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Abstract

Passive dynamic walking is a manner of walking developedighg or in whole, by the
energy provided by gravity. Studying passive dynamic waglprovides insight into human
walking and is an invaluable tool for designing energy egitibiped robots. The objective
of this research was to develop a new mathematical modelssiy@adynamic walking that
modeled the ground reaction forces. A physical passive avallas built to validate the
proposed mathematical model. The stability of the gait wedyaed using the proposed
model. A novel method was created to determine the stalbdgjon of the model. Using
the insights gained from the stability analysis, the relatietween the angular momentum
and the stability of the gait was examined. The proposed mod&ched the gait of the
physical passive walker exceptionally well, both in tremd anagnitude. The angular

momentum of the passive walker was not found to correlatleastability of the gait.
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Chapter 1

| ntroduction

1.1 Motivation

What is passive dynamic biped walking and what is gained byystg passive dynamic
biped walking? Passive dynamic biped walking is a manneraikiwg that utilizes the
momentum and potential energy of the legs and body to camtimel gait. The knowledge
gained from studying passive dynamic biped walking can leéuligh two main areas: the
development of humanoid robotics and understanding theahugait. The two main goals
for producing a biped robot gait are energy efficiency andyvakbalance (or dynamic
balance). Fully passive dynamic biped walkers are veryggnefficient, using only the
energy provided by gravity to walk down a shallow slope. Hegvepassive dynamic biped
walkers are inherently unstable. Understanding what &ffde robustness of a passive
walker may provide insights on how to control biped robotsn@intain postural balance
while maintaining an energy efficient gait. Humans use tlaitational potential energy
of the body to help develop their gait along with their musatergy. This type of gait is
often referred to as a semi-passive dynamic gait. Undedstgriow the mechanics of the

legs shape the gait can provide insight into how humans dp\gkir gait.
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1.2 Background

This section covers a background on the history of passimamyc walking and current
research in the field. As well, an overview of different cataodels and friction models

for the purpose of dynamic modeling are provided.

1.2.1 Passive Dynamic Walking

Studying anthropomorphic passive dynamic walking machstarted in the 1980s with
Tad McGeer who was inspired by earlier research completéddidmhon and McMahon [1].
McGeer examined the passive gait through the use of mathmhaiodels and experimen-
tal walking machines [2][3]. McGeer’s initial researchdiilated an interest in passive
dynamic walking. Two notable papers that followed are on&lycia et al. [4] and the
other by Goswami et al. [5], where the effects of the passiatkev parameters on the gait
and the stability of a passive walker were studied. Researgiassive dynamic walking
has taken two main forms, experimental studies and andtysiagh mathematical model-

ing, with a majority belonging to the latter.

Mathematical modeling is an excellent tool for analyzingge dynamic walking.
A number of passive dynamic walking models have been deed|§p][5][6]. However
these models are discontinuous. At the heel strike eveathanset of equations are used
described the impact event. A majority of impact-basedipassalking models rely on
the assumptions that the heel strike impacts are plastimargliding occurs during im-
pact. These assumptions may create artificial gaits that@reepresentative of reality. A
mathematical model with discontinuities is also limitedatwalysis methods that apply to
non-smooth systems or special consideration is neededply amooth system analysis
methods. In the aforementioned mathematical models, [[P$][5the stance foot is as-
sumed to be in pure rolling with the friction between the fand the ground modeled us-
ing basic friction models or neglected all together. Thetiion between the ground contact

can change the resulting gait noticeably and reduces thkihdod of producing artificial
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gaits [2]. More recently passive walking models that usedebased contact models to
describe the ground reaction forces have been developedord complex passive walk-
ing model is presented in [7] and [8] that uses the Hunt-Cegssbntact model. In [7],
the effects of the contact model parameters on the gait amieed. In [8], the effects of

compliance in the passive walker structure is studied.

To determine if assumptions used to derive a passive dynaailking model are valid,
the model must be compared against a physical passive watk&tcGeer’s initial work
[2] a comparison between simulations of passive walkingamédxperimental passive gait
are completed. The leg andlef the simulations were in agreement with the physical ex-
periments, when the simulations accounted for rollingstasice. However, the step period
of the simulations were unable to match the physical exparis Following McGeer there
have been very limited results on validating mathematicadets against experimental pas-
sive dynamic walker data. In [9], an experimental passivikevas used to demonstrate
that the assumption that angular momentum is conservedgitie instance of heel strike,
to some degree, is a reasonable assumption. However, ta #f€ angular momentum
assumption has on the gait is not analyzed. Experimentaiyeasalking machines also
provide insight in how to build actuated passive walkerseiew of three robots based on

passive dynamic walkers are presented in [10].

1.2.2 Contact Dynamics M odeling

There are two basic forms for modeling contact impact evdnmpulse—momentum (dis-
crete) based and force—based (continuous) approacheslsermomentum based meth-
ods include methods like Newton’s coefficient of restitntiand Poision’s method, which
assume that the impact event occurs instantaneously, Isatctné position does not change
during impact. Utilizing impulse—-momentum based methadddscribe the motion of a
kinematic chain (i.e. a passive dynamic walker) requirecis attention to the possible

impact outcomes. The outcomes may include single suppattuble support, with one

LAngle between the legs at the instance of heel strike.
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or both of the feet sliding after impact. Hurmuzlu and Chantj [developed a method
for determining the outcome of the impact of a planar kineémethain using a impact—
momentum base method. However, most passive walking meuefdy assume the heel
strike is a no slip inelastic impact and angular momentunomserved through the impact

about the contact point.

Force—based methods describe the contact, not just theirapant, and can describe
multiple-contact events. Force—based methods are usednpyysadding the modeled
forces to the equations of motion. The simplest forced-ébasethod is a linear spring and
damper model (1.1) referred to as the Kelvin-Voigt modele Thntact force is described
by the indentation or theoretical penetratibnof the two contacting bodies. The parameter

ks describes the stiffness of the contact &gdlescribes the contact damping.
Fn = ksh+ kgh (1.1)

The Kelvin-Voigt model can determine a discontinuous coinfarce during an impact
event. If the penetration velocity is sufficiently largeethas the two bodies come into
contact, the contact force predicted by the Kelvin-Voigtdalaakes a discontinuous jump
from zero. Hertz conducted research on the contact of elastids [12], from which
force—based contact models were developed. The Hertz mdde), has a parameter

which is dependent on the material of the two bodies and gegrokthe contact.
Ay = ksh” (1.2)

However, the Hertz contact model does not incorporate ampd#), SO no energy is loss
during an impact. The Hunt-Crossley contact model, (1.3}, liertz type contact model
that includes contact damping [13]. The Hunt-Crossley atntaodel adds damping to

the Hertz contact model, while overcoming the discontirsyooblem of the Kelvin-Voigt
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model by making the damping term a function of the penetnatio
Fn = ksh"+ kghPhd (1.3)

There is an added degree of difficulty when it comes to nurallyisolving force—based
contact models. With force based methods the resultingsysft equations may become
numerically stiff due to the large accelerations inducenfismpacts. Numerically solving
stiff ODEs has become less difficult with the development ethrods like [14]. A more

comprehensive review of contact dynamics modeling is plein [15].

1.2.3 Friction Modeling

Friction modeling is an important aspect of any dynamicatleloFriction is ever present
and neglecting friction may, in some cases, be too large ohplication. The simplest
dynamic friction model is the Coulomb friction model repnetssl by (1.4), wherg is the

sliding velocity, | is the Coulomb (kinetic) friction coefficient, arfg is the normal force.

Fr = HcFvsgn(v) (1.4)

Many passive walking models assume the foot is in pure g#ind use a rolling resistance
coefficient in place of the Coulomb friction coefficient in4L. However, there are other
friction effects that, in some cases, cannot be neglectad. E.1 depicts some of the
important friction effects, where the horizontal axis ie 8liding velocity, and the friction

force is the vertical axis. The parametgin Fig. 1.1d) is the Stribeck velocity.

There are many different friction models that capture ttHieot$ shown in Fig. 1.1d).
Many of these friction models take the form of (1.5), where toefficient of friction
is a function of the sliding velocityv), Coulomb friction coefficient), static friction

coefficient(s), and the Stribeck velocitivs). A more comprehensive review of friction
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Friction Force
a) A b) A
> >
Sliding Velocity
Coulomb Friction Model -+ Static Friction

c) A d) A
/ V

>

— /_\_

-+ Viscous Friction + Stribeck Effect

Figure 1.1: Visualization of different friction effects@pulomb friction model b) Coulomb
friction model with static friction effects ¢) Coulomb frionh model with static, and viscous
friction effects d) Coulomb friction model with static, visgs, and Stribeck effects.

models is provided in [16].

Fr = Fn(V, be, Ps, Vs) (1.5)

While many of these friction models can capture the frictiamimy sliding or micro-
sliding, determining the friction force whan= 0 is not as easy. A more advanced friction
model is the LuGre friction model [17], which can transitioam zero sliding velocity to
micro-sliding to sliding friction. The LuGre friction motés developed from the bristle
interpretation of friction contact, where a tangentiakctowwill initially deflect the bristles

and if sufficiently large the bristles begin to slip. The fioan force of the LuGre model is
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described by (1.6), which is a function of a state obsefggrand viscous friction effects
(f(v)). The friction state observér) is described by (1.7) and (1.8), where the state ob-
server(z) can be visualized as the bristle deflection. The paransgtdescribes the elastic

behaviour of the bristles ar@; describes the damping behaviour of the bristles.

Fi = —(00z+ 012+ f(V)) Ry (1.6)
. V]

z= V_GogL(v)Z 1.7)

OL(V) = e+ (s — po)e™ (%) (1.8)

1.2.4 Biped Dynamic Balance M easures

Stability and dynamic balance are defined here as two sepaotibns. A biped in a stable
gait is moving in a periodic gait that if slightly disturbedlveventually return to the same
periodic gait. A biped that maintains dynamic balance isgipmwith the ability to maintain

forward locomotion. Thus, if a biped is in a stable gait itlwilaintain dynamic balance,

but a biped that maintains dynamic balance is not necegsaal stable gait.

The idea of biped dynamic balance measures is to reduce thelewx dynamics of the
biped to a single point or single idea that can be measuredised as feedback for the
biped control system. Zero Moment Point (ZMP) was develapet forty years ago and
is still used today [18]. The concept of ZMP is to maintain ttohover the passive joint
(the contact between the foot and the ground). When the fdtdtisn level ground, the
ZMP and center of pressure coincide. If the ZMP is within thetact envelope and not on
the boundary, the foot will not rotate in the horizontal diren. However maintaining the
ZMP within the contact envelope can cause the biped to logeardic balance in some
situations. For example, if the center of mass of the bipexitside the support polygon
with a zero velocity, then maintaining the ZMP will act to\grithe center of mass towards

the ground.

Even when the foot is rotating the idea of ZMP can be used. iBhiabeled either
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Fictitious Zero Moment Point (FZMP) [18] or Foot Rotation loator (FRI) [19]. The
FZMP (or FRI) is the point on the ground where the ground readirces would have to
act to stop the foot from rotating. More recently there hasnbe shift into understanding
how the whole body angular momentum, and by extension groemction torque, effects
the biped gait. Centroidal Moment Pivot (CMP) [20][21escribes the moment arm of
the ground reaction torque with respect to the center of wicthe biped. The CMP can be
used to monitor the dynamic balance of the biped with resjgeitte angular momentum.
Angular momentum is important because the average angolaemtum of a biped during
a gait must be zero, otherwise the biped is rotating overtatsoaenter of mass. A review

of the concepts of ZMP, FRI, and CMP is provided in [22].

1.3 PreviousWork at the University of Manitoba

The start of the experimental research of passive dynamikirvga at the University of
Manitoba, began with a study on a small wooden walker withigit legs [23]. Following
the initial study, a small wooden kneed four-legged walkasWwuilt and rough measure-
ments were taken with a 30 Hz video camera [24][25]. A secorttergraduate thesis [26]
was completed on passive walking, with a larger kneed pasg&iker, named Dexter, that
was made out of aluminum flat bar. However, there were a nuwiiesues with Dexter
which limited the accuracy of the data. After these thedss pssive dynamic walking
research was continued with undergraduate summer reseangpleted by Dean Ferley
and myself, from which a general report was completed. ThERISsummer report elab-
orated on the modifications made to Dexter, leading to Dévtell. As well, a fair number
of trials were completed with Dexter Mk Il using a 60Hz videomeera, resulting is slightly
improved measurement accuracy compared to the previowsimgnts at the University
of Manitoba. In the following summer of 2009 | designed anitlaunother passive walker,

named Dexter MK Ill. The gait of Dexter Mk Ill was measurediwain optical rotatory en-

2Referred to as Zero Spin Control Point (ZSCP) in [20] and Zate of change of Angular Momentum
(ZRAM) in [21].
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coder to measure the hip joint angle, and an accelerometistéat the heel strike events.
Another undergraduate thesis was also completed at theskditiyy of Manitoba on passive
dynamic walking, by Sean O’Brien during the fall term of 20@Brien also built a pas-
sive dynamic kneed bipedal walker. Following this | comgteiny undergraduate thesis in
the Winter semester of 2010 using Dexter MKk 11l to determime équivalence of walking
on a treadmill to walking on a ramp. Further research was ¢eteqb with Dexter MK [lI

by Rushdi Kazi [27], where the effects of the mass distributiad flat feet were studied.

