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Abstract

Passive dynamic walking is a manner of walking developed, partially or in whole, by the

energy provided by gravity. Studying passive dynamic walking provides insight into human

walking and is an invaluable tool for designing energy efficient biped robots. The objective

of this research was to develop a new mathematical model of passive dynamic walking that

modeled the ground reaction forces. A physical passive walker was built to validate the

proposed mathematical model. The stability of the gait was analyzed using the proposed

model. A novel method was created to determine the stabilityregion of the model. Using

the insights gained from the stability analysis, the relation between the angular momentum

and the stability of the gait was examined. The proposed model matched the gait of the

physical passive walker exceptionally well, both in trend and magnitude. The angular

momentum of the passive walker was not found to correlate to the stability of the gait.
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Chapter 1

Introduction

1.1 Motivation

What is passive dynamic biped walking and what is gained by studying passive dynamic

biped walking? Passive dynamic biped walking is a manner of walking that utilizes the

momentum and potential energy of the legs and body to continue the gait. The knowledge

gained from studying passive dynamic biped walking can be useful in two main areas: the

development of humanoid robotics and understanding the human gait. The two main goals

for producing a biped robot gait are energy efficiency and postural balance (or dynamic

balance). Fully passive dynamic biped walkers are very energy efficient, using only the

energy provided by gravity to walk down a shallow slope. However, passive dynamic biped

walkers are inherently unstable. Understanding what effects the robustness of a passive

walker may provide insights on how to control biped robots tomaintain postural balance

while maintaining an energy efficient gait. Humans use the gravitational potential energy

of the body to help develop their gait along with their muscleenergy. This type of gait is

often referred to as a semi-passive dynamic gait. Understanding how the mechanics of the

legs shape the gait can provide insight into how humans develop their gait.

1
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1.2 Background

This section covers a background on the history of passive dynamic walking and current

research in the field. As well, an overview of different contact models and friction models

for the purpose of dynamic modeling are provided.

1.2.1 Passive Dynamic Walking

Studying anthropomorphic passive dynamic walking machines started in the 1980s with

Tad McGeer who was inspired by earlier research completed byMochon and McMahon [1].

McGeer examined the passive gait through the use of mathematical models and experimen-

tal walking machines [2][3]. McGeer’s initial researched stimulated an interest in passive

dynamic walking. Two notable papers that followed are one byGarcia et al. [4] and the

other by Goswami et al. [5], where the effects of the passive walker parameters on the gait

and the stability of a passive walker were studied. Research on passive dynamic walking

has taken two main forms, experimental studies and analysisthrough mathematical model-

ing, with a majority belonging to the latter.

Mathematical modeling is an excellent tool for analyzing passive dynamic walking.

A number of passive dynamic walking models have been developed [2][5][6]. However

these models are discontinuous. At the heel strike event, another set of equations are used

described the impact event. A majority of impact-based passive walking models rely on

the assumptions that the heel strike impacts are plastic andno sliding occurs during im-

pact. These assumptions may create artificial gaits that arenot representative of reality. A

mathematical model with discontinuities is also limited toanalysis methods that apply to

non-smooth systems or special consideration is needed to apply smooth system analysis

methods. In the aforementioned mathematical models, [2] [5][6], the stance foot is as-

sumed to be in pure rolling with the friction between the footand the ground modeled us-

ing basic friction models or neglected all together. The friction between the ground contact

can change the resulting gait noticeably and reduces the likelihood of producing artificial
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gaits [2]. More recently passive walking models that use force–based contact models to

describe the ground reaction forces have been developed. A more complex passive walk-

ing model is presented in [7] and [8] that uses the Hunt-Crossley contact model. In [7],

the effects of the contact model parameters on the gait are examined. In [8], the effects of

compliance in the passive walker structure is studied.

To determine if assumptions used to derive a passive dynamicwalking model are valid,

the model must be compared against a physical passive walker. In McGeer’s initial work

[2] a comparison between simulations of passive walking andan experimental passive gait

are completed. The leg angle1 of the simulations were in agreement with the physical ex-

periments, when the simulations accounted for rolling resistance. However, the step period

of the simulations were unable to match the physical experiments. Following McGeer there

have been very limited results on validating mathematical models against experimental pas-

sive dynamic walker data. In [9], an experimental passive walker is used to demonstrate

that the assumption that angular momentum is conserved during the instance of heel strike,

to some degree, is a reasonable assumption. However, the effect the angular momentum

assumption has on the gait is not analyzed. Experimental passive walking machines also

provide insight in how to build actuated passive walkers. A review of three robots based on

passive dynamic walkers are presented in [10].

1.2.2 Contact Dynamics Modeling

There are two basic forms for modeling contact impact events: Impulse–momentum (dis-

crete) based and force–based (continuous) approaches. Impulse–momentum based meth-

ods include methods like Newton’s coefficient of restitution, and Poision’s method, which

assume that the impact event occurs instantaneously, such that the position does not change

during impact. Utilizing impulse–momentum based methods to describe the motion of a

kinematic chain (i.e. a passive dynamic walker) requires special attention to the possible

impact outcomes. The outcomes may include single support ordouble support, with one

1Angle between the legs at the instance of heel strike.
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or both of the feet sliding after impact. Hurmuzlu and Chang [11] developed a method

for determining the outcome of the impact of a planar kinematic chain using a impact–

momentum base method. However, most passive walking modelssimply assume the heel

strike is a no slip inelastic impact and angular momentum is conserved through the impact

about the contact point.

Force–based methods describe the contact, not just the impact event, and can describe

multiple-contact events. Force–based methods are used by simply adding the modeled

forces to the equations of motion. The simplest forced–based method is a linear spring and

damper model (1.1) referred to as the Kelvin-Voigt model. The contact force is described

by the indentation or theoretical penetration,h, of the two contacting bodies. The parameter

ks describes the stiffness of the contact andkd describes the contact damping.

FN = ksh+kdḣ (1.1)

The Kelvin-Voigt model can determine a discontinuous contact force during an impact

event. If the penetration velocity is sufficiently large, then as the two bodies come into

contact, the contact force predicted by the Kelvin-Voigt model takes a discontinuous jump

from zero. Hertz conducted research on the contact of elastic solids [12], from which

force–based contact models were developed. The Hertz model, (1.2), has a parametern,

which is dependent on the material of the two bodies and geometry of the contact.

FN = ksh
n (1.2)

However, the Hertz contact model does not incorporate any damping, so no energy is loss

during an impact. The Hunt-Crossley contact model, (1.3), isa Hertz type contact model

that includes contact damping [13]. The Hunt-Crossley contact model adds damping to

the Hertz contact model, while overcoming the discontinuous problem of the Kelvin-Voigt
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model by making the damping term a function of the penetration.

FN = ksh
n+kdhpḣq (1.3)

There is an added degree of difficulty when it comes to numerically solving force–based

contact models. With force based methods the resulting system of equations may become

numerically stiff due to the large accelerations induce from impacts. Numerically solving

stiff ODEs has become less difficult with the development of methods like [14]. A more

comprehensive review of contact dynamics modeling is provided in [15].

1.2.3 Friction Modeling

Friction modeling is an important aspect of any dynamical model. Friction is ever present

and neglecting friction may, in some cases, be too large of a simplification. The simplest

dynamic friction model is the Coulomb friction model represented by (1.4), wherev is the

sliding velocity,µc is the Coulomb (kinetic) friction coefficient, andFN is the normal force.

Ff = µcFNsgn(v) (1.4)

Many passive walking models assume the foot is in pure rolling and use a rolling resistance

coefficient in place of the Coulomb friction coefficient in (1.4). However, there are other

friction effects that, in some cases, cannot be neglected. Fig. 1.1 depicts some of the

important friction effects, where the horizontal axis is the sliding velocity, and the friction

force is the vertical axis. The parametervs in Fig. 1.1d) is the Stribeck velocity.

There are many different friction models that capture the effects shown in Fig. 1.1d).

Many of these friction models take the form of (1.5), where the coefficient of friction

is a function of the sliding velocity(v), Coulomb friction coefficient(µc), static friction

coefficient(µs), and the Stribeck velocity(vs). A more comprehensive review of friction
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Sliding Velocity

Friction Force

vs

Coulomb Friction Model + Static Friction

+ Viscous Friction + Stribeck Effect

a) b)

c) d)

Figure 1.1: Visualization of different friction effects a)Coulomb friction model b) Coulomb
friction model with static friction effects c) Coulomb friction model with static, and viscous
friction effects d) Coulomb friction model with static, viscous, and Stribeck effects.

models is provided in [16].

Ff = FNµ(v,µc,µs,vs) (1.5)

While many of these friction models can capture the friction during sliding or micro-

sliding, determining the friction force whenv= 0 is not as easy. A more advanced friction

model is the LuGre friction model [17], which can transitionfrom zero sliding velocity to

micro-sliding to sliding friction. The LuGre friction model is developed from the bristle

interpretation of friction contact, where a tangential force will initially deflect the bristles

and if sufficiently large the bristles begin to slip. The friction force of the LuGre model is
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described by (1.6), which is a function of a state observer(z), and viscous friction effects

( f (v)). The friction state observer(z) is described by (1.7) and (1.8), where the state ob-

server(z) can be visualized as the bristle deflection. The parameterσ0 describes the elastic

behaviour of the bristles andσ1 describes the damping behaviour of the bristles.

Ff =−(σ0z+σ1ż+ f (v))FN (1.6)

ż= v−σ0
|v|

gL(v)
z (1.7)

gL(v) = µc+(µs−µc)e
−( v

vs)
2

(1.8)

1.2.4 Biped Dynamic Balance Measures

Stability and dynamic balance are defined here as two separate notions. A biped in a stable

gait is moving in a periodic gait that if slightly disturbed will eventually return to the same

periodic gait. A biped that maintains dynamic balance is upright with the ability to maintain

forward locomotion. Thus, if a biped is in a stable gait it will maintain dynamic balance,

but a biped that maintains dynamic balance is not necessarily in a stable gait.

The idea of biped dynamic balance measures is to reduce the complex dynamics of the

biped to a single point or single idea that can be measured andused as feedback for the

biped control system. Zero Moment Point (ZMP) was developedover forty years ago and

is still used today [18]. The concept of ZMP is to maintain control over the passive joint

(the contact between the foot and the ground). When the foot isflat on level ground, the

ZMP and center of pressure coincide. If the ZMP is within the contact envelope and not on

the boundary, the foot will not rotate in the horizontal direction. However maintaining the

ZMP within the contact envelope can cause the biped to loose dynamic balance in some

situations. For example, if the center of mass of the biped isoutside the support polygon

with a zero velocity, then maintaining the ZMP will act to drive the center of mass towards

the ground.

Even when the foot is rotating the idea of ZMP can be used. Thisis labeled either
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Fictitious Zero Moment Point (FZMP) [18] or Foot Rotation Indicator (FRI) [19]. The

FZMP (or FRI) is the point on the ground where the ground reaction forces would have to

act to stop the foot from rotating. More recently there has been a shift into understanding

how the whole body angular momentum, and by extension groundreaction torque, effects

the biped gait. Centroidal Moment Pivot (CMP) [20][21]2 describes the moment arm of

the ground reaction torque with respect to the center of massof the biped. The CMP can be

used to monitor the dynamic balance of the biped with respectto the angular momentum.

Angular momentum is important because the average angular momentum of a biped during

a gait must be zero, otherwise the biped is rotating over about its center of mass. A review

of the concepts of ZMP, FRI, and CMP is provided in [22].

1.3 Previous Work at the University of Manitoba

The start of the experimental research of passive dynamic walking, at the University of

Manitoba, began with a study on a small wooden walker with straight legs [23]. Following

the initial study, a small wooden kneed four-legged walker was built and rough measure-

ments were taken with a 30 Hz video camera [24][25]. A second undergraduate thesis [26]

was completed on passive walking, with a larger kneed passive walker, named Dexter, that

was made out of aluminum flat bar. However, there were a numberof issues with Dexter

which limited the accuracy of the data. After these theses, the passive dynamic walking

research was continued with undergraduate summer researchcompleted by Dean Ferley

and myself, from which a general report was completed. The NSERC summer report elab-

orated on the modifications made to Dexter, leading to DexterMk II. As well, a fair number

of trials were completed with Dexter Mk II using a 60Hz video camera, resulting is slightly

improved measurement accuracy compared to the previous experiments at the University

of Manitoba. In the following summer of 2009 I designed and built another passive walker,

named Dexter Mk III. The gait of Dexter Mk III was measured with an optical rotatory en-

2Referred to as Zero Spin Control Point (ZSCP) in [20] and ZeroRate of change of Angular Momentum
(ZRAM) in [21].
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coder to measure the hip joint angle, and an accelerometer todetect the heel strike events.

