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Preface 

This thesis is a result of doctoral research completed by Khurram Mahmood 

Butt under the supervision of Dr. Nariman Sepehri. It consists of two published and 

one submitted for publication research articles. The contents of constituting research 

articles are re-formatted and re-arranged to present a unified thesis document.  

A version of Chapters 2 and 3 and some parts of Chapter 1 has been published 

as a research article titled “Globalized and bounded Nelder-Mead algorithm with 

deterministic restarts for tuning controller parameters: Method and application” 

in “Optimal Control Applications and Methods”. The article was co-authored by 

Khurram Mahmood Butt, Ramhuzaini Abd. Rahman, Nariman Sepehri, and 

Shaahin Filizadeh. For this article, the contribution of each co-author was as follows: 

Butt conceived, designed, developed and coded a novel multimodal optimization 

algorithm so-called “Globalized and Bounded Nelder-Mead Algorithm with 

Deterministic Restarts”. He evaluated the performance of the algorithm using complex 

multimodal optimization benchmarks and applied the algorithm to the model-based 

offline tuning of controller parameters. He also conducted experiments, did data 

analysis, and wrote the article. Rahman designed and constructed the test-rig and the 

simulator for experiments. Sepehri initiated and supervised the research and reviewed 

the contents of the article. Filizadeh reviewed the work related to optimization.  

A version of Chapter 4 and some parts of Chapter 1 has also been published as a 

research article titled “Model-free online tuning of controller parameters using a 

globalized local search algorithm” in “Optimal Control Applications and Methods” 

as a research article. The article was co-authored by Khurram Mahmood Butt and 

Nariman Sepehri. For this article, the contribution of each co-author was as follows: 
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Butt designed and constructed the setup and method for model-free online tuning of 

controller parameters. He conducted all experiments, did data analysis, and wrote the 

article. Sepehri supervised the research and reviewed the contents of the article. 

A version of Chapters 5 and 6 and some parts of Chapter 1 has been submitted 

as a research article titled “A nonlinear integral sliding surface to improve the 

transient response of a force-controlled pneumatic actuator with long transmission 

lines” for publication to “Journal of Dynamic Systems, Measurement and Control”. 

The article was co-authored by Khurram Mahmood Butt and Nariman Sepehri. For 

this article, the contribution of each co-author was as follows: 

Butt developed the nonlinear integral sliding surface using which he designed a sliding 

mode controller that improved the transient response of a force controlled pneumatic 

actuator with long transmission lines. He also designed and constructed the 

experimental setup, an MRI-compatible pneumatic gripper. He conducted 

simulation/experimental tests, did data analysis, and wrote the research article. Sepehri 

supervised the research and reviewed the contents of the article. 
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Abstract 

A force-controlled pneumatic actuator with long connecting pneumatic tubes is a well-

accepted solution to develop MRI-compatible force control applications. Such an 

actuator represents an uncertain, second-order, nonlinear system with input delay. The 

integral sliding mode control, because of guaranteed robustness against matched 

uncertainties throughout the system response, provides a favorable option to design a 

robust controller for the actuator. However, if the controller is based on a linear integral 

sliding surface, the response of the actuator overshoots, especially when there are large 

initial errors. Minimizing overshoot results in a smaller controller bandwidth and a 

slower system response. This thesis presents a novel nonlinear integral sliding surface 

to improve the transient response of the actuator.  The proposed surface is a linear 

integral sliding surface augmented by a nonlinear function of tracking error and does 

not have a reaching phase when there are initial errors and even multiple steps in the 

desired trajectory. The surface enables the integral sliding mode controller to offer 

variable damping during the system response and minimizes the overshoot without 

compromising the controller bandwidth, rise, and settling times. The thesis also 

implements logically driven, time-efficient tuning of controller for desired transient 

response of the actuator. For this purpose, first a novel multimodal optimization 

algorithm is proposed which has better globalization and lower numerical cost as 

compared to the evolutionary, swarm and available globalized local search optimization 

methods. Next, the effectiveness of the proposed algorithm is examined for model-

based and model-free tuning of a position controller for a servo pneumatic system 

whose performance has been reported in another doctoral thesis after rigorous trial-and-

error tuning. On yielding better results, the same algorithm-based tuning is used to tune 

the force controllers having the linear and proposed nonlinear integral sliding surfaces 

for desired actuator response and performance comparison. Simulation studies and 
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experimental tests conducted on a prototype MRI-compatible test rig show that the 

controller based on the proposed sliding surface successfully eliminates the overshoot 

without compromising the controller bandwidth, rise, and settling times. It also 

outperforms the controller having a linear integral sliding surface. The thesis also 

establishes the asymptotic stability of the proposed controller using Lyapunov’s 

stability criterion. 
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Introduction 

Chapter 1  

Introduction* 

1.1 Motivation 

According to the World Health Organization, 15 million people worldwide 

suffer a stroke every year. Nearly 6 million of them die while another 5 million are 

permanently disabled making stroke one of the leading causes of long-term disability. 

Stroke causes partial destruction of cortical tissues which because of disturbed 

generation of motor instructions by sensorimotor areas, results in impaired arm and 

hand motor functions [Prange, Jannink, Groothuis-Oudshoorn, Hermens, & IJzerman, 

2006]. According to the US National Stroke Association, almost 40% of stroke 

survivors experience moderate to severe impairments that require special care and 

motor rehabilitation.  

Advanced robotics has found promising applications in motor rehabilitation of 

stroke survivors [Fasoli, Krebs, Stein, Frontera, & Hogan, 2003; Wade & Winstein, 

                                                           
* A version of this chapter has been published in parts in 

Butt, K., Rahman, R.A., Sepehri, N., & Filizadeh, S. (2017). Globalized and bounded Nelder-Mead algorithm with 

deterministic restarts for tuning controller parameters: Method and application. Optimal Control Applications and 

Methods, 38(6), 1042-1055. 

Butt, K., & Sepehri, N. (2018). Model-free online tuning of controller parameters using a globalized local search 

algorithm. Optimal Control Applications and Methods, 39(5), 1750-1765. 

Butt, K., & Sepehri, N. (2018). A nonlinear integral sliding surface to improve the transient response of a force-

controlled pneumatic actuator with long transmission lines. Manuscript submitted for publication. 
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2011] which are also well accepted and tolerated by post-stroke patients [Colombo, 

Pisano, Mazzone, Delconte, Micera, Carrozza, Dario, & Minuco, 2007]. Functional 

magnetic resonance imaging (fMRI) can evaluate brain functions safely, effectively, 

non-invasively, and produces high-quality brain maps. Optimized fMRI methods in 

combination with magnetic resonance (MR) compatible controlled devices can assist 

therapists to quantify, monitor, and improve physical rehabilitation [Astrakas, Naqvi, 

Kateb, & Tzika, 2012].  

Recent technological advances have resulted in devices that implement force 

control to develop impedance or interaction control applications for fMRI studies in the 

rehabilitation of motor control patients [Chapius, Gassert, Burdet, & Bleuler, 2008; 

Sergi, Erwin, & O'Malley, 2015; Vigaro, Sulzer, & Gassert, 2016]. However, fMRI’s 

strong magnetic field and vulnerability to image artifacts have proven to impose a 

severe limitation on the selection of materials, actuators, and transducers for such 

devices. This makes design and control of fMRI-compatible controlled devices 

extremely challenging. Most of the fMRI-compatible actuation techniques can be 

grouped into four categories: remote manual actuation, ultrasonic/piezo motors, 

hydraulic, and pneumatic transmission [Elhawary, Zivanovic, Davies, & Lampérth, 

2006]. Remote manual actuation offers slower procedures and lower resolutions. The 

ultrasonic/piezo motors are operated with high frequency electric signals which cause 

moderate loss of signal-to-noise ratio (SNR) and therefore do not guarantee image 

quality while in motion [Stoianovici, Song, Petrisor, Ursu, Mazilu, Mutener, Schar, & 

Patriciu, 2007; Fischer, Krieger, Iordachita, Csoma, Whitcomb, & Fichtinger, 2008]. On 

the other hand, both hydraulic and pneumatic actuations offer the advantage of 
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maintaining a high signal to noise ratio. However, the back-drivability and natural 

impedance because of air compressibility make pneumatic actuation favorable for force 

control applications [Yu, Hollnagel, Blickenstorfer, Kollias, & Riener, 2008].  

Furthermore, pneumatic systems are easy to maintain as compared to hydraulic systems 

because they do not suffer from cavitation and hazardous fluid leakage. These factors 

make pneumatic actuators a favorable option to develop force-controlled applications 

for MRI environments. MRI-compatible force-controlled pneumatic actuators, however, 

require long connecting pneumatic tubes between valves and cylinders due to the 

commercial unavailability of MRI-compatible valves. The long pneumatic tubes 

between the flow controlling valve and the cylinder result in reduced and time-delayed 

flow rates in and out of the cylinder. This reduction and time-delay in flow through the 

valve necessitate an exceedingly slow system response, which negatively affects the 

performance of the force-controlled pneumatic actuator. Furthermore, direct cylinder 

pressure measurements are not possible because MRI-compatible pressure transducers 

are not available either. This is a serious impediment to the implementation of robust 

control structures that necessarily require measurements of cylinder pressures for 

accurate force control of a pneumatic actuator.  

The above-mentioned difficulties in controlling pneumatic actuators have 

inspired many of the researchers to compromise this otherwise favorable actuation 

technique in developing controlled devices for fMRI studies.  An accurate force-

controlled pneumatic actuator with long transmission lines and without direct 

measurements of pressure will encourage researchers to avoid such a compromise. This 

thesis, therefore, investigates the problem of the accurate force control of a pneumatic 
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actuator with long transmission lines and indirect pressure measurements and proposes 

a suitable control scheme. 

The proposed controller should outperform the available controllers in literature 

in an unbiased comparison to justify its use. In doing so, drawing conclusions about the 

capability of a controller by experimentally analyzing its performance using trial-and-

error has a great deal of inaccuracy. This may lead to the unnecessary selection of 

complex controllers, which may require additional sensory information, and may result 

in the utilization of additional resources and time, and increased cost. Furthermore, 

tuning even simple controllers such as a Proportional-Integral-Derivative (PID) 

controller can be a difficult task. Attaining the best transient and steady state response 

using trial-and-errors heavily relies on the tuner’s perception of what is the best possible 

response. It also makes tuning even more tedious in applications that are demanding in 

terms of accuracy and other performance indices. It requires extensive hands-on 

experience as well. Therefore, the thesis also makes an effort to develop a tuning 

method driven by optimization algorithm for desired performance. The method should 

outperform similar available methods in literature in terms of accuracy and time-

efficiency. The developed tuning method should be extendible to other control 

applications as well.    

1.2 Background 

1.2.1 Force Controllers for Pneumatic Actuators  

Pneumatic actuation compares favorably to the other actuation techniques for 

MRI-compatible force control applications. As MRI-compatible pneumatic cylinders 
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are available but not the valves, a pneumatic actuator always requires long transmission 

lines between valve and cylinder to work in MRI environment. The introduction of long 

transmission lines invokes dominant transmission line dynamics and results in a 

pneumatic system with input delay from command valve. Such an input delay, if 

ignored, deteriorates the performance of force-controlled pneumatic actuators. 

Furthermore, despite using anti-stiction cylinders or friction observers to minimize the 

contribution of friction towards modeling uncertainties, a pneumatic system has some 

other factors that make it an uncertain system. These factors include but are not limited 

to air compressibility, reflection and resonance in pneumatic tubes, and valve spool 

inertia.  A sliding mode control offers a satisfactory solution to compensate for such 

uncertainties [Shtessel, Edwards, Fridman, & Levant, 2014]. However, the 

implementation of sliding mode control on pneumatic actuators requires cylinder 

pressure measurements to compute the dynamic function of the system. In an MRI 

setting, such a requirement necessitates customized solutions owing to the 

unavailability of MRI-compatible pressure transducers on commercial basis. Turkseven 

and Ueda [2017] proposed an asymptotically stable observer to estimate chamber 

pressures using force and piston displacement measurements. Implementation of such 

an observer in MRI environment requires an MRI-compatible force sensor which is not 

commercially available either. To avoid the use of MRI-compatible force sensor or 

pressure transducers, long pneumatic tubes can be employed to connect cylinder 

chambers to feedback pressure transducers. To facilitate the estimation of chamber 

pressures using available feedback pressure measurements, the model of the pneumatic 

tube can be approximated to be a first-order linear transfer function with time delay. 
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Yang, Tan, McMillan, Gullapalli, and Desai [2012] proposed such a model using 

system identification for 9m long transmission lines of 3.125mm internal diameter 

connected to closed volumes and showed that the model works well over the range of 

working pressures.   

Richer and Hurmuzlu [2000a] proposed full and reduced order sliding mode 

controllers for a force-controlled pneumatic actuator based on the pneumatic model they 

presented in [Richer & Hurmuzlu, 2000b]. The full order controller was designed taking 

into account the valve dynamics as well as reduced and delayed flow because of 

transmission lines whereas the reduced order controller design neglected the valve 

dynamics and time delay induced by the valve-cylinder connecting tubes. They showed 

that the full order sliding mode controller outperformed the reduced order controller for 

a force-controlled pneumatic actuator with 2m long connecting tubes. Yu, Murr, 

Blickenstorfer, Kollias, and Riener [2007] also used a reduced order sliding mode force 

controller for fMRI-compatible pneumatic haptic interface with 4.5m long transmission 

lines. However, the controller exhibited oscillatory responses and valve chattering of 

high amplitude. The controllers proposed in both works used a conventional linear 

sliding surface. The controllers based on such a sliding surface have a problem of 

reaching phase and can only provide compensation against matched uncertainties after 

the sliding mode becomes operational [Hamayun, Edwards, & Alwi, 2016].  

The idea of integral sliding mode control was proposed to provide compensation 

against matched uncertainties throughout the system response [Matthews & DeCarlo, 

1988; Utkin & Shi, 1996; Wang, Lee, & Juang, 1996; Utkin, Guldner, & Shi, 1999]. 

Xu, Pan, and Lee [2003]; and Cao and Xu [2004] used integral sliding surfaces for 
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uncertain systems considering both matched and unmatched uncertainties and 

demonstrated that the system dynamics while on the sliding surface meet the 

performance specifications in the presence of matched uncertainties. Castanos and 

Fridman [2006] demonstrated that the effect of unmatched uncertainties can also be 

minimized by the suitable choice of an integral sliding surface. Though the use of 

integral sliding mode effectively rejects disturbances and matched uncertainties right 

from the beginning of the response, it may result in a compromised transient response if 

the initial system errors are very large. The system may also become vulnerable in 

terms of closed-loop stability due to the integral wind-up phenomenon in the presence 

of control input constraints [Gao & Liao, 2013].  

Settling time and overshoot are the two important indices of closed-loop 

transient performance and a trade-off always exists between them in the presence of the 

conventional linear sliding surface. To improve both the indices simultaneously, the 

idea of variable damping ratio of dominant closed-loop poles using a nonlinear sliding 

surface is one possible solution. Such an idea was first introduced by Lin, Pachter, and 

Banda [1998] for second-order systems with state-feedback control, and it was further 

extended to general higher order SISO and MIMO systems by Turner, Postlethwaite, 

and Walker [2000]; Chen, Lee, Peng, and Venkataraman [2003]; Venkataraman, Peng, 

and Chen [2003]; and Turner and Postlethwaite [2004] for state-feedback and output-

feedback based control laws. Bandyopadhyay and Fulwani [2009] proposed a nonlinear 

sliding surface based on variable damping ratio to achieve improved performance and 

robustness for the discrete plant. In another work, Bandyopadhyay, Deepak, 

Postlethwaithe, and Turner [2010] showed improvement in the transient response of a 
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discrete-time uncertain SISO linear system with input delay using the nonlinear sliding 

surface. Abd El Khalick Mohammad, Uchiyama, and Sano [2015] used a nonlinear 

sliding surface to induce a change in damping ratio from its initial low value to the final 

high value as the contour error changes from high value to small value and vice versa to 

improve the machining accuracy of biaxial feed-drive systems. Ripamonti, Orsini, and 

Resta [2017] applied a nonlinear parabolic sliding surface to rotate the links of a three-

link flexible manipulator quickly with reduced vibrations.  

To the best of our knowledge, the nonlinear sliding surfaces available in 

literature have never been applied to the force control of pneumatic actuators exhibiting 

uncertainties and input delays. Furthermore, the available nonlinear sliding surfaces 

have been constructed by adding nonlinear functions to the conventional linear sliding 

surfaces. Such nonlinear sliding surfaces have the problem of reaching phase. 

Consequently, the sliding mode controllers designed using them do not provide 

robustness against matched uncertainties until the sliding mode is established. 

1.2.2 Tuning of Controller Parameters 

The performance of any control application largely depends upon the suitable 

controller structure and the careful selection of controller parameters. That is why the 

considerable effort has been made by researchers to come up with different methods to 

tune controller parameters. These methods range from trial-and-error to more 

sophisticated ones such as using neural networks, heuristics, and meta-heuristics. Each 

method has advantages over the others in different control environments and 

applications.  
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The most widely used tuning method is probably trial-and-error. Such a method 

may sometimes give fair results but, due to heavy reliance on the tuner’s perception of 

what is the best possible response, may provide inaccurate conclusions about the 

capability of the controller in demanding control applications.  

Model-based offline tuning methods using heuristics and meta-heuristics have 

been reported in some studies [Padula & Visioli, 2011; Kim, 2011; Chiha, Liouane, 

Borne, 2012; Reynoso-Meza, Garcia-Nieto, Sanchis, & Blasco, 2013]. These methods 

offer great advantages for tuning in applications where a sufficiently adequate model for 

a range of operating conditions is known, and the iterative system runs for online tuning 

are time-consuming or very expensive. However, a multiplicity of local solutions has 

inspired much of this work to use population-based algorithms which often have a 

prohibitively high numerical cost.  Furthermore, the evolutionary algorithms such as 

genetic algorithms may sometimes converge to arbitrary points when the optimization 

problem does not provide an easy ascent to global optimum [Wolpert & Macready, 

1995]. Also, the decision of selecting an evolutionary algorithm for an optimization 

problem depends upon the space to be searched for an optimal solution. If that space is 

well-understood, the use of evolutionary algorithms is generally computationally less 

efficient [Forrest & Mitchell, 1993]. Luersen and Le Riche [2004] proposed a fixed cost 

local search optimization which sequentially becomes global. It achieved globalization 

by probabilistic restarts of the Nelder-Mead’s algorithm using spatial probability. The 

method is particularly useful in tackling multimodal, discontinuous, and constrained 

optimization problems. But due to the probabilistic nature of restarts, the algorithm 

exhibits varying accuracy levels when running multiple times for same optimization 
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problem. With respect to tuning controller parameters, this is not desirable especially in 

demanding control applications.  

