
A Fbamework for Interoperability in FIome Networks

by

Dinesh Bhat

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

Department of Computer Science

Faculty of Graduate Studies

University of Manitoba

May 2006

Copyright @2006 by Dinesh Bhat

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
gJJJg

COPYRIGHT PERMISSION

A Framework for Interoperability in Home Networks

BY

Dinesh Bhat

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

OF

MASTER OF SCIENCE

Dinesh Bhat @ 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

ABSTRACT

Recently, there has been an increase in the clevelopment in technologies related to Home

Networks exploiting the untapped research potential in the home environment. This surge

of research in Home Networks has led to the invention of many, capable srnart devices

that can be used to automate the functioning of homes. A modern home contains many

sophisticated devices and technologies compliant with different protocols. Automation in

such heterogeneous environments cannot be effectively achieved without the support of a

middleware layer. The key element for success in home networks is interoperability among

the heterogeneous devices operating in the network. Idealiy, all the devices that participate

in the network would run the same standard protocols for device discovery, configurations,

and control. However, there is no standard that has been accepted by the major industry

players and a de-facto standard has been slow to arise. This lack of a unified standard has

resulted in a large number of technologies including UPnP, Jini, and HAVi that satisfii the

requirements of a small, confined Home Network with homogeneous devices.

The objective of this thesis is to develop a framework based on OSGi that can integrate

popular home network standards such as UPnP and Jini thereby achieving interoperability

within homes. My framework extends OSGi specifications to integrate UPnP and Jini. This

framework has been designed with the home network scenario in mind. A Proof-of-concept

prototype has been implemented which aiso demonstrates the integration of low-powered

devices such as Pocket PCs and embedded network processors such as TINI devices.

DEDICATION

I declicate my master's degree to my brother Mahesh; my inspiration, my guide and my

role-model. I would also wish to thank my parents and family for their support. It would

not have been possible without you all.

ACKNOWLEDGN4ENTS

i woulcl like to acknowledge the kincl help that I received from Dr. Rasit trskicioglu through-

out my program. I also wish to thank TRLabs for giving me an opportunity to pursue my

research in their fäcility. I would like to thank Dr. .Jeff Diamond for accepting to be on

my committee as the external examiner and I would like to thank Dr. Peter Graham for

agreeing to be the internal examiner and for all the useful brainstorming sessions that we

had. VIy sincere thanks to Hossein Pourreza for aìl the help and guidance during my thesis.

I have learned a lot from him. Finally, I would like to acknowledge the help that I received

from Dr. Neil Arnason during my thesis proposal submission.

List of Tables

2.1 Comparison of Different Interoperability Standards 44

List of Figures

1.1 A Typical Home Network Architecture

2.7 The UPnP Protocol Stack

2.2 Jini Standard Architecture

2.3 HAVi Standard Architecture

2.4 Salutation Protocol Stack

2.5 Obje Architecture

2.6 Service Location Protocol Architecture

2.7 HP JetSend Protocol Stack

2.8 Open Services Gateway Initiative

4.I Home Gateway Architecture 52

4.2 The Home Gateway Prototype 56

4.3 UPnP LookUp Server (LUS) 58

4.4 Jini-to-UPnP Service Translator 62

4.5 Oscar running on iPAQ 3850 Pocket PC 63

4.6 Surveillance Camera at TRLabs 65

4.7 Browser-based Interface for the Gateway 66

11

20

25

27

29

DÔòL

2.}

35

38

Contents

Introduction

1.1 Assumed Home Environment

I.2 Example Scenario 12

1.3 Thesis Organization . i5

Related Work

2.1 Hardware/Wiring Standards for Home Networks

2.I.I HomeRF

2.7.2 X10 Protocol

2.7.3 HomePNA

2.L.4 HomePlug Powerline Alliance

2.2 Interoperability Technologies for Home Networks

2.2.7 Universai Plug and Play (IJPnP)

2.2.2 Jini .

2.2.3 Home Audio Video Interoperability (HAVi)

2.2.4 Salutation

2.2.5 Ob.je .

10

72

16

16

17

18

18

i9

20

20

ôÐLò

26

28

30

2.2.6 Service

2.2.7 JetSend

Location Protocoi (SLP) t1JI

34

tt
r)tJ2.2.8 JXTA

2.2.9 Home Networking with Zigbee

2.3 Open Service Gateway Initiative (OSGi)

2.4 Framework/Architectural Design for Home Networks

2.5 iVliddleware System Designs Related to Home Networks

2.5.I Jini Meets UPnP

2.6 Comparison of Interoperability Standards

2.7 Home Automation Research

2.7.I Easy Living

2.7.2 Philips Ambient Intelligence

2.7.3 Gator Tech Smart House

3 Problem Description

4 Design and Implementation of Interoperability Flamework

4.1 Overview of the Prototype Home Gateway

4.2 Architecture of the Home Gateway

4.2.7 Basic Interoperability in OSGi

4.3 Prototype Implementation of the Gateway

4.3.1 UPnP LookUP Server

4.3.2 UPnP Bundle Server (UBS)

4.3.3 Jini-to-UPnP Service Tbanslations

4.4 Integration of Resource-Constrained Devices

4.5 Essential OSGi Bundles

4.6 Example Home Gateway Applications .

36

J/

39

40

42

43

45

45

46

46

48

51

rô¿L

54

d(J

57

58

61

61

63

64

64

Assessment of the Interoperability Fbamework 67

5.1 Comparison of Interoperability Frameworks 68

5.2 Interoperability with Example Applications 69

6 Conclusions and F\rture \Mork

Appendices

A Jini to UPnP Service Tbanslatron

7L

80

80

Chapter 1

Introduction

Home networks are the result of advances in digital media coupled with advances in the

network capabilities of home devices. In recent years, the world has witnessed many advances

in digital media, computers) consumer electronics and communication networks. An average

household contains many complex digital devices like DVDs, CD playets, and VCRs which

can be integrated to form a home network. The deployment of home networks promises

high speed Internet coupled with rich media content experience. Embedded systems have

also become a common part of our daily life. However, the multiple specifications on which

embedded home devices are built are different from each other. In a ubiquitous computing

environment [9], where devices communicate with other devices on the network, we need

standard middleware specifications to make the devices interoperate. Devices compliant

with one common specification wouid ease the process of communication among them in

a home network environment. Standard interfaces like the Java AWT or the Java runtime

environments like the Java Virtual Machine (JVM) that are used by present systems alone are

not sufficient to allow all devices to communicate [34]. Home automation applications tend

10

to be complex involving variety of clevices potentially using different standards. Moreover,

such applications should also consicler the existence of resource-constrained devices such as

PDAs and other mobile devices. For the combination of mobile devices and other devices

to participate in a home network, users rreed a standard with an interface that handles

interaction among wired and wireless devices accurately and efficientlyl.

Figure 1.1 shows a typical home network environment comprising many devices such

as controlled lights, self-monitoring refrigerator and television. These devices can not only

perform the basic functions, but they also can intelligently communicate with each other

to coordinate the execution of automated applications such as turning lights on or off at

appropriate times, etc.

Figure 1.1: A Typical Home Network Architecture

lln this thesis, the terms devices and services are used interchangeably.

11

1.1 Assumed FIome Environment

Typicalìy, a home network consists of several devices and appliances networkecl with one an-

other using different connection technologies (wired or wireless) and protocols. A networked

device is considered to be a consumer device with embedded processor and network connec-

tion. These devices can configure themselves and cliscover other devices within the network

with which to share their services. In the assumed environment, we envision a home gate-

way device capable of making the home devices that are built with different specifications

interoperate. In my research, the home gateway device is an embedded computer that can

detect the presence of devices and configure them. I assume the home gateway device to be

a relativeiy powerful device with adequate storage and processing ability. In the future, the

home gateway device may reside either on an embedded device or on) for example, a DSL

modem to provide the home owners with automated control of their home network and the

clevices on it.

L.2 Example Scenario

Inter-communication â,mong multiple devices within homes can be better iilustrated with

the help of scenarios. The following scenario demonstrates the capabilities of devices that

are being used in a home to minimize necessary human intervention.

It is now 6 AM and Tom is awakened by the alarm clock that turns off the air conditioner

and turns on the lights. He is getting ready to go to work and his television turns on and

gives him the updated traffic news on the Trans Canada Highway which he normally takes to

work. He steps out of the house and the sensors turn off all the lights and turn the security

camera and alarm on.

During lunch, Tom wants to inspect his house remotely using his PDA. The PDA connects

to the security camera rendering the video and displays all the entrances. After lunch, his

wrist watch displavs the name of the medicine he should take for his high blood pressure.

12

He has to send the readings to his doctor. He opens the sphygmomanometer and checks his

blood pressure. After the reading, the sphygmomanometer automatically sends the results

to his doctor.

It is now 4 PÀ/I ancl Tom is heading back home. His PDA btzzes ancl displays a file with

the high blood pressure result analysis sent by his doctor. When Tom gets back home, the

sensors turn on the lights and the air conditioner. He is now near the audio system and his

home phone plays the unread voice messages on his audio system. At 6 PlVi, the television

turns on and plays his favorite channel. Further, Tom has set his favorite channels on the

television and if he is not available to watch any of his preferred channels at his selected

times, the television records all the programs onto the VCR and informs when he gets back

home about the recording done.

This scenario motivates the necessity for devices to communicate among themselves to

coordinate particular tasks to automate the functioning of homes. These homes have a

variety of devices compliant with a wide variety of protocols. Thus, we require an all-

in-one standard that can understand a variety of home device protocols to support this

communication.

An interoperability standard for home networks must satisfy the following requirements [54]-

- Physical connectivity between the devices in the home network

- Standard framework for device discovery, configuration and control

- Common formats and streaming protocols for media

- Standard protocols for media management and control

- Compatible authentication and security mechanisms for users and devices

- Common user interfaces for devices

Ideally, the devices in the networ-k must be intelligent enough to discover each other without

having to be manually configured. However, there are also many mobile devices that may

13

periodically be a part of the network. This means that interoperability standards must

be able to discover the devices and the resources they offer dynamically. Currently, there

are mâ.ny such interoperability standards including Universal Plug and Play (UPnP) [49],

Jini [41], and Home Audio Video Interoperability (HAVi) 112]. However, these standards

alone are not capable of communicating between devices built with different standards.

Moreover, each are accepted by only a few member industrial partners. Thus, we need a

common platfolm for providing overall interopearability.

The Open Services Gateway Initiative (OSGi) is a technology that works above the UPnP,

Jini and HAVi standards. OSGi is gaining momentum because of its capability to integrate

multiple standards including UPnP and Jini 130]. OSGi is a set of specifications achieved with

the collaboration of various industry partners that have agreed Llpon a common platform.

However, direct communication between UPnP and Jini through OSGi is not possible with

the current specifications of OSGi. OSGi can communicate with UPnP and UPnP can in

turn communicate with OSGi. Similarly, OSGi can communicate with Jini and Jini can

communicate with OSGi. However, communication between UPnP and Jini through OSGi

is not feasible with the release 3 specifications of OSGi [29].

Generally, an interoperability framework must also satisfy severai other requirements.

With advances in home network research, more and more interoperability standards are

arising. Thus design of an interoperability framework must also make integration of future

standards easier. Further, an interoperability framework must be self-configuring in inte-

grating a variety of devices and standards. A framework must also be reliable in providing

QoS guarantees. Since an interoperability framework may also communicate via the Inter-

net, security is one of the main issues that should be addressed effectively. Considering the

above constraints and requirements, this thesis focuses on integrating home network devices

and allowing them to communicate with each other effectively to automate the functioning

of the homes. However, the additional above-mentioned requirements such as extendibility,

self-manageability, security and QoS are not addressed in my research.

A prototype implementation of interoperability framework is a part of a bigger home

I4

technologies proìect at TRLabs. The core of the research involves cleveioping an interop-

erability frarnework to integrate UPnP ancl .Jini using an OSGi-based home gater,vay. Our

OSGi gateway is compìiant with the release 3 specifications of OSGi. This thesis contributes

by developing a UPnPLUS bundle for OSGi to integrate UPnP with Jini ancl a, Jini-to-UPnP

Translator bunclle to integrate Jini with UPnP. I have also ported my framework to a Pocket

PC to demonstrate the capability of running on a resource-constrained device since future

home gateways will likely run on an embedded device.

1.3 Thesis Organization

The remainder of this section is organized as follows. Chapter 2 reviews the work related to

this thesis which ranges from low-level cabling issues to home automation projects. Chap-

ter 3 explains the characteristics of the interoperability layer in home networks needed to

integrate a wide variety of devices and motivation for my thesis. In Chapter 4, my design

and implementation are explained in detail. Chapter 5 discusses evaluation strategies used

to assess my framework. Finally, Chapter 6 provides conclusions and discusses areas for

possible future work.

15

Chapter 2

Related Work

Designing a framework for interoperability in a home network involves hardware and software

based interoperability standards. Working from the bottom up, I have divided my related

work into four distinct parts. In the beginning, I review the low-level, hardware based home

network standards including HomeRF, X10, HomePNA and HomePlug followed by sofïware

based interoperability standards for home networks. Further, I explain the current research

towards designing home network architectures and frameworks, followed by middleware sys-

tems built for home networks. Finally, I discuss current academic and industrial projects in

building home automation.

