
  
 

 

 

Development of a Finite Element Model for Calculating Concentration 

Dependent Interdiffusion Coefficient  

 
By 

 

Paul Oluwasegun Fase 
 

 

 

A thesis submitted to the Faculty of Graduate Studies of 

The University of Manitoba 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 
Department of Mechanical Engineering, 

University of Manitoba, Winnipeg 

Canada 

 

Copyright © 2022 by Paul Oluwasegun Fase 



 
 

 

 

ii   

Abstract 

 

Understanding the mechanism of microstructural changes caused by isothermal phase transformation 

reactions in materials plays a vital role in driving the development and effective performance of 

materials in elevated temperature applications. The kinetics of the phase changes in the microstructure 

of materials which affect their properties, are often diffusion controlled and a key parameter that is 

used in the prediction and analysis of diffusion effects is concentration-dependent interdiffusion 

coefficient, 𝐷(𝐶). Existing standard analytical methods of extracting 𝐷(𝐶) from experimental 

concentration profiles such as the Boltzmann-Matano, Sauer-Freise, Wagner, and Hall methods have 

some flaws, which is a major concern for accuracy and reliability. One of the limitations common to 

these traditional analytical methods is the assumption on which they are formulated which states that 

the initial composition profile is a step-function in space. In this study, a new numerical diffusion 

model, which eliminates non - trivial common assumptions in the literature that degrade accuracy, 

including the assumption of initial composition profile being a step-function in space, is developed. 

The new model uses finite element and Galerkin weighted residual methods combined with the Dufort 

Frankel/Leap Frog explicit scheme and one-dimensional Murray-Landau transformation. The model 

is successfully validated with previously reported experimental data in the literature and the results 

obtained show excellent agreement between the model predicted results and experimental data, which 

confirms the reliability of the new model. The model, which incorporates variable diffusion 

coefficients and coupled with a recently reported forward simulation technique, can be used to extract 

the 𝐷(𝐶) operative between any two isothermal diffusion times, which is crucial for studying the effect 

of time on 𝐷(𝐶). This is an achievement that is not possible by conventional analytical methods such 

as the Boltzmann-Matano, Sauer-Freise, Wagner, and Hall methods. 
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Chapter 1: Introduction 

1.1   Background 

The need for a proper understanding and accurate analysis of the mechanism of the microstructural 

changes caused by isothermal phase transformation reactions in materials cannot be overemphasized 

as there is a great need to further develop and optimize the performance of effective materials for 

elevated temperature applications. The kinetics of the phase changes in the microstructure of materials 

which affects their properties are controlled and influenced through atomic diffusion. Diffusion is the 

shifting of atoms and molecules from an initial position to a new position in a material based on the 

vibrational energy of the atoms. This process is known to play a key role in a number of materials and 

metallurgical processing methods such as diffusion coating, bonding, sintering, solidification, casting, 

homogenization, precipitation, welding, joining, surface modification and creep deformation [1]. In 

room temperature, diffusion occurs at a much slower rate of little or no significance in most solids but 

as the temperature of the system increases, this process occurs at a more rapid rate in most 

metallurgical processes [2]. In this regard, diffusion-controlled processes become very important when 

materials are exposed to elevated temperatures [3]. A well-known application of the atomic 

mechanism of diffusion in crystalline materials is diffusion bonding, a method used to join materials 

together.  

It has been reported in the literature that the difference in atomic size of the solute and solvent has a 

significant effect on the microstructure and mechanical properties of alloys [4]. The relative difference 

between the atomic size of the solute and solvent brings about changes in the lattice parameters [3]. 

Studies have experimentally observed that the diffusion coefficient depends on the concentration of 

the diffusing substance, especially in the interdiffusion behaviour in metals [1]. Experimental studies 
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in the existing literatures have established that 𝐷(𝐶) is very crucial in the modelling, simulation, and 

analysis of the effects of diffusion processes. 

Ghanbar et al. [5] and Ghanbar [6] developed a numerical diffusion model to analyze the transient 

liquid phase diffusion bonding process and used the model to study the influence of variable 

interdiffusion coefficients on the kinetics of isothermal solidification in both planar and non- planar 

geometric systems. The results of their work showed that when the interdiffusion coefficient varies 

with solute concentration, there is a significant change in the isothermal solidification kinetics of the 

diffusion process.  

Jin et al. [7] investigated the effect of concentration on the kinetics of thermal diffusion in concentrated 

solid-solution alloys. Their results also show that concentration has a strong influence on diffusion 

behaviour which is described by a crucial parameter; namely, the 𝐷(𝐶).  

Furthermore, non-uniform solute concentration gradients induced by the interdiffusion between atoms 

of the host material cause variability in the lattice parameters, thereby leading to atomic strain within 

the crystal framework of the material [3, 8-9]. Residual atomic strain within the crystal framework of 

the material has been found to influence the interdiffusion coefficient, an important kinetic parameter 

that is indispensable in simulations, metallurgical based designs, and development of material 

processes [10-11]. It has also been recognized that diffusion induced stress/strain (DIS) evolves during 

atomic diffusion [3, 8-10]. Experiments performed and reported by a number of studies have 

established the presence and influence of  DIS on host materials during diffusion heat treatment and 

that, the generation and relaxation of stress can take place at the same time [3, 8-11]. One important 

factor that is known to control DIS is the solute concentration gradient [12] which can change with 

diffusion time. Recently, Olaye and Ojo [13] found that the time variation of a solute concentration 
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gradient is an essential parameter that can significantly change the 𝐷(𝐶). However, the possible and 

prevailing effects of  DIS on 𝐷(𝐶)𝑠 extracted in binary alloy systems have been largely ignored in the 

existing literature. 

 

1.2    Research Motivation 

 
It is known that existing analytical methods such as the Boltzmann Matano (BM), Sauer-Freise (SF), 

Hall, and Wagner methods, which use a single experimental concentration profile cannot be used to 

extract 𝐷(𝐶) when the effect of the diffusion time is being considered. When the diffusion time effect 

occurs, two experimental concentration profiles (initial and final concentration profiles) are required 

to calculate the 𝐷(𝐶). Unfortunately, existing analytical methods which use a single concentration 

profile for calculating 𝐷(𝐶) are not suitable for this context. These conventional analytical methods 

are developed based on the assumption that the initial concentration profile is a step function in space. 

A numerical inverse method needs to be applied to overcome the limitations of these conventional 

methods. To use the numerical inverse approach, an appropriate and a reliable numerical diffusion 

model for simulating the diffusion process is required. A large number of the existing numerical 

methods applied such as finite difference spatial discretization, use implicit schemes to solve partial 

differential equations in these diffusion models. However, it is well known that explicit schemes are 

more accurate and more reliable than implicit schemes.  

A review of the literature shows finite element method (FEM) are more robust in terms of application 

although more mathematically involved in terms of model formulation and they can be used with an 

appropriate scheme to overcome the stability issues of explicit approach. In a bid to employ the 
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numerical inverse method to accurately extract 𝐷(𝐶), it may be a good idea to explore the advantages 

of finite element based numerical diffusion models that utilize the advantages of explicit schemes over 

existing finite difference-based models although explicit schemes are unstable at small time steps. 

Fortunately, although more mathematically involved, Dufort Frankel/Leap Frog schemes can be used 

to enhance the stability of explicit schemes. 

Therefore, the purpose of this study is to develop a finite element-based diffusion model with variable 

diffusion coefficients and demonstrate its application in the extraction of 𝐷(𝐶) that is operative 

between two isothermal diffusion times, which is crucial to studying the effect of time on  𝐷(𝐶). The 

target is to use the model in the forward simulation method (FSM), an efficient numerical inverse 

technique that overcomes the limitations of existing conventional analytical methods such as the BM, 

SF, Hall, and Wagner methods.  

 

1.3    Objective of the Research 

The key objective of this thesis is to develop a new numerical diffusion model by combining a FEM 

with Dufort Frankel/Leap Frog explicit schemes and couple the model with the FSM to extract the 

𝐷(𝐶) that is operative in between two isothermal diffusion times, which is crucial to studying the 

effect of time on 𝐷(𝐶). 

 

1.4     Major Work done and key findings 
 
A newly developed numerical diffusion model which is formulated by using finite element and 

Galerkin weighted residual methods in which a Dufort Frankel/Leap Frog explicit scheme combined 
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with a one - dimensional Murray-Landau transformation that uses flexible spatial discretization is 

developed. This new model effectively eliminates non- trivial common assumptions in the existing 

literature that inhibit accurate results. The numerical diffusion model in this study, which incorporates 

various diffusion parameters is coupled with a recently published FSM, to evaluate the concentration 

dependency of interdiffusion coefficients between two experimental concentration profiles in a binary 

alloy system with a planar geometry. The new model is successfully validated with previously reported 

experimental data in the literature. The results obtained from the implementation of data of previous 

studies show that the final simulated concentration profile predicted using the 𝐷(𝐶) calculated with 

the new numerical diffusion model matches the experimental final concentration profile. The model 

results show the reliability of the developed numerical diffusion model. The key achievements in this 

research are as follows: 

➢ Existing numerical diffusion models in the literature include finite difference discretization 

which is mostly based on implicit schemes. The scientific innovations of both finite element 

and Galerkin weighted residual methods are thoughtfully explored. The weighted residual 

obtained from the Landau transformed diffusion equation is analytically integrated over the 

functional domains of interest. The first and second element equations are obtained and 

assembled to develop the new model.  

➢ The result of the von Neumann stability analysis carried out provides justification for the use 

of the Dufort Frankel/Leap Frog explicit schemes over the common/classical Euler scheme. 

The Dufort Frankel/Leap Frog explicit schemes show good stability when compared with the 

classical explicit scheme at a high diffusion factor in stationary boundary conditions. 
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➢ The results from the newly developed finite element model when combined with a forward 

simulation analysis show accurate and reliable extraction of the 𝐷(𝐶) that is operative between 

any two isothermal diffusion times, which is crucial for studying the effect of time on 𝐷(𝐶). 

➢ The validity and reliability of the new model is confirmed by the fact that the simulated 

concentration profile from the calculated 𝐷(𝐶) agrees with the experimental final 

concentration profile. Therefore, the new finite element model which is not yet published in 

the literature can be reliably used to calculate the 𝐷(𝐶) operative between any two 

experimental isothermal diffusion times. This is an achievement that is not possible by 

conventional analytical methods such as the Boltzmann-Matano, Sauer-Freise, Wagner, and 

Hall methods.  

 

1.5    Structure of the Thesis  
 
This thesis contains six chapters. They are organized as follows:  

➢ Chapter 1 provides comprehensive background information, objectives of the research study, 

research purpose, and significance of this research work.  

➢ Chapter 2 is a literature review with studies that focus on the importance of diffusion in material 

engineering, influence of 𝐷(𝐶) in modelling diffusion problems, analysis of diffusion effects, 

analytical methods for extraction of interdiffusion coefficients from experimental profiles, and 

their limitations, existing time schemes and FSM.  

➢ Chapter 3 discusses the mathematical formulations, model development of the newly developed 

finite element based Dufort Frankel/Leap Frog explicit scheme numerical diffusion model used 

with forward simulation techniques in the extraction of 𝐷(𝐶) from the experimental concentration 

profiles of diffusion coupled plates. 
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➢ Chapter 4 describes the validation of the model, presentation, and discussion of the results of the 

numerical simulations on extraction of 𝐷(𝐶) of binary alloy systems. 

➢ Chapter 5 contains the summary and conclusions of the study.  

➢ Chapter 6 provides the recommendations for future work.  
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Chapter 2:    Literature Review 

2.1.  Conventional analytical methods of extracting concentration  

dependent interdiffusion coefficients 

The overall accuracy and reliability of the effects from the analyses and models of diffusion depend 

on how the diffusion coefficient (constant or variable) is modeled. A review of studies in the existing 

literature shows that generally, the diffusion coefficient, an essential parameter, greatly varies with 

solute concentration [5, 14]. The concentration dependency of the diffusion coefficient takes different 

forms. They include linear, quadratic, polynomial or even an exponential function [2]. 

A number of existing standard analytical methods for extracting 𝐷(𝐶) from experimental 

concentration profiles can be found in the literature. These methods have some shortcomings which 

are major concerns for reliable evaluations and determination of accurate diffusivities. A major 

limitation common to these traditional analytical methods is the assumption that there is no initial 

distribution of solute in the host material before the beginning of diffusion heat treatment. This 

limitation implies that these methods are error bound when applied to binary alloy systems with the 

significant presence of initial non uniform distribution of the solute, most especially in diffusion 

material processes that involves multiple steps of diffusion-controlled heat treatments. 
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Figure 2.1: Schematic diagram of eutectic phase in binary alloy system [6] 
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2.1.1    Boltzmann – Matano analysis 

The BM method is a widely known method used to extract concentration dependent inter-diffusivity 

from experimental concentration profiles acquired from diffusion couples [15]. The mathematical 

techniques of this method are formulated based on Fick’s second law of diffusion that governs planar 

geometric systems.  

Figure 2.1 describes the phase relationship of a typical binary eutectic alloy. 

The governing equation describing Fick’s second law of diffusion is: 

𝝏𝑪(𝒓,𝒕)

𝝏𝒕
=

𝝏

𝝏𝒓
[𝑫(𝑪)

𝝏𝑪(𝒓,𝒕)

𝝏𝒓
]                                                                                             Equation 1 

where C denotes the concentration at an arbitrary distance coordinate (𝒓) ,  𝒕 is the diffusion time and 

𝑫 is the material diffusion coefficient. The mathematical analysis of this method is outlined below. 

The Boltzmann transformation  is  used to convert Equation 1 (Fick’s second law of diffusion) into a 

solvable ordinary differential equation. The equation comprises the introduction of a variable 𝜼 which 

is a function of position 𝒓 and time 𝒕, i.e., 𝜼 = 𝜼(𝒓, 𝒕). 

𝜼 =
𝒓

𝟐√𝒕
                                                                                                                        Equation 2 

The partial derivative functions of 𝜼 are:  

𝝏𝜼

𝝏𝒕
= −

𝜼

𝟐𝒕
                                                                                                                      Equation 3 

𝝏𝜼

𝝏𝒓
= −

𝟏

𝟐√𝒕
                                                                                                                    Equation 4 
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Deriving expressions for 
𝝏𝑪

𝝏𝒕
 and 

𝝏𝑪

𝝏𝒓
 in terms of  𝜼 yields the followings: 

𝝏𝑪

𝝏𝒕
=

𝝏𝑪

𝝏𝜼 

𝝏𝜼 

𝝏𝒕
= −

𝜼

𝟐𝒕

𝝏𝑪

𝝏𝜼 
                                                                                                   Equation 5 

𝝏𝑪

𝝏𝒓
=

𝝏𝑪

𝝏𝜼 

𝝏𝜼 

𝝏𝒓
= −

𝟏

𝟐√𝒕

𝝏𝑪

𝝏𝜼 
                                                                               Equation 6 

Substituting these expressions into Equation 1 gives the following ordinary differential equation: 

−𝜼
𝒅𝑪

𝒅𝜼 
=

𝟏

𝟐

𝒅

𝒅𝜼 
[𝑫(𝑪)

𝒅𝑪

𝒅𝜼 
]                                                                                             Equation 7 

𝑫(𝑪) can be evaluated by integrating both sides of Equation 6. The diffusion coefficient at a known 

concentration (𝑪∗) is derived as follows: 

𝑫(𝑪∗) =  −𝟐𝜼
𝒅𝜼

𝒅𝑪 
∫ 𝜼𝒅𝑪
𝑪∗

𝑪𝑳
= −

𝟏

𝟐𝒕

𝒅𝒓

𝒅𝑪 
∫ (𝒓 − 𝒓𝒎)𝒅𝑪
𝑪∗

𝑪𝑳
                                             Equation 8 

The position of the Matano interface is calculated as: 

𝒓𝒎 =
𝟏

𝑪𝑹−𝑪𝑳
∫ 𝒓𝒅𝑪
𝑪𝑹

𝑪𝑳
                                                                                                  Equation 9 

where 𝑪𝑳 and 𝑪𝑹 are the concentration values at the utmost boundaries of the diffusion couple.  

