
Exploring Redundancy in Neural Networks:
Pruning by Genetic Algorithm & Filter Energy

by

Saša Janjić

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2018

c© Copyright 2018 by Saša Janjić



Thesis advisor Author

Parimala Thulasiraman

Neil Bruce Saša Janjić

Exploring Redundancy in Neural Networks:

Pruning by Genetic Algorithm & Filter Energy

Abstract

Much work has been done on making convolutional models larger and more robust,

but recent works have shown there is significant redundancy, suggesting that they are

vastly more complex than necessary. The goal of this thesis is to explore the degree

to which the representational redundancy can be reduced. I contribute a weight

pruning genetic algorithm, an energy-based filter pruning algorithm, and provide

insights on model compression and structure. Evolved weight pruning of MNIST

trained multilayer perceptrons and convolutional networks showed that in some cases

72.4% and 89.6% of layer parameters can be pruned without retraining, and yield

improvements in test set accuracy. Energy-based filter pruning showed that ImageNet

trained VGG and ResNet models also exhibit significant redundancy, with VGG layers

incurring an average 3.2% loss in accuracy after 9.83% compression, and ResNet layers

incurring an 3.30% loss after 87.94% compression for over one–third of the layers.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Background 7
2.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Works 16

4 Eliminating Redundancy 22
4.1 Weight Pruning Genetic Algorithm . . . . . . . . . . . . . . . . . . . 22

4.1.1 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Tournament Selection . . . . . . . . . . . . . . . . . . . . . . . 27
Two Point Crossover . . . . . . . . . . . . . . . . . . . . . . . 27
Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



iv Contents

Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Energy-based Filter Pruning Algorithm . . . . . . . . . . . . . . . . . 29

4.2.1 Energy-based Filter Pruning Criteria . . . . . . . . . . . . . . 30
4.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 33
5.1 Genetic Algorithm Weight Pruning . . . . . . . . . . . . . . . . . . . 33

5.1.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 34
Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 35
Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Accuracy and Compression . . . . . . . . . . . . . . . . . . . . 40
Heatmap of Trial Solutions . . . . . . . . . . . . . . . . . . . . 44
Histogram of Trial Solutions . . . . . . . . . . . . . . . . . . . 45
Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Convolutional Network . . . . . . . . . . . . . . . . . . . . . . 50
Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 50
Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Accuracy and Compression . . . . . . . . . . . . . . . . . . . . 55
Heatmap of Trial Solutions . . . . . . . . . . . . . . . . . . . . 60
Histogram of Trial Solutions . . . . . . . . . . . . . . . . . . . 60
Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Energy-based Filter Pruning . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 VGG-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Model compression . . . . . . . . . . . . . . . . . . . . . . . . 65
Effect on Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 67
Interaction with Dropout . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 ResNet-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Model compression . . . . . . . . . . . . . . . . . . . . . . . . 73
Effect on Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 74
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Other Approaches 78
6.1 Iterative Pruning without Retraining . . . . . . . . . . . . . . . . . . 78
6.2 Evolving Replacement Filters . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusion 80

8 Future Work 82

A Supplementary Population Figures 84

Bibliography 97



List of Figures

2.1 Multilayer Perceptron Network . . . . . . . . . . . . . . . . . . . . . 10
2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Histogram of Initial Weights . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Population Fitness Distribution per Generation . . . . . . . . . . . . 37
5.3 Population Fitnesses per Generation . . . . . . . . . . . . . . . . . . 39
5.4 Population Accuracy & Compression per Generation . . . . . . . . . 41
5.5 Heatmap of Final Weights . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Top Fitness Solution Histograms per Trial . . . . . . . . . . . . . . . 46
5.7 MLP Trial Final Fitnesses . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Histogram of Initial Weights . . . . . . . . . . . . . . . . . . . . . . . 51
5.9 Population Fitness Distribution per Generation . . . . . . . . . . . . 52
5.10 Population Fitnesses per Generation . . . . . . . . . . . . . . . . . . 54
5.11 Population Accuracy & Compression per Generation . . . . . . . . . 56
5.12 Heatmap of Final Weights . . . . . . . . . . . . . . . . . . . . . . . . 60
5.13 Top Fitness Solution Histograms per Trial . . . . . . . . . . . . . . . 61
5.14 CNN Trial Final Fitnesses . . . . . . . . . . . . . . . . . . . . . . . . 63
5.15 VGG Compression Ratio per Energy Threshold . . . . . . . . . . . . 66
5.16 VGG Accuracy & Loss per Energy Threshold . . . . . . . . . . . . . 67
5.17 Dropout with 1% Energy Pruning . . . . . . . . . . . . . . . . . . . . 70
5.18 Dropout with 10% Energy Pruning . . . . . . . . . . . . . . . . . . . 71
5.19 ResNet Compression per Energy Threshold . . . . . . . . . . . . . . . 73
5.20 ResNet Accuracy per Energy Threshold . . . . . . . . . . . . . . . . . 75

A.1 MLP Population Fitnesses per Generation . . . . . . . . . . . . . . . 85
A.2 MLP Population Compression per Generation . . . . . . . . . . . . . 86
A.3 MLP Population Accuracy per Generation . . . . . . . . . . . . . . . 87
A.4 CNN Population Fitnesses per Generation . . . . . . . . . . . . . . . 88
A.5 CNN Population Compression per Generation . . . . . . . . . . . . . 89

v



vi List of Figures

A.6 CNN Population Accuracy per Generation . . . . . . . . . . . . . . . 90
A.7 VGG-16 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.8 ResNet-101 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Tables

5.1 Summary of Initial and Final Population Fitness . . . . . . . . . . . . 53
5.2 Summary of Initial and Final Population Compression & Accuracy . 58
5.3 Effect of Varying Rates of Dropout on Model Accuracy . . . . . . . . 69
5.4 ResNet Example Trend Exceptions . . . . . . . . . . . . . . . . . . . 76

vii



List of Publications

• Redundancy in Convolutional Neural Networks: Insights on Model Compres-

sion and Structure. 2018 International Joint Conference on Neural Networks

(IJCNN), Rio de Janeiro, Brazil, July 8-13, 2018, pp. 3601–3608.

viii



Acknowledgments

I would like to begin by expressing my gratitude to my patient advisors for enabling

my pursuit of this degree and the self-improvement it necessitated. To my parents

and my partner, a heart-felt thank you for keeping the pressure on, and supporting

me along the way. Finally, a special thank you to my friend Joe Tang for taking the

time to go through my raw writing with a fine-toothed comb and providing precise,

constructive feedback and corrections.

ix



This thesis is dedicated to those who stressed or were stressed by me.

x





Chapter 1

Introduction

There has been a clear trend towards networks of complexity and efficiency, across

an ever expanding field of applications [LeCun et al., 2015]. The reason for the trend is

that these larger, more dense networks have higher accuracy than prior, more shallow

models. To understand why deep, dense networks are more successful at learning, it

is important to understand how error can be measured.

The probability of error in a given network can be measured by Minimum Error

Entropy [de Sá et al., 2013, fig 6.23]:

f̂ (ek) =
1

nh

n∑
i=1

K

(
ek − ei
h

)
(1.1)

In Equation 1.1, {n, h, K, ek, ei} represent the number of neurons in the network,

bandwidth, kernel, output error, and input error respectively. From this, we can see

that the minimum error entropy is inversely proportional to the number of neurons

and the network bandwidth. As a result, the probability of error is inversely pro-

portional to the number of neurons and bandwidth. Therefore, a greater number of

1



2 Chapter 1: Introduction

highly connected neurons gives lower error as the error gradient has more dimensions

to descend across, results in faster learning, if provided sufficient data. However, as

the number of weighted connections in the model increases, so does the likelihood of

overfitting the data, hurting generalizability of the model.

This trend has given rise to many very deep, dense networks, especially in areas of

image processing and general classification tasks. Furthermore, the necessity of being

able to properly utilize this ever increasing density has brought about more effective

and sophisticated regularization techniques and initialization strategies.

A recent trend has been the deployment of neural networks on mobile devices for

tasks such as image processing and speech recognition [Howard et al., 2017; Wu et al.,

2016; Lei et al., 2013], where a balance between accuracy and portability is required.

As such, while greater accuracy can be achieved by larger networks, they become

less and less accessible due to device limitations in terms of space, computational

load, energy usage, and latency [Han et al., 2015b; Howard et al., 2017]. There are

currently a multitude of competing strategies available to help inform the selection

of good starting parameters, initialization techniques, and regularization techniques

to encourage optimal use of available neurons, increase the rate of convergence, and

combat overfitting [Srivastava et al., 2014; Cohen et al., 2016; LeCun et al., 2015]; all

working to achieve greater utilization of learned connections, commonly referred to

as parameters.

Convolutional Neural Networks (CNN) have become immensely popular for image

and pattern recognition tasks, catalyzed by several highly successful works leading

to widespread adoption and interest [LeCun et al., 1998a; Krizhevsky et al., 2012;



Chapter 1: Introduction 3

LeCun et al., 2015]. These networks work by applying learned filters over their input

plane rather than having fixed weights for each input, vastly reducing the number of

necessary parameters. At the core of many CNN are Rectified Linear Units (ReLU),

introduced by Hahnloser et al. [2000], which are currently the most popular activation

function [LeCun et al., 2015]. This is due to ReLU’s similarities to biological neurons,

relatively low compute cost, and insusceptibility to the nefarious vanishing gradients

problem, where the error gradient diminishes to the point where the parameters can

no longer be updated, that other activation function are susceptible to [Glorot et al.,

2011]. However, ReLUs too suffer from an issue where the units may die during

training.

A dead unit occurs when a very large gradient cripples the weights on the con-

nections to the point where the unit can never be activated and therefore can not

be updated [Clevert et al., 2015]. As a result, some filters in convolutional layers

may be regressed into oblivion over the course of training. It follows that any down-

sampling layers would almost certainly ignore these highly atrophied filters, as any

input signal convolved with a low-energy filter will result in a low energy output.

As such, the low-energy filters become easily redundant in the face of higher-energy

non-orthogonal filters.

In traditional training approaches, there exist no mechanisms to dynamically in-

crease or decrease the number of neurons per layer. With fixed neuron count per

layer there can be three cases for the representation captured in each layer:

(i) The layer contains too few neurons to fully model the input.

(ii) The layer contains the ideal number of neurons to fully model the input.



4 Chapter 1: Introduction

(iii) The model contains an excess of neurons, beyond what is necessary to model

the input.

The ideal network for a given dataset presents itself as a technical implausibility

due to the immense complexity of the networks unless every aspect is controlled for

and randomness eliminated. For this reason, case (ii) is seldom experienced beyond

handcrafted toy problems. Therefore, in this thesis I will instead focus on cases (i)

and (iii).

In case (i) where the network contains too few neurons, the general strategy has

been to simply add more neurons. There have been some works related to the transfer

of learned features across networks [Yosinski et al., 2014] and task retraining [Mallya

and Lazebnik, 2017]; however, the problem of adding neurons during or after training

remains largely open. Such ex post facto approaches restrict the network in that they

incorporate the new neurons into the existing representational hierarchy rather than

engaging in a plasticity related process. In general, case (i) is challenging as it requires

knowledge of what information is to be captured per level, which in itself requires

intimate and tested knowledge of the data, network architecture, and chosen hyper-

parameters. In practice, is it simpler to train another network with more parameters

to model the problem. A näıve method to set the number of parameters is to add

neurons or layers until the training becomes impractical or begins to negatively affect

model performance. A consequence of the above solution presents us with case (iii).

While a large number of neurons may have been useful for learning, an excess of

neurons will, in the best case do nothing. In the worst case, these extra neurons will

be a source of noise or interfere with the activations of subsequent neurons. Where in



Chapter 1: Introduction 5

all cases there exists the possibility of suboptimal representation and use of neurons,

case (iii) is unique in that there are neurons within the model known to have a non-

beneficial contribution. Removing such neurons yields a reduction in network size,

realized as a reduction in compute and memory footprint when using the model.

The contribution of this work is to explore the degree of redundancy, potentially

exhibited in any of the above cases, in commonly used convolutional networks, and

the consequences of their removal. To this end, I propose two pruning algorithms:

a genetic algorithm-based weight pruning algorithm to target the fully connected

layers, and an energy-based pruning strategy for the convolutional layers. From the

experiments performed, both algorithms show fascinating results, indicating that both

fully connected layers and convolutional layers can be compressed substantially across

a variety of model architectures.

The genetic algorithm was applied to models trained on the MNIST handwritten

digit dataset, and showed compression of over 70% and up to nearly 90% of layer

parameters can be pruned without retraining while also yielding a mild improvement

in test set accuracy. The energy-based filter pruning algorithm was applied to models

trained on the much more intensive ImageNet dataset, and showed that these models

also exhibited significant redundancy, incurring as much as 90% compression in over

1/3 of layers or near 50% compression in 2/3 of layers with only a single digit loss in

model accuracy per layer. In the analysis of the results, I present further insights on

model structure and the redundancy found in these models.

The thesis is organized as follows: I present a comprehensive literature survey,

establishing the conceptual foundation in chapter 2, and examine relevant candidate



6 Chapter 1: Introduction

convolutional neural networks and key related works in chapter 3. Building off this

contemporary literature, I introduce and explain my two proposed pruning strategies

in chapter 4. This is followed by empirical results of the general applicability of the

presented algorithms in chapter 5, with other approaches of limited success discussed

in chapter 6. Finally, I reflect on insights gained from the trials and present concluding

remarks in chapter 7, and discuss ongoing and future works in chapter 8.



