
ESSAYS ON ASSET PRICING WITH INCOMPLETE OR NOISY 
INFORMATION 

 

BY 

 

Yan Wang 

 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies 

In Partial Fulfillment of the Requirement for the Degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Department of Accounting and Finance 

Asper School of Business 

University of Manitoba 

Winnipeg, Manitoba 

© Yan Wang, October, 2010 

 



ii 
 

TABLE OF CONTENTS 

ABSTRACT....................................................................................................................v-vi 

LIST OF TABLES......................................................................................................vii-viii 

LIST OF FIGURES............................................................................................................ix 

ACKNOWLEDGEMENTS.................................................................................................x 

DEDICATION………………………………………………………………………........xi 

CHAPTER 1: INTRODUCTION......................................................................................12 

CHAPTER 2: The IQCAPM: ASSET PRICING WITH INFORMATION-QUALITY 

RISK..................................................................................................................................17 

2.1. Related Literature.......................................................................................................17 

2.2. Is an IQ Factor a Priced State Variable? A Preliminary Test……….........................22 

2.2.a. An IQ-adjusted Factor Model………………………………….............................22          

2.2.b. Data and Variable Construction…………………………………………………..24 

2.2.c. Forming Portfolios…………………………………………………......................28 

2.2.d.  Evidence of IQ Risk Premium…………………………………………………….32 

2.2.e. Robustness Tests………………………………………….....................................37 

2.3. An Intertemporal Asset-Pricing Model with Imprecise Information……………….40 

2.4. Implication of Imprecise Information for Asset Pricing…………………………….48 



iii 
 

2.5. An Empirical Test of the Static IQCAPM………………..........................................51 

2.5.a. Forming Portfolios……………………………......................................................52 

2.5.b. Estimating IQ Betas for Portfolios………………………………………..............53 

2.5.c. Empirical Fit of the Static IQCAPM………………………………………………58 

2.6. Robustness Tests - IQ Risk vs. Illiquidity Risk……………………………………..62 

2.6.a. The IQCAPM with Systematic Illiquidity Risk………………………………….…63 

2.6.b. Data and Portfolios……………………………………………………………….65 

2.6.c. Testing the IQCAPM with Systematic Illiquidity Risk………................................68 

CHAPTER 3: A GENERALIZED EARNINGS-BASED STOCK VALUATION 

MODEL WITH LEARNING...........................................................................................72 

3.1. Introduction...............................................................................................................72 

3.2. Related Literature......................................................................................................75 

3.3. A Generalized Earnings-Based Model with Incomplete-information......................79 

3.3.a. Learning about unobserved MEGR........................................................................83 

3.3.b. The Valuation Equation..........................................................................................92 

3.4. Comparison of the Incomplete and Complete Information Models………………...96 

CHAPTER 4: CONCLUSION.......................................................................................114 

BIBLIOGRAPHY..........................................................................................................119 



iv 
 

 

Appendix A. Results of Robustness Tests of Chapter 2……………………………….128 

Appendix B. Construction of Liquidity Measures……………………………………..136 

Appendix C. Proof of Theorem and Propositions of Chapter 2………………………..138 

Appendix D. Proof of Theorems and Propositions of Chapter 3………………………143 

Appendix E. Derivation of the Asset Price and Proof of Proposition 4…………….....147 

 



v 
 

ABSTRACT 

 

This dissertation consists of two essays, in which I examine the effects of 

incomplete or noisy information on expected risk premium in equity markets. In the first 

essay I provide empirical evidence demonstrating that an information-quality (IQ) factor, 

built on accrual-based information precision measure, is priced. This result still stands 

after controlling for factors, such as size, Book-to-Market (B/M) ratio, and liquidity. To 

explain this empirical observation, I derive a continuous-time model in the spirit of 

Merton’s (1973) Intertemporal Capital Asset Pricing Model (ICAPM) to examine how 

systematic IQ risk affects security returns. Unique to my model, imprecise information 

influences the pricing of an asset through its covariance with: (i) stock return; (ii) market 

return; and (iii) market-wide IQ. In equilibrium, the aggregate effect of these covariance 

terms (proportional to IQ-related betas) represents the systematic component of IQ risk 

and therefore requires a risk premium to compensate for it. My empirical test confirms 

that the aggregate effect of systematic IQ risk is significant and robust to the inclusion of 

other risk sources, such as liquidity risk. 

In the second essay I extend a recent complete information stock valuation model 

with incomplete information environment. In practice, mean earnings-per-share growth 

rate (MEGR) is random and unobservable. Therefore, asset prices should reflect how 

investors learn about the unobserved state variable. In my model investors learn about 

MEGR in continuous time. Firm characteristics, such as stronger mean reversion and 

lower volatility of MEGR, make learning faster and easier. As a result, the magnitude of 

risk premium due to uncertainty about MEGR declines over learning horizon and 



vi 
 

converges to a long-term steady level. Due to the stochastic nature of the unobserved 

state variable, complete learning is impossible (except for cases with perfect correlation 

between earnings and MEGR). As a result, the risk premium is non-zero at all times 

reflecting a persistent uncertainty that investors hold in an incomplete information 

environment.  
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CHAPTER 1 

 

Introduction 

 

Traditional asset-pricing models such as Merton‟s (1973) Intertemporal Capital 

Asset Pricing model (ICAPM) are based on the assumption that the financial market is 

informationally efficient and that individuals are well informed. However, there is 

substantial evidence indicating that information releases are noisy and unreliable (see for 

example, Shapiro and Wicox, 1996; and Faust, Rogers, and Wright, 2000). Facing an 

imperfect information set, investors face information-quality risk. This is a deviation 

from the assumptions made in traditional asset-pricing models. It suggests that market 

prices may deviate from fundamental asset values, and result in the failure of standard 

asset-pricing models.  

There is substantial empirical evidence in the extant literature showing that 

returns are related to the firm‟s information structure.
 1
 However, there is very little work 

laying the theoretical foundation for this empirical observation. The aim of the current 

dissertation is to fill this gap and to examine the pricing of information-quality (IQ) risk.  

This dissertation consists of two essays. In the first essay, which is presented in 

Chapter 2, I examine the pricing of IQ risk by addressing the following two questions: (i) 

Is a market-wide IQ factor priced even after controlling for other known significant 

                                                 
1 See for example, Schipper (2002), Botosan, Plumlee, and Xie (2004), and Easley, Hvidkjaer, and O‟Hara 

(2002). 
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market factors (such as size, value, and liquidity factors)? (ii) If so, does IQ risk affect 

security prices also through its factor sensitivity? To address these questions I construct 

two alternative measures to proxy for IQ-related cash flow noise based on the work of 

Barth et al. (2001). Using an ad-hoc IQ-adjusted Fama-French factor model, I find 

significant evidence supporting the notion that IQ is a priced market factor.  

Motivated by this empirical finding, I derive a theoretical Information Quality 

Capital Asset Pricing Model (IQCAMP) based on Merton‟s (1973) to further examine the 

association between systematic IQ risk and stock return. The precise analytical form of 

this risk allows me to perform a formal econometric study of the different components of 

systematic IQ and test whether they are priced. Unique to the current model, noisy 

information influences the pricing of assets through its impact not only on the factor 

loadings, but also on factor sensitivities. I show that IQ risk has systematic and 

idiosyncratic components, and that only the former is priced.  

I further demonstrate that systematic IQ risk is priced through the extra betas of 

the asset. With imprecise information set, there are three additional systematic risk 

effects, related to information quality, that require a risk premium due to the additional 

risk investors will face. These effects stand for systematic information-quality risk. 

The first source of systematic information-quality risk is measured by the 

covariance of the security‟s noisy-return component with that of the overall market. 

Investors demand a return premium due to this commonality in IQ risk exposure. The 

second source of IQ risk is given by the covariance between the asset return and the 

market noisy-return component. This effect implies investors‟ preference for securities 

with a higher return to offset a negative noise effect in the overall market. The last source 
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of systematic IQ risk is measured by the covariation of the market return and the asset‟s 

noisy-return component. Investors prefer a security with negative covariance so that a 

positive noisy-return component for the asset will hedge against the risk of a bear market.  

Based on these extra covariance terms (or betas), I derive a static unconditional 

version of the IQCAPM to explicitly demonstrate the link between the security return and 

its IQ-risk exposure. I then empirically test this version of the IQCAPM and find 

evidence supporting the pricing of systematic IQ risk at the cross section. Analytically, 

this model is similar to the liquidity-adjusted CAPM of Acharya and Pedersen (2005). 

Given the probable relation between security IQ and its market liquidity, it is possible 

that my IQ betas capture the effect of Acharya and Pedersen‟s (2005) illiquidity betas. A 

Pearson correlation test shows low and insignificant correlation between my IQ betas and 

illiquidity betas, implying that my IQ beta represents a source of systematic risk distinct 

of liquidity risk. Cross-sectional regression tests show that the IQ betas are significantly 

priced even after controlling for Acharya and Pedersen‟s (2005) liquidity betas. 

In the second essay, which is presented in Chapter 3, I extend Bakshi and Chen 

(2005)‟s earning-based stock valuation model (BC model) by allowing agents to learn. 

Although the true mean-reverting process of mean earnings growth rate (MEGR) in my 

model is unobservable, the continuous learning process allows agents to estimate it, and 

update estimates, based on available earnings information. I examine the posterior 

variance of learning-based estimates to track the dynamics of pricing errors and risk 

premiums over time. An extra risk premium on MEGR is demanded due to uncertainty 

about incomplete information, which can be reduced to a minimum level through 

learning. A closed-form solution to the equilibrium stock price is also provided for the 
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incomplete-information environment.  

One important finding in the second essay is that the faster the expected earnings 

growth rate reverts to its long-term mean, the smaller the required risk premium due to 

information incompleteness. This is because higher speed of mean reversion implies 

easier learning. Another finding in the second essay is that, ceteris paribus, higher 

uncertainty related to the unobservable (latent) mean of earnings growth rate, results in a 

larger required risk premium. This result is more pronounced for younger firms with 

shorter learning horizons for which, naturally, there is a short history of data available for 

learning. This finding is consistent with Pastor and Veronesi (2003), who predict that 

M/B declines over a typical firm‟s lifetime, and younger firms should have higher M/B 

ratios than otherwise identical older firms since uncertainty about younger firms‟ average 

profitability is greater.  

In a perfect learning environment (e.g., the correlation between unobservable 

MEGR and earnings is one), the extra risk premium on MEGR declines and converges to 

zero in the long run. At the same time, the variance of the estimate of MEGR decreases 

over learning horizon and converges to zero. Perfect correlation implies that investors 

eventually have complete knowledge of the true process of the mean growth rate. 

However, in non-perfect learning environment, the extra risk premium on MEGR never 

vanishes regardless of the learning horizon. This long run risk premium reflects a 

persistent uncertainty that investors hold in an incomplete information environment.  
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For comparison, I also investigate the effects of firm characteristics (such as 

mean-reversion speed and volatility of MEGR) on price differential between my 

incomplete-information model and the BC complete-information model as well. I find 

that the price differential between my model and that of BC, defined as pricing error, can 

persist for years even under perfect learning conditions. The more volatile MEGR is, the 

longer the persistence. For an extreme incomplete-information environment, such as one 

with zero correlation between earnings and MEGR, investors basically learn nothing 

about state variable MEGR from earnings. In this case, pricing errors are largest on 

average. Finally, I show that pricing errors still exist after long learning horizon (e.g., 

eight years) with precisely estimated MEGR as long as the information environment is 

incomplete. The non-vanishing pricing errors reflect residual risk premium (not present in 

the complete information model) due to investors‟ imperfect forecasts of the underlying 

state variable. 
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CHAPTER 2 

 

The IQCAPM: Asset Pricing with Information-Quality Risk 

 

Traditional asset-pricing models are based on the assumption that the financial 

market is informationally efficient and that individuals are well informed (see for 

example, Sharpe, 1964; Lintner 1965; Mossin, 1966; and Merton, 1973). However, there 

is substantial evidence indicating that information releases are noisy (see for example, 

Faust, Rogers, and Wright, 2000; Shapiro and Wicox, 1999; and Wang 1993). With an 

imperfect information set, investors may face information-quality (IQ) risk. Ignoring IQ 

risk may lead to asset mispricing in traditional asset-pricing models. In this chapter I 

examine the pricing of IQ risk by addressing the following two questions: (i) Is a market-

wide IQ factor priced even after controlling for other known significant market factors 

(such as size, value, and liquidity factors)? (ii) If so, does IQ risk affect security prices 

also through its factor sensitivity? To address these questions I construct two alternative 

measures to proxy for IQ-related cash flow noise based on the work of Barth et al. 

(2001). 

 

2.1.  Related Literature 

Francis et al. (2005) define information risk as the likelihood of firm-specific 

information pertinent to pricing decision to be of poor quality. Recent studies show that 

information risk is a nondiversifiable risk factor. For instance, Francis et al. (2004, 2005) 

find a positive link between poorer accrual quality and larger cost of equity and debt, and 
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they claim that accrual quality is a systematic priced risk factor. Easley and O‟hara 

(2004) develop a rational-expectations asset-pricing model to examine the association 

between information structure (public versus private information) and cost of equity 

capital. They argue that private information increases the risk faced by uninformed 

investors since informed investors can adjust their portfolio weights upon the arrival of 

new information. Therefore they propose that the firm‟s cost of capital can be affected 

through the precision of information it provides to investors.
2
  

There is substantial empirical evidence in the extant literature showing that 

returns are related to the firm‟s information structure.
3
 However, there is very little 

theoretical work to explain this empirical observation. Huang and Liu (2003) assume an 

imperfect information structure and examine the optimal portfolio selection problem in 

the presence of periodically observable state variables (such as dividend yields, GDP 

growth rates, and inflation rates). The focus of their work is on the optimal investment 

strategy under imprecisely and periodically released information. They do not examine 

the impact of imperfect information on asset pricing. Related to my work, Hughes et al. 

(2007) examine the impact of both symmetric and asymmetric information on asset 

pricing within the Arbitrage Pricing Theory (APT) framework. They conclude that, at the 

limit, information impacts factor risk premiums, not factor sensitivities. This is consistent 

with Wang (1993) who presents a dynamic asset-pricing model under asymmetric 

information. He finds that information asymmetry among investors can increase price 

volatility, negative autocorrelation in returns, and the risk premium. 

 

                                                 
2 For more on the systematic nature of IQ risk see O‟hara (2003) and Leuz and Verrecchia (2004). 
3 See for example, Wang (1993), Schipper (2002), Botosan, Plumlee, and Xie (2004), Easley, Hvidkjaer, 

O‟Hara (2002), and Francis et al. (2004) and (2005). 
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 The focus of the current chapter is on the effect of IQ on asset pricing rather than 

the effect of asymmetric information. I consider the case in which all (equally-informed) 

investors face an imprecise (noisy) information set. In most models for return 

predictability state variables are assumed to be perfectly and accurately observable at any 

point in time.
4
 In practice, however, investors have to estimate state variables from 

available public information. I assume that cash flow is the fundamental element for 

pricing, and therefore poor accrual quality weakens pricing and increases information risk. 

In a related literature, Francis et al. (2005) construct accrual-based measures to proxy for 

information risk.
 
They argue that the systematic effect of accrual quality on the cost of 

capital can be explained by a rational asset-pricing framework in which accruals quality 

captures information risk that cannot be diversified away.
 
 In support of this prediction of 

Francis et al. (2005), I show that an ad hoc factor model that considers an IQ factor 

significantly explains the cross-sectional variations of stock returns. 

 Market liquidity is affected by information asymmetry (see for example, Glosten 

and Milgrom, 1985; Easley and O‟Hara, 1987; and Easley and O‟Hara, 1992). One may 

expect that information quality problem is reflected in market liquidity as well. Pastor 

and Stambaugh (2003) show that market-wide liquidity is a priced factor for stock returns. 

I test whether the pricing of the IQ factor is subsumed by the Pastor and Stambaugh 

(2003) market-illiquidity factor. My ad hoc test shows that, even after controlling their 

liquidity measure and the Fama-French three factors, my IQ factor is still significantly 

priced. This result is robust for tests based on portfolios sorted on all other market factors. 

                                                 
4 I see this assumption in discrete-time models, which assume that state variables are precisely observable 

at the beginning of every discrete-time interval (see for example, Kandel and Stambaugh, 1996; and 

Barberis, 2000). Similarly, in continuous-time models all state variables are assumed to be continuously 

and precisely observable (see for example, Samuelson, 1969; Merton, 1971 and 1973; and Breedon, 1979 ). 
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 Note that the evidence I present for IQ being a priced market factor is based on an 

ad hoc empirical model. To conduct a formal econometric study, I need a theoretical 

description of IQ-adjusted risk premium. This calls for a theoretical asset-pricing model 

under imprecise information. To this end, I derive an IQ-adjusted intertemporal asset-

pricing model to theoretically examine the pricing of IQ risk through its factor 

sensitivities. I model IQ impact on asset returns with an Ornstein-Uhlenbeck mean-

reverting process under which the information-related return error fluctuates around its 

long-term mean. In my IQ-adjusted Capital Asset Pricing Model (IQCAPM) IQ risk has 

systematic and idiosyncratic components, and only the former is priced.  

Our model demonstrates that systematic IQ risk is priced through extra asset betas 

as well as through the market risk premium. With an imprecise information set, there are 

three additional systematic risk effects measured by covariance (beta) terms between 

firm-specific information noise, asset‟s fundamental return, and market-wide information 

noise. In equilibrium, these covariance terms determine the components of the systematic 

IQ risk and therefore require a risk premium to compensate for it. 

The first component of IQ risk is the covariance of the security‟s IQ-related return 

noise and market-wide IQ-related return noise, which I call commonality in IQ. Investors 

require higher expected returns for securities with positive covariance between the asset 

noise and the market noise. Securities with the negative covariance provide a hedge 

against the risk of a negative IQ return on the market portfolio, and therefore have lower 

expected returns. The second component is the covariance of the market IQ return with a 

security‟s fundamental return. At times when overall market IQ return is negative, 

investors prefer to hold securities that pay a higher fundamental return. Thus, investors 
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demand a premium for this covariance. The third component is the covariance between 

the market fundamental return and the security IQ return. Investors prefer a negative 

covariance as it corresponds to higher security IQ return in a declining market. 

 I empirically test a static version of the IQCAPM and finds evidence supporting the 

pricing of systematic IQ risk at the cross section. Analytically, my static version of 

IQCAPM is similar to the liquidity-adjusted CAPM of Acharya and Pedersen (2005). To 

check whether the IQ risk represented by my IQ betas is distinct of the liquidity risk 

measured by Acharya and Pedersen‟s (2005), I estimate their liquidity beta and 

incorporate it into cross-sectional test of IQ betas as a control variable. My results of 

robustness check lend strong support to the significance of IQ betas even in the presence 

of  liquidity berta of Acharya and Pedersen‟s (2005). 

 Given the probable relation between security IQ and its market liquidity, it is 

possible that my IQ betas capture the effect of Acharya and Pedersen‟s (2005) illiquidity 

betas. A Pearson correlation test shows low and insignificant correlation between my IQ 

betas and illiquidity betas implying that my IQ beta represents a source of systematic risk 

distinct of liquidity risk. My cross-sectional regression tests show that the IQ betas are 

significantly priced even after controlling for Acharya and Pedersen‟s (2005) liquidity 

betas. 

The remainder of this chapter is organized as follows: in Section 2.2, I conduct an 

ad hoc preliminary test to examine whether the IQ factor is a priced state variable, even 

after controlling for several widely used factors. Given the supportive evidence in Section 

2.2, I derive an IQ-adjusted intertemporal asset-pricing model in Section 2.3 to obtain 

analytical form of asset prices in the presence of IQ factor. This model facilitates a formal 
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empirical test of IQ pricing. Section 2.4 discusses the theoretical implication of noisy 

information for asset pricing, while distinguishing between the systematic and 

idiosyncratic components of IQ risk. Section 2.5 provides empirical evidence in support 

of my model. Robustness checks are provided in Section 2.6.  

 

2.2. Is an IQ Factor a Priced State Variable? A Preliminary Test 

 Prior studies document that firms with relatively low (high) magnitudes of signed 

abnormal accruals, offer positive (negative) risk-adjusted returns (see for example, Sloan, 

1996; Xie, 2001; and Chan et al., 2001). Francis et al. (2005) argue that the systematic 

effect of accrual quality on the cost of capital can be explained by a rational asset-pricing 

framework in which accruals quality captures an undiversifiable information risk.
 
 

Motivated by the above literature, in this section, I perform an ad hoc empirical test to 

examine whether an IQ factor is a priced state variable after controlling for several 

widely used factors, such as market return, size, value, and liquidity. 

 

2.2.a. An IQ-adjusted Factor Model  

The basic intuition underlying standard asset-pricing theory is that expected stock 

returns are related to return‟s sensitivity to state variables with market-wide effects on 

consumption and investment opportunities. Extra return is required to compensate 

investors for holding securities sensitive to these state variables. Fama and French (1992, 

1993, and 1996) find evidence that expected excess market return, along with two other 

variables; size (market value equity) and B/M (book-to-market ratio); explain much of 
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the variation in average stock returns.
5
 In addition to the Fama-French three factors, 

liquidity is also important. There are two reasons to control for a liquidity factor when 

testing other factors. First, a large number of studies demonstrate that investors demand 

compensation for holding illiquid stocks and that market liquidity represents a priced 

state variable.
6
 Second, illiquidity may be induced by asymmetric information.

7
 To 

disentangle the liquidity and the IQ effects, I introduce a liquidity factor in my ad hoc 

model and estimate the following IQ-adjusted Fama-French factor model: 

 

,ittititititiiftit LIQlIQFqHMLhSMBsMKTbrr  
 

 

where itr is the return of portfolio i in quarter t, ftr is three-month T-bill rate for quarter t, 

MKTt is the excess return on a broad market index, SMBt is the return on a portfolio of 

small stocks minus the return on a portfolio of large stocks, HMLt is the return on a 

portfolio of stocks with high B/M ratio minus the return on a portfolio of stocks with low 

B/M ratio, tIQF is the mimicking IQ factor constructed to capture IQ risk, and tLIQ is the 

mimicking liquidity factor constructed based on Pastor and Stambaugh (2003) liquidity 

                                                 
5 They argue that size and book-to-market represent risk factors missed by the capital asset pricing model 

of Sharp (1964) and Linter (1965). They propose a three-factor asset pricing model consisting of a market 

factor and risk factors related to size and B/M. In support of the model, Laknoishok, Shleifer and Vishny 

(1994) show that stocks with high book-to-market ratios (B/M) provide higher average returns than stocks 

with low ratios of B/M for U.S. stocks. They further show that the difference in returns on value stocks and 

growth stocks is the value premium associated with relative financial distress.  
6  See for example, Amihud and Mendlson (1987), Constantinides (1987), Heaton and Lucas (1996), 

Vayanos (1998), Chalmers and Kadlec (1998), Huang (2001), Lo, Mamaysky, and Wang (2001), 

Campbell, Grossman, and Wang (1993), Pastor and Stambaugh (2003), Acharya and Pedersen (2005), and 

Liu (2006). 
7 For example, Easley and O‟hara (2004) find that asymmetric information increases uninformed investor‟s 

risk, because informed investors are able to adjust their portfolio proportions better and take advantage of 

their private information. Uninformed investors will require higher returns as compensation for the 

nondiversifiable information risk they face. Liu (2006) argues that when uninformed investors are aware of 

asymmetric information in the market they will choose not to trade, which will hurt market liquidity.  
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measure as a control variable. The factor loading qi captures portfolio return‟s 

comovement to IQFt that is distinct from its comovement with other factors: MKTt, SMBt, 

HMLt, and LIQt.  

  

2.2.b. Data and Variable Construction 

In this subsection I follow the model of Barth et al. (2001) in constructing an IQ 

measures to proxy for firm-specific IQ risk. The pricing process applied by capital-

market participants uses aggregate earnings and accrual components of current earnings 

to predict the firm‟s future cash flow. I follow recent studies in which cash flow is the 

primitive element for pricing, and therefore poor accrual quality weakens pricing and 

increases information risk (see for example, Barth et al., 2001 and Francis et al., 2005).  

The model developed by Barth et al. (2001) shows that aggregate cash flow and 

accrual components of current earnings have substantial predictive ability for future cash 

flows.
8
 A larger deviation between accruals and cash flows represents a lower quality of 

accounting information and a lower IQ.
9
 Based on the estimated residuals obtained from 

the model of Barth et al.‟s (2001), I construct two alternative IQ measures for empirical 

test.
10

 The forecast regression of future operating cash flows (OCF) uses previous period 

earnings components and is given below:  

                                                 
8 Accrual components of current earnings include change in accounts receivable, change in accounts 

payable, change in inventory, depreciation, amortization, and other accruals. 
9  Similar to Barth et al. (2001), several theoretical and empirical studies treat the precision level of 

disclosed public information as a measure of IQ (see for example, Baiman and Verrecchia, 1996; Admati 

and Pleiderer, 2000; Easley and O‟Hara, 2004; Gomes, Gorton and Madureira, 2004; and Lambert, Leuz , 

Verrecchia, 2006). Barth et al. (2001) suggest residuals obtained from their model as the basis for the 

construction of measures of information precision. 
10 For an additional accrual-based measure see Dechow and Dichev (2002), who use the standard deviation 

of residuals from regressions relating current accruals to cash flows. Other studies, such as Admati and 

Plaiderer (2000), Baiman and Verrecchia (1996), and Easley and O‟hara (2004) use publicly disclosed 

information precision to measure information quality. Information precision is measured by the 
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where tiCFO ,  represents cash flow from operations of firm i in quarter t (Compustat 

quarterly data item Q108), adjusted for the accrual portion of extraordinary items and 

discontinued operations (Compustat quarterly data item Q78); ΔARi,t represents the 

change in accounts receivable (Compustat Q103); ΔINVi,t is the change in the inventory 

account (Compustat Q104); ΔAPi,t is the change in accounts payable and the accrued 

liabilities account (Compustat Q105); DEPRi,t represents Depreciation and Amortization 

Expense (Compustat Q5); OTHERi,t is the net of all other accruals, calculated as income 

before extraordinary items and discontinued operations (Compustat Q8) minus 

(CFO+ΔAR+ΔINV-ΔAP-DEPR). All variables are deflated by the average of total assets 

(Compustat Q44). 

To empirically estimate the IQ proxies I use quarterly data from the 

COMPUSTAT data for quarter 1 of 1987 through quarter 4 of 2007. 
11

 Following Barth 

et al. (2001), I exclude firms in SIC codes 6000-6999 (financial institution, insurance, 

and real estate companies) because the empirical cash flow predictability model does not 

reflect their activities. I further exclude outliers, defined as observations within the upper 

and lower percentiles of my sample. After excluding firms with missing data for the 

variables used in the above regression model, I am left with 118,177 firm-quarter 

                                                                                                                                                 
predictability of expected future cash flows under the flexibility and discretion under Generally Accepted 

Accounting Principles (GAAP). 
11 Barth et al (2001) use Compustat data beginning in 1987 because cash flow from operations (Compustat 

annual data item #308) calculated from the statement of cash flows is only available since 1987, following 

the Statement of Financial Accounting Standard No. 95 (SFAS No. 95). Recent studies (such as Collins and 

Hribar, 2002, and Dechow, Cotharin, and Watts, 1998) find that using CFO derived from balance sheet 

accounts is likely to yield biased and noisy estimates. To minimize the impact of measurement error I use 

CFO reported in the statement of cash flows subsequent to the Statement of Financial Accounting Standard 

No. 95 (SFAS No. 95). Care should be taken when working with data from the quarterly statement of cash 

flow as it is reported on a cumulative basis (i.e., 2nd quarter statement of cash flows reports the cumulative 

amounts for quarter 1 and 2, not just the amount for quarter 2). 
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observations, representing 2,685 firms. The quarterly values of the three Fama-French 

factors: market factor (MKT), size factor (SMB), and value factor (HML), are 

constructed based on daily data downloaded from Kenneth French‟s website.
12

 Below I 

detail the methodology for constructing the IQ factor ( tIQF ) and the liquidity factor 

( tLIQ ). 

The raw cash-flow regression residual, tie , , representing standardized future 

operating cash flow unexplained by disaggregated earnings components, is white noise 

and therefore could be negative or positive. A firm with a zero mean of tie ,  may be 

interpreted as a high IQ firm, but in reality it is not necessarily the case. If variance of tie ,  

is large (even though the mean is zero), the firm‟s IQ is poor. Therefore, this raw estimate 

may not adequately represent IQ. Instead, I use two other dimensions of the estimated 

cash flow residual: the absolute magnitude of the residual and the residual variability, 

which better reflect the level of information precision.  

