint.

Goto Step 2.

Assign het 7 to track 5.

Mo other nets can be assigned to track 5 becsuse of the
vertical constraint.

Goto Step 2.

Aszsign net 8 to track 6.

Mo other nets can be assigned to track 6 because of the
vertical constraint.

Goto Step 2.

Assign net 9 to track 7.

No other nets can be assigned to track 7 becsuse of the
vertical constraint.

Goto Step 2.

Aszsign net 10 to track 8.

All nets have been assigned. Exit.

O

Figure 39-b is the reslization of Example C. It is seen that the ten nets

are routed within 8 tracks, rather than the minimum of 5 trecks,

resulting from the new channel routing algorithm (see Section 7.3).
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7.2 The Zone-Based Channel RBouting Algorithm

Two efficient algorithms for channel routing were first
introduced by Yoshirura and Kuh [71] Algorithm #2 is an improved
version of Algarithm #* 1. We present Algorithm #2 here to show that it
cannot generate an optimum realization for the example shown in
Fig. 38, either. The algorithm is also called the zone-based channel

routing algorithem.

First, we introduce two definitions used in the zone-based

algorithm: (i} the zone representation of horizontal segments, and (i)

the bipartite graph G. The zane representation of horizontal segiments
can be defined as follows: The concept of a vertical track ariginates
from the local zone associated with a terminal in the channel, and
therefore cannot carry information about groups of nets that must be
placed in different horizontal tracks due to their inherent horizontsl
overlap. Yoshimura and Kuh introduced the concept of a zone containing
such a group of nets that must be placed in separate horizontal tracks.

Thusz, zoning of a channel partitions the channel routing problem intao



smaller problems. A& systematic method of zone creation may be based
art the concept of local net density S(j) and & local maximum set S_(j).

Let S{j) be the sét of nets whose horizontal segments intersect a
yertical track j associated with terminal §. & set S(j) is said to be the
local mazimum if it isnot the proper subset of the sdjacent set S{j-1)
and S(j+1). The vertical track with the local mawimurn set, S (),
together with all the vertical tracks associated with the proper
subsets of S_(j} constitutes s zone. Figure 40 shows the zoning of &
channel routing problem of Fig. 28 It is seen that zone 1 includes
vertical tracks from 1 to 5 Note that the local maximum is spread

over tracks 3 and 4. Also notice that the local maximum shows where

the maxirmum net density cccurs within the zone (The local net density

is the number of element in the set S(j}). The Bipartite Graph GV, E)

is a graph defined as follows: Each vertex 11in Eh corresponds to a net,
and an edge (i, k) between vertices i and k exists if and only if nets i
and k can be assigned to the same track without having horizontal

track overlapping.
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Fig. 40. Efficient channel routing algorithm

(a). Zone generation for the example

{b). Zone representation for the example
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The zone-based algorithm can then be stated as follows:

[Zone-Based Channel Router]

Step 0)

Step 1)

Step 2)

Step 3)

Initialization: Set i=1.

For each net n, terminating at zone I, add the

1 i’

corresponding vertex n, to the left side of the bipartite
graph G,

For each net . which begins at zone Em, add the

corresponding vertex r, to the right side of the bipartite
graph G, and add edges between the vertex nand & vertex
on the left side, if they can be merged (it means no
horizontal overlapping between the corresponding nets);
then, find a maxzimurm matching {maximum matching means
that the number of pairs of vertices on the left and right
sides of the bipartite graph which can be merged is
maximized).

Check if the merging based on the current matching

satizfies the vertical constraints (Vertical constraints



Step 5}

Step 6)

refer to the vertical trace overlapping). If not, madify the

matching so that no verticel constraints ere viclated.

For each net n, terminating at Z,,, merge the corresponding
vertex n, in the bipartite graph with the vertex specified
by the matching on graph G. Then replace the vertex n,
with the merged vertex nen, on the left side of G

Increment the zone count izi+1. If Z]. is not the last zone,
then repeat from Step 1.

Based on the final bipartite graph G, assign nets to the
proper tracks by teking the vertical constraints into
consideration. The number of vertices is the number of
tracks required for the realization of the problem. The

vertices merged as a single vertex in the final bipartite
graph Gh irmply that their corresponding nets occupy one

track in the reslization.of the probiem.



7.2.1 Example C for the Fone-Based Algorithm

We now show that the zone-baszed channel routing slgorithm

cah not generate an optimum realization for the example shown in

Fig. 38, either. The algorithm progresses on the example as follows:

Step 1)

n
—+
[ax]
o
]
g

Step 3)

Step 4)

Step 5)

Put vertices for nets 1 and 2 to the left side of the
bipartite graph Gr.'

Add vertices far nets 5, 6, and 7 to the right side of graph
G, and add edges between vertices which can be merged, &
maximurn matching is 1-5 and 2-6 {The matching is shown
by thicker lines in Fig. 41-a.).

The matching satisfies the vertical constraints.

Since nets 5 and 6 terminate st zone Z(shown in Fig. 41-3
by thicker circies), merge their vertices with those for
nets 1 and 2, respectively. Since nets 3 and 4 terminate at
Z,, 8dd their vertices to the left side of the graph G (see
Fig. 41-b). Notice that they merge with no other vertices.

iz2. Goto Step 2.
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Step 2)

Step 5)

Step 2)

Add the vertex for net 8 to the right side of the graph G,

and add the corresponding edges to the graph, too The
magimurfn matching is 3-8 (Fig. 41-bJ.
The matching satisfies the vertical constraints.

Since there is no match for the vertex of net 7, which

terminates at zone Z,, the vertex 7 is merged with no

vertex on the left side of the bipartite graph Gh.

i=3. Goto Step 2.

Add the vertex for net 9 to the right side of the graph G,
and add edges to the graph accordingly. A maximum
rmatching i 3-8 and 4-9 {Fig. 41-cl.

The matching satisfies the vertical constraints.

