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ystract

The dynamic performance of the High Voltage Direct Current (HVDC)
transmission systems connected to weak ac systems depends strongly upon
the control systems of the dc link. Some of the complications that arise are
the high risk of commutation failure, possible voltage instability and long

recovery times to disturbances.

In this thesis three suitable control systems are studied and compared by
subjecting them to various operating conditions and system faults. The
testing is done on a weak ac transmission system. All the work is carried out
using EMTDC simulation.
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1.1 BACKGROUND

A phase locked loop (PLL) can be used to recover a signal deeply imbedded
in noise and harmonic distortions. The PLL generates a “clean” waveform

that is in phase with the fundamental component of the input waveform.

One of the earliest utilizations of PLL techniques was for the
synchronization of radio signals in the early 1930’s. It became more widely
used with the advent of television — for the horizontal and vertical
synchronization of signals. Nowadays PLLs are also used for tracking very

weak satellite signals.

In power systems applications the signal is crucial to the operation of the
the controls to a converter station. It is important to fire the valves of a dc
converter in exact synchronism with the ac system voltages which can often
be distorted. A phase locked loop can be used to accurately lock on to the
fundamental of the ac waveform and can thus be used as the reference for
deriving the firing pulses. The accuracy of the PLL in doing its job facilitates
the minimization of reactive power required and also helps overcome the
susceptibility to harmonic instability by weak ac systems and recovery from

faults.



1 .2 SCOPE OF THESIS

The intent of this thesis is to briefly discuss PLL theory and then consider

its application to the control of converter stations.

At the converter station the conversion of ac to de, or vice versa, is achieved
through a pattern of thyristor firing. This systematic on/off scheme for the
thyristors is regulated by a firing angle, which is generated as part of the
controls of the station. Not only is the determination of this angle partially
dependent on the actual incoming signal, but its firing also depends on the
accuracy of the measurement of this signal. The less corrupted the
waveform, the greater the control scheme’s reliability and effectiveness.

This is the job of the PLL - to deliver this accurate and ideal signal.

There are many ways to implement a PLL, in both analog and digital
realizations [1,2]. One common application of PLLs in converter stations is
to use it to deliver a train of pulses to fire the thyristors at a frequency exactly
equal to the input signal frequency. So, regardless of any noise, harmonics
or disturbances, the speed and accuracy of the PLL determines the dynamic
and steady-state operation of the converter station. The PLLisa feedback
loop and the derivation of this feedback differentiates various PLLs. Three
different simulated control loops are studied and compared in this thesis.
The first one is referred to as a pulse frequency controller [3,4]. In this loop
any change is translated into a change in the actual frequency of the pulses.
The second one is similar, but the change has a primary effect on the the
phase of the pulses, hence it is referred to as a pulse phase controller [1].
These two are the more traditional control loops, while the third and last one
considered in this thesis is a new application of the dqz transformation on

a pulse frequency controller [5,6]. This transformation involves converting

)



the three-phase input, which means three values are needed to represent
the waveform at each instant, to a two-phase quantity which still retains the
relevant information needed. The dqz transformation has already been
used in machine control and can only be considered a novel approach with
regards to converter control. This transformation has superior immunity
to disturbances and harmonic distortion on the input, so it is ideal for

incorporation in a PLL.

These three control loops are imbedded into the controls of a simulated
weak hvde system to evaluate their performance. One drawback of weak
systems is the fact that it is more susceptible to voltage instability at the ac
bus, therefore making the job of the PLL more demanding. Complications
that might arise are the loss of synchronizing voltages, the high risk of
commutation failure and long recovery times of the system to any faults on
the line. We subject the system to various operating disturbances to test
their responses, and we compare the results of the three control loops under

consideration.

The simulation package used for this thesis is EMTDC, an electromagnetic

simulation transient analysis program designed in Manitoba [7].



2 .1 INTRODUCTION

Converters are used to transform the ac quantities to dc quantities (this
mode referred to as rectification), or vice versa (referred to as inversion).
They consist of an arrangement of switches which are periodically fired on
and off. The dc voltage, for example, is obtained by switching the proper ac
phase at the appropriate time. The firing or turn on instant is important and
incorrect firing can result in misfiring and the generation of
uncharacteristic harmonics into the system. Since the firing is dependent
on the incoming waveforms, this task is further complicated when they are
distorted or fluctuating. This is where a PLL, which is capable of
synthesizing the idealized version of its input, can play a major role in the

converter controls.