2.L HardwarefWiring Standards for Flome Networks

There are a number of low-level hardware-based standards for home network connectivity

including HomeRF, X10, HomePNA and HomePlug that can be used in homes to automate

16

device inter-communication and sharing of resources.

2.L.L HomeRF

The HomeRF Working Group [15] was formed to create a specification standard for in-

teroperable home devices by establishing an open industry specification for wireless digital

communication between computers and home devices anywhere in a home environment.

HomeRF was created to enable wireless interoperability by using the Shared Wireiess Ac-

cess Protocol (SWAP). SWAP is a specification for wireless voice and data networking in

the home. The limited roaming required in home network environments enabled this new

technology.

A SWAP based network can operate as an ad-hoc Peer-to-Peer network or as client

server network that provides data networking or as a managed network under the control of

a connection point. A SWAP network can consist of up to three types of devices.

- Control Points

- Isochronous Voice Devices

- Asynchronous Data Devices

Using a contention-based protocol such as TCP/P, the connection point can perform data

transfers among data devices. SWAP acts as a client server protocol between the control

point and the voice devices but is Peer-to-Peer between the control point and data devices.

The VIAC layer is designed to carry both voice and data traffic and to interoperate with

the Public Switched Telephone Network (PSTN). The MAC Layer provides very high data

throughput and data security. It also supports high quality voice traffic by using the TDMA

access mechanism [15].

L7

2.L.2 X10 Protocol

X10 is a communication protocol [50] that utilizes the electrical wiring in houses as the

medium to identify and control electrical appliances in the home. Each of the devices will

have its own specific address and responds when addressed using the aclclress. To control

specific devices, X10 allows 256 addresses on a home power system. The acldress consists of

module number and house code. When you wish to turn on an XlO-controlled lamp, yon

Ìrave to tell the Lamp lVlodule controlling that lamp to turn on. The base station is a simple

controller that is programmed to transmit the commands issued.

There are several XlO-based devices on the market that can be used to automate home

functions. Since X10 makes use of the default electrical wiring, configuration is easier, not

involving complex instruments and applications. However, X10 suffers from signal attenua-

tion, noise, and sometimes may cause spurious on or off signals. Some X10 controllers may

not work with low powered devices and X10 can transmit only one command at a time.

2.L.3 HomePNA

The Home Phone Networking Alliance (HomePNA) [+] is the largest alliance promoting home

networking over existing teiephone cabling. The initial version of HomePNA had a data rate

of lMbps and the recent upgrade of the earìier version provides bandwidth up to l0lvlbps.

These standards are designed to work with the wide range of protocols found in the telephone

network. Phone calls, cable modem and the home devices can all simultaneously work over

the existing phone lines. The third version of HomePNA offers 128Mbps of bandwidth with

an option to extend it up to 240 Mbps. Quality of service has also been included in the

third version. As the only home networking industry specification capable of reaching above

100 Mbps and with inherent deterministic Quality of Service (QoS), HomePNA technology

provides an excellent high speed backbone for a home multimedia network that requires a fast

and reliable channel to distribute multiple, feature-rich digital audio and video applications

throughout the home network.

18

While QoS parameter in HomePNA 2.0 enables equipment manuf¿rcturers to prioritize

teiephone voice data over com.puter clata, HornePNA 3.0 greatly enhances the version 2.0

capabilities by incorporating deterministic QoS support for real-time data. This technology

allows users to assign specific time slots for each stream of data guaranteeing that the real-

time data will be clelivered when it is required with predetermined latency and without

interruption. It ¿rìso allows HomePNA to transport data with inherent ItrEtr139a [18] QoS

requirements.

2.I.4 HomePlug Powerline Alliance

HomePlug is a standard for powerline communication where power distribution wires are

used for data transfer. It is a technology supported by several leading companies including

Intel and Sony that helps devices connected with each other through pov/er lines to commu-

nicate. HomePlug devices must be directiy connected to wall outlets without using surge

protectors or extension co¡ds. HomePlug strictly enforces compliance and provides a certi-

fication program to make all hardware manufacturers producing HomePlug devices adhere

to the standard specifications thereby ensuring interoperability among different HomePlug

devices manufactured by member organizations. The current HomePlug specification allows

for speeds up to 13.78 Mbps suitable for High Definition (HD) TV and VOIP [14].

HomePlug AV

HomePlug AV is the next generation of powerline technology designed to support entertain-

ment applications, such as HDTV and Home Theater [i3]. HomePlug AV provides a cost

effective method of distributing HDTV in the home without new wires. The objectives for

the HomePlug AV specifications include providing solution for HD quality video distribution,

with secure connectivity and built-in Quality of Service (QoS) HomePlug AV can co-exist

with HomePlug 1.0.

19

2.2 Interoperability Technologies for FIome Networks

An interoperability standard should be self-conflguring and support a wide range of devices

and industry sponsors. There have been many efforts in the past to define interoperabil-

ity technologies applicable to home networks. In this section, some of the most popular

interoperability standards are explained.

2.2.L IJniversal Plug and Play (IJPnP)

The UPnP device architecture specification (IJPnP) defines interoperability standards that

enable self-configuring devices to create an ad-hoc, self-discovering system of interoperable

network devices [a9]. This specification defines mechanisms for automatic address configu-

ration, device discovery as well as service discovery, control, and event handling. Figure 2.1

shows the UPnP protocol stack. It makes use of both UDP and TCP/IP for multicast and

unicast messaging.

UPnP Device Architecture and Applications

['"*l @
HTTPMU

(Discovery)

TCP

Figure 2.1: The UPnP Protocol Stack

t--soAE_l
I tcontrorl

I

fïrrP I

| (Description)
|

GENA
(Events)

UDP

IP

UPnP Specifications

20

The protocol architecture shown in Figure 2.1 describes the protocol structure usecl in

UPnP. UPnP technology uses existing protocols and technologies such as TCP/IP, HTTP,

Simple Service Discovery Protocol (SSDP) 1531, Simple Object Access Protocol (SOAP) [37],

General Event Notification Architecture (GENA) [49], and XML [47]. These protocols define

the comntunication infrastructure of the UPnP architecture. Although the UPnP architec-

ture consists of a peer-to-peer network, nodes on the network communicate with each other

in a client-server manner. Clients are called Control Points (CP) and typiczrlly provide a

User Interface (UI) for end-users. Servers are called Controlled Devices (CDs) ancl they

define a set of functions called services.

In the UPnP architecture, the CPs call the services when invoked and devices respond to

provide the services that are necessary. Within the UPnP architecture, device functionality

is invoked using a set of services, each of which corresponds to one or more of the devices

in the network. Each device defines a set of functions that are associated with the services

and these functions allow CPs to obtain the most active state of the devices and to control

the operation of the devices. To enable interoperabiiity among the devices that participate

in the network, developers of UPnP constructed a set of device and service definitions which

can be used to modei various common devices. This is the abstraction state of the devices in

the network. These abstract data types hide the underlying complexity of the devices in the

network. Since the behavior of these device and service functions are well defined, a CP can

interact with any device that implements the supported services. In this manner, CPs and

devices can be built independently by different hardware vendors so that they interoperate

according to the functionalities defined by the corresponding UPnP device service functions.

All the devices in the UPnP standard need to have an IP address. To obtain an IP

address for each of the devices, a DHCP [7] clieni must be installed on each of the devices

and a DHCP server must provide an IP address as soon as a ne\M device enters the network.

If a DHCP server is not installed, then the AutoIP [49] protocol can be made use of to

provide IP addresses to the devices that enter the network. AutoIP is a protocol that uses

the Address Resolution Protocol (ARP) to provide an unused IP address in the network to

2t

new clevices. However, one of the major drawbacks of the AutoIP protocol is that the IP

addresses can be used only in the same network. Since data packets cannot cross routers

making Internet access impossible.

Once a UPnP device gets its IP address, the discovery and advertisement of the services

it can offer begins. The services advertise themselves at a known port and the CPs listening

on that port start the discovely process. Both the service advertisements and the discovery

are implemented by the Simple Service Discovery Protocol (SSDP) [49]. When services

are available, they broadcast their availability in the network by sending an initialization

message. To discontinue their presence in the network, a UPnP device sends a termination

message to the CPs.

In UPnP, services have three attributes associated with them: service type, service name

and service location. These attributes are vital for querying device information. During

querying, the CPs multicast a UDP message with the type of the service needed. Services

that match the request reply with a unicast message. UPnP does not have any centralized

servers that handle discovery requests in the network. The replies from the services consist

of a URL, which points to an XiVIL document. These XVIL documents describe the services.

This description of the services contains specific information about them, such as vendor

information and IP addresses of devices. The XML document aiso contains a list of various

commands that can be performed on the services and the variable(s) associated with the

service. For example, a camera in the UPnP network may be represented as devCamera

(autofocus). Here, the devCamera represents the abstract data type of the device and a

variable associated with that device is autofocus. Queries for cameras may contain the

values of the state variables. The state variable autofocus can have the values, autofocus

: orrloff. Once the Control Point has obtained the necessary XML document, it can issue

commands to the corresponding services. These messages are then delivered using the SOAP

protocol.

The commands issued by CPs may change the values of the state variables that are

associated with the services. These services publish the values of the variables when they

22

chànge. To advertise new values, the services send messages to the CPs that are subscribecl

to those services. These messages are expressed in XiVIL and formatted using GENA. The

final step in IJPnP discovery is presentation. From the XN4L document, the control point

can retrieve the address of a presentation URL. This URL identifies the presentation web

page for the service which can be fetched by the CPs. The CP uses a browser to display the

web page at this URL.

Advantages of using UPnP are multiple. All the devices are IP based. Since, most devices,

at present, come with built-in IP capabilities, it is easier to incorporate these devices readily

into the network. IJPnP was aìso designed in such a way that the upcoming IPv6 [20] can

be easily integrated into the technology without further modification in the design. Further,

in UPnP, no code has to be moved around or downloaded unlike many other standards.

However, UPnP suffers from lack of security and other issues. Since legacy devices may not

have IP capabilities, we also need a different standard architecture running in all the devices

or an architecture that can integrate the legacy devices. The main drawback of UPnP is

that it does not allow vendor developed media formats and protocols. UPnP also suffers

from remotely exploitable buffer overflow, denial of service, and distributed denial of service

attacks.

2.2.2 Jini

Jini [a1] was invented at Sun Microsystems for use in pervasive computing environments. Jini

is based on Java and uses Remote Method Invocation (RMI) for establishing communication

among the services and the clients. The Jini architecture consists of three components:

service providers, clients and lookup services. Available services on the network are defined

by the service providers, the clients are the end-users of the services, and the lookup services

provide centralized repositories of information about the different services registered by the

service providers. Jini requires reliable and stream-oriented communication. Stream-oriented

communication means that Jini devices establish a unicast connection with the LookUp

Server using UDP instead of multicasting the services to the other devices within the network.

The cliscovery protocol in Jini uses muìticasting with TCP ancl UDP where the LookUp

Server listens on a standard port and the clients then register their services with the LookUp

Servers. Since all the services and clients are written in Java, Jini imposes a requirernent

that all the devices must be able to support the Java Virtual Vlachine (JVVI) [28]. However,

the "weaker" devices that do not have the capabilities to run the JVM can also be supportecl

using the surrogate architecture of Jini [a1]. Service providers and the clients communicate

with each other using proxies that estabìish the connection for service invocation. Vlobility

of code is the key concept in Jini. There is no direct communication between the clients

and the service providers in Jini instead proxy code that makes RIVII calls for services is

distributed to clients.

The Jini architecture is built on a concept of a federation between a group of service

providers, clients and the lookup services. Jini uses three protocols for service discovery and

communication between the services and the clients: discovery, join and lookup protocols.

The discovery protocol is used by the service providers and clients to find the iookup services.

The join and lookup protocols are not network protocols. They define specific rules that the

Jini services and clients must follow to join a Jini federation. Service providers and the clients

multicast a request on the network. The lookup services respond to the proxy of the lookup

service. The service providers and the clients use this proxy for further communication with

the lookup service.

The discovery protocol which permits the service providers and clients to discover the

Iookup services makes use of three protocols: the Multicast Request Protocol, the Announce

Request Protocol and the Unicast Discovery Protocol. The lookup services multicast a

message at regular intervals announcing their presence in the network using the Announce

Request Protocol. Service providers and the clients looking for the lookup services listen

to these messages and request the lookup service for the service. The service providers or

clients then unicast a message to the lookup service and receive the proxy code in return.

This proxy code is used by the service providers to register their services and by the clients

24

to courmunicate with the lookup service using Java RMI to search for other services. Jini

also supports distributed events.

Service providers in Jini can be found in many ways. They can be obtainecl using a Jini

browser or they can be attached to applications as a device drive. To run a Jini service or

client, a device must implement TCP/IP arrd UDP with DHCP or any other IP providing

server. Both the client arrd the server must be able to run Java with the Jini extension

installed. Figure 2.2 shows the ¿rrchitecture of Jini and the different components in the Jini

architecture.