The first IQ measure, ||1 ,tieIQ  , is the absolute value of the estimated residual, 

which measures the magnitude of errors in predicting future operating cash flows. A 

higher IQ1 reflects a lower forecast quality of reporting earnings. The second IQ 

measure, tieIQ )(2  , is the standard deviation of estimated residuals over time t-4 

through t which reflects the stability dimension of information quality. A lower IQ2 

represents a higher predictability of earnings and therefore a higher quality of financial 

reporting.  

                                                 
12 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. I thank Kenneth French for making these 

data available.  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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I use firm-specific IQ measures, to construct a market-wide IQ factor. The 

construction of the mimicking IQ factor is similar to the construction of SMB and HML in 

Fama and French (1993). The mimicking IQ factor, tIQF , is the spread between the return 

on a portfolio of stocks with high IQ measures and the return on a portfolio of stocks with 

low IQ measures. Since each of the two IQ measures ))( and |,| ( , titi ee   captures a 

different dimension of information quality, I build two alternative mimicking IQ factors 

based on each of measure, respectively.
13

 

Next, I construct a market-wide liquidity factor as a control variable. Liquidity is 

an unobservable quantity. A variety of empirical-liquidity measures are proposed to 

capture different dimensions of liquidity: trading quantity, trading speed, trading cost, 

and price impact of trading.
14

 To test my IQ factor, I adopt the liquidity measure of Pastor 

and Stambaugh (2003) as a control variable to disentangle the effects of liquidity and IQ. 

The liquidity measure of Pastor and Stambaugh (2003) captures the price impact of 

trading dimension of liquidity, which makes it ideal to compare the price impact of IQ. 

Following Pastor and Stambaugh (2003), I use daily trading volume, daily return, 

the number of shares outstanding, and market value (MV) from CRSP for 1987-2007. 

Annual accounting data for calculating the book-to-market (B/M) ratio is obtained from 

COMPUSTAT. To be consistent, I exclude NASDAQ from my sample in constructing 

                                                 
13 Mimicking factors are widely used when examining economic factors. For example, Breedon (1979) 

shows that mimicking factors can substitute the state variable in Merton‟s (1973) intertemporal capital asset 

pricing model. Chen et al. (1987) construct mimicking portfolios to investigate several macroeconomic 

factors, and Breeden et al. (1989) use them in the context of aggregate-consumption growth. Fama and 

French (1996) construct SMB and HML as mimicking-size factor and mimicking-value factor to help 

explain variations of returns and to capture distress risk. Liu (2006) constructs a mimicking-liquidity factor 

to hedge the state risk of market-wide liquidity.  
14 For example, the bid-ask spread measure used in Amihud and Mendlson (1986) and Jones (2002), the 

turnover measure of Datar et al. (1998) and Lo and Wang (2000),  the return-to-volume measure of 

Campbell, Grossman, and Wang (1993), Amihud (2002), and Pastor and Stambaugh (2005). 
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the liquidity measure because reported volumes on NASDAQ include inter-dealer trades, 

unlike the volumes reported on the NYSE and the AMEX. A stock‟s liquidity estimate is 

excluded if there are less than 15 consecutive observations in a given quarter; stocks with 

prices less than $5 and greater than $1000 are also excluded.  

Following Pastor and Stambaugh (2003), the firm-specific liquidity measure is 

estimated by an ordinary least squares (OLS) coefficient on signed trading volume, 

denoted as 
i

tyIlliquidit reflecting the liquidity level of firm i.
 15

 Note that, Pastor and 

Stambaugh (2003) estimate their liquidity measure using daily observation within each 

month. In this case, since the IQ measures are constructed on quarterly basis, my liquidity 

measure is estimated based on daily observations over a one-quarter interval. 

The construction of the liquidity factor tLIQ is similar to the construction of IQFt. 

I sort stocks into two portfolios based on their liquidity level. The spread between the 

returns on a portfolio with high 
i

tyIlliquidit and a portfolio with low 
i

tyIlliquidit , is the 

mimicking liquidity factor tLIQ . I construct a mimicking LIQ factor instead of using the 

liquidity measure for market portfolio because of the concern raised in Liu (2006).
16

  

 

2.2.c. Forming Portfolios  

I use quarterly returns and market capitalization data for all common shares listed 

on NYSE and AMEX from CRSP for the period between Q1 1987 and Q4 2007. Book-

                                                 
15 The details for estimating the Pastor and Stambaugh (2003) model are provided in Appendix B1. 
16 In Pastor and Stambaugh (2003), a market-wide liquidity measure is constructed, and then the innovation 

in market liquidity is used as the liquidity factor. Liu (2006) argues that the aggregate liquidity measure 

constructed in this way is problematic because it fails to distinguish illiquid stocks whose daily trading 

volumes are all equal to zero in the prior month. See Liu (2006) for a detailed discussion. 
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to-market value is calculated based on book values from COMPUSTAT.
17

 I exclude 

records with missing IQ measure.  

Next I double-sort stocks based on both IQ and Illiquidity so that my portfolios 

are adjusted for both effects. I first sort stocks into three IQ categories and then into three 

Illiquidity groups within each IQ category, and obtain 3 IQ × 3 Illiquidity portfolios. 

Note that with both IQ1 and IQ2, the higher the proxy the lesser the information quality. 

Thus, low values of IQ1 and IQ2 represent high information quality and as one moves 

from the low IQ1 or IQ2 portfolio to the high IQ1 or IQ2 portfolio, one actually moves 

from a high information-quality portfolio to a low information-quality portfolio.  

I denote the three IQ portfolios with IQH, IQM, and IQL, where: IQH is the high 

information-quality portfolio (with low levels of IQ1 or IQ2); IQM is the medium 

information-quality portfolio (with medium levels of IQ1 or IQ2); and IQL is the low 

information-quality portfolio (with high levels of IQ1 or IQ2). When portfolios are 

formed, portfolio return, portfolio IQ measure, and portfolio illiquidity measure are 

computed as follows for time t: 

     iti

p

t rwr  ,    

,iti

p

t IQwIQ   

 
i

ti

p

t yIlliquiditwyIlliquidit  , 

where p=1, 2…9 portfolios, i =1, 2,...x stocks within each portfolio, iw  is a value weight 

based on market capitalization for stock i, and IQ is IQ1 or IQ2. The notation p

tr  is the 

                                                 
17 Following Fama and French (1993), book value is defined to be the value of common stockholders‟ 

equity, plus deferred taxes and investment-tax credit, minus the book value of preferred stock. Book value 

is divided by market value on the day of firm‟s fiscal year-end.  
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portfolio return, p

tIQ is portfolio IQ, and p

tyIlliquidit  is portfolio liquidity, all value 

weighted.
18

 

Table 1 reports the descriptive statistics of nine value-weighted portfolios double 

sorted based on both IQ measures and Pastor and Stambaugh‟s (2003) liquidity measure. 

Panel A reports the statistics for 3 IQ1 × 3 Illiquidity portfolios. In this sample, portfolios 

range from the most informationally precise (IQH: lowest IQ1 portfolio) to least 

informationally precise (IQL: highest IQ1 portfolio). The average IQ1 measure is as low 

as 0.84% within the IQH category and as high as 13.68% within the IQL category.  

In Panel B of Table 1, portfolios range from the most informationally stable (IQH: 

lowest IQ2 portfolio) to the least informationally stable (IQL: highest IQ2 portfolio), with 

the average IQ2 measure being as low as 1.29% within the IQH category and as high as 

14.08% within the IQL category.  In general, both IQ measures become more volatile as 

the portfolio becomes less informationally precise. Both panels of Table 1 show that, 

regardless of the IQ measure used to proxy for IQ, there is no clear relation between IQ 

and illiquidity, size, or B/M. Thus, it implies that informationally imprecise stocks do not 

possess a clear tendency to be less liquid, or have characteristics such as small size, and 

large B/M ratio.  

Note that in both panels of Table 1, within each IQ category, the average portfolio 

Illiquidity ranges from a large negative value through a value close-to-zero, and to a large 

positive value. These negative illiquidity values are consistent with Pastor and 

Stambaugh (2003), who state that their firm-specific estimate of illiquidity is expected to 

                                                 
18 Since I use the Fama-French value-weighted three factors provided on Kenneth French‟s website, to be 

consistent, I construct portfolio illiquidity measure and IQ measure using value weights rather than equal 

weight. 
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         Table 1: Descriptive Statistics for Nine (3 IQ by 3 Liquidity) Portfolios 

This table reports the descriptive statistics of nine portfolios double sorted based on the IQ measures and 

the liquidity measure following Pastor and Stambaugh (2003). At the beginning of each quarter from 1987 

to 2007, eligible NYSE/AMEX stocks are first into sorted three groups according to estimated IQ measure 

and then sorted into three liquidity categories within each IQ group based on the Pastor and Stambaugh 

liquidity measure. Panel A reports the results for the sample where IQ1 ( || ,tie , the absolute value of 

residual estimated using the Barth et al., 2001 model) is employed as the first ranking criteria. Panel B 

reports the results where IQ2 ( tie )( , the standard deviation of residuals estimated over time t-4 through t 

as in Barth et al., 2001) is employed as the first ranking criteria. Each panel documents the average and 

standard-deviation of quarterly IQ measures, quarterly portfolio returns, and quarterly liquidity measures 

for each portfolio. The portfolio Size (market capitalization) and B/M (Book-to-market ratio) are 

documented as well. I denote the three IQ portfolios with IQH, IQM, and IQL, where: IQH is the high 

information-quality portfolio (with low levels of IQ1 or IQ2); IQM is the medium information-quality 

portfolio (with medium levels of IQ1 or IQ2); and IQL is the low information-quality portfolio (with high 

levels of IQ1 or IQ2). 

 

Panel A:  IQ1 measure  = || ,tie  

IQ 

Portfolio 

Illiquidity 

value 

pr 
 

Mean 

(%)
 

pr
 

Std.dev

(%)
 

pIQ1  
Mean

 

(%) 

pIQ1  
Std.dev

 

(%) 

pyIlliquidit  
Mean 

(%) 

pyIlliquidit   

Std.dev 

(%) 

Size 

(bl$) 

B/M 

 Low 6.23 8.72 0.84 0.13 -0.47 0.34 2.03 0.48 

IQH Medium 4.91 6.78 0.85 0.12 -0.01 0.01 57.62 0.33 

 High 5.41 8.22 0.85 0.16 0.36 0.33 4.11 0.44 

 Low 6.22 9.67 3.14 0.65 -0.50 0.35 2.09 0.47 

IQM Medium 4.85 6.50 3.15 0.60 -0.001 0.002 54.68 0.32 

 High 4.69 8.16 3.14 0.59 0.34 0.28 4.98 0.46 

 Low 6.25 9.55 13.18 4.84 -0.46 0.33 2.39 0.49 

IQL Medium 4.91 6.95 13.68 5.50 -0.001 0.003 53.46 0.36 

 High 5.31 8.54 13.65 4.33 0.36 0.30 3.69 0.46 

 

Panel B:  IQ2 measure  = tie )(  

IQ 

Portfolio 

Illiquidity 

value 

pr
 

Mean 

(%)
 

pr
 

Std.dev 

(%) 

pIQ2  

Mean 

(%) 

pIQ2  

Std.dev 

(%) 

pyIlliquidit

Mean 

(%) 

pyIlliquidit  

Std.dev 

(%) 

Size 

(bl$) 

B/M 

 Low 5.16 8.16 1.32 0.18 -0.33 0.21 3.02 0.50 

IQH Medium 4.55 6.02 1.29 0.27 -0.001 0.002 50.90 0.36 

 High 4.71 7.36 1.32 0.20 0.23 0.20 5.47 0.47 

 Low 6.14 9.09 3.18 0.58 -0.48 0.32 2.13 0.49 

IQM Medium 5.11 6.92 3.14 0.55 -0.001 0.003 43.86 0.31 

 High 5.54 8.81 3.16 0.58 0.39 0.33 3.84 0.44 

 Low 7.17 10.64 12.56 6.95 -0.74 0.61 1.44 0.47 

IQL Medium 5.56 8.29 14.06 10.34 -0.003 0.007 72.93 0.36 

 High 5.53 9.42 11.58 5.95 0.56 0.49 3.15 0.44 

 

 

be larger in absolute value when liquidity is lower. Therefore, the medium Illiquidity 

measure group within each IQ category in Table 1 includes the most liquid stocks as 

evidenced by a close-to-zero value of ).( pyIlliquiditE  In contrast, the low Illiquidity 
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measure group within a each given IQ category consists of the least liquid stocks as 

evidenced by their large absolute values of )( pyIlliquiditE . The highest Illiquidity 

measure group includes stocks with medium liquidity as evidenced by absolute values of 

)( pyIlliquiditE , which are smaller relative to the absolute magnitude of estimated for 

low the Illiquidity group. 

Table 1 shows that within each IQ category highly liquid stocks with close-to-

zero Illiquidity measure tend to have large size and low B/M ratio; while least liquid 

stocks tend to have small size and high B/M ratio.  

  

2.2.d.  Evidence of IQ Risk Premium 

In this subsection I examine the correlation between the main variables used in 

the preliminary test and test for the significance of the IQ factor in explaining the 

variation in returns. At the beginning of each quarter from 1987 to 2007, stocks in my 

NYSE/AMEX sample are sorted first into three groups according to the estimated IQ 

measure and then sorted into three liquidity categories within each IQ group based on the 

illiquidity measure of Pastor and Stambaugh (2003).   

Table 2 reports the Pearson correlations for the main variables used in the 

preliminary test. Panel A reports the results for IQ1-based mimicking IQ factor. This 

panel shows that the IQF factor is weakly correlated with the LIQ factor at 0.036 (with a 

p-value of 66.7%). This finding confirms that the LIQ factor is essentially orthogonal to 

IQ1-based market factor. Panel A further shows that the IQ1-based IQF factor is 

positively correlated with the market factor (0.067, p-value = 42.4%) and size factor 
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(0.063, p-value = 45.8%) both at insignificant levels. At the same time, there is a weak 

and negative correlation between IQF and HML factors (-0.140, p-value = 9.7%). 

Table 2: Correlation Test 
This table reports the Pearson correlations for the main variables used in the preliminary test. Data ranges 

from quarter 1 of 1987 to quarter 4 of 2007. Fama-French three factors (MKT, SMB, HML) are constructed 

based on the daily data downloaded from Kenneth French‟s website: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. The mimicking liquidity factor (LIQ) is 

constructed based on liquidity measure of Pastor and Stambaugh (2003). The two panels refer to results 

based on the two alternative measures for the mimicking IQ factor. The P-value is reported in parentheses. 

***, **, * denotes significance level at 1%, 5% and 10% , respectively.  

 

Panel A: When the mimicking IQ factor is measured with IQ1 ( || ,tie )  

 Market 

(MKT) 

Size  

(SMB) 

Value 

(HML) 

IQ Factor 

(IQF) 

Liquidity 

(LIQ) 

Market (MKT) 1     

Size (SMB) 0.403*** 

(<.0001) 

1    

Value (HML) -0.529*** 

(<.0001) 

-0.214** 

(0.011) 

1   

IQ Factor (IQF) 0.067 

(0.424) 

0.063 

(0.458) 

-0.140* 

(0.097) 

1  

Liquidity (LIQ) 0.108 

(0.202) 

0.760*** 

(<.0001) 

0.322*** 

(0.0002) 

0.036 

(0.667) 

1 

 
Panel B: When the mimicking IQ factor is measured with IQ2 ( tie )( ) 

 Market 

(MKT) 

Size  

(SMB) 

Value 

(HML) 

IQ Factor 

(IQF) 

Liquidity 

(LIQ) 

Market (MKT) 1     

Size (SMB) 0.403*** 

(<.0001) 

1    

Value (HML) -0.529*** 

(<.0001) 

-0.214** 

(0.011) 

1   

IQ Factor (IQF) 0.591*** 

(<.0001) 

0.271*** 

(0.001) 

-0.605*** 

(<.0001) 

1  

Liquidity (LIQ) 0.072 

(0.391) 

0.728*** 

(<.0001) 

0.354*** 

(<.0001) 

-0.147* 

(0.080) 

1 

 

  

Panel B of Table 2 reports the results for the IQ2-based mimicking IQ factor. In 

this panel, the mimicking IQ factor is negatively and weakly correlated with the 

mimicking liquidity factor (-0.147, p-value = 8%). The low correlation suggests that, in 

general, an informationally unstable market is not necessarily illiquidity and the IQ2-

based factor captures information beyond the market liquidity factor. The mimicking 

IQ2-based factor is also weakly correlated with size factor (0.271, p-value = 0.10%), but 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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it is highly correlated with value factor (-0.605, p-value < 0.01%). Panel B further shows 

that the mimicking IQ factor is highly correlated with market factor (0.591, p-value < 

0.01%). This positive and high correlation implies that the market risk premium is higher 

during periods when the market suffers from a poor information quality. 

Both panels of Table 2 show that the market liquidity factor is significantly 

correlated with size factor (for example, 0.760, p-value < 0.01% in Panel A) and value 

factor (for example, 0.322, p-value = 0.02% in Panel A). This result is consistent with the 

extant liquidity literature (see for example, Pastor and Stambaugh, 2003; and Liu, 2006). 

This confirms that small firms are less liquid and size can be a reasonable proxy for 

liquidity. 

Next, I use GMM to estimate the IQ-adjusted Fama-French factor model with 

market liquidity as a control variable (see Section 2.1). I estimate the IQ-factor loading, qi, 

for each of portfolio of those formed by double sorting based on IQ and liquidity for the 

1987-2007 period. Table 3 reports estimated coefficients qi (and the coefficients of the 

other market factors), together with their t-statistics. 
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Table 3: IQ by Liquidity Portfolios 
This table reports the coefficient estimates of the IQ-adjusted Fama-French factor model with market 

liquidity as a control variable. At the beginning of each quarter from 1987 to 2007, eligible stocks are 

sorted first into 3 groups according to their estimated IQ measure and then sorted into 3 liquidity categories 

within each IQ group based on Pastor and Stambaugh‟s (2003) liquidity measure. GMM is used to estimate 

the coefficients for the following adjusted-factor model: 

 

,ittititititiiftit LIQlIQFqHMLhSMBsMKTbrr    

where itr is the return of portfolio i in quarter t, ftr is three-month T-bill rate for quarter t, the quarterly 

values of tMKT , tSMB , and tHML  are constructed based on daily values downloaded from Kenneth 

French‟s website, tLIQ is the mimicking liquidity factor constructed based on Pastor and Stambaugh 

(2003) liquidity measure, and tIQF is the mimicking IQ factor constructed based on each of the two IQ 

measures. Panel A reports the results for the sample where IQ1 ( || ,tie , the absolute value of residual 

estimated using the Barth et al., 2001, model) is employed to construct the mimicking IQ factor. Panel B 

reports the results on the sample where IQ2 ( tie )( , the standard deviation of residuals estimated over time 

t-4 through t as in the Barth et al., 2001, model) is employed to construct the mimicking IQ factor. I denote 

the three IQ portfolios with IQH, IQM, and IQL, where: IQH is the high information-quality portfolio (with 

low levels of IQ1 or IQ2); IQM is the medium information-quality portfolio (with medium levels of IQ1 or 

IQ2); and IQL is the low information-quality portfolio (with high levels of IQ1 or IQ2).The t-statistic is 

documented in the parentheses. R2 and adjusted-R2 (in parentheses) are presented as well. ***, **, * 

denotes significance level at 1%, 5% and 10% respectively.  

 

Panel A:  IQ1 by Liquidity Portfolios (IQ1 = || ,tie ) 

IQ 

Portfolio 

Liquidity 

value 

αi bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

 

 

IQH 

Low 0.050** 

(2.93) 

0.903*** 

(29.12) 

-0.206** 

(-2.49) 

0.065 

(1.24) 

-0.468*** 

(-3.85) 

0.024 

(0.30) 

0.894 

(0.890) 

Medium 0.045 

(0.46) 

0.993*** 

(25.65) 

-0.118 

(-1.15) 

0.221 

(3.39) 

-0.196 

(-1.30) 

0.682*** 

(6.76) 

0.896 

(0.893) 

High 0.052 

(1.50) 

0.834*** 

(20.36) 

-0.063 

(-0.59) 

0.137** 

(1.98) 

-0.280* 

(-1.75) 

1.036*** 

(9.69) 

0.897 

(0.894) 

 

 

IQM 

Low 0.049 

(1.97) 

0.871*** 

(25.82) 

-0.058 

(-0.65) 

0.174*** 

(3.05) 

-0.016 

(-0.12) 

-0.101 

(-1.15) 

0.864 

(0.858) 

Medium 0.035 

(0.52) 

0.937*** 

(19.78) 

0.075 

(0.60) 

0.195** 

(2.44) 

0.275 

(1.48) 

0.646*** 

(5.23) 

0.860 

(0.855) 

High 0.015 

(1.44) 

0.868*** 

(16.09) 

0.360** 

(2.51) 

0.215** 

(2.36) 

0.213 

(1.48) 

0.684*** 

(4.86) 

0.850 

(0.844) 

 

 

IQL 

Low 0.037 

(0.37) 

0.885*** 

(23.34) 

-0.101 

(-1.01) 

0.084 

(1.31) 

0.491*** 

(3.30) 

-0.011 

(-0.11) 

0.851 

(0.845) 

Medium 0.059 

(1.50) 

0.880*** 

(22.01) 

-0.143 

(-1.35) 

0.102 

(1.51) 

0.383** 

(2.44) 

0.913*** 

(8.75) 

0.893 

(0.889) 

High 0.060 

(2.12) 

0.863*** 

(21.88) 

0.046 

(0.44) 

0.301*** 

(4.51) 

0.299* 

(1.94) 

0.856*** 

(8.32) 

0.901 

(0.898) 
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Panel B:  IQ2 by Liquidity Portfolios (IQ2 = tie )( )                                                                                                                                                                                                                                   

IQ 

Portfolio 

Liquidity 

value 

αi bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

 

 

IQH 

Low 0.052 

(1.21) 

0.907*** 

(29.89) 

-0.013 

(-0.17) 

0.143*** 

(2.94) 

-0.646*** 

(-8.48) 

-0.083 

(-1.14) 

0.887 

(0.883) 

Medium 0.048 

(0.73) 

0.964*** 

(24.83) 

0.056 

(0.61) 

0.266*** 

(4.29) 

-0.598*** 

(-6.14) 

0.525*** 

(5.65) 

0.892 

(0.888) 

High 0.053 

(1.63) 

0.881*** 

(23.25) 

0.029 

(0.32) 

0.052 

(0.86) 

-0.847*** 

(-8.90) 

0.848*** 

(8.86) 

0.905 

(0.902) 

 

 

IQM 

Low 0.053 

(1.19) 

0.946*** 

(21.25) 

-0.022 

(-0.21) 

0.138* 

(1.95) 

-0.312*** 

(-2.79) 

-0.039*** 

(-0.37) 

0.822 

(0.815) 

Medium 0.063** 

(2.79) 

0.964*** 

(20.33) 

0.097 

(0.86) 

0.096 

(1.27) 

-0.125 

(-1.05) 

0.681*** 

(5.99) 

0.882 

(0.877) 

High 0.007 

(0.78) 

0.952*** 

(18.59) 

0.110 

(0.90) 

0.254*** 

(3.11) 

-0.051 

(-0.4) 

0.962*** 

(7.84) 

0.886 

(0.882) 

 

 

IQL 

Low 0.054** 

(2.88) 

0.902*** 

(23.62) 

-0.133 

(-1.46) 

-0.132** 

(-2.17) 

0.419*** 

(4.37) 

-0.069 

(-0.75) 

0.911 

(0.908) 

Medium 0.043 

(1.00) 

1.004*** 

(18.31) 

-0.013 

(-0.10) 

0.101 

(1.15) 

0.277** 

(2.01) 

0.790*** 

(6.01) 

0.867 

(0.863) 

High 0.066** 

(3.20) 

0.774*** 

(12.66) 

0.407*** 

(2.78) 

0.157 

(1.61) 

0.537*** 

(3.50) 

0.748*** 

(5.10) 

0.849 

(0.844) 

 

Panel A of Table 3 reports that five out of the nine factor-loading estimates for the 

IQ1-based factor are statistically significant. Among estimates of qi for the nine 

portfolios, two are significant at the 1% significant level, one is significant at the 5% 

significance level, and two are significant at the 10% significance level.  Panel B reports 

that seven out of the nine factor-loading estimates for the IQ2-based factor are 

statistically significant: six estimates are significant at the 1% significant level, and one 

estimate is significant at the 5% significance level.  

The results in Table 3 clearly show that the IQ-adjusted Fama-French factor 

model (with market liquidity as a control variable) fits the data well. R
2
 (adjusted-R

2
) 

ranges from 0.850 (0.844) to 0.901 (0.998) for the IQ1-based model, and from 0.822 

(0.815) to 0.911 (0.908) for IQ2-based model.  

It is interesting to note that IQF gains higher significance when IQ2 is used as a 

proxy. Basically, IQ1 measure and IQ2 measure are complementary to each other. A 

larger IQ1 implies a lower precision of information quality in terms of the magnitude of 
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forecast error, while a larger IQ2 corresponds to a greater uncertainty of forecast error 

reflecting a poorer level of reporting quality. The improved significance of IQ2 pricing 

effect on equity returns implies that unexpected uncertainty related to forecast error is 

more concerned by investors. Overall IQF provides incremental information about 

expected returns especially for informationally-imprecise (IQL) stocks and 

informationally-precise (IQH) stocks. Furthermore, the sign of the estimated IQF 

coefficient changes from negative to positive when moving from the IQH category to the 

IQL category (under both IQ measures).  

This suggests that for IQH stocks, with more precise information, investors are 

willing to settle for a lower return when the overall quality of information in the market 

deteriorates (i.e., IQF increases). In other words, when the market as a whole suffers from 

poor IQ, investors are willing to pay more for stocks with more precise information set 

(such as stocks in the IQH portfolio). On the other hand, the positive and significant IQF 

coefficients estimated for the IQL portfolio indicate that, at times when the overall 

quality of information in the market deteriorates, investors demand a return premium 

(pay a lower price) for holding stocks with an imprecise information set (like stocks in 

the IQL portfolio). 

 

2.2.e. Robustness Tests 

The above results for the IQ-factor coefficient estimates may be sensitive to the 

portfolio sorting criteria. To test for the robustness of these results I re-estimate my 

model with portfolios sorted based on other firm characteristics, such as size, B/M, and 

Illiquidity, all by IQ, respectively. 
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First, to check whether my results are robust to the ranking sequence, in contrast 

to the 3 IQ × 3 Illiquidity portfolios used in Section 2.3, I reverse the ranking criteria and 

sort portfolios first into three Illiquidity categories and then into three IQ groups within 

the Illiquidity groups. Appendix A1 shows the model‟s fit of the reverse-sorting 

portfolios, in which the R
2
 is still very high (close to 0.9) in both panels. Similar to the 

results in Section 2.3, IQF tends to get more significant when the IQ2 proxy is used. 

Panel A of the table in Appendix A1 reports that six out of the nine factor-loading 

estimates for the IQ1-based factor are statistically significant. Among estimates of qi for 

the nine portfolios, two are significant at the 1% significant level, three are significant at 

the 5% significance level, and one is significant at the 10% significance level.  Panel B 

reports that six out of the nine factor-loading estimates for the IQ2-based factor are 

statistically significant: All six estimates are significant at the 1% significant level. The 

table in Appendix A1 shows that IQF provides incremental information about expected 

returns, especially for IQH stocks, regardless of their illiquidity level. 

Next, I check whether the significance of the IQ factor survives in B/M-sorted 

portfolios. I form nine B/M portfolios for each quarter over the period 1987 to 2007 by 

sorting stocks based on their previous-year book-to-market ratio. The table in Appendix 

A2 shows the model‟s fit of the B/M portfolios. Panel A of the table shows that for the 

IQ1-based regression, the R
2
 for the nine B/M portfolios ranges between 0.48 and 0.81. 

based on the IQ1 measure. Similarly, Panel B shows that for the IQ2-based model, the R
2
 

for the nine B/M portfolios ranges between 0.46 and 0.81.  

Panel A reports that of the nine factor-loading estimates for the IQ1-based factor, 

five are statistically significant. Among estimates of IQF coefficient for the nine 
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portfolios, three are significant at the 1% significant level, one is significant at the 5% 

significance level, and one is significant at the 10% significance level.  Panel B reports 

that five out of the factor loadings estimated for the nine B/M portfolios (based on IQ2) 

are statistically significant: one is significant at the 1% significant level, one is significant 

at the 5% significance level, and three are significant at the 10% significance level. These 

results suggest that IQF remains an important factor even after controlling for size, B/M, 

and liquidity factors for B/M-based portfolios.  