1.4 Objectivesand Overview of the Thesis

The objective of this thesis was to develop a new mathematiodel of passive dynamic
walking that models the whole gait without switching betwekfferent sets of equations.
The gait comprises of the single support phase, heel stmigact, and double support
phase. To continuously model single contact dynamics, aadatnevent, and multi-contact
dynamics, the Hunt-Crossley contact model and the LuGrédrnianodel were incorpo-
rated in the proposed passive walking model. To validateptbposed passive walking
model, a physical passive walker was designed and built. ré&elting gait of both the
physical passive walker and the proposed passive walkindeimeere compared to de-
termine the validity of the proposed passive walking modéie stability of the passive
dynamic gait was analyzed using the proposed mathematicdéin To determine if the
angular momentum of a biped provides information about thedis stability, the stability
of the passive walker was quantified and compared againstrifpglar momentum of the

passive walker.

The thesis is organized as follows. Chapter 2 derives theogeap passive walking
mathematical model and explains how the approximate solu§ determined. As well,
chapter 2 gives the derivation of an impact based passivardignmathematical model
to compare the proposed mathematical model against. Chaypeavides details on the

design of an experimental passive dynamic walker, the gadsurement system and the
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experimental methodology. Chapter 4 outlines a method tutzatk the Lyapunov expo-
nents of the proposed mathematical model. A method for fqtlie basin of attraction of
a 2D projection of a system is outlined in chapter 4. Chaptawvé@&sga comparison of the
proposed mathematical model to a standard impact—bassiyg@aslking model. Chapter
5 also provides a validation of the mathematical model agdhe experimental results.
The basin of attraction of the mathematical model is congpptwehe angular momentum
of the walker as well. Chapter 6 summarizes the conclusiorieeothesis and provides

some areas for future work.



Chapter 2

Mathematical M odeling

2.1 Introduction

The derivation of a new mathematical model of passive dyodniped walking is given in
this chapter. The mathematical model uses the Hunt-Crosshapct model and the LuGre
friction model to account for the ground reaction forces.e ®pplication of the Hunt-
Crossley model and LuGre model to the passive walking modetptained. To solve the
proposed mathematical model, the equations are transtoimethe state space form. A
review of the solution approximation method is provided cdmpare the proposed passive
dynamic walking mathematical model, a traditional impaciel is derived. The impact

model uses one set of equations for the swing phase and asettfer the impact phase.

2.2 Proposed Mathematical Model

2.2.1 Derivation of Equations of M otion

The passive walking model consists of two links each withsdrdsted mass and arced

feet. The passive walking model also has a non—rotating toassed at the hip. The

11
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hip mass simulates the effects of an upper body. The proposssive walking model is
described by one unified set of equations that describesntive enotion of the passive
walker. The proposed passive walking model is able to cepungle support and double
support dynamics. The friction between the foot and ground is dbsdriby the LuGre
friction model. The normal contact forces between the fowt #he ground are described

by the Hunt-Crossley model. The friction at the hip joint igleeted.

Figure 2.1 shows a schematic of the passive walking mathemhatodel, wherd is

the length of the legd) is the distance of the leg center of mass from the hip, @mnsl
the foot radius. The paramet&is the angle offset of the foot. Each leg has a distributed
massm and a radius of gyration afy with respect to the center of mass. The hip joint of
the passive walker is located by the two coordinatgsandyyi,. There is a non-rotating
mass, denoted by, located at the hip. The angle of each leg, with referenckeg¢mbrmal

of the ramp, is denoted 4 andB,. The ramp is at an inclinatiop The reference frame

is rotated so that the x-axis is in line with the directionloé ramp. There are two points,
c1 andcp, marked on the feet, which are the contacts points or impgnciontact points.

The pointsc; andc; are the points on the feet with the lowgstoordinate.

Figure 2.1: Model diagram.

The equations of motion are derived using Lagrangian meckavhich requires the

kinetic and potential energy of the system. To start, th&ipog2.1) and the velocity (2.2)

'both feet on the ground
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of the center of mass are determined, whetel or 2.

Teom = [Xnip + bSin;  ypip — beosd| 2.1)

Vo = | nip+ BibCOSS;  Yhip + ibsingi| 2.2)

Using the equations of the center of mass velocity, the kiregtergy of the system (2.3) is

determined.

1 - 1 - 1 . :
T = SM(Veom, +g0%) + 5M(Wom, +1582) + 5M(ip + Viip) (2.3)

The height of the center of mass of the leg in the gravitatipmdane, (2.4), is determined
by rotating the position vector (2.1) by an angle

hcom, = [— siny cosy} -Tcom
= —siny (Xnip + bsin®;) + cosy (yhip — bcoss;) (2.4)

The potential energy of the system is then found to be (2.5).

V = mgltom, +mMattom, +Mghnip
= mQ(CoSy(Yhip — bCcosB1) — SiNy(Xhip + bsinBy))
+ mg(cosy(Yhip — bcosB2) — SiNY(Xnip + bsinB2)) + Mg(Yhip COSYy — XnipSiny) (2.5)

Using the kinetic and potential energy of the system the &agian, (2.6), is formed.
L=T-V (2.6)

Substituting the Lagrangian into the Lagrange equatiof)(%ields the equations of mo-

tion, (2.8).
d /oL aL
dt (aqi) “ag 2 @7)
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M(a)d+H(a,q) +G(q) = F(a,9) (2.8)

Where the matribq describes the state of the systevh(q) is the mass matrixt(q,q)
is the centripetal force matrixG(q) is the gravitational force matrix, arfé(q,q) are the

generalized forces on the system.

Xhip Xhip Xhip

a= """ a= """ a= " 2.9
01 01 01
62 62 62

M +2m 0 mbcosB; mbcosH,

0 M+2m mbsinB; mbsinB,
M(q) = _ (2.10)
mbcosBy mbsin®; Mk +rZ 0

mbcosd, mbsind, 0 mk? +rg

[ mbd2sing; — mbB2sin, |
mbo2 cosd; + mbH2cosd
H(q,q) = ! 10 27 (2.11)

0

—(M +2m)siny-

G(q)—g| MM (2.12)
mbsin(61 —)

mbsin(62 — )

Ff, +Ft,
Fn, + P,
hip

hip (2.13)
Fr,Cyp + Fny Oy

F(9,9) =

hi hi
Fr, CY2p + M, Csz

The normal force applied on each foot is denotedy andFy,. The friction force of
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between each foot and the ground are denoteBipgandFy,. The position of the contact

points, shown in Fig. 2.1, relative to the hip is describedhgyvectorch'P.
¢"P = | sing; — psin(6; —3) |cosH; — p(cos(B; — ) — 1)] (2.14)

The global position of the contact points of the two feet afreéd by(C) and their corre-

sponding velocities are defined b@
G = [x+ I sin@; —psin(6; —d) y—Icosh; + p(cos(6; —d) — 1)} (2.15)

G = [)'(+ 0i(I cost; — pcos(6; — 8) +p) Y+ 6;i(IsinG; — psin(B; — 6))] (2.16)

2.2.2 Contact Moded

The Hunt-Crossley contact model [13] is an extension of thegzH{&2] contact model to
include hysteretic damping in the contact forces. The Hestztact model describes the
contact forces of a static system by the indentation caugembbtact of the two bodies.
For dynamic simulations, the contact force is describedbyiniter-penetratior), and the
inter-penetration velocit)h, of the two bodies. The inter-penetration and correspandin
velocity are described by (2.17) and (2.18), respectivéEly. 2.2 shows a schematic of the

inter-penetration of the two bodies.

Ground Fa = f(h, )

Figure 2.2: Contact diagram.
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0 forc, >0

hi = (2.17)
—cy, forcy, <O

. 0 fory, >0

hy = Ya (2.18)
—Cy, forgy, <O

The level of the forcéN;) is determined by (2.19), wherg p, andq are dependent on
the geometry of the contact and the material of the two bodtes the passive dynamic
walking model,n=p = % andqg = 1 was selected, which corresponds to a spherical or
cylindrical contact.

Ni = ks + kghPh! (2.19)

The normal forcefy, is equal to the level of force if the level of the force is deza
than or equal to zero. How can the Hunt-Crossley model predimegative normal force.
The Hunt-Crossley model assumes the two bodies are joinezltbeanter-penetration is
positive. However, if the restitution velocity is great e, the level of force (2.19) can
be negative even whemis positive. To account for this, condition (2.20) is intuomed.
In reality this situation would occur when separation of thve bodies occurs before both

bodies have restored to their undeformed shape.

(2.20)

N; forN; >0
0 forN;<O

The advantage of using a force based contact model, like the-Brossley model, is
that there is no need to switch between two sets of equatmmnsaich impact. As well,
the Hunt-Crossley model can simulate multiple contact dyogmvhich is important for

biped walking to simulate the double support phase.
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2.2.3 Friction Modd

The friction between the foot and the surface is modeledgutie LuGre friction model
[17]. The LuGre friction model is a continuous dynamic maithelt can describe the static
friction force, Coulomb friction force, and the transitioettveen the two. The LuGre
model can be visualized as two sets of elastic bristles, @asrsim Fig 2.3, where is the
bristle deflection. The bristles will deflect until a largeoeigh force is applied and the two
surfaces slide over one another. The friction force deteeohby the LuGre friction model

is shown in equation (2.21), where the terms that descrid&itous friction are omitted.

Fr, = —(00z +012)Fy (2.21)
- il

4=Vi— 00 2 (2.22)

gL (Vi) = e+ (Ms— po)e () (2.23)

Wherei =1 or 2 corresponding to each foot. The sliding velocity bemvihe two surfaces,

Vi, is represented bg, in the passive walking model.
&x = X+ 6i(1 cosh; — pcos(B; — 3) +p) (2.24)

The variablesog and o1 control the stiffness and damping of the bristle deflectidhe
static and Coulomb friction coefficients are representeqidsnd |, respectively. The

Stribeck velocity is represented loy.

—

Figure 2.3: Visualized LuGre model.
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2.2.4 State Space Model

In order to solve the mathematical model the equations aresformed into a state space
representation. The state space model is formed from iocatipg the friction state ob-
servers (2.22) and the contact force equations (2.21) a@@)(#ith the equations of the

motion (2.8). The final state space model (2.25) has tensstiaée are described in (2.26).

Q=1f(Q) (2.25)

)
Q=Qr Q@ Q Q Q Q Q Q¢ Qo Qu

o T

:[Xhip Yhip 01 02 Xnip Yhip 61 62 2z 22} (2.26)
_Ql- -Qs- -Qs-
Q| _ 1% g |2 @) Q) (2.27)
Q3 Q7 Q7
_Q4_ Qs _Qs_

S v1(Q)|

Qo =Vv1(Q) —oong (2.28)

N __ w(Q)

Q10=Vv2(Q) oo—gg(vz(Q)) Q1o (2.29)

Where (2.28) and (2.29) are the state space form of the fnictiate observer equation
(2.22). The matriceA (Q) andB(Q) are defined by (2.30) and (2.31). For matrité8Q),
H(Q), G(Q), F(Q), refer to (2.10), (2.11), (2.12), and (2.13), respectivetypage 14.