The performance of any optimization algorithm in the model-based tuning of 

controller parameters depends heavily on the adequacy of the mathematical model and 

the identification of bounds on decision variables within which the sufficient adequacy 

of model exists. In many applications, un-modeled uncertainties may pose a serious 

challenge in obtaining sufficiently adequate models. Also, the end-user may find it 

difficult to accept the essential requirement of knowing the sufficiently adequate model 

for tuning the controller parameters.  

It is reasonable to believe that an improvement in the performance of heuristics 

or metaheuristics for tuning is expected if they rely on measurements coming directly 

from actual physical systems and not just their mathematical models. Model-free online 

tuning methods like extremum seeking [Killingsworth & Krstic, 2006], discrete Fourier 

transform processing [Fnaiech, Khadraoui, Nounou, Nounou, Guzinski, Abu-Rub, 

Datta, & Bhattacharyya, 2014], stable adaptation mechanism [Boubakir, Labiod, & 

Boudjema, 2012], binary search gain-tuning [Tursini, Parasiliti, & Daqing, 2002], 

chaotic particle swarm approach [dos Santos Coelho & Coelho, 2009], and self-gain 

tuning method using neural networks [Le, Kang, Suh, & Ro, 2013] have been proposed; 

however, their effectiveness has mostly been examined for tuning of PID controllers. 

Furthermore, the basic deterministic extremum seeking algorithm uses sinusoidal 

perturbations for real-time online tuning. The smaller the amplitude of sinusoidal 

perturbation, the greater the probability of getting stuck at the local minimum [Liu & 

Krstic, 2012]. Also, the performance of extremum seeking greatly relies on the cleaner 
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gradient estimation which needs larger perturbation frequency [Liu & Krstic, 2012]. 

Therefore, in applications having slower dynamics and amplitude of controlled variable 

constrained by smaller bounds like pneumatic control systems, the performance of the 

extremum-seeking algorithm is limited. Oliveira JB, Boaventura-Cunha, Oliveira PM, 

and Freire [2014] presented online tuning of the sliding mode generalized predictive 

controller for Van de Vusse reaction system and first-order-plus-dead-time discrete 

transfer functions commonly associated with chemical processes having extremely 

slower dynamics. They proposed to tune the continuous component of control law using 

quadratic programming and the discontinuous component using particle swarm 

optimization. Particle Swarm Optimization, being a population-based algorithm, has a 

high numerical cost and online tuning using it may require many iterative system’s runs 

to converge to a solution, which for some applications may be exceedingly time-

consuming or simply unaffordable.  

1.3 Research Objectives  

On the basis of literature reviewed above, this thesis defines the following 

objectives: 

1. To develop a novel globalized local search, multimodal optimization algorithm 

which should have a lower numerical cost and a greater probability of finding global 

minimum as compared to existing evolutionary, swarm, and other globalized local 

search multimodal optimization algorithms.   

2. To effectively apply the proposed algorithm for model-based offline and model-free 

online tuning of robust nonlinear sliding mode controller for a pneumatic control 
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application with performance already reported after rigorous trial-and-error tuning 

in an earlier publication. The proposed algorithm-driven offline and online 

controller tuning should improve the system’s performance by a considerable 

margin. 

3. To propose and examine a novel nonlinear integral sliding surface for an improved 

transient response of a force-controlled pneumatic actuator with long transmission 

lines. The proposed sliding surface should not have a reaching phase despite initial 

errors and multiple steps in the desired trajectory and, therefore, should guarantee 

robustness against matched uncertainties throughout the system response.  

4. To design and implement a full order sliding mode force controller based on the 

proposed nonlinear integral sliding surface on a pneumatic actuator with long 

transmission lines subjected to an external human force. To facilitate 

implementation of sliding mode control in MRI environment without using MRI-

compatible force sensor and pressure transducers, a suitable method for indirect 

measurements of chamber pressures should be used.   

5. To implement the proposed algorithm driven tuning on the proposed controller to 

optimize its parameters for the desired system response. The proposed force 

controller should outperform the one using the linear integral sliding surface in an 

unbiased comparison to justify its use.  

1.4 Thesis Organization  

Chapter 2 presents a globalized bounded Nelder-Mead algorithm with 

deterministic restarts and a linearly growing memory vector and compares it against the 
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evolutionary, the swarm and the other globalized local search optimization algorithms. 

Chapter 3 applies the proposed algorithm for the model-based offline tuning of sliding 

mode controller parameters of a position controlled pneumatic actuator with previously 

reported performance and shows its effectiveness. Chapter 4 presents a model-free 

online tuning method based on the proposed algorithm for optimizing the sliding mode 

controller parameters of the same pneumatic actuator. Chapter 5 describes the schematic 

diagram of a force-controlled pneumatic actuator with long transmission lines and 

indirect pressure measurements and derives its dynamic equations. The chapter also 

proposes a nonlinear integral sliding surface and designs a full order sliding mode force 

controller for the actuator using the surface. A full order sliding mode control law based 

on a linear integral sliding surface for the actuator is also derived in the chapter for 

performance comparison. This chapter establishes the asymptotic stability of the force 

controller having the proposed sliding surface as well. Chapter 6 evaluates the 

performance of force controller built upon the proposed sliding surface and compares its 

performance against the one with a linear integral sliding surface using simulation and 

experiments. Chapter 7 presents the contributions made by the research as well as some 

recommendations for future work. 
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Chapter 2  

A Low-cost Multimodal Optimization 

Algorithm† 

2.1 Description of Optimization Algorithm  

This chapter proposes a novel low-cost multimodal optimization algorithm. The 

proposed algorithm globalizes the Guin augmented variant of Nelder-Mead’s algorithm 

sequentially by deterministic restarts, linearly growing memory vector and moving 

initial simplex. The algorithm exploits the simplicity of search space formed by simple 

bounds on design variables for deterministic restarts. For better understanding, the Guin 

augmented variant of Nelder-Mead’s algorithm is described in Section 2.1.1 before 

explaining the proposed deterministic restarts with moving initial simplex in Section 

2.1.2.  

2.1.1 Guin Augmented Variant of Nelder-Mead’s Algorithm 

The Nelder-Mead’s downhill simplex algorithm [Nelder & Mead, 1965] is a 

non-linear, derivative-free, unconstrained, local search optimization algorithm. It uses 

                                                           
† A version of this chapter has been published in Butt, K., Rahman, R.A., Sepehri, N., & Filizadeh, S. (2017). 

Globalized and bounded Nelder-Mead algorithm with deterministic restarts for tuning controller parameters: 

Method and application. Optimal Control Applications and Methods, 38(6), 1042-1055. 
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𝑛 + 1 vertices 𝑥1, 𝑥2, ⋯ , 𝑥𝑛+1 as initial simplex where n is the number of parameters to 

be optimized for minimization of the objective function. The possible variant of this 

algorithm uses reflection, expansion, contraction, and shrinkage to find local minimizer 

as follows: 

1. The algorithm takes the centroid of all points 𝑥0 except 𝑥𝑛+1 where𝑓(𝑥1) ≤

𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛) ≤ 𝑓(𝑥𝑛+1).  

2. It computes the reflected point 

 𝑥𝑟 = 𝑥0 + 𝛼(𝑥0 − 𝑥𝑛+1)  

where 𝛼 is the reflection coefficient.  

3. If the reflected point is such that 𝑓(𝑥𝑟) ≤ 𝑓(𝑥𝑛+1), the algorithm computes the 

expanded point 

𝑥𝑒 = 𝑥0 + 𝛾(𝑥0 − 𝑥𝑛+1)  

where 𝛾 is the expansion coefficient.  

If the expanded point is such that 𝑓(𝑥𝑒) ≤ 𝑓(𝑥𝑟), the algorithm replaces 𝑥𝑛+1 by 𝑥𝑒 

and makes a new simplex. Otherwise, it replaces 𝑥𝑛+1 by 𝑥𝑟 and makes a new 

simplex. 

4. If 𝑓(𝑥𝑟) > 𝑓(𝑥𝑛+1), the algorithm computes the contracted points  

𝑥𝑐 = 𝑥0 ± 𝜌(𝑥𝑛+1 − 𝑥0)  

where 𝜌 is the contraction coefficient.  

If the better of contracted points is such that 𝑓(𝑥𝑐) ≤ 𝑓(𝑥𝑛+1), the algorithm 

replaces 𝑥𝑛+1 by 𝑥𝑐 and makes a new simplex. 

5. If 𝑓(𝑥𝑐) > 𝑓(𝑥𝑛+1), the algorithm replaces all points of simplex except 𝑥1 by 

 𝑥𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1),            𝑖 = {2,⋯ , 𝑛 + 1}  
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where 𝜎 is the shrink coefficient. 

For the algorithm to function, the values of reflection, expansion, contraction 

and shrink coefficients should satisfy the constraints such that 𝛼 > 0, 𝛾 > 1, 𝛾 > 𝛼, 

0 < 𝜌 < 1, 0 < 𝜎 < 1 [Singer & Nelder, 2009].  

Nelder-Mead’s algorithm terminates when at least one of small simplex 

convergence test, function value convergence test, no convergence test becomes true. 

To put bounds on optimal gain search by Nelder-Mead’s algorithm, variations to 

the original algorithm are required. Numerous variations have been proposed for this 

purpose, among which the Guin method [Guin, 1968] stands out due to simplicity and 

effectiveness to introduce implicit constraints, and easy implementation. The Guin 

method successfully embeds such constraints into Nelder-Mead’s algorithm though it 

has a probability to fail in rare exceptions especially in case of minimization problems 

of dimensions greater than four [Floc’h, 2012]. This method, in case of a trial point 

lying outside the bounds, keeps on taking the midpoints between the centroid and the 

trial point until the trial point starts respecting the bounds. 

2.1.2 Proposed Deterministic Restarts and Moving Initial Simplex 

To achieve globalization within the n-dimensional search space formed by 

simple bounds on design variables, the proposed algorithm identifies the region of 

interest (S) for optimal parameters search as follows: 

 

𝐒 = [

𝐕𝟏
𝐕𝟐
⋮
𝐕𝟐𝐧

] (1) 
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where 𝐕𝟏, 𝐕𝟐, … , 𝐕𝟐𝐧   are matrices of order 1 × n and are vertices of n-dimensional 

search space. 

The algorithm defines an allowable number of restarts R. The initial simplex 𝐈𝐒 

for the 1st run (r = 1) of Guin augmented variant of Nelder-Mead’s algorithm is formed 

as follows: 

 

𝐈𝐒 = (𝐗𝐜
𝐓 ∙ 𝐉𝟏,𝐧+𝟏)

𝐓 +

[
 
 
 
 
0    0   0⋯0    0
∝1 0   0⋯0    0
0 ∝2  0⋯0    0

⋮
0   0    0⋯0 ∝n]

 
 
 
 

 (2) 

where 𝐗𝐜 is the centroid of search space and 𝐉 is a matrix consisting of ones only with 

the subscript showing its order. Also, 

 

∝i= {

−
ximax − ximin

β
,                i = 1

ximax − ximin
β

,      i ∈ {2,3, … , n}
 (3) 

In (3),  ximax and ximin are the bounds on the ith parameter to be optimized. β ∈

{4.9,5} is the initial simplex size coefficient and determines the size of the initial 

simplex. 

Local minimizer 𝐗𝟎 found by each run (1 ≤ r < 𝑅) of Guin augmented variant 

of Nelder-Mead’s algorithm is used for constructing initial simplex for the succeeding 

run as follows: 

In case of the centroid of search space lying at the origin, local minimizer 𝐗𝟎 is 

projected onto 2n points 𝐏 within the search space. 

 𝐏 = 0.5𝐒 − 0.5(𝐗𝟎
𝐓 ∙ 𝐉𝟏,𝟐𝐧)

𝐓 (4) 
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Equation (4) may cause a violation of bounds on parameter search by projected 

points if the centroid of search space does not lie at the origin. This makes initial 

simplex to lie outside the search space resulting in failure of bounds on optimized 

parameters search. 

To solve this problem, the search space is translationally moved to make 

centroid lie at the origin. 

 𝐗̂𝐜 = 𝐗𝐜 + [a1   a2  …   an] (5) 

In (5) a1, a2, … , an are the respective distances between centroid and origin 

along respective axes of n-dimensional search space. 

With new centroid 𝐗̂𝐜, the search space becomes 

 

𝐒̂ =

[
 
 
 
𝐕̂𝟏
𝐕̂𝟐
⋮
𝐕̂𝟐𝐧]

 
 
 

 (6) 

where 

 𝐕̂i = 𝐕𝐢 + [a1   a2  …   an],           i ∈ {1,2, … , 2
n} (7) 

Local minimizer 𝐗𝟎 found in the preceding run becomes 𝐗̂𝟎. 

 𝐗̂𝟎 = 𝐗𝟎 + [a1   a2  …   an] (8) 

Local minimizer is projected onto 2n points within moved search space as given 

in (9). 

 𝐏̂ = 0.5𝐒̂ − 0.5(𝐗̂𝟎
𝐓
∙ 𝐉𝟏,𝟐𝐧)

𝐓 (9) 

where 𝐏̂ is a matrix of order 2n × n. 

The projected points are then moved back to the original search space as given 

in (10). 
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𝐏 = 𝐏̂ − ([

a1
a2
⋮
an

] . 𝐉𝟏,𝟐𝐧)

𝐓

   (10) 

The objective function is evaluated on all of these points. Out of these projected 

points, one is designated as 𝐏𝟎 which becomes an element of linearly growing memory 

vector 𝐌 and is used for constructing initial simplex for the succeeding run according to 

following criteria: 

For r = 2, the one having the minimum value of objective function amongst all 

projected points is selected as 𝐏𝟎.  

For 2 < 𝑟 ≤ 𝑅, the one having the minimum value of objective function amongst all 

those projected points which are not elements of existing memory vector 𝐌, is selected 

as  𝐏𝟎.  

This helps algorithm avoid getting stuck at one local minimizer. To construct 

initial simplex for all succeeding runs, Eq. (2) is used with 𝐗𝐜 replaced by 𝐏𝟎. To make 

initial simplex respect the bounds, ∝i is taken as follows for all succeeding runs: 

 

∝i= {

−
ximax − ximin

β
ximax − ximin

β

 

𝐏𝟎 exceeds 𝐗𝐜 in the ith dimension. 

𝐗𝐜 equals or exceeds 𝐏𝟎 in the ith dimension. 

 

  (11) 

 This proposed multimodal optimization algorithm keeps on running until the 

minimum found is less than or equal to the desired minimum. Otherwise, the algorithm 

terminates when all projected points already exist in memory vector or the defined 

number of restarts has been executed. In this case, the algorithm selects the best local 

minimum found so far as a global minimum.  
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2.2 Performance Evaluation of Proposed Algorithm  

The performance of the algorithm in terms of globalization, accuracy and 

numerical cost has been evaluated using minimization of ten complex multimodal 

benchmark functions having many local minima within search space. In multimodal 

optimization, one is not interested primarily in global minimum but rather in minima 

having values less than a certain value which in the thesis has been defined as the 

desired minimum. For evaluation of the performance of the algorithm in terms of 

globalization, the desired minimum has been kept equal to the global minimum with a 

tolerance of 0.001. The benchmark functions are shown in Table 2.1.   

TABLE 2.1 BENCHMARK FUNCTIONS 

Function Mathematical Form 

Eggholder 𝑓(𝑥, 𝑦) = −(𝑦 + 47)𝑠𝑖𝑛 (√|𝑦 +
𝑥

2
+ 47|) − 𝑥𝑠𝑖𝑛(√|𝑥 − (𝑦 + 47|) 

Drop-wave 𝑓(𝑥, 𝑦) = −
1 + 𝑐𝑜𝑠(12√𝑥2 + 𝑦2)

0.5(𝑥2 + 𝑦2) + 2
 

Bukin N.6 𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10| 

Holder 

Table 
𝑓(𝑥, 𝑦) = − |𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦)𝑒𝑥𝑝 (|1 −

√𝑥2 + 𝑦2

𝜋
|)| 

Schwefel 𝑓(𝑥, 𝑦) = 837.9658 − (𝑥𝑠𝑖𝑛√|𝑥| + 𝑦𝑠𝑖𝑛√|𝑦|) 

Shubert 𝑓(𝑥, 𝑦) = (∑𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥 + 𝑖)

5

𝑖=1

) (∑𝑖𝑐𝑜𝑠((𝑖 + 1)𝑦 + 𝑖)

5

𝑖=1

) 

Levy N.13 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛2(3𝜋𝑥) + (𝑥 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑦)] + (𝑦 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑦)] 

Ackley 
𝑓(𝑥, 𝑦) = −20 exp(−0.2√

1

2
(𝑥2 + 𝑦2)) − exp (

1

2
(cos (2𝜋𝑥) + cos (2𝜋𝑦))) + 20

+ exp(1) 

Beale 𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2 + (2.625 − 𝑥 + 𝑥𝑦3)2 

Goldstein-

Price 

𝑓(𝑥, 𝑦) = [1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)] 
                                [30 + (2𝑥 − 3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)] 

The proposed algorithm with deterministic restarts performs satisfactorily on ten 

complex multimodal optimization benchmarks having many local minima. One of these 



21 
 

A Low-cost Multimodal Optimization Algorithm 

functions is shown in Figure 2.1. It achieves the global minimum in all cases. The 

details are given in Table 2.2. 

TABLE 2.2 PERFORMANCE OF PROPOSED ALGORITHM ON MINIMIZATION OF 

BENCHMARK FUNCTIONS 

Function Global 

Minimum 

Search Space Minimum Found by 

Algorithm 

 

Function 

Evaluations 

Used  
Eggholder -959.6407 𝑥 ∈ [−512,512] , 

 𝑦 ∈ [−512,512] 
𝑓(512,404.2319)
= −959.6407 

1036 

Drop-
wave 

-1 𝑥 ∈ [−5.12,5.12] , 
 𝑦 ∈ [−5.12,5.12] 

𝑓(0,0) = −1 365 

Bukin N.6 0 𝑥 ∈ [−15,−5] , 
 𝑦 ∈ [−3,3] 

𝑓(−10.02,1.003)
= 0.00017 

596 

Holder 
Table 

-19.2085 𝑥 ∈ [−10,10] , 
 𝑦 ∈ [−10,10] 

𝑓(−8.055, −9.664)
= −19.2085 

265 

Schwefel 0 𝑥 ∈ [−500,500] ,  
𝑦 ∈ [−500,500] 

𝑓(420.9688,420.9688)
= 0.000025455 

324 

Shubert -186.7309 𝑥 ∈ [−10,10] ,  
𝑦 ∈ [−10,10] 

𝑓(−1.4251, −0.8003)
= −186.7309 

327 

Levy N.13 0 𝑥 ∈ [−10,10] ,  
𝑦 ∈ [−10,10] 

𝑓(1,1) = 0 269 

Ackley 0 𝑥 ∈ [−32.768,32.768] ,  
𝑦 ∈ [−32.768,32.768] 

𝑓(0,0) = 0 591 

Beale 0 𝑥 ∈ [−4.5,4.5] , 𝑦 ∈
[−4.5,4.5] 

𝑓(3,0.5) = 0 392 

Goldstein-
Price 

3 𝑥 ∈ [−2,2] ,  
𝑦 ∈ [−2,2] 

𝑓(0, −1) = 3 259 

 

Figure 2.1 Eggholder function 



22 
 

A Low-cost Multimodal Optimization Algorithm 

The proposed algorithm tries to avoid the vicinity of already found local 

minimum using Eqs (4-11) and a linearly growing memory vector without violating the 

bounds of search space. This prevents the algorithm from getting stuck to the same local 

minimum and enables it to find the new one. An example is shown in Figure 2.2 in 

which the proposed algorithm is minimizing the complex multimodal eggholder 

function to achieve the global minimum. It shows that the algorithm converges to the 

global minimum using 4 deterministic restarts of Nelder-Mead with moving initial 

simplex and in all of these four restarts it converges to a different local minimum. 