 Finally, I form nine size portfolios for each quarter during the sample period by 

ranking stocks based on their market capitalization at the beginning of the year and report 

the model fit in Appendix A3. The R
2
 for the nine size portfolios ranges remains very 

high for both IQ measures. Similar to the results reported in Table 3, IQF tends to be 

more significant when IQ2 is used as a proxy. In Panel B, four IQ2-based estimates are 

significant at 1% significance level, and one is significant at 5% level. Panel A reports 

that of the nine factor-loading estimates for the IQ1-based factor, only three are 

statistically significant, all at the 5% significance level. Panel B reports that five out of 

the factor loadings estimated for the nine size portfolios (based on IQ2) are statistically 

significant: four are significant at the 1% significant level, and one is significant at the 

5% significance level.  

Note that the liquidity factor (LIQ) is always significant for all of nine size 

portfolios regardless of the IQ proxy used. The superior explanatory power of liquidity 

factor may be due to its strong correlation with size as reported in Table 2. Overall, the 

additional tests performed in this section show that that IQF is a robust and significant 

factor in explaining variation in returns.  
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2.3. An Intertemporal Asset-Pricing Model with Imprecise Information 

In the previous section, I provide evidence supporting the notion that IQ is a 

priced market factor. To this end I used an ad-hoc IQ-adjusted Fama-French factor model 

with market liquidity as a control variable. In the current section I formulate a theoretical 

asset pricing model with IQ risk. The precise analytical form of this risk allows us to 

perform a formal econometric study of the different components systematic IQ and test 

whether they are priced.  

Merton (1973) derives an intertemporal capital asset pricing model where 

investors maximize their expected utility of lifetime consumption. In his model trading in 

assets is assumed to take place continuously in time. In this section, I revisit this 

intertemporal model incorporating a noisy information structure. I model various 

channels through which information risk may affect security returns. Most of the standard 

assumptions of the intertemporal model still stand, with the extra assumption that 

investors face an imprecise information set.  

 I maintain Merton‟s (1973) assumptions of continuous trading, and that the returns 

and the changes in the opportunity set (the transition probabilities for returns on each 

asset over the next trading interval) are well explained by continuous-time stochastic 

processes. The vector set of stochastic processes describing the investment opportunity 

set and its changes is a time-homogeneous Markov process.
 19

  Below, I make four 

additional assumptions modifying Merton‟s framework to allow for imperfect IQ. 

                                                 
19  Merton assumes that all assets have limited liability, and there are no transactions costs, taxes, or 

problems with indivisibilities of assets. There are a sufficient number of investors with comparable wealth 

levels so that each investor can buy and sell unlimited amounts at the market prices, and there exists an 

exchange market for borrowing and lending at the same rate of interest. Investors have homogeneous 

expectations with respect to asset returns. Short-sales of all assets, with full use of the proceeds are 

allowed. Finally, it is assumed that trading in assets takes place continually in time. For specific details see 

Merton (1973). 
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Assumption 1: There is an information-imprecision variable, i , which represents the 

information-related error in firm i‟s instantaneous fundamental return.
20

  This variable is 

given by the spread of the observed return and the true fundamental return on security i. I 

assume that i  follows an Ornstein-Uhlenbeck process as follows: 

iii dzdtkd
ii    )( , for every asset i ( i = 1, 2,…n), where k , 

i , 
i are 

constants, iz is standard Wiener process, and dtdzdzE
jiji  ,][  .  

 The drift term )( ii
k   gives the expected growth rate of information-related 

return error. With a positive speed of mean-reversion ( 0k ), the level of information-

related return error, ,i  fluctuates around a long-term steady-state mean 
i , which is 

constant for security i. Parameter 
i  measures the magnitude of the innovation in 

i . 

 

Assumption 2: Market participants observe the stochastic noisy instantaneous return 

ititit rr ~ , where itr  is the fundamental (precise) return on asset i. This fundamental 

return follows a Gaussian process: iiii ddtdr   , for every i,  i = 1, 2,…n, and 

dtddE ijji  ][ .  

 Applying Itô‟s lemma I write the mean of the instantaneous noisy as 

iii   , which is the sum of the mean instantaneous fundamental return and mean 

noise.
 
The instantaneous noisy return variance is given by: 

2*
i

i
i ii   ,

22 2  , 

where 
ii , is the instantaneous covariance between the fundamental return on asset i and 

the information noise related to asset i: 
iii iii   ,,  , where 

ii ,  denotes the 

                                                 
20 For example, i  could be related to imprecise information on a firm‟s cash flow. 
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instantaneous correlation between the fundamental return on asset i and the information 

noise for asset i.  

 I further denote the instantaneous correlation coefficient between id  and 

jd with ij , and the instantaneous correlation coefficient between id  and jdz with 

., ji That is, dtddE ijji  )( , dtdzdE
jiji  ,)(  . Note that a positive (negative) sign 

of 
ji ,  results in a positive (negative) intertemporal correlation in security i‟s 

fundamental return if there is a positive shock in terms of IQ for security j. The 

instantaneous covariance between the noisy returns on any two assets i and j is given by: 

jiij jiijjjiiij rrCov   ,,,

* ),(  . 

 The above assumptions imply the following Itô processes for the instantaneous 

noisy return on the asset i ( ir
~ ): 

 iiiiii ddtkrd
i

i
i

  ,

22 2))((~  ,          (1) 

where i  is a standard Brownian Motion.
21

 Equation (1) implies that 

},2)),({( ,

22

ijiiii i
i

i
k     is a sufficient set of statistics for the 

opportunity set at any given point in time. 

 

Assumption 3: Following Merton (1971) and Merton (1973), I assume that there are K 

investors who maximize their expected lifetime utility of wealth: 

                                                 

21  Application of Itô‟s Lemma implies that: ,

2 ,

22

ii

i

ii

iii

i

dzd
d













 and 

dtdzdE

ii

ii

ii

ii

ii










,

22

,

2

)(




 . 
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





  ]),(),([]),([max]),(),([

0
0

kkkkkk
T

k TTTWBdssscUΕtttWJ
k

 ,   ,,...2,1 Kk      (2)    

where “ 0Ε ” is the expectation operator, conditional on the current value of the k
th

 

investor‟s wealth. 
kU  is a von Neumann-Morgenstern utility function for consumption 

which is strictly concave. The initial value of an investor‟s wealth is given by 

.)0( kk WW   kT  is the k
th

 investor‟s horizon. Finally )(tc k
 is the instantaneous 

consumption flow at time t, and kB  denotes a strictly concave utility function of terminal 

wealth. The terminal value of lifetime utility in equation (2) is: 

)),(),((]),(),([ TTTWBTTTWJ   . 

 

Assumption 4: There are n risky assets and one instantaneously riskless asset. With noisy 

information incorporated in (1), the wealth accumulation equation for the k
th

 investor is 

given by: 

   cdtrWdqdW
n

i

ii 




1

1

~ ,     (3) 

where iq  is the proportion of the investor‟s wealth invested in the i
th

 asset. 

 

Theorem 1: Following Assumption 1 to Assumption 4, the wealth accumulation process 

is given by (see Appendix C for derivation), 

,2))(( ,

22

11

cdtdWqWdtrrkqdW iii

n

i

i

n

i

ffiii i
i

i









 



           
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where fr is an exogenous interest rate on a risk-free bond, and .1
1

1


n

iq  Using the 

above assumptions and theorem, I solve for an investor‟s consumption-investment 

optimal choice which results the following Hamilton-Jacobi-Bellman (HJB) equation: 

















n n

iiiW

n n

n

jiijji

n

WW

n

ffiiWt

jjj

jijiji

ijji

i

WqJ

J

WqqJ

WrrqJJtcU

1 1 ,

1 1

2

11

1

)(

2

1

)(
2

1

]))([(),(max[0

















    (4) 

 The n+1 first-order conditions for each investor derived from (4) are given by: 

),,,(),(0 tWJtcU Wc            

,)(

)()(0

1 ,

1

2













n

j iiW

n

j jiijjWWfiW

jjj

ijjii

WJ

WqJWrJ








    

 ,,...2,1 ni   where ),,,(* tWcc   ),,(* tWqq ii   are optimal weights for consumption 

and assets in portfolio.  

The assumption of constant risk-free rate in my model allows us to simplify my 

analysis and focus on the stock market. Using matrix notation, I rewrite (4) for the n risky 

assets: 

,)(0  


WWWfW JqWJIrJ       (5) 

where   is the vector of mean of fundamental return of n securities,  is the vector of 

long-term spread between fundamental return and observed return for each security,   is 

the vector of firm-specific information-related return error,  is the variance-covariance 

matrix of observed return with elements 
ijji jiijij   ,,

*  , and 


 is the 
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vector ),...,,( 21   n  of covariance terms between all noisy information variables and 

the observed return on asset i, ),...2,1( ni  , with components given by 

 


n

j iii jj1 , )(    .,...2,1 ni  .  From (5), I obtain the vector of optimal portfolio 

weights, 

,)( 11* 




 
WW

W

f

WW

W

WJ

J
Ir

WJ

J
q     (5.1) 

For each asset i, I rewrite (5.1) as follows: 

,)(
11

* 



n

j

jij

n

j WW

W

fiij

WW

W
i

WJ

J
r

WJ

J
q

i 



      (5.2) 

 ,,...2,1 ni   and ,,...2,1 nj   where ij  denotes the element in the inverse of the 

variance covariance matrix ][1

ij
.  

 Equations (5.1) and (5.2) give the optimal weights (demand) for assets i in the 

presence of noisy information. Portfolio weight *q  in (5.1) is the combination of the 

tangency (market) portfolio with a hedge portfolio, denoted by h. This last portfolio 

hedges against IQ risk, which causes the unfavourable changes in the fundamental return 

of assets in the investment opportunity set.  

 

Theorem 2: The equilibrium security return is explained by security return‟s sensitivity 

to market return and its sensitivity to hedge portfolio return, as given below (proof is 

provided in Appendix C), 

),()( fh

h

ifm

m

ifi rrr
hmi
      (6) 
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where   
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






 

, 

where 
immi miimim   *
 . The term 




n

i

i im
x

1

   represents the weighted 

return for market portfolio, and the term 



n

i

iim x
1

  represents the total IQ noise 

inherent in the market portfolio. Similarly, the term 



n

i

i ih
h

1

   represents the 

weighted return for hedge portfolio, and the term 



n

i

iih h
1

 represents the total IQ 

noise inherent in hedge portfolio.  

 Equation (6) is the equilibrium IQ intertemporal capital asset pricing equation. It 

describes the equilibrium relation between the asset risk premium and two types of risk: 

market (systematic) risk and the risk of unfavorable shifts in the stochastic investment 

opportunity set. In the presence of imprecise information, the IQ risk has an impact on 

both the market beta and the hedge portfolio beta. Mean noise,
i , adds to the average 

risk premium. The variance of market portfolio 2*

m  is boosted by ,2

m  which accounts 

for the systematic IQ risk. Similarly, covariance between the hedge portfolio and the 

market portfolio *

mh  is affected as well by ,
mh  indicating the co-movement of IQ 
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noise between the hedge portfolio and the market portfolio. Therefore, asset return‟s 

sensitivities to the market portfolio return and the hedge portfolio return, m

i and h

i , are 

adjusted to account for market-wide IQ risk, which are different from Merton‟s results 

under the IQ noise-free environment. 

The adjustment in m

i and h

i  
shows the major difference from that of Hughes et 

al.‟s (2007) APT model with imperfect information structure. In their model, risk related 

to imperfect information only affects factor risk premiums, not factor sensitivities. 

Unique to my model, IQ risk is shows up in factor sensitivities of the modified ICAPM, 

which implies that it has a systematic component. I further explore this point in the 

following section. 

 Next, I show that the pricing relation implied by Merton‟s (1973) three-fund 

separation theorem still holds with respect to the noisy opportunity set. I assume that 

there exists a (hedge) portfolio, h, whose return is perfectly negatively correlated with 

changes in the vector of state variables  . 

 

Proposition 1: When the information structure is imperfect (noisy), the following pricing 

relation that is implied by Merton‟s (1973) Three-fund Separation Theorem holds. The 

hedge portfolio in my model hedges against the stochastic noisy IQ risk instead of 

instantaneous interest rate risk. However, both the market risk premium and the hedge 

portfolio risk premium are boosted by 
m and

h  to compensate for the information 

risk. The equilibrium model can be expressed to be, 

  ),()( fh

h

ifm

m

ifi rrr
hmi
  

   
 (7) 
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where  .
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2
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Proof: The proof of Proposition 1 is provided in the appendix C. 

 Equation (7) implies that for investors facing an investment opportunity set based 

on imprecise information, investing in any asset i is equivalent to investing in three 

mutual funds. Two funds (similar to the standard CAPM) allow the investor to match a 

risk-return profile comparable to asset i on an instantaneously efficient frontier. The third 

fund hedges against unfavourable intertemporal shifts in this imprecise frontier. In the 

presence of imprecise information structure, the proportion invested in each fund (which 

is a function of the betas) adjusts to reflect the additional IQ risk. In the following section 

I examine this risk more closely. 

 

2.4. Implication of Imprecise Information for Asset Pricing 

 Similar to analysis in the standard framework, I can decompose the total risk of 

investing in any risky asset i into a systematic and an idiosyncratic component. To see 

this, I write the ex-ante version of equation (7): 

,)~()~(~
ifh

h

ifm

m

ifi rrrrrr       (8) 

where ir
~  is the observed return for security i , 




n

i

iim rxr
1

~~ , i

n

i

ih rhr ~~

1




 , iv  is the white 

noise, and ix  and ih  represent security i‘s weights in the market portfolio and the hedge 

portfolio, respectively. With imprecise information, the variance of the rate of return of 

security i  is given by: 

,]2[]2[)~( 2222222

ihhmm hh

h

imm

m

iirVar       (9) 
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where 
2

m  measures IQ risk for the market portfolio, 
2

h  represents the same risk for 

hedge portfolio, and 
2

i
  is security i„s idiosyncratic risk. While idiosyncratic risk can be 

eliminated through diversification, the first two terms on the right-hand side of equation 

(9) are nondiversifiable. These terms imply that in the presence of imprecise information 

set, investors face an additional element of systematic risk - systematic IQ risk. 

 To simplify analysis, I assume that the return on all assets is uncorrelated with the 

return on the hedge portfolio ( iih   ,0* ). This condition implies that 0**  mhih  , and 

equation (7) becomes a static version of the IQ-adjusted Capital Asset Pricing Model 

(IQCAPM): 

),( fm

m

ifi rr
mi
        (10)  

where   
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Under the above assumption, the three-fund separation relation collapses to the 

standard equation that reflects a two-fund separation, adjusted for noisy information. The 

two mutual funds (the riskless asset and the market portfolio) allow the investor to match 

a risk-return profile comparable to asset i on an instantaneously efficient frontier. Thus, 

the beta in equation (10) measures the risk contribution of asset i ( *

im ) to the total risk of 

holding the market portfolio ( 2*

m ), which consists of systematic component of IQ risk. 

After expanding the covariance term in (10) I can write the asset pricing equation 

as follows:  

,
2*2*2*2*
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i
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 where  fm r
m
  , which is the IQ-adjusted risk premium on the market. 

Equation (11) is the long-term IQCAPM relation. The IQCAPM provides the framework 

for understanding the various channels through which IQ risk may affect asset returns. 

The systematic risk consists of four components: 
mmi iim   ,, and 

im . The 

first component, im , is the covariance of precise returns like in the standard CAPM. 

With an imprecise information set there are three additional systematic risk effects, 

,
mi  mi  and 

im . Therefore investors demand a higher risk premium due to the 

additional risk they face. I call these effects systematic IQ risk.
22

 

Component 
mi is the covariance between the security‟s information-related 

noise and the overall market information-related noise. Investors demand a return 

compensation for a security whose information noise positively co-varies with the market 

noise.  To hedge against the market IQ risk, investors prefer to hold a security with 

negative
mi in their portfolios.  

The third component, 
mi , is the covariance between a security‟s return and the 

overall market return due to information imprecision. Investors prefer to hold securities 

whose returns are negatively correlated with the overall market portfolio noise. 

Therefore, investors demand a risk premium for positive 
mi .  

The last effect comes from 
im , the covariance between the market fundamental 

return and security‟s information-related noise. Investors prefer a security with negative 

                                                 
22 Note that, analytically, my model is similar to that of Acharya and Pedersen (2005) which focuses on 

liquidity costs rather than imprecise information. 
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im  to hedge against a down market, and require compensation for positive levels of 

im .  

 Note that, based on the static CAPM adjusted to an imprecise information set, 

ceteris paribus, the excess return of security i  increases as its systematic IQ risk (
mi ) 

increases. This result has important implications for asset pricing with imprecise 

information. It suggests that investors demand a premium for systematic IQ risk that 

cannot be diversified away. This risk is priced because, even when one holds security i 

within the market portfolio, one still faces the systematic IQ risk that security i 

contributes to the market portfolio. This result is unique to my model, and demonstrates 

that in my model systematic IQ risk is priced through the beta of the asset as well as 

through the market risk premium. 

 Two-fund separation implies that investors hold the market portfolio. The risk 

involved in holding the market when information is imprecise is given by: 

mm mmm   2222*  . This means that the total systematic risk consists of three 

components:  that of standard CAPM beta ( 2

m ), the systematic component of IQ risk 

(
2

m ), and the comovement of market return and market IQ risk (
mm ). The presence of 

2

m and 
mm explicitly show that IQ risk impacts the pricing of securities by altering 

their betas (sensitivity) with respect to the IQ-adjusted market portfolio.   

 

2.5.  An Empirical Test of the Static IQCAPM 

In this section, I follow three steps to test the empirical fit of the static version of 

my IQCAPM: (i) I form a market portfolio and two sets of 25 IQ portfolios based on the 
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two IQ proxies I use; (ii) I estimate the four betas of the static IQCAPM for each of the 

25 IQ portfolios; and (iii) finally, I run cross-sectional regressions for average return 

across the 25 portfolios to test the empirical fit of the static IQCAPM. Robustness tests 

are provided based on several alternative specifications of the regression model.  

 

2.5.a. Forming Portfolios 

To reduce noise related to the IQ proxy estimation for individual stocks, I form a 

market portfolio and two alternative sets of 25 IQ portfolios based on the two different IQ 

measures I estimate.  

When portfolios are formed, portfolio return, portfolio IQ measure, market return, 

and market IQ measure are computed as follows for time t: 

 

     iti

p

t rwr  ,    

,iti

p

t IQwIQ   

,jtj

m

t rwr   and jtj

m

t IQwIQ  , 

 

where p=1, 2…25 portfolio, and i =1, 2,...x stocks within IQ portfolio, j = 1, 2...y  stocks 

in the market portfolio, iw  is either an equal-weight or a value-weight based on market 

capitalization of stock i, and IQ is IQ1 or IQ2.. The notation p

tr  represents the weighted 

average return for each IQ portfolio, and m

tr  is the weighted average return for market 

portfolio at time t.  p

tIQ and m

tIQ  represent weighted average IQ measures for portfolio 

and for market portfolio, respectively.  
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2.5.b. Estimating IQ Betas for Portfolios 

For the empirical test, in the spirit of Acharya and Pedersen (2005), the 

unconditional version of my static IQCAPM is as follows, 
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where ),( ft

m

t

m

t rIQrE 
 
represents the average IQ-adjusted market risk premium. 

The unconditional static IQCAPM expressed in equation (12) provides the framework for 

understanding the various channels through which IQ risk may affect asset returns. Given 

the above four expressions for betas in the unconditional IQCAPM, three sets of 

innovations are required to obtain IQ betas: (i) )(1

m

tt

m

t IQEIQ  , the market portfolio IQ 

innovations; (ii) )(1

p

tt

p

t IQEIQ  , the IQ innovations for portfolio p, where p = 1, 2... 25; 

and (iii) )(1

m

tt

m

t rEr  , the market portfolio return innovations. 
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Since seasonality is pervasive in quarterly data, the AR(4) regression is ideal for 

estimating market portfolio IQ innovations:
23

 

       

m
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t
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t
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t

m

t

m

t uIQaIQaIQaIQaaIQ   44332211 , 

 

where )(1

m

tt

m

t

m

t IQEIQu  is the innovation in the market IQ measure. Similarly, the 

innovation in the portfolio IQ measure is estimated with the following AR(4) process: 
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t uIQaIQaIQaIQaaIQ   44332211 , 

 

where p = 1, 2... 25, and )(1

p

tt

p

t

p

t IQEIQu   is the portfolio IQ innovation estimated at 

time t for each of the 25 portfolios.  

Table 4 reports the empirical fit of the AR(4) specification for estimating 

innovations in the market IQ measure. The table shows that there is a strong seasonal 

pattern in the m

tIQ1  measure and in the m

tIQ2 measure. In Panel A of Table 4 I see that 

the equally-weighted market IQ measure, ,1m

tIQ  is highly correlated with its fourth lag 

measure ( m

tIQ 41  ) at the 1-percent significance level (0.582, t-statistic = 3.14). The IQ-

stability measure,
 

,2m

tIQ  is negatively correlated with its first lag measure ( m

tIQ 12  ) at the 

5-percent significance level (-0.305, t-statistic = -2.51), negatively correlated with its 

second lag measure ( m

tIQ 22  ) at the 10-percent significance level (-0.205, t-statistic = -

                                                 
23  Acharya and Pedersen (2005) use the AR(2) specification to extract innovations in their liquidity 

measure and market returns, which is suitable for their monthly data. 
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1.67), and negatively correlated with its third lag measure ( m

tIQ 32  ) at the 5-percent 

significance level (-0.296, t-statistic = -2.42). Overall, the R
2
 of the AR(4) specification 

for m

tIQ1 and m

tIQ2  is 0.568 and 0.778, respectively. The resulting innovations in the 

market IQ measures appear stationary. Similarly, Panel B shows that for value-weighted 

m

tIQ1 and m

tIQ2  the R
2
 for the AR(4) specification is 0.605 and 788, respectively.  

Table 4: Seasonality Test of IQ Measures in Market Portfolio 

In this table, I show the empirical fit of an AR(4) specification for three alternative market IQ measures 

during time period from quarter 1 of 1987 to quarter 4 of 2007. The AR(4) specification is given as 

follows: 
m
t

m
t

m
t

m
t

m
t

m
t uIQaIQaIQaIQaaIQ   44332211 , 

where )(1
m
tt

m
t

m
t IQEIQu  , which is the innovation in market IQ measures. The R2 is obtained for each 

single regression, and the adjusted R2 is reported in the parentheses. The t-statistic is reported in the 

parentheses as well. Panel A focuses on equally-weighted market IQ measures and Panel B focuses on 

value-weighted market IQ measures. 

 
Panel A: Equally-weighted Market IQ Measures 

Market   

IQ measures  

Alpha m
tIQ 1  m

tIQ 2  m
tIQ 3  m

tIQ 4  R2 for 

AR(4) 


i

tii
m
t ewIQ ||1 ,  0.015 

(1.17) 

0.204 

(1.19) 

-0.207 

(-1.24) 

0.015 

(0.09) 

0.582*** 

(3.49) 

0.568 

(0.542) 


i

tii
m
t ewIQ )(2   0.003 

(1.35) 

-0.305** 

(-2.51) 

-0.204* 

(-1.67) 

-0.296** 

(-2.42) 

-0.151 

(-1.24) 

0.778 

(0.764) 

 

Panel B: Value-weighted Market IQ Measures 

Market  

IQ measures  

Alpha m
tIQ 1  m

tIQ 2  m
tIQ 3  m

tIQ 4  R2 for 

AR(4) 


i

tii
m
t ewIQ ||1 ,  0.011 

(1.64) 

0.521*** 

(4.27) 

-0.014 

(-0.10) 

0.219 

(1.62) 

0.133 

(1.10) 

0.605 

(0.581) 


i

tii
m
t ewIQ )(2   0.009** 

(2.31) 

1.209*** 

(9.81) 

-0.538*** 

(-2.67) 

0.240 

(1.16) 

-0.071 

(-0.49) 

0.788 

(0.775) 

 

Because of the seasonality effect in the quarterly data, employing a higher order 

of the autoregressive specification, such as an AR(5), yields little improvement in terms 

of explanatory power. As a result, an AR(4) specification is most suitable to estimate 

innovations in market portfolio IQ measures. For similar reason, the innovations in the 

market portfolio return are also computed using an AR(4) specification, adjusted for 
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market characteristics at the beginning of each quarter (market volatility, log of one-

quarter lagged market capitalization and lagged book-to-market ratio). The resulting 

innovations in market portfolio return appear stationary as well.  

Following equation (12), I obtain four betas: , and , , , 321

IQIQIQMarket   based on 

innovations in the IQ measures and return innovations for the market portfolio and 25 IQ 

portfolios. Table 5 documents the descriptive statistics of equally-weighted portfolios 

ranked based on the two IQ measures (each presented in a separate panel) for the 

quarterly sample from 1987 to 2007. The estimates of four IQCAPM betas: standard 

CAPM beta (
Market ) and three IQ-related betas ) and ,( 321

IQIQIQ   are presented. The 

average and standard-deviation of the two alternative IQ measures and portfolio returns, 

the average of market capitalization of portfolios (Size, in billion dollars), and Book-to-

market ratio (B/M) for each portfolio are documented as well.
24

 

Table 5 shows that for both IQ measures, as expected, there is a tendency for 

high-IQ (informationally-imprecise) stocks to have higher return volatility. This pattern 

suggests that informationally-imprecise stocks tend to be more volatile. For example the 

25
th

 IQ1 portfolio (the portfolio with the highest IQ1 value) has the highest standard-

deviation of portfolio return %).38.14)(( pr  The monotonic relation between the IQ 

level and portfolio size is also observed in Table 5. Both Panels show that portfolio size 

generally declines as the portfolio IQ1 value (or IQ2 value) increases implying that firms 

with informationally-imprecise stocks tend to be small. There is no clear association 

between B/M and IQ level in both Panels of Table 5. 

 

                                                 
24 I reproduce the same statistics for value-weighted portfolios and the results are similar. 
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Table 5: Descriptive Statistics for Information-Quality Sorted Portfolios 

 
This table consists of two panels, in which I report the descriptive statistics of the odd-numbered equally-

weighted portfolios ranked on the IQ measures for the quarterly sample from 1987 to 2007. In Panel A, 25 

IQ portfolios are formed based on IQ1 = || ,tie , which is the absolute value of residual estimated using the 

Barth et al. (2001) model. For Panel B, IQ portfolios are ranked based on IQ2 = tie )( , the standard 

deviation of residuals over time t-4 through t as used in Barth et al. (2001) model.  In each panel, the 

estimates of the four IQCAPM betas: standard market beta (
Market ) and three IQ betas 

) and ,( 321
IQIQIQ   are presented. The average and standard-deviation of the two alternative IQ measures 

and portfolio returns, the average of market capitalization of the portfolios (Size), and Book-to-market ratio 

for each portfolio are documented as well. 

