Non-Crossing Matching of Online Points

by

Arezoo Sajadpour

A Thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF COMPUTE SCIENCE

Department of Computer Science
University of Manitoba
Winnipeg

Copyright (©) 2021 by Arezoo Sajadpour

Contents

[(Table of Contents|

[List of Figures|

[Acknowledgements|

[Dedicationl
[Abstract]

(1 _Introduction|

(1.1 Advice model for online algorithms|

[1.2 Roadmap and contribution| 00000

2__Problem statementl

2.1 Input of the problem|

[2.2 Objective of the problem|

3 TG ol

[3.1 Relevant problems|

[4 Deterministic algorithms|

4.1 Monochromatic non-crossing matching|
[4.1.1 Upper bound|
412 Towerbound

4.2 Bichromatic non-crossing matchingl
[4.2.1 Upper bound|

i

ii

iv

vi

vil

4.3 Non-crossing matching with advice|

[4.3.1 Monochromatic setting|

[4.3.2 Bichromatic setting|

[> Randomized algorithms|

[>.1 ~ Monochromatic Settingl

[>.1.1 Upper bound|

6 Experimental analysis|

[6.1 Experimental set-up|

[6.1.1 Input distribution|.o

[6.1.2 The tested algorithms|

[6.1.3 Implementation details|

[6.2.1 Monochromatic algorithms (without delay)|.

[6.2.2 Monochromatic algorithm with delayl

[6.2.3 Bichromatic algorithms|.

(6.3 Summary of results|

[7__Conclusions|

(Bibliography|

il

19
19
23

25
26
26
36
48

51
51
51
53
54
54
o4
57
99
60

62

65

v

List of Figures

[Figure 4.1 Plane partitioning, Section 4.1} 15
[Figure 4.2 Critical region updating, Theorem 2| 17
[Figure 4.3 Critical region updating, Theorem 4 18
[Figure 4.4 Matching even-indexed points with odd-indexed points, Section}4.3.1] 21
[Figure 4.5 An illustration of case analysis, Lemmall| 22
[Figure 5.1 Example of randomized algorithm, Section|5.1.1{. 28
[Figure 5.2 An illustration of f(7), Lemmald| 31
[Figure 5.3 An illustration of the proof of Lemmaly 33
[Figure 5.4 An illustration of the input sequence] 37
[Figure 5.5 Algorithm A after five phases, Section[.1.2[. 38
[Figure 5.6 An illustration of Observation|l}. 39
[Figure 5.7 A summary of the analysis for Case I, Theorem |9 41
[Figure 5.8 A summary of the analysis for Case II and III, Theorem [9[|. . . 44
[Figure 5.9 A summary of the analysis for Case IV, Theorem|[9 46
[Figure 5.10A summary of the analysis for Case V, Theorem|[9 47
[Figure 5.11An illustration of the input sequence o(B) for a bit string B|. . 49
[Figure 6.1 Uniform distribution| 52
[Figure 6.2 Normal distribution| 52
[Figure 6.3 Zipfian distribution|. L. 53
[Figure 6.4 Monochromatic algorithms without delay in various distributions| 55
[Figure 6.5 Monochromatic algorithm with delay for uniform distribution| . 58
[Figure 6.6 Monochromatic algorithm with delay for normal distribution|. . 58
[Figure 6.7 Monochromatic algorithm with delay for the Zipfian distribution| 59

[Figure 6.8

The number of unmatched points in bichromatic setting] 59

ACKNOWLEDGEMENTS

I would like acknowledge my academic advisor, Dr. Shahin Kamali for his mentorship
during my master study. Because of his trust, I have had a chance to experience in
various aspect of my life, and expand my knowledge. I would be always sincerely
thankful because of these opportunities.

I would like to thank Dr. Stephane Durocher and Dr. Parimala Thulasiraman
for accepting to be a member of my advisory committee. Their valuable advice and
academic support assisted me to conduct this thesis.

In the end, I would like to thank my research team member Pooya Nikbakht, and

all the others who have helped me to successfully finish my master’s studies.

DEDICATION

For my beloved family who has always believed in me and support me.

vi

vii

ABSTRACT

In this thesis, we consider the non-crossing matching problem in the online setting.
In the monochromatic setting, a sequence of n points in general position in the plane
is revealed in an online manner. The goal is to create a maximum matching of these
points such that the line segments connecting pairs of matched points do not cross.
The problem is online in the sense that the decision to match each arriving point is
irrevocable and should be taken without prior knowledge about forthcoming points.
The bichromatic setting is defined similarly, except that half of the points are red
and the rest are blue. Each matched pair then consists of one red point and one blue
point.

In a deterministic setting, where randomization is not allowed, we show that a
simple greedy algorithm matches roughly 2n/3 points in the monochromatic case,
which is the best that any deterministic algorithm can achieve in the worst-case
scenario. For the bichromatic variant, we prove that for every deterministic algorithm
ALG there is a set of n/2 red points and n/2 blue points such that ALG matches at
most O(logn) points, and there exist algorithms that match Q(logn) points for any
set of n/2 red points and n/2 blue points. We also study the problem under the
advice model, where the online algorithm receives some bits of advice about the
input sequence. We prove upper and lower bounds for the number of advice bits
sufficient and necessary to match all points.

We show that randomization helps in the monochromatic matching of the problem.
That is, we introduce an algorithm that matches roughly 235n/351 (> n/3) points on
expectation, which is an improvement over what deterministic algorithms can achieve.
We also prove a lower bound that shows a linear number of points stay unmatched by
any randomized algorithm. More precisely, we show that any randomized algorithm
is expected to leave at least 0.0738n points unmatched in the worst-case scenarios.

Finally, we provide experimental results for the typical performance of online
algorithms. We report the number of unmatched points when the coordinates of the

input points are independently and identically distributed random variables.

Chapter 1
Introduction

Matching points in the plane is a fundamental topic in computational geometry and
has applications in the real world ranging from image processing [11] to bioinformatics
[15]. The input to the most basic version of the matching problem is a set of points
in general position. There are different ways to define an objective to optimize. One
might be interested in minimizing the maximum matching distance between any pair
of matched points, e.g., as in the bottleneck matching problem [I4], or in maximizing
the number of matched points [3]. Points might be monochromatic, where any pair
of points can be matched, or they might be coloured red or blue, and the matching
can be made between the points of either different or the same colour, depending on
the problem’s definition.

In the non-crossing matching points problem, the goal is to find the maximum
number of matched points where the line segments between the matched pairs do
not cross. Ideally, it is desirable to achieve a perfect matching, where all points are
matched (except possibly one if the number of points is odd).

In the offline setting of the problem, where all points are given in advance, it is
possible to achieve a perfect matching for every set of points. The offline variant can
be trivially solved to achieve a perfect matching in O(nlogn) time for an input of size
n. For example, in the monochromatic setting, one can sort points in non-decreasing
order, say by the x- or the y-coordinate, and match consecutive points to achieve a
perfect matching.

In the online setting, the points are revealed one by one, and each point should
be matched to previously revealed points or left unmatched without any knowledge
about the forthcoming points. As we will argue later, in general, it is not possible

to achieve a perfect matching in the online setting. Instead, one should consider

maximizing the number of matched points.

In this thesis, we are interested in the online or semi-online variants of the match-
ing problem under different settings and models. As mentioned above, an online algo-
rithm does not have any prior information about the input. Once a point is revealed,
the algorithm decides to match it with an unmatched point or leave it unmatched.
The decision of the online algorithm is irrevocable, meaning that if two points are
matched, they remain matched. We are particularly interested in worst-case settings,
where the input is generated in an adversarial manner.

It is possible to study online matching algorithms under a deterministic or ran-
domized setting. In the deterministic setting, the input is formed by an adversary
that knows the decisions made by the online algorithm. In the randomized setting [4],
the online algorithm can use random bits to make decisions about matching points.
Under this setting, an oblivious adversary knows how the algorithm works, that is,
it has access to the code of the algorithm, but it does not know what points are
matched, given that the online algorithm uses random bits that are not known to the
adversary. As such, randomization is expected to improve the worst-case performance

of the online algorithms compared to deterministic algorithms.

Applications of the matching problem

We study the non-crossing matching problem from a theoretical point of view. Re-
gardless, matching geometric objects has many applications in practice [11], 15}, 18],
211, 130}, 22], some of which can be listed as follows.

e Image matching problem in computer vision is to compare two images and
identify similar sub-regions. Cohen [I1] studied the pattern problem, a relaxed
version of the image matching problem, and provided a framework to find a
similar pattern between an image and a query pattern. The pattern has both

color and shape attributes.

e Another application of matching algorithms in computer vision is to search a
database for images that are similar to a given image [I8]. To this aim, features
of each image in the database are extracted to form a set of weighted points

that are matched with similar points from the queried image.

e In computational biology, pattern matching is a practical operation to find the

locations of particular DNA sub-sequences in a DNA sequence [34], or small

parts of molecules in a complete protein [15].

Analysis measures

Worst-case (competitive) analysis

We study online algorithms in the worst-case scenarios, where the input is gener-
ated in an adversarial manner. To illustrate the online matching problem in an
adversarial setting, consider the following example: assume two points with the same
x-coordinate appear one after the other. If an online algorithm does not match the
two points, its solution is already sub-optimal for this input of size two. If the two
points are matched, the adversary generates two more points on opposite sides of the
line segment between the matched points. The new points cannot be matched, and
the solution is now sub-optimal for this input of size four. This is because the optimal
solution matches all four points.

The worst-case analysis is normally used to evaluate and compare online algo-
rithms. Under the worst-case analysis, the number of unmatched points of an online
algorithm is compared with the number of unmatched points of an optimal offline al-
gorithm, Opt, which knows the input in advance. The competitive ratio of an online
algorithm is then the maximum ratio between the number of matched points by Opt
and that of an online algorithm for the same input. In the non-crossing matching
problem, where all points are matched in the offline setting, the number of points
matched by the online algorithm is compared to the input size (usually denoted by
n). Note that an online algorithm by nature is not aware of the number of points in

the input sequence, and its solution is evaluated for any sub-sequence of the input.

Worst-case analysis for randomized algorithms

As pointed out earlier, the online matching problem can be studied under randomized
settings as well. A randomized algorithm uses random bits to make its decision.
Therefore, there is no well-defined worst-case input for the randomized algorithm as
it depends on the random bits used by the algorithm. As such, the performance of
randomized algorithms on the worst-case input is measured by taking an expectation
over all possibilities of random bits.

In a way, randomization helps an algorithm to “hide" its worst possible input

from an adversary that generates the input. Randomization has been widely used to

improve the worst-case performance of online algorithms. In particular, we will show
that randomization can be helpful in the monochromatic setting of the non-crossing
matching problem. We assume an adversary that is oblivious to the algorithm’s
random bits generates the input sequence. Our measure of performance is then the

expected number of points that stay unmatched by the online algorithm.

Experimental analysis

In the last part of our study, we consider the average-case performance of the online
algorithm. Unlike the worst-case analysis, where the input is generated by an ad-
versary, under the average-case performance, the input is generated randomly. More
precisely, we assume the x— and y—coordinates of points are random variables that are
generated independently at random, following identical probability distribution. The
measure of performance is then the expected number of unmatched points. Clearly,
it is expected that a smaller number of points stay unmatched when the input is
randomly generated (under the average-case performance) compared to when it is

generated by an adversary.

1.1 Advice model for online algorithms

In the purely online setting, an online algorithm has no prior information about the
input sequence. Under the advice model, this restriction is relaxed, and an online
algorithm receives some bits of “advice" about the input sequence. The advice bits
can encode any information about the input sequence. In particular, they can encode
the entire input (thus, reducing the problem to an offline problem). In general, the
larger is the size of advice, the better is the performance attainable by an online
algorithm. In the context of the non-crossing matching problem, it is particularly
interesting to study how many bits of advice are sufficient (or necessary) to achieve

an optimal matching.

1.2 Roadmap and contribution

This thesis is made up of seven chapters. Chapter 2 defines the problem in detail.
Chapter 3 reviews previous work on the geometric matching problems under different

settings and models.

The main contributions of this thesis can be divided into the following three parts.

e The first part, presented in Chapter 4, is devoted to deterministic algorithms.
We provide upper- and lower-bounds for the number of unmatched points to
prove that a simple greedy family of algorithms has the best worst-case perfor-
mance among all deterministic algorithms (for both monochromatic and bichro-
matic settings). One takeaway is that the best algorithm for the monochromatic
setting leaves roughly one-third of points unmatched, while the best bichromatic
algorithm leaves almost all points (n — o(n) points) unmatched in the worst-
case scenarios. We also prove upper- and lower-bounds for the number of advice
bits sufficient and necessary to match all points (in both monochromatic and

bichromatic settings).

e The results in the second part of the thesis, presented in Chapter 5, concern
the power of randomization for the non-crossing matching problems. We an-
alyze how the randomization attribute improves the results of the matching
points problem in the worst-case scenarios. We show that randomization helps
in the monochromatic setting, as a smaller number of points are expected to
stay unmatched if the algorithms are allowed to use randomization. For the
bichromatic setting, however, randomization does not help, as almost all points
(exactly n—o(n) points) are expected to stay unmatched by any randomized al-
gorithm. We also provide a lower bound for the expected number of unmatched

points by any online algorithm.

e Finally, in the third part of the thesis, presented in Chapter 6, we experimen-
tally study the typical performance of various algorithms when the input points
are generated independently at random from an identical distribution. One
takeaway from our experiments is that if the number of points, n, is known to
the online algorithm, it is best to leave the first f(n) points unmatched before

starting to match points, where f(n) is a linear function of n, e.g., f(n) = n/5.

Chapter 7 concludes the thesis and lists a few directions for future work.

Chapter 2

Problem statement

2.1 Input of the problem

The input of the geometric matching problems is a set of points in a general position
in the plane that need to be matched. These points might represent an entire, or a
part of the object, such as an image [18], a map [I1], or a protein structure [I5]. In
some cases, points represent two distinct classes of objects, and it is needed to match
points of opposite colors. That is, the input is divided into subsets of different colors
[24] (see also [29]). This variation of the input is called bichromatic matching. The
setting in which any two points can be matched is called monochromatic matching.
We study both bichromatic and monochromatic cases in this thesis.

We assume the set of points that form the input are located in a general position
in a plane, and are generated in an online manner. In the monochromatic case, all
points have the same color, black. In the bichromatic case, half of the points are red,

and the rest are blue.

2.2 Objective of the problem

The objective of the matching points problem is to match all points such that there is
no unmatched point in an offline setting (except possibly one point if there is an odd
number of points). Such matching is called a “perfect matching". Perfect matching for
the offline non-crossing matching problem can be efficiently computed in O(nlogn)
time in both monochromatic or bichromatic cases. To achieve a perfect matching in

the monochromatic setting, one can sort points based on their z-coordinate and then

match consecutive pairs. For the bichromatic case, an optimal offline algorithm finds
the ham-sandwich line that bisects the blue and red points in O(n) time [31], and
applies a divide-and-conquer approach.