 

Figure 2.2 Convergence characteristic of proposed algorithm while minimizing the eggholder 

function 

To compare the performance of the algorithm in globalization and numerical 

cost, Luersen’s globalized bounded Nelder-Mead (GBNM) with probabilistic restarts, 

genetic algorithm (GA) with elitism, and two variants of particle swarm optimization 

(PSO) i.e. with adaptive inertia weight, and linearly decreasing inertia weight, have 

been used. The proposed algorithm, because of deterministic restarts, converges to the 
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global minimum with the same accuracy if run with same algorithm parameters on the 

same problem multiple times. Luersen’s GBNM, GA with elitism and both variants of 

PSO lack such consistency as shown in Table 2.3. However, variants of PSO compare 

favorably against GA and Luersen’s GBNM in terms of probability of finding global 

minimum in most of the optimization benchmarks. This encourages the use of PSO with 

multiple swarm runs to see if they can achieve 100% probability of finding global 

minimum in case of all multimodal optimization benchmarks used in this thesis. PSO 

with linearly decreasing inertia weight and multiple swarm runs achieves 100% success 

in finding global minima but the numerical cost for doing so is higher as compared to 

the proposed algorithm, as shown in Table 2.4. For the comparisons shown in Tables 

2.3 and 2.4, algorithm parameters given in Table 2.5 have been used. All algorithms 

have been coded in MATLAB scripts. 

TABLE 2.3 PERFORMANCE COMPARISON BETWEEN LUERSEN’S GBNM, GA, PSO AND 

PROPOSED ALGORITHM 

Function No. of times global minimum with a tolerance of 0.001 was found over 1000 runs 

Luersen’s 

GBNM  

GA 

with 

Elitism 

PSO with 

Adaptive 

Inertia 

Weight  

PSO with 

Linearly 

Decreasing 

Inertia 

Weight  

PSO with 

Adaptive 

Inertia 

Weight and 

Multiple 

Swarm 

Runs 

PSO with 

Linearly 

Decreasing 

Inertia 

Weight and 

Multiple 

Swarm 

Runs 

Proposed 

Algorithm 

Eggholder 184 0 705 556 1000 1000 1000 

Drop-wave 38 105 463 588 1000 1000 1000 

Bukin N.6 210 0 5 304 46 1000 1000 

Holder 

Table 

766 0 893 464 1000 1000 1000 

Schwefel 671 0 599 603 1000 1000 1000 

Shubert 646 172 829 477 1000 1000 1000 

Levy N.13 982 661 993 792 1000 1000 1000 

Ackley 980 995 998 678 1000 1000 1000 

Beale 1000 734 997 950 1000 1000 1000 

Goldstein-

Price 

1000 612 999 957 1000 1000 1000 
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TABLE 2.4 PERFORMANCE COMPARISON BETWEEN PSO AND PROPOSED ALGORITHM 

IN TERMS OF NUMERICAL COST 

Functions Function evaluations used to reach global minimum with 

a tolerance of 0.001 

PSO with Linearly Decreasing Inertia 

Weight and Multiple Swarm Runs 

Proposed 

Algorithm 

Eggholder   5920 1036 
Drop-wave   4900   365 
Bukin N.6 18820   596 
Holder Table   4280   265 
Schwefel   9040   324 
Shubert 12960   327 
Levy N.13 10300   269 
Ackley 13560   591 
Beale   6020   392 
Goldstein-Price   8820   259 

As shown in Table 2.3, the genetic algorithm performs poorly on some of the 

multimodal optimization benchmarks. This is expected as the traditional GA with both 

mutation and crossover rates are adversely affected by the multimodality of the problem 

[Kennedy & Spears, 1998]. Furthermore, the performance of the genetic algorithm 

relies substantially on the tuning of its three main algorithm operators; population size, 

crossover rate, and mutation rate. Values of these operators are often problem specific 

for best performance and generalization is not possible which makes use of the genetic 

algorithm for global optimization somewhat challenging. On the other hand, the 

proposed algorithm needs only one operator to be tuned and that is the initial simplex 

size coefficient (β). The proposed algorithm achieves globalization with the small 

numerical cost for all multimodal optimization benchmarks shown in Table 2.1 with 

β = 4.9  except Bukin N.6 for which β is found to be 5 for globalization.  This shows 

that the proposed algorithm provides sufficient generalization for selecting the proper 

value of its operator β over a range of multimodal optimization problems for 

globalization with small numerical cost. This makes use of proposed algorithm easier 
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than the genetic algorithm in handling multimodal optimization problems with simple 

bounds for globalization.  

TABLE 2.5 ALGORITHM PARAMETERS 

Parameter Description Value 

For Luersen’s GBNM and Proposed Algorithm 

Number of restarts allowed 12 

Maximum function evaluations 2500 

Reflection coefficient 1 

Expansion coefficient 2 

Contraction coefficient 0.5 

Shrink coefficient 0.5 

Small simplex convergence test coefficient 5e-07 

Function value convergence test coefficient 1e-09 

No convergence test coefficient (function evaluations) 600 

For GA with Elitism 

Population size 200 

Elite count 2 

Generations 100 

Crossover rate 0.8 

Mutation rate 0.01 

Function tolerance 1e-6 

Stall generations limit* 50 

For PSO with Linearly Decreasing Inertia Weight  

Population size 20 

Acceleration factors (𝐶1, 𝐶2) 2 

Max. inertia weight 0.9 

Min inertia weight 0.4 

Function tolerance 1e-6 

Maximum iterations 1000 

Stall iterations limit** 500 

Velocity clamped No 

Maximum swarm runs allowed in case of multiple swarm runs 12 

For PSO with Adaptive Inertia Weight  
Population size 20 

Acceleration factors (𝐶1, 𝐶2) 2 

Max. inertia weight  1.1 

Min inertia weight  0.1 

Function tolerance 1e-6 

Maximum iterations 1000 

Stall iterations limit** 500 

Velocity clamped No 

Maximum swarm runs allowed in case of multiple swarm runs 12 

* It is one of the stopping conditions or termination criteria for GA. The algorithm stops when the 
average relative change in the best fitness function value over maximum stall generations is less than 
the function tolerance of 1e-6. 
** It is one of the stopping conditions or termination criteria for PSO. The algorithm stops when the 
average relative change in the best fitness function value over maximum stall iterations is less than the 
function tolerance of 1e-6. 
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The proposed algorithm outperforms Luersen’s GBNM in terms of globalization 

and repeatability of performance in multimodal optimization problems with simple 

bounds. In doing so, the proposed algorithm exploits the simplicity of search space 

formed by simple bounds on design variables and absence of linear or nonlinear 

constraint inequalities. The effectiveness of the proposed algorithm shows that the 

simplicity of search space can be used advantageously in handling multimodal 

optimization problems with substantially increased chances of finding the global 

optimum and low numerical cost. 

2.3 Summary 

A globalized and bounded Nelder-Mead algorithm with deterministic restarts 

and a linearly growing memory vector was proposed. The proposed algorithm achieved 

globalization sequentially by deterministic restarts and was useful where evolutionary 

or swarm optimization methods could not be afforded. The algorithm performed very 

well on minimization of complex multimodal functions with many local minima. 

Deterministic restarts allowed consistent performance of the algorithm in achieving 

globalization with lower numerical cost. The algorithm compared favorably against 

Luersen’s GBNM, genetic algorithm, and particle swarm optimization.  Consistency in 

performance and lower numerical cost in solving multimodal optimization problems 

made the algorithm an excellent choice for time-efficient controller tuning, which also 

forms a class of multimodal optimization problems. 
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Chapter 3  

Model-based Offline Tuning of Sliding 

Mode Controller Parameters‡ 

The multimodal optimization algorithm proposed in Chapter 2 is now used for 

model-based offline tuning of sliding mode controller parameters for a nonlinear 

system. The system is a servo pneumatic position control application with 4-quadrant 

loading and its performance has been reported in an earlier published work. The system 

benefitted from the earlier effort of tuning using trial-and-error made over the years. It 

has been chosen to find out if the proposed model-based offline tuning holds a 

significant advantage.   

3.1 Servo-Pneumatic Position Control System  

The servo-pneumatic position control system is shown in Figure 3.1. The 

schematic diagram of this system is shown in Figure 3.2. It consists of a 5/3 

proportional valve with the pneumatic cylinder as an actuator. The pneumatic cylinder 

is double-acting single-rod with piston stroke length of 30.3 cm. The piston has a 

                                                           
‡ A version of this chapter has been published in Butt, K., Rahman, R.A., Sepehri, N., & Filizadeh, S. (2017). 

Globalized and bounded Nelder-Mead algorithm with deterministic restarts for tuning controller parameters: 

Method and application. Optimal Control Applications and Methods, 38(6), 1042-1055. 
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diameter of 4cm. The cylinder is coupled with a loading configuration, in which load 

assists and resists the piston movement alternatingly. For measurement of actuator 

position, a rotary optical encoder has been attached at the end of connecting beam. 

Pressure is being recorded by two pressure transducers mounted on each side of the 

cylinder’s chambers. Pressure has been regulated using pressure regulator while 

pressure fluctuations have been minimized by including an air reservoir into the system. 

Real-time data acquisition has been ensured by using data acquisition board that works 

as an interface between the test rig and a target PC. The target PC has been connected to 

a host PC (experimenter’s workstation) through TCP/IP communication protocol. Real-

time control software QUARC with QNX Neutrino real-time operating system has been 

used to execute control algorithm downloaded on target PC. The QUARC has been 

interfaced with MATLAB Simulink to provide a graphical user interface for the data 

flow through the data acquisition board. 

 

Figure 3.1 Experimental setup 
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Figure 3.2 Schematic of the experimental setup 

3.2 Pneumatic System Model and Control Law 

The dynamic equations and the sliding mode control law of the control system 

have been derived in detail in [Ramhuzaini, He, & Sepehri, 2016] adopting the 

methodology presented in [Shen, 2010]. Only the final derivations are shown here.  

3.2.1 System Dynamics 

The state space representation of the system is 

 𝑥𝑝̇ = 𝑣𝑝 (12) 
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𝑣𝑝̇ =

1

𝑀
(𝑃1𝐴1 − 𝑃2𝐴2 − 𝐹𝑓 − 𝐹𝐿) (13) 

 
𝑃1̇ =

𝛾𝑅𝑇

𝑉01 + 𝐴1 (
𝐿
2 + 𝑥𝑝)

𝑚1̇ − 𝛼
𝛾𝑃1𝐴1𝑣𝑝

𝑉01 + 𝐴1 (
𝐿
2 + 𝑥𝑝)

 
(14) 

 

 
𝑃2̇ =

𝛾𝑅𝑇

𝑉02 + 𝐴2 (
𝐿
2 − 𝑥𝑝)

𝑚2̇ + 𝛼
𝛾𝑃2𝐴2𝑣𝑝

𝑉02 + 𝐴2 (
𝐿
2 − 𝑥𝑝)

 
(15) 

 

 𝑚1̇ = 𝐴𝑣Ψ1(𝑃𝑢, 𝑃𝑑) (16) 

 𝑚2̇ = −𝐴𝑣Ψ2(𝑃𝑢, 𝑃𝑑) (17) 

where 𝑥𝑝  and 𝑣𝑝  are the position and velocity of the actuator respectively. 𝑀 is the total 

inertial mass of external load, connecting beam, piston and connecting rod. 𝐴1 and 𝐴2 

are the piston effective areas in chambers 1 and 2 of the actuator while 𝑃1 and 𝑃2 are the 

pressures in chambers 1 and 2. 𝐹𝑓   represents friction and 𝐹𝐿  is the external load. 𝑅 is for 

universal gas constant, 𝛾 the ratio of specific heat, and 𝑇 stands for temperature. 𝑉01 and 

𝑉02 are the volumes of compressed air trapped in pneumatic tubes between valves and 

cylinder chambers. 𝐿 symbolizes length of the piston stroke, and 𝑚1̇  and 𝑚2̇  are the 

mass flow rates of compressed air dependent upon valve orifice area, 𝐴𝑣 . 𝜓1 and 𝜓2 

decide whether the mass flow rate is in chocked or un-chocked region. 

The state space model of the servo pneumatic system can be written in the 

following canonical form which represents the relationship of the valve orifice area, 𝐴𝑣  

to the actuator position, 𝑥𝑝. 

𝑥𝑝⃛ = 𝑓(𝑥) + 𝑏(𝑥)𝐴𝑣 (18) 

where 𝑓(𝑥) is the dynamic function of the system and is given by: 

𝑓(𝑥) = −
𝐾

𝑀
𝑥𝑝̇ −

(𝐹𝑓̇ + 𝐹𝐿̇)

𝑀
 

(19) 
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and 𝑏(𝑥) is the control gain function and can be determined by 

𝑏(𝑥) =
(𝐶1Ψ1 + 𝐶2Ψ2)

𝑀
 (20) 

In (19) and (20), 

The relationship between the valve orifice area and control signal is 

𝐴𝑣 = 𝑤𝑘𝑣𝑢 (24) 

where 𝑘𝑣  is the spool position gain of the proportional control valve and 𝑤 is the valve 

orifice area gradient. 

3.2.2 Sliding Mode Control Law 

The sliding-mode control used for the system under consideration is based on an 

integral sliding surface proposed in [Shen, Zhang, Barth, & Goldfarb, 2006]. The 

scheme consists of two components; the equivalent component and the robust 

component. The equivalent component is somewhat similar to feedback linearizing and 

the robust component is meant for dealing with model uncertainty. The final control law 

with the integral sliding surface is: 

𝐾 = 𝑎𝛾 (
𝑃1𝐴1

2

𝑉01 + 𝐴1 (
𝐿
2 + 𝑥𝑝)

) + (
𝑃2𝐴2

2

𝑉02 + 𝐴2 (
𝐿
2 − 𝑥𝑝)

) (21) 

𝐶1 =
𝛾𝑅𝑇𝐴1

𝑉01 + 𝐴1 (
𝐿
2 + 𝑥𝑝)

 
(22) 

 

𝐶2 =
𝛾𝑅𝑇𝐴2

𝑉02 + 𝐴2 (
𝐿
2 − 𝑥𝑝)

 
(23) 
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𝑢 =  

{
 
 

 
 1

𝑤𝑘𝑣
(
𝑥𝑑⃛ − 𝑓(𝑥) − 3𝜆𝑒̈ − 3𝜆

2𝑒̇ − 𝜆3𝑒

𝑏̂(𝑥)
−

𝐺

𝑏̂(𝑥)
.
𝑠

∅
), |𝑠| ≤ ∅

1

𝑤𝑘𝑣

𝑥𝑑⃛ − 𝑓(𝑥) − 3𝜆𝑒̈ − 3𝜆
2𝑒̇ − 𝜆3𝑒

𝑏̂(𝑥)
−

𝐺

𝑏̂(𝑥)
𝑠𝑔𝑛(𝑠), |𝑠| > ∅

 (25) 

where 𝑒 is position error and 𝑥𝑑 is the desired position. 

The convergence of the system trajectory to the sliding surface with the rate of 𝜂 

is guaranteed if the value of 𝐺 in Eq. (25) satisfies the following inequality: 

𝐺 ≥ 𝛽(𝐹 + 𝜂) + (𝛽 − 1)|𝑏̂(𝑥)𝐴̂𝑣,𝑒𝑞| 

where 𝐹 is a boundary function that limits the estimation error on 𝑓(𝒙) and 𝛽 is the gain 

margin of the designed controller, 𝑏̂(𝒙) is the estimated control gain while 𝐴̂𝑣,𝑒𝑞 is the 

equivalent control component. 

3.3 Objective Function 

The optimization algorithm is used for model-based offline tuning of two SMC 

parameters, Robustness (𝐺) and Control Bandwidth (𝜆) with constant boundary layer 

thickness (∅), for accurate and smooth position control of the pneumatic actuator. An 

objective function consisting of a linear combination of weighted root mean square 

value of tracking errors and time derivatives of acceleration (jerk) is used. The weighted 

approach converts the multi-objective function into a single objective function for 

application of the proposed globalized local search algorithm for controller tuning. The 

proposed algorithm is based on a variant of Nelder-Mead’s algorithm, which cannot 

handle a vectorized multi-objective function.  

𝑓(ℇ𝑟𝑚𝑠, 𝑗𝑟𝑚𝑠, 𝑡)|(𝐺,𝜆,∅) = 𝑤1ℰ𝑟𝑚𝑠 +𝑤2𝑗𝑟𝑚𝑠 (26) 
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where 𝑤1 > 0 and 𝑤2 > 0 are the weights of root mean square tracking error ℇ𝑟𝑚𝑠 and 

root mean square value of jerk 𝑗𝑟𝑚𝑠, respectively such that 𝑤1 + 𝑤2 = 1. 

ℇ𝑟𝑚𝑠 = √
ℰ1

2 + ℰ2
2 +⋯ℰ𝑁

2

𝑁
 (27) 

In (27) ℰ1, ℰ2⋯ℰ𝑁 are the samples of error in the piston position of the 

pneumatic cylinder used in the servo pneumatic system. 𝑁 is the number of samples 

used to determine root mean square tracking error. 

𝑗𝑟𝑚𝑠 = √
𝑗1
2 + 𝑗2

2 +⋯𝑗𝑁
2

𝑁
 (28) 

where 𝑗1, 𝑗2⋯𝑗𝑁 are the samples of the 1st time derivative of piston acceleration. 