The two major sources of errors when applying the BM method are: 

(i) The numerical calculation of the position of the Matano interface. An inaccurate value of 

the position of the Matano interface can lead to significant variation from the expected 

accurate interdiffusion coefficient [15]. 
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(ii) An unreliable interdiffusion coefficient is due to unpredictability in concentration gradient 

values close to the boundary regions [16]. The concentration gradient is an important 

parameter in the evaluation of interdiffusion coefficients. 

 

2.1.2    Sauer– Freise method 

In a bid to address the inherent error associated with calculating the position of the Matano interface 

by using the BM method, the SF method was introduced which does not require calculating the 

position of the Matano interface [17]. Thus, the SF method is a better way of evaluating interdiffusion 

coefficients. Sauer and Freise [17] established a concentration ratio 𝒚 which is given below: 

𝒚 =  
𝐶−𝑪𝑳

𝑪𝑹− 𝑪𝑳
                                                                                                                                                             Equation 10       

Where 𝐶 is the concentration profile at radial position 𝑟, 𝑪𝑹 𝑎𝑛𝑑 𝑪𝑳 are the concentration value 

at the right and left end of the boundary respectively.   

𝑫(𝑪∗) =  −
1

2𝑡

1

(
𝑑𝐶

𝑑𝑟
)
[(𝟏 − 𝒚∗) ∫ 𝑦𝑑𝑟 +

𝒓∗

−∞
𝒚∗ ∫ (𝟏 − 𝒚)𝑑𝑟

+∞

𝒓∗
]                                    Equation 11    

 

2.1.3    Wagner method 

Even though the SF method addresses the error from numerically calculating the position of the 

Matano interface, the error of uncertainty of the interdiffusion coefficients close to the boundary 
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regions still persists. There is a significant error in the evaluation of interdiffusion coefficients because 

the values of the concentration gradient and the integral area are very small and unpredictable. 

The Wagner method is thus used in the evaluation of interdiffusion coefficients with various changes  

in the molar volume varies. [18]: 

𝐶𝑚 =
𝐶

𝑉𝑚
                                                                                                                      Equation 12 

𝑫(𝑪∗) = −
𝑉𝑚(𝐶

∗)

2𝑡

1

(
𝑑𝐶

𝑑𝑟
)|𝑁𝑚

∗
[(1 − 𝑦𝑚

∗ ) ∫
𝑦𝑚

𝑉𝑚(𝐶
∗)
𝑑𝑟 + 𝑦𝑚

∗ ∫
(1−𝑦𝑚)

𝑉𝑚(𝐶
∗)
𝑑𝑟

+∞

𝑟∗
𝑟∗

−∞
]              Equation 13                                                                

where  𝑦𝑚
∗   is the concentration ratio expressed as: 

𝑦𝑚
∗ =

𝐶𝑚− 𝐶𝑚𝐿

𝐶𝑚𝑅− 𝐶𝑚𝐿
                                                                                                          Equation 14 

where 𝐶𝑚𝐿 and 𝐶𝑚𝑅 are the concentration values at the left and right boundaries respectively. 

Even though the Wagner method [16] takes into consideration the influence of change in molar 

volume, the error of uncertainty and relatively large error in diffusivity at locations close to the 

boundaries still exist. This is the result of difficulty in evaluating the integral area and predicting the 

concentration gradient at regions close to the extreme ends of the diffusion couple. 

 

2.1.4    Hall method 

The Hall methods expresses the concentration gradient in terms of a Gaussian probability distribution 

[19] which facilitates its applicability for an accurate evaluation of impurity diffusion coefficients at 

regions close to the extreme ends of the diffusion couple. A major requirement of the application of 
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the Hall method is that a side of the diffusion couple must have a zero-composition value [16, 19]. 

The concentration gradients are very difficult to evaluate because the concentrations are nearly 

constant at the terminal ends of the diffusion profiles, thus making the results from the BM, SF 

methods unreliable. Errors associated with low concentration ends of the diffusion couple are however 

minimized by using the Hall method [16, 19]. 

The analysis for the Hall method is outlined below: 

𝐶−𝐶𝐿

𝐶𝑅− 𝐶𝐿
=

1

2
(1 + 𝑒𝑟𝑓(𝑉))                                                                                                                                Equation 15 

In Equation 15, 𝑉 represents the concentration dependency parameter. 

From the analysis of the probability plots of V against ∅ which is used to calculate the constants 𝐺 

and 𝐿, it is commonly assumed that the low concentration end of the profile behaves like a linear 

function. 

𝑉 = 𝐺∅ + 𝐿                                                                                                                 Equation 16 

∅ =  
𝑟− 𝑟𝑚

√𝑡
                                                                                                                    Equation 17 

where G is the gradient of the piece-wise linear fit, L, which represents the intercept on the V axis, 𝑟 

is the arbitrary distance coordinate, and 𝑟𝑚 is the position of the Matano interface. 

For the left extreme boundary of the diffusion couple, 

𝑫(𝑪∗) =
1

4𝐺1
(1 + 

2𝐿1√𝜋

𝐺1
2 exp (𝑉2) × 𝑦∗)                                                                   Equation 18       

For the right extreme boundary of the diffusion couple, 
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𝑫(𝑪∗) =
1

4𝐺2
(1 + 

2𝐿2√𝜋

𝐺2
2 exp (𝑉2) × (1 − 𝑦∗))                                                       Equation 19                                  

A major limitation of the Hall method is that high strength of concentration dependency of 

interdiffusion coefficient degrades the accuracy of the result. This is because the numerical constants 

G and L depend strongly on the range of concentration in the linear fit [19]. 
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Figure 2.2:  Discretization stencil for implicit time 

 

 

Figure 2.3:  2-level stencil of classical explicit Euler time discretization 
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2.2    Implicit and classical explicit schemes 

Implicit schemes are numerical time discretization schemes whereby the dependent variables are defined 

by a set of equations that require the application of iterative techniques (such as tridiagonal matrix 

algorithms) to obtain the solution. Implicit solution methods are very complex to program because they 

require more computational effort and skill. One of the major advantages however is the use of large 

time step sizes and unconditional stability [20]. Most parabolic problems with moving boundaries 

require unconditionally stable schemes to develop their numerical solution. Considering the high 

computational time as a result of the number of iterations involved, determining the solution of diffusion 

equations by using implicit schemes is quite demanding due to the number of iterations involved to 

obtain an accurate solution. For diffusion situations that involve modelling of variable diffusion 

coefficients, the use of an implicit scheme as described in figure 2.2, some non-trivial assumptions and 

convergence of the solution depends greatly on the initial conditions used. 

Explicit schemes calculate the state of a system at a future time from that described at the current time. 

Unlike the implicit scheme, iteratives are not necessary since there are no sets of resulting algebraic 

equations. When the diffusion coefficient is modelled as a function of the concentration parameter, 

accuracy issues arise with implicit based models [20], while the advantage of large time steps in implicit 

schemes becomes a major disadvantage in classical (two-level or Euler-type schemes) explicit schemes 

(as illustrated in figure 2.3) aside from high diffusion coefficient problem. The need for a small space 

grid size of classical explicit schemes is another disadvantage in terms of the high cost of computation 

and lower computational efficiency. A fully explicit based solid-solid diffusion model developed by 

Pabi [21] considers 𝐷(𝐶). However, this model does not conserve solute, a major criterion for 

determining the accuracy of a numerical solution to diffusion problems. 
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Figure 2.4:  3-level stencil of explicit time discretization in Dufort Frankel 

 

 

 

 



 
 

 

 

19   

2.3    Dufort Frankel/Leap Frog explicit schemes 

Finite difference time discretization can be classified into two categories. They include the Crank-

Nicolson scheme and Euler schemes [22]. The conservation laws play a crucial role in finite difference 

approximations. The Crank-Nicolson scheme is an implicit scheme and can satisfy these laws but is 

computationally costly [22-24]. They are not accurate when the diffusion coefficient is dependent on 

concentration. The classical Euler’s scheme as described in figure 2.3, is conditionally stable and unlike 

the Crank-Nicolson scheme, it does not satisfy the law of conservation. Dufort and Frankel [22] 

developed an explicit scheme that combines the strength of the Crank-Nicolson implicit and Euler’s 

explicit schemes. This unique explicit scheme emerged after a slight adjustment of the unstable Leap-

Frog explicit scheme. Figure 2.4 describes the 3-level stencil of explicit time discretization developed 

by Dufort and Frankel. The Dufort Frankel explicit scheme satisfies the law of conservation, an 

important criterion for obtaining a reliable numerical solution and can be applied to partial differential 

equations that involve variable diffusion coefficients [22]. 

It has been reported that the requirement for consistency for a Dufort Frankel scheme is that the ratio of 

time step to space step approaches zero [22, 25]. This condition is required for the numerical solution 

of partial differential equations that govern the physical phenomena of heat or solute diffusion, 

regardless of existing spatial discretization such as the finite difference and finite element methods. A 

review of the existing literature also shows that the Dufort Frankel scheme can be applied to both fixed 

boundary and advective-diffusive equations [26]. Olaye et al. [27] conducted a stability and consistency 

analysis on the Dufort Frankel/Leap Frog explicit scheme for a diffusion-controlled interphase boundary 

problem by using a finite difference scheme. They showed that the resulting solution is more stable. 
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High computational accuracy is also attained in comparison to the classical explicit model [27]. The 

authors avoid non-trivial assumptions of existing implicit models. 

 

2.4.    Existing numerical methods for modelling diffusion problems 

The Diffusion equations are major examples of second order parabolic partial differential equations 

which describe the macroscopic behaviour of microparticles. Analytical solutions to these equations are 

only obtainable under the same specific conditions and imposed assumptions [28]. These assumptions 

tend to degrade the accuracy of the expected solutions. An important parameter in these types of 

equations is the diffusion coefficient which is said to vary with some material factors. To investigate the 

influence of variable diffusion coefficients, numerical solutions are more dependable, most especially 

when accuracy is highly essential [29 - 31]. A number of different numerical models and several 

modelling approaches have been developed for diffusion problems. There is the awareness that 

numerical solutions require more careful calculations for dependable and accurate results when 

compared to analytical solutions which are obtained under certain non-trivial assumptions made. They 

provide the best techniques to evaluate the concentration values for each spatial position at every time 

specified [2]. Some of the diffusion problems where numerical approaches have been employed include 

transient liquid phase, temperature gradient transient liquid phase bonding systems and solid-state 

transformations [20, 32 - 38]. 

Different numerical techniques are used in the spatial discretization of a partial differential equation 

model. They include the finite difference method (FDM), different variants of the FEM, and the 

boundary element method (BEM) [29 - 31]. Diffusion problems have also been solved with models 
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based on fixed-grid spatial discretization which is coupled with the sharp tracking of interface 

migration. Furthermore, in recent times, literature reviews on numerical model development show that 

some researchers [36, 38] have developed unique efficient models which are not based on non-trivial 

simplification and assumptions considered by previous researchers, but by finite difference schemes. 

Fick’s law of diffusion provides a fundamental understanding of diffusion in solid, liquid, and gaseous 

matter. Fick’s first law of diffusion describes the relationship between diffusion flux and concentration 

gradient. 

𝐽 = −𝐷
𝑑𝐶

𝑑𝑟
                                                                                                                  Equation 20 

where 𝐽 is the diffusion flux, 𝐷 is the diffusion coefficient, 𝐶 is the concentration and 𝑟 is the 

position. 

Fick’s second law of diffusion offers an elucidative explanation on how diffusion induces change in 

concentration with time. 

𝜕𝐶

𝜕𝑡
+
𝜕𝐽

𝜕𝑟
= 0                                                                                                                Equation 21 

Substituting the expression for 𝐽 in Fick’s first law, 

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑟
(𝐷

𝜕𝐶

𝜕𝑟
)                                                                                                           Equation 22 

In materials science and diffusion processes, mathematical models that represent the underlying 

mechanism are governed by a system of partial differential equations with moving boundary 

conditions. They are known as the moving boundary problems or Stefan problems. 
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          2.4.1   Solid-solid diffusion analysis 

The concept of variable spatial discretization of the interface position which coincides with a 

discretization point without imposing some kind of restriction on its motion was first proposed in by 

Tanzilli and Heckel [37] in modelling solid-state phase transformation.  

Kajihara and Kikuchi [38] investigated the behaviour of solid 𝛾/ 𝛼 / 𝛾 diffusion couples in an 𝐹𝑒 −

𝐶𝑟 − 𝑁𝑖 system. They utilized a numerical technique, that is, a finite difference method, to calculate 

the position of a moving interface in a two-phase ternary system. Kajihara and Kikuchi [38] used the 

Crank Nicolson implicit scheme to solve finite difference equations. The model is used to analyze the 

dissolution of the ∝ phase in 𝛾/ 𝛼 / 𝛾 diffusion couples of an 𝐹𝑒 − 𝐶𝑟 − 𝑁𝑖 system. The result of 

their model is compared with experimentally obtained interdiffusion coefficients from the Duh and 

Dayananda [39] who had established the concentration dependency of interdiffusion coefficients. 

However, in the course of their numerical computations, Duh and Dayananda [39] assumed that the 

interdiffusion coefficients in 𝛼 and 𝛾 phases are independent of concentration. This is contrary to the 

well-established finding that interdiffusion coefficients are concentration dependent. 

Pabi [21] developed a fully explicit finite difference numerical scheme for diffusion-controlled 

dissolution in planar finite multilayer couples by using iso-concentration contour migration (ICCM) 

in a natural space coordinate system. In this technique, the numerical model modifies the governing 

equations to express the independence of concentration and time variable parameters. The model uses 

fully explicit time discretization thereby restricting the number of time steps that can be used to a 

certain limit. This restriction is on account of the stability challenge that is generally identified with 

fully explicit schemes. However, Pabi [21] stated that a comprehensive analysis on the stability criteria 

has not been carried out. Pabi [21] also stated that the aim of the model development is to effectively 
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handle the situation of concentration dependent diffusion parameters in a bid to extend the work of 

Tanzili and Heckel [37] which only considers constant diffusion coefficients. The model is applied to 

an Ag/Cu alloy system and ∝ −𝛽 brass couple system. The work of  Pabi [21] shows that the technique 

tends to track down the position of known iso-concentration lines after different time intervals. The 

result of the ICCM-based model shows good agreement between the experimental work and the 

modelled results. The result of the modelling compares well with the proposed model of Tanzili and 

Heckel [37]. 

In the course of extracting interdiffusion coefficient, Olaye and Ojo [40] developed a fully explicit 

finite difference scheme which incorporates the Leap Frog/Dufort Frankel stability tool. They 

combined this model with FSM to investigate the time variation of 𝐷(𝐶) in a Cu-Ni solid-solid binary 

system. The result of their study shows that time variation of concentration dependence of 

interdiffusion coefficient cannot be attributed to grain growth and residual stress. It was also 

demonstrated that when 𝐷(𝐶) changes with diffusion time, conventional analytical methods of 

extracting interdiffusion coefficient are unreliable. 