In the online setting, where the input points are revealed in an online and sequen-
tial manner, it is not possible to match all points. As such, the main objective is to
achieve matchings that are as close as possible to a perfect matching. That is, the
goal is to minimize the number of unmatched points (alternatively, to maximize the
number of matched points).

In the non-chromatic setting, we define the online non-crossing matching problem

as follows.

Definition 1. The input to the monochromatic setting of the online non-crossing
matching problem s a sequence of points in general position in the plane that are
revealed in an online, sequential manner. Note that the number of points, n, is known
to the online algorithm. When a point p is revealed, an online algorithm can match p
with an existing unmatched point, provided that the line segment between them does
not cross previous line segments added to the matching. Alternatively, the algorithm
can leave p (hoping to match it later with a forthcoming point). The objective is to
create a matching in which a mazimum number of points are matched. Equivalently,

the goal is to minimize the number of unmatched points.
Similarly, the bichromatic setting is defined as follows:

Definition 2. The input to the bichromatic setting of the online non-crossing
matching problem s a sequence of points in general position in the plane that are
revealed online. Half of the points are blue, and half are red. When a point p is
revealed, an online algorithm can match p with an existing unmatched point of the
opposite color, provided that the line segment between them does not cross previous
line segments added to the matching. Alternatively, the algorithm can leave p (hoping
to match it later with a forthcoming point). The objective is to create a matching in
which a maximum number of points are matched. Equivalently, the goal is to minimize

the number of unmatched points.

From the perspective of an online algorithm, it is much harder to generate quality
solutions for the bichromatic setting when compared to the monochromatic setting.
As such, when studying the bichromatic setting, we sometimes consider a relaxed set-

ting in which all red points appear before the first blue point. Clearly, this restricted

input is easier to handle, given that for the first half of the input, an online algorithm

does not need to make any decision (no two red points can be matched).

Chapter 3

Literature review

Overview

This chapter of the thesis reviews the existing literature on the geometric matching
problems, as well as different models and settings that are relevant to our purpose.
In Section [3.1] the previous works on some of the related matching problems are
reviewed. Online algorithms under the advice model are reviewed in Section [3.2

Finally, some of the relevant results on randomized algorithms are reviewed in Sec-

tion B.3]

3.1 Relevant problems

Due to the importance of the matching problem in computational geometry and graph
theory, there has been a wide range of previous works on this topic. The following is

a list of problems that we find most related to our work.

e The bichromatic non-crossing matching problem was first defined by Atallah [3].
It was assumed that the input was formed by n red and n blue points, and the
goal is to find a perfect, non-crossing matching between red and blue points. To
this aim, a deterministic algorithm achieves a perfect matching in O(nlog®n)
time as presented. This problem was later popularized as the “Ghosts and
Ghostbusters" problem in the book by Coffman et al. [12].

e Aloupis et al. [I] considered an offline problem in which input is formed by a

pair (P, O), where P is a set of points, and O is a set of geometric objects such as

10

convex polygons, line segments, and lines. The goal is to create a non-crossing
matching between the points in P and objects in O. On the other hand, specific
instances of the problem, e.g., where P is a set of line-segments positioned on

the same line, are solvable in polynomial time [I].

Vaidya [36] considered the problem of a minimum-weight perfect matching in
a geometric graph G defined by a set of points as follows. Given a set P of
n points, form a complete graph that has a vertex associated with each point.
Let the weight of the edge connecting each two vertices (points) as the pairwise
Manhattan (or Euclidean) distance between the points. Given that G is a
complete graph, it is easy to find a perfect matching in G. In the minimum-
weight perfect matching, however, the goal is to find a perfect matching with the
smallest weight [36]. In other word, the problem asks for a matching between
a set of points so as the maximum length of the line segments that connect
matched pairs is minimized. Vaidya shows that such matching can be found
in O(n?*?(logn)*) time, if the distance is measured by Manhattan or Euclidean
distance. In the bichromatic case, half of the points are red, and half are blue.
In this case, the goal is to create a matching between them to minimize the
maximum distance between any pair of matched points (the underlying graph
can be thought of as a complete bipartite graph). The optimal matching can
be found in O(n*?logn) time for the Euclidean distance and in O(n?(logn)?)

time for the Manhattan distance.

Many graph matching problems have been studied in the online setting. In
the online bipartite matching problem, vertices in one side of a bipartite graph
are available at the beginning, and vertices on the other side appear in an
online manner (along with their connections to the offline part). The goal is
to match vertices of the second part with their neighbors in the first part to
maximize the number of matched pairs. It is needless to say that the decision
of the online algorithm is irrevocable and once a pair of vertices are matched,
they stay matched throughout. It is easy to see that a greedy algorithm that
matches a new vertex whenever possible has a competitive ratio of 2, and it is
the best that a deterministic algorithm can achieve. Karp et al. [25] presented
the randomized algorithm Rank, which assigns a random ordering to the vertices
that are present at the beginning. Upon arrival of a vertex in the online side,

it is matched with an unmatched neighbor with the highest priority (if any

11

neighbor is unmatched). Karp et al. [25] showed that Rank has a competitive
ratio of 1.58, which is the best a randomized algorithm can achieve. Khuller et
al. [20] studied an extension of the problem to the weighted bipartite graphs,
where edges are weighted, and the goal is to maximize the total weight of edges
between matched pairs. There are many other works that are focused on online

matching in graphs with certain structures, see, e.g., [10, 27, 2§].

We also note that the offline matching point problem has several applications in
different fields of science and engineering, like image processing [11], pattern recogni-

tion [37], mapping problems [14], and bioinformatics [15].

3.2 Advice model

In general, an online algorithm serves each request at the arriving time without any
knowledge about forthcoming requests. In practice, however, online algorithms might
have some information, in the form of some bits of advice, about future input, which
improves the performance of the algorithms. Under the advice model, we study
the number of advice bits that is necessary and sufficient for online algorithms to
perform optimally (i.e., achieve a competitive ratio of 1). The standard advice model,
introduced by Bockenhauer et al. [6], assumes the advice bits are written on an advice
tape which is available to the online algorithm before starting to serve the input
sequence. Moreover, it is assumed that the algorithms understand the meaning of
advice bits (i.e., it is not needed to include information about the meaning of advice
bits in the tape). We refer to the survey by Boyar et al. [9] for different advice models
and problems that are studied under this setting. In particular, the online bipartite
matching problem has been studied under the advice model [33], where it is proved
that O(n!) advice bits are necessary and sufficient to achieve an optimal matching for
a graph with partition size n.

The classic advice model assumes that the offline oracle that generates advice is
trusted in the sense that the advice that it generates is always consistent with what
it represents. Angelopoulos et al. [2] introduced untrusted advice model, where the
advice is generated by an untrusted oracle who provided untrusted advice. In this
case, an online algorithm should be consistent, that is, it performs better than a
purely online algorithm in case the advice is correct, and also robust, in the sense

that if the advice is wrong, its competitive ratio is not worse than the purely online

12

algorithm.
In this thesis, we study the matching online point problem under the assumption

that the advice bits are written on an advice tape, and that the advice is trusted.

3.3 Randomization

As mentioned earlier, randomization can help improve the competitive ratio of online
algorithms. For example, the competitive ratio of the deterministic greedy algorithms
for the bipartite matching problem can be improved from 2 to 1.58 with the random-
ized algorithm Rank that associates priorities to vertices in the offline partition [25].

To analyze the algorithm, we are interested in the worst-case input generated by
an adversary. An adversary can be “adaptive" or “oblivious". An adaptive adversary
either knows the entire random bits used by the online algorithm beforehand (an
adaptive offline adversary) or learns about the random bits sequentially (an adaptive
online adversary). Regardless, an adaptive adversary can “adapt" its worst-case input
based on the outcomes of the random bits used by the algorithm. In contrast, an
oblivious adversary is unaware of random bits and has to create a worst-case input
solely based on its knowledge of (the code of) the algorithm, but not the outcomes of
the random bits. Throughout this thesis, we assume the adversary is oblivious and
analyze randomized algorithms accordingly. This is because adaptive adversaries are
too powerful in terms of learning random bits, and it is often not possible to derive
results better than deterministic algorithms against such adversaries [5].

The advice model and randomization are closely related, e.g., Diirr et al. [13]
compared randomization and advice settings for the bipartite matching problem and
provided a method that takes advantage of both advice and random choices at the
same time. Mikkelsen [32] introduced a technique to interpret randomized online
algorithms to deterministic online algorithms with a linear number of advice bits. The
given method is applied on all problems modeled as Metrical Task System (MTS),
e.g., paging, list update, k-server, dynamic binary search tree, and metric matching

problems.

13

Chapter 4

Deterministic algorithms for the

online non-crossing matching

problemﬂ

Overview

In this chapter, we study deterministic online algorithms for the non-crossing match-
ing problem. Recall that, under the monochromatic setting, a sequence of points in
general position in the plane is revealed in an online manner, and the goal is to create
a maximal matching of these points such that the line segments connecting pairs of
matched points do not cross. The bichromatic setting is defined similarly, except that
half of the points are red and the rest are blue, and each matched pair consists of one

red point and one blue point.

Contribution. Our contributions in this chapter can be summarized as follows.
e For the monochromatic setting (Section [4.1)):

— We consider greedy algorithms with the following greedy property: the
algorithm never leaves an incoming point unmatched if it can be matched
with some existing point. We prove that a greedy algorithm can match at

least [2(n — 1)/3] points for any input of n points.

LA summary of the results in this chapter is published in the proceedings of the 32nd Canadian
Conference in Computational Geometry (CCCG 2020) [7].

14

— We prove optimality since no deterministic algorithm can match more than

[2(n — 1)/3] points in the worst case.

e For the bichromatic variant (Section [4.2)):

— We introduce an algorithm that matches at least logn — o(logn) points for
any input sequence formed by n red and n blue points in a relaxed setting

in which all red points appear before the first blue point.

— We show this algorithm is optimal as no deterministic algorithm can match
more points in the worst case. Our results indicate that the bichromatic
variant is more difficult than the monochromatic variant in the online

setting.
e We study the problem under the advice setting (Section :

— For the monochromatic version of the problem, we show that advice of size
2n is sufficient to match all n points, and advice of size |log((n —2)/3)] is

necessary.

— For the bichromatic variant, we show advice of size ©(nlogn) is both
sufficient and necessary to match all points, precisely n[logn| bits are

sufficient and [logn!| bits are necessary.

4.1 Monochromatic non-crossing matching

This section contributes in providing tight bounds on the number of matched points
in monochromatic non-crossing matching problem. The input consists of a set of one

color points that are generated by an adversary in an online manner.

4.1.1 Upper bound

An online algorithm is said to have a greedy property if and only if it never leaves a
point unmatched if it has an option to match it. We provide an upper bound for the
number of unmatched points by an algorithm with greedy property. Equivalently,

this gives a lower bound for the number of matched points by such an algorithm.

15

Figure 4.1: A partition of the plane into convex regions in the analysis of a greedy al-
gorithm. The numbers on the line segments indicate the order they are processed in the
analysis.

Theorem 1. Any online algorithm with the greedy property matches at least 2[(n —
1)/3] points in any instance of the online monochromatic non-crossing matching

problem on n points.

Proof. Let GR be a greedy algorithm. The proof works by partitioning the plane
into a set of convex regions such that each region, except one, is mapped to a pair
of matched vertices. For that, we process the line segments between matched pairs
of GR in an arbitrary order. Initially, there is only one part, formed by a bounding
box of the entire point set. This part has no pair associated with it. Extend each
line segment until it intersects an existing line in the current partition. Note that the
extended segment divides one convex region into two smaller convex regions, out of
which we associate one with the pair that has been processed and the other to the
pair that was previously associated with the partitioned convex region. Repeating this
process for all line segments results in k+1 convex regions in the final partition, where
k is the number of matched pairs (see Figure . For detailed geometric properties
of this convex subdivision, see, e.g., [8, 23]. Since GR has the greedy property, there
is at most one unmatched point inside each convex region.

To summarize, the number of unmatched points u is no more than the number of
convex regions, which is one more than the number of matched pairs m. So, we have
u < m + 1. The statement follows from the fact that « + 2m = n. O

16

4.1.2 Lower bound

Next, we provide a lower bound for the number of unmatched points by any online
algorithms in the worst-case scenarios. Equivalently, this would be an upper bound

for the number of matched points by any online algorithm.

Theorem 2. Let ALG be any deterministic online algorithm for the monochromatic
non-crossing matching problem. There are sequences of n points for which ALG
matches at most 2[(n — 1)/3] points.

Proof. We form an input that is generated in an adversarial manner based on the
actions of ALG. The adversary maintains a critical region, which is initially the
entire plane, and shrinks as the algorithm proceeds. The adversary keeps adding
points to arbitrary positions in the critical region. The critical region is updated as
soon as the algorithm matches two points a and b. Consider the two sides of the
line passing through a and b. If there is a non-empty set S of unmatched points on
any side of the line in the critical region, then the critical region is updated to be its
sub-region that is not visible to any point in x € S assuming the line segment between
a and b acts as an obstacle. This can be done by extending the line segments between
x and a and b (see Figure . Since points are in general position, the updated
critical region is non-empty. Note that if both sides of the line passing through a
and b include unmatched points, the adversary selects one side arbitrarily. In case
no unmatched point exists in the critical region, the adversary first generates a point
2 in an arbitrary position in the critical region and updates the critical region as a
sub-region not visible by x. This process continues by sending the subsequent points
in the updated (smaller) critical region.

The main observation is that, after a critical region is updated, at least one point x
remains unmatched since the line segment between x and any future point crosses the
segment between a and b. In particular, we can assign at least one unmatched point
x to a matched pair. After updating the critical region, the very first point generated
in the updated region also remains unmatched. Let u and m denote the number of
unmatched points and matched pairs, respectively. By the above observations, we

have © = m + 1. The statement of the theorem follows from u + 2m = n. O

Given that the upper bound of Theorem (1| for the number of unmatched points of

a greedy algorithm matches the lower bound of Theorem [2] for any online algorithm,

17

we conclude that the greedy algorithm is the optimal deterministic algorithm for the

non-crossing matching problem.

