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Abstract

There is a prolific increase in the penetration of user devices such as smartphones

and tablets. In addition, user expectations for higher Quality of Service (QoS), en-

hanced data rates and lower latencies are relentless. In this context, network densifi-

cation through the dense deployment of small cell networks, underlaying the currently

existing macrocell networks, is the most appealing approach to handle the aforemen-

tioned requirements. Small cell networks are capable of reusing the spectrum locally

and providing most of the capacity while macrocell networks provide a blanket cov-

erage for mobile user equipment (UEs). However, such setup imposes a lot of issues,

among which, co-tier and cross-tier interference are the most challenging.

To handle co-tier interference, I have proposed a semi-distributed (hierarchical)

interference management scheme based on joint clustering and resource allocation

(RA) for small cells. I have formulated the problem as a Mixed Integer Non-Linear

Program (MINLP), whose solution was obtained by dividing the problem into two sub-

problems, where the related tasks were shared between the Femto Gateway (FGW)

and small cells. As for cross-tier interference, I have formulated RA problems for

both the macrocell and small cells as optimization problems. In particular, I have

introduced the idea of “Tier-Awareness” and studied the impact of the different RA

policies in the macrocell tier on the small cells performance. I have shown that the

RA policy in one tier should be carefully selected. In addition, I have formulated the

RA problem for small cells as an optimization problem with an objective function

that accounts for both RA and admission control (AC). Finally, I have studied cloud

radio access network (C-RAN) of small cells which has been considered as a typical



realization of a mobile network which is capable of supporting soft and green tech-

nologies in Fifth Generation (5G) networks, as well as a platform for the practical

implementation of network multiple-input multiple-output (MIMO) and coordinated

multi-point (CoMP) transmission concepts.
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Chapter 1

Introduction

Mobile wireless communication has experienced exponential growth over the past

decade, pushed by the abundance and the proliferation of smart devices. There is

a huge consensus in the wireless industry that this trend is anticipated to continue.

Moreover, the wireless industry is preparing itself for a 1000-fold increase in traffic

demand, by the year 2020 [1]. Hence, efficient measures are required to meet this

remarkable growth in mobile traffic demand. Conventional homogeneous wireless

networks are not expected to be able to handle such requirements. In this context,

the concept of heterogeneous wireless networks (HetNets) with base station (BS)

densification has been introduced. A HetNet uses a mix of macrocells and high

density of deployed low power small cells in order to bring the network closer to end-

users. This way, radio link quality can be enhanced owing to the reduced distance

between the transmitter and the receiver, and the larger number of cells allows for

more efficient spectrum reuse and, therefore, larger data rates. HetNets with multi-

tier deployments pose critical challenges to the resource allocation (RA) process.

The target of this thesis is to investigate issues related to RA in multi-tier HetNets.

More specifically, clustering and coordination/cooperation between small cells are

1



Chapter 1. Introduction

studied as well as the impact of different RA decisions of one tier on the other tier

performance.

In the following sections I provide a background on HetNets with small cell de-

ployments. I discuss the characteristics of small cells and the challenges in their

deployment. Then, I outline the RA process in HetNets with small cell deployments.

Finally, I summarize the main contributions of this thesis.

1.1 Multi-tier HetNets

1.1.1 HetNet Architecture

A HetNet is a network consisting of a variety of BSs with, possibly, different wireless

access technologies, each of them having different characteristics in terms of transmit

power, coverage radius, and backhaul connection. As shown in Fig. 1.1, a typical

HetNet involves a macrocell overlaid by densely deployed low power BSs as picocells,

small cells (femtocells), as well as relay stations and device-to-device (D2D) connec-

tions. These low-power BSs can be either operator deployed or user deployed, and

may coexist in the same proximity as the macrocell, potentially sharing the same

spectrum i.e. using a co-channel deployment. Deploying such low power BSs has the

benefits of offloading the macrocells, improving indoor coverage and cell-edge user

performance, and boosting spectral efficiency per unit area via spatial reuse. They

can be deployed with relatively low network overhead, and have high potential for

reducing the energy consumption of future wireless networks [2].

In Fig. 1.1, the macrocell is foreseen as the wide area layer that is responsible

for providing universal coverage with a guaranteed minimum data rate requirement,

maximum tolerable delay, and outage constraints. They are operator deployed with

2
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Femtocell
Picocell

Femtocell

Femtocell

Picocell
Picocell

Relay

Relay

Relay
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Internet

Mobile Core 
Network

User 
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UE
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Figure 1.1: A multi-tier HetNet composed of macrocells, picocells, femtocells, relays,
and D2D links. Arrows indicate wireless links, whereas the dashed lines denote the
backhaul connections.

large transmit power and rely on dedicated backhaul connection to the core network.

Picocells are low-power operator-deployed cell towers with the same backhaul and

access features as macrocells. They use lower transmission powers than the macrocell

and are utilized mainly for capacity and coverage enhancements in hotspots with

insufficient macrocell penetration. Relays are usually operator-deployed access points

that aim at enhancing signal level at cell edge user equipments (UEs) whose channel

gains with the macrocell experience deep fading and who have poor coverage areas in

the existing networks. They have similar transmit power as picocells. Femtocells, also

known as home BSs or home evolved node Bs (eNBs), are low-cost low-power user

deployed access points, offloading data traffic using consumers broadband connection

(digital subscriber line (DSL), cable, or fiber) as a backhaul, and serving a dozen active

users, mostly in homes or enterprises. They have much lower transmit powers. Finally,

D2D are links that enable UEs that are in close proximity to directly communicate
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by reusing the cellular resources rather than using the uplink and downlink resources

in the cellular mode when communicating through the BS.

1.1.2 Macrocell Underlaid with Small Cells

Of all the additional tiers deployed, I will focus in this report on the small cells tier

as shown in Fig. 1.2. Small cells are low-cost low-power BSs, which have similar

functionalities as macrocell BSs, but with much smaller form factor. They are mainly

deployed to provide localized coverage and capacity at households or in hot-spot

areas such as city centres and transport hubs. Small cell BSs also use the same

interfaces as macrocell BSs, and thus can be easily integrated, coexist and cooperate

with the existing macro-cellular networks. However, in contrast to existing macrocell

BSs, which often can only be deployed within a few hundred meters from their ideal

location due to site acquisition issues, small cell BSs can be placed much closer to

their ideal positions given their reduced size. As a result, they can be deployed in

strategic locations to leverage current infrastructure, while taking UE densities, traffic

demands and radio propagation conditions into account. Small cells have two options

for deployment:

• Outdoors on street objects (e.g., lamp posts, bus shelters and buildings sides)

to provide service to the surrounding streets and the lower floors of buildings.

• Indoors (will be referred to as home small cells or femtocells [3]) in public spaces

and highly demanding areas as well as in the middle floors of high buildings to

provide service to its middle and high floors and those of neighboring buildings.

Remark 1.1.1. There are other technologies, like WiFi, that are capable of provid-

ing indoor wireless coverage. However, it is foreseen that WiFi and small cells will
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complement each other, rather compete with each other. For example, WiFi systems

are known to access the unlicensed spectrum. Moreover, a large number of WiFi users

transmit simultaneously on the same unlicensed band, which yields dramatically poor

throughputs. In such situations, it is usually beneficial to make use of an efficiently-

managed small cell network, operating over the licensed spectrum, to improve the

performance. On the other hand, in situations where small cells are hindered by

cross-tier and co-tier interferences, some traffic can be offloaded to the WiFi network

to help relieve congestion on small cell networks [4].

Macrocell

Small Cell

UE

Figure 1.2: Network topology under study in this thesis.
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1.1.3 Challenges in the Deployment of Small Cells

Small cells can have a very high dynamic nature. Since home small cells are randomly

deployed by customers in an unplanned manner, they can be shut down at any mo-

ment. They can be removed from one place and installed in another. Hence, it is a

challenging problem for operators to dynamically manage radio resources allocated to

small cells. Even for outdoor operator deployed small cells, equipping small cells with

self organizing capabilities is beneficial in order to make sure they are aware of the

surrounding environment. Hence, distributed optimization techniques for interference

mitigation are crucial. In addition, the deployment of small cells is expected to face

numerous challenges. These challenges will be of more importance when the deploy-

ments of small cells become denser in urban environments [3]. The major challenges

in the deployment of small cells include the following:

• Access Modes

Small cells can offer services to a small number of UEs. Hence, it is important to

determine which UE is granted access to the small cell. In this context, three access

modes are defined for small cells: closed access, open access and hybrid access. In

closed access mode, only a set of registered UEs are allowed access to the small cell.

On the other hand, in the open access mode, every UE can access the small cell and

benefit from its services. It is foreseen that, customers would favor the closed access

mode for their deployed small cells. The reason is quite simple as it is the customer

who purchased the small cell and it is the one who would pay for the backhaul and

electricity. Hence, a customer would not want its small cell resources to be shared

with others. Open access mode, on other hand, is more favored by wireless operators,

specially in public areas like airports, shopping malls and universities to provide good

coverage to the users in that area. An access mode that acts as a compromise between
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the two access schemes is the hybrid access mode. In it, additional UEs are granted

access to the small cell beside its set of registered UEs, so long as the quality-of-service

(QoS) of the registered UEs can be maintained. Therefore, the appropriate access

mode should be carefully selected after a thorough analysis.

• Management and Operation

Small cells can be user deployed, thus, can be turned on and off at any time. Hence

small cells deployment is completely dynamic and random. Moreover, the number

and positions of small cells can continuously vary within a macrocell. This makes the

classical centralized solutions for network management and operation impractical.

Hence, small cells need to be intelligent enough to autonomously integrate into a

radio access network. In other words, distributed solutions for small cells operation

with some coordination and message passing with a central entity are more viable.

Deploying small cells with distributed solutions for management is deemed beneficial

in terms of achieving reduction in the operational expenditure (OPEX) by removing

any human intervention in the operational tasks.

• Interference Management

This is one of the most important challenges for dense deployment of small cells. In

order to use frequency spectrum as efficiently as possible, mobile operators prefer co-

channel deployment of small cells to sufficiently increase the overall capacity, but this

causes the problem of interference. As many small cells and macrocells are accessing

the same spectrum simultaneously in a universal frequency re-use fashion, this can

deteriorate each others’ performance severely.

In HetNets with small cells deployments, two types of interference can be identi-

fied: co-tier interference and cross-tier interference. Co-tier interference refers to the
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interference caused by network elements belonging to the same tier. In a network

with small cells deployed, it refers to the interference at a small cell due to trans-

missions from other small cells. Cross-tier interference, on the other hand, is caused

by network elements belonging to different tier. In this case, it will be interference

caused to a small cell by transmissions from a macrocell and vice versa. Most of

the existing small cell deployments are configured to transmit on a dedicated carrier

different from that of the macrocells. While this avoids cross-tier interference, it also

limits the available radio spectrum that each cell can access, and is less efficient than

cochannel deployments, in which small cells and macrocells share the same frequency

bands. However, while cochannel operation provides better frequency utilisation, the

additional cross-tier interference can result in coverage and handover issues for mo-

bile UEs. Hence, interference mitigation techniques should be devised in order to

efficiently manage the outlined interference types. Different interference mitigation

techniques employed in this thesis are outlined as follows:

1. Power and Sub-channel allocation

In a single cell OFDMA system, power and sub-channel allocation refer to the

allocation of sub-channels to different UEs and simultaneously determining the

power level on each allocated sub-channel according to the channel conditions.

Since, no two UEs are allocated the same sub-channel, interference is totally

eliminated in a single cell system. In a multi-cell system, however, interference

exists as sub-channels are re-used in the different cells. Globally performing

power and sub-channels allocation in a multi-cell system is a challenging prob-

lem. In this thesis, clustering is used as a compromise between the level of

interference and the network performance. In clustering, small cells can be

grouped into cooperative groups. Within each group, interference can be mini-
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mized through proper sub-channel allocation. On the other hand, out of cluster

interference towards other clusters, as well as other network tiers, can be mini-

mized by adapting the transmit power.

2. Coordinated Multipoint Transmission (CoMP)

When small cells are equipped with multiple antennas, the availability of ad-

ditional spatial dimensions allows the possibility of coordinating beamforming

vectors across the small cells, further improving the overall performance. In

other words, instead of considering transmission from other small cells as a

source of interference, it is taken into account as an extra means to enhance

the overall system performance. This is referred to as coordinated multipoint

transmission (CoMP) [5]. The underlying concept of CoMP is quite simple:

the coordinated small cells no longer adjust their parameters independently of

each other, but instead coordinate the precoding or decoding processes, rely-

ing on the availability of channel state information (CSI) and the amount of

information signaling over the backhaul links among the small cells.

According to the extent of coordination among the cells, different forms of

CoMP transmission schemes exist such as: dynamic selection, dynamic blank-

ing, joint transmission, and coordinated scheduling/beamforming [6]. Those

different forms differ in the type of information that is required to be shared

between the different small cells, whether it is the UE data or the CSI data.

In my work, I employ the joint transmission (JT) or network multiple-input

multiple-output (MIMO) CoMP scheme. In it, very tight coordination among

the small cells is assumed to perform JT. User data is exchanged among the

coordinated small cells such that the multiple cells are simultaneously trans-

mitting/receiving data signals to/from the UEs within the coordinated area of
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multiple cells.

• Backhauling

The term backhaul network refers to the intermediate network that includes the

links between the radio access network and the core network. In order to reap the

benefits resulting from rolling out a large number of small cells and allow anytime,

anywhere wireless broadband connectivity through wireless technologies, operators

must still face the challenge of backhauling the traffic from the small cells to the core

network in a cost effective manner. Moreover, since small cells are deployed in larger

numbers and should incur a much lower cost than macrocells, the cost per small cell

backhaul connection has to be significantly lower than that per macrocell backhaul

connection. There are various solutions for implementing the small cells backhaul

network that are either wired or wireless [7]. Wired solutions for small cells back-

haul connections include fibre and Digital subscriber line (DSL). Wireless backhaul

solutions, on the other hand, include sub-6 GHz point to multi-point (PtMP), mi-

crowave PtMP, microwave point to point (PtP), and millimetre wave PtP. Since each

small cell in a dense urban scenario will meet different environmental conditions, the

appropriate small cell backhaul solution in such cases will be comprised of a mix of

the available backhaul options. In addition, the major criteria in the assessment of

the viability of a certain backhaul solution include cost, the required capacity, line of

sight (LOS) availability, network topology, and carrier frequency.

• Mobility Management and Handover

Handovers are essential in order to provide a seamless uniform service when users

move in or out of the cell coverage. However, indoor small cells are mainly intended for

providing indoor coverage for users and, apparently, no specific mobility management
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is needed. However, with dense small cell deployment, there would be an urgent need

for mobility management and handover techniques. This is a key challenge, since a

small cell can have a large number of neighbours and these neighbours are created on

a dynamic ad hoc basis, making it difficult to constantly keep track of neighbouring

small cells. The communication with large number of neighbouring small cells for

handover would also be difficult due to limited radio resources. In addition, handover

in small cells is highly dependent upon the employed access mode. The number of

handovers is very large in the case of open access, while it is significantly lower in

closed and hybrid access modes. Hence, efficient mobility management techniques

are required that take into consideration the access mode employed by the small cell,

together with its method of connection to the mobile core network.

1.2 Resource Allocation in Macrocell Small Cell Networks

Resource allocation in wireless networks is used to assign the available resources in an

efficient way to satisfy certain requirements subject to physical and regulatory con-

straints. To accomplish this, RA algorithms are proposed to exploit the variations

in wireless channels by adaptively distributing scarce communication resources to ei-

ther maximize or minimize some network performance metrics. Particularly, in an

OFDMA environment with small cells underlaying an existing macrocell, the available

resources are usually, power and sub-channels. Requirements are QoS constraints like

minimum data rates and maximum delay tolerances and constraints are maximum

transmit powers for the macrocell and the small cells and protection constraints like

maximum tolerable interference levels. It is evident that the design of efficient RA

mechanisms (either centralized or decentralized) is a key challenge in multi-tier Het-

Nets. In the subsequent chapters of this thesis, as shown in Fig. 1.3, I investigate
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different issues related to RA in macrocell small cell networks (the network topology

shown in Fig. 1.2).

RA in macrocell 
small cell 
networks

Clustering of 
small cells

The impact of RA 
decisions in one 
tier on the other 

tier

C-RAN as a practical 
implementation of 

Network-MIMO and CoMP 
transmission concepts

Chapter 2
Chapters 3 

& 4

Chapter 4

Figure 1.3: Resource allocation issues in macrocell small cell networks.

First of all, according to Section 1.1.3, co-tier interference among small cells is a

critical issue. Efficient RA schemes are required to handle co-tier interference prop-

erly. Centralized solutions for RA can reach the optimal solution, but they require

global information. Distributed solutions, on the other hand, are more computation-

ally efficient, but may not give good quality solutions as the centralized ones. Hence, a

solution that gives a compromise between the solution quality and the computational

efforts is required. In Chapter 2, I propose a semi-distributed (hierarchical) interfer-

ence management scheme based on joint clustering and resource allocation for small

cells. The problem is formulated as a mixed integer non-linear program (MINLP).
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The solution is obtained by dividing the problem into two sub-problems, where the

related tasks are shared between the femto gateway (FGW) and small cells. The

FGW is responsible for clustering, where correlation clustering is used as a method

for small cells grouping. In this context, a low complexity approach for solving the

clustering problem is used based on semi-definite programming (SDP). In addition,

an algorithm is proposed to reduce the search range for the best cluster configuration.

For a given cluster configuration, within each cluster, one small cell is elected as a

cluster head (CH) that is responsible for resource allocation among the small cells in

that cluster. The CH performs sub-channel and power allocation in two steps iter-

atively, where a low-complexity heuristic is proposed for the sub-channel allocation

phase.

Second, cross-tier interference was shown to be as important as the co-tier one.

Hence, RA results in one network tier has an impact on the performance of UEs

belonging to other network tiers. This motivates us to ask the following fundamental

question. If one network tier can satisfy the QoS requirement of its UEs using different

RA schemes, is there one scheme of them that is favorable from the point of view of the

other network tiers ?. In this context, in Chapter 3, I present a joint sub-channel and

power allocation framework for downlink transmission in an OFDMA-based cellular

network composed of a macrocell underlaid by small cells. In this framework, the

RA problems for both the macrocell and small cells are formulated as optimization

problems. For the macrocell, I formulate an RA problem that is aware of the existence

of the small cell tier. In this problem, the macrocell performs RA to satisfy the data

rate requirements of macro user equipments (MUEs) while maximizing the tolerable

interference from the small cell tier on its allocated sub-channels. Although the RA

problem for the macrocell is shown to be a MINLP, I prove that the macrocell can
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solve another alternate optimization problem that will yield the optimal solution with

reduced complexity. For the small cells, following the same idea of tier-awareness, I

formulate an optimization problem that accounts for both RA and admission control

(AC) and aims at maximizing the number of admitted users while simultaneously

minimizing the consumed bandwidth. Similar to the macrocell optimization problem,

the small cell problem is shown to be an MINLP. I obtain a sub-optimal solution to

the MINLP problem relying on convex relaxation. In addition, I employ the dual

decomposition technique to have a distributed solution for the small cell tier.

Finally, Cloud Radio Access Network (C-RAN) has emerged as a novel mobile

network architecture which can address a number of challenges the operators face

while trying to support growing end users’ needs. The main idea behind C-RAN is to

pool the Baseband Units (BBUs) from multiple base stations into centralized BBU

pool for statistical multiplexing gain, while shifting the burden to the high-speed

wireline transmission of In-phase and Quadrature (IQ) data. Thus, small cells can

be deployed in a C-RAN architecture and reap the claimed benefits that C-RAN can

offer. However, problems remain due to the limited bandwidth of the fronthaul links

connecting the small cells to the BBU pool. Moreover, cross-tier interference between

the macrocell and the small cells must still be handled properly. In this context, in

Chapter 4, I present a joint RA and AC framework for an OFDMA-based downlink

cellular network composed of a macrocell underlaid by a C-RAN of small cells. In this

framework, the RA problems for both the macrocell and small cells are formulated as

optimization problems. In particular, the macrocell, being aware of the existence of

the small cells, maximizes the sum of the interference levels it can tolerate subject to

the macrocell power budget and the QoS constraints of MUEs. On the other hand, the

small cells minimize the total downlink transmit power subject to their power budget,
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QoS requirements of small cell UEs (SUEs), interference thresholds for MUEs, and

fronthaul constraints. Moreover, AC is considered in the resource allocation problem

for the small cells to account for the case where it is not possible to support all SUEs.

Besides, to allow for the existence of other network tiers, small cells have a constraint

on the number of sub-channels that can be allocated. Both optimization problems

are shown to be MINLPs for which, lower complexity algorithms are proposed that

are based on the framework of successive convex approximation (SCA).

1.3 Contributions

The contributions of our studies are three folded and can be summarized as follows:

• Clustering and Resource Allocation for Dense Femtocells in a Two-Tier Cellular

OFDMA Network

1. I propose a framework for clustering, sub-channel and power allocation in

a two-tier macrocell small cell network. These processes are performed in a

hierarchical fashion as follows. The FGW is responsible for the clustering

sub-problem whereas, within each cluster, one small cell elected as a CH

is responsible for sub-channel and power allocation.

2. I formulate the clustering sub-problem as a correlation clustering problem

which is solved by using an SDP-based algorithm, to avoid the exponential

complexity associated with obtaining the optimal cluster by exhaustive

search. In addition, I analyze the complexity of solving this correlation

clustering problem.

3. In the correlation clustering formulation, there is a penalty term. By

going through the predefined range for the penalty term, different cluster
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configurations can be obtained. Hence, to reduce the complexity further,

I propose another algorithm that reduces the search range of the penalty

term.

4. After the FAPs are organized into disjoint clusters, each CH performs sub-

channel and power allocation with interference constraints to neighboring

FUEs and MUEs as well as minimum rate requirements. For this, I propose

a low-complexity scheme for sub-channel allocation.

• Tier-Aware Resource Allocation in OFDMA Macrocell-Small Cell Networks

1. I develop a complete framework for tier-aware resource allocation in an

OFDMA-based two-tier macrocell-small cell network with new objectives,

which are different from the traditional sum-power or sum-rate objectives.

2. For the macrocell tier, I formulate a resource allocation problem that is

aware of the existence of the small cell tier and show that it is an MINLP.

3. I prove that the macrocell can solve another alternate optimization prob-

lem that yields the optimal solution for the MINLP with polynomial time

complexity.

4. I compare the proposed method for the macrocell RA problem to the tra-

ditional “minimize the total sum-power” problem and show that the pro-

posed method outperforms the traditional one in terms of the average

number of admitted SUEs.

5. For the small cell tier, I formulate a joint resource allocation and admission

control problem that aims at maximizing the number of admitted SUEs

and minimizing their bandwidth consumption to accommodate additional

tiers, and show that it is an MINLP.
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6. I offer an upper bound solution to the MINLP through convex relaxation

and propose a solution to the convex relaxation that can be implemented

in a distributed fashion using dual decomposition.

• Resource Allocation for an OFDMA Cloud-RAN of Small Cells Underlaying a

Macrocell

1. I develop a complete framework for downlink radio resource allocation in

an OFDMA-based two-tier cellular network where a macrocell is underlaid

with a C-RAN of small cells.

2. For the macrocell, I formulate a resource allocation problem that is aware

of the existence of the small cell tier. Specifically, the macrocell aims at

maximizing the sum of tolerable interference levels for the MUEs subject

to the macrocell power budget constraint and the QoS requirements of the

MUEs. In addition, I relax the simplifying assumptions made in [8].

3. I show that the macrocell RA problem is an MINLP. To gain further in-

sights into the behavior of the macrocell RA problem with the proposed

objective function, I investigate the single MUE macrocell problem and

show how to obtain its optimal solution, with polynomial time complexity,

despite its non-convexity.

4. Motivated by the single MUE macrocell problem, I propose a low com-

plexity solution for the multi-MUE macrocell RA problem that relies on

the framework of SCA.

5. In the C-RAN tier, I formulate the RA problem whose objective is to

minimize the total downlink transmit power subject to QoS constraints

for SUEs, MUEs’ interference thresholds, small cells power budget, and
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fronthaul capacity constraints as an optimization problem.