 

Figure 3.3 Multiple step polynomials 

 

Figure 3.4 Discrete Fourier transform (DFT) 

of multiple step polynomials 

ℇ𝑟𝑚𝑠 and 𝑗𝑟𝑚𝑠 are computed from the system’s simulated responses when it is 

made to track multiple step polynomials shown in Figure 3.3 as a test signal. Multiple 

step polynomials have been structured as a reference because they require tracking as 

well as regulation in position control. Furthermore, they contain frequency components 

of significant amplitude up to 0.5 Hz as shown in Figure 3.4. Therefore, a controller 
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tuned using such multiple step polynomials should give optimal performance in 

tracking sinusoids (up to 0.5 Hz) as well. 

3.4 Tuning Setup and Process 

The process loop of the model-based offline tuning of SMC parameters for the 

servo pneumatic position control system described in Section 3.1 is shown in Figure 

3.5. The process loop is setup using an optimization algorithm described in Chapter 2, 

the master code, and the simulation model of the system. The simulation model consists 

of the servo pneumatic model of the system discussed in Section 3.2 with the system 

parameters given in Table 3.1.  

TABLE 3.1 PNEUMATIC SYSTEM PARAMETERS 

Parameter Description Value Unit 

Ps Supply pressure 0.6 MPa 

Patm Atmosphere pressure 0.1 MPa 

M Mass of total load on the piston 16 kg 

L Piston stroke 0.3 m 

A1 Piston annulus area – side 1 0.00126 m2 

A2 Piston annulus area – side 2 0.00106 m2 

T Temperature of air 300 K 

α Pressure-volume work correction factor 1.2 - 

Cd Valve coefficient of discharge 0.18 - 

w Valve orifice area gradient 22.6x10-5 m2/m 

Kv Valve spool position gain 0.25x10-3 m/V 

Pcr Valve critical pressure ratio 0.528 - 

Fs Static friction 38.5 N 

Fc Coulomb friction 32.9 N 

The optimization algorithm controls the simulation model with the help of a 

master code and steers the system towards optimal controller gains using the results 

from logically guided iterative runs of the model. The master code runs the simulation 

model for a closed-loop operation of tracking the test signal shown in Figure 3.3 on the 

request of the optimization algorithm and computes the objective function. It uses the 
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controller parameters determined by the algorithm for the iterative run and hands over 

the resulting value of the objective function to the algorithm for the next logical 

decision. 

In order to find the optimal controller gains, the algorithm minimizes the 

objective function with the desired minimum set equal to zero and solves the 

optimization problem, which can be written in mathematical form as   

minimize
𝐺,𝜆,∅

(𝑤1ℰ𝑟𝑚𝑠 + 𝑤2𝑗𝑟𝑚𝑠) 

subject to: 

0 ≤ 𝐺 ≤ 250; 

0 ≤ 𝜆 ≤ 15; 

∅ = 10. 

where the bounds on 𝐺, 𝜆 and ∅ define the search space for the optimization algorithm. 

 

 

 

 

 

 

Figure 3.5 Process loop of the model-based offline tuning 

The algorithm, the master code, the objective function and the simulation model 

all are coded in MATLAB for improved compatibility. Once the optimal controller 

parameters are found by the offline tuning, they are then used to run the actual servo 

pneumatic position control system. The proposed technique of tuning SMC parameters 

aims at the desired performance for both multiple step polynomials and sinusoidal 
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inputs. The experiments have therefore been designed to verify the proposed 

technique’s usefulness in both cases with different weights for accuracy and smoothness 

in the proposed objective function. 

3.5 Tuning Results and Discussion 

Application of the proposed optimization algorithm for tuning sliding mode 

controller parameters for a servo pneumatic position control discussed in Sections 3.1 

and 3.2 is a multimodal optimization problem having many local minima within the 

region of interest. Figure 3.6 shows the zoomed view of the objective function given in 

Section 3.3, which shows that the function, indeed, has many local minima within the 

search space. The proposed algorithm because of its capability to achieve satisfactory 

globalization within the region of interest for multimodal optimization problems with 

simple bounds is an excellent choice for such applications. 

 

Figure 3.6 Objective function for tuning SMC parameters with w1=0.99, w2=0.01 
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Experimental results shown in Figures 3.7, 3.8 and 3.9 indicate that the servo 

pneumatic system tuned using proposed algorithm performs as desired and the optimal 

parameters found by the algorithm with increased priority for smoothness effectively 

reduce jerk and vice versa.  Simulation and experimental results are in total agreement 

in the trend of system performance at parameters optimized for different levels of 

priorities (weights) for accuracy and smoothness as shown in Table 3.2. 

TABLE 3.2 SYSTEM PERFORMANCE WITH SMC PARAMETERS TUNED OFFLINE USING 

THE PROPOSED ALGORITHM 

Input Weights Optimal Parameters 

Found 

Results 

𝒘𝟏 𝒘𝟐 𝑮 (m/s3) 𝝀 (rad/s) Simulation Experiment 

𝓔𝒓𝒎𝒔 
(mm) 

𝒋𝒓𝒎𝒔 
(N/sec) 

𝓔𝒓𝒎𝒔 
(mm) 

𝒋𝒓𝒎𝒔 
(N/ms) 

Sinusoid 

(0.1 Hz) 

0.99 0.01 138.8762 14.1056 0.88 212.487 2.42 20.38 

0.95 0.05 180.5481 10.4591 1.01 205.230 3.77 19.59 

0.85 0.15 135.6433 10.0025 1.18 202.898 4.83 19.44 

0.75 0.25 4.9935 13.2101 2.00 201.124 6.05 19.42 

Multiple 

Step 

Polynomials 

(MSP) 

0.99 0.01 138.8762 14.1056 0.45 206.586 1.56 9.39 

0.95 0.05 180.5481 10.4591 0.54 204.055 1.96 8.51 

0.85 0.15 135.6433 10.0025 0.65 203.034 3.00 7.58 

0.75 0.25 4.9935 13.2101 0.84 202.029 3.95 7.25 

The effective use of the proposed algorithm for simulation-based controller 

tuning depends on the sufficient adequacy of the system model. The results reveal that 

taking at least major system dynamics into account makes the model sufficiently 

adequate for such tuning method. Increase in experimental root mean square error and 

decrease in jerk along with those in simulation reflects that the system model used is 

sufficiently adequate to follow the behavior of real-life system within the region of 

interest. Though magnitudes of performance indices are different in simulation and the 

actual system due to modeling uncertainties, the proposed method remains effective due 

to similar trend of change in their magnitudes on changing controller gains. 
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Figure 3.7 Experimental results of multiple step polynomials tracking with optimized SMC at  

(a) w1=0.99, w2=0.01 (b) w1=0.95, w2=0.05 (c) w1=0.85, w2=0.15 (d) w1=0.75, w2=0.25  
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Figure 3.8 Experimental results of 0.1Hz sinusoidal tracking with optimized SMC at  

(a) w1=0.99, w2=0.01 (b) w1=0.95, w2=0.05 (c) w1=0.85, w2=0.15 (d) w1=0.75, w2=0.25 
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Figure 3.9 Experimental results of 0.1Hz sinusoidal tracking with optimized SMC at  

(a) w1=0.99, w2=0.01 (b) w1=0.75, w2=0.25  

It can be conveniently misunderstood by looking at the experimental and 

simulation trend of tracking error and smoothness that increasing the tracking error 

reduces the jerk and some sort of inverse proportionality relationship exists between 

them. It should be noted that this trend is merely because of weights of respective 
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having higher tracking error does not automatically guarantee less jerk and vice versa. 

In the region of interest, there are some points at which both the error and jerk values 

are high, but such a point cannot become a local/global minimizer of the continuous 

aggregated objective function of error and jerk. Therefore, the algorithm never 

converges on them. 

 

 

Figure 3.10 Experimental values of tracking error and jerk in multiple step polynomials tracking 

with optimal parameters found using different weights for optimization 

To ensure greater accuracy in tracking, controller parameters should be such that 

the controller becomes sensitive to even smaller deviation from sliding surface and 

should take minimum time to bring the system back to it. In case of constant boundary 

layer thickness (∅), as is the case in this thesis, robustness parameter (𝐺) should be large 

to cause effective chattering with an adequate value of control bandwidth (𝜆) to 
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minimize the time taken by the system to come back to the sliding surface. This 

enhances jerk and therefore smoothness of tracking deteriorates. If the weight of 

accuracy (𝑤1) in multi-objective function is reduced resulting in greater weight for 

smoothness (𝑤2), the algorithm finds the optimal values of parameters at which the 

controller reduces its sensitivity towards error. This prevents smoothness from 

deteriorating and thus creates an important trade-off strategy for optimization.  

However, such a compromise is reasonable only until the priority level (weight) for 

accuracy is reduced from 100% to 85%. Beyond this limit, compromising error does not 

increase smoothness significantly as shown in Figure 3.10. So, the variation of weights 

in objective function should essentially be bounded. 

TABLE 3.3 COMPARISON OF SYSTEM PERFORMANCES WITH SMC PARAMETERS 

TUNED USING PROPOSED TUNING METHOD AND MANUAL ONLINE TUNING BASED ON 

TRIAL AND ERROR IN TRACKING SINUSOIDAL AND MULTIPLE STEP POLYNOMIALS 

TRAJECTORIES WITH SAME SMOOTHNESS 

Input Manual Online Tuning Proposed Tuning Method %age 

Improvement 

in Accuracy 
Parameters Experimental 

Results 

Parameters Experimental 

Results 

𝑮 
(m/s3)  

𝝀 
(rad/s) 

𝓔𝒓𝒎𝒔 
 (mm) 

𝒋𝒓𝒎𝒔 
(N/ms) 

𝑮 

(m/s3)   
𝝀 (rad/s) 𝓔𝒓𝒎𝒔 

 (mm) 

𝒋𝒓𝒎𝒔 
(N/ms) 

Sinusoid  

0.1 Hz 

100 10 5.30 19.61 180.5481 10.4591 3.77 19.59 28.9 

Multiple 

Step 

Polynomials 

(MSP) 

100 10 3.39 8.48 180.5481 10.4591 1.96 8.51 42.2 

To further test the usefulness of proposed method for tuning controller 

parameters, the results are compared with the performance of same servo pneumatic 

system with sliding-mode controller parameters tuned using manual online tuning based 

on trial-and-error reported in [Ramhuzaini, He, & Sepehri, 2016]. Apart from saving the 

enormous amount of time and effort for tuning, the proposed method improves the 
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system response accuracy by 28.9% in sinusoidal tracking and by 42.2% in tracking 

multiple step polynomials with almost same smoothness. The comparison is shown in 

Table 3.3, Figure 3.11 and Figure 3.12.  

 

 

Figure 3.11 Comparison of performances of servo pneumatic system with SMC parameters 

tuned using manual online tuning and proposed tuning method while tracking multiple step 

polynomials trajectory with same smoothness 

 

Figure 3.12 Comparison of performances of servo pneumatic system with SMC parameters 

tuned using manual online tuning and proposed tuning method while tracking sinusoid (0.1Hz) 

with same smoothness 

3.6 Summary  
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controller parameters for a servo pneumatic position control system with 4-quadrant 

loading. The model-based offline tuning based on the proposed algorithm outperformed 

the rigorous manual online tuning of the controller for the same application done for an 

earlier published work in terms of desired performance.  The proposed model-based 

offline tuning method did not require a perfect model as the results revealed that it could 

function very well for a sufficiently adequate model with the most dominant of the 

system dynamics taken into account. 
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Chapter 4  

Model-free Online Tuning of Sliding Mode 

Controller Parameters4 

The model-based offline tuning presented in Chapter 3 requires a sufficiently 

adequate system model, which in some applications, is difficult to attain. Moreover, it is 

not generally appreciated as an essential requirement for controller tuning by the end-

user like industry. An improvement in performance of optimization algorithm for tuning 

is expected if it relies on measurements coming directly from an actual physical system 

and not just its mathematical model. Therefore, in this chapter, the optimization 

algorithm called GBNM with deterministic restarts proposed in Chapter 2 is applied for 

tuning of controller parameters using direct online measurements of responses. The 

algorithm is used for tuning of sliding mode controller parameters for the same servo 

pneumatic system that has been used in Chapter 3. This is done to facilitate the 

comparison between two tuning approaches.  

 

                                                           
4 A version of this chapter has been published in Butt, K., & Sepehri, N. (2018). Model-free online tuning of 

controller parameters using a globalized local search algorithm. Optimal Control Applications and Methods, 39(5), 

1750-1765. 
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4.1 Tuning Setup and Process 

To setup the proposed model-free online tuning, the position control system is 

augmented by the optimization algorithm, a master code and an executable code. The 

optimization algorithm executes the logically guided iterative runs of the position 

control system with the help of master and executable codes. The optimization 

algorithm and both the master and executable codes are developed in MATLAB 

environment for improved compatibility. The process loop of tuning is shown in Figure 

4.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Process loop of the proposed model-free online tuning 

A repeating sequence of operations is required to be carried out on the physical 

setup to implement the process loop of online tuning. The sequence is modeled as a 

Simulink diagram which resides in the host PC of the system. During build on the target 

process, QUARC compiles the Simulink diagram as an executable code and downloads 
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it onto the target PC of the system using TCP/IP. The executable code makes use of 

QUARC Hardware-In-Loop and Stream Application Programming Interfaces to 

read/write the Quanser Q8 data acquisition board interfaced with the target PC and 

physical setup. The data acquisition board implements the operations on the physical 

setup as and when instructed by the code.  

A master code is developed as a MATLAB script and it also resides in the host 

PC of the system. The code is programmed to control the periodic execution of 

executable code on the target PC and to act as an interface between the optimization 

algorithm and the executable code. It reads the sensory data file written by the 

executable code and evaluates the objective function using the data. Based on the value 

of objective function provided by the master code, the optimization algorithm returns 

the logically determined set of controller parameters to the master code for succeeding 

tuning cycle. The master code writes the updated controller parameters to the executable 

code for implementation.  

TABLE 4.1 OPERATIONS CARRIED OUT BY THE OPTIMIZATION ALGORITHM AND 

MASTER AND EXECUTABLE CODES TO IMPLEMENT THE PROCESS LOOP OF ONLINE 

TUNING 

No. Operation Duration (s) 

1. Start the executable code -------- 

2. No operation 4 

3. Piston to extend to initial position for an iterative system run 3 

4. Piston to a standstill 3 

5. Iterative system run 20 

6. Piston to retract to idle position 3 

7. No operation 8 

No. Operation Duration (s) 

8. Stop the executable code -------- 

9. Writing sensory data obtained from iterative system run to a file  10 

Evaluating the cost function 

Updating the controller parameters for succeeding tuning iteration 

Total Duration 51 
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The operations carried out by the optimization algorithm and the master and 

executable codes along with their duration are shown in Table 4.1 in the order they 

occur. 

The tuning process minimizes the multi-objective cost function detailed in 

Section 3.3 using the optimization algorithm parameters given in Table 4.2. The process 

solves the optimization problem, which can be written in mathematical form as 

minimize
𝐺,𝜆,∅

(𝑤1ℰ𝑟𝑚𝑠 + 𝑤2𝑗𝑟𝑚𝑠) 

subject to: 

0 ≤ 𝐺 ≤ 250; 

0 ≤ 𝜆 ≤ 15; 

∅ = 10. 

TABLE 4.2 PARAMETERS OF OPTIMIZATION ALGORITHM FOR ONINE TUNING 

Parameter Description Value 

Number of deterministic restarts allowed 6 

Maximum function evaluations 480 

Reflection coefficient 1 

Expansion coefficient 2 

Contraction coefficient 0.5 

Shrink coefficient 0.5 

Initial simplex size coefficient 5 

Small simplex convergence test coefficient 4e-03 

Function value convergence test coefficient 5e-04 

No convergence test coefficient (function evaluations) 80 

Duration of one iterative system run 20 s 

The bounds on 𝐺, 𝜆 and ∅ define the search space for the optimization 

algorithm. Here ℰ𝑟𝑚𝑠 taken in mm and 𝑗𝑟𝑚𝑠 taken in dm/s3 are computed from the 

system’s actual response when the system is made to track a multiple step polynomials 

trajectory shown in Figure 3.3 for 20s referred to as iterative system run in this chapter. 

As explained in Chapter 3, multiple step polynomials trajectory is chosen as a reference 

for iterative system run, because it requires tracking as well as regulation. Moreover, the 
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multiple step polynomials trajectory has frequency components of significant amplitude 

up to 0.5 Hz. Therefore, a controller tuned using multiple step polynomials should give 

optimal performance in regulation as well as tracking sinusoids (up to 0.5 Hz). 

4.2 Tuning Results and Discussion  

The globalized bounded Nelder-Mead algorithm with deterministic restarts and a 

linearly growing memory vector is a multimodal optimization algorithm. It can handle 

multimodal optimization problems having many local minima such as controller tuning. 

It avoids the vicinity of the local minimum already found and tries to explore the new 

ones. The convergence characteristic of the algorithm while tuning the sliding mode 

controller parameters online for the servo pneumatic position control application is 

shown in Figure 4.2. The convergence characteristic shows that the algorithm finds a 

new local minimum of the cost function in each deterministic restart and successfully 

avoids getting stuck at the same local minimum. 

The globalization of the algorithm improves by increasing the number of 

deterministic restarts allowed. With one restart allowed, the algorithm becomes a plain 

Guin augmented variant of Nelder-Mead, which is a local search algorithm. Such a local 

search algorithm may merely converge to a local minimum, which in the case of any 

multimodal optimization problem like controller tuning, may not be the better one. 

Table 4.3 compares the performance of the proposed online tuning method with the 

algorithm having one and six deterministic restarts allowed for the online tuning of 

SMC parameters. The performance of the proposed online tuning method in terms of 
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meeting the tuning objectives i.e. minimizing the cost function improved up to 10.5% 

by increasing the number of deterministic restarts from one to six. 

 

Figure 4.2 Convergence characteristic of the globalized bounded Nelder-Mead algorithm with 

six deterministic restarts during online tuning of sliding mode controller parameters at w1=0.90, 

w2=0.10 

TABLE 4.3 COMPARISON OF PERFORMANCE OF ONLINE TUNING ALGORITHM HAVING 

ONE DETERMINISTIC RESTART AGAINST THE ONE WITH SIX RESTARTS 

Weights Minimized value of the cost function Improvement 

in performance  Accuracy 

(𝒘𝟏) 
Smoothness 

(𝒘𝟐) 
Algorithm with 1 

deterministic restart 

allowed 

Algorithm with 6 

deterministic restarts 

allowed 

0.99 0.01 1.7877 1.7877      0% 

0.90 0.10 3.1737 2.8410 10.5% 

0.80 0.20 3.9930 3.9329    1.5% 

The introduction of breaks and resetting the system to its idle position between 

iterative system runs for online tuning increases the time taken for the process to 

complete. This is difficult to avoid without exactly knowing the convergence aspects of 
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the optimization algorithm with respect to system stability. Although SMC guarantees 

convergence to the sliding surface when robustness and control bandwidth parameters 

satisfy the known condition given in Section 3.2.2, incorporating this condition 

introduces nonlinear constraint inequality to the optimization problem, which makes the 

search space lose its simplicity. This is detrimental to the online tuning method 

proposed in this work as the optimization algorithm exploits the simplicity of the search 

space for its deterministic restarts and computational efficiency.   