Seru¡ce Prov¡der

Figure 2.2: Jtni Standard Architecture

The primary difference between Jini and UPnP is that UPnP focuses on interaction

between the devices in environments using network protocols whereas Jini focuses on objects

that move in a network to connect different devices together easily. Jini was aiso developed

with a set of specifications to allow devices that cannot execute the JVIVI to work with

the Jini environment. This allows legacy devices to actively participate in a Jini enabled

network. Though Jini offers flexibility in integrating legacy devices, it has to define function

specific interfaces for each of the devices. When a new device is brought into a home network

environment, these interfaces will have to be developed to use the different services offered

by the device.

Use of Jini to automate homes offers several advantages. Jini has a simple lookup service

mechanism to discover, and allow devices to share services on the network. Jini does not

l=J'/i¡---l
lÞ;;t--l

25

require configuration of the devices or installing drivers for new devices. Jini offers mobility

of code which can be invoked by the requesting cÌients instead of communicating with the

service providers directly. This is useful since low-end devices offering the services do not

have to communicate with the clients directly thereby reducing the overhead on these lor,v-end

devices.

2.2.3 Ffome Audio Video Interoperability (HAVi)

HAVi is a new architecture for developing applications that run on networked home enter-

tainment devices. HAVi is essentially a distributed programming environment that provides

mechanisms allowing applications to communicate with each other using IEEE 1394, firewire

technology [18]. HAVi specifies a set of system services that form a foundation for building

distributed applications. System services include messaging, events, device discovery, lookup

functionality, and configuration of streaming connections.

HAVi was created by major industry players including Sony, Hitachi, and Toshiba, who

agreed on a unifying architecture to facilitate interoperability among devices in a home

network. The focus of HAVi is on audio and video transmission in home networks. The

HAVi standard defines a set of APIs that allow devices to configure and integrate themselves

into a home network. The implementation of HAVi, however, is left to the manufactures as

it does not define how the different APIs should be implemented.

The HAVi architecture includes Controller Devices and Controlled Devices. The Con-

troller Devices control other devices in the network which are called Controlled Devices.

The Controller Devices control the other devices using a proxy termed the Device Control

Nlodule (DCM) of the Controlled Device. The DCMs are platform dependent By exploiting

Java, HAVi restricts these devices to be those that can run the JVM. However, interoperabil-

ity between devices that support the JVM and ones that do not can be achieved by using a

JVM installed device to provide proxy service to the non-JVM devices. The services that are

available in the network are called Software Elements. HAVi has its own software elements

26

that the HAVi enabled devices can implement including a 1394 Communication Media NIan-

ager (CMM), lVlessaging Svstem (MS), Registry, Event Vlanager, Stream Ndanager, Resource

Vlanager, Device Control Nilodule \4anager, Seìf Describing Device (SDD) Data, and Java

Runtime Environment (JRE) as shown in Figure 2.3. User interfaces to provide control of

the services are called havelets in HAVi. HAVi applications can have many user interfaces

deployed.

@
@ùr @

nLl n
üËlI

@
@

Messaq¡ng System

1394 Communicat¡on Med¡a Manager

Vendor Specific Platform (Operat¡ng System)

Figure 2.3: HAVi Standard Architecture

The communication Media Manager in the HAVi architecture deals with the physical

Iayer of the network. The Messaging System manages communication among the devices.

The registry maintains a database of device information. When a new device enters the

network, information about it is registered in the registry. The Event Manager handles the

events which relate to communication among the various devices in the network. The DCM

Manager installs the DCMs onto the devices to control them.

HAVi devices are of four types.

ø Full AV Deui,ces (FAV)- Devices in this category actually implement all HAVi software

elements and are responsible for running the JVMs.

ø Intermediate AV Deui,ces(lAp - These devices do not have a JVM running on them.

Their purpose is to control other devices in the network.

ø Baszc AV Deuices (BAV)- Devices in this category are always Controlled Devices.

o Legacy AV Deuices (LAV)- These devices do not have a JVM installed on thern.

Since these devices are not HAVi enabled, HAVi commands must be translated into

legacv commancls for them.

HAVi provides a lot of features to automate audio/visual devices within homes by allow-

ing entertainment products from different manufacturers to communicate with each other

when connected to a HAVi networÌ<. HAVi compliant devices automatically announce their

presence and capabilities to every other device on the HAVi network, greatly simplifying

installation and setup. All the devices that come into the network environment are detected

and registered. Upgrading functionalities can be easily done by downloading the functional-

ities from Internet.

Unfortunately, HAVi also has some disadvantages. Jini is targeted more generally, for

computer accessories including printers and scanners whereas HAVi is more focused on the

home entertainment arena. HAVi also works only on iEEE 1394 firewire networks. While

this provides high performance, not all devices support firewire.

2.2.4 Salutatron

Salutation is a network independent interoperability technology and thus can be lun in

different network environments including TCP/P and IrDA network. Unlike Jini, Salutation

is not tied to any programming language. Salutation is thus operating system and platform

independent. The protocol stack for Salutation is shown in Figure 2.4. It also shows the

different layers in the architecture of Salutation. Salutation Managers act as intermediate

components between clients and devices assisting in managing services offered by salutation.

Transport Manager

Salutation Manager

Transport
lnterface

Figure 2.4: Salutation Protocol Stack

All devices talk to the Ìocal Salutation Vlanager which can either reside on the same

device or on a remote device. Salutation Managers coordinate with one another and exchange

information. They are the agents for the devices in the network. All data transmissions,

compatibility in media formats and protocols are handled by the Salutation Managers.

When a new device enters the network, it is registered automatically by the nearest

Salutation lVlanager. The local Salutation Manager then exchanges the registration informa-

tion with any other Salutation Managers. A service clescription in Salutation is a collection

of functional units representing a different feature. For example, each unit may represent

some essential features such as fax and print. Service description records can be queried

and matched against a request for existing services during the service discovery process. A

discovery request is routed to the local Salutation Manager which in turn directs the re-

quest to other Salutation Managers if needed. Inter-Salutation Manager communication is

implemented using Remote Procedural Call (RPC). Salutation defines APIs for the clients

to invoke services and gather the results.

Communication among Salutation clients and services can happen in many ways. The

clients and the services can use the native supported protocols when they are in "native

mode" to establish the connection without the use of the Salutation Managers. In "emulated

mode", the Salutation Managers deliver the messages to other components. In "salutation

mode", the Salutation Managers, not only carry the data, but also the data formats associ-

ated with the data. AII clients which would like to use a certain service, say fax, must use

the data structure for fax.

Salutation does not acldress self configuration of clevices. In the case of networks with

IP and non-IP based devices, Salutation is not flexible bec¿ruse it cannot configure and

make the devices belonging to different networks communicate. However, when used in

IP environments, network protocoìs like AutoIP or DHCP can be used to incorporate the

devices into the network. Salutation allows user authentication using a user-id and password

scheme. Salutation does not require proxies since a client establishes direct communication

with devices.

2.2.5 Obje

The Obje framework [51] can be impiemented in any digital device, and because the frame-

work can easily adapt to new functionality, it can support virtually any protocol or media

format as long as the underlying hardware has enough computing resources to support their

execution. The Obje framework requires the ability to execute mobile cocle similar to the

JVM. However, the mobile code need not necessarily be in each and every device. Instead,

the mobile code can be stored in a centralized device and this device can provide proxy

services to the requesting clients.

To make this technology interoperable with legacy devices, the Obje architecture allows

computationaily rich devices to act as proxies for the legacy devices. Therefore, in a typical

scenario, a desktop computer might act as proxy for other resource-limited devices, such as

speakers, digital cameras, printers, scanners) and so on. This allows the Obje platform to

be deployed in networks in which only one device is computationally capable of executing

mobile code.

The key difference between the Obje technology and other interoperability standards

is that Obje does not require specific APIs to be already developed. Other technologies,

including UPnP, Jini, HAVi and Bluetooth, each define specialized interfaces for each new

type of device: Bluetooth defines profiles for phones, headsets and printers; Jini defines APIs

for clevices including printers and cameras; IJPnP defirres interfaces for audio/visual devices,

scanners and home appìiances; HAVi defines APIs for DVD and CD players, and TVs. With

Obje, services and appiications are written once, against a small, fixed set of Obje meta-

interfaces, which allow them to acquire any needed cornmunication and control capabilities

d5rnamically. Obje meta-interfaces provide support for the most basic functions that provide

a complete context with which devices can interoperate even if they have no prior knowledge

of each other. For example, when two Obje enabied devices want to communicate with each

other, an Obje meta-interface establishes the connection based on the network capabilities of

the devices and handles the data transfer. These Obje meta-interfaces acquire the protocols

and communication standards used by specific devices so that the communication among the

devices can be easily achieved with no reprogramming of existing services. This allows users

and manufacturers to combine devices and services instead of creating a bridge to combine

different standards.

The architecture of Obje is shown in Figure 2.5. Vleta interfaces and the Vlobile execu-

tion code are the components that deal with dynamically creating services without having

to explicitly program them. Unfortunately, Obje does not provide the details of dynamically

creating new services. All Obje devices or services, which are called "components", imple-

ment and make use of one or more of the meta-interfaces. Applications are developed using

these meta-interfaces.

2.2.6 Service Location Protocol (SLP)

The Service Location Protocol (SLP) is an Internet Engineering Task Force (IETF) standard

for service location [52]. SLP requir-es TCP/IP, multicast and UDP/IP support for the

network to be formed.

The SLP architecture shown in Figure 2.6, consists of three entities: service agents, user

agents and a directory agent. The service agents represent the services that are available

within the network. User agents represent the clients that request the services and the

31

Applications

Policies

Meta-lnterfaces

Mobile Execution Code

Discovery Protocols

Components

Figure 2.5: Obje Architecture

Figure 2.6: Service Location Protocol Architecture

ÐôòL

directory agent is the centralized storage host which stores the services that are registered.

Services in SLP are similar to services in any other interoperability stanclarcls. The user

agents look for services on behalf of their applications using the directory agent.

If a directory agent is available in the network, then the all the service agents have

to register their services in the directory agent. Niulticast messages are not allowecl to pass

through the gateway to avoid floodirrg the network with messages. Service discovery messages

also have a constraint which specifies how many hops a particular message is allowed to take.

SLP can also work without the directory agent. If a clirectory agent is not available in the

networ-k, then the user agents simply broadcast requests in the network. The service agents

respond with URLs that contain the IP addresses of the services that match the request. In

"passive discovery" mode, the directory agent broadcasts the available services and the user

agents that require the services unicast a message with the request. In the "active mode" of

service discovery, the user agents multicast a request message for services and the directory

agent checks if the services are available. If the services are available, then the directory

agent replies to the user agent using a unicast message.

The SLP protocol makes use of digital signatures that can be added during the regis-

tration of service agents to allow the directory agents to verify the signatures and hence

ensure their authenticity. These signatures are also passed to the requesting user agents.

The directory agents can aiso attach the signatures to service advertisements.

SLP is operating system independent and is easy to implement. However, SLP also has

some disadvantages. SLP does not specify such essential implementation details as how

services are created. It provides only a method to discover the services, but not how to

use them. Thus some implementation details are left to the manufacturer which may add

complexity when services implemented by different manufacturers try to cooperate.

.-).)

2.2.7 Jet Send

JetSend lt0] ls a protocol clefined by HP which can be used in environments ¡,vhere clevices are

compliant with TCP/IP, IEEE 1394 and infra red ¿r.nd allows such devices to communicate

with each other to share services. ,JetSend allows two devices or information appliances to

negotiate the best way to exchange information. JetSend only addresses the communication

among the devices, but does not explain how the devices locate each other. JetSend is

focused on devices like cameras, printers, scanners, ancl computers.

The main component in JetSend is the surface. In JetSend, all the information is stored

as electronic media in areas called surfaces. The surfaces are the source of information.

The sulfaces include a name, description and content. A surface may contain instances of

electronic media or links to the location of other surfaces. The device with the original copy

of a surface creates copies of the surface on other devices. Other devices can then make use of

the copied surface. Surface negotiation is the main exchange of information. In negotiation,

the sender sends a brief description of the service and then the receiver invokes the required

components to make use of that service. For example, if a certain service is encoded in a

particular way, the message sent may contain information on the type of encoding. The

receiver can then use that information to invoke the appropriate decoder to decipher the

message.

The JetSend architecture can be implemented on any physical layer as shown in Figure 2.7

but requires a reliable Transport Protocol. If a pre-existing reliable Transport Protocol is

not available, then RMTP [35] can be used.

The JetSend Session Protocol (JSP) defines the messages for setting up sessions between

devices. The JetSend Interaction Protocol (JIP) defines messages to deliver surface descrip-

tions, transfer their contents and do updates to reflect any changes that occur in the surfaces.

The Interaction Policies define how the surfaces are implemented. The data contained in a

surface is called electronic material (E-material).

34

Application Layer

E-material lnteraction Policies

lnteract¡on Protocol (JlP)

Session Protocol (JSP)

RMTP
Reliable Transport Protocol

Unreliable Transport
Protocol

Physical Layer

Figure 2.7: HP JetSend Protocol Stack

2.2.8 JXTA

JXTA [42] started as a research project at Sun Microsystems and is now one of the major

standards meant for distributed devices. JXTA is an open source standard that is built on

Peer-to-Peer protocols. It defines a set of open protocols that allow any connected device on

the network ranging from cell phones and wireless PDAs to PCs and servers to communicate

and collaborate in a Peer-to-Peer manner. JXTA peers create a virtual network where any

peer can interact with other peers and resources directly even when some of the peers and

resources are behind firewalls and NAT boxes or are using different network transports.