6. I show that the C-RAN RA problem is an MINLP. Hence, I offer a low

complexity solution based upon the SCA approach. In the SCA approach,

each approximating convex problem can be cast as a second order cone

program (SOCP) [9]. Moreover, I incorporate AC, jointly with RA, to

deal with infeasibility issues in the C-RAN RA problem in case it is not

possible to support all SUEs with their QoS requirements.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, I study the idea of

clustering small cells into coordinated groups and its impact on the small cell tier

performance. In Chapter 3, I investigate the impact of different macrocell RA policies

on the small cell tier and propose a distributed solution for small cell RA problem. In

Chapter 4, I investigate the impact of different macrocell RA policies on the small cell

tier which is deployed in a C-RAN architecture and solve a more general macrocell RA

problem than the one in Chapter 3. Finally, in Chapter 5, I summarize the work done,

highlight the main contributions, and discuss possible future research directions.
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Chapter 2

Clustering and Resource Allocation

for Dense Femtocells in a Two-Tier

Cellular OFDMA Network

2.1 Introduction

In this Chapter, I formulate the problem of joint clustering, sub-channel and power

allocation as an optimization problem. This problem, however, is NP-hard and cannot

be solved by a central entity such as a femto gateway (FGW) in a practical system.

Therefore, it is divided into two sub-problems, namely, the clustering sub-problem and

the sub-channel and power allocation sub-problem. The tasks are divided between

the FGW and the femtoce access point (FAPs) in a hierarchical semi-distributed

fashion. The FGW will be responsible for the clustering sub-problem. After the

FAPs are divided into clusters (i.e., disjoint groups), one FAP, in each cluster, is

elected as a cluster head (CH) and performs sub-channel and power allocation in its

cluster. Now, the clustering subproblem can be solved through exhaustive search by
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trying all possible cluster configurations, given the layout of femtocells and channel

gains. However, the number of possible cluster configurations grows exponentially

with the number of femtocells. Hence, another approach is proposed for forming

clusters using the concepts of correlation clustering and penalty term. Since the

correlation clustering problem is an NP-hard problem, it is solved by formulating the

problem as a semi-definite program (SDP). The SDP is considered as a relaxation

to an integer linear program (ILP), where an integer solution to the relaxed SDP

problem is recovered back through randomized rounding. Now, using the penalty

term, which has a predefined range, different cluster configurations are obtained. To

further reduce the computational burden on the FGW in searching through the range

of the penalty term, an algorithm is proposed which eliminates the requirement of

going through the entire range of the penalty term.

After the FAPs are organized into disjoint clusters, each CH performs sub-channel

and power allocation within its cluster. Joint sub-channel and power allocation is

performed in two phases. In the first phase, for a given power allocation, sub-channel

allocation is performed. Since the sub-channel allocation problem turns out to be

an ILP, a sub-optimal scheme for sub-channel allocation is proposed. Given the

sub-channel allocation, the power allocation is performed. The entire process of

sub-channel and power allocation is performed iteratively until convergence. The

sub-channel and power allocation is performed for each possible cluster configuration

and the cluster configuration yielding the highest data rate is the optimal one. It is

worth mentioning that the problem of optimal clustering and the tradeoff between

co-tier interference and the share in the available spectrum, which depends on the

cluster size, as analyzed in this Chapter, have not been investigated in the existing

literature.
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The rest of this Chapter is organized as follows. Section 2.3 describes the sys-

tem model and assumptions. Section 2.4 outlines the joint clustering, sub-channel

and power allocation problem which turns out to be an MINLP. In Section 2.5, the

clustering sub-problem is discussed, together with the proposed low-complexity algo-

rithms for obtaining the best cluster configuration. Then, Section 2.6 discusses the

sub-channel and power allocation sub-problems, where, sub-channel and power allo-

cation are done iteratively in two steps and a low-complexity sub-channel allocation

heuristic is proposed. In Section 2.7, numerical results for different scenarios and

topologies demonstrate the performance gains due to the proposed schemes. Finally,

Section 2.8 concludes the Chapter.

2.2 Related Work

Several works in the literature have considered the problem of resource allocation

in two-tier cellular wireless networks. In [10], a downlink power control method

was proposed to mitigate interference in a macrocell-femtocell network. The QoS for

macro UEs (MUEs) was guaranteed by limiting interference from femtocells to nearby

MUEs. A centralized and a distributed approach for power control were proposed and

compared. However, no frequency allocation was considered. In [11], a joint power

control and resource allocation scheme for a co-channel femtocell-macrocell network

was proposed with QoS guarantees for both MUE and femto UE (FUE). Both cen-

tralized and distributed approaches were proposed. In [12], a power loading and

resource allocation scheme was proposed for a femtocell network, where interference

constraints were considered to protect the MUEs. An iterative water filling approach

was considered to satisfy the above target. In [13], a joint power and sub-channel

allocation scheme was proposed to maximize system capacity for dense indoor mobile
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communication systems. The authors assumed femtocells to be densely deployed and

proposed a centralized resource allocation framework. The authors proved that the

optimal power allocation in such an environment has a special form known as binary

power allocation, where for every sub-channel, only a single femtocell loads power.

In [14], the authors proposed a scheme for sub-channel and power allocation in a

femtocell-macrocell network with spectrum sharing. However, the authors neglected

co-tier interference and considered cross-tier interference only. Another scheme for

interference-aware resource allocation in a co-channel deployment of a two-tier femto-

cell network was studied in [15], where the sub-channel and power allocation problem

was modeled as a non-cooperative game. The MUEs were protected by pricing trans-

missions of femto users. However, no protection is done for co-channel femto users.

In addition, unlimited amount of information is allowed to be transmitted between

MBS and FAPs. The above works did not consider the idea of clustering by placing

the FAPs into disjoint groups.

There have been works in the literature which have considered the idea of clus-

tering femtocells into coordinated groups. In [16], the authors proposed a dynamic

clustering-based sub-band allocation scheme in a dense femtocell environment. How-

ever, the authors only considered frequency allocation. In [17], the authors proposed

a cooperative scheme for femtocell network, where cooperation was modeled as a

coalitional game. In their work femtocells cooperated by forming coalitions. In a

coalition, interference was eliminated among femtocells through interference align-

ment. However, split spectrum operation was assumed, where femtocells had their

dedicated spectrum which reduced spectrum efficiency. In [18], the authors proposed

a scheme for macro and femtocell interference mitigation, where cross-tier interference

was minimized through cognitive and sensing capabilities by employing both overlay
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and underlay modes of operation. To mitigate co-tier interference, femtocells were

grouped into clusters, where a cluster was a group of co-channel FAPs that used the

same sub-channel. However, there was no QoS guarantee for the FAPs. In addition,

the number of clusters was assumed to be known and fixed a priori (i.e., static) and

hence the flexibility of a dynamic clustering process was not exploited.

The authors in [19] proposed a joint power control and resource allocation algo-

rithm in an OFDMA femtocell network, where femtceolls were grouped into disjoint

clusters. However, the authors only considered orthogonal channel assignment (split

spectrum) between femtocells and macrocells; hence, no cross-tier interference ex-

isted. In [20], the authors proposed a clustering scheme known as Similarity-Based

clustering for cognitive FAPs in a shared spectrum environment. After FAPs were or-

ganized into disjoint clusters, cluster heads performed resource allocation. However,

clustering and resource allocation were performed separately. In addition, no sense

of optimality was considered in [17–20] when dealing with the optimal cluster size.

The authors in [21] and [22] studied the problem of sub-channel and power allocation

in a two-tier clustered femtocell network with universal frequency reuse. However,

only equal-sized clusters were assumed. Another femtocell clustering scheme was pro-

posed in [23], where the number of clusters was known a priori and no sub-channel

allocation was considered. In [24], another work for sub-channel and power allocation

with clustering of femtocells was considered. In their network model, both the co-tier

and cross-tier interferences were considered. However, the entire frequency band was

divided into three parts: one part dedicated for femtocells, another was dedicated for

macrocells, and the last part was available for both femtocells and macrocells. This

approach generally is not suitable in a highly dynamic environment and leads to low

spectral efficiency.
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Different from the clustering schemes which assume a split spectrum operation

with dedicated spectrum for femtocells, I assume a more general universal frequency

reuse approach which is known to be more flexible and offers a higher spectral effi-

ciency. Note also that, although clustering of femtocells has been investigated in the

literature, the trade-off between the perceived interference and the available band-

width due to clustering and the problem of optimizing the cluster size have not been

studied.

2.3 System Model and Assumptions

2.3.1 System Model

Fig. 4.1 shows the topology under consideration in this Chapter, where femtocells

are deployed in a dense manner to cover an indoor area. In such an environment,

channels between femto user equipments (FUEs) and their FAPs generally experience

good propagation conditions. However, signals received from outdoor macrocells are

highly attenuated. All user equipments, i.e., the FUEs and macro user equipments

(MUEs) exist indoor, however, the MUEs are served by their outdoor MBSs. We

denote by S the set of femtocells, where S = |S|, and by m the macrocell. Let N

denote the set of indices of the sub-channels in the system and N = |N |.

We assume that the channel states of the sub-carriers are the same within a sub-

channel n of bandwidth ∆f . We denote a user belonging to femtocell s by ks and

a user belonging to the macrocell B by kB. We define gnki,j as the channel gain be-

tween user ki and base station j on sub-channel n. Traditionally, resource allocation

is performed based on the observed instantaneous channel gains. However, this as-

sumption has been claimed impractical [25]. Also, performing resource allocation
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based on instantaneous channel gains (which consider small-scale fading) will lead to

extensive signaling and huge amount of information transfer in the femtocell back-

haul. In addition, in a practical system, clustering cannot be performed at the time

scale of small-scale fading. Therefore, in our model, similar to [20], average channel

gains1 (which consider path-loss and log-normal shadowing) are used for clustering

and resource allocation.

FGW 
FAP 

FAP 

FAP 

FAP 

MBS 

Figure 2.1: Network topology under consideration.

Since the distance between an FUE ki and its serving FAP i is very small, channel

gain between a femtocell j and an FUE ki, served by another femtocell i, can be

approximated by the channel gain between the two femtocells i, j, i.e., gnki,j ≈ gni,j [18].

Following this assumption, we can deduce that channel gains are symmetric, i.e., for

two FAPs i, j and two FUEs ki, kj, we have gnkj ,i = gnki,j since the channel gain between

the two FAPs i and j is the same as the channel gain between the two FAPs j and

i. The unit power SINR of an FUE ks served by femtocell s on sub-channel n can be

1Although for a certain link, different sub-channels have the same average channel gains, they
experience different interference levels. Consequently, sub-channel allocation in a two-tier OFDMA
network under co-channel deployment is a non-trivial problem.

25



Chapter 2. Clustering and Resource Allocation for Dense Femtocells in a Two-Tier
Cellular OFDMA Network

defined as follows:

γnks,s =
gnks,s∑

j 6=s,j∈S P
n
kj ,j
gnks,j + P n

kB ,B
gnks,m +No

(2.1)

where P n
ki,i

is the power assigned to the link between user ki and base station i on

sub-channel n and No is the noise power. We assume closed subscriber group (CSG)

femtocells, where access to each femtocell is restricted to registered UEs only, and

both the macrocells and femtocells share the same frequency spectrum.

Femtocell networks use cell-specific reference signals and unique cell-ids. All FUEs

are capable of receiving the cell-specific reference signals and identifying the interfer-

ence source. In addition, femtocells are connected to the mobile core network, using

the user’s broadband connection (Digital Subscriber Line DSL or cable television),

via an intermediate entity called the Femto Gateway (FGW) or Home eNB Gateway

(HeNB GW) [26]. The interface between a femtocell and an FGW is referred to as

the S1 interface. The FGW provides concentration and aggregation functionalities

to a group of femtocells. Hence, an FGW appears to the mobile core network as

an eNB and to a femtocell as a mobile core network element. The FGW can ob-

tain all necessary information about channel gains between femtocells through the S1

interface [24], based on which, the FGW can propose different clustering configura-

tions. However, due to the limitations and the unpredicted delay on the S1 interface

(being based on the user’s broadband connection), the FGW is not able to obtain

instantaneous channel gain information from the femtocells. Communication between

femtocells is possible, thanks to the X2 interface [26]. However, information such as

the average channel gains are only exchanged. Information about user scheduling and

sub-channel allocation are not exchanged between neighboring femtocells.
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2.4 Joint Clustering, Sub-channel and Power Allocation for

Femtocell Network

The femtocell network is divided into disjoint clusters. The idea behind clustering

is to divide the joint sub-channel and power allocation problem into smaller sub-

problems. We define C as the set of clusters of femtocells. A cluster cl ∈ C is

the lth set of femtocells such that cl ⊆ S, ∀l ∈ {1, 2, ..., |C|},
⋃|C|
l=1 cl = S, and⋂|C|

l=1 cl = ∅. Note that the entire set of sub-channels N is available to each cluster

and within a cluster, no two femtocells transmit simultaneously on the same sub-

channel. Therefore, there is no co-tier interference within a cluster. For very small

cluster sizes, with one extreme being no clustering, the share of each femtocell in

the available spectrum is high; however, the co-tier interference could be significant

in this case. On the other hand, for large cluster sizes, co-tier interference among

neighboring femotcells is minimized. However, the share of sub-channels for each

femtocell would be small. This suggests that cluster size is an important parameter

to give a compromise between the share in the available spectrum and the co-tier

interference.

We define the following optimization problem for joint clustering, sub-channel and
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power allocation:

max
Γn
ks,s

,Pn
ks,s

|C|∑
l=1

∑
s∈cl

N∑
n=1

Γnks,s∆f log2

(
1 + P n

ks,sγ
n
ks,s

)
(2.2)

subject to

C1 :
N∑
n=1

Γnks,s∆f log2

(
1 + P n

ks,sγ
n
ks,s

)
≥ Rs,∀s

C2 :
N∑
n=1

Γnks,sP
n
ks,s ≤ Ps,max,∀s

C3 : Γnks,sP
n
ks,sg

n
kB ,s
≤ ξnkB , ∀n, s

C4 : Γnks,sP
n
ks,sg

n
kj ,s
≤ ξnkj , ∀n, s ∈ cl, j /∈ cl

C5 :
∑
s∈cl

Γnks,s = 1,∀n

C6 :

|C|⋃
l=1

cl = S, C7 :

|C|⋂
l=1

cl = ∅

C8 : |cl| ≤ υ,∀l ∈ {1, 2, ..., |C|}

C9 : P n
ks,s ≥ 0, ∀n, s

C10 : Γnks,s ∈ {0, 1} ,∀n, s

where Γnks,s ∈ {0, 1} is an indicator that takes the value of 1 if sub-channel n is

allocated to the link between user ks and femtocell s and 0 otherwise, P n
ks,s
≥ 0 is the

power assigned to the link between them.

In the optimization problem (2.2), the objective it to maximize the sum-rate of the

femtocell clusters subject to a data rate requirement Rs and total power budget Ps,max

for each femtocell s as indicated in C1 and C2, respectively. We have interference

constraints for neighboring MUEs kB served by macrocell B and FUEs kj served by

femtocells j in a neighboring cluster as given in C3 and C4, respectively. C5 is the

28



Chapter 2. Clustering and Resource Allocation for Dense Femtocells in a Two-Tier
Cellular OFDMA Network

exclusion constraint indicating that, in a cluster cl, sub-channel n can be used in one

femtocell only. Constraints C6 and C7 indicate that the whole set of clusters C form

the set of femtocells S and that the set of clusters are disjoint. Finally, C8 limits the

maximum cluster size to υ. In our work, the maximum cluster size will be limited by

the number of available sub-channels, i.e., υ = N .

This problem is an MINLP whose solution is intractable. It includes both contin-

uous and discrete variables. In addition, solving problem (2.2) requires a centralized

mode of operation which is too complex for a practical solution. Hence, to solve

this problem, we propose to divide it into two sub-problems, i.e., the clustering sub-

problem and the sub-channel and power allocation sub-problem. First, the FGW

gathers information about average channel gains among all the FAPs. Based on

the range of the penalty term (to be discussed in Section 2.5.2), the FGW performs

the clustering phase and obtains a group of candidate cluster configurations. The

FGW sends this clustering information to the FAPs through the S1 interface (wired

backhaul). Within each cluster, one femtocell takes the role of a CH2 and performs

sub-channel and power allocation for each candidate cluster configuration3. Then

it forwards the average achievable data rate to the FGW. The cluster configuration

yielding the highest average data rate for all FAPs is the best cluster configuration.

It is worth mentioning that the best cluster configuration is channel gain-dependent,

but since it is done based on path-loss and large-scale fading, the obtained cluster con-

figuration remains stable for long intervals of time. Fig. 2.2 summarizes the overall

clustering and resource management operation.

2The election process of the CHs is out of the scope of this Chapter.
3A CH performs sub-channel and power allocation within the corresponding cluster cl. By setting

the maximum cluster size to a small value, the computational burden on the CH can be limited.
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Given long term channel gains 

between all FAPs and penalty 

term range

FGW calculates a candidate 

cluster configuration

FGW sends candidate cluster 

configuration to all FAPs

CHs perform resource allocation 

and send the resulting sum-rates to 

the FGW

End of penalty 

term range ?

Based on highest average data 

rate, FGW decides the optimal 

cluster configuration

Yes

No

Figure 2.2: Overall operation of clustering and resource allocation.

2.5 Clustering Sub-problem

2.5.1 Optimal Clustering

Optimal clustering can be obtained by an exhaustive search. For a given number of

femtocells, all possible clustering configurations for the femtocells are tried. For a

given clustering configuration, sub-channel and power allocation is performed. The

cluster configuration yielding the highest sum-rate is the optimal cluster configuration.

For S FAPs, the number of possible ways to cluster them is given by the Stirling
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Number of the Second Kind [27]:

S∑
i=1

1

i!

i∑
j=0

(−1)i−j
(
i

j

)
jS ≈ O

(
SS
)
. (2.3)

It is clear that the number of possible cluster configurations (Bell Number) grows

exponentially with the number of FAPs. Therefore, searching for the optimal cluster

configuration by exhaustive search is prohibitive.

2.5.2 Correlation Clustering

In the original correlation clustering problem, we are given an undirected graph G =

(V , E), where V is the set of vertices and (i, j) ∈ E is the set of edges between each

two pair of vertices. Each edge (i, j) is given two non-negative weights w+
i,j and w−i,j.

The target is to cluster the vertices into sets of similar vertices, where the degree to

which they are similar is given by w+
i,j and the degree to which they are different is

given by w−i,j. In other words, the target is to find a partition that maximizes the total

w+
i,j weight of edges inside the sets of partitions plus the total w−i,j weight of edges

between the sets of partitions [28]. One benefit of correlation clustering is that it

does not necessitate the specification of the number of clusters. However, correlation

clustering problems are generally NP-hard.

In the context of femtocell networks, two femtocells i, j ∈ S are highly similar,

i.e., have high w+
i,j, if they are severely interfering to each other. Two femtocells

are severely interfering to each other if they have good channel gain gni,j between

each other. So, we can make w+
i,j proportional to the channel gain between the two

femtocells i, j by setting w+
i,j = gni,j. In this way, w+

i,j represents the motive why

two femtocells would be in the same cluster. Two severely interfering femtocells,
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when placed in the same cluster, will have lower co-tier interference. Hence, their

sum-rate will increase. However, as the number of femtocells in a cluster increase,

although femtocells enjoy lower co-tier interference, the share in the available number

of sub-channels for each femtocell decreases, which will cause the sum-rate to decrease.

Hence, to be inline with the objective of the optimization formulation in (2.2) which is

the sum-rate maximization, we need another parameter to indicate why two femtocells

would not favor to be in the same cluster. This term will be w−i,j and will be referred

to as the penalty term. It is referred to as a penalty because, when two femtocells join

the same cluster, they have a benefit of reduced co-tier interference at the penalty

of reduced available bandwidth. In our work, w−i,j will be the same for all femtocells

i, j ∈ S, i.e., w−i,j = w−n . In this way, w−n would be the parameter used to represent

the trade-off between the level of co-tier interference and the available bandwidth to

use. Hence, by varying the penalty term w−n in the range (mini,j w
+
i,j + ∆ ≤ w−n ≤

maxi,j w
+
i,j + ∆), where, ∆ > 0 is a very small number, the FGW can obtain different

cluster configurations.

If w−n = mini,j w
+
i,j + ∆, the resulting configuration will be to put all femtocells

in a single cluster and if w−n = maxi,j w
+
i,j + ∆, the resulting configuration will be to

have each femtocell in a single cluster. Define W+ ∈ SS×S+ , where [W+]i,j = w+
i,j.

We have w−n = w+
i,j + ∆, where 1 ≤ i < j ≤ S. Define w− ∈ R

S2−S
2

+ , where w−
T

=(
w−1 , ..., w

−
n , ..., w

−
S2−S

2

)
. The elements of the vector w− constitute the range of the

penalty term. Hence, by trying all the values in w−, different cluster configurations

are possible.
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Thus we have the following problem to be solved ∀w−n ∈ w−:

max
xi,j

∑
i∈S

∑
j∈S

w+
i,jxi,j + w−n (1− xi,j) (2.4)

subject to

C1 : xi,i = 1,∀i ∈ S

C2 : xi,j = xj,i,∀i, j ∈ S

C3 : xi,j + xj,k − xi,k ≤ 1,∀i, j, k ∈ S : k > i, j 6= i, k

C4 :
∑
j∈S

xi,j ≤ υ,∀i ∈ S

C5 : xi,j ∈ {0, 1} ,∀i, j ∈ S.

In the optimization problem (2.4), C1 indicates that a femtocell is in the same

cluster with itself. C2 is a symmetry condition which specifies that it is the same to

say that i and j are in the same cluster or j and i are in the same cluster. C3 is the

triangular condition which states that if femtocells i, j are in the same cluster and

femtocells j, k are in the same cluster, then i, k must be in the same cluster as well.

C4 is a limit on the maximum cluster size to be υ. Finally, C5 states that xi,j is a

binary decision variable which takes a value of 1 if i, j are in the same cluster and 0,

otherwise. The following two problems arise with this approach:

• The problem (2.4) is an ILP, which is NP-hard. It can be solved optimally using

Brach and Bound (BnB). However, BnB has an exponential complexity, hence

it is not suitable as a practical solution. Therefore, another approach based on

SDP is used to solve the problem.

• Solving problem (2.4) for all w−n ∈ w− requires solving S2−S
2
≈ O (S2) prob-

lems. This represents a heavy computational burden on the FGW. Hence, an
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algorithm is proposed that reduces the computational burden by eliminating

the requirement of going through the entire range of the penalty term.

Sections 2.5.2 and 2.5.2 discuss the approaches that will be followed to address

the above mentioned problems.

SDP-based correlation clustering algorithm

A lower complexity solution to the correlation clustering problem can be obtained by

using SDP. SDP is a generalization of linear programming with an additional semi-

definite constraint. The benefit of the SDP approach is that, though a relaxation to

the original NP-hard problem, it can be solved to within an additive error of ε in time

that is polynomial in the size of the input and log 1
ε
. The SDP formulation for the

correlation clustering problem can be written as follows:

max
xi,j

∑
i∈S

∑
j∈S

w+
i,jxi,j + w−n (1− xi,j) (2.5)

subject to

C1 : xi,i = 1,∀i ∈ S

C2 : xi,j + xj,k − xi,k ≤ 1,∀i, j, k ∈ S : k > i, j 6= i, k

C3 :
∑
j∈S

xi,j ≤ υ,∀i ∈ S

C4 : xi,j ≥ 0,∀i, j ∈ S

C5 : X = (xi,j) � 0.

In (2.5), C4 indicates that the binary variable xi,j is relaxed and C5 is the semi-

definite constraint restricting the matrix X ∈ SS×S+ of the variables xi,j to be Positive

Semi-Definite (PSD). A symmetric matrix X, that is PSD as well, can be written as
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X = VTV = QD
1
2

(
QD

1
2

)T
, where V = [v1,v2, ...,vS] ∈ RS×S such that vi ∈ RS,

Q is a matrix of the eigen vectors of X, and D is a diagonal matrix whose elements

are the eigen values of X. It is worth mentioning that an element [X]i,j = vi.vj. Each

vector vi corresponds to a certain femtocell i ∈ S. To solve (2.5), we use CVX, a

software package for specifying and solving convex programs [29], [30].

After solving the SDP formulation, obtaining X and putting the resulting solution

into vector format X = VTV, we have a relaxed solution that is an upper bound to

the original clustering problem (2.4). This relaxed solution will be rounded to obtain

an integer solution that is feasible to (2.4). One way to accomplish this is through

Randomized Rounding [31]. This can be done by generating a number L of unit norm

random vectors rTi = (ri1, ..., riF ) , ri ∈ RS, i = 1, 2, ..., L, where each component of

ri is drawn from N (0, 1), the normal distribution with mean 0 and variance 1. The

number of vectors L must satisfy that 2L ≥ S. The L random vectors give rise to 2L

clusters c1, c2, ..., c2L . The mapping of femtocells into clusters is then done as follows:

c1 = {i ∈ S : r1.vi ≥ 0, ..., rL−1.vi ≥ 0, rL.vi ≥ 0}

c2 = {i ∈ S : r1.vi ≥ 0, ..., rL−1.vi ≥ 0, rL.vi < 0}

c3 = {i ∈ S : r1.vi ≥ 0, ..., rL−1.vi < 0, rL.vi ≥ 0}

...

c2L = {i ∈ S : r1.vi < 0, ..., rL−1.vi < 0, rL.vi < 0} .