A(Q) =M(Q) (2.30)
B(Q) =F(Q)-H(Q)-G(Q) (2.31)
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The inverse ofA(Q) was solved manually and simplified to the form shown in (2.32)

[ Av (3 +C3+Am)+CirCp Asc(Avm+1) _Cac_ Cea
Mw My b b
Asc(Am+1) An(SE+S+AM)-CiCp Sc KA 1
A(Q)_l - MCW MSVZ AuMy G Mb 2 _C2
% —F g S MG
_Cea _Xa CoMw  AuMw
i b b B
(2.32)
M
Mw =2+ = (2.33)
A = My (1+ (%9)2> 1 (2.34)
Asc = sin(Qz) cos(Qs3) + sin(Q4) cos(Q4) (2.35)
Cm=1c08(Q3—Q4), Sn=-sin(Q3 — Q4) (2.36)
Cp = €0s(Q3+Q4), Sp = sin(Qz + Qa) (2.37)
Cca = €c0S(Q3)Cr+ c0s(Qa)Am (2.38)
Sca = sin(Q3)Cm + sin(Qa)Am (2.39)
Cac = c0s(Q3)Am +€0s(Qa)Crn (2.40)
Sac = sin(Qs)Aw +Sin(Q4)Cr (2.41)

(Ft, + Fr,) +mb(Q5sinQs + QsinQy) + g(M + 2m) siny 1

_ 2 2 _
B(Q) = (Fny, +Fyy) mgQ7 cos(i:ig + Qg cos-Q4) g(M + 2m) cosy (2.42)
Fflcylp + FN]_CX]_p - mng|n(Q3 - y)

hi hi :
Fr,Cy5 -+ Fn,Cry” — mghsin(Qs — )

The normal forcery, is defined by (2.20) on page 16. The friction fofegis defined by
(2.21) on page 17. The contact positions relative to the dFiB is defined by (2.14) on
page 15.
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2.3 Solution Procedure

2.3.1 Numerical Solution Approximation

To approximate a solution to the proposed mathematical i{@dh), the code ODE15S
was used. ODE15S is a Matlab code for solving stiff ODEs and&E®Avhich is based on
the Numerical Differentiation Formulas (NDF). The NDF arily of formulas used to

approximate solutions to ODEs and DAEs and are given by J2.43

K
1
> 0 Yne1 = hF(tne, Ynea) = Kyk(Yne = Yol1) =0 (2.43)
m=1

The NDF are an extension of the Backwards Difference Formulagre —Kyk(Yn+1 —
yﬁf’jl) is the additional term. The terris a scalar parameter used to tune the stability and
local truncation error (LTE) of the method apd= le(:l Tl The ODE15S code uséga)
stability to monitor the stability of the solver. The ODE18&le uses the Jacobian of the
system if supplied, and will numerically estimate the Jaaolf not supplied. A detailed

derivation of the ODE15S code can be found in [14].

The form of (2.43) used to numerical integrate the stateespaadel is shown in (2.44),
where the fifth order version of (2.43) was ugéd=5). The functionf(Q) is defined in
(2.25) andQ is defined in (2.26) on page 18.

> 1
> —0"Qni1—hf(Q) —Kkys(Qni1—Quly) =0 (2.49)
m=1

To clarify the notation use@n+1 = Q(th+1), Q(O) is the initial estimate of the states, and

[ is the backward difference operator.
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2.3.2 SwingLeg Ground Clearance

Unlike biped walkers with knees, two link biped walkers ne@stiechanism for the swing
leg to clear the ground. In physical experiments this grotledrance can be created with
“stepping stones”. In the numerical simulations the eftddtepping stones is established
by switching between two support phases, single supportdantle support. The two
support phases are representeddoyble Support= True or False. In the single support
phase, one leg is the stance leg and the other the swing lede@lthat is the swing leg can
penetrate the ground without incurring reaction forcese iRlitial conditions are chosen so
that the walker is just starting the swing phase of the nexttleereforeDouble Support
False andstance Leg Leg 1 if 6, > 6, or Stance Leg Leg 2 if 6, > 0;.

During the simulation, at every time step, the program chetthe system has tran-
sitioned to another phase. The transition to double suppaetermined by the condition
in Fig. 2.4 and the transition to single support is determhibg the condition in Fig. 2.5.
The parametety is the y-coordinate of the contact point, amglis the minimum inner leg

angle.

Once the support phase and stance leg are determined, the ofathe penetration,
h, and penetration velocit)h, are determined. Initially the penetration and penetratio

velocity are set to zero and are only changed if the conditidfig. 2.6 is met.

Stance Leg= Leg 1 —

Double Support False—

(Leg 2 is above the ground), > 0 —
(Minimum leg angle, — 01 > ag —

Leg 1 Leg 2
/‘
\ 92 — 91 > 0O

AND Double Support= True

Figure 2.4: Transition to double support from Leg 1, viceseefor transition to double
support from Leg 2.
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Stance Leg-=Leg 1—
Double Support= True — Double Support= False

(Leg 1 is above the ground), >0 — AND Stance Leg= Leg 2
(Leg 2 is in contact with ground, < 0 —

Leg 1
\ Leg 2
4
Cy, >0
Cy, <0

Figure 2.5: Transition to single support on Leg 2 from dowalpport, vice versa for tran-
sition to single supporton Leg 1

(Legi is in contact with the ground);, <0 ——

hi = —Cy
Stance Leg= Legi
Double Support& True

Figure 2.6: Determining the value bf andh; for legi, wherei =1 or 2.

2.4 Standard Impact Passive Walking M od€l

To compare the proposed mathematical model, a standarv@assking impact model
was derived. The standard impact model derived in this @edsi similar to the impact-
based passive walking models used by other researchers.mdtlel developed in [4]
assumed thamn << M so that the swing leg does not effect the stance leg, but tine sa
assumptions are used for the impact equations that are nghi isection. Ifp = 0 and

0 = 0, the impact model derived in this section simplifies to thedel presented in [5].
The standard impact model has two parts, the equations 0bm(#.45) and the impact

transition equations (2.55). The subscriit fefers to the stance leg and the subscrit *

Ost Hi1 Hip 6%
. + . +
eSW H2,1 0 egw

refers to the swing leg.

M11 My
M21 M2
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where

Mz = (M+M)I?+m(c®+rg) + 2p%(2m+M)(1— cos(Bs — 3))

+2p((m+ M)l +mc)(cosBst — CoD) (2.46)

M1 2 = —mlbcos(Bst — Bsw) + mpb(cos(Bst — Bsy— 6) — CODBsw) (2.47)
Mz 1 = —mlbcos(Bst — Bsw) + mpb(cos(Bst — Bsw — &) — CODBs) (2.48)
Mg,z = m(b? +r3) (2.49)
Hy1 = p2(2m+M)sin(8s — 8) — p((M+ M)l +mc) sinBg; (2.50)
Hy 2 = —mlbsin(Bs; — Bsw) + mpb (sin(Bst — Bsw— 8) + SiNBsy) (2.51)
Hy 1 = mlbsin(Bst — 8sw) — mpbsin(Bs; — Bsw— d) (2.52)

G1=9g(—((m+M)l +mg)sin(Bst —y) + p ((2m+M)(sin(Bst— d—y) +siny)) (2.53)
Gz = gmbsin(Bsy—) (2.54)

The impact transition equations are based on the assumgb@rangular momentum is
conserved for the whole walker about the point of contact fandhe stance leg about
the hip. The post impact angular velocities are determine(2lb5) and the post impact
angular positions are determined by (2.56), where the sappt ‘—’ denotes a state before

the impact and+’ denotes a state after the impact.

Q1 Q| |6 Qi Qi |6
Qa1 0 | [Osw] _QZl Qz2] |Osw

0 1| |65 _ 0 (2.56)
1 0f |65y (S

(2.55)
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Q1= p%(2m+M) (1 —€0S(0st — 8) — coS(Bsy — ) + coS(Bst — GSW))

+p (((m+ M)l + mc) (cosBst + c0Bsy — €OS(Ost — Bsyy— O) — COS(Bst — Bsy+ 0) )

+ mb(cosd — cosest)) + (2mlc+ Mlz) cos(Bst — Bsw) — mbc (2.57)
QI,z = mpb(cosd — cosBsy,) — mbc (2.58)
Q= mpb (cosd — cosBst) — mbc (2.59)

Q= 20*(2m+M) (1— cos(6Ost — 6)) - p(Z((m-l- M)l +mc) (cosBs; — cosd)

+ mb(cos(Bst — By — &) — COSGSW)) + (M+M)I? + mc — mibcos(Bs; — Osw)

(2.60)
Qf, = mpb(cos(Bst — Bsw— B) — coSBsw) + MLF — mibcos(Bs; — Bsw) (2.61)
szl = mpb(cos(Bst — Bsy — 8) — COSBgy) — MIbCcos(Bst — Osy) (2.62)
Q;, = ml (2.63)

To determine a numerical approximation to the impact magdBIE45 in Matlab was used
to solve the equations of motion. The equations of motiorsaheed until the swing foot
comes in contact with the ground. Then the final state of tiséegy is used as the pre—
impact state to calculate the post—impact state with (225l (2.56). The post impact
velocities and the final position of the walker are then usetha initial conditions for the

next step, and the equations of motion are solved once again.

2.5 Summary

A new passive walking mathematical model was developedisnctiapter. The proposed
model incorporates a continuous contact and friction foncelels. The proposed model

avoids discontinuities in the solution unlike standard actbased passive walking model.
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The standard impact based passive walking model switchegbga two sets of equations,
one for the swing dynamics and the other for the impact phEse proposed mathematical
model is able to model multi—contact scenarios and conliglitg. The simulation proce-
dure for the proposed mathematical model was outlined alatiga brief explanation of

the solution approximation method.



Chapter 3

Experimental Passive Biped Walker

3.1 Introduction

To validate the proposed passive walking mathematical mpdesented in the previous
chapter, an experimental passive walking machine was &udtwas named HM2L (Hip

Mass 2 Links). A system was developed to measure the gaitoéxperimental passive
walker. This chapter presents the design of the experirhpassive walker, gait measure-

ment system and the test platform.

3.2 Design goals

One of the main design goals, compared to previous walkatd thilt [28], was to make
the walker able to sustain repeated falls, since the pailefati the walker to collapse is
always present. As well, sensors were incorporated in teggdeof HM2L to measure
gait parameters. To validate the mathematical model, asefiexperiments with different
parameters was required. Therefore HM2L was designed tbleeg@vary these different
parameters. There are three main categories of parametasphssive dynamic walker:

mass parameters, geometric parameters and contact paramet

26
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3.2.1 MassParameters

The mass parameters of HM2L include: the center of mass alidsraf gyration of each
link, and the hip mass. To obtain different center of massealwithout having to add a
substantial amount of weight, the frame of the walker wagyesl to be light weight. Then
with weights added to the legs, the center of mass can be edargother advantage of
having a light weight frame with added weights is that théed#nces in mass parameters
between the legs will be minimized by the added mass. The hp designed to rotate

independently of the two legs with a section for weight to ddex.

3.2.2 Geometric Parameters

The geometric parameters of HM2L include: length of the |égst radius, and foot center
offset. Two sets of feet with the same foot radius were madeéifd2L. The first set was
designed to create different foot center offsets. The seehwas designed to change the

length of the legs.

3.2.3 Contact Parameters

The contact parameters of HM2L are the foot contact stiffreesl damping, and foot con-
tact friction. The foot contact parameters are importanti&veloping a stable gait. Having
a large enough friction coefficient at the foot-ground cotta prevent sliding, but not too
large to prevent smooth motion is crucial. As well, the fgadund impact should be in-

elastic and be dampened to prevent vibration throughouwtieer.
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3.3 Experimental Setup

3.3.1 Physical Model Overview

The experimental passive biped walker, HM2L, is shown in Bdl.. HM2L consists of
two links with arced feet and a hip mass. The hip mass canerotdependently from the
two legs. HM2L has no means for swing foot clearance so thedoalker must walk on
“stepping stones” as shown in Fig. 3.2. To measure the geanpaters of the experimental
passive biped walker, the design for HM2L incorporated tytical rotary encoders to
measure the relative rotation between each leg, a sindieanceter to determined global

orientation, and an accelerometer to detect the instaniceadfstrike.

The legs of the experimental walker are connected to the iaipoller bearings. To

limit the motion of the passive walker to the sagittal plaine inside leg pair and outside

«— Outside Encoder
—

Inside Encoder\

5 Accelerometer
.

s
|
Qf_‘

i’/(
e | gl

". ‘ <
9 ;

Leg Weights

Figure 3.1: Photo of HM2L.
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i Walker Safety Rail

Figure 3.2: Photos of HM2L on the test ramp.

leg pair are coupled together. HM2L also has four movableveghts, shown in Fig. 3.1.
The leg weights consist of 45% of the walkers total mass andeamoved to six discrete
locations. Moving the leg weights can produce a change ic¢hger of mass from 33% to
56% of the walker’s height (measured from the hip). The faetlwe placed at five discrete
locations to produce five different arc center offsets. Apotet of feet were made, shown
in Fig. 3.3, that allow the length of the legs to be increased@.B1cm increments to a total
increase of 11.42cm. Weights were modified to fit onto the laip $hown in Fig. 3.3, and
can be locked in place by spring clips placed in the grovebehip. With the hip weights
made, seven different hip mass/total mass ratios are pessimging from 11% to 75%.