Another undergraduate thesis was also completed at the University of Manitoba on passive

dynamic walking, by Sean O’Brien during the fall term of 2009.O’Brien also built a pas-

sive dynamic kneed bipedal walker. Following this I completed my undergraduate thesis in

the Winter semester of 2010 using Dexter Mk III to determine the equivalence of walking

on a treadmill to walking on a ramp. Further research was completed with Dexter Mk III

by Rushdi Kazi [27], where the effects of the mass distribution and flat feet were studied.

1.4 Objectives and Overview of the Thesis

The objective of this thesis was to develop a new mathematical model of passive dynamic

walking that models the whole gait without switching between different sets of equations.

The gait comprises of the single support phase, heel strike impact, and double support

phase. To continuously model single contact dynamics, an impact event, and multi-contact

dynamics, the Hunt-Crossley contact model and the LuGre friction model were incorpo-

rated in the proposed passive walking model. To validate theproposed passive walking

model, a physical passive walker was designed and built. Theresulting gait of both the

physical passive walker and the proposed passive walking model were compared to de-

termine the validity of the proposed passive walking model.The stability of the passive

dynamic gait was analyzed using the proposed mathematical model. To determine if the

angular momentum of a biped provides information about the biped’s stability, the stability

of the passive walker was quantified and compared against theangular momentum of the

passive walker.

The thesis is organized as follows. Chapter 2 derives the proposed passive walking

mathematical model and explains how the approximate solution is determined. As well,

chapter 2 gives the derivation of an impact based passive dynamic mathematical model

to compare the proposed mathematical model against. Chapter3 provides details on the

design of an experimental passive dynamic walker, the gait measurement system and the
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experimental methodology. Chapter 4 outlines a method to calculate the Lyapunov expo-

nents of the proposed mathematical model. A method for finding the basin of attraction of

a 2D projection of a system is outlined in chapter 4. Chapter 5 gives a comparison of the

proposed mathematical model to a standard impact–based passive walking model. Chapter

5 also provides a validation of the mathematical model against the experimental results.

The basin of attraction of the mathematical model is compared to the angular momentum

of the walker as well. Chapter 6 summarizes the conclusions ofthe thesis and provides

some areas for future work.



Chapter 2

Mathematical Modeling

2.1 Introduction

The derivation of a new mathematical model of passive dynamic biped walking is given in

this chapter. The mathematical model uses the Hunt-Crossleycontact model and the LuGre

friction model to account for the ground reaction forces. The application of the Hunt-

Crossley model and LuGre model to the passive walking model isexplained. To solve the

proposed mathematical model, the equations are transformed into the state space form. A

review of the solution approximation method is provided. Tocompare the proposed passive

dynamic walking mathematical model, a traditional impact model is derived. The impact

model uses one set of equations for the swing phase and another set for the impact phase.

2.2 Proposed Mathematical Model

2.2.1 Derivation of Equations of Motion

The passive walking model consists of two links each with a distrusted mass and arced

feet. The passive walking model also has a non–rotating masslocated at the hip. The

11
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hip mass simulates the effects of an upper body. The proposedpassive walking model is

described by one unified set of equations that describes the entire motion of the passive

walker. The proposed passive walking model is able to capture single support and double

support1 dynamics. The friction between the foot and ground is described by the LuGre

friction model. The normal contact forces between the foot and the ground are described

by the Hunt-Crossley model. The friction at the hip joint is neglected.

Figure 2.1 shows a schematic of the passive walking mathematical model, wherel is

the length of the legs,b is the distance of the leg center of mass from the hip, andρ is

the foot radius. The parameterδ is the angle offset of the foot. Each leg has a distributed

massm and a radius of gyration ofrg with respect to the center of mass. The hip joint of

the passive walker is located by the two coordinatesxhip andyhip. There is a non-rotating

mass, denoted byM, located at the hip. The angle of each leg, with reference to the normal

of the ramp, is denoted byθ1 andθ2. The ramp is at an inclinationγ. The reference frame

is rotated so that the x-axis is in line with the direction of the ramp. There are two points,

c1 andc2, marked on the feet, which are the contacts points or impending contact points.

The pointsc1 andc2 are the points on the feet with the lowesty coordinate.

δ

θ1−θ2

[

xhip yhip
]

γ
c1x

y

b

c2

l

ρ

Leg 1
Leg 2

Figure 2.1: Model diagram.

The equations of motion are derived using Lagrangian mechanics which requires the

kinetic and potential energy of the system. To start, the position (2.1) and the velocity (2.2)

1both feet on the ground
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of the center of mass are determined, wherei = 1 or 2.

~rCoMi =
[

xhip+bsinθi yhip−bcosθi

]

(2.1)

~vCoMi =
[

ẋhip+ θ̇ibcosθi ẏhip+ θ̇ibsinθi

]

(2.2)

Using the equations of the center of mass velocity, the kinetic energy of the system (2.3) is

determined.

T =
1
2

m(~v2
CoM1

+ r2
gθ̇2

1)+
1
2

m(~v2
CoM2

+ r2
gθ̇2

2)+
1
2

M(ẋ2
hip+ ẏ2

hip) (2.3)

The height of the center of mass of the leg in the gravitationally plane, (2.4), is determined

by rotating the position vector (2.1) by an angleγ.

hCoMi =
[

−sinγ cosγ
]

·~rCoMi

=−sinγ
(

xhip+bsinθi
)

+cosγ
(

yhip−bcosθi
)

(2.4)

The potential energy of the system is then found to be (2.5).

V = mghCoM1 +mghCoM2 +Mghhip

= mg(cosγ(yhip−bcosθ1)−sinγ(xhip+bsinθ1))

+mg(cosγ(yhip−bcosθ2)−sinγ(xhip+bsinθ2))+Mg(yhipcosγ−xhipsinγ) (2.5)

Using the kinetic and potential energy of the system the Lagrangian, (2.6), is formed.

L = T −V (2.6)

Substituting the Lagrangian into the Lagrange equation, (2.7), yields the equations of mo-

tion, (2.8).
d
dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= Qi (2.7)



CHAPTER 2. MATHEMATICAL MODELING 14

M(q)q̈+H(q, q̇)+G(q) = F(q, q̇) (2.8)

Where the matrixq describes the state of the system,M(q) is the mass matrix,H(q, q̇)

is the centripetal force matrix,G(q) is the gravitational force matrix, andF(q, q̇) are the

generalized forces on the system.

q =

















xhip

yhip

θ1

θ2

















q̇ =

















ẋhip

ẏhip

θ̇1

θ̇2

















q̈ =

















ẍhip

ÿhip

θ̈1

θ̈2

















(2.9)

M(q) =

















M+2m 0 mbcosθ1 mbcosθ2

0 M+2m mbsinθ1 mbsinθ2

mbcosθ1 mbsinθ1 mb2+ r2
g 0

mbcosθ2 mbsinθ2 0 mb2+ r2
g

















(2.10)

H(q, q̇) =

















−mbθ̇2
1sinθ1−mbθ̇2

2sinθ2

mbθ̇2
1cosθ1+mbθ̇2

2cosθ2

0

0

















(2.11)

G(q) = g

















−(M+2m)sinγ

(M+2m)cosγ

mbsin(θ1− γ)

mbsin(θ2− γ)

















(2.12)

F(q, q̇) =

















Ff1 +Ff2

FN1 +FN2

Ff1c
hip
y1 +FN1c

hip
x1

Ff2c
hip
y2 +FN2c

hip
x2

















(2.13)

The normal force applied on each foot is denoted byFN1 andFN2. The friction force of
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between each foot and the ground are denoted byFf1 andFf2. The position of the contact

points, shown in Fig. 2.1, relative to the hip is described bythe vector~chip.

~chip
i =

[

l sinθi −ρsin(θi −δ) l cosθi −ρ(cos(θi −δ)−1)
]

(2.14)

The global position of the contact points of the two feet are defined by(~c) and their corre-

sponding velocities are defined by(~̇c).

~ci =
[

x+ l sinθi −ρsin(θi −δ) y− l cosθi +ρ(cos(θi −δ)−1)
]

(2.15)

~̇ci =
[

ẋ+ θ̇i(l cosθi −ρcos(θi −δ)+ρ) ẏ+ θ̇i(l sinθi −ρsin(θi −δ))
]

(2.16)

2.2.2 Contact Model

The Hunt-Crossley contact model [13] is an extension of the Hertz [12] contact model to

include hysteretic damping in the contact forces. The Hertzcontact model describes the

contact forces of a static system by the indentation caused by contact of the two bodies.

For dynamic simulations, the contact force is described by the inter-penetration,h, and the

inter-penetration velocity,̇h, of the two bodies. The inter-penetration and corresponding

velocity are described by (2.17) and (2.18), respectively.Fig. 2.2 shows a schematic of the

inter-penetration of the two bodies.

Ground

Foot
h

FN = f (h, ḣ)

kdks

Figure 2.2: Contact diagram.
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hi =







0 for cyi > 0

−cyi for cyi < 0
(2.17)

ḣi =







0 for yci > 0

−ċyi for cyi < 0
(2.18)

The level of the force(Ni) is determined by (2.19), wheren, p, andq are dependent on

the geometry of the contact and the material of the two bodies. For the passive dynamic

walking model,n = p = 3
2 andq = 1 was selected, which corresponds to a spherical or

cylindrical contact.

Ni = ksh
n
i +kdhp

i ḣq
i (2.19)

The normal force,FNi , is equal to the level of force if the level of the force is greater

than or equal to zero. How can the Hunt-Crossley model predicta negative normal force.

The Hunt-Crossley model assumes the two bodies are joined once the inter-penetration is

positive. However, if the restitution velocity is great enough, the level of force (2.19) can

be negative even whenh is positive. To account for this, condition (2.20) is introduced.

In reality this situation would occur when separation of thetwo bodies occurs before both

bodies have restored to their undeformed shape.

FNi =







Ni for Ni > 0

0 for Ni < 0
(2.20)

The advantage of using a force based contact model, like the Hunt-Crossley model, is

that there is no need to switch between two sets of equations for each impact. As well,

the Hunt-Crossley model can simulate multiple contact dynamics, which is important for

biped walking to simulate the double support phase.
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2.2.3 Friction Model

The friction between the foot and the surface is modeled using the LuGre friction model

[17]. The LuGre friction model is a continuous dynamic modelthat can describe the static

friction force, Coulomb friction force, and the transition between the two. The LuGre

model can be visualized as two sets of elastic bristles, as shown in Fig 2.3, wherez is the

bristle deflection. The bristles will deflect until a large enough force is applied and the two

surfaces slide over one another. The friction force determined by the LuGre friction model

is shown in equation (2.21), where the terms that describe the viscous friction are omitted.

Ffi =−(σ0zi +σ1żi)FNi (2.21)

żi = vi −σ0
|vi|

gL(vi)
zi (2.22)

gL(vi) = µc+(µs−µc)e
−( vi

vs)
2

(2.23)

Wherei = 1 or 2 corresponding to each foot. The sliding velocity between the two surfaces,

vi, is represented by ˙cxi in the passive walking model.

ċxi = ẋ+ θ̇i(l cosθi −ρcos(θi −δ)+ρ) (2.24)

The variablesσ0 andσ1 control the stiffness and damping of the bristle deflection.The

static and Coulomb friction coefficients are represented byµs andµc, respectively. The

Stribeck velocity is represented byvs.

Figure 2.3: Visualized LuGre model.
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2.2.4 State Space Model

In order to solve the mathematical model the equations are transformed into a state space

representation. The state space model is formed from incorporating the friction state ob-

servers (2.22) and the contact force equations (2.21) and (2.20) with the equations of the

motion (2.8). The final state space model (2.25) has ten states that are described in (2.26).

Q̇ = f (Q) (2.25)

Q =
[

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

]T

=
[

xhip yhip θ1 θ2 ẋhip ẏhip θ̇1 θ̇2 z1 z2

]T
(2.26)

















Q̇1

Q̇2

Q̇3

Q̇4

















=

















Q5

Q6

Q7

Q8

















and

















Q̇5

Q̇6

Q̇7

Q̇8

















= A(Q)−1B(Q) (2.27)

Q̇9 = v1(Q)−σ0
|v1(Q)|

g1(v1(Q))
Q9 (2.28)

Q̇10 = v2(Q)−σ0
|v2(Q)|

g2(v2(Q))
Q10 (2.29)

Where (2.28) and (2.29) are the state space form of the friction state observer equation

(2.22). The matricesA(Q) andB(Q) are defined by (2.30) and (2.31). For matricesM(Q),

H(Q), G(Q), F(Q), refer to (2.10), (2.11), (2.12), and (2.13), respectively, on page 14.