2 .2 CONTROLS OF A DC SYSTEM

Figure 2 .1 shows a simplified dc system with two converters, one located
at each end. At the sending end there is a rectifier which converts the ac

to dc. The opposite is done by the inverter, situated at the receiving end.
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dc line

: E

ac ac
sending end rectifier inverter receiving end

Figure 2 .1 : Line Representation of a DC System

The dc line is normally operated at its rated voltage for minimum power loss,
and therefore to keep it constant the dc current is the quantity used to
deliver the rated voltage. The load at the receiving end determines the
required current in the dc line to meet the required demand. Though the
controls of a converter regulate this current, it is only feasible for one of the
converters, either the rectifier or inverter, to be in charge of this current
control. To make best utilization of the line and have the least total reactive
power compensation, this task is usually assumed by the rectifier. The
other form of control, designated to the inverter, is constant extinction angle
control and is necessary to keep the inverter firing angle at an optimum
value. The characteristics of the rectifier and inverter can be seen in
Figure 2 .2 , the operating point being the intersection of the two curves [8].
Note that these are the idealized basic characteristics. Various other control

modes are superposed on this, such as current error control or voltage
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dependent current limits, which are not presented here. Similarly,
completely different philosophies are sometimes used — such as voltage

control on the inverter, etc.

Véde
.

constant

current control
rectifier
. constant
inverter extinction
- —— , ang?e control
operating
point
» Ide

Figure 2 .2 : Characteristics of a Rectifler and Inverter

2 .3 FIRING CONTROL

The objective of the firing angle controls of a converter station is to regulate
the firing angle. This angle is what makes possible the two modes of control
described in section 2 .2 . The dc current in the line is actually determined
by the firing angle, so current control is basically a matter of controlling this
angle. The firing of a thyristor has a certain permissible time period and
firing after this point causes a misfire, and commutation failure. Inversion

requires a larger firing angle and is therefore susceptible to this problem.
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After firing a thyristor there is an overlap angle, the time required for
commutation to actually occur, and the period after this is defined as the
extinction angle. It is important to note that the overlap angleis a function
of the dc current, and is not a set definite value. This is why the extinction
angle is a better and more important quantity to measure in an inverter as
opposed to the firing angle. By keeping this angle large enough there is
safety margin to avoid possible commutation failures. But it is also
desirable to have as low an extinction angle as possible in terms of
rﬁinimizing the total reactive power consumption. The need for a
compromise between these two issues suggests the suitability of the

converter for extinction angle control.

Along with delivering the load requirement and reducing the consumed
reactive power, another important goal of the firing controls is to minimize
the voltage drops at the ac terminals of the converter as its loading changes.
This last item becomes more important when talking about weak ac

systems, which exhibit a greater tendency towards this behavior.

2 .4 CHARACTERIZING A WEAK AC SYSTEM

The short circuit ratio (SCR) is often used as an indication of the strength
of the ac/dc system. It looks at the system impedance and is defined as the
ratio of the short circuit MVA at the ac busbar with the dc blocked, to the

dc rated power taken from the same busbar.

Short Circuit MVA
HVDC Power

SCR =




The SCR can also be defined as the ac system Thevenin admittance
expressed in per unit of dc power. If filters are taken into account the

effective short circuit ratio, ESCR, is obtained instead.

Short Circuit MVA — Filter MVA

ESCR =
HVDC Power

The SCR is a reflection of the strength of the system. If the SCR is low the
system is said to be weak, and conversely. ‘fthe SCRis high then the system
is considered strong. A weak ac system has a larger voltage fluctuation of
the ac bus for variation in the converter load. There is also more
susceptibility to harmonic distortion. Generally a system with SCR below
three is considered weak, while anything above three is considered to be a
strong system. The ESCR tells more abouta system’s steady state operation

and its susceptibility to overvoltages.

