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ABSTRACT

Chlorinated anisyl metabolites (CAM), synthesized by lignin-degrading fungi,
are found in ecologically significant concentrations in the environment (De Jong et al.
1994; Gribble 1994; Swarts et al. 1994). A bacterium capable of growth on the most
common CAM; 3,5-dichloro-para-anisyl alcohol (DCA), as sole carbon and energy
source was isolated from an enrichment culture derived from commercial compost.
When this non-motile, Gram-negative rod, designated UW103, was grown on defined
media containing DCA an increase in the chloride ion concentration of the medium was
observed equal to 2.1 moles chloride per mole DCA consumed. This ratio suggests that
UW103 dechlorinates DCA at both the 3 and 5 positions. Complete mineralization of
DCA was observed as measured by 87% CO, liberated from the respiration of DCA-
utilizing cells.

Cells of strain UW103 are coccobacilli, 1.5x1.2 pum, while growing on DCA and
longer, slightly curved bacilli, 4x1.2 pm, when grown on nutrient rich media.
Biochemical testing and the results of the Biolog® identification system placed UW103
in the genus Burkholderia. The 16S rRNA gene was amplified and the nucleotide
sequence of nearly the entire gene was determined. Comparison to the RDB database
reveals the greatest sequence homology (97.8%) to the species B. graminis. Burkholderia
sp. UW103 is capable of growth and dechlorination of DCA at concentrations up to 1.5
mM, above which DCA is toxic to the bacterium. The DCA-degrading strain is not

capable of utilizing a variety of chlorinated benzoates and phenols, including the

it



fungicide pentachlorophenol, as sole carbon and energy sources; however, UW103 is
capable of growth on the chlorinated herbicide dicamba.

The catabolism of DCA begins with the oxidation of the alcohol component to
the aldehyde and acid forms and proceeds through 3-chloro-para-anisic acid, detected in
the media of DCA-metabolizing cells. Further degradation and mineralization of DCA
may occur through protocatechuic acid, a common precursor to aromatic ring cleavage.
The presence of DCA and other naturally chlorinated compounds in nature have provided
selective pressure on microorganisms to utilize them. The pathways that degrade
naturally chlorinated compounds are a likely source of dehalogenases, from which
enzymes with xenobiotic-degradative capacity could evolve. The presence of DCA and
DCA-degraders in agricultural soil and commercial compost, detected in this study,

indicate the ubiquity of DCA-degrading and dechlorinating pathways.
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CHAPTER 1

INTRODUCTION

Chlorinated aromatic compounds are often used as pesticides, dielectrics, flame
retardants, and preservatives due to their chemical and biological inertness. Their
biological recalcitrance however often lead to the accumulation and persistence of toxic
chemicals in the environment. It may be surprising to note that despite the presence of
chlorinated man-made chemicals in the biosphere for less than a century, often less than
50 years, microbes have evolved the ability to utilize them. The presence of naturally
produced chlorinated aromatic compounds in the environment suggests that microbes
have had the opportunity to develop mechanisms to dechlorinate and biodegrade these
compounds for much longer. Catabolic pathways that utilize natural chlorinated aromatic
compounds may be the source of genes involved in the biodegradation of recently
introduced chlorinated xenobiotics.

The higher fungi, Basidiomycetes, have a widespread capacity for organohalogen
biosynthesis. At least 68 genera from 20 families of the orders Agaricales and
Aphyllophorales are known to synthesize halogenated organic compounds (De Jong and
Field 1997). Chlorinated anisyl metabolites (CAM) are the most common halogenated
aromatic compounds produced by at least 18 genera belonging to 4 families of white-rot

fungi of the orders Agaricales and Aphyllophorales. The CAM, 3,5-dichloro-para-anisyl



alcohol (DCA), is biosynthesized in the highest concentrations in liquid media and forest
litter colonized by Hypholoma sp. (De Jong et al. 1994; Swarts et al. 1997).

The physiological function of DCA likely includes a role in lignin degradation.
Lignin, second to cellulose, is the most abundant component of plant tissues (Lehninger ,
Nelson and Cox 1993). Although a large fraction of earth’s organic carbon is tied up in
lignin, very few organisms are capable of its degradation because it is difficult to
hydrolyze and stores little energy. Basidiomycete fungi are the only organisms capable of
lignin mineralization in wood and soil (Hatakka 1994; Steffen, Hofrichter, and Hatakka
2000). These fungi secrete lignin-degrading peroxidases, which non-specifically catalyze
the oxidation of aromatic components of lignin, utilizing H>O, as electron acceptor
(Linko 1992). DCA acts as a recyclable substrate for aryl alcohol oxidase, generating
H;O, for lignin-degrading peroxidases (De Jong, Field and De Bont 1994).