Net § terminates at zone 7., the vertices for net & and net

.
3 are merged.

iz4. Goto Step 2.

Add the vertex for net 10 to the right side of the graph G,
and add corresponding edges to the graph G, Maximum

matching could be (1e5)-9 and (Jed)-10 (Fig. 41-d).
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The matching violates the werticel constreints. Dn]g
possible matching is 4-9 (Fig. 41-¢).

Step 4) Merge vertices for net 4 and net 9 (Fig. 41-1).

Step 5} i=5. Z, is the last zone.

Step 6) Based on Fig. 41-f, the realization of the problem is shown

inFig. 42.
O

Once again, the realization of Fig. 42 requires six tracks, and therefore

is not an aptimum one far Example C.

7.3 Example C for the New Track Assignment Algorithm

The DNR graph corresponding to the same example of Fig. 38 1s
shown in Fig. 43. Figure 44 shows the realization of the example
obtained by the new track assighment routing algorithm. This aptimurm

realization needs only S tracks.

Example C has a maximum density number 5 and a marimum

ordering number 5. So, the lower bound of the track number required
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Fig. 43. Directed net relation graph for the example

Fig. 44. Realization aof the example using new channel routing algorithm



for realization of the problem is determined by the maximum ordering
number. Thus, it is necessary to have one net in the longest chain in
DNR graph (Fig. 43} in every track in order to get the optimum result.
The left-edge greedy channel router does not consider the ordering
number of each net at all. This results in the tendency to use the first
track efficiently However, this heavy usage of the first track may
inhibit the efficient usage of subsequent tracks because of the
vertical track constraint. Similarly, the zone-based channel router
fails to generate optimum results because the router considers only

the vertical constraints locally between adjacent zones.

in contrast, the new channel router does consider the fact of
ordering number for each net, and gives a higher priority to the nets
with a higher ordering number in the process of assigning them to the
tracks. This feature yields optimum realizations for the problems of
the class in which the lower bound of the number of tracks required
for the realization of the problem is determined by the maximum

ordering number.
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7.4 Summary

This chepter described two well-known channel routing
algorithms, the greedy algarithm and the zone-based algorithm, and
compares their performance with the performance of the new treack
assignment algorithm. As illustrated by an example, the two
algorithms cannot generate optimum realizations for one class of
problems whose lower bound of the number of the harizontal tracks
required is determined by the makimum ordering number in DNR graph

rather than the maximum density number.
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CHAPTER ¥III

CONCLUSIONS AND RECOMMENDATIONS

Routing is a very challenging problerm in circuit design because
it produces the physical circuit tagout which may grestly affect the
performance and quality of the circuit. First of all, the quality of the
physical layout depends on the guality of the component placement. For
a given placement configuration, very different physical layouts can be

achieved by using existing routing strategies.

Many routing slgorithms have been developed for the circuil
layout. Lee's type (or maze) algorithms have dominated the design of
printed circuit boards. Their popularity can be attributed to their
ability to find a connection whenever the connection exists. The maze
algorithms however, are not only inefficient in terms of space and
time reguired to complete the routing, but also may generste
connections of undesirable shapes. Many improverments of Lee's

algorithm have been developed to achieve better results.
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improved routing results may be obtained not only by the use
of improved algorithms, but also by the application of optimurn sets of
routing parameters. Furthermaore, for the same sets of routing
parameters, different sequences of applying them may lead to very
different routing results. This was demonstrated through experiments,
Thus, to study how to apply the routing parameters is as important as

to study the algorithms themselves.

In LSl and YLSI design using gate array and standard cell
methodologies, channel routing algorithms are preferred, because the
reguiar shapes of modules used in these circuits and their arrangement
within the chips result in the rectangular areas between modules,
where the channel router must produce all the interconnections.
Although several algarithms have been developed for such a channel
routing for track assignment) problem, none of them can cope with the
case when the maximum ordering number of the routing problem is
larger than {or equal to) the maximum density number. Therefore, we

developed & new channel routing {track aszignment) algorithm capable

of producing optimum realizations of problems of that class.
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&s demonstrated in the previous chepters, this thesis has
contributed to general and technical knowledge by achieving the

following results:

a) Investigated and evaluated the algorithms suitable for
routing of printed circuit boards, especially those algorithms of the
Lee type. The investigation concentrated on the issue of storage

requirement and expansion area.

b) Established a relationship between the routing history and
routing results. The relationship was investigated by observing the
routing performance under selected routing histories, using the
OPTIMATE™ computer-aided design software package, running on the

Apollo DNGED computer.

cy Developed empirical formulae for predicting circuit
routability besed on the infarmation given by a placement
configuration. Though the formulae themselves cannot improve the

placement configuration in terms of routability, they could be very

helpful in the evaluation of the different placement configurations
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efficiently.

d) Developed a channel routing (track assignment) algorithm
which can generate optimum realizations for a class of problems for
which other channel routing algorithms often give only suboptimum
reglizations. The optimality of the new algorithm was demaonstrated

-

through experimentation on the Apollo DN66&D computer.

Although the conclusions drawn are important to the theory
and practice of CAE, and our understanding of the subject has
increased considerably through the work dane, many other important
questions have been discovered. Therefore, the following research is

recommended to improve the work done and presented in this thesis:

a) The relation between other sets of routing histories and the
routing perfarmance should be investigated in order to seach for

better routing histories that could achieve better routing performance.

by Programs for collecting all the data required for calculating

the routability indicator can be developed in order to-improve the
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speed and accurscy of the celculation. Further experiments with
different routing parameters could lead to an improved routabm‘tg
indicator capable of predicting the level of circuit routing completion
accurately, and therefore influencing circuit placerment more

accurately.

c) The new channel routing algorithm should be modified in
arder to cope with other classes of problems; that is, for the case
when the meazimum density number is larger than the marimum
ardering number. This might be solved by modifying the criteris for
selecting the MOTHER NET. Alsc, an optimum set of the weight factors
in the priority functien needs to be found in order to achieve the

optimum results.
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APPENDIX A

NEW CHANNEL ROUTER IMPLEMENTATION

The general flow-chart of the program which implements the
new channel routing algorithim is shown as in Fig. 43, Except for the
net-to-track assignment procedure (ASSIGNTRACK), the procedures of

Fig. 45 are quite straightforward.