 

Panel A: 25 IQ1 | )(| ,tie Portfolios   

Rank 

p 

Market
 

(%)
 

IQ
1  

(%) 

IQ
2  

(%) 

IQ
3  

(%) 

p
tIQ1

 
Mean 

(%)
 

p
tIQ1

 
Std.dev 

(%)
 

p
tr  

Mean 

(%) 

p
tr  

Std.dev 

(%) 

Size 

(bl$) 

B/M 

ratio 

1 75.80 -1.59 -1.39 3.90 2.78 2.76 5.89 10.11 3.38 0.55 

3 66.48 -1.14 -2.17 2.54 2.99 1.90 4.36 9.38 2.73 0.61 

5 74.22 -1.35 -2.15 3.90 3.76 3.13 4.54 9.78 3.11 0.58 

7 76.68 -1.20 -2.50 4.61 3.88 3.07 5.22 10.43 2.94 0.49 

9 76.91 -1.38 -2.20 3.68 4.08 2.52 5.20 10.27 2.58 0.53 

11 85.22 -1.35 -2.86 4.14 4.35 2.69 5.17 11.24 2.22 0.51 

13 90.09 -1.68 -1.83 4.38 4.70 2.76 5.08 11.97 2.69 0.52 

15 86.27 -2.61 -3.57 7.92 5.44 4.90 5.47 11.39 2.47 0.52 

17 89.41 -1.84 -3.68 6.55 5.85 4.09 5.80 11.61 2.61 0.51 

19 93.85 -1.68 -2.98 3.28 6.08 2.63 5.91 12.28 2.83 1.36 

21 95.74 -3.49 -1.38 3.49 6.67 3.05 5.92 12.85 2.71 0.47 

23 95.06 -3.76 -2.46 3.08 8.13 7.09 6.24 12.70 2.71 0.43 

25 107.98 -4.01 -2.25 3.59 9.86 4.57 7.59 14.38 2.61 0.44 

 
Panel B:  25 IQ2 ))(( tie Portfolios   

Rank 

p 

Market
 

(%) 

IQ
1  

(%) 

IQ
2  

(%) 

IQ
3  

(%) 

p
tIQ2

 
Mean 

(%)
 

p
tIQ2

 
Std.dev 

(%)
 

p
tr  

Mean 

(%) 

p
tr  

Ste.dev 

(%) 

Size 

(bl$) 

B/M 

1 68.18 -0.33 -0.04 0.002 0.54 0.08 5.29 8.94 4.03 0.55 

3 72.73 -0.50 -0.02 0.001 1.23 0.16 5.07 9.07 3.56 0.82 

5 77.65 -0.77 -0.01 0.001 1.71 0.22 5.17 9.53 2.97 0.53 

7 81.93 -1.05 0.03 0.001 2.17 0.31 5.37 10.04 2.62 0.51 

9 91.82 -0.18 0.04 0.006 2.64 0.41 5.91 11.23 2.28 0.53 

11 91.47 -1.24 0.07 0.006 3.15 0.53 6.53 11.37 2.42 0.53 

13 95.40 -1.19 0.08 0.009 3.74 0.68 6.36 11.58 2.07 0.68 

15 105.71 -1.45 0.16 0.017 4.46 0.91 7.67 13.02 1.98 0.50 

17 106.63 -1.44 0.27 0.027 5.38 1.23 6.73 12.73 1.74 0.47 

19 107.51 -1.68 0.42 0.049 6.67 1.70 7.54 13.20 1.83 0.50 

21 111.76 -1.56 0.48 0.059 8.60 2.33 8.82 13.92 2.45 0.47 

23 116.43 -1.07 1.12 -0.016 12.38 3.53 8.85 14.70 1.58 0.45 

25 134.79 -1.48 16.28 3.558 50.32 43.28 10.80 17.80 2.29 0.43 
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2.5.c. Empirical Fit of the Static IQCAPM 

In this subsection, I test the empirical fit of the static version of IQCAPM 

(Equation 12), and examine how IQ risk affects return through the IQ betas: 

IQIQIQ and 321   ,,  . Alternative specifications of the model are designed to identify the 

potential effect of IQ betas in total and each IQ beta effect separately.  

The first specification constraints the beta risk premium to be identical for all four 

IQCAPM betas: 
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t IQrr ~ representing the observed portfolio return, and 

IQIQIQMarketall

321    representing the overall magnitude of systematic risk for 

each portfolio. The parameter   stands for the average market risk premium, which 

includes the market-wide IQ related component of risk premium. 

To isolate IQ risk from the standard market risk, and to examine the aggregate 

effect of systematic IQ risk, I test the second specification as follows: 

.)~( 21

IQ

net

Market

ft

p

t rrE        (12.2)                               

The first beta factor, ,Market  in specification (12.2) is the standard CAPM beta 

reflecting the portfolio return sensitivity relative to market return. The second beta,
 

,321

IQIQIQIQ

net    represents an aggregate magnitude of systematic portfolio IQ 

risk. 

To compare the effects of different dimensions of systematic IQ risk on return, I 

decompose the aggregate IQ beta into three betas IQIQIQ and 321  ,  , as derived in equation 

(12) of Section 5.3. Thus, I allow for a unique risk premium for each beta in the 



 59 

following equation: 

.)~( 3423121

IQIQIQMarket

ft

p

t rrE      (12.3) 

where ,321

IQIQIQMarketall  
 

,321

IQIQIQIQ

net   for p=1,2,…25 portfolio.  

Regression model (12.3) represents my static IQCAPM with four the four betas 

spelled out, with or without the average IQ level, ).( p

tIQE  The total systematic IQ risk 

affects asset returns through three channels. The first channel is expressed by ,1

IQ  

reflecting the sensitivity of portfolio return relative to market-wide IQ. The second 

channel, ,2

IQ  is the result of association between portfolio IQ noise and the market 

return. The last one, ,3

IQ  is the IQ commonality beta reflecting the co-movement 

between individual portfolio IQ noise and market-wide IQ noise.  

Next I am interested in the total and relative significance of the IQ risk effect on 

returns with the above specifications. I use the 25 equally-weighted portfolios (ranked on 

both IQ measures over the 1987-2007 period) to estimate the regression models (12.1) – 

(12.3) cross sectionally over the 25 portfolios. Table 6 documents the coefficient 

estimates from GMM estimation.   

Panel A of Table 6 shows that for the 25 IQ1-sorted portfolios the R
2 

for 

specification (12.2) is 0.761, and the coefficient estimate for the aggregate IQ beta, IQ

net , 

is significant at 5 percent level as (-0.097, t = -2.20). This finding suggests that 

systematic IQ risk is priced. For specification (12.3) the R
2
 is 0.768 with 

Market significant at 1 percent level, and two of the three IQ betas, 
IQ

1  and ,3

IQ being 

significant at 10 percent level. This result confirms that, alongside the standard CAPM 

beta, the first IQ beta (the sensitivity of portfolio return relative to market IQ) and the 
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second IQ beta (commonality in IQ beta) are priced as well.   

Table 6: Asset Pricing Tests of IQ risk (Equally-weighted Portfolios) 
This table reports the coefficient estimates from cross-sectional regressions of the static IQCAPM for 25 

equally-weighted portfolios using quarterly data for the 1987-2007 period, with an equally-Weighted 

market portfolio. I use GMM to obtain the coefficient estimates based on the following models,  

CAPM   ,)~( Market
ft

p
t rrE    

(12.1)  all
ft

p
t rrE   )~( , 

(12.2)  IQ
net

Market
ft

p
t rrE  21)~(  , 

(12.3)  ,)~( 3423121
IQIQIQMarket

ft
p

t rrE    

                 

where ,321
IQIQIQMarketall   and .321

IQIQIQIQ
net    Panel A reports the results for 25 

portfolios sorted on IQ1. Panel B reports the results on 25 IQ2-sorted portfolios. The R2 and the adjusted-R2 

(in parentheses) are reported. The t-statistic is reported (in parentheses) as well. 

 

Panel A: 25 Equally Weighted IQ1 ( || ,tie ) Portfolios 

 
Panel B: 25 Equally Weighted IQ2 ( tie )( ) Portfolios 

  

Model alpha Market  IQ
1  

IQ
2  

IQ
3  

all  IQ
net  2R  

CAPM -0.007 

(-0.89) 

0.060*** 

(6.41) 

     0.732 

(0.720) 

 0.031 

(14.54) 

 -0.633*** 

(-5.49) 

    0.658 

(0.643) 

 0.043 

(12.59) 

  -0.048 

(-0.34) 

   0.004 

(-0.039) 

 0.046 

(8.23) 

   -0.071 

(0.528) 

  0.013 

(-0.030) 

12.1 

 

0.008 

(-0.98) 

    0.062*** 

(5.77) 
 0.679 

(0.665) 

12.2 -0.001 

(-0.10) 

0.052*** 

(6.19) 

    -0.097** 

(-2.20) 

0.761 

(0.740) 

12.3 0.003 

(0.37) 

0.043*** 

(3.31) 

-0.212* 

(-1.73) 

-0.077 

(-0.76) 

-0.071* 

(-1.74) 
  0.768 

(0.722) 

Model alpha Market  IQ
1  

IQ
2  

IQ
3  

all  IQ
net  2R  

CAPM -0.023 

(-2.78) 

0.083*** 

(9.50) 

     0.865 

(0.859) 

 0.038 

(9.65) 

 -1.956 

(-4.54) 

    0.439 

(0.414) 

 0.054 

(19.23) 

  0.300*** 

(6.51) 

   0.408 

(0.383) 

 0.056 

(7.43) 

   1.135*** 

(9.90) 

  0.280 

(0.249) 

12.1 

 

-0.015 

(-3.12) 

    0.075*** 

(14.20) 

 0.885 

(0.881) 

12.2 -0.016 

(-2.12) 

0.076*** 

(9.03) 

    0.065*** 

(3.06) 

0.886 

(0.876) 

12.3 -0.007 

(-0.85) 

0.065*** 

(5.53) 

-0.032 

(-0.10) 

0.512*** 

(3.98) 

-1.867*** 

(-3.81) 
  0.915 

(0.898) 
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Panel B of Table 6 reports the empirical fit of the static IQCAPM using IQ2. As 

expected, the model fits the data better when IQ2 is used as a proxy for IQ. The R
2
 for 

specification (12.2) is now higher (0.886) with both the market beta, ,Market  (0.076, 

t=9.03) and the aggregate IQ beta, ,IQ

net  (0.065, t=3.06) being significant at 1 percent 

level. This result lends strong support for the pricing of systematic IQ risk in returns. 

Similarly, if I decompose the aggregate IQ beta into three IQ-related betas, as shown in 

Panel B for specification (12.3), 
IQ

2  (0.512, t=3.98) and IQ

3 (-1.866, t=-3.81) are both 

significant at 1 percent level (alongside the market beta), while 
IQ

1  is insignificant.  

These results lend further evidence for the pricing of systematic IQ risk in favour of the 

hypothesis that market-wide IQ represents a priced source of risk. 

Note the relatively high regression R
2
 in regression model (12.3). This is could be 

due to multicollinearity between the four betas as demonstrated. I test for 

multicollinearity in Table 7 that shows that some of the betas are collinear to a certain 

degree.
25

 The existence of collinearity is unavoidable due to the correlation among the 

market-IQ innovations, portfolio-IQ innovations, and market-return innovations that I 

estimate to compute the four betas. In general, for regression models (12.1) and (12.2), 

IQ

net
 
and 

all are significant, with high regression R
2
‟s indicating that my model fits the 

data well. In these regression models there is no issue with multicollinearity. Overall, 

Table 6 lends strong support for my static IQCAPM.  

  

                                                 
25 Acharya and Pederson (2005) face the same problem with their liquidity betas. See their discussion about 

the multicollinearity problem. 
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Table 7: Correlation Coefficients between the Four IQCAPM Betas 

This table reports the Pearson correlations between the market beta and IQ betas for the 25 equally-

weighted IQ portfolios formed each quarter. At the beginning of each quarter from 1987 to 2007, eligible 

NYSE/AMEX stocks are sorted into 25 portfolios according to firm-specific IQ measures. Panel A reports 

the results for 25 IQ1-sorted portfolios. Panel B reports the results for 25 portfolios sorted on IQ2. The P-

value is documented in parentheses.  

Panel A: 25 IQ1 ( || ,tie ) Portfolios 

 Market  IQ
1  

IQ
2  

IQ
3  

Market  1 -0.856*** 

(<.0001) 

-0.031 

(0.881) 

-0.009 

(0.962) 
IQ

1   1 -0.045 

(0.83) 

0.125 

(0.552) 
IQ
2    1 -0.396** 

(0.049) 
IQ
3     1 

 
Panel B: 25 IQ2 ( tie )( ) Portfolios 

 Market  
IQ

1  
IQ
2  IQ

3  

Market  1 -0.753*** 

(<.0001) 

0.550*** 

(0.004) 

0.460** 

(0.021) 
IQ

1   1 -0.254 

(0.219) 

-0.195 

(0.348) 
IQ
2    1 0.977*** 

(<.0001) 
IQ
3     1 

 

 

 To test robustness of the results presented in support of the static IQCAPM in 

Table 6, I estimate my model with alternative specifications for value-weighted portfolios 

based on the two IQ measures. The table in Appendix A4 shows that the results based on 

value-weighted portfolios are qualitatively similar to the results obtained for the equally-

weighted portfolios. The results confirm that IQ systematic risk is still significantly 

priced, whether I use an equally-weighted or a value-weighted portfolio.  

 

2.6. Robustness Tests - IQ Risk vs. Illiquidity Risk 

 

As discussed in Section 2.5, I find that portfolio size generally declines as 

portfolio IQ proxy increases, implying that firms with informationally-imprecise stocks 
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tend to be small (see Table 5). This observation generally implies a monotonic 

association between portfolio IQ and portfolio size. Note that size and illiquidity are 

highly correlated (as shown in Table 2). Given the strong support provide by Acharya 

and Pedersen (2005) for their liquidity-adjusted CAPM, I tests whether the support my 

tests lend to the IQCAPM are robust in the presence of Acharya and Pedersen‟s (2005) 

liquidity betas. This will allow us to test whether: (i) systematic IQ risk is significantly 

correlated with systematic illiquidity risk and other firm characteristics, such as size and 

B/M; and (ii) the explanatory power of IQ beta is captured by illiquidity beta.  

Below I follow three procedures in this section: (i) I estimate liquidity betas; (ii) I 

form portfolios stratified by IQ level, liquidity level, size, and B/M to control for firm 

characteristics; and (iii) I examine the performance of my empirical asset-pricing model 

with market beta, IQ beta, and liquidity beta. 

 

2.6.a. The IQCAPM with Systematic Illiquidity Risk 

Based on the normalized illiquidity measure of Amihud (2002), Acharya and 

Pedersen (2005) provide a unified theoretical model to explain how asset returns are 

affected by liquidity risk and commonality in liquidity.
26

 To test whether the explanatory 

power of my IQ beta is robust to inclusion of liquidity risk, I run a three-beta model as 

follows, 

                                                   

 

                                                 
26 Prior studies examine the systematic nature of liquidity. Chordia, Subrahmanyam, and Anshuman (2000) 

show that stocks returns are cross sectionally related to the variability in liquidity, where liquidity is 

proxied by measures such as trading volume and turnover. Chordia, Roll, and Subrahmanyam (2000), 

Huberman and Halka (1999), and Hasbrouck and Seppi (2000) find that individual stock liquidity co-moves 

with the market-wide liquidity, which is known as “commonality in liquidity”. 

,)( 3210
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where f

t

p

t rr  is excess return on portfolio p, 
Market  is market beta, IQ

net  is the net IQ 

beta discussed in Section 5, and ILLIQ

net  is the net illiquidity beta of Acharya and Pedersen 

(2005). 
27

  

The net illiquidity beta, ILLIQ

net , is the sum of Acharya and Pedersen‟s (2005) three 

liquidity betas. The illiquidity cost used in Acharya and Pedersen (2005) is constructed 

based on the absolute return-to-volume measure of Amihud (2002), which captures the 

price-impact dimension of liquidity. Following Amihud (2002), a stock‟s illiquidity level 

at time t is defined as  

,
1

1 


i
tDays

d i

td

i

td

i

t

i

t
V

R

Days
ILLIQ       (13) 

where i

tdR  and i

tdV  are the return and dollar volume (in millions) on day d in quarter t,  

respectively, and i

tDays is the number of observation days in quarter t for stock i.  

Note that in Amihud (2002), i

tILLIQ
 
is monthly average of daily data return-to-

volume measure. For comparison to the quarterly estimates of IQ measures in my paper, I 

compute i

tILLIQ  as quarterly average of absolute return-to-volume using daily 

observations within quarter t for stock i. The more illiquid a stock is, the greater a price 

movement corresponding to little volume, which suggests a higher value of i

tILLIQ . 

Amihud‟s (2002) illiquidity measure has often been used in the empirical microstructure 

literature. 
28

  

                                                 
27 See Appendix B2 for details about the construction of Acharya and Pedersen‟s (2005) illiquidity beta. 
28 Amihud (2000) and Jones (2002) find that expected market returns are significantly related to time-series 

measures of market liquidity. Based on microstructure data for NYSE, AMEX, and NASDAQ stocks, 

Hasbrouck (2002) computes a measure of Kyle‟s lambda and finds that its Spearman (Pearson) correlation 
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2.6.b. Data and Portfolios 

To estimate i

tILLIQ  and  ILLIQ

net , I sample all eligible stocks over the period 1987 

to 2007 corresponding to the sample period used with the IQ measures. Daily return and 

volume data are obtained from CRSP. To be consistent with Acharya and Pedersen 

(2005), I exclude NASDAQ since the volume data includes interdealer trades; and I 

exclude stocks with less than 15 quarterly observations. Following equation (13), I 

estimate i

tILLIQ  in quarter t for every stock i, and match it with both IQ measures (IQ1 

= || ,tie , and IQ2 = tie )( ) for each stock. Stocks with missing i

tILLIQ  or missing IQ 

measures are excluded from my sample.  

Similar to the procedure for forming portfolios in Section 2.5, I form an equally-

weighted market portfolio and a value-weighted market portfolio by market capitalization 

for each quarter t during the sample period, in which market return, market IQ measures, 

and market ILLIQ are computed.  

To avoid the potential problem that IQ-sorted portfolios might present a sample 

biased in favour of the IQ effect but against the Illiquidity effect, I double-sort stocks into 

IQ by ILLIQ portfolios. Specifically, I sort stocks into five IQ quintiles first and then into 

five ILLIQ quintiles for each IQ proxy. For comparison, I also reverse the ranking criteria 

and form portfolios sorted first into five ILLIQ quintiles and then into five IQ quintiles 

within every ILLIQ groups.  

To control for firm characteristics, such as size, B/M ratio, and liquidity (ILLIQ), 

I form portfolios sorted on each of them. Specifically, I form 25 ILLIQ portfolios for 

                                                                                                                                                 
with ILLIQ is high and equal to 0.737 (p-value=0.473). Hasbrouck (2002) states that “[a]mong the proxies 

considered here, the illiquidity measure [ILLIQ] appears to be the best.”  
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each quarter during the 1987 to 2007 period by sorting stocks based on their previous-

year ILLIQ levels. I form 25 size portfolios for each quarter during the sample period by 

sorting stocks based on their market capitalization at the beginning of the year. Lastly, I 

form 25 B/M (book-to-market ratio) portfolios for each quarter during the sample period 

by ranking stocks based on their previous-year book-to-market ratio. Finally, I form 25 

IQ portfolios for each quarter by sorting stocks based on their previous-year IQ levels 

(based on both IQ proxies). 

For each portfolio, I estimate market beta and net IQ beta following the 

procedures described in Section 2.5. In line with Acharya and Pedersen (2005), I estimate 

the net illiquidity beta as the sum of Acharya and Pedersen‟s (2005) three liquidity betas. 

Note that in Acharya and Pedersen (2005), an AR(2) is employed to estimate innovations 

in variables (portfolio illiquidity cost, market illiquidity cost, and market return). Since 

seasonality effect is pervasive in quarterly IQ measures (as documented in Section 2.5), I 

use an AR(4) specification to test for the autocorrelation pattern of market portfolio 

ILLIQ measure. As shown in Table 8, there is no seasonality effect in quarterly ILLIQ 

data for market portfolio, therefore I employ the AR(2) specification to compute market 

liquidity innovation. The resulting innovations in market portfolio ILLIQ appear 

stationary. 
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Table 8: Empirical Fit of an AR(4) Specification for the Market Portfolio 

ILLIQ measures 

 
Following Acharya and Pederson (2005), I employ the illiquidity measure of Amihud (2002) to construct a 

net liquidity beta to be included in the IQCAPM test. In this table, I show the estimated coefficients based 

on AR(4) regression for the market ILLIQ measure for the period starting at quarter 1, 1987 and ending at 

quarter 4, 2007. The AR(4) specification is as follows: 
m
t

m
t

m
t

m
t

m
t

m
t uILLIQaILLIQaILLIQaILLIQaaILLIQ   44332211 , 

where )(1
m
tt

m
t

m
t ILLIQEILLIQu  , which is the innovation in the market-wide ILLIQ measure 

following Amihud (2002). The R2 is obtained for each regression for both equally-weighted and value-

weighted market portfolios. The adjusted-R2 is reported in parentheses. The t-statistic is also documented in 

the parentheses.   

 
Market AP ILLIQ Alpha m

tILLIQ 1  m
tILLIQ 2  m

tILLIQ 3  m
tILLIQ 4  R2 for 

AR(4) 

ILLIQ 

(Equally-weighted) 

0.038 

(1.31) 

0.412*** 

(3.61) 

0.213** 

(1.75) 

0.132 

(1.12) 

0.136 

(1.24) 

0.767 

(0.753) 

 

ILLIQ 

(Value-weighted) 

0.025** 

(2.89) 

0.935*** 

(11.20) 

-0.161 

(-1.45) 

0.144 

(1.32) 

-0.017 

(-0.22) 

0.835 

(0.830) 

 

Table 9 reports the Pearson correlations coefficients between market beta, net IQ 

beta, and net illiquidity beta for 25 (5 IQ by 5 Liquidity) equally-weighted portfolios as 

well as correlation coefficients between each beta, size, and B/M. The two panels of the 

table report results based on the two alternative IQ measures. Table 9 shows that the 

correlation coefficients between IQ

net (estimated based on both IQ1 and IQ2), and ILLIQ

net  

are low and statistically insignificant. The consistency of low correlation implies that 

systematic IQ risk represents a risk source different from Acharya and Pedersen‟s (2005) 

systematic liquidity risk. In Panel B, ILLIQ

net is highly correlated with size of portfolio 

(0.727, p < 0.01%) confirming that smaller firms tend to have illiquid stocks.
29

 

 

                                                 
29 The table in Appendix A5 shows that the results based on value-weighted portfolios are qualitatively 

similar to the results obtained for the equally-weighted portfolios. 
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Table 9: Correlation Coefficients between Market Beta, Net IQ Beta, and Illiquidity 

Beta (Equally-weighted Portfolios) 
This table reports the Pearson correlations between market beta, net IQ beta, and net liquidity beta for 25 (5 

IQ by 5 Liquidity) equally-weighted portfolios. At the beginning of each quarter from 1987 to 2007, 

eligible NYSE/AMEX stocks are sorted first into 5 groups according to estimated IQ measure and then 

sorted again into 5 liquidity categories within each IQ group. The Pearson correlations between each of 

betas, portfolio size, and portfolio book-to-market ratio are documented for each panel. p-values are 

reported in parentheses. 

Panel A: 25  Equally-weighted (5 IQ1 by 5 Liquidity) Portfolios  

 Market  IQ
net  ILLIQ

net  Size B/M 

Market  1 0.109 

(0.602) 

-0.483** 

(0.014) 

0.015 

(0.945) 

0.234 

(0.258) 
IQ
net   1 -0.053 

(0.802) 

0.275 

(0.184) 

-0.106 

(0.613) 
ILLIQ
net    1 -0.185 

(0.375) 

-0.200 

(0.337) 

Size    1 0.174 

(0.404) 

B/M     1 

 

Panel B: 25 Equally-weighted (5 IQ2 by 5 Liquidity) Portfolios  

 Market  IQ
net  ILLIQ

net  Size B/M 

Market  1 0.506** 

(0.011) 

-0.625*** 

(0.001) 

-0.847*** 

(<.0001) 

0.134 

(0.524) 
IQ
net   1 0.042 

(0.842) 

-0.164 

(0.434) 

0.127 

(0.544) 
ILLIQ
net    1 0.727*** 

(<.0001) 

-0.095 

(0.832) 

Size    1 -0.045 

(0.832) 

B/M     1 

 

 

2.6.c. Testing the IQCAPM with Systematic Illiquidity Risk 

In this subsection, I run the following regression to further examine whether 

systematic IQ risk is priced. To this end, I use the following model: 

 (14)                               

I use net betas for both IQ and liquidity, to avoid problems of multicollinearity that can 

arise in a seven-beta model (one market beta, three IQ betas, and three liquidity betas). 

Table 10 reports the coefficient estimates from a cross-sectional estimation of 

regression model (14) for 25 equally-weighted portfolios using quarterly data during the 
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1987-2007 period. I run regressions based on 5 IQ by 5 ILLIQ portfolios, 5 ILLIQ by 5 

IQ portfolios, 25 IQ portfolios, 25 ILLIQ portfolios, 25 size portfolios and 25 B/M 

(book-to-market ratio) portfolios and document the results for each of the two estimated 

IQ measures in separate panels.  

Panel A shows that when IQ1 ( || ,tie ) is employed to estimate net IQ beta, the 

regression coefficient of IQ

net
 
is statistically significant for the 5 IQ1 by 5 ILLIQ 

portfolios, 5 ILLIQ by 5 IQ1 portfolios, 25 IQ1 Portfolios, and 25 B/M Portfolios, all at 

the 1 percent level of significance. At the same time, the regression coefficient for ILLIQ

net
 

is statistically significant only for 25 Size Portfolios and 25 B/M Portfolios, both at the 1 

percent level of significance.  

Similarly, Panel B of Table 10 reports that for the net IQ beta estimated based on 

IQ2 ( tie )( ), the regression coefficient
 

is statistically significant and robust to the 

inclusion of the net liquidity beta. Panel B further shows that when IQ2 is used to 

estimate the net IQ beta the estimated coefficient of the net liquidity beta is statistically 

significant (at least at the 10 percent significance level) for four out of the six portfolio 

formation schemes. This implies that investors price both systematic IQ risk and 

systematic liquidity risk. Note that the net IQ beta
 
is consistently insignificant for the 

ILLIQ and size portfolios. This finding can be explained by the results of correlation 

reported in Table 9. In Particular, Panel B of Table 9 shows that the ILLIQ beta is highly 

correlated with size factor at 1% significance level, while the correlation between IQ beta 

and Size factor is very weak. The significance of IQ beta might be subsumed by ILLIQ 

beta either in ILLIQ portfolio or size portfolio.  
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Table 10 

Testing the Static IQCAPM with the Net Liquidity Beta 

(Equally-weighted Portfolios) 
This table reports the results for robustness tests based on 5 ILLIQ by 5 IQ, 25 IQ portfolios, 25 ILLIQ 

portfolios, 25 size portfolios and 25 B/M (book-to-market ratio) portfolios. The coefficient estimates from 

cross-sectional regressions of the IQCAPM are documented for equally-weighted portfolios using quarterly 

data during the 1987-2007 period, while controlling for Acharya and Pedersen‟s (2005) net liquidity beta. 

GMM is used to estimate the coefficients from the following model: 

                                                   

 

                                 

where 
Market  is market beta, 

IQ
net  denotes the net IQ beta, and ILLIQ

net  is the net illiquidity beta estimated 

following Acharya and Pedersen (2005). Results based on each of the two alternative IQ measure are given 

in separate panel. The R2 is reported for each cross-sectional regression for different portfolios, and the 

adjusted-R2 and t-statistic are reported in parentheses.  
 

Panel A: Equally-weighted Portfolios (IQ1 = || ,tie ) 

Portfolios alpha 
 

Market  IQ
net  ILLIQ

net  R2 

 5 IQ1 by 5 ILLIQ 0.010*** 

(2.92) 

0.023*** 

(5.06) 

0.035*** 

(4.77) 

-0.020 

(-0.92) 

0.735 

(0.697) 

 5 ILLIQ by 5 IQ1 0.017*** 

(2.73) 

0.016*** 

(2.18) 

0.037*** 

(4.47) 

-0.042 

(-1.45) 

0.676 

(0.630) 

25 IQ1 Portfolios -0.023 

(-1.65) 

0.057*** 

(3.49) 

0.028*** 

(6.07) 

-0.070 

(-1.11) 

0.583 

(0.524) 

25 ILLIQ Portfolios 0.022*** 

(4.20) 

0.012 

(1.82) 

-0.005 

(-0.17) 

-0.039* 

(-1.96) 

0.599 

(0.542) 

25 Size Portfolios 0.015 

(1.27) 

0.033** 

(2.10) 

-0.037 

(-0.90) 

0.172*** 

(3.02) 

0.470 

(0.394) 

25 B/M Portfolios 0.127*** 

(2.92) 

-0.082* 

(-1.79) 

-0.255*** 

(-2.96) 

0.447*** 

(3.70) 

0.817 

(0.791) 

 

Panel B: Equally-weighted Portfolios (IQ2 = tie )( ) 

Sample alpha Market  IQ
net  ILLIQ

net  R2 

 5 IQ2 by 5 ILLIQ 0.018* 

(1.83) 

0.021* 

(1.95) 

0.134** 

(2.67) 

-0.093** 

(-2.38) 

0.622 

(0.568) 

 5 ILLIQ by 5 IQ2 0.023*** 

(3.84) 

0.013* 

(2.05) 

0.205*** 

(4.44) 

-0.130*** 

(-4.97) 

0.732 

(0.694) 

25 IQ2 Portfolios 

 

-0.012 

(-1.21) 

0.052*** 

(4.52) 

0.139*** 

(5.77) 

0.014 

(0.22) 

0.722 

(0.682) 

25 ILLIQ Portfolios 0.039*** 

(3.85) 

0.002 

(0.20) 

-0.055 

(-0.58) 

-0.167*** 

(-3.34) 

0.535 

(0.469) 

25 Size Portfolios 0.025*** 

(3.89) 

0.020*** 

(3.05) 

-0.028 

(-0.89) 

0.065* 

(2.01) 

0.146 

(0.024) 

25 B/M Portfolios 0.047 

(1.32) 

0.041 

(1.04) 

-0.581** 

(-2.28) 

0.322** 

(2.55) 

0.566 

(0.504) 
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Focusing on the static version of IQCAPM, the results presented in Panel A and 

Panel B of Table 10 show that the model‟s net IQ beta estimated based on both IQ 

measures is a priced source of systematic risk, even after adjusting for liquidity risk. This 

lends strong support for the validity of the IQCAPM.
30

  

 

                                                 
30 Table A6 in Appendix A shows that the results based on value-weighted portfolios are qualitatively 

similar to the results obtained for the equally-weighted portfolios. 
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CHAPTER 3 

 

A Generalized Earning-Based Stock Valuation Model 

with Learning 

 

3.1. Introduction  

This chapter extends the earnings-based stock valuation model of Bakshi and 

Chen (2005) (BC hereafter) by relaxing the complete information assumption and 

allowing for a market with incomplete information. To this end, I assume as in the BC 

model that earnings growth is observed by investors. However, they do not observe the 

instantaneous mean of earnings growth rate (thereafter, MEGR). The MEGR is an 

additional state variable, and I model it as a mean-reverting process. My model allows for 

continuous learning about the unobserved state variable, and asset prices reflect this 

learning process. I investigate the effects of firm characteristics, such as mean-reversion 

speed and volatility of earnings growth, on differences in asset pricing between my 

incomplete-information and the BC complete-information models as well.  