For experiments that did not use the hip weights, paddingaslded to the hip, as shown

Figure 3.3: Hip weights and leg extensions.
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in Fig. 3.2. The hip padding provided some protection whenvtialker would fall on the
walker safety rail. For the experiments conducted the géoergarameters of HM2L are
shown in Table 3.1 and the dynamic parameters are shown la 3gbfor the leg weights

at the highest position.

Table 3.1: WALKER GEOMETRIC PARAMETERS.

Item Symbol| Measurement
Walker Height I 40.64cm
Walker Width w 30.61cm

Foot Radius* p 8.13cm

*With no sole.

Table 3.2: WALKER DYNAMIC PARAMETERS.

Item Inside Outside
Mass (kg) 5.144 ] 44.24% | 5.172 | 44.49%
Center of Masgcm) | 1359 | 33.05% | 1352 | 32.88%
Radius of Gyratioricm) | 11.83 | 28.76% | 12.02 | 29.23%
Hip Mass (kg) 1.282
Total Mass (kg) 11.598

*Center of mass is measured from the the hip joint
**Radius of gyration is with respect to the center of mass.

3.3.2 Test Ramp

A test ramp was designed and built for the passive walkerrexpats. The test ramp,
shown in Fig. 3.4, is 32 fe€D.75m) long and 2 feet 10 inch&9.86m) wide. The test ramp
is made out of 16 inch engineered floor joists that are 16 &ggf.1Sixteen foot long joists
were the maximum length that could fit through the hallways ito the lab. The floor
joists are spliced together in the middle with8inch plywood to make one 32 foot long
joist. The joists are spaced 16 inches on center with blac&irery 8 feet. The top deck is
made of 58 inch plywood screwed to the joists anflinch sanded plywood on top. The

1/4 inch sanded plywood can be removed to resurface the ranmpwtitliminishing the
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Tester Safety Rall

Walker Safety Rail

Figure 3.4: Test ramp.

structural integrity of the ramp. Two adjustable suppor&sevmade to change the angle
of the ramp. One support is placed at the top of the ramp andttie mid way down the
ramp where the joists are spliced together. The suppores &8®ply 2x 6 inch laminated
beam that the ramp sits on. The 3ply B inch laminated beam is supported by/@ 3ch
threaded rod on each end that is held in placed bx & 2nch C—channel.

3.4 Gait Measurement

Four devices were used to measure aspects of the gait of pgezimental walker: two
rotary optical encoders, one accelerometer, and an imolter. The two optical rotary
encoders have 7200 counts per revolution givingddOresolution. The encoders provide
the relative angle between the corresponding leg set andiphlear. The accelerometer
is a Kistler Miniature PiezoBeam Triaxial accelerometerhvatrange of+50g. The in-
clinometer is a US Digital X3M absolute inclinometer thaesdMEMS accelerometers to

determine the orientation angle.

To capture a good representation of the gait of the expetahesalker, the step period,
step length, and average hip velocity were measured. Toured#sese gait parameters

three things are needed: the time of each heel strike, tle lag angle, and the geometry
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Figure 3.5: Example of experimental data.

of the walker. An accelerometer was attached to the walkbedocation shown in Fig. 3.1.
This location was chosen so that the accelerometer woulddiegted from damage and
so the cable would have a minimal effect on the gait. The tifneach heel strike was
determined from the peak of the measured acceleration.nflee leg angle was determined
from the difference between the two encoder measuremehts sfep period can then be
determined from the time difference between consecutie¢staekes. The step length can
be determined from the measured inner leg angle and the gsoofehe walker. The
average hip velocity can be determined with a combinatiothefinner leg angle, step
period, and the geometry of the walker. Fig. 3.5 shows a sapfigxperimental data taken
during a trial. The red squares in Fig. 3.5 are the maximumsnomea acceleration caused
by each heel strike. The leg angles (with respect to the raonmal) at the point of heel
strike can be calculated using the measured inner leg &aglend (3.1) and (3.2). When

a >0, (3.1) and (3.2), calculate the lead Igd) and trail leg(tr) angles, respectively. If
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0=0, thenByg = a/2 andB;, = —a/2.

- | (1 cosn) +p(cos(a + ) — cosd)
Big = arctan | sina + p (—sin(a + &) + sind)
_ | (1 cosa) +p(cos(a — ) — cosd)
6 = arctan —l'sina +p(sin(a — ) +sind)

(3.1)

(3.2)

Using the calculated leg angles, the step lenigth,, can be calculated using (3.3).
Lstep= (I SinBjg — psin(Big —d)) — (I sinB — psin(Byr — 93)) (3.3)

The average hip velocityyp, can be calculated using (3.4), whélkgspis the step period,
e,Od is the angle of the front leg at the start of the step, @b the angle of the same leg at
the end of the step.

C)k(uipo _ C)r(npl +p (69 —6})

Tstep
_ (I'sin6d — psin(6% — &)) — (Isin6} — psin(6% —8)) +p (B — 63 ) (3.4)
Tstep .

\Thip =

3.4.1 DataAcquisition

The data collected was captured with a Quanser Q8 data #@aruisoard connected to
a PC. The data was saved with a Simulink program that usesésdtom QuaRé& The

two encoders were directly connected to the Q8 data acuiditoard encoder inputs.
The accelerometer connects to three power conditioneespenaxis, and then to the Q8
data acquisition board analog inputs. The inclinometeegges a pulse width modulation
(PWM) signal and was connected to the Q8 data acquisitiordabigital inputs. The PWM

signal was decoded during the Simulink streaming procelsgeall of the other data was

saved as it was streamed.

1Software developed by Quanser
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3.5 Experimental Procedure

For each experimental trial the procedure outlined below uwsed. The feet are initially
locked together to zero the encoders, thereby ugirg0 as the initial inner leg reference
angle. All trials were recorded with an HD video camera. Tingdihnometer angle was
zeroed to the ramp normal. The encoder angles were usedadheemclinometer angle
by standing the walker on the ramp for 20 seconds. For this taampleted, the foot offset
was set tad = 0, therefore when the walker is standing still on the rame,iticlinometer
angle should read half the inner leg anglﬁ%). A successful run down the ramp was
counted if the walker made it at least ten steps or half wayrdihve ramp, which ever was
longer. Once ten successful runs down the ramp were madeigheas ended.

Experimental Trial Procedure:

1. Put arod through the feet bolt holes to lock the legs tageth

Start the video capture.

Start the data acquisition system.

Place the walker standing on the ramp for 20 seconds toratdithe inclinometer.
Continue with trial until ten successful runs are compglete

Stop the data acquisition system

N g M w D

Stop the video capture.

The aim of the experimental trials was to determine the efié¢he center of mass
on the gait. Six trials, labeled L#1 to L#6, with a center ofssmiaanging from 32.72% to
55.83% measured from the hip were planned. The differertecai mass values were
obtained by moving the leg masses to six different locatidie varied parameters of the
trials are shown in Table 3.3. When moving the leg masses,aitties of gyration was

changed slightly. The radius of gyration changed from 2% 16 28.77%.
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Table 3.3: VARIABLE TRIAL PARAMETERS.

Trial Center of Mas® Radius of Gyrationyg
[m] b/l [m] rg/l

L#1 0.1356 32.72% 0.1192  28.77%
L#2 0.1547 37.34% 0.1112  27.03%
L#3 0.1739 41.96% 0.1077  26.00%
L#4 0.1930 46.58% 0.1067  25.75%
L#5 0.2122 51.21% 0.1091  26.32%
L#6 0.2313 55.83% 0.1146  27.65%

3.6 DataProcessing and Analysis

After the trials were completed the data was processed wsimgst-processing program
developed in Matlab. The data post-processing program mpsoved from a previous
version used in [28]. At least two steps were removed fronb#ginning and end of each
run down the ramp. If the step length and step period had titeédafter two steps, more
steps were removed. A moving window partial Fourier serias wsed to fit the inner leg
angle and determine the first and second derivatives of ther ileg angle. The moving
window was set at 116 of the step period and only one set of the series was used. An
overview of the post-processing program is given below.

Post-Processing Program:

1. Load trial data.

N

. Calibrate inclinometer to ramp normal.

w

. Initial scan for usable data using the following criteria

(a) Oscillations ofx with period of 03 to 1.0 seconds.
(b) Minimum amplitude oftx = 20°.
(c) At least four steps (i.e. four peaks).

N

. Prompt user to verify found data and ignored data sectyasebtion.

ol

. Prompt user on number of steps to remove from each triad.stép period and step
length of each trial is shown.
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6
7
8
9

. Prompt user to save data selection.
. Determine the gait data: Step period, step length, anchgeéip velocity.
. Smooth data with a curve fit algorithm.

. Save post-processed data.

36



Chapter 4

Stability Analysis

4.1 Introduction

This section provides an explanation on how to calculatd yla@unov characteristic ex-
ponents of the ten dimensional passive walking matheniaticalel. The stability of a
ten dimensional system is difficult to quantify. Howeveratempt is made to understand
the stability by determining the basins of attraction of sit@ble walking cycle. A novel

method was developed to determine the basin of attractitdredD projection of a system.

4.2 Lyapunov Exponents

Lyapunov exponents are a valuable tool for analyzing theelr of non-linear systems.
Specifically Lyapunov exponents can be described as thadgegeexponential rates of
divergence or convergence of nearby orbits in phase spd28]. For a continuous n-
dimensional phase space, the Lyapunov exponents deslkéberg-term evolution of an
infinitesimal n-(hyper)sphere of initial conditions. Andimensional system will have n
Lyapunov exponents. Over a period of time the n-sphere \eilbim and become an n-

(hyper)ellipsoid, contracting and expanding along déferaxes. Due to this contraction

37
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and expansion, th& Lyapunov exponent does not relate to ifestate in the phase space,
but the Lyapunov exponent spectrum relates to the systerwhela. Lyapunov exponents
are invariant of the trajectory used to calculate the Lyapuexponents. In other words,
Lyapunov exponents are independent of initial conditidns,the same basin of attraction.
The Lyapunov exponent spectrum is given by (4.1), wieigthe length of thé" principle
axis of the n-(hyper)ellipsoid.

1z
A= | | —|ln—=- 4.1
= oot M 1z(0)] (1)

The signs of the Lyapunov exponents of a system providenmdition about the qualita-
tive properties of a system. For a three dimensional sydtemassible Lyapunov exponent
spectra are (+ve, 0, -ve) for a strange attractor, (0, 0,fered two-torus, (0, -ve, -ve) for a

limit cycle, and (-ve, -ve, -ve) for a fixed point.

4.2.1 Calculating Lyapunov Exponents

There are different methods that have been developed fopeting Lyapunov exponents.
The method developed by [29] will be explained. With the moetlleveloped by [29],

to compute Lyapunov exponents a “fiducial” trajectory iestdd as the center of the n-
sphere, where the motion of the “fiducial” trajectory is defirby the non-linear equations.
The trajectories of the points on the surface of the sphelng;hware infinitesimally sep-
arated from the center, are defined by the linearized equatidhe non-linear and linear
equations are described by (4.9 is the state transition matrix of the linearized equations
and describes the evolution of the n-sphéres the linearized system of equations. Figure

4.1 shows a depiction of how the system evolves in time.

v _ [ fom w2
e vy
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Y= vl vl ...V (4.3)

Initial (hyper)sphere Deformed (hyper)ellipse

-~
"\

||6QZ(t +tstep) ||6ql<t ‘f’itstep)H
[18a2(t)|

s

Figure 4.1: A visualization of the time evolution of the ialtinfinitesimal sphere in 2D.

\,
.o

The Lyapunov exponents are derived of the time evolutionhefyvolume of the n-
ellipsoid defined byvy,va,...vn). However, the vectorési,vy,...vy| tend to align as
t — o making the volume difficult to accurately compute. Therefdhe vectors are or-
thonormalized during the integration. Figure 4.2 shows@Ea®n of orthonormalization

about the vectov;.

v2 = [|6gz(t)]] vi=8qu(t)]|

Figure 4.2: The GSR procedure for a set of 2D vectors

The Gram-Schmidt reorthonormalization (GSR) procedureseduo orthonormalize

the state vectors.
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Z1=V1 (4.4)
Zp = V2 — (V2,V1)Vy (4.5)
(4.6)
Zn=Vn—(Vn,Vn_1)Vn_1—-.. — (V2,V1)V} 4.7)
Z
Vi= o (4.8)
-1zl

An arbitrary initial vector set can be chosen since the segt tdnd to align with the direc-
tion of A1 and the GSR has orientation preserving properties. Theréfe initial vector
set is chosen to b#¥ = I, wherel is an identity matrix. The algorithm for determining the

Lyapunov exponents is shown below.