(a) (b) (c)

Figure 4.2: An illustration of updating the critical region (pink region) by the adversary
in the proof of Theorem The numbers on the points indicate their index in the input
sequence. (a) Once points 1 and 2 are matched, there is no unmatched point in the critical
region. The adversary generates point 3 and updates the critical region to its subregion that
is not visible to 3. (b) Assume the algorithm does not match the next points 4, 5, 6, and
7. When it matches points 5 and 8, points in S = {4,6} are unmatched on one side of the
line passing through 5 and 8. The adversary updates the critical region to be its subregion
not visible by any member of S. (c¢) Assume the algorithm does not match the next point
9. When it matches points 10 and 7, the set S = {9} is unmatched on one side of the line.
The critical region is updated to be its subregion not visible to 9.

4.2 Bichromatic non-crossing matching

In this section, we study deterministic online algorithms for the bichromatic non-
crossing matching problem.

In the light of the above result, we consider a setting in which the input is formed
by n red points known to the algorithm from the beginning and n blue points that
appear in an online manner and need to be matched with the red points. Under
this relaxed setting, we provide tight upper and lower bounds for the number of

unmatched points in the worst-case scenarios.

4.2.1 Upper bound

Consider an online algorithm, named the Greedy Median (GM) algorithm, that works
as follows. Upon the arrival of a blue point a, GM forms a set S of eligible red points
that can be matched with a without crossing previous line segments. If S is non-

empty, GM matches a with the median of the points in S when arranged in angular

18

order around a. The selection of angular ordering is arbitrary, and it can be replaced

by any order as long as the line through a and the median of the points in .S bisects

S.

Theorem 3. The Greedy Median (GM) algorithm matches at least log(n) — o(logn)
pairs of points in any instance of the bichromatic non-crossing matching problem

formed by a set of n red points and a sequence of n blue points.

Proof. Let M(n) denote the number of matched pairs by GM in the worst case in
an instance formed by n blue and n red points (we have M (1) = 1). The algorithm
matches the first blue point with the median of the red points. Consider the two sides
of the line that passes through the matched pair. One of the two sides contains at
least half of the future blue points, i.e., at least [(n—1)/2] blue points. There are also
| (n—1)/2] red points on the same side (since the line bisects the red points). So, we
have M(n) > 1+ M([25*]) for n > 1, which solves to M(n) > log(n) — o(logn). [

4.2.2 Lower bound

Although it is not difficult to match logn — o(logn) points, as GM does, the following
theorem shows that no online algorithm can guarantee to match more than logn —

o(logn) points.

-
<
[\

Figure 4.3: Updating the critical region by the adversary in the proof of Theorem |4, In
the beginning, the critical region is the entire lower arc. Assume ALG does not match the
first blue point but the second one is matched. The majority of red points appear on the
right of the line L passing through the matched pair. As such, the adversary updates the
critical region to be the left of L.

Theorem 4. Let ALG be any deterministic online algorithm for the bichromatic non-
crossing matching problem. There are inputs formed by a fixed set of n red points and

a sequence of n blue points for which ALG matches at most logn — o(logn) points.

Proof. We create an adversarial input in which n red points are placed in arbitrary

positions on an arc of a large circle so that they seem collinear except that the

19

corresponding arc slightly curves outwards. The blue points appear in an online
manner below the red point on a similar arc that slightly curves inwards. This arc
is referred to as a critical region at the beginning, and is updated as the algorithm
matches points. Assume at some point ALG matches an incoming blue point with a
red point, and let L be the line that passes through the matched pair. The number of
red points on one side of L is at most |(n—1)/2]|. The adversary updates the critical
region to only include this side of L. This ensures that at least [(n—1)/2] red points
on the other side of L remain unmatched, this is because the line segments between
these points and all future blue points (generated in the updated critical region) cross
L (see Figure[4.3)). So, each time ALG matches two points, the number of red points
that can still be matched decreases by a factor of at least 2. Consequently, the number

of matched pairs is at most logn — o(logn). O

4.3 Non-crossing matching with advice

In this section, we study the non-crossing matching problem under the advice model.
Recall that under the advice model, an online algorithm is provided with some bits of
advice about the input sequence. The advice can encode any information about the
input sequence, and is generated by a benevolent offline oracle that knows the entire
input. A central question under the advice model asks for the number of advice bits
necessary /sufficient to achieve an optimal solution. In the context of the non-crossing
matching problem, this question translates to the number of advice bits needed to

match all points.

4.3.1 Monochromatic setting

The first step is to show that O(n) bits of advice is sufficient to match all the points.

Next, we prove that the advice of size O(n) is required to match all points.

Upper bound on the advice size

Theorem 5. There is an online algorithm that receives (log, 3) n+o(n) < 1.59n bits
of advice and matches all points (except one if 7 is odd) in any instance of the online

monochromatic non-crossing matching problem on n points.

Proof. Consider an offline matching that sorts the points by their z-coordinate and

matches consecutive pairs of points. Call these pairs of matched points “partners".

20

Note that all points are matched by this offline algorithm (except one if n is odd).
Now, for each point p, we generate an advice f(p) € {0, 1,2}, based on this offline

matching, as follows:

e when the partner of p appears after p in the online sequence, we define f(p) = 0.

e when the partner of p appears before p and is located to the left of p, we define
flp) =1.

e when the partner of p appears before p and is located to the right of p, we define
flp) =2.

So, the advice forms a string of length n over an alphabet of size 3. This can be
encoded in (log, 3) n + o(n) < 1.59n bits using, e.g., a wavelet tree structure [19].

It remains to show how to match points using the advice. Assume a point p
arrives. If the advice encoded for p is 0, the algorithm keeps it unmatched as its
partner has not arrived yet. If the advice is 1 or 2, then p should be matched with
the point with the closest x-coordinate on its left or right, respectively. Using this

scheme, we obtain a matching that is the same as the optimal offline solution. O]

Lower bound on the advice size

In what follows, we show that advice of size Q(logn) bits is required to match all
points in a given sequence of n points (assume n is even). Our lower bound argument
generates sequences in which all points are on the circumference of a circle. In the
offline setting, we can index the points in clockwise order, starting from an arbitrary
position. Any matching of a point with an even index to a point with an odd index
divides the problem into two even-sized sub-problems, which can be solved recursively.
Any such matching is equivalent to a balanced parenthesis sequence (see Figure .
Consequently, in the offline setting, there are C,, , different ways to match all points,
where C,, /5 is the (n/2)th Catalan number.

In order to provide a lower bound for the size of advice bits required to match
all points, we create a family of n — 2 input sequences of length n, denoted by
01,09,...,0n—2. All these sequences start with a common prefix pi,pa, ..., Pn_a,
where the p;’s appear in clockwise order on the circumference of a circle. The last
two points of any sequence o; are z; and y;, where x; is a point located between p;_;

and p;, and y; is a point located between p; and p; .

21

Assume an online algorithm ALG (with advice) is applied on a sequence o;. Define
a partial matching as the (incomplete) solution of ALG for the common prefix of the
sequences in the family (the first n — 2 points). In the partial solution, some points
are matched, call them partners, and some are unmatched. A partial matching is said
to be wvalid for o;, iff it can be completed such that all points in o; are matched at
the end.

1

Figure 4.4: When points are located on the circumference of a circle, an offline algo-
rithm can match all points by matching even-indexed points with odd-indexed points. The
parentheses sequence associated with this matching is (1 (2 (3 (4)5)6)7 (8)o)10 (11)12-

Lemma 1. Any partial matching is valid for at most two sequences from the family.

Proof. A valid partial matching for any sequence in the family should have exactly
two unmatched points. If more than two points are unmatched, some will stay un-
matched at the end since only two more points from each sequence are left. If all
points are matched, the last two points x; and y; in ¢; remain unmatched since the
line segment between them crosses the line segment between p; and its partner. So,
we can consider a partial matching .S; ; where two points p; and p; are unmatched.

There are two cases to consider:

Case I: assume the line segment between p; and p; does not cross any line segment be-
tween matched pairs in S; ;. We claim S; ; cannot be valid for any oy, where k ¢ {i, j}.
Consider a line L passing through p;, and its partner py in S; ;. Both p; and p; appear
on the same side of L. Among x; and y;, one appears on the same side of L while
the other appears on the other side. In short, three unmatched points appear on one
side of L and one on the other side (see Figure [4.5a)). We cannot match all points

without crossing L.

22

Case II: assume the line segment between p; and p; crosses a line segment L
between p; and its partner py. So, p; and p; appear on different sides of L, which
implies the remaining two points should be also on different sides of L to be matched
with p; and p;. This is only possible for o4, and o (see Figure . Note that if the
line segment between p; and p; crosses more than one line segment in 5; ;, the same
argument implies that the remaining points should be on the two sides of two existing
line segments in S; ; at the same time, which is not possible (see Figure . O

P

Figure 4.5: An illustration of Lemma |ll We have a partial matching S; ; where all points
except p; and p; are matched. (a) if the line segment between p; and p; does not cross existing
segments in S; ;, it is not possible to match all points of any sequence oy, for k ¢ {3, j}. (b)
if the line passing through p; and p; crosses a line segment between two matched points py,
and py/, then it might be possible to match the remaining points of oy and ops. (c) if the
line segment passing through p; and p; crosses two line segments L and L’ between matched
points, we cannot match the remaining two points.

Using Lemma (1|, we can prove the following lower bound on the size of advice

required to match all points.

Theorem 6. A deterministic algorithm requires advice of size at least |log((n—2)/3)]
in order to guarantee matching all points in any instance of the online monochromatic

non-crossing matching problem on n points.

Proof. Assume, for the sake of a contradiction, that there is an algorithm ALG that
matches all points in any instance of length n with less than a(n) = |log((n—2)/3))]
bits of advice. In particular, ALG should match all points for any sequence in the
family {oy,...,0,_2} as we described above. We partition this set into 2% <
(n — 2)/3 sub-families, each formed by sequences that receive the same advice bits.
Since there are n—2 sequences and at most (n—2)/3 sub-families, there is a sub-family
with at least 3 sequences, that is, there are three sequences o,, 03, and o, that receive

the same advice. Since these three sequences have the same common prefix and

23

receive the same advice, ALG treats them similarly for the first n — 2 points. That is,
the partial matching of ALG is the same for all o, 05, and o.. By Lemmal/l], however,
this partial matching is not valid for at least one of these sequences. We conclude

that ALG cannot match all points for at least one sequence, a contradiction. O

4.3.2 Bichromatic setting

We show that advice of size ©(nlogn) is both sufficient and necessary to match all
points in the bichromatic setting. The more complicated nature of the bichromatic
setting implies that advice of size of ©(n) is insufficient (unlike the monochromatic

setting) and, at the same time, simplifies our lower and upper bound arguments.

Theorem 7. Consider any instance of the online bichromatic non-crossing match-
ing problem with a sequence of n blue and a fixed set of n red points. There is a
deterministic algorithm that receives n[logn] bits of advice and matches all points.
Meanwhile, any deterministic algorithm requires advice of size at least [logn!]| bits

in order to match all points.

Proof. Upper bound: The offline oracle creates an ordering of the red points (say
ordered by x-coordinate and ties broken by y-coordinate) and computes an optimal
bichromatic matching on these. Now, for each blue point x, it encodes an advice of
size [logn] that indicates the label of the red point to which x is matched. The online
algorithm can mimic the offline matching by forming the same ordering of red points
and matching each blue point to the red point indicated in the advice.

Lower bound: Consider instances of the problem in which the n red points rq,79,...,7,
are placed, from left to right, on an arc of a large circle so that they seem collinear.
The blue points by, bs,...,b, appear below the red points on an arc that slightly
curves inwards (similar to Figure [1.3). In order to match all points, the left-most red
point (r1) should be matched with the left-most blue point (b;). Using an inductive
argument, we can show there is a unique matching of all points, where r; is matched
with b;. Consider a family of n! sequences, each associated with a permutation of
the blue points by, ..., b, that indicates the order at which they appear in the online
sequence. Let ALG be a deterministic online algorithm with less than [logn!] bits
of advice. This implies that two sequences o and ¢’ in the family receive the same
advice. Assume the permutations associated with o and ¢’ differ for the first time at

index 7, and let = be the 7’th point in the input sequence. In ¢, the point x is b, and

24

in ¢’ it is by for some k # k’. Since ALG is deterministic and receives the same advice
for o and o', it matches x with the same red point in both cases. Such a matching,
however, is not consistent with the unique optimal matching for at least one of the
two sequences. As such, some points remain unmatched in either o or ¢’, and hence

ALG fails to match all points. O

25

Chapter 5

Randomized algorithms for the online

non-crossing matching problem

Overview

This chapter of the thesis discusses the non-crossing matching problem under the ran-
domization model for both monochromatic and bichromatic cases. We study worst-
case scenarios, where the input is generated by an adversary that is oblivious to the
random choices made by the algorithm, but it is aware of how the algorithm works
(that is, the code of the algorithm). There are two main components in our random-

ized algorithm for the monochromatic setting.

Contribution. Our contributions can be summarized as follows:
e For the monochromatic setting:

— We present a randomized algorithm that leaves at most 116n/351+-202/351
0.3304n + 0.5754 unmatched points on expectation. This shows the advan-
tage of randomized algorithms over deterministic algorithms, which leave

at least roughly 0.33n points in the worst case.

— We show that a linear number of points are expected to remain unmatched
by any randomized algorithms. Precisely, we show that any randomized
algorithm leaves more than (9 — v/57)n/(3v/57 — 3) Z 0.0738n points un-
matched on expectation for the sequences generated by an oblivious ad-

versary.

26

e For the bichromatic setting, we show that randomization provides little improve-
ment over deterministic algorithms. In particular, no randomized algorithm can
match more than O(logn) points on expectation, even under a relaxed setting

where all red points appear before the first blue point.

Overview of techniques. Our algorithm for the monochromatic setting has two
attributes. First, it maintains a convex partitioning of the plane, and matches two
points only if they appear in the same partition. This is followed by updating the par-
titioning by extending the edge between the matched pair. This partitioning enables
us to use a simple inductive argument to analyze the algorithm. Second, the algo-
rithm deviates from the greedy strategy. In particular, the algorithm gives a chance
for an incoming point x to stay unmatched even if there are one or two points in the
same convex region that it can match. As we will see, this will be essential for any
improvement over deterministic algorithms. The lower bounds for both monochro-
matic and bichromatic settings are based on Yao’s principle [38], where adversarial
arguments are used for defining a probability distribution for input sequences. We
will explain how an adversary can define such distributions to maximize the number
of unmatched points. In both lower-bound arguments, the input points appear on

the circumference of a circle.

5.1 Monochromatic Setting

In this section, we first present a randomized algorithm for the single-pair non-crossing
matching problem (Section [5.1.1)). This is followed by a lower bound that shows any
randomized algorithm for the monochromatic non-crossing matching problem is ex-

pected to leave a linear number of points unmatched in the worst case (Section [5.1.2)).