My results indicate that the faster the earnings-growth mean reverts to its long-

term value, the smaller the mispricing attributed to information incompleteness. This 

effect results from the fact that the higher speed of reversion towards the constant long-

term mean leads to a faster exponential decay of any initial deviation from this mean and, 

therefore, faster learning. Ceteris paribus, the higher volatility of the unobservable 

MEGR results in larger mispricing. This result is more pronounced for younger firms 

with shorter learning horizons for which, naturally, there is a short history of data 
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available for learning. This finding is consistent with Pastor and Veronesi (2003), who 

predict that Market-to-Book ratio (M/B) declines over a typical firm’s lifetime, and 

younger firms should have higher M/B ratios than otherwise identical older firms since 

uncertainty about younger firms’ average profitability is greater.  

In my model the mean squared error of MEGR estimate, a measure of the degree 

of learning, persists and remains especially large for short learning horizons. The 

persistent uncertainty of the MEGR estimate generates an extra risk premium beyond 

what is accounted for in the complete information model. Over time both the uncertainty 

about MEGR estimate and extra risk premium decline to equilibrium levels as more 

information becomes available. In a perfect learning environment (e.g., unobservable 

MEGR is perfectly correlated with earnings), the extra risk premium on MEGR declines 

and converges to zero in the long run. At the same time, the variance of the estimate of 

MEGR decreases over learning horizon and converges to zero.
1
 Perfect correlation 

implies that investors eventually have complete knowledge of the true process of the 

mean growth rate.  

However, in non-perfect learning environment, the extra risk premium on MEGR 

never vanishes regardless of learning horizon. This long run risk premium reflects a 

persistent uncertainty that investors hold in an incomplete information environment.  

For comparison, I compute the risk premiums based on my incomplete-

information model and the complete-information model of BC. First, MEGR risk 

premium in incomplete information case is always bigger than that under complete 

                                                 
1 When the correlation between earnings and their latent MEGR is perfectly negative, this result holds as 

long as the speed of mean reversion is not too small relative to the volatility of MEGR. This condition is 

the consequence of measuring the long-term uncertainty of MEGR by the ratio of the earnings volatility to 

the speed of mean reversion. See Proposition 1 below. 
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information environment. They are the same only if the correlation between earnings and 

MEGR is perfect. Second,  The difference in MEGR risk premiums declines with 

learning horizon faster for firms with larger correlation between earnings and underlying 

MEGR. Third, for 20 technology stocks used in BC, I find that the difference in risk 

premiums can be as high as 40%-50% for short learning horizons of several months. 

Given BC parameter values the difference declines to a steady state level after 6-11 

months. Finally, the level of incomplete information premium can reach up to 7 percent 

for firms with short learning horizons and weaker mean reversion even if their earnings 

are perfectly correlated with MEGR.  

The equilibrium stock prices computed based on my model have patterns similar 

to those of risk premiums. With perfect correlation between earnings growth and MEGR, 

investors perfectly learn about MEGR within ~ 11 months (based on 20 technology stock 

data of BC). By this time there is no longer any difference in prices between BC model 

and my model. Further, average price differential between my model and BC model 

ranges from 0 percent for perfect learning case (the correlation between earnings and 

MEGR is perfect) to -15.5% for zero-learning case (the correlation between earnings and 

MEGR is zero), with incomplete information price being lower on average. The lower 

stock price based on my incomplete-information model is corresponding to the extra risk 

premium on MEGR that investors demand implying that investors’ uncertainty about 

MEGR should be compensated.  

I find that the price differential between my model and that of BC, defined as 

pricing error, can persist for years even under perfect learning conditions. The more 

volatile MEGR is, the longer the persistence. I also show that fast mean-reversion speed 
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of MEGR facilitates learning in that pricing errors are small in magnitude even after short 

learning process; while with low mean-reversion speed of MEGR, pricing errors are 

reduced substantially only after long learning process. Holding MEGR’s volatility and 

mean-reversion speed constant, I find that there is a negative association between long-

term pricing errors and degree of incompleteness of information environment as reflected 

by correlation between earnings and MEGR (in absolute value). For an extreme 

incomplete-information environment, such as one with zero correlation between earnings 

and MEGR, investors basically learn nothing about state variable MEGR from earnings. 

In this case, pricing errors are largest on average. Finally, I show that pricing errors still 

exist after long learning horizon (e.g., eight years) with precisely estimated MEGR as 

long as the information environment is incomplete. The non-vanishing pricing errors 

reflect residual risk premium (not present in the complete information model) due to 

investors’ imperfect forecasts of the underlying state variable. 

The remainder of the chapter is organized as follows. The next section discusses 

related literature. Section 3.3 extends the complete information stock valuation model by 

modeling investors’ inference about an unobserved state variable. Section 3.4 compares 

risk premiums and prices in the incomplete and complete information models. Section 3.5 

concludes the chapter. 

 

3.2 Related Literature 

Prior studies, such as Grossman and Shiller (1981), have found that the volatility 

of stock return is too high relative to the volatility of its underlying dividends and 
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consumption.
2
 The discrepancy between the high volatility of stock return and low 

volatility of dividends and consumption is viewed as the basic reason for the equity 

premium puzzle in recent work such as Campbell (1996) and Brennan and Xia (2001). To 

reconcile the discrepancy, learning about an unobservable state variable, such as the 

dividend growth rate, has been introduced to stock valuation (see, for example, 

Timmermann, 1993;  Brennan, 1998; Brennan and Xia, 2001; Veronesi, 1999 and 2001, 

and Lewellen and Shanken, 2002).   

Most of traditional stock valuation models neglect the learning process and 

implicitly assume that state variables for return predictability are known to investors (see, 

for example, Merton, 1971, and 1973; Samuelson, 1969, Breedon, 1979, and Bakshi and 

Chen, 2005). However there is substantial evidence indicating that market information is 

incomplete (see, for example, Faust, Rogers, and Wright, 2000; and Shapiro and Wicox, 

1996). With an incomplete information set, investors may face an estimation risk because 

they are unable to observe many of state variables characterizing financial markets. This 

limitation is recognized by recent studies, (see, for example, Williams, 1977; Dothan and 

Feldman, 1986; Detemple, 1986; Gennotte, 1986; Timmerman, 1993; Brennan, 1997; and 

Feldman, 2007), which examine the role of learning with incomplete information in 

equilibrium.  

For example, Timmermann (1993) provides a simple learning model, in which 

average dividend growth is unknown, to account for the fact that agents may not observe 

the true data-generating process for dividends. The model of Timmermann (1993) shows 

                                                 
2 Among others, Brennan and Xia (2001) state that the standard deviation of real annual continuously 

compounded stock returns in the U.S. was 17.4 % from 1871 to 1996, while the standard deviation for 

dividend growth was only 12.9 %, and 3.44 % for consumption growth. Pastor and Veronesi (2009) 

document that the postwar volatility of market returns was 17% per year while volatility of dividend 

growth was 5%. 



77 

 

that dividend surprise affects stock price not only through current dividends but also 

through the effect on expected dividend growth rate, which also changes expected future 

dividends. The latter effect also explains why return volatility is much higher than that of 

dividend growth. 

Instead of using price-to-dividend ratio (P/D), Pastor and Veronesi (2003) assume 

that M/B is the only observed state variable but its long term mean (a constant) is not. 

Their learning model predicts that the uncertainty of the estimate declines to zero 

hyperbolically. In the end, the case is identical to complete information. In a later study, 

Pastor and Veronesi (2006) calibrate their 2003 model to value stocks at the peak of the 

Nasdaq “bubble” in March 2000. They find a positive link between uncertainty about 

average dividend growth and the level and variance of stock prices. Pastor and Veronesi 

(2006) argue that the observed Nasdaq bubble is associated with the time-varying nature 

of uncertainty about technology firms’ future productivity, and can be explained by 

learning model.  Pastor and Veronesi (2009) extend Timmermann (1993) and show the 

positive association between the volatility of stock returns and its sensitivity to the 

uncertainty of average dividend growth. 

The calibration of Pastor and Veronesi (2003) model to annual data from the 

CRSP/COMPUSTAT database shows that it takes about 10 years with learning to revert 

to complete information case under their parameter values. Further, once their model 

reverts back to complete information case, eventually there is no risk premium associated 

with uncertainty about latent state variable (mean of dividend growth rate). This result is 

the artifact of the long term mean being a constant (although unknown). In contrast, 

MEGR in my model is an additional state variable. Complete learning is impossible 
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(except for perfect correlation cases) and therefore risk premium is non-zero at all times. 

The non-vanishing risk premium in my model reflects a persistent uncertainty that 

investors hold in an incomplete information environment. The greater risk premium on 

MEGR results in lower stock price as a compensation to investors for remaining 

uncertainty about the state variable.  

In a more sophisticated framework, Brennan and Xia (2001) provide a dynamic 

equilibrium model of stock prices in which representative agents learn about time-

varying mean of dividend growth rate. They claim that the non-observability of expected 

dividend growth demands a learning process which increases the volatility of stock 

prices. The calibration of their model matches the observed aggregate dividend and 

consumption data for the U.S. capital market. Unlike us, they assume a constant risk-less 

interest rate in their dynamic model. Similarly, Pastor and Veronesi (2003) do not model 

risk free rate as random. In contrast, my model incorporates a stochastic interest rate into 

a pricing-kernel process to discount future risky payoff. The dynamic interest rate is 

consistent with a single-factor Vasicek (1977) interest-rate process which makes the 

model arbitrage-free as in Harrison and Kreps (1979).  

Bakshi and Chen (2005) derive an earnings-based stock valuation model which is 

directly related to my work. The model of Bakshi and Chen (2005) makes a more realistic 

assumption about the stochastic nature of risk-free interest rate. They adopt a stochastic 

pricing kernel process together with a mean-reverting process of earnings. Based on a 

sample of stocks and S&P 500 index, they show that the empirical performance of their 

model produces significantly lower pricing errors than existing models.
3
  

                                                 
3 However, the applicability of Bakshi and Chen (2005) model is limited to stocks with zero or negative 

earnings. To address this issue, Dong and Hirshleifer (2005) introduce an alternative earnings adjustment 
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In contrast to Bakshi and Chen (2005), in my model I recognize that the state 

variable, MEGR, is uncertain and subject to learning. In my model investors estimate 

MEGR based on earnings growth observations. My incomplete-information model shows 

that the uncertainty about MEGR declines exponentially over time. Complete information 

case of Bakshi and Chen (2005) is a special case of my model with perfect correlation 

between MEGR and earnings growth in the limit of very long learning horizons. In 

addition, in my model estimates of state variable are imprecise resulting in an incremental 

risk premium not present in complete information models. 

 

3.3 A Generalized Earnings-Based Model with Incomplete-information 

In this section, I introduce an incomplete-information stock valuation model, in 

which investors estimate the latent state variable, MEGR. I retain several desirable 

features in the BC model.  

Assumption 1: The basic building block for pricing is earnings rather than 

dividends.  dD )(  is dividend-per-share paid out over a time period d , and it is 

assumed to be equal, on average, to a fraction of the firm’s earning-per-share (EPS), 

denoted by ),(Y  with white noise that is uncorrelated with the pricing kernel, 

),()()( tdwdttYdttD d       (15) 

                                                                                                                                                 
parameter to the earnings process of BC model. The models of both Bakshi and Chen (2005) and Dong and 

Hirshleifer (2005) implicitly assume that information is complete about the mean of earnings growth rate. 

However, they do not recognize that the state variable, mean of earnings growth rate, is unobservable and 

has to be learned by observing realized earnings data. 
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where 10   , which is a constant dividend-payout ratio, and )(tdwd  is the increment 

to a standard Wiener process that is orthogonal to everything else.
4
  

The constant dividend-payout-ratio assumption is widely used in equity literature 

(eg. Lee et al. 1999; and Bakshi and Chen, 2005).
5
 Consistent with Bakshi and Chen 

(2005), the inclusion of )(tdwd allows firm’s paid dividend to randomly deviate from a 

fixed percentage of earnings. In practice, many firms do not pay cash dividends and 

therefore the implementation of dividend-based valuation model is limited (e.g., Gordon 

model and its variants).
6
 To avoid this problem, the specification in equation (15) allows 

us to value stocks based on firm’s earnings, instead of cash dividends directly.  

Assumption 2: Earnings growth is assumed to follow an arithmetic Brownian 

motion as follows: 

)()(
)(

)(
tdwdttG

tY

tdY
yy .                           (16) 

MEGR, denoted by G(t), follows an Ornstein-Uhlenbeck mean-reverting process: 

)),(1)(())((

)())(()(

0

20

0

tdwtdwdttGk

tddttGktdG

gyygyggg

gggg








  (17) 

                                                 
4 The white noise process of )(tdwd is uncorrelated with other variables, (eg., earnings growth, MEGR, 

risk-less interest rate, and pricing kernel), and therefore not a priced risk factor.   
5 In practice, many aspects are exogenous (eg. firm’s production plan, operating revenues and expenses, 

target dividend-payout-ratio) to net earnings process and any deviation from the fixed exogenous structure 

will affect the earnings process. To simplify the valuation of cash flow, Bakshi and Chen (2005) assume 

that the earnings process indirectly incorporates these aspects reflecting firm’s investment policy and 

growth opportunities.  
6 Fama and French (2001) find that, in recent years, many firms (especially technology firms) repurchase 

outstanding shares or reinvest in new projects with earnings, instead of paying cash dividends. As shown in 

the bottom panel of Figure 7 of their paper, the fraction of firms that pay no dividend rises from 27 percent 

in 1963 drastically to 68 percent in 2000.  Similarly, while only 31 percent of firms neither pay dividends 

nor repurchase shares in 1971 (when repurchase data is available), the fraction grows to 52 in 2000. 
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where gyggk   and , , , 0 are constants, and )(tdwy  and )(td g  are increments to 

standard Wiener processes. Shocks to G(t), the MEGR, are correlated with shocks to EPS 

growth with an instantaneous correlation coefficient gy . The orthogonal part of )(td g  

is denoted by )(0 tdw . The long-term mean for )(tG , under the actual probability 

measure, is 0

g , and the speed at which )(tG reverts to 0

g  is governed by gk .  

The specification in equation (16) provides a link between actual EPS growth and 

expected EPS growth. Both EPS growth (actual and expected), as Bakshi and Chen 

(2005) analyze that, could be positive or negative reflecting firm’s transition stages in its 

growth cycle.  The mean-reverting process for expected EPS growth G(t) in equation (17) 

implies that any deviations of G(t) from its long-term mean 0

g  decline exponentially 

over time.  

Assumption 3: The pricing kernel follows a geometric Brownian motion, which 

makes the model arbitrage-free as in Harrison and Kreps (1979): 

)()(
)(

)(
tdwdttR

tM

tdM
mm , 

where m  is a constant, and )(tR  is the instantaneous riskless interest rate. 

Assumption 4: The instantaneous riskless interest rate, )(tR , follows an 

Ornstein-Uhlenbeck mean-reverting process: 

)())(()( 0 tdwdttRktdR rrrr   , 

where rk , 0

r and r are constants. This process is consistent with a single-factor 

Vasicek (1977) interest-rate process.  
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Shocks to earnings growth, denoted by )(twy in equation (16), is correlated with 

systematic shocks )(twm  and interest rate shocks )(twr  with their respective correlation 

coefficients, denoted by my  and yr . In addition, )(twg is correlated with )(twm and 

)(twr  with correlation coefficients mg  and gr , respectively. Consistent with BC, both 

actual and expected EPS growth shocks are priced risk factors.  

Following the BC model I consider a continuous-time, infinite-horizon economy 

with an exogenously specified pricing kernel, )(tM . For a firm in this economy, its 

shareholders receive infinite dividend stream }0 : )({ ttD as specified in equation (15). 

The per-share price of firm’s equity, ,tP  for each time ,0t  is determined by the sum of 

expected present value of all future dividends, as given by 




dD
tM

M
EP

t
tt )](

)(

)(
[



 ,     (18) 

where )(tE is the time-t conditional expectation operator with respect to the objective 

probability measure.  

Following assumptions 1 to 4, the equilibrium stock price at time t is determined 

by three state variables: Y(t), G(t), and R(t). Note that, EPS and risk-less interest rate, Y(t) 

and R(t), are observable at time t. However, the mean EPS growth, G(t), is unobservable 

in any point of time in practice. Bakshi and Chen (2005) use analyst estimates as 

unobserved G(t) to implement their valuation formula, in which the uncertainty about 

estimates is neglected, and the associated risk premium is missing in asset prices. In 

contrast, I recognize the fact that investors cannot observe G(t) and have to learn it by 
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observing available relevant information, such as earnings. The learning process in my 

model affects risk premium and equilibrium prices reflecting investors’ uncertainty about 

estimates of G(t). In the next subsection, I describe the dynamic learning process for the 

unobserved MEGR. The time-varying nature of uncertainty about estimates is explored as 

well. 

3.3.a. Learning about unobserved MEGR 

In practice analysts use past observations of EPS growth to build their forecasts of 

MEGR into the future. To be consistent with this observation I model the best (in the 

mean square sense) estimate of the unobserved MEGR as an expectation conditional on 

previous observations on earnings growth. Due to the Markovian nature of the model a 

representative agent takes as given the estimate of MEGR (Genotte, 1986; and Dothan 

and Feldman, 1986) when pricing assets.  

Theorem 1: Following standard results from one-dimensional linear filtering 

(see, for example, Liptser and Shiryaev, 1977 and 1978), the processes for )(tY  and the 

MEGR estimate, )(ˆ tG , based on the information set available to the agents,  are given by 

,)(ˆ
)(

)( *

yydwdttG
tY

tdY
     

,))(ˆ()(ˆ *0

ytgg dwdttGktGd           (19) 

.)(ˆ
)(

)(1
 and ,  , 

)(
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




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
 dttG

tY

tdY
dw

tS

y

ygygygy

y

gy

t






  )(tS  is the 

posterior variance of the agent’s estimate of G(t) given earnings information 

accumulated until time t, which is defined as, )](|))(ˆ)([()( 2 tYtGtGEtS  . If an initial 

forecast error variance is )0(S , S(t) is given by, 
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Proof. See Appendix D. 

The term *

ydw  represents an increment of the standard Wiener process given 

earnings information available to investors. gy  is an instantaneous covariance between 

the innovations in MEGR and earnings. S(t) quantifies the forecast error of 

)(ˆ tG reflecting the degree of information incompleteness. For example, S(t) of zero 

implies perfect knowledge of the underlying state variable.  

 

Note that 21 and 0 SS  . Hence, equation (20) implies that in the long run as 

more information becomes available, )(tS  declines and eventually converges to 1S , 

which is always nonnegative. In addition to 1S , another bound for )(tS  is denoted by 2S , 

which is always non-positive and lower than 1S . Therefore, 2S  is irrelevant to my 

analysis of the long-term value of )(tS . Nevertheless, 2S  is one of the parameters 

determining the speed of convergence of )(tS  to 1S .  

 

Next, I change the parameters in SDE (19) to reflect the agent’s information set: 

 
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 ,   (21) 

where .
 

2
y
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


   Note that, under this representation of the process for the MEGR 

estimate, the speed of mean reversion is governed by 

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  and its long-term 
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mean is given by 0

2

0
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ˆ

g
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g

g
g tS

k

k









 . Since in the long run )(tS  converges to 1S , I 

define the long-run speed of mean reversion, *

gk , as .
2

1*



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







y

gg

S
kk


  Substituting for 

1S  and rearranging the terms I get the following expression for the long-run speed of 

mean reversion: .)1()( 2

2

2

2*

gy

y

g

gg kk 



   The last expression for *

gk  is intuitive. In 

my model, investors learn about the true MEGR from historical changes in EPS. 

Specifically, investors update the latent mean growth rate based on an OLS-type relation 

between the “explanatory variable”, ,
)(

)(

tY

tdY
 and the “dependent variable”, ).(ˆ tGd  This is 

very similar to the case of hedging a short position in an underlying asset with futures 

contracts.  In both cases, the hedge ratio is the OLS slope coefficient, or  . In my model, 

  is the sensitivity of MEGR to the percentage change in EPS. 

Note that   is an imperfect “hedge ratio” due to the less than perfect correlation 

in general between EPS and latent MEGR. Analogous to the case of hedging with futures, 

in my model this imperfect correlation translates into “basis risk” measured as 

),1( 2
2

2

gy
y

g 



  and serves as an adjustment for an imperfect forecast )(ˆ tG . Another 

adjustment for the latent MEGR comes from parameter ,gk  the strength of latent mean 

growth rate reversion towards its long-term mean. In the following propositions I 

consider two special cases for the correlation, gy  between EPS and the mean of 

earnings growth rate, MEGR.  
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Proposition 1.a: When the correlation, gy  between EPS growth and MEGR is 

perfectly positive, the posterior error variance of MEGR estimate, S(t), declines with time 

and converges to zero, which suggests that complete learning is obtained eventually in 

this case. 

Proof: see Appendix D. 

Proposition 1.b: When the correlation, gy between EPS growth and MEGR is 

perfectly negative, the posterior variance of the MEGR estimate, S(t), converges to S1. S1 

could be either positive or zero, depending on the sign of  ,gk  which is the long-run 

speed of mean reversion for the latent MEGR in this case. 

Proof: see Appendix D. 

The intuition behind Proposition 1 is that a perfect and positive correlation 

between earnings and MEGR eventually allows investors to estimate the true mean 

growth rate with perfect accuracy, which implies perfect learning. When the correlation is 

perfect negative, the learning is perfect as long as the speed of mean reversion of the true 

process for the mean growth rate, ,gk  is not too small relative to the absolute value of , 

which measures the relative variability of MEGR and EPS growth.
7
  In other words, 

learning is perfect in this perfect-negative-correlation case as long as the long-run speed 

of mean reversion for the process of MEGR, ,*

gk  is positive. I can think of this situation 

as interplay of two effects. First, absent uncertainty, mean reversion represented by kg, 

                                                 
7 In this case, 

y

g






 
  for .1gy  
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implies an exponential decay of any initial forecast error facilitating learning in this case. 

The second effect, representing the inverse of the signal-to-noise ratio, 
g

y




, counteracts 

learning due to noise in the latent variable. The signal is the volatility of EPS growth, and 

the noise is the standard deviation of MEGR. In this case, the signal is too weak ( is 

large in absolute value), and complete learning is not possible in the long run despite the 

perfect negative correlation. The long-run result is determined by relative magnitudes of 

kg and . 

To illustrate Proposition 1, I demonstrate the evolution of the learning process for 

MEGR estimate, ),(ˆ tG  in an incomplete-information environment. By using Euler 

approximation, I discretize the continuous processes for EPS growth rate, Y, its true 

mean, G(t), and its mean estimate, )(ˆ tG , which are given by: 

 yy tttGtYtY   )1(1)1()( , 

  tttGktGtG gyygyggg  0

20 1))1(()1()(  , 




























 ttG

tY

tYtYtS
ttGktGtG

y

gg )1(ˆ
)1(

)1()()(
))1(ˆ()1(ˆ)(ˆ

2

0 


 , 

where t  is discrete time interval, which is set to be 1/12 for monthly observations. 

Parameters y  and 0  are independent random variables following standard normal 

distribution. 

The base case parameter values are chosen to closely match the corresponding 

values of 20 technology stocks analyzed in Bakshi and Chen (2005).
8
 In particular, I 

                                                 
8 The 20 technology stocks used in Bakshi and Chen (2005) includes firms under ticker ADBE, ALTR, 

AMAT, CMPQ, COMS, CSC, CSCO, DELL, INTC, KEAN, MOT, MSFT, NNCX, NT, ORCL, QNTM, 

STK, SUNW, TXN and WDC.  
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assume the following annualized initial values: Y(0)=2; G(0)=0.5;
9
 Ĝ(0)=0.2; and 

S(0)=0.5. Further, base case parameter values are: %,4 3gk ; 3.00 g ; 5.0y ; 

5.0g .
10

 To examine a perfect learning case, I assume that EPS and its unobservable 

MEGR are negatively but perfectly correlated, that is 1gy . In this case, 1
2


y

gy




  

and   2*  gg kk , corresponding to the case of Proposition 1.b. Based on these 

values, the lower bound for S(t) is S1=0 suggesting perfect learning in the long run.  

Based on the base parameter values, I plot three processes in Figure 1: the process 

for the true MEGR, G(t), the process for the MEGR estimate, )(ˆ tG , and the process for 

the posterior variance of the estimate, S(t). As time progresses, the MEGR estimate, 

)(ˆ tG , converges to the true MEGR, G(t), as expected in the complete learning case. At 

the same time, the forecast error variance of the estimate, S(t), converges to its lower 

bound of S1=0. Thus, all uncertainty about the MEGR estimate is eventually eliminated 

by learning. 

 

                                                 
9 Consistent with Table 1 of Bakshi and Chen (2005), in which the expected earnings growth (G(t)) is 

reported to be 0.4923 for 20 technology stocks.  
10 BC estimates the parameter values under the objective probability measure, which are given below for 

reference: %.4 and );02.0( 02.0  );083.0( 425.0  );044.0( 296.0 );485.0( 688.2 0   yrgggk  

The market-implied estimate of y  is reported to be 0.345. The values in parentheses are cross-sectional 

standard errors.   is obtained by regressing dividend yield on the earnings yield (without a constant). 

Average dividend divided by average net-earnings per share yields a similar  . Note that throughout the 

empirical exercise, BC fixes two parameters to be that ,1gy and yrgr   to reduce estimation burden.  
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Figure 1: Case of Perfect Learning 

Mean of EPS Growth Rate, its Filtered Estimate
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In this figure I plot three processes: the process for the true MEGR, G(t); the process for the MEGR 

estimate, )(ˆ tG ; and the process for the posterior variance of the estimate, S(t). To generate the figure I 

assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values for 

the assumed stochastic processes take the following values: 

.1 and ;5.0 ;5.0 ;3.0 ;3 0  gygyggk   Based on these values, the lower bound for S(t) is 

S1=0, which suggests that complete learning is obtained eventually. 

 

      Next, I consider the case of imperfect correlation. I assume that 8.0gy , while 

maintaining all other parameters at the same base case level as used in Figure 1. Figure 2 

shows that although the MEGR estimate, )(ˆ tG , does not converge to the true mean 

growth rate, G(t), the difference between the two decreases with time. At the same time, 
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the forecast error variance of the estimate, S(t), converges to its positive lower bound of 

S1 = 0.02008. 
11

 Thus, investors can only partially learn about the true mean growth rate. 

Figure 2: Case of Partial Learning 

Mean of EPS Growth Rate, its Filtered Estimate

& the Variance of Estimate with Partial Learning
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In this figure I plot three processes: the process for the true MEGR, G(t); the process for the estimated 

MEGR, )(ˆ tG ; and the process for the posterior variance of the filtered estimate, S(t). To generate the 

figure I assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters 

values for the assumed stochastic processes take the following values: 

.8.0 and ;5.0 ;5.0 ;3.0 ;3 0  gygyggk   Based on these values, the lower bound for S(t): 

S1= 0.02008. 