A(Q) = M(Q) (2.30)

B(Q) = F(Q)−H(Q)−G(Q) (2.31)
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The inverse ofA(Q) was solved manually and simplified to the form shown in (2.32)

A(Q)−1 =

















AM(c2
1+c2

2+AM)+CmCp
MW

Asc(AM+1)
MW

−CAC
b −CCA

b
Asc(AM+1)

MW

AM(s2
1+s2

2+AM)−CmCp
MW

−SAC
b −SCA

b

−CAC
b −SAC

b
AMMW

b2
CmMW

b2

−CCA
b −SCA

b
CmMW

b2
AMMW

b2

















1

m(A2
M −C2

m)

(2.32)

MW = 2+
M
m

(2.33)

AM = MW

(

1+
( rg

b

)2
)

−1 (2.34)

Asc= sin(Q3)cos(Q3)+sin(Q4)cos(Q4) (2.35)

Cm = cos(Q3−Q4) , Sm = sin(Q3−Q4) (2.36)

Cp = cos(Q3+Q4) , Sp = sin(Q3+Q4) (2.37)

CCA = cos(Q3)Cm+cos(Q4)AM (2.38)

SCA = sin(Q3)Cm+sin(Q4)AM (2.39)

CAC = cos(Q3)AM +cos(Q4)Cm (2.40)

SAC = sin(Q3)AM +sin(Q4)Cm (2.41)

B(Q) =

















(Ff1 +Ff2)+mb(Q2
7sinQ3+Q2

8sinQ4)+g(M+2m)sinγ

(FN1 +FN1)−mb(Q2
7cosQ3+Q2

8cosQ4)−g(M+2m)cosγ

Ff1c
hip
y1 +FN1c

hip
x1 −mgbsin(Q3− γ)

Ff2c
hip
y2 +FN2c

hip
x2 −mgbsin(Q4− γ)

















(2.42)

The normal forceFNi is defined by (2.20) on page 16. The friction forceFfi is defined by

(2.21) on page 17. The contact positions relative to the hip,~chip
i , is defined by (2.14) on

page 15.



CHAPTER 2. MATHEMATICAL MODELING 20

2.3 Solution Procedure

2.3.1 Numerical Solution Approximation

To approximate a solution to the proposed mathematical model (2.25), the code ODE15S

was used. ODE15S is a Matlab code for solving stiff ODEs and DAEs, which is based on

the Numerical Differentiation Formulas (NDF). The NDF are afamily of formulas used to

approximate solutions to ODEs and DAEs and are given by (2.43)

k

∑
m=1

1
m

∇myn+1−hF(tn+1,yn+1)−κγk(yn+1−y(0)n+1) = 0 (2.43)

The NDF are an extension of the Backwards Difference Formulas, where−κγk(yn+1 −
y(0)n+1) is the additional term. The termκ is a scalar parameter used to tune the stability and

local truncation error (LTE) of the method andγk = ∑k
j=1

1
j . The ODE15S code usesA(α)

stability to monitor the stability of the solver. The ODE15Scode uses the Jacobian of the

system if supplied, and will numerically estimate the Jacobian if not supplied. A detailed

derivation of the ODE15S code can be found in [14].

The form of (2.43) used to numerical integrate the state space model is shown in (2.44),

where the fifth order version of (2.43) was used(k = 5). The functionf (Q) is defined in

(2.25) andQ is defined in (2.26) on page 18.

5

∑
m=1

1
m

∇mQn+1−h f(Q)−κγ5(Qn+1−Q(0)
n+1) = 0 (2.44)

To clarify the notation usedQn+1 = Q(tn+1), Q(0) is the initial estimate of the states, and

∇ is the backward difference operator.
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2.3.2 Swing Leg Ground Clearance

Unlike biped walkers with knees, two link biped walkers needa mechanism for the swing

leg to clear the ground. In physical experiments this groundclearance can be created with

“stepping stones”. In the numerical simulations the effectof stepping stones is established

by switching between two support phases, single support anddouble support. The two

support phases are represented byDouble Support= True or False. In the single support

phase, one leg is the stance leg and the other the swing leg. The leg that is the swing leg can

penetrate the ground without incurring reaction forces. The initial conditions are chosen so

that the walker is just starting the swing phase of the next leg, thereforeDouble Support=

False andStance Leg= Leg 1 if θ1 > θ2 or Stance Leg= Leg 2 if θ2 > θ1.

During the simulation, at every time step, the program checks if the system has tran-

sitioned to another phase. The transition to double supportis determined by the condition

in Fig. 2.4 and the transition to single support is determined by the condition in Fig. 2.5.

The parametercy is the y-coordinate of the contact point, andα0 is the minimum inner leg

angle.

Once the support phase and stance leg are determined, the value of the penetration,

h, and penetration velocity,̇h , are determined. Initially the penetration and penetration

velocity are set to zero and are only changed if the conditionin Fig. 2.6 is met.

AND

Stance Leg= Leg 1
Double Support= False

(Leg 2 is above the ground)cy2 > 0
(Minimum leg angle)θ2−θ1 > α0

Double Support= True

θ2−θ1 > α0

cy2 > 0

Leg 1 Leg 2

Figure 2.4: Transition to double support from Leg 1, vice versa for transition to double
support from Leg 2.
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AND

Stance Leg= Leg 1
Double Support= True

(Leg 1 is above the ground)cy1 > 0
(Leg 2 is in contact with ground)cy2 < 0

Double Support= False
Stance Leg= Leg 2

cy2 < 0

Leg 1
Leg 2

cy1 > 0

Figure 2.5: Transition to single support on Leg 2 from doublesupport, vice versa for tran-
sition to single support on Leg 1

OR

AND

Stance Leg= Leg i
Double Support= True

(Leg i is in contact with the ground)cyi < 0 hi =−cyi

ḣ i =−ċyi

Figure 2.6: Determining the value ofhi andḣ i for leg i, wherei = 1 or 2.

2.4 Standard Impact Passive Walking Model

To compare the proposed mathematical model, a standard passive walking impact model

was derived. The standard impact model derived in this section is similar to the impact-

based passive walking models used by other researchers. Themodel developed in [4]

assumed thatm<< M so that the swing leg does not effect the stance leg, but the same

assumptions are used for the impact equations that are used in this section. Ifρ = 0 and

δ = 0, the impact model derived in this section simplifies to the model presented in [5].

The standard impact model has two parts, the equations of motion (2.45) and the impact

transition equations (2.55). The subscript ‘st’ refers to the stance leg and the subscript ‘sw’

refers to the swing leg.
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where

M1,1 = (m+M)l2+m(c2+ r2
g)+2ρ2(2m+M)(1−cos(θst−δ))

+2ρ((m+M)l +mc)(cosθst−cosδ) (2.46)

M1,2 =−mlbcos(θst−θsw)+mρb(cos(θst−θsw−δ)−cosθsw) (2.47)

M2,1 =−mlbcos(θst−θsw)+mρb(cos(θst−θsw−δ)−cosθsw) (2.48)

M2,2 = m(b2+ r2
g) (2.49)

H1,1 = ρ2(2m+M)sin(θst−δ)−ρ((m+M)l +mc)sinθst (2.50)

H1,2 =−mlbsin(θst−θsw)+mρb(sin(θst−θsw−δ)+sinθsw) (2.51)

H2,1 = mlbsin(θst−θsw)−mρbsin(θst−θsw−δ) (2.52)

G1 = g(−((m+M)l +mc)sin(θst − γ)+ρ((2m+M)(sin(θst−δ− γ)+sinγ)) (2.53)

G2 = gmbsin(θsw− γ) (2.54)

The impact transition equations are based on the assumptionthat angular momentum is

conserved for the whole walker about the point of contact andfor the stance leg about

the hip. The post impact angular velocities are determined by (2.55) and the post impact

angular positions are determined by (2.56), where the superscript ‘−’ denotes a state before

the impact and ‘+’ denotes a state after the impact.
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Q−
1,1 = ρ2(2m+M)

(

1−cos(θst−δ)−cos(θsw−δ)+cos(θst−θsw)

)

+ρ
(

((m+M)l +mc)(cosθst+cosθsw−cos(θst−θsw−δ)−cos(θst−θsw+δ))

+mb(cosδ−cosθst)

)

+(2mlc+Ml2)cos(θst−θsw)−mbc (2.57)

Q−
1,2 = mρb(cosδ−cosθsw)−mbc (2.58)

Q−
2,1 = mρb(cosδ−cosθst)−mbc (2.59)

Q+
1,1 = 2ρ2(2m+M)

(

1−cos(θst−δ)
)

+ρ
(

2((m+M)l +mc)(cosθst−cosδ)

+mb(cos(θst−θsw−δ)−cosθsw)

)

+(m+M)l2+mc2−mlbcos(θst−θsw)

(2.60)

Q+
1,2 = mρb(cos(θst−θsw−δ)−cosθsw)+mb2−mlbcos(θst−θsw) (2.61)

Q+
2,1 = mρb(cos(θst−θsw−δ)−cosθsw)−mlbcos(θst−θsw) (2.62)

Q+
2,2 = mb2 (2.63)

To determine a numerical approximation to the impact model,ODE45 in Matlab was used

to solve the equations of motion. The equations of motion aresolved until the swing foot

comes in contact with the ground. Then the final state of the system is used as the pre–

impact state to calculate the post–impact state with (2.55)and (2.56). The post impact

velocities and the final position of the walker are then used as the initial conditions for the

next step, and the equations of motion are solved once again.

2.5 Summary

A new passive walking mathematical model was developed in this chapter. The proposed

model incorporates a continuous contact and friction forcemodels. The proposed model

avoids discontinuities in the solution unlike standard impact based passive walking model.
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The standard impact based passive walking model switches between two sets of equations,

one for the swing dynamics and the other for the impact phase.The proposed mathematical

model is able to model multi–contact scenarios and contact sliding. The simulation proce-

dure for the proposed mathematical model was outlined alongwith a brief explanation of

the solution approximation method.



Chapter 3

Experimental Passive Biped Walker

3.1 Introduction

To validate the proposed passive walking mathematical model, presented in the previous

chapter, an experimental passive walking machine was builtand was named HM2L (Hip

Mass 2 Links). A system was developed to measure the gait of the experimental passive

walker. This chapter presents the design of the experimental passive walker, gait measure-

ment system and the test platform.

3.2 Design goals

One of the main design goals, compared to previous walkers that I built [28], was to make

the walker able to sustain repeated falls, since the potential for the walker to collapse is

always present. As well, sensors were incorporated in the design of HM2L to measure

gait parameters. To validate the mathematical model, a series of experiments with different

parameters was required. Therefore HM2L was designed to be able to vary these different

parameters. There are three main categories of parameters for a passive dynamic walker:

mass parameters, geometric parameters and contact parameters.

26
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3.2.1 Mass Parameters

The mass parameters of HM2L include: the center of mass and radius of gyration of each

link, and the hip mass. To obtain different center of mass values without having to add a

substantial amount of weight, the frame of the walker was designed to be light weight. Then

with weights added to the legs, the center of mass can be changed. Another advantage of

having a light weight frame with added weights is that the differences in mass parameters

between the legs will be minimized by the added mass. The hip was designed to rotate

independently of the two legs with a section for weight to be added.

3.2.2 Geometric Parameters

The geometric parameters of HM2L include: length of the legs, foot radius, and foot center

offset. Two sets of feet with the same foot radius were made for HM2L. The first set was

designed to create different foot center offsets. The second set was designed to change the

length of the legs.

3.2.3 Contact Parameters

The contact parameters of HM2L are the foot contact stiffness and damping, and foot con-

tact friction. The foot contact parameters are important for developing a stable gait. Having

a large enough friction coefficient at the foot-ground contact to prevent sliding, but not too

large to prevent smooth motion is crucial. As well, the foot-ground impact should be in-

elastic and be dampened to prevent vibration throughout thewalker.
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3.3 Experimental Setup

3.3.1 Physical Model Overview

The experimental passive biped walker, HM2L, is shown in Fig. 3.1. HM2L consists of

two links with arced feet and a hip mass. The hip mass can rotate independently from the

two legs. HM2L has no means for swing foot clearance so the biped walker must walk on

“stepping stones” as shown in Fig. 3.2. To measure the gait parameters of the experimental

passive biped walker, the design for HM2L incorporated two optical rotary encoders to

measure the relative rotation between each leg, a single inclinometer to determined global

orientation, and an accelerometer to detect the instance ofheel strike.

The legs of the experimental walker are connected to the hip via roller bearings. To

limit the motion of the passive walker to the sagittal plane the inside leg pair and outside

Inclinometer

Outside Encoder
Inside Encoder

Accelerometer

Leg Weights

Hip Bar

Figure 3.1: Photo of HM2L.
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Hip Padding Walker Safety Rail

Stepping Stones

Figure 3.2: Photos of HM2L on the test ramp.

leg pair are coupled together. HM2L also has four movable legweights, shown in Fig. 3.1.