The controls of any converter station use the incoming signal as a reference
for firing the thyristors. Once the controls of a converter have determined
the desired firing angle, the firing pulse must be issued at the appropriate
phase angle after the the reference signal, in this case the thyristor valve's
voltage zero crossing. If there are variations in it, or it is easily disturbed,
then any measurements or controls depending on this waveform are also
affected. This is a greater problem in the case of an inverter because, in the
course of even a relatively small variation, the angle will be too small and
result in commutation failure. Depending on the controls and other existing

conditions, this could lead to repeated or sustained commutation failures.



2 .5 TYPICAL FIRING CONTROLS IN CONVERTERS

The first hvdce converters used individual phase control to fire the thyristors.
This involved determining the firing angle desired for each valve and then
either firing at the voltage level corresponding to this angle or after the
appropriate interval following the current zero crossing. In
Figure 2 .3 we can see how harmonic distortion can resultinincorrect firing
using the first level detection method. From the second graph in
Figure 2 .3 we can see how a frequency shift in the incoming waveform will
result in inaccurate firing using the voltage crossing as a reference — the

angle is no longer represented by the same time interval.

In rectification the firing angle is, by conventional theory, determined by the
required dc current. For inversion the angle for safe and efficient
commutation is often predicted based on the information derived from the
signal waveform. It is apparent that both this predictive control of the
inverter and the actual instant of firing are very much dependent on the
incoming signal. A corrupted or distorted waveform will cause incorrect
firing which can lead to the generation of non-characteristic harmonics for
which there are no filters provided. This can lead to severe harmonic

distortion and eventually even lead to blocking of the converter.

The need to be more independent of the voltage waveform, especially in light
of the trend towards weaker systems, saw the emergence of “phase locked
oscillators.” This became what is now referred to as a phase locked loop in
power systems applications. The basis of this control system is a voltage
controlled oscillator (VCO) which delivers a train of pulses at a frequency

directly proportional to its control voltage. The output of the VCO is aramp
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signal at its frequency which triggers the pulses. The various PLLs differ

only on the feedback method used to determine this voltage.

level firing

0O waveform o distorted waveform
A level detetector

time (s)

frequency shift
O fundamental frequency ¢ different frequency

time (s)

Figure 2 .3 : Firing Waveforms

2.5.1 Basic PLL Theory
The purpose of a PLL is to derive the fundamental waveform from the

incoming signal [9,10]. The PLLis a feedback loop, as shownin Figure 2 .4,
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consisting of three basic components :
(i Phase Comparator (PC)
(ii} Loop Filter
(iii) Voltage-Controlled Oscillator (VCO])

The incoming signal is the original signal, while the VCO outputs the
synthesized signal for comparison. It is important to note that the PLL
output does not have to be of the same form as the input. The PC does a
phase comparison on these two signals, which is possible independent of
the type of the inputs. For example, in converters, though the voltage
waveform is a sinusoid, the VCO outputs a ramp signal at the desired

frequency. This will be explained in greater detail later on.

V,
sin (ei)__..@ va ® (6;-9,) Ig‘c_alft:p °
1lter

£(6o)

v

vCO

Figure 2 .4 : Simple Phase Locked Loop

Before examining it in detail, let us try first to qualitatively see how a PLL
works. The VCO operates at a set frequency to begin with. The incoming
signal and this signal are compared to generate an error which is related to

the phase and frequency difference between these two. This error is then
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filtered, amplified and sent to the VCO. In this manner the VCO frequency
is forced to vary in a direction that reduces the frequency difference between
the VCO and the input signal. The feedback nature of the PLL causes it to
synchronize or lock with the incoming signal. At this point the VCO
frequency is identical to the input signal except for a finite phase difference.

This is necessary to shift the set VCO frequency to that of the input.

Another way to describe a PLL is to realize that the phase comparator is
really a multiplier circuit that mixes the input and VCO signal. This
produces the sum and difference frequencies. When locked the difference
frequency is zero, and the sum frequency is removed by the loop filter -

therefore, only the dc component is sent to the VCO.