Application of the globalized bounded Nelder-Mead algorithm with 

deterministic restarts for online tuning requires some adjustments to the algorithm. To 

construct the initial simplex for the succeeding run of the Guin augmented variant of 

Nelder-Mead’s algorithm, it is ensured that the projected points should not match with 

not only the already existing points in the memory vector but also with any point lying 

close to those points by a Euclidian norm of less than 1e-3. The reason is that the 

response of the servo pneumatic position control application happens to be almost 

identical for a set of gains too close to each other and they do not have to be exactly 

similar for the same response. Therefore, for effective multimodal optimization and to 

eliminate the chances of getting stuck at one local minimizer, each initial simplex 

should avoid any already used initial simplex by a fair distance within the search space.  

The Nelder-Mead’s algorithm updates the simplex after each run using 

reflection, expansion, contraction (inside and outside) and shrinking. For reflection, 

expansion, and contraction, the algorithm must evaluate the objective function on 

reflected, expanded and contracted points. For shrinking, however, the points can be 

achieved without computing the cost function. This option, if adopted, negatively 
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affects the time efficiency of online tuning, as in this case, the algorithm has to compute 

the cost function on all points of the updated simplex before sorting the points of the 

updated simplex out for the succeeding run. This substantially increases the numerical 

cost of the algorithm, as the algorithm re-evaluates cost function at reflected, expanded 

or contracted points which it has already done while deciding on them. Therefore, this 

thesis suggests that the algorithm should compute the cost function at points arising 

because of shrinking as well so that the algorithm does not have to do cost function 

evaluations before sorting in each run. This helps avoid the re-evaluation of an already 

evaluated cost function at reflected, expanded or contracted points and thus decreases 

the number of system iterative runs required for online tuning by up to 50%. 

The accuracy and jerk are conflicting objectives when SMC is tuned with 

constant boundary layer thickness for the servo pneumatic control application. To 

ensure increased accuracy, the robustness parameter (𝐺) of SMC is required to induce 

effective chattering to bring the system back to the sliding surface as soon as possible. 

This requires the robustness parameter (𝐺) to be large with an adequate value of control 

bandwidth (𝜆) which may enhance jerk and thus may cause deterioration in smoothness. 

If the weight for accuracy in aggregated multi-objective cost function is decreased, the 

tuning method finds such controller parameters at which SMC becomes less sensitive to 

limited loss of accuracy and does not chatter. This improves smoothness and thus makes 

the important trade-off for an optimal controller parameters search.  

Experimental results shown in Figures 4.3, 4.4 and Table 4.4 indicate that the 

proposed online tuning method successfully tunes the sliding mode controller for the 

servo pneumatic position control according to the level of priorities set for accuracy and 
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smoothness. The optimal controller parameters found by the method with more priority 

for smoothness effectively reduce jerk and vice versa. 

 

 

 

Figure 4.3 System performance in tracking a multiple step polynomials trajectory with SMC 

tuned online at (a) w1=0.99, w2=0.01 (b) w1=0.90, w2=0.10 (c) w1=0.80, w2=0.2 
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Figure 4.4 Comparison of rolling average of jerk in the system with SMC tuned online at 

w1=0.99, w2=0.01 and w1=0.80, w2=0.20 while tracking multiple step polynomials 

  The performance of the system with gains found using the online tuning 

method has also been examined for tracking sinusoids. The system shows a similar 

performance trend as in the case of multiple step polynomials according to the level of 

priorities set for accuracy and smoothness. Figures 4.5, 4.6 and Table 4.4 show the 

results of 0.05Hz sinusoidal tracking. 

 

Figure 4.5 Comparison of rolling average of jerk in the system with SMC tuned online at 

w1=0.99, w2=0.01 and w1=0.80, w2=0.20 while tracking a sinusoid (0.05 Hz) 
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Figure 4.6 System performance in 0.05Hz sinusoidal tracking with SMC tuned online at  

(a) w1=0.99, w2=0.01 (b) w1=0.90, w2=0.10 (c) w1=0.80, w2=0.20 

TABLE 4.4 SYSTEM PERFORMANCE WITH SMC PARAMETERS TUNED USING 

PROPOSED ONLINE TUNING METHOD 

Input Weights Optimal Parameters Found Results 
Accuracy 

(𝑤1) 
Smoothness 

(𝑤2) 
Robustness 

𝐺 (m/s3) 
Control 

Bandwidth 

𝜆 (rad/s) 

rms 

Tracking 

Error 

(mm) 

rms Jerk 

(N/ms) 

Multiple 
step 

polynomials 

0.99 0.01 223.27 11.65 1.65 2.41 

0.90 0.10 140.27 12.21 1.81 1.94 

0.80 0.20   65.31 14.28 1.96 1.89 

Sinusoid 
(0.05 Hz) 

0.99 0.01 223.27 11.65 2.51 3.62 

0.90 0.10 140.27 12.21 2.93 3.44 

0.80 0.20   65.31 14.28 3.28 3.15 

Table 4.5 compares the results of the proposed model-free online tuning using 

globalized bounded Nelder-Mead with deterministic restarts against the model-based 

offline tuning proposed in Chapter 3 using the same algorithm coded in MATLAB, 

2.4GHz Core i7 processor, and 8GB RAM. To compare the performance of both tuning 
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approaches, the optimal controller parameters found by both of them have been used to 

run the actual servo pneumatic position control system to determine the cost function 

given in Section 3.3. The algorithm parameters in both cases are kept as given in Table 

4.2. The system shows improved performance with the controller parameters found 

using the proposed online tuning method, especially at higher weights for accuracy. 

This is due to the fact that in online tuning, the algorithm’s decision making relies on 

measurements coming from the actual system and not its mathematical model. The 

actual physical system has a higher jerk as compared to its mathematical model because 

of air compressibility and other un-modeled uncertainties. In model-based offline 

tuning, the reduced value of jerk makes the algorithm resort to comparatively higher 

gains in the quest for greater accuracy, whereas in online tuning, the higher value of 

jerk makes the algorithm avoid such a region where the jerk is high enough to damage 

the highly prioritized term, the system accuracy. Furthermore, even a sufficiently 

adequate mathematical model can only guarantee a similar trend in system response 

parameters but can never guarantee a similar rate of change of system response 

parameters on changing operating conditions. Therefore, any fixed cost online tuning 

should compare favorably against model-based offline tuning of the same numerical 

cost. It should be noted that the model-based offline tuning is much faster than the 

model-free online tuning. The reason is that the model-based offline tuning uses 

iterative runs of system’s mathematical model, whereas the proposed model-free online 

tuning uses tuning iterations of 55s in duration, shown in Table 4.1, consisting of 

iterative runs of the actual system. It is therefore advisable to use the proposed model-

free online tuning only when the sufficiently adequate model is not available, and/or the 
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priority level of accuracy is very high. In the absence of these conditions, the model-

based offline tuning is a better option. As the proposed model-free online tuning 

method is completely autonomous and does not require human intervention at all, the 

system can be left on its own for online tuning without human supervision. 

TABLE 4.5 COMPARISON OF SYSTEM PERFORMANCE WITH SMC PARAMETERS TUNED 

USING MODEL-BASED OFFLINE TUNING AND PROPOSED ONLINE TUNING METHOD 

Weights Model-based offline tuning Model-free online tuning Improvement 

in 

performance 

(%) 

𝒘𝟏 𝒘𝟐 Optimal 

Parameters 

Minimized 

value of 

the cost 

function 

Time 

taken 

for 

tuning 

(h) 

Optimal 

Parameters 

Minimized 

value of 

the cost 

function 

Time 

taken 

for 

tuning 

(h) 

𝑮 

(m/s3) 

𝝀 

(rad/s) 

𝑮 

(m/s3) 

𝝀 

(rad/s) 

0.99 0.01 200.17 14.92 2.27 0.014 223.27 11.65 1.79 4.064 21.2 

0.90 0.10 145.60 11.46 2.95 0.019 140.27 12.21 2.84 4.064   3.7 

0.80 0.20 107.52 11.92 4.03 0.015   65.31 14.28 3.93 3.605   2.5 

4.3 Summary  

A method for model-free online tuning of controller parameters was proposed. 

The proposed method did not require a mathematical model of the system and therefore 

could be used for applications where knowledge of adequate mathematical model was 

difficult, and the system iterative runs were risk-free and not costly. The method made 

use of real-time iterative runs of actual physical system guided by computational 

intelligence for finding optimal controller parameters. The method found optimal 

controller parameters for system performance according to priorities of performance 

specifications set by defining weights in an aggregate multi-objective cost function. The 

proposed method performed very well in tuning controller parameters for the desired 

performance. It exploited the improved globalization and the lower numerical cost of 

the globalized bounded Nelder-Mead algorithm with deterministic restarts and a linearly 
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growing memory vector for time-efficient online controller tuning. The proposed online 

tuning method compared favorably against model-based offline tuning in terms of 

finding the optimal controller parameters at a fixed cost because of relying on 

measurements coming from an actual physical system and not just its mathematical 

model.   
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Chapter 5  

Force-controlled Pneumatic Actuator with 

Long Transmission Lines and a Nonlinear 

Integral Sliding Surface 5 

After proposing time-efficient offline and online tuning methods and 

establishing their effectiveness for an unbiased comparison of controllers, this chapter 

investigates the actuating force control of a pneumatic actuator with long transmission 

lines and indirect pressure measurements. First, the chapter describes the schematic 

diagram of the actuator and derives its dynamic equations. Next, the chapter proposes a 

nonlinear integral sliding surface and presents the design of a full order sliding mode 

controller using the surface for an improved transient response of the actuator. The 

chapter also establishes the asymptotic stability of the controller built upon the proposed 

sliding surface.   

                                                           
5 A version of this chapter has been included in Butt, K., & Sepehri, N. (2018). A nonlinear integral sliding surface to 

improve the transient response of a force-controlled pneumatic actuator with long transmission lines. Manuscript 

submitted for publication. 
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5.1 Schematic of the System 

The schematic diagram of a force-controlled pneumatic actuator with long 

transmission lines and indirect pressure measurements is shown in Figure 5.1.  

 

Figure 5.1 Schematic of force control application 

The actuator consists of a single rod, double acting pneumatic cylinder subject to 

an external load including friction which acts as a disturbance. The cylinder chambers 

are charged and discharged using a 5/3 mass flow rate proportional valve connected to 

the cylinder using long pneumatic tubes of same length and diameter. The pressure 

transducers are installed at the valve output ports that are connected to the cylinder 
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chambers. The readings from pressure transducers are used to estimate chamber 

pressures of the cylinder using a first order transfer function with time delay model of 

connecting pneumatic tubes. Estimated chamber pressures and real-time piston 

displacement measurements are then taken as feedback for the implementation of force 

control on the pneumatic actuator.  

5.2 System Dynamics 

In the derivations given below, the overhead bar on the symbol represents a time 

delay of 𝑇𝐷 in the corresponding parameter. This time delay is referred to as input delay 

in this thesis and is equal to the time taken by the acoustic wave to travel the long 

pneumatic tubes connecting valve and cylinder. It can be determined by the following 

equation [Richer & Hurmuzlu, 2000a]: 

𝑇𝐷 =
𝐿𝑇
𝐶𝑠𝑑

 
(29) 

where 𝐿𝑇 is the length of the pneumatic tube, and 𝐶𝑠𝑑 is the speed of sound. 

The piston-load dynamics is described by the following differential equation: 

(𝑚𝑝 +𝑚𝑙)𝑥̈𝑝 = 𝑃1𝐴1 − 𝑃2𝐴2 − 𝑃𝑎𝐴𝑟 − 𝐹𝑙 (30) 

where 𝑚𝑝 is the total mass of piston-rod assembly and attached accessories;  𝑚𝑙 is the 

inertial mass associated with the external load;  𝑃1 and 𝑃2 are the chamber pressures; 𝐴1 

and 𝐴2 are the effective piston areas; 𝐴𝑟 is the area of the piston rod; 𝑃𝑎 is the 

atmospheric pressure; 𝐹𝑙 is the disturbance describing the effects of all external loads 

including friction.  
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The pressures in the chambers of pneumatic cylinder change because of 

compressible air flows in and out of the chambers, and the extension and retraction of 

the piston. The contribution of compressed air flow in and out of the chambers in 

changing chamber pressures is attenuated and time delayed. The attenuation and time 

delay are the effects of pneumatic tubes connecting valve and cylinder. Neglecting the 

air leakage through seals of the piston, piston rod, and valve, the cylinder pressure 

dynamics can be represented by:  

𝑃̇1 =
𝛾𝑅𝑇

𝑉1
∅1𝑚𝑣,1̅̅ ̅̅ ̅̅ − 𝛼

𝑃1𝐴1
𝑉1

𝑥̇𝑝 (31) 

𝑃̇2 =
𝛾𝑅𝑇

𝑉2
∅2𝑚𝑣,2̅̅ ̅̅ ̅̅ + 𝛼

𝑃2𝐴2
𝑉2

𝑥̇𝑝 (32) 

where 𝛾 is the ratio of specific heats; R is the universal gas constant; 𝑇 is the 

temperature of the compressed air; 𝛼 is the pressure-volume work correction factor; ∅1 

and ∅2 are the attenuation coefficients; 𝑚𝑣,1̅̅ ̅̅ ̅̅  and 𝑚𝑣,2̅̅ ̅̅ ̅̅  are the time-delayed mass flow 

rates in and out of the cylinder chambers through the valve; 𝑥𝑝 is the piston 

displacement. Also 

𝑉1 = 𝑉01 + 𝐴1 (
𝐿

2
+ 𝑥𝑝) (33) 

𝑉2 = 𝑉02 + 𝐴2 (
𝐿

2
− 𝑥𝑝) (34) 

where 𝑉01 and 𝑉02 are the volumes of air at the end of the stroke, in connection ports 

and in connecting pneumatic tubes; 𝐿 is the piston stroke length. 𝑥𝑝 is zero when the 

piston is in the middle of the stroke length.  

The attenuation coefficients represent the decrease in airflow in and out of the 

cylinder chambers through the valve. This decrease in air flow is induced by the 
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pressure drop along the connecting pneumatic tubes [Richer & Hurmuzlu, 2000a]. The 

attenuation coefficients can be determined by the following equation:   

∅𝑖(𝑖 = 1,2) = exp (−
𝑅𝑇𝑅𝑇𝐿𝑇
2𝑃𝐶𝑠𝑑

) (35) 

where 𝑅𝑇 is the resistance of connecting pneumatic tube which can be determined by 

[Richer & Hurmuzlu, 2000a]    

𝑅𝑇 = {
32

𝜇

𝐷2
                        (fully developed laminar flow)

0.158
𝜇

𝐷2
𝑅𝑒3/4                      (wholly turbulent flow)

 (36) 

where 𝜇 is the dynamic viscosity of air; 𝐷 is the inner diameter of connecting pneumatic 

tube; Re is the Reynold’s number. 

Also, in (35) 

𝑃 = {
𝑃𝑖(𝑖 = 1,2)                                        (charging)
𝑃𝑎                                                    (discharging)

 (37) 

The time-delayed mass flow rates of the compressed air in and out of the 

cylinder chambers are  

𝑚𝑣,1̅̅ ̅̅ ̅̅ = 𝐴𝑣,1̅̅ ̅̅ ̅𝜓1(𝑃𝑢,1, 𝑃𝑑,1) (38) 

𝑚𝑣,2̅̅ ̅̅ ̅̅ = 𝐴𝑣,2̅̅ ̅̅ ̅𝜓2(𝑃𝑢,2, 𝑃𝑑,2) (39) 

where 𝐴𝑣,1̅̅ ̅̅ ̅ and 𝐴𝑣,2̅̅ ̅̅ ̅ are the time-delayed valve effective orifice areas; 𝜓1 and 𝜓2 are the 

flow functions. 

The flow functions 𝜓𝑖(𝑖 = 1,2) are given by  
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𝜓𝑖(𝑃𝑢,𝑖, 𝑃𝑑,𝑖)

=

{
  
 

  
 𝐶𝑑𝑃𝑢,𝑖

√𝑇
√𝛾

𝑅
(

2

𝛾 + 1
)

𝛾+1
𝛾−1

                                              
𝑃𝑑,𝑖
𝑃𝑢,𝑖

≤ 𝑃𝑐𝑟 (chocked)

𝐶𝑑𝑃𝑢,𝑖

√𝑇
(
𝑃𝑑,𝑖
𝑃𝑢,𝑖

)

1
𝛾

√
2𝛾

𝑅(𝛾 − 1)
√1 − (

𝑃𝑑,𝑖
𝑃𝑢,𝑖

)

𝛾−1
𝛾

        
𝑃𝑑,𝑖
𝑃𝑢,𝑖

> 𝑃𝑐𝑟(unchocked)

 

(40) 

where 𝐶𝑑 is the valve discharge coefficient; 𝑃𝑢,1 and 𝑃𝑢,2 are the valve upstream 

pressures; 𝑃𝑑,1 and 𝑃𝑑,2 are the valve downstream pressures; 𝑃𝑐𝑟 is the critical pressure 

ratio that differentiates between the chocked and unchecked flow regimes. 

The control valve is a 5/3 proportional directional valve. Therefore, the effective 

orifice areas 𝐴𝑣,𝑖(𝑖 = 1,2) that are connected to the cylinder chambers are 

𝐴𝑣,1 = −𝐴𝑣,2 = 𝐴𝑣 (41) 

which implies  

𝐴𝑣,1̅̅ ̅̅ ̅ = −𝐴𝑣,2̅̅ ̅̅ ̅ = 𝐴𝑣̅̅ ̅ (42) 

Using (42) in (38) and (39) and then inserting the resulting equations in (31) and 

(32), we see that the positive orifice area corresponds to charging of chamber 1 and 

discharging of chamber 2 whereas the negative orifice area corresponds to charging of 

chamber 2 and discharging of chamber 1. Therefore, the valve upstream and 

downstream pressures corresponding to both cylinder chambers under positive and 

negative orifice areas are  

𝑃𝑢,1 = {
𝑃𝑠                𝐴𝑣̅̅ ̅ ≥ 0

𝑃1              𝐴𝑣̅̅ ̅ < 0
 (43) 

𝑃𝑢,2 = {
𝑃2              𝐴𝑣̅̅ ̅ ≥ 0

𝑃𝑠               𝐴𝑣̅̅ ̅ < 0
 (44) 
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and 

𝑃𝑑,1 = {
𝑃1               𝐴𝑣̅̅ ̅ ≥ 0

𝑃𝑎                𝐴𝑣̅̅ ̅ < 0
 (45) 

𝑃𝑑,2 = {
𝑃𝑎               𝐴𝑣̅̅ ̅ ≥ 0

𝑃2               𝐴𝑣̅̅ ̅ < 0
 (46) 

where 𝑃𝑠 is the supply pressure; 𝑃1 and 𝑃2 are the time-delayed chamber pressures.   