JXTA is mostly used in enterprise applications. However, it can also be easily integrated

into a home netv/ork for automation purposes. It provides interoperability across different

Peer-to-Peer systems and can be run on any platforms, systems and networks. It also makes

it easier to share computational power among multiple devices in the network.

In JXTA, any device can communicate with other devices irrespective of location, type

of device, and type of environment. Hence, JXTA can be used to create interhome network

architectures where devices in one home can share the services offered by the devices in other

homes.

2.2.9 Flome Networking with Zigbee

Galeev 126l ciescribes how many wireless, remotely controllable devices can be incorporated

into home networks using the Zigbee standard. Zigbee is a software middleware layer building

on the IEtrtr 802.15.4 standard. It is cost-effective and does not consume much power to

provide a reliable and secure network. The use of Zigbee in the home can also be considered

as a replacement for X10 protocol.

Zigbee uses direct sequence spread spectrum in the 2.4 GHz band. The frame structure

of Zigbee provides four basic frame types- Data, ACK, MAC and beacon. The data frame

has a check sequence that ensures the arrival of the packets are in sequence. Error checking

in data transfer is provided in the Data frame. ACK frame provides two way communication

to ensure that the packets reach intact. MAC frames provide features to control the clients

remotely. A centralized network manager can thus configure the clients at the MAC layer.

Beacon frame awakens the sleeping clients to provide the address. If the clients do not get

the address, they go back to sleep. Thus, Zigbee reduces the power consumption by not

making clients listen to the address all the time. Channel access in Zigbee is contention

based. However, the network manager can allocate up to seven dedicated time slots.

A Zigbee network uses three types of devices.

- The network coordinator which manages the entire network.

- Full function devices (FFD) which support all the functions and specifications of the

802.15.4 standard. These devices can also function as the network coordinator. They

possess large memory capacity and computing power.

- Reduced function devices (RFD) are devices with limited computing capabilities.

Zigbee can only be used in wireless networks thus restricting its use in controlling wired

devices. Moreover, Zigbee cannot incorporate legacy devices into the network. In terms of

36

service cliscovery i-r,nd interoperability, Zigbee can only be used to cletect and control services

compliant with Zigbee. It does not provide any ability to control other devices.

2.3 Open Service Gateway Initiative (OSGi)

OSGi is one of the latest middleware standards and is supported by a vast number of major

industry players including Sun lVlicrosystems, Cisco, IBIVI, and Oracle. OSGi acts as an in-

termediate layer in handling the interaction between LAN/WAN and UPnP, Jini, and HAVi,

etc. OSGi middleware specifications provide an open architecture for service providers, ap-

pliance vendors and manufacturers.

The service Gateway is the central component of the OSGi architecture. Devices register

the ser-vices they offer with the dictionary component of the gateway. The functionality of

the gateway is to provide descriptions of registered services in response to client requests.

Registration and removal of services on the network is managed by the gateway.

One of the key benefits of using OSGi as the gateway device in a home network is its

capability to understand both UPnP and Jini. A gateway device running OSGi can recognize

both UPnP and Jini devices in the network. OSGi provides specifications to develop interface

layers for UPnP and Jini. Bundles in OSGi refer to Java applications deployed on the

gateway. The "UPnP bundle" installed on the gateway exports OSGi services to IJPnP

networks and imports UPnP services io OSGi. Likewise, the "Jini bundle" acts as the

coordinator for OSGi and Jini services making them available to each other.

OSGi is an open specification meaning any protocol implemented using Java can be

deployed on OSGi. OSGi bundles/applications are packaged as jar files. These jar files

contain an activator class that implements start and stop methods to start and stop the

bundle. Each jar file also contains a meta-interface file which stores the name of the bundle,

the author of the bundle and bundle descriptions. Integrating new middleware standards

into OSGi requires driver bundles that can handle the device interactions between OSGi and

the new standards. However, the clriver bundles c¿nnot communicate directly with other

st¿inclards such as UPnP and Jini.

I serv¡ce Providei

\
l

l

Figure 2.8: Open Services Gateway Initiative

In Figure 2.8, the major components of the OSGi framework are shown. As illustrated,

an OSGi gateway can also connect to the Internet to communicate with Service Providers

remotely. Service Providers are entities that can deploy useful application bundles on the

gateway. For example, a simple application that requires drivers to operate, can download

the drivers from the Service Providers. The gateway operator is the owner of the gateway

who can perform manual confrguration that may be warranted by applications. For example,

the home owner may have to configure an application to instruct which lights need to be

turned off at 11 PiVI every night.

The advantages of OSGi are several in addition to its focus on supporting interoperability.

Since OSGi is built on Java, it is platform independent. OSGi also offers digital signatures

like SLP to authenticate bundles that are to be installed on the gateway.

Typcs of NcMork

38

2.4 Fþamework/Architectural Design for FIome l\et-

works

Rasheed et al. [54] present an interoperability framework based on UPnP that discusses

various interoperability issues, requirements of home networks, and the standards that are

currently followed. They explain design issues in the device connectivity, application and

service layers of the framework, and the benefits of such a framework, considering future home

networking scenarios. Although the authors explain the details of designing a fiamework for

UPnP, the ciesign does not consider the existence of other standards such as Jini, HAVi and

OSGi.

Friday et al. [3] have designed a new APl-based scheme to develop applications that pro-

vide useful services in home networks. They discuss the issues related to service discovery,

querying and interaction in a home network computing environment. Their API is designed

to suit heterogeneous environments. They consider the existence of UPnP and HAVi com-

pliant devices in the network. However, this effort is only an initial prototype design and

is targeted exclusively for mobile applications. Vloreover, OSGi despite being a very impor-

tant standard, is not considered in the prototype design. Unfortunately, the authors do not

explain how Jini can be integrated into their prototype architecture.

Bettstetter and Catterall [5] provide a very useful comparison of service discovery proto-

cols and introduce an implementation of the Service Location Protocol (SLP). They compare

different standards including UPnP, Jini, and SLP [43] with respect to service discovery.

Using event-based principles, Bates et al. 122) show that components that are not explic-

itly designed to interoperate can be made to work together quickly and easily. Events, in

their research, correspond to the arrival/removal of devices/services within the network. For

example, the parameters of an event may be matched to a specific service registration, and

then transmitted to a remote client. A component notifies a distributed client of an event

if the parameters of that event match with the parameters of a particular service registra-

tion. Their rese¿rrch was published before many of the current miclclleware standards were

introduced, and the concept of such event handling is now usecl in OSGi and Jini.

Pietzuc;h et al. [31] designed an event-based component detection mechanism using a

publish/subscribe rnodel as an extension to generic middleware architectures. In a pub-

lish/subscribe model, services that communicate require the sending services (publishers)

to publish messages without specifying the recipients. Similarly, receiving services (sub-

scribers) must receive only those messages that the subscribers have registered for. The

publish/subscribe model works on the basis of events that allow recipients to subscribe to

services of interest. Their design works on pre-defined distribution policies that control event

detections within the system and can be used on existing middleware architectures such as

CORBA.

These research efforts have identified some of the necessary components required for

designing a middleware layer in home networks. They also discuss the requirements and

complexities involved in developing a middleware layer standard for home networks. How-

ever) none of the above architectural designs consider the integration of existing standards.

2.5 Middle\Ã/are System Designs Related to Home Net-

works

Nakajima et al. [45] discuss an event-based middleware architecture that addresses the var-

ious issues in designing middleware for home networks. The authors provide an excellent

analysis of the issues in building middleware for home network environments and stress the

need to integrate user preferences when designing such middleware.

Ishikawa et al. [10] describe building an appliance integration middle\Mare on top of OSGi.

The authors used OSGi to develop an inference engine to generate context-based events for

creating intelligent home networks. The devices can communicate among themselves based

on the inferences drawn bv the inference engine. They also have experimented with dynamic

user interface generation based on user preferences and context.

Nakajima et al. [44] describe a middleware design to evaluate a HAVi-based system

that can work with legacy clevices that do not have a Java Runtime Environment (JRE)

installecl. For such devices, the design proposes running small modules written in the C

programming language to integrate them into the network environment. The authors also

discuss customizing user interfaces as per the users' requirements. The systems allows home

owners to select the type of inputs and outputs to control the intended devices. This design

trims the complex user interfaces and displays only the features that are known to the home

owners.

Nakajima et al. [46] have prototyped a home network middleware using Java on Limrx.

They compared developing HAVi-based middleware standard with others based on UPnP and

concluded that developing HAVì for home devices is complex. Complexity in their research

refers to the amount of effort that is required to develop HAVi-based devices. Developers

need to implement HAVi middleware specifications and also HAVi devices. Currently, there

are no open source implementations of HAVi. Further, HAVi only specifies the way HAVi-

based devices should be implemented and the implementation details are vendor-specific.

Thus, an HAVi device developed for specific HAVi middleware may not be recognized by a

different HAVi middleware.

Turcan [48] explains different issues involved in querying within smart homes. He dis-

cusses scalability, sharing of services, and inclusion of mobile devices in the network. Scal-

ability involves sharing of resources in an area of connected homes which involves a large

number of heterogeneous devices. This work only mentions those characteristics that are

important for Peer-to-Peer operations.

Okamura [11] has designed an adaptive resource management system for home networks

that addresses the presence of resource-limited devices that are aided by functionally rich

devices which donate CPU, memory and storage. The authors have implemented a prototype

4I

of this adaptive resource management system that can detect connection and disconnection

of the low-powered devices. Their simulation model shows low overhead in integrating these

lesonrce-limited devices.

Ra¿rtikainen et al. [24] discuss interoperability and location issues for mobile ancl dis-

tributed applications to develop a middleware iayer for home networks. They also describe

specific applications like mobile healthcare and home entertainment. Their research out-

lines the specific requirements for mobile healthcare and home entertainment systems. The

authors clo not discuss the architectural details of such systems.

Preuss and Cap [36] address the security issues associated with home networks. They

also appiy available methodologies for designing a security framework and discuss the UPnP

standard with respect to security in home networks.

The middleware standards described in the research reviewed above are important, but

do not address integration of existing standards. Mobile, home entertainment and security

applications are also very important for home networks and highlight specific challenges.

lViobile applications must integrate resource-constrained devices within the network. Home

entertainment systems can integrate audio visual devices to automate the functioning of

homes but require QoS guarantees. Security is an important feature since network commu-

nication is essential for all devices and is open to external observation. The only existing

research addresses the integration of existing standards is by Allard et al. [21].

2.5J Jini Meets UPnP

Research done at the University of New Orleans focuses on achieving interoperability between

Jini and UPnP [21]. The authors have implemented a Jini/UPnP interoperability framework

that allows Jini clients to use UPnP services and UPnP clients to use Jini services, without

modifying the services or clients.

The architecture consists of UPnP service framework that manages the UPnP network

related services, Jini service discovery that handles Jini service registrations, a proxy service

42

that translated UPnP services to Jini and vice-a-versa. The main motivation of this research

is to create a clesign that supports rapid proxy development and to recluce the ¿rmount of cocle

to be written to support new services. The implementation consists of a reference design

where the UPnP services are made available to the Jini network manually ancl vice-a-versa.

2.6 Comparison of Interoperability Standards

Table 3.1 shows a comparison of different interoperability standards i,vith respect to various

features. These include features that can be implemented in certain standards but have not

been implemented yet. Those standards have been marked "possible".

Service integration refers to the ability to automatically integrate newly added services

into the system. HAVi does not perform well because of the differences in vendor developed

custom devices and services. Device integration refers to the automatic integration of devices

into the network without having to manually configure the devices. Jini does not offer

any specifications for developing Jini devices. Vlany of the standards are not portable.

These standards require configuration to be made when deployed in new locations. Many of

these standards cannot retain the configuration when they crash. HAVi offers flexibility in

fault tolerance. Standards such as Jini, HAVi, OSGi and UPnP are platform independent.

These standards are not bound to specific operating systems. The major dr-awback in these

standards is they cannot communicate with each other. OSGi is the only specification that

integrates the UPnP and Jini standards. Standards such as HAVi and UPnP are network

specific. HAVi runs on IEEE 1394 firewire technology while UPnP is IP based. Security is

one of the most important features in implementing a middleware layer. Security features

such as digital signatures are implemented in OSGi specifications.

As seen from the chart, OSGi is more flexible than most other standards. The newest

middleware system, Obje, has not been included because detailed specifications have not

been released by the manufacturer, Xerox PARC. Since HomeRF, X10, and HomePNA are

43

Tabl C f Diff Inte abilitv Standards

hardware-based standards, it is difficult to achieve interoperabiliiy with them.

e omparlson o eren o n

OSGi UPnP .lìni HAVi Salutation JetSend

Service

Integration

Good Good Good Partial Good Not Relevant

Device

Integration

Good Possible No Good Possible Partial

Adaptability Good Partial Good Partial Partial Not Relevant

Fault Tolerance No Possible Partial Good Possible Not Relevant

Platforrn

Independence

Goocl Good Good Good Good No

lnteroperability Good Partial Partial No Partial Partial

Network

lndependence

Good No Possible No Good Good

Security Good Poor Good Good Partial Possible

44

2.7 Flome Automation Research

This section briefly overviews some of the notable industrial and academic research on home

automation systems. The network environments in all these projects use one of UPnP, Jini

or OSGi standards. However, none of these resear-ch projects focus on integrating these

standards to make home devices interoperate.