The net-to-track assignment procedure, ASSIGHTRACK,
includes two procedures, FINDER and EXPERT, and one function FPRIC.
The function FPRIO evaluates the priority function (as defined in
section 6.1) of a net NET to be routed in the same track containing the

MOTHER MET.

Since no efficient algorithm has been developed for the
selection of optimurm subset of the nets from the set of READYNETS, &

sub-optimum approach is used here. The selection algorithm can be
explained as follows: First, create eligible subsets S by finding m (&

pre-determined number, e.g. m=4) nets which have the first m largest
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priority numbers among the nets in the set of READYNETS, and p]aci}ng
each of them into & different subset 5‘]. (for i=1, 2, ..., m). Then, exand
the eligitile subse-t S; by adding &s many nets as possible from the set
READYNETS to each S, according to the decressing order of the priority
number, provided that they do not have horizontal overlapping. Finally,
from the m eligible subsets 5, select one suboptimum subset 5, whose

sum of the priority numbers is mazimum.

The procedure FINDER will sort the nets in READYMNETS by
decreasing order of priority number of each net. The procedure EXPERT
ig to find the maximum possible subset of nets S, (TEMP1 in program)
from the set READYNETS such that no nets in it have horizontal
overlapping. Note that we first assign one of the m nets into the

subset TEMP1 in ASSIGNTRACK procedure.

The flow-chart of the procedure ASSIGNTRACK is shown in

Fig. 46.



START

INPUT DATA

v

GET DISTANCE
NMATRIA

h 4
GET ORDERNUM
FOR ERCH NET

h 4
ASSIGH NETS
TO TRACKS

A 4
OUTPUT

L i

Con )

Fig. 45. General flowchart




ENTER

GET THE HIGHEST
ORDERING NUMBER

v

GET THE LENGTH
OF EACH NET

GET THE INH-DEGREE
FOR EARCH NET

v

FIND NMOTHER NET  |g—

v

FIND THE SET OF
RERDYNETS

FIND OPTIMUM SUBSET
(TEMP1) OF RERDYNETS

ASSIGH METS IN TEMPI
ANMD MOTHER NET TO
NEXT TRACK

UPDATE THE IN-DEGREE
FOR EACH HET

L)

NO

ERIT

Fig. 46. Flowchart for procedure ASSIGNTRACK

- 164-



APPENDIX B

NEW CHANNEL ROUTER PROGRAM LISTING



PROGRAM CHANNEL_ROUTER(INPUT,OUTPUT);

(*********t*t**tt****t*t*ﬁ*******ﬁ********ﬁt*****t*******************)

(*xww MOTHER NET SELECTION: | "kkw )
(Rwwew ORDEREMOTHI-CURRENTORD<1; xewn )
(xxnn ORDERLMOTHI*NUMNETFOLLLMOTHI MAXIMUM; )
(xwwn PRIO:=LENG+(MAXDIS~-DIS)+5*ORDER/CURRENTORD k)
(whwn NO DENSITY CHECK; oresew )

(*****t*t******i************************************tt*********i****i)

CONST

NETLIST='DATAQS’; (*NETLIST CONTAINS THE NAME OF THE INPUT DATA*)
NETNUMEZ=103; (*NETNUM@Z IS THE NUMBER OF NETS TO BE ROUTED *)
TERNUM=173; (*TERNUM IS THE NUMBER OF TERMINALS ON EITHER
UPPER OR LOWER SIDE OF CHANNEL *)
CONSTB=13 {*CONSTB IS FOR CURRNTORD-ORDERIMOTHICKCONSTB *)
TYPE

TYPE_ONE=ARRAY[1l..NETNUMZ] OF INTEGER;
TYPE_TWO=ARRAY[1..NETNUM@1l OF BOOLEAN;
TYPE_THREE=-1..23

TYPE_FOUR=ARRAY[1l..TERNUM1 OF TYPE_THREE;
TYPE_FIVE=PACKED ARRAY[1..3] OF CHAR;
TYPE_SIX=ARRAYL[1l..NETNUMZ1 OF TYPE_FIVE;

TYPE SEVEN=ARRAYL1..NETNUM@, 1..NETNUMO1 OF INTEGER;
TYPE_EIGHT=ARRAYL1..NETNUM#Z, 1..TERNUMI OF TYPE_THREE;
TYPE_NINE=ARRAY[1..NETNUMZ, 1..NETNUMO1 OF BOOLEAN;
ZZ=INTEGER}

TY1=TYPE_ONE;
VAR

CONSTA t INTEGER ;

CDIS,CLEN :INTEGER;

MATRIXNAM :TYPE_SIX;

MATRIXIN s TYPE_EIGHT;

MATRIXDIS :TYPE_SEVEN;

ORDERNUM : TYPE_ONE;

MATRIXOUT :TYPE_ONE;

NUMNETFOLL :TYPE_ONE;

MATRIXREL :TYPE_NINE;

MAXORDERING: INTEGER

DENSITY :INTEGER;

CHANNELNUM :INTEGER;

PROCEDURE INPUTDATA;

(*******************************************t************************)

(**** ****)
(*xwx INPUT DATA *wrw )
(**** ****)

(***ﬁ****************************************************************)

VAR
INDEX1,INDEX2,TEST :INTEGER;
IN1,IN2:INTEGER;