(2.6)

In this way, the FAPs are partitioned into clusters. Denote the objective function

value of (2.4) by ZOPT and denote the objective function value of (2.5), after perform-

ing the Randomized Rounding technique, by ZRR. Given a constant α < 1 that is
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function of the number of vectors L, it has been shown in [28] that ZRR ≥ αZOPT . In

other words, if we solve the formulation in (2.5) and then obtain a feasible solution to

(2.4) by using the Randomized Rounding technique, we obtain an α−approximation

algorithm where, the resulting solution ZRR is within a factor of α of the value of

the optimal solution ZOPT . The chances that the solution ZRR becomes very close to

the optimal solution ZOPT increase as the entire procedure is repeated independently,

according to Algorithm 1, t number of times [32]. As will be shown in the Ap-

pendix, for a suitably selected value of t, the complexity of Algorithm 1 is mainly

contributed by step 3.

Algorithm 1 : SDP-based correlation clustering algorithm

1: Input: W+ and w−n
2: Output: Candidate Cluster Configuration for given w−n
3: Solve SDP problem (2.5) → X
4: Rewrite X = VTV , V = [v1,v2, ...,vS]
5: for i = 1 : t do
6: Generate L random vectors r1, r2, ..., rL such that 2L ≥ S
7: Map femtocells into clusters according to (2.6)
8: Translate the mapping into a solution Xint

9: Calculate objective function value (2.4) using Xint

10: end for
11: Choose a feasible clustering solution that has the highest objective function value

in (2.4) → Candidate Cluster Configuration

To estimate the complexity of Algorithm 1, we need to calculate the complexity

of the following:

• Step 3 involves solving (2.5), which is an SDP. A standard SDP problem can
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be written as [33]:

max
X

Tr (CX) =

p∑
i=1

p∑
j=1

ci,jxi,j (2.7)

subject to

Tr (AiX) Di bi,∀i = 1, ..., r

X � 0

where C,X,Ai ∈ Sp×p+ and bi ∈ R. Also, “ Di ” can represent either “ ≥ ”,

“ = ” or “ ≤ ” for each i. Most of the convex optimization toolboxes

use the interior-point algorithm. Hence, the worst-case complexity of solv-

ing (2.5) is O(max {r, p}4 p1/2 log (1/ε)). By analyzing (2.5), we obtain the

following: X ∈ SS×S+ , hence p = S. We have S equality constraints for C1,(
S
2

)
(S − 2) = S (S − 1) (S − 2) /2! inequality constraints for C2, S inequality

constraints for C3, and S (S + 1) /2 inequality constraints for C4 by exploiting

the symmetry of X. Hence, r = O(S3). The overall complexity of solving (2.5)

then becomes O((S3)
4
S1/2 log (1/ε)). It is worth mentioning that this com-

plexity is pessimistic as it does not take into account the sparsity in the data

matrices Ai which can decrease the complexity significantly and speed up the

solution process [34], [35].

• Step 4 involves an eigen decomposition for the matrix X which has a complexity

O(S3) [36].

• Finally, steps 5-10 have a complexity of O(t).

With an appropriate value for t, the major complexity for this algorithm, therefore,

comes from step 3.
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Algorithm to reduce the range of the penalty term

Solving the correlation clustering problem for each value w−n ∈ w− requires solving

S2−S
2
≈ O (S2) problems. These problems share the same structure and the set of

constraints but differ only in the coefficient values in the objective function. This type

of analysis lies under the topic of parametric and post-optimality analysis in integer

linear problems [37] and [38]. However, solving O (S2) problems poses a computation

burden on the FGW.

When solving those problems, it is observed that for some weights w−L , w
−
H ∈ w−,

the same solution in terms of the integer variables can be obtained. According to

this observation, a heuristic rule, proposed in [39], states that if the same integer

variables are obtained for solving the problem at w−L and w−H , then it can be assumed

that the same integer variables will be optimal for all w−n ∈
[
w−L , w

−
H

]
. Hence, it is not

necessary to solve for all values w−n between w−L and w−H . Based on that heuristic rule,

we propose Algorithm 2. The idea of this algorithm is to have two weights w−L and

w−H each time and to compare the resulting integer variables at the two weights. If

they are the same, then it is not necessary to inspect the weights in between w−L and

w−H . If they have different solutions, then the interval between w−L and w−H is reduced

and so on. In the algorithm, a matrix SolMatrix is maintained to store the solution

corresponding to each weight w−n in order not to solve for the same weight more than

once. We also have the variables SolL and SolH, which are used to store the resulting

solution of (2.5) corresponding to w−L and w−H , respectively. In addition, the variable

HopRatio is an optimization variable that controls the interval length between w−L

and w−H . Its optimal value for the least number of necessary computations is obtained

from the numerical results. The algorithm terminates when all the elements of w− are

38



Chapter 2. Clustering and Resource Allocation for Dense Femtocells in a Two-Tier
Cellular OFDMA Network

inspected. The efficiency of the algorithm is tested by using the following measure:

Reduction in computation (%) =


(
S2−S

2
− counter

)
(
S2−S

2

)
× 100 (2.8)

where counter is a variable that keeps track of how many optimization problems have

been solved. Thus, the larger the computation reduction, the better the algorithm

efficiency.

Algorithm 2 : Penalty term range reduction algorithm
1: Input: W+, w− and HopRatio
2: Output: Candidate Cluster Configuration ∀w−n ∈ w−

3: Initialize: counter = 0
4: IndexL=1, w−L =w−(IndexL), IndexEnd=length(w−)

5: For given w−L , solve SDP Problem (2.5) using Algorithm 1 → SolL → Update SolMatrix
6: Increment counter
7: IndexH =

⌊
(IndexEnd − IndexL)

HopRatio

⌋
+ IndexL

8: while all points in w− are not solved yet do
9: w−H=w−(IndexH )

10: if Current w−H is solved then
11: Get SolH from SolMatrix
12: else
13: For given w−H , solve SDP Problem (2.5) using Algorithm 1 → SolH → Update SolMatrix
14: Increment counter
15: end if
16: if SolH=SolL & IndexL 6= IndexH then
17: Mark all points between IndexL and IndexH as solved
18: IndexL = IndexH
19: IndexH=

⌊
(IndexEnd − IndexH )

HopRatio

⌋
+ IndexH

20: else
21: if IndexH = IndexL + 1 then
22: Find the first unsolved point and quit if no points are found
23: Take the preceding point as IndexL with the corresponding solution as SolL

24: IndexH=
⌊

(IndexEnd − IndexL)
HopRatio

⌋
+IndexL

25: else if IndexH = IndexL then
26: IndexH = IndexL + 1
27: else
28: IndexH=

⌊
(IndexH − IndexL)

HopRatio

⌋
+IndexL

29: end if
30: end if
31: end while
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2.6 Sub-channel and Power Allocation

After obtaining the list of candidate cluster configurations, the FGW sends these con-

figurations one by one to the femtocells through the wired backhaul. The femtocells

are organized into disjoint groups cl. Within each cluster cl, a FAP will be elected as

a CH and will be responsible for sub-channel and power allocation for all FAPs in

the cluster. For each cluster cl, we require to maximize the sum-rate of all femtocells

within the cluster, given that there are interference constraints for FUEs in neigh-

boring clusters as well as MUEs. In addition, we have a data rate requirement for

each femtocell. Thus, the CH within each cluster cl solves the following optimization

problem:

max
Γn
ks,s

,Pn
ks,s

∑
s∈cl

N∑
n=1

Γnks,s∆f log2

(
1 + P n

ks,sγ
n
ks,s

)
(2.9)

subject to

C1 :
N∑
n=1

Γnks,s∆f log2

(
1 + P n

ks,sγ
n
ks,s

)
≥ Rs,∀s

C2 :
N∑
n=1

Γnks,sP
n
ks,s ≤ Ps,max,∀s

C3 : Γnks,sP
n
ks,sg

n
kB ,s
≤ ζnkB ,∀n, s

C4 : Γnks,sP
n
ks,sg

n
kj ,s
≤ ζnkj ,∀n, s ∈ cl, j /∈ cl

C5 :
∑
s∈cl

Γnks,s = 1,∀n.

C3 and C4 are interference constraints for neighboring MUEs kB served by macro-

cell B and FUEs kj served by femtocells j in a neighboring cluster, respectively. The

reference user concept [40] is applied, where the interference constraints are for the

MUEs and FUEs having the strongest channel gain to the target femtocell s. It is
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worth mentioning that those UEs might not be actually co-channel ones. Hence, al-

though this is a pessimistic approach that can lead to a reduction in the achievable

data rates, the actual co-channel UEs are automatically protected. Each FAP keeps

a list of reference users and sends this information to its CH. A FAP i can deter-

mine a reference FUE kj based on the channel gain to its serving FAP j. Since the

distances between a FAP and its FUE is small, the channel gain between a FAP i

and an FUE kj in another FAP j is approximated by the channel gain between the

two FAPs i, j which can easily be determined due to relatively fixed FAP positions.

For the reference MUE, an approach similar to that in [40] can be followed, where

the authors discussed methods to estimate the channel gain between a FAP i and an

MUE kB served by a macrocell B. The interference constraints in C3 and C4 can be

further simplified to a single constraint by picking the one of them having the higher

channel gain to the target femtocell s. In this way, the interference constraints can

be rewritten as

Γnks,sP
n
ks,s ≤ min

(
ζnkB
gnkB ,s

,
ζnkj
gnkj ,s

)
=

ζnk
gnk,s

,∀n, s ∈ cl. (2.10)

A user k now is either a neighboring MUE or an FUE whichever has higher channel

gain to the target femtocell s. Since problem (2.9) is an MINLP, joint sub-channel and

power allocation is computationally intractable. Therefore, we follow the traditional

method of solving the problem in two phases iteratively as follows [40], [41], [42]:

• Phase 1: For a given power allocation, the CH performs sub-channel allocation.

For each femtocell on each sub-channel, P n
ks,s

is initialized as the minimum of

either Ps,max

N
or

ζnk
gnk,s

. The idea is to keep power as uniform as possible and at

the same time not to violate the interference constraints.

41



Chapter 2. Clustering and Resource Allocation for Dense Femtocells in a Two-Tier
Cellular OFDMA Network

• Phase 2: Given the resulting sub-channel allocation, the CH performs power

allocation.

2.6.1 Sub-channel Allocation

Sub-channel allocation by branch and bound

For a given power allocation, we have an ILP that can be optimally solved by using

the BnB technique. BnB is guaranteed to find the optimal sub-channel allocation but

its complexity in the worst-case is as high as that of exhaustive search.

Sub-channel allocation by heuristic

In this section, we propose a low-complexity heuristic scheme for sub-channel allo-

cation. If we reformulate the objective function and data rate constraint in (2.9) to

∆f log2

(
1 + Γnks,sP

n
ks,s
γnks,s

)
, we have the expressions that are equivalent to the orig-

inal ones for binary values of Γnks,s [43]. If we further relax Γnks,s to take any value

[0, 1], we have a non-linear program that is convex in Γnks,s [44].

By applying the KKT conditions, we have the following formula for sub-channel

allocation among femtocells:

Γnks,s =

[
(1 + λ1,s) ∆f

ln 2
(
λ2,sP n

ks,s
+ λn3,sP

n
ks,s
gnk,s − λn4

) − 1

P n
ks,s
γnks,s

]+

(2.11)

where λ1,s, λ2,s, λ
n
3,s, and λn4 are the Lagrange multipliers associated with the

data rate constraints, total power budget, interference constraints, and exclusion

constraints, respectively. Therefore, we can deduce that a sub-cahannel n is better

be allocated to a user ks in femtocell s having good SINR value P n
ks,s
γnks,s and having
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low channel gain gnk,s to a reference user (hence, low interference to this user).

Based on this rule, we propose Algorithm 3 by constructing the following ratio

for each femtocell s on sub-channel n:
Pn
ks,s

γnks,s
gnk,s

. A sub-channel n is allocated to the

link between user ks and femtocell s based on the following criterion:

ks(n) = arg max
s

(
P n
ks,s
γnks,s

gnk,s

)
(2.12)

where ks (n) denotes sub-channel n assigned to FUE ks. This approach maximizes

the cluster sum-rate; however, we may have some femtocells with no sub-channels

allocated, leading to an infeasible solution to the original problem. Hence, an addi-

tional step is required to fix this issue. Given the list of unsatisfied femtocells (i.e.,

femtocells with no sub-channels allocated) and satisfied femtocells (i.e., femtocells

with allocated sub-channels), the CH picks up the best sub-channel (for an unsatis-

fied femtocell) from the most satisfied femtocell and reallocates it to the unsatisfied

femtocell. The procedure continues until all unsatisfied femtocells are allocated a

sub-channel. Based on the fact that the FUE is close to its FAP (and hence has a

good channel condition), the power allocation step can satisfy its data rate require-

ment later. In the algorithm, we denote by Ns the set of sub-channels allocated

to a femtocell s defined as Ns =
{
n ∈ N : Γnks,s = 1

}
. The matrix Γ is a binary

matrix of dimension cl × N that holds the sub-channel allocation indicators for all

femtocells s ∈ cl. The sets S and U are the sets of satisfied femtocells and unsatis-

fied femtocells, respectively, defined as follows: S =
{
s ∈ cl, ∃n ∈ N : Γnks,s = 1

}
and

U =
{
s ∈ cl : Γnks,s = 0,∀n ∈ N

}
.

The complexity of this algorithm is as follows: steps 2 − 4 have a complexity

of O(FN) and steps 6 − 10 have a complexity of O(S2 + SN). Hence, the overall

complexity is of O(S2 + SN).
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Algorithm 3 : Heuristic sub-channel allocation for cl

1: Input: Ratio
(
Pn
ks,s

γnks,s
gnk,s

)
∀s ∈ cl, n

2: for n = 1 : N do
3: Allocate sub-channel n to user ks in femtocell s according to (2.12)
4: end for
5: Put all unsatisfied femtocells in set U, satisfied femtocells in set S, and define Γ

as the sub-channel allocation matrix
6: while U 6= Ø do
7: Find femtocell s′ ∈ S with maximum number of allocated sub-channels
8: CH allocates sub-channel n to femtocell s ∈ U such that n =

arg maxn∈Ns′

(
Pn
ks,s

γnks,s
gnk,s

)
9: Set Γnks,s = 1, Γnks′ ,s′ = 0 and update Γ,U, and S

10: end while

2.6.2 Power Allocation

Given the sub-channel allocation, the CHs can perform power allocation in an optimal

manner since it is a non-linear convex4 problem that can be efficiently solved by using

the interior point method [44] with a computational complexity of O (N3) [43].

2.6.3 Iterative Sub-channel and Power Allocation Algorithm

Algorithm 4 summarizes the iterative sub-channel and power allocation steps. Given

the current interference measurements Interference(0 ) reported by the FUEs, the data

rate requirements and the candidate cluster configuration, the CHs perform sub-

channel and power allocation iteratively. In each iteration, the CHs perform resource

allocation simultaneously relying on interferences generated by the other FAPs in

the previous iteration [45]. This approach was shown to converge faster than the

sequential operation [46]. In some cluster cl in the zth iteration, each FAP reports

the interference measurements by its FUE in the (z − 1)th iteration to its CH. For

4We render the power allocation problem convex by considering the interference term in the SINR
expression to be due to other FAPs transmissions from the previous iteration.
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all FAPs, the power is initialized as the minimum of
(
Ps,max

N
,
ζnk
gnk,s

)
. The sub-channel

allocation is done for the given power initialization. Power is then allocated knowing

the resulting sub-channel allocation. In the zth iteration, knowing the resulting sub-

channel and power allocation and the interference measured in the (z − 1)th iteration,

the data rate can be estimated. The sub-channel and power allocation iterations

proceed until the data rate converges or the maximum number of iterations is reached.

Algorithm 4 : Sub-channel and power allocation

1: Input: Interference(0), data rate requirement, and candidate cluster configura-
tion

2: while diff ≥ ε and z <max iteration do
3: All CHs do simultaneously:

4: Initialize P n
ks,s

as min
(
Ps,max

N
,
ζnk
gnk,s

)
∀n, s

5: Do sub-channel Allocation → new ch allocation(z)

6: For given new ch allocation(z), do power allocation → new power allocation(z)

7: For given new ch allocation(z), new power allocation(z) and Interference(z−1),
estimate DR(z) ∀s

8: Perform Interference measurements → Interference(z)

9: diff =| DR(z) − DR(z−1) |
10: Increment z
11: end while

2.7 Performance Evaluation

2.7.1 Parameters

We evaluate the system performance with the proposed algorithms through extensive

simulations under various topologies and scenarios. In our numerical results, each

femtocell has 1 FUE closely located to its FAP. We consider an indoor area with a

dense deployment of femtocells (in terms of density per square metre). 4 sub-channels

are available for the femtocell and macrocell network. 4 MUEs exist indoor and are
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assumed to be served by their macrocell. The macrocell transmits with uniform power

on the 4 sub-channels. To model the propagation environment, the channel models

from [47] are used. The channel gains include path-loss and shadowing. For path-loss

between a femtocell and its FUE, PL = 38.46 + 20 logR and for path-loss between a

femtocell and a general UE, PL = 38.46 + 20 logR + qLiw, where R is the distance

between a FAP and the FUE and qLiw accounts for losses due to walls. For path-loss

between the macrocell and a general UE existing indoor, PL = 15.3+37.6 logR+Low,

where Low accounts for losses due to inner and outer walls.

Table 2.1 shows the parameters used for the numerical results. The worst-case

initial interference (Interference(0 )) is assumed, where all FAPs are assumed to be

transmitting on all sub-channels with uniform power. A small value for the data rate

requirement is used to guarantee the feasibility of (2.9) especially since the worst-case

interference scenario is assumed in the numerical results. The data rate constraint is

imposed to guarantee that no FAP ends up with no sub-channels allocated. However,

it will be shown in the numerical results that the average achievable data rate per

FAP is in the order of Mbps. The numerical results are obtained and averaged for

different realizations, where in each realization some or all of the followings are varied:

positions of FAPs and UEs and channel gains. The channel realizations leading to

infeasible optimization problems are excluded from the numerical results. We use

“fmincon” function in MATLAB [48] to solve the power allocation problem.

The following measures are used to evaluate the performance of the proposed

algorithms:

• the average data rate achieved in each femtocell is defined as:∑S
s=1

∑N
n=1 Γn

ks,s
∆f log2(1+Pn

ks,s
γnks,s)

S
.

• the average femtocell transmit power is defined as:
∑S

s=1

∑N
n=1 P

n
ks,s

S
.
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• the average interference at an FUE ks on a sub-channel n due to downlink

femtocell transmissions j 6= s is defined as:

∑S
s=1

(∑N
n=1 Γn

ks,s

(∑S
j=1,j 6=s P

n
kj,j

gnks,j

))
FN

.

The idea is to estimate the average interference to an FUE ks on its allocated

sub-channels.

For comparison, an uncoordinated scheme is used as a benchmark, where a fem-

tocell has access to the entire spectrum but no transmission coordination exists with

neighboring femtocells. In addition, the closest scheme in spirit to our clustering

scheme is the similarity-based clustering in [20]. In this scheme, clustering and re-

source allocation are performed separately. Also, there is no notion of optimality

when specifying the cluster size. The performance results for this scheme are shown

to demonstrate the efficacy of our proposed framework.

Table 2.1: Parameters
Parameter Value

Carrier frequency 2.0 GHz
Available sub-channels 4

Sub-channel bandwidth, ∆f 180 KHz
No. of FUEs per femtocell 1

Distance between FUE and FAP 1 m
Data rate requirement, Rs 102 bps
Noise power density, No -174 dBm/Hz

Macrocell radius 200 m
Distance between indoor

building and MBS 100 m
Number of MUEs 4

Standard deviation of shadowing
between macrocell and indoor UE 10 dB
Standard deviation of shadowing
between femtocell and its FUE 4 dB

Standard deviation of shadowing
between femtocell and another UE 8 dB

Outdoor wall loss, Low 30 dB
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2.7.2 Numerical Results for a Small scenario

We have 4 femtocells existing in an area of dimensions 30m× 30m. In this scenario,

the number of FAPs is equal to the number of available sub-channels. The idea here

is to verify the fact that by sacrificing a part of the spectrum, an advantage in terms

of increased data rate can be achieved due to the decrease in co-tier interference.

The positions of the FAPs and UEs are fixed; however, the channel gains are varied.

The numerical results are obtained by taking the average of 25 different channel gain

realizations. The sub-channel and power allocation is done iteratively according to

Algorithm 4, wherein the sub-channel allocation is done by using BnB. The target

here is to study the performance of correlation clustering using both BnB and the low-

complexity SDP approach using Algorithm 1 are compared to the optimal clustering

obtained by exhaustive search.

Fig. 2.3 shows the variation in femtocell data rate with the interference threshold.

We have Ps,max = 30 mW, Pmacro = 20 W, Low = 30 dB, and qLiw = 5 dB. We

observe that clustering offers a higher average data rate in comparison to the unco-

ordinated scheme. Also, correlation clustering has a performance that is close to the

optimal solution and better than the uncoordinated approach. Correlation clustering

reduces the search space for the optimal cluster configuration with the drawback of

the possibility of missing the optimal cluster configuration. It is also clear that, with

enough number of iterations for randomized rounding, correlation clustering using

Algorithm 1 gives the same performance as that achieved by the BnB method.

The average data rate achieved with clustering using the similarity-based technique

from [20] is shown as well. It is observed that the performance of this scheme can be

even worse than that of the uncoordinated scheme.

Fig. 2.4 shows that clustering allows FAPs to transmit more power, hence increas-
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ing the achievable data rate as FAPs now do not have to avoid causing interference

to nearby FUEs in neighboring femtocells because they are possibly now in the same

cluster.

Fig. 2.5 shows that in the clustered schemes the FUEs suffer lower interference

due to transmissions from other FAPs. Since in an uncoordinated scheme a generic

FAP is using the entire spectrum, the corresponding FUE experiences interference in

the entire band, and hence suffers from a higher interference.
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Figure 2.3: Average data rate vs. interference threshold ζnk .
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Figure 2.4: Average transmit power vs. interference threshold ζnk .
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Figure 2.5: Average FAP interference vs. interference threshold ζnk .

Fig. 2.6 shows the variation in femtocell data rate with the inner wall losses. We

have Ps,max = 30 mW, Pmacro = 20 W, Low = 30 dB, and ζnk = 10−10 W. In Fig.
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2.6, we notice that as the inner wall losses increase, the co-tier interference decreases,

hence, the achieved data rate increases as well. We also notice that the gain due to

clustering, relative to the uncoordinated scheme, decreases as the inner wall losses

increase since each femtocell starts to be more isolated. When a femtocell is well

isolated, it is more beneficial to act in an uncoordinated manner and to make use of

the full spectrum. Also, similarity-based clustering, which does not consider the trade-

off between interference and bandwidth, is observed to perform poorly compared to

the other schemes.

Fig. 2.7 shows that an FUE in the uncoordinated scheme suffers from the highest

co-tier interference when compared to the clustering-based schemes. As the inner

wall loss increases, the average co-tier interference at an FUE decreases for the unco-

ordinated scheme. The average FAP interference for the clustering schemes starts to

increase at high inner wall loss because, in this case, each FAP becomes well isolated

and each FAP can achieve the best performance when it performs resource allocation

independently (i.e., in an uncoordinated manner).
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Figure 2.6: Average data rate vs. inner wall loss qLiw.
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Figure 2.7: Average FAP interference vs. inner wall loss qLiw.

Fig. 2.8 shows the variation in fetmocell data rate with the macro cell power. We

have Ps,max = 30 mW, Low = 30 dB, qLiw = 5 dB, and ζnk = 10−10 W. It is clear from
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Fig. 2.8 that as the macrocell power increases, the cross-tier interference increases

and hence, the achieved data rate decreases. Although the cross-tier interference

becomes more dominant, clustering is still beneficial.
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Figure 2.8: Average data rate vs. macro cell transmission power.

2.7.3 Numerical Results for a Big Scenario

In this scenario, we are interested now in the case, where the number of femtocells is

larger than the number of available sub-channels. The sub-channel and power alloca-

tion is done iteratively according to Algorithm 4, wherein sub-channel allocation is

done by using BnB. Clustering is done sub-optimally according to Algorithm 1. Fig.