Lyapunov Exponents Algorithm

Initial conditions. yg and¥o = 1.
Main Loop: starting atg and moving forward bystep From an ODE solver witltimet :

t +tstep) Yields the evolution of the fiducial trajectoyyand the n-ellipsoidV.

vi vl vl | = Ytimetttgep

Zl(t> =V

Zo(t) = V2 — (v2,V])V]

Zn(t) =Vn— (Vn,Vi_ 1)V 1 — ... — (V2,V])V]
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Where

End of L oop

/ Z (t)

V= ——
L[zl
In(]|Zi]])
Gi(t +tstep) = Gi(t) + In(2l)
(Tt
Ai(t +tstep) = CI—(t tstep)
—
t:t+tstep
yO = y|t|me:t+tstep
Yo=|viT Vv ... v’nT]

Ast — oo the value ofA;(t) will converge toA;.

4.2.2 LuGreMode Approximation

41

(4.9)

To calculate the Lyapunov characteristic exponents oféhaltmension state space of the

proposed mathematical model, the method outlined in [2%|uged. The method outlined

in [29] requires the Jacobian of the equations of motion. dloudate the Jacobian of the

equations of motion an approximation of the LuGre model ggined. The derivative of

the bristle deflectionz, 'of the LuGre model is partially a function of the absolutéueaof

the sliding velocity between the two surfaces. The defreatif an absolute value at zero is

undefined. Therefore, a smooth approximation to the alesghltie was substituted based

on the information in [30]. The original system, (4.10), ppeoximated by (4.11).

v

Z=V—090—-2

a(v)

(4.10)

(4.11)
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k=1 ——
k=5 ——
ky=10 ——
ky=50 ——
ky =100
ky = 1000
ky = 10000

-2.0-15-1.0-05 0.0 0.5 10 15 20

Sliding velocity,v

Figure 4.3: Signum approximation functiois; =

2
carctan(kyv).

Where the signum function is approximated by (4.12). Fig.iku8trates how the param-

eterk, effects the approximation function.

S = %{ arctankyv)

(4.12)

The valuek, is a tuning parameter that was sekio= 108. The value ok, was selected

by choosing the smallest value that had a negligible effadhe solution. Adk, — o the

functionS, approaches the signum function. The derivative of the smapproximation,

(4.14), has an extra term compared to the derivative of tiggnal equation, (4.13).

sogir(12(3)
o) (g

+2(1+<kvv> )( )

)

(4.13)

o))

) (4.14)
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However, the extra term tends towards zerdgas> . The Jacobian of the system with

the approximation can be found in Appendix A.2.

4.3 Basgn of Attraction

A stable attractor of a dynamic system is a point, orbit, giae of the state space, that
nearby trajectories will tend towards. All trajectoriesitiiend toward an attractor make
up a region of space called the basin of attraction. Eachcdhttr has its own basin of
attraction. When the passive walker reaches a stable gaipassive walker is in a stable
periodic orbit, where the periodic orbit is an attractor. eTinathematical model of the
passive walker is a ten dimensional state system. Tryinggip onit a ten dimensional state
space basin of attraction is computationally demandingrdfore, for this thesis, the basin

of attraction was determined for a 2D projection of the teiessystem.

The size and shape of the basin of attraction is used to duahé stability of the
passive walker. The basin of attraction at discrete pointhie gait were calculated for two
parameters. Eight points were selected on a leg angle pluasaip These eight points
are referred to as “Points of Interest” (POI) and are showlRign 4.4 and listed in Table
4.1. The basin of attraction of the leg angle, and leg andtecity was determined for each
POI.

Table 4.1: POINTS OF INTEREST ALONG THE PHASE PORTRAIT.

POI 1 2 3 4 5 6 7 8

Marker | 8,=0 | 6; =0 0,=0| 6,=0| 6,=0| 6;=0 | B,=0

SN I NAL D

Stance Le Leg 1l

During the stance phase, if the leg an or leg angle velocit)(é) are changed, the

leg could be rotated into the ground. Therefore, during thace phase, the stategy,
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Figure 4.4: Phase portrait of the leg angle with points criest labeled.

Yhip, X, ¥, were changed to create an equivalent chan@andé so that the same contact

forces were produced compared to the original state.

0 =B+ £1 (4.15)
0 = 6s+¢ (4.16)

y* =y—I(coss— cosh;) + p(cos(Bs — O) — cos(6; — 9)) (4.17)
X* = X+ (8)s(l(cos8s — cosB) — p(cos(Bs — ) — cos(8% — 3)))
—&(l cosB; — pcos(6; — ) +p) (4.18)

y* =y+(8)s(I(sinBs — sinB%) — p(sin(Bs — 8) — sin(65 — d)))
—¢&2(I sinB3 — psin(B;1—9d)) (4.19)
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crossover= false;

last point= stable/* First point is the equilibrium point.

while abge — £3) /2 > stepminand crossover== true do
point = function.test(stable or unstable);
if point== stablethen

end

end

if crossover== falseor last point== stablethen

€ =¢,
€ =2¢;
else

gy =¢€o0,/* Place Hol der
€0 =€

e =¢e+abge—¢gp)/2;
crossover = true;

end
last point = stable;
else
if crossover== falseor last point== unstablethen
€0 =2¢,
£E=¢/2;
else

gy =¢€o;/* Place Hol der
€0 =2¢,

e =¢—abge—¢gp)/2;
crossover = true;,

end
last point= unstable;

Algorithm 1: Edge point with binary search method.

4.3.1 BoA EdgeAlgorithm

*|

*|

x|

45

To calculate a 2D projection of the basin of attraction (BoAjaple grid search can be

performed, where each parameter combination is testedetdf $lee initial condition is

stable or unstable However, a grid search is inefficient, and depending onébelution,

the grid search can take a very long time. As well, if the gadrsh is not fine enough,

some of the BoA may not be found. Therefore, a new method wasla®ed to find the

Li.e. Will eventually reach the attractor.
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Figure 4.5: BoA algorithm - finding first point

BoA edge. The BoOA edge algorithm finds the edge of non-riddlesinisaof attraction

surround the stable point. Below, a step by step explanafitrealgorithm is provided.

Step 1: Find the first point on the BoA

Starting from the stable initial point, the algorithm séwas for the edge of the BoA in the
positive direction of axis 2. To find the edge a binary searethwod is used. The algorithm
for the binary search method is shown in algorithm 1. Fig.shéws a visual example of
the algorithm finding the first point of the BoA edge. Initiallf/the first guess is stable,
the offset will double until the algorithm finds an unstabterp. Alternatively, if the first

guess is unstable, the algorithm will half the offset untdtable point is found. Once the
algorithm has crossed the BoA edge, the binary search metterdployed, where the next
guess is the halfway point between the closest stable artdhiegpoint. This method is

repeated until the step sizis below a set minimum, noted agzpminin the pseudo code.

2difference between the next guess and current guess



CHAPTER 4. STABILITY ANALYSIS a7

' BoA
31 BoA Edge _
Stable —«—
Unstable —=—
2+ .
P '§ ) dd
2 . dg’
x
< T
¢
0 .
Equilibrium Point
-2 -1 0 1 2

Axis 1

Figure 4.6: BoA edge algorithm - finding first edge

Step 2: Find the next edge on the BoA
The first edge of the BoA is found in the positive direction okak The algorithm searches
using a set radius and varies the angle using the same bisarghsmethod shown in
algorithm 1. Fig. 4.6 shows a visual example of the algorifimd the first edge of the
BoA. The algorithm searches clockwise around the BoA edgs, ifran unstable point is
found the algorithm rotates the search arm in the clockwirgetion and counterclockwise

for a stable point.

There are several checks in place to make sure the algomtifinding the full BoA. If
the algorithm cannot find the BoA edge within an obtuse angle fihe previous line, the
algorithm goes into a reverse protocol. The reverse prossarches with a finer resolution
and attempts to avoid skipping part of the BoA, like the exangblown in Fig. 4.7. Also,
if the algorithm crosses itself then it follows a backtrakprotocol, where the algorithm
backs up and decreases the increment amount. Every timégtrélam crosses it self the
algorithm backs up more and further decreases the incraasement. The initial guess

for the next angle is determined by using a curve fit of the iptesty found points, where
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Figure 4.7: An example without the reverse protocol, whent pf the BoA is skipped.

the algorithm attempts to find a curve that will best appraterthe last known point using
the previous points. The algorithm starts with two pointg] ancreases up to maximum of
20 and starts at a straight line and moves to a polynomiakciitrvif the algorithm cannot

find a reasonable guess, the algorithm reverts to using shamgle as the initial guess for
the next angle.

Fig. 4.8 shows the performance of the algorithm with a testfion (4.21)—(4.22),
wherec = 0.77 andd = 15. The test function was created with acute angles to test th
reverse protocol and backtracking protocol. The algoritbok 872 evaluations to deter-
mine the edge of the test function with a relative angulaoresf 10-2. A cell map of 900

evaluations is shown in comparison to the algorithm’s $otuin Fig. 4.8.

O<op<2n (4.20)

X = —cos(@+C) (4.21)

y = —sin(@) sir ((—Zp) (d +sgn<sin((p)sin5 <(—2p) (d— 1))) (4.22)
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Figure 4.8: Algorithm vs cell map using a test curve.

4.4 Summary

This chapter introduced the concept of Lyapunov exponemisexplained some of the
properties of Lyapunov exponents. A review of the methodaicwdate Lyapunov expo-
nents found in [29], was given. The method to calculate thepluyov exponents is based
on the numerical solution of the original ODE and the linearversion of the ODE. A
novel method for finding the edge of non-riddled basins ohation was explained. The

method was compared to a simple grid search algorithm.



Chapter 5

Results and Discussion

5.1 Introduction

The proposed passive walking mathematical model was ap®thuce stable walking mo-

tion. With simulation results of the proposed passive wajkinathematical model some
of the advantages of the proposed model are explained.swisth the physical passive
walker, HM2L, were completed with six different center of gadocations. The gait pa-
rameters of the proposed passive walking mathematical haodithe impact-based pas-
sive walking model were compared to the gait measuremethe ghysical passive walker.
The stability and robustness of passive dynamic walking avedyzed with the proposed
mathematical model. Lyapunov exponents of the proposesivyeawalking mathematical

mode were calculated for one case. The basin of attractige atfjorithm was used to
determine the BoA of the proposed passive walking mathealatiodel. The area of the
BoA is used to quantify the robustness of the passive walkérisanalyzed against the
change in angular momentum of the passive walker. As wellptbposed passive walking
mathematical model is simulated with human like parametatsthe angular momentum
of the resulting gait is discussed in comparison to the argubmentum measured from

human gaits.

50
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5.2 Proposed Mathematical Model

The proposed mathematical model is able to capture more leagngynamics, like the
double support phase, compared to the impact-based pasalking model. With the
added complexity of the contact force models, stable swistof the proposed model were
still found. Finding stable initial conditions for passiwalking models is not an easy
task. Unfortunately for those readers trying to find initahditions of their own, mostly
intuition was used to find the first initial conditions. Hoveevthere are some tricks to
finding initial conditions. If the initial conditions areade to stable initial conditions the
walker will usually oscillate from a small step to a big stéjus if the first step was too
big, reduce the swing leg velocity or increase the stancedégrity to reduce the step size
and vice versa for a small step. Another trick is to choosarpaters that produce a more
robust walker, like a larger hip mass. Once a set of stablmlimionditions are found, to
find stable conditions for other parameter combinatiorfsepthe desired parameter from
the first parameter set slightly. Then simulate the new patanset until the simulation
stabilizes. If the simulation does not stabilize then redihe offset. If the simulation does

stabilize then offset the parameter again, repeat untidiésred parameter is reached.

To demonstrate some of the advantages of the proposed nsodalations were con-
ducted with the parameters shown in Table 5.1. For comparsmulations of the tra-
ditional impact-based passive walking model were comgletgh model parameters of
Table 5.1. The initial conditions of the proposed passivékivg model (5.1) and the
impact-based passive walking model (5.2) were selectedagdite system was already in

a stable gait.

Proposed Passive Walking Mathematical Model
Qo= [0.000 04114 01399 00512 01708

0.0048 28056 —0.4126 3000x 106 0.493x 10°6]" (5.1)
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Impact-Based Passive Walking Mathematical Model

Qo=[0.2414 —-0.2414 —1.7314 -0.7318" (5.2)

Table 5.1: WALKER SIMULATION PARAMETERS.