FLAG1,FLAG2 :BOOLEAN;
INPUT_DATA s TEXT;
BEGIN

OPENCINPUT_DATA,NETLIST,*OLD");
RESET(INPUT_DATA);
READLN(INPUT_DATA,CONSTA);
READLNCINPUT_DATA,CLEN);
READLN(INPUT_DATA,CDIS);
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FOR INDEX1:=1 TO NETNUM@ DO
BEGIN
READ(INPUT_DATA.MATRIXNAM[INDEXI]);
FOR INDEX2:=1 TO TERNUM DO
READ(INPUT_DATA,MATRIXIN[INDEXI.INDEXZ]);
READLN(INPUT_DATA)};
END;
CLOSE(INPUT_DATA);
(* wRITE(’*******');-
FOR INDEX1:=58 TO 8% DO
WRITECINDEX1:3)3
WRITELN;
FOR INDEX1:=1 TO NETNUM#& DO
BEGIN
WRITE{INDEX1:4,°%%%°);
FOR INDEX2:=5¢ TO 8@ DO
WRITE(MATRIXIN[INDEXI,INDEXZ]:3);
WRITELN;
END; ™) :
FOR INDEX1:=1 TO TERNUM DO
BEGIN
INl:=@3
IN2:=0;
FOR INDEX2:=1 TO NETNUMZ DO
BEGIN
IF (MATRIXIN[INDEXZ,INDEX1]=1) THEN INl1:=IN1+1;
IF (MATRIXIN[INDEXZ,INDEX1]=-1) THEN IN2:=IN2+1;
END;
IF (IN1>1) OR (IN2>1) THEN WRITELN{*INPUT IS WRONG AT’ ,INDEX1)
END;
END;
PROCEDURE DISTANCE;

(***************************t***********t****************************)

(K *xx * vk k)
(*xww CALCULATE THE DISTANCES BETWEEN NETS kKK )
S * ® ¥ % )

(*****t**************************************************************)

VAR :

INDEX1, INDEX2 : INTEGER

TEMP,TEMPB,TEMPE ¢+ INTEGER;

FUNCTION GETDIS(NETI:INTEGER;NETZ:INTEGER):INTEGER;

(*******************************************************************)

Sakakalel CALCULATE THE DISTANCE BETWEEN NETI1 AND NET2 %Kok k)
(*******************************************************************)
VAR

INDEX,FLAG11 : INTEGER

NET,FLAG12,FLAG21 :INTEGER;

BFLAG,FINISH +BOOLEAN;

BFLAG1,BFLAG2 :BOOLEAN;

BEGIN {(* BEGINNING OF THE PROCEDURE DISTANCE *)
INDEX:=£3 '
FLAG11:=073
FLAG12:=03;
FLAG21:=073
BFLAG:=TRUE;
FINISH:=FALSE;3
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(********F!ND NETI AND THE BEGINNING 0 NETI***********ﬁi****t*****)
WHILE (INDEXCTERNUM) AND BFLAG DO :
BEGIN
INDEX:=INDEX+13
BFLAG1 :=(MATRIXININET1, INDEX1<>8)3
BFLAG2:={MATRIXINLNET2, INDEXIL>8);
IF (BFLAG1 OR BFLAG2) THEN
BEGIN .
IF BFLAG1 AND BFLAG2
THEN _ '
BEGIN
BFLAG:=FALSE;
FINISH:=TRUE;
GETDIS: =g
END
ELSE .
IF BFLAG1 THEN
BEGIN
FLAG11:=INDEX;
BFLAG:=FALSE
END
ELSE
BEGIN :
NET:=NET2;
NET2:=NET!;
NET1:=NET;
BFLAG:=FALSE;
FLAG11:=INDEX
_ END
END
END;
(*xxx%xxxxEND OF FINGING NET1 AND THE BEGINNING OF NETIwRxkkkkknwknk)
(*wxmnnnnnxxxxxF IND DISTANCE BETWEEN NET1 AND NET2**kkxkkkkkkkhhkkk )
IF NOT FINISH THEN {(**FIND THE END OF NET1**)

BEGIN
BFLAG:=TRUE; ,
WHILE (INDEXKTERNUM) AND BFLAG DO
BEGIN
INDEX:=INDEX+1;
IF MATRIXININET1,INDEX1=8 THEN
BEGIN
BFLAG:=FALSE;
FLAG12:=INDEX-1
END
END;
IF BFLAG THEN FLAG12:=TERNUM; (**END OF FINDING: THE END OF NET1*¥*)
INDEX:=0; (**FIND THE BEGINNING OF NET2**)
-BFLAG:=TRUE
WHILE (INDEX<TERNUM) AND BFLAG DO
BEGIN :
INDEX:=INDEX+1;
IF MATRIXININET2,INDEX1I<>® THEN

BEGIN
BFLAG:=FALSE;
FLAG21:=INDEX
END
END; (**END OF FINDING THE BEGINNING OF NET2**)

IF FLAG21>FLAG12 THEN GETDIS:=FLAG21-FLAG12 ELSE GETDIS:=8
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END
(#%*sxxwwwEND OF FINDING DISTANCE BETWEEN NET1 AND NET2¥¥*waxawawuxx)

END;
BEGIN (*BEGINNING OF PROCEDURE DISTANCE¥*)
TEMPE :=NETNUMZ2-1;
FOR INDEXl:-l TO TEMPE DO
BEGIN
MATRIXDISTINDEX1,INDEX11:=93
TEMPB:=INDEX1+1;}
FOR INDEX2:=TEMPB TO NETNUMZ DO
BEGIN
TEMP:=GETDIS(INDEX1,INDEX2);;
MATRIXDISLINDEX1,INDEX21:=TEMP;
MATRIXDISLINDEX2,INDEX11:=TEMP
END
END;s

MATRIXDIS[NETNUMﬁ NETNUMZ1: =g
END; (*END OF PROCEDURE DISTANCE™*)

PROCEDURE GETRESULTS;

:{************************t*******************************************)-

(Rxkx "k K )
(xxw% CALCULATE THE ORDERING NUMBER FOR EACH NET. *kk k)
CLLL * ok kK )

(*************************ﬁ******************************************)