The actuating force is 

𝐹𝑎 = 𝑃1𝐴1 − 𝑃2𝐴2 − 𝑃𝑎𝐴𝑟 (47) 

Neglecting spool inertia being very small, the valve dynamics can be sufficiently 

represented by 

𝑥̇𝑠 = −
1

𝜏𝑣
𝑥𝑠 +

𝐾𝑣
𝜏𝑣
𝑢1 (48) 

where 𝑥𝑠 is spool displacement, 𝜏𝑣 is valve response time, 𝑢1 is control input, and 𝐾𝑣 is 

spool position gain. 

Equation (48) implies 

𝑥𝑠̇̅ = −
1

𝜏𝑣
𝑥𝑠̅ +

𝐾𝑣
𝜏𝑣
𝑢1̅̅ ̅ (49) 

where 𝑥𝑠̅ is time-delayed spool displacement. 

For input delay compensation, 

𝑢 = 𝑢1̅̅ ̅ (50) 

Using (50) in (49) 

𝑥𝑠̇̅ = −
1

𝜏𝑣
𝑥𝑠̅ +

𝐾𝑣
𝜏𝑣
𝑢 (51) 

The relationship between the valve effective orifice area 𝐴𝑣 and spool 

displacement is 
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𝐴𝑣 = 𝑤𝑥𝑠 (52) 

where 𝑤 is the valve orifice area gradient.   

Equation (52) implies 

𝐴𝑣̅̅ ̅ = 𝑤𝑥𝑠̅ (53) 

The pressure transducers are installed at the valve output ports connected to the 

cylinder chambers by long pneumatic tubes. The dynamics of these pneumatic tubes can 

be sufficiently represented by an approximate transfer function with time delay model 

as follows:  

𝐻1(𝑠) =
𝐾(𝑠 + 𝑎)

𝑠 + 𝑏
𝑒−𝑇𝐷𝑠 (54) 

The transfer function given in (54) relates the estimated chamber pressures to 

the pressures measured by distant pressure transducers as follows: 

𝑃𝑖𝑓

𝑃𝑖𝑚
(𝑖 = 1,2) = 𝐻1(𝑠) (55) 

where 𝑃1𝑓 and  𝑃2𝑓 are estimated chamber pressures, and 𝑃1𝑚 and 𝑃2𝑚 are measured 

pressures. 

The force feedback using estimated chamber pressures to implement force 

control is 

𝐹𝑎𝑓 = 𝑃1𝑓𝐴1 − 𝑃2𝑓𝐴2 − 𝑃𝑎𝐴𝑟 (56) 

Given an accurate pneumatic tube model within range of operating conditions, 

we should expect to have 

𝑃1𝑓 = 𝑃1 (57) 

𝑃2𝑓 = 𝑃2 (58) 

Using (38) and (57) in (31), and (39) and (58) in (32), we have 
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𝑃̇1𝑓 =
𝛾𝑅𝑇

𝑉1
∅1𝐴𝑣,1̅̅ ̅̅ ̅𝜓1(𝑃𝑢,1, 𝑃𝑑,1) − 𝛼

𝑃1𝑓𝐴1

𝑉1
𝑥̇𝑝 (59) 

𝑃̇2𝑓 =
𝛾𝑅𝑇

𝑉2
∅2𝐴𝑣,2̅̅ ̅̅ ̅𝜓2(𝑃𝑢,2, 𝑃𝑑,2) + 𝛼

𝑃2𝑓𝐴2

𝑉2
𝑥̇𝑝 (60) 

Differentiating (56) twice to get 

𝐹̈𝑎𝑓 = 𝑃̈1𝑓𝐴1 − 𝑃̈2𝑓𝐴2 (61) 

Differentiating (59) and (60) to get 

𝑃̈1𝑓 =
1

𝑉1
[−(1 + 𝛼)𝑥̇𝑝𝑃̇1𝑓𝐴1 − 𝛼𝑥̈𝑝𝑃1𝑓𝐴1 + 𝛾𝑅𝑇∅1 (𝜓1𝐴𝑣,1̅̅ ̅̅ ̅̇ + 𝜓̇1𝐴𝑣,1̅̅ ̅̅ ̅)] (62) 

𝑃̈2𝑓 =
1

𝑉2
[(1 + 𝛼)𝑥̇𝑝𝑃̇2𝑓𝐴2 + 𝛼𝑥̈𝑝𝑃2𝑓𝐴2 + 𝛾𝑅𝑇∅2 (𝜓2𝐴𝑣,2̅̅ ̅̅ ̅̇ + 𝜓̇2𝐴𝑣,2̅̅ ̅̅ ̅)] (63) 

In (62) and (63), 𝜓̇1 and 𝜓̇2 are the time-derivatives of flow functions and can 

be determined by the following equations with 𝑖 = 1,2: 

𝜓̇𝑖(𝑃𝑠, 𝑃𝑖𝑓)

=

{
 
 
 
 
 

 
 
 
 
                           0                                                                ,

𝑃𝑖𝑓

𝑃𝑠
≤ 𝑃𝑐𝑟 (chocked)

𝐵1

[
 
 
 
 
 
 
 

𝛾 − 1

2√1 − (
𝑃𝑖𝑓̅̅ ̅̅

𝑃𝑠
)

𝛾−1
𝛾

− (
𝑃𝑖𝑓̅̅ ̅̅

𝑃𝑠
)

1−𝛾
𝛾
√1− (

𝑃𝑖𝑓̅̅ ̅̅

𝑃𝑠
)

𝛾−1
𝛾

]
 
 
 
 
 
 
 

𝑃𝑖𝑓̅̅ ̅̇̅ ,
𝑃𝑖𝑓

𝑃𝑠
> 𝑃𝑐𝑟(unchocked)

 

(64) 
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𝜓̇𝑖(𝑃𝑖𝑓 , 𝑃𝑎)

=

{
 
 
 
 
 

 
 
 
 
                         𝐵2 ∙ 𝑃𝑖𝑓

̇                                                        ,
𝑃𝑎

𝑃𝑖𝑓
≤ 𝑃𝑐𝑟 (chocked)

𝐵3

[
 
 
 
 
 
 
 

𝑃𝑎

2𝑃𝑖𝑓√1− (
𝑃𝑎
𝑃𝑖𝑓
)

𝛾−1
𝛾

+ 
𝑃𝑎

𝑃𝑖𝑓

√1− (
𝑃𝑎

𝑃𝑖𝑓
)

𝛾−1
𝛾

 

]
 
 
 
 
 
 
 

𝑃𝑖𝑓
̇ ,
𝑃𝑎

𝑃𝑖𝑓
> 𝑃𝑐𝑟(unchocked)

 

(65) 

where 𝑃𝑖𝑓(𝑖 = 1,2) are the delayed estimated chamber pressures. Also 

𝐵1 = −𝐶𝑑√
2

𝛾𝑅𝑇(𝛾 − 1)
 (66) 

𝐵2 =
𝐶𝑑

√𝑇
√𝛾

𝑅
(
2

𝛾 + 1
)

𝛾+1
𝛾−1

 (67) 

𝐵3 = 𝐶𝑑√
2(𝛾 − 1)

𝛾𝑅𝑇
 (68) 

Inserting (62) and (63) into (61), and considering (42), 

𝐹̈𝑎𝑓 = −𝛼𝑥̈𝑝 (
𝑃1𝑓𝐴1

2

𝑉1
+
𝑃2𝑓𝐴2

2

𝑉2
) − 𝑥̇𝑝(1 + 𝛼)(

𝑃̇1𝑓𝐴1
2

𝑉1
+
𝑃̇2𝑓𝐴2

2

𝑉2
)

+ 𝛾𝑅𝑇 (
𝐴1∅1𝜓1
𝑉1

+
𝐴2∅2𝜓2
𝑉2

)𝐴𝑣̅̅̅̇̅ + 𝛾𝑅𝑇 (
𝐴1∅1𝜓̇1
𝑉1

+
𝐴2∅2𝜓̇2
𝑉2

)𝐴𝑣̅̅̅̅  

(69) 

Introducing 𝐾1, 𝐾2, 𝐶1 and 𝐶2 to simplify (69), 

𝐹̈𝑎𝑓 = −𝐾1𝑥̈𝑝 − 𝐾2𝑥̇𝑝(1 + 𝛼) + (𝐶1𝜓1 + 𝐶2𝜓2)𝐴𝑣̅̅ ̅̇ + (𝐶1𝜓̇1 + 𝐶2𝜓̇2)𝐴𝑣̅̅ ̅ (70) 

where 

𝐶1 = 𝛾𝑅𝑇
𝐴1
𝑉1
∅1 (71) 
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𝐶2 = 𝛾𝑅𝑇
𝐴2
𝑉2
∅2 (72) 

𝐾1 = 𝛼 (
𝑃1𝑓𝐴1

2

𝑉1
+
𝑃2𝑓𝐴2

2

𝑉2
) (73) 

𝐾2 = (
𝑃̇1𝑓𝐴1

2

𝑉1
+
𝑃̇2𝑓𝐴2

2

𝑉2
) (74) 

Introducing terms 𝐷1 and 𝐷2 for simplification, we get 

𝐹̈𝑎𝑓 = −𝐾1𝑥̈𝑝 − 𝐾2𝑥̇𝑝(1 + 𝛼) + 𝐷1𝐴𝑣̅̅ ̅̇ + 𝐷2𝐴𝑣̅̅ ̅ (75) 

where 

𝐷1 = 𝐶1𝜓1 + 𝐶2𝜓2 (76) 

𝐷2 = 𝐶1𝜓̇1 + 𝐶2𝜓̇2 (77) 

Differentiating (53) 

𝐴𝑣̅̅ ̅̇ = 𝑤𝑥𝑠̇̅ (78) 

Using (51), (53) and (78), system dynamics given in (75) can alternatively be 

written as 

𝐹̈𝑎𝑓 = −𝐾1𝑥̈𝑝 − 𝐾2𝑥̇𝑝(1 + 𝛼) − (
𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ +

𝑤𝐾𝑣𝐷1
𝜏𝑣

𝑢 (79) 

System dynamics given in (79) can be re-written as 

𝐹̈𝑎𝑓 = 𝑓(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ , 𝑥𝑠̅) + 𝑏(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ )𝑢 (80) 

where 𝑓(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ , 𝑥𝑠̅) is the dynamic function of the system and is given by 

𝑓(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ , 𝑥𝑠̅) = −𝐾1𝑥̈𝑝 − 𝐾2𝑥̇𝑝(1 + 𝛼) − (
𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ (81) 

and 𝑏(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ ) is the control gain function which is 

𝑏(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ ) =
𝑤𝐾𝑣𝐷1
𝜏𝑣

 (82) 
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Equation (82) shows that the actuator described in Section 5.1 is a second order 

system. 

5.3 Linear and Proposed Nonlinear Integral Sliding   

Surfaces   

Unlike conventional linear sliding surface, the linear integral sliding surface 

[Slotine & Li, 1991] does not have a problem of reaching phase in case of initial errors. 

Therefore, the controller built upon the linear integral sliding surface offers robustness 

against matched uncertainties from the beginning of the system response. For a second 

order system like the one under consideration, the surface can be defined as 𝑆1 in state-

space ℝ𝑛 by the scalar equation 𝑠1 = 0, where 

𝑠1 = 𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒 𝑑𝑡 − 𝑒̇(0) − 2𝜆𝑒(0) (83) 

In (83), 𝜆 is a strictly positive constant and is called controller bandwidth, and 𝑒 

is the tracking error in the controlled variable. Indeed, 𝑠1 ≡ 0 represents a linear 

integro-differential equation whose solution yields 

𝑒(𝑡) = (𝑒(0) + [𝜆𝑒(0) + 𝑒̇(0)]𝑡)exp (−𝜆𝑡) (84) 

Equation (84) shows the following: 

 For zero initial conditions, 𝑠1 ≡ 0 has a unique solution, 𝑒 ≡ 0.  

 For non-zero initial conditions, 𝑠1 ≡ 0 has a solution which converges to 𝑒 ≡ 0 after 

transient in finite time 𝑡 for practical purposes depending upon 𝜆.  

Therefore, the problem of keeping 𝑒 ≡ 0 is equivalent to that of holding on to 

the surface 𝑆1 for all 𝑡 > 0. 
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To track the integral sliding surface i.e. 𝑠1 = 0, the controller must enforce a 

relationship: 

𝑒̇ = −2𝜆𝑒 − 𝜆2∫𝑒 𝑑𝑡 + 𝑒̇(0) + 2𝜆𝑒(0) (85) 

From (85), it is clear that the change of error enforced by the controller has a 

greater weight of accumulated errors than the error itself for any value of 𝜆 greater than 

2, which may cause the system to overshoot in case of large initial transient errors. To 

solve this problem, the controller bandwidth can be reduced. However, this will result in 

an exceedingly slow system response with long rise and settling times. Furthermore, for 

a desired trajectory having multiple steps, linear integral sliding surface having a scalar 

𝑠1 given in (83) is not sufficient to eliminate the reaching phase. At the onset of each 

step, the reaching phase exists and the controller loses robustness against matched 

uncertainties until the sliding mode is established again. To ensure robustness against 

matched uncertainties throughout the system response despite multiple steps in the 

desired trajectory, the surface needs a slight modification in which scalar 𝑠1 gets 

updated at the onset of each step (nth) and is given by 

𝑠1 = 𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒 𝑑𝑡 − 𝑒̇(0) − 2𝜆𝑒(0) − 2𝜆∑𝑒(𝑡𝑖)

𝑛

𝑖=1

,    𝑛 = 1,2,3, … (86) 

where 𝑡𝑖 is the time at which the ith step in the desired trajectory begins. 

For a system tracking the desired trajectory accurately before the onset of ith 

step, 

𝑒(𝑡𝑖) = 𝑦𝑑(𝑡𝑖
−) − 𝑦𝑑(𝑡𝑖

+) (87) 

where 𝑦𝑑 is any desired trajectory.  
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To eliminate overshoot in case of large initial errors and multiple steps in the 

desired trajectory, this thesis proposes a novel nonlinear integral sliding surface. The 

proposed sliding surface can be constructed by adding a nonlinear function of the error 

to the linear integral sliding surface given in (86). The nonlinear function gets updated 

at the onset of each step (nth) in the desired trajectory and is given by 

h(𝑒) = f(𝑒) − f(𝑒(0)) −∑f(𝑒(𝑡𝑖))

𝑛

𝑖=1

,                                            𝑛 = 1,2,3, … (88) 

where  

f(𝑒) =

{
 
 

 
 
𝑐1
2
𝑒 +

𝑐1𝑐2
2𝜋

𝑠𝑖𝑛 (
𝜋𝑒

𝑐2
),                     |𝑒| ≤ 𝑐2 

𝑐1𝑐2
2
,                                                  𝑒 > 𝑐2

−
𝑐1𝑐2
2
,                                               𝑒 < −𝑐2

 (89) 

In (89), 𝑐1 and 𝑐2 are strictly positive design parameters. The plot of f(𝑒) is 

shown in Figure 5.2. 

 

Figure 5.2 Nonlinear function f(e) for proposed nonlinear integral sliding surface (𝑐1 = 𝑐2 = 1) 
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For a second order system, the proposed surface can be represented as 𝑆2 in 

state-space ℝ𝑛 by the scalar equation 𝑠2 = 0, where 𝑠2 gets updated at the onset of each 

step (nth) in the desired trajectory and is given by 

𝑠2 = 𝑒̇ + 2𝜆𝑒 + 𝜆
2∫𝑒𝑑𝑡 − 𝑒̇(0) − 2𝜆𝑒(0) − 2𝜆∑𝑒(𝑡𝑖)

𝑛

𝑖=1

+ h(𝑒),                                                                           𝑛 = 1,2,3, … 

(90) 

Inserting (88) into (90), we have 

𝑠2 = 𝑒̇ + 2𝜆𝑒 + 𝜆
2∫𝑒𝑑𝑡 − 𝑒̇(0) − 2𝜆𝑒(0) − 2𝜆∑𝑒(𝑡𝑖)

𝑛

𝑖=1

+ f(𝑒) − f(𝑒(0))

−∑f(𝑒(𝑡𝑖))

𝑛

𝑖=1

,                                                          𝑛 = 1,2,3, … 

(91) 

From (91), it is clear that the proposed surface does not have a reaching phase 

despite initial errors and multiple steps in the desired trajectory. Therefore, the 

robustness against matched uncertainties is guaranteed throughout the system response. 

To keep on tracking 𝑠2 = 0, the controller must enforce the following sliding 

mode dynamics:  

𝑠̇2 = 0 (92) 

where 𝑠̇2 can be determined by taking the time derivative of (91) as follows:  

𝑠̇2 = 𝑒̈ + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 (93) 

which shows that the proposed nonlinear integral sliding surface introduces a nonlinear 

function of error to the weight of the derivative component in the sliding mode 

dynamics enforced by the controller. This nonlinear function can be determined by 

taking the partial derivative of (89) with respect to error as follows: 
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𝜕f

𝜕𝑒
= {

𝑐1
2
+
𝑐1
2
𝑐𝑜𝑠 (

𝜋𝑒

𝑐2
),                         |𝑒| ≤ 𝑐2

0,                                                       |𝑒| > 𝑐2

 (94) 

Equation (94) shows that the nonlinear function introduced by the proposed 

sliding surface to the weight of the derivative component in sliding mode dynamics is 

zero for errors larger than 𝑐2 on both sides of the desired trajectory. It makes the on- 

surface dynamics behave similar to those of linear integral sliding surface. For transient 

errors less than 𝑐2 on both sides of the desired trajectory, the nonlinear function 

introduced to the weight of the derivative component increases as the transient error 

approaches smaller values and vice versa. In other words, the controller offers variable 

damping during the system response that changes from low to high as the transient error 

approaches small values and vice versa. This feature of the proposed nonlinear integral 

sliding surface can be exploited to improve the transient response of the system i.e. no 

overshoot while maintaining good rise and settling times. The nonlinear function 

introduced to the weight of the derivative component responsible for offering variable 

damping during the transient response is shown in Figure 5.3. 

 

Figure 5.3 Nonlinear function introduced to the weight of the derivative component in sliding 

mode dynamics by the proposed nonlinear integral sliding surface for variable damping during 

the system response (𝑐1 = 𝑐2 = 1) 
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To verify the characteristics of the proposed nonlinear integral sliding surface of 

having no reaching phase and providing robustness throughout the system response 

despite initial errors and multiple steps in the desired trajectory, we consider the 

following second-order system subjected to a nonlinear disturbance in the control input 

channel: 

𝑎𝑦̈(𝑡) + 𝑏𝑦̇(𝑡) + 𝑐𝑦(𝑡) = 𝑢(𝑡) +𝑚𝑠𝑖𝑛𝑦(𝑡) (95) 

where 𝑎 = 1, 𝑏 = 3, 𝑐 = 2,𝑚 = 0.1, and 𝑢 is the control input. 