Chapter 2

Background

In this chapter I summarize the core concepts on which the related works and my

proposed techniques are built. I present an overview of genetic algorithms, multilayer

perceptrons, and convolutional neural networks. Following this, I describe datasets

employed for my experiments: MNIST and ImageNet.

2.1 Genetic Algorithm

Genetic Algorithms (GA) are an optimization strategy within the family of evo-

lutionary algorithms, wherein solutions are generated and evolved with biologically

inspired operators against a specific fitness criteria that determines the success of

each potential solution [Mitchell, 1998]. They are a very powerful and flexible global

optimization tools which can be used to traverse large, turbulent solution spaces in

far reaching applications.

7



8 Chapter 2: Background

Populations can be initialized either randomly, or with domain specific informa-

tion, distributions, or known solutions. The algorithm follows the template of opera-

tions below, where each phase is performed for each individual within the population:

Selection, Crossover, Mutation, and Evaluation. The pseudocode is given in Algo-

rithm 1.

Algorithm 1 Basic Genetic Algorithm Pseudocode

1: function Genetic Algorithm
2: population = initialize population()
3: fitnesses = evaluate(population)

4: while not end condition do
5: partners = selection(population)
6: new population = crossover(population, partners)
7: new population = mutation(new population)
8: new fitnesses = evaluate(new population)
9: replacement indices = new fitnesses > fitnesses

10: population[replacement indices] = new population[replacement indices]
11: fitnesses[replacement indices] = new fitnesses[replacement indices]

12: return population[best index(fitnesses)]

After the population is Initialized and Evaluated based on the fitness function,

the first phase is Selection where, for each individual, a partner is selected to perform

Crossover with. This phase generally entails a favourable selection from a subset of

individuals, based on their fitness scores. During Crossover each individual and their

selected partner exchange a subset of their chromosomes. Following this, Mutation

modifies the individual’s chromosome in a random or targeted manner. The proba-

bility of Crossover and Mutation occurring is a tunable parameter, determined by the

goal of the algorithm or the state of the population. For example, a more sophisti-

cated genetic algorithm can tune the rate of Crossover and Mutation to escape local



Chapter 2: Background 9

minima or breed out less successful genetic material. Lastly, the newly generated

individuals are again Evaluated with the fitness function; the new individuals can

unilaterally or conditionally replace existing individuals. The process is continued

until a suitable termination condition is reached, such as reaching a particular fitness

(or other metric) score, iterating for a set number of generations, iterating for a given

period of time, among others.

The steps of the GA produce a powerful and flexible global optimization tools

which can be used to traverse large, turbulent solution spaces in far reaching appli-

cations.

2.2 Multilayer Perceptron

Multilayer Perceptrons (MLP), a form of Artificial Neural Network (ANN), are

models inspired by a simplified interpretation of biological neural networks, com-

posed of layers of nodes (artificial neurons) connected in an all-to-all forward-feeding

manner. These weighted connections between nodes act as synapses connecting the

neurons, propagating information through the network based on the node’s activation

function. The weighted outputs of the nodes from the previous layer are summed or

otherwise combined and passed through a transformation function as a way to map

the inputs to a fixed range. Take for example a hyperbolic tangent activation function,

which produces an output in the range of -1 to 1 for any input. During the learning

process of the ANN, these weighted edges are optimized, and are often referred to as

the parameters of the model. A multilayer perceptron is presented in Figure 2.1.



10 Chapter 2: Background

MLPs, while inspired by the brain and its general intelligence, only excel in narrow

applications. One important limitation of MLPs is in their ability to scale when

attempting one-to-one correspondence to data with a large number of inputs, for

example image data [LeCun et al., 1998a]. MLPs are, however, used as part of many

convolutional networks to map the convolutional layers to another, a new plane, or

to the output plane. Within the context of convolutional neural networks, MLPs are

often referred to as Fully Connected Layers.

Figure 2.1: Multilayer Perceptron Network

Figure sourced from Wiki [2018]



Chapter 2: Background 11

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a form of forward-feeding neural net-

work, that operate similarly to MLPs – neurons receive an input from units they are

connected to, sum their input, pass the input through an activation function, and

provide output. Where MLPs are fully connected between layers, CNNs utilize a

form of weight sharing through convolutional layers. Convolution layers consist of

multiple filters which, rather than being statically connected to their prior layer, are

convolved over the output of the prior layer. These layers allow CNNs to process data

without the need for significant preprocessing or normalization, unlike the fixed-size,

relatively invariant inputs expected by MLPs [LeCun et al., 1998a,b]. Generally af-

ter the filters perform their convolutions, subsampling is applied to reduce the size

of the filter outputs; max or mean pooling is commonly used, where the respective

value is selected from a cluster of neurons. Following the convolutional layers, the

learned features are mapped to the output with a MLP consisting of a series of fully

connected layers.

Figure 2.2: Convolutional Neural Network

Figure sourced from Wiki [2017]



12 Chapter 2: Background

For the purposes of this work, I will focus on readily available pretrained networks

of well established convolutional architectures. This was done to ensure a common,

accepted, and well understood baseline for the experiments presented in chapter 5.

Described below are two highly popular and generalizable convolutional network ar-

chitectures: VGG1 and ResNet2.

2.3.1 VGG

A key work that showcased the importance of depth in contemporary convolu-

tional network design was Very Deep Convolutional Networks for Large-Scale Image

Recognition (VGG) [Simonyan and Zisserman, 2014]. Breaking from the top network

designs of the time, VGG opted for many layers of smaller 3x3 filters and showed the

utility and success of such configurations. VGG achieved state of the art performance

in both classification and localization in ImageNet Challenge 2014 [Russakovsky et al.,

2015], showcasing convolutional networks from 11 to 19 layers in depth [Simonyan and

Zisserman, 2014].

VGG’s success lies not only with its accuracy, but more importantly its high

degree of generalizability; this makes VGG a fitting architecture for compression

experiments. The 16-layer model was selected for testing as it was as performant as

the deeper 19-layer model, but at a lower computational cost.

1Pretrained VGG16 model [Simonyan and Zisserman, 2014] acquired from https://gist.

github.com/ksimonyan/211839e770f7b538e2d8
2Pretrained ResNet-152 model [He et al., 2016] acquired from https://github.com/facebook/

fb.resnet.torch/tree/master/pretrained

https://gist.github.com/ksimonyan/211839e770f7b538e2d8
https://gist.github.com/ksimonyan/211839e770f7b538e2d8
https://github.com/facebook/fb.resnet.torch/tree/master/pretrained
https://github.com/facebook/fb.resnet.torch/tree/master/pretrained


Chapter 2: Background 13

2.3.2 ResNet

Deep networks are superior for their ability to integrate features of varying degrees

of abstraction [LeCun et al., 2015], but there are several difficulties associated with

their training. These difficulties can be handled by normalized initialization and

intermediate normalization layers, but inescapably an increase in depth causes an

increase in the training error. Deep Residual Networks (ResNet) were introduced

by He et al. [2016], and used shortcut connections to efficiently pass layer outputs to

downstream layers, allowing for very deep models [He et al., 2016]. These connections

were added as a means of skipping layers without accumulating additional parameters

nor increasing the computational complexity. The original publication introduced

ResNet on ImageNet and CIFAR-10 datasets, showing easier optimization and lower

training error than other plainly stacked networks.

As a result of its high degree of performance, generalizabilty, and immense depth,

ResNet is another excellent candidate for filter pruning. At the time of its publication,

the 152-layer ResNet model was the deepest network presented on ImageNet, but due

to its simplified structure, had a lower complexity than VGG [He et al., 2016].

2.4 Datasets

In this section I provide an overview of two highly prominent datasets used in the

field of computer vision: MNIST and ImageNet. Both datasets are used for image

classification, where models are evaluated based on their performance in outputting

the correct label for each sample image.



14 Chapter 2: Background

The MNIST handwritten digit dataset is a staple of modern machine learning.

At its introduction, the dataset provided a task that was easy for humans to classify,

but difficult for machines to classify. The dataset remains relevant through provid-

ing a compact and well studied model performance benchmark to test and compare

contemporary vision models.

ImageNet is a more recent and far larger dataset, featuring full colour images

for many thousand object categories. ImageNet presents itself as a general purpose

computer vision dataset, and has inspired the design of new architectures and learning

methods to meet the challenge.

2.4.1 MNIST

The MNIST dataset [LeCun et al., 1998a] is a collection of handwritten digits,

created for the purposes of image processing and machine learning. Based on the Na-

tional Institute of Standards and Technology’s (NIST) handwritten character dataset,

the dataset provides 10 classes of labeled data of the digits from 0 to 9 collected from

high school students and employees across the United States of America. The dataset

has 60 000 samples in the training set with 1 000 samples for the test set. The sam-

ples are presented as 28 by 28 pixel greyscale images, based on the original 20 by 20

pixel black and white NIST images. As the number of classes is small, the error is

generally tracked as total classification error rather than per class; state of the art

models currently achieve error rates as low as 0.23% [LeCun and Cortes].



Chapter 2: Background 15

2.4.2 ImageNet

The ImageNet dataset [Russakovsky et al., 2015] is a collection of labeled object

images, created to use for visual object recognition software research. This dataset

was first introduced by Princeton University’s Department of Computer Science in

2009 at the Conference on Computer Vision and Pattern Recognition (CVPR) by

Russakovsky et al. [2015]. The dataset has over 14 million third-party images, labelled

in over 20 000 categories. For each category, 90% of the images are randomly allocated

to the training set and the rest to the testing set. During use of the dataset, the

samples are often resized to a resolution of 256 by 256 pixel. Commonly, model

performance is evaluated via two metrics of accuracy: Top-1 and Top-5. In the

case of Top-1, the predicted class with the strongest response is compared with the

sample’s label, while for Top-5 a prediction is considered correct if the sample’s label

is in the top 5 predicted classes.



Chapter 3

Related Works

In this chapter I present and contrast works related to pruning or, more generally,

works pertaining to the elimination or optimization of model parameters.

There have been many influential works which used a Genetic Algorithm to op-

timize the structure of neural networks and improve their success. One particular

work of interest was Whitley et al. [1990], where a form of GA structure optimiza-

tion was performed, not to apply compression or eliminate redundancy, but to aid

in learning. Through their experiments the authors showed that training could be

vastly improved though evolved connectivity. For a set of basic problems, it was

demonstrated that randomly initialized networks were unable to reliably converge to

a passable solution, but with a Genetic Algorithm reconnecting weights, the modified

networks converged rapidly. This was accomplished through a modified GA coined

GENITOR, which, rather than the offspring replacing the parents in the population

as would occur in a standard GA, the offspring replace the lowest fitness population

members. GENITOR II further improved upon the performance of its predecessor

16



Chapter 3: Related Works 17

by employing several smaller populations and swapping individuals to improve the

diversity of the populations. This multi-population method allowed each population

to function independently and converge quickly within their own search space. This

has the further benefit of guarding the populations from getting trapped in a local

minima, as only high fitness individuals from each population are exchanged. The

key advantage of the evolved approach was that the GA was less likely to become

trapped in local minima, as it does not need to follow the error gradient as gradient

descent does [Whitley et al., 1995]. While the results of the GENITOR algorithms

were stronger than other approaches, including backpropagation, the algorithms were

excessively slow due to the search and sorting of the population involved. To com-

pound the issue, there are a multitude of possible solutions for any given network so

crossover can disrupt these solutions when mating individuals [Whitley et al., 1995].

An early work on weight pruning was Optimal Brain Damage (OBD) [LeCun

et al., 1990], which correctly anticipated the trend in neural networks towards larger

networks of greater size and structure. As established earlier, more parameters makes

the problem easier to learn, however, there is a greater chance of overfitting and,

consequently, reduced generalizability [LeCun et al., 1990; Reed, 1993]. The optimal

solution, therefore, is one that favourably balances error and complexity [LeCun et al.,

1990]. Unfortunately, it is not obvious which parameters should be deleted, nor what

the impact will be to the network. Furthermore, whatever the pruning criteria, it

must be able to scale effectively to service large networks. The solution provided by

LeCun et al. was to prune by saliency, defined as the change in the objective function

(loss) incurred by that parameter’s deletion. To keep the solution scalable, saliency



18 Chapter 3: Related Works

was estimated by analytically predicting the perturbation of the parameters with a

Taylor series expansion; the goal was to find the set of parameters whose deletion

would incur the lowest increase in error. The process for a given model was to train

until the network reached a minima, compute and sort parameters by salience, and

prune the parameters by setting them to 0. The results presented in the work showed

that between 30–60% network wide pruning can be expected with minimal loss in

accuracy.

Shortly after the publication of Optimal Brain Damage, Hassibi and Stork pub-

lished a similar approach titled Optimal Brain Surgeon (OBS). The key difference

being that OBS uses a more general, and computationally intensive, definition of

saliency to more accurately estimate the error incurred by each parameter’s deletion.

In a follow up work, Hassibi et al. performed additional comparisons between OBD

and OBS, and found in both methods that retraining reintroduces training set noise

in highly pruned networks, hurting generalizability [Hassibi et al., 1994].

Following the introduction of convolutional neural networks [LeCun et al., 1998a],

and their implementation [Simard et al., 2005] and popularization on Graphics Pro-

cessing Units (GPU) [Krizhevsky et al., 2012] there were a number of works whose

focus was around the pruning and effective use of parameters in convolutional layers.