VAR

NUMNETPREC s TYPE_ONE;
TEMP ,TEMPFOLLNET s TYPE_ONE;
FLAGY sBOOLEAN;
NUM_OF_ORDERONE, INDEX1 :INTEGER3
PRECNUM ¢t INTEGER;
ORDERING,NETNAME s INTEGER;
PROCEDURE GETRELATION;

VAR :
INDEX1,INDEX2, COUNT s INTEGER 3
UPPERNET LOVERNET s INTEGER ;
FLAGI :BOOLEAN;

BEGIN (*BEGINNING OF PROCEDURE GETRELATION*)
FOR INDEX1:=1 TO NETNUMZ DO
BEGIN

FOR INDEX2:=1 TO NETNUMZ DO
MATRIXRELLINDEX1,INDEX23:=FALSE;
END;
FOR INDEX1:=1 TO TERNUM DO
BEGIN
INDEX2:=8;
FLAG1 :=FALSE;
COUNT:=8;
WHILE {(INDEX2<NETNUMgZ) AND (NOT FLAG1) DO
BEGIN
INDEX2:=INDEX2+1
IF MATRIXINLINDEXZ2, INDEXI] =1 THEN
BEGIN
UPPERNET:=INDEX2;
COUNT :=COUNT+1;
END;
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IF MATRIXINLINDEX2,INDEX11=-1 THEN
BEGIN
LOWERNET:=INDEX2;
COUNT :=COUNT+1;
END;
IF COUNT=2 THEN FLAG1:=TRUE
END; i
IF FLAG1 THEN MATRIXREL[UPPERNET,LOWERNET]:STRUE
END:
FOR INDEX1:=1 TO NETNUMZ DO
BEGIN :
NUMNETFOLLLINDEX11:=03
NUMNETPRECLINDEX11:=03
FOR INDEX2:=1 TO NETNUMZ& DO
BEGIN
IF MATRIXRELLINDEX2,INDEX11 THEN
NUMNETPREC[INDEXI]:=NUMNETPREC[INDEX1]+1;
IF MATRIXRELLINDEX1,INDEX2] THEN
NUMNETFOLL[INDEXI]z=NUMNETFOLL[INDEXl]+1;
END '

END
END3 (*END OF PROCEDURE GETRELATION*)

PROCEDURE ORDERZ(NAMEOFNET:INTEGER;ORDER:INTEGER:NUM_PREC_IT:INTEGER):
VAR

INDEX1 ¢t INTEGER
- PRECNUM : INTEGER;
BEGIN (*BEGINNING OF PROCEDURE GETORDERING*)

ORDER:=ORDER*1;
INDEX1:=8;
WHILE (NUM_PREC_IT>#) DO
BEGIN
INDEX1:=INDEX1+1;
WHILE (NOT MATRIXRELLINDEX1,NAMEOFNET1) DO
INDEX1:=INDEX1+1; '
NUM_PREC_IT:=NUM_PREC_IT-13
IF ORDERNUMLINDEX1I<ORDER THEN
ORDERNUM[ INDEX11:=ORDER;
PRECNUM:=NUMNETPRECLINDEX113
IF PRECNUM>Z THEN ORDERZ{INDEX1,ORDER,PRECNUM)

END

END; (*END OF THE PROCEDURE GETORDERING*)
BEGIN (*BEGINNING OF PROCEDURE GETRESULTS*)
GETRELATION;

NUM_OF_ORDERONE: =8}
FOR INDEX1l:=1 TO NETNUMZ DO
BEGIN
TEMPLINDEX1l:=8;
ORDERNUMLINDEX11:=1;
END;
FOR INDEX1:=1 TO NETNUMZ DO
BEGIN .
IF NUMNETFOLLLINDEX11=8 THEN
BEGIN
NUM_OF_ORDERONE:nNUM_OF_ORDERONE+1:
TEMPLNUM_OF_ORDERONEI:=INDEX1
END :
END;
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FOR INDEX1:=1 TO NUM_OF_ORDERONE DO

BEGIN

ORDERING:=1;

NETNAME:=TEMPLINDEX11;

PRECNUM:=NUMNETPRECINETNAME];

IF (PRECNUM>Z) THEN ORDERZ{(NETNAME,ORDERING,PRECNUM)
END; -
FOR INDEX1:=1 TO NETNUMZ DO

IF (ORDERNUMLINDEX11=1) AND (NUMNETPRECLINDEX11=£)

- THEN ORDERNUMLINDEX13:=(ORDERING+1) DIV 23
END; (*END OF THE PROCEDURE GETTRESULTS*)

PROCEDURE ASSIGNTRACK;

(***********ﬂ***t********t*****************************ﬁ*************)

(*xnx "Nk )
B Sokakaly ASSIGN NETS TO TRACKS. %k ok ok )
(*Rxnx ok wk )

(*********************************t************t*****************ﬁt**)

VAR
NO1,NO2,SEED,NETNAMER, INDEX1 ¢+ INTEGER;

INDEX,CURRENTORD,LENGTH s INTEGER 3

INDEX2, INDEXZ, TRACKNUM t INTEGER;

MOTHNET ,MAXLEN,MAXDIS,NUMSEED :INTEGER;

PRIONUM1 ,PRIONUM,ORDERSZ6 M ¢t INTEGER 3

DENSITY_LOCATION : INTEGER ;
NUMB_READYNETS,PRIONUM4, INDEX® :INTEGER;

PRIORITY,TEMP1,TEMP2 s TYPE_ONE;

MATRIXLEN,READYNETS :TYPE_ONE
RESULTNET,FANINDEGREE :TYPE_ONE;

ASSIGNED :TYPE_TWO;

LOCATION tARRAY [1..TERNUM] OF BOOLEAN;
FLAG,FINISH,FLAG1,FLAG2 :BOOLEAN; ,
NOTESTED,MVALID,AVALID1,AVALID2:BOOLEAN;
CHECKER,INDENSITY,BVALID :BOOLEAN;