 

        2.4.2   Solid-liquid diffusion analysis 

TLP bonding is a new process developed to address the problems and complexities of joining difficult-

to-weld materials that arise from commonly used brazing techniques. In modelling TLP bonding 

systems, the tracking, and modelling of the migration of solid/liquid moving boundary interface have 

proven to be very challenging as the difficulties are associated with coordinate transformation and 

adjusting to the new positions of the moving interface tends to reduce the accuracy of the solutions 
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[20]. In other words, calculations that involve interface migration are the major source of inherent 

errors and inaccuracies in TLP bonding systems. However, several approaches have been 

recommended and developed by different researchers [20, 36 - 38] in the bid to provide numerical 

solutions to moving boundary problems. 

Crank [2] classified these approaches into three major categories. They include: the front tracking 

method, front fixing method, and fixed domain method. In the front- tracking method, the position of 

the front of the moving boundary is calculated for each time step. The spatial discretization uses either 

a fixed or moving grid method. In the fixed grid method, the movement of the moving boundary is 

tracked while in the moving grid method, a mesh which changes in a way influenced by the movement 

of the interface is used [2]. 

A TLP bonding numerical diffusion model developed by Shinmura et al. [32], showed that the 

interface position is tracked in a classical explicit approach to forecast and evaluate the migration. 

Their model employed a classical explicit scheme in the discretization of the diffusion equations. 

In another review on existing models, Zhou and North [33] formulated a model that employs a semi-

implicit method. In their model, the general governing diffusion equations are solved with an implicit 

scheme while the equation that describes the moving interface is solved explicitly. In addition to this, 

they also applied a front tracking technique because it is capable of tracking the movement of the 

interface between successive grid points [33]. However, their method is limited by the size of the time 

step. In a bid to solve this problem, the attempt to reduce the time steps tends to increase the 

computational effort and time. 

Illingworth and Golosnoy [20] succeeded in developing a more accurate numerical diffusion model 

for TLP bonding system. They applied specially formulated finite difference schemes (based on 
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control volume approach) which used a finite volume technique and integration approach on the 

divergent configuration of the governing equations that describe the concentration functions in both 

phases for  one-dimensional geometric systems. The specially devised numerical scheme is quite 

different from the widely known direct finite difference schemes with first and second derivatives 

functions derived based on Taylor’s theorem. Furthermore, Murray-Landau spatial transformation was 

employed to change the coordinate system in the bid to ensure that solute conservation criterion is 

met, thereby boosting the efficiency, accuracy, and reliability of the model. This transformation 

technique helps to reproduce the model problem into divergent formulations thereby enabling effective 

utilization of the strength of finite difference discretization based on control volume concept as 

employed by these authors. The fully implicit scheme is coupled with up/down wind approximations 

for intermediate concentration profiles instead of second order center difference schemes which 

generate oscillating solutions [20]. However, the interdiffusion coefficient parameter was assumed to 

be constant throughout the application of their model. Though, the result of this modelling method 

approximates the experimental findings but does not fully replicate an experimental proven diffusion 

process where the interdiffusion coefficient is said to vary with factors such as solute concentration, 

time, and temperature, which  makes the interdiffusion coefficient a material varying parameter.  

Similar to the model in Illingworth and Golosnoy [20], Ghanbar et al. [5] and Ghanbar [6] developed 

a model by using finite difference numerical schemes that apply a finite volume technique to integrate 

the differential equations over one spacestep and one timestep. This model incorporates the variable 

diffusion coefficient and conservation of solute by using an explicit-fully implicit hybrid discretization 

scheme in both the planar and non-planar geometric systems. This model is used to study TLP bonding 
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kinetics and the influence of geometry on the deviation of isothermal solidification kinetics from 

parabolic behaviour.  

In modelling the effect and influence of grain boundaries on the execution time required for complete 

diffusion-induced isothermal solidification, Ghoneim et al. [41] developed a fully implicit two-

dimensional moving-mesh finite element model with solute conservation considered as a criterion. 

This model also avoids assumptions of non-trivial symmetry which are found in numerical models in 

the existing literature. This model is used by Ghoneim et al. [41] to track diffusion-controlled liquid-

solid interfacial displacement for polycrystalline solids in a TLP bonding system. To improve the 

accuracy of existing moving boundary models, Ghoneim et al. [41]  used variable spatial 

discretization, however, their model assumed that there is constant diffusivity. 

It has also been found that one of the deficiencies associated with conventional TLP bonding is the 

prolonged holding time needed to achieve complete isothermal solidification of the liquid material. 

Micro-constituents that are detrimental to the properties of the bonded materials could form at the 

bonded region from the remaining liquid material during the process of cooling. This initiated the 

emergence and application of a new technique called temperature gradient transient liquid phase 

diffusion bonding which primarily depends on the use of a temperature gradient across a bond line. A 

number of numerical diffusion models have been developed that involve this type of diffusion 

problem. For instance, Bigvand [35] used a fully implicit one-dimensional finite element model to 

simulate the dissolution and isothermal solidification kinetics to study the underlying mechanisms of 

partial unidirectional solidification in TG-TLP bonding. Bigvand [35] developed a numerical model 

for this kind of diffusion problem by employing one of the variants of the conventional finite element 

model, the Galerkin weighted residual method. This method is used to study and understand the 
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governing mechanism of isothermal solidification kinetics under an imposed temperature gradient 

condition in the TG-TLP bonding process. This finite element model assumes a constant diffusivity in 

the process of bonding. However, evidence from computational and experimental research studies 

show that diffusion coefficient parameters are not constant as they are significantly dependent on the 

solute concentration in real situations and the solute concentration dependency on the diffusion 

coefficient changes with time [5, 6]. 

Bamidele and Ojo [36] developed a new first order implicit-explicit finite difference numerical model 

which incorporates a Landau coordinate transformation with evolving spatial discretization and 𝐷(𝐶). 

Bamidele and Ojo [36] used a planar geometric system to study and acquire a concise understanding 

of the TG-TLP bonding behavior under the influence of various processing parameters which includes 

gap size, holding time, and temperature range. This model is the most reliable numerical diffusion 

model for TG-TLP diffusion systems to date. 

 

2.5   An overview on finite element and Galerkin weighted residual 

methods 

The FEM first appeared in Hrennikoff [42] and Courant [43] in the early 1940s to address the need to 

solve complex elasticity and structural analysis problems in the fields of civil and aeronautical 

engineering, and aircraft structure systems.  

FEM is a semi-analytical method. There are different types of FEMs which include the collocation 

method, Rayleigh-Ritz approach, and the Galerkin weighted residual method (G-FEM) [43, 44]. These 

methods are based on approximating the exact solution by using an approximate solution, which is 

usually a linear combination of specific trial functions, that is,  polynomial functions to be precise. 
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FEM is characterized by the mesh discretization of a continuous domain into a set of distinct, non-

overlapping sub-domains which are usually called finite elements. Over these finite elements, function 

spaces are approximated by using local functions (polynomials). 

 

2.6.    Forward simulation analysis 

It is generally known that diffusion coefficients are one of the major fundamental data for materials. 

The development of reliable diffusion databases to design and optimize innovative materials for wide 

applications at both low and high temperatures is dependent on the accurate determination of self-

diffusion and impurity diffusion coefficients [45, 46]. Both are experimentally measured through 

radioactive isotope tracer diffusion known to generate trustworthy datasets, albeit at the expense of 

the high cost of operation, time consumed, and difficulties associated with the experiments [45 - 47]. 

To date, only a few tracer measurements have been performed in the past years. Tracer experiments 

are however not dependable because thousands of impurity diffusion coefficients have yet to be 

determined [45 - 47].  

FSA is an innovative inverse numerical approach recently developed and implemented by Zhang and 

Zhao [45]. The FSM incorporates an iterative scheme that is solely dependent on the inverse 

relationship between diffusivity and solute concentration gradient in the evaluation of interdiffusion 

coefficient irrespective of a strong or weak dependence on the solute concentration. Zhang and Zhao 

[45] reported that the FSM is capable of addressing the shortcomings and limitations of existing 

conventional analytical methods in extracting 𝐷(𝐶) from any region of experimental concentration 

profiles. Different authors have used the FSM. This novel and robust technique has been found to have 

great advantages and reliability in the sense that its applicability comprises the evaluation of impurity 
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and interdiffusion coefficients in both single phase and multi-phase binary planar systems [20, 38, 41, 

45 - 49]. It is well known that there are other diffusion couple techniques for evaluating the 

concentration dependence of interdiffusion coefficients when combined with existing analytical 

methods. Wie and Zhang [14] used distribution functions with the well-known BM method. The 

quality of the result is said to depend robustly on the degree of fit of the continuous function applied 

to the discrete concentration profile. Xu et al. [50] determined the interdiffusion coefficient in FCC 

Ag-In and Ag-Cu-In alloys. They carried out a comparative analysis on the BM method with 

distribution functions and a numerical inverse method with high-throughput determination of the 

interdiffusion coefficients. They reported that both methods showed a consistent result but as the 

number of elements in the alloy system increases, the BM method becomes unsuitable while the 

numerical inverse method exhibit no limitation as it can be reliably used in alloys with varying number 

of components [50]. 

Olaye and Ojo [40] used well-known and robust forward simulation techniques with a newly 

developed finite difference diffusion model in Cu – Ni and Ag − Cu binary alloy systems to study the 

effect of time variation by extracting and evaluating 𝐷(𝐶). The first mode was developed based on 

the assumption that there is no pre-existing non uniform solute distribution prior to diffusion in the 

evaluation of 𝐷(𝐶). This assumption is similar to that of the existing conventional analytical methods 

of determining the interdiffusion coefficients. The first mode is implemented on the basis that the 

initial concentration profile set is a step function in space which rules out the presence of an initial 

solute in the system. The second mode is used in the case of the presence of pre-existing non uniform 

solute concentrations which implies the need for two experimental concentration profiles. The first 

profile is utilized as the compulsory initial condition while the second profile is used as the main 
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experimental concentration profile for the calculation of the concentration gradient and interdiffusion 

coefficient under the influence of pre-existing solute distribution.  

A review of the literature also shows that a comparison between the diffusion coefficients extracted 

from systems with pre-existing non-equilibrium solute concentrations and those obtained from 

existing standard analytical methods to investigate the validity of the general assumption of existing 

conventional analytical approaches has been reported [51]. This is done with the application of FSM. 

The steps involved in the application of  the FSM are outlined below: 

1. The experimental concentration profiles obtained are first smoothened. Commonly used data 

smoothing algorithms are the moving average smoothing and Savitzky-Golay smoothing 

method. The moving average smoothing is employed in this study. 

2. A  𝐷(𝐶) function obtained from either the BM or SF method is initially guessed and applied 

by using a linear function, quadratic (parabolic) behaviour or higher order polynomial trend. 

3. The concentration dependent diffusivity function obtained, is used with a numerical diffusion 

model that solves the Fick’s second law of diffusion to execute the simulation of the final 

concentration profile. In this step, the FSM is applied in two different modes as initially 

described. 

4. The least square errors between the final experimental and simulated concentration profiles are 

calculated and compared with a pre-set tolerance value in the calculation. 

5. The interdiffusion coefficient function which depends on the concentration is evaluated and 

the values are adjusted if the sum of the squared difference between the simulated and 

experimental composition profiles calculated in Step 3 is higher than the tolerance range set. 

This adjustment is achieved based on the inverse relation between the interdiffusion coefficient 
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and solute concentration gradient calculated for both the experimental and simulated 

concentration profiles. The equation that describes the inverse relationship is expressed as 

follows: 

[𝐷(𝐶)]𝑓𝑖𝑛𝑎𝑙 = [𝐷(𝐶)]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
 
𝑑𝑥

𝑑𝐶    𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑑𝑥

𝑑𝐶  𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

                                             Equation 23 

6. Steps 3 to 5 are repeated until a satisfactory minimal calculated error is obtained. 
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Chapter 3:   Development of a new numerical diffusion model 

3.1   Development of Finite Element Model 

The governing equation for the process of diffusion in a single-phase planar system is described as 

Fick’s second law of diffusion by using a one-dimensional planar geometric system: 

𝜕𝐶(𝑟,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑟
(𝐷𝐴[𝐶(𝑟, 𝑡)]

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
)                     0 < 𝑟 < 𝑅                                            Equation 24 

Equation 24 describes the diffusion of solute in a system, where R is the length of an entire system. 

 

Figure 3.1: Schematic diagram of numerical diffusion modelling in a single-phase planar 

system 
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3.1.1    Application of Galerkin weighted residual method in development  

of the new model       

The Galerkin weighted approach belongs to a family of residual methods. Residual methods are 

described as the integral of the residual in the functional domain of interest. The Galerkin weighted 

method is based on an approximation of the exact solution of a boundary-value partial differential 

equation. The approximate solution is a linear combination of distinct trial polynomial functions. These 

trial polynomial functions exhibit linear independency and tend to satisfy the boundary conditions 

imposed. The accuracy of the solution depends on the number, size of the elements and type of function 

(linear or quadratic) that are considered within the elements.  

The FEMs such as the Galerkin weighted residual approach which will be used in this study, offer 

values in-between nodes via shape functions, coupled with the advantage of choice of the degree of 

function (linear or higher order polynomials). The degree of the shape function defines the level of 

precision that could be achieved in an analysis.  

A major advantage of the Galerkin weighted residual FEM used in this study lies in the non-uniformity 

of the element size unlike the case with the finite difference method. Small elements can be positioned 

in regions with large concentration gradients while large elements can be placed in regions with small 

concentration gradients. In this study, the Galerkin weighted approach is applied to governing diffusion 

equations when the governing partial differential equations (natural coordinates system/irregular 

boundary form) are transformed to a variable space coordinates system (fixed boundary form). 

Nevertheless, it is noted that the transformed formulations become more complicated for smoothly 

executing the integration of the residual functions. In the finite difference method, the domain is 

discretized as a set of specified nodes (points) at which the results are determined, whereas in the finite 
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element approach, the results are known at every point of the domain because the approximation is 

done with shape (elements) functions (linear or higher polynomials) defined on smaller regions.  

The steps involved in implementing the FEM in this study are as follows: 

1. Formulation of the problem: In the case of applying Galerkin weighted residual approach, the 

partial differential equations to be solved are the governing diffusion equations. In a bid to achieve 

a variable space grid system, the governing equation is modified by applying the one-dimensional 

Murray- Landau spatial coordinate transformation. It is very logical to use the Galerkin weighted 

residual method over the Rayleigh Ritz approach since the differential equation that governs the 

diffusion system is known. 

2. Discretization of the problem: The global solution domain 𝐷(𝑢) is discretized into subdomains 

(smaller elements) 𝐷𝑖(𝑢) (𝑖 = 1, 2, … , 𝐼). The type of element (i.e., linear, quadratic or 

polynomials, etc.) to be used is specified. 

3. The functional form of the approximate solution 𝑝𝑖(𝑢) (for the model) within each element is 

assumed and the interpolating function for the elements is selected. 

4. The finite element Galerkin weighted residual method is applied. The approximate solution 𝑝(𝑢) 

(for the model) is substituted into the modified governing partial differential equation to 

determine and define the residual 𝑅(𝑢). The residual is then weighted with the weighting 

functions 𝑊𝑗(𝑢) (𝑗 = 1, 2, 3, … ) which results into the weighted residual integral 𝐼(𝐶𝑖). 

5. The integrals of the weighted residuals 𝑊𝑗(𝑢)𝑅(𝑢) is set equal to zero. 

∫ 𝑊𝑗(𝑢)𝑅(𝑢)du = 0
𝑢2

𝑢1
                                                                                       Equation 25 

The equation is integrated and the system of weighed residual integrals for the coefficients 

𝐶𝑖(𝑖 = 1, 2, 3, … , 𝐼) are solved. 
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6. The first and second element equations of the Galerkin weighted residual approach are 

determined. The partial derivatives of the weighted residual integral 𝐼(𝐶𝑖) with respect to the 

nodal values  𝐶𝑖 are evaluated and equated to zero. The element equations obtained in Step 5 are 

combined to form the system equation of the model. 