One such work was Learning both Weights and Connections for Efficient Neural

Networks by Han et al.. As the authors explain, while modern neural networks are

very powerful, they consume considerable storage, bandwidth, and compute resources

– well beyond the resources available to mobile devices. Furthermore, training cannot

improve network architecture as it is fixed before training starts. To address this, the



Chapter 3: Related Works 19

authors introduced a pruning method based on weight threshold, removing neurons

when their input or output connections summed to 0. The method followed an

iterative process of pruning and retraining, to compensate for error introduced by

pruning. Notably, the rate of dropout was adjusted based on the degree of pruning in

the layers. Experiments run on MNIST-trained convolutional networks were reduced

to 1/9 their initial size and reduced to 1/3 their initial compute cost. Unfortunately,

the retraining took 173 hours, far outstripping the initial network training time of 75

hours.

Similarly, work has been done to explore and reduce redundancy in networks used

for transfer learning – a popular approach to achieving state-of-the-art accuracy by

leveraging existing, large pretrained networks by retraining them for other, often

smaller, datasets or tasks. Though the accuracy is excellent in the specialized do-

mains the networks have been repurposed towards, they are often excessively resource

intensive and far more complex than necessary [Molchanov et al., 2016]. To remove

the excess parameters from the model during transfer learning, Molchanov et al. im-

plemented a greedy pruning strategy with retraining. The process is to first train a

model until it converges, then iterate pruning with retraining, and repeat until the

target trade-off between accuracy and inference performance is met.

A variety of pruning criteria were evaluated including minimum weight, activation,

mutual information, and Taylor series from OBD, modified Taylor series, average

percentage of zeros, random, and reinitialization. Across all the trials, the most

successful pruning criteria were the Taylor expansion-based methods. The results

show that the process can be very beneficial to various network architectures used for



20 Chapter 3: Related Works

transfer learning, including AlexNet, VGG-16, and R3DCNN, on a variety of datasets

and hardware; the degree of pruning and accuracy loss varied per dataset.

Building conceptually upon prior transfer learning works, PackNet [Mallya and

Lazebnik, 2017] presented a very interesting twist on network pruning. Rather than

removing weights to optimize a network for a given task, the authors presented a

way to reuse the pruned weights to learn new tasks. First, 50–75% of the lowest

absolute magnitude weights of all convolutional and fully connected layers are set to

0; the weights are frozen and the model retrained to compensate for their removal.

Next, the pruned weights are randomly initialized and used to learn a new task or

dataset, while freezing the weights of the previously learned tasks. This process

allows multiple datasets to be learned in a single network with performance near to

the accuracy achievable with separate networks. This method does not remove or in

any way reconnect or modify the structure of the network; rather, layers are sparsified

and the pruned connections are set aside and used to learn for new tasks. A follow-

up work introduced Piggyback networks, which showed it possible to learn new tasks

by learning binary masks for the weights of the host network, without the need for

modifying the weights through retraining [Mallya and Lazebnik, 2018].

While these pruning techniques can help networks, even state-of-the-art architec-

tures, a key limitation is that while the redundant parameters are removed, retraining,

especially when iterative, allows the network to further optimize the learned features.

However, this comes at a heavy storage and compute cost, where the pruning methods

presented above often take several times longer to prune their networks than was re-

quired to train them. Additionally, to perform retraining, the full dataset is required.



Chapter 3: Related Works 21

Datasets, like the networks used to learn them, are ever-growing in resolution, number

of samples and categories, and underlying complexity.

For the purpose of this thesis, I focus on the degree to which networks can be

pruned without retraining. This allows the methods proposed in chapter 4 to be

applicable to a wide range of models with low compute cost, and requires only the

test-set of each dataset. However, while the redundant representations within the

model may be removed, the willful omission of retraining does not permit any further

optimization of the network structure.

An alternative, perhaps complimentary, approach to post-training pruning is Neu-

roevolution. There are many works which attempt to generate the network architec-

ture during training, such as Evolving Neural Networks through Augmenting Topolo-

gies [Stanley and Miikkulainen, 2002], and more recently Neural networks with differ-

entiable structure [Miconi, 2016]. These works, though highly interesting, are outside

the scope of this thesis.



Chapter 4

Eliminating Redundancy

For the task of general weight pruning in artificial neural networks, I propose two

techniques: a Weight Pruning Genetic Algorithm algorithm for Multilayer Percep-

trons, and an Energy-based Filter Pruning strategy.

4.1 Weight Pruning Genetic Algorithm

Weight pruning in artificial neural networks has been well studied for decades

[LeCun et al., 1990; Hassibi and Stork, 1993; Mallya and Lazebnik, 2017], including

the use of genetic algorithms for pruning [Whitley et al., 1990] and lower bit precision

[Han et al., 2015a]; many of these works are focused around reducing the memory

footprint of the models. Existing regularization techniques can ensure the network

better utilizes available neurons during training, but the exact number of neurons and

network topology for a given dataset are unknown. As a result, there will inevitably

be some degree of redundant or vestigial structure incurred during training. The goal

22



Chapter 4: Eliminating Redundancy 23

is to explore the nature of redundancy in neural networks, and contribute insights for

network compression and model structure.

I propose a Genetic Algorithm (GA) with custom pruning mutators to serve on

Multilayer Perceptron networks, outlined in Algorithm 2. GA was chosen as the basis

of this proposed algorithm as it is a strong global heuristic search optimization with a

long history of robust solution generation in a staggeringly wide range of applications.

4.1.1 Fitness function

It is necessary to define a clear fitness function to describe the quality of a solution.

To measure solution quality for a given network, I considered two aspects to base the

fitness function around: how well the model can classify the input, and how many

weights are needed to achieve its degree of accuracy. Put simply, the desired outcome

is to compress a given network as much as possible, without significant expense of

classification accuracy. To facilitate this trade-off, the fitness function can simply be

defined as the weighted sum of the overall model Accuracy across the test data set,

and the ratio of pruned weights, expressed as the Compression Ratio. The equation

of this notion is presented in Equation 4.1, with α and β representing the weights of

the components of the fitness function.

fitness = α ·∆Accuracy + β ·QCompression (4.1)

Change in accuracy is defined as the change in the correct classification of the

sample, the True Positive rate (TP ), with respect to the total number of samples in

the test dataset. Each candidate pruned solution (TPpruned) is compared against the



24 Chapter 4: Eliminating Redundancy

accuracy of the initial starting network (TPstarting). For each layer weight’s (w), the

compression ratio is defined as the number of weights equal to zero (δwi,0) divided by

the total number of weights in the layer. The fitness function is presented in full in

Equation 4.2.

fitness = α · TPpruned − TPstarting

|Samples|
+ β · 1

|w|

|w|∑
i=0

δwi,0 (4.2)

The initial layer starts at 0 fitness, having 0% change in accuracy and 0% compres-

sion. The fitness function component weights α and β can be used to set the desired

trade-off between accuracy and compression. For example, with α and β both set to

1.0, a one percent gain in compression at the expense of a one percent loss in accuracy

would have a fitness of 0, equal to that of the initial layer weights. In this example,

a 1:1 trade-off is highly undesirable as it is easier to add more weights than it is to

use them efficiently; therefore, a high weight on accuracy is suggested such that the

GA does not trade accuracy for compression easily.

Figure 4.1 illustrates the 0-fitness lines for varying accuracy weights α with a

fixed compression weight β of 1.0. Compression ratio is on the X-axis, with change in

accuracy from the initial layer and global accuracy shown on the left and right sides

of the Y-axis, respectively.

The objective function of the GA is to maximize the score of the model classifica-

tion accuracy and ratio of eliminated weights. This approach is applicable to linear

operators found in all common network architectures, and allows the balance between

compression and accuracy to be tuned to meet the needs of the application.



Chapter 4: Eliminating Redundancy 25

Figure 4.1: Fitness Function

Starting Accuracy (0 Fitness)
0 Fitness
0 Fitness

0 Fitness

0 20 40 60 80 100
Compression (%)

14

12

10

8

6

4

2

0

Ch
an

ge
 in

 A
cc

ur
ac

y 
(%

)

Accuracy Weight
100
 50
 10 84

86

88

90

92

94

96

98

100

Gl
ob

al
 A

cc
ur

ac
y 

(%
)

4.1.2 Algorithm

In this work, the chromosomes represent the binary usage of weights in the target

layer of the network. This is to say, if there are n weights connecting two layers of the

model, each chromosome is a binary vector of length n where each element represents

the use or non-use of its corresponding weight. Algorithm 2 shows the pseudocode of

the algorithm, and detailed explanation of each step is presented as follows:



26 Chapter 4: Eliminating Redundancy

Algorithm 2 Weight Pruning Genetic Algorithm

1: function GetFitness(population)
2: fitnesses = array(|population|)
3: for index = 1, |fitnesses| do
4: model′ = copy(model)
5: model′[target layer].weight = population[index]
6: total valid = test(model′, test data)
7: p = population[index]
8: prune ratio = sum(p == 0)/|p|
9: fitnesses[index] = α · total valid+ β · prune ratio

10: return fitnesses

11: function EvolvePruning(starting weights)
12: population = initialize population(starting weights)
13: fitnesses = GetF itness(population)

14: for generation = 1,max generations do
15: partners = tournament selection(population)
16: population′ = crossover(population, partners)
17: population′ = prune lowest weights(population′)
18: population′ = prune random weights(population′)
19: fitnesses′ = GetF itness(population′)

20: for x where fitnesses′ > fitnesses do
21: population[x] = population′[x]
22: fitnesses[x] = fitnesses′[x]

23: return population[argmax(fitnesses)]

Initialization

To initialize the population of the genetic algorithm, each individual (excluding

the first) is set to the starting weights of the layer with a desired percentage of the

weights zeroed. The undamaged starting weights are retained in the first individual

of the population to allow the solutions to rebuild critical weights that may have

been lost in the initialization. This state of the population initialized with damaged

weights and one undamaged individual is considered to be Generation 0. The call to



Chapter 4: Eliminating Redundancy 27

initialize the population can be seen in the EvolvePruning function on line 12.

Evaluation

After the initialization of the population, the fitness scores of each individual are

calculated per the fitness function described in subsection 4.1.1. The fitness function

is presented through the GetF itness function on lines 1–10, and the call to score the

initialized population occurs on line 13 in the EvolvePruning function of Algorithm 2.

Following this, the algorithm begins the iterative cycle of generating new individ-

uals through selection, crossover, mutation, and evaluation; these steps can be seen in

order in the EvolvePruning function on lines 15 to 19. Additionally, crossover and

mutation occur per user-defined probabilities, tuned to the network the algorithm is

set to prune.

Tournament Selection

For each chromosome in the population, m other chromosomes are randomly se-

lected, and the one with the highest fitness chosen.

Two Point Crossover

Per selected chromosome pair, two indices are selected and the information of the

chromosomes is swapped to produce offspring for the next generation. For example,

given two individuals {i1, i2} of length l, and two sorted unique indices {j, k} between

0 and l, the offspring of the crossover would have chromosomal information 0–j from

i1, j–k from i2, and k–l from i1.



28 Chapter 4: Eliminating Redundancy

Mutation

Two pruning specific mutator functions are employed in this algorithm, the first to

specifically target low magnitude weights, and the second to randomly prune weights.

The mutators are unbounded and always target the remaining non-zero weights.

These functions are employed to modify chromosomes to help avoid or escape lo-

cal minima, and introduce diversity to the population. The mutators are presented

on lines 17 and 18, respectively.

• Weakest weight termination

Per chromosome, the weight of the lowest magnitude is set to zero. This mu-

tator can be used to aggressively prune by a user-defined percent of the lowest

magnitude; for example, to prune all weights which are less than the lowest

magnitude weight plus 10%.

• Random weight termination

Per chromosome, the values of random non-zero weights are set to zero. This

mutator can also be used to prune by a user-defined rate; for example, to prune

10% of the remaining non-zero weights.

Iteration

After selection, crossover, and mutation have occurred for all individuals in the

population for the current generation of solutions, each new individual is evaluated

to determine their fitness. Additionally, I have used elitism, a strategy where the

best solutions are carried over to the next generation [Mitchell, 1998]. This is done to

ensure the solutions generated do not degrade in fitness through detrimental crossover



Chapter 4: Eliminating Redundancy 29

or mutation, and to guard against loss of the best solution. This can be seen on

line 20, where new individuals of greater fitness replace their respective indices in

the population. This process is repeated until reaching the user-desired number of

generations, and the highest-fitness solution is returned. The chromosomes of this

solution are the best found replacement weights for the targeted layer.

4.2 Energy-based Filter Pruning Algorithm

Filter pruning of convolutional neural networks has garnered a fair deal of at-

tention recently, though many of these works are focused on pruning for the sake

of reduced compute and memory footprints. From the related works, we know that

redundancy is either pruned away [Han et al., 2015a,b; Molchanov et al., 2016] or

trained to perform a new task [Mallya and Lazebnik, 2017]. Common to all of these

works is that they employ a significant amount of retraining, often greatly exceeding

the amount of time spent training the model on the dataset initially.

The purpose of this algorithm, as with the Weight Pruning Genetic Algorithm,

is to provide a pruning solution which can be applied to any modern network with

convolutional layers, without the need for any specialized knowledge of the model

or data. As contemporary convolutional models, such as VGG and ResNet, are

very deep, the pruning criteria needs to be fast to allow for rapid assessment of the

model’s redundancy. A further encumbrance of larger models is, especially when

trained on very large datasets, that the time to test the accuracy can be quite long

on its own, spanning several minutes. For this reason, a genetic algorithm approach

was not attempted as the fitness function would necessitate performing one such



30 Chapter 4: Eliminating Redundancy

test set evaluation per member of the population. In light of these constraints, a

straightforward energy-based filter pruning criteria is presented below.