FUNCTION FPRIO(MO:INTEGER;SO:INTEGER;MAL:INTEGER ;MAD:INTEGER): INTEGER;
(*******************************************************************)
(*wxx CALCULATE THE PRIORITY NUMBER FOR NET 'S0’ LLLD!
(*xnw TO BE ROUTED IN THE SAME TRACK WITH MO{THER) NET. wkk )

(****************t**************************************************)

VAR
LENGTH,DISTANCE,ORDER s INTEGER
BEGIN
LENGTH:=MATRIXLENISOI*CLEN;
ORDER :=ORDERNUMISOI*CONSTA;
DISTANCE :=MAD-MATRIXDIS[MO,S01;
FPRIO:=LENGTH+DISTANCE*CDIS+({(CONSTA*ORDER) DIV CURRENTORD)
END;
PROCEDURE EXPERT{(VAR NO1:ZZ;VAR NO2:ZZ;VAR TEMP1:TY1l;VAR TEMP2:TYl);

(***********************t*******************************************)

(**xn *k k%)
(*%*%%x FIND THE SUB-OPTIMUM SUBSET TEMP1 FROM THE SET READYNETS. ¥****)
(*xx% Wk k% )

(****ﬁ*********************************ﬂ****************************)

VAR

TEMP,INDEX1,INDEX2 :INTEGER;
NET1,NET2,TEMPS,T1 :INTEGER;
TEST,ILLEGAL,FLAG :BOOLEAN;
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BEGIN
INDEX2:=03
WHILE INDEX2<NO2 DO
BEGIN
INDEX2:=INDEX2+1;
NET2:=TEMP2LINDEX21;
INDEX1:=0;
ILLEGAL:=FALSE;
WHILE (INDEX1<NO1) AND (NOT ILLEGAL) DO
BEGIN .
INDEX1:=INDEX1+1;
NET1:=TEMP1LINDEX11;
IF (MATRIXDISINET1,NET21=g) AND (NOT (NET1=NET2)) THEN
ILLEGAL:=TRUE};
END;
IF NOT ILLEGAL THEN
BEGIN
NO1:=NOl1+1;
TEMP1INO11:=NET2;
PRIONUM:=PRIONUM+PRIORITYINET2]
END
END
END;
PROCEDURE FINDER(VAR NETS:TY1;NETNUMB:INTEGER);

(************************i******************************************)
(**** . ****)
(**x%%x  SORT THE NETS IN (READY)NETS BY THE PRIORITY NUMBER. ok )
(**** ****)
(*******************************************************************)

VAR
GAP,I,J,NET1,NET2 :INTEGER;
BEGIN
GAP:=NETNUMB DIV 23
WHILE (GAP>#®) DO
BEGIN
1:=GAP;
WHILE (I<{=NETNUMB) DO
BEGIN
J:=1-GAP;
WHILE (J>2) DO
BEGIN
NET1:=NETS[J1;
NET2:=NETS[J+GAPI;
IF (PRIORITYILNET11<PRIORITYINET21) THEN
BEGIN
NETS[J1:=NET2;
NETS[J+GAP1:=NETI1
END;
J:=J-GAP;
END;
I:=1+1;
END;
GAP:=GAP DIV 2;
END;
END;
PROCEDURE MDENSITY;

(*****************t*************************************************)

(*xxw CALCULATE THE MAXIMUM DENSITY. kxk k)

(******i*******************t********t************ﬁ**ﬂ*****t********t 3
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VAR

INDEX1,INDEX2 t INTEGER ;

DENSITY_TEMP :INTEGER
BEGIN

DENSITY:=03; {(* DENSITY IS THE MAX-DENSITY *)
FOR INDEX2:=1 TO TERNUM DO

BEGIN

DENSITY_TEMP: =83 .
FOR INDEX1:=1 TO NETNUMg DO
IF MATRIXINLINDEX1,INDEX21{># THEN DENSITY_TEMP:=DENSITY_TEMP+1;
iF DENSITY_TEMP>=DENSITY THEN
DENSITY:=DENSITY_TEMP;
END;
END;
BEGIN (*BEGIN OF THE PROCEDURE OF ASSIGNTRACK*)
NOl:=03;
NO2:=03
(************GET THE HIGHEST ORDERING NUMBER************************)
CURRENTORD:=03
FOR INDEX1:=1 TO NETNUM#& DO
IF ORDERNUM[INDEX1]>CURRENTORD THEN
CURRENTORD : =ORDERNUMLINDEX11;

MAXORDERING: =CURRENTORD ,
(#xxuxxkxxkn*END OF GETTING THE HIGHEST ORDERING NUMBERXwwwx»ar=7)
(*t****************GET THE LENGTH OF EACH NET***********************)

FOR INDEX:=1 TO NETNUMZ DO
BEGIN
INDEX1:=#;
FLAG:=TRUE3;
WHILE (INDEX1<TERNUM) AND FLAG DO
BEGIN
INDEX1:=INDEX1+1;
IF MATRIXINCINDEX, INDEX11<>Q THEN FLAG:=FALSE
END;
INDEX2:=INDEX1;
FLAG:=TRUE
WHILE (INDEX2<TERNUM) AND FLAG DO
BEGIN
INDEX2:=INDEX2+1;
IF MATRIXINLINDEX,INDEX21=# THEN
BEGIN
INDEX2:=INDEX2-1;
FLAG:=FALSE;
END
END;
MATRIXLEN[INDEX]:=INDEX2-INDEX1
END;
(xxkxxxanxxkxxpEND OF GETTING THE LENGTH OF EACH NETR®k Rk kkkkkk XAk kkkk )

(***********************INITIALIZE FANINDEGREE**********************)

FOR INDEX1:=1 TO NETNUMgZ DO
BEGIN
FANINDEGREELINDEX11:=4; ’
FOR INDEX2:=1 TO NETNUMZ DO
IF MATRIXRELLINDEX2,INDEX1]l THEN
FANINDEGREE[INDEXI]:=FANINDEGREE[INDEX1]+1
%ﬁEQ*********.*«*a****END OF INITIALIZATION*************************)