The leg weights consist of 45% of the walkers total mass and can be moved to six discrete

locations. Moving the leg weights can produce a change in thecenter of mass from 33% to

56% of the walker’s height (measured from the hip). The feet can be placed at five discrete

locations to produce five different arc center offsets. Another set of feet were made, shown

in Fig. 3.3, that allow the length of the legs to be increased by 3.81cm increments to a total

increase of 11.42cm. Weights were modified to fit onto the hip bar, shown in Fig. 3.3, and

can be locked in place by spring clips placed in the groves of the hip. With the hip weights

made, seven different hip mass/total mass ratios are possible, ranging from 11% to 75%.

For experiments that did not use the hip weights, padding wasadded to the hip, as shown

Figure 3.3: Hip weights and leg extensions.
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in Fig. 3.2. The hip padding provided some protection when the walker would fall on the

walker safety rail. For the experiments conducted the geometric parameters of HM2L are

shown in Table 3.1 and the dynamic parameters are shown in Table 3.2 for the leg weights

at the highest position.

Table 3.1: WALKER GEOMETRIC PARAMETERS.

Item Symbol Measurement
Walker Height l 40.64cm
Walker Width w 30.61cm
Foot Radius* ρ 8.13cm

*With no sole.

Table 3.2: WALKER DYNAMIC PARAMETERS.

Item Inside Outside
Mass (kg) 5.144 44.24% 5.172 44.49%

Center of Mass(cm) 13.59 33.05% 13.52 32.88%
Radius of Gyration(cm) 11.83 28.76% 12.02 29.23%

Hip Mass (kg) 1.282
Total Mass (kg) 11.598

*Center of mass is measured from the the hip joint
**Radius of gyration is with respect to the center of mass.

3.3.2 Test Ramp

A test ramp was designed and built for the passive walker experiments. The test ramp,

shown in Fig. 3.4, is 32 feet(9.75m) long and 2 feet 10 inches(0.86m) wide. The test ramp

is made out of 16 inch engineered floor joists that are 16 feet long. Sixteen foot long joists

were the maximum length that could fit through the hallways and into the lab. The floor

joists are spliced together in the middle with 5/8 inch plywood to make one 32 foot long

joist. The joists are spaced 16 inches on center with blocking every 8 feet. The top deck is

made of 5/8 inch plywood screwed to the joists and 1/4 inch sanded plywood on top. The

1/4 inch sanded plywood can be removed to resurface the ramp without diminishing the
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Tester Safety Rail

Walker Safety Rail

Adjustable Supports

Figure 3.4: Test ramp.

structural integrity of the ramp. Two adjustable supports were made to change the angle

of the ramp. One support is placed at the top of the ramp and theother mid way down the

ramp where the joists are spliced together. The supports have a 3ply 2×6 inch laminated

beam that the ramp sits on. The 3ply 2×6 inch laminated beam is supported by a 3/4 inch

threaded rod on each end that is held in placed by a 2×6 inch C–channel.

3.4 Gait Measurement

Four devices were used to measure aspects of the gait of the experimental walker: two

rotary optical encoders, one accelerometer, and an inclinometer. The two optical rotary

encoders have 7200 counts per revolution giving a 0.05◦ resolution. The encoders provide

the relative angle between the corresponding leg set and thehip bar. The accelerometer

is a Kistler Miniature PiezoBeam Triaxial accelerometer with a range of±50g. The in-

clinometer is a US Digital X3M absolute inclinometer that uses MEMS accelerometers to

determine the orientation angle.

To capture a good representation of the gait of the experimental walker, the step period,

step length, and average hip velocity were measured. To measure these gait parameters

three things are needed: the time of each heel strike, the inner leg angle, and the geometry



CHAPTER 3. EXPERIMENTAL PASSIVE BIPED WALKER 32

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8
0

5

10

15

20

In
n

e
rL

eg
A

n
g

le−
α
(r

a
d
)

H
ip

A
cc

el
er

at
io

n
(g

)

Time (seconds)

Inner Leg Angle
Acceleration
Heel Strikes

Figure 3.5: Example of experimental data.

of the walker. An accelerometer was attached to the walker atthe location shown in Fig. 3.1.

This location was chosen so that the accelerometer would be protected from damage and

so the cable would have a minimal effect on the gait. The time of each heel strike was

determined from the peak of the measured acceleration. The inner leg angle was determined

from the difference between the two encoder measurements. The step period can then be

determined from the time difference between consecutive heel strikes. The step length can

be determined from the measured inner leg angle and the geometry of the walker. The

average hip velocity can be determined with a combination ofthe inner leg angle, step

period, and the geometry of the walker. Fig. 3.5 shows a sample of experimental data taken

during a trial. The red squares in Fig. 3.5 are the maximum measured acceleration caused

by each heel strike. The leg angles (with respect to the ramp normal) at the point of heel

strike can be calculated using the measured inner leg angle(α) and (3.1) and (3.2). When

α > 0, (3.1) and (3.2), calculate the lead leg(ld) and trail leg(tr) angles, respectively. If
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δ = 0, thenθld = α/2 andθtr =−α/2.

θld = arctan
l (1−cosα)+ρ(cos(α+δ)−cosδ)

l sinα+ρ(−sin(α+δ)+sinδ)
(3.1)

θtr = arctan
l (1−cosα)+ρ(cos(α−δ)−cosδ)

−l sinα+ρ(sin(α−δ)+sinδ)
(3.2)

Using the calculated leg angles, the step length,Lstep, can be calculated using (3.3).

Lstep= (l sinθld −ρsin(θld −δ))− (l sinθtr −ρsin(θtr −δ)) (3.3)

The average hip velocity, ¯vhip, can be calculated using (3.4), whereTstep is the step period,

θ0
ld is the angle of the front leg at the start of the step, andθ1

tr is the angle of the same leg at

the end of the step.

v̄hip =
chip

x
0−chip

x
1
+ρ
(

θ0
ld −θ1

tr

)

Tstep

=

(

l sinθ0
ld −ρsin(θ0

ld −δ)
)

−
(

l sinθ1
tr −ρsin(θ1

tr −δ)
)

+ρ
(

θ0
ld −θ1

tr

)

Tstep
(3.4)

3.4.1 Data Acquisition

The data collected was captured with a Quanser Q8 data acquisition board connected to

a PC. The data was saved with a Simulink program that uses features from QuaRC1. The

two encoders were directly connected to the Q8 data acquisition board encoder inputs.

The accelerometer connects to three power conditioners, one per axis, and then to the Q8

data acquisition board analog inputs. The inclinometer generates a pulse width modulation

(PWM) signal and was connected to the Q8 data acquisition board digital inputs. The PWM

signal was decoded during the Simulink streaming process, while all of the other data was

saved as it was streamed.
1Software developed by Quanser
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3.5 Experimental Procedure

For each experimental trial the procedure outlined below was used. The feet are initially

locked together to zero the encoders, thereby usingα = 0 as the initial inner leg reference

angle. All trials were recorded with an HD video camera. The inclinometer angle was

zeroed to the ramp normal. The encoder angles were used to zero the inclinometer angle

by standing the walker on the ramp for 20 seconds. For the trials completed, the foot offset

was set toδ = 0, therefore when the walker is standing still on the ramp, the inclinometer

angle should read half the inner leg angle
(

±α
2

)

. A successful run down the ramp was

counted if the walker made it at least ten steps or half way down the ramp, which ever was

longer. Once ten successful runs down the ramp were made, thetrial was ended.

Experimental Trial Procedure:

1. Put a rod through the feet bolt holes to lock the legs together.

2. Start the video capture.

3. Start the data acquisition system.

4. Place the walker standing on the ramp for 20 seconds to calibrate the inclinometer.

5. Continue with trial until ten successful runs are completed.

6. Stop the data acquisition system

7. Stop the video capture.

The aim of the experimental trials was to determine the effect of the center of mass

on the gait. Six trials, labeled L#1 to L#6, with a center of mass ranging from 32.72% to

55.83% measured from the hip were planned. The different center of mass values were

obtained by moving the leg masses to six different locations. The varied parameters of the

trials are shown in Table 3.3. When moving the leg masses, the radius of gyration was

changed slightly. The radius of gyration changed from 25.75% to 28.77%.
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Table 3.3: VARIABLE TRIAL PARAMETERS.

Trial Center of Massb Radius of Gyrationrg

[m] b/l [m] rg/l
L#1 0.1356 32.72% 0.1192 28.77%
L#2 0.1547 37.34% 0.1112 27.03%
L#3 0.1739 41.96% 0.1077 26.00%
L#4 0.1930 46.58% 0.1067 25.75%
L#5 0.2122 51.21% 0.1091 26.32%
L#6 0.2313 55.83% 0.1146 27.65%

3.6 Data Processing and Analysis

After the trials were completed the data was processed usinga post-processing program

developed in Matlab. The data post-processing program was improved from a previous

version used in [28]. At least two steps were removed from thebeginning and end of each

run down the ramp. If the step length and step period had not settled after two steps, more

steps were removed. A moving window partial Fourier series was used to fit the inner leg

angle and determine the first and second derivatives of the inner leg angle. The moving

window was set at 1/16 of the step period and only one set of the series was used. An

overview of the post-processing program is given below.

Post-Processing Program:

1. Load trial data.

2. Calibrate inclinometer to ramp normal.

3. Initial scan for usable data using the following criteria:

(a) Oscillations ofα with period of 0.3 to 1.0 seconds.

(b) Minimum amplitude ofα = 20◦.

(c) At least four steps (i.e. four peaks).

4. Prompt user to verify found data and ignored data section by section.

5. Prompt user on number of steps to remove from each trial. The step period and step
length of each trial is shown.
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6. Prompt user to save data selection.

7. Determine the gait data: Step period, step length, and average hip velocity.

8. Smooth data with a curve fit algorithm.

9. Save post-processed data.



Chapter 4

Stability Analysis

4.1 Introduction

This section provides an explanation on how to calculate theLyapunov characteristic ex-

ponents of the ten dimensional passive walking mathematical model. The stability of a

ten dimensional system is difficult to quantify. However, anattempt is made to understand

the stability by determining the basins of attraction of thestable walking cycle. A novel

method was developed to determine the basin of attraction ofthe 2D projection of a system.

4.2 Lyapunov Exponents

Lyapunov exponents are a valuable tool for analyzing the behaviour of non-linear systems.

Specifically Lyapunov exponents can be described as the “average exponential rates of

divergence or convergence of nearby orbits in phase space.”[29]. For a continuous n-

dimensional phase space, the Lyapunov exponents describe the long-term evolution of an

infinitesimal n-(hyper)sphere of initial conditions. An n-dimensional system will have n

Lyapunov exponents. Over a period of time the n-sphere will deform and become an n-

(hyper)ellipsoid, contracting and expanding along different axes. Due to this contraction

37
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and expansion, theith Lyapunov exponent does not relate to theith state in the phase space,

but the Lyapunov exponent spectrum relates to the system as awhole. Lyapunov exponents

are invariant of the trajectory used to calculate the Lyapunov exponents. In other words,

Lyapunov exponents are independent of initial conditions,if in the same basin of attraction.

The Lyapunov exponent spectrum is given by (4.1), whereZi is the length of theith principle

axis of the n-(hyper)ellipsoid.

λi = lim
t→∞

lim
Zi(0)→0

1
t

ln
||Zi(t)||
||Zi(0)||

(4.1)

The signs of the Lyapunov exponents of a system provide information about the qualita-

tive properties of a system. For a three dimensional system the possible Lyapunov exponent

spectra are (+ve, 0, -ve) for a strange attractor, (0, 0, -ve)for a two-torus, (0, -ve, -ve) for a

limit cycle, and (-ve, -ve, -ve) for a fixed point.

4.2.1 Calculating Lyapunov Exponents

There are different methods that have been developed for computing Lyapunov exponents.

The method developed by [29] will be explained. With the method developed by [29],

to compute Lyapunov exponents a “fiducial” trajectory is selected as the center of the n-

sphere, where the motion of the “fiducial” trajectory is defined by the non-linear equations.

The trajectories of the points on the surface of the sphere, which are infinitesimally sep-

arated from the center, are defined by the linearized equations. The non-linear and linear

equations are described by (4.2).Ψ is the state transition matrix of the linearized equations

and describes the evolution of the n-sphere.J is the linearized system of equations. Figure

4.1 shows a depiction of how the system evolves in time.







ẏ

Ψ̇







=







f (y(t))

J(y(t))Ψ







(4.2)
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Ψ=
[

νT
1 νT

2 . . . νT
n

]

(4.3)

Fiducial Trajectory

||δq2(t)||
||δq2(t + tstep)||

||δq1(t)||

||δq1(t + tstep)||

Initial (hyper)sphere Deformed (hyper)ellipse

Figure 4.1: A visualization of the time evolution of the initial infinitesimal sphere in 2D.