2.9 shows the average femtocell data rate vs. the number of femtocells for two indoor

area sizes, (30m × 30m) and (70m × 70m). We have Ps,max = 30 mW, Pmacro = 20

W, Low = 30 dB, qLiw = 5 dB and ζnk = 10−10 W. The results are obtained for

this scenario by taking the average of 100 realizations, where in each realization, the

positions of the FAPs and UEs as well as the channel gains are varied. We can no-
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tice that as the number of femtocells increases, for fixed number of sub-channels, the

co-tier interference increases. Hence, the average achievable data rate for a femtocell

decreases. We also notice the gain in average data rate due to clustering relative to

the uncoordinated scheme. However, the gain due to clustering decreases as the di-

mensions of the indoor area increases. This is due to the fact that as the dimensions

of the indoor area increase, the femtocells are generally further located from each

other, and hence, have lower co-tier interference between each other.
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Figure 2.9: Average data rate vs. the number of femtocells.

Performance of penalty term range reduction algorithm

Fig. 2.10 shows the percentage reduction in computation vs. the HopRatio for 3

network sizes of 10, 15, and 25 FAPs. The results are obtained and averaged over

100 realizations, where in each realization, the positions of the FAPs as well as the

channel gains are varied. As shown in the figure, it is not necessary to go through

the entire range of the penalty term to obtain the different cluster configurations.
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Also, it is clear that the optimal HopRatio is 2. At this value, a 60.5% reduction in

computation is possible for a femtocell network of 25 FAPs.
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Figure 2.10: Computation reduction percentage vs. the HopRatio.

Sub-optimal clustering, sub-channel and power allocation

We study the femtocell network performance with the proposed framework for clus-

tering, sub-channel and power allocation. In this case, clustering is done using Algo-

rithm 2. In addition, sub-channel allocation is done both optimally using BnB and

sub-optimally using Algorithm 3. Fig. 2.11 shows the variation in average data rate

in a femtocell with the transmit power of the FAP for 10 FAPs deployed in an area

of dimensions 50m× 50m. We have Pmacro = 20 W, Low = 30 dB, qLiw = 5 dB, and

ζnk = 5× 10−12 W. The results are obtained and averaged over 25 realizations, where

in each realization, the positions of the FAPs and UEs as well as the channel gains

are varied. We notice that increasing the FAP transmit power increases the average

data rate in a femtocell at the beginning, where the system is power-limited. After
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this, the increase in achievable data rate decreases with the FAP transmit power,

where the system now is interference threshold-limited. We notice also that allowing

clustering is still beneficial compared to the uncoordinated scheme, even when sub-

channel and power allocation are performed sub-optimally. We also notice that the

heuristic sub-channel allocation scheme yields almost the same performance as the

optimal sub-channel allocation using BnB.
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Figure 2.11: FAP average data rate vs. FAP transmit power.

2.8 Conclusion

I have proposed a clustering, sub-channel and power allocation framework to be im-

plemented in a semi-distributed fashion in a two-tier OFDMA cellular network. In

this context, the FGW will be responsible for the clustering phase, and then the CH

(elected from the femtocell group) will be responsible for the sub-channel and power

allocation phase. To accomplish this, low-complexity algorithms have been proposed

for the clustering, sub-channel and power allocation sub-problems. Through exten-
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sive numerical studies, it has been observed that for resource allocation, allowing for

coordination among femtocells through clustering is beneficial in comparison to the

uncoordinated scheme. Also, the proposed correlation clustering approach, which

considers the trade-off between the bandwidth and interference, offers a performance

that is very close to that of the optimal clustering; however, with much reduced

complexity.
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Chapter 3

Tier-Aware Resource Allocation in

OFDMA Macrocell-Small Cell

Networks

3.1 Introduction

In this Chapter, I formulate the RA problem for a two-tier OFDMA wireless network

composed of a macrocell overlaid by small cells. The objective of the macrocell is to

allocate resources to its macro UEs (MUEs) to satisfy their data rate requirements.

In addition, knowing about the existence of small cells, the macrocell allocates the

radio resources (i.e., sub-channel and power) to its MUEs in a way that can sustain

the highest interference level from the small cells. For this reason, I formulate an

optimization problem for the macrocell with an objective that is different from those

in the traditional RA problems. The macrocell maximizes the sum of the interfer-

ence levels it will be capable of tolerating from the small cells tier. Now, since small

cells create dead zones around them in the downlink, the MUEs should be protected
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against transmissions from the small cells [49], [50]. Hence, knowing about the maxi-

mum allowable interference levels for MUEs, the small cells perform RA by solving an

optimization problem whose objective function combines both the AC and the con-

sumed bandwidth (i.e., number of allocated sub-channels). The objective of the small

cell tier is to admit as many small cell UEs (SUEs) as possible at their target data

rates and consume the minimum amount of bandwidth. Again, this follows the same

notion of tier-awareness by leaving as much bandwidth as possible for other network

tiers (e.g., for device-to-device (D2D) communication). For this, an optimization

problem is formulated for the small cell tier with the aforementioned objective, given

the QoS requirements of SUEs and the interference constraints for the MUEs. Dual

decomposition is used to have a decentralized RA and AC problem by decomposing

the optimization problem into sub-problems for each small cell to solve. For this, only

local channel gain information is used along with some coordination with the Home

eNB Gateway (HeNB-GW) [26].

The rest of this Chapter is organized as follows. Section 3.2 reviews the related

work. Section 3.3 presents the system model and assumptions for this work. In

Section 3.4, the optimization problems are formulated for both the macrocell tier and

the small cell tier, followed by the use of dual decomposition to have a decentralized

operation. Numerical results are discussed in Section 3.5 and finally Section 3.6

concludes the work done.

3.2 Related Work

The RA problem in OFDMA multi-tier cellular networks has been extensively studied

in the literature. The authors in [40] studied the RA problem in a multi-tier cellular

network to maximize the sum-throughput subject to simple power budget and sub-
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channel allocation constraints. However, no QoS constraints were imposed. In [51],

the RA problem in a femtocell network was modeled, with interference constraints for

MUEs, in order to achieve fairness among femtocells. No QoS constraints, however,

were imposed for femtocell users. In [52], the RA problem in a two-tier macrocell-

femtocell OFDMA network was modeled as a Stackelberg game, where the macrocell

acts as the leader and the femtocells act as the followers. However, no interference

constraints for MUEs were considered. Also, no QoS constraints were imposed for

femtocells. Reference [53] studied the RA problem in a two-tier network composed

of macrocells and femtocells which aimed at maximizing the sum-throughput of fem-

tocells subject to total sum-rate constraint for the macrocell. Nevertheless, no QoS

constraints were imposed for femtocells. The authors in [54] studied the RA prob-

lem with QoS and interference constraints in a two-tier cellular network and used

clustering as a technique to reduce overall complexity.

In the above works, either no QoS constraints were imposed or the RA problems

with QoS constraints were assumed feasible. In other words, admission control (AC)

[55], which is a technique to deal with infeasibility when it is not possible to support

all UEs with their target QoS requirements was not studied. The authors in [56]

proposed a distributed self-organizing RA scheme for a femtocell only network, with

the aim of minimizing the total transmit power subject to QoS constraints. It was

shown that minimizing the transmit power (which results in reduced interference)

does not necessarily reduce throughput.

Several works in the literature have considered the AC problem. For cellular

cognitive radio networks, [57] studied the problem of admission and power control to

admit the maximum number of secondary links and maximize their sum-throughput

subject to QoS requirements and interference constraints for primary links. However,
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power control was done centrally. The authors in [58] considered the problem of

admission and power control, where the primary users are guaranteed a premium

service rate and the secondary users are admitted (as many as possible) so long as

the primary users are not affected. In [59], the authors proposed a joint rate and

power allocation scheme with explicit interference protection for primary users and

QoS constraints for secondary users, where admission control was performed centrally.

However, [57–59] only considered single-channel systems. The authors in [60] studied

the problem of joint rate and power allocation with admission control in an OFDMA-

based cognitive radio network subject to QoS requirements for secondary users and

interference constraints for primary users. However, resource allocation and admission

control were performed centrally. In addition, channels were randomly allocated to

secondary users.

In relay networks, [61] studied the problem of power allocation in amplify and

forward wireless relay systems for different objectives, where admission control was

employed as a first step preceding power control. However, only one channel was

considered. In addition, power and admission control were done centrally. In [62],

a joint bandwidth and power allocation for wireless multi-user networks with admis-

sion control in relay networks was proposed for different system objectives. Unequal

chunks of bandwidths were allocated. However, the resource allocation was performed

centrally.

For a two-tier small cell network, [63] studied joint admission and power control.

Small cells are admitted into the network so long as the QoS of macrocell users is not

compromised. Admission and power control were performed in a distributed fashion.

However, only a single channel system was considered. Reference [64] proposed a

distributed admission control mechanism for load balancing among sub-carriers with
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multiple QoS classes. In addition, small cells mitigate co-tier and cross-tier inter-

ferences using slot allocation of different traffic streams among different sub-carriers.

However, no power allocation was performed.

We notice that none of the quoted works considers the interaction between the

different network tiers and the consequences of RA decisions of one tier on the other

one. In addition, it is desirable to have an RA and AC scheme that is implementable

in a distributed fashion in a dense multi-tier OFDMA network.

3.3 System Model, Assumptions, and Resource Allocation

Framework

3.3.1 System Model and Assumptions

Core Network

HeNB-

GW

Small Cell

Small Cell

SUE

SUE

MUE
MUE

Internet

Macrocell

User 

broadband 

connection

Figure 3.1: Network topology under consideration. Dashed lines indicate back-haul
connections.

We consider the downlink of a two-tier cellular network, where a single macrocell,

referred to by the index B and with coverage radius RB, is overlaid with S small

cells, as shown in Fig. 4.1. Denote by S the set of small cells, where S = |S|. A

62



Chapter 3. Tier-Aware Resource Allocation in OFDMA Macrocell-Small Cell
Networks

closed-access scheme is assumed for all small cells, where access to a small cell is

restricted only to the registered SUEs. All small cells are connected to the mobile

core network. For example, femtocells can connect to the core network by using

the DSL or CATV modems via an intermediate entity called the Femto Gateway

(FGW) or HeNB-GW [26] which can take part in the resource allocation operation

for femtocells.

We denote by M the set of MUEs served by the macrocell B with M = |M|.

Each MUE m has a data rate requirement of Rm. In addition, denote by F the

set of SUEs in the system with F = |F|. Each SUE f has a data rate requirement

of Rf . We refer to the set of SUEs associated to small cell s by Fs. We assume

that all UEs are already associated with their BSs and that this association remains

fixed during the runtime of the resource allocation process. We have
⋃S
s=1Fs = F

and
⋂S
s=1Fs = ∅. All MUEs exist outdoor and all SUEs exist indoor. We have

an OFDMA system, where we denote by N the set of available sub-channels with

N = |N | and ∆f is the bandwidth of a sub-channel n. Cochannel deployment is

assumed, where the macrocell and all the small cells have access to the same set of

sub-channels N [51–53]. This is foreseen to increase spectral efficiency. Hence, any

UE (be it an MUE or an SUE) is allowed to share the same sub-channel. Let Γni,j be

the sub-channel allocation indicator where, Γni,j = 1 if sub-channel n is allocated to

UE j served by BS i and 0 otherwise.

The UEs are capable of using two modes of sub-channel allocation, namely, the

exclusive mode and the time sharing mode. For the exclusive mode, in a given

transmission frame, sub-channel n is used by one UE only. In the time sharing mode,

a sub-channel n is allocated to a certain UE a portion of the time. In this way,

multiple UEs can time share a sub-channel n in a given transmission frame [65].
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Denote by P n
i,j and gni,j the allocated power to and the channel gain of the link

between BS i and UE j on sub-channel n. Channel gains account for path-loss, log-

normal shadowing, and fast fading. The channel gains are assumed to remain static

during the resource allocation process. The worst-case received SINR γnB,m of an MUE

m served by macrocell B on a sub-channel n is defined as:

γnB,m =
P n
B,mg

n
B,m

Inm +No

(3.1)

where Inm is the maximum tolerable interference level at MUE m on sub-channel n

and No is the noise power. According to (4.2), the following constraint holds for small

cell transmission powers on sub-channel n:

ΓnB,m

(
S∑
s=1

∑
f∈Fs

Γns,fP
n
s,fg

n
s,m

)
≤ ΓnB,mI

n
m (3.2)

where the constraint is active only if sub-channel n is allocated to MUE m, i.e.,

ΓnB,m = 1. Similarly, we can define the received SINR γns,f of an SUE f served by

small cell s on a sub-channel n as:

γns,f =
P n
s,fg

n
s,f∑M

m=1 ΓnB,mP
n
B,mg

n
B,f +No

. (3.3)

In the denominator of (3.3), the first term represents cross-tier interference from

the macrocell, whereas the second term encompasses both co-tier interference from

other small cells and the noise power1.

1A similar approach was followed in [66] to account for co-tier interference in densely deployed
small cells. In other words, co-tier interference can be accounted for by a rise in the noise power
level. This is acceptable due to the wall penetration loss and the relatively low transmission powers
of indoor small cell base stations.
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3.3.2 Tier-Aware Resource Allocation Framework

Fig. 3.2 describes the RA framework proposed in this Chapter in a given RA time

slot. Given the rate requirements for the MUEs, the macrocell starts by allocating

resources to its MUEs and specifies the maximum tolerable interference levels on each

allocated sub-channel. Those RA results remain fixed throughout the current RA time

slot. The macrocell then sends those RA results to the HeNB-GW which broadcasts

them to the small cells. The small cells then perform RA and AC for their SUEs.

For the resulting resource allocation for small cells, the MUEs perform interference

measurements and report them to the macrocell BS. The macrocell BS then updates

the HeNB-GW and the iterations repeat until the interference thresholds for all the

MUEs are met and the RA and AC converge for all small cells. Then, in a new RA

time slot, the whole operation repeats. Note that the iterative behavior of the small

cells RA and AC takes place due to the distributed nature of RA and AC in small

cells. This iterative behavior, however, does not take place if RA and AC in small

cells are performed centrally.

The awareness of the macrocell about the small cell tier is reflected in the way the

radio resources are allocated in the macrocell. The macrocell allocates resources to its

MUEs in a way that can tolerate the maximum interference possible from the samll

cell tier. Note, however, that the minimum rate constraints of all MUEs must be

satisfied in the sense that the rate requirement for none of the MUEs is compromised

for admitting new SUEs. On the other hand, the awareness of the small cell tier

about the existence of other tiers is reflected in the fact that the resource allocation

in the small cell tier satisfies the rate requirements of the SUEs using the minimum

amount of bandwidth resources.
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Macrocell performs RA for MUEs to satisfy their 

minimum rate requirements while maximizing the 

tolerable interference from small cells

Macrocell sends the RA information of MUEs 

to HeNB-GW

HeNB-GW broadcasts the RA information of 

MUEs to small cells

Small cells perform RA and AC to maximize

 the number of admitted SUEs while satisfying

 their minimum rate requirements using 

minimum amount of resources

MUEs report interference measurements to 

macrocell which updates the HeNB-GW

MUEs’ interference 

constraints are satisfied and

 convergence achieved ?

Yes

No

Stop

Figure 3.2: The RA framework for the macrocell and the small cells.

3.4 Problem Formulations for Resource Allocation

3.4.1 Problem Formulation for Macrocell

The macrocell is responsible for providing the basic coverage for the MUEs [67].

Hence, the target of the macrocell is to allocate the resources to its MUEs to satisfy

their data rate requirements. As will be shown in this section, this task will be

accomplished by using different strategies. One strategy would be for the macrocell to

maximize the sum of the interference levels it can tolerate from the small cell tier. The
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other strategy would be for the macrocell to minimize the total transmission power.

As was mentioned previously, we foresee that those different strategies, employed by

the macrocell, will impact the performance of small cells differently.

Maximize the sum of tolerable interference levels

One way of performing RA in the macrocell is to allocate resources to the MUEs in

a way that maximizes the sum of the maximum tolerable interference levels on the

allocated sub-channels. The motivation behind this objective is to allow the maximum

possible freedom for the small cell tier in using the sub-channels. In this context,

uniform transmit power is assumed on the allocated sub-channels in the macrocell,

i.e., P n
B,m =

PB,max

Nac
, where PB,max is the total macrocell power and Nac ≤ N is the

number of allocated sub-channels. Although the optimal power allocation usually has

a water-filling type of solution, it was reported in [68–70] that equal power allocation

gives close to the optimal performance, specially at high SINR2. Denote by Nm the set

of sub-channels allocated to MUE m. Hence, we can define the following optimization

2We will show, subsequently, that each MUE will end up being allocated one sub-channel only.
Hence, the high SINR requirement for guaranteeing close to the optimal performance under equal
power allocation will be achieved through the enforced data rate requirement.
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problem:

max
{Inm}

M∑
m=1

N∑
n=1

Inm

subject to

C1 :
∑
n∈Nm

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
≥ Rm,∀m ∈M

C2 : Ni
⋂
Nj = ∅, ∀i, j ∈M, i 6= j

C3 :
M⋃
m=1

Nm ⊆ {1, 2, ..., N}

C4 : Inm ≤ Imax,∀m ∈M, n ∈ N

C5 : Inm ≥ 0,∀m ∈M, n ∈ N (3.4)

where the objective is to maximize the sum of the tolerable interference levels Inm for

all MUEs m on all sub-channels n. C1 is the data rate constraint for each MUE m.

C2 and C3 indicate that the sets of sub-channels allocated to the MUEs are disjoint

(the OFDMA constraint) and constitute the entire set of sub-channels N . C4 is a

constraint that sets an upper bound for Imax on Inm. Recall that if sub-channel n is

not allocated to MUE m, then MUE m will not have any restrictions on the level of

interference on that sub-channel. In other words, the maximum tolerable interference

by MUE m on sub-channel n should ideally be Inm = ∞. However, to have a finite

value for the objective function of (3.4), instead of ∞, we use Imax, where Imax is an

arbitrarily large value. Hence, Inm = Imax indicates that sub-channel n is not used by

MUE m as it has no restrictions on the level of interference on that sub-channel and

the achievable rate on that sub-channel will be virtually zero. Finally, C5 indicates

that Inm should be positive.
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In general, (3.4) is an MINLP whose feasible set is non-convex due to C1 and

the combinatorial nature of sub-channel allocation. Besides, P n
B,m is unknown as

the number of allocated sub-channels Nac is not known yet. However, by carefully

inspecting (3.4), some interesting features can be revealed which lead to the possibility

of obtaining the optimal solution of (3.4) with polynomial time complexity. We shall

assume that (3.4) is always feasible and that in the extreme case, an MUE can have its

rate requirement satisfied with one sub-channel only. The last assumption is possible

thanks to the fact that the macrocell in our model has a control on the allowable

interference level Inm on the allocated sub-channel. We shall start first by observing

the features for a single MUE system and then will show how to solve (3.4) in a

multi-MUE case. The following Lemmas reveal some of the interesting features of

(3.4).

Lemma 3.4.1. At optimality, all data rate constraints C1 hold with equality.

Proof. Since the objective function in (3.4) is monotonically increasing in Inm and C1

is monotonically decreasing in Inm, C1 must hold with equality at optimality for all

MUEs.

Lemma 3.4.2. At optimality, an MUE m is assigned a single sub-channel i with

I im < Imax.

Proof. To establish this result, we assume first that P n
B,m =

PB,max

N
. Furthermore, we

assume that for an MUE m, at optimality, Inm < Imax, ∀n ∈ N with an objective func-

tion value Objm =
∑N

n=1 I
n
m for MUE m. However, according to Lemma 3.4.1, the ob-

jective function is monotonically increasing in Inm, whereas the constraint C1 is mono-

tonically decreasing in Inm. Besides, Imax has an arbitrarily large value. Therefore, we

can decrease the value of I im on a certain sub-channel i ∈ N and increase the values
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of all other Ijm, j ∈ N , j 6= i. In this way, we end up with Ijm = Imax, for j ∈ N , j 6= i.

Meanwhile, I im reaches a value I i∗m such that the rate constraint for MUE m is met with

equality resulting in a new objective function value Obj′m = ((|N | − 1) Imax + I i∗m).

By comparing Obj′m and Objm, we find that we have (|N | − 1) variables Inm which

have reached the upper bound value Imax, whereas one variable has decreased to I i∗m .

Hence, we can deduce that Obj′m is clearly greater than Objm. Hence, the initial

assumption of optimality is contradicted.

Recall that, a value of Imax for a certain Inm means that sub-channel n is not

actually allocated to MUE m. Hence, for the macrocell to maximize the sum of

tolerable interference levels, the macrocell will try to set as many Inm to Imax as

possible. In other words, the macrocell will try to render as many sub-channels as

possible unallocated. This leads to the fact that a system with N sub-channels and

M MUEs, where M ≤ N , will end up with Nac = M sub-channels only allocated

to the M MUEs which leads to a minimal use of the available system bandwidth.

Hence, P n
B,m can be further adjusted to P n

B,m =
PB,max

Nac
=

PB,max

M
and I i∗m is adjusted

accordingly.

Lemma 3.4.3. The allocated sub-channel i for MUE m is the one with the highest

channel gain giB,m, i ∈ N .

Proof. According to Lemma 3.4.2, at optimality, Obj′m = ((|N | − 1) Imax + I i∗m) for

MUE m, where I i∗m is selected such that the achieved data rate on sub-channel i is

equal to Rm. Hence, from the rate constraint formula, I i∗m =
(
P i
B,mg

i
B,m

2Rm/∆f−1
−No

)
, it

is clear that I i∗m is directly proportional to giB,m. Therefore, to maximize Obj′m, we

need to maximize I i∗m . Hence, MUE m should be allocated sub-channel i such that

i = arg max
n∈N

gnB,m.
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Now, in a multi-MUE system, by using the criterion derived in Lemma 3.4.3 for

sub-channel allocation, we might end up with several MUEs assigned the same sub-

channel. Besides, different MUEs might have different rate requirements Rm. Hence,

we cannot rely on the direct proportionality to the sub-channel gains only for sub-

channel allocation. Generally, according to (3.4), a sub-channel n should be allocated

to the MUE that is capable of tolerating a higher interference level Inm. Since I i∗m was

shown to be directly proportional to
giB,m

2Rm/∆f−1
, we define the following reward for each

MUE m on a sub-channel n:

X n
m =

gnB,m
2Rm/∆f − 1

. (3.5)

In order to maximize the sum of tolerable interference, sub-channel allocation can

be done then according to the following Theorem.

Theorem 3.4.1. To maximize the sum of tolerable interference levels, the macrocell

can solve the following alternate optimization problem:

max
{Γn

B,m}

M∑
m=1

N∑
n=1

ΓnB,mX n
m

subject to

C1 :
N∑
n=1

ΓnB,m = 1, ∀m ∈M

C2 :
M∑
m=1

ΓnB,m ≤ 1, ∀n ∈ N

C3 : ΓnB,m ∈ {0, 1} , ∀m ∈M, n ∈ N (3.6)

where the objective in (3.6) is to maximize the sum of the allocated rewards

defined in (3.5), which has been shown to be proportional to the maximum tolerable
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interference level. C1 restricts the number of allocated sub-channels to any MUE

m to one sub-channel only, whereas C2 restricts sub-channel n to be allocated to at

most one MUE. Then for each MUE m with allocated sub-channel n, the maximum

tolerable interference level is given by: Inm =
(
Pn
B,mg

n
B,m

2Rm/∆f−1
−No

)
, where P n

B,m =
PB,max

M
.

All the remaining sub-channels will have a value of Imax for the maximum tolerable

interference level. Hence, (3.4) is solved optimally.

Proof. We have shown that I i∗m is directly proportional to
giB,m

2Rm/∆f−1
. Moreover, ac-

cording to Lemmas 3.4.2 and 3.4.3, at optimality, each MUE will have only one

sub-channel which is the one with the highest reward. Besides, no two MUEs can

have the same sub-channel allocated. Hence, we can define the optimization prob-

lem in (3.6), whose objective function is directly proportional to I i∗m . In addition, it

allocates a single sub-channel only (the one with the highest reward) to each MUE,

while respecting the OFDMA constraint.

Note that problem in (3.6) is the well-known assignment problem [71]. In this

case, the Hungarian algorithm can be used to solve (3.6) for global optimality with a

runtime complexity3 of O(N3) [75].

In this way, the macrocell has allocated sub-channels to its MUEs in a way that

satisfies their data rate requirements and that can tolerate the maximum possible

interference from the small cell tier.