2.5 .2 Loop Equations

When locked, i.e. the input signal and the VCO outputare synchronized, the
PLL can be approximated as a linear control system. The input signal has
a phase 6,(t) and the VCO output has a phase 8,(t), and assuming a linear
phase comparator its output will be proportional to the difference between

these two. So, allowing for the phase comparator gain factor of Kgq, we have

vg = Kg (0;—6,)

or, in the Laplace domain,

Va(s) = Ky [ 0:s)—00(s) ] .
This is filtered by the loop filter -~ noise and high frequency components are

suppressed. Representing the filter by the transfer function F(s), we can say

Ve(s) = F(s) Vals)
The VCO has a centre frequency which is altered by a factor
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Aw = K, v,
where K, is the VCO gain factor. Since the frequency is the derivative of the

phase, we could also say

dB,(t)
dt
Now, by taking Laplace transforms, we have

=K, v .

5 0,(5) = K, V(s) .
Therefore, the output of the VCO is

or, in other words, the VCO functions as an integrator in the feedback loop.
From this equation, we can see that the most determining factors on the
performance of the loop are the loop gain and the filter transfer function,
F(s). The above equations are used in the actual modeling of our PLLs,

discussed in Chapter 3.

2.5.3 Loop Terminology

In the above loop equations, we have analyzed the PLL for a locked state.
In this state if a frequency change occurs a phase error builds up and the
control mechanism of the PLL works to eliminate or reduce the error to a
minimum. There are three possible outcomes in this situation. The ideal
one is that the locked state is regained without the VCO skipping any cycles.
This means that the frequency deviation is within the “lock-in” range of the
PLL. On the other hand, if one or more cycles are skipped before re-locking,
the frequency is considered to be in the “pull-in” range. In the pull-in range
the loop is considered to have lost lock for some duration, no matter how

short, before reaching lock. Another common term in PLL literature used
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for either, or both, the lock-in and pull-in range is the capture range. If we
go beyond this frequency range the loop cannot regain lock, and is unable

to track the input signal.

So far we have only discussed a locked loop and the tracking of a PLL. One
usually starts in the unlocked state and the actual process of bringing a loop
into lock is termed acquisition. The ability of a PLL to obtain self-
acquisition is often considered a slow and unreliable process. For better
results PLLs usually rely on aided acquisition, which uses auxiliary circuits

to initially bring the loop into lock.
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3 .1 INTRODUCTION

The firing controls of a converter can be achieved by various methods, and
three are described in this thesis. The original PLL based implementation
was introduced by Ainsworth, and was called a phase locked oscillator. This
controller tries to reproduce and track the ac system frequency, and is
referred to as a pulse frequency controller. An updated version of this, called
a pulse phase controller, uses phase correction as a major component to
achieve this same objective. Another name for this method is pulse position
control. The last approach detailed for converter controls uses a phase
transformation to help provide the necessary information for accurate

firing.

3 .2 PULSE FREQUENCY CONTROL SYSTEM (PFC)

The first proposed PLL based control system for power systems applications
is classed as a pulse frequency controller and was developed by Ainsworth.

A block diagram of this is shown in Figure 3 .1.
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Figure 3 .1 : Block Diagram of Pulse Frequency Controller

The error signal for the rectifier is through dc current error, the difference
between the desired current and the measured current. For the inverter the
error is the difference between a set extinction angle and the one measured.
The final outcome from the VCO is a continuous train of pulses, whose
frequency is determined by the loop. The feedback error is used to modify
the frequency of the train of the VCO pulses. By manipulating the
frequency, not only is the desired frequency achieved, but speeding up and
slowing down the pulses causes the input phase to also be reproduced. In
Figure 3 .2 the outputof the VCO and the triggered pulses are shown - here
a phase change is shown to occur by a change in the pulse rate. This is
rather a simplified diagram, but conceptually shows how the frequency of

the PLL is modulated to create a change in the phase of the pulse rate.
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Figure 3 .2 : Pulse Frequency Controller

This train of pulses is further fed to a six-stage ring-counter which is
stepped cyclically through by the oscillator pulses. As each stage is
activated, a START pulse is sent to the next thyristor in the sequence. This
will mean that each successive START pulse will normally occur in 60
degree intervals. Similarly, the STOP pulse for each thyristor is issued two
stages later, meaning the duration a thyristor remains on is 120 degrees.
In a twelve pulse scheme we have two six-stage ring-counters or pulses with

30 degree intervals, but the algorithm is the same.