The Lyapunov exponents are derived of the time evolution of the volume of the n-

ellipsoid defined by[ν1,ν2, . . .νn]. However, the vectors[ν1,ν2, . . .νn] tend to align as

t → ∞ making the volume difficult to accurately compute. Therefore, the vectors are or-

thonormalized during the integration. Figure 4.2 shows a depiction of orthonormalization

about the vectorν1.

ν2 = ||δq2(t)|| ν1 = ||δq1(t)||
Z2

Z1 = ν1

ν′1
〈ν2,ν′1〉ν′1

ν′1

ν′2

Figure 4.2: The GSR procedure for a set of 2D vectors

The Gram-Schmidt reorthonormalization (GSR) procedure is used to orthonormalize

the state vectors.
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Z1 = ν1 (4.4)

Z2 = ν2−〈ν2,ν′1〉ν′1 (4.5)

... (4.6)

Zn = νn−〈νn,ν′n−1〉ν′n−1− . . .−〈ν2,ν′1〉ν′1 (4.7)

ν′i =
Zi

||Zi||
(4.8)

An arbitrary initial vector set can be chosen since the set ofνi tend to align with the direc-

tion of λ1 and the GSR has orientation preserving properties. Therefore the initial vector

set is chosen to beΨ= I , whereI is an identity matrix. The algorithm for determining the

Lyapunov exponents is shown below.

Lyapunov Exponents Algorithm

Initial conditions: y0 andΨ0 = I .

Main Loop: starting att0 and moving forward bytstep. From an ODE solver with(time|t :

t + tstep) yields the evolution of the fiducial trajectoryy and the n-ellipsoidΨ.

[

νT
1 νT

2 . . . νT
n

]

= Ψtime=t+tstep

Z1(t) = ν1

Z2(t) = ν2−〈ν2,ν′1〉ν′1
...

Zn(t) = νn−〈νn,ν′n−1〉ν′n−1− . . .−〈ν2,ν′1〉ν′1
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Where

ν′i =
Zi(t)

||Zi(t)||

Ci(t + tstep) =Ci(t)+
ln(||Zi||)

ln(2)
(4.9)

λi(t + tstep) =
Ci(t + tstep)

t − t0

t = t + tstep

y0 = y|time=t+tstep

Ψ0 =
[

ν′T1 ν′T2 . . . ν′Tn
]

End of Loop

As t → ∞ the value ofλi(t) will converge toλi .

4.2.2 LuGre Model Approximation

To calculate the Lyapunov characteristic exponents of the ten dimension state space of the

proposed mathematical model, the method outlined in [29] was used. The method outlined

in [29] requires the Jacobian of the equations of motion. To calculate the Jacobian of the

equations of motion an approximation of the LuGre model is required. The derivative of

the bristle deflection, ˙z, of the LuGre model is partially a function of the absolute value of

the sliding velocity between the two surfaces. The derivative of an absolute value at zero is

undefined. Therefore, a smooth approximation to the absolute value was substituted based

on the information in [30]. The original system, (4.10), is approximated by (4.11).

ż= v−σ0
|v|

g(v)
z (4.10)

˙̃z= S2
vv−σ0

Svv
g(v)

z (4.11)
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Figure 4.3: Signum approximation function -Sv =
2
π arctan(kvv).

Where the signum function is approximated by (4.12). Fig. 4.3illustrates how the param-

eterkv effects the approximation function.

Sv =
2
π

arctan(kvv) (4.12)

The valuekv is a tuning parameter that was set tokv = 108. The value ofkv was selected

by choosing the smallest value that had a negligible effect on the solution. Askv → ∞ the

functionSv approaches the signum function. The derivative of the smooth approximation,

(4.14), has an extra term compared to the derivative of the original equation, (4.13).

∂ż
∂v

= 1−σ0

v
|v|

g(v)
z

(

1+2

(

v
vs

)2(

1− µc

g(v)

)

)

(4.13)

∂ ˙̃z
∂v

= S2
v −σ0

Sv

g(v)
z

(

1+2

(

v
vs

)2(

1− µc

g(v)

)

)

+
2
π

(

kvv
1+(kvv)2

)(

2Sv−
σ0

g(v)
z

)

(4.14)
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However, the extra term tends towards zero askv → ∞. The Jacobian of the system with

the approximation can be found in Appendix A.2.

4.3 Basin of Attraction

A stable attractor of a dynamic system is a point, orbit, or region of the state space, that

nearby trajectories will tend towards. All trajectories that tend toward an attractor make

up a region of space called the basin of attraction. Each attractor has its own basin of

attraction. When the passive walker reaches a stable gait, the passive walker is in a stable

periodic orbit, where the periodic orbit is an attractor. The mathematical model of the

passive walker is a ten dimensional state system. Trying to map out a ten dimensional state

space basin of attraction is computationally demanding. Therefore, for this thesis, the basin

of attraction was determined for a 2D projection of the ten state system.

The size and shape of the basin of attraction is used to quantify the stability of the

passive walker. The basin of attraction at discrete points on the gait were calculated for two

parameters. Eight points were selected on a leg angle phase portrait. These eight points

are referred to as “Points of Interest” (POI) and are shown inFig. 4.4 and listed in Table

4.1. The basin of attraction of the leg angle, and leg angle velocity was determined for each

POI.

Table 4.1: POINTS OF INTEREST ALONG THE PHASE PORTRAIT.

POI 1 2 3 4 5 6 7 8

Marker θ̇1 = 0 θ1 = 0 θ2 = 0 θ̇1 = 0 θ̇2 = 0 θ2 = 0 θ1 = 0 θ̇2 = 0

θ2
θ1

Stance Leg Leg 2 Leg 1

During the stance phase, if the leg angle(θ) or leg angle velocity(θ̇) are changed, the

leg could be rotated into the ground. Therefore, during the stance phase, the statesxhip,
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Figure 4.4: Phase portrait of the leg angle with points of interest labeled.

yhip, ẋ, ẏ, were changed to create an equivalent change inθ andθ̇ so that the same contact

forces were produced compared to the original state.

θ∗s = θs+ ε1 (4.15)

θ̇∗s = θ̇s+ ε2 (4.16)

y∗ = y− l(cosθs−cosθ∗s)+ρ(cos(θs−δ)−cos(θ∗s −δ)) (4.17)

ẋ∗ = ẋ+(̇θ)s(l(cosθs−cosθ∗s)−ρ(cos(θs−δ)−cos(θ∗s −δ)))

− ε2(l cosθ∗s −ρcos(θ∗s −δ)+ρ) (4.18)

ẏ∗ = ẏ+(̇θ)s(l(sinθs−sinθ∗s)−ρ(sin(θs−δ)−sin(θ∗s −δ)))

− ε2(l sinθ∗s −ρsin(θ∗s1−δ)) (4.19)
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crossover= false;
last point= stable;/* First point is the equilibrium point. */
while abs(ε− ε∗0)/2> stepmin and crossover== true do

point= function test(stable or unstable);
if point== stablethen

if crossover== falseor last point== stablethen
ε0 = ε;
ε = 2ε;

else
ε∗0 = ε0; /* Place Holder */
ε0 = ε;
ε = ε+abs(ε− ε∗0)/2;
crossover= true;

end
last point= stable;

else
if crossover== falseor last point== unstablethen

ε0 = ε;
ε = ε/2;

else
ε∗0 = ε0; /* Place Holder */
ε0 = ε;
ε = ε−abs(ε− ε∗0)/2;
crossover= true;

end
last point= unstable;

end
end

Algorithm 1: Edge point with binary search method.

4.3.1 BoA Edge Algorithm

To calculate a 2D projection of the basin of attraction (BoA) asimple grid search can be

performed, where each parameter combination is tested to see if the initial condition is

stable or unstable1. However, a grid search is inefficient, and depending on the resolution,

the grid search can take a very long time. As well, if the grid search is not fine enough,

some of the BoA may not be found. Therefore, a new method was developed to find the

1i.e. Will eventually reach the attractor.
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Figure 4.5: BoA algorithm - finding first point

BoA edge. The BoA edge algorithm finds the edge of non-riddled basins of attraction

surround the stable point. Below, a step by step explanation of the algorithm is provided.

Step 1: Find the first point on the BoA

Starting from the stable initial point, the algorithm searches for the edge of the BoA in the

positive direction of axis 2. To find the edge a binary search method is used. The algorithm

for the binary search method is shown in algorithm 1. Fig. 4.5shows a visual example of

the algorithm finding the first point of the BoA edge. Initially, if the first guess is stable,

the offset will double until the algorithm finds an unstable point. Alternatively, if the first

guess is unstable, the algorithm will half the offset until astable point is found. Once the

algorithm has crossed the BoA edge, the binary search method is employed, where the next

guess is the halfway point between the closest stable and unstable point. This method is

repeated until the step size2 is below a set minimum, noted asstepmin in the pseudo code.

2difference between the next guess and current guess
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Figure 4.6: BoA edge algorithm - finding first edge

Step 2: Find the next edge on the BoA

The first edge of the BoA is found in the positive direction of axis 1. The algorithm searches

using a set radius and varies the angle using the same binary search method shown in

algorithm 1. Fig. 4.6 shows a visual example of the algorithmfind the first edge of the

BoA. The algorithm searches clockwise around the BoA edge, thus if an unstable point is

found the algorithm rotates the search arm in the clockwise direction and counterclockwise

for a stable point.

There are several checks in place to make sure the algorithm is finding the full BoA. If

the algorithm cannot find the BoA edge within an obtuse angle from the previous line, the

algorithm goes into a reverse protocol. The reverse protocol searches with a finer resolution

and attempts to avoid skipping part of the BoA, like the example shown in Fig. 4.7. Also,

if the algorithm crosses itself then it follows a backtracking protocol, where the algorithm

backs up and decreases the increment amount. Every time the algorithm crosses it self the

algorithm backs up more and further decreases the increase increment. The initial guess

for the next angle is determined by using a curve fit of the previously found points, where
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Figure 4.7: An example without the reverse protocol, where part of the BoA is skipped.

the algorithm attempts to find a curve that will best approximate the last known point using

the previous points. The algorithm starts with two points, and increases up to maximum of

20 and starts at a straight line and moves to a polynomial curve fit. If the algorithm cannot

find a reasonable guess, the algorithm reverts to using the last angle as the initial guess for

the next angle.

Fig. 4.8 shows the performance of the algorithm with a test function (4.21)–(4.22),

wherec = 0.77 andd = 15. The test function was created with acute angles to test the

reverse protocol and backtracking protocol. The algorithmtook 872 evaluations to deter-

mine the edge of the test function with a relative angular error of 10−2. A cell map of 900

evaluations is shown in comparison to the algorithm’s solution in Fig. 4.8.

0< φ < 2π (4.20)

x=−cos(φ+c) (4.21)

y=−sin(φ)sin5
(

φ
2

)(

d+sgn

(

sin(φ)sin5
(

φ
2

)

(d−1)

))

(4.22)
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4.4 Summary

This chapter introduced the concept of Lyapunov exponents and explained some of the

properties of Lyapunov exponents. A review of the method to calculate Lyapunov expo-

nents found in [29], was given. The method to calculate the Lyapunov exponents is based

on the numerical solution of the original ODE and the linearize version of the ODE. A

novel method for finding the edge of non-riddled basins of attraction was explained. The

method was compared to a simple grid search algorithm.



Chapter 5

Results and Discussion

5.1 Introduction

The proposed passive walking mathematical model was able toproduce stable walking mo-

tion. With simulation results of the proposed passive walking mathematical model some

of the advantages of the proposed model are explained. Trials with the physical passive

walker, HM2L, were completed with six different center of mass locations. The gait pa-

rameters of the proposed passive walking mathematical model and the impact-based pas-

sive walking model were compared to the gait measurements ofthe physical passive walker.

The stability and robustness of passive dynamic walking wasanalyzed with the proposed

mathematical model. Lyapunov exponents of the proposed passive walking mathematical

mode were calculated for one case. The basin of attraction edge algorithm was used to

determine the BoA of the proposed passive walking mathematical model. The area of the

BoA is used to quantify the robustness of the passive walker and is analyzed against the

change in angular momentum of the passive walker. As well, the proposed passive walking

mathematical model is simulated with human like parametersand the angular momentum

of the resulting gait is discussed in comparison to the angular momentum measured from

human gaits.