7. The complete system equations that govern the model are adjusted to account for the 

implementation of the boundary conditions imposed on the diffusion system. 

8. The adjusted system equations are solved for the nodal values 𝐶𝑖. The diffusion equation can be 

expressed in the global matrix form described below. 

 [𝐾]{𝐶} + [𝑃]{�̇�} = {𝐹}                                                                                                  Equation 26 

The [𝐾] term is the global stiffness matrix, [𝑃] is the global capacitance matrix, {𝐹} is the global force 

matrix and {�̇�} is the partial time derivative for the nodal concentration. There are different finite 

difference approximations that can be applied to derive the time discretization schemes. This selection 

depends on the stability to be attained. 
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Figure 3.2:  General features of variants of FEM as defined by Hoffman [44] 
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3.1.2     Spatial discretization of governing equations of the model 

In this study, a variable space meshing system with a fixed grid is attained by the introduction and 

implementation of a widely known coordinate transformation process in binary diffusion systems 

called one dimensional Murray-Landau spatial coordinate transformation [52]. The spatial 

transformation proposed by Murray and Landau entails a coordinate system in which all of the spatial 

boundaries are fixed.  

The new position variable used is given below. 

𝑢 =
𝑟

𝑠(𝑡)
                                                                                                                        Equation 27 

Equation 27 is introduced such that, for any time, the space coordinate intervals 0 < 𝑟 < 𝑠(𝑡) 

correspond to 0 < 𝑢 < 1.  

A change in the spatial coordinate system brings about complete modification of the governing partial 

differential equation that describes the concentration profile. The transformed equations require partial 

differentiation and calculation of the material derivatives. The spatial and time derivatives of the 

concentration profile in a natural spatial coordinates system, 𝐶(𝑟, 𝑡) are expressed in Equations 29  

and 31 respectively. Also note that in the new spatial coordinate system, the interface is immobile at 

𝑢 = 1 for all time, 𝑡. This shows the possibility of the automatic adjustment of the space meshing 

which allows the interface movement to be easily tracked. The well-simplified form of the transformed 

expression of the mathematical model is expressed in Equation 33. 

𝑑𝐶(𝑟,𝑡)

𝑑𝑡
=

𝑑𝑟(𝑡)

𝑑𝑡

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
+
𝜕𝐶(𝑟,𝑡)

𝜕𝑡
                                                                                      Equation 28 



 
 

 

 

38   

Equation 28 relates the concentration profile in the natural spatial coordinates, 𝐶(𝑟, 𝑡) to the new co-

ordinate concentration profile, 𝑝(𝑢, 𝑡) of the model. Substituting Equations 29 and 30 into 28 gets 

Equation 31. 

𝑑𝑟(𝑡)

𝑑𝑡
= 𝑢

𝑑𝑠(𝑡)

𝑑𝑡
                                                                                                            Equation 29 

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
=

1

𝑠(𝑡)

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
                                                                                                     Equation 30 

The concept of the chain rule is applied to the material differential of 𝑠(𝑡)𝑝(𝑢, 𝑡) with respect to time, 

𝑡. This leads to Equation 32 and substituting the expression for 𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
 on the left side of Equation 

32 with the right-side expression of Equation 31 yields Equation 33. 

𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
= 𝑢

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
+ 𝑠(𝑡)

𝜕𝐶(𝑟,𝑡)

𝜕𝑡
                                                                  Equation 31 

𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
=

1

𝑠(𝑡)

𝜕

𝜕𝑢
[𝐷𝐴(𝑝(𝑢, 𝑡))

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
]                                                                  Equation 32 

The transformed governing model is expressed in the simplified form below: 

𝜕[𝑝(𝑢,𝑡)𝑠(𝑡)]

𝜕𝑡
=

𝑑𝑠(𝑡)

𝑑𝑡

𝜕[𝑝(𝑢,𝑡)𝑢]

𝜕𝑢
+

1

𝑠(𝑡)

𝜕

𝜕𝑢
(𝐷𝐴(𝑝(𝑢, 𝑡))

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
)                                        Equation 33 

 

Illingworth and Golosnoy [20] used a novel approach which consisted of finite volume integral 

discretization to integrate both the advective and diffusive terms. The applicability and strength of the 

method is based on the divergent form of the equations. 

In this study, it was found that integrating on an element does not require the divergent form of the 

transformed equation to describe the model in the course of formulating the equations. 
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Figure 3.3:  Finite element discretization [44] 
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In the finite element formulations developed for the work in this study, this extra effort is not needed 

as the direct integration of the resulting weighted residual function, 𝑅𝑟𝑒𝑠(𝑢)𝑊𝑗(𝑢) over the global 

solution domain eliminates the need, both in the first and second element analyses. 

From the variant of the finite element analysis applied (as illustrated in figure 3.3), that is, the Galerkin 

weighted residual method, the resulting weighted residual, 𝑅𝑟𝑒𝑠 is expressed as: 

𝑅𝑟𝑒𝑠(𝑢, 𝑡) =
𝑑𝑠(𝑡)

𝑑𝑡

𝜕[𝑝(𝑢, 𝑡)𝑢]

𝜕𝑢
+

1

𝑠(𝑡)

𝜕

𝜕𝑢
(𝐷𝐴(𝑝(𝑢, 𝑡))

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
) −

𝜕[𝑝(𝑢, 𝑡)𝑠(𝑡)]

𝜕𝑡
 

Equation 34 

Expanding the partial derivative functions in Equation 36, we have: 

𝑑𝑠(𝑡)

𝑑𝑡
[𝑝(𝑢, 𝑡) + 𝑢

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
] +

𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
− [𝑠(𝑡)

𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
+ 𝑝(𝑢, 𝑡)

𝑑𝑠(𝑡)

𝑑𝑡
] 

Equation 35 

The well simplified expression for the resulting weighted residual, 𝑅𝑟𝑒𝑠 is given as: 

𝑅𝑟𝑒𝑠(𝑢, 𝑡) = 𝑢
𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
+
𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
− 𝑠(𝑡)

𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
 

Equation 36 

To obtain the weighted residual integral 𝐼(𝑝(𝑢, 𝑡)), we integrate 𝑅𝑟𝑒𝑠(𝑢, 𝑡)𝑊𝑗(𝑢, 𝑡) over the global 

solution domain 𝐷(𝑢, 𝑡).𝑊𝑗(𝑢) represents a set of weighting factors (𝑗 = 1, 2 ,3, … ). 

𝐼(𝑝(𝑢, 𝑡)) = ∫ 𝑊𝑗(𝑢, 𝑡)𝑅𝑟𝑒𝑠(𝑢, 𝑡)du = 0
𝑏

𝑎
                                                                           Equation 37 
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Figure 3.4: Linear function  

 

 

Figure 3.5: Shape function for node 𝑖 
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The weighted residual integral is further expressed as: 

𝐼(𝑝(𝑢, 𝑡)) = ∫𝑊𝑗(𝑢, 𝑡) (𝑠(𝑡)
𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
− 𝑢

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
−
𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
)du = 0

𝑏

𝑎

 

Equation 38 

Let the global exact solution �̅�(𝑢, 𝑝) be approximated by using the global approximate solution 

𝑝(𝑢, 𝑡), which is the sum of a series of local interpolating polynomials, 𝑝𝑖(𝑢, 𝑡) [𝑖 = 1, 2 , 3 , … . , 𝐼 −

1] that are valid within each element. 

𝑝(𝑢) =  𝑝1(𝑢) + 𝑝2(𝑢) +⋯+ 𝑝𝑖(𝑢) + ⋯+ 𝑝𝐼−1(𝑢) = ∑ 𝑝𝑖(𝑢)𝐼−1
𝑖 = 1                               Equation 39 

Figures 3.4 and 3.5 describe the linear subdomain in the interval [𝑢𝑖, 𝑢𝑖+1] and linear shape functions 

for node 𝑖 while Figure 3.6 illustrates the strong and weak forms in a finite element domain. 

The local interpolating polynomials, 𝑝𝑖(𝑢, 𝑡) are defined as follows: 

𝑝𝑖(𝑢, 𝑡) = 𝑝𝑖(𝑢, 𝑡)𝑁𝑖
(𝑖)(𝑢) + 𝑝𝑖+1(𝑢, 𝑡)𝑁𝑖+1

(𝑖) (𝑢)                                                                  Equation 40 

where 𝑝𝑖 and 𝑝𝑖+1 are the values of 𝑝(𝑢) at nodes 𝑖 and 𝑖 + 1 respectively, and  𝑁𝑖
(𝑖)(𝑢) and 𝑁𝑖+1

(𝑖) (𝑢) 

are linear interpolating polynomials within element (𝑖). The superscript 𝑖 denotes the grid point where 

𝑁𝑖
(𝑖)(𝑢) = 1.0 and the subscript denotes the element within which 𝑁𝑖

(𝑖)(𝑢) applies. The interpolating 

polynomials are called shape functions.  
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Figure 3.6: Strong and weak forms in finite element domain  

 

 

 

 

Figure 3.7: Linear shape function for element (i) 
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The shape functions (as illustrated in figure 3.7) are defined to be unity at their respective nodes, zero 

at the other nodes, and zero everywhere outside of their element. Thus,  𝑝𝑖(𝑢) = 𝑝𝑖, 𝑖. 𝑒.  the 

coefficients 𝑝𝑖 evaluated represent the solution at the nodes.  

𝑁𝑖
(𝑖)(𝑢) = −

𝑢−𝑢𝑖+1

𝑢𝑖+1−𝑢𝑖
                                                                                                              Equation 41 

𝑁𝑖+1
(𝑖) (𝑢) =

𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
                                                                                                                Equation 42 

Where 𝑁𝑖
(𝑖)(𝑢) + 𝑁𝑖+1

(𝑖) (𝑢) = 1                                                                                            Equation 43 

Equation 42 becomes 

𝑝𝑖(𝑢, 𝑡) = 𝑝𝑖(𝑢, 𝑡) (−
𝑢−𝑢𝑖+1

𝑢𝑖+1−𝑢𝑖
) + 𝑝𝑖+1(𝑢, 𝑡) (

𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
)                                                         Equation 44 

This is a linear Lagrange polynomial applied to element (i). 

Higher-order interpolating polynomials can be developed by placing extra nodes within each element 

by using quadratic or cubic functions. 

The weighted residual integral from the transformed diffusion equation is set up as below: 

𝐼(𝑝(𝑢, 𝑡)) = 𝑠(𝑡) ∫ 𝑊𝑗(𝑢, 𝑡) (
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
) du 

𝑏

𝑎⏟                  
1𝑠𝑡  𝑡𝑒𝑟𝑚

−
𝑑𝑠(𝑡)

𝑑𝑡
∫ 𝑊𝑗(𝑢, 𝑡) (𝑢

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
) du 

𝑏

𝑎⏟                  
2𝑛𝑑 𝑡𝑒𝑟𝑚

−

∫ 𝑊𝑗(𝑢, 𝑡) (
𝐷𝐴(𝑝(𝑢,𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢,𝑡)

𝜕𝑢2
) du 

𝑏

𝑎⏟                    
= 0

3𝑟𝑑  𝑡𝑒𝑟𝑚

                                                                     Equation 45  
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Figure 3.8: Global integral, 𝐼 

 

 

 

Figure 3.9: Discretized global solution domain, 𝐷(𝑢) 

 

 

 

Figure 3.10: Discretized integral, I 
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Figure 3.11: Discretized global solution domain 

 

 

 

 

Figure 3.12:  Portion of global grid that surrounds node 𝑖 

 

 

 

 

Figure 3.13:  Element correspondence 
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Figure 3.6 describes the strong and weak forms of finite element domain. Figures 3.8 and 3.9 illustrate 

the underlying concept of the Galerkin weighted residual approach and the global solution domain 

𝐷(𝑢) respectively. The weight residual integral 𝐼(𝐶𝑖) applies over the entire global solution domain 

𝐷(𝑢). Let symbol 𝐼 denote 𝐼(𝐶𝑖). 

Figure 3.10 to 3.13 illustrate the discretized global solution domain 𝐷(𝑢) which is discretized into I 

nodes and I-1 elements. Note that the symbol I is used for the functional 𝐼(𝐶𝑖), weighted residual 

integral 𝐼(𝐶𝑖), and number of nodes. 

The subscript 𝑖 denotes the grid points, or nodes, and superscript (𝑖) denotes the elements. Element 

(𝑖) starts the node 𝑖 and terminates at nodes 𝑖 + 1. The element lengths (i.e., grid increments) are 

∆𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖. 

Figure 3.8 illustrates the exact evaluation of  the global integral 𝐼. This process yields a set of equations 

that relate the nodal values within each element, which are called nodal equations. 
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The finite element models from the governing diffusion equation are obtained as shown below. 

The first element equation obtained for the models is: 

𝐼(𝑖)(𝑝(𝑢, 𝑡)) = 𝑠(2�̇�𝑖 + �̇�𝑖+1) −
𝑑𝑠

𝑑𝑡
(
𝑝𝑖+1
𝑗+𝜎

− 𝑝𝑖
𝑗+𝜎

∆𝑢𝑖
) (𝑢𝑖+1 + 2𝑢𝑖) −

6𝐷𝐴

𝑠

𝑝𝑖+1
𝑗+𝜎

− 𝑝𝑖
𝑗+𝜎

(∆𝑢𝑖)
2

= 0  

  Equation 46 

The second element equation obtained for the models is: 

𝐼(𝑖−1)(𝑝(𝑢, 𝑡)) = 𝑠(�̇�𝑖−1 + 2�̇�𝑖) −
𝑑𝑠

𝑑𝑡
(
𝑝𝑖
𝑗+𝜎

− 𝑝𝑖−1
𝑗+𝜎

∆𝑢𝑖−1
) (𝑢𝑖−1 + 2𝑢𝑖) +

6𝐷𝐴

𝑠

𝑝𝑖
𝑗+𝜎

− 𝑝𝑖−1
𝑗+𝜎

(∆𝑢𝑖−1)
2
= 0  

Equation 47 

Combining the first and second element equations together and using the concentration dependent 

diffusion coefficients, we have: 

𝑠(�̇�𝑖−1 + 4�̇�𝑖 + �̇�𝑖+1)

=
𝑑𝑠

𝑑𝑡
[(
𝑝𝑖+1
𝑗+𝜎

−  𝑝𝑖
𝑗+𝜎

∆𝑢𝑖
) (𝑢𝑖+1 + 2𝑢𝑖) + (

𝑝𝑖
𝑗+𝜎

− 𝑝𝑖−1
𝑗+𝜎

∆𝑢𝑖−1
) (𝑢𝑖−1 + 2𝑢𝑖)]

+
6

𝑠𝑗+𝜎
[(𝐷𝐴[𝑝])𝑖,𝑖+1

𝑗+𝜎 𝑝𝑖+1
𝑗+𝜎

−  𝑝𝑖
𝑗+𝜎

(∆𝑢𝑖)
2

− (𝐷𝐴[𝑝])𝑖−1,𝑖
𝑗+𝜎 𝑝𝑖

𝑗+𝜎
− 𝑝𝑖−1

𝑗+𝜎

(∆𝑢𝑖−1)
2
] 

Equation 48 

Using Leap Frog explicit approximations and substituting the fully explicit scheme parameter,  𝜎 =

0, we have: 
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𝑠𝑗+1(𝑝𝑖−1
𝑗+1

+ 4𝑝𝑖
𝑗+1

+ 𝑝𝑖+1
𝑗+1
) − 𝑠𝑗−1(𝑝𝑖−1

𝑗−1
+ 4𝑝𝑖

𝑗−1
+ 𝑝𝑖+1

𝑗−1
)

=  (𝑠𝑗+1 − 𝑠𝑗−1) [
(𝑝𝑖+1

𝑗
−  𝑝𝑖

𝑗
)(𝑢𝑖+1 + 2𝑢𝑖)

∆𝑢𝑖
+
(𝑝𝑖

𝑗
− 𝑝𝑖−1

𝑗
)(𝑢𝑖−1 + 2𝑢𝑖)

∆𝑢𝑖−1
]

+
6𝛿𝑡

𝑠𝑗
[(𝐷𝐴[𝑝])𝑖,𝑖+1

𝑗 𝑝𝑖+1
𝑗
−  𝑝𝑖

𝑗

(∆𝑢𝑖)
2
− (𝐷𝐴[𝑝])𝑖−1,𝑖

𝑗 𝑝𝑖
𝑗
− 𝑝𝑖−1

𝑗

(∆𝑢𝑖−1)
2
] 

Equation 49 

The FEM diffusion model developed is used to analyze single phase binary systems as zero flux 

conditions for the two ends of the diffusion system. The Dufort Frankel/Leap Frog finite element 

explicit scheme works efficiently for single phase planar system when coupled with forward 

simulation techniques. The depth of analytical integration schemes required to formulate finite element 

equations for a transformed coordinate system of partial differential equations is a major challenge. 