2.7.1 Easy Living

Easy Living l27l is the brainchilcl of ÌVlicrosoft Research. It is an intelligent environment

designed to assist users with information and services stored in home devices. The home

network environment in Basy Living consists of motion sensors) PCs, projectors, and light

devices. The system can detect and configure devices compliant with UPnP technology.

Components of Easy Living include middleware to facilitate inter-communication between

sensor and other UPnP devices, physical space modelling to provide location-oriented con-

text, sensing to collect information about the location and state of devices and people, and

service description to support device control.

When a person enters a room) a motion sensor detects his presence and turns the light

on if its dark. if the person wishes to use a PC, he has to log in to authenticate himself.

Once the user is authenticated, his information is sent to a centralized context broker. The

context broker provides a centralized repository of personal histories. If the same person

moves from the PC to any other devices within the network, his movement is detected by

a motion sensor and the information is sent to the context broker. The context broker re-

authenticates the user on the new device based on his previous login and then facilitates

access to other devices. The context broker also provides intelligence to the network by

user session monitoring. Users can search for services, select services, remotely configure the

system, and also share and transfer media easily with the help of devices such as PCs.

45

2.7.2 Philips Ambient Intelligence

The Ambient Intelligence ploject from Philips deals with integrating people and electronic

appliances in day-to-day life [32]. trlectronic devices are used to assist people with decision

making based on their preferences. One of the scenarios described in their clesign cliscnssion

is as follows: a user is awakened bv a ciock and whiie brushing his teeth, the intelligent

mirror informs the user if he will be late for work. The mirror also displays the user's

favorite television channel accorcling to the preferences set.

Inteliigent systems know who people are and in which context people operate different

devices within a network. When a PC is turned on, for example, it has no way of knowing

the mood of the people. For an Ambient Intelligence system, however, that greets us when

we get home, selects suitable background music and lighting, or advises us on the state of

our health, the system must know when to keep quiet and when to speak up. Ambient

Inteliigence systems are envisioned to be supportive, because they are av/âre of the physicaÌ

presence of the users) and can adapt to their habits and wishes. Such systems need to include

methods to discover the identity and location of users, devices and objects.

2.7.3 Gator Tech Smart Flouse

The Gator Tech Smart House is a research project conducted at The University of Florida

l2l This laboratory house is built for elderly people to live in independently. Dr. Sumi

Helal, the creator of the smart house, has instigated various related research projects such

as tracking and monitoring elderly people and an intelligent meal planner for them.

The physical layer of the system consists of various devices and appliances such as a TV,

radio, set-top-box, etc. The Sensor platform layer can communicate with a variety of devices

and represent them to the middleware layer. The middleware layer is OSGi-based and keeps

track of the deployed sensor clevices. Application developers can browse the existing services

to create new services and depìoy them in the home. A "Knowledge" Iayer uses a reasoning

engine to determine if certain services are available. A "Context management" layer is

responsible for using certain sen'ices basecl on events. For exampie, reminding people to

take medicines once they have their lunches.

Easy Living makes use of UPnP technology to automate ftrnctionalities of the homes.

It does not focus on the existing popuiar technologies such as Jini and HAVi. Ambient

Intelligence research focuses on creatìng an arnbience that can be automatically customized

based on user preferences. The emphasis in this research is more on customizations than

the technology. Since Ambient Intelligence research is more focussed on the network-based

devices, this alone cannot perform interoperability among other devices that may exist in

homes. Gator Tech Smart House is an application-oriented approach using OSGi as the

gateway device to assist elderly people. It only makes use of the sensor devices to track and

monitor the movements of the people. Intelligence in this research is merely an application

that is deployed on the gateway. Further, this research does not focus on home devices built

with different specifications.

47

Chapter 3

Problem Description

A home network consists of devices such as television sets, video cassette recorders, DVD

players, computers and many other devices that are rich in functionalities. However, the

capabilities of these devices are not being utilized to the fullest. These devices are usually

operated manually and do not interoperate to facilitate automated functioning of the home.

The underlying problem in establishing communication between many of these devices is

interoperability. For example, a IJPnP television might have to record a program on a Jini

VCR if the home owner misses his favourite program.

A typical home network consists of devices compliant with different protocols. Interop-

erability is the key to achieve automation in homes containing many devices with different

protocol compliance. Maior industry players involved in bringing out these functionally rich

devices do not follow a standarcl protocol in their designs. This lack of a unified standard

has resulted in numerous standards such as UPnP, Jini, HAVi, and OSGi. Typically, a home

user buys devices based on the functionalities offered by the devices, rather than selecting

devices adhering to a single standard. Thus, to combine these various devices under one

48

home network, a universal home networ-k standard is required. This standard must be able

to seamiessly integrate all types of home netr,vork devices. It should also be able to discover,

configure ancl advertise the functionalities of these devices rvithin the network.

Currently available protocols/systems such as UPnP, Jini, and HAVi are becoming in-

creasingly popuiar as "standards" in home networks. However, a quick review of these

individual standards reveals their shortcomings in developing applications in heterogeneous

home networks. Some standards such as UPnP are network protocol dependent, while others

deal with only auclio and video devices (HAVi). OSGi is an open specification that allows

integration of multiple standards. OSGi currently provides support to partially integrate

UPnP and Jini. Thus a home network comprised of both UPnP and Jini devices can be

easily controlled and made to communicate with each other through OSGi. Nrloreover, since

these standards are end-user specific, home users need not be interested in the underlying

technology, but only in the functionalities offered by the individual devices. Home users

require effective, 'all-in-one' technoiogy that provides the advantage of allowing all types of

devices to interoperate without having to manually configure them to make them compatibie

with each other. Since evolving applications will likely want to combine many heterogeneous

devices supporting {JPnP, Jini and many other disparate standards, a unifying interoperabil-

ity standard must be capable of handling device communication and sharing of the resources

offered by them.

The aim of this thesis is to build a proof of concept framework for interoperability in

home networks. The framework will briefly address the following issues:

o Heterogeneity of the network environment

o Collaboration of various services offered by these heterogeneous home devices

o Inclusion of resource-constrained devices into the home environment

o Extendibility of home gateway in integrating future home network protocols

o Security issues associated with home gateways. I make use of security features of OSGi

and Java.

o In future, increase in interoperability standards and network traffic will make QoS

imperative.

However', my framework cloes not address quality of service (QoS) parameters typically

associated with gateways. In addition to QoS, my framework does not focus on fault tolerance

and manageability of the horne gateway.

50

Chapter 4

Design and Implementation of

Interoperability Framework

iVIy interoperability framework runs on OSGi and is assumed to execute on the home gate-

way device which os further assumed to be a reasonably powerful device persistent storage

capability.

Jini Meets UPnP, though comes very close to my research, is not home network oriented.

However, this research provides a detailed description on how to create proxy services to

handle interoperabiliiy between UPnP and Jini. Jini Nleets UPnP concludes that automatic

conversion of new services between UPnP to Jini is not possible thus warranting significant

development effort. Thus, in all the above industrial and academic projects, achieving in-

teroperability automatically among various standards has not been addressed at all. These

individual projects restrict the users to a particular standard.

51

Niy interoperability framework integrates IJPnP and Jini through OSGi. UPnPLUS

bundle handles the service translations from UPnP to Jini automatically ancl Jini-to-UPnP

translator hanclies the service conversions from Jini to UPnP. With the integration of my

interoperability framework into OSGi, more useful home automation applications can be

developecl involving a variety of devices. These two interoperability bunclles can readily be

re-used in any home networks to integrate IJPnP and Jini. I extended OSGi to build a

gateway service that can communicate with a variety of clevices compliant with technologies

such as UPnP and Jini. I used two open source implementations of OSGi, namely, Oscar [33]

and Knopflerfish [25]. In my prototype, the interoperability framework bundles developed

for Oscar can be directly used with Knopflerfish and vice-a-versa, without having to modify

the framework.

4.L Overview of the Prototype Home Gateway

Appl¡cation Layer

Figure 4.1: Home Gateway Architecture

The home gateway, the core device of a home network, is assumed to have a large capacity

OSGi-based lnteroperability Framework to provide
interoperability among UPnP, Jini and HAV|

rô¿z

storage clevice (where operating s)¡stem, framework code, and applications are stored) and is

responsible for control) ûlanagement, ancl connection of all home devices within a home. In

addition, the system must pr-ovide a method for communicating and sharing services among

different devices.

Figure 4.1 shows the assumed architecture of a home network. It consists of four layers:

hardware, security, middleware and application.

The hardware layer consists of the gateway and other home devices compliant with IJPnP,

Jini and HAVi and all associated cabling and wireless equipment. The gateway clevice is aÌso

accessible through the Internet so that users can control the gateway remotely.

The security layer prevents the home gateway from attacks. OSGi offers three level

of security [29]. Admin level security provides administrator access to the gateway thereby

letting the user take full control of the gateway and the applications deployed on the gateway.

Package level security ailows users to make controlled use of the packages exported by the

deployed applications. Service level security grants the users access to the services offered

by the applications. Service level users cannot rnake modifications to the gateway. OSGi

also provides digital signatures wherein bundles can only be deployed once the signatures are

authenticated thus, only bundles from known, trustworthy providers will be installed on the

gateway. In addition to security meâsures offered by OSGi, my framework also makes use

of Java 2 security features. Java offers policy files, using which authorization rights can be

described by users 140]. However, my framework does not implement any additional security.

The middleware layer hosts the components that integrate a variety of home devices

built with UPnP, Jini and HAVi specifications. The middleware layer also handles device

configuration, service discovery and sharing of resources among devices. This middleware

layer is a component that is built into the home gateway device thus giving control to the

gateway to monitor and manage the home devices.

Above the middleware layer is the application layer where useful applications can be

deployed to automate the functioning of homes. Additional components to manage the

home gateway can also be deployed as bundles at the application layer. For example, a

53

bundle that can provide useful context information to monitor device behaviour to better

automate homes can be deploved. Further, a QoS bundle can be deployed to offer QoS

guarantees to traffic handled by the gateway on the gateway. Useful bundles to make the

gateway fault tolerant and self-configuring could also be deploved at the application layer

to sripport the home gateway. All these useful features may be implemented by other home

gateway projects at TRLabs but my thesis does not focus on implementing any of these

features.

4.2 Architecture of the Florne Gateway

lVIy prototype home gateway is essentially a computer running the Oscar [33] as well as the

Knopflerfish [25] OSGi implementations. The purpose of using both Oscar and Knopflerfish

is to test the functioning of these two open source implementations. A sample application

that I developed specifically for Oscar was aÌso successfi-rlly deployed on Knopflerfish. This

verified the intended behaviour of the application on both the OSGi implementations.

Services are deployed as bundles on the gateway. Bundles are Java jar files implemented

according to OSGi specifications 1291. These bundles include an activator Java file that

implements start and stop methods to start and stop the bundle once deployed on the

gateway. As described earlier, bundles also contain a manifest file that provides metadata

for the bundle such as the name of the bundle, the author of the bundle, the intended use of

the bundle, the packages imported and exported, and the version number of the bundle all

in the form of attribute-value pairs. The bundle version is a very important feature in OSGi.

Different versions of the same bundle can be deployed at the same time for compatibility

and testing puposes.

Once a bundle is deployed, it registers with OSGi's dictionary. The dictionary is merely a

centralized repository of information for all services registered within OSGi. Each deployed

bundle obtains a bundle context from OSGi, using which it can query the other deployed

54

bundles, use the services exported by other bundles, ancl offer its services to other bundles.

N4y interoperabiiity frameworh bundles aiso implement all these features. lVIy UPnPLUS

bunclle provides interoperzrbility from UPnP to .Iini while Jini to IJPnP translations handle

the service translations from Jini to UPnP.

4.2.I Basic Interoperability in OSGi

OSGi reiease 3 provides support to integrate some aspects of Jini and UPnP operations.

The UPnP Base Driver bundle installed on OSGi listens to UPnP service advertisements.

When the Base Driver detects UPnP services, it simply imports the services into OSGi. For

example, if a UPnP light device is detected on the network (external to OSGi), the new

UPnP service within OSGi is registered in the dictionary. Any calls to OSGi to invoke the

actual services implemented by the UPnP light device are taken care of by the Base Driver.

In summary, the UPnP Base Driver exports the UPnP services from OSGi to the UPnP

network and imports the UPnP services from UPnP network to OSGi. Similarly, a Jini

Driver exports ail the Jini services from OSGi to the Jini network and imports all the Jini

services from the Jini network to OSGi. However, Jini and UPnP services cannot directly

call one another.

Currentiy, there are many OSGi-based home gateway architectures [30]. However, none

of them focuses on achieving interoperability with other home networlc protocols using the

gateway. With OSGi, it is possible to indirectly integrate Jini and UPnP, the two most

popular standards as well as others. However, the underlying problem is achieving direct

inter-operation between, for example, a Jini device and a UPnP device.