MDENSITY; (*PROCEDURE OF GET MAXIMUM DENSITY*)
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FOR INDEX1:=1 TO NETNUMgZ DO

ASSIGNED[INDEXI]:ﬂFALSE;

FINISH:=FALSE;

TRACKNUM: =83

WHILE NOT FINISH DO

BEGIN

TRACKNUM:=TRACKNUM+13
FLAG:=FALSE;
(**************t**ﬂ***********************ﬁ*********************i**)
{(*= FLAG INDICATE THAT THERE ARE SOME NETS HAVING THE SAME * %)
(*x ORDERING NUMBER AS THE CURRENTORDORING(=CURRENTORD) * k)

(********************i*******************t************t************)
(****t*************************************************************)

(*Rk%x THE FOLLOWING IS THE PROCEDURE OF SELECTING Yk sk )
(krk% © MOTHER NET--MOTHNET wR KK )
(*****************************t**********kt*******************t***ﬁ)
WHILE (NOT FLAG) DO
BEGIN
INDEX2:=-1080;
FOR INDEX1l:=1 TO NETNUMZ DO
BEGIN
0RDER36:=0RDERNUM[INDEX1];
AVALID1:=NOT ASSIGNEDLINDEX11;
AVALIDZ==((CURRENTORD—ORDHG)(CONSTB) AND (FANINDEGREELINDEX11=8)3
IF (AVALID1 AND AVALID2) THEN
BEGIN
FLAG:=TRUE
IF (MATRIXLEN[INDEXIJ*ORDERZG))INDEXZ THEN
BEGIN
MOTHNET:=INDEX1;
INDEX2:=MATRIXLE [INDEX11*ORDERZ6
END
END
END;
CURRENTORD:=CURRENTORD-1
END;
CURRENTORD:=CURRENTORD+1;
WRITELN{*MOTHER NET IS veeees' MOTHNET:16};
(**********************GET SET READYNETS***************************)
NUMB_READYNETS:=H;
FOR INDEX1:=1 TO NETNUMZ DO
BEGIN
FLAG! :=FALSE;
FLAG2:=FALSE;
FLAG:=FALSE;
IF MATRIXDIS[MOTHNET,INDEXl])K THEN FLAGl:=TRUE;
IF (FANINDEGREE[INDEX1]=ﬁ) AND (NOT ASSIGNEDLINDEX11)
THEN FLAG2:=TRUE;
FLAG:=FLAG1 AND FLAG2Z;
IF FLAG THEN
BEGIN
NUMB_READYNETS:=NUMB_READYNETS+1:
READYNETS[NUMB_READYNETS]:=INDEX1;
WRITE{(*READY NET',NUMB_READYNETS:S):
WRITELN(® 1S ’,READYNETS[NUMB_READYNETS]);
END
END;
(***************END OF GETTING SET READYNETS*ﬁ*********************)
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MAXLEN:=0;
MAXDIS:=§;
FOR INDEXZ:=1 TO NUMB_READYNETS DO
BEGIN
INDEX1:=READYNETSLINDEXZ1;
IF MATRIXLENCINDEX11>MAXLEN THEN MAXLEN:=MATRIXLENCINDEX11;
IF MATRIXDIS[MOTHNET,INDEXI])MAXDIS THEN
MAXDIS:=MATRIXDIS[MOTHNET.INDEXI]
END; .
{(*x*xxxxxxxGET THE PRIORITY NUMBER OF EACH NET IN READYNETS* W xhkakkkk)
FOR INDEX1:=1 TO NUMB_READYNETS DO
BEGIN
INDEXZ :=READYNETSCINDEX11;
PRIORITY[INDEXZ]:=FPRIO(MOTHNET,INDEXZ,MAXLEN.MAXDIS)
END; ,
(*xxxnwnxxxEND OF GETTING THE PRIORITY OF EACH NET IN READYNET*®k* %% )
IF NUMB_READYNETS># THEN
BEGIN (*SELECT OPTIMUM SUBSET FROM READYNETS*)
FINDER(READYNETS,NUMB_READYNETS);
INDEX#Z:=1;
M:=4;
IF (NUMB_READYNETS<M) THEN M:=NUMB_READYNETS;
PRIONUML :=83
WHILE (M>@) DO
BEGIN
SEED :=READYNETSLINDEX?]1;
PRIONUM:=PRIORITYLSEEDI;
NOl:=13
NO2:=NUMB_READYNETS-1;
TEMP1[11:=SEED;
FOR INDEXZ:=2 TO NETNUMZ DO
TEMP1LINDEXZ1:=03

INDEXZ:=13
WHILE READYNETSLINDEXZI<>SEED DO
BEGIN

TEMP2LINDEXZ1:=READYNETSLINDEXZ13

INDEXZ:=INDEXZ+1

END3

FOR INDEX:=INDEXZ TO NO2 DO

TEMP2L INDEX1:=READYNETSLINDEX+113
(**************************t******************************t******)
(* TEMP1l: CONTAINS SEED NET *)
{* TEMP2; CONTAINS CANDIDATE NETS FOR BEING ADDED INTO TEMP1 *)
(****************t********************t*********************t****)
WRITELN;
WRITE('SET TEMP1 CONTAINS: *)s

FOR INDEX:=1 TO NO1 DO

WRITE(TEMP1LINDEX]1);
WRITELN;
WRITE{*SET TEMP2 CONTAINS: ’)s
FOR INDEX:=1 TO NO2 DO

WRITE(TEMPZ2LINDEX1);
WRITELN;

EXPERT(NO1,NO2,TEMP1,TEMP2); .
(***t*********************t**t******t********t*******************)
(*TEMP1: NETS SELECTED TO BE ROUTED IN THE SAME TRACK AS MOTHNET*)
(*TEMP2: CANDIDATE NETS FOR BEING SELECTED FOR NEXT TEMP1 *)