50
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5.2 Proposed Mathematical Model

The proposed mathematical model is able to capture more complex dynamics, like the

double support phase, compared to the impact-based passivewalking model. With the

added complexity of the contact force models, stable solutions of the proposed model were

still found. Finding stable initial conditions for passivewalking models is not an easy

task. Unfortunately for those readers trying to find initialconditions of their own, mostly

intuition was used to find the first initial conditions. However, there are some tricks to

finding initial conditions. If the initial conditions are close to stable initial conditions the

walker will usually oscillate from a small step to a big step.Thus if the first step was too

big, reduce the swing leg velocity or increase the stance legvelocity to reduce the step size

and vice versa for a small step. Another trick is to choose parameters that produce a more

robust walker, like a larger hip mass. Once a set of stable initial conditions are found, to

find stable conditions for other parameter combinations, offset the desired parameter from

the first parameter set slightly. Then simulate the new parameter set until the simulation

stabilizes. If the simulation does not stabilize then reduce the offset. If the simulation does

stabilize then offset the parameter again, repeat until thedesired parameter is reached.

To demonstrate some of the advantages of the proposed model,simulations were con-

ducted with the parameters shown in Table 5.1. For comparison, simulations of the tra-

ditional impact-based passive walking model were completed with model parameters of

Table 5.1. The initial conditions of the proposed passive walking model (5.1) and the

impact-based passive walking model (5.2) were selected so that the system was already in

a stable gait.

Proposed Passive Walking Mathematical Model

Q0 =
[

0.000 0.4114 0.1399 0.0512 0.1708

0.0048 2.8056 −0.4126 3.000×10−6 0.493×10−6
]T

(5.1)
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Impact-Based Passive Walking Mathematical Model

Q0 =
[

0.2414 −0.2414 −1.7314 −0.7318]T (5.2)

Table 5.1: WALKER SIMULATION PARAMETERS.

Model Parameters

l = 0.4143 [m] ρ = 0.0860 [m]

δ = 0◦ [degrees] γ = 2.05◦ [degrees]

m = 5.1587 [kg] M = 1.2826 [kg]

b = 0.1930 [m] rg = 0.1067 [m]

Contact Parameters

µs = 0.38 µc = 0.30

ks = 9.3920×105 [N/m3/2] kd = 1.6879×107 [N s/m5/2]

σ0 = 105 [N/m] σ1 = 2
√

σ0 [N s/m]

vs = 10−4 [m/s] α0 = 10◦

Fig. 5.1a) shows the stable phase portrait of a leg angle versus leg angle velocity of

the proposed model. The heel strike regions are highlightedin red and the double support

phase is highlighted in dark red with a thicker line in Fig. 5.1a). Fig. 5.1b) shows the stable

phase portrait of the a leg angle of the standard impact model. The standard impact model

heel strike regions are vertical since the position state does not change over the impact.

With the Hunt-Crossley contact model and the LuGre friction model the position states

change during the impact event, as they would in reality. As well, the contact and friction

model allow the system to slide during the impact event (i.e.no sliding during impact is

not assumed), if the tangential force is great enough to overcome the contact friction force.

Fig. 5.2 shows the normal force and friction force for one foot over one step. The initial

peak in the normal force plot is due to the impact of the foot with the ramp. After the impact
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Figure 5.1: Leg angle phase portrait a) proposed mathematical model b) impact-based
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phase the normal force settles to a value near the steady state normal force(M+2m)g. The

contact force still varies after the impact phase due to the movement of the legs. During

the impact phase, the friction force suddenly decreases when the foot stops sliding. The

friction direction reverses twice through out a single step. The second reversal is due to the

foot dragging at lift off.
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Fig. 5.3 shows the friction statez for one leg over two steps. Notice how the state

observer is still active during non-contact sections of thegait. Simulations were completed

with reseting the state observer to zero after each separation and no discernible difference

was found between the resulting gaits. Therefore the equation for z was kept continuous

through out the whole simulation.
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Figure 5.3: Friction state observer.

5.3 Physical Walker and Gait Measurement Performance

The physical passive walker, HM2L, was able to walk down a 32 foot long ramp. The

design proved to be rigid and reliable. The ramp design was rigid, but to adjust the ramp

took about thirty minutes to adjust the ramp to a desired angle. The data acquisition sys-

tem worked well with one exception. The inclinometer was found to have some issues

that prevented useful data from being captured. A US DigitalX3M inclinometer was used

to measure the global orientation of the experimental walker. The X3M uses MEMS ac-

celerometers to determine the orientation of the sensor, which when subject to vibration

from each heel strike gave a noisy signal. With the exceptionof the inclinometer, the gait

measurement system performed very well.
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5.4 Mathematical Model Validation

In this section the validation of the mathematical model is provided against experimental

data gathered using the passive walker HM2L. As a reference,the impact-based passive

walking model is compared against the experimental data as well. The effects of chang-

ing the center of mass on the step period, step length, and average hip velocity is used to

compare the three resulting gaits. The parameters used in the simulations for the validation

case, rounded to four decimal spaces, can be found in Table 5.2 and Table 5.3. The geo-

metric parameters were determined from the SolidWorks model that was used to generate

the machine shop drawings for the passive walker HM2L. Each machined part, bolt, and

nut of the walker was weighed and the corresponding mass was entered in the SolidWorks

model. Assuming a uniform density for each part, bolt, and nut, the mass properties of the

walker were determined. To measure the angle of the ramp, a laser level was used to first

Table 5.2: CONSTANT TRIAL PARAMETERS.

Model Parameters Parameters
l = 0.4143 [m] ρ = 0.0860 [m]
δ = 0◦ [degrees] γ = 2.05◦ [degrees]
m = 5.1587 [kg] M = 1.2826 [kg]

Contact Parameters
µs = 0.38 µc = 0.30
ks = 9.3920×105 [N/m3/2] kd = 1.6879×107 [N s/m5/2]
σ0 = 105 [N/m] σ1 = 2

√
σ0 [N s/m]

vs = 10−4 [m/s] α0 = 10◦

Table 5.3: VARIABLE TRIAL PARAMETERS.

Trial Center of Massb Radius of Gyrationrg

[m] b/l [m] rg/l
L#1 0.1356 32.72% 0.1192 28.77%
L#2 0.1547 37.34% 0.1112 27.03%
L#3 0.1739 41.96% 0.1077 26.00%
L#4 0.1930 46.58% 0.1067 25.75%
L#5 0.2122 51.21% 0.1091 26.32%
L#6 0.2313 55.83% 0.1146 27.65%
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measure the topography of the floor. Then, using the floor as a reference, the relative height

of four locations on the ramp were measured. Using the relative heights, the average angle

of the ramp was determined.

The friction coefficients were estimated from measurementsof a previous ramp and

walker setup [28]. The parameters specific to the LuGre model(σ0, σ1, andvs) were se-

lected based on the information found in [31]. For the contact parameters, the steady state

value of the deformation of the foot was measured when the walker was standing. Using

the measured deflection and (5.3), the value ofks was estimated. The contact damping pa-

rameterkd was the only parameter that was used to adjust the model to fit the experimental

data. The parameterkd was adjusted so that the experimental step length of trial:CoM L#1

matched the simulations. The adjusted value ofkd was kept constant for the remaining

simulations. For the simulations, only the center of mass and radius of gyration parameters

were changed between trials to match the change of the parameters of the physical walker.

ks =

(

1
2
(2m+M)g

)

/(hmeasured)
3
2 (5.3)

Fig. 5.4a), Fig. 5.4b), and Fig. 5.4c) show the step length, step period, and average hip

velocity for the proposed mathematical model, the impact model, and the experiments. The

impact model was not stable at CoM L#6, but could take over 50 steps. The average of these

steps was used and the standard deviation between the steps are shown in the figures. The

experiments have two sets of standard deviation bars. The “All steps Stdv.” is the standard

deviation of all of the usable steps of all of the runs down theramp for that trial. The “Trial

Stdv.” is the standard deviation of the averages of each run down the ramp for that trial. The

simulations of the proposed mathematical model match the experiment in both magnitude

and trend. Thus, the ability of the proposed model to generate gait measurement trends is

valid. The impact–based model matches the trends of the experiments, but not as closely

as the proposed mathematical model. Although the impact–based model may be valid in

some cases, Fig. 5.4 shows the inability of the impact–basedmodel to replicate reality in

this case.
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Fig. 5.5a), Fig. 5.5b), and Fig. 5.5c) show a comparison of the kinematics of the

simulations and experiments for CoM L#4. Comparing the kinematics goes one step further

than comparing the resulting gait measurements and shows how well the proposed model

can match the physical walker’s motion. Fig. 5.5a) shows theinner leg angle, Fig. 5.5b)

shows the inner leg angle velocity, and Fig. 5.5c) shows the inner leg angle acceleration.

The inner leg angle data was fit using a Fourier series with a moving window. The derivative

of the Fourier series was used to calculated the derivativesof the inner leg angle. With the

inner leg angle acceleration, degradation of the signal is noticeable. However, the general

shape and magnitude of the inner leg angle acceleration of the simulations and experiments

are still in agreement. The agreement between the kinematics of the physical walker and

the proposed mathematical model show that the proposed mathematical model can generate

valid gait motion, not just valid gait measurement trends.

5.5 Stability Analysis Results

5.5.1 Lyapunov Exponents

The Lyapunov exponents were calculated for the proposed passive walking mathematical

model for one case using the approximation to the LuGre modelshown in section 4.2.

To calculate the Lyapunov exponents for this single case took approximately one month

to simulate. Some inefficiencies in the code were found afterward that may reduce the

computation time. However, due to the long computation time, using Lyapunov exponents

as a measure of stability proved to be unfeasible for this project. The sign of the Lyapunov

exponents of this one case still provides some information about the gait. Fig. 5.6 shows

the Lyapunov exponents calculated versus time with two close up views. To determine the

final values of the Lyapunov exponents, an average of the Lyapunov exponents over the last

1000 seconds of the simulation was taken.
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Table 5.4: LYAPUNOV CHARACTERISTIC EXPONENTS.

LE STD % STD

1 0 ± 0 0%

2 −0.01341 ± 0.00013 0.97%

3 −2.25988 ± 0.00018 7.97×10−3%

4 −2.25958 ± 0.00013 5.75×10−3%

5 −3.88372 ± 0.00008 2.06×10−3%

6 −69.30363 ± 0.00018 2.60×10−4%

7 −80.29741 ± 0.00024 2.99×10−4%

8 −236.70207 ± 0.00022 9.29×10−5%

9 −29346.903 ± 0.043 1.47×10−4%

10 −7413.16 ± 0.20 2.70×10−3%

Table 5.4 gives the average calculated Lyapunov exponents over the last 1000 seconds

(T = 7450 to 8450 seconds). The simulation had to run for longer due to exponent two

(λ2). The sign of exponent two(λ2) was not determinable until near the end of the simu-

lation. Fig. 5.7 shows the relative error between the current Lyapunov exponents and the

Lyapunov exponents shown in Table 5.4. The sign of the Lyapunov exponents was found

to be(0,−,−, . . .), which shows that the mathematical passive walking model ismoving in

a stable periodic motion not a higher dimensional torus(0, . . . ,0,−,−, . . .)
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Figure 5.7: Lyapunov exponents relative error versus time.
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5.5.2 Basin of Attraction

To validate the basin of attraction (BoA) edge algorithm a grid search was completed

around the BoA edge found for caseb/l = 0.35 at POI 1 (refer to Fig. 4.4 on page 44).

The parameters shown in Table 5.5 were used for the simulations. Fig. 5.8 shows the re-

sults of the grid search, where the red dots are the stable points and the blue dots are the

unstable points. Since calculating the Lyapunov exponentsproved to be not feasible for

multiple trials, the stability of the system was determinedusing the POI conditions as the

Poincaŕe section. If all of the states of the system, excludingx, were within 10−3 of the

stable orbit at the POI, then the system was determined to be stable. Fig. 5.8 shows that the

grid search and the BoA edge algorithm results are in agreement. The BoA edge algorithm

took 8043 function evaluations to find the edges to an angularrelative error of 10−4 and

the grid search consisted of 6282 points. The BoA edge algorithm was found to be reliable

at finding non-riddled basins of attraction. Further more, the BoA edge algorithm, like

a grid search method, is based on the input of “stable” or “unstable”, so any method for

determining the stability of the system could be used.

Table 5.5: BASIN OF ATTRACTION – PARAMETERS

Model Parameters Parameters
l = 0.4064 [m] ρ = 0.0813 [m]
δ = 0◦ [degrees] γ = 2.00◦ [degrees]
m = 5.000 [kg] M = 0 [kg]
rg = 0.1138 [m]

Contact Parameters
µs = 0.38 µc = 0.26
ks = 106 [N/m3/2] kd = 107 [N s/m5/2]
σ0 = 105 [N/m] σ1 = 2

√
σ0 [N s/m]

vs = 10−4 [m/s] α0 = 10◦
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Using the BoA edge algorithm, the basin of attraction was found for all eight points of

interest for eight different center of mass locations usingthe parameters in Table 5.5. The

center of mass locations are shown in Table 5.6. The stability of the system was determined

using a Poincaŕe section, as mention above. Fig. 5.9 to Fig. 5.16 show how thebasin of

attraction is effected by the center of mass for POI one to eight. The shape of the basins of

attraction on the center of mass boundaries (CoM 16% and CoM 50%) were found to be

less broad than between CoM 16% and CoM 50%.
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Figure 5.9: BoA for point of interest one.
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Figure 5.10: BoA for point of interest two.
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Figure 5.11: BoA for point of interest three.
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Figure 5.12: BoA for point of interest four.
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Figure 5.13: BoA for point of interest five.
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Figure 5.14: Point of interest six.
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Figure 5.15: BoA for point of interest seven.