Jini is based on Java RMI while UPnP is built with network-related protocols such as the

Simple Service Discovery Protocol (SSDP) and the Simple Object Access Protocol (SOAP).

Service advertisement in UPnP is done using broadcast of XML description locations. The

UPnP standard specification also supports only a limited number of data types for use by

the implemented services. These services need to be converted to Java interfaces for a Jini

client to be able to invoke IJPnP services. On the other hand, Jini is rich in data types

and uses a centralizecl LooklJp Server to register the proxy services. A ,lini service with

clata types other than primitives such as integer, boolean, float, string, and character cannot

easily be automatically translatecl to UPnP since UPnP does not implement such data types.

Thtis, automatic conversion of the data types from .Jini to UPnP is complicatecl. However,

with significant cleveloprnent efforts, conversion from Jini to UPnP can be achieved. UPnP,

unlike Jini, does not require the proxy code to be dou'nloaded to the client side. However, Jini

requires mobility of code among clients. There have been efforts to achieve interoperability

between UPnP and Jini, but only partially oÌ per service where for each new services and a

significant amount of manual development effort is required for service translation [21].

ffi\
TlNl Board

Figure 4.2: The Home Gateway Prototype

Figure 4.2 shows the assumed prototype implementation of the home gateway including

UPnP, Jini and TINI boards [6]. The Jini Driver bundle exports its known services from

OSGi to the Jini network automatically and imports Jini services to OSGi. The Service

Logger bundle logs all the services in the OSGi clictionary, the central repository of service

information. The Serial Port reader bundle monitors the serial port on the PC for clata from

the TINI-based sensing board. As a simple cloor security application example, I connected a

sensing boarcl to the serial port of the PC. A sensor is cleployed at the door that senses the

light intensity. Light intensity values are transferred to the serial port of the PC through

the sensing board. A threshold limit is set to this light intensity. When the sensor detects ¿r

movement at the door, the light intensity values go down. When this value goes below the

threshold, the bundle turns on the camera stream player at the door to capture clisplay from

the webcam. Thus, security application example, demonstrates including non-networked

devices into OSGi. The UPnP base driver performs similarly to the Jini Driver by importing

and exporting UPnP services. The UPnP Control Point is an interface that can detect the

presence of IJPnP services within the network. Using this, a remote ISP can control a variety

of UPnP devices within the network. Finally, the Serrdmail bundle monitors the newiy added

UPnP and Jini services and sends an email to the home owner giving information about any

newly registered services in the OSGi. This is particularly r-rseful when ISPs deploy useful

services in homes automatically.

4.3 Prototype Implementation of the Gateway

NIy interoperability framework uses the concepts used in the UPnP middleware layer dis-

cussed by Newmarch et al. in [23] to translate UPnP services to Jini. For every UPnP

service, an equivalent Jini service interface is generated and any requesting Jini clients can

then invoke the UPnP services using the created interfaces. My framework achieves UPnP

to Jini and Jini to UPnP service translations using OSGi.

57

UPnP LookUp Server

Figure 4.3: IJPnP LookUp Server (LUS)

4.3.L IJPnP LookIJP Server

lVIy UPnP LookUp Server (UPnPLUS) bundle translates all UPnP services to Jini services.

Figure 4.3 shows the architecture of UPnPLUS. A UPnP network is comprised of many

UPnP devices and the services that they advertise. My UPnPLUS component is deployed

on OSGi. UPnPLUS consists of a listener module that listens for service advertisements

multicast by UPnP devices, and a UPnP Bundle Server (UBS) that creates equivalent Jini

services for the UPnP services that are deployed on OSGi.

My UPnPLUS bundle is based on the Domoware UPnP Control Point [S]. UPnPLUS

makes use of the Control Point to discover the newly added UPnP devices. UPnPLUS

monitors service advertisements made by UPnP devices on the network and when a UPnP

service advertisement is detected, UPnPLUS captures the XML description file and uses it

to create the equivalent Java interface file to be used by Jini clients.

A sample UPnP light device service described in XML, shown below, has two implemented

services; SetPower and GetPower. Using SetPower, the UPnP device status can be altered

and using GetPower, the current status of the device can be queried. These two services

58

receive boolean values as input and based on the receivecl valne, appropriate actions are

taken by the light device. If SetPower receives boolean value 0. it turns on the light clevice

¿rnd if it receives 1, it turns the clevice off.

<?xm] versi-on=" 1 .0"?)
<scpd xmlns:"urn : schemas-upnp-org: service-1-0")

(specVersion>
<maj or> 1</rnaj or>
<minor>0</rninor>

</specVersÍon>
<act ionlist>

<action>
<name>SetState</name>
<arguroentList>

<argument>
(name)Power</name>
<relatedStateVariable>Power</ref atedStat eVarlable>
<di.rect ion>in</direction>

</argunent>
<argument>

(name)Result</name>
<relatedStateVariabl-e>Resul-t </rel-at edstateVariable>
<direction>out</direction>

</argument>
</argumentLíst>

</action>
<action>

<name>Get Stat e</name>
<argumentList>

<argument>
(name)Power< /name >

<rel-at edstat eVariabl-e>Por,¡er</relatedStat eVariable>
<direct ion>out </direct ion>

</argument>
</argumentList>

</acti-on>
</actionlist>
(serviceStateTable>

<stateVariable sendEvsa¡s=rr yes rr)
(name)Power</name >

<dat aType >bo o 1 e an</dat aType >

<aI1o¡.redValuelist>
(af l-owedVal-ue> 0 </atl- owedVal-ue>
<al-l-owedVal-ue> 1 </aIl-owedVal-ue>

</a11ol¡edValueList>
<al-1owedValueRalge>

<maximum) 1 23 < /¡oaximum>
<mininum> 1 9 < /rnininum>
<step>1</step>

</a11 owedValueRa:rge>

59

</stateVariable>
<stateVariable sendEvents= "no ")

(name)Result</na¡e>
<dat aType>boolea¡</dat aType>

</stateVariable>
</serviceStateTable>

</scpd>

The UPnP XN4L service description file converted to a Jini interface file is shown belor,v.

UPnPLIJS translates the XVIL services to Java interface files. The UPnPLIJS bundle

parses the XML files to find the service descriptions and the input data types they expect.

Based on the services, the UPnPLUS bundle creates a Java interface file with methods

corresponding to the services. The SetState method in the example corresponcls to the

implementation of the UPnP service SetState and the GetState method corresponds to the

implementation of GetState. SetState accepts two inputs, State and Resuit. State receives

boolean values and depending on the input it either turns the UPnP light bulb on or off.

GetState queries the current state of the UPnP light device and returns the appropriate

result. The generated interface file is saved as a .Iava file and is compilecl by UPnPLIJS to

create a bundle. urn-schemas-upnp-org-service- is a constant textual prefix for each name

field used in the generated interface files. The actual name of the service is then appended

at the end. For example, in the interface file generated, SwitchPower is appended to urn-

schemas-upnp-org-service-. addEventlistener is also a constant for all services to listen to

Jini-based requests. All "in" and "out" variables listed in XIVIL description files correspond

to input and output variables. All output variables are created as type StringHolder to

hold the output values. UPnPLUS then compiles the Java interface file, creates a bundie

and deploys it on OSGi with a callback routine for the service pointing to the actual IJPnP

device. Thus, a Jini client can request and invoke required UPnP services.

import java. rmi . Remote;
import j ava. rrni . RemoteException;
import net . j ini . core . event . RemoteEventlistener;
import net. jini. core. event.EventRegistration;

publi c interf ace urn-s chemas-upnp-org-servi ce-Swit chPor¡er ext ends
Renote {

60

void Setstate(String State, StringHolder Result) throl¡s RemoteExceptì-on;
void GetState(StringHolder State) throws RemoteException;
EventRegistration addEventListener(RemoteEventListener 1i-stener) ;

4.3.2 UPnP Bundle Server (UBS)

VIy UPnP Bundie Server (UBS) bundle creates a corresponding Jini service bundle using the

Java interface files and deploys the bundle on OSGi. The Jini driver listens for Jini events

and exports any newly cllscovered Jini services to make them available to the Jini clients.

The translation process from UPnP to Jini is automatic without requiring any modifications

to the existing code.

4.3.3 Jini-to-UPnP Service Tbanslations

A UPnP device has a nurnber of properties such as clevice name, manufacturer) etc. unique

to each UPnP device that are used to identify them. Each service contains a set of actions

to perform tasks such as turning on or turning off a light device. Actions take parameters

as input or provide them as output, and each parameter is associated with a state variable.

State variables are of a small number of types such as integer and string, and may contain

any values of their corresponding types.

UPnP has defined a set of standard data types: ui1, ui2, ui4, il, 12, i4, int, 14, 18,

number, fixed.14.4, float, char string, date, dateTime, dateTime.tz, time, time.tz, boolean,

bin.base64, bin.hex, uri, and uuid. State variables must be one of these data types. Further,

data types represented by SOAP have a string format, so the string has to be converted to

one of the above data types. This is required since transiated Jini services have to provide

SOAP invocation to requesting UPnP devices. Some UPnP data types can be represented

by Java primitive types. Automatic service translations from Jini to UPnP, however, are

61

difficult to achieve because Jini is rich in clata tvpes. Automatic convelsion of these complex

clata tvpes to UPnP-specific services requires significant manual development efforts for each

of the services.

OSG| Gateway

Figure 4.4: Jini-to-UPnP Service Translator

My prototype implementation consists of a Jini-to-UPnP Service Translator bundÌe as

shown in Figure 4.4,lhat can handle the conversion of Jini services to UPnP for services with

data types such as integer and boolean. My Jini-to-UPnP bundle listens for Jini services and

works in the same fashion as UBS. When the Jini-to-UPnP bundle discovers Jini services

within OSGi, it converts the service interface files to XML files and registers them as UPnP

services within OSGi. The method names in the interface files are used as service names for

UPnP with the data types used in those methods as inputs for the UPnP services. Intel's

UPnP Device Builder [19] can generate UPnP devices based on the XML description files.

Once, the translator provides an XML description file for the Jini service, I use Intel's UPnP

Device Builder to generate the UPnP device bundle. Thus, the translator creates UPnP

equivalent bundles for Jini services and deploys them on OSGi. The UPnP Base Driver then

automatically exports the newly added UPnP services to the UPnP network where they can

then be used by UPnP clients. In cases where the data types are complex, this bundle throws

exceptions to request that such services be translated manually.

Jini Network

62

4.4 Integration of Resource-Constrained Devices

VIy purpose in integrating resource-constrained devices was to clemonstrate that if the clevices

within homes that do not mn Java could be included in a home network to offer useful

services. In addition, I have ported my entire interoperability framework onto a resource-

constrainecl device, a Pocket PC, to show that the framework was smali enough to run on a

device with characteristics similar to an embedded home gateway. To clo this, I configured

an HP iPAQ to run JVM using IBIVI's Jg [17] and ran Oscar on the iPAQ and deployed my

framework bundles as shown in Figure 4.5. I also integrated TINI, an embeclded network

processor board [6] thereby demonstrating that resource-constrained devices withìn a home

network could be integrated using such low cost network interface boards.

ItItllIt.it
3Ll,[,ItlI
J.Ll,I
l,,t.l ['
3,8It

t
i
t
t
i
i
t
t
t
t
t
t
t
t
t
-<

ûl.[AcLiçe .

1l fActi'¿e2l lActtç,e
3l [Acti,'e
al fActir"e
5l [Acl*"'e
6l [Actir*e
7l fRe:Eo]ved
8l lInsÞtlêd
ial'[¡Xç5¡=-'
111 [.active
121 [Active]
131 f,Active
¿+l'[¿ct¡r+.
I5l [Trrslãßerl

8l 51ætem Bsndþ
1l 'She¡l SË-vkte {1
rJ Sttèg Tl,lI (3.r-O
1f, Bundle Repcsi
3"1 Os6 UÞl (1-A.{
1l æi'5€r'!4çe {rrl Tab,l¡e Þyor¡t {:

1-¡ -ã'¡ny 5hell GUI
1J T'rny sheä C
1l Dornoware
lJ UPnP GeneraÈi
11 9Þmsln¡are
1'] Do¡raçra¡3re
1J T¡ny UtrnP
r I G*nerir fon

File fdit Hl^

Figure 4.5: Oscar running on iPAQ 3850 Pocket PC

63

4.5 Essential OSGi Bundles

I also used several OSGi release 3 framework bunclles such as HTTP admin, Log servìce,

and OSGi services for various purposes. The HTTP admin bundle provides basic authen-

tication of user logins. The Log service bundle enables logging of all OSGi events such as

instalì/uninstall events. The OSGi service bundle provides support to export and import

bundles to and from OSGi. The OSGi service bundle also provides bundle context to the

deploved bundles. An application bundie can use any of the packages exported by already

deploved bundles. I have aiso created bundies that implement various applications expiained

in the next section. These application bundles make use of HTTP Admin, Log Service, and

OSGi service bundles.

4.6 Example Home Gateway Applications

I have also developed several application bundles implementing example home environment

functions and a browser-based GUI for remote administration of the gateway, and a serial

port listener bundle, based on the javaxcomm API [3S] that can be used to monitor data

coming in on the serial port of the PC.