4.2.1 Energy-based Filter Pruning Criteria

To assess the energy of each filter in each convolutional layer, a two dimensional

linear frequency sweep, or chirp, is used to test each filter. The chirp is generated

for each layer based on the expected input size set corresponding to the input im-

age dimensions the network was trained against, and therefore contains all possible

frequencies the filter of that layer could respond to: from 1 to 1/n, where n is the di-

agonal resolution. As the chirp tests all frequencies a filter can respond to, the energy

of the filter output signal can be used as a measure of filter utility. Specifically, filters

with low energy are the prime targets for pruning, due to their minimal contribution.

Using energy as an indicator of contribution allows for the evaluation of filters in

a way that does not require any knowledge of the filters, their arrangement in the

model, or of the dataset the model was trained on. The equation of discrete-time

signal energy [House, 2004], is used as the filter pruning criteria, and is presented in

Equation 4.3.

E∞ =
∞∑

n=−∞

|x(n)|2 (4.3)

4.2.2 Algorithm

The pruning algorithm relies principally on two function, the pseudocode of which

is provided in Algorithm 3.



Chapter 4: Eliminating Redundancy 31

The first function, PruneModel, iterates over the convolutional layers of the

model, and over the list of pruning energy thresholds that define the trials. This

function is presented on line 14 of Algorithm 3. To evaluate the degree of redundancy

in model’s convolutions layers and the effects of their pruning, each layer was pruned

and evaluated independently. This can be seen on line 22 where the model is reloaded

after pruning and evaluating each convolutional layer.

The second function, PruneF ilters, performs the filter pruning of the desired

convolutional layer at the desired energy threshold. This function is presented on line

1 of Algorithm 3. Rather than specifying the number of filters to eliminate or target

ratio, the pruning is based on the filter’s contribution to the layer’s output.

First, the layer to be pruned and the subsequent convolutional layer are selected,

as seen on lines 2,3. Next, a chirp of appropriate size, based on the dimensions of the

previous layer’s output, is generated (line 4). This chirp is passed through the target

layer and the energy of each filter’s output is measured and normalized by the size of

the layer filters (5–7). After sorting the filter energies, the contribution of each filter

is given by its part of the cumulative sum energy (9). Pruning is then performed by

eliminating all filters that fall below the desired energy threshold (10,11). The weights

in the subsequent convolutional layers that connected to the eliminated filters of the

pruned layer are also removed (12). The model is returned and the iteration of the

pruning procedure continues.



32 Chapter 4: Eliminating Redundancy

Algorithm 3 Energy-based Filter Pruning Algorithm

1: function PruneFilters(model, layer idx, next layer idx, energy threshold)
2: layeri = model[layer idx]
3: layeri+1 = model[next layer idx]

4: chirp = GetChirp(layeri.width, layeri.height)
5: filter responses = layeri.forward(chirp)

6: filter energies = GetEnergy(filter responses)/(layer.width · layer.height)
7: filter energies = filter energies/Sum(filter energies)

8: sorted filter energies, sorted filter indices = Sort(filter energies)
9: cumsum = CumSum(sorted filter energies)

10: valid filters = sorted filter indices[cumsum > energy threshold]

11: layeri = layeri[valid filters]
12: layeri+1.output plane = layeri+1.output plane[valid filters]

13: return model

14: function PruneModel(model filename)
15: model = load(model filename)
16: conv indices = model.get convolutional layers()
17: energy thresholds = [0.01, 0.02, 0.05, 0.10, 0.20, 0.50]

18: for t in energy thresholds do
19: for i = 1, |conv indices| do
20: model = PruneF ilters(model, conv indices[i], conv indices[i+ 1], t)
21: loss, accuracy = EvaluateModel(model)
22: model = load(model filename)

23: return model



Chapter 5

Results

Results for the Genetic Algorithm Weight Pruning and Energy-based Filter Prun-

ing algorithms introduced in chapter 4 are presented in this chapter. The algorithms

were implemented in the Lua programming language and used the Torch scientific

computing framework [Collobert et al., 2011]. All experiments were run on a Nvidia

GeForce GTX 1080 Ti graphics cards through the framework. The datasets were

stored on a solid state disk to ensure short access times.

5.1 Genetic Algorithm Weight Pruning

To evaluate the proposed weight pruning algorithm, described in section 4.1, the

algorithm was applied to two sample networks trained on the MNIST handwritten

digit data. As described in subsection 2.4.1, the goal of the models is to best clas-

sify the presented 32x32 pixel handwritten digits. The first model prepared for the

evaluation of the algorithm was a simple Multilayer Perceptron. The second model

33



34 Chapter 5: Results

is a simple Convolutional Neural Network where the weight pruning algorithm was

applied to the Fully Connected layer following the convolutional layers.

The following sections present and provide analysis of the results obtained from

the proposed weight pruning algorithm. Details of the model structure and training

parameters are provided for each model type in their respective sections.

5.1.1 Multilayer Perceptron

A simple Multilayer Perceptron (MLP) will be used as a basic example with which

the weight pruning algorithm can be evaluated. As described in section 2.2, MLPs are

layers of nodes fully connected in an all-to-all manner with nodes of the subsequent

layer via weighted edges. For this experiment, a three layer neural network was

employed, where the first layer had 1024 nodes, each corresponding to a pixel of

the input image. The second layer contained 2048 nodes with a Hyperbolic Tangent

(TanH) activation function, and the final layer contained 10 nodes, one node per

output class. The MLP model was trained with 60 000 images from the dataset with

stochastic gradient descent and a learning rate of 0.05 per sample; 10 000 images were

reserved for testing. The trained network had an overall accuracy of 95.4% on the

training data set, and 94.6% on the test data.

The Weight Pruning Genetic Algorithm was applied to the weights of the second

layer of the MLP. In the sections below, I describe the initialization of the GA and

present analysis of the algorithm performance through population fitness, accuracy,

and compression ratio. Following this, the final solutions of each trial are analyzed

and related to the fitness function defined in subsection 4.1.1.



Chapter 5: Results 35

Initial Conditions

To begin the analysis I first investigated the histogram of the second layer’s

weights.

Figure 5.1: Histogram of Initial Weights

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

200

400

600

800

Fr
eq

ue
nc

y

0.00%

0.98%

1.95%

2.93%

3.91%

4.88%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

In Figure 5.1 there is a clear concentration of low magnitude weights, centred

around 0-magnitude with a high kurtosis of 12.03. The weights of this layer exist in

the range of -0.3490 to 0.3137, with a staggering 83.45% of the weight magnitudes

in the bottom 10% of the range. With this in mind, the weight pruning genetic

algorithm was run to see the relationship between these low magnitude weights in the

final layer and the global classification accuracy of the network.

Five trials were done to evaluate the performance of the final solution of the GA

with the following initial damage rates: 10%, 30%, 50%, 70%, and 90%. All trials

were performed with a population of 50 individuals and run for 20 generations, as

these values were sufficient to determine the applicability of the algorithm.



36 Chapter 5: Results

Please note that all discussion and figures pertaining to some specified rate of

damage refer to the same trial; all subsections below address different aspects of the

five conducted MLP trials.

Fitness

Before performing analysis on the outcome of the compression, I first looked at the

distribution of the population fitnesses per generation. This was done first to judge

the degree of success of the genetic algorithm at evolving solutions and converging.

The fitnesses across generations for the trials are presented in Figure 5.2; several

indicators for the success of the algorithm can be seen here. The most evident in-

dicator is the consistent trend towards higher fitness per generation across all trials.

The distributions can be observed to generally trend towards lower standard devia-

tion in the population fitness per generation; this shows excellent convergence. Also,

the skew towards higher fitness in the distributions, visible through the median per

generation, is an expression of the GA’s preference of higher fitness solutions during

selection.

To better view the progression of the weight pruning algorithm, the fitnesses are

presented as a timeseries in Figure 5.3, with generation on the X-axis and fitness on

the Y -axis. In these figures, the lineage of individuals is tracked, including the top

fitness and top accuracy solutions, as well as the average population fitness, through

the use of plotted lines. The fitness range is presented as a colour shaded region to

illustrate the extent of variation within the population.



Chapter 5: Results 37

Figure 5.2: Population Fitness Distribution per Generation

0.5 0.0 0.5 1.0 1.5 2.0
Fitness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PD
F

0

1 2 3 4 5 6
7 8910

11
1213
14
1516
171819
20

Median Fitness

(a) 10%

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
Fitness

0.0

0.2

0.4

0.6

0.8

1.0

PD
F

0

1 2
3

45 67
89101112131415161718

1920Median Fitness

(b) 30%

4 3 2 1 0 1
Fitness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PD
F 0 1 2

3
45

6
78
910
11121314151617181920Median Fitness

(c) 50%

8 6 4 2 0
Fitness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
PD

F

0123 4
5
6
789
101112

131415161718
1920Median Fitness

(d) 70%

30 25 20 15 10 5 0
Fitness

0.00

0.02

0.04

0.06

0.08

0.10

PD
F

012

3456
78
9101112
1314
151617181920 Median Fitness

(e) 90%



38 Chapter 5: Results

While each trial contains its own individual variations, some common patterns

are visible. Due to the initial random damage, the starting population has a wide

fitness range as some solutions inevitably had vital weights removed and incurred

catastrophic damage. The initial population, generation 0, always contains the worst

fitness for all trials; this can be seen in Figures 5.2 and 5.3 where the initial popula-

tion has the left-most and bottom-most fitness value per trial, respectively. Elitism

ensures that the lowest fitness in generation 0 is the lowest fitness for the trial, and

guarantees a non-negative trend in the minimum fitness per generation. Across the

presented trials, there is a steady upward trend towards greater average fitness, and

a clear trend towards tighter distribution. This is principally due to elitism causing

weaker individuals to be replaced by more successful offspring, and persisting highly

successful individuals in the face of less successful offspring. Once again, the median

is almost always significantly past the mean, with the effect more pronounced in later

generations.

Unsurprisingly, due to the large accuracy weight in the fitness function, the indi-

vidual of top accuracy per trial tends to be at the top of the fitness range. However,

it is worth mentioning that in some of the trials, the solution with the top accuracy

is not always the solution with the top fitness. This is most evident in Figure 5.3a,

where the top fitness and top accuracy diverge after the third generation.

From these observations, the algorithm can be seen to work very well in this

domain, reliably improving fitness distributions across all trials.



Chapter 5: Results 39

Figure 5.3: Population Fitnesses per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Accuracy
Range

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Accuracy
Range

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

4

3

2

1

0

1

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Accuracy
Range

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

8

6

4

2

0
Fi

tn
es

s S
co

re

Average
Top Fitness
Top Accuracy
Range

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

30

25

20

15

10

5

0

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Accuracy
Range

(e) 90%



40 Chapter 5: Results

Accuracy and Compression

Next, I present analysis of the progression of accuracy and compression in the

populations per generation, presented in Figure 5.4. For each trial, the figures for

accuracy and compression are displayed side-by-side, their respective components

presented on the Y-axis, and generation presented on the X-axis. The accuracy and,

more-so, the rate of compression shows some very interesting results. As mentioned,

the lineage of the top accuracy and top fitness individuals is tracked to show the

progress of the population across the generations.

Based on the fitness function weights, α and β for accuracy and compression, there

will be some point at which the trade-off between accuracy and compression among

the solutions converge. As the arbitrary removal of weights can cause catastrophic

failure of the network, the lineage of the top solutions will likely trace back to the

initial undamaged individual. As the initial rate of damage increases, so does the

likelihood that the top fitness individual will trace back to the undamaged individual.

Cases where the initial damage rate is below this point of convergence will evolve

solutions with a progressively greater amount of pruned weights. Conversely, cases

where the initial damage rate is above this point of convergence will reduce their rate

of compression and repair the critical weights.

Finally, it is worth mentioning that the undamaged solution is not strictly per-

sisted. If a pruning of the initial undamaged individual were to take place and result

in a child of higher fitness, that individual would overwrite the initial undamaged

solution. This could potentially result in the permanent loss of the information of

those weights from the population.



Chapter 5: Results 41

Figure 5.4: Population Accuracy & Compression per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.9400

0.9425

0.9450

0.9475

0.9500

0.9525

0.9550

0.9575

Ac
cu

ra
cy

Average
Top Fitness
Range

(a) 10% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Accuracy
Range

(b) 10% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

Average
Top Fitness
Range

(c) 30% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0
Co

m
pr

es
sio

n 
Ra

tio

Average
Top Fitness
Top Accuracy
Range

(d) 30% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

Average
Top Fitness
Range

(e) 50% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Accuracy
Range

(f) 50% Compression



42 Chapter 5: Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Average
Top Fitness
Range

(g) 70% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Accuracy
Range

(h) 70% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Average
Top Fitness
Range

(i) 90% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0
Co

m
pr

es
sio

n 
Ra

tio

Average
Top Fitness
Top Accuracy
Range

(j) 90% Compression

Across the trials, several generalizations can be drawn for the interaction of fitness

with accuracy and compression. The large accuracy weight α forces the final top

fitness solution to be of high accuracy, though substantial compression is seen across

all trials, with an average compression of 85.64% across the solutions of all final

generations. When considering only positive fitness final generation solutions for all

trials, the average degree of compression was 65.02% for an average gain in accuracy

of 0.33%. Additionally, the final solutions of top fitness were also the solutions with

highest accuracy, with the exception of the 10% and 30% trials where a 0.05% and



Chapter 5: Results 43

0.01% loss in accuracy were traded for an additional 18.22% and 6.02% compression

over their respective top fitness solutions.