However, the use of computational programming makes the process easier when compared to the 

Dufort Frankel based finite difference method which involves up/down winding schemes for the 

concentration profiles as more computational effort and skills are required in this scheme. The first 

and second element equations obtained from direct Dufort Frankel/Leap Frog explicit scheme based 

on finite element models do not accommodate up/down winding schemes since the element equations 

obtained do not contain intermediate concentrations profiles as employed in the finite difference 

method in the bid to apply up/down winding approximations that enhance  the stability of the models. 

The Dufort Frankel/Leap Frog explicit schemes with zero flux conditions imposed at the extreme ends 

are outlined below. 

The averaging for the concentration parameter is expressed as: 
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𝑝𝑖−1
𝑗+1

+ 𝑝𝑖+1
𝑗+1

= 2𝑝𝑖
𝑗+1

                                                                                                           Equation 50 

𝑝𝑖−1
𝑗−1

+ 𝑝𝑖+1
𝑗−1

= 2𝑝𝑖
𝑗−1

                                                                                                           Equation 51 

For simplification of the model, a uniform space grid is considered in the FEM nodal equation 

throughout the calculations in the model as expressed below:  

∆𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖 = ∆𝑢𝑖−1 = 𝑢𝑖 − 𝑢𝑖−1                                                                                 Equation 52 

For enhanced stability, the Dufort Frankel approximations applied for the time step in the model are: 

𝑝𝑖
𝑗
=
1

2
(𝑝𝑖

𝑗−1
+ 𝑝𝑖

𝑗+1
)                                                                                                            Equation 53 

The Murray-Landau transformed FEM governing equation as expressed in Equation 48 is solved by 

applying the Dufort Frankel/Leap Frog explicit time discretization to obtain the discretized governing 

model. They are expressed below: 

𝑠𝑗+1𝑝𝑖
𝑗+1

− 𝑠𝑗−1𝑝𝑖
𝑗−1

= (
𝑡𝑗+1 − 𝑡𝑗−1

𝑠𝑗
)((𝐷𝐴[𝑝])𝑖,𝑖+1

𝑗+1 𝑝𝑖+1
𝑗
−  𝑝𝑖

𝑗

(𝑢𝑖+1 − 𝑢𝑖)
2
− (𝐷𝐴[𝑝])𝑖−1,𝑖

𝑗+1 𝑝𝑖
𝑗
− 𝑝𝑖−1

𝑗

(𝑢𝑖 − 𝑢𝑖−1)
2
)

+ (𝑠𝑗+1 − 𝑠𝑗−1) (
(𝑝𝑖+1

𝑗
−  𝑝𝑖

𝑗
)(𝑢𝑖+1 + 2𝑢𝑖)

𝑢𝑖+1 − 𝑢𝑖
+
(𝑝𝑖

𝑗
− 𝑝𝑖−1

𝑗
)(𝑢𝑖−1 + 2𝑢𝑖)

𝑢𝑖 − 𝑢𝑖−1
) 

Equation 54   

After implementing the Dufort Frankel approximation, the coefficients terms are carefully sorted, 

rearranged, and expressed as follows: 

𝛿𝑃𝐴 ∗ 𝑝𝑖
𝑗+1

= 𝛿𝑃𝐵 ∗ 𝑝𝑖
𝑗−1

+ 𝛿𝑃𝐶 ∗ 𝑝𝑖+1
𝑗
+ 𝛿𝑃𝐷 ∗ 𝑝𝑖−1

𝑗
                                                 Equation 55  
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where 

𝛿𝑃𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1 − 𝑡𝑗−1

2𝑠𝑗
)(

(𝐷𝐴[𝑝])𝑖,𝑖+1
𝑗

(𝑢𝑖+1 − 𝑢𝑖)
2
+
(𝐷𝐴[𝑝])𝑖−1,𝑖

𝑗

(𝑢𝑖 − 𝑢𝑖−1)
2
)

+ (
𝑠𝑗+1 − 𝑠𝑗−1

12
)(
(𝑢𝑖+1 + 2𝑢𝑖)

(𝑢𝑖+1 − 𝑢𝑖)
−
(𝑢𝑖−1 + 2𝑢𝑖)

(𝑢𝑖 − 𝑢𝑖−1)
) 

Equation 56 

𝛿𝑃𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1 − 𝑡𝑗−1

2𝑠𝑗
)(

(𝐷𝐴[𝑝])𝑖,𝑖+1
𝑗

(𝑢𝑖+1 − 𝑢𝑖)
2
+
(𝐷𝐴[𝑝])𝑖−1,𝑖

𝑗

(𝑢𝑖 − 𝑢𝑖−1)
2
)

− (
𝑠𝑗+1 − 𝑠𝑗−1

12
)(
(𝑢𝑖+1 + 2𝑢𝑖)

(𝑢𝑖+1 − 𝑢𝑖)
−
(𝑢𝑖−1 + 2𝑢𝑖)

(𝑢𝑖 − 𝑢𝑖−1)
) 

 Equation 57 

𝛿𝑃𝐶 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴[𝑝])𝑖,𝑖+1
𝑗

(𝑢𝑖+1−𝑢𝑖)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑖+1+2𝑢𝑖

𝑢𝑖+1−𝑢𝑖
)                                                Equation 58 

𝛿𝑃𝐷 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴[𝑝])𝑖−1,𝑖
𝑗

(𝑢𝑖−𝑢𝑖−1)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑖−1+2𝑢𝑖

𝑢𝑖−𝑢𝑖−1
)                                               Equation 59 

In the single-phase diffusion of binary alloys, a fixed concentration condition imposed at the 

boundaries implies that there is no possibility of the build-up of solute at the extreme boundaries of 

the host material, but this cannot be ascertained. A zero-flux boundary condition is however a 

confirmed boundary condition that can be applied to the ends of the host material to ensure that the 

total amount of diffusing solute in the sample is being conserved during the simulation of the single-

phase diffusion of the binary alloy. By this reason, it is very certain that the extreme boundaries of the 
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material functions as a no solute flux boundary. The most accurate and reliable imposed zero flux 

conditions at both extreme ends of the single-phase diffusion system are expressed as: 

𝜕𝑝

𝜕𝑢   1

   𝑘−1
=
𝜕𝑝

𝜕𝑢   1

   𝑘
=
𝜕𝑝

𝜕𝑢    1

    𝑘+1
= 0                                                          Equation 60 

𝜕𝑝

𝜕𝑢   𝑀+1

   𝑘−1
=
𝜕𝑝

𝜕𝑢   𝑀+1

   𝑘
=
𝜕𝑝

𝜕𝑢    𝑀+1

    𝑘+1
= 0                                                    Equation 61 

By implementing zero flux conditions at the first node (𝑖 = 1) in Equation 62 and simplifying the 

Dufort Frankel/Leap Frog discretization expressed from Equations 57 to 61, the actual equation that 

determines that there is no solute migration at the left boundary for the single-phase diffusion in a 

binary alloy system is: 

𝛿𝑃𝐴𝐴 ∗ 𝑝1
𝑗+1

= 𝛿𝑃𝐵𝐵 ∗ 𝑝1
𝑗−1

+ 𝛿𝑃𝐶𝐶 ∗ 𝑝2
𝑗
                                                                   Equation 62 

where  

𝛿𝑃𝐴𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴[𝑝])1,2
𝑗

(𝑢2−𝑢1)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

12
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                 Equation 63 

𝛿𝑃𝐵𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴[𝑝])1,2
𝑗

(𝑢2−𝑢1)
2
) − (

𝑠𝑗+1−𝑠𝑗−1

12
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                Equation 64 

𝛿𝑃𝐶𝐶 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
)(

(𝐷𝐴[𝑝])1,2
𝑗

(𝑢2−𝑢1)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                               Equation 65 

Zero flux conditions are implemented at the last node, 𝑖 = 𝑀 + 1 by using:  

𝛿𝑃𝐴 ∗ 𝑝𝑀+1
𝑗+1

= 𝛿𝑃𝐵 ∗ 𝑝𝑀+1
𝑗−1

+ 𝛿𝑃𝐷 ∗ 𝑝𝑀
𝑗

                                                                     Equation 66 
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where 

𝛿𝑃𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
)(

(𝐷𝐴[𝑝])𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)
2
) − (

𝑠𝑗+1−𝑠𝑗−1

12
) (

4𝑢𝑀+1−𝑢𝑀

(𝑢𝑀+1−𝑢𝑀)
)                          Equation 67 

𝛿𝑃𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴[𝑝])𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

12
) (

4𝑢𝑀+1−𝑢𝑀

(𝑢𝑀+1−𝑢𝑀)
)                        Equation 68 

𝛿𝑃𝐷 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴[𝑝])𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)
2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑀+2𝑢𝑀+1

𝑢𝑀+1−𝑢𝑀
)                                      Equation 69 

For a single-phase diffusion system, it is very clear that there is no moving interface. By using the 

governing numerical diffusion models, the implication is expressed as: 

𝑠𝑗−1 = 𝑠𝑗 = 𝑠𝑗+1                                                                                                       Equation 70 
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Figure 3.14:  Finite difference time discretization schemes in numerical analysis 
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3.2    Consistency analysis of the model 

The consistency analysis of the new numerical diffusion model is presented in this section. The error 

associated with the numerical scheme applied is analyzed. 

A constant diffusion coefficient in a planar geometric system that uses the FEM governing model 

formulated, is considered.  

𝒔𝒋+𝟏𝒑𝒊
𝒋+𝟏
− 𝒔𝒋−𝟏𝒑𝒊

𝒋−𝟏

𝒕𝒋+𝟏 − 𝒕𝒋−𝟏

=
𝑫𝑨

𝒔𝒋(𝒕)∆𝒖𝟐
[𝒑𝒊+𝟏
𝒋
− 𝟐𝒑𝒊

𝒋
+ 𝒑𝒊−𝟏

𝒋
]

+
𝒔𝒋+𝟏 − 𝒔𝒋−𝟏

𝟔(𝒕𝒋+𝟏 − 𝒕𝒋−𝟏)
[
(𝒑𝒊+𝟏

𝒋
− 𝒑𝒊

𝒋
)(𝒖𝒊+𝟏 + 𝟐𝒖𝒊) + (𝒑𝒊

𝒋
− 𝒑𝒊−𝟏

𝒋
)(𝒖𝒊−𝟏 + 𝟐𝒖𝒊)

∆𝒖
] 

                                                                                                                                              Equation 71 

Equation 71 is obtained by the discretization of the general finite element model by using the Dufort 

Frankel/Leap Frog explicit scheme. Also, by using a uniform space grid in the numerical model stated 

above and applying a Taylor series expansion to the dependent variable (𝑝) in time and space about 

(𝑡𝑗 , 𝑢𝑖), the equations obtained are as follows: 

𝒑𝒊±𝟏
𝒋

= 𝒑𝒊
𝒋
±
𝝏𝒑

𝝏𝒖
∆𝒖 +

𝟏

𝟐

𝝏𝟐𝒑

𝝏𝒖𝟐
∆𝒖𝟐 + 𝑶(∆𝒖𝟑)                                                                    Equation 72 

𝒑𝒊
𝒋±𝟏

= 𝒑𝒊
𝒋
±
𝝏𝒑

𝝏𝒕
∆𝒕 +

𝟏

𝟐

𝝏𝟐𝒑

𝝏𝒕𝟐
∆𝒕𝟐 + 𝑶(∆𝒕𝟑)                                                                        Equation 73 

The Taylor’s series is also applied to the expansion of the interface displacement which is a function 

of time about (𝑡𝑗). The equation is: 

𝒔𝒋±𝟏 = 𝒔𝒋 ±
𝝏𝒑

𝝏𝒕
∆𝒕 +

𝟏

𝟐

𝝏𝟐𝒑

𝝏𝒕𝟐
∆𝒕𝟐 + 𝑶(∆𝒕𝟑)                                                                        Equation 74 
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Also, 𝒖𝒊±𝟏 = 𝒖𝒊 ± ∆𝒖                                                                                                          Equation 75 

Substituting Equation 74 to 77 into Equation 73, the revised equation obtained, which describes the 

actual transformed partial differential equation, and the truncation error is given below:   

𝑻𝑬
𝒏 =

𝝏(𝒑𝒔)

𝝏𝒕
 − 

𝑫𝑨
𝒔

𝝏𝟐𝒑

𝝏𝒖𝟐
 −
𝒅𝒔

𝒅𝒕

𝝏(𝒑𝒖)

𝝏𝒖⏟                    
𝑨𝒄𝒕𝒖𝒂𝒍 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅 𝑷𝑫𝑬

 

+
𝟏

𝟐

𝝏𝟐(𝒑𝒔)

𝝏𝒕𝟐
(∆𝒕)𝟐 −

𝒅𝒔

𝒅𝒕
[(𝒖

𝝏𝟐𝒑

𝝏𝒖𝟐
+
𝝏𝒑

𝝏𝒖
)∆𝒖 +

𝟏

𝟒

𝝏𝟐𝒑

𝝏𝒖𝟐
∆𝒖𝟐 +

𝟏

𝟒

𝝏𝟐𝒑

𝝏𝒕𝟐
∆𝒕𝟐] + 𝑶(∆𝒕𝟑, ∆𝒖𝟑)

⏟                                                    
𝑻𝒓𝒖𝒏𝒄𝒂𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒍𝒆𝒂𝒑𝒇𝒓𝒐𝒈−𝑫𝒖𝒇𝒐𝒓𝒕 𝑭𝒓𝒂𝒏𝒌𝒆𝒍 𝑭𝑬𝑴  𝒎𝒐𝒅𝒆𝒍

 

                                                                                                                                              Equation 76 

𝑶(∆𝒖𝟑) represents the terms from the third-degree function in the above Taylor series expansion 

which is removed in the computational analysis of the numerical model. 

From Equation 76, it is clear that the Dufort Frankel/Leap Frog explicit scheme yields consistency 

when ∆𝑡2 → 0 and ∆𝑢 → 0 since all of the error terms tend toward zero. 

 

3.3.    Stability analysis of the model 

Stability in numerical analyses is defined as numerical schemes that produce bounded errors for 

numerical solutions which usually depend on the approximation scheme applied. It is well recognized 

that errors are unavoidable in any numerical computation. A stability analysis is therefore necessary 

to examine the values of approximation variables that would lead to increased errors in the required 

solutions which needs to be bounded [53]. The nature of partial differential equation that govern a 

diffusion problem, the step size and type of numerical scheme employed collectively determine the 
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stability of a numerical scheme: for example, a particular method can be stable for a problem but not 

stable when applied to another problem [53]. There are many available tools that are reliable and can 

be used to investigate and determine the stability of a numerical scheme. They include the von 

Neumann and Lax equivalence theorems.  