CHAPTER 5. RESULTS AND DISCUSSION 68

-0.5 0.0 0.5 1.0 1.5
-10

-5

0

5

16 %
20 %

25 %

30 %

35 %

40 %

45 %

50 %

C
oM

b/
l

Equilibrium Point
CoM 50%
CoM 45%
CoM 40%
CoM 35%
CoM 30%
CoM 25%
CoM 20%
CoM 16%

θ1 (radians)

θ̇1 (rad/s)

C
oM

b/
l

Figure 5.16: BoA for point of interest eight.

Table 5.6: BASIN OF ATTRACTION – CENTER OF MASS PARAMETERS.

Center of Massb
[m] b/l

0.0650 16 %
0.0813 20 %
0.1016 25 %
0.1219 30 %
0.1422 35 %
0.1626 40 %
0.1829 45 %
0.2032 50 %

The basins of attraction that were found for the swing leg1 were found to extend far

in the+θ direction. When the system is offset in the+θ direction, the angular velocity

needs to be adjusted accordingly to return the system back tothe stable orbit. Fig. 5.17

shows a visualization of this abnormality, where the swing leg has a large angular offset. As

the larger the angular offset, the more precise angular velocity is required. The larger the

1i.e. the swing leg parameters were offset, POI 1 to 4.
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velocity creates a larger impact force, which in a physical walker would not be contained

locally. The model only accounts for local deformation at the contact, not vibrations or

deformation of the structure. If vibration of deformation of the structure were accounted

for, the BoA of the swing leg would most likely be smaller.

Stable Periodic Cycle Disturbed Periodic Cycle

Figure 5.17: Visualization of the swing leg BoA abnormality.

Fig. 5.18 and Fig. 5.19 show the change in area of the BoA versusthe change in the

CoM for different points of interest along the stable periodic cycle. To account for the

abnormality of the swing leg BoA, mentioned above, only the area of the BoA that had an

angular offset of less thanπ/2 was calculated. From Fig. 5.18 and Fig. 5.19 determining

which center of mass location has the largest stability region is not clear. However, it is

easy to see that there is a favourable point between 16% and 50%.
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Figure 5.18: Area of the BoA for points of interest that belongto the swing leg.
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Figure 5.19: Area of the BoA for points of interest that belongto the stance leg.

5.6 Angular Momentum

5.6.1 Angular Momentum vs BoA

Fig. 5.20 show the average absolute angular momentum and ground reaction torque and

maximum absolute angular momentum and ground reaction torque of the walker. The

angular momentum of the walker was calculated about the center of mass of the walker. The

ground reaction torque is the resulting torque caused by theground reaction forces acting

about the center of mass. The average absolute values were calculated by numerically

integrating the absolute value and dividing by the period ofintegration, as shown in (5.4).

|L̄|= 1
t1− t0

∫ t1

t0
|L| (5.4)

Fig. 5.21 shows the normalized values of Fig. 5.20. The angular momentum was

normalized by dividing by the walker height(l), total mass(2m+M), and average hip
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velocity (v̄hip). The torque was normalized by dividing by the height(l), total mass(2m+

M) and the acceleration due to gravity(g). As can be seen from Fig. 5.20 and Fig. 5.21, the

angular momentum does not display any minimum or maximum between the center of mass

locations of 16% and 50% of the leg length. In contrast, the area of the basin of attraction,

shown in Fig. 5.18 and Fig. 5.19, shows a favourable point between the center of mass

locations of 16% and 50% of the leg length. These results giveevidence that the angular

momentum of the gait of a biped walker does not correlate to the stability of the gait. This

is supported by [32], where the authors suggest that angularmomentum is kept small in

human walking to reduce the energy required to continue the gait. This statement would

make sense if the passive dynamics of the human body have a lowangular momentum gait.
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5.6.2 Angular Momentum with Human Parameters

Recently there have been studies that have measured the angular momentum of the human

body during walking [32][33][34]. Humans were found to havea relatively low angular

momentum during a normal walking gait. This low angular momentum was attributed to

the control of the central nervous system. In the sagittal plane, the angular momentum was

found to be low due to canceling angular momenta from opposing leg limbs [32]. This

section explores the question “How much of the relatively low angular momentum of the

human gait is from the control of the central nervous system?”

First off, what is defined as low angular momentum? In [32], the authors use a falling

inverted pendulum as a reference. The inverted pendulum wasfound to have a maximum

normalized angular momentum of∼ 0.2. To determine what the angular momentum of

the passive walker, simulations were completed with the parameters in Table 5.7. The

parameters in Table 5.7. were set to human like values using data from [35]. Fig. 5.22

shows the angular momentum of the passive dynamic walker over one stride and Fig. 5.23
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shows the ground reaction torque over one stride for the parameters in Table 5.7. The

absolute maximum normalized angular momentum experiencedby the walker was∼ 0.13.

The angular momentum of the walker was normalized with the average hip velocity(v̄hip),

total mass(2m+M), and the walker leg length(l).
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Table 5.7: ANTHROPOMORPHIC PASSIVE WALKER PARAMETERS.

Model Parameters Parameters
l = 0.8471 [m] ρ = l(0.20) [m]
δ = 0◦ [degrees] (2m+M) = 80 [kg]
m = (2m+M)(0.157) [kg] M = (2m+M)(0.686) [kg]
rg = l(0.317) [m] b = l(0.434) [m]
γ = 0.6◦ [degrees]

Contact Parameters
µs = 0.38 µc = 0.26
ks = 8×106 [N/m3/2] kd = 8×107 [N s/m5/2]
σ0 = 105 [N/m] σ1 = 2

√
σ0 [N s/m]

vs = 10−4 [m/s] α0 = 10◦

The absolute maximum normalized angular momentum of the walker is larger than

what was found for humans. The authors of [34] and [33] found the maximum normalized

angular momentum to be 0.02 normalized with the body height instead of the leg length

(if normalized with the leg length would be∼ 0.04). In [32] the maximum normalized

angular momentum was found to be 0.05, normalized with the body center of mass height

instead of the leg length (if normalized with the leg length would be slightly larger). In all

cases the passive walker experienced more than double the maximum normalized angular

momentum.

Why does the passive walker experience a larger angular momentum or more impor-

tantly why do humans experience less angular momentum through out their gait. Would a

more anthropomorphic passive walker, one with knees or one with an upper body like the

one designed in [36], experience less angular momentum thanthe current passive walker?

The answer to that question would provide insight into the questions: “To what degree does

the central nervous system control the human gait to have a low angular momentum?” and

“Does the central nervous system control the angular momentum of the human gait to be

low for energy efficiency?”
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Conclusions and Future Work

6.1 Conclusions

A new mathematical model of passive walking was developed with the Hunt-Crossley con-

tact model and the LuGre friction model. Even with the added complexity of the contact

and friction models, stable periodic motion was produced with the proposed passive walk-

ing model. The passive walking model was able to simulate theentire gait with one set of

equations1. The proposed mathematical model was able to replicate the results of the ex-

periments very well. The proposed passive walking mathematical model matched the trend

and magnitude of the experimental gait measurements. The impact-based passive walking

model also matched the trends of the experimental gait, but was not able to match the gait

parameters magnitude. The difference in magnitude betweenthe two mathematical models

is attributed to the proposed passive walking mathematicalmodel being able to adjust the

damping (i.e. energy loss) of the heel strike impact. The impact-based mathematical model

was not stable for the same parameter range as the experiments and proposed mathematical

model. The difference in stable parameter range is attributed to the effects of friction.

The sliding velocity between the ramp and the foot never stays at zero. However, the

1Does not switch between impact and motion equations like thetraditional impact-based passive walking
model

75
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sliding velocity does remain below the Stribeck velocity. Afriction model with the com-

plexity of the LuGre model may not be needed to capture a majority of the dynamic features

of the gait. A friction model that accounts for transition between micro-sliding2 and full

sliding would be sufficient for this dynamic model.

The Lyapunov exponents were calculated for one case. The sign of the Lyapunov ex-

ponents were(0,−,−, . . .) which shows that the passive walking mathematical model is

moving in a stable period motion. A Poincaré map was used to determine a “stable” gait

from an “unstable” gait. The Poincaré map was used because numerically calculating Lya-

punov exponents was found not feasible with the available time and resources. The basin

of attraction of the proposed passive walking mathematicalmodel was determine in the

θ1–θ̇1 (Leg angle–Leg angle velocity) plane. The basin of attraction was found for eight

different points in the gait cycle with eight different center of mass locations. The method

developed for finding the basin of attraction was able to moreefficiently find the basin of

attraction compared to a full grid search method.

Increasing the size of the basin of attraction of the passivewalker will create a more

robust gait and a passive walker that can reject larger disturbances. A favourable center of

mass is evident from the area of the basin of attraction determined. However, the angular

momentum of the walker versus the center of mass did not show any minimum or maxi-

mum. From these results, angular momentum regulation does not seem to play a role in the

ability of the passive walker to reject disturbances.

The question was posed: “How much of the relatively low angular momentum of the

human gait is from the control of the central nervous system?”. The passive walker was

found to have a maximum normalized angular momentum of∼ 0.13 more than double than

that determined for a human gait of 0.04–0.05. Does the difference between the passive

walker angular momentum and the human gait angular momentumstem from the control

of the central nervous system of the human gait or is the humanbody mechanically better

tuned to cancel out the angular momentum of the limbs?

2the sliding velocity is less then the Stribeck velocity
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6.2 Future Work

This model can be used as a framework to develop more complex models (i.e. a passive

walker with knees or adding friction to the hip joint). As well, finding a less complex

friction model that still captures the necessary dynamics could reduce the number of states

of the system. A reduction in the number of states of the system would could reduce the

computation time.

Finding a more efficient way of calculating the Lyapunov exponents would improve

the methods available for stability analysis of the proposed passive walking mathematical

model. By reducing the complexity of the friction model may prove to reduce the time

required to calculate the Lyapunov exponents. The basin of attraction edge algorithm can

be improved. A method of determining the rough size of the BoA before computation

would be advantageous in determining the appropriate step size. As well, the BoA edge

algorithm could be extended into three dimensions by using triangles to map out the shape.

The inclinometer sensing device needs to be improved upon for the orientation data

to be usable. There are two obvious design routes. The first design route is to reduce

the vibrations experienced by the inclinometer. The seconddesign route is to improve

the settling time of a pendulum-encoder inclinometer. Another option is to use a motion

capture system to determine the orientation of the walker.

Analyzing a more anthropomorphic passive dynamic biped walker may provide insight

into the questions posed about the angular momentum of the human gait.
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Appendix A

Additional Mathematical Model

Equations

Appendix A provides some additional information about the mathematical model. The
equations of motion are transformed into the form of (A.1).

q̈ = A−1B (A.1)

Where

A = M (A.2)

B = F(q, q̇)−H(q, q̇)−G(q) (A.3)

The Jacobian of the proposed passive walking mathematical model is given in detail. The
Jacobian of the original system and the Jacobian of the system with the smooth approxi-
mation made to the LuGre model are given. Also, the equilibrium points of the proposed
passive walking mathematical model are given, assuming theswing leg ground clearance
procedure is not used.
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A.1 Proposed Mathematical Model Reformed

The proposed passive walking mathematical model is reformed to make the numerical so-
lution of the model less cumbersome.