The ubiquity of lignin and basidiomycete fungi in the environment suggest that
CAM are also widespread in nature. In fact, high concentrations of CAM’s can be
dete(;ted in close vicinity to fruiting bodies of Basidiomycete fungi. However, just
outside CAM-producing Basidiomycete colonies, halogenated organic compounds were
not detected suggesting biodegradation or biotransformation of CAM (De Jong and Field
1997). Possible environmental fates of DCA include mineralization by soil microbes and
biotransformation yielding chlorinated phenols. The resultant chlorinated phenols may
undergo biotoxification to dioxins or detoxification by incorporation into chlorohumus
(De Jong et al. 1994).  Verhagen et al. (1998c) demonstrated that under anaerobic
conditions, DCA is biotransformed by methanogenic studge to yield 3,5-dichloro-4-
hydroxybenzyl alcohol (DHB). DHB is oxidized then decarboxylated to 2,6-

dichlorophenol. Dechlorination was not observed in the study by Verhagen et al. (1998c).



DHB is also abiotically dimerized, forming bis(3,5-dichloro-4-hydroxyphenyl)methane.
Verhagen et al. (1998a) also studied the aerobic degradation of DCA. Under aerobic
conditions DCA was rapidly and completely mineralized by incubations with active
sludge from a sewage treatment plant, beech forest soil, oak forest soil, and pine forest
soil. However, the release of inorganic chloride was not observed, neither in anaerobic
incubations with VFA-grown methanogenic sludge, nor in lignin-adapted methanogenic
sludge (black liquor derived from wheat straw).

This thesis hypothesizes the existence of aerobic bacteria capable of DCA
dechlorination and mineralization. The isolation and characterization of bacteria with the
capacity to utilize CAM as sole sources of carbon and energy was attempted. The
catabolic pathway of DCA degradation and the mechanism of DCA dechlorination was
explored. A DCA-degrader isolated was characterized for its ability to degrade

xenobiotic chlorinated aromatic compounds.



CHAPTER 2

LITERATURE REVIEW

2.1 Anthropogenic Chlorinated Aromatic Compounds in the Environment

Chlorinated aromatic compounds constitute one of the most prevalent and
recalcitrant classes of xenobiotic chemicals (Haggblom 1992). The chemical and
biological inertness of chlorinated aromatic compounds makes them useful as pesticides,
dielectrics, flame-retardants, plasticizers, and preservatives. Their toxicity and inertness,
however, leads to their accumulation and persistence in the environment. The toxicity,
bioconcentration, and ubiquity of chlorinated aromatic compounds in the biosphere have
caused considerable public concern over possible health effects.

Polychlorinated biphenyls (PCB) are used as dielectrics in electrical equipment
and as plasticizers in paints, plastics, rubber and many other applications [1] (Figure 2-1).
Greater than 1 billion kilograms of PCB were produced in North America, until
production ceased in 1977 (Minister of Supplies and Services Canada 1984). Although
no longer manufactured in Canada or the U. S., many products containing PCB are still in
use. As a result of their widespread use and poor biodegradability, PCB are present
throughout the environment. Concentration of PCB in contaminated soil can reach one
part per thousand (Di Toro, Zanaroli, and Fava 2006; Demnerova et al. 2005). PCB in

contaminated waters adsorb to sediments in fresh water (65 ppb; Fish and Principe 1994)



and marine environments (3.4 ppm; Tay et al. 2003). Atmospheric PCB also exist; high
mountain lakes, receiving all water from precipitation, contain 20-200 ppt PCB (Vilanova
et al. 2001). Although the PCB concentration in sea water can be as low as 7 ppb (Gillan
et al. 2005), PCB concentrate in marine animals in a process known as bioconcentration.
As a result, PCB are widely found in the aquatic food supply; concentrations in seafood
have been measured at 1.6-25 ppb (Johansen et al. 1996; Foran et al. 2005A and 2005B;
Sjodin et al. 2000; Fries 1995). PCB have also been found in free-range chicken and eggs
(Schoeters and Hoogenboom 2006). Startling findings have shown that human breast
milk and human placenta typically contain 1.8 ppb and 5.0 ppb PCB, respectively
(DeKoning and Karmoaus 2000).

Pentachlorophenol (PCP) is used widely across North America, mainly as a
fungicide on wood to preserve utility poles, fence posts, boats, furniture and log cabins
[2] (Figure 2-1). During the peak of PCP production in the mid-1970s, approximately
90x10° kg was produced annually worldwide (Nilsson et al. 1974). In North America,
greater than 400,000 metric tonnes of PCP were distributed in the environment between
the years 1970 and 1995 (Lorber et al. 2002). As a result, PCP is widespread in the
environment a