Model Parameters

| = 04143 [m] p = 0.0860 [m]

o6 = O° [degreef y = 2.0% [degreep
m = 5.1587 kg M = 12826 kg

b = 0.1930 [m] rq = 0.1067 [m)

Contact Parameters

bs = 0.38 L = 0.30

ks = 9.3920x10° [N/m¥?] ky = 1.6879x10" [Ns/mP/d
op = 10° [N/m] o1 = 2,/0o [N's/m
Vs = 1074 [m/s] a® = 10

Fig. 5.1a) shows the stable phase portrait of a leg angleisdeg angle velocity of
the proposed model. The heel strike regions are highliginteeld and the double support
phase is highlighted in dark red with a thicker line in Figl&®. Fig. 5.1b) shows the stable
phase portrait of the a leg angle of the standard impact mathel standard impact model
heel strike regions are vertical since the position statsdwt change over the impact.
With the Hunt-Crossley contact model and the LuGre frictioodel the position states
change during the impact event, as they would in reality. &#,whe contact and friction
model allow the system to slide during the impact event (e sliding during impact is

notassumed), if the tangential force is great enough to oveedbm contact friction force.

Fig. 5.2 shows the normal force and friction force for one fmger one step. The initial

peak in the normal force plot is due to the impact of the fodhhe ramp. After the impact
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Figure 5.1: Leg angle phase portrait a) proposed matheahatiodel b) impact-based
mathematical model.

phase the normal force settles to a value near the steadynstahal forc&M + 2m)g. The
contact force still varies after the impact phase due to tbeement of the legs. During
the impact phase, the friction force suddenly decreases wieefoot stops sliding. The
friction direction reverses twice through out a single stHpe second reversal is due to the

foot dragging at lift off.
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Figure 5.2: Normal and friction force vs time.
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Fig. 5.3 shows the friction statefor one leg over two steps. Notice how the state
observer is still active during non-contact sections ofgag. Simulations were completed
with reseting the state observer to zero after each separatid no discernible difference
was found between the resulting gaits. Therefore the emu#dr z was kept continuous

through out the whole simulation.
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Figure 5.3: Friction state observer.

5.3 Physical Walker and Gait M easurement Perfor mance

The physical passive walker, HM2L, was able to walk down a &% fong ramp. The
design proved to be rigid and reliable. The ramp design vgad,rbut to adjust the ramp
took about thirty minutes to adjust the ramp to a desiredeanghe data acquisition sys-
tem worked well with one exception. The inclinometer wasniduo have some issues
that prevented useful data from being captured. A US Digi&W¥ inclinometer was used
to measure the global orientation of the experimental walkbe X3M uses MEMS ac-
celerometers to determine the orientation of the sensachaiahen subject to vibration
from each heel strike gave a noisy signal. With the excepifcthe inclinometer, the gait

measurement system performed very well.
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54 Mathematical Model Validation

In this section the validation of the mathematical modelrsvwled against experimental
data gathered using the passive walker HM2L. As a refergheeimpact-based passive
walking model is compared against the experimental dataedls Whe effects of chang-
ing the center of mass on the step period, step length, andgevdip velocity is used to
compare the three resulting gaits. The parameters used sirttulations for the validation
case, rounded to four decimal spaces, can be found in Teblken®l. Table 5.3. The geo-
metric parameters were determined from the SolidWorks inbdé was used to generate
the machine shop drawings for the passive walker HM2L. Eaabhmed part, bolt, and
nut of the walker was weighed and the corresponding mass ntasee in the SolidWorks
model. Assuming a uniform density for each part, bolt, ant] the mass properties of the

walker were determined. To measure the angle of the rampgea lkevel was used to first

Table 5.2: CONSTANT TRIAL PARAMETERS.

Model Parameters Parameters

| = 04143 [m] p = 0.0860 [m]

o = 0° [degrees y = 205 [degreeb
m = 5.1587 kg M = 1.2826 kg

Contact Parameters

s = 0.38 L = 0.30

ks = 9.3920x10° [N/m¥?] ky = 1.6879x10" [Ns/mP/?d
g = 10 [N/m o1 = 2,00 [Ns/m|
Vs = 1074 [m/s] a® = 10

Table 5.3: VARIABLE TRIAL PARAMETERS.

Trial Center of Mas® Radius of Gyratiomyg
[m] b/l [m] rg/!

L#1 0.1356 32.72% 0.1192  28.77%
L#2 0.1547 37.34% 0.1112 27.03%
L#3 0.1739 41.96% 0.1077  26.00%
L#4 0.1930 46.58% 0.1067  25.75%
L#5 0.2122 51.21% 0.1091  26.32%
L#6 0.2313 55.83% 0.1146  27.65%
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measure the topography of the floor. Then, using the floor efeeence, the relative height
of four locations on the ramp were measured. Using the velagights, the average angle

of the ramp was determined.

The friction coefficients were estimated from measuremehts previous ramp and
walker setup [28]. The parameters specific to the LuGre m@mglo;, andvs) were se-
lected based on the information found in [31]. For the canpacameters, the steady state
value of the deformation of the foot was measured when th&exalas standing. Using
the measured deflection and (5.3), the valuksafas estimated. The contact damping pa-
rameterky was the only parameter that was used to adjust the model e fedtperimental
data. The parameté&y was adjusted so that the experimental step length of tridd: Cél
matched the simulations. The adjusted valu&gptvas kept constant for the remaining
simulations. For the simulations, only the center of maskradius of gyration parameters

were changed between trials to match the change of the pteenod the physical walker.

ks = (%(Zm‘f' M)Q) /(hmeasurea% (5.3)

Fig. 5.4a), Fig. 5.4b), and Fig. 5.4c) show the step lengt#p period, and average hip
velocity for the proposed mathematical model, the impadehand the experiments. The
impact model was not stable at CoM L#6, but could take over&@sstThe average of these
steps was used and the standard deviation between the stegigoavn in the figures. The
experiments have two sets of standard deviation bars. Thet&ps Stdv.” is the standard
deviation of all of the usable steps of all of the runs downr#rep for that trial. The “Trial
Stdv.” is the standard deviation of the averages of eachaumdhe ramp for that trial. The
simulations of the proposed mathematical model match theraxent in both magnitude
and trend. Thus, the ability of the proposed model to geaeggatt measurement trends is
valid. The impact—-based model matches the trends of theiexgats, but not as closely
as the proposed mathematical model. Although the impaseebmodel may be valid in
some cases, Fig. 5.4 shows the inability of the impact—bas®tkl to replicate reality in

this case.
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Fig. 5.5a), Fig. 5.5b), and Fig. 5.5c) show a comparison efkimematics of the
simulations and experiments for CoM L#4. Comparing the kirtesegoes one step further
than comparing the resulting gait measurements and showsvietl the proposed model
can match the physical walker’'s motion. Fig. 5.5a) showsrher leg angle, Fig. 5.5b)
shows the inner leg angle velocity, and Fig. 5.5c) showsnherileg angle acceleration.
The inner leg angle data was fit using a Fourier series withvammgavindow. The derivative
of the Fourier series was used to calculated the derivati/éee inner leg angle. With the
inner leg angle acceleration, degradation of the signabic®@able. However, the general
shape and magnitude of the inner leg angle acceleratioraithulations and experiments
are still in agreement. The agreement between the kinesnaftithe physical walker and
the proposed mathematical model show that the proposedmatital model can generate

valid gait motion, not just valid gait measurement trends.

5.5 Stability Analysis Results

5.5.1 Lyapunov Exponents

The Lyapunov exponents were calculated for the proposesiyeawalking mathematical
model for one case using the approximation to the LuGre mshlelvn in section 4.2.
To calculate the Lyapunov exponents for this single cask &pproximately one month
to simulate. Some inefficiencies in the code were found et that may reduce the
computation time. However, due to the long computation tinséng Lyapunov exponents
as a measure of stability proved to be unfeasible for thigeptoThe sign of the Lyapunov
exponents of this one case still provides some informatmwutithe gait. Fig. 5.6 shows
the Lyapunov exponents calculated versus time with twoeclgsviews. To determine the
final values of the Lyapunov exponents, an average of theuryapexponents over the last

1000 seconds of the simulation was taken.
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Table 5.4: LYAPUNOV CHARACTERISTIC EXPONENTS.

LE STD % STD
1 0 + 0 0%
2 —0.01341 + 0.00013 097%
3 —2.25988 + 0.00018 797x 10 3%
4 —2.25958 + 0.00013 575x 10 3%
5 —3.88372 + 0.00008 206x 103%
6 —69.30363 + 0.00018 260x 10 %%
7 —80.29741 + 0.00024 299x 10 %%
8 —23670207 + 0.00022 929x 10 °%
9 | —29346903 + 0.043  147x10 %%
10| —741316 + 0.20 270x 103%

61

Table 5.4 gives the average calculated Lyapunov exponeatsloe last 1000 seconds

(T = 7450 to 8450 seconds). The simulation had to run for longertduexponent two

(A2). The sign of exponent two\,) was not determinable until near the end of the simu-

lation. Fig. 5.7 shows the relative error between the cuiftgapunov exponents and the

Lyapunov exponents shown in Table 5.4. The sign of the Lyap@xponents was found

to be(0,—, —,...), which shows that the mathematical passive walking modabiging in
a stable periodic motion not a higher dimensional tdfys..,0,—,—,...)
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Figure 5.7: Lyapunov exponents relative error versus time.
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5.5.2 Bagn of Attraction

To validate the basin of attraction (BoA) edge algorithm algearch was completed
around the BoA edge found for cab¢l = 0.35 at POI 1 (refer to Fig. 4.4 on page 44).
The parameters shown in Table 5.5 were used for the simn#atiéig. 5.8 shows the re-
sults of the grid search, where the red dots are the stabiespamnd the blue dots are the
unstable points. Since calculating the Lyapunov expongriigéed to be not feasible for
multiple trials, the stability of the system was determimsthg the POI conditions as the
Poincaé section. If all of the states of the system, excludingvere within 103 of the
stable orbit at the POI, then the system was determined tabkesFig. 5.8 shows that the
grid search and the BoA edge algorithm results are in agreeba BoA edge algorithm
took 8043 function evaluations to find the edges to an angelative error of 104 and
the grid search consisted of 6282 points. The BoA edge algontas found to be reliable
at finding non-riddled basins of attraction. Further mohe BoA edge algorithm, like
a grid search method, is based on the input of “stable” ortabig”, so any method for

determining the stability of the system could be used.

Table 5.5: BASIN OF ATTRACTION — PARAMETERS

Model Parameters Parameters

| = 04064 [m| p = 00813 [m|

o = 0° [degrees y = 200° [degree$
m = 5000 [kg M = 0 kg

rq = 01138 [m|

Contact Parameters
Ms = 0.38 L = 0.26
ke = 10° IN/m¥?] kg = 10 [N's/m/?]
10° [N/m 01 2,00 [Ns/m|
Vs = 1074 [m/s a® = 10

Q
o
|
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Using the BoA edge algorithm, the basin of attraction was dbfan all eight points of
interest for eight different center of mass locations usirgparameters in Table 5.5. The
center of mass locations are shown in Table 5.6. The stabflihe system was determined
using a Poincdr section, as mention above. Fig. 5.9 to Fig. 5.16 show hovbaisen of
attraction is effected by the center of mass for POI one thteibhe shape of the basins of
attraction on the center of mass boundaries (CoM 16% and CoM &@¥e found to be

less broad than between CoM 16% and CoM 50%.

Equilibrium Point <

CoM 50%

CoM 45%

CoM 40%

T CoM 35%

, _.CoM 30%

. o CoM 25%

50% 4 - - - CoM 20%
45 0% 1 ) CoM 16%

40%1
3B%{
30%1
25%1

20 % +
16 % -

CoMb/I

01 (radians)

Figure 5.9: BoA for point of interest one.
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Figure 5.10: BoA for point of interest two.
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Figure 5.11: BoA for point of interest three.
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Figure 5.13: BoA for point of interest five.
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Figure 5.14: Point of interest six.
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Figure 5.15: BoA for point of interest seven.
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Figure 5.16: BoA for point of interest eight.

Table 5.6: BASIN OF ATTRACTION — CENTER OF MASS PARAMETERS.