 

The learning speed at which S(t) converges to its long-run value S1 is affected by 

the speed of mean reversion of MEGR, the volatilities of MEGR and EPS growth, and 

                                                 

11 Using 8.0gy  along with the base parameter values in the formula ,
421

2







S where 

)
 

(2
2

2
g

y

gy
y k




  and ),1( 222

gyyg    I obtain that S1 = 0.02008. 



91 

 

the correlation between them. From the solution for S(t) in equation (20), the speed of its 

convergence, which I denote by K, is given by: 

*

21 2)( gkSSK   .    (22) 

Recall that .)1()( 2

2

2
2*

gy

y

g
gg kk 




   Note that  is a function of parameters 

. and ,, gyyg   In the following propositions, I examine the impact of these parameters 

on the speed of learning.  

Proposition 2: The learning speed at which the posterior forecast error variance 

)(tS converges to its lower bound, S1, increases in gy , the correlation between EPS 

growth and MEGR.  

Proof: see Appendix D. 

The intuition behind Proposition 2 is that the information from EPS growth 

receives smaller weight if the correlation between EPS growth and its unobservable 

MEGR is smaller. In such case, learning the true MEGR from EPS data is slower.  

Proposition 3: The learning speed at which the posterior forecast error variance 

)(tS converges to its lower bound, S1, increases in gk  if )( gk  is positive, where 

2

y

gy




  . 

Proof: see Appendix D. 
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Information about the true MEGR, G(t), comes from two sources: (i) mean-

reverting nature of the unobservable mean process; and (ii) continuous observations on 

change in EPS, 
)(

)(

tY

tdY
. Even in the absence of observations on earnings growth I know 

from equations (17) and (19) that regardless of the initial value of )0(ˆ tG , in the long 

term )(ˆ tG  converges to the true MEGR, G(t). The speed of this convergence is governed 

by gk . A higher value of kg means that Ĝ(t) will be close to its mean more often, making 

it easier to learn the value of the latter. However, investors’ learning by observing actual 

EPS growth,
)(

)(

tY

tdY
can increase or decrease the speed of this convergence depending on 

the correlation between MEGR and earnings growth. If correlation between 
)(

)(

tY

tdY
and 

G(t) is negative and large enough in absolute value, learning may become slower simply 

because the updates of )(ˆ tG become less sensitive to new information, 







 dttG

tY

tdY
)(ˆ

)(

)(
. 

3.3.b. The Valuation Equation 

In this section I derive share price using standard SDE arguments based on 

stochastic discount factor (SDF) approach (see, e.g., Cochrane, 2005). The implicit 

assumption here is that any shock responsible for the difference between 

dividends )(tD and )(tY is not priced: 

   ,0*  YdtMMPdEt        

where operator *

tE  represents an expectation with respect to investors’ information set. 
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Under standard assumptions (see Dothan and Feldman, 1986; Detemple, 1986; 

Gennotte, 1986; and Feldman, 2007), the equilibrium price at time t is given in the 

following form:  

P(t, Y, )(ˆ tG , R) = YZ(t, )(ˆ tG , R), subject to )(tP ,    (23) 

where Y represents dividends-per-share. The time-t price-dividend ratio, ),ˆ,( RGtZ , is 

given below, 





t

tRsttGstst dsRGstZ )](),()(ˆ),(),([exp),ˆ,,(  ,     (24) 

which represents the expected present value of a continuous stream of future dividends 

arriving at a unit rate.  The functions under the integral ),,ˆ( tRGZ have the following 

form (see Appendix E for details of derivation): 
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        (25) 

where 
y

gy

t

tS






)(
, ymmyy   representing the risk premium for firm’s earnings 

shocks, 
r

ryyrrmmr

rr
k





 0*  and 

g

tymmy

gg
k




)(
0*


  are, respectively, 

the long-term means of )(ˆ tG and R(t) under the risk-neutral probability measure defined 

by the pricing kernel M(t). I denote tymmyg  )(   as the risk premium for )(ˆ tG  in 

my incomplete-information model.  
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For the integral in equation (24) to exist, the integrand should be declining with 

time s sufficiently fast. Since functions (t,s) and (t,s) in equations (25) are bounded, 

this requirement implies that function (t,s) should be negative and unbounded at large 

time s. The latter restriction implies certain constraint on model parameters, called a 

transversality condition as given below (see Appendix E for proof): 

 
 

  
 

.0
2

2

2

1

2

2

10*

2

2








ygr

gy

rgrrmmyy

yg

gygy

gr

r

r
y

kk

S
k

k

S

k 





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
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(26) 

In the following proposition I show that the risk premium on MEGR based on BC 

full-information model is only a special case of my model. Following BC, I define 

,gymgmg

BC

g    as the risk premium on MEGR under BC complete-information 

model. 

Proposition 4: The magnitude of difference in risk premium on MEGR between 

my incomplete-information model and BC model is given by 

)(
)(

)( mggymymg

y

ymmy

BC

ggg

tS



   at time t. The difference in 

risk premiums declines with learning and converges to a long-run level equal to 

)()( 1
mggymymg

y

ymmy

S



  . When EPS growth and MEGR are perfectly 

correlated, the long-run difference in risk premium vanishes. Similarly, the risk-neutral 

long-term mean of MEGR, defined as *

g  in my model, converges to that of the complete-

information (BC) model. 
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Proof: see Appendix E.  

A higher value of posterior variance S(t) results in less precise pricing. As a result, 

stocks with higher S(t) are considered relatively risky in the market. As S(t) is reduced by 

learning, risk premium due to information incompleteness is reduced as well. The lower 

bound of posterior variance, 1S , determines the minimum level of  information risk 

premium investors demand to compensate for the uncertainty in an incomplete-

information environment.  

In Figure 4, I demonstrate this result. I plot information-related risk premium on 

MEGR for firms with varying levels of correlation between EPS growth and MEGR: 

.1 ,5.0 ,0 ,1  gygygygy   Holding the other parameters constant, according to 

proposition 4, the only two special cases in which information-related risk premium on 

MEGR is zero in the long run are the cases of perfect correlation, 1 and 1  gygy  . 

These are the instances in which complete learning is possible. The only difference 

between the two cases is that the curve of information-related risk premium for 1gy is 

much steeper than that for 1gy  reflecting a quicker learning process. Note that the 

case of 0gy has the largest long-run risk premium. In fact, zero correlation implies 

that learning about MEGR is most difficult because the unobservable state variable is 

independent of available earnings observations. As a result, investors will demand the 

highest information-related risk premium on MEGR in the zero-correlation case among 

all cases with varying correlations.  
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3.4. Comparison of the Incomplete and Complete Information Models 

In this section I examine the differences between my learning-based model and 

the complete-information (BC) model. The purpose of this section is to investigate the 

properties of my estimates of latent mean growth rate, examine how different firm 

characteristics affect the learning process, and compare the time series of price 

differentials in my incomplete-information model to those in complete-information 

model.  

To simplify discussion, I assume deterministic risk-less interest rate, i.e., 

frrr rk     ,0  for both models. To understand the major differences between the 

two models, I focus on the difference in risk premium on MEGR and price difference in 

equilibrium which are functions of the parameter vector, },,{ gyggk  and learning 

horizons. The difference in risk premium is computed following Proposition 4. The per-

share price in equilibrium with incomplete-information is computed following equations 

(23) to (25). The stock price with complete-information is computed based on the price 

formula in Bakshi and Chen (2005). Lastly, the pricing error in equilibrium between two 

models is defined as (Price with incomplete-information - BC price)/BC price, in 

percentage format.  

Two issues are explored in this section. First, I examine the time series behaviour 

of risk premium difference based on varying parameter values. Next, I examine the 

dynamic change of percentage price errors observed at different learning horizons, such 

as short-term (4 months), intermediate-term (10 months), and long-term horizons (25 

months), respectively, for varying parameter values. 
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In Figure 3, I plot three processes: the process for the risk premium based on true 

mean EPS growth rate, G(t); the process for the risk premium based on the filtered mean 

growth rate, )(ˆ tG ; and the process for the variance of the filtered estimate, S(t). To 

generate the figure I use similar base parameter values as used in Figure 1 and Figure 2 

with minor adjustment, that is 1gy . With perfect correlation between EPS and its 

MEGR, the lower bound for S(t), given by S1, is equal to zero. While complete 

information risk premium is flat at 4%, the risk premium based on MEGR estimate, 

)(ˆ tG , is substantially higher than 4% during the initial period. As posterior variance of 

estimate S(t) reaches its minimum (in this figure, the minimum bound S1=0), the risk 

premium based on MEGR estimate, )(ˆ tG , drops over time and reaches 4% in the long 

term limit. This figure suggests that the investors demand an extra risk premium to 

compensate their estimation risk due to incomplete-information. As learning progresses, 

the extra risk premium declines over time. 

Figure 4 demonstrates the impact of change in the correlation between EPS and 

its MEGR on g , the risk premium difference between my incomplete-information 

model and the complete-information model (BC). Holding other parameters constant, I 

change the correlation coefficient to be: 1gy , 0gy , 5.0gy , and 1gy , 

respectively. Based on these values, I compute the lower bound for S(t) as given below: 

when 1gy  or 1gy , S1= 0; when 5.0gy , S1=2.63%; and when 0gy , 

S1=4.05%. Following Proposition 4, I compute the difference of risk premium on MEGR 

based on my incomplete-information model and BC model. Figure 4 shows that 

when ,1or  1  gygy  both g decline and eventually converge to zero in agreement 
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with propositions 1.a, 1.b, and 4. The minor difference between the two perfect learning 

cases )1 and 1(  gygy   is in the speed at which g converges to zero. As 

demonstrated in Figure 4, for perfect positive correlation ),1( gy g declines much 

faster and converges to zero after nine months, while for , 1gy  it takes around 

sixteen months for g to converge to zero. This finding implies that with the same 

degree of learning ( gy  equals one in absolute value), extra risk premium for 

positive gy case diminishes much faster than that for negative gy case as corresponding 

posterior variance S(t) declines faster. Slower learning in the case of negative correlation 

reflects the conflict between the mean-reverting nature of the MEGR process and new 

information coming from earnings growth as described in Proposition 3. For partial 

learning case, I find that when ,5.0gy  risk premium difference g  declines at a 

medium speed which is faster than that for ,1gy but slower than that for ,1gy  in 

support of Proposition 2.  

Note that in Figure 4, for ,5.0gy g  converges to 1.58%, which is not equal 

to zero any more, implying that partial learning process results in compensation for the 

fact that the posterior variance of estimate S(t) cannot be eliminated completely even for 

long-term learning horizons (S1 > 0). For the case of ,0gy  g converges to 2.43%, 

which is the highest one among all of the risk premium differences in Figure 4. Note that 

the highest long-term g  in this case is corresponding to its posterior variance of 

MEGR estimate equal to S1=4.05% for ,0gy which is largest among all of that in 

Figure 4 (S1= 0 for both 1  and 1 -gy  ; and S1=2.63% for 5.0gy ). The presence of S1 
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affects the risk-neutral drift of )(ˆ tG process and stock price in equilibrium reflecting the 

systematic nature of uncertainty about MEGR estimate.  

Consistent with Proposition 4, the magnitude of S1 positively affects the long-term 

magnitude of extra risk premium demanded by learning process. Recall that in 

Proposition 4, the long-term risk premium difference g  is parameterized to be:  

).()( 1
mggymymg

y

ymmy

BC

ggg

S



   I further find that the 

additional risk premium on MEGR, g , declines faster with learning for firms with 

higher gk , which governs mean-reversion speed. This result is demonstrated in Figure 5. 

Holding parameters at base case levels and 1gy , I let the mean-reversion speed take 

three different values: ,2gk  ,3gk and ,4gk respectively. For BC model, the risk 

premium on G(t) remains flat at 4% level regardless of mean-reversion speed. While for 

incomplete-information model, risk premium curves for each gk start with different 

magnitude and declines at varying speed, but eventually converge to complete-

information premium of 4% due to perfect learning. I see that before converging to its 

long run level, the risk premium on )(ˆ tG  is highest for the case with the smallest speed 

of mean-reversion ( 2gk ), while lowest for the case with the largest speed of mean-

reversion ( 4gk ). This phenomenon is in line with Proposition 3. In this case with 

,1gy  learning speed, K, is positively correlated with gk , implying that the uncertainty 

S(t) declines faster if MEGR reverts to its long-term mean at a larger speed. At the same 
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time, the faster decline of S(t) is associated with a lower risk premium at the same point 

in time during learning process.  

In addition to examining the impact of gk on risk premium, I examine its impact 

on stock price in equilibrium as well. In Figure 6, I plot time series of pricing errors 

between my model and BC model in percentage terms with respect to, respectively, low 

speed, medium speed, and high speed of gk . The mean-reversion speed of MEGR is 

assumed to be 2gk ; 3gk ; to 4gk , respectively, for each time series. I find that 

pricing errors are most volatile for low speed gk , but small in magnitude and stable for 

high speed. This is consistent with my proposition 3, because the higher speed gk  implies 

larger learning speed K. For example, in Figure 6 when 2gk , the percentage pricing 

errors decline slowly until below 1% after 37 months of learning; when 3gk , the 

percentage pricing errors decline relatively fast until below 1% after 15 months of 

learning; while when 4gk , the percentage pricing errors decline faster to reach 1% 

only after 5 months of learning.  

In Figure 7, I further examine whether the pricing errors decline faster with 

learning for firms with lower g   which implies a less noisy MEGR process. For 

comparison, I plot three time series of percentage pricing errors with respect to relatively 

low uncertainty )5.0( g , medium uncertainty ),65.0( g  and high uncertainty 

( 8.0g ). I find that the magnitude of pricing errors is reduced more when MEGR is 

less volatile during the same learning horizon (e.g. 15 months). That is, the less 

uncertainty about MEGR, the smaller magnitude the percentage pricing error will decline 
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to. This result follows from my proposition 3, in which I show that the learning speed K 

is inversely related to the level of g . Intuitively, less noisy MEGR process makes 

learning easier and quicker to learn about it. Results in Figures 6 and 7 reveal that 

parameters g and gk have opposing effects on learning. 

I also find that the effect of gk on pricing errors is stronger for a young firm. 

Young firm is interpreted as a firm with short history of observations on earnings 

implying short learning horizon. Similarly, I find that prices are much less sensitive to 

learning horizon when gk is large. These results are demonstrated in Figure 8 which 

presents the paths of pricing errors for gk varying from a low level of 1.8 to a high level 

of 5.8, for short learning horizon (t=4 months), intermediate learning horizon (t=10 

months), and long learning horizon (t=25 months), respectively. For relatively low 

gk ranging from 1.8 to 3.0, pricing errors are most sensitive to learning horizon. For 

example, on average, pricing error for short learning horizon is around -8%, which is 

most volatile; pricing error for medium-learning-horizon is around -5%; and pricing error 

for long-learning-horizon is around -2%, which is lowest in absolute value but non-zero. 

For medium gk  ranging from 3.0 to 4.6, pricing errors for long learning horizon converge 

to zero, and pricing errors for the other two learning horizons are substantially lower than 

those with low gk . For high gk ranging from 4.6 to 5.8, pricing errors for both long and 

medium learning horizons are zero, on average, while producing pricing errors of -1% for 

short learning horizon. This phenomenon observed in Figure 8 reveals that large mean-

reversion speed of MEGR facilitates learning in that pricing error is small in magnitude 
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even after short learning process; while with low mean-reversion speed of MEGR, 

pricing errors are reduced substantially only after long learning process.  

In Figure 9, I examine the impact of precision of MEGR )/1( g on pricing errors 

at different observation times. I make g  range from 0.80 to 0.48 in the direction of 

improving precision of MEGR process. Similar to Figure 8, I choose three observation 

times (learning horizons) for comparison, which are: t = 4 Months; t = 10 Months; and t = 

25 Months. I find that for all three horizons the pricing errors decrease as g declines in 

general. With a relatively low precision of MEGR (high g ranging from 0.80 to 0.66), 

the pricing error for the long learning horizon varies around zero but does not vanish; the 

average pricing error for the medium learning horizon is -4%; and the pricing error for 

the short learning horizon varies widely and averages at -7%. In comparison, with a 

relatively high precision of MEGR (low g ranging from 0.64 to 0.48), the pricing errors 

for the long learning horizon converge to zero, those for the medium learning horizon 

vary around zero, and decline substantially and approach zero for the short learning 

horizon. The pattern in Figure 9 suggests that high precision level of MEGR makes 

learning easier in that it facilitates in reducing pricing errors even in the short learning 

horizon case. Increasing precision of the MEGR process is equivalent to increasing its 

mean-reversion speed, gk . 

In Figure 10, I examine the impact of parameter gy  on the long-term level of 

pricing errors with incomplete information.  I assume that the estimated )(ˆ tG and the true 

G(t) are the same to examine whether pricing error still exists in an incomplete 
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information environment (e.g., 1|| gy ). Parameter gy  determines how well investors 

can eventually learn about the state variable, MEGR. To see price variation as a function 

of learning environment I let the correlation take four different values: 0gy ; 

5.0gy ; 9.0gy ; 1gy . The sample period covers eight years (96 months). I find 

that for perfect correlation such as 1gy , the pricing errors are largely around -10% at 

the beginning of learning horizon, but converge at zero over fourteen-month learning 

period. For non-perfect learning cases, the magnitude of long-term pricing errors for 

9.0gy  is 1.21%, increasing to 7.05% for ,5.0gy  and finally to 15.48% for 0gy  

(all numbers are in absolute value).  

These findings in Figure 10 have two implications. First, there is a negative 

association between long-term pricing errors and degree of incompleteness of 

information environment as reflected by absolute value of gy . Intuitively, the magnitude 

of correlation between earnings and MEGR determines how well investors learn about 

MEGR and consequently how well they price as evidenced by the long-term level of 

pricing errors. Secondly, pricing errors still exist after long learning horizon (e.g., eight 

years) with precisely estimated )(ˆ tG  as long as the information environment is 

incomplete. 

Since long-term pricing errors never vanish in an imperfect learning environment, 

I examine whether faster learning affects the magnitude of long-term pricing errors. 

Following Proposition 3, faster learning can be achieved at higher mean-reversion speed, 

.gk  Figure 11 presents the relation between long-term pricing errors and mean-reversion 
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speed gk  in an imperfect learning environment. To generate the figure, I assume that 

correlation 9.0gy , and the mean-reversion speed gk  takes on the following values: 

2gk , 3gk , and 4gk , respectively. The magnitude (absolute value) of long-term 

pricing error is 3.42% for 2gk , decreasing to 1.32% for 3gk , and again decreasing 

to 1.14% for 4gk . This result implies that larger speed of mean-reversion leads to a 

reduction in the magnitude of long-term pricing errors, holding the other parameters 

constant. As before, the long run pricing errors are not zero. Similar to the intuition 

imlied by Figure 10, the non-vanishing pricing errors reflect residual risk premium (not 

present in the complete information model) due to investors’ imperfect forecasts of the 

underlying state variable. 
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Figure 3: Risk Premium on Estimate of MEGR in Perfect Learning Case 

In this figure I plot three processes: the process for the risk premium based on true MEGR, G(t); the 

process for the risk premium based on the estimated MEGR, )(ˆ tG ; and the process for the variance of 

the filtered estimate, S(t). To generate the figure I assume the following initial values: Y(0)=2; 

G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values for the assumed stochastic processes are given 

by: .1.0 and ;1.0 ;1 ;8.0 ;5.0  ;5.0  ;3.0  ;3 0  mgmygymgyggk  Based on these 

values, I get the following lower bound for S(t): S1= 0. 
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Figure 4: Risk Premium on Estimate of MEGR vs. Correlation 

This figure demonstrates the curves of noise-related risk premium for four firms with different degree of 

correlation between EPS and its MEGR, holding the other parameters constant. The correlation is assumed 

to be: 1gy , 0gy , 5.0gy , and 1gy , respectively. To generate the figure I assume the 

following initial values for each firm: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values for the 

assumed stochastic processes take the following values: 

%.4  and 3%;r ; ;1  ;8.0  ;5.0  ;5.0  ;3.0  ;3 0   gymymgmymgyggk  Based on 

these values, I obtain the following lower bounds for S(t): when 1,-or  1gy S1= 0; when 5.0gy , 

S1=2.63%; and when ,0gy  S1=4.05%. Let g denote the information-related risk premium on MEGR, 

I obtain the convergence level of noise-related risk premium for each firm: 0)1or   1(  gygyg  ; 

%58.1)5.0(  gyg  ; and %43.2)0(  gyg  , respectively. 
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Figure 5: Risk Premium on Estimate of MEGR vs. Mean-reversion  

Speed of MEGR 

In this figure, I examine the impact of change in mean-reversion speed ( gk ) of MEGR on the risk 

premium under my incomplete-information model and the complete-information model. To generate 

the figure I assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters 

values for the assumed stochastic processes take the following values: 

.1.0 and ;1.0  ;1  ;8.0   ;5.0  ;5.0  ;3.00  mymygymgyg  The speed of mean-

reversion of MEGR is assumed to be, 2gk , 3gk , and 4gk , respectively. Based on these 

values, I obtain the following lower bound for S(t): S1= 0. The constant risk premium on G(t) under 

complete-information model is 4 per cent. 
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Figure 6: Percentage Pricing Errors vs. Mean-Reversion Speed of MEGR 

In this figure, I examine the impact of change in mean-reversion speed ( gk ) of MEGR on the pricing 

performance based on my incomplete-information model and the complete-information model. At each 

time during the sample period for each level of speed, gk , prices are computed by the learning model 

respectively. Percentage pricing error is defined as the ratio of (Incomplete-Information model price – BC 

Complete-Information model price)/ BC Complete-Information model price. This chart show the time 

series of pricing errors for each level of speed, gk . To generate the figure I assume the following initial 

values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. The mean-reversion speed of MEGR for each series is 

assumed to be, 2gk , 3gk , and 4gk , respectively. The other parameters for the assumed stochastic 

processes take the following values:   ;5.0  ;5.0  ;3.00  gyg   ;1  ;1 ;8.0  mygym   

 ;1mg %.4  and 3%;r     

Series of Pricing Differentials with Three Levels of 

Mean-Reversion Speed of Mean Growth Rate

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

1 11 21 31 41 51

Learning Horizon (Months)

P
e
rc

e
n

ta
g

e
 P

ri
c
e
 D

if
fe

re
n

ti
a
l 
%

kg=2
kg=3
kg=4

Series A:

Low Speed kg=2

Series C:

Intermediate 

Speed kg=4

Series B:

High Speed kg=3

 

 

 

 

 

 

 



109 

 

 

Figure 7: Percentage Pricing Errors vs. Volatility of MEGR 

In this figure, I examine how the percentage pricing errors are influenced by the precision level of the 

MEGR. To generate the figure I assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and 

S(0)=0.5. Parameters for the assumed stochastic processes take the following values: 

%.4  and 3%;r ;1 ;1  ;1 ;8.0  ;5.0  ;5.0  ;3.0  ;3 0   mgmygymgyggk  I 

assume that the volatility of the mean EPS growth rate for each series 

are: ,8.0 and ,65.0 ,5.0  yyy   respectively. With each level of volatility, y , percentage pricing 

errors are computed  for each month during the sample period respectively. Percentage pricing error is 

defined as the ratio of (Incomplete-Information model price – BC Complete-Information model price)/ BC 

Complete-Information model price. 
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Figure 8: Learning Horizon vs. Mean-Reversion Speed of MEGR 

In this figure, I observe the pricing errors (percentage) between my incomplete-information model and BC 

complete-information model by increasing the speed of MEGR. I focus on the pricing errors at three 

observation times (learning horizon), which are: t = 4 Months (short-learning horizon); t = 10 Months 

(intermediate-learning horizon); and t = 25 Months (long-learning horizon), respectively. Percentage 

pricing error is defined as the ratio of (Incomplete-Information model price – BC Complete-Information 

model price)/ BC Complete-Information model price. To generate the figure I assume the following initial 

values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters for the assumed stochastic processes take 

the following values:    ;8.0  ;5.0  ;5.0  ;3.00  mgyg  3%;r  ;1 ;1;1  mgmygy   and  

%.4  The value of speed gk  increases from 1.8 to 5.8 gradually. 

Observations of Percentage Price Errors as kg Increases

-17%

-15%

-13%

-11%

-9%

-7%

-5%

-3%

-1%

1%

3%

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

Speed of Mean EPS Growth Rate, kg

P
e

rc
e

n
ta

g
e

 P
ri

c
e

 E
rr

o
rs

 %

Short Learning Horizon (at t = 4 Months)

Intermediate Learning Horizon (at t = 10 Months)

Long Learning Horizon (at t = 25 Months)

 

 

 

 



111 

 

Figure 9: Learning Horizon vs. Volatility of MEGR  

In this figure, I observe the percentage pricing errors by decreasing the volatility of MEGR. I focus on the 

pricing errors at three observation times (learning horizon), which are: t = 4 Months (short-learning 

horizon); t = 10 Months (intermediate-learning horizon); and t = 25 Months (long-learning horizon), 

respectively. Percentage pricing error is defined as the ratio of (Incomplete-Information model price – BC 

Complete-Information model price)/ BC Complete-Information model price.  To generate the figure I 

assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters for the assumed 

stochastic processes take the following values:  ;1  ;1 ;8.0  ;5.0  ;3.0 ;3 0  mygymyggk   

%.4  and 3%;r ;1  mg The volatility of MEGR decreases from 0.80 to 0.48 gradually. 
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Figure 10: Long Term Mean of Percentage Pricing Errors vs. Correlation 

In this figure, I examine that in an incomplete-information environment, how pricing errors are influenced 

by a parameter, ρ, the correlation between EPS and its MEGR. The value of parameter ρ determines the 

degree to which learning on the true MEGR can be achieved by using available data on EPS. I assume the 

correlation parameter gy  to take the following four different levels:  ;9.0 ;5.0 ;0  gygygy  and 

,1gy  respectively. The sample period covers eight years (96 months). Percentage pricing error is 

defined as the ratio of (Incomplete-Information model price – BC Complete-Information model price)/ BC 

Complete-Information model price.  To generate the figure I assume the following initial values: Y(0)=2; 

G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters for the assumed stochastic processes take the following 

values: %.4  and 3%;r ; ;1  ;8.0  ;5.0 ;5.0  ;3.0 ;3 gy
0   mymgmymgyggk  
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when ρ=0.9, E(Price Errors) = -1.21%  when ρ=0.5, E(Price Errors) = -7.05%  

when ρ=0, E(Price Errors) = -15.48% when ρ=1, E(Price Errors) = 0%  

 

 

Sample of Data for Figure 10 

Long Term Mean of 

Pricing Errors 

Percentage Pricing Errors over Learning Horizon (Months) 

t=3 t=6 t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30 

ρgy=1 0% -0.071 -0.023 -0.007 -0.002 -0.001 0 0 0 0 0 

ρgy=0.9 -1.21% -0.017 -0.043 -0.035 -0.032 -0.017 -0.028 -0.015 -0.018 -0.003 0.014 

ρgy=0.5 -7.05% -0.131 -0.107 -0.121 -0.099 -0.158 -0.135 -0.156 -0.230 -0.123 0.015 

ρgy=0 -15.48% -0.145 -0.195 -0.202 -0.062 -0.170 -0.105 -0.008 -0.119 -0.151  -0.19 
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Figure 11: Long Term Mean of Percentage Pricing Errors vs. Mean-Reversion 

Speed of MEGR 

In this figure, I examine that in an imperfect learning environment (eg., 9.0gy ), how long-term steady 

level of pricing errors are affected by boosting the speed of MEGR, gk , to a higher level. The sample 

period covers eight years (96 months). Due to imperfect learning, pricing errors will decrease but never 

converge to zero regardless of the level of MEGR mean-reversion speed. But the long-term mean of pricing 

errors would sustain at a relatively lower level (at absolute value) with a higher speed gk . To generate the 

figure I assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. The other 

parameters for the assumed stochastic processes take the following values:  ;5.0 ;5.0  ;3.00  gyg   

%.4  and 3%;r;9.0 ;1 ;8.0   mgmym  The value of mean-reversion speed gk  is assumed to 

be: 2gk , 3gk , and 4gk , respectively.  