The system initial conditions are 𝑦(0) = 0.1, 𝑦̇(0) = 0.05. The desired 

trajectory of 𝑦(𝑡) has multiple steps and is shown in Figure 5.4. In state-space form, the 

system can be represented by 

𝑥̇1(𝑡) = 𝑦̇(𝑡) = 𝑥2(𝑡) (96) 

𝑥̇2(𝑡) = 𝑦̈(𝑡) = −
𝑐

𝑎
𝑥1(𝑡) −

𝑏

𝑎
𝑥2(𝑡) +

1

𝑎
(𝑢(𝑡) + 𝑚𝑠𝑖𝑛(𝑥1(𝑡))) (97) 

 

Figure 5.4 Desired trajectory for 𝑦(𝑡) 
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𝑠2 =

{
 
 
 
 

 
 
 
 𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒𝑑𝑡 − 0.05 − 0.2𝜆 + f(𝑒) − f(0.1),     0 ≤ 𝑡 < 10

𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒𝑑𝑡 − 0.05 + f(𝑒),                                 10 ≤ 𝑡 < 20

𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒 𝑑𝑡 − 0.05 + 0.2𝜆 + f(𝑒) + f(0.1),   20 ≤ 𝑡 < 30

𝑒̇ + 2𝜆𝑒 + 𝜆2∫𝑒 𝑑𝑡 − 0.05 + 0.4𝜆 + f(𝑒) + 2f(0.1), 30 ≤ 𝑡 ≤ 40

 (98) 

Taking time derivative of (98), we have 

𝑠̇2 = 𝑒̈ + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 = 𝑦̈ + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑦̇ + 𝜆2𝑒 (99) 

Inserting (97) into (99) and ignoring the disturbance in the control input channel, 

𝑠̇2 = −
𝑐

𝑎
𝑥1 −

𝑏

𝑎
𝑥2 +

1

𝑎
𝑢 + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑦̇ + 𝜆2𝑒 (100) 

Substituting (100) in (92), we obtain 

𝑢 =
𝑐

𝑎
𝑥1 +

𝑏

𝑎
𝑥2 − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑦̇ − 𝜆2𝑒 (101) 

To compensate for modeling uncertainties, the robust component can be 

introduced to the control input as follows: 

𝑢 =

{
 

 
𝑐

𝑎
𝑥1 +

𝑏

𝑎
𝑥2 − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑦̇ − 𝜆2𝑒 − 𝐺 ∙

𝑠2
𝜑
                         |𝑠2| ≤ 𝜑 

𝑐

𝑎
𝑥1 +

𝑏

𝑎
𝑥2 − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑦̇ − 𝜆2𝑒 − 𝐺. 𝑠𝑔𝑛(𝑠2)               |𝑠2| > 𝜑

 (102) 

where 𝐺 is the robustness parameter, and 𝜑 is the boundary layer thickness. 

Simulation results of the second-order system represented in (95) while tracking 

𝑦(𝑡) are shown in Figure 5.5. The results reveal that the proposed sliding surface does 

not have a reaching phase despite initial errors and multiple steps in the desired 

trajectory. The controller designed using the proposed sliding surface offers robustness 
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to matched uncertainty throughout the system response. The effect of a nonlinear 

disturbance in control input channel is completely eliminated. 

 

 

Figure 5.5 Simulation results of the second-order system while tracking y(t) with sliding mode 

controller based on the proposed nonlinear integral sliding surface (𝐺 = 0.05, 𝜆 = 3, 𝑐1 = 2, 𝑐2 =

0.01, 𝜑 = 0.0001) 

 

5.4 Control Laws   

This section derives the control laws based on linear and proposed nonlinear 

integral sliding surfaces for the actuator described in Sections 5.1 and 5.2.  

To make sure that all system states converge to equilibrium, we set 𝑠̇1 and  𝑠̇2 

equal to zero which yields 

𝑒̈ + (2𝜆 + 𝑐1)𝑒̇ + 𝜆
2𝑒 = 0 (103) 

𝑒̈ + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 = 0 (104) 
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The error is 

𝑒 = 𝐹𝑎𝑓 − 𝐹𝑟 (105) 

where 𝐹𝑟 is the desired actuating force, and 𝐹𝑎𝑓 is the actual actuating force. 

Inserting (105) into (103) and (104), we have 

𝐹̈𝑎𝑓 − 𝐹̈𝑟 + 2𝜆𝑒̇ + 𝜆
2𝑒 = 0 (106) 

𝐹̈𝑎𝑓 − 𝐹̈𝑟 + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 = 0 (107) 

Substituting (79) in (106) and (107), we obtain the equivalent components of 

sliding mode control laws based on the linear integral sliding surface (LISS) and the 

proposed nonlinear integral sliding surface (NLISS) as follows:  

𝑢𝑒𝑞_𝐿𝐼𝑆𝑆 =
𝜏𝑣

𝑤𝐾𝑣𝐷1
[𝐹̈𝑟 + 𝐾1𝑥̈𝑝 + 𝐾2𝑥̇𝑝(1 + 𝛼) + (

𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ − 2𝜆𝑒̇ − 𝜆

2𝑒] (108) 

𝑢𝑒𝑞_𝑁𝐿𝐼𝑆𝑆 =
𝜏𝑣

𝑤𝐾𝑣𝐷1
[𝐹̈𝑟 + 𝐾1𝑥̈𝑝 + 𝐾2𝑥̇𝑝(1 + 𝛼) + (

𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅

− (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ − 𝜆2𝑒] 

(109) 

To compensate for the modeling uncertainties, the robust component of the 

control signal is now introduced as follows: 

𝑢𝐿𝐼𝑆𝑆

=

{
 

 
𝜏𝑣

𝑤𝐾𝑣𝐷1
(𝐹̈𝑟 + 𝐾1𝑥̈𝑝 + 𝐾2𝑥̇𝑝(1 + 𝛼) + (

𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ − 2𝜆𝑒̇ − 𝜆

2𝑒 − 𝐺 ∙
𝑠1
𝜑
)                     |𝑠1| ≤ 𝜑 

𝜏𝑣
𝑤𝐾𝑣𝐷1

(𝐹̈𝑟 + 𝐾1𝑥̈𝑝 +𝐾2𝑥̇𝑝(1 + 𝛼) + (
𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ − 2𝜆𝑒̇ − 𝜆

2𝑒 − 𝐺. 𝑠𝑔𝑛(𝑠1))          |𝑠1| > 𝜑

 
(110) 

𝑢𝑁𝐿𝐼𝑆𝑆

=

{
 

 
𝜏𝑣

𝑤𝐾𝑣𝐷1
(𝐹̈𝑟 + 𝐾1𝑥̈𝑝 + 𝐾2𝑥̇𝑝(1 + 𝛼) + (

𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ − 𝜆2𝑒 − 𝐺 ∙

𝑠2
𝜑
)      |𝑠2| ≤ 𝜑 

𝜏𝑣
𝑤𝐾𝑣𝐷1

(𝐹̈𝑟 + 𝐾1𝑥̈𝑝 + 𝐾2𝑥̇𝑝(1 + 𝛼) + (
𝐷1
𝜏𝑣
− 𝐷2)𝑤𝑥𝑠̅ − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ − 𝜆2𝑒 − 𝐺. 𝑠𝑔𝑛(𝑠2)) |𝑠2| > 𝜑

 
(111) 
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Figure 5.6 Schematic for implementation of sliding mode controllers based on linear and 

proposed nonlinear integral sliding surfaces 

The sliding mode control laws presented in (110) and (111) have both delayed 

and undelayed estimated chamber pressure terms and their derivatives. The delayed 

estimated chamber pressure terms and their derivatives are contributed by flow 

functions and can be determined by passing the estimated chamber pressures and their 

derivatives through a filter having a transfer function  

𝐻2(𝑠) =
1

𝑇𝐷
2

2 𝑠2 + 𝑇𝐷𝑠 + 1

 
(112) 

The delayed spool displacement term present in control laws cannot be 

measured. Therefore, the spool displacement is computed using numerical integration 

and then time-delayed with the help of (112) for use in control laws. To facilitate 

understanding, the schematic for implementation of sliding mode controllers based on 

linear and proposed nonlinear integral sliding surfaces is shown in Figure 5.6. 
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5.5 Stability Analysis 

This section examines the stability of the proposed modified integral sliding 

mode control using the Lyapunov stability criterion. 

The dynamic function 𝑓(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ , 𝑥𝑠̅) can be estimated as 

𝑓(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ , 𝑥𝑠̅) and the estimation error is bounded such that 

|𝑓 − 𝑓| ≤ 𝐹 (113) 

Furthermore, the control gain 𝑏(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ ) is bounded such that 

0 < 𝑏𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥 (114) 

It is reasonable to choose estimated control gain 𝑏̂(𝑥𝑝, 𝑃1𝑓 , 𝑃2𝑓 , 𝑃1𝑓̅̅ ̅̅ , 𝑃2𝑓̅̅ ̅̅ ) to be 

the geometric mean of above-mentioned bounds i.e., 

𝑏̂ = √𝑏𝑚𝑎𝑥𝑏𝑚𝑖𝑛 (115) 

Bounds given in (114) can also be written as 

β
−1 ≤

𝑏

𝑏̂
≤ 𝛽 (116) 

where 

β = √
𝑏𝑚𝑎𝑥
𝑏𝑚𝑖𝑛

 (117) 

Choosing the Lyapunov function candidate 

𝑉 =
1

2
𝑠2
2 (118) 

Taking time derivative of (118), 

𝑉̇ = 𝑠2𝑠2̇ (119) 

Substituting (105) in (93), we have 
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𝑠̇2 = 𝐹̈𝑎𝑓 − 𝐹̈𝑟 + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 (120) 

Inserting (80) in (120), we obtain  

𝑠̇2 = 𝑓 + 𝑏𝑢 − 𝐹̈𝑟 + (2𝜆 +
𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒 (121) 

Substituting (81) and (82) into (109) results in 

𝑢𝑒𝑞 = 
1

𝑏̂
(𝐹̈𝑟 − 𝑓 − (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ − 𝜆2𝑒) (122) 

Substituting (81), (82) and (109) in (112), we have 

𝑢 =  𝑢𝑒𝑞 −
𝐺

𝑏̂
𝑠𝑔𝑛(𝑠2) (123) 

Substituting (122) in (123) and putting the result in (121), we obtain 

𝑠2̇ = (𝑓 −
𝑏

𝑏̂
𝑓) + (1 −

𝑏

𝑏̂
) (−𝐹̈𝑟 + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒) −

𝑏

𝑏̂
𝐺𝑠𝑔𝑛(𝑠2) (124) 

Substituting (124) in (119) results in 

𝑉̇ = [(𝑓 −
𝑏

𝑏̂
𝑓) + (1 −

𝑏

𝑏̂
) (−𝐹̈𝑟 + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒)] 𝑠2 −

𝑏

𝑏̂
𝐺|𝑠2| (125) 

For 𝑉̇ to be negative definite, the following inequality must hold: 

𝐺 ≥ |(
𝑏̂

𝑏
𝑓 − 𝑓) + (

𝑏̂

𝑏
− 1) (−𝐹̈𝑟 + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒)| +

𝑏̂

𝑏
𝜂 (126) 

where η is strictly positive. 

Since 

𝑓 = 𝑓 + (𝑓 − 𝑓) (127) 

Inequality (126) may be re-written as 

𝐺 ≥
𝑏̂

𝑏
(𝑓 − 𝑓) +

𝑏̂

𝑏
𝜂 + |(

𝑏̂

𝑏
− 1)| |𝑓 − 𝐹̈𝑟 + (2𝜆 +

𝜕f

𝜕𝑒
) 𝑒̇ + 𝜆2𝑒| (128) 
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Substituting (122) in (128), we obtain 

𝐺 ≥
𝑏̂

𝑏
(𝑓 − 𝑓) +

𝑏̂

𝑏
𝜂 + |(

𝑏̂

𝑏
− 1)| |𝑏̂𝑢𝑒𝑞| (129) 

Considering (113) and (116), inequality (129) can also be written as 

𝐺 ≥ 𝛽(𝐹 + 𝜂) + |(𝛽 − 1)||𝑏̂𝑢𝑒𝑞| (130) 

Subject to inequality (130) satisfied, we have 

𝑉̇ ≤ −𝜂|𝑆1| (131) 

Inequality (131) shows that the sliding mode controller based on proposed 

nonlinear integral sliding surface is asymptotically stable as long as (130) is true. 

5.6 Summary 

System dynamics of a force-controlled pneumatic actuator with long 

transmission lines and indirect pressure measurements were presented, which showed 

that the actuator was a second-order, nonlinear system with input delay. The pneumatic 

tube was modeled as a first-order, linear transfer function with time delay to facilitate 

indirect measurements of cylinder pressures. For an improved transient response of the 

actuator, a nonlinear integral sliding surface was proposed. The proposed sliding surface 

was designed to enable sliding mode controller to offer variable damping during the 

system response. The surface was a linear integral sliding surface augmented by a 

nonlinear function of tracking error and did not have a reaching phase in case of initial 

errors and even when there were multiple steps in the desired trajectory. A full order 

sliding mode controller was designed for the actuator using the proposed nonlinear 

integral sliding surface. The controller had asymptotic stability for bounded 

uncertainties in control gain and system dynamic functions provided that a condition on 



83 
 

Force-controlled Pneumatic Actuator with Long Transmission Lines and a Nonlinear Integral 
Sliding Surface 

robustness parameter shown in (130) is satisfied. A sliding mode control law based on 

the linear integral sliding surface was also derived for the actuator for comparison.  
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Chapter 6  

Performance Evaluation6 

This chapter examines the performance of full order sliding mode controller 

based on the proposed nonlinear integral sliding surface for force control of a pneumatic 

actuator with long transmission lines and indirect pressure measurements, using 

simulation as well as experiments.   

6.1 Simulation Studies 

In simulation studies, system dynamics described in Section 5.2, sliding mode 

control laws explained in Section 5.4, and system parameters shown in Table 6.2 are 

used. Sliding mode control laws presented in (110-111) indicate that some parameters 

of the controllers need tuning for desired system responses. It is well- established that 

the performance of controllers depends heavily on values chosen for such parameters. 

Therefore, for comparing the performance of controllers in these simulation studies, 

such controller parameters are optimized using a low-cost globalized multimodal 

optimization algorithm called GBNM with deterministic restarts explained in Chapter 2 

                                                           
6 A version of this chapter has been included in Butt, K., & Sepehri, N. (2018). A nonlinear integral sliding surface to 

improve the transient response of a force-controlled pneumatic actuator with long transmission lines. Manuscript 

submitted for publication. 
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as follows:  

The algorithm controls the simulating model and steers the controller towards 

optimal parameters using the results from its logically guided iterative runs. To 

optimize the controller parameters for an improved transient response of the system 

with minimum possible overshoot and rise and settling times, the algorithm minimizes 

the following aggregated multi-objective function with bounds on controller parameters 

given in Table 6.1.  

𝑓(𝑒)|(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = ∫|𝑒|

𝑇

0

𝑑𝑡 + |𝑒|𝑡=𝑡𝑝 (132) 

where 𝑇 is the time span of the iterative run, and 𝑡𝑝 is the time at which the maximum 

absolute of actual actuating force exists. 

The 1st term of the objective function minimizes the rise and settling times while 

the 2nd term penalizes the overshoot in system response. The bounds on controller 

parameters define the search space for optimization and they are used as the 

convergence aspects of the algorithm with respect to system stability are not known. 

The parameters required to compute objective function are obtained from the system’s 

simulated response when it is made to track bipolar square pulses shown in Figure 6.1 

for 6 seconds. Bipolar square pulses are used as a test signal because the thesis focuses 

on the improvement of the transient response of the system when initial errors are large 

and there are multiple steps in the desired trajectory. The piston position is kept fixed 

during the iterative run of the simulating model for tuning to eliminate the uncertainty 

in external load which may misguide the optimization algorithm by causing the 

inconsistency in results on the same set of controller parameters. The optimized 
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parameters of both the controllers obtained using the tuning process, are listed in Table 

6.1. These controllers’ parameters are used for simulations presented in this chapter. 

 

Figure 6.1 Test signal 

TABLE 6.1 BOUNDS ON CONTROLLERS’ PARAMETERS AND THEIR OPTIMIZED VALUES 

(SIMULATIONS) 

Parameter Description Bounds Optimized 

Value 

Unit 

Minimum Maximum 

LISS 

G Robustness parameter 0 200 114.6567 N/s2 

λ  Controller bandwidth parameter 0 100 40.7603 rad/s 

𝜑 Boundary layer thickness 10 10 10 N/s 

NLISS 

G Robustness parameter 0 200 184.886 N/s2 

λ Controller bandwidth parameter 0 100 69.4918 rad/s 

𝜑 Boundary layer thickness 10 10 10 N/s 

𝑐1 Design parameter for proposed 

nonlinear integral sliding surface 

0 500 206.696 rad/s 

𝑐2 Design parameter for proposed 

nonlinear integral sliding surface 

0 40 39.2847 N 

The simulated system responses under the sliding mode controllers based on 

linear and proposed nonlinear integral sliding surfaces are shown in Figure 6.2. The 

system response under the controller based on linear integral sliding surface overshoots 

and has long settling time. On the other hand, it has absolutely no overshoot under the 
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controller based on the proposed nonlinear integral sliding surface. The system’s rise 

times are almost identical in both cases.  

 

 

Figure 6.2 Simulation results of actuating force control using (a) LISS and (b) NLISS

Tracking errors in the system responses under the controllers examined in this 

chapter are also shown in Figure 6.3. The system does not approach steady state under 

the controller based on the linear integral sliding surface because of long settling time 

while under the controller based on the proposed nonlinear integral sliding surface, it 

approaches steady state with zero steady-state error. 

The control signals and valve spool displacements for system responses shown 

in Figure 6.2 are presented in Figures 6.4 and 6.5, respectively. The control signals have 
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some spikes of +5V or -5V. These spikes occur when system requires large spool 

velocities to keep tracking the desired trajectory.  

 

 

Figure 6.3 Tracking errors under (a) LISS and (b) NLISS (simulations) 

 

Figure 6.4 Control signals of (a) LISS and (b) NLISS (simulations) 
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Figure 6.5 Valve spool displacements under (a) LISS and (b) NLISS (simulations) 

6.2 Experimental Validation 

6.2.1 Experimental Setup 

To evaluate the performance of the controllers based on the linear and proposed 

nonlinear integral sliding surfaces, a purpose-built experimental setup shown in Figure 

6.6 is developed. The schematic of the setup is shown in Figure 6.7. The parameters of 

the setup are listed in Table 6.2.  