5.1.1 Upper bound

In this section, we present a randomized algorithm for the monochromatic non-
crossing matching problem. In what follows, we use L, to denote the line passing

through a and b, and S,; to denote the line segment between a and b.

Algorithm’s description

The algorithm maintains a partitioning of the plane into convex regions, and matches

points only if they belong to the same region. At the beginning, there is only one

27

region that is formed by the entire plane. After four points appear inside a convex
region, one or two pairs of points are matched, and the convex region is partitioned
into two or three convex regions by extending the line segments passing through the
matched pairs.

Let z,y, z, and w be the first four points inside a convex region C' (in the same

order). In what follows, we describe how these four points are treated.

e Upon the arrival of x, there is no decision to make, given that there is no point
inside C' to be matched with x.

e Upon the arrival of y, it is matched with = with a chance of 1/2, and stays

unmatched with a chance of 1/2.

e Upon the arrival of z, if the pair (z,y) is already matched, then there is no
decision to make. Otherwise, z is matched with x with a chance of 1/3, with y

with a chance of 1/3, and stays unmatched with a chance of 1/3.
e Upon the arrival of w, there are two possibilities to consider:

— First, suppose a pair of points a,b € {x,y,z} is already matched, while
a third point ¢ € {z,y, 2z}/{a, b} is unmatched. If it is possible to match
w with ¢ (that is, S,. does not cross Sg), then w is matched with ¢;

otherwise, when S,,. and Sy, cross, there is no decision to make.

— Second, suppose no pair of the first three points are matched. Then
w is matched with a point a € {x,y,z} so that the two points b,c¢ €
{z,y,2z}/{a} appear on different sides of the line L, (if there is more

than one such point, w is matched with z).

After the arrival of four points inside C, either all points are matched into two
pairs, in which case we say a “double-pair" is realized, or only two points are matched
while the other two appear on different sides of the matched pair, in which case we
say a “single-pair" is realized. If a single-pair is realized, the line segment between the
matched pair is extended until it hits the boundary of C; in this case, C' is partitioned
into two convex regions. If a double-pair is realized, the line segment between any of
the matched pairs is extended until it hits the boundary of C' or the (non-extended)
segment between the other matched pair. This is followed by extending the line
segment between the second pair until it hits the boundary of C', or extending the

line that passes through the first matched pair. When a double-pair is realized, C' is

28

<
Cq > Cso C1 ~ P9 Cs
N N

P3 .\.pﬁ
\p4 P2 _ - \p4 P
N
P1 P1 ps
[]
p7 /
b8
/
L

2 _ -~
== P10
Cs

Cy

/

/
(]

C3

(a) The state of the algorithm after processing (b) The state of the algorithm after processing
P1y---5DP4- P1y.--5DP10-

Figure 5.1: One possible output of the algorithm when the input is a sequence of 10 points
labeled as p1, ..., p1o in the order of their appearance.

partitioned into three convex regions. The following example indicates the algorithm’s
steps.

Consider an input formed by 10 points labeled from p; to pip in the order of
their appearance, as depicted in Figure [5.1 The convex regions maintained by the
algorithm are highlighted in different colors. Initially, the entire plane is a convex
region Cy, where the points pi, po, p3, and ps appear. Upon the arrival of py, the
algorithm match it with p; with a chance of 1/2. Suppose (p1, p2) are matched. Then,
there is no decision to be made for p3. Upon the arrival of p,, the line segments
Spip, and Sp,,, do not cross. Therefore, p, is matched with ps. At this point, four
points have appeared in Cj and a double-pair (p;, pa) and (ps, ps) has been realized.
Therefore, Cy is partitioned into three smaller convex regions C4, C5, and C3 by
extending Sy, ,, and then Sy, ,, (Figure 5.1a)). Points ps and ps appear respectively
in C5 and Cs. Since these are the first points in their respective regions, there is no
decision to be made, and they stay unmatched. Subsequently, p; appears in C3 and
the algorithm might match it to ps with a chance of 1/2. Suppose these two points
are not matched. Upon the arrival of pg in Cj, it is matched with ps or p7, each with
a chance of 1/3, and is left unmatched with a chance of 1/3. Suppose (ps,ps) are
matched. Next, point pg appears in Cy and is matched with ps with a chance of 1/2,
and stays unmatched with a chance of 1/2. Suppose (pg, pg) are matched. Finally,
point pyg appears on Cs. Given that the S,.,,, crosses S.,,, there is no decision to be
made, and p;o stays unmatched. At this point, four points have appeared in Cj3, and
a single-pair (ps, pg) has been realized. Therefore, C3 is partitioned into two smaller
convex regions Cy and Cs by extending Sy, ,, (Figure [5.1D)).

29

Algorithm’s analysis

Let f(n) denote the expected number of unmatched points left by the algorithm when
input is formed by n items. We use an inductive argument to find an upper bound
for f(n). First, we prove the following lemma, which is used when establishing the

base of the induction.

Lemma 2. After four points arrived in the convex region C', with a chance of at
least 1/3, a double-pair is realized, and with a chance of at most 2/3, a single-pair is

realized.

Proof. Let x,y, z, and w denote the four points in the same order they appear. There

are two cases to consider:

e Suppose Sy, crosses S,,,. With a chance of 1/2, z and y are not matched. After
that, with a chance of 2/3, z is matched to x or y. Without loss of generality,
assume z is matched with z. Given that S;, crosses S, line segments S,
and Sy, will not cross, implying that w is matched to y, and a double-pair is
realized. So, with a chance of at least 1/2-2/3 = 1/3, all points are matched,

and a double-pair is realized.

e Suppose S,y does not cross S,,. Then, (z,y) are matched with a chance of 1/2,

and after that, (w, z) are matched, and a double-pair is realized.
O
Using Lemma , we can establish an upper bound for f(n) for small values of n.

Lemma 3. We have f(0) =0, f(1) =1, f(2) =1, f(3) =4/3, f(4) <4/3,f(5) <
5/3, £(6) < 20/9, and f(7) < 52/18.

Proof. Suppose n items appear in a convex region C. The proof is trivial for n < 2.

In what follows, we prove the lemma for other values of n.

e Forn = 3, it is possible that all points stay unmatched, which happens when the
second point is not matched with the first one (with a chance of 1/2), and then
the third point is not matched with any of the first two points (with a chance
of 1/3). Therefore, with a chance of 1/6, all three points stay unmatched,
and one point stays unmatched with a chance of 5/6. We can write f(3) =
1/6-3+5/6-1=4/3.

30

e For n = 4, using Lemma [2| we can write f(4) <1/3-0+42/3-2=4/3.

e For n = 5, after the first four points appeared, either a single-pair or a double-

pair is realized:

— Suppose a single-pair is realized. Then, C' is partitioned into two regions,
one containing one point and the other one containing two points. There-
fore, it is expected that f(1)+ f(2) = 2 points stay unmatched.

— Suppose a double-pair is realized. Then, the first four points are matched,

and only the fifth point stays unmatched.

By Lemma [2, with a chance of at least 1/3, a double-pair is realized, and with
a chance of at most 2/3, a single-pair is realized. Therefore, we can write

f(5)<1/3-1+2/3-2=15/3.

e For n = 6, after the first four points appeared, either a single-pair or a double-

pair is realized:

— Suppose a single-pair is realized. Then, C' is partitioned into two regions.
Either (i) the fifth or the sixth points appear on the same region, in which
case one region will have one point, and the other one will have three
points, or (ii) the fifth and the sixth points appear in different regions, in
which case each region contains two points. Therefore, it is expected that
at most max{f(1) + f(3), f(2) + f(2)} = 7/3 points stay unmatched.

— Suppose a double-pair is realized. Then, at most 2 points (the last two

points) stay unmatched.

By Lemma [2 with a chance of at least 1/3, a double-pair is realized, and with
a chance of at most 2/3, a single-pair is realized. Therefore, we can write
f6)<1/3-2+2/3-7/3=20/9.

e For n = 7, after the first four points appeared, either a single-pair or a double-

pair is realized:

— Suppose a single-pair is realized. Then, C' is partitioned into two regions.
Either (i) the fifth, the sixth, and the seventh points all appear in the same
region, in which case one region has one point, and the other one has four

points (Figure|5.2al), or (ii) one of these points appear in one region, and the

31

(a) The case where a (b) The case where a (¢) The case where a
single-pair is realized, and single-pair is realized, and double-pair is realized, and
the last three points ap- the last three points ap- the last three points ap-
pear in different regions. pear in different regions. pear in different regions.

Figure 5.2: The cases used in the calculation of f(7); a,b,c,d € {x,y, z,w} where z, y, z,
and w are the first four points in the same order of their appearance.

other two appear in the other region, in which case one region contains two
points, and the other region contains three points (Figure . Therefore,
it is expected that at most max{f(1)+f(4), f(2)+f(3)} < max{1+4/3,1+
4/3} = 7/3 points stay unmatched.

— Suppose a double-pair is realized. Then, at most three points stay un-
matched, which happens when any of the three regions formed by parti-
tioning of the first four points includes a single point (see Figure [5.2¢]).

Unlike other cases, here, the expected number of unmatched points is larger
when a double-pair is realized, and hence we cannot use Lemma 2] Instead,
we note that the chance of a single-pair being realized is at least 1/6 This is
because a single-pair is realized if either (i) the first two points are matched with
a chance of 1/2, and the other two points appear on opposite sides of the line
passing through the matched points, happening with a total chance of 1/2, (ii)
the first two points are not matched with a chance of 1/2; and the third point
is matched to either of the first points with a chance of 1/3, and the fourth
point appears on the side of the matched line that the other unmatched point
is not on, happening with a total chance of 1/6, or (iii) the first three points
stay unmatched with a chance of 1/2-1/3 = 1/6, and then the fourth point
gets match to the point that bisects the unmatched points, happening with a
total chance of 1/6. Therefore, we can write f(7) <5/6-3+1/6-7/3 =52/18

(see Figure [5.2).
[l

In what follows, we show that for n > 2, we have f(n) < cn + d where ¢ =

32

116/351 ~ 0.3304 and d = 32¢ — 10 = 202/351 ~ 0.5754.
To prove this claim, we use an inductive argument. For the base of the induction,

we prove the following lemma.

Lemma 4. For n € [2,7], it holds that f(n) < ¢n + d where ¢ = 116/351 and
d = 202/351.

Proof. The proof follows from Lemma [3| For n = 2, we have f(2) =1 < 2c+d (since
2c +d > 1.2362). For n = 3, we have f(3) = 4/3 = 3¢+ d (since 3¢ + d > 1.5669).
For n = 4, we have f(4) < 4/3 < 4c+d (since 4c + d > 1.8974). For n = 5, we have
f(5) <5/3 < be+d (since 5¢+d > 2.2279). For n = 6, we have f(6) < 20/9 < 6¢c+d
(since 6¢ + d > 2.5584). For n = 7, we have f(7) < 52/18 = 7c + d (note that
e+ d = 52/18). O

Assume n > 8. A single-pair is “good" if after the appearance of all n points, both
of the two regions resulted from extending the line segment of the matching contain
at least 2 points, and it is “bad" otherwise. A double-pair is said to be “good" if after
the appearance of all n points, one of the three regions formed by extending the line

segments of the two matchings is empty; otherwise, it is “bad".

Lemma 5. For n > 8, after serving the first four points inside a convex region, at

least one of the followings hold:
e There is a good single-pair, and it is realized with a chance of at least 1/6
e There is a good double-pair, and it is realized with a chance of at least 1/6.

Proof. Let z,y, 2, and w denote the first four points in the same order that they
appear.
First, suppose the convex hull formed by the four points is a triangle A which

includes the fourth point inside it. We consider the following two cases:

e Assume w is the point that is inside A. Then the pairs (z,y) and (w, z) form
a double-pair which is realized with a chance of 1/2. This is because the pair
(x,y) is matched with a chance of 1/2, and then the pair (w,z) is matched
with a chance of 1. Meanwhile, (w, z) is a single-pair which is realized with a
chance of 1/6. This is because, with a chance of 1/6, the first three points stay
unmatched, and then the algorithm matches w to z with a chance of 1. Now, if

the double pair formed by the pairs (z,y) and (w, z) is bad, then there should

33

be at least one future point on each side of the line passing through (w, z),

which means (w, z) is a good single-pair (see Figure [5.3al).

e Assume w is a vertex of A and another point ¢ € {x,y, z} is inside A. Let a,b
be the other two points in {z,y,z}. Then, the pairs (a,b) and (¢, w) form a
double-pair which is realized with a chance of at least 1/6. This is because the
pair (a,b) is matched with a chance of at least 1/6 (the pair (a,b) is matched
with a chance of 1/2 if z ¢ {a, b}, and with a chance of 1/6 if z € {a,b}), and
then w is matched with ¢ with a chance of 1. Meanwhile, the pair (c,w) is a
single-pair which is realized with a chance of 1/6. Similar to the previous case,
if the double pair formed by the pairs (a, b) and (¢, w) is bad, then there should

be at least one future point on each side of (a,b), which means (a,b) is a good
single-pair (see Figure |5.3b)).

Next, suppose the convex hull formed by the four points is a quadrilateral and
includes all of them. Consider the two single-pairs formed by the diagonals of the
convex hull. Any of these pairs can be realized with a chance of at least 1/6. Specif-
ically, the diagonal involving w is realized when no pair of points from {z,y, z} are
matched, which takes place with a chance of 1/6. The other diagonal is either between
x and y, which is realized with a chance of 1/2, or between z and a € {z,y}, which
is realized with a chance of 1/6. Therefore, if any of the two diagonal forms a good
single-pair, the statement of the lemma holds, and we are done (see Figure . If

(d)

Figure 5.3: An illustration of the proof of Lemma |5, (a) when w is inside the triangle A,
either the single-pair formed by (w, z) is a good single-pair, or the double-pair formed by
(z,y), (w, z) is a good double-pair. (b) when ¢ € {z,y, z} is inside the triangle A, either the
double pair formed by (a,b), (w, ¢) is a good double-pair, or the single-pair formed by (w, ¢)
is a good single-pair. (c) the case when at least one of the diagonals of the convex hull formed
by the four points (here (w,b)) forms a good single-pair (d) when none of the single-pairs
formed by the diagonals of the convex hull are good, all remaining points appear in one of
the quarter-planes formed by extending these diagonals; therefore, the pair of points on the
boundary of the quarter-plane (here (b, ¢)) and the pair of points outside the quarter-planes
(here (w, a)) form a good double-pair.

34

none of the two diagonals is good, then all the remaining points in the input sequence
should appear in one of the quarter-planes formed by extending these diagonals (see
Figure . Then, the double-pair formed by the pair of points on the boundary of
the quarter-plane (points b and ¢ in Figure and the pair of points outside of the
quarter-plain (points w and a in Figure form a good double-pair. The chance
of such a double-pair to be realized is at least 1/6. This is because one of the pairs
in the double-pair involves two of the first three points. If these points are (z,vy), the

double-pair is realized with a chance of 1/2; otherwise, it is realized with a chance of
1/6. 0

We are now ready to prove the main result.