In the 10% trial, shown in Figures 5.4a and 5.4b, we can see a steady increase

of average population accuracy, with an exchange of accuracy for compression seen

in generation 3. On the accompanying compression plot, we can see the matching

compression increase in generation 3 for the solution of top fitness solution. The top

fitness solution possesses accuracy and compression far above the respective popula-

tion averages for the entire duration of the trial.

The 30% trial population accuracy, shown in Figure 5.4c, shares much in common

with the 10% trial, where a small range with the top fitness solution follows the upper

bound. Compression also ends with the top accuracy solution having below average

compression with the top fitness solution having above average compression.

The accuracy range is still highly centred around the starting point as the degree

of initial damage is quite small, and quickly repaired over the generations. In fact,

we can see this repair process in the top fitness solution during the first generation

in the trials from 10% to 70% initial damage. In these trials, the top individuals’

accuracy improves while simultaneously eliminating many weights.

At the end of the 10% trial we can see that the best solution has an accuracy

of 95.6%, higher than that of the initial network’s accuracy of 95.4%, with near

90% compression. The 70% and 90% trials also share much in common, with both

showing a large accuracy range, more so in the 90% trial due to the higher initial

damage rate. We can see through the lower bound of the compression and upper

bound of the accuracy that critical weights in the initial solution are reintroduced to



44 Chapter 5: Results

the other members of the population. Compression in this trial shows the top fitness

starting at 0% compression but ending at 70% compression - the lowest compression

of all solutions in the trial. In all trials, even in the cases with high initial damage

such as 70% and 90% initial damage, the mean compression ratio of the population

trends higher. Interestingly, in these cases there are no instances where the highly

compressed individuals breed with the undamaged individual to fill the intervening

range. What is generally observed is that the individuals with initial damage tend to

stay at the same level of compression. The population accuracies do trend upwards

across the generations in compensation.

As the rate of initial damage increases, we see an increase in mean compression

and a decrease in mean accuracy. This may indicate that the populations with higher

initial damage are unable to reconstruct the pruned weights and the GA instead

optimizes based on the weights within the population.

A key finding presented in these figures is that, for all trials, a solution with higher

test set accuracy is discovered by the algorithm through pruning.

Heatmap of Trial Solutions

The heatmap of each trial’s highest fitness solution is presented in Figure 5.5, and

shows an interesting perspective on the utility of the weights – all the solutions are

optimizing towards the same goal, yet the pruned weights vary among the solutions.

In this figure, the initial damage rates are presented along theX-axis, with the weights

of the solutions flattened along the Y -axis. The order of the weights is maintained

across the trials to show direct correspondence of which weights were removed per



Chapter 5: Results 45

trial. The values of the weights are shown as a coloured gradient, presented in the

legend. Sections of the figure that are white are weights that have a value of zero,

indicating that they have been removed by the algorithm. Among the solutions, we

can see that different weights have been removed, but all achieve a gain in fitness and

accuracy over the initial undamaged weights. We can also see that there are weights

that contribute to the final solution of all trials, indicating that these weights are the

ones most critical to the function of the layer. The weights not shared among the

final solutions can be considered ancillary due to their interchangeable nature.

Figure 5.5: Heatmap of Final Weights

10 30 50 70 90
Initial Damage Rate

0

20480

W
ei

gh
t

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Histogram of Trial Solutions

Next, in Figure 5.6, I present the histograms of the initial and final weights of the

best solution per trial to illustrate the effects of the selective deletion of low magnitude

weights by the pruning algorithm. Please note that zero-valued weights are omitted.



46 Chapter 5: Results

Figure 5.6: Top Fitness Solution Histograms per Trial

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

0.00%

0.54%

1.09%

1.63%

2.17%

2.71%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(a) 10% Initial Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

0.00%

0.47%

0.94%

1.41%

1.88%

2.35%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(b) 10% Final Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

0.00%

0.69%

1.39%

2.08%

2.78%

3.47%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(c) 30% Initial Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

0.00%

0.69%

1.37%

2.06%

2.75%

3.43%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(d) 30% Final Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

100

200

300

400

Fr
eq

ue
nc

y

0.00%

0.98%

1.97%

2.95%

3.93%

4.92%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(e) 50% Initial Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

50

100

150

200

250

Fr
eq

ue
nc

y

0.00%

0.85%

1.70%

2.55%

3.40%

4.24%
Re

la
tiv

e 
Fr

eq
ue

nc
y 

(%
)

(f) 50% Final Weight Histogram



Chapter 5: Results 47

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

200

400

600

800

Fr
eq

ue
nc

y

0.00%

0.98%

1.95%

2.93%

3.91%

4.88%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(g) 70% Initial Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

0.00%

0.67%

1.34%

2.01%

2.68%

3.36%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(h) 70% Final Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

200

400

600

800

Fr
eq

ue
nc

y

0.00%

0.98%

1.95%

2.93%

3.91%

4.88%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(i) 90% Initial Weight Histogram

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

50

100

150

200

250

Fr
eq

ue
nc

y

0.00%

0.85%

1.69%

2.54%

3.39%

4.24%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(j) 90% Final Weight Histogram

From the figure, the compression in each trial can be plainly seen as the distribu-

tions all show a substantial gap near the 0-mark. Once again, the non-zero weights

in the final solutions are the weights most vital to the layer. For all final weight his-

tograms, the pruning can be seen in the valleys on either side of the central 0-weight

bin, with the exception of the 70% final weights due to the limited success of the

pruning algorithm for that population. This exception proves a unique perspective

as unlike the other solutions, it maintained many of the low value weights and did

not have the signature gap separating the two non-zero distributions on either side

of the central near-zero bin.



48 Chapter 5: Results

The 10%, 30%, 50% initial weight histograms correspond to an individual that

incurred their trial’s initial random damage, while the 70% and 90% clearly show that

the initial weights belong to the undamaged individual within each population.

Solution Quality

Finally, to see how the trial solutions relate to the fitness function, I present the

solution fitnesses overlaid in Figure 5.7.

Figure 5.7: MLP Trial Final Fitnesses

0 Fitness

0 20 40 60 80 100
Compression (%)

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ch
an

ge
 in

 A
cc

ur
ac

y 
(%

)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Gl
ob

al
 A

cc
ur

ac
y 

(%
)

Final Solutions
10% Initial Damage Solution
30% Initial Damage Solution
50% Initial Damage Solution
70% Initial Damage Solution
90% Initial Damage Solution

Astonishingly, for all trials the algorithm provides successful solutions that result

not only in substantial pruning, but also increase the accuracy of the models on the

test data set.



Chapter 5: Results 49

The 10% trial achieved the highest fitness, as that population had the greatest

diversity and greatest opportunity to selectively prune without pressure to reconstruct

vital weights. The 30% trial follows closely for both accuracy and compression, and

had similar final accuracy and compression ranges indicating that it was also a good

starting damage rate. With 50% initial damage it becomes readily apparent that the

population struggles to reconstruct vital weights, with only a few individuals meeting

the accuracy of the initial undamaged weights. 70% and 90% were unable to create

any individuals to match the accuracy of the undamaged starting weights, returning

a final solution based on the undamaged starting weight individual.

The 10% initial damage rate trial presented the highest fitness, and was able to

prune 6.81% of the weight range of the layers, resulting in the elimination of 72.4%

of the parameters.

From analyzing the progress of the individuals across the trials, it is clear that

lower starting damage is better as it allows the population to selectively eliminate

weights that do not significantly harm model accuracy, rather than aggressively dis-

carding random weights and being forced to recover critical weights if available. The

algorithm was designed with specific mutators for pruning non-zero weights, pre-

sented in section 4.1.2, which, if activated, would always prune some parameters.

The restoration of weights had no specific mutator and was left entirely to crossover.

This limited ability to restore pruned weights was compounded by the innate sparsity

of individuals in populations initialized with high initial damage rates. This is to say,

sparse individuals are more likely to swap empty weights during crossover as they

have less useful information to share.



50 Chapter 5: Results

5.1.2 Convolutional Network

Next, I applied the Weight Pruning Genetic Algorithm to the final fully connected

layer of a simple Convolutional Neural Network (CNN). As described in section 2.3,

CNN’s are better able to handle larger inputs through the use of weight sharing filters,

naturally suited for image data. The model was composed of two convolutional layers

with 32 and 64 5x5 filters, respectively. Each convolutional layer used a hyperbolic

tangent activation and was followed by a max pooling layer for downsampling. These

layers were followed by a two-layer MLP, the first mapping the weights of the final

convolutional layer (576 parameters) to 200 fully connected neurons, and the second

layer mapping the 200 down to the 10 output classes.

As with the MLP trials above, the CNN model was trained with 60 000 images from

the dataset with stochastic gradient descent and a learning rate of 0.05 per sample;

10 000 images were reserved for testing. The trained CNN had an overall accuracy

of 98.39% on the test data, which will again stand as the baseline for accuracy of

the trials. Analysis of the algorithm performance is presented in the same format as

above, and utilized the same fitness function as in the MLP trials.

Initial Conditions

To begin the analysis I first investigated the weight histogram of the trained CNN.

In Figure 5.8 the histogram of the second fully connected layer’s weights is presented.

The range of weight values in this layer are between -0.3395 and 0.3022, similar

to the range seen in the starting weights of the MLP layer. There is a significant

concentration of low magnitude weights, though a far lower degree of peakedness is



Chapter 5: Results 51

Figure 5.8: Histogram of Initial Weights

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y

0.00%

1.25%

2.50%

3.75%

5.00%

6.25%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

present in the network, with a kurtosis of -0.862 and only 17.95% of weight magnitudes

in the bottom 10%. Five trials were done in the same manner as with the MLP, with

identical initial damage rates of 10%, 30%, 50%, 70%, 90%, and a population of 50

individuals run for 20 generations. The random damage was applied to all individuals

excluding the first individual to allow the population to reconstruct crucial parameters

that may have been lost during the initialization.

Fitness

The distributions of population fitnesses across generations for the CNN trials are

presented in Figure 5.9. Fitness is presented on the X-axis, with relative likelihood

presented on the Y -axis, communicated via the probability density function (PDF)

of the generation fitnesses. For each distribution, the generation index is printed at

its peak.



52 Chapter 5: Results

Figure 5.9: Population Fitness Distribution per Generation

0.2 0.0 0.2 0.4 0.6
Fitness

0

1

2

3

4

5

PD
F

0

1 2 3
4 5 6

78
91011

1213
14
15

16
171819

20

Median Fitness

(a) 10%

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Fitness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PD
F

0 1 2
3 45

678
91011

12
1314151617181920Median Fitness

(b) 30%

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Fitness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PD
F

01

2

3

4
56
7
8910111213
14151617181920Median Fitness

(c) 50%

5 4 3 2 1 0
Fitness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PD
F

012
3

45
67
8
91011
12
1314151617

181920Median Fitness

(d) 70%

25 20 15 10 5 0
Fitness

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

PD
F

0
1234

567
89
1011121314

15
16171819

20Median Fitness

(e) 90%



Chapter 5: Results 53

The 10% trial shows a steady, rightward–bound trend towards greater fitness with

a strong starting generation, ranging between −0.228 to 0.216, and 0.303 to 0.713

in the final generation. In the 30%–90% trials, it can be observed that as initial

damage rate increases, it becomes progressively harder to breed out over-damaged

solutions. This can be see through the fitness range of the final generation of each

trial, presented in Table 5.1.

Table 5.1: Summary of Initial and Final Population Fitness

Damage Rate

Fitness

Initial Final

min mean max min mean max

10% −0.2280 0.0257 0.2160 0.3025 0.5223 0.7125

30% −0.3845 0.0424 0.3945 0.2705 0.5296 0.7515

50% −2.0870 −0.0291 0.5225 0.1220 0.4735 0.8940

70% −5.3250 −0.9569 0.3080 −0.6440 0.0472 0.6135

90% −25.3005 −11.2025 0.0000 −10.9710 −5.0511 0.3340

The number of individuals with non-negative fitness in the final generations of

the trials clearly indicates the threshold beyond which damage is solely detrimental

to the population. In the 10% to 50% trial, all individuals in the final generation of

the populations successfully evolved positive fitness values. The 70% initial random

damage trial was able to generate positive fitness for 29 of its 50 individuals in the

final generation. The 90% trial had only a single individual of positive fitness in the

final generation; unsurprisingly this was the undamaged individual, where the rest of

the individuals had an average fitness of -5.161.



54 Chapter 5: Results

Figure 5.10: Population Fitnesses per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.2

0.0

0.2

0.4

0.6

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Total Valid
Range

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Total Valid
Range

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Total Valid
Range

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

5

4

3

2

1

0

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Total Valid
Range

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

25

20

15

10

5

0

Fi
tn

es
s S

co
re

Average
Top Fitness
Top Total Valid
Range

(e) 90%



Chapter 5: Results 55

Overall, solutions were evolved more reliably than for the MLP across all trials,

having shorter, higher valued fitness ranges and greater probability densities per

generation. It is also likely that, given more generations, the trials would have shown

further consolidation as elitism would have guarded the high accuracy solutions.

The fitnesses are also presented as a time-series in Figure 5.10, with generation on

the X-axis and fitness on the Y -axis. Observing these figure, it can be noted that the

algorithm rapidly found a set of prunable parameters in the first few generations with

sparse improvements thereafter for the MLP, whereas the CNN trials show a gradual,

continued improvement across the generations. All trials, with the exception of the

90% trial show a separation of the top accuracy and top fitness solutions across the

generations, indicating that the algorithm favourably trades compression for accuracy.

To better view the individuals in the populations, the lineages across generations are

presented in Figure A.4. Additionally, it can be seen that poor initial solutions are

bred out much more successfully than the population fitnesses of the MLP trials due

to the significantly lower number of parameters.