Minimize the total sum-power

An alternate strategy that can be employed by the macrocell while performing RA is

to minimize the total sum-power, given the data rate requirements of the MUEs. This

3The complexity of O(N3) is acceptable for practical OFDMA-based resource allocation algo-
rithms to be deployed in an on-line manner [51], [72], [73], [74].
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problem has been studied extensively in the literature [76]. However, the formulation

developed in [76] does not account for the maximum tolerable interference level Inm.

Hence, we include it here with the required modification to determine the maximum

tolerable interference level Inm. Throughout the rest of this work, we will refer to this

RA method as the Traditional method. We have, thus, the following optimization

problem:

min
{Pn

B,m}

M∑
m=1

N∑
n=1

P n
B,m

subject to

C1 :
∑
n∈Nm

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
≥ Rm,∀m ∈M

C2 : Ni
⋂
Nj = ∅, ∀i, j ∈M, i 6= j

C3 :
M⋃
m=1

Nm ⊆ {1, 2, ..., N}

C4 : P n
B,m ≥ 0,∀m ∈M, n ∈ N . (3.7)

In (3.7), given the maximum tolerable interference level on each allocated sub-

channel Inm, the macrocell seeks a power and sub-channel allocation solution that

minimizes the sum-power. The problem in (3.7) can be shown to be strongly NP-

hard [77]. In other words, it cannot be solved by a pseudo-polynomial time algorithm

and finding its global optimal solution is generally NP-hard. This NP-hardness is

attributed to the non-convexity of the optimization problem in (3.7) due to the com-

binatorial nature of sub-channel allocation. Hence, solving this problem by using

Lagrange dual decomposition will, generally, result in a non-zero duality gap between
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its primal and dual solutions. However, in a multi-carrier OFDMA system, according

to [76] and [78], this duality gap virtually vanishes as the number of sub-channels goes

to infinity. This implies that, in an OFDMA system with a sufficiently large number

of sub-channels N (N should be greater than 8 [76]), Lagrange dual decomposition

can be used to solve the problem in (3.7) efficiently in the dual domain.

Remark 3.4.1. The reason for choosing the resource allocation solution based on the

formulation in (3.7) as the baseline is the following. With this solution, at optimality,

all MUEs have their rate requirements satisfied with equality. This is also the case

for the solution obtained from the formulation in (3.4). In other words, with both RA

strategies, the MUEs achieve the same performance. The difference however lies in

the way the resources are allocated, which subsequently impacts the performance of

the small cell tier.

In (3.7), the same value of Inm is assumed ∀m ∈ M, n ∈ N , i.e., Inm = Ith.

For a fair comparison between (3.4) and (3.7), the macrocell adjusts the maximum

tolerable interference level Ith such that
∑M

m=1

∑N
n=1 P

n
B,m = PB,max. This can be

accomplished by using the bisection method according to Algorithm 5 as given

below, where Ith,H > Ith,L.

Algorithm 5 Bisection method to find optimal Ith
1: Macrocell initializes Ith,L, Ith,H , and δ

2: while |
∑M

m=1

∑
n∈Nm

P n
B,m − PB,max| > δ do

3: Ith,M = (Ith,L + Ith,H) /2
4: Macrocell solves the optimization problem in (3.7)
5: if

∑M
m=1

∑
n∈Nm

P n
B,m > PB,max then

6: Ith,H = Ith,M
7: else if

∑M
m=1

∑
n∈Nm

P n
B,m < PB,max then

8: Ith,L = Ith,M
9: end if

10: end while
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Assuming that Ith,L is initialized to 0, the bisection method usually requires

O(ln(
Ith,H
δ

)) iterations to converge. Besides, the complexity of each iteration is of

O(NM3) [76]. After Algorithm 5 terminates, Ith,M gives the optimal value of Ith.

The optimization problem in (3.7) ends up with the power and sub-channel allocation

to the MUEs with a uniform maximum tolerable interference level Ith on all allocated

sub-channels. In general, as will be shown in the numerical results, (3.7) leads to a

higher number of allocated sub-channels to the MUEs than (3.4) does. It is of interest

to study the effect of the two different RA methods on the small cell tier.

3.4.2 Problem Formulation for Small Cells

Due to the small distance and the good channel conditions between small cells and

SUEs, small cells are capable of serving registered SUEs with higher data rates than

the macrocell. However, this should not be at the cost of QoS degradation at MUEs

as they are served by the macrocell and provided with basic coverage at possibly lower

rates [53]. Hence, given the maximum tolerable interference levels on each allocated

sub-channel for the MUEs, each small cell now tries to admit as many SUEs as

possible at their target data rate by using the minimum possible bandwidth. Again,

the idea here is to leave as much bandwidth as possible for the other network tiers

(e.g., for D2D communication).

Centralized operation

To accomplish the aforementioned requirements, we define the optimization problem

in (3.8), where the objective is to maximize the number of admitted SUEs while

minimizing the number of allocated sub-channels. We have the admission control

variable ys,f which takes the value of 1 if SUE f is admitted in small cell s and
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0 otherwise. Recall from Section 3.3.1 that the set Fs denotes the set of SUEs

already associated with small cell s. Yet, SUEs in the set Fs can still have their

rate requirements satisfied or not. This will be indicated through the variable ys,f .

By controlling the weighting factor ε ∈ [0, 1], admission control can be given higher

priority over the number of used sub-channels. Note that the formulation (3.8) is

in spirit of the formulation in [58]. However, the objective in [58] was to maximize

the number of admitted UEs while minimizing the transmission power. In our work,

we have a different objective. Moreover, the work in [58] was done in the context of

single channel systems.

max
{Γn

s,f ,P
n
s,f ,ys,f}

(1− ε)
S∑
s=1

∑
f∈Fs

ys,f − ε
S∑
s=1

∑
f∈Fs

N∑
n=1

Γns,f

subject to

C1 :
N∑
n=1

∆f log2

(
1 +

P n
s,fg

n
s,f∑M

m=1 ΓnB,mP
n
B,mg

n
B,f +No

)
≥ ys,fRf , ∀s ∈ S, f ∈ Fs

C2 :
∑
f∈Fs

N∑
n=1

P n
s,f ≤ Ps,max, ∀s ∈ S

C3 : ΓnB,m

(
S∑
s=1

∑
f∈Fs

P n
s,fg

n
s,m

)
≤ ΓnB,mI

n
m, ∀n ∈ N

C4 : P n
s,f ≤ Γns,fPs,max ∀s ∈ S, f ∈ Fs, n ∈ N

C5 :
∑
f∈Fs

Γns,f ≤ 1, ∀s ∈ S, n ∈ N

C6 : P n
s,f ≥ 0, ∀s ∈ S, f ∈ Fs, n ∈ N

C7 : Γns,f ∈ {0, 1} , ∀s ∈ S, f ∈ Fs, n ∈ N

C8 : ys,f ∈ {0, 1} , ∀s ∈ S, f ∈ Fs, n ∈ N . (3.8)
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In (3.8), C1 is a data rate constraint for an SUE f which is active only if SUE

f is admitted, i.e., ys,f = 1. C2 is the power budget constraint for each small cell

s restricting the total transmission power of small cell s to be less than or equal

to Ps,max. C3 is a constraint on the maximum cross-tier interference4 introduced to

MUE m using sub-channel n. This is imperative as the MUEs have a strictly higher

priority in accessing the underlying frequency bands than the SUEs. C4 ensures that

if sub-channel n is not allocated to SUE f , its corresponding transmit power P n
s,f = 0.

C5 constrains sub-channel n to be allocated to at most one SUE f in small cell s.

C6 ensures that the power P n
s,f should be positive, and finally, C7 and C8 indicate

that Γns,f and ys,f are binary variables. One benefit of the optimization problem

formulation in (3.8) is that it is always feasible. To see this, a trivial feasible solution

of (3.8) is Γns,f = 0, P n
s,f = 0 and ys,f = 0, ∀s ∈ S, f ∈ Fs, n ∈ N .

Proposition 3.4.1. By choosing ε < 1
1+SN

, (3.8) admits the maximum number of

SUEs while consuming the minimum number of sub-channels.

Proof. Let
(
Γn∗s,f , P

n∗
s,f , y

∗
s,f

)
, ∀s ∈ S, f ∈ Fs, n ∈ N denote an optimal solution of

(3.8). Let
(

ˆΓns,f ,
ˆP n
s,f , ˆys,f

)
, ∀s ∈ S, f ∈ Fs, n ∈ N be a feasible solution that admits

one more SUE than the optimal solution, i.e.,
∑S

s=1

∑
f∈Fs

ˆys,f =
∑S

s=1

∑
f∈Fs

y∗s,f+1.

4Note that this constraint is known as the interference temperature constraint in cognitive radio
networks and it has also been used extensively in two-tier macrocell-small cell networks [15], [54],
[66], [79], [80].
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The objective of the feasible solution can be written as:

(1− ε)
S∑
s=1

∑
f∈Fs

ˆys,f − ε
S∑
s=1

∑
f∈Fs

N∑
n=1

ˆΓns,f
(1)

≥

(1− ε)
S∑
s=1

∑
f∈Fs

y∗s,f + (1− ε)− εSN
(2)

≥

(1− ε)
S∑
s=1

∑
f∈Fs

y∗s,f
(3)

≥

(1− ε)
S∑
s=1

∑
f∈Fs

y∗s,f − ε
S∑
s=1

∑
f∈Fs

N∑
n=1

Γn∗s,f .

The first inequality holds due to the fact that
∑S

s=1

∑
f∈Fs

∑N
n=1

ˆΓns,f is upper

bounded by SN when all sub-channels in all small cells are allocated. The second

inequality holds by setting (1− ε) − εSN > 0. Hence, we have ε < 1
1+SN

. The

last inequality holds due to the non-negativity of
∑S

s=1

∑
f∈Fs

∑N
n=1 Γn∗s,f . In this

way, the value of the objective function for the feasible solution is higher than the

optimal one, which contradicts the optimality of
(
Γn∗s,f , P

n∗
s,f , y

∗
s,f

)
. Thus, there is no

other solution that admits a higher number of SUEs under the constraint in (3.8).

Given the optimum value for the admission control variable y∗s,f , (3.8) reduces to a

feasible sub-channel and power allocation problem with respect to the variables Γns,f

and P n
s,f that aims at minimizing the number of used sub-channels subject to the

given constraints.

The problem in (3.8) is an MINLP whose feasible set is non-convex due to the

combinatorial nature of sub-channel allocation and admission control. However, for

small-sized problems, I use OPTI [81], which is a MATLAB toolbox to construct and

solve linear, nonlinear, continuous, and discrete optimization problems, to obtain the

optimal solution. Obtaining the optimal solution, however, for larger problems is
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intractable. Another approach that can render the problem in (3.8) more tractable

is to have a convex reformulation of (3.8) by relaxing the constraints C7 and C8 and

allowing Γns,f and ys,f to take any value in the range [0, 1]. Thus, Γns,f is now a time

sharing factor that indicates the portion of time sub-channel n is allocated to SUE

f [41], [42], whereas ys,f indicates the ratio of the achieved data rate for SUE f .

Hence, we define the convex optimization problem in (3.9), where P̃ n
s,f can be related

to P n
s,f in (3.8) as P̃ n

s,f = Γns,fP
n
s,f to denote the actual transmit power [65]. Now, the

problem in (3.9) is a convex optimization problem with a linear objective function and

convex feasible set. This means that its global solution can be efficiently obtained, for

example, by a general interior-point method [44]. Such a method usually converges

within a few tens of iterations, where the complexity is of O((SFN)3) per iteration.
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max
{Γn

s,f ,P̃
n
s,f ,ys,f}

(1− ε)
S∑
s=1

∑
f∈Fs

ys,f − ε
S∑
s=1

∑
f∈Fs

N∑
n=1

Γns,f

subject to

C1 :
N∑
n=1

Γns,f∆f log2

1 +

(
P̃ n
s,fg

n
s,f/Γ

n
s,f

)
∑M

m=1 ΓnB,mP
n
B,mg

n
B,f +No

 ≥ ys,fRf , ∀s ∈ S, f ∈ Fs

C2 :
∑
f∈Fs

N∑
n=1

P̃ n
s,f ≤ Ps,max, ∀s ∈ S

C3 : ΓnB,m

(
S∑
s=1

∑
f∈Fs

P̃ n
s,fg

n
s,m

)
≤ ΓnB,mI

n
m, ∀n ∈ N

C4 :
∑
f∈Fs

Γns,f ≤ 1, ∀s ∈ S, n ∈ N

C5 : P̃ n
s,f ≥ 0, ∀s ∈ S, f ∈ Fs, n ∈ N

C6 : Γns,f ∈ (0, 1], ∀s ∈ S, f ∈ Fs, n ∈ N

C7 : ys,f ∈ [0, 1] , ∀s ∈ S, f ∈ Fs, n ∈ N .

(3.9)

It is worth mentioning that the solution of the problem in (3.9) gives an upper

bound to the optimal solution of the problem in (3.8). Yet, it reveals insights into

the behavior of the solution of the problem in (3.8). Note that the time sharing in

sub-channel allocation can be implemented in practice [82]. Therefore, we will keep

Γns,f relaxed. On the other hand, in order to obtain a binary solution for the relaxed

admission control variable ys,f , iterative user removal algorithms are needed [55],

which can be accomplished using Algorithm 6 described below.

The idea of Algorithm 6 is to iteratively solve the problem in (3.9) and each

time set the value of the minimum non-zero ys,f to zero. The Algorithm terminates
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Algorithm 6 Joint RA and AC algorithm with one-by-one removal

1: Solve problem (3.9)
2: if All the variables ys,f are binary then
3: Terminate
4: else
5: (s∗, f ∗) = arg min

s∈S,f∈F
ys,f such that ys,f 6= 0

6: Set ys∗,f∗ = 0
7: Go to step 1
8: end if

when all ys,f are binary, i.e., either 0 or 1. Using Algorithm 6, the problem in (3.9)

will be solved at most O(F ) times.

Note that the solution of (3.9) necessitates the existence of a central node with

global channel state information which can be, for example, the HeNB-GW. However,

in a densely deployed small cell network, centralized solutions might not be practical.

Hence, it is foreseen that having a decentralized solution with some coordination with

a central node will be a more viable option.

Distributed operation

To fulfill the requirement of having a decentralized solution for (3.9), we use the

dual decomposition method [83]. For this purpose, we define the following partial

Lagrangian function of the primal problem in (3.9) formed by dualizing the constraint

C3:

L
(

Γns,f , P̃
n
s,f , ys,f ,η

)
= (1− ε)

S∑
s=1

∑
f∈Fs

ys,f − ε
S∑
s=1

∑
f∈Fs

N∑
n=1

Γns,f

+
N∑
n=1

ηn

(
ΓnB,mI

n
m − ΓnB,m

(
S∑
s=1

∑
f∈Fs

P̃ n
s,fg

n
s,m

))
(3.10)
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where η is the Lagrange multiplier vector (with elements ηn) associated with the

cross-tier interference constraint C3. Then the Lagrange dual function is represented

as

g(η) = max
{Γn

s,f ,P̃
n
s,f ,ys,f}

L
(

Γns,f , P̃
n
s,f , ys,f ,η

)
subject to

C1, C2, C4− C7. (3.11)

From (3.10), the maximization of L can be decomposed into S independent opti-

mization problems for each small cell s as follows:

gs(η) = max
{Γn

s,f ,P̃
n
s,f ,ys,f}

(1− ε)
∑
f∈Fs

ys,f − ε
∑
f∈Fs

N∑
n=1

Γns,f

−
∑
f∈Fs

N∑
n=1

ηnΓnB,mP̃
n
s,fg

n
s,m

subject to

C1, C2, C4− C7, ∀s ∈ S. (3.12)

Note that probelm in (3.12) is still a convex optimization problem which can be

solved by each small cell s using the interior point method with a complexity of

O((FN)3) per iteration.

Thus, the Lagrange dual function is

g(η) =
S∑
s=1

gs(η) +
N∑
n=1

ηnΓnB,mI
n
m. (3.13)
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Then, the dual problem is given by:

min
η≥0

g(η). (3.14)

In order to solve the dual problem, η can be updated efficiently using the ellipsoid

method [84], which is known to converge in O(N2) iterations. A sub-gradient d of

this problem required for the ellipsoid method is derived in the following proposition.

Proposition 3.4.2. For the optimization problem in (3.9) with a dual objective g(η)

defined in (3.11), the following choice of dn is a sub-gradient for g(η):

dn = ΓnB,mI
n
m − ΓnB,m

(
S∑
s=1

∑
f∈Fs

P̃ n∗
s,fg

n
s,m

)
(3.15)

where dn is an element of d and Γn∗s,f , P̃
n∗
s,f , and y∗s,f optimize the maximization

problem in the definition of g(η).

Proof. For any ξ ≥ 0,

g(ξ) ≥ L(Γn∗s,f , P̃
n∗
s,f , y

∗
s,f , ξ)

= g(η) +
N∑
n=1

(ξn − ηn)

[
ΓnB,mI

n
m − ΓnB,m

(
S∑
s=1

∑
f∈Fs

P̃ n∗
s,fg

n
s,m

)]

Algorithm 7 gives the practical implementation of the distributed joint RA and

AC operation for the small cells. After the macrocell has performed RA for its

MUEs, it sends the sub-channel allocation information for its MUEs and the initialized

multiplier η to the HeNB-GW. For a given η, all small cells solve their optimization

problem in (3.12) simultaneously. For the given resource allocation in the small cells,
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the MUEs estimate the resulting interference levels and send them to the macrocell

which updates the multiplier values using the ellipsoid method. The macrocell then

informs the updated multiplier values to the HeNB-GW, which broadcasts them to

the small cells, and the entire operation repeats. Note that the small cells can obtain

the channel gains gns,m relying on the techniques proposed in [40].

Finally, the remaining issue is to obtain a feasible primal solution to (3.9) based on

the resulting solution from the Lagrangian dual in (3.14). It was reported in [83] and

[85] that the iterations of the dual decomposition method are, in general, infeasible

with respect to (3.9). This infeasibility, however, is not severe as large constraint

violations usually get penalized. Hence, using a simple procedure, one can recover a

primal feasible solution that serves as a lower bound for the optimal solution of (3.9).

Suppose that the reported interference level by an MUE m allocated a sub-channel

n was found to be:

S∑
s=1

∑
f∈Fs

P̃ n
s,fg

n
s,m = αnInm, α

n > 1. (3.16)

A straightforward way to recover feasibility is for the HeNB-GW to instruct all

small cells transmitting on sub-channel n to scale down their transmission powers by

the factor αn. For the updated power values, the entire problem is solved to obtain

the updated values of sub-channel allocation and admission control variables. The

gap between the lower bound offered by this procedure and the upper bound offered

by (3.14), referred to as the duality gap, diminishes with iterations. Convergence to

the optimal solution is guaranteed since the primal optimization problem in (3.9) is

convex.
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Algorithm 7 Distributed joint RA and AC algorithm

1: Macrocell initializes η, Lmax, sends sub-channel allocation information ΓnB,m and
η to HeNB-GW and sets iteration counter l = 1

2: HeNB-GW broadcasts ΓnB,m and η values to all small cells
3: repeat
4: All small cells solve (3.12) in parallel
5: All MUEs estimate interference levels on allocated sub-channels and report

them to the macrocell
6: Macrocell evaluates the sub-gradient (3.15) and updates η using the ellipsoid

method
7: Macrocell sends updated η to HeNB-GW
8: HeNB-GW broadcasts updated η to all small cells
9: Macrocell sets l = l + 1

10: until Convergence or l = Lmax

3.5 Numerical Results and Discussions

3.5.1 Parameters

We evaluate the system performance through extensive simulations under various

topologies and scenarios. We have a macrocell located at the origin with radius 300

m. A hotspot of small cells exists at a distance of 100 m from the macrocell. Since

MUEs that are far away from the hotspot of small cells will not be affected by the

small cells transmissions, we focus our study on those MUEs that will be affected by

small cell transmissions. Hence, all MUEs exist randomly outdoor in this hotspot and

are served by the macrocell. Each small cell has 2 indoor SUEs located randomly on

a circular disc around the small cell with an inner radius of 3 m and an outer radius

of 10 m [47]. The macrocell has a total power budget of PB,max = 20 W.

To model the propagation environment, the channel models from [47] are used.

The channel gains include path-loss, log-normal shadowing, and multipath Rayleigh

fading. The path-loss between a small cell and its served SUE, PL = 38.46 + 20 logR

and the path-loss between a small cell and the outdoor MUEs, PL = max(38.46 +
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20 logR, 15.3 + 37.6 logR) + Low, where R is the distance between a small cell and

the UE and Low accounts for losses due to walls. For path-loss between the macrocell

and an SUE existing indoor, PL = 15.3 + 37.6 logR+Low and for path-loss between

the macrocell and its MUE, PL = 15.3 + 37.6 logR. We have the following values

for the standard deviation of log-normal shadowing: 4 dB for shadowing between

SUE and its small cell, 8 dB for shadowing between MUE and small cell and 10 dB

for shadowing between macrocell and SUE or MUE. Multipath fading is assumed to

follow a Rayleigh distribution, where Rayleigh fading channel gains are modeled as

i.i.d. unit-mean exponentially distributed random variables. We assume ∆f = 180

KHz, ε = 0.9
1+SN

, and noise power, No = 10−13 W. Imax is set to any arbitrary large

number. All the rate requirements in the numerical results are specified in terms of

spectral efficiency (bps/Hz).

In the numerical results, the following performance metrics are used:

• Average percentage of admitted SUEs =
∑S

s=1

∑
f∈Fs ys,f
F

× 100.

• Average percentage of channel usage =
∑S

s=1

∑
f∈Fs

∑N
n=1 Γn

s,f

SN
× 100.

3.5.2 Numerical Results

Comparison between the proposed and the traditional RA

methods for macrocell

In this section, we compare the two RA schemes in the macrocell, namely, the pro-

posed formulation in (3.4) and the traditional formulation in (3.7). Fig. 3.3 shows

the channel gain realizations for a snapshot of 3 MUEs with 10 sub-channels.

Figs. 3.4 and 3.5 compare the two RA results for the given snapshot with Rm = 5

bps/Hz. Each figure shows the allocated power P n
B,m by the macrocell and the maxi-
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Figure 3.3: Channel gains gnB,m for MUEs {1, 2, 3}.

mum tolerable interference level Inm on allocated sub-channel n to MUE m. No values

for power P n
B,m on the x-axis indicate unallocated sub-channel with the corresponding

value for Inm set to Imax, which means that this sub-channel can be used by the small

cell tier unconditionally. For further clarification, Table 3.1 shows the absolute values

of P n
B,m and Inm.

It is clear from Fig. 3.4 that most of the sub-channels are allocated to the MUEs

(9 sub-channels out of 10 are allocated to the 3 MUEs), when using the traditional

scheme for RA. We notice also that the macrocell favors good sub-channels as they

require less transmit power to achieve the rate requirements for the MUEs, leading

at the end to minimum transmit power requirements.

Fig. 3.5, on the other hand, shows that the 3 MUEs require only 3 sub-channels

to achieve their rate requirements, as was proved before, using the proposed scheme.

Again, the macrocell allocates the best sub-channels to the MUEs. From Figs. 3.4 and

3.5 and Table 3.1, we can notice that the entire power budget of macro BS, PB,max, is
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Figure 3.4: Allocated power P n
B,m and maximum tolerable interference level Inm for

MUEs {1, 2, 3} using the traditional scheme.

used in both cases. It is worth mentioning that when we use the traditional scheme

for macrocell resource allocation, it does not necessarily mean that it will consume

less power than the proposed scheme, since the maximum tolerable interference level

Inm is adjusted according to Algorithm 5 by the macrocell to use the entire power

budget. It rather means that, given the maximum tolerable interference levels, the

resulting sub-channel and power allocation for the traditional scheme will consume

the minimum power and any other allocation will consume a higher power.

Now, for the maximum tolerable interference levels Inm, it is obvious from Figs. 3.4

and 3.5 and Table 3.1 that the proposed scheme can sustain higher interference levels

from the small cell tier. It is of interest to compare the effect of the two different RA

schemes for the macrocell on the small cell tier.

Fig. 3.6 compares the average percentage of admitted SUEs when the macrocell

performs RA according to the traditional method based on (3.7) and the proposed

method based on (3.4) with two different wall loss Low scenarios. We have the follow-
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B,m and maximum tolerable interference level Inm for

MUEs {1, 2, 3} using the proposed scheme.