Figure 3 .1 at first sight appears to be different from the PLL shown in
Chapter 2 (Figure 2.4). However, it should be noted that opeas is actually
the phase difference between the ac voltage zero crossings and the issue of
a firing pulse (i.e., the VCO output). Hence the omeas Signal can be treated
as the phase error in the loop. Similarly if the ypath is selected, Ymeas is also

an indication of the phase error.

For the constant current loop, the usual mode for a rectifier, the amplified

difference between the current reference and the measured dc line current
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gives rise to a firing angle order. This order is compared to the actual firing
angle and this difference provides the feedback control. So, unlike the
conventional PLL, we are synchronized to the input signal with a phase shift
corresponding to the firing angle order. This actually simplifies the
electronics of the firing controls by using this offset as a reference point,
instead of the zero crossings of the input ac voltage. Note that this difference
is first fed through a proportional-integral (PI) controller to filter the input.
In this manner, both the instantaneous and average error are taken into
account. The PI controller is analogous to a loop filter,mentioned in the

basic PLL theory.

To visualize the working of this control loop, let's first consider steady state
operation. The amplified error gives the oscillator a frequency that issues
pulses at a constant rate. These pulses will have a certain phase with
respect to the ac system voltage, which corresponds to the firing angle. This

angle will be the one necessary to result in the required dc current.

Now, to see how the loop is an effective control mechanism, let’'s say the
current increases. In this case, the amplified difference in the feedback loop
will cause the oscillator to slow down, thus delaying the pulses and thereby
increasing the firing angle. Increasing the firing angle will eventually reduce
the current to the required value. The system, by shifting frequency will
actually, in the end, only change the phase in this case, the desired result.
So, the system settles down to the same current, the same amplified
difference and the same oscillator frequency as in steady state, but now has

a different firing angle.

In extinction angle control, the reigning state for an inverter, the negative

feedback is provided by the extinction angle error. This is the difference
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between the measured angle and the extinction angle setting. Again a PI
controller is used to filter the “raw” error. The setting is determined as a
compromise between allowing a margin of safety for the firing angle and that
of minimizing the consumption of reactive power. The feedback is not of a
constant nature, but actually has an impulse type behavior if the extinction
angle falls below some specified value, a chosen minimum extinction angle.
Therefore, if this condition is met a quick change to the phase is applied to
avoid the extinction angle from falling into the danger zone of a possible

commutation failure.

In this model of a pulse frequency controller the choice of feedback error is
not predetermined, rather a minimum selection circuit makes this decision.
In the case of a rectifier the firing angle error is smaller, so it is the controlling
quantity, while the opposite is true of an inverter. Of course, usually the
rectifier is designated in charge of current control and therefore the inverter
has a lower current setting at which it is required to in current control. This
will naturally force the firing angle error to be greater in an inverter than the
extinction angle, making the choice of minimum error apparent. Butwe can
see how transition from one mode to another control mode is accomplished
by considering the case of an inverter where the dc line current drops below
that of the current setting. At this point the minimum selection will
change-over from extinction angle to firing angle error, and the inverter will

now go into rectification.

There is a feedback signal from the minimum selection that is not shown
in Figure 3 .1 . After choosing, a difference error is generated between the
selected one and both the firing angle error and the extinction angle error.

This is fed back to the original error signal, before selection. This keeps both
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signals at a similar level, making transition from one type to the other

smoother.

3 .3 PULSE PHASE CONTROL SYSTEM (PPC)

The next controller is basically a revised or modified version of the PFC. The
difference is that the greatest change is in the phase of the VCO pulses. In
this case the loop has a component that causes an instantaneous position
shift, proportional to a change in the firing angle order; with a slower
mechanism for catching any phase or frequency variations. An example of
a phase change is shown through the VCO output and the subsequent
pulses in Figure 3 .3 . The proportional change is determined in such away

as to cause the catch-up in phase needed in one time step.

VCO

Signal

pulse

1 0.0 [0 N %
G < Pk i
it ot 4o w1t

Figure 3 .3 : Pulse Phase Controller

As noted, the chief difference between a pulse phase controller and a pulse
frequency controller is in the error management. Here the firing order
differential is used to instantaneously change the VCO phase, rather than
the frequency, for a step change in the actual firing angle to force immediate

correction. In both types of controllers the error has both a proportional and
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an integral component - in this case the proportional gain plays a much
larger role. There is a slower acting auxiliary circuit, which is similar in
principle to the pulse frequency controller, that aids in following any phase
and frequency variations. The PPC detailed in this thesis is based on the
controller used on the Manitoba Hydro Nelson River Bipole Il System, and

is shown in Figure 3 .4 .