Theorem 8. Our randomized algorithm, for any input formed by n > 2 points, leaves
at most ¢n + d points unmatched, where ¢ = 116/351 and d = 202/351.

Proof. We use an inductive argument. For n < 7, the claim holds by Lemma [3
Suppose n > 8, and assume that for any m < n, it holds that f(m) < cm + d.

First, we claim that the number of unmatched points is at most en 4 d 4 (2 — 6¢)
when a bad single-pair is realized, or a bad double-pair is realized after the first four
points appear. If a bad single-pair is realized, then either (I) there is one point on
one side of the matched pair and n — 3 > 2 points on the other side, or (II) there
is no point on one side of the matched pair and n — 2 > 2 points on the other side.
For (I), by the induction hypothesis, the number of unmatched points on the side
with n — 3 points will be at most f(n — 3) < ¢n — 3¢+ d. Therefore, the number of
unmatched points is at most f(n—3)+1<en—3c+d+1<cn+d+(2—6¢). The
last inequality holds because ¢ < 1/3. For (II), the number of unmatched points will
be at most f(n —2) < cn+d—2c <cn+d+ (2—6¢). If a double-pair is realized
which is not good, then one of the followings holds for the three regions formed by

extending the line segments between the matched pairs:

i) One region contains n — 6 points, and the other two regions each contains one
point. Note that n — 6 > 2 since n > 8. By the induction hypothesis, the
number of unmatched points is at most 2+ f(n —6) = cn+ d + (2 — 6¢).

ii) One region contains m > 2 points, another region contains one point, and the
third region contains n — m — 5 > 2 points. The number of unmatched points
is at most f(m)+ f(n—m—5)+1<cen—5c+2d+1<cen+d+ (2—6¢). The
last inequality holds because ¢ 4+ d < 1.

35

iii) one region contains m; > 2 points, one region contains ms > 2 points, and
the third region contains msz = n — my — my — 4 > 2 points. The number
of unmatched points is at most f(my) + f(ma) + f(m3) < en —4c+3d <
cn +d+ (2 — 6¢). The last inequality holds because ¢+ d < 1.

In summary, if a bad single-pair or a bad double-pair is realized, the number of
unmatched points is at most ¢n + d + (2 — 6¢), and the claim holds.

By Lemma , after the appearance of the first four points, either a) a good pair
or b) a good double-pair can be realized with a chance of at least 1/6.

Suppose case a) holds, that is, a good single-pair is realized with a chance of at least
1/6, which implies a bad single-pair or double-pair is realized with a chance of at most
5/6. In case the good single-pair is realized, there will be m > 2 points on one side of
the line segment connecting matched pair, and n —m —2 > 2 points on the other side.
Therefore, the number of unmatched points will be at most f(m) + f(n —m — 2) <
cn+2d—2c = (en+d)+(d—2c¢). On expectation, the number of unmatched points will
be at most 1/6((cn+d)+(d—2c))+5/6(cn+d+(2—6¢)) = cn+d+1/6(d—32c+10) =
cn + d. The last equality holds because d = 32¢ — 10.

Next, suppose case b) holds, that is, a good double-pair is realized with a chance
of at least 1/6, which implies a bad single-pair or double-pair is realized with a chance
of at most 5/6. In case the good double-pair is realized, by definition, at least one of
the three convex regions formed by extending the double-pair will be empty. For the

other two regions, we have the following cases:

i) One region is empty, and the other contains n —4 > 2 points, in which case the
number of unmatched points becomes f(n—4) < en+d—4c < en+d+ (1 —5c).
The last inequality holds because ¢ < 1.

ii) One region contains a single point, and the other one contains n —5 > 2 points.
The number of unmatched points will be at most f(n—5)+1 < en+d+(1—>5c¢).

iii) Both regions include m > 2 and n —m —4 > 2 points. In this case, the number
of unmatched points will be at most f(m)+ f(n—m—4) < cn+d+(d—4c) <
cn +d+ (1 — 5¢). The last inequality holds because ¢+ d < 1.

Therefore, as long as the good double-pair is realized, the number of unmatched
points will be at most en + d + (1 — 5¢). On expectation, we can write f(n) <
1/6((en+d)+ (1 —5¢))+5/6((cn+d) +(2—6¢)) = ecn+d+ 1/6(11 — 35¢) < en +d.
The last inequality holds since ¢ > 11/35. O

36

5.1.2 Lower bound

This section describes a probability distribution for the input sequence of size n
and shows that any deterministic algorithm is expected to leave at least 0.0738n
points unmatched. By Yao’s principle, the expected number of unmatched points by
any randomized algorithm on the worst-case input is then no better than 0.0738n.

Throughout, we assume n is divisible by 3.

Input distribution

Let S be a random sequence formed n/3 pairs (i,7) of integers, where ¢ = 1 with
a chance of p = (9 — v/57)/4 ~ 0.362, i = 2 with a chance of 1 — 2p, and i = 3
with a chance of p. The values of j are generated uniformly and independently at
random from the range [1,4]. Note that there are 12"/% possibilities for S. From
S, we generate an input sequence o(.S) for the monochromatic matching as follows.
All points in ¢(S) appear on the circumference of a semicircle C', which is positioned
horizontally with diameter up. There are n/3 phases in o(.S), each formed by 3 points.
The points of each phase are generated on a critical arc which is an arc in C'. Initially,
the entire circumference of C' is the critical arc. At the end of each phase, the critical
arc shrinks and becomes a sub-arc of what it used to be. Let C; denote the critical
arc at the beginning of phase ¢, and let (i, j) denote the ¢’th pair in S. The first two
points of phase ¢ appear on arbitrary positions in C;. We denote these two points by
a; and b, so that, without loss of generality, b; is located on the right side of a;. The
location of the third point ¢; is decided by the value of i. Precisely, ¢; appears on an
arbitrary position on the left of a; when ¢ = 1, on an arbitrary position between a,
and b; when ¢ = 2, and on an arbitrary position on the right of b, when ¢ = 3. After
the three points are revealed, depending on the value of 7, the critical arc is updated.
That is, ¢;11 is defined to be its sub-arc on the left of the leftmost point in the phase
when 7 = 1, the sub-arc between the leftmost point and the middle point when j = 2,
the sub-arc between the middle point and the rightmost points when j = 3, and the
sub-arc on the right of the rightmost point when 7 = 4. Figure shows the input
sequence for S = (1,2), (3,4),(2,2).

Proof outline and basic observations

We will prove a lower bound of pn/(6—3p) = (9—+/57)n/(3v/57—3) Z, 0.0738n for the

expected number of unmatched points left by any randomized algorithm. By Yao’s

37

C1 C1

bl bl

az

aq b2 aq
&)

(a) (b)

C1

a2

C2 T bs
(c)

Figure 5.4: An illustration of the input sequence o(S) for S = (1,2),(3,4),(2,2). (a)
phase 1, where ¢ appears on the left side of a; (since ¢ = 1), and the critical arc is updated
to the area between ¢y and ay (since j = 2). (b) phase 2, where co appears on the right side
of by (since i = 3), and the critical arc is updated to the rightmost area (since j = 4). (c)
phase 3, where c3 is between a3 and bs (since i = 2), and the critical arc is updated to the
area between az and c3 (since j = 2).

principle, it suffices to show that the expected number of unmatched points by any
deterministic algorithm for a random input ¢(S) of n points is at least pn/(6 — 3p).

Let A be any deterministic randomized algorithm. At any given time, the set of
points that have appeared so far can be partitioned into the following three sets (see
Figure for an illustration):

e M: the set of points that are already matched by A.

e U,: the set of points that are unmatched and are guaranteed to stay unmatched
throughout the matching process. More precisely, the line segment between any
point in U, and any point in the critical arc C; (any future point) crosses a line

segment between a pair of points that are already matched.

e U,: the set of points that are unmatched and undecided, that is they might end

up being matched with some of the points that will appear in the future.

Let m; and wu; respectively denote the expected increase in the size of M and U,
in phase t. Once a point is added to M and U,, it will stay in that set till the end;

therefore, we have my,u; > 0. Note that my = uy = 0. In the proof, we will show

38

that if we have m; > 0 for a phase ¢, then u; > m(p/(6 — 4p)). The fraction of the

unmatched points over all points at the end of the execution of A will be:

|Ug| + Ul > ’Ug’ _ Ztut
Ul + (U] + [M] = |[Ug| + [M] > ue+ 3, my
>, mu(p/(6 —4p))

e TR ES ity

Side-arcs: Suppose A matches the first point a; of phase ¢ with some point o
(which appeared in one of the previous phases). Define the side-arc of a; as follows.
If o’ appears on the left of a; in the semi-circle C', then the side-arc of a; will be
the arc between o' and a;; otherwise, it will be the entire sub-arc of C' on the left of
a;. Symmetrically, if A matches b; with some point ' from a previous phase, then
the side-arc of b; is the arc between b, and b if b" appears on the right of b; and the
entire sub-arc of C' on the right of b; otherwise. Figure [5.6| provides an illustration of

side-arcs and the following observation.

Observation 1. The following holds when a deterministic algorithm A matches a;

and/or b; at phase ¢ with some unmatched point from the previous phases:

e Suppose A matches a; with a point o/, and there is an unmatched point x on
the side-arc of a;. If the critical arc is updated to be on the right of a;, then
the line segment between x and any point in the updated critical arc crosses

the line segment between a; and a'.

e Suppose A matches b, with a point ¢/, and there is an unmatched point y on

Y

Figure 5.5: The state of a deterministic algorithm A after five phases. The critical arc is
the arc between x and y. The set M contains the six matched points (black points). The set
U, contains the four white points. Given that all future points will appear in the critical arc,
these points are guaranteed to stay unmatched. The set U, is formed by the gray points,
which are currently unmatched but might be matched with a point that is not revealed yet.

39

a
T
a ‘bt
(a) (b)
b %
ayt bt Q¢ bt
(c) (d)

Figure 5.6: An illustration of Observation The arcs highlighted in blue are the side-arcs
of a; (Figures (a) and (b)), and b; (Figures (c¢) and (d)). Suppose a; (respectively b;) is
matched with a point a’ (respectively b') and the critical arc is updated to be within the arc
highlighted in pink. Observation [1| implies that a point in the blue arc cannot be matched
with a point in the pink arc.

the side-arc of b;. If the critical arc is updated to be on the left of b;, then the
line segment between y and any point in the updated critical arc crosses the

line segment between b; and b'.

Main result via case analysis
We are now ready to prove the main result in this section.

Theorem 9. Any randomized algorithm for the online monochromatic non-crossing
matching is expected to leave at least (9 — v/57)n/(3v/57 — 3) £0.0738n points un-

matched in the worst-case.

Proof. In the light of the discussion in the previous section, it suffices to prove u; >
me(p/(6 —4p)) ~ 0.0795m, for any phase ¢. For that, we will use a case analysis that
concerns how a; and b; are treated by A, and whether there is an unmatched point
in U, on the left of a; or on the right of b;.

In all cases, at most three pairs of points (involving a;, b, and ¢;) are added to
M, that is m; < 6. In some cases, however, we can derive m; < ¢ for some ¢ < 6,
which is more desirable result when establishing our lower bound for the competitive
ratio. We assume that at least one pair is matched at phase t; otherwise, we will have
my = uy = 0, and hence u; > my(p/(6 — 4p)) holds.

40

e Case I: Suppose A matches a; with a point o’ and b; with a point &', where o’
and b’ are two points from previous phases. We consider the following sub-cases.

See Figure [5.7 for an illustration of Case I.

— Sub-case I-a: Suppose there is at least one unmatched point = € U,, on the
side-arc of a;, and at least one unmatched point y € U, on the side-arc of
b;. We consider the following possibilities, depending on the location of ¢,

relative to a; and b,.

% Suppose ¢; appears on the left of a;. With a chance of 3/4, the critical
arc is updated to be on the left of b,. By Observation [I] any line
segment between y and a point in the updated critical arc crosses the
line segment between b, and its b'. Therefore, y will be added to U,.
So, we can write u; > 3/4-1=3/4.

x Suppose ¢; appears on the right of b;. With a symmetric argument as
in the previous case, with a chance of 3/4, = is added to U, and we

can write u; > 3/4.

% Suppose ¢; appears between a; and b,. With a chance of 1/4, the
critical arc is updated to be on the left of a;, and by Observation [1] y
will be added to U,. Symmetrically, by a chance of 1/4, the critical arc
is updated to the right of b;, and = will be added to U,. With a chance
of 1/2, the critical arc is updated to the area between a; and b;. In
this case, Observation [1| can be applied for both x and y, adding both
of them to Uy,. So, we will have uy > 1/4-1+1/4-14+1/2-2=3/2.

The chance of ¢; appearing on the left of a;, or on the right of b, is each
p, and the chance of ¢; appearing between a; and b; is 1 — 2p. So, on
expectation, we can write u; > p-3/4+p-3/4+(1—2p)-3/2 = (3—3p)/2.
Given that m; < 6, we will have u;/m; > (1 — p)/4, which is larger than
p/(6 — 4p) (we have (1 —p)/4 Z 0.15 > 0.0795). Note that we cannot
derive a tighter bound for m,, given that it is possible that ¢; is matched

with some other points from previous phases.

— Sub-case I-b: Suppose there is at least one unmatched point z € U, on
the side-arc of a; while there is no point from U, on the side-arc of b;. We
consider the following cases, depending on the location of ¢; relative to a;
and b;.

41

x Suppose ¢; appears on the left of a;. We can write m; < 6, and u; > 0

(this holds for any phase regardless of how it unfolds).

% Suppose ¢; appears between a; and b;. With a chance of 3/4, the
critical arc is updated to be on the right of a;, and by Observation [
z will be added to U,, that is u; > 3/4. It also holds that m; < 6.

% Suppose ¢; appears on the right of b;. Given that the side-arc of b; is
empty, ¢; cannot be matched with any point at phase t. Therefore,
only ay,b;, and their matched points are added to M, and we have
my < 4. Now, if the critical arc is updated on the left of a; (and hence
left of b;), then by Observation , ¢¢ is added to Uy; this is because ¢
is on the side-arc of b,. If the critical arc is updated to be on the right
of a;, by Observation [I} point z will be added to U,. Therefore, we

will have u; > 1 regardless of how the critical arc is updated.

Therefore, on expectation, we can write m; < p-6+(1—2p)-6+p-4 = 6—2p
and uy > p-0+(1—2p)-3/4+p-1=(3—2p)/4. Therefore, we have
ug/my > (?(;32%4 = (3 —2p)/(24 — 8p), which is larger than p/(6 — 4p) (we
have (3 — 2p)/(24 — 8p) £ 0.10 > 0.0795).