Table 3.1: Absolute Values of P n
B,m and Inm for the Traditional and Proposed Macrocell

RA Schemes
Sub-channel#

1 2 3 4 5 6 7 8 9 10

T
ra

d
it

io
n
a
l

Pn
B,m (W)

MUE-1 0 0 0 0 0.0402 0.0153 0 0 0 0
MUE-2 0 0 0 1.1097 0 0 0.6855 0.2333 0.3805 0
MUE-3 7.8381 4.4890 5.2142 0 0 0 0 0 0 0

Inm (W)
MUE-1 Imax Imax Imax Imax 1.0709 1.0709 Imax Imax Imax Imax

×10−10
MUE-2 Imax Imax Imax 1.0709 Imax Imax 1.0709 1.0709 1.0709 Imax
MUE-3 1.0709 1.0709 1.0709 Imax Imax Imax Imax Imax Imax Imax

P
ro

p
o
se

d Pn
B,m (W)

MUE-1 0 0 0 0 6.6667 0 0 0 0 0
MUE-2 0 6.6667 0 0 0 0 0 0 0 0
MUE-3 6.6667 0 0 0 0 0 0 0 0 0

Inm (W)
MUE-1 Imax Imax Imax Imax 91.604 Imax Imax Imax Imax Imax

×10−10
MUE-2 Imax 5.6298 Imax Imax Imax Imax Imax Imax Imax Imax
MUE-3 0.1796 Imax Imax Imax Imax Imax Imax Imax Imax Imax

ing scenario: 2 small cells located at (−10,−100), (10,−100) in a square area hotspot

of dimensions 20 × 20 m2, 10 sub-channels, Ps,max = 30 mW, Rf = 50 bps/Hz, and

Rm = 5 bps/Hz. Numerical results are obtained and averaged for 50 different realiza-

tions, where in each realization, the UE positions and the channel gains are varied.

The small cell problem is solved centrally by using the convex formulation in (3.9). It

is clear from the figure that the proposed RA method for the macrocell outperforms

the traditional one. When the macrocell performs RA according to the proposed

method, it consumes the minimum bandwidth, and therefore, frees as many sub-
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channels as possible for the small cells. On the other hand, the traditional method

consumes more bandwidth than the proposed one, hence, the small cells have more

interference constraints to abide by. We also notice that as the wall losses increase,

the small cells tend to be more isolated and the impact of resource allocation in the

macrocell on the small cell performance becomes lower.
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Figure 3.6: Average percentage of admitted SUEs vs. number of MUEs M when
the macrocell employs both the proposed and the traditional methods for RA with
different wall loss scenarios.

Comparison between the different formulations for the RA

problem for small cells

Fig. 3.7 compares the objective function values for the MINLP formulation in (3.8),

the centralized convex formulation in (3.9), the centralized convex formulation in

(3.9) with one-by-one removal by using Algorithm 6, and the distributed formu-

lation in (3.10) for a snapshot of the following scenario: 2 small cells located at

(−10,−100), (10,−100) in a square area hotspot of dimensions 20 × 20 m2, 3 sub-
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channels, 3 MUEs, Ps,max = 30 mW, Low = 1 dB, and Rf = 5 bps/Hz. As was stated

previously, the convex formulation provides an upper bound for the solution of the

MINLP formulation. Also, we notice that the centralized and distributed formula-

tions have the same solution due to the convexity of the centralized formulation in

(3.9). The centralized formulation with one-by-one removal exhibits a performance

that lies in-between the MINLP one (3.8) and the centralized one (3.9). This can be

attributed to the fact that in the MINLP formulation (3.8), Γns,f and ys,f are binary.

On the other hand, the centralized formulation in (3.9) has Γns,f and ys,f relaxed.

Since the centralized formulation with one-by-one removal has Γns,f relaxed but ys,f

binary, its performance will lie, generally, in between the other formulations.

It is worth mentioning that the convex formulation exhibits a behavior similar

to the MINLP formulation. Hence, solving the convex formulation reveals insights

into the behavior of the solution of the MINLP formulation. We also notice that

as Rm increases, the interference constraints for the MUEs become tighter. Hence,

the average number of admitted SUEs decreases. Since the objective function in our

formulation gives higher priority to admission control, the value of objective function

decreases with increasing Rm.

Figs. 3.8 and 3.9 show the average percentage of admitted SUEs and channel

usage in a small cell vs. Rm for the same scenario considered in Fig. 3.7. As was

discussed in Fig. 3.7, as the rate requirements for the MUEs increase, they have

tighter interference constraints. Hence, the percentage of admitted SUEs generally

decreases. We notice in Fig. 3.8 that, initially, the average percentage of admitted

SUEs is almost constant. This is due to the increased number of used sub-channels as

shown in Fig. 3.9. As the MUEs’ rate requirements increase further, the increase in

the number of used sub-channels is not enough to accommodate the rate requirements
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Figure 3.7: The values of objective function for different formulations vs. Rm.

of the SUEs, hence, the average percentage of admitted SUEs decreases.

Convergence behavior

Using the same scenario described for the previous figure, Fig. 3.10 shows the con-

vergence behavior of Algorithm 7, where the upper bound refers to (3.14) and the

lower bound refers to the feasible objective obtained by the procedure at the end of

Section 3.4.2. In the figure, the best lower bound is obtained by keeping track of the

best primal feasible objective resulting through iterations. It is clear that Algorithm

7 converges to the optimal solution of the problem in (3.9) within a few iterations.

Average percentage of admitted SUEs vs. Rf

In this scenario, we have the following setup: 5 small cells located at

(−20,−100), (−20,−140), (20,−140), (20,−100), (0,−120) in a square area hotspot

of dimensions 40 × 40 m2, 5 sub-channels, 5 MUEs, Ps,max = 30 mW, Low = 1 dB
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Figure 3.8: Average percentage of admitted SUEs vs. Rm.

and Rm = 4 bps/Hz. Numerical results are obtained and averaged for 50 different

realizations, where in each realization, the UE positions and channel gains are var-

ied. Fig. 3.11 shows the average percentage of admitted SUEs vs. Rf . We notice

that, generally, as the rate requirement increases, more SUEs are in outage. We also

notice that the distributed scheme converges approximately to the same solution as

the centralized solution.

Average percentage of admitted SUEs vs. Ps,max

We have the same setup as the one for the previous figure except for Rf = 10 bps/Hz.

Fig. 3.12 shows the average percentage of admitted SUEs vs. Ps,max. We notice that

as the maximum transmit power of the small cells increases, the average number of

admitted SUEs increases. This rate of increase, however, is not fixed as the system

is limited by the interference constraints for MUEs.

93



Chapter 3. Tier-Aware Resource Allocation in OFDMA Macrocell-Small Cell
Networks

1 2 3 4 5
50

55

60

65

70

75

80

R
m

 (bps/Hz)

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 c

ha
nn

el
 u

sa
ge

 

 
Centralized
Distributed

Figure 3.9: Average percentage of channel usage vs. Rm.

3.5.3 Summary of Major Observations

The major observations from the numerical analysis can be summarized as follows:

• In a multi-tier network, it is critical to consider the impact of RA decisions in

one tier on the other one. For the macrocell network, as different RA schemes

are used to achieve the same rate requirements for the MUEs, they affect the

performance of the small cell tier differently.

• The proposed problem formulation for resource allocation in the macrocell leads

to a minimal use of the system bandwidth which allows to admit a higher

number of SUEs when compared to the traditional scheme that minimizes the

sum-power.

• For a given macrocell RA policy, increasing the rate requirements for the MUEs

degrades the performance of small cell tier in terms of the average number of

admitted SUEs.
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Figure 3.10: Convergence of Algorithm 7.

• By exploiting the time sharing property (i.e., the UEs time share the sub-

channels when served by the small cells), a convex optimization formulation

can be developed for the RA and AC problem for the small cells. This convex

formulation enables us to solve the problem efficiently in a distributed fashion.

The distributed algorithm for resource allocation for the small cell tier converges

to the same solution as the centralized solution.

• If the deployment of the small cells is such that they are well isolated, resource

allocation in the macrocell might have very little effect on the performance of

small cells.

3.6 Conclusion

We have proposed a complete framework for resource allocation and admission control

in a two-tier OFDMA cellular network. Different optimization problems with new

objectives have been formulated for the macrocell tier and the small cell tier. The
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Figure 3.11: Average percentage of admitted SUEs vs. Rf .

macrocell tier aims at allocating resources to its MUEs in a way that can tolerate the

maximum possible interference from the small cell tier. This problem has been shown

to be an MINLP. However, we have proved that the macrocell can solve an alternate

optimization problem that yields the optimal solution in polynomial time. Now, given

the interference constraints for the MUEs, the small cells perform resource allocation

and admission control with the objective of maximizing the number of admitted SUEs

and serving them with the minimum possible bandwidth. This problem has also been

shown to be an MINLP. A convex relaxation has been used to study the behavior

of the MINLP formulation. Since centralized solutions for resource allocation are

not practical for dense networks, a distributed solution for resource allocation and

admission control has been proposed using dual decomposition technique and has been

shown to converge to the same solution as the centralized one. Numerical results have

shown the efficacy of the proposed tier-aware resource allocation methods.
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Chapter 4

Resource Allocation for an

OFDMA Cloud-RAN of Small

Cells Underlaying a Macrocell

4.1 Introduction

It is anticipated that by 2020, wireless communication systems will have to support

more than 1000 times todays traffic volume [1,49]. Besides, there will be an unprece-

dented number of mobile devices with a much wider range of use-case characteristics

and diverse QoS requirements. Hence, the fifth-generation (5G) wireless technologies

are being sought. In this context, cloud radio access network (C-RAN) has been con-

sidered as a typical realization of a mobile network which is capable of supporting soft

and green technologies in 5G networks in year 2020 horizon [86]. More specifically,

C-RAN has been proposed as a platform for the practical implementation of net-

work multiple-input multiple-output (MIMO) and coordinated multi-point (CoMP)

transmission concepts [5]. C-RAN can manage the inter-cell interference, increase
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network capacity and energy efficiency, and reduce both the network capital expen-

diture (CAPEX) and operating expense (OPEX) [87]. To achieve these benefits in a

multi-tier 5G network, small cells can be deployed in a C-RAN architecture.

In this Chapter, I study the RA problem in a two-tier OFDMA wireless network

composed of a macrocell overlaid by small cells deployed in a C-RAN architecture.

The objective of the macrocell is to allocate resources to its MUEs to satisfy their

data rate requirements, in a way that can tolerate the highest possible interference

from the small cells. In other words, the macrocell objective is to maximize the sum of

the interference levels it can tolerate. This is unlike the traditional “min sum-power”

and “max sum-rate” objective functions [76]. I advocated the use of such objective

function in the previous Chapter, as well as in a previous work [8], and argued that

such objective function brings up the notion of “tier-awareness”, where the macrocell

performs resource allocation while taking into consideration the impact of its RA

decisions on the small cells performance. However, some simplifying assumptions

were made in [8], which I relax in this Chapter. I show that this problem is an MINLP

problem whose optimal solution is intractable. However, to gain further insights into

the behavior of the RA problem with the proposed objective function, I investigate

the macrocell RA problem for a single MUE. In that case, I show that I can obtain

the optimal solution, with polynomial time complexity, despite the non-convexity of

the single MUE RA problem. Motivated by the observations from the single-MUE

macrocell RA problem, I propose a lower complexity algorithm for the multi-MUE

case that relies on the framework of successive convex approximation (SCA) presented

in [88] and [89]. The general idea of SCA approach is to approximate the original

non-convex problem by another convex one, which can be efficiently solved. Then, by

updating the variables involved, I iteratively solve the approximating convex problem
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until convergence. Upon convergence, I end up with a feasible solution to the original

non-convex problem that satisfies its necessary KKT optimality conditions.

For the C-RAN of small cells, the objective is to minimize the total downlink

transmit power while satisfying the QoS requirements of SUEs. However, one of

the limiting factors for C-RAN performance is the limited capacity of the fronthaul

links connecting the small cells to the cloud [87]. Besides, MUEs must usually be

protected against small cells transmissions. Moreover, to incorporate the idea of

“tier-awareness” in the C-RAN RA problem, I impose a limit on the the number of

sub-channels that can be allocated to the SUEs. This brings additional constraints

for the RA problem for the small cells in terms of fronthaul capacity constraints,

interference thresholds for the MUEs, and the number of allocated sub-channels.

In addition, AC is considered in case the C-RAN optimization problem becomes

infeasbile [55]. I show that the RA problem for the C-RAN is an MINLP for which I

propose a low-complexity, yet efficient, solution based on the framework of SCA.

Numerical results confirm the different impacts of the different RA policies em-

ployed at the macrocell on the small cells’ performance. Hence, it is important to

carefully select the objective function employed in the macrocell RA problem. More-

over, I investigate the effect of the different parameters of the C-RAN RA problem

and their impact on the overall C-RAN performance.

The rest of this Chapter is organized as follows. Section 4.2 reviews the related

work and highlights the contribution of this Chapter. Section 4.3 presents the system

model and assumptions. In Section 4.4, I present the optimization problem formu-

lation for the macrocell RA problem and in Section 4.5, I present the optimization

problem formulation for the C-RAN RA problem. Numerical results are discussed in

Section 4.6 and, finally, Section 4.7 concludes the Chapter.
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4.2 Related Work

In [90], the authors formulated the joint remote radio head (RRH) selection and power

consumption minimization (in both the RRHs and the fronthaul links), subject to user

QoS requirements and RRH power budget, as a group sparse beamforming problem.

The authors in [91] studied a similar problem and designed a joint downlink and up-

link user association and beamforming scheme. However, the works in [90] and [91]

assumed unlimited capacity fronthaul links. The authors in [92] studied the problem

of minimizing the amount of backhaul user data transfer in a multi-cell CoMP network

subject to users’ QoS constraints and per-base station (BS) power constraints. The

authors in [93] aimed at optimizing the end-to-end TCP throughput performance

of Mobile Cloud Computing (MCC) users in a C-RAN network through topology

configuration and rate allocation. In their work, the impact of the limited C-RAN

backhaul capacity is, mainly, on the accuracy of the obtained channel state infor-

mation (CSI). The authors in [94] studied the delay-aware cooperative beamforming

problem in a C-RAN network, where the impact of the limited backhaul capacity

was on the cooperating small cells’ cluster size. However, [92–94] did not constrain

the capacity consumption of individual backhaul links. In other words, they did not

impose explicit backhaul capacity constraints on the backhaul links. The authors

in [95] studied the problem of AC and total power minimization in a C-RAN subject

to fronthaul constraints, power budget constraints, and user QoS requirements. The

authors in [96] aimed at maximizing the downlink weighted sum-rate in a C-RAN net-

work, with per-BS power budget and backhaul constraints, using different clustering

configurations. The authors in [97] designed a user-specific clustering scheme which

aimed at maximizing the average throughput in a C-RAN network while considering

the limitations on the existing backhaul links. The authors in [98] minimized the total
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network transmit power in a C-RAN subject to users’ QoS for both secure commu-

nication and efficient wireless power transfer, limited backhaul capacity, and power

budget constraints. However, the authors in [95–98] only considered single channel

single-tier systems. Moreover, [96–98] did not consider AC to deal with infeasibility

problems in case it is not possible to satisfy the QoS of all served UEs. The authors

in [99] aimed at maximizing the system throughput by jointly designing a wireless

power control and a practical fronthaul quantization scheme, based upon uniform

scalar quantization, in an OFDMA C-RAN system. In [100], the authors studied

the CoMP transmission in a C-RAN network and targeted at maximizing the users’

achievable rate through optimizing the distributed compression rate used at each co-

ordinating node. In [101], the problem of maximizing the weighted sum-rate in a C-

RAN network, subject to power and backhaul capacity constraints, through the joint

design of precoding and backhaul (multivariate) compression strategies was studied.

The authors in [102] reduced the load over the fronthaul links in an OFDMA C-RAN

network by employing the techniques of distributed compressive sensing, where dis-

tributed fronthaul compression is used at the RRHs, whereas recovery techniques are

deployed at the BBU pools.

Different from the cited works, I propose to study the “Tier-Aware” RA problem

in a multi-channel (OFDMA) and multi-tier system with a macrocell that is overlaid

with C-RAN of small cells. In particular, I formulate the RA problem for both the

macrocell tier and the C-RAN tier and show the impact of different RA policies in

the macrocell tier on the performance of the C-RAN of small cells tier. Moreover, the

C-RAN RA problem accounts for SUEs’ QoS requirements, limited capacity fronthaul

links, and interference thresholds for the MUEs. Besides, the C-RAN RA problem

takes into consideration AC in case it is not possible to support all SUEs at their

102



Chapter 4. Resource Allocation for an OFDMA Cloud-RAN of Small Cells
underlaying a Macrocell

target QoS requirements.

4.3 System Model and Assumptions
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Figure 4.1: Two-tier network with small cells deployed in a C-RAN architecture
within the coverage area of a macrocell.

We consider the downlink of a two-tier cellular network where, a single macrocell,

referred to by the index B, is overlaid with S small cells. Denote by S the set of small

cells where, S = |S|. The small cells are deployed using a C-RAN architecture as

shown in Fig. 4.1. A C-RAN is composed of a centralized processor that is referred

to as the baseband unit (BBU) pool or the cloud. Small cells or RRHs1 are connected

to the BBU pool through limited capacity fronthaul links to enable centralized pro-

cessing, collaborative transmission, and real-time cloud computing. Small cells are

responsible for forwarding RF signals to UEs while leaving the baseband processing

and general RA tasks to the BBU pool. Hence, small cells can be relatively simple.

Such a two-tier setup is referred to as “C-RAN for capacity boosting”, where small

cells are deployed in a C-RAN architecture within an underlying macrocell in order

1Throughout the rest of this Chapter, the terms “small cells” and “RRHs” will be used inter-
changeably.
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to boost network capacity [87]. For simplicity, we assume the macrocell B to be

equipped with a single antenna, whereas each small cell is equipped with Ω anten-

nas2 [103]. All UEs are equipped with single antenna. Denote byM the set of MUEs

with M = |M|. In addition, denote by F the set of SUEs in the system with F = |F|.

To limit computational complexity, an SUE f is constrained to be served by a cluster

Sf =
{
s1, s2, ..., s|Sf |

}
of nearby small cells, where |Sf | < S [104].

We have an OFDMA system, where we denote by N the set of available sub-

channels with N = |N | and ∆f is the bandwidth of a sub-channel n. To maximize

spectral efficiency, universal frequency reuse is assumed, where the macrocell and all

the small cells have access to the same set of sub-channels N [66]. Denote by Γnj the

sub-channel allocation indicator i.e. Γnj = 1, if sub-channel n is allocated to UE j and

takes the value of 0 otherwise. In this context, we define Nj = {n ∈ N : Γnj = 1},

i.e., the set of sub-channels allocated to UE j. We have Nj = |Nj|. Denote by P n
i,j

the allocated power to the link between BS i and UE j on sub-channel n. Moreover,

denote by wn
i,j ∈ CΩ×1 as the precoding vector at small cell i corresponding to the

signal transmitted to SUE j on sub-channel n. Define gnB,j as the channel power gain

between macrocell B and UE j on sub-channel n. On the other hand, hni,j ∈ CΩ×1

denotes the complex channel gain between small cell i and UE j on sub-channel n.

Channel gains are time varying and account for path-loss and fast fading.

For an MUE m served by macrocell B on sub-channel n, its received signal can

2This can be attributed to the fact that the macrocell tier is assumed to be an already existing
one that provides universal coverage, whereas the C-RAN of small cells tier is deployed on top of
the macrocell tier as an enhancement layer.
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be written as:

ϑnB,m =Hn
B,m

√
P n
B,mlB,mu

n
m︸ ︷︷ ︸

desired signal

+
F∑
f=1

∑
s∈Sf

hnHs,mwn
s,f

unf︸ ︷︷ ︸
cross-tier interference signal

+ ωnm (4.1)

where unj is the transmitted information symbol with unit variance for UE j on

sub-channel n, lB,j is the path-loss between macrocell B and UE j, Hn
B,j is the fast

fading coefficient between macrocell B and UE j on sub-channel n, and ωnj is the

additive white Gaussian noise (AWGN) in sub-channel n at UE j with zero mean and

variance No. In (4.1), cross-tier interference is due to the transmissions of small cells

to their SUEs on sub-channel n.

In the subsequent sections, the cross-tier interference signal power in (4.1) will be

replaced by the maximum interference Inm that MUE m can tolerate on sub-channel

n. In this context, the received SINR γnB,m of an MUE m served by macrocell B on

a sub-channel n can be expressed as follows:

γnB,m =
P n
B,mg

n
B,m

Inm +No

(4.2)

where gnB,j ,
∣∣Hn

B,j

∣∣2 lB,j and Inm is the maximum tolerable interference level at MUE

m on sub-channel n. According to (4.2), the following constraint holds for the trans-

mission powers of small cells using sub-channel n:

Γnm

 F∑
f=1

∣∣∣∣∣∣
∑
s∈Sf

hnHs,mwn
s,f

∣∣∣∣∣∣
2 ≤ ΓnmI

n
m (4.3)

where the constraint is active only if sub-channel n is allocated to MUE m, i.e., Γnm =

1. Hence, (4.2) can be referred to as the worst-case SINR assuming the inequality in
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(4.3) holds with equality3.

For an SUE f served by a cluster of RRHs Sf on sub-channel n, its received signal

can be written as:

ϑnSf ,f =

∑
s∈Sf

hnHs,f wn
s,f

unf︸ ︷︷ ︸
desired signal

+
F∑

i=1,i 6=f

(∑
l∈Si

hnHl,f wn
l,i

)
uni︸ ︷︷ ︸

co-tier interference signal

+

M∑
m=1

ΓnmH
n
B,f

√
P n
B,mlB,fu

n
m︸ ︷︷ ︸

cross-tier interference signal

+ ωnf (4.4)

The interference is due to transmissions of small cells to other SUEs and macrocell

transmissions to its MUEs. Hence, its SINR can be defined as:

γnSf ,f =

∣∣∣∣∣ ∑s∈SfhnHs,f wn
s,f

∣∣∣∣∣
2

F∑
i=1,i 6=f

∣∣∣∣∑
l∈Si

hnHl,f wn
l,i

∣∣∣∣2 +
M∑
m=1

ΓnmP
n
B,mg

n
B,f +No

(4.5)

4.4 Formulation of RA Problem for Macrocell

We develop the mathematical formulation for the RA framework for the macrocell.

The macrocell allocates sub-channels to its MUEs and specifies, on each allocated

sub-channel, the suitable power level and the maximum tolerable interference level.

The objective of the macrocell is to allocate resources to its MUEs in a way that can

sustain the highest possible interference levels. This problem has been studied before

in our previous work [8]. However, uniform power allocation was assumed in [8].

3Note that (4.3) is also known as the interference temperature constraint in cognitive radio
networks. It has been used, as well, extensively in two tier macrocell small cell networks to limit
the cross-tier interference introduced to MUEs, who have a strictly higher priority in accessing the
underlying frequency bands [66].
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Moreover, it was assumed that the QoS requirements for the MUEs can be satisfied

using a single sub-channel only. In the current work, we relax those simplifying

assumptions. The formulated optimization problem can be described mathematically

as follows:

max
{Γn

m,I
n
m,P

n
B,m}

M∑
m=1

N∑
n=1

Inm

subject to

C1 :
N∑
n=1

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
≥ Rm, ∀m ∈M

C2 :
M∑
m=1

N∑
n=1

P n
B,m ≤ PB,max

C3 :
M∑
m=1

Γnm ≤ 1, ∀n ∈ N

C4 : P n
B,m ≤ ΓnmPB,max, ∀m ∈M, n ∈ N

C5 : Inm ≥ (1− Γnm) Imax, ∀m ∈M, n ∈ N

C6 : Γnm ∈ {0, 1}, P n
B,m ≥ 0, Inm ≥ Imin, I

n
m ≤ Imax, ∀m ∈M, n ∈ N (4.6)

In (4.6), the objective is to maximize the sum of the tolerable interference levels.

C1 is a minimum data rate requirement for each MUE m. C2 is a power budget

constraint for the macrocell B. C3 dictates that sub-channel n is allocated to at most

one MUE. C4 enforces the power level P n
B,m to zero if sub-channel n is not allocated

to MUE m. Similarly, C5 enforces the maximum tolerable interference level Inm to

Imax if sub-channel n is not allocated to MUE m. Finally, C6 indicates that Γnm is

a binary variable, whereas P n
B,m is a continuous non-negative variable. Moreover, C6

sets lower and upper bounds on the values of Inm. Note that the upper bound value

Imax is a relatively large value which is imposed to guarantee a finite value for the
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objective function. In other words, a sub-channel n that is not allocated to an MUE

m will have Inm = Imax. From C5 and C6, one can observe that the formulation in

(4.6) will try to set as many Γnm as possible to zero in order to yield Inm = Imax. In

other words, this formulation tends to minimize the number of used sub-channels as

was already discussed in [8] and [105].