Accuracy and Compression

Next, I present analysis of the progression of accuracy and compression in the

populations per generation, presented in Figure 5.11. For each trial, the figures for

accuracy and compression are displayed side-by-side, their respective components

presented on the Y-axis, and generation presented on the X-axis.



56 Chapter 5: Results

Figure 5.11: Population Accuracy & Compression per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.980

0.981

0.982

0.983

0.984

0.985

Ac
cu

ra
cy

Average
Top Fitness
Range

(a) 10% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Total Valid
Range

(b) 10% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.976

0.978

0.980

0.982

0.984

0.986

Ac
cu

ra
cy

Average
Top Fitness
Range

(c) 30% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Total Valid
Range

(d) 30% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

Average
Top Fitness
Range

(e) 50% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Total Valid
Range

(f) 50% Compression



Chapter 5: Results 57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

Average
Top Fitness
Range

(g) 70% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Total Valid
Range

(h) 70% Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Average
Top Fitness
Range

(i) 90% Accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Average
Top Fitness
Top Total Valid
Range

(j) 90% Compression

Generally, it can be observed that the 30%–90% trials present a visible increase

in accuracy across the generation, due to their higher initial random damage and the

corresponding penalty to model accuracy. Observing the minimum initial accuracy

of the trials, trials 10%–70% show gradual decline until 90% where a substantial

drop occurs. Surprisingly, even the population with 90% random weight pruning had

an average 86.3% accuracy in the first generation. Furthermore, for the 70% and

90% trials, the maximum accuracy in the starting generation can be seen to be the



58 Chapter 5: Results

undamaged individual, meaning that none of the individuals with random damage for

those populations resulted in an increase in accuracy. This is contrary to the 10%–

50% trials, where all individuals in the initial generation possessed test-set accuracy

greater than that of the starting weights.

Table 5.2: Summary of Initial and Final Population Compression & Accuracy

DR

Accuracy (%) Compression (%)

Initial Final Initial Final

min mean max min mean max mean max min mean max

10% 98.06 98.32 98.51 98.18 98.34 98.56 9.69 11.50 25.25 57.15 75.35

30% 97.71 98.14 98.48 98.06 98.29 98.52 29.36 32.45 43.45 62.90 75.45

50% 95.78 97.87 98.42 97.83 98.19 98.56 49.11 52.40 44.75 67.77 77.85

70% 92.37 96.75 98.39 97.01 97.65 98.43 68.37 71.90 57.35 79.10 87.10

90% 72.19 86.30 98.39 86.48 92.42 98.33 88.35 91.70 39.40 92.11 95.65

Minimum compression for all trials is 0%.

The 10% initial random damage trial shows a very flat, steady progression of

average population accuracy, starting from 98.319% and ending at 98.341%, visible

in Figure 5.11a and in Table 5.2. The average accuracy across all generations devi-

ates from the starting accuracy of 98.39% within a tight envelope, from −0.085% to

−0.049%. Compression begins at 9.69%, as expected with 10% random damage for

95% of the population, shedding an average 2.373% parameters per generation, with

the final generation having an average 57.15% compression. The individual with the

highest compression pruned 75.35% of its parameters for a 0.12% loss in accuracy, and

the least compressed solution pruned 25.25% of its parameters for a gain in accuracy



Chapter 5: Results 59

of 0.05%. This presents an interesting view on the degree of redundancy in the model,

where a 50.1% difference in parameters accounts for only 0.17% model accuracy. The

highest fitness solution pruned 54.25% parameters and yielded an accuracy of 98.56%.

In the 10% trial, the population develops 2.35% pruning and 0.001% increase in

accuracy per generation, excluding the undamaged individual. This trend becomes

exponential with the damage rate, with 1.64% pruning and 0.008% gain in accuracy

for the 30% trial, 0.91% pruning and 0.016% gain in accuracy for the 50% trial, 0.49%

pruning and 0.046% gain in accuracy for the 70% trial, and 0.15% pruning and 0.312%

gain in accuracy the 90% trial. The same trade-off between compression and accuracy

can be seen in the final generation of the other trials, with a 32.00% difference between

the minimum and maximum compressed solutions of the 30% trial constituting a loss

in accuracy of 0.22%, and 33.10% difference constituting a loss of 0.26% accuracy

for the 50% trial. Interesting to note is that the best fit solutions of the 30% and

50% trials eliminated 73.15% and 72.40% of the layer weights, respectively, 54.1%

of which were removed in common. From Table 5.2, we can see that the 10%–50%

trials did not find any solutions beyond approximately 75% pruning. The 70% and

90% final populations had individuals with higher levels of pruning; however, when

considering the individuals with only positive fitnesses the average compression of the

final generation for these trials were 78.47% and 39.40% respectively. Additionally,

the average compression and accuracy of all positive fitness solutions in the final

generation of the trials was 65.03% and 98.2%, respectively; this results in an average

fitness of 0.46, trading 0.0029% accuracy per percent compression, or 0.000095% per

pruned parameter.



60 Chapter 5: Results

Heatmap of Trial Solutions

The heatmap of the weights of the highest fitness solution presented in Figure 5.12,

with the weights of the layer flattened along the Y -axis, and initial damage rates along

the X-axis. Once again, we can see that multiple pruning solutions can yield similar

results. Additionally, the similarity in compression of the 30% and 50% trials noted in

the section above can be observed here. Across all solutions, 9.45% of the parameters

were pruned in common.

Figure 5.12: Heatmap of Final Weights

10 30 50 70 90
Initial Damage Rate

0

2000

W
ei

gh
t

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Histogram of Trial Solutions

Next, in Figure 5.13, I present the histogram of the initial and final weights of the

best solution per trial. Please note that zero-valued weights are omitted.



Chapter 5: Results 61

Figure 5.13: Top Fitness Solution Histograms per Trial

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

0.00%

1.11%

2.21%

3.32%

4.42%

5.53%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(a) 10% Initial Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

Fr
eq

ue
nc

y

0.00%

2.19%

4.37%

6.56%

8.74%

10.93%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(b) 10% Final Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

0.00%

1.46%

2.92%

4.38%

5.84%

7.29%
Re

la
tiv

e 
Fr

eq
ue

nc
y 

(%
)

(c) 30% Initial Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

10

20

30

40

50

60

70
Fr

eq
ue

nc
y

0.00%

1.86%

3.72%

5.59%

7.45%

9.31%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(d) 30% Final Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

100

Fr
eq

ue
nc

y

0.00%

2.01%

4.02%

6.03%

8.04%

10.05%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(e) 50% Initial Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

10

20

30

40

50

Fr
eq

ue
nc

y

0.00%

1.81%

3.62%

5.43%

7.25%

9.06%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(f) 50% Final Weight Histogram



62 Chapter 5: Results

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

0.00%

1.66%

3.31%

4.97%

6.62%

8.28%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(g) 70% Initial Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

0.00%

1.17%

2.34%

3.52%

4.69%

5.86%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(h) 70% Final Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y

0.00%

1.25%

2.50%

3.75%

5.00%

6.25%
Re

la
tiv

e 
Fr

eq
ue

nc
y 

(%
)

(i) 90% Initial Weight Histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

20

40

60

80

100

120

140
Fr

eq
ue

nc
y

0.00%

1.65%

3.30%

4.95%

6.60%

8.25%

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(%

)

(j) 90% Final Weight Histogram

The 10%, 30%, 50%, and 70% best solutions all begin as randomly damaged indi-

viduals, but the 90% starts as the undamaged individual. This shows again that the

very high initial damage rates are unsuitable starting points as they incur too much

damage and the population wastes time trying to rebuild the lost parameters. From

looking at the 90% population figure presented in Figure A.4, it can be observed

that the undamaged individual gradually evolved some pruning, while the other in-

dividuals attempted to restore their lost information. The 70% trial also shows many

individuals around the -1 fitness mark at the start, but are able to evolve greater

accuracy with increasing compression, presumably removing parameters which most

contribute to test error. The final weights for all trials show the same significant



Chapter 5: Results 63

pruning of weights, shown clearly through the large central bin containing all the

near-zero weights in the histograms.

Solution Quality

Finally, in Figure 5.14 I present the the trial solutions overlaid on the fitness

function plot.

Figure 5.14: CNN Trial Final Fitnesses

0 Fitness

0 20 40 60 80 100
Compression (%)

14

12

10

8

6

4

2

0

Ch
an

ge
 in

 A
cc

ur
ac

y 
(%

)

84

86

88

90

92

94

96

98

100

Gl
ob

al
 A

cc
ur

ac
y 

(%
)

Final Solutions
10% Initial Damage Solution
30% Initial Damage Solution
50% Initial Damage Solution
70% Initial Damage Solution
90% Initial Damage Solution

Once again, for all trials the algorithm provides solutions that successfully and

substantially prune the layer and increase the test set accuracy of the network. Across

the trials, the 50% initial damage rate experiment achieved the highest fitness, and

second highest degree of pruning. The 50% trial achieved 72.40% compression of the

layer while increasing accuracy by a modest 0.17%. This was closely followed by the



64 Chapter 5: Results

30% trial, which achieved 73.15% compression of the layer while increasing accuracy

by 0.02%. The 10% trial achieved the same increase in accuracy as the 50% trial,

though with a considerably lower degree of compression of 54.25%. The 90% trial

had the lowest fitness of all trials, with 39.40% compression with a loss in accuracy

of 0.06%. The best solution across all CNN trials had a fitness of 0.894, moving

the accuracy from 98.39% to 98.56% with 72.40% compression. For comparison, the

best MLP solution had a fitness of 2, improving the accuracy from 94.59% to 95.69%

with 89.6% compression. To the success of the algorithm, it was able to perform

substantial repair of the population, raising the average loss in accuracy from 12.33%

in generation 0, to only 0.061% loss in the final generation. An excellent example

would be in the worst individual in the starting generation of the 90% trial, which

had an accuracy of 72.19% and 89.95% random compression, and ended with 89.02%

accuracy with 93.50% compression.

Overall, when looking at the progression of individuals in the population it can

be again concluded that each layer has a critical point beyond which random damage

is detrimental to initialization. This is visible through lineages of individuals in the

70%–90% initial damage rate MLP trials and 90% CNN trial in Appendix A, where

the undamaged individual in each population was the sole individual able to reach

a positive fitness. The success of the 10%–30% MLP and 10%–50% CNN trials

show that initial random damage can be useful in initializing the populations, most

visible through the success of the 50% initial random damage CNN trial. Through

the experiments performed, both models exhibit substantial redundancy that can be

removed to the benefit of accuracy and footprint without retraining or finetuning.



Chapter 5: Results 65

5.2 Energy-based Filter Pruning

The filter pruning algorithm was applied to both VGG and ResNet [Janjic et al.,

2018] with results presented in section 5.2. Experiments performed on the VGG-16

model post-filter pruning to investigate interaction with dropout in the fully connected

layers are presented in section 5.2.1. Additionally, the results of the filter pruning

algorithm are presented in fitness-function style in Figures A.7 and A.8.

5.2.1 VGG-16

The following sections show the results of running the filter pruning algorithm on

a pretrained VGG model, providing analysis on the compression achieved and the

accuracy post pruning. An additional trial was conducted to explore the relationship

between filter pruning and the fully connected layer in the model.

Model compression

Figure 5.15 depicts the degree of compression resulting from the filter pruning

algorithm applied per layer on the pretrained VGG model. In this figure, and in

subsequent figures, the model is laid on its side such that the X-axis represents the

layers of the model, where 1 is the first layer of the network. As models are not

purely comprised of spatial convolution layers, any spatial pooling, dropout, or fully

connected layers are skipped by the algorithm but their indices maintained. As a

result, the data points on the figures represent the indices of the convolutional layers

in the model. The Y -axis represents the ratio of pruned filters with respect to the

original number of filters in that layer; this can also be thought of as the degree



66 Chapter 5: Results

of compression achieved by the pruning algorithm. All points for a given minimum

energy threshold are joined with a line, the values of which can be found in the legend.

For example, a 1% energy threshold would mean that for each convolutional layer of

the model, when sorted, all filters in the model whose energy contributes less than 1%

to the total cumulative sum energy are removed from that layer, and their weights in

the following convolutional layer are also removed.

Figure 5.15: VGG Compression Ratio per Energy Threshold

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

20

40

60

80

100

De
gr

ee
 o

f C
om

pr
es

sio
n

Threshold (%)
1
2
5
10
20
50

Surprisingly, even the lowest energy threshold of 1% removes almost one-tenth of

the filters on average when applied to each convolutional layer independently.

When looking at the average ratio of compression each layer undergoes over the

different cumulative energy thresholds, we see that the number of filters removed per

layer differ significantly.

Since the representation at each level has not been explored, no clear hierarchy has



Chapter 5: Results 67

been observed in the contribution per layer; this is to say there is no clear bottom-up

or top-down hierarchy. Further investigation of this is difficult as a full understanding

of network hierarchy is dependent on a multitude of factors; these include structure,

activation type, initialization, and curriculum to name a few. Furthermore, the rep-

resentation held by an arbitrary neuron can vary as well and is not predetermined.

Effect on Accuracy

Figure 5.16: VGG Accuracy & Loss per Energy Threshold

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

20

40

60

80

100

Ac
cu

ra
cy

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

2

4

6

8

10

Lo
ss

Threshold (%)
0
1
2
5
10
20
50

In the experiment performed on a pretrained VGG16 network, we can see the

effects of removing the low energy filters, presented in Figure 5.16, on the loss and top-

1 classification accuracy of the model, with no post-pruning retraining. Comparing

the pruning curves with the loss curves, we can draw several interesting insights.