— Sub-case I-c: Suppose there is at least one unmatched point y € U, on the

case illustration M| W S ug/my
' 6 |3/4 X

—_Pp

I-a 4
6 |3/2
6 0

3-2

[|Ib 6 | 3/4| 3w
4 1
4] 1/2

p

6—4

I-d 6 | 0 P

at‘a‘, bt

Figure 5.7: A summary of the analysis for Case I. The cases that are handled symmetrically
are excluded from the figure.

42

side-arc of b; while there is no point from U, on the side-arc of a;. This case
is symmetric to the case I-b, and we have u;/m; > (3 — 2p)/(24 — 8p) >
p/(6 —4p).

— Sub-case I-d: Suppose there is no unmatched point in U, on the side-arc
of a; nor on the side-arc of b;. Note that if ¢; appears in these side-arcs, it

cannot be matched during phase t.

We consider the following cases, depending on the location of ¢; relative

to a; and b;.

% Suppose ¢; appears on the side-arc of a;. Then, only a;, b;, and their
matched points are added to M during phase ¢, and we will have
m; = 4. If the critical arc is updated to the right of a;, which happens
with a chance of 1/2, then, the line segment between ¢; and any point
in the updated critical arc crosses the line segment between a; and a'.
Therefore, ¢; is added to U;. We can write u; > 1/2-1 =1/2.

* Suppose ¢; appears on the side-arc of b;. With a symmetric argument
as in the previous case, we have m; = 4 and u; > 1/2.

x Suppose ¢; does not appear on the side-arc of a; nor on the side-arc
of b;. Then, given that the critical arc is a continuous arc, ¢; should
appear between a; and b; (note that o’ and ¥ do not belong to the
critical arc and thus any point on the left of @’ or on the right of ¥’
does not belong to the critical arc as well). In this case, we can write
my < 6 and u; > 0.

So, on expectation, we have m;y =p-4+p-4+ (1 —2p)-6 =6 — 4p and

ug >p-1/2+p-1/2+ (1 —2p) -0 = p. Therefore, we have u,/m; > %.

e Case II: Suppose A matches a; with some point ¢’ from previous phases while
b; is unmatched when ¢; appears. In this case, a; and its matched point are
added to M while b; belongs to U, when ¢; appears. Note that ¢; might be
matched with b; or another member of U,. Regardless, the number of matched
pairs at this phase will be at most 2, and we have m; < 4. See Figure for

an illustration of Case II.

— Sub-case II-a: Suppose there is at least one unmatched point x € U, on the
side-arc of a;. We consider the following cases, depending on the location

of ¢, relative to a; and b;.

43

*x Suppose ¢; appears on the left of a;. If the critical arc is updated to
be on the left of a;, which happens with a chance of 1/2, then the line
segment between b; and any point in the updated critical arc crosses
the line segment between a; and its matched pair. Therefore, b; is
added to U,. We can write u; > 1/2-1=1/2.

*x Suppose ¢; appears on the right of a,. If the critical arc is updated to
be on the right of a;, which happens with a chance of 3/4, then the line
segment between x and any point in the updated critical arc would
cross the line segment between a; and its matched pair. Therefore x
is added to U,. We can write u; > 3/4-1=3/4.

The chances of ¢; appearing on the left and right of a; are respectively

p and (1 —2p) + (p) = 1 — p. So, on expectation, we can write u; >

p-1/24+ (1 —p)-3/4 = (3 —p)/4. Recall that m; < 4 in this case.
(3=p)/4

Therefore, we have wu;/m; > =~ = (3 — p)/16, which is larger than

p/(6 — 4p) (we have (3 —p)/16 Z 0.16 > 0.0795).
Sub-case II-b: Suppose there is no unmatched point in U, on the side-arc
of a;. We consider the following cases, depending on the location of ¢

relative to a; and b;.

* Suppose ¢; appears on the left a;,. In this case, ¢; cannot be matched
with any point during the phase ¢ (note that there is still a chance for
¢; to get matched with a point in the future phases if the critical arc
is updated to be on the left of a;). So at phase ¢, at most two points,
a; and its matched pair, are added to M, and we have m; = 2. As for
uy, if the critical arc is updated to be on the left (respectively right)
of a;, then the line segment between b, (respectively ¢;) and any point
on the updated critical arc crosses the line segment between a; and its
matched pair, and b; (respectively ¢;) is added to U,. Therefore, one

point from {b;, ¢;} is added to Uy, and we have u; > 1

% Suppose ¢; appears on the right of a;. Then it is possible that no point
is added to U, (when ¢, is matched with b;).

The chances of ¢; appearing on the left and right of a, are respectively p
and 1 —p. So, on expectation, we can write m; < p-2+(1—p)-4=4—2p
,and u; > p-1+ (1 —p)-0=p. Therefore, we have u;/m; > 4%];7 which

is larger than p/(6 — 4p) (we have p/(4 — 2p) £ 0.11 > 0.0795).

case illustration Mt < | Ut > | up/my >
I 4 | 1/2
b _
[1-4] ' e
- —o—" 4 | 3/4
11 oo
. 2 1)
b 5
11-h) R
Ct bt

Figure 5.8: A summary of the analysis for Case II. Case III is symmetric to Case II.

e Case III: Suppose a; is unmatched when ¢; appears while A matches b; with

some point from previous phases. This case is symmetric to case II, and we

have u;/m; > min{(3 — p)/16,p/(4 — 2p)} > p/(6 — 4p).

e Case I'V: Suppose that A matches (a4, b;). See Figure for an illustration of

Case IV.

— Sub-case IV-a: Suppose the set U, is non-empty, that is, there is a point

x € U,. Note that before the three points of the current phase ¢ are being

revealed, the updated critical arc is empty, and hence x appears either

on the left of a; or on the right of b;. We consider the following cases,

depending on the location of ¢; relative to a; and b;.

x Suppose ¢; appears on the left of a; or on the right of b;. In both

cases, it is possible that no point is added to Uy, given that ¢; can
be matched with x. There will be up to two pairs of matched points
(that is, (as, by) and a possible pair involving ¢, e.g., (¢, x)) which are
added to M. So we have m; < 4 and u; > 0.

* Suppose ¢; appears between a; and b;. Given that all points in U, are

located on either on the left of a; or on the right of b;, the point ¢
cannot be matched with an unmatched point in U,. Therefore, the
only points added to M during phase ¢ is (ay, b;), and we have m; = 2.
As for wuy, if the critical arc is updated to be on the left of a; or on the
right of b; (with a chance of 1/4 + 1/4 = 1/2), then the line segment
between ¢; and any point in the updated critical arc crosses the line

segment between (a;,b;). Therefore, ¢, is added to U,. If the critical

45

arc is updated to be between (a¢, b;) (with a chance of 1/2), then the
line segment between x and any point in the critical arc crosses the

line segment between (a;, b;). Therefore, x is added to U,. So, we can
write uy > 1/2-1+1/2-1 = 1.

The chance of ¢; appearing on the left of a; or on the right of b, is 2p, and
the chance of it being in between a; and b; is 1 —2p. So, on expectation, we
can write m; < 2p-4+(1—2p)-2 = 2+4p, and u; > 2p-0+(1—2p)-1 = 1-2p.
Therefore, we have wu;/m; > ;;—iﬁ, which is equal to p/(6 — 4p). This is
because p is set to be the answer to equation (1—2p)/(2+4p) = p/(6—4p).
— Sub-case IV-b: Suppose U, is empty. Given that there is no point in U,
that ¢; can be matched to and that a; and b; are already matched, ¢; will
not be matched with another point at phase t. Therefore, the only pair of
matched points added to M are (ay, b;), that is, m; = 2. We consider the

following cases, depending on the location of ¢; relative to a; and b;.

x Suppose ¢; appears on the left of a; or on the right of b;.
If the critical arc is updated to be between a; and b;, which happens
with a chance of 1/4, then the line segment between ¢, and any point
in the critical arc crosses the line segment between (ay, b;). Therefore,
¢; is added to U,, and we have u; > 1/4-1=1/4.

x Suppose ¢; appears between a; and b,. If the critical arc is updated to
be on the left of a; or on the right of b;, which happens with a chance
of 1/4+1/4 = 1/2, then the line segment between ¢; and any point
in the updated critical arc crosses the line segment between (ay, b;).
Therefore, ¢, is added to U,.

We can write u; > 1/2-1=1/2.

The chance of ¢; appearing on the left of a; or on the right of b; is 2p, and
the chance of it being in between a; and b; is 1 — 2p. So, on expectation,
we can write u; > 2p-1/4+4 (1 —2p)-1/2 = (1 —p)/2. Recall that m; = 2
in Case IV-b. Therefore, we have u;/m; > % = (1 — p)/4, which is
larger than p/(6 — 4p) (we have (1 —p)/4 £ 0.15 > 0.0795).

e Case V: Suppose both a; and b; are unmatched at the time ¢; arrives. Given
that at least one pair of points are matched at phase ¢ (according to the assump-

tion made throughout the case analysis), when ¢; arrives, it should be matched

46

case illustration Mt < | Ut > | up/my >
x* 4 0
Ct by 1-2
IV-a t A Sa
: : 4
ze-. 2 | 1 !
by
1A% ! !
%{O(é&d
% - i 2 1/4 1—p
IV-b t ‘ 1-p
%, -'Qd 4
i
% \M 2 1/2
t Ct

Figure 5.9: A summary of the analysis for Case IV.

with some other point. Note that at phase ¢ only this pair is added to M in
Case V, that is m; = 2.

— Sub-case V-a: Suppose ¢; is matched with some xz € U, from previous
phases (z ¢ {a;,b;}). See Figure for an illustration of Case V. We

consider the following cases:

*

Sub-case V-a-1: Suppose ¢; finds a; and b; on the same side of itself,
say on its left side The case where a; and b; are both on the right side of
¢; is handled symmetrically. If the critical arc is updated to be on the
right of ¢;, which happens with a chance of 1/4, then the line segments
between a; or b; and any point in the updated critical arc would cross
the line segment between ¢; and its matched pair. Therefore, both a;
and b; are added to U,. We can write u; > 1/4-2 = 1/2. Given that
my; = 2 in Case V, we have u;/m; > % = 1/4, which is larger than
p/(6 —4p) ~ 0.0795.

Sub-case V-a-2: Suppose ¢; finds a; on its left side and b; on its right
side (recall that a; is always on the left of b, by assumption). If the
critical arc is updated to be on the left (respectively right) of ¢;, then
the line segment between b; (respectively a;) and any point in the up-
dated critical arc crosses the line segment between ¢; and its matched
pair. Therefore, b; (respectively a;) is added to U,. Thus, regardless
of how the critical arc is updated, one of a, or b; is added to Uy, and
we have u; > 1. Given that m; = 2, we have u;/m; > 1/2, which is
larger than p/(6 — 4p) ~ 0.0795.

47

case illustration My — | Ut > | up/my >

| TR | 2 12| s

at by Ct

V-a - -
| TR 2| 1|
Qg Ct bt
vV ,
Veb-1 W 2 |1/2 1/4
V-b by @

Vob-2 *%_/ 2 | 1/4 1/8
at b

Ct t

Figure 5.10: A summary of the analysis for Case V.

— Sub-case V-b: Suppose ¢; is matched with either a; or b;. Without loss
of generality, assume ¢; is matched with a;. The case where ¢; is matched

with b; can be treated symmetrically. We consider the following cases:

x Sub-case V-b-1 Suppose b; is located between a; and ¢; If the critical
arc is updated to be on the left of a; or on the right of ¢;, which
happens a chance of 1/4 4 1/4 = 1/2, then the line segment between
b; and any point in the updated critical arc crosses the line segment
between (ay, ¢;). Therefore, b, is added to U,. We can write u; > 1/2.
Given that m; = 2, we will have u;/m; > 1/4, which is larger than
p/(6 —4p) ~ 0.0795.

x Sub-case V-b-2: Suppose b; is located on the right side of both a;
and ¢;. If the critical arc is updated to be between a; and ¢;, which
happens with a chance of 1/4, then the line segment between b; and
any point in the updated critical arc crosses the line segment between
(at,). Therefore, b, is added to U,. We can write u; > 1/4-1=1/4.
Given that m; = 2, we will have u;/m, > 1/8, which is larger than
p/(6 — 4p) ~ 0.0795.

In summary, in all cases, we have u;/m; > p/(6—4p), which completes the proof. Note
that the lower bound for u;/m; takes its smallest value of (6—4p)/p = (1—2p)/(2+4p)
in cases I-d and IV-a. O

48

5.2 Randomized bichromatic non-crossing matching

In this section, we show that any randomized algorithm for the bichromatic non-
crossing matching problem is expected to match only O(logn) points in the worst
case, even under the relaxed setting where all red points appear before the first blue
point. For that, we will describe a probability distribution for the input sequence
of size n and show that any deterministic algorithm is expected to match at most
O(logn) points for a random sequence generated using this distribution. By Yao’s
principle, the expected number of matched points by any randomized algorithm is no
more than O(logn) in the worst case. Throughout, we assume n is divisible by 3.

Let B be a bit string of length n — 1 in which bit values are taken uniformly
and independently at random from {0,1}. From B, we generate an input sequence
o(B) for the bichromatic matching as follows. All points in o(B) appear on the
circumference of a circle B. First, n red points appear on some arbitrary positions
in the top half of C'. This is followed by n blue points that appear in the bottom
half of C' as follows. There is a critical arc that is initially the entire bottom-half of
C. The first blue point p; appears in an arbitrary position on the critical arc. If the
first bit of B is 0 (respectively 1), then the critical region is updated to be its sub-arc
on the left (respectively on the right) of p;. Similarly, after the t** point p; appears,
the critical arc is updated to its sub-arc on the left (respectively on the right) of p,.
Figure [5.11] shows the input sequence for B = 0110.

Theorem 10. Consider the instances of the bichromatic non-crossing matching in
which all n red points appear before the first (out of n) blue point appears. Any
randomized algorithm is expected to match at most O(logn) points in the worst-

case.