I rd
+
PI
T B Feed
Imeas Forward
o,
select min |—2% 1
3 I | Ring
Ymeas + T_ Pl Veo Counter
PI ameas
Pulses

Yord

Figure 3 .4 : Block Diagram of Pulse Phase Controller

The error is generated with a slight variation to the earlier method. The
minimum selection is done between the current error and the extinction
angle error, both already fed through independent PI controllers, and this
error produces a firing angle order. As explained before, the firing angle
order is used two ways. First the change in the firing angle order is used
in a feed forward type of control to initiate immediate correctionin the phase
of the VCO - an open loop correction. This is an immediate response to any

change in the system'’s demands. And also in an auxiliary method to correct
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any residual error, by means of another PI controller, that will reflect any
frequency change. For this error signal the order is compared to the

measured firing angle to generate the desired response.

3 .4 dgz CONTROL SYSTEM (dqz Controlier)

The last phase locked loop that was studied uses a d-q-z (or dqgz)
transformation to generate the error to control the firing pulses, as
illustrated in Figure 3 .5 . The three phase voltages are transformed to two
phases, the direct quadrature axes voltages, Vy and Vp, according to the

following equations :

2 1 1
V. =2V, =V, —=V,
a= 3 a7 3Ty

—""—(Vb c)-

&‘

The error signal is derived using

error = Vg sin@ — Vg cosé
where 6 is the phase output by the VCO. The error signal is acted upon by
a PI controller — then sent to the VCO to generate a signal to send to the
sine-cosine oscillator, which outputs the sinf and cos@ signals that make

up the feedback to the phase voltages, Vo and V3.

This method gives a continuous phase measurement based on the
assumption of balanced ac voltages. Since the actual input signal generates
the error signal it is an ongoing process. Of course this technique, as
mentioned, relies on a balanced harmonic free three phase input, and will

not be mathematically effective otherwise. Though, if unbalanced, it will
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still track the positive sequence. But we have to realize that a system with
ac voltage imperfections will also affect the other methods of firing control
- and though compromised, each system will still function. The error signal
is simply the sine phase difference between Vg and € . If the voltages are
unbalanced the error is an oscillating quantity whose average represents
the phase difference between the positive sequence fundamental voltage
and the VCO output 8 . In steady state the error is forced to zero thereby
forcing 6 in phase with the fundamental ac waveform. The VCO output
6 can then be compared with the required firing angle and a firing pulse is

issued when 8 = Ogq.

Sawtooth Generator

PI Regulator
3 phase Va crror‘.___.§ _____
Va o— - |
- —y s | | K
X ¥ l | 1s
Vb o—» @ I
- _ K2
vB K-
V¢ o— o e
2 phase cos 8
PSS
sin 6 oscillator

Figure 3 .5 : Block Diagram of dqz Controller

One difference to note between this control system and the previous two is
the method of firing. Both the PFC and PPC use the output from the VCO
to trigger the firing pulses at each periodic zero-crossing of the ramp signal.
This method issues the pulses when the ramp reaches a specified level

corresponding to the ordered firing angle.
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4 .1 INTRODUCTION

The PLL based firing control systems are tested and compared on a
simulated system. The test system is based on the Nelson River
Transmission System, and was modeled using EMTDC. We compare the
controllers by monitoring their responses to various operating
disturbances. Though the system has many parameters that can be
compared for evaluation, in the thesis three are chosen as giving enough of
an indication of the results: the de current and firing angle at the rectifier
end, and the extinction angle at the inverter end. They seem to reflect how

each control loop behaved in each situation.

Each loop was tuned for optimal operation. Thus the comparison presented
here is based on the assumption that each controller has been tuned to its

best overall performance.

4 .2 NELSON RIVER TRANSMISSION SYSTEM

In the Figure 4 .1 is a schematic representation of the modeled system. By
having a star-star and a star-delta valve group connected on each side we

have a 12-pulse system. Only one 12 pulse valve group in one pole was
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modeled. Representation of the other pole was achieved through a dc
current source of 1.8 kA, which is 1 per unit (p.u.)} rated current, which is

incident on the node between poles.