Many intervals share a closely matched slope at the noticeable peaks in layer 8 and

15 that become pronounced at higher energy thresholds. The trend of higher loss

with higher pruning plainly indicates that the degree of pruning is too large and is



68 Chapter 5: Results

highly detrimental to the model. However, this correlation, especially at layers 8

and 15 where the loss becomes extreme and the model is completely broken, shows a

very important attribute of those layers - most or all filters contribute to the model’s

function. Looking at the most extreme case of layer 15, we see that the model’s loss

during testing suffers greatly even from pruning the filters which contribute the lowest

1% cumulative sum energy. This shows that the model has saturated the filters of

this layer. We also see that layer 15 is subject to the most pruning for every energy

threshold. Such cases where there is high pruning and high loss indicate that the

filters of the layer are closely related in their energy; consequently, when the energy

threshold is applied to the cumulative sum energy of the layer, many valid filters are

pruned. Therefore, layers with high pruning and high loss can be considered saturated

and pruning is not recommended.

Conversely, cases where there is high pruning and low loss in error indicate that

the layer has great redundancy and a large number of filters can be removed without

incurring much, if any, error. Consider the loss seen across all energy thresholds for

layer 1 - even in the exaggerated case of 50% energy pruning the model incurs a

loss in accuracy of only 5 points despite over 81% of the filters of that layer being

pruned. This clearly shows that the first layer, where basic filters relevant to the input

data are learned [LeCun et al., 1998a], contains a phenomenal degree of redundancy.

Considering the filters in this layer are 3x3 convolutions it may be the case that the

effect is less prevalent with larger filter sizes.



Chapter 5: Results 69

Table 5.3: Effect of Varying Rates of Dropout on Model Accuracy

Pdropout Loss Accuracy Pdropout Loss Accuracy

0.0 1.334 68.14 0.5 1.334 67.84

0.1 1.188 70.74 0.6 1.430 66.32

0.2 1.207 70.45 0.7 1.622 63.05

0.3 1.234 69.88 0.8 2.137 55.77

0.4 1.268 69.31 0.9 4.998 31.45

Interaction with Dropout

As the VGG model contains dropout connections in its fully connected layer, we

can further investigate the interaction of filter pruning on the accuracy of the network

per layer. Dropout probability controls the probability of a neuron being disabled for

every sample during the training of the model. First, to provide a baseline for com-

parison, Table 5.3 shows the effect of varying levels of dropout probability enabled

on the fully connected layers on the models’ test accuracy. As the fully connected

layers are attached to the final convolutional layer, the dropout rate here effectively

modulates the signaling of the convolutional layer. As observed in section 5.1, the

interesting case of disabling neurons without retraining yielding an increase in accu-

racy is clearly visible again. We can see that as much as 40% dropout in the fully

connected layers leads to an increase in model accuracy.

Trials were done to study the effects of 1% and 10% energy-based filter pruning

with vary levels of dropout enabled in the fully connected layer, presented in Fig-

ure 5.17 and Figure 5.18 respectively. The evaluations were done with the following



70 Chapter 5: Results

probabilities of dropout: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.

Figure 5.17: Dropout with 1% Energy Pruning

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

2

4

6

8

10

Lo
ss

(a) Loss

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

2

4

6

8

10

Ch
an

ge
 in

 L
os

s

Threshold (%)
10
20
30
40
50
60
70
80
90
0

(b) Change in Loss

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Accuracy

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

60

50

40

30

20

10

0

Ch
an

ge
 in

 A
cc

ur
ac

y

Threshold (%)
10
20
30
40
50
60
70
80
90
0

(d) Change in Accuracy

For each trial in Figure 5.17 and Figure 5.18, the loss and accuracy are present on

the left, with the rate of dropout represented in the legend. The loss and accuracy of

the 1% and 10% VGG filter pruning trials, presented above in the Effect on Accuracy



Chapter 5: Results 71

Figure 5.18: Dropout with 10% Energy Pruning

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

2

4

6

8

10

Lo
ss

(a) Loss

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

1

2

3

4

5

Ch
an

ge
 in

 L
os

s

Threshold (%)
10
20
30
40
50
60
70
80
90
0

(b) Change in Loss

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Accuracy

1 3 6 8 11 13 15 18 20 22 25 27
Model Layer

40

30

20

10

0

Ch
an

ge
 in

 A
cc

ur
ac

y

Threshold (%)
10
20
30
40
50
60
70
80
90
0

(d) Change in Accuracy

subsection, are shown as solid black lines for comparison in their respective plots. The

change in loss and accuracy due to the various dropout probabilities with respect to

the VGG filter pruning for the 1% and 10% cumulative sum energy thresholds are

presented in the plots on the right.



72 Chapter 5: Results

For the 1% filter pruning dropout trials we can see that, in general, the process

results in significant damage to the network; however, there are some layers which

seem to benefit modestly from the application on a dropout probability of 50% or

less being applied. In Figure 5.17a we can see that layers 1, 20, and 22 gain accuracy

in experiments where the dropout probability in the fully connected layers is 40% or

less.

These cases are far more pronounced in the dropout trials based on 10% filter

pruning, presented in Figure 5.18a. In these trials, once again 40% dropout prob-

ability rides the edge of improvement. What’s significant in this trial is that while

the 10% filter pruning trials inflict significant damage, especially when compared to

lighter degrees of pruning such as at the 1% level, the application of light dropout dur-

ing testing shows a universal gain across all pruned layers. This gain is also consistent

with the accuracy results of the non-filter pruned model presented in Table 5.3.

Summary of VGG-16 filter pruning results and solution quality are provided fol-

lowing the ResNet results in subsection 5.2.2.



Chapter 5: Results 73

5.2.2 ResNet-101

The following sections show the results of running the filter pruning algorithm

on a pretrained ResNet model, providing analysis on the compression achieved and

the accuracy post pruning. The algorithm will be applied on each residual module,

removing filters from one layer and their corresponding feature dimensions in the

following layer. The following cumulative sum filter energy thresholds were evaluated:

1%, 2%, 5%, 10%, 20%, and 50%.

Model compression

Figure 5.19 depicts the degree of compression resultant of the filter pruning algo-

rithm applied per layer on the pretrained ResNet model.

Figure 5.19: ResNet Compression per Energy Threshold

0 10 20 30 40 50 60
Convolutional Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

Threshold (%)
1
2
5
10
20
50



74 Chapter 5: Results

In Figure 5.19 and following figures, the X-axis represents the layers of the model,

where 1 is the first layer of the model, and only spatial convolutional layers are ana-

lyzed and plotted. The Y -axis here represents the ratio of pruned filters with respect

to the original number of filters in that layer. A clear saw-tooth trend appears within

each residual module, where the first convolutional layer often experiences greater

compression per threshold than its following layer. The residual modules consist

of three ReLU-activated batch-normalized spatial convolutional layers. Within each

residual module, the first convolutional layer acts to reduce the input plane, the sec-

ond convolutional layer maintains the feature size, in some cases striding convolutions,

with the final convolutional layer expanding the output plane back up to match the

size of the input plane passed to the module.

Effect on Accuracy

As with the VGG trials, the filter energies are measured, normalized, sorted, and

pruned based on a threshold of the cumulative sum energies of the filters.

The general trend seen in Figure 5.19 suggests that these first convolutional layers

may contain a large degree of low-energy filters. In Figure 5.20, it can be observed

that for the the majority of the cases, the model can incur a high degree of pruning in

the first convolutional layer without any substantial shift in performance. Unlike the

VGG trials, there are several convolutional layers whose pruning causes catastrophic

failure of the model at the 1% energy threshold. Consider the eighth convolutional

layer in the Figure 5.20, which at the 1% energy threshold undergoes a pruning of

7.8% of its filters but results in the model accuracy collapsing down 12.98%.



Chapter 5: Results 75

Figure 5.20: ResNet Accuracy per Energy Threshold

0 10 20 30 40 50 60
Convolutional Layer

0

20

40

60

80

100

Ac
cu

ra
cy

Threshold (%)
0
1
2
5
10
20
50

One possible explanation for why pruning certain convolutional layers compro-

mises model accuracy so severely is that when the filters are pruned and their corre-

sponding weights removed from the third convolutional layer in the module, down-

stream modules lose the contribution of these filters.

As seen in the VGG trials, this process can be overzealous for saturated layers

that have zero or very few low-energy filters. This is observed in layers with a drastic

drop in accuracy post-pruning, as their compression per energy threshold is low as

well, such as in layer 2 or 8. Furthermore, the layers that experience little pruning

generally result in massive loss in model accuracy post-pruning.

Another interesting example is the 19th convolutional layer which for every energy

threshold, it undergoes a high degree of pruning, yet incurs next to no loss in accuracy.

This layer, at the 1% energy threshold, undergoes 26.17% compression with a resulting



76 Chapter 5: Results

model accuracy of 81.83%. Even at the highest tested threshold level of 50%, the

measured accuracy was 81.25% despite the layer being pruned from 256 filters down

to only 27 – an 89.45% degree of compression. This layer does not have any special

structural significance, nor does it lie at the transition in filter sizes occurring three

times at layers 7, 15, and 61.

Table 5.4: ResNet Example Trend Exceptions

Convolutional Layer
Filters

Compression Accuracy
Preserved Total

16 – B8
2 236 256 7.81% 13.38%

17 – B9
1 193 256 24.61% 45.04%

18 – B9
2 139 256 45.70% 80.32%

19 – B10
1 189 256 26.17% 81.83%

Convolutional Layer refers to the flattened index of the convolutional layer of the ResNet model,

with the superscript and subscript of B indicating the index of the residual block in the model and

the index of the convolutional layer within the block, respectively.

Table 5.4 highlights the exceptions to the saw-tooth trend first noted in Fig-

ure 5.19. In this table, Block indicates the number of the residual module in the

model, Layer indicates the layer within that particular residual module. The sequen-

tial index of each convolutional layer is also given for to maintain correspondence

with Figure 5.19 and Figure 5.20. Here we can observe the opposite effect to the

general saw-tooth trend where the second convolutional layer undergoes much higher

compression than the first convolutional layer. However, in these cases both layers

experience very little pruning as the majority of their filters pass all thresholds.



Chapter 5: Results 77

Summary

From the experiments run on the VGG and ResNet models, it is clear that ex-

tensive redundancy exists in both models. Overall, the Energy-based Filter Pruning

algorithm succeeds at identifying and pruning redundancy per layer. VGG-16’s 4th

(of 12) convolutional layer, and ResNet-101’s 18th (of 101) convolutional layer were

highly sensitive to pruning. Another interesting observation is that following these

pruning–sensitive sections of the models, there are a number of layers which appear

to have a great deal of redundancy and can incur a significant degree of compression

with negligible loss in accuracy. Due to the extensive pruning applicable to these

layers, it may be the case that the entire layers can be removed without significant

loss in accuracy. For VGG this trend is visible in the last 5 layers, and in ResNet

convolutional layers 19–59 show this trend of robustness.

The trials on the VGG-16 network showed that the 1% energy threshold removed

9.83% of the filters in each layer with an average loss in accuracy of 3.23% (2.52%

excluding layer 8). The 10% energy threshold removed 40.06% of filters per layers,

while the loss in accuracy incurred was 16.88% (9.48% excluding layer 8). The ResNet

trials yielded fascinating results, showing that for many convolutional layers even the

most aggressive energy threshold resulted in a high degree of compression at negligible

loss in accuracy. At the 50% energy threshold, it was possible to prune 87.94% from

25 of the 66 convolutional layers for a single digit loss in accuracy of 3.30% per layer.

VGG in comparison, experienced catastrophic failure for all layers at the 50% energy

threshold, with the lowest single loss in accuracy being 63.11%.



Chapter 6

Other Approaches

A particularly clear and important takeaway from the presented trials is that

there exists a significant amount of information in the models which can be removed

without a large effect on the network’s ability to function. This work has also shown

the ability to remove large portions of this excess structure for the purpose of testing

and general use of the models.

Below, two additional ideas are discussed pertaining to the pruning of networks

that extend upon the trials, but were, however, limited in their success.

6.1 Iterative Pruning without Retraining

Across the trials presented, the networks appear to incur minimal loss from the

pruning of individual layers; however, applying iterative pruning without retraining

appears to accumulate egregious error on all tested energy thresholds. Trials were run

on both VGG and RESNET, removing filters at the 1% cumulative sum energy level

78



Chapter 6: Other Approaches 79

targeting layers that were known from the individual pruning trials to incur a loss in

accuracy of less than 2%. In all trials, the models experienced catastrophic failure

with single digit accuracy, after a few consecutively pruned layers. This shows that

the small error incurred from the pruning must be absorbed or otherwise handled

before further pruning can be done.

6.2 Evolving Replacement Filters

As with the Multilayer Perceptron weight pruning optimization, a Genetic Algo-

rithm can be used to evolve filters to replace pruned filters in an attempt to boost

network performance without having to perform retraining. The advantage of such a

process would be that it only requires a smaller, representative test data set rather

than the full training set.

This approach was tried, but ultimately resulted in an optimization that was only

able to reconstruct the filters it sought to remove, or generate similarly useless, low-

energy filters. It is likely the case that the replacement filters caused instability in

subsequent layers not adapted to the input from the newly generated filters. This is

to say, the network performed best when left unaltered. Once again, the conclusion

is that some degree of retraining is required to wean the network off relying on the

vestigial filters, or when introducing new features.