One exampie application that I impiemented was a simple security service using a web-

cam. I used the Java Media Framework (JMF) [39] API to read the capture device (webcam)

and transmit the raw data (uncompressed) using HfP over an in-home local area network

using a specific port. The home owner can use my application to check the camera over the

Internet to monitor his home remotely. Figure 4.6 shows a captured frame from the stream-

ing webcam using JMStudio player, which is part of JMF. Though the webcam is connected

to the gateway with a different IP address, by specifying the last byte of the IP address of

the stream to be 255, the stream can be accessed via "broadcast" by any computer within

the local area network.

Figure 4.7 shows the browser-based management GUI for the home gateway. This browser

Figure 4.6: Surveillance Camera at TRLabs

bundle can be run on any device with support for web browser. Using this graphical interface,

the home owner can install, uninstall and update the bundles. This browser bundle can also

be used to remoteiy operate the gateway. The browser winclow refreshes itself every thirty

seconds to display the current status of the home gateway. As a simple security mechanism,

a sign-in page is displayed to users, requesting a username and password which are used to

authenticate access.

An Email notification service is another useful application that I implemented for the

prototype home gateway. Email notification is based on traditional sendmail technique.

Whenever a new service is installed on the home gateway, this application detects the in-

stailation and emails the home owner telling them about the newly installed service.

The example applications and various management services were used in testing my

implementation as described in the next chapter.

bi)

ik E* Þ, tã,vtð iø.t l¿-b

t3*.' ; *,.j ,i .;. ,' ',"a ',,;,r"** {;, Eoa
:.:1:.r !l i,!r/r*¿h&'rd¿tlrm;t rð*

, rìt -

. - +" ¡itP i,,r,,
!.è.

,ì t
I

I +, .l.ir0nr¿r

- $¿ Lo¡ R.¿dèr

''a1
- ^¡¿ ho S:r/ræ

I ,,n ,:: .:

I - $*. ff9.lnopiiñth.briCle.l?Dønrel¿

i .i¡; '' '

I É+J 0i0r:'rn*
\ll

f þfi1 os"iruÙl

r 'qÞ

i- i.'-1 Priirr¿iÈt sir,ræ
.:Þ -

r À'¿ P.en¡:e Lcc¡èr

'
tt'

r {. i¡nlH}l !¡fl:i¿- :') :.

I r s. S¿rulPoiLft¡¿r

I s¿. S9rurÉlrEi919:¡ntlÈ-- l' . . .

l

I t'L r.ft ftlrg).r- ir
]

l- É;ì Se^lsl".ri;

qm r.jL(Jirr*

Figure 4.7: Browser-based Interface for the Gateway

bb

Chapter 5

Assessment of the Interoperability

FYamework

Because of the nature of my framework) assessment was clone only to ascertain the func-

tional operation of key components such as UPnPLUS and Jini to UPnP translations. No

performance assessment was done.

The prototype implementation of my interoperability framework was evaluated in two

stages. In the first stage, I compared my work with the "Jini Meets UPnP" 121] and the

"UPnP to Jini interoperability" research [23]. In the second stage, a few automated appli-

cations were developed to demonstrate interoperability between UPnP and Jini.

67

5.1 Comparison of Interoperability Fþameworks

Jini meets UPnP [21] was the first work done in interoperability in home networks. In

their work, AIIard et al. implemented a bridge to integrate Jini and UPnP. However, the

service translations from UPnP to Jini and vice versa are selvice-specific involving significant

manual clevelopment efforts f'or each of the newly added services. In additiorr to the non-

automatic nature of their work, there is no support for OSGi. iVIy interoperability framework

is advantageous in three ways:

1. Support for OSGi along with Jini and UPnP

2. Implementation of a centralized gateway service that can be used to configure and

control the operation of UPnP and Jini

3 My framework is aritomatic in integrating UPnP and Jini services without having to

manually create service-specific translations involving significant development overheacl

To the best of my knowledge, the UPnP to Jini interoperability work by Newrnarch,

etc. [23] is the only other research on building an interoperability framework for UPnP and

Jini. Their work builds a framework that can offer UPnP services to a Jini network automat-

ically but not Jini services to UPnP. VIy proposed work distinguishes itself by integrating

IJPnP, Jini and OSGi technologies.

My interoperability framework is also a part of a larger project in the Home Technologies

Group at TRLabs. Viy framework is a proof-of-concept implementation of a gateway service

to integrate UPnP and Jini using OSGi. Hence, issues related to quality of service (QoS)

and other issues will be able to be explored by other TRLabs researchers in the future.

68

5.2 fnteroperability with Example Applications

In the first stage of application testing, I tested the home gatei,vay running on Windows and

Linux PCs involving UPnP and Jini networks. The entire implementation of the framework

was tested on two open soulce implementations of OSGi, namely, Oscar ancl Knopflerfish.

Although both Oscar and Knopflerfish are fully compliant with the OSGi 3 specifications,

the purpose of testing on both the platforms was to assess the correct behaviour of my in-

teroperability framework on both the implementations. I used emulated adclitional devices

compliant \Mith UPnP and Jini using the IncaX Jini buiider lll to test the correctness of my

respective interoperability bundles installed on OSGi in importing and exporting multiple

services. The presence of UPnP and Jini devices was correctly recorded by the Jini and

UPnP Drivers, and then stored in the OSGi dicticlnary. The dictionary stores the name

of the services with a special tag to identify where they come from. For example, a Jini

service may be stored with a "Jini" tag. I tested the UPnPLUS and Jini to UPnP service

translations to study the correctness of a UPnP device communicating with a Jini device

through a OSGi-based gateway ancl vice-a-versa. An effective or successful test of the in-

teroperability framework was when a UPnP service was made available to Jini network and

vice-a-versa. The emulated devices were found to correctly interoperate. In the second phase,

I have implemented a few more "realistic" and hence complicated automated applications

to demonstrate the correct behaviour of the UPnP/Jini emulated devices and also the TINI

boards with the interoperability framework.
'Wake Up Service Application

This application makes use of UPnP clock communicating with a Jini light bulb. The

UPnP clock monitors the time and when the cÌock strikes 6 AM, it searches for light devices.

When the clock finds the Jini light device, it turns it on. The Jini light device is a very

simple emulated Jini device with two services; turnOn and turnOff which accept boolean

values as inputs. When turnOn receives 0, it turns the light device on and when the turnOff

service receives 1, it turns the light off. When the Jini light device is detected by the network,

its services are translated to UPnP services and the UPnP clock searching for light devices

69

correctly finds and invokes the appropriate turnOn service.

Time Announcement Application

NIy time ¿ìnnouncement application demonstrates the integration of Jini ancl UPnP. an-

nounceTzme0 is a Jini service that returns the current system time (String) to the requesting

client. The home owner would like the UPnP light cìevice to turn off at 10 PN{ everyday.

The UPnP light device fetches the system tirne ¿rnd turns itself off. This application suc-

cessfully notifies llPnP devices of the translated Jini service's availability. Thus the time

announcement application establishes interoperability between Jini and IJPnP.

I{ome Security Application

This is a proof-of-concept prototype of a simple home security application. It makes use of

a non-networked door sensor deployed at the entrance to a home. The door sensor transmits

light intensity levels to the gateway. The sensor application deployed on the gateway receives

the light intensity levels and analyses if the value goes below a threshold value to indicate

that an individual has arrived at the doo¡. When the application detects the value below

the threshold, it turns on the Jini-based security càmera player on the gateway. Thus, the

home owner can decicle whether to answer the door or not. AII the above test application

executed correctly.

70

Chapter 6

Conclusions and Fbture Work

The use of home networking is growing with the development of more capable in-home

devices and the release of newer interoperability standards. Due to lack of a singie interop-

erability standard, however, the home gateway must be adaptable to accommodate multiple

standards.

My framework designs and implernents interoperability capabilities that enable commu-

nication and collaboration of services among devices belonging to different home network

standards. My framework uses OSGi to build the home gateway which handles the basic

interaction among these heterogeneous devices. The following are the contributions of my

thesis:

1. Design of an interoperability framework and the implementation of framework compo-

nents to integrate UPnP and Jini through OSGi. Specifically, I implemented UPnPLUS

to translate UPnP services to Jini services and a Jini-to-UPnP translator to convert

Jini services to UPnP services, for simple, well defined types.

2. I have installed the Oscar OSGI implementation and tested my interoperability frame-

7I

work on low-encl devices such as iPAQ ancl Dell Axinl Pocket PCs to demonstrate

OSGi's functionality on such devices. The home gateway i¡,ill ultimately resicle on

an embedded clevice so my experiments in porting the framework to Pocket PCs help

tp clemonstrate the possibilitv of deploying the framework components on embedded

devices as well.

3. Using a TINI board to allow a resourcie-constrained device to behave as Jini clevice

and be a part of the home network shows how legacy, non-networked devices might be

integrated.

4. I modified the existing browser-based GIJI to authenticate gateway users with a sign

in page to support secure and remote monitoring of the honre gateway.

5. I deveioped a security camera application as described in Section 5.2 as a proof of

concept interoperable application on OSGi.

6. Niy framework bundles have been tested on both Oscar and Knopflerfish frameworks.

During the development of one sample application, the bundle performed weil on

Knopflerfish, but failecl on Oscar. This shows that there are incompatibilities be-

tween the two OSGi implementations but I have yet to determine precisely why the

application failed.

There is a wide range of possible future work. For example, my framework could be

tailored to hospital, office and other environments. Currentiy, the medical instruments used

in hospitals are not compliant with any of the home network standards but by integrating

more and more standards into OSGi, a wide variety of devices can be automated. This would

be particularly useful in hospital settings.

At present, HAVi enabled devices are being produced in the appliances market. As part of

the future work, HAVi could be integrated into my framework. Similarly, as other standards

arise they too could be added to the framework.

Useful applications such as monitoring the elderly in homes could be developed. Though

my framework is more focussed on home networks, it could also be tailored to automate

functions in nursing care situations. Patients could be assistecl in sencling zlnd receiving

readings related to their health to the health practitioners.

Current applications that are cleveloped on home networks, clo not recluire strong secu-

rity since rrìany clo not communicate with the Internet. However, wìth future applications,

securit¡r will be a prirnarry concern in protecting home area networks from attacks and illegal

access. In addition, since devices compliant with clifÏerent standards coexist in one net-

work, an interoperability framework must be capable of integrating all the different security

systems ancl compensating for the deficiencies of the weaker ones..

The home gateway device should also be capable of performing self-recovery after a crash.

Current gateway devices do not implement fault tolerance. This would be useful since the

gateway device must be highly reliable. At a minimum, the gateway should retain the last

known goocl configuration and have a mechanism to boot from it, if needecl.

More research can also be done to implement and assess the gateway's performance on

an embedded device since future gateways will reside on an embedded clevice rather than

a powerful PC. Further analysis could also be done on storing multimedia content on an

available in-home PC and on using the embedded gateway device to install required bundles

on demand to utilize the resources efficiently.

l,)

Bibliography

Inca X IDE & JavaSpaces Starter Kit. IncaX. lútp:lfwww.incax.com/. Retrieved on

05-05-2005.

S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The

Gator Tech Smart House: A Programmable Pervasive Space. IEEE Cornputer Journal,

38(3):50-60,2005.

A. Friday, N. Davies and E. Catterall. Supporting Service Discovery, Querying and

Interaction in Ubiquitous Computing Environments. In Proc. of the ?nd ACM Int'l

Workshop on Data Engineerzn,g for Wi,reless and Mobile Access, pages 7*13, VIay 2001.

[4] Home Phone Networking Alliance. HomePNA Technical Specifications.

htfp:l lwww.homepna.orgf . Accessed on 3-04-2004.

[5] C Bettstetter and C. Renner. A Comparison of Service Discov-

ery Protocols and Implementation of the Service Location Protocol.

http: I lwwwtgs.cs.utwente.nl/Docs/eunice/summerschool/papers/paperS-1.pdf, 2000.

Retrieved on 12-07 -2004.

[6] Dallas Semiconductor. TINI- Tiny InterNet Interfaces.

ic.com/TINIplatform.cfm. Retrieved on 10-10-2004.

http: I lwww.maxim-

[1]

12)

l3l

74

[7] DHCP ORGANIZATION. Dynamic Host Configuration Protocol.

http l f www.cihcp.org/. Accessed on 27-04-2004.

[B] Domoware Team. UPnP Device Emulation . http.l ldomoware.isti.cnr.it/. Retrieved on

r7-10,2004.

[9] G Kotsis. Perfolmance Vfanagement in Ubiquitous Computing Environrnents. In Proc.

of the 15th Int'l Conf. on Computer commun'ication, pages 988-997, Aug 2002.

110] H. Ishikawa, Y. Ogata, K. Adachi, ancl T. Nakajima. Building Smalt Appliance Integra-

iion iVliddleware on the OSGi Framework. In Seuenth IEEE International Symposi,um

on Object-Ori,ented Real-Ti,me Di.stri,bu,ted Computi.ng, pages 139-146, VIay 2004.

[11] H. Okamura. Adaptive Resource N4anagement System for Home Area Networks. Sony

CSL Technzcal Report, 06(0a):16-19, Apr 2001.

[12] HAVi. Home Audio Video Interoperability. http://www.havi.org. Accessed on 05-03-

2004.