Center of Mas$
[m] b/l
0.0650 16%
0.0813 20%
0.1016 25%
0.1219 30%
0.1422 35%
0.1626 40%
0.1829 45%
0.2032 50%

The basins of attraction that were found for the swind legre found to extend far
in the +8 direction. When the system is offset in thé direction, the angular velocity
needs to be adjusted accordingly to return the system baitlietetable orbit. Fig. 5.17
shows a visualization of this abnormality, where the sweggHas a large angular offset. As

the larger the angular offset, the more precise angulacitgls required. The larger the

li.e. the swing leg parameters were offset, POI 1 to 4.
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velocity creates a larger impact force, which in a physicalker would not be contained
locally. The model only accounts for local deformation a tontact, not vibrations or
deformation of the structure. If vibration of deformatiohtbe structure were accounted

for, the BoA of the swing leg would most likely be smaller.

<
Stable Periodic Cycle Disturbed Periodic Cycle
N

Figure 5.17: Visualization of the swing leg BoA abnormality.

Fig. 5.18 and Fig. 5.19 show the change in area of the BoA véh&shange in the
CoM for different points of interest along the stable periodycle. To account for the
abnormality of the swing leg BoA, mentioned above, only theaasf the BoA that had an
angular offset of less tham/2 was calculated. From Fig. 5.18 and Fig. 5.19 determining
which center of mass location has the largest stabilityoregs not clear. However, it is

easy to see that there is a favourable point between 16% &nd 50
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Figure 5.18: Area of the BoA for points of interest that beldaghe swing leg.
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Figure 5.19: Area of the BoA for points of interest that beldmghe stance leg.

5.6 Angular Momentum

5.6.1 Angular Momentum vs BoA

Fig. 5.20 show the average absolute angular momentum anmdrmaction torque and
maximum absolute angular momentum and ground reactiorugood the walker. The
angular momentum of the walker was calculated about thecefinass of the walker. The
ground reaction torque is the resulting torque caused bygtbiend reaction forces acting
about the center of mass. The average absolute values wetgated by numerically

integrating the absolute value and dividing by the perioshte#gration, as shown in (5.4).

_ 1 i
L

= L 5.4

Fig. 5.21 shows the normalized values of Fig. 5.20. The argumomentum was

normalized by dividing by the walker heigfit), total mass2m+ M), and average hip
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velocity (Vhip). The torque was normalized by dividing by the height total masg2m-+

M) and the acceleration due to gravity). As can be seen from Fig. 5.20 and Fig. 5.21, the
angular momentum does not display any minimum or maximunvéxt the center of mass
locations of 16% and 50% of the leg length. In contrast, tlea @f the basin of attraction,
shown in Fig. 5.18 and Fig. 5.19, shows a favourable poinvéen the center of mass
locations of 16% and 50% of the leg length. These results gndence that the angular
momentum of the gait of a biped walker does not correlategcsthbility of the gait. This

is supported by [32], where the authors suggest that angusanentum is kept small in
human walking to reduce the energy required to continue #ite his statement would

make sense if the passive dynamics of the human body haveanigwar momentum gait.
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Figure 5.20: Maximum and absolute average torque and angulaentum.
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5.6.2 Angular Momentum with Human Parameters

Recently there have been studies that have measured theanmguhentum of the human
body during walking [32][33][34]. Humans were found to hawveelatively low angular
momentum during a normal walking gait. This low angular matnen was attributed to
the control of the central nervous system. In the sagiti@) the angular momentum was
found to be low due to canceling angular momenta from opjokg limbs [32]. This
section explores the question “How much of the relatively Emgular momentum of the

human gait is from the control of the central nervous system?

First off, what is defined as low angular momentum? In [328, @lathors use a falling
inverted pendulum as a reference. The inverted pendulunfoussl to have a maximum
normalized angular momentum ef 0.2. To determine what the angular momentum of
the passive walker, simulations were completed with theupaters in Table 5.7. The
parameters in Table 5.7. were set to human like values ustayfdom [35]. Fig. 5.22

shows the angular momentum of the passive dynamic walkerameestride and Fig. 5.23
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shows the ground reaction torque over one stride for thenpetexs in Table 5.7. The
absolute maximum normalized angular momentum experielogdae walker was- 0.13.
The angular momentum of the walker was normalized with tiegaye hip velocityvhip),

total masg2m+ M), and the walker leg lengtfi).
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Figure 5.22: Angular momentum of the walker about the cesftenass over one step.
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Figure 5.23: Ground reaction torque over one step.
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Table 5.7: ANTHROPOMORPHIC PASSIVE WALKER PARAMETERS.

Model Parameters Parameters

| = 08471 [m| p = 1(0.20) [m|

o6 = O° [degreep (2m+M) = 80 kg

m = (2m+M)(0.157) [kg M (2m-+M)(0.686) [kg]

rq = 1(0.317) [m] b = 1(0.439 [m]

y = 06° [degreep

Contact Parameters

s = 0.38 e = 0.26

ks = 8x10° [N/m?/2] ka = 8x10 [N's/mP/?]
gy = 10° [N/m o1 = 2,/0p [Ns/m|

Vs = 1074 [m/s] a® = 10

The absolute maximum normalized angular momentum of thé&ewras larger than
what was found for humans. The authors of [34] and [33] fouredmaximum normalized
angular momentum to be@ normalized with the body height instead of the leg length
(if normalized with the leg length would be 0.04). In [32] the maximum normalized
angular momentum was found to b&®9, normalized with the body center of mass height
instead of the leg length (if normalized with the leg lengtbubd be slightly larger). In all
cases the passive walker experienced more than double ttienora normalized angular

momentum.

Why does the passive walker experience a larger angular ntamesr more impor-
tantly why do humans experience less angular momentumghrout their gait. Would a
more anthropomorphic passive walker, one with knees or atieam upper body like the
one designed in [36], experience less angular momentumttieacurrent passive walker?
The answer to that question would provide insight into thesjons: “To what degree does
the central nervous system control the human gait to hawe atgular momentum?” and
“Does the central nervous system control the angular mamewf the human gait to be

low for energy efficiency?”



Chapter 6

Conclusions and Future Work

6.1 Conclusions

A new mathematical model of passive walking was developéi the Hunt-Crossley con-
tact model and the LuGre friction model. Even with the addewhglexity of the contact
and friction models, stable periodic motion was produceith Wie proposed passive walk-
ing model. The passive walking model was able to simulatestitige gait with one set of
equation$. The proposed mathematical model was able to replicatesthéts of the ex-
periments very well. The proposed passive walking mathiealahodel matched the trend
and magnitude of the experimental gait measurements. Thadrbased passive walking
model also matched the trends of the experimental gait, batrwt able to match the gait
parameters magnitude. The difference in magnitude bettieetavo mathematical models
is attributed to the proposed passive walking mathematicalel being able to adjust the
damping (i.e. energy loss) of the heel strike impact. Thesiotybased mathematical model
was not stable for the same parameter range as the expesiamehproposed mathematical

model. The difference in stable parameter range is at&tbtd the effects of friction.

The sliding velocity between the ramp and the foot neversstdyero. However, the

1Does not switch between impact and motion equations likér#ttitional impact-based passive walking
model
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sliding velocity does remain below the Stribeck velocityfr&stion model with the com-
plexity of the LuGre model may not be needed to capture a riygufrthe dynamic features
of the gait. A friction model that accounts for transitiontlseen micro-sliding and full

sliding would be sufficient for this dynamic model.

The Lyapunov exponents were calculated for one case. Theo$ithe Lyapunov ex-
ponents werd€0, —, —,...) which shows that the passive walking mathematical model is
moving in a stable period motion. A Poinéamap was used to determine a “stable” gait
from an “unstable” gait. The Poindamap was used because numerically calculating Lya-
punov exponents was found not feasible with the availabte titnd resources. The basin
of attraction of the proposed passive walking mathematiwadlel was determine in the
0,—01 (Leg angle—Leg angle velocity) plane. The basin of attosctvas found for eight
different points in the gait cycle with eight different centf mass locations. The method
developed for finding the basin of attraction was able to nedfieiently find the basin of

attraction compared to a full grid search method.

Increasing the size of the basin of attraction of the passa#er will create a more
robust gait and a passive walker that can reject largerrthiatices. A favourable center of
mass is evident from the area of the basin of attraction oheted. However, the angular
momentum of the walker versus the center of mass did not sihgwrenimum or maxi-
mum. From these results, angular momentum regulation dueseem to play a role in the

ability of the passive walker to reject disturbances.

The question was posed: “How much of the relatively low aaguhomentum of the
human gait is from the control of the central nervous systeriifie passive walker was
found to have a maximum normalized angular momentum 0f13 more than double than
that determined for a human gait 0f0d—Q05. Does the difference between the passive
walker angular momentum and the human gait angular momestieim from the control
of the central nervous system of the human gait or is the huydyg mechanically better

tuned to cancel out the angular momentum of the limbs?

%the sliding velocity is less then the Stribeck velocity
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6.2 FutureWork

This model can be used as a framework to develop more compdebelsi(i.e. a passive
walker with knees or adding friction to the hip joint). As Wedinding a less complex
friction model that still captures the necessary dynamicsdreduce the number of states
of the system. A reduction in the number of states of the aysteuld could reduce the

computation time.

Finding a more efficient way of calculating the Lyapunov exgats would improve
the methods available for stability analysis of the proplgsassive walking mathematical
model. By reducing the complexity of the friction model mapye to reduce the time
required to calculate the Lyapunov exponents. The basittr@icion edge algorithm can
be improved. A method of determining the rough size of the Befote computation
would be advantageous in determining the appropriate step &s well, the BoA edge

algorithm could be extended into three dimensions by usiagdles to map out the shape.

The inclinometer sensing device needs to be improved upothéorientation data
to be usable. There are two obvious design routes. The fissgjd&oute is to reduce
the vibrations experienced by the inclinometer. The seategign route is to improve
the settling time of a pendulum-encoder inclinometer. ABotoption is to use a motion

capture system to determine the orientation of the walker.

Analyzing a more anthropomorphic passive dynamic bipe#a&vahay provide insight

into the questions posed about the angular momentum of tinamgait.



Bibliography

[1]

[2]

[3]

[4]

S. Mochon and T. McMahon, “Ballistic walking: An improvedodel,” Mathematical

Biosciences, vol. 52 (3).

T. McGeer, “Passive dynamic walking,” Internationaudoal of Robotics Research,
vol. 9 (2), 1990, pp. 62-82.

T. McGeer, “Passive walking with knees,” in Proc. of th@90D IEEE International
Conference on Robotics and Automation, Cincinnati, OH , US/A01%p. 1640—
1645.

M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The despwalking model:
Stability, complexity, and scaling,” ASME Journal of Bionmamical Engineering,
vol. 120 (2), 1998, pp. 281-288.

[5] A. Goswami, B. Thuilot, and B. Espiau, “A study of the pagsgait of a compass-

like biped robot: Symmetry and chaos,” International Jalof Robotics Research,
vol. 17 (12), 1998, pp. 1282-1301.

[6] Y. lkemata, K. Yasuhara, A. Sano, and H. Fujimoto, “A stud the leg—swing motion

[7]

of passive walking,” in Proc. of the 2008 IEEE InternatioGainference on Robotics

and Automation, Pasadena, CA , USA, 2008, pp. 1588-1593.

F. Qi, T. Wang, and J. Li, “The elastic contact influencespassive walking gaits,”
Robotica, vol. 29, 2010, pp. 787-796.

78



BIBLIOGRAPHY 79

[8] M. Jafarian, Variable stiffness for robust and enerdicefnt 2D bipedal locomotion,

M.Sc. Report, University of of Twente, Enschede, Netherda2@10.

[9] M. Iribe, T. Kinugasa, Y. Sugimoto, and K. Osuka, “Dynami model verification of
passive dynamic walking with a compass model prototypeSI@E Annual Confer-
ence 2010, 2010, pp. 2800-2803.

[10] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficienpdalal robots based on
passive-dynamic walkers,” Science, vol. 307 (5712), 2@5,1082-1085.

[11] Y. Hurmuzlu and T.-H. Chang, “Rigid body collisions of aesal class of planar
kinematic chains,” IEEE Transactions on Systems, Man, are@etics, vol. 22 (5),
1992, pp. 964-971.

[12] H. Hertz, Miscellaneous Papers, London: MacMillan &, Ltd., chap. Chapter 5:
On the contact of elastic solids, 2006, pp. 146-162.

[13] K. Hunt and F. R. Crossley, “Coefficient of restitution irgeeted as damping in vi-
broimpact,” Journal of Applied Mechanics, vol. 42 (2), 19pp. 440-445.

[14] L. Shampine and M. Reichelt, The Matlab ODE Suite, Mathk¥p Inc., 24 Prime
Park Way, Natick, MA.

[15] G. Gilardi and I. Sharf, “Literature survey of contagtrédimics modeling,” Mecha-

nism and Machine Theory, vol. 37 (10), 2002, pp. 1213-1239.