Proof. Let A be a randomized algorithm. The set of red points can be partitioned
into sets M UU,UU,,, where M is the set of matched points, U, is the set of unmatched
red points that can be potentially matched with a future blue point, and U, is the
set of unmatched red points that are guaranteed to stay unmatched, that is, the line
segment between a point in U, and any future point (any point on the critical arc)
crosses the segment between a pair of matched points. Just before the first blue point
appears, U, contains all red points, while M and U, are empty. As the blue points get
revealed and matched with red points, U, reduces to the red points that are “visible"

by the critical region. To be more precise, let p, be the rightmost blue point on the

49

D2

P3 Pa 5?1

Figure 5.11: An illustration of the input sequence o(B) for a bit string B that starts with
0110. After p4 is revealed, the critical arc is the red arc between ps3 and ps. Given that
(p2,z) and (p4,y) are matched, U, includes the red points that are on the right of and on
the left of y (i.e., the red points on the undecided arc).

left of the critical arc such that p, is matched with a red point (call that red point
x), and p, be the leftmost blue point on the right of the critical arc such that p,
is matched with a red point (call that red point y). Any red point on the left of x
cannot be matched with any future blue point p; because the line segment between
ps and a point in the critical region crosses the line segment between p, and z. As
such, the red points on the left of « belong to U,. Similarly, the red points on the
right of y belong to U,. We conclude that U, is formed by the red points between x
and y, and call the arc between x and y the undecided arc.

Suppose A matches the blue point p; with a red point z on the undecided arc.
Let r denote the number of red points in U, at the time p, is revealed, and let f(r)
indicates the expected number of these r points that get matched by A. Assume there
are ¢ points from U, on the left of z. Hence, r — i — 1 points from U, on the right of
z on the undecided arc. Now, if the critical arc is updated to the left of p;, then the
r — i — 1 red points on the right side of z on the undecided arc are removed from U,
and added to U,. This is because any line segment from these points to a point in the
critical region crosses the line segment between p; and z. Therefore, the size of U, is
decreased from r to 4, and we can write f(r) < f(i)+1. Similarly, if the critical arc is
updated to the right of p;, then the i red points on the left side of z on the undecided
arc are removed from U, and added to U,. In this case, the size of U, is decreased
from r tor—i—1, and we can write f(r) < f(r—i—1)+1. So, on expectation, we can
write f(r) < 1/2-f(i)+1/2-f(r—i—1)+1<1/2-f((r—1)/2)4+1/2- f(r)+1. The last

20

inequality holds because we have min{i,r—i—1} < (r—1)/2 and max{i,r—i—1} <r.
Subsequently, we can write f(r) < f(r/2)+2, which gives f(r) < 2logr. In particular,
when p; is the first blue point that is matched with a red point, all red points are
in U,, and we have r = n. Therefore, the total number of matched red points is
f(n) < 2logn.

]

o1

Chapter 6

Experimental analysis

Overview

In previous chapters, we studied the non-crossing matching problem in the worst-case
scenario, where the input was generated by an adversary. In this chapter, we study
algorithms under the average-case scenarios, where the z- and y-coordinates of the
input points are random variables that are Identically and Independently Distributed
(IID) [10]. We consider three different probability distributions, namely uniform,
normal, and Zipfian distributions, to generate IID points on a plane. We implement
and compare online algorithms with greedy properties. Unlike the worst-case setting,
where randomization helps to “hide" some choice of an online algorithm from the
adversary, in the average-case scenarios, there is little advantage in using randomized
algorithms. Therefore, all algorithms that we study in this section are deterministic.

In what follows, we first explain the input distributions, implementation of algo-
rithms, and the details of experiments are explained. At the end of this chapter, we

conclude the results of our experiments.

6.1 Experimental set-up

6.1.1 Input distribution

This section explains different distributions that are considered to generate the co-
ordinates of the input points. In the bichromatic setting, the colour of each point is

selected to be red or blue with equal chances.

52

e Uniform distribution: Uniform distribution generates numbers in a specific
range that are equally likely to occur. The minimum and maximum values
are set to 0 and 1, that is points find their z- and y-coordinates as uniform
random variables in the range [0, 1]. Figure depicts 10,000 points that are

uniformly distributed.

0.9
0 UM
0.7
0.6
0.5
04
0.3
0.2

0.1 (NI

Figure 6.1: Uniform distribution for an input of size 10,000

e Normal distribution: In normal distribution, also known as the Gaussian dis-
tribution [I7], instances that are close the mean are more frequent. Graph
representation of normal distribution is a bell curve. Normal distribution is
defined by two parameters. Standard deviation, which indicates how spread
out numbers are, and mean (expected value), which specifies data center. In
our experiments, the standard deviation is set to 0.1 and mean equals to 0.5.
Figure demonstrates an instance of size 10,000 that is normal distributed.

Figure 6.2: Normal distribution for an input of size 10,000, standard deviation 0.1, and
mean 0.5

e Zipfian distribution: Zipfian distribution [35], also known as zeta/Zipf distribu-
tion, is using to model the popularity of few members of a population. Zipfian
distribution has two parameters; a shape parameter and a scale parameter. The
shape parameter defines the spread of item sizes: lower values indicate greater

skew towards smaller values. The scale parameter, informally, has the effect

23

of stretching out the probability density. To generate points with positive -
coordinate and y-coordinate, the scale is set to 1.001, and shape set as 1, which
is the default values in the standard Python library. Figure [6.3] shows a sam-
ple of 10,000 points generated based on Zipfian distribution. Our interest in
the Zipfian distribution is mostly due to the fact that it can be considered an

“anti-uniform" distribution.

1.00E+00
9.00E-01
8.00E-01
7.00E-01
6.00E-01
5.00E-01
4.00E-01
3.00E-01
2.00E-01

1.00E-01

0.00E+00

0 01 02 03 04 05 06 07 08 09 1

Figure 6.3: Zipfian distribution for input of size 10,000, scale = 1.001 and shape set as
default.

6.1.2 The tested algorithms

Greedy algorithms (without delay). The first set of algorithms that we consider
are all greedy, that is if a point p is revealed, it is matched with some existing
unmatched point as long as there is at least one point ¢ that p can be matched to
(that is, the line segment between p and ¢ does not cross the line segment between
any pair of matched points). If there is only one point that p can be matched with,
the two points are matched, and there is no decision to make. Otherwise, when the
set) of points that p can be matched to contains at least two points, the greedy
algorithm has to break ties to select a point ¢ € () to match with p. We can define

four greedy algorithms as follows:

e E-closest: the greedy algorithm that matches p with ¢ € @, where ¢ is the

closest point in () to p based on the Euclidean distance.

e X-closest: the greedy algorithm that matches p with ¢ € (Q, where ¢ is the point

whose z-coordinate is closest to p among all points of Q).

e Random: the greedy algorithm that selects g to be the point in) that appears
earliest in the input sequence. Given that the input is generated randomly,
selecting the first point is somehow a random choice. Therefore, we refer to this

algorithm as Random.

o4

e Furthest: the greedy algorithm that matches p with ¢ € (), where ¢ is the the
furthest point in @) to p, based on the Euclidean distance.

Algorithms with delay. The second set of algorithms that we consider are
“almost-online" in the sense that they know the length n of the input (but they do
not have any other information about the input sequence). These algorithms “delay"
making a decision for the first z = ¢ - n points, that is, they do not match any pairs
of points for the first x points. After the xz’th point appears, the algorithms treat the
remaining point in a greedy manner, using tie-breaking rules described in the previous
section. We refer to ¢ € [0, 1] as the “buffer" of the algorithm. Intuitively, the buffer
helps the algorithm to find a better match for points, given that more information is
available at the time of matching.

Note that the above algorithms can be defined in both monochromatic and bichro-
matic settings. The way the set () of suitable points is generated is different under the

two settings. However, the same tie-breaking rules can be applied for both settings.

6.1.3 Implementation details

Here are some details about the set-up for our experiments:

e Experiments are run by Dell Latitude 7400 64-bit Operating System, equipped
by Intel(R) Core(TM) i5-8265U CPU and 8.00 GB RAM.

e IDEs that are used for programming are IntelliJ IDEA Community Edition and
Jupyter Lab 2.1.5.

e Java is the main programming language to implement algorithms and generate

input. Zipf distributed input is generated by Python 3.0.

6.2 Results

6.2.1 Monochromatic algorithms (without delay)

We ran the greedy algorithms (without delay) as described in Section on ten in-
put sequences of size n = 10,000, and n = 100, 000, where the z— and y—coordinates
of points are iid variables that follow distributions described in Section [6.1.1]

Input of size 10,000

2000
1800
1600
1400
1200
1000

800
600
400
200

0

Uniform Normal Zipfian

®E-closest mX-closest ®Random Furthest

Input of size 100,000
25000

20000

15000

10000

- I I I I I I
0

Uniform Normal Zipfian

®E-closest ®X-closest ®Random Furthest

Normal Uniform Zipfian

E-closest 929.6 924 1607.2

X-closest 926 926.2 1649.2

Random 939 942.9 1677.8

Furthest 974.6 967.4 1735.4

Uniform Normal Zipfian

E-closest 9302 9253.6 21467.6
X-closest 9316.8 9330.8 20984

Random 9406.6 9423.6 21411.2

Furthest 9722 9682.4 21423.2

95

Figure 6.4: Comparison of various greedy algorithms for input sequences generated using

normal, uniform and Zipfian distributions

26

Figure [6.4] compares results of various algorithms, where the average number of
unmatched points is reported (the average is taken over the ten input sequences).

From the reported numbers, we can conclude the following:

e For inputs of size n € {10,000,100,000}, the number of unmatched points is
approximately n/10 for uniform and normal distributions and around n/5 for
the Zipfian distribution. As expected, the number of unmatched points in the
average setting is less than the number of unmatched points in the worst-case

setting, which is roughly n/3.

e The probability distribution used to generate input points can make a difference
in the number of unmatched points. In particular, input sequences generated
using the Zipfian distribution constitute “harder" instances where a larger num-
ber of points stay unmatched. This can be attributed to the “anti-uniform"
nature of the Zipfian distribution, where there is an asymmetry in the input
sequence, with heavy skew towards certain regions of the plane and sparsity
in other regions (see Figure . Consider the partitioning of the plane into
convex regions, by extending the line segments between matched pairs (as in
Figure , at some early point during the execution of an algorithm. In the
case of Zipfian distribution, it is possible that a point p appears in one of the
convex partitions and no other point appear in the same region (which hap-
pens when the area around p is sparse as the distribution is skewed towards
another area), which results in p staying unmatched. This justifies the larger
number of unmatched points in the case of Zipfian distribution, when compared
to other distributions. Intuitively speaking, in the case of uniform and normal
distribution, a point p is likely to find another point ¢ close-by (and they can
match). The skew present in the Zipfian distribution, on the other hand, results

in situations where p is isolated and likely to stay unmatched.

e In almost all cases, the E-closest algorithm results in a smaller number of un-
matched points compared to other algorithms. Intuitively speaking, it is best
to match each point to its closest suitable point. This results in a shorter line
segment between the matched pair and hence a smaller chance that such line
segment crosses the line segment between any potential future matched pair of

points.

o7

6.2.2 Monochromatic algorithm with delay

We ran the greedy algorithms with delay, as described in Section [6.1.2] on ten input
sequences of size n = 10,000, and n = 100, 000, where the x— and y—coordinates of
points are iid variables that follow distributions described in Section We have
tested different values of buffer for the algorithms.

Figurecompares results of various algorithms for inputs of size n € {10,000, 100, 000}
and buffer size ¢ € {0.005,0.01,0.1,0.25,0.5,0.75}, where the average number of un-
matched points is reported (the average is taken over the 10 input sequences). Fig-
ures and [6.7] report the same numbers for the normal and Zipfian distributions,
respectively.

From the reported numbers, we can conclude the following:

e For the E-closest algorithm, using the buffer size always helps in reducing the
number of unmatched points (when compared to the algorithm with no buffer).
In particular, buffers of size as large as 0.25 to 0.5 result in the best performance.
Given that the E-closest generally produces the best results, for practical pur-
poses, it is best to use this algorithm with the buffer of size ¢ € [0.25,0.5].

e Using a buffer helps to improve the performance of X-closest as well, while no
improvement is observed for Random and Furthest (the performance of these
algorithms is generally better when no buffer is used). This can be justified
by the fact that Random and Furthest are not the best tie-breaking rules as
they potentially create long segments between the matched pairs. As such,
observing a larger number of points before matching pairs of points results
in longer segments between the matched pairs and hence more chance for the

remaining points to stay unmatched.

e When the buffer is too large, e.g., ¢ = 0.75, the performance of all algorithms
degrades. This is expected as when ¢ = 0.75, the algorithm has waited too long
before matching points: even if all remaining 0.25n points are matched, at least

n/2 points stay unmatched.

e The distribution used for generating the input points can make a difference in
the number of unmatched points. In particular, a larger number of points stay
unmatched when the input is generated using the Zipfian distribution. This is
consistent with the observation we made about the harder nature of the Zipfian

distribution in the previous section.

Nobuffer [l c=0005 [c=001 [c=01 [l c=025
6000

c=05

4000

2000

number of unmatched points

c=0.75

Nobuffer [l ¢=0.005 [c=001 [c=01 M c=025
60000

c=05

40000

20000

number of unmatched points

o8

c=0.75

] [[[] [[[] (] {1 [[[] [[1]]][
’ E-closest X-closest Random Furthest ’ E-closest X-closest Random Furthest
Buffer size No buffer %0.5 %1 %10 %25 %50 %75 Buffer size No buffer %0.5 %1 %10 %25 %50 %75
E-closest 916 936 892 872 718 643 5000 E-closest 9302 9240 9266 8796 7188 5876 50000
X-closest 922 964 932 976 850 1400 5056 X-closest 9296 9266 9306 8916 8414 13622 50476
Random 943 987 917 939 937 1649 5061 Random 9358 9443 9527 9477 9579 15697 50581
Furthest 960 1030 936 986 1052 1970 5150 Furthest 9620 9662 9648 9790 10472 19474 51538

(a) inputs of size n = 10,000

(b) inputs of size n = 100,000

Figure 6.5: Monochromatic algorithm with delay on uniform distributed input of size
10,000 and 100,000. The best result of each algorithm is highlighted by a different color.

Nobuffer [l ¢=0.005 [c=001 [c=01 M c=025
6000

c=05

4000

2000

number of unmatched points

c=075

Nobuffer [l ¢=0.005 [c=001 [c=01 M c=025 c=05

60000

40000

20000

number of unmatched points

c=075

S || Y | [N ||] I || [S TN | A || A || |
E-closest X-closest Random Furthest E-closest X-closest Random Furthest
Buffer size No buffer %0.5 %1 %10 %25 %50 %75 Buffer size No buffer %0.5 %1 %10 %25 %50 %75
E-closest 902 932 914 880 759 556 5000 E-closest 9302 9240 9266 8796 7188 5876 50000
X-closest 928 926 910 950 836 1368 5042 X-closest 9296 9266 9306 8916 8414 13622 50476
Random 925 919 1001 987 983 1557 5067 Random 9358 9443 9527 9477 9579 15697 50581
Furthest 942 950 1028 982 1038 1978 5164 Furthest 9620 9662 9648 9790 10472 19474 51538

(a) inputs of size n = 10,000

(b) inputs of size n = 100,000

Figure 6.6: Monochromatic algorithm with delay on normal distributed input of size 10,000
(a) and 100,000 (b). The best result of each algorithm is highlighted by a different colour.