On the dc side the filters, smoothing reactor and simple by-pass switch
model were included. The line itself is represented by all four conductors
using distributed parameters. The conductors not incident at the pole being
studied were terminated in their smoothing reactors and dc filters. Since
dc currents involve no steady-state coupling effects, we can terminate the
other conductors to ground. This assumes that no simultaneous voltage

changes take place on the unmodeled converter during any of our tests.

The ac system models include the ac filters, the convertor transformers and
a simple Thevenin equivalent circuit that is designed to provide the required
short circuit capacity and the proper damping at two specified frequencies.
The rectifier has a SCR of 3.0 at 85 degrees, while the inverter has a SCR
of 2.5 at 80 degrees.

0.75H  800KM double circuit
([ 6

dc line

SEAC Sysiem

RE AC Systzm

AC filters
L1, 13, HP

Figure 4 .1 : Nelson River Transmission System Model
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4 .3 TEST SIMULATIONS

For the tests the three quantities are plotted to show the responses of the
controllers. The dc current is measured in kiloamps. The firing angle,
which can also be referred to as alpha as used in our results, is in degrees
in the graphs. Similarly the extinction angle is referred to as gamma and
is in degrees. The gains of each of the firing control systems were optimally
adjusted to give the best overall response for the disturbances considered.
The higher level controls, i.e. current and angle orders, were assumed to be

the same for all cases.

4.3.1 Reference Current Drop

This test is very easily implemented in the program by just changing the
current order at the rectifier, which is the converter station in current
control. The current order was reduced by 50% from the original order for

a 500 ms period and then returned to 100% status thereafter.

From Figures 4.2-4.4 we can see some of the results graphed from this test.
The response of the PFC is the slowest and has the greatest overshoot from
the desired values. The PPC and the dgz Controller are similar, but both the
firing and extinction angle curves lock faster and tighter for the dqgz
Controller. The firing angle response to the order is almost instantaneous
in these cases. For the dgz Controller we can see its superior ability to lock

onto the order for both angles so accurately.

4.3 .2 Extinction Angle Setting Change

Changing the setting of the desired extinction angle at the inverter is similar

to the lowering of the reference current in ease of implementing in the
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program. The nominal extinction angle setting of 18 degrees was lowered

to 15 degrees for 800 ms, and then returned to the original setting.

This is a delicate test in some ways since we are testing it on a weak system.
Lowering the setting could raise the risk of commutation failure and make
recovery difficult. By decreasing the extinction angle the need for reactive

power consumption is reduced.

From Figures 4.5-4.7 we can see some of the effects of this test. It is not
a major disturbance, so its overall effect is not of great magnitude, unless
it leads to commutation failure. The dc current response shows the dqz
Controller as the best, while the PPC and PFC follow, in that order. Again
we can note the excellent tracking and accuracy of the dgz Controller in the
angle graphs. Another point is clearly seen in the graphs for this case — the
proportional nature of the control of the PPC. Though response is fast,

settling down is not exact as slight oscillations continue to take place.

4.3.3 Single Phase Fault at Rectifier

To accomplish this type of fault the actual network simulated system was
slightly altered. At the ac bus each line was connected to ground through
avery large resistance, basically not changing the system in any discernable
way at this point. When a fault is desired on any line this resistance can
simply be reduced to a very low value that basically is a short between the
line and ground. Toremove the fault situation we just go back to the original
value of the resistance. Note that when removing the fault, analogous to
opening a switch, one would want to do it on a current zero. The faulted

condition is induced for 50 ms in this test.
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In this case the graphs, shown in Figures 4.8-4.10, show the dgz Controller
to be the most effective. It has the fastest response and reaches steady state
operation first. In the PFC the dc current reaches zero and has slowest

recovery.

4 .3 .4 Single Phase Fault at Inverter

This is implemented in the same manner as the fault at the rectifier, but at

the inverter end.

Similar to earlier, Figures 4.11-4.13 show the dqz Controller with the best
response. In this case the PFC has a very poor recovery compared to the

other two.

4.3.5 Three-Phase Fault at Rectifier

Almost exactly the same as the one-phase fault, except shorting out all three

lines. This creates a balanced line-to—ground three-phase fault.