The von Neumann stability analysis is a very useful tool for investigating the generation of numerical 

errors which in turn provides information about the stability of a numerical scheme. Potential for the 

amplification of errors can be thoroughly examined for any numerical discretization scheme applied 

[54]. The stability of a numerical scheme is ascertained when the truncation error from the numerical 

scheme decays with time [55]. When the maximum absolute amplification factor (𝐺) between the time 

interval is less than or equal to one (|𝐺±| ≤ 1), stability is attained [24, 55]. 

In this work, the stability analysis of the developed finite element model is carried out by using the 

von Neumann analysis. This is applied to the governing model with consideration of a constant 

diffusion coefficient. A nodal point which describes the concentration parameter (dependent variable) 

in the model discretization can be described by using a harmonic plane wave equation which is 

expressed as: 

𝒑𝒊
𝒌 = 𝑮𝒑𝒐𝒆

𝒊𝒋∅∆𝒖                                                                                                                   Equation 77 

where G is the amplification factor between the given time interval,  𝑝𝑜 is the initial amplitude of the 

harmonic plane wave, and ∅∆𝑢 describes the wavenumber. 

The discretized dependent variable in the von Neumann analysis can be described as: 

 𝒑𝒊
𝒌+𝟏 = 𝑮𝒑𝒊

𝒌                                                                                                                        Equation 78 
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𝒑𝒊
𝒌−𝟏 =

𝒑𝒊
𝒌

𝑮
                                                                                                                            Equation 79 

𝒑𝒊±𝟏
𝒌 = 𝒆±𝒊𝒋∅∆𝒖𝒑𝒊

𝒌                                                                                                                Equation 80 

The general situation considered when the interface displacement is of equal rate of change is:  

𝒘 =
𝒔𝒌+𝟏

𝒔𝒌
=

𝒔𝒌

𝒔𝒌−𝟏
                                                                                                                   Equation 81 

For the case of a stationary boundary interface, 𝒔𝒌+𝟏 = 𝒔𝒌 = 𝒔𝒌−𝟏 which implies that 𝑤 = 1 from 

Equation 81. The expression that describes the combination of time step, diffusion coefficient, current 

interface position and space step is known as the diffusion factor as follows: 

𝝁 =
∆𝒕𝑫𝑨

(𝒔𝒌∆𝒖)
𝟐                                                                                                                            Equation 82 

The ratio of the applied space step to the current transformed position variable in the model is 

expressed below: 

𝝋 =
∆𝒖

𝒖𝒊
                                                                                                                                  Equation 83 

In the von Neumann stability analysis, the combination of numerical constants, 𝑤, 𝜇 𝑎𝑛𝑑 𝜑 forms the 

determining factor for the Courant-Friedrichs-Lewy (CFL) convergence criteria which usually arises 

in numerical analysis for explicit time discretization schemes. 

Equation 86 is obtained by applying the classical explicit time discretization scheme to a general finite 

element model.  
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𝒔𝒋+𝟏𝒑𝒊
𝒋+𝟏
− 𝒔𝒋𝒑𝒊

𝒋

=
𝑫𝑨(𝒕

𝒋+𝟏 − 𝒕𝒋)

𝒔𝒋(𝒕)∆𝒖𝟐
[𝒑𝒊+𝟏
𝒋
− 𝟐𝒑𝒊

𝒋
+ 𝒑𝒊−𝟏

𝒋
]

+ (
𝒔𝒋+𝟏 − 𝒔𝒋

𝟔
) [
(𝒑𝒊+𝟏

𝒋
− 𝒑𝒊

𝒋
)(𝒖𝒊+𝟏 + 𝟐𝒖𝒊)

∆𝒖
+
(𝒑𝒊

𝒋
− 𝒑𝒊−𝟏

𝒋
)(𝒖𝒊−𝟏 + 𝟐𝒖𝒊)

∆𝒖
] 

                                                                                                                                              Equation 84 

Considering a planar geometric system and the case of a constant diffusion coefficient, the overall 

substitution of Equations 73 – 80 into Equation 81 yields the required modified equation that describes 

the maximum amplification factor required to analyze and study the convergence and the stability 

condition. The modified equation obtained is: 

𝑮 =
𝟏

𝒘
[𝟏 − 𝟒𝝁𝒔𝒊𝒏𝟐 (

∅∆𝒖

𝟐
) + (

𝒘 − 𝟏

𝟔
)(
𝟔𝒋𝒔𝒊𝒏 (∅∆𝒖)

𝝋
− 𝟒𝒔𝒊𝒏𝟐 (

∅∆𝒖

𝟐
))] 

                                                                                                                                              Equation 85 

Equation 85 describes the common and classical Euler explicit time discretization scheme of a general 

finite element model. Substituting Equations 73 – 80 into Equation 68 yields the modified equation 

that describes the maximum amplification factor for the Dufort Frankel/Leap Frog explicit scheme. 

The modified equation is: 

𝑮 [𝒘 + 𝝁 +
𝟏

𝟔
(𝒘 −

𝟏

𝒘
)]

=
𝟏

𝑮
[𝒘 − 𝝁 −

𝟏

𝟔
(𝒘 −

𝟏

𝒘
)] + 𝒆𝒋∅∆𝒖 [𝝁 +

𝟏

𝟔
(𝒘 −

𝟏

𝒘
) (
𝟑

𝝋
+ 𝟏)]

+ 𝒆−𝒋∅∆𝒖 [𝝁 −
𝟏

𝟔
(𝒘 −

𝟏

𝒘
) (
𝟑

𝝋
− 𝟏)] 

                                                                                                                                              Equation 86 
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Equation 82 and 83 are solved to compare the level of stability for both the classical explicit and Dufort 

Frankel/Leap Frog schemes. Figures 3.15 and 3.16 and 3.17 plot the graphical plots of amplification 

factor for stationary boundaries. 
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Figure 3.15     Amplification factor for a stationary boundary case in finite element model 
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Figure 3.16   Amplification factor vs 𝜇 for stationary boundary using classical explicit finite element 

model 
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3.4    Implementation of the newly developed numerical model 

 

Up/down winding schemes are very common schemes in the solution of diffusion problems when 

control volume approaches are used because they overcome the generation of oscillating (non-

monotonic) solutions. These schemes are very applicable to numerical discretization with intermediate 

profiles. 

In the application of the newly developed numerical diffusion model, the interdiffusion coefficient, 

which is a function of concentration, is evaluated at the average centered concentration values between 

two nodal points since the model does not contain intermediate concentration profiles. From the 

implementation of the new models, there are no issues of non-monotonic (oscillating) solutions. The 

𝐷(𝐶) employed in this model are given below: 

(𝐷)𝑖,𝑖+1
𝑗+𝜎

=
1

2
[(𝐷)𝑖

𝑗+𝜎
+ (𝐷)𝑖+1

𝑗+𝜎
]                                                                                          Equation 87                                                                 

(𝐷)𝑖−1,𝑖
𝑗+𝜎

=
1

2
[(𝐷)𝑖−1

𝑗+𝜎
+ (𝐷)𝑖

𝑗+𝜎
]                                                                                           Equation 88 

The time step chosen in the numerical simulation is based on Zhou and North [33]. A time step in a 

logarithm scale was selected for the even distribution of points. The whole diffusion system is then 

more optimized. 

𝑡𝑖𝑚𝑒𝑙𝑜𝑔 = 𝑙𝑜𝑔(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙): (
1

𝑀
) 𝑙𝑜𝑔 (

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) : 𝑙𝑜𝑔(𝑡𝑓𝑖𝑛𝑎𝑙)                                                      Equation 89 

where 𝑀 denotes the number of discretization points in the whole diffusion system. 

Hence, the algorithm and procedures for solving the boundary-valued problem are outlined as follows: 
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1. The initial and final experimental concentration profiles are first extracted and smoothened. Data 

smoothening is carried out through moving average smoothening. 

2. The BM or SF method is used to provide an initial estimate of the 𝐷(𝐶) function (linear or 

quadratic behaviour). 

        𝐷 = exp[𝐹(𝐶)]                                                                                                             Equation 90 

        𝐹(𝐶) is a functional behaviour that gives the behavioral trends of the composition dependent 

interdiffusion coefficient from the analytical method given above. 

3. The newly developed numerical model is used to simulate the concentration profile by solving 

Fick’s second law of diffusion. The newly developed Dufort Frankel/Leap Frog scheme which is 

a three-level explicit method requires the use of 𝑝𝑖
2 = 𝑝𝑖

1. This is because at 𝑘 = 1, the two-step 

classical explicit method gives the same result. When 𝑘 > 1, the future concentration profile, 

𝑝𝑖
𝑘+1 is calculated by using the newly developed Dufort Frankel/Leap Frog finite element model. 

The above method outlined requires no assumption or any sort of iteration as commonly used in 

implicit schemes. 

4. A threshold value is set to compare the experimental and simulated concentration profiles. The 

difference between the two profiles is calculated. When the value of the difference is lower than 

the pre-set threshold, the evaluated interdiffusion coefficient obtained is taken as the best result. 

5. The forward simulation technique is used to adjust the interdiffusion coefficient. If the sum of the 

squared difference obtained in Step 4 is higher than the threshold value set, the interdiffusion 

coefficient is adjusted. This is achieved through the inverse proportionality between the 

interdiffusion coefficient and concentration gradient at any given concentration value. 
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Figure 3.17   Flow chart diagram of forward simulation analysis  
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Chapter 4 

Validation and result of the newly developed numerical model 

4.1    Validation of numerical model 

 

A numerical diffusion model is developed for a two-profile system which requires two experimental 

concentration profiles for the extraction of  𝐷(𝐶). It is noted that the newly developed numerical 

diffusion model is combined with forward simulation techniques in two different modes, which both 

consider two profiles. The first mode (FEM−FSM I) is the case where the initial concentration profile 

is a step function profile, and the final concentration profile is experimentally obtained. The first mode 

assumes that there is no initial non-uniform solute distribution in the material prior to the diffusion 

process, which is the main reason why the initial profile is a step-function. This assumption is 

reasonable as long as the actual initial profile is infinitesimally small compared to the final 

experimental concentration profile. The second mode (FEM−FSM II) is the case where both the initial 

and final concentration profiles are experimentally obtained which is the main focus of this research 

study. For this reason, the validation of the new model is executed in the two modes.  

In this section, the numerical diffusion model developed in this research work is validated by using 

the experimental data in the existing literature [see 45 -48]. The results of numerical inverse simulation 

study in [45-48], for cases where the assumption of step-function initial concentration profile is valid, 

are compared to those of the present model to determine the reliability of the new model developed in 

this research. However, in the second phase of the model validation, experimental concentration 

profiles reported in the literature [56-57] are used. The 𝐷(𝐶) extracted from the experimental profiles 



 
 

 

 

67   

by the new model are used to predict the final concentration profiles and the predicted profiles by the 

model are compared to the actual final experimental profiles.  

The authors of [45-48] developed a numerical inverse method called forward simulation techniques in 

the bid to overcome the limitations and major flaws associated with existing analytical methods. Their 

work are cases where the initial profile (significantly small relative to the final experimental 

concentration profile) is assumed to be a step function while the final profile is experimentally 

obtained. They developed a MATLAB program for effective extraction and evaluation of both 

interdiffusion and impurity coefficients from the concentration profiles of binary diffusion couples. 

They reported the experimental results and data for a number of different binary alloy systems. Three 

of their binary systems are examined by extracting 𝐷(𝐶) with the new diffusion model. They include 

iron - nickel (Fe - Ni), cobalt - nickel (Co - Ni), and niobium - tungsten (Nb - W) binary systems [45 

- 47]. The experimental diffusion profiles were heat treated at 1100°𝐶 for a diffusion time of 1000 

hours. The experimental concentration profiles from different binary alloy systems were investigated. 

The result from the numerical simulations carried out with the new model was compared with the 

existing numerical results in [45-47].  

The 𝐷(𝐶) calculated from the present model accurately reproduces the experimental concentration 

profiles in [45-47]. 
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Figure 4.1    Relative comparison between simulated and experimental concentration profiles [45-

47] in an Fe- Ni diffusion couple at 1100°𝐶 
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Figure 4.2   Relative comparison between simulated and experimental concentration profiles [45-47] 

in an Ni - Co diffusion couple at 1100°𝐶 
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Figure 4.3   Relative comparison between simulated and experimental concentration profiles [45-47] 

in an Nb - W diffusion couple at 1100°𝐶 
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In the Fe-Ni diffusion couple system illustrated in Figure 4.1, the 𝐷(𝐶) evaluated with forward 

simulation techniques and the newly proposed model shows a polynomial behaviour of degree five, 

which is a quintic function of Fe concentration.  

Another binary alloy system investigated with the newly developed model is the Co-Ni alloy system. 

In the system, the 𝐷(𝐶) obtained from the implementation of the FSM and current model applied to 

simulate the concentration profile shows a linear trend with Co composition. The data from the 

extracted interdiffusion coefficient versus concentration of Co show that as the concentration of Co 

increases, the interdiffusion coefficient decreases. This is supported in [46]. 

The Nb-W system (as illustrated in Figure 4.3) is also investigated with the present model. It has a 

small diffusion zone that is about 5𝜇𝑚 compared to Fe-Ni system (as illustrated in Figure 4.1) which 

is about 700𝜇𝑚 and approximately a 500𝜇𝑚 diffusion zone in the Co-Ni system (as illustrated in 

Figure 4.2). However, even if the diffusion zone is small, the combination of FSM and the present 

model effectively extracts the 𝐷(𝐶). 

The above diffusion couple systems investigated are all found to have excellent qualitative agreement 

with their result and quantitative approximation with the experimental data at both few and large 

discretization points. This demonstrates the accuracy, efficiency, and reliability of the new model.  
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As discussed earlier, the main purpose of this study is to test and investigate if the newly developed 

finite element model can be used to successfully extract a 𝐷(𝐶) from experimental concentration 

profiles. For this reason, two experimental concentration profiles are required unlike the first mode of 

validation where one final experimental concentration profile is necessary. This is the second mode of 

the validation. These provide further validation of the newly developed finite element diffusion model. 

Two binary alloy systems, the Ni - Cu and Cu - Si with available experimental concentration profiles 

are carefully selected from the literature for this purpose. The numerical diffusion model developed in 

this work is effectively used to simulate non steady state diffusion in a single-phase binary alloy system 

and extract the 𝐷(𝐶) that operates between two experimental concentration profiles.  

The simulated final concentration profiles produced by using the calculated 𝐷(𝐶) obtained by the new 

model shows an excellent agreement with the final experimental concentration profile, which validates 

the reliability of the new numerical diffusion model. 

The results of the modelling and a series of numerical simulations under different conditions 

implemented are hereby presented and discussed. The analyses of the results are outlined based on the 

binary alloy systems investigated. 
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4.2 Extraction of 𝑫(𝑪)s in nickel - copper diffusion couple system 

The experimental concentration profiles for the Ni – Cu binary alloy system at a diffusion temperature 

of 1025°𝐶 are extracted from [56]. The diffusion times for the experimental concentration profiles 

extracted are 40, 72, and 120 hours. Different analyses were carried out for the three different time 

intervals and plotted in Figures 4.4 to 4.8. 

In the Ni – Cu system, electrodeposition of Cu on substrate samples of Ni – Cu diffusion couple was 

carried out by [56] and diffusion heat treatment was done at a sufficiently elevated temperature of 

1025°𝐶. The experimental concentration profiles collected at two different diffusion times are used 

to calculate the 𝐷(𝐶) which is plotted against the simulated concentration profile in Figure 4.4.  