The optimization problem in (4.6) is a mixed integer non-linear problem whose

feasible set is non-convex and is NP-hard to solve in general. The non-convexity is

attributed to two reasons. The first one is the combinatorial nature of sub-channel

allocation. The second one is due to the constraint C1 being neither jointly concave

nor convex in the variables P n
B,m and Inm. In the following sub-section, we examine the

RA problem for a single MUE in order to see how the system behaves according to

the proposed objective of maximizing the sum of tolerable interference levels. Hence,

no sub-channel allocation indicator will exist for the single MUE scenario. Then, we

will discuss how to solve the problem for the mutli-MUE case.

4.4.1 Macrocell RA Problem With Single MUE

In this subsection, we analyze the RA problem for a single MUE m based on the

objective of maximizing the sum of tolerable interference levels. We have the following
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optimization problem:

max
{Inm,Pn

B,m}

N∑
n=1

Inm

subject to

C1 :
N∑
n=1

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
≥ Rm

C2 :
N∑
n=1

P n
B,m ≤ PB,max

C3 : P n
B,m ≥ 0, Inm ≥ Imin, I

n
m ≤ Imax, n ∈ N (4.7)

Define the following Lagrange dual function:

L
(
{Inm, P n

B,m}, α, λ
)

=
N∑
n=1

Inm + α

(
N∑
n=1

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
−Rm

)
+

λ

(
PB,max −

N∑
n=1

P n
B,m

)
(4.8)

where α ≥ 0 and λ ≥ 0 are the Lagrange multipliers for the constraints C1 and

C2, respectively. Denote by In∗m and P n∗
B,m the optimal solution for problem (4.7).

Applying the KKT conditions, we have the following necessary conditions for the
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optimality of In∗m and P n∗
B,m:

∂L (· · · )
∂P n∗

B,m


< 0, P n∗

B,m = 0

= 0, 0 < P n∗
B,m < PB,max

> 0, P n∗
B,m = PB,max

,∀n ∈ N (4.9)

∂L (· · · )
∂In∗m


< 0, In∗m = Imin

= 0, Imin < In∗m < Imax

> 0, In∗m = Imax

, ∀n ∈ N (4.10)

α

(
N∑
n=1

∆f log2

(
1 +

P n∗
B,mg

n
B,m

In∗m +No

)
−Rm

)
= 0 (4.11)

λ

(
PB,max −

N∑
n=1

P n∗
B,m

)
= 0 (4.12)

Those conditions are necessary but not sufficient for the optimality of In∗m and

P n∗
B,m owing to the non-convexity of the problem (4.7) [44]. However, we will propose

an algorithm that will solve the equations resulting from the KKT conditions and

show that it yields the optimal solution.

Proposition 4.4.1. At optimality, the rate constraint C1 and the total power budget

constraint C2 in (4.7) hold with equality.

Proof. To establish this result, assume that, at optimality, the constraints C1 and

C2 in (4.7) are inactive and that the optimal solution is {In∧m , P n∧
B,m}. However, we

observe that the objective function is monotonically increasing in Inm, whereas the

constraint C1 is monotonically decreasing in Inm. Hence, for a given power allocation

{P n∧
B,m}, {In∧m } can be increased to {In∨m } until the constraint C1 holds with equality.

On the other hand, on an allocated sub-channel n, In∨m is allowed to increase further

only if P n∧
B,m is allowed to increase. Since the available power budget PB,max is finite,
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In∨m can be increased further until constraint C2 holds with equality. This results in a

strictly larger objective function which contradicts the assumption that the solution

{In∧m , P n∧
B,m} is optimal.

Proposition 4.4.2. On an allocated sub-channel n with 0 < P n∗
B,m < PB,max and

Imin < In∗m < Imax, P n∗
B,m and In∗m can be expressed as follows:

P n∗
B,m =

(
α∆f

λ ln 2
− In∗m +No

gnB,m

)
(4.13)

In∗m =
−P n∗

B,mg
n
B,m

2
−No +

√(
P n∗
B,mg

n
B,m

)2
+
(
4α∆fP n∗

B,mg
n
B,m/ ln 2

)
2

(4.14)

and the following relation holds:

P n∗
B,m

In∗m +No

=
1

λ
(4.15)

Proof. This can be proved by setting both differentiations of L
(
{Inm, P n

B,m}, α, λ
)

with

respect to In∗m and P n∗
B,m to zero. From the two resulting equations, (4.13)-(4.15) can

be deduced, keeping in mind that In∗m cannot be negative.

Proposition 4.4.3. Let the set of sub-channels N = {1, 2, ..., N} be sorted such that

g1
B,m ≥ g2

B,m ≥ ... ≥ gNB,m and assume that it is possible to serve MUE m by the

first K ≤ N best sub-channels. On the set K = {1, 2, ..., K} of sub-channels, we

will have IKm ≥ Imin, whereas Inm = Imin, n = 1, 2, ..., K − 1. On the other hand,

Inm = Imax, n = K + 1, K + 2, ..., N .

Proof. To see this, assume at the beginning that the data requirement Rm is low such

that it is possible to serve MUE m by one sub-channel only which will be sub-channel

1 in our case (the sub-channel with the highest gain). According to Proposition 4.4.1,
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constraints C1 and C2 should hold with equality. Hence, P 1
B,m = PB,max and I1

m

can be determined from constraint C1. For all other n = 2, 3, ..., N , P n
B,m = 0 and

Inm = Imax with an objective function value (N − 1) Imax+I1
m. As the rate requirement

Rm gradually increases, I1
m will be the only variable affected to satisfy constraint C1,

whereas all other Inm, n = 2, 3, ..., N will remain equal to Imax. Sub-channel n = 2 will

not have a value of P n
B,m that is greater than zero and a value of Inm that is less than

Imax until I1
m reaches Imin. Similar arguments apply for the case of multiple allocated

sub-channels.

According to the previous discussions, problem (4.7) can be solved optimally by

using Algorithm 8. Algorithm 8 seeks a solution at which the constraint C1 holds

with equality and the whole power budget in C2 is consumed.

Algorithm 8 Optimal interference and power allocation algorithm

1: Sort the set of available sub-channels N = {1, 2, ..., N} such that g1B,m ≥ g2B,m ≥ ... ≥ gNB,m

2: Initialize k = 1
3: Assume P k

B,m = PB,max and find Ikm using constraint C1

4: if Ikm ≥ Imin then
5: Set Pn

B,m = 0 and Inm = Imax,∀n = 2, 3, ..., N
6: Terminate as the optimal solution has been obtained
7: else
8: Increment k
9: repeat

10: Set Inm = Imin,∀n = 1, 2, ..., k − 1
11: Solve the following system of non-linear equations in the unknowns α and λ using (4.13)-

(4.15):

k∑
n=1

Pn
B,m = PB,max

k−1∑
n=1

log2

(
1 +

Pn
B,mg

n
B,m

Imin +No

)
+ log2

(
1 +

gkB,m

λ

)
=
Rm

∆f

12: until A feasible solution is obtained or else increment k
13: end if
14: Set Inm = Imax and Pn

B,m = 0, ∀n = k + 1, ..., N
15: Undo the sub-channels sorting
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The idea of Algorithm 8 is based upon hypothesis testing. First, it makes the

assumption that only one sub-channel is needed (which is the best sub-channel) and

checks whether there is a feasible solution at which the constraints hold with equality.

If not, the hypothesis is rejected and a new hypothesis is formed by including the

second best sub-channel and so forth. The total number of hypotheses is N which is

the total number of available sub-channels. This implies a linear complexity in the

number of sub-channels. On the other hand, step 1 requires the sub-channels to be

sorted. The complexity of the best sorting algorithm is O (N log2N) [106].

4.4.2 Macrocell RA Problem With Multiple MUEs

In the single-MUE resource allocation case, a greedy approach was adopted, where

the sub-channels with the highest gains are assigned first. This approach leads to the

optimal allocation in the sense of maximizing the sum of tolerable interference levels.

The RA problem becomes much more difficult in the case of multiple MUEs due to

the coupling among MUEs in terms of the requirement of the orthogonality of the

allocated sub-channels and the share that each MUE receives in the available power

budget PB,max. A more tractable approach that has been followed in the literature is

to separate the RA problem into two steps [40], [41], [42]. The first step is to perform

sub-channel allocation for given power and interference allocation. Then for the

resulting sub-channel allocation, power and interference allocation can be performed.

Sub-channel allocation in the macrocell

In this section, we propose a suboptimal sub-channel allocation algorithm. In this

algorithm, uniform power distribution and Inm = Imin are assumed across all sub-

channels. We define Rach,m as the achieved data rate for MUE m, A as the set
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of available sub-channels for allocation, Nac as the total number of allocated sub-

channels, and Mcand as the set of candidate MUEs for sub-channel allocation. The

steps are given in Algorithm 9.

Algorithm 9 Sub-channel allocation in the macrocell
1: Initialize Nac = N
2: repeat
3: Initialize Rach,m = 0, Nm = φ, Pn

B,m = Punif =
PB,max

Nac
, ∀n ∈ N ,m ∈M and A = N

4: Phase 1 (Initialize Mcand =M)
5: repeat
6: n∗,m∗ = arg max

n∈A, m∈Mcand

gnB,m

7: Set Γn∗

m∗ = 1

8: Update Nm∗ = Nm∗ ∪{n∗}, A = A−{n∗}, Rach,m∗ = Rach,m∗ +∆f log2

(
1 +

Punifg
n∗
B,m∗

Imin+No

)
and Mcand =Mcand − {m∗}

9: untilMcand = ∅
10: Phase 2
11: repeat
12: m∗ = arg min

m∈M
Rach,m

13: n∗ = arg max
n∈A

gnB,m∗

14: Set Γn∗

m∗ = 1
15: Update Nm∗ = Nm∗ ∪ {n∗}, A = A − {n∗} and Rach,m∗ = Rach,m∗ +

∆f log2

(
1 +

Punifg
n∗
B,m∗

Imin+No

)
16: until No MUE m has Rach,m < Rm

17: Update Nac

18: until No change in the total number of allocated sub-channels Nac

In Algorithm 9, it is assumed at the beginning that all sub-channels are allocated,

i.e., Nac = N . Phase 1 ensures that each MUE m ∈ M is allocated one good sub-

channel. Note that maximizing the sum of tolerable interference levels leads to a

minimal use of the available bandwidth [8, 105]. Hence, Phase 2 allocates enough

number of sub-channels for each MUE just to satisfy its data rate requirements. In

step 17, the total number of allocated sub-channels Nac is updated, based on which,

the iterations may repeat. Algorithm 9 terminates when there is no change in the

number of allocated sub-channels. Steps 5-9 have a complexity that is of O (NM2).

Steps 11-16, on the other hand, have a complexity that is of O (N (N +M)). The
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overall algorithm will repeat at most O (N) times.

Power and maximum tolerable interference levels specification

in the macrocell

For the given sub-channel allocation, the problem of power and maximum tolerable

interference level allocation can be reformulated as shown in (4.16).

This problem is still non-convex owing to the constraint C1. One way to deal with

such type of problems is by the use of an SCA approach [88, 89]. SCA approaches

are capable of obtaining solutions that satisfy the KKT conditions of the original

non-convex problem. The general idea of an SCA algorithm is to approximate the

original non-convex problem by a series of convex approximations. Therefore, starting

at some initial point, we solve an approximate convex problem and use the solution

of that approximate problem as an initial point for a new convex problem. The entire

procedure repeats until it converges to a solution that satisfies the KKT conditions

of the original non-convex problem. Similar approaches have been adopted in [107]

and [108].

max
{Inm,Pn

B,m}

M∑
m=1

∑
n∈Nm

Inm

subject to

C1 :
∑
n∈Nm

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
≥ Rm, ∀m ∈M

C2 :
M∑
m=1

∑
n∈Nm

P n
B,m ≤ PB,max

C3 : P n
B,m ≥ 0, Inm ≥ Imin, I

n
m ≤ Imax, ∀m ∈M, n ∈ N (4.16)
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Problem (4.16) is said to have a difference of convex (d.c.) structure [107] as

constraint C1 can be written as the difference of two concave functions as follows:

∆f log2

(
1 +

P n
B,mg

n
B,m

Inm +No

)
= ∆f

{
log2

(
Inm +No + P n

B,mg
n
B,m

)
− log2 (Inm +No)

}
(4.17)

It is obvious from (4.17) that the term log2 (Inm +No) is concave in Inm, which is the

reason for non-convexity of the problem. Thus, by using an SCA approach, in the

zth iteration, the term log2 (Inm +No) will be replaced by an approximating convex

one. Let g (Inm) = log2 (Inm +No) and ḡ
(
Inm, I

n,(z−1)
m

)
= a

n,(z)
m (Inm +No) + b

n,(z)
m be

the approximating convex one around the point I
n,(z−1)
m , where I

n,(z−1)
m is the optimal

solution of the approximated problem in the (z − 1)th iteration. According to [88],

ḡ
(
Inm, I

n,(z−1)
m

)
must have the following properties:

g (Inm) ≤ ḡ
(
Inm, I

n,(z−1)
m

)
, ∀Inm

g
(
In,(z−1)
m

)
= ḡ

(
In,(z−1)
m , In,(z−1)

m

)
∂g
(
In,(z−1)
m

)
/∂Inm = ∂ḡ

(
In,(z−1)
m , In,(z−1)

m

)
/∂Inm (4.18)

According to the properties in (4.18), the approximation constants a
n,(z)
m and b

n,(z)
m

are chosen as follows:

an,(z)m =
1

ln 2
(
I
n,(z−1)
m +No

)
bn,(z)m = log2

(
In,(z−1)
m +No

)
− 1

ln 2
(4.19)
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Therefore, in the zth iteration, constraint C1 in (4.16) can be re-written as:

∑
n∈Nm

∆f
{

log2

(
Inm +No + P n

B,mg
n
B,m

)
− ḡ

(
Inm, I

n,(z−1)
m

)}
≥ Rm, ∀m ∈M (4.20)

Note that, with constraint C1 in (4.16) expressed as shown in (4.20), problem

(4.16) now becomes a convex optimization problem that can be efficiently solved by

the interior point method [44]. The general SCA algorithm for solving (4.16) is shown

in Algorithm 10.

Proposition 4.4.4. In Algorithm 10, the iterates produce a sequence of non-

decreasing objective function values that is guaranteed to converge. Moreover, con-

vergence takes place to a solution that satisfies the KKT conditions of (4.16).

Proof. The convergence of Algorithm 10 is guaranteed as follows. In the zth it-

eration, the optimal solution {In,(z)m } and {P n,(z)
B,m } are feasible for the approximated

problem in the (z + 1)th iteration. Thus, the objective function of the approximated

problem in the (z+1)th iteration is greater than or equal to that in the zth iteration. In

other words, Algorithm 10 produces a sequence of non-decreasing objective function

values. In addition, the problem is bounded above due to the imposed constraints.

Hence, Algorithm 10 converges to some local optimum solution of (4.16). From the

analysis in [88] and [89], this solution can be shown to satisfy the KKT conditions of

the original problem (4.16).

Although the resulting solution from Algorithm 10 is a local optimum in general,

such an SCA approach generally yields solutions that are very close to the global

optimum [109].
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Algorithm 10 Successive convex approximation algorithm for problem (4.16)

1: Initialize I
n,(0)
m = Imin, ∀n ∈ N ,m ∈M and set z = 1

2: repeat
3: Form the zth approximated problem by expressing constraint C1 in (4.16) as shown in (4.20)

4: Solve the zth approximated convex problem to obtain I
n,(z)
m

5: Increment z
6: until Convergence

4.5 Formulation of RA Problem for C-RAN

Given the resource allocation results of the macrocell problem, the objective of the

RA problem for the C-RAN is to minimize the total downlink transmit power subject

to the QoS requirements of SUEs, interference thresholds for MUEs, and the fronthaul

capacity constraints. This RA problem can be stated as follows:

min
{Γn

f ,w
n
s,f}

S∑
s=1

F∑
f=1

N∑
n=1

∥∥wn
s,f

∥∥2

subject to

C1 :
N∑
n=1

∆f log2

(
1 + γnSf ,f

)
≥ Rf , ∀f ∈ F

C2 :
∥∥wn

s,f

∥∥2 ≤ ΓnfPs,max ,∀s ∈ S, ∀f ∈ F , n ∈ N

C3 :
N∑
n=1

Γnf ≤ qf , ∀f ∈ F

C4 :
F∑
f=1

N∑
n=1

∥∥wn
s,f

∥∥2 ≤ Ps,max, ∀s ∈ S

C5 :
F∑
f=1

Ψst

(
N∑
n=1

∥∥wn
s,f

∥∥2

)
≤ Cs,max, ∀s ∈ S

C6 : Γnm

 F∑
f=1

∣∣∣∣∣∣
∑
s∈Sf

hnHs,mwn
s,f

∣∣∣∣∣∣
2 ≤ ΓnmI

n
m, ∀n ∈ N

C7 : Γnf ∈ {0, 1}, wn
s,f ∈ CΩ×1 ,∀s ∈ S, ∀f ∈ F , n ∈ N (4.21)

118



Chapter 4. Resource Allocation for an OFDMA Cloud-RAN of Small Cells
underlaying a Macrocell

where the objective in (4.21) is to perform sub-channel and power allocation to min-

imize the total downlink transmit power. Constraint C1 is the data rate constraint

for each SUE f . Constraint C2 enforces the transmission power on an unallocated

sub-channel to be zero. Constraint C3 limits the number of allocated sub-channels to

SUE f to qf sub-channels. The idea is to prevent the cloud from greedily allocating

all the available sub-channels to its SUEs in order to leave some sub-channels for the

other network tiers (e.g., for D2D communication). C4 is an indication of the total

power budget available at each RRH s which is Ps,max. C5 is the fronthaul constraint

which limits the number of baseband signals transmitted on the fronthaul link be-

tween the cloud and RRH s to Cs,max, where Ψst (x) , x ≥ 0 is the step function which

is defined as:

Ψst (x) =

1, if x > 0

0, if x = 0
(4.22)

Recall that
∥∥wn

s,f

∥∥2
= P n

s,f denotes the power allocated by RRH s to SUE f on

sub-channel n. If
∥∥wn

s,f

∥∥2
= 0,∀n ∈ N , this indicates that RRH s does not serve

SUE f and that the fronthaul link between the cloud and RRH s does not carry the

baseband signal for SUE f . On the other hand, if there is at least one sub-channel n

such that
∥∥wn

s,f

∥∥2
> 0, then RRH s serves SUE f and the fronthaul link between the

cloud and RRH s carries the baseband signal for SUE f . Owing to the finite capacity

of the fronthaul link between RRH s and the cloud, there is an upper bound Cs,max

on the number of baseband signals that can be transmitted from the cloud to an RRH

s. C6 puts a limit on the total interference introduced to MUE m by the downlink

transmissions of RRHs on sub-channel n, which is active only if sub-channel n is

allocated to MUE m, i.e., Γnm = 1. Finally, C7 indicates that Γnf is a binary variable
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whereas wn
s,f is an Ω× 1 complex vector.

Problem (4.21) is an MINLP non-convex problem whose optimal solution is in-

tractable due to the combinatorial nature of sub-channel allocation, the QoS con-

straint C1, and the discontinuous step function Ψst (x) in C5. Moreover, the problem

in (4.21) can easily become infeasible when, for instance, the QoS constraints for

all the SUEs cannot be achieved simultaneously. Therefore, some users should be

dropped by employing admission control [55, 110]. It becomes reasonable then to

maximize the number of SUEs that can be admitted at their target QoS, while mini-

mizing the total downlink transmit power. We shall account for infeasibility and how

to incorporate admission control in a later section. Now, since it will be prohibitive

to jointly perform sub-channel allocation, power allocation and admission control, it

will be separated into two phases: a sub-channel allocation phase and an admission

control and power allocation phase.

4.5.1 Sub-channel Allocation in the C-RAN

For the sub-channel allocation phase, it will be beneficial to distinguish between sub-

channels that are already allocated to MUEs and those sub-channels that are not.

Denote the stacked Ω|Sf |× 1 channel vector between a UE i and the set of RRHs Sf ,

serving SUE f , on sub-channel n as hnSf ,i =
[
hnHs1,i,h

nH
s2,i
, ...,hnHs|Sf |,i

]H
. Define the set

N ′ = {n ∈ N : Γnm = 0, ∀m ∈M} as the set of sub-channels that are not allocated

to MUEs. The cloud will start by allocating those sub-channels in the set N ′ to each

SUE f . More specifically, the cloud will sort the sub-channels in the set N ′ for each

SUE f in a descending order according to the metric:
(∥∥∥hnSf ,f∥∥∥). In other words,

the cloud will allocate the best sub-channels first to each SUE. If those sub-channels

in the set N ′ are not enough to satisfy the QoS requirement of the SUEs, the cloud
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Algorithm 11 Sub-channel allocation in the C-RAN
1: Given the set N ′
2: for f = 1 : F do
3: Initialize Nf = ∅, A = N ′

4: Sort sub-channels in the set A in descending order according to the metric
(∥∥∥hn

Sf ,f

∥∥∥)
5: if qf ≤ |A| then
6: Allocate the first qf sub-channels in the set A to SUE f
7: else
8: Allocate all sub-channels in the set A to SUE f
9: end if

10: Update Nf

11: end for
12: if All SUEs have their QoS requirement qf satisfied then
13: Terminate
14: else
15: Given the set N ′′
16: for f = 1 : F do
17: Initialize A = N ′′
18: Sort sub-channels in the set A in descending order according to the metric(∥∥∥hn

Sf ,f

∥∥∥ /∥∥∥hn
Sf ,m

∥∥∥)
19: Allocate enough sub-channels from the set A to SUE f such that its QoS requirement qf

is satisfied
20: Update Nf

21: end for
22: end if

will start allocating the remaining sub-channels in the set N ′′ = {n : n ∈ N −N ′},

(N ′
⋃
N ′′ = N ,N ′

⋂
N ′′ = ∅) to the SUEs. In this case, the cloud will sort the sub-

channels in the set N ′′ for each SUE f in a descending order according to the metric:(∥∥∥hnSf ,f∥∥∥ / ∥∥∥hnSf ,m∥∥∥). The idea of this metric is to allocate sub-channels to SUEs that

have high gains and that will cause low interference to the MUEs. The overall sub-

channel allocation algorithm can be summarized in Algorithm 11 the complexity of

which is of O (FN log2N).

4.5.2 Joint Power Allocation and Admission Control in the C-RAN

Given sub-channel allocation, the C-RAN can perform power allocation and ad-

mission control. First, for the set of RRHs Sf serving SUE f , let us define
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wn
Sf ,f =

[
wnH
s1,f

,wnH
s2,f

, ...,wnH
s|Sf |,f

]H
, where wn

Sf ,f ∈ CΩ|Sf |×1. Second, we introduce

the unconstrained real admission control variables yf that take the value of 0 only

if SUE f is admitted. Third, let Qs,f = diag

 s1︷︸︸︷
01×Ω, ...,

si︷︸︸︷
11×Ω,

si+1︷︸︸︷
01×Ω, ...,

s|Sf |︷︸︸︷
01×Ω

, if

si = s and s ∈ Sf . Hence,
∥∥wn

s,f

∥∥2
=
∥∥∥Qs,fw

n
Sf ,f

∥∥∥2

. In addition, by introducing the

additional auxiliary SINR variables µnf , we can rewrite the constraint C1 in (4.21) as

follows:

γnSf ,f ≥ µnf , ∀f ∈ F , n ∈ Nf (4.23)∑
n∈Nf

∆f log2

(
1 + µnf

)
≥ Rf , ∀f ∈ F (4.24)

The equivalence between equations (4.23) and (4.24) and the constraint C1 in

(4.21) stems from the fact that the inequalities in (4.23) and (4.24) hold with equality

at the optimum solution. Moreover, by exploiting the freedom of choosing the phase

of each precoding vector wn
Sf ,f [110] and from equation (4.5), equation (4.23) can be

further re-written as:

hnHSf ,fw
n
Sf ,f ≥

√
µnf ζ

n
f (4.25)

ζnf ≥

√√√√ F∑
i=1,i 6=f

∣∣hnHSi,fwn
Si,i
∣∣2 +

M∑
m=1

ΓnmP
n
B,mg

n
B,f +No (4.26)

Im
(
hnHSf ,fw

n
Sf ,f

)
= 0 (4.27)

where ζnf is an additionally introduced auxiliary variable. Again, the equivalence

between equations (4.25)-(4.27) and equation (4.23) can be recognized from the fact

that all the inequalities in (4.25)-(4.27) hold with equality at the optimum solution.
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Moreover, equation (4.27) forces the imaginary part of hnHSf ,fw
n
Sf ,f to 0. This can be

accomplished by rotating the phase of wn
Sf ,f such that hnHSf ,fw

n
Sf ,f becomes real valued

and positive.