A−1 =













AM(c2
1+c2

2+AM)+CmCp
MW

Asc(AM+1)
MW

−CAC
b −CCA

b
Asc(AM+1)

MW

AM(s2
1+s2

2+AM)−CmCp
MW

−SAC
b −SCA

b

−CAC
b −SAC

b
AMMW

b2
CmMW

b2

−CCA
b −SCA

b
CmMW

b2
AMMW

b2













1

m(A2
M −C2

m)
(A.4)

B =











(Ff1 +Ff2)+mb(θ̇2
1sinθ1+ θ̇2

2sinθ2)+g(M+2m)sinγ
(FN1 +FN1)−mb(θ̇2

1cosθ1− θ̇2
2cosθ2)−g(M+2m)cosγ

Ff1c
hip
y1 +FN1c

hip
x1 −mgbsin(θ1− γ)

Ff2c
hip
y2 +FN2c

hip
x2 −mgbsin(θ2− γ)











(A.5)

MW = 2+
M
m

(A.6)

AM = MW

(

1+
( rg

b

)2
)

−1 (A.7)

Asc= sinθ1cosθ1+sinθ2cosθ2 (A.8)

Cm = cos(θ1−θ2) , Sm = sin(θ1−θ2) (A.9)

Cp = cos(θ1+θ2) , Sp = sin(θ1+θ2) (A.10)

CCA = cosθ1Cm+cosθ2AM (A.11)

SCA = sinθ1Cm+sinθ2AM (A.12)

CAC = cosθ1AM +cosθ2Cm (A.13)

SAC = sinθ1AM +sinθ2Cm (A.14)
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A.2 Jacobian

The Jacobian of the of the proposed mathematical model (A.15) is needed to compute the
Lyapunov exponents with the method outlined in [29]. The Jacobian of the system can also
be used to monitor the stability of the solution for some numerical solvers.

J(Q) =









































0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 ∂ f5

∂y
∂ f5
∂θ1

∂ f5
∂θ2

∂ f5
∂ẋ

∂ f5
∂ẏ

∂ f5
∂θ̇1

∂ f5
∂θ̇2

∂ f5
∂z1

∂ f5
∂z2

0 ∂ f6
∂y

∂ f6
∂θ1

∂ f6
∂θ2

∂ f6
∂ẋ

∂ f6
∂ẏ

∂ f6
∂θ̇1

∂ f6
∂θ̇2

∂ f6
∂z1

∂ f6
∂z2

0 ∂ f7
∂y

∂ f7
∂θ1

∂ f7
∂θ2

∂ f7
∂ẋ

∂ f7
∂ẏ

∂ f7
∂θ̇1

∂ f7
∂θ̇2

∂ f7
∂z1

∂ f7
∂z2

0 ∂ f8
∂y

∂ f8
∂θ1

∂ f8
∂θ2

∂ f8
∂ẋ

∂ f8
∂ẏ

∂ f8
∂θ̇1

∂ f8
∂θ̇2

∂ f8
∂z1

∂ f8
∂z2

0 0 ∂ f9
∂θ1

0 ∂ f9
∂ẋ 0 ∂ f9

∂θ̇1
0 ∂ f9

∂z1
0

0 0 0 ∂ f5
∂θ2

∂ f10
∂ẋ 0 0 ∂ f10

∂θ̇2
0 ∂ f10

∂z2









































(A.15)

∂ fi+4

∂q
=

∂B
∂q

·A−1
(i,:) for i = 1 to 4 andq= [y, ẋ, ẏ, θ̇1, θ̇2, z1, z2] (A.16)

∂ f5
∂θ1

=
∂B
∂θ1

·A−1
(1,:)+

1

m(A2
M −C2

m)

((−2c1s1AM −SmCp−CmSp

MW
−2mCmSmA−1

1,1

)

B1

+

(

(c2
1−s2

1)(AM +1)
MW

−2mCmSmA−1
1,2

)

B2

+

(

s1Am+c2Sm

b
−2mCmSmA−1

1,3

)

B3+

(

s1Cm+c1Sm

b
−2mCmSmA−1

1,4

)

B4

)

(A.17)

∂ f5
∂θ2

=
∂B
∂θ2

·A−1
(2,:)+

1

m(A2
M −C2

m)

((−2c2s2AM +SmCp−CmSp

MW
+2mCmSmA−1

1,1

)

B1

+

(

(c2
2−s2

2)(AM +1)
MW

+2mCmSmA−1
1,2

)

B2

+

(

s2Cm−c2Sm

b
+2mCmSmA−1

1,3

)

B3+

(

s2Am−c1Sm

b
+2mCmSmA−1

1,4

)

B4

)

(A.18)
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∂ f6
∂θ1

=
∂B
∂θ1

·A−1
(2,:)+

1

m(A2
M −C2

m)

((

(c2
1−s2

1)(AM +1)
MW

−2mCmSmA−1
2,1

)

B1

+

(

2s1c1AM +SmCp+CmSp

MW
−2mCmSmA−1

2,2

)

B2

+

(−c1Am+s2Sm

b
−2mCmSmA−1

2,3

)

B3+

(−c1Cm+s1Sm

b
−2mCmSmA−1

2,4

)

B4

)

(A.19)

∂ f6
∂θ2

=
∂B
∂θ2

·A−1
(2,:)+

1

m(A2
M −C2

m)
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(c2
2−s2

2)(AM +1)
MW

+2mCmSmA−1
1,2

)

B1

+

(

2s2c2AM −SmCp+CmSp

MW
+2mCmSmA−1

2,2

)

B2

+

(−c2Cm−s2Sm

b
+2mCmSmA−1

2,3

)

B3+

(−c2Am−s1Sm

b
+2mCmSmA−1

2,4

)

B4

)

(A.20)

∂ f7
∂θ1

=
∂B
∂θ1

·A−1
(3,:)+

1

m(A2
M −C2

m)

((

s1Am+c2Sm

b
−2mCmSmA−1

3,1

)
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+

(−c1Am+s2Sm
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−2mCmSmA−1

3,2

)

B2

+
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−2mCmSmA−1
3,3

)

B3+

(

−SmMW

b2 −2mCmSmA−1
3,4

)

B4

)

(A.21)

∂ f7
∂θ2

=
∂B
∂θ2

·A−1
(3,:)+

1

m(A2
M −C2

m)

((

s2Cm−c2Sm
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+2mCmSmA−1

3,1

)
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+

(−c2Cm−s2Sm

b
+2mCmSmA−1

3,2

)

B2

+
(

2mCmSmA−1
3,3

)

B3+

(

SmMW

b2 +2mCmSmA−1
3,4

)

B4

)

(A.22)
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∂ f8
∂θ1

=
∂B
∂θ1

·A−1
(4,:)+

1

m(A2
M −C2

m)

((

s1Cm+c1Sm

b
−2mCmSmA−1

4,1

)

B1

+

(−c1Cm+s1Sm

b
−2mCmSmA−1

4,2

)
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+

(

−SmMW

b2 −2mCmSmA−1
4,3

)

B3+
(

−2mCmSmA−1
4,4

)

B4

)

(A.23)

∂ f8
∂θ2

=
∂B
∂θ2

·A−1
(4,:)+

1

m(A2
M −C2

m)

((

s2Am−c1Sm

b
+2mCmSmA−1

4,1

)

B1

+

(−c2Am−s1Sm

b
+2mCmSmA−1

4,2

)

B2

+

(

SmMW

b2 +2mCmSmA−1
4,3

)

B3+
(

2mCmSmA−1
4,4

)

B4

)

(A.24)

The original mathematical model:

∂ fi+8

∂q
=

∂ẋci

∂q
Cfi for q= [θ1, ẋ, θ̇1] (A.25)

∂ fi+8

∂zi
=−σ0

|ẋci |
g(ẋci )

for i = 1, 2 (A.26)

Cfi = 1− σ0zi ẋci

g(ẋci)|ẋci |

(

1+
2ẋ2

ci

v2
s

(

1− µc

g(ẋci)

)

)

(A.27)

The smooth approximation:(Outlined in section 4.2.2 on page 41)

∂ f̃i+8

∂q
=

∂ẋci

∂q
C̃fi for q= [θ1, ẋ, θ̇1] (A.28)

∂ f̃i+8

∂zi
=−σ0

Svẋci

g(ẋci)
for i = 1, 2 (A.29)

C̃fi = S2
v −

σ0ziSv

g(ẋci )

(

1+
2ẋ2

ci

v2
s

(

1− µc

g(ẋci)

)

)

+
2
π

(

kvẋci

1+(kvẋci )
2

)(

2Sv−
σ0

g(ẋci )
z

)

(A.30)

Sv =
2
π

arctan(kvẋci) (A.31)

Wherekv is a tuning parameter. Askv → ∞ the functionSv approaches the signum function.



APPENDIX A. ADDITIONAL MATHEMATICAL MODEL EQUATIONS 87

∂ẋci

∂θi
= θ̇i (−l sinθi +ρsin(θi −δ)) (A.32)

∂ẋci

∂ẋ
= 1 (A.33)

∂ẋci

∂θ̇i
= l cosθi −ρcos(θi −δ)+ρ (A.34)

∂FNi

∂y
=−3

2

√

hi
(

ks+kdḣi
)

(A.35)

∂FNi

∂θi
=−3

2

√

hi (l sinθi −ρsin(θi −δ))
(

ks+kdḣi
)

−kdh
3
2
i θ̇i (l cosθi −ρcos(θi −δ)) (A.36)

∂FNi

∂ẏ
=−kdh

3
2
i (A.37)

∂FNi

∂θ̇i
=−kdh

3
2
i (l sinθi −ρsin(θi −δ)) (A.38)

∂Ffi

∂q
=−(σ0zi +σ1żi)

∂FNi

∂q
for q= [y, ẏ] (A.39)

∂Ffi

∂q
=−σ1

∂ f8+i

∂q
FNi − (σ0zi +σ1żi)

∂FNi

∂q
for q= [θi , ẋ, θ̇i , zi ] (A.40)

∂chip
xi

∂θi
= l cosθi −ρcos(θi −δ) (A.41)

∂chip
yi

∂θi
=−l sinθi +ρsin(θi −δ) (A.42)

∂B(q)
∂y

=















∂Ff1
∂y +

∂Ff2
∂y

∂FN1
∂y +

∂FN2
∂y

chip
y1

∂Ff1
∂y +chip

x1

∂FN1
∂y

chip
y2

∂Ff2
∂y +chip

x2

∂FN2
∂y














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∂B(q)

∂z1
=











∂Ff1
∂z1

0

chip
y1

∂Ff1
∂z1

0











,
∂B(q)

∂z2
=











∂Ff2
∂z2

0
0

chip
y2

∂Ff2
∂z2











(A.43)
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∂B(q)
∂θ1

=















∂Ff1
∂θ1

+mbθ̇2
1cosθ1

∂FN1
∂θ1

+mbθ̇2
1sinθ1

chip
y1

∂Ff1
∂θ1

+chip
x1

∂FN1
∂θ1
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∂chip

y1
∂θ1
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∂chip
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FN1 −mbgcos(θ1− γ)
0















(A.44)

∂B(q)
∂θ2

=


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


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
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+chip
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∂chip
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∂chip
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FN2 −mbgcos(θ2− γ)















(A.45)

∂B(q)
∂ẋ
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
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
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∂Ff1
∂ẋ +
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∂ẋ
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∂ẋ

chip
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∂ẋ










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
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


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∂Ff1
∂ẏ +

∂Ff2
∂ẏ

∂FN1
∂ẏ +

∂FN1
∂ẏ

chip
y1

∂Ff1
∂ẏ +chip
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∂FN1
∂ẏ

chip
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∂ẏ
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(A.46)

∂B(q)
∂θ̇1
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
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∂Ff1
∂θ̇1

+2mbθ̇1s1
∂FN1
∂θ̇1
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chip
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+chip
x1

∂FN1
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











,
∂B(q)

∂θ̇2
=















∂Ff2
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+2mbθ̇2s2
∂FN2
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chip
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+chip
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













(A.47)
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A.3 Equilibrium Points

Unlike other mathematical models of passive dynamic walking, the model presented can
come to an equilibrium. This equilibrium is when both feet are on the ground. Therefore,
the swing leg ground clearance procedure, outlined in section 2.3.2 on page 21, would not
be used. At an equilibrium all of the velocities are equal to zero andx∗ ∈ R. There are four
equations, (A.48) to (A.51), that describe the remaining five unknown equilibrium points.
Therefore, the equations can be described by[θ∗1,θ

∗
2,z

∗
1,z

∗
2] = f (y∗), where−l ≤ y∗ ≤ l .

σ0Q9ks(−Q2+ l cosQ3+ρ(cos(Q3−δ)−1))n+

σ0Q10ks(−Q2+ l cosQ4+ρ(cos(Q4−δ)−1))n+mg(Mk+2)sinγ = 0 (A.48)

ks(−Q2+ l cosQ3+ rho(cos(Q3−δ)−1))n+ks(−Q2+ l cosQ4+

ρ(cos(Q4−δ)−1))n−mg(Mk+2)cosγ = 0 (A.49)

ks(−Q2+ l cosQ3+ρ(cos(Q3−δ)−1))n(σ0Q9(l cosQ3−
ρ(cos(Q3−δ)−1))+ l sinQ3+ρsin(−Q3+δ))−mgbsin(Q3− γ) = 0 (A.50)

ks(−Q2+ l cosQ4+ρ(cosQ4−δ−1))n(σ0Q10(l cosQ4−
ρ(cos(Q4−δ)−1))+ l sinQ4+ρsin(−Q4+δ))−mgbsinQ4− γ = 0 (A.51)