The setup contains a prototype MRI-compatible pneumatic gripper shown in 

Figure 6.8. The frame of the gripper is made of acrylic for MRI-compatibility and 

consists of machined plates for mounting other parts. The gripper provides support to 

the human grip through a fixed and a moving handle. A single rod, double acting, MRI- 

compatible cylinder is attached to the frame on one end and to the moving handle on the 

other end. The cylinder has anti-stiction properties and provides exceedingly low 

dynamic friction relatively independent on the velocity in the absence of side forces on 

the piston.  To eliminate misalignment and the possibility of side forces on the piston, a 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6

Sp
o

o
l D

is
p

la
ce

m
e

n
t 

(m
m

)

Time (s)
(a)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6

Sp
o

o
l D

is
p

la
ce

m
e

n
t 

(m
m

)

Time (s)
(b)



90 
 

Performance Evaluation 

nonmagnetic misalignment coupler made of brass is provided between cylinder’s rod 

and the moving handle. The coupler can compensate for misalignments up to 5°. The 

moving handle is mounted on a precision, frictionless, non-magnetic slide through an 

acrylic interface. The slide is fixed to the base plate of the frame. To eliminate the 

chances of piston banging against the glass bore of the cylinder, and to support the 

translational movement of the piston, a plate consisting of restriction guide for the 

moving handle is provided at the top of the frame. The fixed handle is mounted on the 

base plate and it passes through a hole in the plate having restriction guide. The plate 

having restriction guide also serves as a station on which wrist of the human subject 

rests during the device operation. The cylinder is connected to the 5/3 mass flow rate 

proportional valve having feedback pressure transducers at its outlets through 9m long 

pneumatic tubes of 2.184mm inner diameter. To estimate chamber pressures using 

readings from feedback pressure transducers, an approximate linear transfer function 

with time delay model of the pneumatic tube shown in (54) is used. The model has gain 

𝐾, a pole 𝑏 and a zero 𝑎. Using the MATLAB system identification toolbox, values of 

𝐾, 𝑎 and 𝑏 are found to be 0.15, 63.12 and 9.86, respectively for a 9m long pneumatic 

tube of 2.184mm inner diameter. The setup contains monitoring pressure transducers, 

which are mounted on the cylinder with the help of very short pneumatic tubes. 

Measurements from these transducers are only used for presenting the outcome of 

experiments and are never used as feedback for control purposes. An air compressor 

along with air and mist filters, an electro-pneumatic regulator and an air reservoir is 

used to supply clean, dry, compressed and regulated air with minimized pressure 

fluctuations to the pneumatic components of the setup. To measure piton displacement, 
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an MRI-compatible, linear, optical, position sensor is mounted on the interface between 

the slide and the moving handle. The optical sensor uses a stretched optical film passing 

through it to generate an optical signal on piston movement. The film is stretched using 

acrylic clamps mounted on the base plate. The position sensor is connected to an 

optical-to-electrical module through a 10m long fiber optic cable to convert the optical 

signal into an electrical signal for feedback. 

 

Figure 6.6 Experimental setup 

The setup contains a data acquisition board that works as an interface between 

the pneumatic actuator and a target PC. The pressure transducers are connected to the 

analog input ports of the data acquisition board while the position sensor is connected to 

one of its encoder input ports. The command valve and the electro-pneumatic regulator 

are connected to the analog output ports of the board. The data acquisition board
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1 Pressure Regulator (SMC ITV1050-31N2CS4-Q) 
2 Data Acquisition Board (QUANSER Q8) 
3 5/3 Proportional Directional Valve (FESTO MYPE-5-1/8-LF-010-B) 
4 Target PC (QNX Neutrino Real-Time Operating System) 
5 Host PC (MICROSOFT Window Operating System) 
6 Feedback Pressure Transducer (ASHCROFT T27M0210E200#G) 
7 Optical to Electrical Module (MICRONOR MR302-2) 

Figure 6.7 Schematic of the experimental setup 
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1 Frictionless Non-Magnetic Precision Slide (DELTRON S2-1.5-NMS) 
2 MRI-Safe Linear Position Encoder (MICRONOR MR303-B400C10) 
3 Incremental Encoder Film Strips (MICRONOR TD5334) 
4 Brass Misalignment Coupler (with the specifications of McMASTER-CARR 7334K1) 
5 MRI-Safe Anti-Stiction Pneumatic Cylinder (AIRPEL AC 13270-4) 
6 Monitoring Pressure Transducer (ASHCROFT T27M0210E200#G) 

 

Figure 6.8 Prototype pneumatic gripper 

establishes a connection with the target PC through a PCI board. The target PC is 

connected to a host PC (experimenter’s workstation) through TCP/IP communication 

protocol. The setup uses real-time control software QUARC with QNX Neutrino real-

time operating system to execute control algorithm downloaded on the target PC. The 

QUARC toolbox in MATLAB Simulink is used to provide Graphical User Interface 

(GUI) for the data flow through the data acquisition board and also to provide a 
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platform for the optimization algorithm written in MATLAB script to implement online 

optimization of controller parameters. During online tuning, an acrylic mount 

surrounding the moving handle and fixed to the restriction plate is used to inhibit the 

piston movement. For normal operation, this mount is removed to allow piston 

movement during force control. 

TABLE 6.2 PARAMETERS OF THE EXPERIMENTAL SETUP 

Parameter Description Value Unit 

Ps Supply pressure 0.5 MPa 

Patm Atmosphere pressure 0.1 MPa 

mp Total mass of piston-rod assembly and attached accessories 0.5 kg 

L Piston stroke 0.05 m 

A1 Piston annulus area – side 1 67.7e-6 m2 

A2 Piston annulus area – side 2 60.0e-6 m2 

T Temperature of air 300 K 

α Pressure-volume work correction factor 1.2 - 

Cd Valve coefficient of discharge 0.18 - 

w Valve orifice area gradient 22.6e-3 m2/m 

Kv Valve spool position gain 0.25e-3 m/V 

τv Valve response time 4.2e-3 s 

Pcr Valve critical pressure ratio 0.528 - 

LT Length of connecting pneumatic tubes 9 m 

D Inner diameter of connecting pneumatic tubes 2.184e-3 m 

Do Outer diameter of connecting pneumatic tubes 3.175e-3 m 

 

6.2.2 Results 

To validate simulation results, the performance of the controller based on the 

proposed nonlinear integral sliding surface is evaluated and compared against the one 

based on linear integral sliding surface. In this experimental analysis, the controller 

parameters are optimized online for the desired system response in an effort for 

improved tuning. The tuning process used for experiments is exactly similar to the one 

used earlier as described in Section 6.1 with an exception. It uses the algorithm-

controlled, logically-guided iterative runs of the actual physical system and not the 
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simulating model. Except for that, the process uses exactly the same optimization 

algorithm, bounds on controller parameters, objective function, and test signal. The 

details of the online tuning setup required for this algorithm-guided online tuning have 

been given earlier in Chapter 4. Piston position is kept fixed during the system’s 

iterative runs for online tuning. The optimized controller parameters obtained through 

online tuning are shown in Table 6.3. 

TABLE 6.3 BOUNDS ON CONTROLLER PARAMETERS AND THEIR ONLINE OPTIMIZED 

VALUES (EXPERIMENTS) 

Parameter Description Bounds Optimized 

Value 

Unit 

Minimum Maximum 

LISS 

G Robustness parameter 0 200 13.9063 N/s2 

λ  Controller bandwidth parameter 0 100 12.5394 rad/s 

𝜑 Boundary layer thickness 10 10 10 N/s 

NLISS 

G Robustness parameter 0 200 111.7921 N/s2 

λ Controller bandwidth parameter 0 100 64.4264 rad/s 

𝜑 Boundary layer thickness 10 10 10 N/s 

𝑐1 Design parameter for proposed 

nonlinear integral sliding surface 

0 500 497.7558 rad/s 

𝑐2 Design parameter for proposed 

nonlinear integral sliding surface 

0 40 39.704 N 

The system responses obtained in experiments under the controllers based on 

linear and proposed nonlinear integral sliding surfaces are shown in Figure 6.9. The 

system under the controller based on the linear integral sliding surface has a maximum 

overshoot of 25.65% with a settling time of 1.17s (5% criterion) in tracking a bipolar 

square pulse train of 20N amplitude at a rate of 30 pulses per minute. On the other hand, 

the system shows almost no overshoot with an average settling time of 0.29s (5% 

criterion) under the controller based on the proposed nonlinear integral sliding surface 

in tracking the same force trajectory. The average system rise times (90%) are almost 

identical in both cases with 0.28s under the controller based on linear integral sliding 
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surface and that of 0.27s under the one based on the proposed nonlinear integral sliding 

surface.  

 
Figure 6.9 Experimental results of actuating force control using (a) LISS and (b) NLISS 

The tracking errors in the system responses under the force controllers examined 

in this chapter are shown in Figure 6.10, which indicate that the system approaches a 

steady state with zero steady-state error in both cases. 

The control signals and valve spool displacements under the controllers based 

on linear and proposed nonlinear integral sliding surfaces are shown in Figures 6.11 and 

6.12, respectively. There are some spikes of +5V and -5V in control signal with the 

proposed nonlinear integral sliding surface. As discussed earlier in simulation studies, 
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these spikes occur when system requires large spool velocities to keep tracking the 

desired trajectory for instance on the reversal of the direction of system response. This 

also shows that the controller based on the proposed sliding surface can afford larger 

spool velocities for lower rise and settling times without producing any overshoot which 

is not possible with linear integral sliding surface. The plots of spool displacements 

show that under both controllers, the amplitudes of valve chattering are extremely 

attenuated.  

 

 
 

Figure 6.10 Tracking errors under (a) LISS and (b) NLISS (experiments) 
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 Figure 6.11 Control signals of (a) LISS and (b) NLISS (experiments) 

  
Figure 6.12 Valve spool displacements under (a) LISS and (b) NLISS (experiments) 
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transducers connected to the pneumatic cylinder using long transmission lines are 

compared against the actual cylinder pressures in Figure 6.13. As expected, the 
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the actual cylinder pressures. Figure 6.14 shows that the first order linear transfer 

function with time delay model of pneumatic tube determined using system 

identification for indirect measurements of cylinder pressures performs very well. It 

estimates the pressure measurements with reasonable accuracy and thus helps 

implement a high-performance force control on the actuator without using force sensor 

or direct pressure measurements.   

 

Figure 6.13 Cylinder pressures during force control under NLISS (experiments) 

 

Figure 6.14 Estimation of cylinder pressures by the approximate pneumatic tube model during 

force control under NLISS (experiments) 
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The -3dB bandwidth of the force-controlled pneumatic actuator with 9m long 

transmission lines under the controller with the proposed NLISS at optimized controller 

parameters is 2.85Hz. It has been measured by changing the frequency of the input 

sinusoid to the control system in the range of 1-3Hz with the increment of 0.05Hz and 

observing the amplitude of the output. Figure 6.15 shows the frequency response of the 

control system at 2.85Hz. 

 

Figure 6.15 Frequency response of the actuator at 2.85Hz under NLISS (experiments) 

All the results shown above have been taken in the case where the piston is fixed 

at one position. The performance of the controller based on the proposed nonlinear 

integral sliding surface needs to be evaluated as well in the case where the piston is 

changing its position. For this purpose, the piston is displaced as shown in Figure 6.16 

using an external human force during control operation while tracking a step input. This 

challenges the control system to maintain the steady state because of expansion and 

contraction of chamber volumes. The result shown in Figure 6.17 indicates that the 

performance of the controller based on the proposed sliding surface does not deteriorate 

in the case where the piston is changing its position and the system is able to maintain 

steady state despite changes in chamber volumes.   
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Figure 6.16 Change in piston position using external human force while tracking a step input 

under NLISS (experiments) 

 

Figure 6.17 Experimental results of actuating force control under NLISS in case of piston 

changing its position 

 

Figure 6.18 Control signal of NLISS for actuating force control in case of piston changing its 

position (experiments) 
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6.3 Summary 

The performances of controllers based on linear and proposed nonlinear integral 

sliding surfaces for a force controlled pneumatic actuator with long transmission lines 

and indirect pressure measurements were compared. Simulation and experimental 

results were presented. For an unbiased and effective comparison, the parameters of 

both the controllers were tuned for the desired system response using the proposed 

optimization algorithm driven tuning. The controller based on the proposed nonlinear 

integral sliding surface outperformed the one based on linear integral sliding surface. 

The controller based on the proposed nonlinear integral sliding surface successfully 

eliminated the overshoot in the transient response of the actuator without compromising 

controller bandwidth, rise, and settling times. 
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Conclusions 

Chapter 7  

Conclusions 

This thesis proposed and implemented a novel nonlinear integral sliding surface 

to design a full order sliding mode controller for a force-controlled pneumatic actuator 

with long transmission lines and indirect pressure measurements. The proposed sliding 

surface did not have a reaching phase in case of initial error and even multiple steps in 

the desired trajectory. Therefore, the robustness against matched uncertainties was 

guaranteed throughout the system response. The proposed sliding surface enabled the 

sliding mode controller to offer a variable damping during the system response. The 

variable damping successfully avoided the trade-off between overshoot and rise and 

settling times, which otherwise always existed in the presence of a linear sliding 

surface. The controller exploited this feature to eliminate the overshoot in the response 

of the actuator without compromising rise and settling times. The stability analysis of 

the force controller built upon the proposed sliding surface showed that the controller 

was asymptotically stable if a condition on the robustness parameter of the controller 

was satisfied. The performances of the force controllers based on linear and proposed 

nonlinear integral sliding surfaces were examined on a purpose-built experimental setup 

consisting of an MRI-compatible pneumatic gripper with 9m long transmission lines 

between valve and cylinder and distant pressure transducers. The gripper was also 
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subjected to an uncertain human force. For performance evaluation, bipolar square 

pulses were used as test signals as they subject the system to large initial error and 

discontinuities in the desired trajectory. The controller with the proposed sliding surface 

outperformed the one having a linear integral sliding surface in terms of the transient 

response of the actuator. The superior performance rendered by the controller with the 

proposed sliding surface justified its use in developing a sliding mode controller for a 

high-performance force-controlled pneumatic actuator with long transmission lines and 

indirect pressure measurements. The approximate linear transfer function with time 

delay model of the 9m long pneumatic tube provided a reasonable estimation of 

chamber pressures for feedback and thus provided a solution to implement sliding mode 

force control on pneumatic actuators in MRI-environment without using MRI-

compatible force sensor and pressure transducers. This feature can be exploited for the 

cost-effective and time-efficient development of MRI-compatible force control 

applications.  

The thesis also presented a novel globalized multimodal optimization algorithm 

and applied it for model-based offline and model-free online tuning of controller 

parameters. The algorithm had improved globalization and lower numerical cost in 

solving multimodal optimization problems in comparison to global population-based 

and other globalized local search algorithms. When tested on 10 complex multimodal 

optimization benchmarks, the algorithm achieved a global minimum in all cases and 

outperformed GA with elitism, PSO with adaptive inertia, PSO with linearly decreasing 

weights, and Luersen’s GBNM with probabilistic restarts. The algorithm achieved 

globalization with exceedingly lower numerical cost in all cases.  These features made 
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algorithm an excellent choice for time-efficient tuning of controller parameters, which 

is also a multimodal optimization problem in nature.  

The effectiveness of the proposed algorithm for model-based offline and model-

free online tuning was examined by applying it to a servo pneumatic position control 

application with performance reported earlier after rigorous manual tuning using trial-

and-error. The model-based offline tuning based on the proposed algorithm improved 

the performance by up to 42% which improved further by up to 21% with model-free 

online tuning using the same algorithm. The performance improvement was obtained 

without any human effort for tuning in as little as 50s for model-based offline tuning 

and 4h for model-free online tuning. The thesis, therefore, suggested that model-based 

offline tuning based on the proposed algorithm presented a favorable option for precise 

tuning where a sufficiently adequate system model was available or system iterative 

runs were time-consuming or expensive. Otherwise, the proposed algorithm-driven 

model-free online tuning should be opted for a time-efficient and improved tuning. The 

results also suggested that drawing conclusions on the capability of controllers on the 

basis of trial-and-error tuning despite expertise, greater effort and spending more time 

was inaccurate. Time-efficient, logically driven tuning methods provide a reliable 

platform for unbiased comparison of performances of control schemes under 

consideration. 

7.1 Research Contributions 

The contributions made by this research are: 
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 A novel nonlinear integral sliding surface has been proposed and implemented for a 

high-performance force-controlled pneumatic actuator with long transmission lines 

and indirect pressure measurements.  

 A novel globalized multimodal optimization algorithm, which has improved 

globalization and lower numerical cost in solving multimodal optimization 

problems, has been proposed. 

 The proposed optimization algorithm has been applied towards time-efficient 

model-based offline and model-free online precise tuning of controllers to draw 

conclusions on their capabilities. 

 An MRI-compatible test-rig, which can also be used for position control, impedance 

control, and admittance control applications in MRI environment, has been 

developed. 

 Offline and online tuning setups, which are extendible to other control applications, 

have been proposed.  

 A generalized MATLAB code of the proposed optimization algorithm has been 

developed for solving nth-dimensional optimization problems with single objective 

or aggregated multi-objective cost function.  

7.2 Future Work  

This research will lead to the future work, which includes but is not limited to 

the following:  
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 The performance of the force controller based on the proposed nonlinear integral 

sliding surface can be improved further by incorporating valve spool inertia in 

system dynamics and compensating for valve dead-zone.  

 A fMRI-compatible impedance control application can be built upon the proposed 

nonlinear integral sliding surface and the developed test rig for investigative studies.  

 The power grip is an important study tool for investigation of motor control with 

fMRI [Ehrsson, Fagergren, Jonsson, Westling, Johansson, & Forssberg, 2000; 

Ward, & Frackowiak, 2003; Floyer-Lea, & Matthews, 2004; Halder et al, 2007; 

Ward, Swayne, & Newton; 2008] and is especially useful in patients with motor 

disorders [Binkofski et al, 1998; Ward, Brown, Thompson, & Frackowiak, 2003a; 

Ward, Brown, Thompson, & Frackowiak, 2003b; Ward et al, 2007].  Motor control 

patients can be asked to trace a continuously changing target by adjusting their 

isometric grip force over a defined period of time under fMRI. The exercise can 

help investigate the neural signatures of demand task and feedback accuracy on grip 

force tracking [Sterr, Shen, Kranczioch, Szameitat, Hou, & Sorger, 2009]. The 

MRI-compatible force control application developed in this research can be used as 

a tool for such research studies.  The controlled stiffness levels during the tasks may 

help draw new correlations and relationships for human motor control studies in 

future.
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