Percentage Pricing Errors with Different Levels of Speed Kg 

-20%

-15%

-10%

-5%

0%

5%

1 11 21 31 41 51 61 71 81 91

Learning Horizon (Months)

P
e
rc

e
n

ta
g

e
 P

ri
c
in

g
 E

rr
o

rs
 (

%
)

when kg=2, Long Term Mean of Price Errors = -3.42%  

when kg=3, Long Term Mean of Price Errors = -1.32%  

when kg=4, Long Term Mean of Price Errors = -1.14%  

 

Sample of Data for Figure 11 

Long Term Mean of 

Pricing Errors 

Percentage Pricing Errors over Learning Horizon (Months) 

t=1 t=11 t=21 t=31 t=41 t=51 t=61 t=71 t=81 t=91 

2gk  -3.42% -0.195 -0.076 -0.036 0.018 -0.069 -0.065 -0.016 -0.010 -0.080 -0.027 

3gk  -1.32% -0.107 0.021 0.020 -0.030 0.024 -0.030 0.016 -0.009 -0.015 -0.032 

4gk  -1.14% -0.054 -0.001 -0.017 -0.018 -0.030 0.010 -0.006 -0.007 0.009 -0.027 
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CHAPTER 4 

 

Conclusions 

 

Most models for return predictability assume that state variables are perfectly and 

precisely observable at any point in time with precise and complete information. In this 

dissertation I examine the effect of incomplete or noisy information on the risk premium 

and pricing performance based on traditional asset pricing models. In both essays, I show 

that an extra risk premium is demanded by investors due to the presence of imperfect 

information.  

In Chapter 2, I examine the pricing of IQ risk. I present strong evidence showing 

that a mimicking IQ market factor is priced in a context of an IQ factor-adjusted Fama-

French factor model with liquidity as a control variable. The evidence in favour of a 

market IQ factor is robust with respect to test portfolio formation and model 

specification. 

Motivated by these results, I derive a continuous-time model, in the spirit of 

Merton’s (1973) intertemporal model, in which information on state variables is 

continuously imprecise. This allows us to derive an analytical expression and examine 

the impact of systematic IQ risk on asset pricing.  

 With an imprecise information set, Merton’s three-fund separation theorem still 

holds in my model except that the third portfolio is acting to hedge against exposure to IQ 
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risk. In my IQCAPM, the market risk premium and hedge portfolio risk premium are 

boosted by 
m and ,

h  respectively. These terms represent the expected IQ related 

return on these portfolios. Although the true return is obscured by the presence of 

imprecise information, an asset excess return is still linear in the excess returns on the 

market portfolio and that on a portfolio designed to hedge against unfavourable shifts in 

the stochastic investment opportunity set. I show that, unique to my IQ-adjusted model, 

imprecise information influences the pricing of an asset through its impact on its betas 

with respect to the two portfolios. 

 Based on my theoretical framework, I further show that IQ risk has systematic and 

idiosyncratic components and that only the former, which is nondiversifiable, is priced. 

This risk component of the IQ risk is priced because, even when an investor holds an 

individual security within the market portfolio, s/he still faces the systematic IQ risk that 

this security contributes to the IQ risk inherited in the market portfolio. Therefore, 

investors demand a higher premium for holding an asset with a higher systematic IQ risk. 

I derive a static unconditional version of the IQCAPM to empirically test the 

validity of the model. The total systematic IQ risk affects asset returns through three IQ 

betas. The first IQ beta reflects the sensitivity of asset return relative to market-wide IQ. 

The second IQ beta manifests the relation between asset IQ noise and the market return. 

The last beta is a commonality IQ beta, reflecting the co-movement between individual 

portfolio IQ noise and market-wide IQ noise. 

 To test the validity of my static IQCAPM, I employ two alternative proxies for IQ 

based on firm-specific cash flow residual estimated using the model of Barth et al. (2001). 

The empirical result shows that the three IQ betas, particularly the last commonality in IQ 
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beta, are significant in explaining variation in returns. This result is robust with respect to 

test-portfolio formation and remains significant after adjustment for Acharya and 

Pedersen’s (2005) systematic liquidity risk. 

In Chapter 3, I formulate a dynamic framework for valuing stocks which allows 

for learning about a stochastic but unobservable MEGR (mean of earnings growth rate) in 

an incomplete-information environment. The instantaneous MEGR is a state variable in 

my model, and investors can learn about it from continuously released earnings 

information.  

I have shown in this chapter that the posterior variance of MEGR estimate 

generates extra risk premium on MEGR beyond what is accounted for in the complete 

information model. I further show that the time-varying nature of posterior variance of 

MEGR leads to a dynamic change in risk premium and more volatile stock prices. As 

learning reduces the posterior variance of estimate, extra risk premium declines to an 

equilibrium level over time. I parameterize the risk premium on MEGR and find that the 

time-varying magnitude of risk premium is not only affected by posterior error variance 

of estimate but also affected by firm characteristics, such as volatility of earnings, 

volatility of MEGR, mean-reversion speed of earnings, and correlation between earnings 

and the unobservable MEGR.  

My results indicate that the faster the MEGR reverts to its long-term value, the 

smaller the magnitude of risk premium attributed to information incompleteness. This 

effect results from the fact that the higher speed of reversion towards the constant long-

term mean leads to a faster exponential decay of any initial deviation from this mean and, 

therefore, faster learning. With a lower mean-reversion speed, risk premium on MEGR 
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and posterior variance of MEGR estimate decline slowly but essentially constant over 

time if learning horizon is long enough. I also find that the effect of mean-reversion speed 

on pricing errors is stronger for a young firm with short history of information. By 

increasing the speed of mean-reversion, pricing errors due to information-incompleteness 

can be reduced substantially and quickly even learning horizon is short. 

Lower volatility on MEGR has similar effect of higher effective speed of mean-

reversion process of latent variable on learning. Both facilitate faster learning process 

about the true unobservable state variable, which is shown by the fast reduction in the 

posterior variance of MEGR estimate.  

I have also shown that larger correlation (in absolute value) between earnings and 

latent MEGR leads to more complete learning about the true unobservable variable. With 

a perfect correlation (1 or -1), complete learning is achievable which leads to the same 

magnitude of risk premium and equilibrium prices in the long run as those in complete-

information environment. In such case, the extra risk premium due to information-

incompleteness vanishes eventually. In contrast, with an imperfect correlation (between -

1 and 1), complete learning is impossible and therefore extra risk premium is non-zero at 

all times. The non-vanishing risk premium in my model reflects a persistent uncertainty 

that investors hold in an incomplete information environment. The additional long-term 

risk premium on MEGR results in lower equilibrium price as a compensation to investors 

for remaining uncertainty about the state variable.  

My finding is consistent with that learning can generate higher equity premium 

when investors are ambiguity averse (e.g., Cagetti et al. 2002; Leippold et al. 2008; and 

Epstein and Schneider 2008). As Pastor and Veronesi (2009) predict that when investors 
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are cautious of model misspecification in incomplete-information environment, model 

uncertainty is penalized and risk premium rises as compensation.  

 

 

 



 119 

BIBLIOGRAPHY 

Acharya, V. V., and Pedersen, L. H., 2005, Asset pricing with liquidity risk, Journal of 

 Financial Economics, 77, 375-410. 

Admati, A., and Pleiderer, P., 2000, Forcing firms to talk: financial disclosure regulation 

and externalities, The Review of Financial Studies 13: 479-519. 

Amihud, Y., Mendelson, H., 1986, Asset pricing and the bid-ask spread, Journal of 

Financial Economics 17, 223–249. 

Amihud, Y., 2002, Illiquidity and stock returns: cross-section and time-series effects,

 Journal of Financial Markets 5, 31-56. 

Bakshi, G. and Chen, Z., 2005, Stock valuation in dynamic economies, Journal of

 Financial Markets. No. 2, 115-151. 

Barberis, N., 2000, Investing for the long run when returns are predictable, Journal of 

Finance, 55, 225-264. 

Baiman, S. and Verrecchia, R.E., 1996, The relation among capital markets, financial 

 disclosure, production efficiency and insider trading, Journal of Accounting 

 Research 34: 1-22. 

Barth, M., Cram, D.P. and Nelson, K., 2001, Accruals and the prediction of future cash 

flows, The Accounting Review 76: 27-58. 

Bhattacharya, U., and H. Daouk, 2002, The world price of insider trading, Journal of 

Finance, 57, 75-108. 

Botosan, C., 1997, Disclosure level and the cost of equity capital, The Accounting Review, 

72, 323-49. 

Botosan, C., Plumlee, M., and Xie, Y., 2004, The role of private information precision in 

determining cost of equity capital, Review of Accounting Studies. 



 120 

Breedon, D.T., 1979, An intertemporal asset pricing model with stochastic consumption  

 and investment opportunities, Journal of Financial Economics, 7, 265-296. 

Brennan, M.J., 1998, The role of learning in dynamic portfolio decisions, European

 Finance Review, 1, 295-396. 

Brennan, M.J. and Xia, Y., 2001, Stock return volatility and equity premium,

 Journal of Monetary Economics, Vol. 47:249-83. 

Breeden, D., Gibbons, M., Litzenberger, R., 1989, Empirical tests of the consumption- 

 oriented  CAPM, Journal of Finance 44, 231–262. 

Brennan, M., Chordia, T., Subrahmanyam, A., 1998, Alternative factor specification, 

 characteristics, and the cross-section of expected stock return, Journal of 

 Financial Economics 41, 441-464. 

Cagetti, M., Lars Peter Hansen, T. S., and Williams, N., 2002, Robustness and pricing 

 with uncertain growth, Review of Financial Studies 15, 363–404. 

Campbell, J.Y., 1996, Consumption and the stock market: interpreting international  

  experience, Swedish Economic Policy Review, 3, pp. 251–299. 

Campbell, J., Grossman, S., Wang, J., 1993, Trading volume and serial correlation in 

 stock returns, Quarterly Journal of Economics 108, 905–939. 

Chalmers, J.M.R., Kadlec, G.B., 1998, An empirical examination of the amortized spread, 

 Journal of Financial Economics 48, 159–188. 

Chan, K., Chan, L., Jegadeesh, N., Lakonishok, J., 2001, Accruals quality and stock   

returns: the Evidence from Accruals, National Taiwan University and University   

of  Illinois, working Paper. 

Chordia, T., Subrahmanyam, A., Anshuman, V.R., 2001, Trading activity and expected  



 121 

 stock returns, Journal of Financial Economics 59, 3–32. 

Chordia, T., Roll, R., Subrahmanyam, A., 2000, Commonality in liquidity, Journal of  

 Financial Economics 56, 3–28. 

Cochrane, J.H., 2005, Asset pricing Revised Edition, Princeton University Press,

 Princeton, NJ. 

Cohen, D., 2008, Does information risk really matter? An analysis of the determinants  

 and economic consequences of financial reporting quality, Asian Pacific Journal  

 of Accounting and Economics, Vol. 15, No. 2, pp. 69-90. 

Constantinides, G.M., 1986, Capital market equilibrium with transaction costs, Journal of 

Political Economy 94, 842–862. 

Datar, V.T., Naik, N.Y., Radcliffe, R., 1998, Liquidity and stock returns: an alternative 

test, Journal of Financial Markets 1, 203–219. 

Dechow P. and Dichev I. 2002, The quality of accruals and earnings: the role of accrual

 estimation errors, The Accounting Review 77 (Supplement): 35-59. 

Dechow, P., S.P. Kothari, and R. Watts. 1998, The relation between earnings and cash  

 flows, Journal of Accounting and Economics 25: 133-168. 

Detemple, J.B., 1986, Asset pricing in a production economy with incomplete

 information, Journal of Finance, 41, pp. 383-91. 

Detemple, J.B., R. Garcia, and M. Rindisbacher, 2003, A Monte Carlo method for 

optimal portfolios, Journal of Finance 58, 401-446. 

Dothan, M.U. and Feldman, D., 1986, Equilibrium interest rates and multiperiod  bonds   

in a partially observable economy, Journal of Finance, 41, pp.369-82. 

Dong, M. and Hirshleifer, D., 2005, A generalized earnings-based stock valuation  model,  



 122 

The Manchester School Money, Macroeconomics and Finance Supplement, 73,  

pp. 1-31. 

Easley, D., Hvidkjaer, S., and M. O’Hara, 2002, Is information risk a determinant of asset 

returns? Journal of Finance 57, 2185-221. 

Easley, D. and O’Hara, M., 2004, Information and the cost of capital, The Journal of 

 Finance 59: 1553-1583. 

Epstein, L., and Schneider, M., 2008, Ambiguity, information quality and asset prices, 

Journal of Finance 63, 197–228. 

Fama, Eugene, 1965, The behavior of stock market prices, Journal of Business 38, 34- 

105. 

Fama, E.F. and K. French. 1992, The cross-section of expected stock returns, Journal of

 Finance 47: 427-465. 

Fama, E.F. and K. French. 1993, Common risk factors in the returns on stocks and bonds,

 Journal of Financial Economics 33: 3-56. 

Fama, E.F. and K. French. 1996, Multifactor explanations of asset pricing anomalies,  

 Journal of Finance 51: 55-84. 

Fama, E.F. and French, K.R., 2001, Disappearing dividends: changing characteristics

 or lower propensity to pay, Journal of Financial Economics 60, pp.3-43. 

Faust, J., J.H. Rogers, and J. H. Wright, 2000, News and noise in G-7 GDP

 announcements, Federal Reserve Board.  

Feldman, D., 2007, Incomplete information equilibria: separation theorems and other

 myths, Annals of Operations Research, Special Issue on Financial Modeling,

 Vol. 151, pp. 119-149. 



 123 

 

Francis, J., LaFond, R., Olsson, P., Schipper, K., 2004, Costs of equity and earnings 

attributes, The Accounting Review 79, 967–1010. 

Francis, J., LaFond, R., Olsson, P., and Schipper, K., 2005, The market pricing of 

earnings of quality, Journal of Accounting & Economics 39, 295-327. 

Friedman, Michael, 1983, Foundations of space-time theory: relativistic physics and 

philosophy of science, Princeton Univ. Press (1993). 

Gennotte, G., 1986, Optimal portfolio choice under incomplete information, Journal

 of Finance 41, pp.733-46. 

Gibbons, M. R., Ross, S. A., and Shanken, J., 1989, A test of the efficiency of a given 

 Portfolio, Econometrica 57, 1121.1152. 

Gomes, A. Gorton, G. and Madureira, L., 2007, SEC regulation fair disclosure, 

information, and the cost of capital, Journal of Corporate Finance, Volume 13, 

300-334. 

Gordon, M., 1962, The investment, financing and valuation of the corporation, Home-

wood, IL: Irwin. 

Grossman, S.J. and Shiller, R.J., 1981, The determinants of the variability of stock 

 Market Prices, American Economic Review 71, pp.222-227. 

Hasbrouck, J., Seppi, D.J., 2001, Common factors in prices, order flows and liquidity,       

 Journal of Financial Economics 59, 383–411. 

Harrison, M.  and Kreps, D., 1979, Martingales and arbitrage in multiperiod security

 markets, Journal of Economic Theory, Vol. 20, pp. 381-408. 

 



 124 

Healy, P., A. Hutton, and K. Palepu, 1999, Stock performance and intermediation 

changes surrounding sustained increases in disclosure, Contemporary Accounting 

Research 16, 485-520. 

Heaton, J., and Lucas, D. J., 1996, Evaluating the effects of incomplete markets on risk  

 sharing and asset pricing, Journal of Political Economy 104, 443.487. 

Hribar, P., Colllins, D.A., 2002, Errors in estimating accruals: implications for empirical

 research, Journal of Accounting Research 40: 105-135. 

Huang, M., 2003, Liquidity shocks and equilibrium liquidity premia, Journal of 

Economic Theory 109, 104–129.   

Huang, L. and Liu, H., 2003, Portfolio selection with return predictability and 

periodically observable predictive variables, Georgia State University and 

Washington University in St. Louis, working paper. 

Huberman, G., Halka, D., 1999, Systematic liquidity, The Journal of Financial Research 

24, 161-78.  

Hughes, J., Liu, J., and Liu, J., 2007, Private information, diversification, and asset 

pricing, Accounting Review, v82, n3, 705-730, May, 2007.  

Jones, C. M., 2002, A century of stock market liquidity and trading costs, working paper,  

 Columbia University. 

Kallianpur, G., 1980, Stochastic Filtering Theory, Springer-Verlag, New York. 

Kandel, S., and R.F. Stambaugh, 1996, On the predictability of stock returns: an asset

 allocation perspective, Journal of Finance 51, 385-424. 

Lakonishok, J., Shleifler, A., and Robert Vishny, R., 1994, Contrarian investment,   

extrapolation, and risk, Journal of Finance 49, no.5, 1541-1578. 



 125 

Lambert, R. A. Leuz, C. and Verrecchia, R. E., 2006, Information asymmetry,  

 information precision, and the cost of capital, Wharton Financial Institutions  

 Center Working Paper No. 06-21. 

Lee, C., Myers, J. and Swaminathan, B. 1999, What is the intrinsic value of the Dow?

 Journal of Finance 54, 1693–1741. 

Leippold, M., Trojani, F., and Vanini, P. 2008, Learning and asset prices under

 ambiguous information, Review of Financial Studies 21, 2565–2597. 

Leuz, C., Verrecchia, R., 2004, Firms’ capital allocation choices, information quality, and 

the cost of capital, University of Pennsylvania, working Paper. 

Lintner, J., 1965, The valuation of risk assets and the selection of risky investments in  

 stock portfolios and capital budgets. Review of Economics and Statistics 47, 13-37. 

Liptser, R. S. and Shiryayev, A. N. 1977, Statistics of random processes I: general

 theory, New York: Springer-Verlag.  

Liptser, R. S. and Shiryayev, A. N. 1978, Statistics of random processes II:

 applications, New York: Springer-Verlag.  

Liu, W., 2006, A liquidity-augmented capital asset pricing model, Journal of Financial

 Economics 82, 631-671. 

Lo, A. W., Mamaysky, H., and Wang, J., 2001, Asset prices and trading volume under  

 fixed transaction costs., working paper, MIT. 

Lo, A. W., and Wang, J., 2000, Trading volume: definitions, data analysis, and  

 implications of portfolio theory, Review of Financial Studies 13, 257.300. 

Merton, R. C., 1971, Optimum consumption and portfolio rules in a continuous time 

model, Journal of Economic Theory 3, 373-413. 



 126 

Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica, Vol. 41, 

No. 5, September. 

Mossin, J., 1966, Equilibrium in a capital asset market, Econometrica 35, 768–783. 

O’Hara, M., 2003, Presidential address: liquidity and price discovery, Journal of Finance 

58, 1335–1354. 

Pastor, L., Stambaugh, R. 2003, Liquidity risk and expected stock returns, Journal of 

Political Economy 111, 642-685. 

Pastor, L. and Veronesi, P. 2003, Stock valuation and learning about profitability,

 Journal of Finance 58: 1749-89. 

Pastor, L. and Veronesi, P. 2006, Was there a Nasdaq bubble in the Late 1990s?

 Journal of Financial Economics, Vol. 81: 61-100. 

Pastor, L. and Veronesi, P. 2009, Technological revolutions and stock prices, The Annual  

Review of Financial Economics 99: 1451-83. 

Samuelson, PA. 1969, Lifetime portfolio selection by dynamic stochastic programming,  

Review of Economics and Statistics 51, 239-246. 

Shapiro, M. D., and Wilcox, D. W., 1996, Mismeasurement in the consumer price index: 

an evaluation, NBER Macroeconomic Annual. 

Sharpe, W.F., 1964, Capital asset prices: a theory of market equilibrium under conditions 

of risk, Journal of Finance 19, 425-442. 

Sloan, R., 1996, Do stock prices fully reflect information in accruals and cash flows 

about future earnings? The Accounting Review 71, 289–315. 

Timmermann, AG. 1993, How learning in financial markets generates excess

 volatility and predictability of stock returns, Quarterly Journal of Economics,



 127 

 Vol. 108: 1135-45. 

Vasicek, O. 1977, An equilibrium characterization of the term structure, Journal of

 Financial Economics, Vol. 5, pp. 177-188. 

Vayanos, D., 1998, Transaction costs and asset prices: a dynamic equilibrium model, 

 Review of Financial Studies 11, 1.58. 

Wachter, J., 2002, Optimal consumption and portfolio allocation under mean- 

 reverting returns: an exact solution for complete markets, Journal of Financial  

 and Quantitative Analysis 37, 63-91. 

Wang, J., 1993, A model of intertemporal asset prices under asymmetric information, 

Review of Economic Studies 60, 249-282. 

Williams, J.T. 1977, Capital asset prices with heterogeneous beliefs, Journal of`

 Financial Economics 5: 219-39. 

Xia, Y. H., 2001, Learning about predictability: the effects of parameter uncertainty on         

 dynamic asset allocation, Journal of Finance 56, 205-246. 

Xie, H., 2001, The mispricing of abnormal accruals, The Accounting Review 76, 357–373. 

 

 



 128 

Appendix 

 
Appendix A – Results of Robustness Tests for Chapter 2 

 

Table A1 - Robustness Test for the IQ Factor with Reverse Sorting 

 
This table reports the coefficient estimates of the IQ factor-adjusted Fama-French factor model with 

liquidity as a control variable. At the beginning of each quarter from 1987 to 2007, eligible stocks are 

sorted first into 3 liquidity groups and then into 3 IQ category within the liquidity groups. GMM is used to 

estimate the coefficients for the following special relation:   

,)( ittitititiftmtiiftit LIQlIQFqHMLhSMBsrrbrr    

where itr is the return of portfolio i in quarter t, ftr is three-month T-bill rate for quarter t, the values of 

)( ftmt rr  , tSMB , and tHML  are obtained from Kenneth French’s website, tLIQ is the market liquidity 

factor constructed following Pastor and Stambaugh (2003), and tIQF is the mimicking-IQ-factor in quarter 

t. Panel A documents the results on 9 (3 Liquidity by 3 IQ) portfolios when IQ1 is used to proxy for IQ 

risk. Panel B documents the results on 9 (3 Liquidity by 3 IQ) portfolios when IQ2 is used to proxy for IQ 

risk. I denote the three IQ portfolios with IQH, IQM, and IQL, where: IQH is the high information-quality 

portfolio (with low levels of IQ1 or IQ2); IQM is the medium information-quality portfolio (with medium 

levels of IQ1 or IQ2); and IQL is the low information-quality portfolio (with high levels of IQ1 or IQ2). 

The t-statistic is reported in the parentheses. R2 and adjusted-R2 are documented as well. 

 
Panel A:  Nine Portfolios (IQ1 = || ,tie ) 

Liquidity 

level 

IQ 

level 

αi bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

 

 

Low 

IQH 0.010 

(1.12) 

0.904*** 

(25.16) 

-0.174* 

(-1.89) 

0.076 

(0.95) 

-0.435*** 

(-3.14) 

0.002 

(0.985) 

0.896 

(0.892) 

IQM 0.009 

(0.55) 

0.871*** 

(22.10) 

-0.059 

(-0.45) 

0.180 

(1.42) 

-0.073 

(-0.44) 

-0.112 

(-0.87) 

0.860 

(0.855) 

IQL 0.009 

(0.65) 

0.877*** 

(16.18) 

-0.104 

(-0.63) 

0.071 

(0.61) 

0.507*** 

(3.13) 

-0.008 

(-0.05) 

0.845 

(0.840) 

 

 

Medium 

IQH 0.007 

(0.61) 

1.017*** 

(21.69) 

-0.117 

(-0.69) 

0.264 

(1.51) 

-0.126 

(-0.80) 

0.685*** 

(4.21) 

0.889 

(0.884) 

IQM 0.005 

(0.73) 

0.908*** 

(21.67) 

-0.001 

(-0.00) 

0.129 

(0.76) 

0.189 

(0.93) 

0.734*** 

(3.77) 

0.863 

(0.858) 

IQL 0.008 

(1.06) 

0.921*** 

(19.24) 

-0.146 

(-1.15) 

0.130 

(1.11) 

0.508** 

(2.59) 

0.916*** 

(7.70) 

0.902 

(0.898) 

 

 

High 

IQH 0.013** 

(2.24) 

0.816*** 

(15.26) 

-0.009 

(-0.07) 

0.089 

(0.94) 

-0.460** 

(-2.26) 

1.022*** 

(8.03) 

0.897 

(0.893) 

IQM 0.017 

(0.59) 

0.839*** 

(18.51) 

0.425* 

(1.71) 

0.262** 

(2.30) 

0.509* 

(1.72) 

0.634** 

(2.36) 

0.838 

(0.832) 

IQL 0.010 

(0.71) 

0.855*** 

(16.57) 

0.114 

(0.59) 

0.315*** 

(3.30) 

0.212** 

(2.30) 

0.781* 

(1.65) 

0.894 

(0.889) 
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Panel B:  Nine Portfolios (IQ2 = tie )( ) 

Liquidity 

level 

IQ 

level 

αi bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

 

 

Low 

IQH 0.010 

(1.89) 

0.905*** 

(28.53) 

-0.045 

(-0.49) 

0.122 

(1.29) 

-0.626*** 

(-7.00) 

-0.021 

(-0.23) 

0.899 

(0.895) 

IQM 0.015** 

(2.26) 

0.915*** 

(20.00) 

0.025 

(0.24) 

0.132 

(1.15) 

-0.423*** 

(-2.83) 

-0.095 

(-0.86) 

0.805 

(0.798) 

IQL 0.011 

(1.44) 

0.923*** 

(23.73) 

-0.169* 

(-1.77) 

-0.066 

(-0.88) 

0.382*** 

(2.89) 

-0.084 

(-0.89) 

0.923 

(0.920) 

 

 

Medium 

IQH 0.008 

(0.86) 

0.979*** 

(22.67) 

-0.049 

(-0.38) 

0.212* 

(1.97) 

-0.656*** 

(-5.33) 

0.687*** 

(6.30) 

0.905 

(0.902) 

IQM 0.012 

(0.58) 

0.966*** 

(15.50) 

0.075 

(0.60) 

0.050 

(0.37) 

-0.217 

(-1.57) 

0.748*** 

(5.34) 

0.883 

(0.878) 

IQL 0.006 

(0.16) 

1.034*** 

(15.30) 

0.005 

(0.03) 

0.101 

(0.63) 

0.171 

(0.81) 

0.678*** 

(3.67) 

0.850 

(0.845) 

 

 

High 

IQH 0.016** 

(2.25) 

0.846*** 

(18.19) 

0.076 

(0.76) 

0.110 

(1.60) 

-0.649*** 

(-5.01) 

0.797*** 

(8.69) 

0.899 

(0.895) 

IQM 0.009 

(0.38) 

0.856*** 

(17.31) 

0.048 

(0.29) 

0.208** 

(2.05) 

0.145 

(0.79) 

1.088*** 

(6.53) 

0.900 

(0.896) 

IQL 0.012* 

(1.91) 

0.845*** 

(15.74) 

0.425** 

(2.50) 

0.202** 

(2.11) 

0.551*** 

(3.60) 

0.668*** 

(3.45) 

0.896 

(0.892) 

 

Table A2 - Robustness Test for the IQ Factor for B/M portfolios 

 
This table reports the coefficient estimates of the Information factor-adjusted Fama-French factor model 

with liquidity as a control variable. At the beginning of each quarter from 1987 to 2007, eligible stocks are 

sorted into 9 groups based on book-to-market value. GMM is used to estimate the coefficients for the 

following special relation:   

 

,)( ittitititiftmtiiftit LIQlIQFqHMLhSMBsrrbrr    

where itr is the return of portfolio i in quarter t, ftr is three-month T-bill rate for quarter t, the values of 

)( ftmt rr  , tSMB , and tHML  are obtained from Kenneth French’s website, tLIQ is the mimicking 

liquidity factor constructed based on liquidity measure of Pastor and Stambaugh (2003), and tIQF is the 

mimicking IQ factor in quarter t. The t-statistic is reported in the parentheses. R2 and adjusted-R2 are 

documented for each panel as well.  