(**********************************************"k*****************)

WRITE(’RESULT SET TEMP1 CONTAINS:’);
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FOR INDEX:=1 TO NOl DO
WRITE(TEMPILINDEX]1);
WRITELN;
IF PRIONUMI<PRIONUM THEN
BEGIN
PRIONUM1 :=PRIONUM;
FOR INDEX:=1 TO NO! DO
RESULTNETLINDEX1:=TEMP1LINDEX1];
FOR INDEX:=NOl+1 TO NETNUMZ DO
RESULTNETLINDEX1:=4;
END:
M:=M-1:
INDEX@Z:=INDEXQ+1
END;
WRITELN;
WRITE(*SELECTED OPTIMUM SUBSET CONTAINS:’)};
FOR INDEX:=1 TO NUMB_READYNETS DO
WRITE(RESULTNETLINDEX]1:4);
WRITELN;g
{* ASSIGN NETS TO TRACK *¥*)
INDEX:=1;
WHILE (RESULTNETLINDEXI<>#) DO
BEGIN
NETNAMER : =RESULTNETLINDEX1;
ASSIGNEDINETNAMERI:=TRUE}
MATRIXOUTINETNAMER 1 :=TRACKNUM;
FOR INDEX1:=1 TO NETNUMZ DO
IF MATRIXRELINETNAMER,INDEX11 AND {NETNAMER<CD>INDEX1) THEN
FANINDEGREELINDEX11:=FANINDEGREELINDEX11-1;

INDEX:=INDEX+1
END
END; (*END OF SELECTING OPTIMUM SUBSET FROM SET READYNETS*)

MATRIXOUTIMOTHNET1:=TRACKNUM;
ASSIGNEDIMOTHNET1:=TRUE;
FOR INDEX1:=1 TO NETNUMZ DO
IF MATRIXRELIMOTHNET,INDEX11 AND {MOTHNETC>INDEX1) THEN
FANINDEGREELINDEX11:=FANINDEGREELINDEX11-13
(****************CHECK IF ALL NETS ASSIGNED************************)
FINISH:=TRUE;
FOR INDEX:=1 TO NETNUMZ DO
BEGIN
WRITELN(INDEX:5,ASSIGNEDLINDEX1:28);
IF NOT ASSIGNED[INDEX] THEN FINISH:=FALSE;
END;
MVALID:=FALSE;
FOR INDEX1:=1 TO NETNUMZ DO
IF (NOT ASSIGNEDLINDEX11) AND (ORDERNUMUINDEX11=CURRENTORD)
THEN MVALID:=TRUE;
IF (NOT MVALID) THEN CURRENTORD:=CURRENTORD-1;
IF FINISH THEN CHANNELNUM:=TRACKNUM
END
END; (*END OF THE PROCEDURE ASSIGNTRACK*)
PROCEDURE DONE;

(********************************************************************)

{®xnn * %k k)
 Galakolel OUTPUT RESULTS *kkK )
(Rxx% : ¥ e vk )

n(********************************************************************)
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VAR

OUTPUT_DATA tTEXT

INDEX, INDEXX : INTEGER
ROUTING_RESULTS:PACKED ARRAY[1..281 OF CHAR;
ANSWERS :STRING;
BEGIN

wRITELN( ’****************************************t***********' ) .
WRITELN(’****************’); ’

WRITELN{ ®**¥kkhnkx PARAMETER SET ')
wRITELN(’ *********’);

WRITELN{ ® ®**x%sxwx YEIGHT FACTOR FOR ORDERING OF NET IS..... ')

WRITELN(CONSTA:3,’ Rkkekdkknkd )

WRITELN( **xxxxxxx WEIGHT FACTOR FOR LENGTH OF EACH NET IS...%)3

WRITELN(CLEN:3," AKKKRKKXK S )

WRITELN( **xnxnsxxx WEIGHT FACTOR FOR DISTANCE BETWEEN NETS...'):

WRITELN{CDIS:3,’ Kk RkRkkkRRK D )

WRITELN(’****************************************************’);
1Y),
WRITELN( P HRkkkdekkhkhrkrAAkX? )

WRITELN:

WRITELN;

WRITELN; _

WRITELN{® *:5,'MAXIMUM ORDERING NUMBER IS:*);
NRITELN(’*‘:8,MAXORDERING=5,’*’:8);
WRITELN;

WRITELN{? *:5, *MAXIMUM DENSITY IS:z');
WRITELN(’*’:8,DENSITY:5,’*’:8);
WRITELN;

WRITELN(® *:5,°'THE CHANNEL WIDTH IS:*)s
WRITELN(’*’:8,CHANNELNUM:5,'*’:8);
WRITELN;

FOR INDEX:=1 TO CHANNELNUM Do

BEGIN

WRITE(’****TRACK’,INDEX:S,’ Kkkkn? ) o

FOR INDEXX:=1 TO NETNUMZ DO

IF MATRIXOUTLINDEXX1I=INDEX THEN

WRITE(MATRIXNAMLINDEXX1:5);

WRITELN; .

END;

FOR INDEX:=1 TO 4 DO

BEGIN

FOR INDEXX:=1 TO 2¢ DO

WRITE(**’);

WRITE('FINISH’);

FOR INDEXX:=1 TO 28 (2]0]

WRITE(®**’);

WRITELN

END
END;
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(**t*******t****t**********t**************t******************t***t**t)
(**t**************************************t**************************)

{wRokkk TTII LD
13132 T2 1S
(KxhRk% MAIN PROGRAM ) ok kwkok )
(l**t** ******)
S LT3 * ok ok kk k)

(***l*****t*lt**ttt*tttﬁ*********tt***t***tt*k*t**t*************t****)
(******'k***tt***t**t******t***t*******t**t***********************t***)

BEGIN
INPUTDATA;
DISTANCE;
GETRESULTS;
ASSIGNTRACK;
DONE

END.
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