For an Ni – Cu binary alloy system, the existing literature indicates that the standard error calculated 

from several samples of experimental concentration profiles is found to range from 10% −  15% 

[15]. A standard error of 15% is used in plots of 𝐷(𝐶) against concentration profile. 
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Figure 4.4: Extracted experimental concentration profiles [56] in Ni - Cu binary alloy 

system at 1025°𝐶 for 40, 72 and 120 hours 
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Figure 4.5: Time variation of 𝐷(𝐶) with concentration of Ni at different time intervals for Ni – Cu 

diffusion couple system at 1025°𝐶 
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Figure 4.6: Comparison between extracted experimental [56] and simulated 

concentration profiles in Ni - Cu binary alloy system at 1025°𝐶 for 40 −  72 hours 
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Figure 4.7: Comparison between extracted experimental [56] and simulated 

concentration profiles in Ni - Cu binary alloy system at 1025°𝐶 for 72 −  120 hours 
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Figure 4.8: Comparison between extracted experimental [56] and simulated 

concentration profiles in Ni - Cu binary alloy system at 1025°𝐶 for 40 −  120 hours 
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Time is observed to be significant influence in the figures that describe the 𝐷(𝐶) with the presence of 

overlapping regions between the error bars of the samples at different times. The extracted 

experimental concentration profiles from both binary systems investigated at different diffusion times 

are also compared with the simulated concentration profiles as shown in Figures 4.6, 4.7, and 4.8 for 

the Ni – Cu binary alloy system. The 𝐷(𝐶) with concentration are calculated and extracted by using 

the forward simulation technique and the newly developed finite element diffusion model. The 

extracted results are shown in Figure 4.5. It is evident from the outlined results obtained that the new 

diffusion model successfully extracts the 𝐷(𝐶). 

In the case of 40 – 120 hours as illustrated in Figure 4.8, the solute concentration profile at 40 hours 

is taken as the initial profile while that at 120 hours is taken as the final concentration profile. Unlike 

the usual conventional analytical method such as the BM method and SF method which assume a step 

function of space, the 40-hour initial profile shows an accurate and practical situation of existing 

diffusion treatment in a substrate. Figure 4.5 describes the significant variation of the 𝐷(𝐶) as the 

diffusion time interval changes from 40 and 72 to 72 and 120 and to 40 and 120 hours. Note that [57] 

experimentally performed the diffusion heat treatment at a very high temperature of 1025°𝐶. It is 

well-known in the field of atomic diffusion that higher temperatures result in greater depth of 

penetration of the solute, thereby providing sufficient supporting evidence of the reliability of the new 

model used in the analysis of the result obtained. 
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4.3 Extraction of 𝑫(𝑪)s in copper - silicon diffusion couple system 

The concentration profiles for Cu-Si binary diffusion system were obtained from the experimental 

work in Rhines and Mehl [57]. Three experimental concentration profiles at 17.92, 37.46, and 66.96 

days are available for the calculation and extraction of 𝐷(𝐶) between any two experimental 

concentration profiles.  

Similar to the Ni-Cu binary system, the required experimental concentration profiles from the 

diffusion heat treatment experiments in [57] were used to validate the new model. The results from 

the numerical simulations conducted are presented in Figures 4.9 and 4.10.  
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Figure 4.9: Extracted experimental concentration profiles [57] in Cu - Si binary alloy 

system at 700°𝐶 for 17.9, 37.5 and 67 days   
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Figure 4.10: Time variation of 𝐷(𝐶) with concentration at different time intervals for Cu – Si 

diffusion couple  system at 700°𝐶 
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A detailed assessment of the method in [58] of the collected data used to prepare the diffusion couple 

showed that Cu is deposited through electrodeposition on an Si – Cu alloy. These experimental 

concentration profiles as shown in Figures 4.11, 4.12, and 4.13, are used in the new model developed 

to extract the 𝐷(𝐶). The 𝐷(𝐶) calculated by the new model as shown in Figure 4.10 accurately 

reproduces the extracted experimental concentration profiles. It is worth emphasizing that this is not 

the objective of [58].  

In this study, subsequent to evidence of the successful extraction of 𝐷(𝐶) shown in Figure 4.5 and 

4.10, mathematical polynomial functions that describe the behavioral trend of the extracted 𝐷(𝐶) are 

also obtained.  

The general form of the interdiffusion coefficient (𝐷) as a function of concentration (𝐶) is described 

by using Equation 94. 𝐹(𝐶) illustrates the polynomial function which is: 

𝐹(𝐶) =  𝛽𝑛𝐶
𝑛 + 𝛽𝑛−1𝐶

𝑛−1 + 𝛽𝑛−2𝐶
𝑛−2 +⋯+ 𝛽2𝐶

2 + 𝛽1𝐶 + 𝛽0                                   Equation 92 

The 𝐹(𝐶) of the three different time intervals investigated in the 𝑁𝑖 − 𝐶𝑢 and 𝐶𝑢 − 𝑆𝑖 binary alloy 

systems are given in Tables 4.1 and 4.2, where 𝛽𝑖 ( 𝑖 represents the degree term of the polynomial) are 

the coefficients of the polynomial that describe the concentration dependent interdiffusion behaviour 

as shown in Tables 4.1 and 4.2. 
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Figure 4.11: Comparison between extracted experimental [57] and simulated 

concentration profiles in Cu - Si binary alloy system at 700°𝐶 for 17.9 −  37.5 days 
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Figure 4.12: Comparison between extracted experimental [57] and simulated 

concentration profiles in Cu - Si binary alloy system at 700°𝐶 for 37.5−  67 days 
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Figure 4.13: Comparison between extracted experimental [57] and simulated 

concentration profiles in Cu - Si binary alloy system at 700°𝐶 for 17.9 – 67 days  
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Table 4.1 

Polynomial function 𝐹(𝐶) at different time intervals investigated for Ni - Cu binary system at 

1025°𝐶 

Time Interval (hours) Polynomial function 𝑭(𝑪, 𝒕)𝑵𝒊−𝑪𝒖 

40 – 72 1.4267𝐶2 − 2.8134𝐶 − 29.8604 

40 – 120 2.7588𝐶2 − 4.1950𝐶 − 30.1513 

72 – 120 2.7589𝐶2 − 4.198𝐶 − 29.6405 

 

 

 

Table 4.2 

Polynomial function 𝐹(𝐶) at different time intervals investigated for Cu - Si binary system at 700°𝐶 

Time Interval (days) Polynomial function 𝑭(𝑪, 𝒕)𝑪𝒖−𝑺𝒊 

17.9 – 37.5 3.4125𝐶2 − 1.5638𝐶 − 31.7373 

17.9 – 67 −0.4955𝐶2 − 1.8917𝐶 − 32.3349 

37.5 – 67 −0.4955𝐶2 − 1.8918𝐶 − 32.6956 

 

 

The results obtained with the application of the newly developed model in this study are the outcome 

of a comprehensive review and analysis of two different binary alloy systems in the existing literature 

that involves three distinct experimental concentration profiles and a sustained diffusion heat treatment 

temperature. 
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Chapter 5 

Summary and Conclusions 

The key objective of this study is to develop and validate a new numerical diffusion model for the 

extraction of 𝐷(𝐶) in between two experimental concentration profiles obtained from diffusion couple 

plates. The new numerical model is developed for the planar geometric systems. The idea is to start 

first with a simple geometry and affirm the reliability of the model, which can later serve as the basis 

for studies in higher geometric dimensions. In this study, 𝐷(𝐶)s are extracted from Cu - Si and Ni - 

Cu binary alloys by using the new model in the FSM to address major flaws associated with traditional 

analytical methods. The key findings from this research are summarized as follows.  

1. A new numerical diffusion model which is developed with the use of the Galerkin weighted 

residual FEM and Dufort-Frankel/Leap Frog explicit scheme has been successfully developed 

and applied. A weighted residual set up from the Landau transformed diffusion governing model 

is subjected to rigorous analytical integration over the functional domains of interest. The 

element equations obtained are assembled together. The model is then used to simulate 

interdiffusion behavior in binary alloy systems and applied with FSA in the successful extraction 

of interdiffusion coefficient under the influence of concentration dependency.  

2. A consistency analysis of the truncation errors associated with the numerical scheme applied in 

the new model is carried out. The result of the analysis reveals the consistency criteria for the 

decay of the truncation errors which come from the governing diffusion model.  

3. Also, a stability analysis that uses the von Neumann method is implemented to justify the 

application of the Dufort Frankel/Leap Frog explicit scheme for time discretization in the newly 
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developed model. The result of this analysis provides evidence for using the Dufort Frankel/Leap 

Frog explicit scheme over classical Euler schemes. Observations from comparisons of both 

schemes show that the Dufort Frankel/Leap Frog explicit scheme is more stable than the classical 

explicit scheme. 

4. The new model which eliminates non-trivial assumptions associated with existing implicit finite 

difference models, has been successively validated with reliable experimental data in the 

literature. The final experimental concentration profiles predicted by the model using the 𝐷(𝐶) 

calculated by the model agree with the actual final experimental concentration profiles, thereby 

proving the accuracy and reliability of the newly developed model.  

5. Therefore, the new model can be effectively used to extract the 𝐷(𝐶) operative between any two 

isothermal diffusion times, which is crucial for studying the effect of diffusion time on 𝐷(𝐶). 

This is an achievement that is not possible by conventional analytical methods such as the 

Boltzmann-Matano, Sauer-Freise, Wagner, and Hall methods. 
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Chapter 6 

Recommendations for future work 

The newly developed numerical diffusion model in combination with a FSM is used in the present 

work to extract the 𝐷(𝐶)s in binary alloy systems. However, as future work, the following points 

are recommended: 

1. With the application of this newly developed finite element model, future work can be done 

on other factors such as the influence of pre-existing non-uniform solute distributions and 

boundary conditions in different binary alloy systems. A case study where the solute 

concentration at the surfaces of the material samples changes with time instead of remaining 

constant throughout the simulation can also be investigated with the new model. 

2. The reliability, effectiveness, and accuracy of a numerical model play an important role in 

the simulation of diffusion processes and evaluation of 𝐷(𝐶). The type of shape function 

applied in the course of formulating the finite element model determines the overall 

accuracy of the numerical simulations. In place of commonly used linear shape functions, 

higher ordered shape functions can be used to improve the accuracy of the model.  

3. Due to the numerous advantages associated with the FEM over the finite difference method, 

the method of Dufort Frankel/Leap Frog finite element numerical diffusion model can be 

used and extended to cases of higher geometric and non–planar systems such as cylindrical 

and spherical systems.  
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4. Research studies using finite element modelling, simulations, and experimental 

investigations study isothermal variation of  𝐷(𝐶) can also be done for ternary and other 

multi-component alloy systems. 
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Appendix: Mathematical Formulations and Algorithms of the Finite Element Models 

Section A: 1-D Murray-Landau Coordinate Transformation 

A description of the spatial parameters is given as follows: 

𝑟 = spatial position in the natural coordinate system. 

𝑠(𝑡) = displacement 

𝑢 = new position in a variable space grid system  

𝑅 = length of the whole system. 

𝐶(𝑟, 𝑡) = concentration profile in a natural coordinate system. 

𝑝(𝑢, 𝑡) = concentration profile in a Landau transformed spatial coordinate system. 

Proof 

Given the interval, 0 < 𝑟 < 𝑠(𝑡) ↔ 0 < 𝑢 < 1                                                                   Equation A.1 

Divide through by 𝑠(𝑡),  

we have: 0 <
𝑟

𝑠(𝑡)
< 1, we say 𝑢 =

𝑟

𝑠(𝑡)
 in the spatial coordinate transformation. 

𝟎 < 𝒓 < 𝒔(𝒕) ↔⏞
𝒇𝒊𝒙𝒆𝒅 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏

𝟎 < 𝒖 < 𝟏                                  diffusion model 

The governing equation of the diffusion model that describes the concentration profile of the system 

is: 

𝜕𝐶(𝑟,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑟
(𝐷𝐴[𝐶(𝑟, 𝑡)]

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
)                     0 < 𝑟 < 𝑠(𝑡)                                                Equation A.2 
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Equation A.2 describes the diffusion in the binary alloy system. 𝐷𝐴 is the diffusion coefficient. 𝑠(𝑡) 

describes the position. R is the length of the entire system. 

Targeted transformation:  (𝑟, 𝑡) ↔ (𝑢, 𝑡) 

C is a function of (𝑟, 𝑡) in the natural coordinate system and 𝑝 is a function of (𝑢, 𝑡) in a Landau 

transformed spatial coordinate system. 

𝑑𝐶(𝑟,𝑡)

𝑑𝑡
=
𝑑𝑟

𝑑𝑡

𝑑𝐶(𝑟,𝑡)

𝑑𝑟
+
𝜕𝐶(𝑟,𝑡)

𝜕𝑡
                                                                                                    Equation A.3 

Using the chain rule on the differential of spatial coordinates with respect to time in terms of the 

displacement parameter gives: 

𝑑𝑟

𝑑𝑡
=

𝑟

𝑠(𝑡)

𝑑𝑠(𝑡)

𝑑𝑡
                                                                                                                        Equation A.4 

The expression that describes the relationship between 𝐶(𝑟, 𝑡) and the new coordinate concentration 

profile 𝑝(𝑢, 𝑡) for the system is given by: 

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
=

1

𝑠(𝑡)
 
𝜕𝑝(𝑢,𝑡)

𝜕𝑢
                                                                                                             Equation A.5    

Substituting Equations A.4 and A.5 into A.2 results in: 

𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
=

𝑟

𝑠(𝑡)

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
+ 𝑠(𝑡)

𝜕𝐶(𝑟,𝑡)

𝜕𝑡
                                                                          Equation A.6   

The Landau coordinate transformation of the left side of Equation A.2 is: 

𝑑𝐶(𝑟,𝑡)

𝑑𝑡
=
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
+

𝑢

𝑠(𝑡)

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
                                                                                        Equation A.7   
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The Landau transformed expression for the governing diffusion model as expressed in Equation A.2 

is stated in Equation A.8. Further simplifications required in the derivation of Equation A.11 are 

expressed in Equations A.9  to A.11.  

𝜕𝑝(𝑢,𝑡)

𝜕𝑡
=

1

[𝑠(𝑡)]2
𝜕

𝜕𝑢
[𝐷𝐴(𝑝(𝑢, 𝑡))

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
]                                                                               Equation A.8   

 𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
=
𝜕(𝑠(𝑡)𝑝(𝑢,𝑡))

𝜕𝑡
− 𝑝(𝑢, 𝑡)

𝑑𝑠(𝑡)

𝑑𝑡
                                                                            Equation A.9   

𝜕(𝑠𝑝(𝑢,𝑡))

𝜕𝑡
=
𝑑𝑠(𝑡)

𝑑𝑡

𝜕(𝑢𝑝(𝑢,𝑡))

𝜕𝑢
+  [𝑠(𝑡)]2

𝜕𝑝(𝑢,𝑡)

𝜕𝑡
                                                                      Equation A.10   

𝜕(𝑠𝑝(𝑢,𝑡))

𝜕𝑡
=
𝑑𝑠(𝑡)

𝑑𝑡

𝜕(𝑢𝑝(𝑢,𝑡))

𝜕𝑢
+

1

𝑠(𝑡)

𝜕

𝜕𝑢
[𝐷𝐴(𝑝(𝑢, 𝑡))

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
]                                                   Equation A.11   

 

Finite Element Analysis 

The main idea behind the FEM is changing the partial differential equation (strong form) to a weak 

form. The solution of the weak formulation of the equation involved approximates the exact or 

analytical solution of the partial differential equation. 