[16] H. Olsson, K.Astrom, C. Canudas de Wit, M. &@vert, and P. Lischinsky, “Friction
models and friction compensation,” European Journal of ©@gntol. 4 (3), 1998, pp.
176-195.

[17] C. Canudas de Wit, H. Olsson, Kstrom, and P. Lischinsky, “A new model for
control systems with friction,” IEEE Transactions on Autatic Control, vol. 40 (3),
1995, pp. 419-425.



BIBLIOGRAPHY 80

[18] M. Vukobratovic and B. Borovac, “Zero-moment point - tigifive years of its life,”

International Journal of Humanoid Robotics, vol. 1 (1), 2084 157-173.

[19] A. Goswami, “Postural stability of biped robots and floet-rotation indicator (fri)
point,” International Journal of Robotics Research, vol. @8 1999, pp. 523-533.

[20] M. Popovic, A. Hofmann, and H. Herr, “Zero spin angulaommentum control: Def-
inition and applicability,” in Proc. of the 2004 IEEE RAS/RSiidrnational Confer-
ence on Humanoid Robots, Los Angeles, CA, USA, 2004, vol. 14p8-493.

[21] A. Goswami and V. Kallem, “Rate of change of angular motnenand balance
maintenance of biped robots,” in Proc. of the 2004 IEEE hd#onal Conference
on Robotics and Automation, New Orleans, LA , USA, 2004, p@53-B790.

[22] M. Popovic, A. Goswami, and H. Herr, “Ground referenaangs in legged loco-
motion: Definitions, biological trajectories and controiglications,” International
Journal of Robotics Research, vol. 24 (12), 2005, pp. 10132103

[23] Q. Wu and N. Sabet, “An experimental study of passiveasyit walking,” Robotica,
vol. 22, 2004, pp. 251-262.

[24] Q. Wu and J. Chen, “Effects of ramp angle and mass digtabwn passive dynamic
gait- an experimental study,” International Journal of Humoid Robotics, vol. 7 (1),
2010, pp. 55-72.

[25] J. Chen, Design and dynamic analysis of four-leggediypas/namic walker with
knees, B.Sc. Thesis, University of Manitoba, Winnipeg, Maivé, 2007.

[26] A. Greaves and I. Lohrenz, A study in passive dynamicingl, B.Sc. Thesis, Uni-
versity of Manitoba, Winnipeg, Manitoba, 2008.

[27] K. Rushdi, Experimental study on passive dynamic bipegdking: effects of pa-
rameter changes on gait patterns, M.Sc. Thesis, Univer§ibjanitoba, Winnipeg,
MB, 2011.



BIBLIOGRAPHY 81

[28] D. Koop, Passive dynamic bipedal walking: Ramp-Treddogmparison and gait
variation due to parameter change, B.Sc. Thesis, Unives§ibanitoba, Winnipeg,
MB, 2010.

[29] A. Wolf, J. Swift, H. Swinney, and J. Vastano, “Deternmg lyapunov exponents

from a time series,” Physica D, 1985, pp. 285-317.

[30] M. Sobczyk, E. Perondi, and M. A. Cunha, “A continuous @pgmation of the lugre
friction model,” in ABCM Symposium Series in Mechatronics120vol. 4, pp. 218—
228.

[31] H. Olsson, Control systems with friction, Ph.D. Disséidn, Lund Institute of Tech-
nology, Sweden, 1996.

[32] H. Herr and M. Popovic, “Angular momentum in human waltki’ Journal of Exper-
imental Biology, vol. 211, 2008, pp. 467—-481.

[33] A. Silverman, J. Wilken, E. Sinitski, and R. Neptune, “Wdody angular momen-
tum in incline and decline walking,” Journal of Biomechanigsl. 45, 2012, pp.
965-971.

[34] M. Popovic, A. Hofmann, and H. Herr, “Angular momentuegulation during hu-
man walking: biomechanics and control,” in Proc. of the 20BEE International
Conference on Robotics and Automation, New Orleans, LA , USWR42vol. 3, pp.
2405-2411.

[35] W. Dempster, “Space requirements of the seated oper&eometrical, kinematic,
and mechanical aspects of the body, with special referenttestlimbs,” Tech. rep.,

University of Michigan, 1955, wADC Technical Report 55-159.

[36] S. Collins, M. Wisse, and A. Ruina, “A three dimensionasgige-dynamic walking
robot with two legs and knee,” International Journal of Rat®Research, vol. 20 (7),
2001, pp. 607-615.



Appendix A

Additional Mathematical M odd

Equations

Appendix A provides some additional information about thatmematical model. The
equations of motion are transformed into the form of (A.1).

g=A"'B (A.1)

Where
A=M (A.2)
B=F(9,9) —H(a,q) —G(q) (A.3)

The Jacobian of the proposed passive walking mathematiocdéhis given in detail. The
Jacobian of the original system and the Jacobian of the raysi¢h the smooth approxi-
mation made to the LuGre model are given. Also, the equilibrpoints of the proposed
passive walking mathematical model are given, assumingulireg leg ground clearance
procedure is not used.
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A.1 Proposed Mathematical Model Reformed

The proposed passive walking mathematical model is refdnmenake the numerical so-
lution of the model less cumbersome.

[ A (S3+C3+Am)+CrCp Asc(Am+1) _Cac_ Cca
Mw Mw b b
. AsdAv+1) A(SHSHAN-CriCp _ Sc _ Sea 1
A= M M b b (A.4)
- % _% AuMw  CoMw | m(AZ, —C2)
—Cea _Sa Cobw A
L b b b2 b2
(Ft, +Ft,) +mb(6ZsinB1 + 85sinB2) 4 g(M + 2m) siny
(Fn, + Fyy) — mb(62 cosBy — 83 cosBy) — g(M + 2m) cosy
B= hip hip i (A.5)
Ffl(:%l + FNlC)ﬁl —mghbsin(6; —)
L Ffzcy;p + I:Nz(:X;p - mngin(GZ - V)
M
Mw =2+ = (A.6)
Ia\ 2
Ay = My <1+ (g) ) —1 (A7)
Asc = SinB1 cosH1 + sinB, cosH, (A.8)
Cm=c0s(61 — 02), Sy=-sin(B1 —6) (A.9)
Cp=c0s(01+62), S, =sin(01+6>) (A.10)
Cca = c091Cy + cOoSB2AM (A.ll)
Sca = SinB1Cy, + SinB2Ay (A.12)
Cac = c0sB1A\ + c0s6,Cry (A.13)

Sac = sinB1Aw + sinB2Cr, (A.14)
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A.2 Jacobian

The Jacobian of the of the proposed mathematical model jAslTteeded to compute the
Lyapunov exponents with the method outlined in [29]. Theoligan of the system can also
be used to monitor the stability of the solution for some nricag¢ solvers.

o o o0 1 O O OO o0 O
o o 0 O 1 o o o0 o
o o 0 O O 1 o0 o0 O
o o 0 O O O 1 o0 O

ofs M5 dfs Ofs dfs Ofs fs fs Ofs
dy 00, 00, ox 0y 9, 00, 0z 0z
oy 0fs dfs df Ofg 0f Ol Ofs (A15)
dy 00, 00, OX 0y 9, 08, 0z 02 -
ofp of; ofp of of, ofi ofi ofi ofy
dy 09, 00, ox 0y 0, 00, 0z 0z
dfy dfy dfy dfg Ofy Ofy Oy fy Ofy

dy 0, 00, ox Iy 0B, 09, 0z 0m
o 9 o 9 o 9o g o

[
—
QO
~—
I
OO O O O O ooooo

|
(o)

Mok o N
afi+4_aB -1 . B e
a9 oq Ay fori=1todandy=y,xy, 61, 62,2, 2] (A.16)
0fs . oB 1 1 —2C151AM — S“nCp—CmSp =
c2— ) (Am+1
Mw ,
$1Am+C B $iCrt G .
+ (M — 2mCmSmA1é> Bs+ (M _ szmSmALAl;) B4> (A17)
0fs _ 0B )1 1 —2C2%Am + SiCp —CmSp .
50, = 96, Aoyt (A, —C2) (( ™ +2mGnSrAL 7 | B
Z—2)(Am+1
Mw ,
Cn—C —Cc
+ (w + 2mCmSmAIé> Bs + <M N ZanSmAii) 34) A18)
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o _ B 1 1 (G- (Aw+1) i
- (G i

(ZslclAM +SnCp +CmSp
_|_
Mw
+ (m _ ZanSmAzé) B3+ (m _ ZmCmSmAng;> 54)
(A.19)

- 2mGnsnAZ%> B

ofs 0B 1 (G-s5)(Au+1) 1
38, 08, "2 T m(AZ, —C2) ( ( Mw T 2mGnsAy 2 ) Br

(23202A|v| —S1Cp+CnSp
+
Mw

+ 2mcmsnAgé) B2
(T amGsoa ) Bk (TS oG ) )
(A.20)

off 08 1 1 1A+ C2Sn
08, 001 ) m(A% —C2) b
n (—ClAmb+ $Sn B ZmCmSnA:;%) B,

M
+ (—2mqnsmA3j§) B3+ (—% - 2mGnSnA3,i> 84) (A.21)

- 2mqnsnA;}> By

6f7 . 0B 1 1 $Cm — oSy _1
%, 08, "3 maz —c2) (¥ vamaisst e,

+ (—_Czcm — S5 + 2anSnAgé> B,

b
+ (2mGuSnAg3 ) Ba + (% + 2anSmA3:}1) 34) (A.22)
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Ofg _ 0B .1 1 S1Cm + C1Sm
90, 00, )T m(AZ _C2) b

N (—Clcm+815n

- 2mcnsnA4i) B

b
(S

—~ 2mCmSnAA:%> B,

S 2mcﬂsﬂA;§) B+ (~2MmGnSiA; ) 84) (A.23)

dfy B ., 1 oA — LS .
08, 00, Ayt m(Af) — C3) < ( b - ZmCmS‘nA471> o

N (—CZAm —%1Sn

. +2mcnsnA;§) B2

n (SmeW + ZmCmSmAZs) B3+ <2mCmSmA4 4> 84) (A.24)

The original mathematical model:

0fi g 0Xq

aq an f, for g=[61, X, 64] (A.25)
ofis |Xe |
=-0 fori=12 A.26
0z, %9(%) (A.20)
O0Zi%, 2% ( He )
Cr=1-——9 (1430 (1- A.27
= gk ol ( AN 20

The smooth approximatiorfOutlined in section 4.2.2 on page 41)

d ﬁ+8 aXC|

3G = o —S &4 for q= [0y, X, 61] (A.28)
Ci=S- Zc(,jcs; (“ Zf (- g&:)))

alerteer) () e

S = % arctan(k,Xg ) (A.31)

Wherek, is a tuning parameter. Ag — oo the functionS, approaches the signum function.
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oF,

oy
oFy,

06;
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00,

oFy,
oq
oFy,
a—q =

Xy _ 8i (1 sinG; + psin(6; — 3))
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(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)
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ocy”
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(A.44)

(A.45)

(A.46)

(A.47)
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A.3 Equilibrium Points

Unlike other mathematical models of passive dynamic walkthe model presented can
come to an equilibrium. This equilibrium is when both feet an the ground. Therefore,
the swing leg ground clearance procedure, outlined in@e&i3.2 on page 21, would not
be used. At an equilibrium all of the velocities are equaldmzandx* € R. There are four
equations, (A.48) to (A.51), that describe the remaining timknown equilibrium points.
Therefore, the equations can be describefBpybs, z;,z5| = f(y*), where—I <y* <I.

00Qoks(—Q2 +1cosQz + p(cos(Qz —d) — 1))+
00Q10ks(—Q2 +1c0SQs + p(coS(Qs — 8) — 1))" +mg(M + 2) siny = 0 (A.48)
ks(—Q2+1c0sQs + rho(cos(Qz — 8) — 1))" + ks(—Qz + 1 cosQy+
p(cos(Q4—08) —1))" —mg(Mg+2)cosy=0 (A.49)
ks(—Qz+1¢0sQs3 + p(cos(Qz — 8) — 1))"(00Qo(l coSQs—
p(cos(Qs —0) — 1)) +1sinQz+ psin(—Qsz+8)) —mgbsin(Qs —y) =0 (A.50)
ks(—Q2+1c0sQ4+ p(cosQs — 3 — 1))"(0oQ10(l cOSQs—
p(cos(Qa—08) —1)) +1sinQa+ psin(—Qa+ 8)) —mghbsinQs —y =0 (A.51)