29

Nobuffer [l c=0005 [c=001 [c=01 [l c=025 c=05 c=0.75 Nobuffer [l ¢=0.005 [c=001 [c=01 M c=025 c=0.5 c=0.75
6000 80000

60000

4000
40000

2000
I IIII - IIII
. il ,_lin

E-closest X-closest Random Furthest E-closest X-closest Random Furthest

number of unmatched points
number of unmatched points

Buffer size No buffer %0.5 %1 %10 %25 %50 %75 Buffer size No buffer %0.5 %1 %10 %25 %50 %75

E-closest 1860 1692 1394 1142 998 1156 5058 E-closest 21350 16326 15742 13392 11668 12654 51420
X-closest 1926 1914 1876 2170 2268 2794 5780 X-closest 21102 24912 26116 29620 30468 35022 61990
Random 1923 1939 1741 1801 1981 2427 5473 Random 21512 21271 23625 21317 22901 26845 56543
Furthest 1868 1922 1814 1746 2466 3262 5734 Furthest 21542 27786 27146 31342 29566 32044 58620

(a) inputs of size n = 10,000 (b) inputs of size n = 100,000

Figure 6.7: Monochromatic algorithm with delay on the Zipfian distributed input of size
10,000 (a) and 100,000 (b). The best result of each algorithm is highlighted by a different
colour.

6.2.3 Bichromatic algorithms

We ran the greedy algorithms (without delay), as described in Section , on ten
input sequences of size n = 10, 000, where the x— and y—coordinates of points are iid
variables that follow distributions described in Section [6.1.1l Given that the colour of
each point is red or blue with equal chances, it is expected that the number of points
from each colour to be n/2.

Figure compares results of various algorithms, where the average number of

unmatched points is reported (the average is taken over the five input sequences).

Input of size 10,000
3500

3000

500 Uniform Normal Zipfian
o E-closest 818 800 1496.4

o II II II X-closest ~ 987.2 1206.4 1772
0 — == S Random 2144.8 2144.4 2779.6
®Eclosest M Xlosest ®Random = Furthest Furthest 2272.8 2159.2 3186.8

Figure 6.8: Comparison of various greedy algorithms for input sequences generated using
normal, uniform and Zipfian distributions
From the reported numbers, we can conclude the following:

e There is a big disparity between the average number of unmatched points (re-

ported in Figure , and the number of unmatched points in the worst-case

60

scenarios. In all cases reported in Figure [6.8] at least two-third of points are
matched when the input is generated randomly, while Theorem {4| implies that
only logn — o(logn) ~ 14 points are matched, and the remaining 9986 points

stay unmatched in the worst-case.

e In contrast to the monochromatic case, where the number of unmatched points
is almost equal for different algorithms, there is a noticeable difference between
the number of unmatched points by different algorithms in the bichromatic case.
In particular, E-closest has a clear advantage, and Furthest is by far the worst
algorithm. This can be justified by the observations that we made earlier. In
particular, maintaining shorter segments between the matched pairs helps in

reducing the number of unmatched points.

6.3 Summary of results

The results in this section highlight the importance of studying the average-case sce-
narios. In particular, the worst-case results from the theoretical analysis of the online
non-crossing matching algorithms are not always aligned with the typical performance
of such algorithms. Studying inputs that are generated randomly from a known dis-
tribution is one way to understand the typical performance of different algorithms.

From our results in this section, we can make the following conclusions:

e Among the greedy algorithms, it is best to use the tie-breaking rule that selects
the closest point, that is E-closest. In the monochromatic setting, E-closest
leaves less than n/10 points unmatched (for all distributions that we tried),
which is less than the n/3 unmatched points in the worst-case scenarios. For
the bichromatic setting, the algorithm leaves less than n/6 points unmatched,
which is considerably less than n — log(n) points unmatched in the worst-case

scenarios.

e Using a buffer helps in improving the performance of E-closest. In particular,
if the algorithm waits to observe ¢ - n points before matching the first point,
for some ¢ € [0,25,0.5], its performance is further improved. In particular, the

number of unmatched points will become less than n/14.

e The distribution used to generate the input can make a difference in the number

of unmatched points by E-closest. In particular, if the input points are uniformly

61

distributed, the number of unmatched points is less when compared to the

Zipfian distribution.

62

Chapter 7
Conclusions

We studied the online non-crossing matching problem under different settings and
assumptions. Our main goal is to understand the performance of online algorithms in
the worst-case settings, where an adversary generates the input points. Our results

can be summarized as follows:

e For the monochromatic setting of the problem, We provided a tight upper bound
(Theorem (1)) as well as a tight lower bound (Theorem [2)) for the number of
unmatched points by deterministic algorithms. Similarly, we proved tight upper
and lower bounds (Theorems[3and[d) for the number of unmatched points under
the bichromatic setting. In particular, we proved any deterministic algorithm
with greedy property matches at least [2(n — 1)/3] points, and this is the best
worst-case performance among all deterministic algorithms. Meanwhile, under
the bichromatic, any algorithm is forced to leaves n — o(n) points unmatched in
the worst-case scenario. This shows the disparity between the monochromatic
and bichromatic settings of the problem. In the bichromatic case, the adversary
is more powerful, and hence an online algorithm is forced to leave almost all

points unmatched.

e We showed the online algorithm with advice of size O(n) and Q(logn) are
respectively sufficient (Theorem and necessary (Theorem @ to match all
points in the monochromatic case. For the bichromatic variant, advice of size
O(nlogn) is both sufficient and necessary to match all points (Theorem|[7). The
main takeaway is that more bits are necessary to achieve an optimal solution
for the bichromatic setting. This is yet another evidence for the harder nature

of the bichromatic matching when compared to the monochromatic matching.

63

e We studied the power of randomization for the non-crossing matching of online
points problem. We proved that using randomization can help improve the
performance under the monochromatic setting. In particular, we presented
a randomized algorithm that is expected to leave at most 0.3304n + 0.5754
unmatched points (Theorem , which improves over n/3 unmatched points
by any deterministic algorithm. (Theorem . We also showed a limitation
for what randomized algorithms can achieve by showing that any randomized
algorithm is expected to leave at least 0.0738 points unmatched (Theorem @
We also showed that, unlike the monochromatic setting, randomization does
not help for the bichromatic case (Theorem [10)).

e In addition to the worst-case scenarios, we considered the average-case per-
formance of online algorithms. We experimentally studied the performance of
greedy algorithms with different tie-breaking rules on inputs generated inde-
pendently at random from an identical distribution. Our results revealed a big
difference between the worst-case and average-case performance attainable by
online algorithms. For example, while any online algorithm is forced to leave
n — o(n) points unmatched under the bichromatic setting under the worst-case
scenarios, an algorithm is expected to leave at most n/3 points unmatched for

random inputs.

There are several open problems that can be considered as topics for future re-

search:

e Tightening the gap between the upper and lower bounds of the number of advice

bits sufficient and required to achieve a perfect matching.

e Improving the randomized algorithm of Chapter 5 to tighten the gap between
the existing upper and lower bounds for the best competitive ratio attainable

by randomized algorithms.

e Providing a theoretical analysis to find the number of unmatched points when

the point coordinates are uniform iid variables.

e Studying the power of “deferral" for the online non-crossing matching problem.
Under this setting, the algorithm can change some of its previous decisions for
improved performance. This model is studied for other online problems (e.g., for

the Steiner tree problem [20]) and seems very relevant in the context of online

64

matching, particularly for the bichromatic setting. For example, one might for
the number of matched pairs of points that should be “unmatched" in order to

ultimately match a fraction of points in the bichromatic setting.

65

Bibliography

1]

2]

131

4]

15]

[6]

17l

18]

G. Aloupis, J. Cardinal, S. Collette, E. D. Demaine, M. L. Demaine, M. Dulieu,
R. F. Monroy, V. Hart, F. Hurtado, S. Langerman, M. Saumell, C. Seara, and

P. Taslakian. Non-crossing matchings of points with geometric objects. Comput.
Geom., 46(1):78-92, 2013. [9]

S. Angelopoulos, C. Diirr, S. Jin, S. Kamali, and M. Renault. Online computation
with untrusted advice. arXiv preprint arXiv:1905.05655, 2019.

M. J. Atallah. A matching problem in the plane. J. Comput. Syst. Sci., 31(1):63—
70, 1985. [I 0

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power
of randomization in on-line algorithms. Algorithmica, 11(1):2-14, 1994.

S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the
power of randomization in on-line algorithms. Algorithmica, 11(1):2-14, 1994.
12

H.-J. Bockenhauer, D. Komm, R. Kréalovi¢, R. Kralovi¢, and T. Mémke. On the
advice complexity of online problems. In International Symposium on Algorithms
and Computation, pages 331-340. Springer, 2009.

P. Bose, P. Carmi, S. Durocher, S. Kamali, and A. Sajadpour. Non-crossing
matching of online points. In J. M. Keil and D. Mondal, editors, Proceedings of
the 32nd Canadian Conference on Computational Geometry, CCCG 2020, Au-
gust 5-7, 2020, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
pages 233-239, 2020. [13]

P. Bose, M. E. Houle, and G. T. Toussaint. Every set of disjoint line segments
admits a binary tree. Discret. Comput. Geom., 26(3):387-410, 2001.

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

66

J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online
algorithms with advice: A survey. ACM Comput. Surv., 50(2):19:1-19:34, 2017.

il

G. Casella. Statistical inference/by george casella, rober 1. berger. Duzbury
Advanced Series., 2002. [5]]

S. Cohen. Finding color and shape patterns in images. Stanford University,
Department of Computer Science, 1999. [1} [2] [6] [LT]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009. [9]

C. Diirr, C. Konrad, and M. Renault. On the power of advice and randomization
for online bipartite matching. arXiv preprint arXiv:1602.07154, 2016.

A. Efrat, A. Ttai, and M. J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1-28, 2001. ,

A. Formella. Approximate point set match for partial protein structure
alignment. Proceedings of Bioinformatics: Knowledge Discovery in Biology
(BKDB2005). Facultade Ciencias Lisboa da Universidade de Lisboa, pages 5357,

2005. [2 B 6}, [17]

B. Fuchs, W. Hochstéttler, and W. Kern. Online matching on a line. Theoretical
Computer Science, 332(1-3):251-264, 2005.

N. R. Goodman. Statistical analysis based on a certain multivariate complex
gaussian distribution (an introduction). The Annals of mathematical statistics,
34(1):152-177, 1963.

K. Grauman and T. Darrell. Fast contour matching using approximate earth
mover’s distance. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 1,
pages I-1. IEEE, 2004. 2] [6]

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text in-
dexes. In Proc. 14th Symp. on Discrete Algorithms (SODA), pages 841-850,
2003.

20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

29]

130]

67

A. Gu, A. Gupta, and A. Kumar. The power of deferral: maintaining a constant-
competitive steiner tree online. SIAM Journal on Computing, 45(1):1-28, 2016.
05]

S. Gu, C. Lindsay, M. A. Gennert, and M. A. King. A quick 3d-to-2d points
matching based on the perspective projection. In International Symposium on
Visual Computing, pages 634—645. Springer, 2008.

J. Hershberger and S. Suri. Efficient breakout routing in printed circuit boards. In

J. Boissonnat, editor, Proc. 13th Annual Symposium on Computational Geometry

(SOCG), pages 460-462. ACM, 1997.

M. Hoffmann, B. Speckmann, and C. D. Té6th. Pointed binary encompassing
trees: Simple and optimal. Comput. Geom., 43(1):35-41, 2010.

A. Kaneko and M. Kano. Discrete geometry on red and blue points in the
plane—a survey—. In Discrete and computational geometry, pages 551-570.
Springer, 2003. [0]

R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line

bipartite matching. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 352-358, 1990. [10} [11],

S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for
weighted bipartite matching and stable marriages. Theoretical Computer Sci-
ence, 127(2):255-267, 1994.

E. Koutsoupias and A. Nanavati. The online matching problem on a line. In
International Workshop on Approximation and Online Algorithms, pages 179—
191. Springer, 2003.

E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Journal
of the ACM (JACM), 42(5):971-983, 1995.

L. C. Larson. Intermediate real analysis. In Problem-Solving Through Problems,
pages 192-240. Springer, 1983. [0]

A. Levin and A. Shashua. Principal component analysis over continuous sub-
spaces and intersection of half-spaces. In Furopean Conference on Computer
Vision, pages 635-650. Springer, 2002. [2]

[31]

32]

33

[34]

[35]

[36]

137]

38

68

C. Lo, J. Matousek, and W. L. Steiger. Algorithms for ham-sandwich cuts.
Discrete & Computational Geometry, 11:433-452, 1994. [7]

J. W. Mikkelsen. Randomization can be as helpful as a glimpse of the future in
online computation. arXiv preprint arXiv:1511.05886, 2015.

S. Miyazaki. On the advice complexity of online bipartite matching and online
stable marriage. Inf. Process. Lett., 114(12):714-717, 2014.

P. Neamatollahi, M. Hadi, and M. Naghibzadeh. Simple and efficient pattern
matching algorithms for biological sequences. IEEE Access, 8:23838-23846, 2020.

D. M. Powers. Applications and explanations of zipf’s law. In New methods in

language processing and computational natural language learning, 1998.

P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18(6):1201-1225,
1989. [0l

P. B. Van Wamelen, Z. Li, and S. Iyengar. A fast expected time algorithm for
the 2-d point pattern matching problem. Pattern Recognition, 37(8):1699-1711,
2004. 111

A. C. Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proc. the 18th Annual Symposium on Foundations of
Computer Science (FOCS), pages 222-227. IEEE Computer Society, 1977.

	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Abstract
	Introduction
	Advice model for online algorithms
	Roadmap and contribution

	Problem statement
	Input of the problem
	Objective of the problem

	Literature review
	Relevant problems
	Advice model
	Randomization

	Deterministic algorithms
	Monochromatic non-crossing matching
	Upper bound
	Lower bound

	Bichromatic non-crossing matching
	Upper bound
	Lower bound

	Non-crossing matching with advice
	Monochromatic setting
	Bichromatic setting

	Randomized algorithms
	 Monochromatic Setting
	Upper bound
	Lower bound

	Randomized bichromatic non-crossing matching

	Experimental analysis
	Experimental set-up
	Input distribution
	The tested algorithms
	Implementation details

	Results
	Monochromatic algorithms (without delay)
	Monochromatic algorithm with delay
	Bichromatic algorithms

	Summary of results

	Conclusions
	Bibliography