The resulting weighted residual, 

𝑅𝑟𝑒𝑠(𝑢, 𝑡) =  𝑠(𝑡)
𝜕𝑝(𝑢,𝑡)

𝜕𝑡
− 𝑢

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢,𝑡)

𝜕𝑢
−
𝐷𝐴(𝑝(𝑢,𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢,𝑡)

𝜕𝑢2
                                             Equation A.12    

To obtain the weighted residual integral 𝐼(𝑝(𝑢, 𝑡)), we integrate 𝑅𝑟𝑒𝑠(𝑢, 𝑡)𝑊𝑗(𝑢, 𝑡) into the global 

solution domain 𝐷(𝑢, 𝑡).𝑊𝑗(𝑢) represents a set of weighting factors (𝑗 = 1, 2 ,3, … ). 

𝐼(𝑝(𝑢, 𝑡)) = ∫ 𝑊𝑗(𝑢, 𝑡)𝑅𝑟𝑒𝑠(𝑢, 𝑡)du = 0
𝑏

𝑎
                                                                        Equation A.13    
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𝐼(𝑝(𝑢, 𝑡)) = ∫𝑊𝑗(𝑢, 𝑡) (𝑠(𝑡)
𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
− 𝑢

𝑑𝑠(𝑡)

𝑑𝑡

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
−
𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
)du = 0

𝑏

𝑎

 

                                                                                                                                          Equation A.14    

The function to calculate values of the concentrations at locations between the nodes is derived. This 

interpolation function is termed as the shape function. It is noted that, for linear elements, the 

polynomial interpolation function is first order. 

The concentration varies linearly between the nodal points. The equation is given below: 

𝑝(𝑢) = 𝐴 + 𝐵𝑢                                                                                                              Equation A.15  

The coefficients 𝐴 and 𝐵  can be determined by using the nodal conditions stated below 

𝑝 =  𝑝𝑖 at 𝑢 = 𝑢𝑖                                                                                                        Equation A.16 

𝑝 =  𝑝𝑖+1 at 𝑢 = 𝑢𝑖+1                                                                                              Equation A.17 

Solving simultaneously, the expression for 𝐴 and 𝐵 are obtained. 

𝐴 =  
𝑝𝑖𝑢𝑖+1−𝑝𝑖+1𝑢𝑖

𝑢𝑖+1−𝑢𝑖
                                                                                                   Equation A.18 

𝐵 =  
𝑝𝑖+1−𝑝𝑖

𝑢𝑖+1−𝑢𝑖
                                                                                                              Equation A.19 

Substituting Equation A.18 and Equation A.19 into Equation A.15 yields: 

𝑝(𝑢) = (
𝑝𝑖𝑢𝑖+1−𝑝𝑖+1𝑢𝑖
𝑢𝑖+1−𝑢𝑖

)+ (
𝑝𝑖+1−𝑝𝑖
𝑢𝑖+1−𝑢𝑖

)𝑢                                                      Equation A.20 

Further simplification of Equation A.20 leads to Equation A.21 expressed below. 
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𝑝(𝑢) = 𝑝𝑖 (
𝑢𝑖+1−𝑢

𝑢𝑖+1−𝑢𝑖
)+𝑝𝑖+1 (

𝑢−𝑢𝑖
𝑢𝑖+1−𝑢𝑖

)                                                       Equation A.21 

The local interpolating polynomials, 𝑝𝑖(𝑢, 𝑡) are defined by: 

𝑝𝑖(𝑢, 𝑡) = 𝑝𝑖(𝑢, 𝑡)𝑁𝑖
(𝑖)(𝑢) + 𝑝𝑖+1(𝑢, 𝑡)𝑁𝑖+1

(𝑖) (𝑢)                                                           Equation A.22    

Let the global exact solution �̅�(𝑢, 𝑝) be approximated by the global approximate solution 𝑝(𝑢, 𝑡), 

which is the sum of a series of local interpolating polynomials, 𝑝𝑖(𝑢, 𝑡)[𝑖 = 1, 2 , 3 , … . , 𝐼 − 1] that 

are valid within each element. 

𝑁𝑖
(𝑖)(𝑢) = −

𝑢−𝑢𝑖+1

𝑢𝑖+1−𝑢𝑖
                                                                                                       Equation A.23 

𝑁𝑖+1
(𝑖) (𝑢) =

𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
                                                                                                          Equation A.24 

where 𝑁𝑖
(𝑖)(𝑢) + 𝑁𝑖+1

(𝑖) (𝑢) = 1                                                                                      Equation A.25 

Equation A.22 leads to 

𝑝𝑖(𝑢, 𝑡) = 𝑝𝑖(𝑢, 𝑡) (−
𝑢−𝑢𝑖+1

𝑢𝑖+1−𝑢𝑖
) + 𝑝𝑖+1(𝑢, 𝑡) (

𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
)                                                  Equation A.26 

This is a linear Lagrange polynomial applied to the element (i) 

Further simplification of Equation A.14 yields 

𝐼(𝑝(𝑢, 𝑡)) = 𝑠(𝑡) ∫𝑊𝑗(𝑢, 𝑡) (
𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
) du 

𝑏

𝑎

−
𝑑𝑠(𝑡)

𝑑𝑡
∫𝑊𝑗(𝑢, 𝑡) (𝑢

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
)du −  ∫𝑊𝑗(𝑢, 𝑡) (

𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
)du = 0

𝑏

𝑎

𝑏

𝑎
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                                                                                                                                          Equation A.27 

The above equation comprises terms that include the time derivative of the concentration profile 

residual term which is the first term. The second term is the convective residual term, and the third 

term is the diffusive residual term as described in equation A.28 below. 

𝐼(𝑝(𝑢, 𝑡)) = 𝑠(𝑡) ∫𝑊𝑗(𝑢, 𝑡) (
𝜕𝑝(𝑢, 𝑡)

𝜕𝑡
) du

𝑏

𝑎⏟                  

−
𝑑𝑠(𝑡)

𝑑𝑡
∫𝑊𝑗(𝑢, 𝑡) (𝑢

𝜕𝑝(𝑢, 𝑡)

𝜕𝑢
)du 

𝑏

𝑎⏟                    
2𝑛𝑑 𝑡𝑒𝑟𝑚

1𝑠𝑡  𝑡𝑒𝑟𝑚

 

−∫𝑊𝑗(𝑢, 𝑡) (
𝐷𝐴(𝑝(𝑢, 𝑡))

𝑠(𝑡)

𝜕2𝑝(𝑢, 𝑡)

𝜕𝑢2
)du 

𝑏

𝑎⏟                        

= 0

3𝑟𝑑  𝑡𝑒𝑟𝑚

 

                                                                                                                                          Equation A.28 
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Section B: Dufort Frankel/Leap Frog Explicit schemes for model with zero flux conditions 

imposed at the extreme ends of single-phase systems 

The averaging for the concentration parameter is: 

𝑝𝑖−1
𝑗+1

+ 𝑝𝑖+1
𝑗+1

= 2𝑝𝑖
𝑗+1

                                                                                                           Equation B.1 

𝑝𝑖−1
𝑗−1

+ 𝑝𝑖+1
𝑗−1

= 2𝑝𝑖
𝑗−1

                                                                                                          Equation B.2 

For simplification of the model, a uniform space grid is considered in the nodal FEM equation 

throughout the computation of the model as:  

∆𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖 = ∆𝑢𝑖−1 = 𝑢𝑖 − 𝑢𝑖−1                                                                                Equation B.3 

For enhanced stability, the Dufort Frankel approximations applied for the time step in the model is: 

𝑝𝑖
𝑗
=
1

2
(𝑝𝑖

𝑗−1
+ 𝑝𝑖

𝑗+1
)                                                                                                          Equation B.4 

The Murray-Landau transformed FEM governing equation as expressed in Equation B.3, is solved by 

applying the Dufort Frankel/Leap Frog explicit time discretization to obtain the discretized governing 

numerical models for a single-phase binary alloy system. They are: 

For the model, we have: 

𝑠𝑗+1𝑝𝑖
𝑗+1

− 𝑠𝑗−1𝑝𝑖
𝑗−1

= (
𝑡𝑗+1 − 𝑡𝑗−1

𝑠𝑗
)((𝐷𝐴)𝑖,𝑖+1

𝑗+1 𝑝𝑖+1
𝑗
−  𝑝𝑖

𝑗

(𝑢𝑖+1 − 𝑢𝑖)2
− (𝐷𝐴)𝑖−1,𝑖

𝑗+1 𝑝𝑖
𝑗
− 𝑝𝑖−1

𝑗

(𝑢𝑖 − 𝑢𝑖−1)2
)

+ (𝑠𝑗+1 − 𝑠𝑗−1) (
(𝑝𝑖+1

𝑗
−  𝑝𝑖

𝑗
)(𝑢𝑖+1 + 2𝑢𝑖)

𝑢𝑖+1 − 𝑢𝑖
+
(𝑝𝑖

𝑗
− 𝑝𝑖−1

𝑗
)(𝑢𝑖−1 + 2𝑢𝑖)

𝑢𝑖 − 𝑢𝑖−1
) 
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Equation B.5   

After implementing the Dufort Frankel approximation, the coefficients terms are carefully sorted, 

rearranged, and expressed as follows: 

𝛿𝑃𝐴 ∗ 𝑝𝑖
𝑗+1

= 𝛿𝑃𝐵 ∗ 𝑝𝑖
𝑗−1

+ 𝛿𝑃𝐶 ∗ 𝑝𝑖+1
𝑗
+ 𝛿𝑃𝐷 ∗ 𝑝𝑖−1

𝑗
                                                         Equation B.6  

where 

𝛿𝑃𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1 − 𝑡𝑗−1

2𝑠𝑗
)(

(𝐷𝐴)𝑖,𝑖+1
𝑗

(𝑢𝑖+1 − 𝑢𝑖)2
+

(𝐷𝐴)𝑖−1,𝑖
𝑗

(𝑢𝑖 − 𝑢𝑖−1)2
)

+ (
𝑠𝑗+1 − 𝑠𝑗−1

12
)(
(𝑢𝑖+1 + 2𝑢𝑖)

(𝑢𝑖+1 − 𝑢𝑖)
−
(𝑢𝑖−1 + 2𝑢𝑖)

(𝑢𝑖 − 𝑢𝑖−1)
) 

Equation B.7 

𝛿𝑃𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1 − 𝑡𝑗−1

2𝑠𝑗
)(

(𝐷𝐴)𝑖,𝑖+1
𝑗

(𝑢𝑖+1 − 𝑢𝑖)2
+

(𝐷𝐴)𝑖−1,𝑖
𝑗

(𝑢𝑖 − 𝑢𝑖−1)2
)

− (
𝑠𝑗+1 − 𝑠𝑗−1

12
)(
(𝑢𝑖+1 + 2𝑢𝑖)

(𝑢𝑖+1 − 𝑢𝑖)
−
(𝑢𝑖−1 + 2𝑢𝑖)

(𝑢𝑖 − 𝑢𝑖−1)
) 

Equation B.8 

𝛿𝑃𝐶 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴)𝑖,𝑖+1
𝑗

(𝑢𝑖+1−𝑢𝑖)
2) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑖+1+2𝑢𝑖

𝑢𝑖+1−𝑢𝑖
)                                                     Equation B.9 

𝛿𝑃𝐷 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴)𝑖−1,𝑖
𝑗

(𝑢𝑖−𝑢𝑖−1)
2) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑖−1+2𝑢𝑖

𝑢𝑖−𝑢𝑖−1
)                                                    Equation B.10 

In a single-phase diffusion system of binary alloys, a fixed concentration condition imposed at the 

boundaries implies that there is no possibility of build-up of solute at the extreme boundaries of the 
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host material, but this cannot be ascertained. A zero-flux boundary condition is a confirmed boundary 

condition that can be applied to the ends of the host material to ensure that the total amount of diffusing 

solute in the sample is being conserved during the simulation of a single-phase diffusion system of 

binary alloys. By this reasoning, it is very certain that the extreme boundaries of the material functions 

as a no solute flux boundary. The most accurate and reliable imposed zero flux conditions at both 

extreme ends of the single-phase diffusion system are expressed as: 

𝜕𝑝

𝜕𝑢   1

   𝑘−1
=

𝜕𝑝

𝜕𝑢   1

   𝑘
=

𝜕𝑝

𝜕𝑢    1

    𝑘+1
= 0                                                                                           Equation B.11 

𝜕𝑝

𝜕𝑢   𝑀+1

   𝑘−1
= 

𝜕𝑝

𝜕𝑢   𝑀+1

   𝑘
=

𝜕𝑝

𝜕𝑢    𝑀+1

    𝑘+1
= 0                                                                                      Equation B.12 

By implementing zero flux conditions at the first node (𝑖 = 1) stated in Equation B.11 and simplifying 

the Dufort Frankel/Leap Frog discretization expressed from Equations B.10 to B.15, the actual 

equation that shows no solute migration at the left boundary for a single-phase diffusion system of 

binary alloys is: 

𝛿𝑃𝐴𝐴 ∗ 𝑝1
𝑗+1

= 𝛿𝑃𝐵𝐵 ∗ 𝑝1
𝑗−1

+ 𝛿𝑃𝐶𝐶 ∗ 𝑝2
𝑗
                                                                             Equation B.13  

where, 

𝛿𝑃𝐴𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴)1,2
𝑗

(𝑢2−𝑢1)2
) + (

𝑠𝑗+1−𝑠𝑗−1

12
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                        Equation B.14 

𝛿𝑃𝐵𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴)1,2
𝑗

(𝑢2−𝑢1)2
) − (

𝑠𝑗+1−𝑠𝑗−1

12
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                        Equation B.15 

𝛿𝑃𝐶𝐶 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴)1,2
𝑗

(𝑢2−𝑢1)2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢2+2𝑢1

𝑢2−𝑢1
)                                                     Equation B.16 
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Zero flux conditions are implemented at the last node, 𝑖 = 𝑀 + 1 by using the equation below:  

𝛿𝑃𝐴 ∗ 𝑝𝑀+1
𝑗+1

= 𝛿𝑃𝐵 ∗ 𝑝𝑀+1
𝑗−1

+ 𝛿𝑃𝐷 ∗ 𝑝𝑀
𝑗

                                                                              Equation B.17  

where 

𝛿𝑃𝐴 = 𝑠
𝑗+1 + (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴)𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)2
) − (

𝑠𝑗+1−𝑠𝑗−1

12
) (

4𝑢𝑀+1−𝑢𝑀

(𝑢𝑀+1−𝑢𝑀)
)                                 Equation B.18 

𝛿𝑃𝐵 = 𝑠
𝑗−1 − (

𝑡𝑗+1−𝑡𝑗−1

2𝑠𝑗
) (

(𝐷𝐴)𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)2
) + (

𝑠𝑗+1−𝑠𝑗−1

12
) (

4𝑢𝑀+1−𝑢𝑀

(𝑢𝑀+1−𝑢𝑀)
)                               Equation B.19 

𝛿𝑃𝐷 = (
𝑡𝑗+1−𝑡𝑗−1

𝑠𝑗
) (

(𝐷𝐴)𝑀,𝑀+1
𝑗

(𝑢𝑀+1−𝑢𝑀)2
) + (

𝑠𝑗+1−𝑠𝑗−1

6
) (

𝑢𝑀+2𝑢𝑀+1

𝑢𝑀+1−𝑢𝑀
)                                            Equation B.20 

For a single-phase diffusion system, it is very clear that there is no moving interface. By using the 

governing numerical diffusion models, the implication is: 

𝑠𝑗−1 = 𝑠𝑗 = 𝑠𝑗+1                                                                                                                 Equation B.21 
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