Chapter 7

Conclusion

In this thesis I explored the nature and extent of redundancy in contemporary

neural networks. The topic has the innate challenge that neural networks are opaque

in how concepts and abstractions are internally represented. To meet this challenge

I contributed two novel approaches to pruning both the weights of fully connected

layers and the filters of convolutional layers, applicable to all contemporary trained

convolutional neural networks.

The results from both algorithms showed that significant pruning can be applied

to both layer types with negligible loss, or in some cases a gain, in overall model

test set accuracy. The genetic algorithm was applied to a multilayer perceptron

and simple convolutional neural networks trained on the MNIST handwritten digit

dataset. The experiments showed that for these two models as much as 72.4% and

89.6% of layer parameters can be pruned without retraining, respectively. For both

networks, the genetic algorithm was able to simultaneously yield an improvement in

test set accuracies of the models of 1.1% and 0.17%, respectively.

80



Chapter 7: Conclusion 81

The Energy-based Filter Pruning algorithm was applied to the very deep VGG-16

and ResNet-101 models, trained on the much more intensive ImageNet dataset. The

filter pruning experiments showed that these models too exhibit significant redun-

dancy in their convolutional layers. VGG layers incurred an average 3.2% loss in

accuracy and average 9.83% compression after pruning the lowest 1% energy filters,

and as much as 70.93% compression in the first layer for a 3.94% loss in accuracy

at the 10% filter energy threshold. ResNet boasted far more impressive compression

results, as layers incurred an average 87.94% compression and 3.30% loss in accuracy

for 25 of the 66 layers at the 50% energy threshold; 47.82% compression in 41 of

the 66 layers with only a single digit loss per layer. Additionally, some saturation

points, where layers were sensitive even to the pruning of their lowest 1% energy

filters, were noted in both networks. Similarly, sections of the models were found to

be particularly robust to pruning, the most extreme case being a layer where near

90% pruning resulted in a 2% drop in model accuracy. From this, it is likely that the

excess and deficiency of filters in convolutional layers exists in all modern networks

whose structure is fixed before training.

These results and their derived insights add to the body of work for the efficient

use of parameters in neural models, and help to inform the architecture and training

decisions of models going forward.



Chapter 8

Future Work

While much as been accomplished, there are still many avenues yearning for fur-

ther attention. Summarized below are two paths readily traversable.

Energy-based Filter Pruning Genetic Algorithm

A key limiting factor in using a Genetic Algorithm is the evaluation time with

intensive fitness functions. In the Weight Pruning Genetic Algorithm this cost was

small as the networks tested were simple, and the dataset small in number of samples

and image size. For larger networks such as VGG and ResNet trained on the sub-

stantially larger ImageNet dataset, evaluation would have been very time consuming

compared to the time to generate a new population. Additionally, due to the mas-

sive size of the models, only one solution can be put into memory and tested, so the

population must be evaluated sequentially and not in parallel.

This challenge could be overcome by using an approximated fitness for some or

all evaluations. For example, existing perturbation metrics, such as the Taylor series

82



Chapter 8: Future Work 83

expansion methods presented in LeCun et al. [1990]; Molchanov et al. [2016], could be

leveraged to replace the accuracy component of the fitness function while retaining the

compression component as it has a time cost to calculate. Alternatively, a randomized

subset of the test data could be used.

Additionally, an approximate fitness could be to the benefit of the filter generat-

ing genetic algorithm presented in section 6.2. The algorithm could be repurposed

from generating replacement filters for low-utility filters, to generating filters which

compensate for the error incurred by pruning for the subsequent convolutional layer.

Iterative Energy-based Filter Pruning with Retraining

Based on the Energy-based Filter Pruning algorithm presented in section 4.2,

the efforts of iterative pruning presented in section 6.1 could be reattempted with

retraining. The retraining could be done either after each pruning step, or once after

pruning multiple layers to see if the model could recover after catastrophic failure.

This diverges from the focus of this thesis as it applies retraining, but it is clear

that by removing a substantial number of parameters across multiple layers some form

of update is required to mitigate the error introduced by the pruning. Additionally,

it would be valuable to explore the degree to which pruning error could be absorbed

by the other layers of the model, and how to best prune and retrain.



Appendix A

Supplementary Population Figures

Presented here are supplementary figures for the Weight Pruning Genetic Algo-

rithm in section 5.1. Figures A.1 to A.3 show the fitness, compression, and accuracy

of the individuals in the populations of the MLP trials in Figure 5.1.1. Figures A.4

to A.6 show the fitness, compression, and accuracy of the individuals in the popula-

tions of the CNN trials in Figure 5.1.2.

Results from the Energy-based Filter Pruning Algorithm trials on VGG-16 and

ResNet-101 are presented in the style of the fitness function from the Weight Pruning

Genetic Algorithm in Figures A.7 and A.8.

84



Appendix A: Supplementary Population Figures 85

Figure A.1: MLP Population Fitnesses per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

Fi
tn

es
s S

co
re

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fi
tn

es
s S

co
re

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

4

3

2

1

0

1

Fi
tn

es
s S

co
re

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

8

6

4

2

0
Fi

tn
es

s S
co

re

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

30

25

20

15

10

5

0

Fi
tn

es
s S

co
re

(e) 90%



86 Appendix A: Supplementary Population Figures

Figure A.2: MLP Population Compression per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(e) 90%



Appendix A: Supplementary Population Figures 87

Figure A.3: MLP Population Accuracy per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.9400

0.9425

0.9450

0.9475

0.9500

0.9525

0.9550

0.9575

Ac
cu

ra
cy

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(e) 90%



88 Appendix A: Supplementary Population Figures

Figure A.4: CNN Population Fitnesses per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.2

0.0

0.2

0.4

0.6

Fi
tn

es
s S

co
re

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fi
tn

es
s S

co
re

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Fi
tn

es
s S

co
re

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

5

4

3

2

1

0

Fi
tn

es
s S

co
re

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

25

20

15

10

5

0

Fi
tn

es
s S

co
re

(e) 90%



Appendix A: Supplementary Population Figures 89

Figure A.5: CNN Population Compression per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0
Co

m
pr

es
sio

n 
Ra

tio

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n 

Ra
tio

(e) 90%



90 Appendix A: Supplementary Population Figures

Figure A.6: CNN Population Accuracy per Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.980

0.981

0.982

0.983

0.984

0.985

Ac
cu

ra
cy

(a) 10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.976

0.978

0.980

0.982

0.984

0.986

Ac
cu

ra
cy

(b) 30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

(c) 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

(d) 70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generation

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(e) 90%



Appendix A: Supplementary Population Figures 91

Figure A.7: VGG-16 Fitness

0%-1%-2%

-10%

0 20 40 60 80 100
Average Compression (%)

60

40

20

0

20

Av
er

ag
e 

Ch
an

ge
 in

 A
cc

ur
ac

y 
(%

)

0

20

40

60

80

100

Av
er

ag
e 

Gl
ob

al
 A

cc
ur

ac
y 

(%
)

Energy Threshold
1%
2%
5%
10%
20%
50%

Figure A.8: ResNet-101 Fitness

0%)-1%-2%

-10%

0 20 40 60 80 100
Average Compression (%)

80

60

40

20

0

Av
er

ag
e 

Ch
an

ge
 in

 A
cc

ur
ac

y 
(%

)

0

20

40

60

80

100
Av

er
ag

e 
Gl

ob
al

 A
cc

ur
ac

y 
(%

)

Energy Threshold
1%
2%
5%
10%
20%
50%



Bibliography

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network

learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

J. P. Cohen, H. Z. Lo, and W. Ding. Randomout: Using a convolutional gradient

norm to win the filter lottery. CoRR, abs/1602.05931, 2016. URL http://arxiv.

org/abs/1602.05931.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment

for machine learning. In BigLearn, NIPS workshop, number EPFL-CONF-192376,

2011.

J. P. M. de Sá, L. M. Silva, J. M. Santos, and L. A. Alexandre. Minimum error

entropy classification. Springer, 2013.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pages 315–323, 2011.

R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung.

92

http://arxiv.org/abs/1602.05931
http://arxiv.org/abs/1602.05931


Bibliography 93

Digital selection and analogue amplification coexist in a cortex-inspired silicon cir-

cuit. Nature, 405(6789):947, 2000.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015a.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for

efficient neural network. In Advances in neural information processing systems,

pages 1135–1143, 2015b.

B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal

brain surgeon. In Advances in neural information processing systems, pages 164–

171, 1993.

B. Hassibi, D. G. Stork, G. Wolff, and W. Takahiro. Optimal brain surgeon: Exten-

sions and performance comparison. In Advances in neural information processing

systems, pages 263–270, 1994.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

A. W. H. House. Discrete-time signals, May 2004.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.



94 Bibliography

S. Janjic, P. Thulasiraman, and N. Bruce. Redundancy in convolutional neural net-

works: Insights on model compression and structure. In 2018 International Joint

Conference on Neural Networks (IJCNN), pages 3601–3608, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-

volutional neural networks. In Advances in neural information processing systems,

pages 1097–1105, 2012.

Y. LeCun and C. Cortes. The mnist database. URL http://yann.lecun.com/exdb/

mnist/. Accessed: 2018-05-30.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in

neural information processing systems, pages 598–605, 1990.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November

1998a.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998b.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

X. Lei, A. W. Senior, A. Gruenstein, and J. Sorensen. Accurate and compact large

vocabulary speech recognition on mobile devices. In Interspeech, volume 1. Citeseer,

2013.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Bibliography 95

A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by

iterative pruning. CoRR, abs/1711.05769, 2017. URL http://arxiv.org/abs/

1711.05769.

A. Mallya and S. Lazebnik. Piggyback: Adding multiple tasks to a single, fixed

network by learning to mask. CoRR, abs/1801.06519, 2018. URL http://arxiv.

org/abs/1801.06519.

T. Miconi. Neural networks with differentiable structure. CoRR, abs/1606.06216,

2016. URL http://arxiv.org/abs/1606.06216.

M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolu-

tional neural networks for resource efficient transfer learning. arXiv preprint

arXiv:1611.06440, 2016.

R. Reed. Pruning algorithms-a survey. IEEE Trans. Neural Networks, 4(5):740–747,

1993. doi: 10.1109/72.248452. URL https://doi.org/10.1109/72.248452.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale

Visual Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

P. Y. Simard, D. Steinkrau, and I. Buck. Using gpus for machine learning algorithms.

In Eighth International Conference on Document Analysis and Recognition (IC-

http://arxiv.org/abs/1711.05769
http://arxiv.org/abs/1711.05769
http://arxiv.org/abs/1801.06519
http://arxiv.org/abs/1801.06519
http://arxiv.org/abs/1606.06216
https://doi.org/10.1109/72.248452


96 Bibliography

DAR’05)(ICDAR), volume 00, pages 1115–1119, 08 2005. doi: 10.1109/ICDAR.

2005.251. URL doi.ieeecomputersociety.org/10.1109/ICDAR.2005.251.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, 2014.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10:99–127, 2002.

D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks:

Optimizing connections and connectivity. Parallel computing, 14(3):347–361, 1990.

D. Whitley et al. Genetic algorithms and neural networks. Genetic algorithms in

engineering and computer science, 3:203–216, 1995.

C. S. Wiki. Convolutional neural networks (cnns) — computer science

wiki,, 2017. URL https://computersciencewiki.org/index.php?title=

Convolutional_neural_networks_(CNNs)&oldid=6229. [Online; accessed 14-

June-2018].

C. S. Wiki. Multi-layer perceptron (mlp) — computer science wiki,, 2018.

URL https://computersciencewiki.org/index.php?title=Multi-layer_

perceptron_(MLP)&oldid=8030. [Online; accessed 14-June-2018].

doi.ieeecomputersociety.org/10.1109/ICDAR.2005.251
https://computersciencewiki.org/index.php?title=Convolutional_neural_networks_(CNNs)&oldid=6229
https://computersciencewiki.org/index.php?title=Convolutional_neural_networks_(CNNs)&oldid=6229
https://computersciencewiki.org/index.php?title=Multi-layer_perceptron_(MLP)&oldid=8030
https://computersciencewiki.org/index.php?title=Multi-layer_perceptron_(MLP)&oldid=8030


Bibliography 97

J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural

networks for mobile devices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4820–4828, 2016.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? In Advances in neural information processing systems,

pages 3320–3328, 2014.


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	Acknowledgments
	Dedication
	Introduction
	Background
	Genetic Algorithm
	Multilayer Perceptron
	Convolutional Neural Networks
	VGG
	ResNet

	Datasets
	MNIST
	ImageNet


	Related Works
	Eliminating Redundancy
	Weight Pruning Genetic Algorithm
	Fitness function
	Algorithm
	Initialization
	Evaluation
	Tournament Selection
	Two Point Crossover
	Mutation
	Iteration


	Energy-based Filter Pruning Algorithm
	Energy-based Filter Pruning Criteria
	Algorithm


	Results
	Genetic Algorithm Weight Pruning
	Multilayer Perceptron
	Initial Conditions
	Fitness
	Accuracy and Compression
	Heatmap of Trial Solutions
	Histogram of Trial Solutions
	Solution Quality

	Convolutional Network
	Initial Conditions
	Fitness
	Accuracy and Compression
	Heatmap of Trial Solutions
	Histogram of Trial Solutions
	Solution Quality


	Energy-based Filter Pruning
	VGG-16
	Model compression
	Effect on Accuracy
	Interaction with Dropout

	ResNet-101
	Model compression
	Effect on Accuracy
	Summary



	Other Approaches
	Iterative Pruning without Retraining
	Evolving Replacement Filters

	Conclusion
	Future Work
	Supplementary Population Figures
	Bibliography