By inspecting (4.25), we can see that it is not a convex constraint due to the

term g
(
µnf , ζ

n
f

)
=
√
µnf ζ

n
f . One approach that was followed in [111] is to replace the

non-convex term g
(
µnf , ζ

n
f

)
=
√
µnf ζ

n
f , in the zth iteration, by its convex upper bound

ḡ
(
µnf , ζ

n
f , φ

n(z−1)
f

)
=

φ
n(z−1)
f

2

(
ζnf
)2

+ 1

2φ
n(z−1)
f

µnf , for given φ
n(z−1)
f , and to iteratively solve

the resulting problem by updating φ
n(z−1)
f until convergence. It is straightforward to

show that g
(
µnf , ζ

n
f

)
and ḡ

(
µnf , ζ

n
f , φ

n(z−1)
f

)
will satisfy the conditions in (4.18) if we

set φ
n(z−1)
f =

√
µnf/ζ

n
f . It was shown in [89] that such SCA approach converges to a

KKT point of (4.21).

Remark 4.5.1. A lower complexity solution can be obtained by predefining the SINR

variables µnf for each SUE f on each allocated sub-channel n. One way of accom-

plishing this is by assuming equal SINR across the set of allocated sub-channels Nf .

Hence, we can set µnf = µf = 2(Rf/(∆f |Nf |))− 1, ∀f ∈ F , n ∈ Nf . In this way, (4.25)

becomes a convex constraint. This approach was followed in [112]. We shall refer to

this scheme as “Equal SINR”. Note that with either of the approaches, an admitted

SUE will have the same performance. However, the two approaches have different

impact on the network performance which will be assessed in Section 4.6.

As for constraint C5 in (4.21), the step function Ψst

(∑
n∈Nf

∥∥∥Qs,fw
n
Sf ,f

∥∥∥2
)

can

be approximated by using the following continuous concave approximation:

Ψst

∑
n∈Nf

P n
s,f

 ≈ Ξ (Ps,f ) =

∑
n∈Nf

P n
s,f∑

n∈Nf
P n
s,f + δ

(4.28)

where, for ease of presentation, we have let P n
s,f =

∥∥∥Qs,fw
n
Sf ,f

∥∥∥2

, Ps,f =
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P 1
s,f , ..., P

n
s,f , ..., P

N
s,f

]T
, and δ is an arbitrary small number that is � 1. Moreover,

by using the 1st order Taylor expansion, the expression in (4.28) can be further ap-

proximated around some point of interest P
(z−1)
s,f as4:

Θ
(
Ps,f ,P

(z−1)
s,f

)
=Ξ
(
P

(z−1)
s,f

)
+∇Ξ

(
P

(z−1)
s,f

)(
Ps,f −P

(z−1)
s,f

)
(4.29)

Hence, around some point P
(z−1)
s,f , constraint C5 in (4.21) can be re-written as:

F∑
f=1

Θ
(
Ps,f ,P

(z−1)
s,f

)
≤ Cs,max, ∀s ∈ S (4.30)

Thus, given sub-channel allocation, the overall power allocation and admission

4Actually, P
(z−1)
s,f will be the optimal solution resulting from solving the joint power allocation

and admission control problem in the (z − 1)th iteration.
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control problem in (4.21) in the zth iteration, can be reformulated as follows:

min
{wn
Sf ,f ,yf ,µ

n
f ,ζ

n
f }
D

F∑
f=1

y2
f +

F∑
f=1

∑
n∈Nf

∥∥∥wn
Sf ,f

∥∥∥2

subject to

C1 : hnHSf ,fw
n
Sf ,f + yf ≥

φ
n(z−1)
f

2

(
ζnf
)2

+
1

2φ
n(z−1)
f

µnf , ∀f ∈ F , n ∈ Nf

C2 : ζnf ≥

√√√√ F∑
i=1,i 6=f

∣∣hnHSi,fwn
Si,i
∣∣2 +

M∑
m=1

ΓnmP
n
B,mg

n
B,f +No, ∀f ∈ F , n ∈ Nf

C3 : Im
(
hnHSf ,fw

n
Sf ,f

)
= 0, ∀f ∈ F , n ∈ Nf

C4 :
∏
n∈Nf

(
1 + µnf

)
≥ 2Rf/∆f , ∀f ∈ F

C5 :
F∑
f=1

∑
n∈Nf

∥∥∥Qs,fw
n
Sf ,f

∥∥∥2

≤ Ps,max, ∀s ∈ S

C6 :
F∑
f=1

Θ
(
Ps,f ,P

(z−1)
s,f

)
≤ Cs,max, ∀s ∈ S

C7 : Γnm

(
F∑
f=1

∣∣∣hnHSf ,mwn
Sf ,f

∣∣∣2) ≤ ΓnmI
n
m, ∀n ∈ N

C8 : wn
Sf ,f ∈ CΩ|Sf |×1, µnf ≥ 2Rf/∆f − 1, ζnf ≥ 0, ∀f ∈ F , n ∈ N (4.31)

In (4.31), the objective is to maximize the number of admitted SUEs (the admission

control part) while simultaneously minimizing the total downlink transmit power.

This is achieved through the incorporation of the admission control variable yf that

takes the value of 0 only if SUE f is admitted. By setting as many yfs to 0 as

possible, the number of admitted SUEs is maximized. In the objective function, D

is a large positive constant that gives a higher weight to the admission control part.

One benefit of the formulation in (4.31) is that it is always feasible. To see this, one
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can choose large enough yfs to satisfy the constraint C1. It is worth mentioning that

if (4.21) is feasible, then in (4.31), yf = 0, ∀f ∈ F .

Remark 4.5.2. Note that the incorporation of the admission control variable yf in

(4.31) has been inspired by the work previously done in [110]. However, the work

in [110] considered single-channel single-tier systems. Moreover, the work in [110]

only considered simple SINR and power budget constraints.

The problem in (4.31) is a convex optimization problem. In fact, it can be cast as

an SOCP [9]. Thus, it can be efficiently solved by numerical solvers such as CVX [113].

To this end, we present Algorithm 12 that iteratively solves (4.31) by updating

the points of interest P
n,(z−1)
s,f and φ

n,(z−1)
f until convergence. Upon convergence, if

yf = 0, ∀f ∈ F , then we terminate. Otherwise, find f ∗ = arg max
f

yf such that

yf∗ 6= 0, drop f ∗, and rerun Algorithm 12. In this way, Algorithm 12 will be run

at most O (F) times.

Proposition 4.5.1. In Algorithm 12, the iterates produce a sequence of non-

increasing objective function values that is guaranteed to converge. Moreover, conver-

gence takes place to a solution that satisfies the KKT conditions of (4.21).

Proof. Proposition 4.5.1 can be proved by using arguments similar to those discussed

in the proof of Proposition 4.4.4. Hence, we omit the proof for brevity.

Algorithm 12 Successive convex approximation algorithm for problem (4.21)

1: Initialize P
n,(0)
s,f and φ

n,(0)
f , ∀s ∈ S, f ∈ F , n ∈ Nf and set z = 1

2: repeat
3: Solve problem (4.31) to obtain wn

Sf ,f , µn
f , and ζnf

4: Update P
n,(z)
s,f =

∥∥∥Qs,fw
n
Sf ,f

∥∥∥2 and φ
n,(z)
f =

√
µn
f /ζ

n
f , ∀s ∈ S, f ∈ F , n ∈ Nf

5: Increment z
6: until Convergence
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4.6 Numerical Results and Discussion

4.6.1 Parameters

We evaluate the system performance through extensive simulations under various

topologies and scenarios. We consider a two-tier network as shown in Fig. 4.1

with 5 small cells deployed at (0, 0), (3Rradius/2, d), (3Rradius, 0), (0,−2d) and

(3Rradius/2,−d), where d = 250 m and Rradius = 2d/
√

3, that are within the cov-

erage of a macrocell. The macrocell is deployed at (2Rradius,−2d). All small cells

are equipped with Ω = 4 antennas. All UEs exist outdoor. We have 2 SUEs/small

cell that are randomly deployed inside each small cell such that the distance between

them and their closest small cell is either d or d/2. Channel gains account for both

path-loss and Rayleigh fading. Path loss models from [47] are used. The path-loss

between an RRH i and UE j is modeled as li,j = 140.7 + 36.7 log10(di,j), where di,j

is the distance (in km) between RRH i and UE j. On the other hand, the path loss

between macrocell B and UE j is modeled as lB,j = 128.1 + 37.6 log10(dB,j). In ad-

dition, Rayleigh fading is modeled using independent, zero mean, and unit variance

complex Gaussian random variables.

Unless otherwise stated, we have No = 10−13 W, D = 105, δ = 10−5, PB,max = 20

W, Ps,max = 10 W, Imax = 105No, Imin = No, Rm = 5 bps/Hz, qf = 4 sub-channels,

M = 3 MUEs, and |Sf | = 3, ∀f ∈ F , meaning that each SUE f picks up the three

closest small cells as its serving cluster. All data rate requirements are mentioned in

terms of spectral efficiency (bps/Hz). Also, ideal fronthaul links (Cs,max = ∞) are

assumed in all numerical results. However, we will also assess the effect of varying the

available fronthaul capacity (i.e., non-ideal backhaul) on the performance of SUEs.
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4.6.2 Numerical Results

Macrocell RA Problem With Single MUE

In Fig.4.2, we show the sum of the tolerable interference levels (on the allocated

sub-channels only, i.e., those sub-channels with non-zero power) vs. the data rate re-

quirement Rm. We have N = 10 sub-channels with gB,m = {gnB,m : n = 1, 2, ..., N} =

{5, 4.56, 4.11, 3.67, 3.22, 2.78, 2.33, 1.89, 1.44, 1}. Channel gains and the sum of toler-

able interference levels are normalized with respect to No. Results are obtained by

using both our proposed Algorithm 8 and “fmincon” function in Matlab [48]. When

calling this function, we choose “sqp” as its solving algorithm. Since “fmincon” is not

guaranteed to give the optimal solution, owing to the non-convexity of the optimiza-

tion problem (4.7), it is run a large number of times using different initial points and

we keep track of the best feasible solution. In the figure, we also show the number of

allocated sub-channels Nm to MUE m for each range of data rates. It is clear from

the figure that as Rm increases, the number of allocated sub-channels increases. In

addition, for the same number of allocated sub-channels, as Rm increases, the sum of

tolerable interference levels decreases. This is justifiable since the interference levels

that MUE m can tolerate decrease as Rm increases. Finally, Fig. 4.2 shows that

Algorithm 8 gives the optimal solution as was discussed before.

Convergence behavior of Algorithm 10

Fig. 4.3 shows the convergence behavior of Algorithm 10. We have N = 10 sub-

channels, and Rm = 7 bps/Hz. It is obvious from Fig. 4.3 that Algorithm 10

produces a sequence of non-decreasing objective function values and it converges

within a reasonable number of iterations.
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Figure 4.2: Normalized sum of tolerable interference levels on the allocated sub-
channels vs. the data rate requirement Rm.

Performance of SUEs under proposed and traditional macro-

cell RA

Figs. 4.4 and 4.5 show the performance of SUEs (number of admitted SUEs and

total downlink transmit power of small cells), when the macrocell performs resource

allocation in order to “maximize the sum of tolerable interference” as proposed in

this Chapter in Section 4.4 (labeled as “Proposed” in the figures). For the sake of

comparison, we show the performance of SUEs when the macrocell performs resource

allocation according to the traditional objective of “minimizing the total sum-power”

[76] (labeled as “Traditional” in the figures) as was discussed in [8]. For a given

macrocell resource allocation result, the performance of SUEs in Figs. 4.4 and 4.5 is

obtained by averaging over 50 realizations, where in each realization, the positions of

the SUEs are varied. We have N = 10 sub-channels available. The observations from

Figs. 4.4 and 4.5 can be summarized as follows:

• The average percentage of admitted SUEs is higher when the macrocell performs

RA according to the proposed method. This can be explained as follows. When
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Figure 4.3: Convergence behavior of Algorithm 10.

the macrocell performs RA according to the proposed method, the macrocell

is freeing as much sub-channels as possible for the small cells to use. This

is not the case when the macrocell performs RA according to the traditional

“minimize the total sum-power” method.

• For the proposed method for macrocell RA, the average percentage of admitted

SUEs decreases, whereas the total downlink transmit power increases, when

the data rate requirements for the MUEs Rm increases. At low data rate re-

quirements of MUEs, small number of sub-channels are allocated to the MUEs.

Hence, small cells have enough sub-channels to allocate to the SUEs that are

free from cross-tier interference from the macrocell. In addition, there are no

interference constraints imposed on those free sub-channels. As the data rate

requirements of MUEs increase, the number of allocated sub-channels to the

MUEs increases, as was shown in Fig. 4.2. Hence, small cells are now obliged

to allocate sub-channels to the SUEs that experience cross-tier interference from

the macrocell. This decreases the average percentage of admitted SUEs and in-

creases the total downlink transmit power for small cells.
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• For the traditional macrocell RA method with the objective of “minimizing the

total sum-power”, the performance of the SUEs is not very sensitive to the data

rate requirement Rm of MUEs. This can be attributed to the fact that this RA

method tends to allocate all the available sub-channels to the MUEs. Hence,

irrespective of Rm, SUEs experience cross-tier interference from the macrocell

across all available sub-channels.

• As the data rate requirement Rf of SUEs increases, the average percentage of

admitted SUEs decreases, whereas, the total downlink transmit power for small

cells increases.

5 7 10 12
40

50

60

70

80

90

100

Target MUE data rate R
m

 (bps/Hz)

A
ve

rg
ae

 p
er

ce
nt

ag
e 

of
 a

dm
itt

ed
 S

U
E

s

 

 

Proposed, R
f
 = 10 bps/Hz

Proposed, R
f
 = 20 bps/Hz

Traditional, R
f
 = 10 bps/Hz

Traditional, R
f
 = 20 bps/Hz

Figure 4.4: Average percentage of admitted SUEs vs. the MUEs data rate require-
ment Rm for different SUEs data rate requirement Rf .

Performance of SUEs under variable and equal SINR

In Fig. 4.6, we study the percentage of admitted SUEs and the total downlink

transmit power vs. the target SUE data rate requirement Rf under variable and

equal achieved SINR on the allocated sub-channels. In all the remaining results, we
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Figure 4.5: Average total downlink transmit power vs. the MUEs data rate require-
ment Rm for different SUEs data rate requirement Rf .

study the network performance for a snapshot of the setup described in Section 4.6.1.

Resource allocation for the MUEs is performed according to (4.6) and we have N = 5

sub-channels available.

Note that an admitted SUE, in either cases, will have the same data rate re-

quirement Rf achieved. However, as shown in Fig. 4.6, the impact on the C-RAN

network performance is different. Better network performance (higher number of

admitted SUEs) can be achieved by adapting the achieved SINR on each allocated

sub-channel according to its channel gain and the level of interference experienced on

that allocated sub-channel.

Performance of SUEs under different available fronthaul ca-

pacity

Figs. 4.7 and 4.8 study the percentage of admitted SUEs and the total downlink

transmit power vs. the target SUE data rate requirement Rf under different available

fronthaul capacity Cs,max at each small cell.
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Figure 4.6: Percentage of admitted SUEs and the total downlink transmit power vs.
the target SUE data rate requirement Rf under variable and equal achieved SINR.

Each small cell can serve a higher number of SUEs when more fronthaul capacity

becomes available. This translates to a higher number of admitted SUEs as shown

in Fig. 4.7. In addition, from Fig. 4.8, it is obvious that when the same number of

SUEs is admitted, less total downlink transmit power is required when the available

fronthaul capacity at each small cell increases.
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Figure 4.7: Percentage of admitted SUEs vs. the target SUE data rate requirement
Rf under different available fronthaul capacity Cs,max.
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Figure 4.8: Total downlink transmit power vs. the target SUE data rate requirement
Rf under different available fronthaul capacity Cs,max.

Performance of SUEs under different number of allocated sub-

channels qf

Fig. 4.9 studies the percentage of admitted SUEs and the total downlink transmit

power vs. the data rate requirement Rf of SUEs for different number of allocated

sub-channels qf .

It is clear from the figure that, the C-RAN can support a higher number of SUEs

when they are allocated a larger number of sub-channels. This can be attributed to

the fact that allocating more sub-channels to the SUEs provides additional degrees

of freedom for the C-RAN to exploit. Therefore, a better network performance is

achieved.

Convergence behavior of Algorithm 12

Finally, Fig. 4.10 shows the convergence behavior of Algorithm 12 for a feasible

scenario of the optimization problem (4.21), where we have Rf = 10 bps/Hz.
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Figure 4.9: Percentage of admitted SUEs and the total downlink transmit power
vs. the target SUE data rate requirement Rf under different number of allocated
sub-channels qf .

The upper figure shows the admission control part of the objective function in

(4.31), i.e.,
∑F

f=1 y
2
f , whereas the lower figure shows the total downlink transmit

power part of the objective function. Since the considered scenario is a feasible one,

the admission control part converges to 0, i.e., all SUEs are admitted. Also, it is

obvious that Algorithm 12 produces a sequence of non-increasing objective function

values and it converges in a few number of iterations.

4.7 Conclusion

I have proposed a complete framework for the resource allocation and admission con-

trol problem in a two-tier OFDMA cellular network that is composed of a macrocell

which is overlaid with cloud-RAN of small cells. Different from the traditional ob-

jective functions, a new resource allocation problem with new objective function has

been proposed for the macrocell where, the macrocell aimed at allocating resources

to its MUEs in a way that can tolerate the maximum possible interference from the
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Figure 4.10: Convergence behavior of Algorithm 12.

small cell tier. Now, given the interference constraints for the MUEs, the small cells

perform resource allocation and admission control with the objective of minimizing

the total downlink transmit power subject to QoS and fronthaul constraints. Both

problems have been shown to be MINLP and lower complexity algorithms have been

proposed for both problems based on the framework of successive convex approxima-

tion. Numerical results have confirmed the significance of the new objective for the

macrocell resource allocation problem and its positive impact on the performance of

SUEs. Moreover, I have investigated the effect of different parameters of the resource

allocation problem for small cells on the performance of SUEs.
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Global mobile traffic will boom in the years to come, thanks to the increasing popular-

ity of smart mobile devices and the introduction of affordable data plans by cellular

operators. In addition, data hungry mobile applications, such as audio and video

streaming, social sharing, or cloudbased services, are more and more popular among

users. On the other hand, traditional cellular networks are reaching their breaking

points, and the conventional cellular grid structure that has been devised to cater to

large coverage areas and optimized for homogeneous traffic is facing unprecedented

challenges. Hence, base station densification, through the deployment of additional

low power nodes within the coverage area of traditional cellular networks, is foreseen

to be a viable solution that can significantly boost the overall spectral efficiency and

energy efficiency through a full spatial resource reuse.

However, dense deployment of small cells and low power nodes on top of the

traditional cellular network poses several challenges that must be addressed through

efficient resource allocation schemes. In this thesis, I have developed several resource

allocation schemes that can handle co-tier, as well as cross-tier, interference in an effi-

cient manner. Moreover, several practical aspects have been taken into consideration
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in the resource allocation schemes. Numerical results have shown that the proposed

schemes can provide promising spectrum utilization, enhanced network throughput,

and QoS guarantee for UEs under controlled interference with low computational

complexity.

I summarize the contributions of this thesis in Section 5.1 and then point out the

future research directions in Section 5.2.

5.1 Contributions

Motivated by the exponential growth of mobile traffic demand in wireless networks,

I have studied RA in multi-tier HetNets with small cell deployments. Specifically,

in Chapter 2, I have investigated the idea of clustering (coordination) of small cells

into cooperative groups and its effect on the small cells performance. Clustering has

been used as a technique to mitigate co-tier interference and to divide the centralized

small cells RA problem into smaller sub-problems. Hence, reducing overall complexity

and promoting the use of semi-distributed RA solutions. The main contributions of

Chapter 2 can be summarized as follows:

• I have proposed a framework for clustering, sub-channel and power allocation

in a two-tier macrocell small cell network. This framework was implemented in

a hierarchical fashion where the responsibilities were shared between the FGW

and the small cells.

• To avoid the exponential complexity associated with obtaining the optimal clus-

ter, I have formulated the clustering sub-problem as a correlation clustering

problem which was solved by using an SDP-based algorithm. In addition, I

offered a complexity analysis for the proposed SDP algorithm.
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• I have proposed another algorithm to reduce the computation burden and to

eliminate the necessity of going through the whole penalty term range for ob-

taining the optimal cluster configuration.

• I have proposed a heuristic low complexity power and sub-channel allocation

algorithm to be executed by the CH in each cluster.

Moreover, in Chapter 3, I have investigated the impact of RA decisions of one tier

on the other one by proposing RA algorithms that are tier-aware. In addition, owing

to the expected high density of small cells deployments, distributed RA solutions have

been proposed. The main contributions of Chapter 3 can be summarized as follows:

• I have developed a complete framework for tier-aware resource allocation in

an OFDMA-based two-tier macrocell-small cell network with new objectives,

coping with the new requirements of multi-tier HetNets.

• I have formulated a tier-aware RA problem for the macrocell and showed that

it was an MINLP.

• I have proved that the macrocell could solve another alternate optimization

problem that would yield the optimal solution for the MINLP with polynomial

time complexity.

• I have shown that proposed macrocell RA problem outperformed the traditional

“minimize the total sum-power” problem in terms of its impact on the small

cells tier performance.

• For the small cell tier, I have formulated a joint resource allocation and admis-

sion control problem that aimed at maximizing the number of admitted SUEs
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with minimum bandwidth consumption to accommodate additional tiers, and

showed that it was an MINLP.

• I have offered an upper bound solution to the MINLP problem through convex

relaxation and proposed a solution to the convex relaxation that was imple-

mented in a distributed fashion using dual decomposition.

Finally, in Chapter 4, I have studied C-RAN as an architecture for deploying small

cells that has the potential to face a lot challenges that face BS densification. The

main contributions of Chapter 4 can be summarized as follows:

• I have developed a complete framework for downlink radio resoure allocation

in an OFDMA-based two-tier cellular network where a macrocell is underlaid

with a C-RAN of small cells.

• I have formulated a resource allocation problem for the macrocell that is aware

of the existence of the small cell tier and have shown that it was an MINLP. In

addition, I relaxed the simplifying assumptions made in [8].

• I have investigated the single MUE macrocell problem and have shown how

to obtain its optimal solution, with polynomial time complexity, despite its

non-convexity.

• Based on the observations that I got from solving the single MUE macrocell

problem, I have proposed a low complexity solution for the multi-MUE macro-

cell RA problem that relies on the framework of SCA.

• I have formulated an RA problem for the C-RAN of small cells whose objective

was to minimize the total downlink transmit power subject to QoS constraints
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for SUEs, MUEs’ interference thresholds, small cells power budget, and fron-

thaul capacity constraints as an optimization problem. I have shown that it

was an MINLP.

• I have offered a low complexity solution based upon the SCA approach. More-

over, I have incorporated AC, jointly with RA, to deal with infeasibility issues

in the C-RAN RA problem in case it was not possible to support all SUEs with

their QoS requirements.

5.2 Future Work

In this section, I outline some of the possible future research directions in the context

of small cells.

5.2.1 Robust Resource Allocation

In all the proposed resource allocation schemes, perfect information was assumed to be

available at all decision making entities. However, given the random, and sometimes

erratic, nature of many wireless channels, the actual performance of a wireless network

can be severely influenced. Hence, it is desirable and critical to have RA solutions

that can withstand uncertainty and are robust to inevitable errors in the obtained

information.

5.2.2 Cell Association Schemes for Multi-tier Cellular Networks

In the presented work, it has always been assumed that UEs are already associated

with their respective cells, and that this association remains fixed throughout the

RA operation. To offer a complete and practical RA framework, it is interesting,
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however, to incorporate cell association as a preceding step to the RA operation.

Several association schemes already exist in the literature that are simple and ana-

lytically tractable. However, it is foreseen that they will be unable to guarantee the

optimum performance in multi-tier HetNets unless critical parameters, such as bias

values, transmit power of the users in the uplink and BSs in the downlink, resource

partitioning, etc. are optimized.

5.2.3 Other Objective Functions and Constraints

In Chapters 3 and 4, it was shown that the new proposed objective function (sum of

tolerable interference levels) for the macrocell had a positive impact on the small cells’

performance, when compared to the traditional objective functions. This motivates

us to look for other objective functions, specially when additional network tiers exist.

Moreover, for the C-RAN of small cells’ optimization problem in Chapter 4, additional

practical constraints might be incorporated in the C-RAN RA problem such as power

consumption in the cloud as well as cloud processing capability constraints.
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