    

 
Panel A: Nine B/M Portfolios 

(IQ1 = || ,tie ) 

B/M 

Portfolios 

bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

1 (Lowest) 0.976*** 

(10.51) 

-0.829*** 

(-4.27) 

-0.124 

(-0.59) 

0.946*** 

(4.56) 

0.332* 

(1.76) 

0.534 

(0.521) 

2 0.945*** 

(15.24) 

-0.318*** 

(-2.74) 

0.070 

(0.48) 

0.325** 

(2.28) 

0.272** 

(2.18) 

0.685 

(0.676) 

3 0.975*** 

(15.32) 

-0.375** 

(-2.29) 

0.138 

(1.40) 

0.007 

(0.04) 

0.438*** 

(2.81) 

0.802 

(0.796) 

4 0.917*** 

(14.23) 

-0.232 

(-1.31) 

0.216 

(1.21) 

-0.201 

(-1.61) 

0.349* 

(1.97) 

0.745 

(0.737) 

5 0.897*** -0.238** 0.146 -0.012 0.441*** 0.808 
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(16.36) (-2.05) (1.49) (-0.10) (3.23) (0.803) 

6 0.984*** 

(18.54) 

-0.065 

(-0.44) 

0.244** 

(2.09) 

-0.415*** 

(-2.80) 

0.263* 

(1.69) 

0.809 

(0.803) 

7 0.848*** 

(14.31) 

0.443*** 

(2.63) 

0.325*** 

(2.92) 

-0.216 

(-1.25) 

0.097 

(0.51) 

0.770 

(0.763) 

8 0.874*** 

(9.22) 

0.332 

(1.43) 

0.371** 

(2.22) 

-0.609*** 

(-2.76) 

0.408* 

(1.84) 

0.706 

(0.697) 

9 (Highest) 0.936*** 

(5.73) 

1.080*** 

(3.31) 

0.093 

(0.40) 

-0.734* 

(-1.79) 

0.041 

(0.11) 

0.484 

(0.469) 

 
 

Panel B: Nine B/M Portfolios 

(IQ2 = tie )( )  

B/M 

Portfolios 

bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

1 (Lowest) 1.007*** 

(10.11) 

-0.833*** 

(-3.46) 

-0.099 

(-0.41) 

0.359 

(1.56) 

0.919*** 

(3.66) 

0.569 

(0.544) 

2 0.927*** 

(14.16) 

-0.388** 

(-2.60) 

0.040 

(0.23) 

0.343** 

(2.26) 

0.370** 

(2.38) 

0.706 

(0.688) 

3 0.973*** 

(13.77) 

-0.475** 

(-2.51) 

0.063 

(0.55) 

0.544*** 

(3.03) 

-0.049 

(-0.27) 

0.812 

(0.800) 

4 0.916*** 

(12.41) 

-0.238 

(-1.16) 

0.199 

(0.99) 

0.348* 

(1.75) 

-0.251* 

(-1.75) 

0.748 

(0.732) 

5 0.907*** 

(13.56) 

-0.196 

(-1.31) 

0.161 

(1.22) 

0.388* 

(2.30) 

-0.099 

(-0.65) 

0.805 

(0.793) 

6 0.963*** 

(15.56) 

-0.132 

(-0.75) 

0.165 

(1.16) 

0.330* 

(1.81) 

-0.487* 

(-2.38) 

0.811 

(0.800) 

7 0.830*** 

(12.45) 

0.476** 

(2.33) 

0.326** 

(2.27) 

0.065 

(0.29) 

-0.184 

(-0.82) 

0.768 

(0.755) 

8 0.851*** 

(7.48) 

0.422 

(1.62) 

0.403** 

(2.04) 

0.296 

(1.25) 

-0.527* 

(-1.83) 

0.707 

(0.689) 

9 (Highest) 0.880*** 

(4.55) 

1.277 

(2.73) 

0.176 

(0.62) 

-0.184 

(-0.35) 

-0.251 

(-0.44) 

0.462 

(0.430) 
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Table A3 - Robustness Test for Testing of IQ Factor for Size Portfolios 

 
This table reports the coefficient estimates of the IQ factor-adjusted Fama-French factor model with 

liquidity as a control variable. At the beginning of each quarter from 1987 to 2007, eligible stocks are 

sorted into 9 groups based on size (market capitalization).  GMM is used to estimate the coefficients for the 

following special relation:   

,)( ittitititiftmtiiftit LIQlIQFqHMLhSMBsrrbrr    

where itr is the return of portfolio i in quarter t, ftr is three-month T-bill rate for quarter t, the values of 

)( ftmt rr  , tSMB , and tHML  are obtained from Kenneth French’s website, tLIQ is the market liquidity 

factor constructed in Pastor and Stambaugh (2003), and tIQF is mimicking-IQ-factor in quarter t. The t-

statistic is reported in the parentheses. R2 and adjusted-R2 are documented for each panel as well.  

 

Panel A: Nine Size Portfolios (IQ1 = || ,tie ) 

Size Portfolios bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

1 (Smallest) 0.894*** 

(17.73) 

0.600*** 

(4.61) 

0.490*** 

(5.60) 

0.602** 

(2.32) 

0.591*** 

(4.34) 

0.868 

(0.864) 

2 0.918*** 

(16.90) 

0.363*** 

(2.65) 

0.292*** 

(3.24) 

0.263 

(1.31) 

1.014*** 

(8.65) 

0.911 

(0.908) 

3 0.965*** 

(19.61) 

0.350** 

(2.21) 

0.333*** 

(3.40) 

-0.204 

(-0.85) 

0.786*** 

(5.25) 

0.895 

(0.892) 

4 0.976*** 

(25.72) 

-0.054 

(-0.43) 

0.087 

(0.80) 

-0.158 

(-0.78) 

1.093*** 

(8.54) 

0.910 

(0.908) 

5 0.956*** 

(21.39) 

-0.101 

(-0.84) 

0.051 

(0.44) 

0.168 

(0.73) 

1.054*** 

(7.77) 

0.878 

(0.874) 

6 1.038*** 

(18.68) 

-0.054 

(-0.37) 

0.034 

(0.17) 

0.393** 

(2.02) 

0.777*** 

(4.96) 

0.841 

(0.836) 

7 0.967*** 

(25.43) 

-0.152 

(-1.44) 

-0.092 

(-0.55) 

0.376** 

(2.43) 

0.774*** 

(6.93) 

0.848 

(0.844) 

8 0.953*** 

(19.77) 

-0.210 

(-1.44) 

-0.033 

(-0.19) 

0.209 

(1.16) 

0.615*** 

(4.38) 

0.818 

(0.813) 

9 (Largest) 0.963*** 

(23.37) 

-0.666*** 

(-5.22) 

-0.039 

(-0.34) 

0.155 

(1.16) 

0.390*** 

(3.20) 

0.836 

(0.831) 
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Panel B: Nine Size Portfolios (IQ2 = tie )( ) 

Size Portfolios bi 

(MKT) 

si 

(SMB) 

hi 

(HML) 

qi 

(IQF) 

li 

(LIQ) 

R2 

1 (Smallest) 0.800*** 

(14.91) 

0.671*** 

(5.50) 

0.577*** 

(8.03) 

0.677*** 

(4.95) 

0.570*** 

(4.32) 

0.845 

(0.871) 

2 0.938*** 

(15.92) 

0.387*** 

(3.21) 

0.291*** 

(3.35) 

0.018 

(0.13) 

1.017*** 

(9.22) 

0.901 

(0.898) 

3 0.971*** 

(19.14) 

0.401*** 

(2.62) 

0.373*** 

(3.75) 

0.065 

(0.35) 

0.739*** 

(4.79) 

0.889 

(0.886) 

4 0.983*** 

(19.87) 

0.042 

(0.30) 

0.139 

(1.27) 

0.063 

(0.41) 

1.008*** 

(6.84) 

0.899 

(0.896) 

5 0.950*** 

(20.28) 

-0.040 

(-0.32) 

0.090 

(0.82) 

0.144 

(0.90) 

1.011*** 

(6.71) 

0.861 

(0.857) 

6 0.965*** 

(14.14) 

-0.032 

(-0.25) 

0.102 

(0.59) 

0.341*** 

(2.87) 

0.782*** 

(5.45) 

0.839 

(0.834) 

7 0.925*** 

(18.36) 

-0.126 

(-1.34) 

-0.109 

(-0.71) 

0.233** 

(1.98) 

0.784*** 

(7.87) 

0.843 

(0.839) 

8 0.911*** 

(14.44) 

-0.068 

(-0.56) 

0.058 

(0.37) 

0.266*** 

(2.65) 

0.488*** 

(4.02) 

0.811 

(0.806) 

9 (Largest) 0.923*** 

(18.71) 

-0.590*** 

(-5.11) 

0.021 

(0.19) 

0.304*** 

(2.73) 

0.314*** 

(2.96) 

0.825 

(0.820) 
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Table A4 - Robustness Test for Asset Pricing Tests of the Static IQCAPM 

(Value-weighted Portfolios) 
This table reports the coefficient estimates from cross-sectional regressions of the static IQCAPM for 25 

value-weighted portfolios using quarterly data during 1987-2007 with a value-weighted market portfolio. I 

use GMM to obtain the coefficient estimates based on the following models,  

CAPM  ,)~( Marketl
ft

p
t rrE    

(12.1)  all
ft

p
t rrE   )~( , 

(12.2)  IQ
net

Market
ft

p
t rrE  21)~(  , 

(12.3)  ,)~( 3423121
IQIQIQMarket

ft
p

t rrE    

where ,321
IQIQIQMarketall   and .321

IQIQIQIQ
net    Panel A reports the results for 25 

portfolios sorted on IQ1. Panel B reports the results on 25 IQ2-sorted portfolios. The R2 and the adjusted-R2 

(in parentheses) are reported. The t-statistic is reported (in parentheses) as well. 

 

Panel A: 25 Value-weighted IQ1 ( || ,tie ) Portfolios 

 

Panel B: 25 Value-weighted IQ2 ( tie )( ) Portfolios 

 alpha Market  IQ
1  

IQ
2  

IQ
3  

all  IQ
net  

2R  

CAPM 0.006 

(1.05) 

0.042*** 

(6.90) 

     0.610 

(0.593) 

 0.046 

(19.65) 

 -0.058 

(-0.82) 

    0.020 

(-0.022) 

 0.046 

(19.74) 

  0.026 

(0.35) 

   0.009 

(-0.034) 

 0.041 

(15.27) 

   0.066*** 

(5.28) 

  0.249 

(0.216) 

12.1 

 

0.005 

(1.16) 

    0.038*** 

(8.09) 
 0.710 

(0.698) 

12.2 0.006 

(1.06) 

0.038*** 

(6.17) 

    0.041*** 

(4.10) 

0.711 

(0.685) 

12.3 0.003 

(0.52) 

0.040*** 

(5.73) 

0.086 

(1.59) 

0.019 

(1.10) 

0.044*** 

(3.63) 
  0.733 

(0.680) 

 alpha Market  
IQ

1  
IQ
2  

IQ
3  all  IQ

net  
2R  

CAPM 0.017*** 

(4.13) 

0.033*** 

(8.12) 

     0.589 

(0.571) 

 0.046 

(19.65) 

 -0.059 

(-0.82) 

    0.020 

(-0.022) 

 0.046 

(19.74) 

  0.025 

(0.35) 

   0.008 

(-0.034) 

 0.041 

(15.27) 

   0.066*** 

(5.28) 

  0.249 

(0.216) 

12.1 

 

0.022*** 

(3.84) 

    0.027*** 

(4.81) 
 0.523 

(0.502) 

12.2 0.015*** 

(3.44) 

0.034*** 

(7.42) 

    -0.014* 

(-1.91) 

0.597 

(0.560) 

12.3 0.016** 

(2.73) 

0.033*** 

(4.78) 

-0.023 

(-0.22) 

-0.084 

(-0.46) 

0.218 

(0.35) 
  0.598 

(0.518) 
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 Table A5 - Robustness Tests for the Correlation Coefficients between Market Beta, 

Net IQ Beta, and Illiquidity Beta (Value-weighted Portfolios) 

 
This table reports the Pearson correlations between market beta, net IQ beta, and net liquidity beta for 25 (5 

IQ by 5 Liquidity) value-weighted portfolios. At the beginning of each quarter from 1987 to 2007, eligible 

NYSE/AMEX stocks are sorted first into 5 groups according to estimated IQ measure and then sorted again 

into 5 liquidity categories within each IQ group. The Pearson correlations between each of betas, portfolio 

size, and portfolio book-to-market ratio are documented for each panel. p-values are reported in 

parentheses. 

 
Panel A: Value-weighted 25 (5 IQ1 by 5 Liquidity) Portfolios (IQ1 = || ,tie ) 

 Market  IQ
net  ILLIQ

net  Size B/M 

Market  1 0.199 

(0.338) 

-0.094 

(0.654) 

0.050 

(0.811) 

-0.418** 

(0.038) 
IQ
net   1 0.087 

(0.676) 

0.355* 

(0.081) 

-0.054 

(0.797) 
ILLIQ
net    1 0.565*** 

(0.003) 

-0.405** 

(0.044) 

Size    1 -0.679*** 

(0.001) 

B/M     1 

 

 

Panel B: Value-weighted 25 (5 IQ2 by 5 Liquidity) Portfolios (IQ2 = tie )( ) 

 Market  IQ
net  ILLIQ

net  Size B/M 

Market  1 0.232 

(0.265) 

-0.174 

(0.404) 

0.063 

(0.762) 

-0.327 

(0.110) 
IQ
net   1 -0.265 

(0.201) 

-0.247 

(0.234) 

-0.006 

(0.976) 
ILLIQ
net    1 0.415** 

(0.039) 

-0.243 

(0.242) 

Size    1 -0.597*** 

(0.002) 

B/M     1 
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 Table A6 - Robustness Test for Testing the Static IQCAPM with the Net Liquidity 

Beta (Value-weighted Portfolios) 

 
This table reports the results for robustness tests based on 5 ILLIQ by 5 IQ, 25 IQ portfolios, 25 ILLIQ 

portfolios, 25 size portfolios and 25 B/M (book-to-market ratio) portfolios. The coefficient estimates from 

cross-sectional regressions of the IQCAPM are documented for value-weighted portfolios using quarterly 

data during the 1987-2007 period, while controlling for Acharya and Pedersen’s (2005) net liquidity beta. 

GMM is used to estimate the coefficients from the following model: 

                                                   

 

                                 

where 
Market  is market beta, 

IQ
net  denotes the net IQ beta, and ILLIQ

net  is the net illiquidity beta estimated 

following Acharya and Pedersen (2005). Results based on each of the two alternative IQ measure are given 

in separate panel. The R2 is reported for each cross-sectional regression for different portfolios, and the 

adjusted-R2 and t-statistic are reported in parentheses.   
Panel A: Value-weighted Portfolios (IQ1 = || ,tie ) 

Portfolios Alpha Market
 

IQ
net  ILLIQ

net  R2 

 5 IQ1 by 5 ILLIQ 0.003 

(0.43) 

0.031*** 

(3.91) 

0.014 

(0.82) 

0.466*** 

(-5.32) 

0.582 

(0.522) 

5 ILLIQ by 5 IQ1 0.002 

(0.28) 

0.031*** 

(5.40) 

0.016 

(1.12) 

-2.775*** 

(-5.01) 

0.595 

(0.537) 

25 IQ1 Portfolios 

 

0.036 

(0.51) 

0.117 

(1.45) 

1.078*** 

(11.11) 

30.045** 

(2.23) 

0.866 

(0.847) 

25 ILLIQ Portfolios 

 

0.034 

(2.51) 

0.007 

(0.56) 

-0.009 

(-0.59) 

-1.051 

(-1.29) 

0.210 

(0.097) 

25 Size Portfolios 0.028 

(0.37) 

0.066 

(0.84) 

0.496** 

(3.47) 

16.611*** 

(3.92) 

0.757 

(0.722) 

25 B/M Portfolios 0.051 

(1.34) 

-0.008 

(-0.18) 

-0.005 

(-0.72) 

7.035*** 

(4.51) 

0.516 

(0.447) 

 

Panel B: Value-weighted Portfolios (IQ2 = tie )( ) 

Portfolios alpha Market  IQ
net  ILLIQ

net  R2 

 5 IQ2 by 5 ILLIQ 0.010 

(0.58) 

0.036** 

(2.12) 

0.006 

(0.07) 

-2.187 

(-1.67) 

0.359 

(0.267) 

 5 ILLIQ by 5 IQ2 0.025 

(1.70) 

0.016 

(1.39) 

0.175** 

(2.11) 

-2.992 

(-1.32) 

0.555 

(0.491) 

25 IQ2 Portfolios 

 

0.019** 

(2.38) 

0.023*** 

(2.91) 

-0.053*** 

(-2.84) 

0.527 

(0.20) 

0.260 

(0.154) 

25 ILLIQ Portfolios 0.250** 

(2.43) 

-0.131 

(-1.72) 

-0.275 

(-1.12) 

20.622 

(1.05) 

0.246 

(0.138) 

25 Size Portfolios 0.012 

(0.89) 

0.032** 

(2.16) 

-0.074* 

(-2.04) 

0.716 

(1.25) 

0.264 

(0.159) 

25 B/M Portfolios 0.039 

(1.02) 

0.011 

(0.26) 

0.003 

(0.10) 

12.009*** 

(4.36) 

0.557 

(0.493) 

,)~( 3210

ILLIQ

net

IQ

net

Marketf

t

p

t rrE  

IQ

net
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Appendix B – Construction of Liquidity Measures 

Part B1 – The Liquidity Measure of Pastor and Stambaugh (2003) 

This appendix provides the details for the construction of the Pastor and 

Stambaugh (2003) liquidity measure used in the preliminary test in Chapter 2. The 

aggregate liquidity measure is employed to describe overall market liquidity, which 

captures the price reaction to trading volume.  

The liquidity measure in Pastor and Stambaugh (2003) for stock i in month t is the 

ordinary-least-square (OLS) estimate of ti , in the following regression model: 

,,1,,,,,,,,,,,1, )(sign tditdi

e

tdititdititi

e

tdi vrrr      d= 1, …, D,  

where: 

tdir ,, :  the return on stock i on day d in month t, 

e

tdir ,, :  ,,,,, tdmtdi rr  where tdmr ,, is the return on the CRSP value-weighted market return on 

 day d in month t, and  

tdiv ,, :  the dollar volume for stock i on day d in month t. 

Then the market-wide liquidity measure is constructed by  


N

i tit
N 1 ,

ˆ
1

ˆ  , where 

N ranges from 2,744 to 3,844 for each quarter from 1987 through 2007. The market-wide 

average liquidity is tested to be stationary. 

The basic intuition behind the liquidity measure of Pastor and Stambaugh (2001) 

is that stocks tend to have larger ti ,  in absolute magnitude when liquidity is lower.  
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Part B2 – Liquidity Beta of Acharya and Pedersen (2005) 

This appendix provides the details about construction of illiquidity betas used in 

Section 2.6 following the method of Acharya and Pedersen (2005).  Similar to the 

aggregate IQ beta, the aggregate liquidity beta of Acharya and Pedersen (2005) consists 

of three specific liquidity betas as illustrated below, 

,321

ILLIQILLIQILLIQILLIQ

net    
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
 ,  

where i

tc represents illiquidity cost for stock i at time t, m

tc  is the market illiquidity, and 

i

tr and m

tr  stand for returns on stock i and on market portfolio, respectively.  

To estimate the relative illiquidity cost for stocks, Acharya and Pedersen (2005) 

employ the return-to-volume measure of Amihud (2002), which capture the price-impact 

dimension of liquidity.  The illiquidity of stock i in time t is defined as: 

 


i
tDays

d i

td

i

td

i

t

i

t
V

R

Days
ILLIQ

1

1
, 

where i

tdR  and i

tdV  are the return and dollar volume (in millions) on day d in quarter t, 

and i

tDays is the number of observation days in quarter t for stock i.  
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Appendix C - Proof of Theorem and Propositions of Chapter 2 

Proof of Theorem 1: Substituting for rd~ from equation (2) of Chapter 2 and using the 

budget constraint ,1
1

1


n

iq  I rewrite equation (3) as: 

.2))(( ,

22

11

cdtdWqWdtrrkqdW iii

n

i

i

n

i

ffiii i
i

i
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






 



       (C1) 

where fr is an exogenous interest rate on a risk-free bond. The assumption of constant 

risk-free rate in my model allows me to simplify my analysis and focus on the stock 

market.  

 The necessary instantaneous optimality condition for solving for an investor’s 

consumption-investment optimal choice is as follows: 

))(()(
2

1
)(),([max0

1
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From equation (C2) I have the Gaussian process of wealth accumulation, thus the 

variance and covariance of the instantaneous change in wealth and the instantaneous 

change in the observable noisy return is given by: 
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,)( dtddE
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jj        (C6) 

Substitute (C3), (C4), (C5) and (C6) into (C2), I get the following equation, 
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 The n+1 first-order conditions for each investor derived from (C7) are given by: 

),,,(),(0 tWJtcU Wc           (C8) 
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 ,,...2,1 ni   where ),,,(* tWcc   ),,(* tWqq ii   are optimal solutions for (C8) and 

(C9) as functions of the perceived state variables.  

 

Proof of Theorem 2: Equations (C8) and (C9) give the optimal weights (demand) for 

assets i in the presence of noisy information. Portfolio weight *q  in (C9) is the 

combination of the tangency (market) portfolio with a hedge portfolio, denoted by h. This 

last portfolio hedges against IQ risk, which causes the unfavourable changes in the 

fundamental return of assets in the investment opportunity set. I solve for equilibrium 

market weights for risky assets from (C7) as follows: 
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 , for investor k, k = 1, 2,…, K. Summing across the K 

investors and dividing by 
K ka
1

, I obtain:  
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1 . x  is the vector of equilibrium 

market weights for risky assets, and 
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. Multiplying both 

sides of equation (C11) by the transpose of x , I get:  
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Given that x  is the vector of market portfolio weights in equilibrium, 
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can write equation (C11) for the market portfolio: 
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 Similar to the construction of equation (4.5) for the market portfolio, I first write: 
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 Solving for A and B from (C12) and (C13), I have: 
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. Finally, I arrive at 

the expected return premium by substituting for A and B in (C13):   
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The above equation can be simplified further: 
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Proof of Proposition 1:  If I assume that the noisy information variable   is the single 

state variable, and that there exists an asset (hedge portfolio) whose return is perfectly 

negatively correlated with changes in  , then: 1h , mhm    , ihi    , and I 

can simplify m

i  as follows: 
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Similarly, h

i  can be simplified as follows: 










mmhhmm

mmiimmmih

i

mm

immimm

*22

22

)2(

)()2(




  

  
2

***

1 mh

mhimih








 . 

Therefore, under the single state variable assumption, if there exists a hedge 

portfolio whose return is perfectly negatively correlated with changes in the single state 

variable, then my result in equation 7 of Chapter 2 can be simplified to be the following, 
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 QED.  



 143 

Appendix D – Proof of Theorem and Propositions of Chapter 3 

 

Proof of Theorem 1: 

EPS, denoted by Y, follows an Ito processes: 

yydwdttG
tY

tdY
 )(
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)(
 .                         (D1) 

The mean of EPS growth rate follows an Ornstein-Uhlenbeck mean-reverting 

process: 

gggg ddttGktdG   ))(()( 0 .    (D2) 

According to standard results from one-dimensional linear filtering (see, for 

example, Liptser and Shiryaev, 1977 and 1978), the solution for the filtered estimate of 

mean growth rate )(ˆ tG , specialized in equations (D1) and (D2), is given by the following 

stochastic differential equation (SDE): 
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following Riccati ordinary differential equation (ODE):  
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Equation (D4) is equivalent to the following,  
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Re-arranging equation (D5), I obtain the following ODE: 
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Taking integral with respect to time t on both sides of equation (D6), I get, 
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where c denotes a constant. I can think of S(t) as a variance of forecast error based on all 

relevant information up to time t. If an initial forecast error variance is )0(S , then solving 

equation (D7), I obtain: 
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Note that 21 and 0 SS  . Hence, equation (A8) implies that in the long run as more 

information becomes available )(tS  converges to 1S , which is always nonnegative. 

Another bound for )(tS  is denoted by 2S , which is always non-positive and lower than 

1S . Therefore, 2S  is not relevant to my analysis of the long-term value of )(tS . 

Nevertheless, 2S  is one of the parameters determining the speed of convergence of )(tS  

to 1S .  

 

Proof of Proposition 1.a: 
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Q.E.D. 
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Proof of Proposition 1.b: 
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Therefore, )(tS  will approach zero hyperbolically as t , and thus slower 

than in case (i), in which learning is exponential. 

Q.E.D. 
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Proof of Proposition 2: 

We differentiate K with respect to gy . Note that *

gk  is positive, therefore: 
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therefore the speed of convergence is positively related to gy . 

Q.E.D. 

 

Proof of Proposition 3: 

We differentiate K with respect to gk  and get:  
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Q.E.D. 
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Appendix E - Derivation of the Asset Price and Proof of Proposition 4 of Chapter 3 

Derivation of the Asset Price:  

Our model of learning unobserved state variables is consistent with evidence that 

analysts use past observations of EPS growth to build their forecasts. Due to the 

Markovian nature of the model the valuation procedure by a representative agent takes as 

given the filtered estimate of the mean EPS growth (Genotte, Dothan and Feldman) when 

pricing assets.  

Given the information set available to the agents, the processes for )(tY  and the 

MEGR estimate are given in Theorem 1, 
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Now I derive share price using standard SDE arguments based on stochastic 

discount factor (SDF) approach (see, e.g., Cochrane, 2005). The implicit assumption here 

is that any shock responsible for the difference between tD and Y is not priced: 

   0*  YdtMMPdEt        (E2) 

Evaluating the differential and dividing through by MY I obtain: 
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    (E3) 

We now guess a solution for the price in the following form:  

P(t, Y, )(ˆ tG , R) = YZ(t, )(ˆ tG , R)      (E4) 

where Y represents dividends-per-share. Operator *

tE  represents an expectation 

with respect to *

ydw , investors’ information set. ),ˆ,( RGtZ  is the time-t price-dividend 

ratio. 

The second and the third terms under the expectation in equation (E3) follow 

from a simple application of the Itô rule: 
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Collecting all the terms in (E3), taking the expectation, and dividing through by 

dt, I obtain the PDE for the share price: 
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The above PDE satisfies Feynman-Kac conditions, and therefore allows us to 

write the solution which can be written as follows: 

 







 

t
y

s

t
t dsduuRuGEZ ))()(ˆ(exp*  .                 

The integrand solves the same equation as Z with the free term 1 deleted from the 

equation. I look for an integrand solution as 

))(),()(ˆ),(),(exp( tRsttGstst   . 

Equivalently, I are looking for price-dividend ratio in the form: 
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Inserting the proposed expression for the integrand into its PDE and recognizing that the 

resulting ordinary differential equation (ODE) must hold for arbitrary values of )(ˆ tG and 

R(t), I arrive at the following ODEs for functions (t,s), (t,s), and (t,s) (prime denotes 

∂/∂t derivative): 
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When s=t (or   s-t = 0), the integrand is equal to zero. Therefore, I have the 

following initial conditions for functions (t,s), (t,s), and (t,s): 

.0),( ),( ),(  ssssss   

Subject to these initial conditions, the solution to the decoupled system (E7) is: 
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The requirement that the integral (E6) exist places certain restrictions on function 

(t,s). For the integral in (E6) to exist, the integrand should be declining with s 

sufficiently fast. Since functions  and  are bounded, this requirement implies that 

function  should be negative and unbounded at large s. The latter restriction implies 

certain constraint on model parameters (a transversality condition), which I now derive. I 

need three auxiliary results to complete the derivation of the transversality condition: 

a) For any bounded positive function f(u) and positive constant k: 

 
k

M
e

k

M
dueMdueufMuf kukuk

u

 














1)(,)(sup
0

)(

0

)(

],0[

       (E9)   

In what follows, I ignore non-growing integrals such as (E9) and keep only the 

leading terms that are unbounded in . 

b) In equation (6) for the posterior variance of the MEGR estimate, S(t), I assume 

that S(0) > S1. This condition also implies that constant C < 1. Therefore, the solution for 

variance S(t) is  
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c) Using equation (6) for the posterior variance S(t) in Chapter 3, I have: 
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Using results (E10) and (E11) as well as (E8) to eliminate non-growing integrals I 

obtain the following leading terms in function :  
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Finally, the transversality condition states that the leading terms must be negative 

for the price integral to exist: 
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Applying Itô’s lemma to )(tP , I obtain a stochastic differential equation (SDE) 

for )(tP , subject to )(tP : 
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Plugging the SDE for 
)(

)(

tP

tdP
into equation (E3), I get the following risk-neutral 

drift of stock return in an incomplete-information environment, 
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QED. 

 

Proof of Proposition 4: 

The risk premium for G(t) based on complete-information BC model is defined by BC

g , 

given below,  

,gymgmg

BC

g    

The risk premium for )(ˆ tG based on my incomplete-information model is defined by g , 

given below, 

),(
)(

)(

)(
)()(

gymggymy

y

ymmy

y

gy

ymmytymmyg

tS

tS

























 


 

Therefore, the difference in risk premiums between my incomplete-information model 

and complete-information model (BC) is given by, 
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In the long-run limit as 1)( StS  =0, I obtain the following result: 
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term in parentheses above disappears, which implies a zero difference in risk premiums. 

That is .0 g  
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Let BC

g denote the risk-neutral long-term mean of earnings growth under BC model. 

Following BC model, .0
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According to Proposition (1), if 1gy  or 1gy , )(tS  declines over time and 
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                                  QED.  

 

 

 

                                                 
1 The only exception is the case of gk . 