From Figures 4.14-4.16 we can see the response to this fault. All three
controllers exhibit similar behavior. In this case the settling down time is
very comparable. The dqz Controller does manage to bring the system to
values close to equilibrium the fastest, as demonstrated in the dc current

response curve.

4 .3.6 Three-Phase Fault at Inverter

Again this is implemented in the same way as the rectifier fault, but at the

inverter end.

These graphs, Figures 4.17-4.19, show a very similar result as that of the
single phase fault at the inverter. They show the dqz Controller as having
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the best recovery, but the PPC being very close in response. The PFC has

the worst results, with the slowest recovery and large overshoot.

4 .3.7 DC Line Fault at Rectifier

Again we alter the system configuration to accommodate a dc line fault. At
the dc bus we connect a large resistance to ground, which is switched to a
negligible resistance to initiate a fault. The fault, in this case is sustained
for 50 ms, after which point the resistance is increased so that the short
again effectively disappears. In this situation a slightly different method
was used during the fault — we specify the firing angle order after realizing
the fault has occurred. This is done in the program, it was chosen to
recognize the fault at 10 ms after its occurrence. At this point, the firing
angle order was left as specified for 10 ms, which would be the maximum
value. After this we ramped the order down to the minimum value, the fault

being considered cleared.

For this case, Figures 4.20-4.22, the fastest recovery is seen to be by the dgz
Controller. Though the PPC has a fast response, the recovery is quite a bit
slower, and is more comparable, when taking into account the point where
the system is considered settled down, to the PFC. But the PFC has a very
large overshoot, and takes a long time to even come close to the normal

operating conditions.

4 .4 AC VOLTAGE AT THE INVERTER BUS

Another system quantity of interest for comparison is the ac voltage at the
bus. Table 4 .1 shows the overvoltages measured for the various tests just

discussed. Control of this value is another criterion of a effective control
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system. The values seen here do not give any clear-cut best choice out of
the three controllers, and they are relatively comparable based on overall

response in this category.

Table 4 .1 : AC Overvoltages at the Inverter

Test # PFC PPC dgz Controller
4.3.1 211.7 kV 211.8 kV 215.8 kV
4.3.2 194.3 kV 192.6 kV 192.3 kV
4.3.3 220.2 kV 228.3 kV 208.7 kV
4.3.4 224.3 kV 219.8 kV 221.1 kV
4.3.5 225.8 kV 232.7 kV 211.8 kV
4.3.6 204.3 kV 212.9 kv 214.5 kV
4.3.7 325.3 kV 318.2 kV 292.3 kV

4 .5 DISCUSSION

When analyzing the responses of the three PLLs to various operating
conditions we have to consider different factors. The speed of recovery,
settling down time, overshoots of different variables, etc. In our
comparisons, the best performance was seen to be exhibited by the dqz
Controller. The PFC was seen to be generally the slowest at recovery, and
also had the greatest overshoots. Since operational disturbances are often
more the case of locking onto the phase of the input signal than the actual
tracking of frequency variations, the PPC shows how incorporating this into
the original PFC improves the performance dramatically. When comparing

the PPC and the dqz Controller, they are almost comparable in behavior.
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The controls of a converter station are seen to use the incoming waveforms
as a reference signal. Any distortions in the input can cause an incorrect

or inefficient control system — particularly a problem in weak ac systems.

Phase locked loops are a method of “cleaning” up the input and tracking any
changes in frequency or phase of this signal. Incorporating PLLs into
converter control is one way of limiting the direct dependence of the firing
controls on any references signal fluctuations. In this thesis three such

systems are described and compared.

When trying to evaluate different controllers there are many parameters
that can be discussed. The dc current response shows the dqz controller
as the superior method. This valueis a good indicator of the system’s power
recovery. One wants to regain steady state as soon as possible with a
minimum of overshoot. Also, since the firing controls regulate the firing and
extinction angles, these are also important to look at. The dgz Controller
does the best job, with the PPC being quite comparable. The PFC is seen

to be the poorest method in our tests.

Though our results have shown the dqgz Controller to be the best, the PPC
to be close and the PFC the least effective, it is important to note that all
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three controllers did manage a satisfactory recovery of the system to the

various disturbances.
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