[13] HomePlug Power Alliance. Audio Video (AV) Specifications.

hltp:f f www.homeplug.orgf enf f.aq/index.asp. Accessed on 13-07-2006.

[14] HomePlug Power Alliance. HomePlug 1.0 Technology White Paper.

http://www.homeplug.orgf enf docs/HP-1.0-TechnicalWhitePaper-FINAL.pdf. Ac-

cessed on 13-07-2006.

[15] HomeRF Working Group. HomeRF Technical Specifications.

http:f f www.palowireless.com/homerf/homerf4.asp. Accessed on 09-04-2004.

[16] HP JetSend. JetSend Interoperability Protocol.

http: f f search.hp.com/gwuseng/query.html?col:hpcomf ccen*ccenfor&qt

:jetsend&la:en. Accessed on 26-06-2004.

[17] IBM. J9- Java Virtual Machine. htrp:l lwww-306.ibm.com/sofbware/wirelessfwemef .

Retrieved on 17-Oct-2005.

75

[18] IEEE 1394 Trade Association. IEEE 1394 Technology. http://wi,vrv.1394ta.org. Re-

trieved on 26-05-2005.

[19] Intel Corporation. Intel UPnP Device Builder.

http:llwww.intel.com lcdlidsldeveloper/asmo-na/eng/downloads/uprrp/overview/incle

x.htm. Accessed on 13-11-2005.

[20] IPv6. IPv6 Forun. http llww\M.palc.xerox.com/about/default.html. Accessed on 16-

06-2004.

[2L) J. Allard, V. Chinta, S. Gundala, and G. Richard, III. Jini lVleets IJPnP: an Archi-

tecture for Jini/UPnP Interoperability. In Proc. of the 2003 Applzcat'ions and Internet

Symposr,um, pages 268-275, Jan 2003.

.Z2)
J. Bates, J. Bacon, K. Moody and M. Spiteri. Using Events for the Scaiable Federation

of Heterogeneous Components. In Proc. of the 9th ACM SIGOPS Ettropean Workshop

on Support for Compos'ing Distributed Appl'icat'ions, pages 58-65, Sep 1998.

[23] J. Newmarch. IJPnP Services and Jini Clients. hT,tp:lljan netcomp.monash.edu.au

/publications/jini-upnp.isngO5.pdf. Accessed on 01-08-2005.

[24] K. Raatikainen, H. Christensen and T. Nakajima. Application Requirements for lVlid-

dleware for Mobile and Pervasive Systems. SIGMOBILE Mobi.le Computati.on Commu-

nzcatt on Reuzew, 6@) :I6-2a, Oct, 2002.

[25] Knopflerfish. Knopflerfish OSGi Framework. htrp:l lwww.knopflerfish.org. Retrieved

on 17-70-2004.

[26] M. Galeev. Home Networking with Zígbee. http://www.embedded.com/showArticle.jhtml

?articlelD:18902431. Retrieved on 13-07-2004.

[27] Microsoft Research. Easy Living. http://research.microsoft.com/easyliving/flinks. Re-

trieved on 10-01-2005.

76

[28] N. Shavlor, D. Simon and W. Bush. A Java Virtual N4achine Architecture for Very

Small Devices. In Proc:. of the 2003 ACM SIGPLAN Conf. on Language, Compi,Ler',

and Tool for Embedded Stlsterns, pages 34 41, Jun 2003.

[29] OSGi Alliance. Open Service Gateway Initiative. http://www.osgi.org. Accessecl on

06-05-2004.

[30] OSG1 A]liance. OSGi Aliiance 2005 World Congress.

hrtp I f www. osgicongress. com/invitation. asp. Accessed on 28-03-2005.

131] P. Pietzuch, B. Shand and J. Bacon. Composite Event Detection as a Generic iVliddle-

ware Extension. IEEE Networks Magazzne, speci,aL'issue on Mzddleware TechnoLogi,es

for future Communzcatzon N etworks, 18(1) :44-55, J an 2004.

[32] Philips Research. Ambient Intelligence. http f lwww.research.philips.com/technoiogies/

svst-softw/index.htmlfambintel. Accessed on 10-01-2005.

[33] R. Hall. Oscar- OSGi Framework Implementation. http f f oscar.objectweb.org. Re-

trieved on 17-10-2004.

[34] R. Veldema, R. Hofman, R. Bhoedjang and H. Bal. Runtime Optimizations for a Java

DSM Implementation. In Proc. of the 2001 Joint ACM-ISCOPE Conf. on Jaua Grande,

pages 153-162, Jun 2001.

[35] Reliable lVlulticast Transport Protocol. RMTP. hltp:llwww.bell-

labs.com/project/rmtp/. Retrieved on 26-05-2004.

[36] S. Preuss and C. H. Cap. Overview of Spontaneous Networking- Evolving Concepts

and Technologies. In Rostocker Informati,k-Berichte, volume 24, pages 113-123, 2000.

[37] SOAP Consortium. Simple Object Access Protocol. http:f fwww.w3.org/TR/soap.

Accessed on 16-08-2004.

[38] Sun Microsystems. Java Communications API.

hftp: I I java.sun.com/products/j avacomm/. Accessed on 28-06-2005.

77

[39] Sun Microsystems. .l¿iva N{edia Framework. http.lljava.sun.com/proclucts/java-

media/.jmf/. Retrievecl on i3-04-2005.

[a0] Sun Microsystents. J¿va Security Archeitecture. ht,tp.lljava.sun.com/security/. Ac-

cessed on 28-03-2005.

[41] SLrn vlicrosystems. Jini. h|tp:lfwww.jini.org. Accessecl on 04-06-2004.

[a2] Sun Nlicr-osystems. JXTA Project. http:lf www.jxta.org. Accessecl on 07-06-2004.

[43] Snn Microsystems. Service Location Protocol. http:f f www.playground.sun.com f srvlocf

slp-white-paper.htmì. Retrieved on 14-06-2004.

144] T. Nakajima. A Middleware Component Supporting Flexible User Interaction for Net-

worked Home Appliances. SIGARCH Comput. Arch'it. News,29(5):68-75, Dec 2001.

[45] T. Nakajima, K. Fujinami, E. Tokunaga, and H. Ishikawa. Middleware Design Issues

for Ubiquitous Computing. In Proc. of the ?rd Internatzonal Conference on Mobi,le and"

Ubzquitous Multimedi,a, pages 55-62, Oct 2004.

146] T. Nakajima, S. Oikawa, H. Ishikawa, K. Iwasaki, and 1VI. Sugaya. Bxperiences with

Building Distributed Middleware for Home Computing on Commodity Software. In

Proc. of the Srd Internat'ional Conference on Mobile and Ub'iquitous Multimed'ia, pages

424-429, Oct 2004.

[47] The World Wide Web Consortium (W3C). Extensible Vlarkup Language (XML).

http://www.w3.org/XiVIL/. Accessed on 28-03-2006.

[48] E. Turcan. Peering the Smart Homes. In Fi,rst Int'l Conf. on Peer-to-Peer Computing

(P?P'01), pages 27-29, Aug 2001.

[49] Universal Plug and Play . IJPnP. http://wwvi.upnp.org. Accessed on 26-03-2004.

[50] XiO Protocol. X10 Technical Specifications. http:llwww.x10.org/aboutx10.html. Ac-

cessed on24-03-2004.

7a

[St] Xerox. The Obje Software Architecture. http://www.parc.xerox.corrr/research/csl/

projects/ob.je/default.htrnl. Retrieved on 12-06-2004.

[52] Xlinx. White Paper on Home Networking. http://www.xilinx.cornf espf consumer/

home-networking/pdff les/white-papers/wp136.pclf. Retrieved on 04-06-2004.

[53] Y. Goland, T. Cai, P. Leach, Y. Gu ancl S. Albright. Simple Service Discovery Protocol.

htt'p:f lwww.itl.nist.govldivSg7 lctg/adl/sdp-projectpage.html, Oct 2002. Retrieved on

22-10-2004.

[54] Y. Rasheed, J. trdwards and C. Tai. Home Interoperability Framework for the Digital

Home. Intel Technology .lournal, 06(04):10 20, 2002.

79

Appendix A

Jini to tlPnP Service Translation

x ClockClient.java

/xJini servi.ce for clock device x/

package client;

j-mport j ava. rmi . RMlSecurityMa_nager; import
j ava. rni . RemoteException;

import net . j ini . discovery . LookupDiscovery; import
net . j inj- . discovery . Discoverylístener; J.nport
net . j in1. dì.scovery. DiscoveryEvent; inport
net . j ini . core . lookup . ServiceRegistrar; import
net. j ini. core. lookup. ServiceTenplate;

import jlniupnp.types.Strì-ngHolder; import
j i-niupnp . servi ce . urn_s chemas_upnp_org_s ervi ce_t irner_ 1 ;

x A client to test the UPnP Clock service. This is a service
* created by Cyberlink using the Cybercarage library. It has tv¡o roethods,
* GetTimeO a¡d SetTineO.

publj-c class ClockClient implenents Discoverylistener {

80

Class cl-s = nulf ;

public static void main(String argvU) {
ner¿ Cl-ockClientO;

/ / stay around long enough to receive replies
try {

Thread. currentThread O . sleep (100000L) ;

Ì catch(java.lang. InterruptedException e) {
// do nothJ.ng

Ì
t-
J

pub11c Cl-ockCfientO {
System. setSecurityManager (ner^r RMf SecurityMa-nager O) ;

trv {
cls = CIass.forName("jiniupnp.service.urn-schemas-upnp-org-servÍce_timer_1");

Ì catch (ClassNotFoundException e) {
System. err. println(e. toStrÍngO) ;

System. exit (1) ;
ì.)

LookupDiscovery discover = nulf;
try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GR0UPS) ;

Ì catch(Exception e) {
System. err . printJ-n (e . tostring ()) ;

Systen.exit(1);
Ì

discover. addDiscoverylistener (this) ;

Ì

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar [J registrars = evt . getRegistrars O ;

Cfass U classes = new Class[] {cls};
urn_schemas_upnp_org_service_timer_1 clockService = nulli
ServiceTemplate teroplate = new ServiceTeroplate(nul1, classes,

nu]l) ;

for (int n = 0; n < registrars.length; n++) {
System. out.println("Lookup service fou¡d") ;

ServiceRegistrar registrar = registrars [n] ;

try {
cl-o ckServi cs = (urn-schemas-upnp_org_servi ce_t imer_ 1)

registrar. lookup (tenplate) ;

Ì catch(java.rmi.RemoteException e) {

81

e . pr j-ntStackTrace O ;

continue;
I
J

if (clockService == nu1l) {
System. out.println("ClockService nul-l") ;

continue;
)
//Systen.out.println("Servlce: " + clockService.toStringO) ;

trv {
StringHolder timeResult = new StringHolderO;
clockservice. GetTine (timeResult) ;

System. out . println (t imeResul-t . getValue ()) ;

// CyberLink hasn't impternented SetTime, just get a stub a¡swer
Stríng time = "Sua, Ju:l 15, 04";
clockService. SetTine (tine, tirneResul-t) ;

System.out.println("Ner,r tine " + timeResult.getValueO) ;

] catch (RemoteException e) {
System.err.println("Service catl failed " + e.toStri-ngO) ;
t-
J

// success
System. exit (0) ;

ìJ
Ì

public voj-d discarded(Di-scoveryEvent evt) {
// enpty
Ì

\ / / ClockCl-ient

/i.TransÌated Jini Service to IlPnPx,/

(?xml- version="1.0" ") (root
xmlns= "urn: schenas-upnp-org: device- 1-0 ")

(specVersion>
<naj or>1<,/roaj or>
<minor>0</minor)

</specVersion>
<device>

<devi- ceType)urn : schenas-upnp-org : devi ce : clock : 1 </devi ceType>
<f ri endlyName>CyberGarage Clo ck Devi ce</f ri endlyName>
(nanuf acturer> CyberGarage </na-nuf acturer)
<ma n uf acturerURl>http :. / / wttw . cybergarage . org<,/manuf acturerURl>
(nodelDescript ion>CyberUPnP Clock Devi ce<,/nodelDescript ion>
<mode l-Name) C l- o ck< /no de 1 Nan e >

<model-Number> 1 . 0</nodelNunber>
<node lURl>http : / / www. cybergarage . org<,/mode I-URL>

<s eri alNunber> 1 234567890<,/ s eri alNumber>
<UDN>uuid : cybergarageCl-ockDevi ce</IIDN>

82

<uPc> 1 234567 A90 L2< /UP C>
(iconlist>

(i con)
<mimetype> inage / gif < /minetype>
<width>48</!¡idth>
<height>32</height>
<depth>B</depth>
(ur1)Ícon. gif <,/url>

< / icon'>
<,/lconlist>
<serviceList>

(service)
<serviceType>urn : schemas-upnp-org : servÍce : tiner : 1</servj-ceType>
<servi celd)urn : schemas-upnp-org : serviceld : timer : 1</serviceld>
<SCPDURL>/ servi celt iner,/descript i on . xn1 </SCPDURL>

< c ontro IURL> / s ervi c e / t imer / c ont ro I < / c ont ro IURL>
<eventSubURL>,/servic e / timer / eventSub<,/eventSubURL>

</service>
</serviceList>
<presentat ionURL>/pre sent at ion</presentat ionURL>

</device>
</root>

83

